
Inheritance

Rob Miles

Department of Computer Science

2

The Problem

• The Bank Manager has decided to create a new kind of
account in the bank

• It is called BabyAccount and it is exactly like a normal
Account, with one difference

"Holders of BabyAccounts should not be allowed to withdraw
more than 5 pounds in any transaction"

Inheritance

3

What we could to do

• One way to solve this problem would be to take a normal
Account class and just replace the WithDrawFunds method

• This would mean two account types in the bank

– We would need two different account storage arrays
– If we needed to change the way accounts work we have to

update both the Account and BabyAccount classes

Inheritance

4

Inheritance Introduction

• Inheritance is very useful

• It lets us take existing classes and reuse them by
extending them

• It can save a lot of work

–We only have to implement the new or changed
behaviour

• It is particularly valuable when writing a program to
deal with lots of related items

Inheritance

5

Code Reuse With a Child Class

• I can achieve code reuse by extending a parent class
and making a child class

• The child can do everything that the parent class
can do

• We can add new methods to the child, or even
override the ones in the parent

• This is the basis of inheritance

Inheritance

6

Inheritance So Far

• Whenever we create a new class it is actually an extension
of the object class

• This means that all the classes we have created so far have
been based on object

object

Account Bank

Inheritance

7

Object Methods

• The object class contains a number of methods:

– ToString – returns a string description of the object
contents

– Equals – used to compare two instances and return true
if the content of the two is the same

– GetHashCode – gets a hash value for an instance

• The hash value is a (hopefully) unique value for an instance that
can be used to identify it

• Every child of object can do these things

– But they often provide their own custom versions by
overriding the ones in the object class

Inheritance

8

Overriding the ToString method

• This version of ToString returns a string that describes

the content of an Account

• It overrides the ToString method in object

public override string ToString()
{
return "Account: " + accountNumber +

" Name: " + name +
" Address: " + address +
" Balance: " + balance;

}

Inheritance

9

Overriding Methods

• Overriding is where you provide a new version of a method
in a child class

• The new method overrides the one in the parent

• It must have the same name and signature as the one in the
parent

• This is not the same as overloading

– Overloading is where the same method name is used with
a variety of different method signatures

Inheritance

10

A Simple Account

• This is a very simple class which has a fixed amount in the
bank and a single WithdrawFunds method

class Account
{

private decimal balance = 10;
public virtual bool WithdrawFunds(decimal amount)
{

if (amount < balance)
{

balance = balance - amount;
return true;

}
return false;

}
}

Inheritance

11

Using the Account

• We can create account instances and then withdraw funds

• The above code would work as the Account is created with

10 pounds already in it

• We could add all the other methods to make a complete
Account class

if (a.WithdrawFunds(6))
{

Console.WriteLine("Withdraw succeeded");
}

Inheritance

12

Making a BabyAccount

• A BabyAccount class must be able to do all the things that

the parent class can do

• The only difference is in the behaviour of the
WithDrawFunds method

• We can do this by creating a BabyAccount class which is a
child of the Account class

• We then override the WithDrawFunds method in the child

class

Inheritance

13

A BabyAccount class

class BabyAccount : Account
{

public override bool WithdrawFunds(decimal amount)
{

if (amount > 5)
{

return false;
}
return base.WithdrawFunds(amount);

}
}

• The header of the class states that it extends the Account
class

• The parent class name follows the colon

Inheritance

14

class BabyAccount : Account
{

public override bool WithdrawFunds(decimal amount)
{

if (amount > 5)
{

return false;
}
return base.WithdrawFunds(amount);

}
}

A BabyAccount class

• The WithdrawFunds method overrides the
WithDrawFunds in the parent class

• This method must have been made virtual

Inheritance

15

class Account
{

private decimal balance = 10;
public virtual bool WithdrawFunds(decimal amount)
{

if (amount < balance)
{

balance = balance - amount;
return true;

}
return false;

}
}

A Virtual Method

• Only methods marked as virtual can be overridden

• The compiler must generate different code to call a method that
might be overridden

Inheritance

16

BabyAccount WithdrawFunds

• The method refuses to let the baby withdraw more than 5
pounds

• If the amount is less than this limit the WithdrawFunds
method in the parent class is called to do the withdrawal

class BabyAccount : Account
{

public override bool WithdrawFunds(decimal amount)
{

if (amount > 5)
{

return false;
}
return base.WithdrawFunds(amount);

}
}

Inheritance

17

public override bool WithdrawFunds(decimal amount)
{

if (amount > 5)
{

return false;
}
return base.WithdrawFunds(amount);

}
}

Using the base keyword

• Putting base. in front of the method causes the one in the

parent class to be called

• This is sensible, since the Account can then update the
balance (which the BabyAccount does not have access to)

Inheritance

18

Bank Class Diagram

• The lower down the hierarchy, the more a class can do

Object

Account Bank

BabyAccount

Inheritance

19

Understanding Hierarchies

• It is important that you remember that the child can always
do at least as much as the parent

• It can do more if it contains extra data and methods:

– The BabyAccount could contain the name and address of

the guardian of the baby

• You can also regard classes further down the hierarchy as
more specialised

– The ones at the top are general, then the ones further
down are for specific situations

Inheritance

20

Using a BabyAcount

BabyAccount b = new BabyAccount();
b.PayInFunds(100);
if (b.WithdrawFunds(4))
{

Console.WriteLine("Withdraw succeeded");
}

• The PayInFunds method in the Account class is used to

pay money in, since it has not been overridden in the
BabyAccount

• However, the WithdrawFunds method in the
BabyAccount class will be used when money is withdrawn

