
Saving and Loading

Rob Miles

Department of Computer Science

2

Data Storage

• At the moment the data in the bank is lost when the bank
program stops running

• You could not run an actual bank program like this

• We need a way that the program can use files to hold bank
account details

3

Bank Program Use

• Use of the Bank Account program will work as follows

1) Start the program
2) Load the bank information
3) Work on the accounts
4) Save the bank information
5) Stop the program

4

Saving the Bank Information

• We already know how to write data into a file

– The program must create a stream and use this to write to
the file

• This is how we are going to save the bank information

• We need to save the Account and the Bank information to

the file

5

Who does what?

• The only thing that can save and load account information is
the Account class

• The only thing that can save and load bank information is
the Bank class

• We need to put the save and load behaviours into these
classes

6

Account Save Method
public bool Save(System.IO.TextWriter textOut)
{

try
{

textOut.WriteLine(accountNumber);
textOut.WriteLine(name);
textOut.WriteLine(address);
textOut.WriteLine(balance);

}
catch
{

return false;
}
return true;

}

7

Saving to a Stream

• The Save method you have just seen is given a reference to
the TextWriter stream to be used to save the data:

• We actually want to save to a file

– This method saves to a stream

• Does this mean we have made a mistake?

public bool Save(System.IO.TextWriter textOut)

8

Using the stream Save method from another Save
method

• We can use this version of the Save to save to a file:

public bool Save(string filename)
{

System.IO.TextWriter textOut =
new System.IO.StreamWriter(filename);

if (Save(textOut))
{

textOut.Close();
return true;

}
return false;

}

9

Overloading

• We now have two versions of the Save method

• One saves to an already opened Stream

• The other saves to a file

• This is an example of overloading in action

• It is often appropriate to provide multiple methods to do the
same thing

• It is also very sensible to make one overloaded method call
another

10

Account Save Method Error Handling
public bool Save(System.IO.TextWriter textOut)
{

try
{

textOut.WriteLine(accountNumber);
...

}
catch
{

return false;
}
return true;

}

• The Save method returns false if it doesn’t work

• It does this by catching any exceptions

11

Error Handling

• This version of Save returns false if things go wrong

• Is this the best thing to do?

– Stops the program from throwing exceptions
– Might hide things that go wrong – a programmer that

uses Save has to make sure they test the result returned

– Makes things much more complicated
– Makes things harder to test

if (robsAccount.Save("Data.txt")
{

Console.WriteLine ("Saved OK");
}

12

Bad things about catching Exceptions

• If you catch an exception you are hiding information

– There was a reason why the exception was thrown, if you
catch the exception this reason may be hidden

• Therefore it might be best to leave your caller to pick up the
pieces, rather than deal with it yourself

• At least with an exception they will have their attention
drawn to the event

13

A Simpler Save Method

• This version of Save does not return whether it worked or

not

• It just throws exceptions if it fails

• These must be handled by the caller

public void Save(System.IO.TextWriter textOut)
{

textOut.WriteLine(accountNumber);
textOut.WriteLine(name);
textOut.WriteLine(address);
textOut.WriteLine(balance);

}

14

Exception and Design

• The worst thing that could happen is if someone uses your
method and thinks it has worked when it hasn't

• At least an exception being thrown will make it clear that
something has gone wrong

• From now on I'm going to take this approach

• Remember that in a real project you would have to set
standards for your error handling

15

Simple File Save

• This version looks OK, but it has a problem

• It calls the other version of Save

• If this fails it might leave textOut open on the file

public void Save(string filename)

{

System.IO.TextWriter textOut =

new System.IO.StreamWriter(filename);

Save(textOut);

textOut.Close();

}

16

Dangling Streams

• A program should never leave a stream open

• The stream should be closed, even (or perhaps especially) if
the write operation fails

• Failure to do this might cause problems later on if the
program tries to access the same file

• In this case there is a chance that the garbage collector will
fix the problem, but you can't rely on this

17

Proper File Save
public void Save(string filename)
{

System.IO.TextWriter textOut = null;
try
{

textOut = new System.IO.StreamWriter(filename);
Save(textOut);

}
catch (Exception e)
{

throw e;
}
finally
{

if (textOut != null) textOut.Close();
}

}

18

Catch and Finally

• We have seen try – catch constructions before

• Reading from a file and parsing numbers can both throw
exceptions which must be caught

• Whether the exception is thrown or not we still have to close
the file

• The finally part of a try – catch construction lets us

specify code that is always obeyed, irrespective of whether or
not the exception is thrown

19

The Finally Part

• The finally part of the try - catch is always obeyed,

this makes sure that the file is closed whatever happens to
the read operation

try
{

textOut = new System.IO.StreamWriter(filename);
Save(textOut);

