ey Hull

¢ &
UNIVERSITY OF

Objects and References

Rob Miles

Department of Computer Science

28b 08120 Programming 2

Lo
UNI\-IERSIT?{?OF Hull

Objects and References

* Objects let us lump data together into values that contain
multiple fields

 Variables can then contain values which are made up of a set
of related items

« Now we are going to find out how to use references to allow
us to handle very large amounts of data

2 Chapter 13 : References and Objects

G DL
UNI\-/EgSITq!l;OF Hull

The Account Class

class Account

{

public string Name;
public int AccountNumber;
public int Balance;

« We have seen structures before

— They allow us to create “lumps of data”

 If all we need to store is the name of the account holder,
their account number and the amount of money they have
we can create a structure like the one above

3 Chapter 13 : References and Objects

Lo
UNI\-/ERSIT?;OF Hull

Creating an Account Reference

Account RobsAccount;

RobsAccount O

 Declaring a variable of type Account creates a tag that can
refer to Account instances

It does not create anything that can store account
information

4 Chapter 13 : References and Objects

G DL
UNI\-/EgSITq!l;OF Hull

Creating an Account Instance

Account RobsAccount;
RobsAccount = new Account();

Account
Name:
RobsAccount
@j/lj Address:
Balance:

« If we want an Account instance we have to create it and
set the reference to refer to it

* Note that this is different from structures (and other types
managed by value)

5 Chapter 13 : References and Objects

G DL
UNI\-/EgSITQSl;OF Hull

Using Duplicate References

Account RobsAccount;
RobsAccount = new Account();

Account Temp,

Temp = RobsAccount;
Temp.Name = "Rob";

Account
Name: Rob
RobsA t
obsAccoun Cﬂ/\) Address:

Balance:

Temp

* An object in memory can have multiple references

referring to it

 In the above code we have changed the Name property of

the object referred to by Temp

* We could have changed the name of RobsAccount

Chapter 13 : References and Objects

G DL
UNI\-/EgSITQSl;OF Hull

Removing References

Account RobsAccount;
RobsAccount = new Account();

RobsAccount.Name = "OldRob";

RobsAccount = new Account();

RobsAccount.Name = "NewRob";

RobsAccount

« The above code creates two objects

Account
Name: OldRob

Account
Name: NewRob

* When the code has completed only one of the objects has a

reference to it

* The Account with the name OldRob is no longer accessible

It will be removed automatically by the Garbage Collector

process

Chapter 13 : References and Objects

‘?‘é’alekHull

UNIVERSITY OF

Garbage Collection

» The Garbage Collector is a process that runs alongside your
program

« It constantly looks for objects that no longer have references
* These are automatically removed from memory

« Not all languages have automatic garbage collection
— C and C++ do not provide this

 In those languages your program must explicitly dispose of
objects that are no longer required

8 Chapter 13 : References and Objects

Lo
UNI\-/ERSIT?;OF Hull

How References Really Work

Account RobsAccount; RobsAccount |

Address: 40000

 We can view a reference as a Tag, and the connection
between the reference and the object as a “rope” that is
tied from the tag to the object

9 Chapter 13 : References and Objects

G DL
UNI\-/EgSITQSl;OF Hull

How References Really Work

Account RobsAccount; RobsAccount
RobsAccount = new Account();

o

Account
Name:
Address:
Balance:

 We can view a reference as a Tag, and the connection
between the reference and the object as a “rope” that is

tied from the tag to the object

 When you assign a reference it is like tying the tag to the

object

10

Chapter 13 : References and Objects

g@gwsﬂun

UNIVERSITY OF

How References Really Work

Account RobsAccount; RobsAccount
RobsAccount = new Account();
RobsAccount.Name = "Rob";

o

Account
Name: Rob
Address:
Balance:

 We can view a reference as a Tag, and the connection
between the reference and the object as a “rope” that is

tied from the tag to the object

 When you assign a reference it is like tying the tag to the

object

 When you access a property via a reference the reference
is used to find the object that is being used

11

Chapter 13 : References and Objects

T Lo
UNIVERSITY OF Hllll

How References Really Work

Account RobsAccount; RobsAccount Account
_ . Name: Rob

RobsAccount = new Account(); Agrose.

RobsAccount.Name = "Rob"; Address: 40000 Balance:

Y
B

0 Computer Memory 1GByte

« References actually work by holding the address in
memory of the object

« However, the physical location of your object is hidden
from your program

12 Chapter 13 : References and Objects

Lo
UNI\-IERSIT?{?OF Hull

Why Bother with References?

 References seem to make life more difficult:

— We have to create the objects before we can use them

— We can confuse ourselves by having more than one
reference to a single object

— We can inadvertently let go of a reference and lose the
item on the end of it

— The Garbage Collector has to come along and remove
unused objects

« However, references are actually very useful when it comes
to managing large amounts of data

13 Chapter 13 : References and Objects

Lo
UNI\-IERSIT?{?OF Hull

Creating a Bank with Structures

[] Bank = new [100];

 If we want to store 100 bank accounts we need an array to
hold 100 of them

 If we use structures this is very easy, we just have to create
an array of the appropriate size

« Because structures are managed by value this will create
the required number of accounts

14 Chapter 13 : References and Objects

T Lo
UNIVERSITY OF Hllll

Storing Structures in Memory

When we create an array of structures they are stored in a
single block of memory

The array subscript is used to identify the particular part
of the block that holds that element

Above shows the storage that would be used to hold 100
account values

Note that they are numbered from o

15

Chapter 13 : References and Objects

T Lo
UNIVERSITY OF Hllll

Sorting Stored Structures

Bloggs Evans Jones Miles Moore Smith Walton Wright

10 5 100 0 30 50 75 1000

0 1 2 3 4 5 6 7

« When we store the data we could put the items in order

— The data could be sorted in alphabetic order of account
holder name
— The data could be sorted in ascending order of bank balance

« However, it could not be sorted in two different orders at the
same time

« To do that we would need to use two lists, which would be hard
to keep up to date

16 Chapter 13 : References and Objects

T Lo
UNIVERSITY OF Hllll

Sorting using References

References ordered by balance

Smith Jones Bloggs Wright Miles Evans Walton Moore
10) 100 10 1000 0 5 75 30

« Rather than sort the data itself, we can create a list of
references which are sorted in a particular order

* The list of references above are sorted in order of bank
balance

17 Chapter 13 : References and Objects

‘?‘é’*kHun

UNIVERSITY OF

Sorting using References

0 1 2 3 4 5 6 7 References ordered by balance

Smith Jones Bloggs Wright Miles Evans Walton Moore

50 100 10 1000 0 5 75 30

0 1 2 3 4 5 6 7 References ordered by name

« We can add another list of references to view the data sorted
in a different order

18 Chapter 13 : References and Objects

T Lo
UNIVERSITY OF Hllll

The Linked Account Class

class Account

public string Name;

public int AccountNumber;
public int Balance;

public Account NextAccount;

}

Account BankList;

« If we put references inside our data values we can now
create linked data structures

 This is useful because the storage can grow as required

19 Chapter 13 : References and Objects

Lo
UNI\}ERSIT?;OF Hull

Reference Power

» References are actually quite useful:

— They allow us to manipulate large objects without moving
them around in memory

— They allow us to create multiple “views” of a set of data

— They allow us to add extra objects up to the limits of the
memory of the computer

— They allow us to create data structures (lists, trees and
meshes) in which data items are linked to others

 Allin all, they are worth the effort

20 Chapter 13 : References and Objects

