
Getting Started with 
Banjos4Hire

Rob Miles

Department of Computer Science



2

Data Objects

• There are a number of objects that you will need to keep 
track of in the program

– Banjo
– Customer
– Rental

• You can use the Account and Bank classes from the course 
and Yellow Book as good starting points

• Make sure that you have included all the required 
behaviours

• One way is to check them off the specification as you 
complete them

Banjos4Hire Startup



3

How to get started

• You don’t create the entire application all in one

• The best approach is to build up the behaviours, one simple 
step at a time

• This is how we can create any kind of complex software 
system

• So, to start you must decide the sequence of items you are 
going to build

Banjos4Hire Startup



4

My Suggested Sequence

1. Create the Banjo class
2. Make the Load and Save behaviours for a single Banjo
3. Create the Shop class
4. Make the Load and Save behaviours for a Shop
5. Make the User Interface to find a particular Banjo in the 

Shop (use a ListView)
6. Make the User Interface to allow the Banjo to be 

manipulated
7. Repeat the process for Customer and Rental objects
8. Add the search behaviours

Banjos4Hire Startup



5

1. Create the Banjo Class

1. Read through the specification and identify the properties that 
the banjo should have:

– A description of the banjo as a string of text
– The price per day of hiring that banjo
– The value of the banjo
– The state of the banjo (either in the shop, being repaired or out 

on hire)
– A unique banjo ID

2. Add these to the Banjo class that you are building

– Create a constructor

3. Identify how the properties should be used

– Create methods for each change

Banjos4Hire Startup



6

2. Make the Load and Save behaviours

1. Create a Save method that will save the Banjo to a stream

– There is some sample code to do this in the lecture 
materials

2. Create a Load method that will fetch the Banjo from a 
stream 

3. Create Load and Save methods that will work with files

4. Test these methods by loading and saving banjos

Banjos4Hire Startup



7

3. Create the Shop class

1. Create a Shop class that will contain everything in the shop

2. Initially just put a collection of banjos in the shop.

3. This can be a List or an array 

4. Add methods to allow a program to add new banjos and 
search the shop for banjos

– There is some sample code to do this in the lecture 
materials for Accounts

Banjos4Hire Startup



8

4. Make Save and Load behaviours for the Shop

1. Write the Save behaviour

– To save the banjos the shop must write out the number 
of banjos and then write out each in turn

2. Write the Load behaviour

– To load the banjos the shop must read in how many 
banjos and then read each one in

– The Shop will use the Load behaviour from the Banjo to 
load each one 

– There is some sample code in the lecture notes

Banjos4Hire Startup



9

5. Make the User Interface to find a Banjo

1. Create the code to find a banjo

– It can do this from the description of the banjo
– The user will enter the search information and then 

trigger a search of the banjos

2. Populate the display with the banjo information when it is 
found

3. Alternatively you can use a ListView to show all the items 
and then detect when one is selected

Banjos4Hire Startup



10

6. Add the Banjo User Interface

1. Add TextBoxes and Buttons to allow the required functions 
to be performed

– The functions will all be selected from the single page
– This will keep the user interface simple
– All the actions will be performed on the currently active 

banjo – the one that has been selected

2. Test each action, and make sure that the changes that are 
made are persisted in the stored version of the banjo

Banjos4Hire Startup



11

A Simple Banjo Class

• The Banjo class holds information about a banjo

• This version just holds the description

class Banjo
{

string Description;

public Banjo(string inDescription)
{

Description = inDescription;
}

public override string ToString()
{

return Description ;
}

}

Banjos4Hire Startup



12

Banjos and Bank Accounts

• You can treat a Banjo just like we treat Bank Accounts

• You need to be able to add a banjo to the store and find a 
banjo by its ID (the banjo ID is just like an account number)

• You also need to save and load the banjo data to a file

• You can use the same save and load behaviours that you 
created for accounts

Banjos4Hire Startup



13

A Simple Shop Class

• The Shop class holds all the shop information

• This includes a list of banjos

class Shop
{

string ShopName;

public List<Banjo> Banjos;

public Shop(string inName)
{

ShopName = inName;
Banjos = new List<Banjo>();