}
catch (Exception e)
{

throw e;
}
finally
{

if (textOut != null) textOut.Close();
}

20

Re-throwing Exceptions

• We need to make sure that when something goes wrong, the
thing that called us is made aware of this

• Since we are passing exceptions to our caller we must re-
throw any which are caught by our method

• This provides our caller with the best chance of finding out
what when wrong

21

Re-Throwing Exceptions

• The catch clause can be given the exception that was

thrown

• It can then re-throw it

try
{

textOut = new System.IO.StreamWriter(filename);
Save(textOut);

}
catch (Exception e)
{

throw e;
}
finally
{

if (textOut != null) textOut.Close();
}

22

Saving an Account

• This code creates a bank account and saves it in a file
called "test.txt"

• This is the output from the call of Save

• Each item is placed on a separate line

• Rob is account number 5

Account rob = friendlyBank.AddAccount("Rob", "Hull", 100);
rob.Save("test.txt");

5
Rob
Hull
100

23

Loading an Account

• We can now ask an Account instance to save itself by calling
its Save method

• However, we can't ask an Account to load itself:

– At the time of the load we don't have an account to load

• We can solve this by using a static method in the Account
class to load the account for us

24

Static Load Method

• Because the Load method is part of the class, not part of an

instance, it is always present

• It can return a reference to the Account that it created from

the saved data

• If this process fails it will signal this by throwing an
exception

25

Account Load Method
public static Account Load(System.IO.TextReader textIn)
{

int accountNumber = int.Parse(textIn.ReadLine());
string nameText = textIn.ReadLine();
string addressText = textIn.ReadLine();
string balanceText = textIn.ReadLine();
decimal balanceValue = decimal.Parse(balanceText);
return new Account(nameText,addressText,

balanceValue,accountNumber);
}

• The Load method reads in all the data items and then uses
them to build a new Account and return it

• If it fails it will throw an exception

26

Loading from a File

• To load an Account from a file the method must:

1. Open the file
2. Read the Account
3. Close the file

• It is very important that the file is not left open if reading the
account fails

• We need to deal with exceptions

27

Account Load Method
public static Account Load(string filename)
{

Account result;
System.IO.TextReader textIn = null;
try
{

textIn = new System.IO.StreamReader(filename);
result = Load(textIn);

}
catch (Exception e)
{

throw e;
}
finally
{

if (textIn != null) textIn.Close();
}
return result;

}

28

Loading an Account

• This code creates a bank account and saves it in a file
called "test.txt"

• It then loads it back into a different object

• If the load and save works these two objects should
contain the same account data

Account rob = friendlyBank.AddAccount("Rob", "Hull", 100);
rob.Save("test.txt");
Account robCopy = Account.Load("test.txt");

29

Testing Individual Accounts

• We can test the saving and loading of accounts without
needing a working Bank

• The account is a separate object that works independently of
the bank

• This is exactly how the system would be designed

Creating a Bank Class

30

Saving a Bank

• We can use exactly the same behaviours to save an instance
of the Bank class

• The Bank will ask each account in the bank to save itself

• We also need to save how many accounts are being saved

• This is so that the load behaviour can read in the correct
number of accounts

31

Saving a Bank to a stream

public void Save(System.IO.TextWriter textOut)
{

textOut.WriteLine(bankName);
textOut.WriteLine(newAccountNumber);
textOut.WriteLine(bankAccounts.Count);
foreach (Account a in bankAccounts)
{

a.Save(textOut);
}

}

• This writes the name of the bank, the number of the next
new account and how many accounts there are in the bank

• It then writes out each account in turn

32

Account save

public void Save(System.IO.TextWriter textOut)
{

textOut.WriteLine(bankName);
textOut.WriteLine(newAccountNumber);
textOut.WriteLine(bankAccounts.Count);
foreach (Account a in bankAccounts)
{

a.Save(textOut);
}

}

• It is important to note that it is actually the account that
saves itself, the bank simply passes the account the stream
to use when it is saved

33

Saving a Bank to a File
public void Save(string filename)
{

System.IO.TextWriter textOut = null;

try
{

textOut = new System.IO.StreamWriter(filename);
Save(textOut);

}
catch (Exception e)
{

throw e;
}
finally
{

if (textOut != null) textOut.Close();
}

}

34

Notice Anything?

• The method that saves a Bank to a file is exactly the same as
the method that saves an Account

• This is just as it should be

– Posh programmers call these patterns

• There are even tricks in C# which will let us reuse code this
way

35

Saving collections of Banks

• If we wanted to create a collection of Banks (perhaps for a
large company) we can simply replicate the pattern that we
now have

• This illustrates the power of using objects and methods to
manage the data and provide behaviours

36

Summary

• You must add Load and Save behaviours to your classes

• You should save to streams and files

• The Load method must be static

• It is best if you leave error handling to the method that calls
you

• Make sure that you never leave an open file

