
Constructing Class
Instances

Rob Miles

Department of Computer Science

29b Programming 2

2

Using New

• We have seen that when we want to make an
instance of a class we have to use new

• This creates an object in memory which the tag is
connected to

• Now we are going to find out how new really works

Account test = new Account();

Constructing Class Instances

3

Calling a Constructor

• The code after the new keyword looks a lot like a

method call

–Although the method has no parameters

• This is because it actually is a method call

• The method that is called is known as the
constructor

Account test = new Account();

Constructing Class Instances

4

What is the constructor for?

• The constructor is provided so that programmers
can get control at the point in the program where an
instance of a class is being created

• The constructor method is called automatically
during object creation

• It means that we can create code to set up an object
before it is used in the program

• It is how we ensure that objects have integrity from
the start of their lifetime

Constructing Class Instances

5

Why have we not had to make constructors
before?

• If you don't provide a class with a constructor the
C# compiler will create one for you

• This "default" constructor has no parameters and
does nothing

• It is called when you create a new instance

Account a; // declare the reference
a = new Account(); // constructor

// called

Constructing Class Instances

6

Making our own constructors

• We can add a constructor method to any class

• The constructor method has the same name as the class

• It does not return anything

• Each time we make a new Account the method is called

public class Account
{

public Account ()
{

Console.WriteLine ("Account made");
}

}

Constructing Class Instances

7

Useful Constructors

• A constructor is a method like any other

• When the constructor finishes the object is ready for use
in the program

• A constructor can be supplied with parameters that can
be used during object construction to set initial values

• In the case of the bank we might want to set the name,
address and initial balance of an account when we
create it

Constructing Class Instances

8

Account Constructor

class Account
{
// private member data
private string name;
private string address;
private decimal balance;

// constructor
public Account (string inName, string inAddress,
decimal inBalance)

{
name = inName;
address = inAddress;
balance = inBalance;

}
}

Constructing Class Instances

9

Making an Account

• The constructor will run when the account is
created and set up the account values

• Our program never calls the constructor method
directly, it is called for us when an object is
created

• Constructors have been running every time we
have created an object

Account robsAccount;
robsAccount = new Account("Rob Miles", "Hull", 0);

Constructing Class Instances

10

The Default Constructor

• Once we create our own constructor the compiler stops
giving us the "free" one

• For the Account class above the only way to construct an
instance is to provide the name, address and balance values

– i.e. we must give these parameters each time we use new
to create an Account instance

• If we don't the program won't compile

• This is good, because it forces other programmers to create
objects “our” way

Constructing Class Instances

11

Overloading Constructors

• C# lets you overload methods in a class

• When you overload a method you create a new method with
the same name but a different signature

• This is useful if you have a particular task that can be done in
several ways

– There are lots of ways to define the value of a date:

• DD/MM/YY – 26/02/2010

• DD MMM YY – 26 Feb 2010

– We could provide multiple SetDate methods depending
on the parameters to be used

Constructing Class Instances

12

Signatures and Overloading

• The method name silly has been overloaded

• There are two different method signatures for silly

– A single integer
– Two integers

• The compiler can work out which to use from the context
of the call of the method

public void silly (int i)
{
}

public void silly (int i, int j)
{
}

Constructing Class Instances

13

Multiple Account Constructors

• We might want to provide more than one constructor for the
Account class:

– Sometimes we don't have a balance value, so the balance
should automatically be set to 0

– We could provide a constructor that only accepts the
name and address information

• We can use overloading to achieve this

Account rob = new Account ("Rob", "Hull");

Account jim = new Account ("Jim", "Beverly", 100);

Constructing Class Instances

14

Signatures and Overloading

• There are now two ways an Account can be created

public Account (string inName, string inAddress,
decimal inBalance)

{
name = inName;
address = inAddress;
balance = inBalance;

}

public Account (string inName, string inAddress)
{
name = inName;
address = inAddress;
balance = 0;

}

Constructing Class Instances

15

Using this in Constructors

• There is some code duplication in the constructors we have
written

– I hate code duplication
– It means that if I fix a bug I might have to fix it in lots of

different places in my code
– I try and write my code once, and once only

• It would be easier if we could make one "master" constructor
and then use that from all the others

• You can do this by using the keyword this

Constructing Class Instances

16

Account construction

public Account (string inName, string inAddress,
decimal inBalance)

{
name = inName;
address = inAddress;
balance = inBalance;

}

public Account (string inName, string inAddress) :
this (inName, inAddress, 0)

{
}

public Account (string inName) :
this (inName, "Not Supplied")

{
}

Constructing Class Instances

17

Constructors Chaining

• This technique is called constructor chaining

• We design a set of constructors which are all linked
back to the "master" constructor which sets all the
properties

• How your constructors work is something you
should consider when you design your objects

Constructing Class Instances

18

Object Integrity

• Whenever we set a value in our object we are supposed to be
very careful that the new value is valid

– Don't want to set an empty name or a stupid balance value
on our Account

• We solve this by using validation on the values that the
object is given

• If the new value is invalid we reject it

Constructing Class Instances

19

Constructors and Validation

• A constructor can validate the values being supplied to set up
an object, but if it decides a value is incorrect it cannot reject
it

A constructor cannot fail
• When you create a new instance, even if the constructor

doesn't like the values it has been given, when the
constructor finishes the objects will be created

Constructing Class Instances

20

Constructing Invalid Objects

• We don't want to create invalid objects so we need a way to
handle this

• Since the constructor will create an instance if it completes
the only way to resolve this is to have the constructor fail to
complete

• It can do this by throwing an exception

• This will transfer execution to an exception handler or stop
the program

Constructing Class Instances

21

Throwing Exceptions

• We have seen exceptions before

• They have been thrown at our code

– When Parse fails it throws an exception
– When we fall off the end of an array an exception is

thrown

• An exception should be "the weapon of last resort"

• Only throw an exception when you can't do anything else

Constructing Class Instances

22

Exceptions in a constructor

public Account (string inName, string inAddress){
if (SetName (inName) == false) {
throw new Exception ("Bad name " + inName) ;

}
if (SetAddress (inAddress) == false) {
throw new Exception ("Bad address " + inAddress);
}

}

• This version of the constructor uses the Set methods to
validate the supplied values

• If either of the methods fail the constructor throws an
exception

Constructing Class Instances

23

Exception Etiquette

• Only throw an exception if you have no other way of
resolving the situation

• Make sure that people who use your objects know
that the constructor might throw an exception

• They can then use try – catch to recover

• Make your exceptions as useful as possible

Constructing Class Instances

24

Assembling an error message

public Account (string inName, string inAddress)
{

string errorMessage = "";
if (SetName (inName) == false)
{

errorMessage = errorMessage + "Bad name " + inName;
}
if (SetAddress (inAddress) == false)
{

errorMessage = errorMessage + " Bad addr " +
inAddress;

}
if (errorMessage != "")
{
throw new Exception ("Bad account" + errorMessage) ;

}
}

Constructing Class Instances

25

Construction Summary

• A constructor method gets control each time a new
instance of a class is created

• The compiler provides a default constructor

• You can create your own constructor method and
use overloading to provide multiple versions

• Constructors cannot fail, but they can throw
exceptions so that they don't complete

Constructing Class Instances

