kN Hull

=
o
>
ot
7
@ &
>
-
4
5

Storing Data in Objects

Rob Miles

Department of Computer Science

28d 08120 Programming 2

‘?‘é’alekHull

UNIVERSITY OF

Objects and Items

I have said for some time that you use objects to represent
things in your problem

Objects equate to the nouns in a description of a system

* “The Bank will contain a number of different Accounts”

Each of these will hold a lump of data which is important to
your system

The job of the programmer is to decide what goes into the
objects and the things they need to do

2 Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

Business Objects

* Objects which represent fundamental entities in the system
that you are representing

— They are sometimes called Domain Objects
* Four business objects, and one that isn’t:

— Customer

— Receipt

— Login Window
— Tree

— Photograph

3 Working with Objects

‘?‘é’alekHull

UNIVERSITY OF

Designing With Objects

A Software Engineer will represent entities in the system
with software objects

« The object holds data and it also does things for us

* At this level the design of a system is performed by deciding
what objects are required, what data they must store and
what they need to do for us

 This is really an extension of the “metadata driven” approach
that we started with

4 Working with Objects

‘?‘é’alekHull

UNIVERSITY OF

Data In Objects

Objects can contain data

« We can protect this by making it private

If we make data private we need to provide public methods
that allow the data to be used

What the data is, and what you can do with it depends on the
application you are building

5 Working with Objects

G DL
UNI\-/EgSITQSl;OF Hull

Friendly Bank Requirements

e pay money into the account

« draw money out of the account

 find the balance

 change the name and address of the account holder
 get the name of an account holder

 get the address of an account holder

 change the overdraft limit on an account

e find the overdraft limit on an account

Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

Account Class Data

 The Account class will need to hold data

« We have to go back to the requirements to decide what data
is to be held

— Also need to determine the type of the data and how we
are going to represent it
— Also need to consider data validation

e All this means the return of the metadata

Working with Objects

‘?‘é’ﬁlekHun

UNIVERSITY OF

An Account Class

class Account

{
public string AccountName;
public string AccountNumber;
public decimal AccountBalance;

}

 This is our first attempt at an Account business object

* It only contains part of the system information
— Other data fields will be required to complete the system
« We can create an array of these for the bank

8 Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

Protecting Data in Classes

Rob = new ();
Rob.AccountBalance = 1000000;

 When we design our objects we need to consider how the
data in them is going to be protected

« We want to avoid naughty programmers being able to
make changes which would upset the state of our objects

« It is important that we control access to the variable that
holds the accountBalance

Working with Objects

Lo
UNI\-/ERSIT?;OF Hull

An Account Class

class Account

{
private string accountName;
private string accountNumber;
private decimal accountBalance;

}

 The data fields in the Account class have now been made
private

 This means that code which is not part of the Account class
can’t change these values

 This protection is enforced at compile time

10 Working with Objects

‘?‘é’alekHull

UNIVERSITY OF

Protecting Data in Classes

Rob = new ();
Rob.accountBalance = 1000000;

 When the accountBalance field is made private itis

impossible for code outside the Account class to access
that field

* The above code will not compile, unless the statements are
part of a method inside the Account object

 This is how data inside an object is protected

11 Working with Objects

‘?‘é’alekHull

UNIVERSITY OF

Using Private Data Fields

« If a data field is private this means that only code running
inside the object can access it

 This might make you think that it is impossible for code
outside the object to make use of the data in that object

« However, this is not the case, as the creator of the object can
provide methods that will allow external use of these fields

* There are two kinds of methods that you can create which
are called accessors and mutators

12 Working with Objects

‘?‘é’alekHull

UNIVERSITY OF

Accessors and Mutators

« An accessor method provides read access to a data field
inside the object (sometimes called a get method)

— Accessor methods return a value of some kind

« A mutator method allows you to change (mutate) a data field
(sometimes called a set method)

— The mutator can be given a value that will be used to
change the field

— It should make sure that the change is sensible

— Mutator methods return a result that indicates whether
they worked or not

13 Working with Objects

Lo
UNI\-/ERSIT?;OF Hull

Accessors and Mutators for the Account Balance

 We can write some of these methods for the balance value of
an account

 There are three things the system will need to do with the
balance value

— Pay in funds
— Withdraw funds
— Find out the account balance

« Which are accessors and mutators?

14 Working with Objects

G DL
UNI\-IEgSIT:I;OF Hull

Accessors and Mutators for the Account Balance

 We can write some of these methods for the balance value of
an account

 There are three things the system will need to do with the
balance value

— Pay in funds
— Withdraw funds

« Which are and mutators?

