
Using XML

Rob Miles

Department of Computer Science

Introduction

• An introduction to the problem

• Writing an XML file

– The XMLTextWriter class
– Attributes and Elements in XML
– Text Encoding in XML files

• Reading an XML document

– The XMLDocument class

• XML and namespaces

• Storing the XML

• Getting XML from the web

Storing High Score Data

• I wanted to store the high score of a player in a game

– Name of the player
– Name of the game
– Score reached in the game

• The data may need to be exported and used in other systems,
for example league tables

• XML is the obvious choice for this

Writing a Demo Version

• Robert’s Rule 1:

• “Make a nice place to work”

• I’ve made a program that lets me play with XML storage

• It has a simple WPF interface

XML Namespaces

• To get direct access to the XML methods and classes I
have to use the XML namespace:

• Once I have these I can write a method to save the values
in an XML document

using System.Xml;

Writing an XML document

• This method will create a document with an empty
highscore element

• The document is placed in the filename supplied to the
call

public void SaveXML (string filename)
{
XmlTextWriter writer ;
writer = new XmlTextWriter(filename, Encoding.ASCII);
writer.Formatting = Formatting.Indented ;
writer.WriteStartDocument();
writer.WriteStartElement("highscore");
writer.WriteEndElement();
writer.WriteEndDocument();
writer.Close();

}

Empty XML Document

• The header of the document simply describes the version
of xml and the encoding

• The score element is shown as empty

• This is a completely legal XML document

– but it does not contain any data.

<?xml version="1.0" encoding="us-ascii"?>
<highscore />

XML Attributes and Elements

• There are two types of data in an XML file

– Element: a lump of data about something; may contain
other elements

– Attribute: used to further describe a particular element.

• The document being created presently has one element,
called highscore.

• I can add an attribute to the highscore element which
identifies the game that was being played

public void SaveXML (string filename)
{

XmlTextWriter writer ;
writer = new XmlTextWriter (filename,Encoding.ASCII);
writer.Formatting = Formatting.Indented;
writer.WriteStartDocument();
writer.WriteStartElement("highscore");
writer.WriteAttributeString("game", "Breakout");
writer.WriteEndElement();
writer.WriteEndDocument();
writer.Close();

}

Adding an Attribute

Elements and Attribute Output

• The game attribute identifies the name of the game
for which the high score was reached

• This attribute is attributed to a given highscore
element

<?xml version="1.0" encoding="us-ascii"?>
<highscore game="Breakout" />

Adding the Player and Score

• Now we need to add the data about the player and the score
reached

• There are two ways to do this:

– add two more attributes to the highscore element. These
would be called player and score and would hold the
required values.

– add two new elements, player and score inside the
highscore element

Elements vs. Attributes
• I have decided that player and score should be

elements rather than attributes

• It is easier for me to extend the player and score
storage;
– I could add the address of the player and the date and time the score

was achieved
– Those attributes should bind to the player and score items, not the

highscore itself

• Information directly about the high score data, such
as the game it applies to, should be an attribute

• Another use for an attribute would be as an id tag of
an element, or perhaps a version number (which you
can see in the header of the XML file itself)

Writing the High Score

XmlTextWriter writer;
writer = new XmlTextWriter(filename,Encoding.ASCII) ;
writer.Formatting = Formatting.Indented;
writer.WriteStartDocument();
writer.WriteStartElement("highscore");
writer.WriteAttributeString("game", "Breakout");
writer.WriteElementString("playername",playerName);
writer.WriteElementString("score",score.ToString());

writer.WriteEndElement();
writer.WriteEndDocument();
writer.Close();

• This code builds the document

• I’ve used indenting to make it a bit clearer

High Score XML

• This is the XML produced by the previous code

• This can be read by any program that understands XML

• It is also quite easy for humans to understand

<?xml version="1.0" encoding="us-ascii" ?>
<highscore game="Breakout">
<playername>Rob Miles</playername>
<score>1500</score>

</highscore>

XML & Meanings

• Before we read the XML it is important to have discussion
about the meaning of things

• The program that we write will ascribe meaning to the
elements it gets:

– A score which is a big value is “good”
– In golf this would not be true…..

• There is nothing in the XML which gives the meaning of the
data itself

Element Namespace

• Not to be confused with the C# namespace (although the
intention is similar)

• Allows an element to state the context in which this element
has meaning

• This means that two programmers using the same name for
an element could ensure that people using their elements
can determine the proper context/ontology

Adding a Namespace

• The uri gives the user of this element a unique identifier
for this element

– uri is “Universal Resource Identifier”

• This ensures that my highscore element can be identified
as unique

• There does not have to be a web page at the uri

writer.WriteStartElement("highscore",
"www.mygameuri.com/highscore");

The Namespace in XML

• The xmlns attribute identifies the namespace for this
element

• I can create a set of namespaces based at a particular uri

• Note this is not the same as a C# namespace

– Although it is solving a similar problem

<highscore game="Breakout"
xmlns="www.mygameuri.com/highscore">

Data in XML

• You write elements out by using the WriteElementString
method

• This is given the name of the element and the data
payload

• Data is always written as text

writer.WriteElementString("player",playerName);

<player>Rob Miles</player>

Writing Numbers

• To write a number you need to convert it into a string

• When you read the number back you will have to parse it
back into a value

writer.WriteElementString("score",score.ToString());

<score>150</score>

Data and Escape Sequences

• XML uses certain characters to mark the start and end of
items in the data file

– These are called delimiters

• This could lead to problems if the user puts these
characters into the data the program is storing

XML Character Escaping

• When the XML writer saves a text element it will
automatically convert dangerous characters into escape
sequences

• This means that with XML Writer a user can’t type a name
that will upset the parser

– If you create XML “by hand” you should remember this

<?xml version="1.0" encoding="us-ascii"?>
<highscore game="Cheese Breakout"
xmlns="www.mygameuri.com/highscore">
<player></player>Rob</player>
<score>150</score>

</highscore>

Storing Raw Data

• If you want so send large amounts of text which include
lots of escape characters you can use the CDATA element
in your XML

• This tells the XML parser not to look for XML content
until it sees the sequence that marks the end of the
CDATA element.

