
1

C# and Other Languages

Rob Miles

Department of Computer Science

Why do we have lots of Programming Languages?

• Different developer audiences

• Different application areas/target platforms

– Graphics, AI, List Processing...

• Different priorities

– Fast, small, portable, bomb proof...

• Marketing

– Get developers onto your platform by supporting a good
language

Programming Languages

• C# is a general purpose programming language

– It lets you express an algorithm you have designed in a
form a computer can be made to execute

• It is not the only programming language

– You will learn lots of different ones if you become a
programmer

• I think you should have a working knowledge of at least
these

– C#
– Java
– JavaScript
– C and C++
– Python

2

HEALTH WARNING

• The content here is a bit subjective, as it is impossible to talk
about this kind of thing without letting your preferences
show through

• If you ask other people about these issues you will get
slightly different answers from the ones that I’m going to
give

• However, of course, everyone else is wrong…….

Java Origins

• Invented by Sun Microsystems

– (who have been bought by Oracle)

• Originally intended for use in “Set Top Boxes”

• Needed a language that was portable across a wide range of
devices

• Also needed a way to ensure that programs did not “crash”
the hardware

• Uses a “Virtual Machine” to execute code

Computer Hardware

• Programs are executed by hardware

• This provides storage, input/output and a processor (cpu)

• The processor will have a particular design (Pentium, ARM,
etc)

– A certain arrangement of internal registers
– A certain set of physical instructions

• A particular compiled “binary” program will work on a
particular processor

3

Virtual Machine

• Rather than target a specific platform (Pentium, ARM,
PowerPC) you design a “Virtual Machine”

• This has an arrangement of registers and memory, like a
real processor, but it is implemented in software

• Any platform that has a program that implements the
Virtual Machine can run programs written for it

Conventional Compiler Model

• Source code is compiled to produce
an executable file which contains
machine code instructions for the
target hardware

• The hardware then obeys these
instructions to execute the program

Source Code

Compiler

Compiled Machine
Code

Hardware

Compiled Code

4

Virtual Machine Model

• Source code is compiled to
an “intermediate code” for a
“virtual machine”

• When the program runs this
is either interpreted or
compiled again by a “Just In
Time” compiler

• The code runs in a
“Managed” environment

Source Code

Compiler

Compiled
Intermediate

Code/bytecode

Virtual Machine

Interpreter Just in Time
Compiler

Interpreter

Interpreting a Program

• An interpreter decodes each step of a intermediate code,
performs the requested action and then moves on to the next
step

• The steps of the program are never converted into machine
code, they are just executed by the interpreter program

• The interpreter itself is not tied to the underling hardware

• Languages that run this way are sometimes called “scripting”
languages

– Python runs in this way

Interpreters

• Good because:

– Easy to write
– Very easy to move from one platform to another
– Very safe, the program never gets control of the hardware

• Bad because:

– Slow
– Can’t take advantage of hardware features

5

Just in Time Compilation

• The other way to make a Virtual Machine run programs is to
compile the intermediate code into machine code just before
it executed

• This is called “Just In Time” compilation

• When you run your program it is compiled into machine
code just before it is run

• This is performed a method at a time

• Methods that are never called are never compiled

Just in Time Compilation

• Good Because

– Should get the same performance as a “properly”
compiled program

– Can make a compiler for each platform

• Bad Because

– Slows down your program starting up as it has to compile
your program before it can do anything

Managed Code

• One of the other reasons for creating a virtual machine is
that it allows you to run a “managed code” environment

– Programs that run directly on the hardware can contain
instructions that may break the underlying system

• Managed code provides a wrapper around the program that
stops it doing bad things

• Both C# and Java run programs in a managed environment

6

Java and the Internet

• The set top box development never really took off

– But the Internet did

• Turns out that Java was a very good way to run programs
that are loaded via the internet

• Any device with a Java Runtime Machine (JVM) could
receive and run Java programs

• The programs could not damage the host

Java in the Browser - Applets

• When java was at its height a lot of browsers contained Java
Virtual Machines so that they could run “applets” which
were embedded in the browser

• The browser would download the bytecode program from
the website and execute it

