

1

2

By

Joe Mayo

Foreword by Daniel Jebaraj

3

Copyright © 2015 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Stephen Haunts

Copy Editor: Ben Ball

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 7

About the Author ... 9

Chapter 1 Introducing C# and .NET ... 10

What can I do with C#? .. 10

What is .NET? .. 10

Writing, Running, and Deploying a C# Program .. 11

Starting a New Program ... 11

Namespaces and Code Organization .. 12

Running the Program .. 14

Deploying the Program ... 15

Summary .. 16

Chapter 2 Coding Expressions and Statements ... 17

Writing Simple Statements... 17

Overview of C# Types and Operators ... 18

Operator Precedence and Associativity ... 22

Formatting Strings .. 22

Branching Statements .. 23

Arrays and Collections ... 25

Looping Statements ... 26

Wrapping Up .. 28

Summary .. 30

Chapter 3 Methods and Properties .. 31

Starting at Main .. 31

Modularizing with Methods .. 31

5

Simplifying Code with Methods .. 34

Adding Properties .. 34

Exception Handling .. 37

Summary .. 41

Chapter 4 Writing Object-Oriented Code ... 42

Implementing Inheritance... 42

Access Modifiers and Encapsulation ... 44

Designing Types: Class vs. Struct ... 44

Creating Enums ... 48

Enabling Polymorphism ... 49

Writing Abstract Classes .. 53

Exposing Interfaces ... 54

Object Lifetime ... 56

Summary .. 61

Chapter 5 Handling Delegates, Events, and Lambdas ... 62

Referencing Methods with Delegates .. 62

Firing Events .. 63

Working with Lambdas ... 65

More FCL Delegate Types ... 68

Expression-Bodied Members ... 69

Summary .. 70

Chapter 6 Working with Collections and Generics .. 71

Using Collections ... 71

Writing Generic Code ... 74

Summary .. 79

Chapter 7 Querying Objects with LINQ .. 80

Getting Started ... 80

6

Querying Collections .. 81

Filtering Data .. 83

Ordering Collections .. 84

Joining Objects .. 84

Using Standard Operators ... 85

Summary .. 88

Chapter 8 Making Your Code Asynchronous.. 89

Consuming Async Code .. 89

Async Return Types ... 91

Developing Async Libraries ... 92

Understanding What Thread the Code is Running On ... 92

Fulfilling the Async Contract ... 94

A Few More Notes on Async ... 95

Summary .. 95

Chapter 9 Moving Forward and More Things to Know .. 96

Decorating Code with Attributes .. 96

Using Reflection ... 97

Working with Code Dynamically .. 98

Summary .. 100

7

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

8

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

9

About the Author

Joe Mayo is an author, a consultant at Mayo Software, LLC, and an instructor who specializes
in Microsoft .NET technology. Joe has written several books, including C# Unleashed (Sams)
and LINQ Programming (McGraw-Hill), and coauthored ASP.NET 2.0 MVP Hacks and Tips
(Wrox). His articles have been published in CODE Magazine and the online publications Inform
IT and C# Station.

Joe is a regular presenter on .NET topics and has received multiple Microsoft Visual C# MVP
awards. His open source project, LINQ to Twitter, is hosted on GitHub, and you can read his
blog at Geeks with Blogs. You can find Joe on Twitter as @JoeMayo.

https://github.com/JoeMayo/LinqToTwitter
http://www.geekswithblogs.net/WinAZ
https://twitter.com/JoeMayo

10

Chapter 1 Introducing C# and .NET

Welcome to C# Succinctly. True to the Succinctly series concept, this book is very focused on a
single topic: the C# programming language. I might briefly mention some technologies that you
can write with C# or explain how a feature fits into those technologies, but the whole of this book
is about helping you become familiar with C# syntax.

In this chapter, I’ll start with some introductory information and then jump straight into a simple
C# program.

What can I do with C#?

C# is a general purpose, object-oriented, component-based programming language. As a
general purpose language, you have a number of ways to apply C# to accomplish many
different tasks. You can build web applications with ASP.NET, desktop applications with
Windows Presentation Foundation (WPF), or build mobile applications for Windows Phone.
Other applications include code that runs in the cloud via Windows Azure, and iOS, Android,
and Windows Phone support with the Xamarin platform. There might be times when you need a
different language, like C or C++, to communicate with hardware or real-time systems.
However, from a general programming perspective, you can do a lot with C#.

What is .NET?

.NET is a platform that includes languages, a runtime, and framework libraries, allowing
developers to create many types of applications. C# is one of the .NET languages, which also
includes Visual Basic, F#, C++, and more.

The runtime is more formally named the Common Language Runtime (CLR). Programming
languages that target the CLR compile to an Intermediate Language (IL). The CLR itself is a
virtual machine that runs IL and provides many services such as memory management,
garbage collection, exception management, security, and more.

The Framework Class Library (FCL) is a set of reusable code that provides both general
services and technology-specific platforms. The general services include essential types such
as collections, cryptography, networking, and more. In addition to general classes, the FCL
includes technology-specific platforms like ASP.NET, WPF, web services, and more. The value
the FCL offers is to have common components available for reuse, saving time and money
without needing to write that code yourself.

There’s a huge ecosystem of open-source and commercial software that relies on and supports
.NET. If you visit CodePlex, GitHub, or any other open-source code repository site, you’ll see a
multitude of projects written in C#. Commercial offerings include tools and services that help you
build code, manage systems, and offer applications. Syncfusion is part of this ecosystem,
offering reusable components for many of the .NET technologies I have mentioned.

11

Writing, Running, and Deploying a C# Program

The previous section described plenty of great things you can do with C#, but most of them are
so detailed that they require their own book. To stay focused on the C# programming language,
the code in this book will be for the console application. A console application runs on the
command line, which you’ll learn about in this section. You can write your code with any editor,
but this book uses Visual Studio.

Note: The code samples in this book can be downloaded at
https://bitbucket.org/syncfusiontech/c-succinctly.

Starting a New Program

You’ll need an editor or Integrated Development Environment (IDE) to write code. Microsoft
offers Visual Studio (VS), which is available via Community Edition as a free download for
training and individual purposes (https://www.visualstudio.com/en-us/products/vs-2015-product-
editions.aspx). There are other development tools, but you can also use any editor, including
Notepad. Notepad++ is another editor that does syntax highlighting, but there are many more
available. Essentially, you just need the ability to type a text document. Pick your editor or IDE
of choice and it will work for all programs in this book.

Note: You need to use Visual Studio 2015 to compile the samples in this book.

To get started, we need a program to run. In VS, select File > New > Project, then select
Installed > Templates > Visual C# in the tree on the left, and finally select the Console
Application project type. Name the solution Chapter01, name the project Greetings, set the
location to your preference, and click OK. This will create a new solution for you. Delete the
Program.cs file and add a Greetings.cs file. In any text editor, just create a file named
Greetings.cs. The following is a C# program that prints a greeting to the command line.

Code Listing 1

The class is a container for code, defining a type, named Greetings. A class has members

and this example shows a method member named Main. A method is similar to functions and

using System;

class Greetings
{
 static void Main()
 {
 Console.WriteLine("Greetings!");
 }
}

https://bitbucket.org/syncfusiontech/c-succinctly
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx

12

procedures in other programming languages. For desktop application types, like console or
WPF, naming a method Main tells the C# compiler where the program begins executing. Both

the Greetings class and Main method have curly braces, referred to as a block, indicating

beginning and ending scope.

The void keyword isn’t a type; it indicates that a method does not return a value. For Main, you

can replace void with int, meaning that the program has a return code. This number can be

used by command-line shell tools to evaluate the conditions under which the program ended. It
is unique to each program and specified by you. Later, you’ll learn more about methods and
return values.

The static modifier indicates that there is only ever one instance of a Greetings class that

has that Main method—it is the static instance. Main must be static, but other methods can

omit static, which makes them instance members. This means that you can have many copies

of a class or instance with their own method.

Since a program only needs a single Main method, static makes sense. A program that

manages customers might have a Customer class and you would need multiple instances to

represent each Customer. You’ll see examples of instantiating classes in later chapters of this

book.

Inside the Main method is a statement that prints words to the command line. The words,

enclosed in double quotes, are a string. That string is passed to the WriteLine method, which

writes that string to the command line and causes it to move to the next line. WriteLine is a

method that belongs to a class named Console. You see in this example, just like the

Greetings class, the Console is a class too. This Console class belongs to the System

namespace, which is why the using clause appears at the top of the file, allowing us to use that

Console class.

The code begins with a using clause for the System namespace. The FCL is grouped into

namespaces to keep code organized and avoid clashes between identically named types. This
using clause allows us to use the code in the System namespace, which we’re doing with the

Console class. Without that, the compiler doesn’t know what Console means or how to find it,

but now C# knows that we’re using the System.Console class.

Namespaces and Code Organization

There are various ways to organize code and the choice should be based on the standards of
your team and the nature of the project you’re building. One of the common ways to organize
code is with the C# namespace feature. Here’s a hierarchical description of where namespaces
fit into the overall structure of a program:

 Namespace

 Type

 Type Members

Out of this hierarchy, the namespace is optional, as demonstrated in the previous program
where the Greetings class was not contained in a namespace. This means Greetings is a

13

member of the global namespace. You should avoid this practice as it opens the possibility for

other developers working with your code to write their own Greetings class in the same

namespace, which will cause errors because the C# compiler can’t figure out which Greetings

class to use. While Greetings might seem unique and unlikely, think of common names, such

as File, Math, or Window, that would cause problems. The following program uses

namespaces appropriately.

