
Threading

Rob Miles

Department of Computer Science

2

Threads and Program Execution

• At the moment we have not thought much about how our
programs actually run

• We have just said that the computer starts at the beginning
of the Main method and executes statements until it reaches

the end

• When we add decisions and loops we control the path of
execution through the code

• We see this when we step through code

3

What is a Thread?

• A thread is a “unit of execution”

• This is probably not a helpful
definition

• Think of a thread as a train on a
track

• The track is your program, the
train is a thread

4

Multiple Threads

• Just as you can have several trains on the same set of track,
it is also possible to have more than one thread running at
once

• This is very useful, but also somewhat dangerous

• Before we consider these aspects, lets see how we make and
use threads

5

Consider a method:

• The method simply prints ten messages, pausing for half a
second between each one

static void CountToTen()

{

for (int i = 0; i < 10; i++)

{

Console.WriteLine("Loop: " + i);

System.Threading.Thread.Sleep(500);

}

}

6

Calling the CountToTen method

• We can use the method by just calling it

• This just causes the program to go into the method, run the
contents and then return

• This is how we have called methods in the past

public static void Main ()

{

CountToTen();

}

7

Managing Threads

• Instead of just calling CountToTen, I can create a thread

which runs it

• This is equivalent to making a new train and putting it onto
our track

• The thread is represented by an instance of the Thread class,
which is in the System.Threading namespace:

using System.Threading;

8

Creating a Thread

• When we create a thread we need to tell it where to start
running

• We do this by telling the thread to execute a particular
method

• To do this we need to have a way of representing a reference
to a method

• We have already seen how to do this

• We use delegates

9

Delegates

• We first saw delegates when we looked at buttons on
Windows Presentation Foundation displays

• They provide a way of telling a Button which method to call

when the button is pressed

• In this case we are telling a Thread which method it is to

start with

• It is a different delegate, but it does a very similar job

10

ThreadStart Delegate

• ThreadStart is a delegate type that refers to the method

that will be called when a thread is started

• We make the delegate refer to the method we want to use

• You can think of this as determining where on the track our
train is to start running

11

A ThreadStart for CountToTen

• We first declare the delegate reference (in this case
countStart)

• We then make an instance of a ThreadStart

• The constructor for ThreadStart is given the method to be
used, in this case CountToTen

• We now have something we can use to tell a Thread where to
start running

ThreadStart countStart;

countStart = new ThreadStart(CountToTen);

12

Creating a Thread

• We first create a reference to a Thread

• Then we create the Thread itself

• The constructor of a Thread is given the delegate that tells it

where to start running

• Note that this does not start the Thread, it just creates the
Thread object

Thread countThread;

countThread = new Thread(countStart);

13

Starting a Thread Running

• The Thread class provides a Start method that is used to

start the thread running

• This is the point at which the “train” is placed on the track
and set running

• The Thread will run until its method body finishes, then it

will end

countThread.Start();

14

Fully Threaded

• This creates the thread and starts it

public static void Main ()
{

ThreadStart countStart;
countStart = new ThreadStart(CountToTen);

Thread countThread;
countThread = new Thread(countStart);
countThread.Start();

}

15

Threads and Programs

• Normally your program finishes when the Main method is

completed

• But if your program contains threads it will only finish when
the last thread ends

• This is why the previous program prints out all the numbers,
even though the Main method completes after the call to
Start

16

Aborting a Thread

• If I call the Abort method on a Thread instance it causes

that thread to stop

• This would cause the program above to stop as all the
threads in it have finished

public static void Main ()
{

// Create the thread here

countThread.Start();

Console.ReadLine(); // wait for the user
countThread.Abort(); // Abort the count thread

}

17

Threads and Program Data

• All the threads in an application “share” the same objects

• Local variables are unique to each thread

• Contents of members of classes are shared amongst threads

• This can lead to lots of problems if two threads are “fighting”
over the same data

18

Thread Fighting

• The above code looks sensible but it is not “thread safe”

– Thread one starts performing the increment and fetches
the value of count to add one to it