• This became a popular way to make web pages come alive

• Nowadays this is achieved using Javascript or plug-ins like
Adobe Flash

Java In the Browser - Javascript

• Designers at Netscape stole the Java name for their browser
scripting language, although JavaScript has little in common
with the Java language really

• The Javascript program source is embedded in the web page
HTML and interpreted by the browser

• While the program constructions are very similar to Java
(and C#) the way that the language works is actually quite
different

• Javascript is a very useful language to know well

7

Java Code

• Java looks incredibly like C#

• This is because both languages are based on the syntax of C++

• There are some differences when using class hierarchies, but
the principles are the same

/**
* The HelloWorldApp class implements an application
* that prints "Hello World!" to standard output.
*/

class HelloWorldApp {
public static void main(String[] args) {

// Display the string.
System.out.println("Hello World!");

}
}

Java and C# Differences

• Java has “primitive” data types as well as objects

– Primitive types are a way of speeding up program
execution

• C# is just one of several languages that run on top of the
same Virtual Machine

– This is all part of the .NET Framework

• C# programs cannot run as applets

The Java primitive type

• A Java primitive type is not an object

• It cannot expose methods

• It is managed by value

• If you want primitive types which can do something these
are provided in the form of “wrapper classes” which are
object based implementations of the primitive types

• There are both int and Integer types in Java

8

C# and Primitive Types

• The C# language does not make a distinction between
primitive and reference in the same way as Java

• The behaviour of primitive/value types in C# is managed to
work in a more intuitive way

• "Value" types are converted into object by a process called
"boxing“ when a C# program runs

• This happens transparently as far as the C# programmer is
concerned

From Java to C#

• C# was developed by Microsoft as the “native language” of
their new .NET Framework

• The idea behind .NET is to provide a common platform to
run multiple languages

– .NET languages all compile to the same Intermediate
Language which is run by a Virtual Machine that is part of
.NET

– .NET also provides a unified set of resources that can be
used by any language

Microsoft .NET

• .NET provides a Common Language Infrastructure (CLI) to
run multiple languages

– C++, C# and Visual Basic
– There are lots of other languages that are compiled down

to Microsoft Intermediate Language (MSIL)

• This makes it possible for code from different languages to
work together in the same solution

9

Common Language Infrastructure
(CLI)
• This is the system which underpins the execution of the

Intermediate Language code

• It is designed to be “language agnostic” and provide a
platform capable of executing compiled code from a range of
source languages

• It should also allow these components to interact in a useful
manner

CLI Features

• The CLI must work as an operating system

– Loads and executes components
– Provides Memory Management and IO

• The CLI must work as a compiler/linker/loader

– Place objects in memory
– Compile code
– Resolve references

CLI Concepts: Unified Types

• The CLI must provide a set of types which are used by
compiled programs

• Types contain fields and properties which contain the data
for that type

• The structure of a type is presented as metadata

• The CLI will load types as they are needed

10

Unified Types: int32 in C#

public static int WorkOutFact (int invalue) {

int result = 1;

.

.method public static int32 WorkOutFact(int32 invalue)
cil managed
{

// Code size 24 (0x18)
.maxstack 2
.locals ([0] int32 i,

[1] int32 result)
IL_0000: ldc.i4.1
IL_0001: stloc.1

.

Unified Types: int32 in VB
Public Shared Function WorkOutFact

(ByVal invalue As Integer) As Integer

Dim result As Integer
Dim i As Integer
result = 1

.method public static int32 WorkOutFact(int32 invalue) cil
managed
{
// Code size 28 (0x1c)
.maxstack 2
.locals init ([0] int32 i,

[1] int32 result,
[2] int32 WorkOutFact,
[3] int32 _Vb_t_i4_0)

IL_0000: nop
IL_0001: ldc.i4.1
IL_0002: stloc.1

.