Code Listing 2

The Calc class is a member of the Syncfusion namespace. The Pythagorean method is a

member of the Calc class. A method is a block of code with a name, parameters, and return

value that you can call from other code. This follows the namespace, class, member
organization.

System is a namespace in the FCL and Math is a class in the System namespace. The using
static clause allows the code to use static members of the Math class without full qualification.

Instead of writing Math.Pow(a, 2), which squares the value of a, you can use the shorthand

syntax in the Pythagorean method. The Pythagorean method uses Math.Sqrt, which

provides square root, similarly. The following sample shows how you can use this code.

using static System.Math;

namespace Syncfusion
{
 public class Calc
 {
 public static double Pythagorean(double a, double b)
 {
 double cSquared = Pow(a, 2) + Pow(b, 2);
 return Sqrt(cSquared);
 }
 }
}

using Syncfusion;
using System;

using Crypto = System.Security.Cryptography;

namespace NamespaceDemo
{
 class Program
 {
 static void Main()
 {
 double hypotenuse = Calc.Pythagorean(2, 3);
 Console.WriteLine("Hypotenuse: " + hypotenuse);

 Crypto.AesManaged aes = new Crypto.AesManaged();

 Console.ReadKey();

14

Code Listing 3

The Main method calls the Pythagorean method of the Calc class, passing arguments 2 and 3

and receiving a result in hypotenuse. Since Calc is in the Syncfusion namespace, the code

adds a using clause for Syncfusion to the top of the file. Had the code not included that using

clause, Main would have been required to use the fully qualified name,

Syncfusion.Calc.Pythagorean.

Another feature of the previous program is the namespace alias, Crypto. This syntax allows

you to use a shorthand syntax when you need to fully qualify a namespace, but want to reduce
syntax in your code. If there had been another Cryptography namespace used in the same

code, though not in this listing, full qualification would have been necessary. Crypto is the alias

for System.Security.Cryptography and Main uses that alias in Crypto.AesManaged to make

the code more readable.

Running the Program

The rest of this chapter returns to the previous Greetings program in this chapter.

Now the program is written and you want to continue by compiling the program and running it.
You’ll want to save this file with the name Greetings.cs. The name isn’t necessarily important,
but by convention should be meaningful and is often the same name as a class it contains.
You’re allowed to put multiple classes in the same file, but it’s easier to find a class later if it is
alone in its own file of the same name. C# files have a .cs extension.

In VS, click the green Start arrow on the toolbar and it will build and run the program. The
program runs and stops so quickly that you won’t see the command-line output, so you can
press Ctrl + F5 to make the command line stay open. This book uses Visual Studio 2015, but
Syncfusion has published Visual Studio 2013 Succinctly, which explains many features that are
still valid in Visual Studio 2015. In the meantime, I’m going to show you how to use the C#
compiler directly—the benefit being that you see what the IDE is doing for you.

Tip: Adding Console.ReadKey(); as the last line in Main makes the command line
stop and wait for a key press.

Minimally, you need the .NET Framework installed on your machine, which is free for
commercial as well as non-commercial use. If you installed VS, you already have the .NET
Framework. Otherwise, download it from http://www.microsoft.com/en-
us/download/details.aspx?id=30653 and install it. This link is for .NET Framework 4.5, but any
future version should work fine.

 }
 }
}

https://www.syncfusion.com/resources/techportal/ebooks/visualstudio2013
http://www.microsoft.com/en-us/download/details.aspx?id=30653
http://www.microsoft.com/en-us/download/details.aspx?id=30653

15

Once .NET is installed, open Windows Explorer and do a search for the C# compiler, csc.exe.
Since I’m using Visual Studio 2015 for the examples in this book, the C# 6 compiler on my
machine is located at C:\Program Files (x86)\MSBuild\14.0\Bin, but yours may differ.

Next, make sure the C# compiler is in your path. Open your System Properties window. As of
this writing, I’m on Windows 8.1 and found it via selecting Control Panel > System and
Security > System, and then clicking Advanced System Settings. Select the Advanced tab
and click the Environment Variables button. In the System variables list, select Path, and
click Edit. You should see several paths separated by semicolons. At the end of that path, add
your C# compiler’s path that you found with the Windows Explorer search and make sure it’s
separated from the previous paths with a semicolon. Close out of all these windows when you’re
done setting the path.

Now that you have the .NET Framework installed and have the path to the C# compiler set, you
can build the program that you typed in the previous example. First, open a command prompt
window. On my system, I can do this by pressing the Windows logo key + R, typing cmd.exe
in the Run dialog, and then clicking OK. If you’ve never used a command line, it’s a good idea
to open your favorite search engine and look for a tutorial. Alternatively, it might be good to
learn PowerShell; Syncfusion has a book on it titled PowerShell Succinctly. In the meantime,
navigate to the directory where you saved Greetings.cs. You can type cd\your\path\there and
press Enter to get there. You can verify you’re in the right location by typing dir to see what files
reside in the current directory.

To compile the program, type csc Greetings.cs. If you see compiler errors, go back to Code
Listing 1 and make sure you’ve typed the code exactly as it is there and then recompile.

 Tip: Use a space separated list to compile multiple files; e.g., csc.exe file1.cs
file2.cs. For C# compiler help, type csc.exe /help.

Now type dir and you’ll see a new file named Greetings.exe. This is an executable assembly.
In .NET, an assembly is a unit of identity, execution, and deployment, which is why it’s not just
called a file. For the purposes of this book, you won’t be involved with all the nuances of
assemblies, but it’s an encompassing term that includes both executable (.exe) and library (.dll)
files.

Now type Greetings.exe and press Enter. The program will print Greetings! on the command

line. Then you’ll see a new command-line prompt, meaning that the program ended. This came
from the Console.WriteLine statement in the Main method. When the Main method finishes

executing, the program finishes too.

Deploying the Program

.NET uses XCopy deployment, which means that you only need to copy the assembly to
anywhere you want it to go. The one caveat is that whatever machine you run the program on
must also have the .NET CLR installed. Installing VS or the .NET Framework automatically
installs the CLR. Also, you can only install the .NET Framework Runtime, which doesn’t include
development tools, to a machine where you only want to run a C# program but not perform any

https://www.syncfusion.com/resources/techportal/ebooks/powershell

16

development tasks. In practical terms, most Windows systems already have .NET installed from
the original installation and it is kept up-to-date via Windows Update.

Whenever you run the program, Windows looks at the executable, determines that it’s a .NET
assembly, loads the CLR, and then gives that assembly to the CLR to run. From the users’
perspective, the CLR behavior is behind the scenes; the program appears like any other
program when they run the executable.

Summary

This chapter included a couple broader takeaways regarding how C# fits into the .NET
Framework ecosystem and how to create a C# program. Remember that C# is a programming
language, but it builds programs that use the FCL to run applications managed by the CLR.
What this gives you is the ability to compile programs into assemblies that can be deployed and
run on any machine that supports the CLR. The program entry point is the Main method. You

can use any editor or an IDE like Visual Studio to write your code. To run a program, press F5 in
VS or compile with csc.exe on the command line. To deploy, copy the program to a machine

with the CLR installed. In the next chapter, you’ll learn more about how to code logic in C# using
expressions and statements.

17

Chapter 2 Coding Expressions and
Statements

In Chapter 1, you saw how to write, compile, and execute a C# program. The example program
had a single statement in the Main method. In this chapter, you’ll learn how to write more

statements and add logic to your program. For efficiency, many of the examples in the rest of
the book are snippets, but you can still add these statements inside of a Main method to

compile and get a better feel for C# syntax. There will be plenty of complete programs too.

Writing Simple Statements

By combining language operators and syntax, you can build expressions and statements in C#.
Here are a few examples of simple C# statements.

int count = 7;
char keyPressed = 'Q';
string title = "Weekly Report";

Code Listing 4

Each of the examples in the previous code listing have common syntactical elements: type,
variable identifier, assignment operator, value, and statement completion. The types are int,

char, and string, which represent a number, a character, and a sequence of characters

respectively. These are a few of the several built-in types that C# offers. Variables are a name
that can be used in later code. The = operator assigns the right-hand side of the expression to

the left-hand side. Each statement ends with a semicolon.

The previous example showed how to declare a variable and perform assignment at the same
time, but that isn’t necessarily required. As long as you declare a variable before trying to use it,
you’ll be okay. Here’s a separate declaration.

string title;

Code Listing 5

And the variable’s later assignment.

title = "Weekly Report";

Code Listing 6

18

Note: C# is case sensitive, so “title” and “Title” are two separate variable names.

Overview of C# Types and Operators

C# is a strongly typed language, meaning that the compiler won’t implicitly convert between
incompatible types. For example, you can’t assign a string to an int or an int to a string—

at least, not implicitly. The following code will not compile.

int total = "359";
string message = 7;

Code Listing 7

The “359” with double quotes is a string, and the 7 without quotes is an int. While you can’t

perform conversions implicitly, there are ways to do this explicitly. For example, you’ll often
receive text input from a user that should be an int or another type. The following code listing

shows a couple examples of how to perform such tasks explicitly.

int total = int.Parse("359");
string message = 7.ToString();

Code Listing 8

In the previous listing, Parse will convert the string to an int if the string represents a valid int.

Calling ToString on any value will always produce a string that will compile.

In addition to the previous conversion examples, C# has a cast operator that lets you convert
between types that allow explicit conversions. Let’s say you have a double, which is a 64-bit

floating point type, and want to assign that to an int, which is a 32-bit whole number. You could

cast it like this:

double preciseLength = 5.61;
int roundedLength = (int)preciseLength;

Code Listing 9

Without the cast operator, you would receive a compiler error because a double is not an int.

