
Windows Presentation
Foundation (WPF)
User Interfaces
Rob Miles

Department of Computer Science

29c 08120 Programming 2

2

Design Style and programming

• As programmers we probably start of just worrying about
making the program work

– This is a very good place to start

• But in modern systems the “look and feel” of the user
interface is very important

– No matter how good the code is, if the program is hard
to use it will not be popular

• You should pay careful attention to user interface issues
when making your programs

Windows Presentation Foundation

3

Separating User Interface Design and Code

• It turns out that programmers are not always very good at
graphic design

– And that graphic designers are not very good at
programming

• To make a good application we need a good user interface
design and code that works

• It makes sense to separate programming and design and
make it easy for the graphic designer and the programmer to
work together

Windows Presentation Foundation

4

Windows Presentation Foundation (WPF)

• The Windows Presentation Foundation separates the user
interface design from the program code by the use of a
“markup” language called XAML

– This stands for “eXtensible Application Markup
Language”

– It describes the arrangement of items on a window

• The designer can create the XAML and the programmer can
use the objects defined in it to create the code

• Visual Studio provides an environment where the XAML and
the program can be worked on together

Windows Presentation Foundation

5

XAML and Windows Presentation Foundation

• A WPF application is made up of pages that contain
elements

• These have properties that determine where they are, how
they appear and what they can do in an application

• The Visual Studio tool allows us to manipulate the page
content by using the design surface and the element
properties pane

Windows Presentation Foundation

6

Expressing WPF Elements

• The description of the elements in a WPF application is
actually held in a text file

• This file is formatted in a particular way

• Microsoft invented a language, XAML to hold this design
information:

– eXtensible Application Markup Language

• XAML was invented to hold user interface design
information

• It is based on the XML standard

Windows Presentation Foundation

7

Why do we need XAML?

• XAML allows us to separate the role of
graphic designer and programmer

– The designer should not have to see
code objects to work

– The programmer should not be held
back while the design is produced

• The XMAL file provides a separation
between the code that drives the
application and the way the application
looks

Windows Presentation Foundation

8

XAML file content

• This snippet of XAML is the description of a textbox on the
screen firstNumberTextBox in the AddingMachine

application

• It contains fields that describe the position and size of the
textbox

• This file is managed by Visual Studio as your program is
being developed

<TextBox Height="23" HorizontalAlignment="Left"
Margin="12,12,0,0" Name="firstNumbertextBox"
VerticalAlignment="Top" Width="120" />

Windows Presentation Foundation

9

XAML in Visual Studio

• The XAML file holds the information which is updated by
both views

Windows Presentation Foundation

10

The XAML language

• XAML is a “declarative” language

• It just tells us about things, it does not tell us what they do
and how they can do it

• The XAML file has a particular format

– The characters < and > are used to mark the start and
end of some elements in the file

• The format looks a bit like XML

– eXtensible Markup Language

Windows Presentation Foundation

11

Using XAML

• You can actually edit the XAML text in your project to
create new display elements and modify existing ones

• This can often be much quicker than using the editing
interface provided by Visual Studio

• You just have to type the new values into the XAML
window and the properties of the element are changed
immediately

Windows Presentation Foundation

12

The XAML file at run time

• When a WPF program runs the XAML file is compiled into
a set of low level display instructions that are obeyed by the
runtime system

• This is the point at which the XAML object descriptions in
the text are converted into program objects we can use in
our code

• This all happens automatically as far as we are concerned

• The program can just use the display elements as objects in
the code, rather like we use the Console object

Windows Presentation Foundation

13

XAML and XML

• XAML looks a bit like XML

– XML means “Extensible Markup Language”

• This means that XML is really a way of designing languages
that want to talk about something

• Just like the english language lets us invent verbs and
nouns and put them into sentences that have meaning in a
particular context

Windows Presentation Foundation

14

Quick intro to XML

• I invented this XML format to hold a video game high score
table

<?xml version="1.0" encoding="us-ascii" ?>
<HighScoreRecords count="2">

<HighScore game="Breakout">
<playername>Rob Miles</playername>
<score>1500</score>

</HighScore>
<HighScore game="Space Invaders">

<playername>Rob Miles</playername>
<score>4500</score>

</HighScore>
</HighScoreRecords>

Windows Presentation Foundation

15

HighScore element

• The HighScore element contains two other elements,
playername and score

• It also has a property that gives the name of the game

• I could add others, for example the date and time the score
was achieved

• It is easy for us to work out what the elements are there for

<HighScore game="Breakout">
<playername>Rob Miles</playername>
<score>1500</score>

</HighScore>

Windows Presentation Foundation

16

HighScoreRecords element

• The HighScoreRecords element contains a count of the
number of HighScore elements

<?xml version="1.0" encoding="us-ascii" ?>
<HighScoreRecords count="2">

<HighScore game="Breakout">
<playername>Rob Miles</playername>
<score>1500</score>

