
Objects and References

Rob Miles

Department of Computer Science

28b 08120 Programming 2

2

Objects and References

• Objects let us lump data together into values that contain
multiple fields

• Variables can then contain values which are made up of a set
of related items

• Now we are going to find out how to use references to allow
us to handle very large amounts of data

Chapter 13 : References and Objects

3

The Account Class

• We have seen structures before

– They allow us to create “lumps of data”

• If all we need to store is the name of the account holder,
their account number and the amount of money they have
we can create a structure like the one above

class Account
{

public string Name;
public int AccountNumber;
public int Balance;

}

Chapter 13 : References and Objects

4

Creating an Account Reference

• Declaring a variable of type Account creates a tag that can
refer to Account instances

• It does not create anything that can store account
information

Account RobsAccount;

Chapter 13 : References and Objects

RobsAccount

5

Creating an Account Instance

• If we want an Account instance we have to create it and

set the reference to refer to it

• Note that this is different from structures (and other types
managed by value)

Account RobsAccount;
RobsAccount = new Account();

Chapter 13 : References and Objects

RobsAccount

Account

Name:

Address:

Balance:

6

Using Duplicate References

• An object in memory can have multiple references
referring to it

• In the above code we have changed the Name property of
the object referred to by Temp

• We could have changed the name of RobsAccount

Account RobsAccount;
RobsAccount = new Account();

Account Temp;

Temp = RobsAccount;
Temp.Name = "Rob";

Chapter 13 : References and Objects

RobsAccount

Account

Name: Rob

Address:

Balance:

Temp

7

Removing References

• The above code creates two objects

• When the code has completed only one of the objects has a
reference to it

• The Account with the name OldRob is no longer accessible

• It will be removed automatically by the Garbage Collector
process

Account RobsAccount;

RobsAccount = new Account();

RobsAccount.Name = "OldRob";

RobsAccount = new Account();

RobsAccount.Name = "NewRob";

Chapter 13 : References and Objects

RobsAccount

Account

Name: OldRob

Account

Name: NewRob

8

Garbage Collection

• The Garbage Collector is a process that runs alongside your
program

• It constantly looks for objects that no longer have references

• These are automatically removed from memory

• Not all languages have automatic garbage collection

– C and C++ do not provide this

• In those languages your program must explicitly dispose of
objects that are no longer required

Chapter 13 : References and Objects

9

How References Really Work

• We can view a reference as a Tag, and the connection
between the reference and the object as a “rope” that is
tied from the tag to the object

Account RobsAccount;

Chapter 13 : References and Objects

RobsAccount

Address: 40000

10

How References Really Work

• We can view a reference as a Tag, and the connection
between the reference and the object as a “rope” that is
tied from the tag to the object

• When you assign a reference it is like tying the tag to the
object

Account RobsAccount;
RobsAccount = new Account();

Chapter 13 : References and Objects

RobsAccount Account

Name:

Address:

Balance:

11

How References Really Work

• We can view a reference as a Tag, and the connection
between the reference and the object as a “rope” that is
tied from the tag to the object

• When you assign a reference it is like tying the tag to the
object

• When you access a property via a reference the reference
is used to find the object that is being used

Account RobsAccount;
RobsAccount = new Account();
RobsAccount.Name = "Rob";

Chapter 13 : References and Objects

RobsAccount Account

Name: Rob

Address:

Balance:

12

How References Really Work

• References actually work by holding the address in
memory of the object

• However, the physical location of your object is hidden
from your program

Account RobsAccount;
RobsAccount = new Account();
RobsAccount.Name = "Rob";

Chapter 13 : References and Objects

RobsAccount Account

Name: Rob

Address:

Balance:
Address: 40000

...

Computer Memory0 1GByte

Name: Rob

Address:

Balance:

13

Why Bother with References?

• References seem to make life more difficult:

– We have to create the objects before we can use them
– We can confuse ourselves by having more than one

reference to a single object
– We can inadvertently let go of a reference and lose the

item on the end of it
– The Garbage Collector has to come along and remove

unused objects

• However, references are actually very useful when it comes
to managing large amounts of data

Chapter 13 : References and Objects

14

Creating a Bank with Structures

• If we want to store 100 bank accounts we need an array to
hold 100 of them

• If we use structures this is very easy, we just have to create
an array of the appropriate size

• Because structures are managed by value this will create
the required number of accounts

AccountStruct [] Bank = new AccountStruct [100];

Chapter 13 : References and Objects

15

Storing Structures in Memory

• When we create an array of structures they are stored in a
single block of memory

• The array subscript is used to identify the particular part
of the block that holds that element

• Above shows the storage that would be used to hold 100
account values

• Note that they are numbered from 0

0 1 2 3 4 5 ... 94 95 96 97 98 99

Chapter 13 : References and Objects

16

Sorting Stored Structures

• When we store the data we could put the items in order

– The data could be sorted in alphabetic order of account
holder name

– The data could be sorted in ascending order of bank balance

• However, it could not be sorted in two different orders at the
same time

• To do that we would need to use two lists, which would be hard
to keep up to date

Chapter 13 : References and Objects

Smith

50

Jones

100

Bloggs

10

Wright

1000

Miles

0

Evans

5

Walton

75

Moore

30

0 1 2 3 4 5 6 7

17

Sorting using References

• Rather than sort the data itself, we can create a list of
references which are sorted in a particular order

• The list of references above are sorted in order of bank
balance

Chapter 13 : References and Objects

Smith

50

1 2 3 4 5 6 7

Jones

100

Bloggs

10

Wright

1000

Miles

0

Evans

5

Walton

75

Moore

30

0 References ordered by balance

18

Sorting using References

• We can add another list of references to view the data sorted
in a different order

Chapter 13 : References and Objects

Smith

50

1 2 3 4 5 6 7

Jones

100

Bloggs

10

Wright

1000

Miles

0

Evans

5

Walton

75

Moore

30

0

1 2 3 4 5 6 70

References ordered by balance

References ordered by name

19

The Linked Account Class

• If we put references inside our data values we can now
create linked data structures

• This is useful because the storage can grow as required

class Account
{

public string Name;
public int AccountNumber;
public int Balance;
public Account NextAccount;

}
Account BankList;

Chapter 13 : References and Objects

Name: Rob

Address:

Balance:

Name: Jim

Address:

Balance:

Name: Joe

Address:

Balance:

Name: Bill

Address:

Balance:

NULLBankList

20

Reference Power

• References are actually quite useful:

– They allow us to manipulate large objects without moving
them around in memory

– They allow us to create multiple “views” of a set of data
– They allow us to add extra objects up to the limits of the

memory of the computer
– They allow us to create data structures (lists, trees and

meshes) in which data items are linked to others

• All in all, they are worth the effort

Chapter 13 : References and Objects

