
Generics, Lists and
Dictionaries

Rob Miles

Department of Computer Science

2

Storing Collections

• You often want to store a number of things in your program

• We could do this by using an array

• Arrays are useful but they have limitations

– Fixed size means that if we need to store 11 Accounts we
have to rebuild the program

// Storing bank accounts for 10 people
Account [] accounts = new Account [10];
accounts [0] = new Account ("Rob");

Generics Lists and Dictionaries

3

The ArrayList as an improvement

• The first improvement on the array is the ArrayList

• This holds a list of references to objects

• The great advantage of the ArrayList is that it grows and

contracts automatically

• The ArrayList provides methods you can use to remove

elements as well as add them

– You can add and remove items from the list as you need
– There is no limit to the upper size of the list

Generics Lists and Dictionaries

4

Creating an ArrayList

• This creates an ArrayList called accounts and then adds
two Account instances to it

• The Add method is given a reference to the thing to be
stored in the ArrayList

• Each time it is called the ArrayList gets one larger

• You don’t need to know how this works

// Storing bank accounts for any number of people
ArrayList accounts = new ArrayList ();
accounts.Add(new Account ("Fred"));
accounts.Add(new Account ("Jim")); // two elements

Generics Lists and Dictionaries

5

Reading ArrayList Elements

• The program can use subscripts to get the values out of an
ArrayList

• The ArrayList also has a property called Count which

gives the number of items in the list

• However you have to cast the value you get out of the
ArrayList

for (int i = 0; i < accounts.Count; i++)
{

Account a = (Account)accounts[i];
Console.WriteLine(a.GetName());

}

Generics Lists and Dictionaries

6

ArrayList Elements as object references

• Each item in the ArrayList is managed by reference

• An ArrayList may be used to hold references to any kind

of object

– the references in the list must refer to object instances

(which are the parent class of every type)

for (int i = 0; i < accounts.Count; i++)
{

Account a = (Account)accounts[i];
Console.WriteLine(a.GetName());

}

Generics Lists and Dictionaries

7

Casting ArrayList Element References

• If we want to use an item in a list as an Account we have
to cast the object reference into an Account reference

• This is so that we can do “account” type things with the
object on the end of the reference

• Of course, if the object on the reference isn’t an Account
instance our program will fail at run time

for (int i = 0; i < accounts.Count; i++)
{

Account a = (Account)accounts[i];
Console.WriteLine(a.GetName());

}

Generics Lists and Dictionaries

8

Using foreach

• The foreach construction makes it much easier to work

through any collection (including arrays)

• It automatically casts the elements to the type that it has
been told to work with

• This construction works with any collection, including
arrays

foreach (Account a in accounts)
{

a.Save(textOut);
}

Generics Lists and Dictionaries

9

Enter Generics

• Later versions of C# have been extended to include support
for generics

• Generics are another abstraction technology

– They provide another way of ‘stepping back’

• In this case they let you design code that has general
behaviours which are applied to a type the programmer
specifies

• They are very useful for managing collections

Generics Lists and Dictionaries

10

Generic Theory

• The things that an array of integers does are just the same as
an array of floats

– It is just that the elements of each array are different types

• Generics let a programmer separate the actions (putting
things in and out of elements) from the types they work on
(int, float, string, Account, Banjo)

• We can separate the design and behaviours of the container
from the type of objects that it contains

• A container that uses generics can work with references of
any type

Generics Lists and Dictionaries

11

Storing Accounts with Generics

• accountList is a List of Account references

– You can use it in just the same way as an ArrayList

• The List collection class is supplied with the type of list

you want using the notation shown above

– This is given between the < and > characters

• You can make a List that holds any type

List< Account> accountList = new List<Account>();
accountList.Add(new Account ("Fred"));
accountList.Add(new Account ("Jim")); // two elements

Generics Lists and Dictionaries

12

Reading List Elements

• Because we have set the type of elements the List can contain

there is no need to cast the result

• We can also be sure that a List of Account type can only hold
references to Account instances