Essentially, the C# compiler is protecting you from shooting yourself in the foot because
assigning a double to an int means that you lose precision. In the previous example,

roundedLength becomes 5. Using the cast operator allows you to tell the C# compiler that you

know this operation could be dangerous in the wrong circumstances, but makes sense for your
particular situation.

19

The following table lists the built-in types so you can see what is available:

 Built-In Types

Type (Literal Suffix) Description Values/Range

byte 8-bit unsigned integer 0 to 255

sbyte 8-bit signed integer -128 to 127

short 16-bit signed integer -32,768 to 32,767

ushort 16-bit unsigned integer 0 to 65,535

int 32-bit signed integer -2,147,483,648 to 2,147,483,647

uint 32-bit unsigned integer 0 to 4,294,967,295

long (l) 64-bit signed integer –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

ulong (ul) 64-bit unsigned integer 0 to 18,446,744,073,709,551,615

float (f) 32-bit floating point -3.4 × 1038 to +3.4 × 1038

double (d) 64-bit floating point ±5.0 × 10−324 to ±1.7 × 10308

decimal (m) 128-bit, 28 or 29 digits of
precision (ideal for financial)

(-7.9 × 1028 to 7.9 x 1028) / (100 to 28)

bool Boolean true or false

char 16-bit Unicode character
(use single quotes)

U+0000 to U+FFFF

string Sequence of Unicode
characters (use double
quotes)

E.g., “abc”

You should add a suffix to a number when the meaning would be ambiguous. In the following
example, the m suffix ensures the 9.95 literal is treated as a decimal number:

decimal price = 9.95m;

Code Listing 10

You can assign Unicode values directly to a char. The following example shows how to assign a
carriage return.

20

char cr = '\u0013';

Code Listing 11

You can also obtain the Unicode value of a character with a cast operator as shown here.

int crUnicode = (int)cr;

Code Listing 12

So far, you’ve only seen statements with the assignment operator, but C# has many other
operators that allow you to perform all of the logical operations you would expect of any general
purpose programming language. The following table lists some of the available operators.

 C# Operators

Category Description

Primary x.y x?.y f(x) a[x] x++ x-- new typeof default
checked unchecked nameof

Unary + - ! ~ ++x --x (T)x await x

Multiplicative * / %

Additive + -

Shift << >>

Relational and Type
Testing

< > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Null Coalescing ??

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |= =>

21

Prefix operators change the value of the variable before assignment, and postfix operators
change a variable after assignment, as demonstrated in the following sample.

int val1 = 5;
int val2 = ++val1;
int val3 = 2;
int val4 = val3--;

Code Listing 13

In the previous code listing, both val1 and val2 are 6. The val3 variable is 1, but val4 is 2

because the postfix operator evaluates after assignment.

The ternary operator offers simple syntax for if-then-else logic. Here’s an example:

decimal priceGain = 2.5m;
string action = priceGain > 2m ? "Buy" : "Sell";

Code Listing 14

On the left side of ? is a Boolean expression, priceGain > 2m. If that is true, which it is in this

example, the ternary operator returns the first value between ? and :, which is "Buy".

Otherwise, the ternary operator would return the value after the :, which is "Sell". This

statement assigns the result of the ternary operator, "Buy", to the string variable, action.

In addition to the built-in types, the FCL has many types you will use on a daily basis. One of
these is DateTime, which represents a date and time. Here’s a quick demo showing a couple

things you can do with a DateTime.

DateTime currentTime = DateTime.Now;
string shortDateString = currentTime.ToShortDateString();
string longDateString = currentTime.ToLongDateString();
string defaultDateString = currentTime.ToString();
DateTime tomorrow = currentTime.AddDays(1);

Code Listing 15

The previous code shows how to get the current DateTime, a short representation of a date

(e.g., 12/8/2014), a long representation of the date and time (everything spelled out), the default
numeric representation, and how to use DateTime methods for calculations.

Tip: Search the FCL before creating your own library of types. Many of the
common types you use every day, like DateTime, will already exist.

22

Operator Precedence and Associativity

The C# operators listed in Table 2 outlines operators in their general order of precedence. The
precedence defines which operators evaluate first. Operators of higher precedence evaluate
before operators of lower precedence.

Assignment and conditional operators are right-associative and all other operators are left-
associative. You can change the normal order of operations by using parentheses as shown in
the following code listing.

int result1 = 2 + 3 * 5;
int result2 = (2 + 3) * 5;

Code Listing 16

In the previous code, result1 is 17, but result2 is 25.

Formatting Strings

There are different ways to build and format strings in C#: concatenation, numeric format
strings, or string interpolation. The following code listing demonstrates string concatenation.

string name = "Joe";
string helloViaConcatenation = "Hello, " + name + "!";
Console.WriteLine(helloViaConcatenation);

Code Listing 17

This prints “Hello, Joe!” to the console. The following example does the same thing, but uses
string.Format.

string helloViaStringFormat = string.Format("Hello, {0}!", name);
Console.WriteLine(helloViaStringFormat);

Code Listing 18

The string.Format takes a format string that has numeric placeholders in curly braces. It’s 0-

based, so the first placeholder is {0}. The parameters following the string are placed into the

format string in the order they appear. Since name is the first (and only) parameter,

string.Format replaces {0} with Joe to create "Hello, Joe!" as a string. As a convenience

in console applications, WriteLine uses the same formatting. The following code accomplishes

the same task as the two lines in the previous code listing.

Console.WriteLine("Hello, {0}!", name);

Code Listing 19

23

Going a little further, string formatting is more powerful, allowing you to specify column lengths,
alignment, and value formatting as shown in the following code.

string item = "bread";
decimal amount = 2.25m;
Console.WriteLine("{0,-10}{1:C}", item, amount);

Code Listing 20

In this example, the first placeholder consumes 10 characters in length. The default alignment is
right, but the minus sign changes that to align on the left. On the second placeholder, the C is a

currency format string.

Note: There are many string formatting options. You can visit
https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx for standard
formats, https://msdn.microsoft.com/en-us/library/0c899ak8(v=vs.110).aspx for
custom formats, and https://msdn.microsoft.com/en-
us/library/az4se3k1(v=vs.110).aspx for DateTime formats.

C# 6 introduced a new way to format strings, called string interpolation. It’s a shorthand syntax
that lets you replace numeric placeholders with expressions as follows:

Console.WriteLine($"{item} {amount}");

Code Listing 21

The $ prefix is required. Here, the value from the item variable replaces {item} and the value

from the amount variable replaces {amount}. Similar to numeric placeholders, you can include

additional formatting.

Console.WriteLine($"{nameof(item)}: {item,-10} {nameof(amount)}: {amount:C}");

Code Listing 22

The nameof operator prints out the name “item”, demonstrating how you can use expressions

in placeholders. You can also see the space and currency formatting on item and amount.

Branching Statements

You can use either an if—else or switch statement in your code for branching logic. When you

only need to execute code for a true condition, use an if statement as in the following sample.

string action2 = "Sell";

https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/0c899ak8(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx

24

if (priceGain > 2m)
{
 action2 = "Buy";
}

Code Listing 23

The curly braces are optional in this example because there is only one statement to execute if
priceGain > 2m. However, they would be required for multiple statements. This is true for all

branching and logic statements. You can also have an else case, as shown in the following

listing.

string action3 = "Do Nothing";
if (priceGain <= 2m)
{
 action3 = "Sell";
}
else
{
 action3 = "Buy";
}

Code Listing 24

Whenever the Boolean condition of the if statement is false, as it is in the previous code

sample where priceGain <= 2m, the else clause executes. In this case, action3 becomes

"Buy". Of course, you can have multiple conditions by adding more else if clauses.

string action4 = null;
if (priceGain <= 2m)
{
 action4 = "Sell";
}
else if (priceGain > 2m && priceGain <= 3m)
{
 action4 = "Do Nothing";
}
else
{
 action4 = "Sell";
}

Code Listing 25

In the previous example, you can see a more complex Boolean expression in the else if

clause. When priceGain is 2.5, the value of action4 becomes "Do Nothing". The && is a

logical operator that succeeds if both the expression on the left and right are true. The logical ||

operator succeeds if either the expression on the left or right is true. These operators also
perform short-circuit operations where the expression on the right doesn’t execute if the
expression on the left causes the whole expression to not be true. In the case of the else if in

25

Code Listing 25, if priceGain were 2m or less, the && operator would not evaluate the

priceGain <= 3 expression because the entire operation is already false. Once a branch of

the if statement executes, no other branches are evaluated or executed.

Notice that I set action4 to null. The null keyword means no value. I’ll talk about null in the

next chapter and explain where you can use it.

An if statement is good for either simple branching or complex conditions, such as the previous

else if clause. However, when you have multiple cases and all expressions are constant

values, such as an int or string, you might prefer a switch statement. The following example

uses a switch statement to select appropriate equipment based on a weather forecast.

string currentWeather = "rain";
string equipment = null;
switch (currentWeather)
{
 case "sunny":
 equipment = "sunglasses";
 break;
 case "rain":
 equipment = "umbrella";
 break;
 case "cold":
 default:
 equipment = "jacket";
 break;
}

Code Listing 26

The switch statement tries to match a value, currentWeather in this example, with one of its

case statements. It uses the default case for no match. All case statements must be

terminated with a break statement. The only time fall-through is allowed is when a case has no

body, as demonstrated with the "cold" case and default, which both set equipment to

"jacket". Since currentWeather is "rain", equipment becomes "umbrella" and no other

cases execute.