<?xml version="1.0" encoding="us-ascii"?>
<highscore game="Cheese Breakout" xmlns="www.mygameuri.com/highscore">
<player><![CDATA[Very long and complicated name]]></player>
<score>0</score>

</highscore>

CDATA Danger

• If you store what users type in as CDATA this can lead to
problems

– A naughty user could type]]> into the data and then add
other elements that they are not supposed to

– This is a standard form of attack for web sites, particularly
those powered by SQL

– http://xkcd.com/327/

Reading an XML document

• You can create an XMLTextReader to read in nodes from
an XML document

• The above method just dumps the document

public void DumpXml(string filename)
{

XmlTextReader reader = new XmlTextReader(filename);

while (reader.Read())
{

Console.WriteLine(
"Type : " + reader.NodeType.ToString() +
" Name : " + reader.Name +
" Value : " + reader.Value);

}
reader.Close();

}

XML nodes

• You could write a read method that unpicks the nodes and
pulls the data from the values of the appropriate ones

• But there is a better way to do this

Type : XmlDeclaration Name : xml Value : version="1.0"
encoding="us-ascii"
Type : Whitespace Name : Value :
Type : Element Name : highscore Value :
Type : Whitespace Name : Value :
Type : Element Name : player Value :
Type : Text Name : Value : Rob Miles
Type : EndElement Name : player Value :
Type : Whitespace Name : Value :
Type : Element Name : score Value :
Type : Text Name : Value : 1500
Type : EndElement Name : score Value :
Type : Whitespace Name : Value :
Type : EndElement Name : highscore Value :

The XMLDocument Class

• You can create an instance of the XMLDocument
class that holds all the information in our high score
document

• You can then read the information you require from
properties that the document exposes

• This is much easier than working through
individual XML elements

Creating the XMLDocument value

• The above code creates a document instance which is
based on the XML held in the given filename

• If it doesn’t like the document format it will throw an
exception

XmlDocument document = null;
// get a new document
document = new XmlDocument();
// load it from a file
document.Load(filename);

XmlDocument structure

Name : highscore
NamespaceURI: www.mygameuri.com/highscore

game: “Breakout”

playername score

“Rob Miles” “1234”

Getting the Root element

• This gets the root element for the document and
makes sure it is the right one

• All elements expose a Name property that can be
used to identify them

System.Xml.XmlElement rootElement =
document.DocumentElement;

// make sure it is the right element
if (rootElement.Name != "highscore")
{

return "Not highscore data";
}

Checking a namespace

• All elements have a namespace property
which gives the namespace attribute

• We need to check this as well to make sure
our elements are from the right
namespace

// make sure it is in the right namespace
if (rootElement.NamespaceURI !=

"www.mygameuri.com/highscore")
{

return "Wrong namespace" ;
}

Reading an attribute

• Attributes are accessed by their name
using the GetAttribute method

• This method is given the name of the
attribute we want to read from the
element

// get the name of the game
string gameName = rootElement.GetAttribute("game");

Getting a Child Element

• An element can have child elements, this is how we put
something inside another item

• The simplest way to get hold of a child element is to use
the name as an indexer:

– This gets the element with the given name, or null if the
name is not found

– We have seen this before in Dictionaries

XmlNode playerNameNode = rootElement["player"];
if (playerNameNode == null)
{

return "Missing player name" ;
}

Get the value of an element

• The value of an element is a child of that element:

• The FirstChild member of the element in this case is the
data payload of that element

• We can set the player name to this

• All the values are returned as strings

• This means that we need to parse the score value to get an
integer

playerName = playerNameNode.FirstChild.Value;

Get a numeric value

• Once you have pulled the text out of the field you can convert
it into text as you would any number supplied as a string

• You should probably catch exceptions though...

XmlNode scoreElement = rootElement["score"];

if (scoreElement == null)
{

return "Missing score element";
}
string highScoreString = scoreElement.FirstChild.Value;
highScore = int.Parse(highScoreString);

Iterating Through Nodes

• You can use the foreach loop construction to work
through a collection of nodes

• This code reads the RSS feed from my blog and prints
out the title of each post

XmlDocument d = new XmlDocument();

d.Load("http://www.robmiles.com/journal/rss.xml");

foreach (XmlElement post in DocumentElement["channel"].ChildNodes)
{

if (post.Name == "item")
{

Console.WriteLine(
post["title"].FirstChild.Value.ToString());

}
}

Setting Values

• You can set values in an element as well

• There is also a method call which will save an
element (and all of it’s children)

• This can be used if you want to update values

• You can call the Save method on the document to
save it to a file

XML is Fun!

• No, really…..

• It provides a great way to manage program data in a flexible
and extensible manner

– For very little effort on your part

• Whenever you are storing program data, and you aren’t
putting it in a database, you should put it in XML!

– And it is very easy to write programs that consume XML
formatted data from the internet

