
Creating Gameplay with
XNA

Rob Miles

Department of Computer Science

2

XNA Recap

• XNA is a framework for writing games

• It is provided as a library of classes that your programs
interact with to make games work

• Your games can run on Xbox 360, PC or Windows Phone

• XNA games are developed using Visual Studio 2010

– Games are created as new project types

Creating Gameplay with XNA

3

XNA and Pong

• Last time we got a ball to move down the screen

• Now we need to make the ball bounce around the screen

• Now we need to discover how we can create paddles and
control them using a gamepad or keyboard

• Then we can start building a game

Creating Gameplay with XNA

4

Controlling Ball Movement

• To manage the speed of the ball we can use a pair of member
variables in our game class

– One for the X speed and one for the Y speed

• Each time Update is called these are used to update the

values of the X and Y position of the draw rectangle

• In a proper game we would calculate these values to make
sure the game plays at the same speed on all displays

int ballXSpeed = 3;
int ballYSpeed = 3;

Creating Gameplay with XNA

5

Moving the Ball

• The Update method is where the speed values are used to

update the rectangle position for the ball

• The next call of Draw will draw the ball in the new position

protected override void Update(GameTime gameTime)
{

ballRectangle.X = ballRectangle.X + ballXSpeed;
ballRectangle.Y = ballRectangle.Y + ballYSpeed;;

base.Update(gameTime);
}

Creating Gameplay with XNA

6

Going off the Edge

(0,0)

(0,height) (width, height)

(width, 0)

x +texture width > width

x < 0

y < 0

y + texture height > height

Creating Gameplay with XNA

7

Making the Ball Bounce

• When the ball reaches the edge of the screen it must change
direction

• We can do this by reversing the sign of the speed value to
reverse the effect of the update

ballRectangle.X += ballXSpeed;

if (ballRectangle.X < 0 ||
ballRectangle.X + ballRectangle.Width >
GraphicsDevice.Viewport.Width)

{
ballXSpeed = -ballXSpeed;

}

Creating Gameplay with XNA

8

Making a Paddle

• The paddle is made from a texture,
just like the ball

• This time I’ve made a slightly more
interesting one which uses
transparency

• The paddle is loaded as a texture
resource, just as the ball is

Creating Gameplay with XNA

9

Loading GameTextures

• When the game starts the LoadContent method is called

to load textures and other game assets

• We now have three textures in the game

protected override void LoadContent()
{

ballTexture = Content.Load<Texture2D>("ball");
lPaddleTexture = Content.Load<Texture2D>("lpaddle");
rPaddleTexture = Content.Load<Texture2D>("rpaddle");
...

}

Creating Gameplay with XNA

10

Scaling GameTextures

• Each game element will be drawn in a rectangle on the
screen

• We need to scale the rectangle so that the element is a
sensible size

– This must allow for different sized screens

ballRectangle = new Rectangle(
50, 50,
Window.ClientBounds.Width / 20,
Window.ClientBounds.Width / 20);

Creating Gameplay with XNA

11

Drawing GameTextures

• The Draw method draws all the objects in the game

protected override void Draw(GameTime gameTime)
{

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

spriteBatch.Begin();

spriteBatch.Draw(ballTexture, ballRectangle, Color.White);
spriteBatch.Draw(lPaddleTexture, lPaddleRectangle,

Color.White);
spriteBatch.Draw(rPaddleTexture, rPaddleRectangle,

Color.White);
spriteBatch.End();
base.Draw(gameTime);

}

Creating Gameplay with XNA

12

Representing GamePad state in XNA

• The state of a gamepad is
represented by an instance of the
GamePadState class

• You can ask XNA to create an
instance for any gamepad

• You can then read information
from this instance to tell you about
that gamepad

Creating Gameplay with XNA

13

Reading the Gamepad

• This code links the gamepad for player 1 to the left hand paddle

• If the pad is not connected the paddle tracks the ball

GamePadState pad1 = GamePad.GetState(PlayerIndex.One);
if (pad1.IsConnected)
{

if (pad1.DPad.Up == ButtonState.Pressed)
{

lPaddleRectangle.Y -= lPaddleSpeed;
}

}
else
{

lPaddleRectangle.Y = ballRectangle.Y;
}

Creating Gameplay with XNA

14

Reading the Keyboard

• The keyboard is read in just the same way

• However, there is only one keyboard on the system

• You can plug a USB keyboard into an Xbox 360 if you wish

• An XNA game can check if keys are being held down

• This includes shift and control keys

Creating Gameplay with XNA

15

Reading the Keyboard

• This code links the keyboard to the left hand paddle

– In this version you press the A key to move the paddle
up the screen

• Note that there is no way of telling whether or not the
keyboard is present

KeyboardState keyboard = Keyboard.GetState();
if (keyboard.IsKeyDown(Keys.A))
{

lPaddleRectangle.Y -= lPaddleSpeed;
}

Creating Gameplay with XNA

16

Detecting Collisions

• We need to make the ball bounce off the paddles when the
two collide

• In the console version of the game we tested to see if ball and
paddle occupied the same part of the screen

• In the case of XNA we need to see if the rectangles which
control the position of the ball and paddle intersect

Creating Gameplay with XNA

17

Rectangle Intersection

• The Rectangle structure provides a method called
Intersects which can be used to detect if two rectangles
intersect

• If the paddle and ball rectangles intersect we must reverse
the X direction of movement of the ball to have it bounce
off the paddle

if (ballRectangle.Intersects(lPaddleRectangle))
{

ballXSpeed = -ballXSpeed;
}

Creating Gameplay with XNA

18

Completing the Game

• A finished game must also detect when the ball reaches the
edges of the screen

• This is when a point has been scored

• I will leave you to create this code

• However, you will also need to draw text on the screen to
display messages to the players

• This turns out to be very easy

Creating Gameplay with XNA

19

Adding a SpriteFont

• A SpriteFont is a content item that lets you draw text on

the screen

• It provides a set of character designs of a particular size

Creating Gameplay with XNA

20

SpriteFont XML

• The font used and the size are set in an XML file

• You can edit this to get different sizes and styles

Creating Gameplay with XNA

21

Loading a Font

• The Content Manager will fetch the font

• The font can be stored in a variable which a member of the
game class

• You can use multiple fonts if you want different text styles

SpriteFont font;

protected override void LoadContent()
{

// Load the bat and ball textures
font = Content.Load<SpriteFont>("MessageFont");

}

Creating Gameplay with XNA

22

Using a Font

• The DrawString method renders a string using the font

that has been loaded

protected override void Draw(GameTime gameTime)
{

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);
spriteBatch.Begin();
spriteBatch.DrawString(

font,
"Hello world",
new Vector2(100, 100),
Color.White);

// Draw the other textures here
spriteBatch.End();
base.Draw(gameTime);

}

Creating Gameplay with XNA

23

My Pong Game

Creating Gameplay with XNA

24

Summary

• XNA is a Framework of classes that are used to write games

• You load textures into your game and use them to draw the
display

• Texture drawing is controlled by rectangles, which give the
position and size of the drawn item

• User input is obtained from objects that hold a snapshot of
the state of an input device

• You can add font items to the game content that allow text to
be drawn

Creating Gameplay with XNA