Beyond branching statements, you also need the ability to perform a set of operations multiple
times, which is where C# loops come in. Before discussing loops, let’s look at arrays and
collections, which hold data that loops can use.

Arrays and Collections

Sometimes you need to group a number of items together in a collection to manage them in
memory. For this, you can either use arrays or one of the many collection types in the .NET
Framework. The following sample demonstrates how to create an array.

int[] oddNumbers = { 1, 3, 5 };

26

int firstOdd = oddNumbers[0];
int lastOdd = oddNumbers[2];

Code Listing 27

Here, I’ve declared and initialized the array with three values. Arrays and collections are 0-
based, so firstOdd is 1 and lastOdd is 5. The [x] syntax, where x is a number, is referred to

as an indexer because it allows you to access the array at the location specified by the index.
Here’s another example that uses string instead of int.

string[] names = new string[3];
names[1] = "Joe";

Code Listing 28

In this example, I instantiated an array to hold three strings. All of the strings equal null by

default. This code sets the second string to "Joe".

In addition to arrays, you can use all types of data structures, such as List, Stack, Queue, and

more, which are part of the FCL. The following example shows how to use a List. Remember

to add a using clause for System.Collections.Generic to use the List<T> type.

List<decimal> stockPrices = new List<decimal>();
stockPrices.Add(56.23m);
stockPrices.Add(72.80m);
decimal secondStockPrice = stockPrices[1];

Code Listing 29

In this sample, I instantiated a new List collection. The <decimal> is a generic type indicating

that this is a strongly typed list that can only hold values of type decimal; it’s a List of

decimal. That list has two items. Notice how I used the array-like indexer syntax to read the

second item in the (0-based) stockPrices list.

Looping Statements

C# supports several loops, including for, foreach, while, and do. The code listings that follow

perform similar logic.

double[] temperatures = { 72.3, 73.8, 75.1, 74.9 };
for (int i = 0; i < temperatures.Length; i++)
{
 Console.WriteLine(i);
}

Code Listing 30

27

The for loop initializes i to 0, makes sure i is less than the number of items in the

temperature array, executes the Console.WriteLine, and then increments i. It continues

executing until the condition (i < temperatures.Length) is false, and then moves on to the

next statement in the program.

foreach (int temperature in temperatures)
{
 Console.WriteLine(temperature);
}

Code Listing 31

The foreach loop used in Code Listing 31 is simpler and will execute for each value in the

temperatures array.

Next is an example of a while loop.

int tempCount = 0;
while (tempCount < temperatures.Length)
{
 Console.WriteLine(tempCount);
 tempCount++;
}

Code Listing 32

The while loop evaluates the condition and executes if it’s true. Notice that I initialized

tempCount to 0 and increment tempCount inside of the loop on each iteration.

Finally, the following example shows how to write a do-while loop.

int tempCount2 = 0;
do
{
 Console.WriteLine(tempCount2++);
}
while (tempCount2 <= temperatures.Length);

Code Listing 33

A do-while loop is good for when you want to execute logic at least one time. This example

increments tempCount2 as a parameter to Console.WriteLine. Remember, the postfix

operator changes the variable after evaluation.

28

Wrapping Up

Here’s a calculator program that pulls together some of the concepts from this chapter, plus
some extra features. You can type this into your editor and execute it for practice.

using System;
using System.Text;

/*
 Title: Calculator
 By: Joe Mayo
*/

class Calculator
{
 /// <summary>
 /// This is the entry point.
 /// </summary>
 static void Main()
 {
 char firstChar = 'Q';
 bool keepRunning = true;

 do
 {
 Console.WriteLine();
 Console.Write("What do you want to do? (Add, Subtract, Multiply, Divide,
Quit): ");
 string input = Console.ReadLine();
 firstChar = input[0];

 // This is used in both the if statement and the do-while loop.
 keepRunning = !(firstChar == 'q' || firstChar == 'Q');

 double firstNumber = 0;
 double secondNumber = 0;

 if (keepRunning)
 {
 Console.Write("First Number: ");
 string firstNumberInput = Console.ReadLine();
 firstNumber = double.Parse(firstNumberInput);

 Console.Write("Second Number: ");
 string secondNumberInput = Console.ReadLine();
 secondNumber = double.Parse(secondNumberInput);
 }

 double result = 0;
 switch (firstChar)
 {
 case 'a':
 case 'A':
 result = firstNumber + secondNumber;
 break;

29

 case 's':
 case 'S':
 result = firstNumber - +secondNumber;
 break;
 case 'm':
 case 'M':
 result = firstNumber * secondNumber;
 break;
 case 'd':
 case 'D':
 result = firstNumber / secondNumber;
 break;
 default:
 result = -1;
 break;
 }

 Console.WriteLine();
 Console.WriteLine("Your result is " + result);

 } while (keepRunning);
 }
}

Code Listing 34

The previous program demonstrates a do-while loop, an if statement, a switch statement,

and a basic console communication with the user.

There are a couple string features here that you haven’t seen yet. The first is where the program
uses Console.ReadLine to read input text from the user for the input string. Notice the indexer

syntax to read the first character from the string. You can read any character of a string this
way. Also, look at the bottom of the program where it prints "Your result is " + result,

which concatenates a string with the number. Using the + operator for concatenation is a simple

way to build strings. Another way to build a string is with a type named StringBuilder, which

you can use like this:

StringBuilder sb = new StringBuilder();
sb.Append("Your result is ");
sb.Append(result.ToString());
Console.WriteLine(sb.ToString());

Code Listing 35

You’ll also need to add a using System.Text; clause to the top of the file. After you’ve used

the concatenate operator, +, about four times on the same string, you might consider rewriting

with a StringBuilder instead. The string type is immutable, meaning that you can’t modify it.

This also means that every concatenation operation causes the CLR to create a new string in-
memory.

The calculator program also has multiline and single-line comments that aren’t compiled, but
help you document the code as you need. Here’s the multi-line comment:

30

/*
 Title: Calculator
 By: Joe Mayo
*/

Code Listing 36

Here’s the single-line comment:

// This is used in both the if statement and the do-while loop.

Code Listing 37

An extension of the single-line comment is a convention that uses three slashes and a set of
XML tags, known as documentation comments.

/// <summary>
/// This is the entry point.
/// </summary>

Code Listing 38

Summary

C# has a full set of operators and types that allow you to write a wide range of expressions and
statements. With branching statements and loops, you can write logic of your choosing. All of
the code in this chapter has been in the Main method, but clearly that’s inadequate and you’ll

quickly grow out of that. The next chapter explores some new C# features to help organize code
with methods and properties.

31

Chapter 3 Methods and Properties

Previous chapters show how to write code in the Main method. That’s the program entry point,

but it’s normally a lightweight method without too much code. For this chapter, you’ll learn how
to move your code out of the Main method and modularize it so you can manage the code

better. You’ll learn how to define methods with parameters and return values. You’ll also learn
about properties, which let you encapsulate object state.

Starting at Main

We’ll use a simpler version of the calculator from the previous chapter to get started. This
calculator only performs addition and stops running after one operation.

using System;

class Calculator1
{
 static void Main()
 {
 Console.Write("First Number: ");
 string firstNumberInput = Console.ReadLine();
 double firstNumber = double.Parse(firstNumberInput);

 Console.Write("Second Number: ");
 string secondNumberInput = Console.ReadLine();
 double secondNumber = double.Parse(secondNumberInput);

 double result = firstNumber + secondNumber;

 Console.WriteLine($"\n\tYour result is {result}.");

 Console.ReadKey();
 }
}

Code Listing 39

The part of this program that might be new is the Console.ReadKey statement at the end of the

Main method. This allows users to see the result and keeps the program from ending until they

press a key. The \n in the interpolated string is a newline and \t is a tab.

Modularizing with Methods

Although the previous program is small, a first glance doesn’t really tell you what it does.
Imagine if it was like the calculator in Chapter 2 or even longer; it would eventually become
difficult to understand. When you have to work on this again later, you might need to read many

32

lines of code to understand it. So, it would be better to refactor this. Refactoring is the practice
of changing the design of code without changing its functionality; the purpose is to improve the
program. The following code sample is a first draft of refactoring this program into methods.

using System;

class Calculator2
{
 static void Main()
 {
 double firstNumber = GetFirstNumber();

 double secondNumber = GetSecondNumber();

 double result = AddNumbers(firstNumber, secondNumber);

 PrintResult(result);

 Console.ReadKey();
 }

 static double GetFirstNumber()
 {
 Console.Write("First Number: ");
 string firstNumberInput = Console.ReadLine();
 double firstNumber = double.Parse(firstNumberInput);
 return firstNumber;
 }

 static double GetSecondNumber()
 {
 Console.Write("Second Number: ");
 string secondNumberInput = Console.ReadLine();
 double secondNumber = double.Parse(secondNumberInput);
 return secondNumber;
 }

 static double AddNumbers(double firstNumber, double secondNumber)
 {
 return firstNumber + secondNumber;
 }

 static void PrintResult(double result)
 {
 Console.WriteLine($"\nYour result is {result}.");
 }
}

Code Listing 40

Looking at Main, you can tell what the program does. It reads two numbers, adds the results,

and then shows the results to the user. Each of those lines is a method call. The first three
methods—GetFirstNumber, GetSecondNumber, and AddNumbers—return a value that is

assigned to a variable. The last method, PrintResult, performs an action without returning a

33

result. Before moving to the next refactoring, let’s walk through these methods. The following
code listing shows the GetFirstNumber method.

 static double GetFirstNumber()
 {
 Console.Write("First Number: ");
 string firstNumberInput = Console.ReadLine();
 double firstNumber = double.Parse(firstNumberInput);
 return firstNumber;
 }

Code Listing 41

At first glance, the signature of this method looks similar to the Main method. The differences

are that the return type of this method is double and the method is named GetFirstNumber. All

we did was write the method and the code that creates the firstNumber. When a method has a

return type, a value of that type must be returned. GetFirstNumber does that with the return

statement.

