
Storing Data in Objects

Rob Miles

Department of Computer Science

28d 08120 Programming 2

2

Objects and Items

• I have said for some time that you use objects to represent
things in your problem

• Objects equate to the nouns in a description of a system

• “The Bank will contain a number of different Accounts”

• Each of these will hold a lump of data which is important to
your system

• The job of the programmer is to decide what goes into the
objects and the things they need to do

Working with Objects

3

Business Objects

• Objects which represent fundamental entities in the system
that you are representing

– They are sometimes called Domain Objects

• Four business objects, and one that isn’t:

– Customer
– Receipt
– Login Window
– Tree
– Photograph

Working with Objects

4

Designing With Objects

• A Software Engineer will represent entities in the system
with software objects

• The object holds data and it also does things for us

• At this level the design of a system is performed by deciding
what objects are required, what data they must store and
what they need to do for us

• This is really an extension of the “metadata driven” approach
that we started with

Working with Objects

5

Data In Objects

• Objects can contain data

• We can protect this by making it private

• If we make data private we need to provide public methods
that allow the data to be used

• What the data is, and what you can do with it depends on the
application you are building

Working with Objects

6

Friendly Bank Requirements

• pay money into the account

• draw money out of the account

• find the balance

• change the name and address of the account holder

• get the name of an account holder

• get the address of an account holder

• change the overdraft limit on an account

• find the overdraft limit on an account

Working with Objects

7

Account Class Data

• The Account class will need to hold data

• We have to go back to the requirements to decide what data
is to be held

– Also need to determine the type of the data and how we
are going to represent it

– Also need to consider data validation

• All this means the return of the metadata

Working with Objects

8

An Account Class

• This is our first attempt at an Account business object

• It only contains part of the system information

– Other data fields will be required to complete the system

• We can create an array of these for the bank

class Account
{

public string AccountName;
public string AccountNumber;
public decimal AccountBalance;

}

Working with Objects

9

Protecting Data in Classes

• When we design our objects we need to consider how the
data in them is going to be protected

• We want to avoid naughty programmers being able to
make changes which would upset the state of our objects

• It is important that we control access to the variable that
holds the accountBalance

Account Rob = new Account ();

Rob.AccountBalance = 1000000;

Working with Objects

10

An Account Class

• The data fields in the Account class have now been made
private

• This means that code which is not part of the Account class
can’t change these values

• This protection is enforced at compile time

class Account
{

private string accountName;
private string accountNumber;
private decimal accountBalance;

}

Working with Objects

11

Protecting Data in Classes

• When the accountBalance field is made private it is
impossible for code outside the Account class to access

that field

• The above code will not compile, unless the statements are
part of a method inside the Account object

• This is how data inside an object is protected

Account Rob = new Account ();

Rob.accountBalance = 1000000;

Working with Objects

12

Using Private Data Fields

• If a data field is private this means that only code running
inside the object can access it

• This might make you think that it is impossible for code
outside the object to make use of the data in that object

• However, this is not the case, as the creator of the object can
provide methods that will allow external use of these fields

• There are two kinds of methods that you can create which
are called accessors and mutators

Working with Objects

13

Accessors and Mutators

• An accessor method provides read access to a data field
inside the object (sometimes called a get method)

– Accessor methods return a value of some kind

• A mutator method allows you to change (mutate) a data field
(sometimes called a set method)

– The mutator can be given a value that will be used to
change the field

– It should make sure that the change is sensible
– Mutator methods return a result that indicates whether

they worked or not

Working with Objects

14

Accessors and Mutators for the Account Balance

• We can write some of these methods for the balance value of
an account

• There are three things the system will need to do with the
balance value

– Pay in funds
– Withdraw funds
– Find out the account balance

• Which are accessors and mutators?

Working with Objects

15

Accessors and Mutators for the Account Balance

• We can write some of these methods for the balance value of
an account

• There are three things the system will need to do with the
balance value

– Pay in funds
– Withdraw funds
– Find out the account balance

• Which are accessors and mutators?

