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Data Objects

• There are a number of objects that you will need to keep 
track of in the program

– Banjo
– Customer
– Rental

• You can use the Account and Bank classes from the course 
and Yellow Book as good starting points

• Make sure that you have included all the required 
behaviours

• One way is to check them off the specification as you 
complete them
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How to get started

• You don’t create the entire application all in one

• The best approach is to build up the behaviours, one simple 
step at a time

• This is how we can create any kind of complex software 
system

• So, to start you must decide the sequence of items you are 
going to build
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My Suggested Sequence

1. Create the Banjo class
2. Make the Load and Save behaviours for a single Banjo
3. Create the Shop class
4. Make the Load and Save behaviours for a Shop
5. Make the User Interface to find a particular Banjo in the 

Shop (use a ListView)
6. Make the User Interface to allow the Banjo to be 

manipulated
7. Repeat the process for Customer and Rental objects
8. Add the search behaviours
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1. Create the Banjo Class

1. Read through the specification and identify the properties that 
the banjo should have:

– A description of the banjo as a string of text
– The price per day of hiring that banjo
– The value of the banjo
– The state of the banjo (either in the shop, being repaired or out 

on hire)
– A unique banjo ID

2. Add these to the Banjo class that you are building

– Create a constructor

3. Identify how the properties should be used

– Create methods for each change
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2. Make the Load and Save behaviours

1. Create a Save method that will save the Banjo to a stream

– There is some sample code to do this in the lecture 
materials

2. Create a Load method that will fetch the Banjo from a 
stream 

3. Create Load and Save methods that will work with files

4. Test these methods by loading and saving banjos
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3. Create the Shop class

1. Create a Shop class that will contain everything in the shop

2. Initially just put a collection of banjos in the shop.

3. This can be a List or an array 

4. Add methods to allow a program to add new banjos and 
search the shop for banjos

– There is some sample code to do this in the lecture 
materials for Accounts
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4. Make Save and Load behaviours for the Shop

1. Write the Save behaviour

– To save the banjos the shop must write out the number 
of banjos and then write out each in turn

2. Write the Load behaviour

– To load the banjos the shop must read in how many 
banjos and then read each one in

– The Shop will use the Load behaviour from the Banjo to 
load each one 

– There is some sample code in the lecture notes
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5. Make the User Interface to find a Banjo

1. Create the code to find a banjo

– It can do this from the description of the banjo
– The user will enter the search information and then 

trigger a search of the banjos

2. Populate the display with the banjo information when it is 
found

3. Alternatively you can use a ListView to show all the items 
and then detect when one is selected
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6. Add the Banjo User Interface

1. Add TextBoxes and Buttons to allow the required functions 
to be performed

– The functions will all be selected from the single page
– This will keep the user interface simple
– All the actions will be performed on the currently active 

banjo – the one that has been selected

2. Test each action, and make sure that the changes that are 
made are persisted in the stored version of the banjo
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A Simple Banjo Class

• The Banjo class holds information about a banjo

• This version just holds the description

class Banjo
{

string Description;

public Banjo(string inDescription)
{

Description = inDescription;
}

public override string ToString()
{

return Description ;
}

}
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Banjos and Bank Accounts

• You can treat a Banjo just like we treat Bank Accounts

• You need to be able to add a banjo to the store and find a 
banjo by its ID (the banjo ID is just like an account number)

• You also need to save and load the banjo data to a file

• You can use the same save and load behaviours that you 
created for accounts
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A Simple Shop Class

• The Shop class holds all the shop information

• This includes a list of banjos

class Shop
{

string ShopName;

public List<Banjo> Banjos;

public Shop(string inName)
{

ShopName = inName;
Banjos = new List<Banjo>();

}
}
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Making Test Data

• This method is held in the Shop class

• It makes a few banjos and stores them

– The AddBanjo method accepts a name and a value for 

the banjo

• This is much easier for testing than typing them in

public void MakeTestData()
{

Random r = new Random(1);
AddBanjo("The Strummer", r.Next(500, 10000));
AddBanjo("The Woodsman", r.Next(500, 10000));
AddBanjo("Deep Twang", r.Next(500, 10000));
AddBanjo("Clawhammer Grip", r.Next(500, 10000));

}
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Create some Test Banjos

• This is an array of banjo names that you can use in your 
program if you like

• We could write a loop that creates a set of banjos with 
those names and random values

• If you want to you can add more names to the list

string[] banjoNames = new string[] { 
"The Strummer", "The Woodsman", "Deep Twang", "Clawhammer Grip", 
"Beard Tangler", "Old Smokey", "Vera", "Front Porch Special", 
"Plain White", "The Trumpet", "Mr Parse", "Big Earl" };
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The Rental class

• A customer will contain a list of rentals that the customer 
has made

• Each rental will contain the start and end of the rental and 
the banjo that was rented

• The relationship between Rental and Customer is very 
similar to the one between BanjoStore and Banjo

• One contains a collection of the other
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Designing your Solution

• You may be wondering where does the data “live” when the 
program is running?

• When the program is active the main page will hold a 
reference to the shop that holds the data the program is 
working on

• When the program starts the shop data will be loaded, and 
when the program ends the shop data will be stored
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Events in Windows Presentation Foundation 
(WPF)

• In a WPF application parts of the program run in response to 
events that are produced by the WPF framework

• We have seen that we can make buttons on the screen cause 
events in the program

• There are also events that fire when the program starts and 
when it ends

• The program will use these events to trigger when the data is 
loaded and saved
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Window Loaded Event

• Visual Studio will connect window 
events to methods for us

• This event occurs when the program 
loads the main window and displays 
it

• That is when we want to load our 
data
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Setting up the Shop in Window_Loaded

• This makes a new shop when the program starts

• In the finished program it will load the data from a file

public partial class MainWindow : Window
{

public MainWindow()
{

InitializeComponent();
}
Shop ActiveShop;
private void Window_Loaded(object sender, RoutedEventArgs e)
{

ActiveShop = new Shop("Test Shop");
ActiveShop.MakeTestData();

}
}
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Saving in the Window Closing event

• There is a corresponding event which is fired when the user 
leaves the program

• This is when your application should save the data to a file

• Note that this means the user never actually saves and loads 
the information

– The data is automatically saved and loaded when the 
program is started and stopped

• This makes the program much easier to use
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Showing Lists using the ListBox component

• The ListBox is a XAML component that can display lists

• We can add it to the XAML in our page very easily

• It will display a collection of items if we set the 
ItemsSource property to the collection we want to see

<ListBox Height="109" HorizontalAlignment="Left"
Margin="87,142,0,0" Name="BanjosListView"
VerticalAlignment="Top" Width="326" />
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ItemsSource in ListView

• The ListView uses the ToString method of the object to get 
the string to display in the box

• In my Banjo class this returns all the banjo details
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Selection Changed Events

• Our program can connect to an 
event which fires when the user 
selects a different item in the 
ListView

• This is how we can get our users 
to select banjos from the list
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Dealing with Selection Changed Events

• The event handler for the selection changed event is given 
a list of items that were selected

• We can use this in our program identify which items is 
required

private void BanjosListView_SelectionChanged(object sender, 
SelectionChangedEventArgs e)
{

MessageBox.Show(e.AddedItems[0].ToString() + 
" was selected"); 

}
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Problem Solving

• Keep each individual step a small one so that it is easy to 
debug 

• Don’t “run away” from problems you can’t solve to other 
problems that you can’t solve either

• Get help when you are stuck, but make sure that you ask 
“How do I do this?” rather that “What do I do?”
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