</HighScore>
<HighScore game="Space Invaders">

<playername>Rob Miles</playername>
<score>4500</score>

</HighScore>
</HighScoreRecords>

Windows Presentation Foundation

17

XML and data structures

• We can invent our own language format whenever we have
some structured data that we want to store

• The designers of XAML have done this

• Rather than store high scores they have created a language
that lets us design user interfaces

Windows Presentation Foundation

18

The XAML data revisited

• We can see that the XAML content that describes a textbox
is very similar to a HighScore element

• The designers of XAML had to work out what data fields
are required in a TextBox object

• Each display element has a set of fields

• Visual Studio provides intellisense to help you create these

<TextBox Height="23" HorizontalAlignment="Left"
Margin="12,12,0,0" Name="firstNumbertextBox"
VerticalAlignment="Top" Width="120" />

Windows Presentation Foundation

19

What is a Markup Language?

• The “ML” in XML stands for “Markup Language”

• A markup language was originally a set of commands for
the printers of a document

– ‘Put the words “Table of Contents” in bold’

• When the World Wide Web was created the Hyper Text
Markup Language was designed to allow a text file to
describe a particular web page design

• However, there are lots of other markup languages
available

Windows Presentation Foundation

20

XML and HTML

• The idea of creating your own markup language was such a
good one that people wanted a standard form for doing
this

• XML came out of this drive for standards

– It is the way in which the files use the < and /> and

other characters to mean the start and end of elements,
names and properties

– It also tells you how to create “schemas” that define the
structure and content of XML documents

Windows Presentation Foundation

21

XML Schema

• An XML schema describes a particular XML document
format:

– “A HighScore element must contain a PlayerName and a
Score value, but the Date value is optional”

• Programs can use a schema to make sure that a particular
document contains content which is valid

• The schema in use is identified in the header of an XML
document

• Microsoft have created a schema for the XAML language

Windows Presentation Foundation

22

XML and software

• XML allows programs to share data irrespective of what
kind of system was used to create the data

• There are many software tools that can create schemas and
you can even store the contents of C# directly into XML
structured files

• However, for now just remember that the description of a
WPF page is a text file containing an XAML document
which is formatted according to XML using a schema that
determines how all the elements are to be used

Windows Presentation Foundation

23

XAML and WPF Pages

• A WPF application is made up of a number of pages

• Each page is expressed using a single XAML source file

• The page will contain descriptions of a number of WPF
elements

– Some elements can contain other elements

• Visual Studio manages the XAML source file as we work on
the application

• Items described in the XAML appear as objects in the
programs that we create

Windows Presentation Foundation

24

WPF Components

• There are lots of different components available to be added
to a window

– Label: a text label
– TextBox: a box the user can type into
– Button: a button that the user can press

• A program can interact with a component by using the
behaviours that it provides

– We can change the text in a Label to display a message
– We can read the text from a TextBox to get user input
– A Button can generate events when it is clicked

Windows Presentation Foundation

25

Sample Application

• The Calc program just adds two
numbers together

• The user enters the numbers and
presses the button to start a calculation

• The result is displayed using a label

Windows Presentation Foundation

26

Designer View

• This is the designer view of the
application

• I added each item in turn to the screen

– Visual Studio provides some very good
tools to help line the items up

• I can also change the size of the
application window by dragging the
handles attached to the window

Windows Presentation Foundation

27

XAML View

• This is the XAML that describes the items in the window

Windows Presentation Foundation

<Grid Height="192" Width="170">

<TextBox Height="23" HorizontalAlignment="Left“
Margin="12,12,0,0" Name="firstNumbertextBox"
VerticalAlignment="Top" Width="120" />

<Label Content="+" Height="28" HorizontalAlignment="Left"
Margin="56,41,0,0" Name="plusLabel" VerticalAlignment="Top" />

<TextBox Height="23" HorizontalAlignment="Left"
Margin="12,65,0,0" Name="secondNumberTextBox"
VerticalAlignment="Top" Width="120" />

<Label Content="=" Height="28" HorizontalAlignment="Left"
Margin="56,94,0,0" Name="resultLabel" VerticalAlignment="Top" />

<Button Content="Calculate" Height="23" HorizontalAlignment="Left"
Margin="12,128,0,0" Name="CalculateButton" VerticalAlignment="Top"
Width="120" />

</Grid>

28

Buttons and Events

• The CalculateButton
component will appear on the
form and the user can click it

• However, at the moment the
button doesn’t do anything

• What we need to do next is bind
an event to button

• In other words, we want some
C# to run when the button
clicked

Windows Presentation Foundation

29

XAML designs and C# Code

• Each XAML page has a C# program
page which is shown in Solution
Explorer as being “behind” the window

