
Abstract classes and
Interfaces

Rob Miles

Department of Computer Science

2

Abstraction in the Bank

• We know that there are many different kinds of accounts:

– Current account
– Deposit account
– Credit card accounts
– Baby Accounts

• A bank system must be able to handle all of these account
types, plus new ones

• We have found that creating a class hierarchy is a good way
to reuse code as much as possible in our solution

Abstract Classes and Interfaces

3

Accounts and Inheritance

• We know that we can make life easier with inheritance

• The child class extends the parent and adds new/different
behaviours by adding methods and overriding existing
ones

Account

BabyAccount DepositAccount

Abstract Classes and Interfaces

4

Abstraction

• If we “step back” from the problem we can decide that there
are certain things that an account needs to be able to do:

– Set the name of the account holder
– Pay in funds
– Withdraw funds
– Read the balance

• All accounts must be able to do these things in their own way

• Exactly how they do these things will vary from one type of
account, but they all need to implement the behaviours

Abstract Classes and Interfaces

5

An Abstract Account Class

• We could put all the required behaviours into an abstract
class

• An abstract class is a template for others

• We can never make an Account instance, it just serves as
the basis of other accounts

public abstract class Account
{

public abstract bool SetName(string NewName);

public abstract bool PayInFunds(decimal amount);

public abstract bool WithDrawFunds(decimal amount);

public abstract decimal GetBalance();
}

Abstract Classes and Interfaces

6

Making a Class Abstract

• When a class is made abstract you can’t make an instance of
it

• Instead you can extend an abstract parent class to make a
child class which may not be abstract

– We can’t make an Account, but we can make a
CurrentAccount

• You can make instances of the child

• It is a version of the parent template with all the methods
filled in

Abstract Classes and Interfaces

7

Making a Method Abstract

• An abstract method is a placeholder

• It indicates that a child class must override this method if we
want to make instances of that child class

• It does not say how the method should work, just how it is
called and what it should return

• You have to make tests which ensure that the method works
correctly

– Just because a class has a method called WithdrawFunds
doesn’t mean that the method actually works

Abstract Classes and Interfaces

8

Extending an Abstract Class

• When you extend an abstract parent you must override all
the abstract methods in it

– Otherwise the child class will also be abstract

• You can think of it as filling in a template with the required
methods

• The designer of the abstract class sets out the things it needs
to do by specifying the abstract methods

• This means they can focus on what needs to be done, not the
precise details

Abstract Classes and Interfaces

9

Class based on Account

public class CurrentAccount : Account
{

public override bool SetName(string NewName)
{

return true;
}

public override bool PayInFunds(decimal amount)
{

return true;
}

// WithDrawFunds here

// GetBalance here
}

Abstract Classes and Interfaces

10

Abstract Classes and Test

• Once we have our “empty” behaviours in the CurrentAccount
class we must create tests for them

– Pay in 10 pounds
– Make sure the balance increases by 10 pounds

• We can then create code that performs the tests automatically

– If we run the above tests and errorCount is not 0 at the end of
them we sound an alarm

Abstract Classes and Interfaces

int errorCount = 0;
CurrentAccount test = new CurrentAccount ("Rob", 0);
test.PayInFunds(10);
if (test.GetBalance() != 10)
{

errorCount = errorCount + 1;
}

// Lots of other tests here.....

11

Designing Abstract Parent Classes

• Not all of the methods in an abstract class need to be
abstract

– It is perfectly OK for an abstract class to contain data
fields and methods

• In an Account all the account number management can be
performed by data and code in the Account class

• This means that all the accounts in the hierarchy will use the
same account number management code

Abstract Classes and Interfaces

12

References to Abstract Classes

• It makes sense to treat an array of bank accounts as an array
of Account references

• An Account reference can refer to any of the child classes

– A reference to a parent class can refer to instances of any
of the children

• Such a reference will also be able to refer to any account
class types which are created later

– If we invent a SuperTeenSaver account we can add that
to hierarchy and then refer to it from an array of Account
instances

Abstract Classes and Interfaces

13

Designing Using Abstract Classes

• Step back from the problem:

– Move from Dress to StockItem

• Identify the fundamental operations and properties

– The ones that everyone must do in the same way are not
abstract

– The ones that have to be custom for each child class are
abstract

– Making these methods abstract forces the child class to
provide its own version of that behaviour

Abstract Classes and Interfaces

14

Abstract Roundup

• Abstraction lets you consider the fundamental behaviours
without worrying about individual details

• It lets you provide templates which can be filled in by
specific child types

– You can’t make instances of abstract classes
– You can make an instance of a child which contains

overrides of the abstract items

• You can set out behaviour requirements by making a class
with a set of abstract methods, with one for each behaviour
that you need

– Then you create some tests for the behaviours

Abstract Classes and Interfaces

INTERFACES

Abstract Classes and Interfaces

16

Interface Introduction

• Interfaces are important

• They let programmers work with things in terms of
what the things can do, not what they are

• This is a very powerful feature of C#

• It makes possible component based oriented
development

Abstract Classes and Interfaces

17

Components and Interfaces

• We want to make software out of
components that fit together

• This means we have to define the
"plugs and sockets" that link the
components

• Then we can swap components
without changing

Abstract Classes and Interfaces

18

Uses for Interfaces

• There are a whole bunch of things that users of our Account
class might want to perform

– Add a New Account
– Delete an Existing Account
– Find an account

• It makes sense to be able to think of a bank in terms of these
abilities, rather than a particular class

• This would make bank instances interchangeable, rather
than needing to be part of a particular class hierarchy

Abstract Classes and Interfaces

19

A Bank Interface

• This is an interface

• An interface is a set of method headers

• By convention, the name of an interface always starts with
the letter i

interface Ibank

{

string AddAccount(IAccount account);

string DeleteAccount(IAccount account);

IAccount FindAccountByName(string name);

}

Abstract Classes and Interfaces

20

Implementing an Interface

• The FriendlyBank class contains implementations of all
the methods described in the IBank interface

class FriendlyBank : Ibank
{

public string AddAccount(IAccount account)
{

// code that adds an account
}

// same for DeleteAccount and FindAccountByName
}

Abstract Classes and Interfaces

21

What is the point of interfaces?

• An interface lets us manipulate something in terms of what it
can do, not what it is

• In other words I can use any object that implements the
IBank interface as a bank, and not care how it works

• This is very powerful, and adds a lot of flexibility to the
design process

Abstract Classes and Interfaces

22

Bank Merger

• Consider what happens if two banks merge

• FriendlyBank merges with NastyBank to create a new bank
called StandardBank

• Our programs must work with classes from both banks

• It can do this if the classes in the banks both implement the
IBank interface

Abstract Classes and Interfaces

23

Interface References

• The key to understanding interfaces is understanding
references to them

• The reference activeBank above can refer to any object
that implements the IBank interface

– This could be a FriendlyBank or NastyBank instance

IBank activeBank = new FriendlyBank();

...

IAccount current = activeBank.FindAccountByName("Rob");

Abstract Classes and Interfaces

24

The IAccount Interface

• If you look carefully at the description of the IBank
interface you see that it uses IAccount references

• This means that I’m also managing by accounts in terms
of interface references

interface Ibank
{

string AddAccount (IAccount account);
string DeleteAccount (IAccount account);
IAccount FindAccountByName (string name);

}

Abstract Classes and Interfaces

25

IAccount References

• I can manage my accounts in terms of references to the
IAccount interface

• This means that I can treat any object as an account,
irrespective of which bank it came from

• The fact that it implements the interface means that it can be
used as an account

Abstract Classes and Interfaces

26

Design with Interfaces

• Interfaces let you regard things in terms
of what they can do

• As long as you know the object
implements the behaviours you can use it
in your system

• The interface is the pins on a building
brick

Abstract Classes and Interfaces

27

Interface Roundup

• Interfaces decouple you from having to worry about
particular classes at any point

• They let you work with things in terms of their abilities, not
what they actually are

• They allow classes to bring together multiple behaviours

• They are another form of abstraction

Abstract Classes and Interfaces