15 Working with Objects

Lo
UNI\-/ERSIT?;OF Hull

A PayInFunds Method
class Account
{ private decimal accountBalance;
public void PayInFunds (decimal amount)
{ accountBalance = accountBalance + amount;
} }

The PayInFunds method is given the amount of money to

add to the balance

It adds this to the accountBalance value in the account

The method is public

16

Working with Objects

Lo
UNI\}ERSIT?;OF Hull

Using the PayInFunds Method

Rob = new ();
Rob.PayInFunds(100);
Rob.PayInFunds(50);

» Users of the Account class can call the PayInFunds method
to pay money into the account

 Each time the method is called the accountBalance value in
the account is updated

17 Working with Objects

G DL
UNI\-/EgSIT:l;OF Hull

A GetBalance Method

class Account

{

private decimal accountBalance;

public decimal GetBalance ()
{

¥

return accountBalance ;

¥

« The GetBalance method returns the value of the account
balance

« Note that this does not provide access to the field, instead it
provides a copy of the value

18 Working with Objects

Lo
UNI\-IERSIT?(?OF Hull

Testing

» All our behaviours need to be tested
— Particularly in terms of their error conditions

« Whenever we create a behaviour we should also
create tests for that behaviour

» These tests should run completely automatically
—The program should test itself

19 Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

Testing the Account object

Rob = new ();
Rob.PayInFunds(100);

Rob.PayInFunds(50);
if (Rob.GetBalance() != 150)

{
¥

Console.WritelLine ("Test Failed");

* As soon as we have some behaviours in our object we can
write some tests for this object

 This one tests the PayInFunds and GetBalance methods

20 Working with Objects

Lo
UNI\}ERSIT?;OF Hull

How Many Tests?

 The test seems quite sensible, but it is not sufficient to prove
that the Account class works correctly

— If GetBalance always returned 150 this test would pass

— If every account was created with 150 pounds in it, and
PayInFunds did nothing this test would pass

— The test doesn’t test a very good range of input values for
PayInFunds - paying in a value of less than o0 is possible

* Whenever we create a behaviour in a class we should
consider how it will be tested

« In many projects the tests are written first

21 Working with Objects

Lo
UNI\}ERSIT?;OF Hull

Another Example of Test

* We must provide a method that withdraws funds
from the account

* You tell it how much you want, and it either
withdraws the money or tells you it can’t

» The method will be called by other parts of the bank
system when the customer uses their account:

— When they use a cash machine to withdraw
money

— When they withdraw money at a bank branch

22 Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

WithdrawFunds Method

* The method is called to withdraw money from the
account

e It is given the amount of money to be withdrawn

e It returns true or false:

—True means that the withdrawal succeeded and
the cash can be released

— False means there was not enough money in the
account

23 Working with Objects

G DL
UNI\-IEgSIT:!(eOF Hull

A Potential WithdrawFunds method

public bool WithdrawFunds (decimal amount)

{

if (accountBalance < amount)

{
¥

accountBalance
return true;

return false ;

accountBalance - amount ;

¥

A programmer has written this WithDrawFunds

* It seems sensible, but is it good enough?

24 Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

Testing WithdrawFunds

Rob = new ();
Rob.PayInFunds(100);

if (Rob.WithdrawFunds(60) == false)
Console.WritelLine ("Withdraw Test Failed");

if (Rob.GetBalance() != 40)
Console.WriteLine ("Balance Test Failed");

 This code creates an Account, pays in some money and then
withdraws some

 If the withdraw fails, or the incorrect amount is left in the
account the program prints error messages

25 Working with Objects

Lo
UNI\}ERSIT?;OF Hull

Other Tests

 This is not a very good set of tests

» There are lots of other ones that will be required

— Withdrawing an amount of 0

— Withdrawing a negative amount

— Withdrawing exactly the amount of money in the account

— Making sure that the amount in the account only goes
down when the withdraw succeeded

* This means that we will write more code in the tests than we
wrote to implement the behaviour

— This is perfectly normal

26 Working with Objects

Lo
UNI\}ERSIT?;OF Hull

Preparing for the Worst

e It should not be possible for anyone (including
other programmers) to be able to upset our bank
account:

— Never have a balance lower than the overdraft
» This is called defensive programming or secure
programming

 Once we have our member information we now
need to make sure that we look after it

27 Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

Test Driven Development

 In Test Driven Development the tests are written before the
methods themselves

* The methods are initially empty

e Then, during the development the methods are filled in so
that the tests are passed

 The tests are run regularly during the development, and
particularly after a bug has been fixed (a bug fix usually adds
two bugs)

* You should remember to charge the customer for this work
too!

28 Working with Objects

Lo
UNI\-IERSIT?{?OF Hull

Designing with Objects

A class can contain data fields which it manages

« The data fields can be made private to protect them from
code outside the class

« The programmer then creates methods that provide read
(access) and write (mutate) behaviours as required

« Every behaviour must have tests associated with it to prove
that the behaviour works correctly

29 Working with Objects