• We can use subscripts to access elements in the list exactly as
for an array

– Note that the size of the list is given by a Count property

for (int i = 0; i < accountList.Count; i++)
{

Console.WriteLine(accountList[i].GetName());
}

Generics Lists and Dictionaries

13

Lists and References

• Remember that a List just contains a bunch of references,

not the object itself

• This means that a given object can be on several List
instances

– Each List just contains another reference to the object

• When an object is removed from a list the reference is just
removed from that list

• The bank could have one list ordered on account number,
another on account balance and so on

Generics Lists and Dictionaries

14

Removing List items

• The List (and the ArrayList) provide a Remove method

that will remove a reference from a list

• The Remove method is given a reference to the item to be

removed

• The List is automatically reduced in size when the

reference is removed

• The code above removes the item at the start of the list

Account firstAccount = accountList [0];
accountList.Remove(firstAccount);

Generics Lists and Dictionaries

15

Dictionaries

• The List is very powerful, it gives you an array that is

always the right size

• However, it is not always what you want

• Sometimes you want to find items based on a key of some
kind, rather than looking through elements in a List

• The Dictionary collection is very useful in this situation

Generics Lists and Dictionaries

16

Dictionary Storage

• In Real Life (tm) a dictionary is something you can use to
look words up

– i.e. Given a word and a dictionary you can look in the
dictionary and find the entry for that word

• We could use something similar in the bank

– Given an account number we could look in the ‘bank
dictionary’ and find the account with that number

• This behaviour is used a lot in programs

Generics Lists and Dictionaries

17

Keys and Values

• In database terms the number of the account is the key, and
the account data is the value

• Given the key (my account number) I want to find the value
(my account)

• If we use a List of accounts the only way to find the account

is by searching through the accounts until we find the one
with the required account number

– There are other searching and ordering techniques that
can speed this up, but we still have to implement them

Generics Lists and Dictionaries

18

Making a Dictionary

• This code makes a dictionary of accounts, indexed on a
string – which might be the name of the account holder

– each key must be unique for this to work, otherwise
Add will throw an exception

• It then creates an Account and adds it to the dictionary

• The name of the account holder is used as the key

• We can now use the name to find this account

Dictionary<string,Account> accountDictionary =
new Dictionary<string,Account>();

Account a = new Account("Fred");
accountDictionary.Add(a.GetName(),a);

Generics Lists and Dictionaries

19

Looking up Items

• This code looks up the account with the name "Fred" and

then pays it 50 pounds

• Note how easy it is to index on the key value

– It has to be a string because that is how the
Dictionary was declared

• Unfortunately if the accountDictionary does not
contain a key with the value "Fred" this statement will

throw an exception

// Pay in 50 pounds to Fred’s account
accountDictionary["Fred"].PayInFunds(50);

Generics Lists and Dictionaries

20

Looking for Keys

• You could catch the KeyNotFoundException if a key is
not found in a Dictionary

• Alternatively the method ContainsKey can be used to

look up a key and find out if the dictionary contains it

if (accountDictionary.ContainsKey("Fred"))
{

Console.WriteLine("Account Fred is in the bank");

}

Generics Lists and Dictionaries

21

Multiple Dictionaries

• You can create multiple dictionaries if you want to index on
different elements in the data

• The program only holds one copy of each object, adding a
new dictionary does not actually mean storing the data twice,
you just need enough space for the index, and your program
must now keep track of the two places that store data

– But remember that this will not work if any items have the
same keys – for example two people with the same name

– You could put a number on the end of additional ones and
then search for these – but this can get messy

Generics Lists and Dictionaries

22

Namespaces

• If you want to use these resources you need to add the
appropriate namespaces

• If you create an application using the New Project wizard
in Visual Studio the using statement for Generic

collections is included automatically

• The List and Dictionary collections have taken over
from the ArrayList and HashTable collections that used

to be used before Generics

using System.Collections; // ArrayList
using System.Collections.Generic; // List and Dictionary

Generics Lists and Dictionaries

23

Lists, Dictionaries and Generics

• Generics introduces the idea that you can write code that
manipulates objects without worrying about the precise
object type

• This is particularly useful when managing collections

– It is also used by the XNA content manager

• Lists can hold collections, and Dictionary can hold

references managed by a key

Generics Lists and Dictionaries

