
1

Design with Interfaces

Rob Miles

Department of Computer Science

2

Design and Inheritance

• We have seen that inheritance is a very good idea

• It lets us start with an abstraction of a component in our
system and then create more specific versions of each

Account

BabyAccount DepositAccount

Design with Interfaces

3

Design and Inheritance

• This is the parent class which is an abstraction of what an
account needs to do

• We will never make an instance of the Account class
because it is a template that defined “Accountness”

Account

BabyAccount DepositAccount

Design with Interfaces

2

4

Design and Inheritance

• These are the child classes of the Abstract parent

• We will make instances of these

• They are account types that map on to specific kinds of
bank customer

Account

BabyAccount DepositAccount

Design with Interfaces

5

Using Abstract References

• Because a reference to a parent class can refer to an instance
of any of the child classes we can store a bank as an array of
Account references

Design with Interfaces

0 1 2 3 4 5 ... 94 95 96 97 98 99

DepositAccount

Name: Rob

Address:

Balance:

BabyAccount

Name: David

Address:

Balance:

Account [] BankAccounts = new Account [100] ;
BankAccounts[0] = new DepositAccount("Rob");
BankAccounts[1] = new BabyAccount("David");

6

Abstract Advantages

• If we need to fix a bug in the Account class or add a feature
to it we just have to do this once in the parent class

– All the child classes will pick up the fixed behaviour as
they will use the method from the parent

Design with Interfaces

Account

BabyAccount DepositAccount

3

7

Abstract Advantages

• If we need to fix a bug or add a behaviour the BabyAccount
we just need to do it in that class

– This change will not affect the behaviour of any of the
other classes in the system

Design with Interfaces

Account

BabyAccount DepositAccount

8

Abstract Advantages

• If a new type of account is required we can simply add it to
the hierarchy in a the appropriate place – it can be “stored”
in the Account array alongside all the existing accounts

– We can do this as we are building the system, and even
after it has been installed

Design with Interfaces

Account

BabyAccount DepositAccount TeenAccount

9

Adding New Hierarchies

• In the bank we also have to keep track of transactions

– Each transaction will be a line on a statement

• There will be many kinds of transactions, so we can use
abstract classes to design this

Account

BabyAccount DepositAccount

Design with Interfaces

Transaction

Payment Deposit

4

10

Enter the Printer

• The bank also needs to print things
out on paper

– This includes account details and
transactions

• It buys a really expensive line
printer and wants you to write the
software to do this

Design with Interfaces

11

Printing Problem

• We need to make lots of objects in our bank able to be
printed:

– Accounts
– Transactions
– Personnel Records
– Letters

• They are all in different class hierarchies

• We don’t want the print software to have to manage separate
lists of the different things that need to be printed

– This would make it hard to add new objects later

Design with Interfaces

12

Creating a Printing Interface

• The best way to do this is to create in interface that
describes the ability to print

• This will be used by the printer to ask an object to provide
print data

• The interface could contain two methods

– Get the message to be printed
– Find out how many lines of text the object will need

interface iPrint
{

string GetPrintOutput();
int GetLineLength();

}

Design with Interfaces

5

13

Implementing a Printing Interface in the parent

• The Account class can implement the interface

• This means it must contain versions of the two methods

abstract class Account : iPrint
{

virtual public string GetPrintOutput()
{

return "Account Output\n";
}

virtual public int GetLineLength()
{

return 1; // 1 line of output
}

}

Design with Interfaces

14

Implementing a Printing Interface in the child

• The BabyAccount class can also implement the interface

• This means it must also contain versions of the two
methods

class BabyAccount : Account, iPrint
{

override public string GetPrintOutput()
{

return base.GetPrintOutput() + "BabyAccount output\n";
}

override public int GetLineLength()
{

return base.GetLineLength() + 1; // Account size plus 1
}

}

Design with Interfaces

15

Overriding methods

• The GetPrintOutput method in the Account class has
been made virtual

• This means that we can override it in the child class

class BabyAccount : Account, iPrint
{

override public string GetPrintOutput()
{

return base.GetPrintOutput() + "BabyAccount output here";
}

override public int GetLineLength()
{

return base.GetLineLength() + 1;
}

}

Design with Interfaces

6

16

Overriding methods

• Inside the method we use the base keyboard to get the
print output from the parent object

• This is very important

class BabyAccount : Account
{

override public string GetPrintOutput()
{

return base.GetPrintOutput() + "BabyAccount output here";
}

override public int GetLineLength()
{

return base.GetLineLength() + 1;
}

}

Design with Interfaces

17

Using the Interface

• I can now create a BabyAccount and regard it as
something that implements the iPrint interface

• I can ask it how many lines of text it needs to print itself,
and also ask it for the text to be printed

• I will get the print behaviour of the BabyAccount, plus the
output produced by the Account class

iPrint printThing = new BabyAccount();

Console.WriteLine("Print size: " + printThing.GetLineLength());
Console.WriteLine(printThing.GetPrintOutput());

Design with Interfaces

18

Why is this so clever?

• This is clever because if I add new stuff to the Account class
that needs to go into the print output it will automatically
appear when I print a BabyAccount as well

• This make maintenance of the system much easier

• You don’t have to do this to use interfaces, but it is worth
thinking about

Design with Interfaces

7

19

Using Interface References

• Because a reference to an interface can refer to any object
that implements the interface the printer can hold a list of
objects to be printed without caring what type they are

Design with Interfaces

0 1 2 3 4 5 ... 94 95 96 97 98 99

PayInTransaction

GetPrintOutput

GetPageLength

BabyAccount

GetPrintOutput

GetPageLength

iPrint [] PrintQueue = new iPrint [100] ;
PrintQueue[0] = new PayInTransaction("Rob");
PrintQueue[1] = new BabyAccount("David");

20

Interface methods

• An iPrint reference can refer to objects that implement
the iPrint interface

• This means that a program can only call iPrint methods

on the reference, even if the object supports other
behaviours

• This is very sensible, as the printer should never want to
pay funds into an account

– It could use casting to do this, but it might be naughty..

iPrint printThing = new BabyAccount();

printThing.PayInFunds(50); // This will not compile

Design with Interfaces

21

The problems we have just solved

• The printer can print any kind of object in our solution
irrespective of their type, as long as they implement the two
printing methods

– This includes new object types that we can create after the
solution has been built

• Each object can have particular print behaviours and also
make use of the print behaviours of its parent

– We can add new objects or modify the behaviour of
existing ones and control precisely which parts of our
system are affected

Design with Interfaces

8

22

Understanding all this

• If all this seems a bit hard to understand, then don’t worry

• At all times think of the problems that we are trying to solve:

– We want to reuse code as much as possible
– We want to make sure that we can add new objects and

behaviours during the creation of the code
– We want to ensure that objects are responsible for all their

own behaviours
– We want to make sure that objects are only manipulated

in a manner appropriate to their function at that point in
the program

Design with Interfaces