Working with Objects

16

A PayInFunds Method

• The PayInFunds method is given the amount of money to

add to the balance

• It adds this to the accountBalance value in the account

• The method is public

class Account
{

private decimal accountBalance;

public void PayInFunds (decimal amount)
{

accountBalance = accountBalance + amount;
}

}

Working with Objects

17

Using the PayInFunds Method

• Users of the Account class can call the PayInFunds method

to pay money into the account

• Each time the method is called the accountBalance value in

the account is updated

Working with Objects

Account Rob = new Account ();

Rob.PayInFunds(100);

Rob.PayInFunds(50);

18

A GetBalance Method

• The GetBalance method returns the value of the account

balance

• Note that this does not provide access to the field, instead it
provides a copy of the value

class Account
{

private decimal accountBalance;

public decimal GetBalance ()
{

return accountBalance ;
}

}

Working with Objects

19

Testing

• All our behaviours need to be tested

–Particularly in terms of their error conditions

• Whenever we create a behaviour we should also
create tests for that behaviour

• These tests should run completely automatically

–The program should test itself

Working with Objects

20

Testing the Account object

• As soon as we have some behaviours in our object we can
write some tests for this object

• This one tests the PayInFunds and GetBalance methods

Working with Objects

Account Rob = new Account ();

Rob.PayInFunds(100);

Rob.PayInFunds(50);
if (Rob.GetBalance() != 150)
{

Console.WriteLine ("Test Failed");
}

21

How Many Tests?

• The test seems quite sensible, but it is not sufficient to prove
that the Account class works correctly

– If GetBalance always returned 150 this test would pass

– If every account was created with 150 pounds in it, and
PayInFunds did nothing this test would pass

– The test doesn’t test a very good range of input values for
PayInFunds - paying in a value of less than 0 is possible

• Whenever we create a behaviour in a class we should
consider how it will be tested

• In many projects the tests are written first

Working with Objects

22

Another Example of Test

• We must provide a method that withdraws funds
from the account

• You tell it how much you want, and it either
withdraws the money or tells you it can’t

• The method will be called by other parts of the bank
system when the customer uses their account:

–When they use a cash machine to withdraw
money

–When they withdraw money at a bank branch

Working with Objects

23

WithdrawFunds Method

• The method is called to withdraw money from the
account

• It is given the amount of money to be withdrawn

• It returns true or false:

–True means that the withdrawal succeeded and
the cash can be released

– False means there was not enough money in the
account

Working with Objects

24

A Potential WithdrawFunds method

• A programmer has written this WithDrawFunds

• It seems sensible, but is it good enough?

public bool WithdrawFunds (decimal amount)
{
if (accountBalance < amount)
{

return false ;
}
accountBalance = accountBalance - amount ;
return true;

}

Working with Objects

25

Testing WithdrawFunds

• This code creates an Account, pays in some money and then

withdraws some

• If the withdraw fails, or the incorrect amount is left in the
account the program prints error messages

Account Rob = new Account ();
Rob.PayInFunds(100);
if (Rob.WithdrawFunds(60) == false)

Console.WriteLine ("Withdraw Test Failed");

if (Rob.GetBalance() != 40)
Console.WriteLine ("Balance Test Failed");

Working with Objects

26

Other Tests

• This is not a very good set of tests

• There are lots of other ones that will be required

– Withdrawing an amount of 0
– Withdrawing a negative amount
– Withdrawing exactly the amount of money in the account
– Making sure that the amount in the account only goes

down when the withdraw succeeded

• This means that we will write more code in the tests than we
wrote to implement the behaviour

– This is perfectly normal

Working with Objects

27

Preparing for the Worst

• It should not be possible for anyone (including
other programmers) to be able to upset our bank
account:

–Never have a balance lower than the overdraft

• This is called defensive programming or secure
programming

• Once we have our member information we now
need to make sure that we look after it

Working with Objects

28

Test Driven Development

• In Test Driven Development the tests are written before the
methods themselves

• The methods are initially empty

• Then, during the development the methods are filled in so
that the tests are passed

• The tests are run regularly during the development, and
particularly after a bug has been fixed (a bug fix usually adds
two bugs)

• You should remember to charge the customer for this work
too!

Working with Objects

29

Designing with Objects

• A class can contain data fields which it manages

• The data fields can be made private to protect them from
code outside the class

• The programmer then creates methods that provide read
(access) and write (mutate) behaviours as required

• Every behaviour must have tests associated with it to prove
that the behaviour works correctly

Working with Objects

