
Objects and Structures

Rob Miles

Department of Computer Science

28b 08120 Programming 2

2

The “Friendly Bank”

• The examples we are going to use are for the creation of a
management system for “The Friendly Bank”

• The manager has asked us to create a C# program that will
keep track of information held about each account holder

• The bank has told you what information needs to be stored

• This is metadata about the system to be created

• For the purpose of demonstration we are going to work with
the name, account number and balance information for each
customer

Chapter 13 : References and Objects

3

Objects vs Structures

• It is very important that you appreciate the difference
between objects and structures

• Objects are managed by reference

– A variable is a tag which is connected to the instance
which is held somewhere in memory

• Structures are managed by value

– A variable is a box which holds the actual data for the
structure

Chapter 13 : References and Objects

4

The Account Structure

• We have seen structures before

– They allow us to create “lumps of data”

• If all we need to store is the name of the account holder,
their account number and the amount of money they have
we can create a structure like the one above

struct AccountStruct
{

public string Name;
public int AccountNumber;
public int Balance;

}

Chapter 13 : References and Objects

5

Using a struct

• You create a variable of type struct by declaring it

• This creates an account structure which can hold an account
value

• This structure is managed by value, in that once we have
declared the variable we get space in memory where we can
store a value of type AccountStruct

AccountStruct rob;
rob.Name = "Rob Miles";

Chapter 13 : References and Objects

6

Creating a Bank

• Once we have our structure type we can create an array of
that type

• This will reserve space in the memory to store a large
number of accounts

• The memory will be reserved as a single large block of
memory with enough room to hold 100 account items

AccountStruct [] Bank = new AccountStruct [100];

Chapter 13 : References and Objects

7

The Account Class

• Structures and classes both describe objects

• The code above creates a class called AccountClass that
has exactly the same content as AccountStruct

• However, because it is a class it is managed by reference

class AccountClass
{

public string Name;
public int AccountNumber;
public int Balance;

}

Chapter 13 : References and Objects

8

Using a class variable

• Making a class variable is more complicated than a structure

• When a variable of AccountClass type is declared you only

get a reference to objects of that type

– This is because classes describe objects that are managed
by reference

• If I try to use this reference the program will fail at run time

AccountClass rob;
rob.Name = "Rob Miles";

Chapter 13 : References and Objects

9

Creating an Account Reference

• Declaring a variable of type Account creates a tag that can
refer to Account instances

• It does not create anything that can store account
information

Account RobsAccount;

Chapter 13 : References and Objects

RobsAccount

10

Creating an Instance

• Before you can use a class variable you need to create an
instance

• We have seen the new construction before

• We used it to create new instances of arrays

• This means that an array is actually implemented by a class

AccountClass rob;
rob = new AccountClass();
rob.Name = "Rob Miles";

Chapter 13 : References and Objects

11

Creating an Account Instance

• If we want an Account instance we have to create it and

set the reference to refer to it

• Note that this is different from structures (and other types
managed by value)

Account RobsAccount;
RobsAccount = new Account();
RobsAccount.Name = "Rob Miles";

Chapter 13 : References and Objects

RobsAccount

Account

Name: Rob Miles

Address:

Balance:

12

Assignment

• The effect of assignment is different when considering value
and reference types

– A value type assignment copies the values from one struct
to another

– A reference type assignment makes the two references
point at the same instance

• It is impossible to state the effect of an assignment without
knowing whether the variables are reference or value

Chapter 13 : References and Objects

13

Assignment Problems

• If a and b are value types the assignment will have no effect
on the value held in a

• If a and b are reference types the assignment will make them

both refer to the same instance

• This means that there are two ways of accessing one object

a = b;

a.Name = "Fred";

Chapter 13 : References and Objects

14

References to the same object

• An object in memory can have multiple references
referring to it

• In the above code we have changed the Name property of
the object referred to by a

• We could have changed the name of b

a = b;

a.Name = "Fred";

Chapter 13 : References and Objects

a

Account

Name: Fred

Address:

Balance:

b

15

Garbage Collection

• At the end of the above sequence both a and b refer to the

same instance

• The original instance referred to by a now has no

references connected to it

• The memory it occupies will be recovered by the Garbage
Collector

AccountClass a = new AccountClass();
AccountClass b = new AccountClass();
a = b;

Chapter 13 : References and Objects

16

Why Bother with References?

• References don’t seem to add much value to our programs

– You have to use the new keyword to create them
– You get this strange behaviour when you perform

assignments
– You can waste blocks of memory which need to be garbage

collected

Chapter 13 : References and Objects

17

Useful References

• We can "move" data around by simply moving the reference

• We can have arrays of references which can be ordered in
different ways

– A bank account list ordered on customer name
– A bank account list ordered on account balance

• We can also use references to build up data structures

• We will see how to do this in the next session

Chapter 13 : References and Objects