The GetSecondNumber method is nearly identical to GetFirstNumber. Let’s examine

AddNumbers next.

 static double AddNumbers(double firstNumber, double secondNumber)
 {
 return firstNumber + secondNumber;
 }

Code Listing 42

Notice that Main passes the firstNumber and secondNumber variables to AddNumbers as

arguments that the AddNumbers method can work with as parameters. The return type of

AddNumbers is double, so the method adds and returns the result of the add operation.

Finally, we have the PrintResult method.

 static void PrintResult(double result)
 {
 Console.WriteLine($"\nYour result is {result}.");
 }

Code Listing 43

The PrintResult method writes the results from its parameter to the console. Notice that

PrintResult does not have a return type, as indicated by the void keyword.

34

Simplifying Code with Methods

The last section improved the program because a huge block of code was broken into more
meaningful pieces. We can improve this code with some extra refactoring. In particular, the
GetFirstNumber and GetSecondNumber methods are largely redundant. The following sample

shows how to refactor those two methods into one and reduce the amount of code.

using System;

class Calculator3
{
 static void Main()
 {
 double firstNumber = GetNumber("First");
 double secondNumber = GetNumber("Second");

 double result = AddNumbers(firstNumber, secondNumber);

 PrintResult(result);

 Console.ReadKey();
 }

 static double GetNumber(string whichNumber)
 {
 Console.Write($"{whichNumber} Number: ");
 string numberInput = Console.ReadLine();
 double number = double.Parse(numberInput);
 return number;
 }

 static double AddNumbers(double firstNumber, double secondNumber)
 {
 return firstNumber + secondNumber;
 }

 static void PrintResult(double result)
 {
 Console.WriteLine($"\nYour result is {result}.");
 }
}

Code Listing 44

This time I removed GetFirstNumber and GetSecondNumber and replaced them with

GetNumber. The only real difference besides variable names is the whichNumber string

parameter.

Adding Properties

The previous examples performed all of the operations inside of the same class. It was driven
from the Main method and serviced through methods. What if I wanted to reuse the calculator

35

functions in that class and wanted the new class to hold its own values, or state? In this case,
moving the calculator methods into a separate Calculator class would be useful.

The next question to ask is, "How do we get to the state of the class?” For example, if I want to
read the result from the Calculator class, what is the best way to do so? One approach is to

use a method named GetResult that returns the value. Another way in C# is to use a property,

which you can use like a field, but works like a method. The following version of the calculator
program shows how to refactor methods into a separate class and add properties.

Note: Refactoring is the practice of changing the design of code without
changing its behavior with the goal of improving the code. Martin Fowler’s book,
Refactoring: Improving the Design of Existing Code, is a good reference.

using System;

public class Calculator4
{

 double[] numbers = new double[2];

 public double First
 {
 get
 {
 return numbers[0];
 }
 }

 public double Second
 {
 get
 {
 return numbers[1];
 }
 }

 double result;

 public double Result
 {
 get { return result; }
 set { result = value; }
 }

 public void GetNumber(string whichNumber)
 {
 Console.Write($"{whichNumber} Number: ");
 string numberInput = Console.ReadLine();
 double number = double.Parse(numberInput);

 if (whichNumber == "First")
 numbers[0] = number;
 else

36

 numbers[1] = number;
 }

 public void AddNumbers()
 {
 Result = First + Second;
 }

 public void PrintResult()
 {
 Console.WriteLine($"\nYour result is {result}.");
 }
}

Code Listing 45

In the previous code listing, First, Second, and Result are properties. I’ll break down the

syntax shortly, but first look at how these properties are used inside of the AddNumbers and

PrintResults methods. AddNumbers reads the values of First and Second and adds those

values together and writes to Result.

Each of these properties looks just like a field or variable; you just read from and write to them.
PrintResult reads the Result property. However, looking at the definitions of the properties,

you can tell right away that they aren’t fields.

The Result property is a typical read and write property with get and set accessors. When you

read the property, the get accessor executes. When you write to the property, the set accessor

executes. Notice that there is a result field (lowercase) prior to the Result (uppercase)

property. The get accessor reads the value of result and the set accessor writes to result.

When using set, the value keyword represents what is being written to the property.

This pattern of reading and writing from a single backing store is so common that C# has a
shortcut syntax you can use instead. The following code sample shows Result rewritten as an

auto-implemented property.

 public double Result { get; set; }

Code Listing 46

The backing store in auto-implemented properties is implied and handled behind the scenes by
the C# compiler. If you need to provide validation on the value being assigned or have a unique
way of storing the value, you should resort to full properties where the get accessor, set

accessor, or both are defined.

In fact, First and Second properties have a unique backing store, requiring a fully implemented

get accessor. They read from an array position. Notice that the GetNumber method figures out

which array position to put each number into.

Properties give you the ability to encapsulate the internal operations of your class so you are
free to modify the implementation without breaking the interface for consumers of your class.

37

The following code sample demonstrates how consuming code might use this new
Calculator4 class.

using System;

class Program
{
 static void Main()
 {
 var calc4 = new Calculator4();

 calc4.GetNumber("First");
 calc4.GetNumber("Second");

 calc4.AddNumbers();

 PrintResult(calc4);

 Console.ReadKey();
 }

 static void PrintResult(Calculator4 calc)
 {
 Console.WriteLine($"Your result is {result}.");
 }
}

Code Listing 47

The Main method creates a new instance of Calculator4 and calls public methods. All of the

strange internals of Calculator4 are hidden and Main only cares about the public interface,

exposing Calculator4 services for reuse. The PrintResult method reads the Calculator4

instance Result property. Again, that’s the benefit of methods and properties: callers can use a

class without caring how that class does what it does.

Exception Handling

C# has a feature called structured exception handling that lets you work with situations where
your methods aren’t able to fulfill their intended purpose. The syntax for managing exception
handling is the try-catch block. All the code to be monitored for exceptions goes in the try

block, and the code that handles a potential exception goes in a catch block. The following

code listing shows an example.

 static void HandleNullReference()
 {
 Program prog = null;

 try
 {
 Console.WriteLine(prog.ToString());

38

 }
 catch (NullReferenceException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

Code Listing 48

In C#, any time you try to use a member of a null object, you’ll receive a

NullReferenceException. The solution to fix the problem is to assign a value to the variable.

The previous example causes a NullReferenceException to be thrown in the try block by

calling ToString on the prog variable, which is null.

Since the code that threw the exception is inside the try block, the code stops execution of any

of the code in the try block and starts looking for an exception handler. The catch block

parameter indicates that it can catch a NullReferenceException if the code inside of the try

block throws that exception type. The body of the catch block is where you perform any

exception handling.

You can customize exception handling with multiple catch blocks. The following example

shows code that throws an exception in the try block, which is subsequently handled by a

catch block.

 static void HandleUncaughtException()
 {
 Program prog = null;

 try
 {
 Console.WriteLine(prog.ToString());
 }
 catch (ArgumentNullException ex)
 {
 Console.WriteLine("From ArgumentNullException: " + ex.Message);
 }
 catch (ArgumentException ex)
 {
 Console.WriteLine("From ArgumentException: " + ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine("From Exception: " + ex.Message);
 }
 finally
 {
 Console.WriteLine("Finally always executes.");
 }
 }

Code Listing 49

39

The method name is HandleUncaughtException because there isn’t a specific catch block to

handle a NullReferenceException; the exception will be handled by the catch block for the

Exception type.

You list exceptions by their inheritance hierarchy, with top-level exceptions lower in the list of
catch blocks. A thrown exception will move down this list of handlers, looking for a matching

exception type, and only execute in the catch block of the first handler that matches.

ArgumentNullException derives from ArgumentException, and ArgumentException derives

from Exception.

If no catch block can handle an exception, the code goes up the stack looking for a potential

catch block in calling code that can handle the exception type. If no code in the call stack is

able to handle the exception, your program will terminate.

The finally block always executes if the program begins executing code in the try block. If an

exception occurs and is not caught, the finally block will execute before the program looks at

the calling code for a matching catch handler.

You can write a try-finally block (without catch blocks) to guarantee that certain code will

execute once the try block begins. This is useful for opening a resource, like a file or database

connection, and then guaranteeing you will be able to close that resource regardless of whether
an exception occurs.

If you encounter a reason why your method can’t perform its intended purpose, throw an

exception. There are many Exception-derived types in the .NET FCL that you can use. The

following code example pulls together a few concepts you might want to use, such as validating
method input and throwing an ArgumentNullException.

public class Address
{
 public string City { get; set; }
}

internal class Company
{
 public Address Address { get; set; }
}

 // Inside of a class...
 static void ThrowException()
 {
 try
 {
 ValidateInput("something", new Company());
 }
 catch (ArgumentNullException ex) when (ex.ParamName == "inputString")
 {
 Console.WriteLine("From ArgumentNullException: " + ex.Message);
 }
 catch (ArgumentException ex)
 {
 Console.WriteLine("From ArgumentException: " + ex.Message);

40

 }
 }

 static void ValidateInput(string inputString, Company cmp)
 {
 if (inputString == null)
 throw new ArgumentNullException(nameof(inputString));

 if (cmp?.Address?.City == null)
 throw new ArgumentNullException(nameof(cmp));
 }

Code Listing 50

The previous code shows an Address class and a Company class with a property of the

Address type. The try block of the ThrowException message passes a new instance of

Company, but doesn’t instantiate Address, meaning that the Company instance’s Address

property is null.