Inheritance

21

Overriding Considerations

• When you call a method on an instance of a child class the
run time system searches up the class hierarchy for that
method, starting at the child

• The first method that is found is called

• The base keyword causes a search for the next method

"above" this one

• Child classes needn't override all the methods in the parent

– You should only override the methods that you need to

Inheritance

22

Overriding in Class Design

• When you design your classes you only make methods
virtual if you know that they may need to be overridden

• It is unlikely that we would override the GetBalance
method, so this would not be virtual

• However, PayInFunds might need to be overridden

– there may be accounts where we want to limit the amount
of cash paid in with a single transaction

– PayInFunds should be made virtual to allow this

Inheritance

23

Child and Parent Construction

• A child instance is constructed based on a parent

• You can't have a child without a parent

• In other words, to make a BabyAccount we must first make
an instance of an Account

• This has ramifications for the construction process

– Especially if the parent class has a constructor which must
be called to create an instance of the parent

Inheritance

24

Adding a Constructor to Account

public Account(decimal initialBalance)
{

balance = initialBalance;
}

• We could use a constructor to our simple account which
sets the initial balance

– In fact we have much more complex constructors in the
real Bank application

• Unfortunately this breaks our program:

"No overload for method 'Account' takes '0' arguments"

Inheritance

25

Constructor Chaining
public BabyAccount(decimal initialBalance)

: base(initialBalance)
{
}

• The constructor for BabyAccount must call a constructor

in the parent class to make the parent instance

• The base keyword is used to achieve this

• It makes a call to a constructor in the parent class

• That way an Account is made before the BabyAccount

Inheritance

26

Constructing Constructors

• It is important that when you create your classes you
consider how each class will be constructed

• The constructor at each level must call one in the parent
before setting the values at that level in the hierarchy

• This is an important aspect of the class design process

Inheritance

27

References in Class Hierarchies

• Classes are managed by reference

– We create tags which refer to an object instance in
memory

• The C# compiler is very strict about reference types

– It ensures that object references are typesafe

• This has implications when we use references in class
hierarchies

Inheritance

28

Child Classes and References

• Classes are managed by reference

– We create tags which refer to an object instance in
memory

• There is a fundamental principle in class hierarchies:

The Child can always do more than the Parent

• Every time you add a layer you pick up all the behaviours of
the layer above

• This has implications when we consider references

Inheritance

29

Parent and Child References

• It is permissible for a reference to a parent class to refer to
an instance of a child

– This is because the child can always do everything the
parent can do

• This code will work fine, accountRef and babyRef both
refer to the same BabyAccount instance and the
BabyAccount instance has a behaviour for every Account
behaviour

BabyAccount babyRef = new BabyAccount(100);
b.WithdrawFunds(4);
Account accountRef = babyRef;
accountRef.WithdrawFunds(1);

Inheritance

30

Child and Parent References

• It is impossible for a reference to a child class to refer to an
instance of a parent

– This is because the parent cannot always do what the child
can

• If the child has additional behaviours, these are not present
in the parent

• The compiler will complain if you try to do this

• To see what we mean, here is an example....

Inheritance

31

Storing Parent Names in BabyAccount Instances

• The BabyAccount could contain the name of the parent of

the account holder

• It would have a method called GetParent to get this name

value

class BabyAccount : Account
{

string parentName;
public string GetParent()
{

return parentName;
}

}

Inheritance

32

Using the GetParent method

• It is not permissible for a reference to a child class to refer to
an instance of a parent:

• This code will work not compile

• This is because the Account class does not have a
GetParent behaviour, which the babyRef is expecting

• The compiler makes sure that the object on the end of a
reference can do all the things the reference needs

Account accountRef = new Account(100);
BabyAccount babyRef = accountRef; // This will not compile

Inheritance

33

Reference Power

• The real power of references in hierarchies is that since a
reference to a parent can refer to any of the children we can
still use an Account array to keep track of BabyAccounts

• We can even override the Load and Save methods in the
BabyAccount class so that they behave correctly

• And we can add new account types as required by the
customer

Inheritance

34

Using Inheritance

• Inheritance lets us customise code to make objects that reflect more
specialised requirement

• It also allows us to extend an existing system in the light of future
requirements

Inheritance

StockItem

Electrical Clothing

TV Dishwasher Dress Trousers

35

Stupid Inheritance

• It is important that all the items in the inheritance tree are
part of a “family” of related items

Inheritance

StockItem

Electrical Payment

TV Mains Supply Address Receipt

36

Components

• The Windows Forms components are based on a class
hierarchy

• You can create your own versions of the components by
extending these component classes yourself

Inheritance

Component

Button TextField Label

37

Sensible Inheritance

• Make sure that all the classes are related

– Everything in the hierarchy should be a version of the
item at the top

• Don’t make the class hierarchy too deep

– This makes things complicated and can slow programs
down

• Make sure the top class is abstract enough

– The top class in a dress shop should be StockItem not
ClothingItem, so the shop can sell handbags...

Inheritance

38

Inheritance and Components

• Inheritance is not a magic bullet

– It doesn’t solve all your problems, it simply makes it
easier to reuse code in some situations

• Inheritance is particularly useful when you are creating a set
of related resources

– The WPF elements are all part of a class hierarchy
– Each element further down the hierarchy adds an

additional behaviour or works slightly differently

• Modern program design makes use of interfaces to generate
interchangeable components

Inheritance

39

Inheritance Review

• A class can extend a parent class

– This means it has the same data and methods as the
parent

• Methods can be marked as virtual so that they can be
overidden by code in the child class

– This lets us create child classes with customised
behaviours

• A reference to the parent class can refer to any of the child
classes

– But it can only use the behaviours in the parent

Inheritance