– Thread one is then suspended to make way for thread two
– Thread two runs performs an increment of count
– Then Thread one continues and uses its “old” value of

count
– This results in one increment operation being lost

count = count + 1;

19

Thread Safety

• The .NET Framework provides ways that two threads can
use a synchronising object to ensure that this kind of
problem can’t happen

• However, programmers must use them to avoid these issues

• Bugs caused by threading mistakes are really hard to fix,
because they depend on precise timing and even hardware
configuration

20

Making Thread Safe Code

• Even if you use synchronisation you can still have problems

– Two threads waiting for each other would be locked
forever in a “deadly embrace”

• If threads are either “producers” or “consumers” there is less
likelihood of problems

– One thread creates data and another displays it

21

Mutual exclusion locks (Mutex)

• You can create code which can only be executed by one
thread at a time

• The synchronisation is managed in relation to a particular
object

object syncObject = new object();
...
lock (syncObject) // start of synchronised block

{

// synchronised code

}

// end of synchronised block

22

Threads and Applications

• Threads are used a lot in applications

– Web servers start a thread to deal with a page request
– Windows starts a thread to deal with each Button press

• When Windows is running there are a great many threads
active

– Many are just waiting for a trigger to act

23

Threads and Windows Presentation Framework

• Often you want to start a thread and have it report back to a
window on the desktop

• This means that it will be changing properties on a WPF
page

• Unfortunately the page is single threaded, and doesn’t like
you changing display elements without it knowing

24

What You Want to Do

• Often a user will select an action which will take a long time
to complete

– Load a large document
– Process lots of images
– Create a network connection
– Send something to a printer

• They will start the action off by pressing a button on a page

25

Buttons and Long Tasks

• When a user presses a button on a page the event hander for
this button press should return in reasonable time

• Otherwise the Window Manager gets confused/upset

• Your application should therefore fire off a thread if the
action will take a while to complete

26

Sample Application

• When the user presses the Start button this will fire off a
thread that just makes the progress bar count up to 100

• In real-life this could load a file

• You should work like this, because button presses should
return as soon as possible

27

Starting the Thread

• This is an event handler for the Start button

• It creates a new load thread and starts it

– It creates a ThreadStart delegate that refers to loadMethod

• The thread will perform our loading action which might take some
time

• It will want to update the progress bar

private void startButton_Click(object sender, RoutedEventArgs e)
{

loadThread = new Thread(new ThreadStart(loadMethod));
loadThread.Start();

}

28

Updating the Progress Bar

• This is the loadMethod that I have created

• It actually does not load anything, but it counts the progress
value up to 100, updating the progress bar each time

private void loadMethod()
{

loadProgress = 0;
while (loadProgress < 100)
{

loadProgress++;
updateProgress();
Thread.Sleep(100);

}
}

29

Progress Bar

• The Progress Bar is a screen control that displays a bar of a
particular length

– You add it to a window as you would any other element

• This one is called loadProgressBar

<ProgressBar Height="14" HorizontalAlignment="Left"
Margin="12,12,0,0" Name="loadProgressBar"
VerticalAlignment="Top" Width="479" />

30

Updating the Progress Bar

• You set the length displayed by setting the Value property in

the range 0 to 100

• You can set other ranges if you need to

• The bar is automatically updated on the screen when the
property is changed

private int loadProgress = 0;

...

private void updateProgressBar()

{

loadProgressBar.Value = loadProgress;

}

31

Thread Safety

• Unfortunately a simple update like this will fail

• The Windows Presentation Foundation (WPF) run time
system does not let other threads mess with screen
components

32

Threads and fun and games

• If your system contains multiple threads it means that things
can happen asynchronously

– i.e. we can’t tell exactly when, or in what sequence

• This is very bad news for the window management software

• It has to assemble a screen full of display elements and then
pass that screen over to the graphics engine to be displayed

• It cannot allow changes to be made to screen components at
any time, as this might corrupt the display

• So only one thread in the display engine is allowed to change
the settings in display components

Abstract Classes and Interfaces

33

The Problem

• You started a thread to perform a task that would take a long
time to complete

• The thread wants to update a component (the progress bar)
on the page to show how it is getting on