Inside ValidateInput, the if statement uses the null referencing operator, ?., to check if any

of the values between Company, Company’s Address property, or Address’s City property is

null. This is a convenient way to check for null without a group of individual checks,

producing less syntax and simpler code. If any of these values are null, the code throws an

ArgumentNullException.

The argument to the ArgumentNullException uses the nameof operator, which evaluates to a

string representation of the value passed to it; it is "cmp" in this case. This code isn’t enclosed

in a try block, so control returns to the code calling this method.

Back in the ThrowException method, the thrown exception causes the code to look for a

handler suitable for this exception type. The exception type is ArgumentNullException, but the

catch block for ArgumentNullException won’t execute. That’s because the when clause

following the ArgumentNullException catch block parameter is checking for a ParamName of

"inputString". This when clause is called an exception filter. As mentioned previously, the

parameter name passed to the ArgumentNullException during instantiation was "cmp", so

there isn’t a match. Therefore, the code continues looking at catch handlers.

Since ArgumentNullException derives from ArgumentException and there is no exception

filter, the catch handler for ArgumentException executes. The exception is now handled.

Tip: It’s typically better to throw and handle specific exceptions, rather than their
parent exceptions. This adds more fidelity and meaning to the exception and
makes debugging easier.

41

Summary

Methods help you organize code into named functions that you can call to perform operations.
Their name documents what the code does. Also, methods are useful to help avoid duplicating
the same code in multiple places. Properties are used like fields and look like fields from the
perspective of code using the property’s class. However, properties are more sophisticated in
that they have get and set accessors that let them work like methods and perform more

sophisticated work, like validation or special value handling. Both methods and properties help
define the interface of a class to consumers and let you encapsulate the internal operations of a
class, which makes it more reusable. You can use try-catch blocks to handle exceptions and

try-finally blocks to guarantee critical code executes. Use the throw statement whenever a

method you’re writing can’t fulfill its intended purpose.

42

Chapter 4 Writing Object-Oriented Code

C# is an object-oriented programming (OOP) language. It supports inheritance, encapsulation,
polymorphism, and abstraction. This chapter shows you how C# supports OOP.

Implementing Inheritance

In C#, inheritance defines a relationship between two classes where a derived class can reuse
members of a base class. A simple way to view this is that a derived class is a more specific
version of a base class. We will reuse the calculator example from previous chapters, but alter it
to provide two different types of calculators: scientific and programmer. Since they’re both
calculators, it could be useful to create a relationship with a Calculator base class and

ScientificCalculator and ProgrammerCalculator derived classes, like this:

 Calculator

o ScientificCalculator

o ProgrammerCalculator

In C#, you would express this relationship as follows.

public class Calculator { }
public class ScientificCalculator : Calculator { }
public class ProgrammerCalculator : Calculator { }

Code Listing 51

As you can see, we added a colon suffix (as the inheritance operator) to the derived class and
specified the base class it is derived from. The following figure illustrates the inheritance
relationship between these classes.

Figure 1: Calculator Inheritance Diagram

43

You can assume that Calculator will have all of the standard operations like addition,

subtraction, and more that all calculators have. The following code listing is an expanded
example that shows the base class with a common method, and the derived classes with
specialized methods that only belong to those classes.

using System;

public class Calculator
{
 public double Add(double num1, double num2)
 {
 return num1 + num2;
 }
}

public class ScientificCalculator : Calculator
{
 public double Power(double num, double power)
 {
 return Math.Pow(num, power);
 }
}

public class ProgrammerCalculator : Calculator
{
 public int Or(int num1, int num2)
 {
 return num1 | num2;
 }
}

Code Listing 52

The methods of the derived classes in the previous example used the FCL Math class for

Power, which has many more math methods you can use in your own code, and also used the

built-in C# | operator for Or. The following example shows how to write code that takes

advantage of inheritance with the previous classes.

using System;

public class Program
{
 public static void Main()
 {
 ScientificCalculator sciCalc = new ScientificCalculator();
 double powerResult = sciCalc.Power(2, 5);
 Console.WriteLine($"Scientific Calculator 2**5: {powerResult}");
 double sciSum = sciCalc.Add(3, 3);
 Console.WriteLine($"Scientific Calculator 3 + 3: {sciSum}");

 ProgrammerCalculator prgCalc = new ProgrammerCalculator();
 double orResult = prgCalc.Or(5, 10);
 Console.WriteLine($"Programmer Calculator 5 | 10: {orResult}");

44

 double prgSum = prgCalc.Add(3, 3);
 Console.WriteLine($"Programmer Calculator 3 + 3: {prgSum}");

 Console.ReadKey();
 }
}

Code Listing 53

Both the ScientificCalculator instance, sciCalc, and the ProgrammerCalculator

instance, prgCalc, call the Add method. Further, those classes don’t define their own Add, but

they do derive from Calculator and therefore inherit Calculator’s Add.

The ability to inherit isn’t always guaranteed; the next section explains more about when a class
member is visible to other classes.

Access Modifiers and Encapsulation

In the previous example, all classes and methods had public modifiers, meaning that any other

class or code can see and access them in code. You can leave off access modifiers and accept
defaults. In that case, a class access becomes what is known as internal, and class members

default to private.

Classes can only be internal or public. If they’re internal, they can only be accessed by

code inside of the assembly they are contained in.

Available access modifiers for class members include public, private, internal, internal
protected, and protected. The public and internal modifiers have the same meaning for

class members as they do for classes.

The default modifier for class members, private, means that code outside the class can’t use

that member; only other members within the same class can use it. This is useful if you want to
modularize a method by breaking it into different supporting methods, but the supporting
methods have no meaning outside of the class.

The protected modifier allows derived classes inside and outside the assembly to use the

protected base class member. The internal protected modifier further restricts protected

behavior only to derived classes inside the same assembly.

Most of the access modifier defaults and behaviors apply to struct types as well as classes,

except for protected and internal protected, as I’ll explain next.

Designing Types: Class vs. Struct

A struct is another C# type that looks similar to a class, but has different behavior. A struct

can’t derive from another class or struct. Since implementation inheritance doesn’t apply to a

struct, neither do protected and internal protected modifiers. A struct does have

45

interface inheritance, which I’ll explain more in the Exposing Interfaces section later in this
chapter.

Additionally, a struct copies by value, as opposed to a class which copies by reference. The

difference is that if you pass a struct instance to a method, the method gets a brand new copy

of the struct value. If you copy a class instance to a method, the method gets a copy of a

reference to the class in the heap, which is an area in computer memory that the CLR uses to

allocate space for reference type objects. These facts help you decide whether you should
design a type as a class or struct. Imagine a type with many properties and how it would hurt

performance if you had to pass it by value to a method as a struct; the state of that type is

copied to the stack, which is memory the CLR allocates for every method call to hold items like
parameters and local variables. In that case, the proper design decision might be to define the
type as a class so that only the reference is copied.

Most of the built-in types, such as int, double, and char, are value types. If you have a type

with those semantics—small and a single value—then designing a type as a struct might be a

benefit. Otherwise, designing a type as a class is fine. Here’s an example of a type that might

make a good struct.

public struct Complex
{
 public Complex(double real, double imaginary)
 {
 Real = real;
 Imaginary = imaginary;
 }

 public double Real { get; set; }

 public double Imaginary { get; set; }

 public static Complex operator +(Complex complex1, Complex complex2)
 {
 Complex complexSum = new Complex();
 complexSum.Real = complex1.Real + complex2.Real;
 complexSum.Imaginary = complex1.Imaginary + complex2.Imaginary;
 return complexSum;
 }
 public static implicit operator Complex(double dbl)
 {
 Complex cmplx = new Complex();
 cmplx.Real = dbl;
 return cmplx;
 }
 // This is not a safe operation.
 public static explicit operator double(Complex cmplx)
 {
 return cmplx.Real;
 }
}

Code Listing 54

46

Complex could make a good struct because you might have a lot of mathematical operations,

and it would be more efficient to pass a copy of the numbers on the stack rather than letting the
CLR allocate memory as it does for a class.

Complex has a constructor, named after the class itself, with a couple parameters. This makes it

easy to initialize a new instance of Complex.

There are a few operator overloads in Complex: an addition operator and two conversion

operators. The addition operator lets you add two complex numbers. Where the operator
identifier (+) precedes the parameter list, the values to be added are specified in the

parameters, and the return type is part of the signature. Operators are always static.

The two conversion operators let you make assignments between the containing type and
another type of your choice. The type assigned to is the operator identifier and the type being
assigned is the parameter. The implicit modifier means the conversion is safe and the

explicit modifier means the conversion has the potential to lose data or provide an invalid

result. For example, assigning a double to an int would be explicit because of loss of

precision, and the explicit conversion in the previous example causes loss of the imaginary part
of the number. The following code sample demonstrates how Complex could be used.

using System;

class Program
{
 static void Main()
 {
 Complex complex1 = new Complex();
 complex1.Real = 3;
 complex1.Imaginary = 1;

 Complex complex2 = new Complex(7, 5);

 Complex complexSum = complex1 + complex2;

 Console.WriteLine(
 $"Complex sum - Real: {complexSum.Real}, " +
 $"Imaginary: {complexSum.Imaginary}");

 Complex complex3 = 9;

 double realPart = (double)complex3;

 Console.ReadKey();
 }
}

Code Listing 55

The Main method instantiates complex1 and then populates its values. Next, Main instantiates

complex2 by using the Complex constructor, which is simpler initialization code.