}
}

Banjos4Hire Startup



14

Making Test Data

• This method is held in the Shop class

• It makes a few banjos and stores them

– The AddBanjo method accepts a name and a value for 

the banjo

• This is much easier for testing than typing them in

public void MakeTestData()
{

Random r = new Random(1);
AddBanjo("The Strummer", r.Next(500, 10000));
AddBanjo("The Woodsman", r.Next(500, 10000));
AddBanjo("Deep Twang", r.Next(500, 10000));
AddBanjo("Clawhammer Grip", r.Next(500, 10000));

}

Banjos4Hire Startup



15

Create some Test Banjos

• This is an array of banjo names that you can use in your 
program if you like

• We could write a loop that creates a set of banjos with 
those names and random values

• If you want to you can add more names to the list

string[] banjoNames = new string[] { 
"The Strummer", "The Woodsman", "Deep Twang", "Clawhammer Grip", 
"Beard Tangler", "Old Smokey", "Vera", "Front Porch Special", 
"Plain White", "The Trumpet", "Mr Parse", "Big Earl" };

Banjos4Hire Startup



16

The Rental class

• A customer will contain a list of rentals that the customer 
has made

• Each rental will contain the start and end of the rental and 
the banjo that was rented

• The relationship between Rental and Customer is very 
similar to the one between BanjoStore and Banjo

• One contains a collection of the other

Banjos4Hire Startup



17

Designing your Solution

• You may be wondering where does the data “live” when the 
program is running?

• When the program is active the main page will hold a 
reference to the shop that holds the data the program is 
working on

• When the program starts the shop data will be loaded, and 
when the program ends the shop data will be stored

Banjos4Hire Startup



18

Events in Windows Presentation Foundation 
(WPF)

• In a WPF application parts of the program run in response to 
events that are produced by the WPF framework

• We have seen that we can make buttons on the screen cause 
events in the program

• There are also events that fire when the program starts and 
when it ends

• The program will use these events to trigger when the data is 
loaded and saved

Banjos4Hire Startup



19

Window Loaded Event

• Visual Studio will connect window 
events to methods for us

• This event occurs when the program 
loads the main window and displays 
it

• That is when we want to load our 
data

Banjos4Hire Startup



20

Setting up the Shop in Window_Loaded

• This makes a new shop when the program starts

• In the finished program it will load the data from a file

public partial class MainWindow : Window
{

public MainWindow()
{

InitializeComponent();
}
Shop ActiveShop;
private void Window_Loaded(object sender, RoutedEventArgs e)
{

ActiveShop = new Shop("Test Shop");
ActiveShop.MakeTestData();

}
}

Banjos4Hire Startup



21

Saving in the Window Closing event

• There is a corresponding event which is fired when the user 
leaves the program

• This is when your application should save the data to a file

• Note that this means the user never actually saves and loads 
the information

– The data is automatically saved and loaded when the 
program is started and stopped

• This makes the program much easier to use

Banjos4Hire Startup



22

Showing Lists using the ListBox component

• The ListBox is a XAML component that can display lists

• We can add it to the XAML in our page very easily

• It will display a collection of items if we set the 
ItemsSource property to the collection we want to see

<ListBox Height="109" HorizontalAlignment="Left"
Margin="87,142,0,0" Name="BanjosListView"
VerticalAlignment="Top" Width="326" />

Banjos4Hire Startup

BanjosListView.ItemsSource = ActiveShop.Banjos;



23

ItemsSource in ListView

• The ListView uses the ToString method of the object to get 
the string to display in the box

• In my Banjo class this returns all the banjo details

Banjos4Hire Startup



24

Selection Changed Events

• Our program can connect to an 
event which fires when the user 
selects a different item in the 
ListView

• This is how we can get our users 
to select banjos from the list

Banjos4Hire Startup



25

Dealing with Selection Changed Events

• The event handler for the selection changed event is given 
a list of items that were selected

• We can use this in our program identify which items is 
required

private void BanjosListView_SelectionChanged(object sender, 
SelectionChangedEventArgs e)
{

MessageBox.Show(e.AddedItems[0].ToString() + 
" was selected"); 

}

Banjos4Hire Startup



26

Problem Solving

• Keep each individual step a small one so that it is easy to 
debug 

• Don’t “run away” from problems you can’t solve to other 
problems that you can’t solve either

• Get help when you are stuck, but make sure that you ask 
“How do I do this?” rather that “What do I do?”

Banjos4Hire Startup