• However, the thread is not allowed to directly manipulate
display elements since only the WPF thread is allowed to do
this

• We need to find a way to update the display elements at a
time the WPF display thread is happy to do this

34

WPF Invoke Mechanism

• To get around this problem the WPF components provide a
way an external thread can give a delegate to a element and
say “Call this when you get round to it please”

• The element can then execute the delegate during its update
behaviour on the page

• This is how we get the page to update the progress bar for us

35

Invoking WPF Methods

• All WPF elements provide a method called Invoke, that lets

you ask them to run something for you in the context of the
page

• You don’t run the method yourself, you ask the component
to run it for you

• This means that you have to provide the component with a
reference to the method to be run – which means Delegates
are back!

loadProgressBar.Dispatcher.Invoke(
new UpdateTextCallback(this.updateProgressBar));

36

Delegate Re-Refresher

• We know what a reference is, it lets you refer to an object in
memory

• A delegate is also a reference, but it refers to a method in an
object

• We saw them when we used Windows Presentation
Foundation, in that they are how we bind methods to events
from display elements such as Buttons

• They are also how you start threads

37

Declaring a Delegate Type

• This creates a delegate that can refer to simple methods that
are void and have no parameters

• This is the kind of method that we can ask a component to
invoke

• Now that we have the delegate type we can create a delegate
that refers to methods of that type

delegate void SimpleMethod ();

38

Creating a Delegate Variable

• The variable barUpdate is a delegate instance that refers to
the updateProgressBar method

• We can ask the progress bar to call this method, so that it
gets run in the same Thread as the display

• Then our application will work correctly

SimpleMethod barUpdate =
new SimpleMethod(this.updateProgressBar);

39

Dispatching the update method

• The variable barUpdate is a delegate instance that refers to
the updateProgressBar method

• We can ask the progress bar to call this method, so that it
gets run in the same Thread as the display

• Then our application will work correctly

loadProgressBar.Dispatcher.Invoke(barUpdate);

40

Dispatching the update method

• This method will update the progress display

• It creates the delegate and then passes it to the Invoke
mechanism on the progress bar

private void updateProgress()
{

SimpleMethod barUpdate =
new SimpleMethod(this.updateProgressBar);

loadProgressBar.Dispatcher.Invoke(barUpdate);
}

41

WPF Dispatcher.Invoke Method

• All Windows display elements have a Dispatcher property
that provides an Invoke method

• You can use this to allow “background” threads to
communicate with the user as methods executed by the
Dispatcher run in the context of the display element

• There are also timers that you can create which will run code
in the page context at regular intervals

42

Updating the Progress Bar during the Load

• During the load process the program can update the
progress bar as the requested task is performed

• The loadProgress variable is the means by which the

different threads communicate

private void loadMethod()
{

loadProgress = 0;
while (loadProgress < 100)
{

loadProgress++;
updateProgress();
Thread.Sleep(100);

}
}

43

Spot the Error

• There is a very serious error with the code above

• It doesn’t cause the program to crash, but it does cause weird
things to happen

• Any ideas?

private void startButton_Click(object sender, EventArgs e)

{

loadThread = new Thread(new ThreadStart(loadMethod));

loadThread.Start();

}

44

Multiple Threads

• Every time the button is pressed we get a new thread

• Repeated button presses will cause lots of threads to be created

• This causes the bar to move more quickly as each thread updates
the shared progress value

private void startButton_Click(object sender, EventArgs e)

{

loadThread = new Thread(new ThreadStart(loadMethod));

loadThread.Start();

}

45

Thread Management

• This version checks to see if an existing thread is alive before
starting a new one

private void startButton_Click(object sender, EventArgs e)
{

if (loadThread != null)
{

if (loadThread.IsAlive)
{

return;
}

}
loadThread = new Thread(new ThreadStart(loadMethod));
loadThread.Start();

}

46

Threads Summary

• A Thread is a “unit of execution” in a program

• A console application contains just one thread, which is the
one that calls Main

• You can create threads of your own

• A thread is told where to start by using a delegate to refer to
the method it is to run

• Threads can be controlled and synchronised

• WPF pages run on a separate thread