47

You can also see how natural it is to use the addition operator, rather than an Add method used

in previous Calculator demos.

Because there’s an implicit conversion from int to double and Complex has an implicit

conversion operator from double to Complex, Main is able to assign 9 to complex3. The same

can’t be said for assigning complex3 to realPart because Complex to double is an explicit

conversion operator in the Complex type. Any time you have an explicit conversion, you must

use a cast operator, as in (double)complex3.

One of the items you need to watch out for when working with value types is a concept referred
to as boxing and unboxing. Boxing occurs any time you assign a value type to object, and

unboxing occurs when you assign object to a value type. The following code demonstrates one

scenario where this could happen.

ArrayList intCollection = new ArrayList();
intCollection.Add(7);
int number = (int)intCollection[0];

Code Listing 56

An ArrayList is a collection class belonging to the System.Collections namespace. It is

more powerful than an array and operates on type object. The Add method accepts an

argument of type object. Since all types derive from object, an ArrayList is flexible enough

to allow you to work with objects of any type. Boxing occurs when passing 7 to the Add method

because 7 is an int (a value type) and is converted to object. What is really happening is that

the CLR creates a boxed int in memory. Since the ArrayList holds type object, you also

need to perform a conversion to unbox a value when reading from the ArrayList. The (int)

cast operator converts from object (the boxed int) to int when reading the first element of

intCollection.

The problem that boxing and unboxing cause is related to performance. In this situation, the
reason you would use a collection is because you want to hold a lot of int values, which could

be hundreds or thousands. Think about all the time spent accessing that ArrayList and

incurring the performance penalty of boxing and unboxing on each operation.

Note: ArrayList is an old collection class that existed in C# v1.0 and is no longer
used in modern development. C# v2.0 introduced generics, which use new
collection classes that are strongly typed and avoid the boxing and unboxing
penalties. While the ArrayList example is unlikely today, this scenario still
highlights the performance penalty of any other situation where you might be
assigning a value type to an object type.

Another difference between class (reference types) and struct (value types) is equality

evaluation. Value type equality works by comparing the corresponding members of the struct.

Reference type equality works by verifying that references are equal. In other words, structs are
equal if their values match, but classes are equal if they reference the same object in memory.

48

In the later section on polymorphism, you’ll learn how to override the object.Equals method to

give you more control over class equality.

Creating Enums

An enum is a value type that lets you create a set of strongly typed mnemonic values. They’re

useful when you have a finite set of values and don’t want to represent those values as strings
or numbers. Here’s an example of an enum.

public enum MathOperation
{
 Add,
 Subtract,
 Multiply,
 Divide
}

Code Listing 57

Like a struct, an enum is a value type. You use the enum keyword as the type definition. The

previous enum is named MathOperation and has four members. The following example shows

how you can use this enum.

using System;
using static MathOperation;

class Program
{
 static void Main()
 {
 string[] possibleOperations = Enum.GetNames(typeof(MathOperation));

 Console.Write($"Please select ({string.Join(", ", possibleOperations)}): ");

 string operationString = Console.ReadLine();

 MathOperation selectedOperation;

 if (!Enum.TryParse<MathOperation>(operationString, out selectedOperation))
 selectedOperation = MathOperation.Add;

 switch (selectedOperation)
 {
 case MathOperation.Add:
 Console.WriteLine($"You selected {nameof(Add)}");
 break;
 case MathOperation.Subtract:
 Console.WriteLine($"You selected {nameof(Subtract)}");
 break;
 case MathOperation.Multiply:
 Console.WriteLine($"You selected {nameof(Multiply)}");

49

 break;
 case MathOperation.Divide:
 Console.WriteLine($"You selected {nameof(Divide)}");
 break;
 }

 Console.ReadKey();
 }
}

Code Listing 58

The FCL has an Enum class that lets you work with enums and the previous Main method shows

how to use a couple of its methods. Enum.GetNames returns a string array, representing the

names in the enum, specified with the typeof operator. The string.Join method, the

expression in the interpolated string of the Console.WriteLine, creates a comma-separated

string of these names.

The Enum.TryParse method in the previous example takes a string and produces an enum of

the type specified in the type parameter, which is MathOperation in this case. The out

parameter means that TryParse will return the parsed value in the selectedOperation

variable. This is practical because the return type of the TryParse is bool, allowing you to know

whether the input string, operationString, is valid.

The selectedOperation variable is of type MathOperation. The default syntax for enums is to

prefix them with the enum type name, as in MathOperation.Add. However, you can also add a

using static clause to the top of the file, allowing you to only specify the member name, as

the previous example shows in the switch statement. A switch statement can operate on

numbers, strings, or enums.

Enabling Polymorphism

Polymorphism lets derived classes specialize a base class implementation. The mechanism to
allow polymorphism is to decorate a base class method with the virtual modifier and decorate

the derived class method with the override modifier. If you were designing the Calculator

class, you could allow derived classes to implement their own improved or specialized versions
of the Add method, as shown in the following sample.

using System;

public class Calculator
{
 public virtual double Add(double num1, double num2)
 {
 Console.WriteLine("Calculator Add called.");
 return num1 + num2;
 }
}

50

public class ProgrammerCalculator : Calculator
{
 public override double Add(double num1, double num2)
 {
 Console.WriteLine("ProgrammerCalculator Add called.");
 return MyMathLib.Add(num1, num2);
 }
}

public class MyMathLib
{
 public static double Add(double num1, double num2)
 {
 return num1 + num2;
 }
}

public class ScientificCalculator : Calculator
{
 public override double Add(double num1, double num2)
 {
 Console.WriteLine("ScientificCalculator Add called.");
 return base.Add(num1, num2);
 }
}

Code Listing 59

Polymorphism is opt-in for C#. Notice that the Add method in the base class Calculator has a

virtual modifier. Polymorphism doesn’t occur unless a base class method has the virtual

modifier. Also, notice that the derived classes ScientificCalculator and

ProgrammerCalculator have override modifiers. Again, these methods won’t be called

polymorphically unless they have the override modifier. Additionally, a method with the

override modifier is also virtual for any of its derived classes.

With polymorphism, the overridden method in derived classes executes at runtime. If you
wanted to call the base class implementation of that method, call the base class method with
the base keyword. ScientificCalculator calls base.Add(num1, num2) to call the Add

method in Calculator. Here’s an example of how this works.

using System;

public class Program
{
 public static void Main()
 {
 Calculator sciCalc = new ScientificCalculator();
 double sciCalcResult = sciCalc.Add(2, 5);
 Console.WriteLine($"Scientific Calculator 2 + 5: {sciCalcResult}");

 Calculator prgCalc = new ProgrammerCalculator();
 double prgCalcResult = prgCalc.Add(5, 10);
 Console.WriteLine($"Programmer Calculator 5 + 10: {prgCalcResult}");

51

 Console.ReadKey();
 }
}

Code Listing 60

The output for this program would be:

ScientificCalculator Add called.

Calculator Add called.

Scientific Calculator 2 + 5: 7

ProgrammerCalculator Add called.

Programmer Calculator 5 + 10: 15

Main assigns instances of ScientificCalculator and ProgrammerCalculator to variables of

type Calculator. As you saw in the previous listing, ScientificCalculator and

ProgrammerCalculator are derived types and Calculator is their base type. The derived

instances are the runtime type—the actual type when the program is running—and the base
class is the compile-time type. The runtime-type overrides execute at runtime.

Looking at the definition of Add in ScientificCalculator, Calculator, and Main, and looking

at the output, you can trace the polymorphic behavior of this program. Main calls Add on the

ScientificCalculator instance. ScientificCalculator.Add executes because it overrides

the virtual Calculator.Add method. After writing the first line of output,

ScientificCalculator.Add calls the Calculator.Add method with the base keyword.

Calculator.Add prints the second line to the output, performs the addition calculation, and

returns the sum. ScientificCalculator.Add returns the return value from Calculator.Add.

Main assigns the return value from ScientificCalculator.Add to the sciCalc variable and

prints the results into the third line of the output. Tracing the call to
ProgrammerCalculator.Add is similar, except that there is no call to the Calculator.Add in

the base class.

Another example of when you would want to use polymorphism is in defining reference type
equality. By default, reference types are only equal if their references are the same. The
following example shows how to control reference type equality.

public class Customer
{
 int id;
 string name;

 public Customer(int id, string name)
 {
 this.id = id;
 this.name = name;

52

 }

 public override bool Equals(object obj)
 {
 if (obj == null)
 return false;

 if (obj.GetType() != typeof(Customer))
 return false;

 Customer cust = obj as Customer;

 return id == cust.id;
 }

 public static bool operator ==(Customer cust1, Customer cust2)
 {
 return cust1.Equals(cust2);
 }

 public static bool operator !=(Customer cust1, Customer cust2)
 {
 return !cust1.Equals(cust2);
 }

 public override int GetHashCode()
 {
 return id;
 }

 public override string ToString()
 {
 return $"{{ id: {id}, name: {name} }}";
 }
}

Code Listing 61

Since all classes implicitly derive from object, they can override object virtual methods

Equals, GetHashCode, and ToString. Customer overrides Equals. When you override Equals,

check for null and type equality before working with the objects to prevent callers from

accidentally comparing null or incompatible types. Customer instances are equal if they have

the same id.

Customer has a constructor that initializes the state of the class. The this operator lets you

access members of the containing instance and helps avoid ambiguity.

When implementing custom equality, you should also overload the equals and not equals and
override the GetHashCode method. The default implementation of GetHashCode is a system-

defined object id, so you could override this to achieve a better distribution of values in a hash.

