
Programs and Libraries 

 

Rob Miles 

 

Department of Computer Science 

 

08120 Programming 2 

 



Simple C# Programs 

• The first programs that we wrote were simple 

• They contained a single class and static data 

• They did not make any instances of any classes 

 

class MyClass 
{ 
    static data members 
    static method members 
    static void Main () 
    { 
    }     
} 



Multi-Class C# Programs 

• More advanced programs create instances of different 
classes 

• We have seen this with Bank Accounts and WPF 

 

class Account 
{ 
} 
 
class MyClass 
{ 
    static void Main () 
    { 
        Account a = new Account(); 
    }     
} 



Class instances in your programs 

Creating Forms 

• A class instance (also called an object) will contain data and 
methods that let it do something for you 

– Bank Account 
– Alien Sprite 
– WPF Window 

• The class itself will be described in a C# source file 

• The class will be compiled to produce an output file that can 
be run on the target computer 



C# Programs 

• When we wrote our first program we put the entire program 
in a single source file 

• The program was also made up of a single class which we 
could compile and run 

• The output of the compiler in this situation is an executable 
file 

• It has the language extension .exe  

csc MyProg.cs 



Compiled Programs 

Creating Forms 

• In Microsoft .NET the output of a compilation is called an 
assembly file 

• This contains a collection of classes and the resources that 
they use 

– An assembly file can contain images and sounds as well 

• There are two kinds of assembly file 

– Executable assemblies contain a Main method that is used 
to start the program  

– Library assemblies just contain object descriptions and 
the compiled code for them 



Library Assemblies 

Creating Forms 

• Some parts of a program do not have a Main method 

• They are simply objects that are created and used by the 
program when it runs 

• It is often useful to be able to share such objects amongst a 
number of different programs 

• We can do this by creating a library assembly 

• This cannot be run as a program, but it can be used as an 
ingredient in other programs 



An Account class 

• This source file contains part of a class that could be used to 
manage a bank account 

– There will be lots of other members in the finished on 

• There will not be a Main method though, since this is not a 
program 

class Account 
{ 
   private decimal accountBalance; 
 

   public void PayInFunds (decimal amount) 
   { 
      accountBalance = accountBalance + amount; 
   } 
} 



Compiling a Library Class 

• If we try to compile this class we get an error because there 
is no Main method to run when the program starts 

• The compiler is trying to make an executable assembly and 
will complain because it has no entry point 

csc AccountClass.cs 

error CS5001: Program 'c:\AccountClass.exe' 
does not contain a static 'Main' method 
suitable for an entry point 



Compiling a Library Class 

• We can tell the compiler to create a library assembly rather 
than an executable one 

• The /target:library part of the command does this 

– It does not have to be typed in red 

• The output from this compilation is a different file type 

– The file that is created is a dynamic link library 
– It has the language extension .dll 

• This must not contain a Main method, since it is not a 
program 

csc /target:library accountclass.cs 



Using a Library Class 

• The C# compiler can be given a list of references to use when 
it creates a program 

• This would make it possible for code in the Bank.cs file to 
make use of the Account object declared in the library file 

• The classes in the Account library would be loaded and used 
when the program runs 

• The run-time of the program is now spread over two 
different files 

• But only one of them contains the Main method 

csc /reference:AccountClass.dll Bank.cs 



Libraries in Visual Studio 

Creating Forms 

• Visual Studio will manage library 
references for us 

• The Solution Explorer has a References 
tab which holds all the libraries that a 
program is using 

• WPF Applications contain lots of 
references 



System Libraries 

Creating Forms 

• Some libraries are stored as part of the System 

• This means that a single, central, version of that library can 
be used by all the programs on a particular computer 

• All Forms applications share the same set of library files 

• Visual Studio will link to these files and they will also be 
picked up when the program runs 



User Libraries 

Creating Forms 

• You can create “user” libraries in Visual Studio 

• These produce a dll output that can be added to other 
projects 

 



Namespaces 



16 

Identifiers 

• Whenever we make something in our program we have to 
think of a name for it 

• We should try to ensure that the name we select is 
meaningful: 

– windowHeightInMetres 
– PayInFunds 

• These names exist in our program and they have to be 
unique 
 



17 

Identifier Clashes 

• We have a problem when we are working with other people, 
or when we try to use code from a library 

• We might have picked the same names as they have, leading 
to confusion 

• There needs to be a way in which we can resolve this 
problem and make sure names don't clash 



18 

C# Namespaces 

• C# provides a solution to this problem, it is called a 
namespace 

• This is exactly what the name implies, a space for names, or 
more specifically, a place where particular names have 
meaning 

• We can create our own namespaces for the programs that we 
write 



19 

Creating a namespace 

namespace BankClasses 
{ 
   class Account 
   { 
   } 
   class Address 
   { 
   } 
} 



20 

Using items in namespaces 

• Items in the same namespace can just refer to each other 
directly 

• Outside the namespace you have to use the "fully qualified 
name": 

BankClasses.Account myAccount =  
    new BankClasses.Account (); 



21 

Using using 

• If you want to get things from a particular namespace you 
can put a using statement at the top of your program: 

 

 

 

• Note that we have been adding "using System" to all our 

programs so we can use items in the System namespace 

using AccountClasses; 
... 
Account a = new Account(); 



22 

Sensible using 

• If you add too many using directives it is hard to tell where 
something comes from when you use it in your program 

• I therefore tend to use the fully qualified name a lot of the 
time 

• It makes the code easier to follow 



23 

Name Clashes 

• You can add as many using statements as you like at the top 
of your code 

• If two namespaces contain an item with the same name you 
must use the fully qualified name to access that item so the 
compiler can tell which one to use 

• Otherwise you will get an error 



24 

Nesting Namespaces 

• A namespace can contain other namespaces 

• This way you can build up a hierarchy of names 

• The C# system does this, System.IO is the namespace which 
contains all the input/output classes 



25 

Namespaces and Libraries 

• If you are using code from other libraries you have to make 
sure that the library is incorporated into the program when 
it is actually built 

• The System library is always present, but if you make your 
own libraries you will have to make sure these are included 
when the program is built 



26 

Namespaces and source files 

• A namespace can be spread over several source files 

• A source file can contain some items in different namespaces 

• To manage this you need to build a project to keep track of 
the different items 

• Visual Studio is very good for this 



27 

Libraries and Namespaces Summary 

• Libraries help you break a program into a number 
of smaller chunks 

• It also allows you to reuse elements in multiple 
projects 

• Namespaces allow you to manage the names of the 
objects in your programs so that they can be 
partitioned   