• Each Window in an application is
implemented by a class

• This is where a programmer can put
code that makes the user interface work

• This includes the handler for the button
clicked event

Windows Presentation Foundation

30

An Empty Window Class

• An empty window just contains a call to the
InitializeComponent method

• This call is made when the constructor for the window is
called

• The method creates all the components that appear on the
screen

Windows Presentation Foundation

public partial class MainWindow : Window
{

public MainWindow()
{

InitializeComponent();
}

}

31

Window Class Methods

• When we add code that responds to events from the user we
will put this code into the MainWindow class

• The methods that respond to button press events run in here

• The methods that display values to the user will run in here

Windows Presentation Foundation

public partial class MainWindow : Window
{

public MainWindow()
{

InitializeComponent();
}

}

32

Responding to Events

• When CalculateButton is clicked it needs a way of “telling”

a program that this event has occurred

• In C# an event is delivered by a call of a method

– Our program will contain a calculateButton_Click
method that is called when the finish button is clicked

– This will read the new text back from the TextField and

update the name of our customer

• We need a way of connecting the CalculateButton
component to the method we want it to call when it is clicked

Windows Presentation Foundation

33

Referring to Methods using Delegates

• We are familiar with the use of references to refer to objects

– A reference is a tag that can be tied to a particular object
in memory

• Delegates are an extension of references which refer to
methods rather than objects

– The value of a delegate can be set to refer to a method in a
class

• We can connect buttons to methods by doing this:

– Create a delegate that refers to the method we want to use
– Give this delegate to calculateButton so that it knows

who to call when the button is clicked

Windows Presentation Foundation

34

Connecting to the Component

• The XAML that describes the button can contain a Click
value that identifies the method to be called when the button
is clicked

• Visual Studio will do the “plumbing” behind the scenes to
create the method and the delegate and connect it all to the
button

• We will discover how this works later in the course

Windows Presentation Foundation

<Button Content="Calculate" Height="23"
HorizontalAlignment="Left" Margin="12,128,0,0"
Name="CalculateButton" VerticalAlignment="Top"
Width="120" Click="CalculateButton_Click" />

35

Creating the Event Handler

• The simplest way to create an event handler for button is to
double click on the button in the Visual Studio graphical user
interface

• This will update the XAML as shown above and create an
event handler in the window class that we can add code to

• You can also manage the events that a component produces
by managing its properties

• Each component can generate a particular set of events

Windows Presentation Foundation

36

The Event Handler in a Window Class

• This is the empty event handler

• Our program can ignore the parameters (although these can
be used so it can determine which object generated the
event)

• The method is called each time the button is clicked by the
user

Windows Presentation Foundation

public partial class MainWindow : Window
{

private void CalculateButton_Click(object sender,
RoutedEventArgs e)

{
}

}

37

Performing the Calculation

• Visual Studio makes an empty method for the event handler

• We can fill in the code to make it perform the required task

• In this case it calculates the result and displays it

private void CalculateButton_Click(object sender,
RoutedEventArgs e)

{
int v1 = int.Parse(firstNumbertextBox.Text);
int v2 = int.Parse(secondNumberTextBox.Text);

int result = v1 + v2;

resultLabel.Content = " = " + result;
}

Windows Presentation Foundation

38

Running the Program

• The interesting thing about this program
is that once it has loaded the window onto
the screen it then does nothing

– There is a Main method in the
application, but this just starts off
creating the window

• Once the program is active it is simply
waiting for the user to press the calculate
button

Windows Presentation Foundation

39

IMPORTANT MESSAGE

• A Window is just the thing that displays the user interface
for your program

– It provides a link between the user and the data objects
that they are working with

You should not try to store any
of your business data inside

the Window class

Windows Presentation Foundation

40

Sensible Way To Work

• The variable activeBank contains a reference to the bank

that the user is working with

• The bank will contain methods that will let code in the user
interface find accounts and get data from them for display

Windows Presentation Foundation

public partial class MainWindow : Window
{

Bank activeBank;
public MainWindow()
{

InitializeComponent();
}

}

41

Stupid Way To Work

• The program is trying to store business data (the name of a
customer) inside the Window class that is driving the user
interface

• This is not the right thing to do, we don’t want to have to
store buttons and labels when we store a customer

Windows Presentation Foundation

public partial class Account : Window
{

string customerName;
public Account()
{

InitializeComponent();
}

}

42

Very Sensible Way To Work

• This is muchmore sensible

• The string is set to the name of the customer account that is
currently being edited

• Methods in the window could update this name and save it
back in the account

Windows Presentation Foundation

public partial class CustomerEditWindow : Window
{

string selectdCustomerName;
public MainWindow()
{

InitializeComponent();
}

}

43

Windows Presentation Foundation Summary

• Windows are displays on the screen that are
manipulated as C# objects

• The design of the objects on the screen is expressed
using the XAML language

• Windows can contain components such as Label,
TextBox and Button

• The Button component can generate an event when it is
clicked

• You can use delegates to tell the button which method
to call when a click event occurs

Windows Presentation Foundation