Unified Types

• Each language implementation “agrees” on the size
and orientation of the types within the program

• This makes it possible for the languages to
interoperate in a useful way

• Types constructed in a given language are also
described in meta-data which makes it possible for
them to be linked with types from others

• The CLI should be unaware of the language origins
of a program component

11

Common Conventions

• In the case of .NET all the available languages must
be forced to use the same convention, that of the

CLI

• Note that this does not mean that the programs will
necessarily execute this way

– in some implementations the top few positions on the
stack can be mapped onto processor registers

• This may impact on portability, but is only really an
issue with un-managed code

Interacting with Native Code

• Native code is the machine code of the host processor

• The types used in the CLI are designed to be easily mapped
onto "native" code

• This is reflected in the range of built in types supported in
the CLI

• C# has this ability “built in”

• You can write C# programs that interact directly with the
hardware

– These must be flagged as “unsafe”

Java and C# Summary

• Both execute on Virtual Machines in a Managed Enviroment

• Both are based on C/C++ syntax

• Both are strongly typed

• Both are object oriented and provide inheritance and
interfaces

• Both provide a managed code environment (although C# lets
you turn this off)

• Both have a large support library

12

“Dynamic” Languages

• In a C# program the compiler will ensure that all types are
used in a manner that is appropriate to that type

– If the program breaks any rules of this kind it will not run
– This is called “static” typing in that we know before the

program runs whether or not it will do anything stupid in
this respect

• A dynamic language is one where the types and their
members can change as the program executes

– This brings lots of flexibility, along with the ability to do
really stupid and dangerous things

Dynamics and Danger

• Note that the danger in a dynamically typed language is not
that the program might crash

– Although it probably will do

• The danger is that the program will not do what you, or the
user, expect

• The C# compiler will not let you combine things without
saying clearly what will happen when you do

• In dynamic languages you have the flexibility to “make the
program up as you go along”, but this means that it is harder
to prevent the wrong thing from happening

JavaScript

• JavaScript is a very popular dynamic language

– “The language of the web”

• This is because it is often embedded in web pages to make
them more interactive

• The web browser contains an interpreter which reads the
JavaScript and runs it

• It is called JavaScript because it was launched when Java
was popular

– It has very little in common with the Java language

13

Scary JavaScript

• JavaScript works with objects, although it is much more
relaxed about how you can create and use them

• The C# compiler frets a lot about whether your program
makes sense, and whether what the program does with
things is valid

– The program must always make sense

• JavaScript works on a different principle

– The program must always do something

• This makes it easy to write (and run) broken code

JavaScript and the Future

• Because of the rise of HTML5 and web
applications JavaScript is going to be
with us for a long time

– There are some very useful
frameworks that work well with it –
for example JQuery

• You therefore need to be familiar with it

• I recommend the book “JavaScript: The
Good Parts” by Douglas Crockford

• And the website codeacademy.com

Python

• Python is a scripting language that is a bit like Java,
JavaScript, C and C#

• It is becoming popular as one of the primary languages for
the Raspberry Pi

• It is interesting because it also provides a “Python Shell”
where you can write language statements which are obeyed
immediately

– A bit like the old versions of Basic

• It is also a very powerful and flexible language

– If a bit scary…

14

C

• The C programming language was developed by Brian
Kernighan and Dennis Ritchie of Bell Labs

• They used it to create an operating system they were
developing

– ..called UNIX

• C has the same language syntax as C#, Java and JavaScript

– which is not that surprising, as they are based on it

• C is great for low level stuff, but it is very easy to write a C
program that causes your process (and maybe even the
computer) to crash

C and C++

• C and C++ are closely related

– C is the original, C++ adds support for objects

• C is a great language for writing operating systems

– And a rather dangerous language for writing pretty much
anything else

• C++ is a very powerful general purpose language which
combines the danger of C with support for Objects

– But has no garbage collection

The Future and C++

• C++ is important because it runs really fast on the target
hardware

• C++ is used to create Video Games

– There are high performance C++ compilers for just about
any platform

• You will be learning C++ next year

15

Final Important Point

• Just because there are all these languages out there you don’t
need to “start from scratch” each time you have to learn a
new one

– They all have statements, variables, assignments, tests,
loops, arrays and methods

• You get started in a new language by learning how these
controls are used in it

– A bit like changing from one car to another

• All procedural languages work in essentially the same way
when they run

Review

• C# is not the only language you will ever use

– Although it is one of the best

• As a programmer you will have to learn many languages
through your career – and this is not a problem

• They will all have their good parts and their bad parts

– “You can write horrible code in any language”
– “You can write great code in any language”

