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Simple C# Programs 

• The first programs that we wrote were simple 

• They contained a single class and static data 

• They did not make any instances of any classes 

 

class MyClass 
{ 
    static data members 
    static method members 
    static void Main () 
    { 
    }     
} 



Multi-Class C# Programs 

• More advanced programs create instances of different 
classes 

• We have seen this with Bank Accounts and WPF 

 

class Account 
{ 
} 
 
class MyClass 
{ 
    static void Main () 
    { 
        Account a = new Account(); 
    }     
} 



Class instances in your programs 

Creating Forms 

• A class instance (also called an object) will contain data and 
methods that let it do something for you 

– Bank Account 
– Alien Sprite 
– WPF Window 

• The class itself will be described in a C# source file 

• The class will be compiled to produce an output file that can 
be run on the target computer 



C# Programs 

• When we wrote our first program we put the entire program 
in a single source file 

• The program was also made up of a single class which we 
could compile and run 

• The output of the compiler in this situation is an executable 
file 

• It has the language extension .exe  

csc MyProg.cs 



Compiled Programs 

Creating Forms 

• In Microsoft .NET the output of a compilation is called an 
assembly file 

• This contains a collection of classes and the resources that 
they use 

– An assembly file can contain images and sounds as well 

• There are two kinds of assembly file 

– Executable assemblies contain a Main method that is used 
to start the program  

– Library assemblies just contain object descriptions and 
the compiled code for them 



Library Assemblies 

Creating Forms 

• Some parts of a program do not have a Main method 

• They are simply objects that are created and used by the 
program when it runs 

• It is often useful to be able to share such objects amongst a 
number of different programs 

• We can do this by creating a library assembly 

• This cannot be run as a program, but it can be used as an 
ingredient in other programs 



An Account class 

• This source file contains part of a class that could be used to 
manage a bank account 

– There will be lots of other members in the finished on 

• There will not be a Main method though, since this is not a 
program 

class Account 
{ 
   private decimal accountBalance; 
 

   public void PayInFunds (decimal amount) 
   { 
      accountBalance = accountBalance + amount; 
   } 
} 



Compiling a Library Class 

• If we try to compile this class we get an error because there 
is no Main method to run when the program starts 

• The compiler is trying to make an executable assembly and 
will complain because it has no entry point 

csc AccountClass.cs 

error CS5001: Program 'c:\AccountClass.exe' 
does not contain a static 'Main' method 
suitable for an entry point 



Compiling a Library Class 

• We can tell the compiler to create a library assembly rather 
than an executable one 

• The /target:library part of the command does this 

– It does not have to be typed in red 

• The output from this compilation is a different file type 

– The file that is created is a dynamic link library 
– It has the language extension .dll 

• This must not contain a Main method, since it is not a 
program 

csc /target:library accountclass.cs 



Using a Library Class 

• The C# compiler can be given a list of references to use when 
it creates a program 

• This would make it possible for code in the Bank.cs file to 
make use of the Account object declared in the library file 

• The classes in the Account library would be loaded and used 
when the program runs 

• The run-time of the program is now spread over two 
different files 

• But only one of them contains the Main method 

csc /reference:AccountClass.dll Bank.cs 



Libraries in Visual Studio 

Creating Forms 

• Visual Studio will manage library 
references for us 

• The Solution Explorer has a References 
tab which holds all the libraries that a 
program is using 

• WPF Applications contain lots of 
references 



System Libraries 

Creating Forms 

• Some libraries are stored as part of the System 

• This means that a single, central, version of that library can 
be used by all the programs on a particular computer 

• All Forms applications share the same set of library files 

• Visual Studio will link to these files and they will also be 
picked up when the program runs 



User Libraries 

Creating Forms 

• You can create “user” libraries in Visual Studio 

• These produce a dll output that can be added to other 
projects 

 



Namespaces 
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Identifiers 

• Whenever we make something in our program we have to 
think of a name for it 

• We should try to ensure that the name we select is 
meaningful: 

– windowHeightInMetres 
– PayInFunds 

• These names exist in our program and they have to be 
unique 
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Identifier Clashes 

• We have a problem when we are working with other people, 
or when we try to use code from a library 

• We might have picked the same names as they have, leading 
to confusion 

• There needs to be a way in which we can resolve this 
problem and make sure names don't clash 
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C# Namespaces 

• C# provides a solution to this problem, it is called a 
namespace 

• This is exactly what the name implies, a space for names, or 
more specifically, a place where particular names have 
meaning 

• We can create our own namespaces for the programs that we 
write 
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Creating a namespace 

namespace BankClasses 
{ 
   class Account 
   { 
   } 
   class Address 
   { 
   } 
} 



20 

Using items in namespaces 

• Items in the same namespace can just refer to each other 
directly 

• Outside the namespace you have to use the "fully qualified 
name": 

BankClasses.Account myAccount =  
    new BankClasses.Account (); 
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Using using 

• If you want to get things from a particular namespace you 
can put a using statement at the top of your program: 

 

 

 

• Note that we have been adding "using System" to all our 

programs so we can use items in the System namespace 

using AccountClasses; 
... 
Account a = new Account(); 
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Sensible using 

• If you add too many using directives it is hard to tell where 
something comes from when you use it in your program 

• I therefore tend to use the fully qualified name a lot of the 
time 

• It makes the code easier to follow 
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Name Clashes 

• You can add as many using statements as you like at the top 
of your code 

• If two namespaces contain an item with the same name you 
must use the fully qualified name to access that item so the 
compiler can tell which one to use 

• Otherwise you will get an error 
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Nesting Namespaces 

• A namespace can contain other namespaces 

• This way you can build up a hierarchy of names 

• The C# system does this, System.IO is the namespace which 
contains all the input/output classes 
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Namespaces and Libraries 

• If you are using code from other libraries you have to make 
sure that the library is incorporated into the program when 
it is actually built 

• The System library is always present, but if you make your 
own libraries you will have to make sure these are included 
when the program is built 
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Namespaces and source files 

• A namespace can be spread over several source files 

• A source file can contain some items in different namespaces 

• To manage this you need to build a project to keep track of 
the different items 

• Visual Studio is very good for this 
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Libraries and Namespaces Summary 

• Libraries help you break a program into a number 
of smaller chunks 

• It also allows you to reuse elements in multiple 
projects 

• Namespaces allow you to manage the names of the 
objects in your programs so that they can be 
partitioned   


