
1

Object Ettiquette

Rob Miles

Department of Computer Science

2

Objects and Programs

• We are now using objects in our programs to represent items

– The object contains data it manages
– The object provides behaviours we can use

• We are creating our Account class on this basis

• Now we need to consider some other things that we can do
to make our objects better

3

Objects and Strings

• We are very used to the idea that when we want to print
out a value we can just do this

• However, it probably shouldn't work:

– WriteLine wants to print a string, and i is an integer

int i = 99;
Console.WriteLine (i);

2

4

The Magic of ToString

• We have seen that to get from a string to a number we have

to use Parse

• But to get from a number to a string seems to happen
automatically

• This is because all the number classes provide a

"ToString" method which returns a string which describes

them

5

Accounts and ToString

• When the system needs the string version of an
instance it calls the ToString method on that
instance

• This happens automatically

• All the number classes have this behaviour built
in

int i = 99;
Console.WriteLine (i);

6

Accounts and ToString

• When an Account instance is printed it doesn’t
have a useful ToString behaviour

• Instead it prints out the name of the class

• What we want to do is print out the account
information

Account a = new Account("Rob", "Hull", 100, 1);

Console.WriteLine (a);

3

7

Making our own ToString

• If you don't provide a ToString method you get

the one provided by the parent class

• This just returns the fully qualified name of the
class

• We want to create our own ToString method that

returns account information

• To do this we must override the method in our
parent class

8

Class Hierarchies

• When you create a new class it is
actually based on a parent class

• The Account class is based on the
object class

• It is called the child of object

• An Account instance can do
everything an object instance can do

object

Account

9

What is an Object?

• The object class is built into C#

• You can create instances of it if you like

• You can't use it for much, but it does provide the basis of
all the classes that you create

– When you declare a new class you are actually
extending the object class

• We will discuss extending classes later in the course

object o = new object();
Console.WriteLine (o);

4

10

Overriding ToString

• This version of ToString returns a string that describes

the content of an Account

• It overrides the ToString method in object

public override string ToString()
{
return "Account: " + accountNumber +

" Name: " + name +
" Address: " + address +
" Balance: " + balance;

}

11

Overriding

• Overriding means that rather than using the method in the
parent class, the method in the child is called instead

– The child class can have behaviour which is appropriate to
that particular class – this is more useful than the parent
behaviour

• The keyword override is used to tell the compiler that the
method is overriding one in the parent

• Note that this is quite different from overloading a method

12

Override and Overload

• Override:

– Provide a method in a child class with the same name
and same signature as one in the parent

– This method is used instead of the one in the parent
– It overrides it

• Overload:

– Provide a method in a class with the same name but
different signature as others in that class

5

13

Overriding and Class Design

• We will take a look at overriding in more detail later, when
we consider how to design systems using class hierarchies

• For now you should know that when you create a class it is
considered good manners to create a ToString method

• Then it can be printed out if required

14

The Equals Method

• The object class also has an Equals method which can be
used to compare two objects to see if they contain the same
values

• If we wanted to allow users of the Account class to compare
two accounts and see if they contained the same data we
could add our own Equals method to do this

• The equals behaviour is used a lot in testing of our programs

• It is how we can prove that our load/save methods are
working correctly

15

Using the Equals method

• The Equals method is used to compare two objects to see
if they contain the same data

• It is called on one instance and passed a reference to the
other

Account a = new Account ("Adam", 0);
Addount b = new Account ("Adam", 0);
if (a.Equals(b))
{

Console.WriteLine("The same");
}

6

16

Writing our own Equals

• It would be useful to have our own Equals method for the
Account class

• Then we can test our program can save Account values and

retrieve them intact

• To do this we must override the Equals method in the
parent object class

17

An Equals Method for Account

public override bool Equals(object obj)
{

Account compareWith = (Account) obj;
if (name != compareWith.name)
{

return false;
}
if (address != compareWith.address)
{

return false;
}
return true;

}

18

Casting References

• The Equals method is always given a reference to an object

• The Equals method must cast this to a reference to an
Account

• Then we can get hold of members of the account and use
them to compare with the ones in the current instance

7

19

Etiquette Summary

• All classes are children of the object class

• The object class provides a ToString behaviour we can

override

• This allows us to get text descriptions of the content of our
classes

• We can also override the Equals method in the object class
to allow instances to be compared