53

Tip: You can escape { and } characters that you don’t want to evaluate as
expressions by doubling them as {{ and }} respectively in string interpolation.

The following is an example of how to check equality of Customer instances.

using System;

class Program
{
 static void Main()
 {
 Customer cust1 = new Customer(1, "May");
 Customer cust2 = new Customer(2, "Joe");

 Console.WriteLine($"cust1 == cust2: {cust1 == cust2}");

 Customer cust3 = new Customer(1, "May");

 Console.WriteLine($"\ncust1 == cust3: {cust1 == cust3}");
 Console.WriteLine($"cust1.Equals(cust3): {cust1.Equals(cust3)}");
 Console.WriteLine($"object.ReferenceEquals(cust1, cust3):
{object.ReferenceEquals(cust1, cust3)}");

 Console.WriteLine($"\ncust1: {cust1}");
 Console.WriteLine($"cust2: {cust2}");
 Console.WriteLine($"cust3: {cust3}");

 Console.ReadKey();
 }
}

Code Listing 62

When using the == operator, the code calls the operator overload and Equals calls the equals

method as expected. ReferenceEquals is an object method that is useful because it allows

reference equality checking in case the type defined a custom Equals override.

If Customer had not overridden ToString, the last three Console.WriteLine statements in the

previous code listing would have printed the type name, which is the default behavior of
ToString.

Writing Abstract Classes

In previous examples, you could create an instance of Calculator. However, it may or may not

make sense to instantiate a base class. A base class may serve only as a reusable type for
common functionality of similar derived classes and to enable polymorphism, yet not have
substance enough to be used on its own. In that case, you can modify the class definition as
abstract, as shown in the following sample.

54

public abstract class Calculator
{
 // ...
}

Code Listing 63

In an abstract class, you can have virtual or non-virtual members. Additionally, you can

have abstract methods. An abstract method doesn’t have an implementation. Derived

classes should specify the implementation and you don’t want a default implementation in the
base class that might not make sense. The purpose of an abstract method is to specify an

interface that derived classes must implement. In the case of Calculator, you could define an

abstract Add method as shown in the following code example.

public abstract class Calculator
{
 public abstract double Add(double num1, double num2);
}

Code Listing 64

The Add method has an abstract modifier. This method is implicitly virtual, but can’t be called

by a derived class because it doesn’t have an implementation. The semicolon is required to
terminate the abstract method signature. When an abstract class has abstract methods, all

derived classes must override the abstract method. The Main method in the previous

section still runs if you change the definition of the non-abstract Calculator class to the

previous abstract Calculator.

Abstract classes are nice for situations where you want to have some default behavior, specify
what the public interface of a class is, and support polymorphism. However, there are some
limitations in that a C# class can have only one base class. Additionally, a struct can’t inherit
another class or struct, so they don’t help if you need to write code that allows you to replace
any number of value types with a base class implementation. There is an alternative, which I’ll
discuss next.

Exposing Interfaces

If you only wanted a base class that specified an interface for a common set of operations, you
could create an abstract class with only abstract methods. This ensures that all derived classes
have those abstract methods. However, there’s a better alternative, named after what it does:
an interface.

The benefit of the interface type is that both class and struct types can inherit multiple

interfaces. You can also implement polymorphism with interfaces. They don’t have any
implementation and you must write the implementation in your derived class. The following code
listing shows the Calculator class rewritten as an interface.

55

public interface ICalculator
{
 double Add(double num1, double num2);
}

Code Listing 65

Instead of class or struct, you’ll use the interface type. A common convention for interface

identifiers is the I prefix, as in ICalculator. Interface methods are implicitly public and virtual,

so you don’t need access, abstract, or virtual modifiers. Like abstract methods, interface

methods have a signature, but don’t have an implementation. Developers provide that
implementation in their classes that derive from interfaces. The following code sample is a
revision of the previous classes to implement the ICalculator interface.

public class ScientificCalculator : ICalculator
{
 public double Add(double num1, double num2)
 {
 return num1 + num2;
 }
}

public class ProgrammerCalculator : ICalculator
{
 public double Add(double num1, double num2)
 {
 return MyMathLib.Add(num1, num2);
 }
}

public class MyMathLib
{
 public static double Add(double num1, double num2)
 {
 return num1 + num2;
 }
}

Code Listing 66

Deriving from an interface uses the same syntax as deriving from a class in that you add a colon
and interface name after the class name. Unlike virtual methods, you don’t use an override

modifier on methods.

A derived class implementation must be public. This make sense because an interface defines

a contract that any derived class will have members defined in the interface. That means any
time you use a class through its interface, you know that it will have the members defined by an
interface. The following code example is a modification of the Main method that uses the

ICalculator interface.

using System;

56

public class Program
{
 public static void Main()
 {
 ICalculator sciCalc = new ScientificCalculator();
 double sciCalcResult = sciCalc.Add(2, 5);
 Console.WriteLine($"Scientific Calculator 2 + 5: {sciCalcResult}");

 ICalculator prgCalc = new ProgrammerCalculator();
 double prgCalcResult = prgCalc.Add(5, 10);
 Console.WriteLine($"Programmer Calculator 5 + 10: {prgCalcResult}");

 Console.ReadKey();
 }
}

Code Listing 67

The only syntax difference between this example and the one previous to that is the compile-
time type of sciCalc and prgCalc is ICalculator. Because each variable is an ICalculator,

you can be guaranteed that the runtime type implements the members of that interface.

Interfaces can also inherit other interfaces. In that case, derived classes must implement all
members of each interface in the inheritance chain. Also, a class or struct can implement

multiple interfaces, which is demonstrated in the following sample.

public interface ICalculator { }
public interface IMath { }

public class ScientificCalculator : ICalculator, IMath
{
 public double Add(double num1, double num2)
 {
 return num1 + num2;
 }
}

Code Listing 68

After the first interface, additional interfaces appear in a comma-separated list. A class or struct
must implement the methods of all interfaces it is derived from.

Object Lifetime

The lifetime of a value type (struct or enum) depends on where it’s allocated. Parameter and

variable value type instances reside on the stack and exist for as long as they are in scope.
Reference type instances (class) begin life when their constructors execute. The CLR allocates

their space on the managed heap, and they exist until the CLR garbage collector (GC) cleans
them up.

57

You can use constructors to initialize a class. While doing so, you can also affect initialization of
static state, base types, and other constructor overloads. The following demo shows several
features of class initialization.

using System;

public class Calculator
{
 static double pi = Math.PI;
 double startAngle = 0;

 public DateTime Created { get; } = DateTime.Now;

 static Calculator()
 {
 Console.WriteLine("static Calculator()");
 }

 public Calculator()
 {
 Console.WriteLine("public Calculator()");
 }

 public Calculator(int val)
 {
 Console.WriteLine("public Calculator(int)");
 }
}

Code Listing 69

Calculator has a static constructor and two instance constructor overloads. A static

constructor executes one time for the lifetime of the object and before the first constructor
executes. The following sample is a derived class with similar members.

using System;

public class ScientificCalculator : Calculator
{
 static double pi = Math.PI;
 double startAngle = 0;

 static ScientificCalculator()
 {
 Console.WriteLine("static ScientificCalculator()");
 }

 public ScientificCalculator() : this(0)
 {
 Console.WriteLine("public ScientificCalculator()");
 }

 public ScientificCalculator(int val)
 {

58

 Console.WriteLine("public ScientificCalculator(int)");
 }

 public ScientificCalculator(int val, string word) : base(val)
 {
 Console.WriteLine("public ScientificCalculator(int, string)");
 }

 public double EndAngle { get; set; }
}

Code Listing 70

ScientificCalculator derives from Calculator and has similar constructors, except for the

this and base operators. Using the this operator calls the constructor overload with the

matching parameters. Since 0 is an int, the default (no parameter) constructor calls

ScientificCalculator(int val) first. The base operator calls the matching constructor in

the base class, so calling base(0) calls Calculator(int val) first. The following code listing

is a program that instantiates these classes.

using System;

class Program
{
 static void Main()
 {
 var calc1 = new ScientificCalculator();

 var calc2 = new ScientificCalculator(0, "x")
 {
 EndAngle = 360
 };

 Console.ReadKey();
 }
}

Code Listing 71

And here is the program’s output:

static ScientificCalculator()

static Calculator()

public Calculator()

public ScientificCalculator(int)

public ScientificCalculator()

public Calculator(int)

59

public ScientificCalculator(int, string)

Viewing the output, you can see what executes first. Here are the rules that govern the
instantiation of these classes:

 Static constructors execute before instance constructors.

 Static constructors execute one time for the life of the program.

 Base class constructors execute before derived class constructors.

 The this operator causes an overloaded constructor that matches the this parameter
list to execute first.

 The base class default constructor executes, unless the derived class uses base to
explicitly select a different base class constructor overload.

 This is not shown in the output of the previous example, but static fields initialize before
the static constructor and instance fields initialize before instance constructors.

 Auto-implemented property initializers, such as Created, initialize at the same time as
fields.

 Properties in object initialization syntax execute last as object initialization syntax is
equivalent to populating the property through the instance variable after instantiation.

Note: In Visual Studio, you can set break points in the code and use the
Immediate Window to inspect field values. You can experiment with different
object initialization scenarios to get a feel for the initialization sequence.

Of all these lifecycle events, garbage collection (GC) is the least predictable. The CLR optimizes
resources and runs GC when it needs to. This means that the lifetime of a reference type object
is non-deterministic. There’s a rich body of theoretical discussion around the how and why of
GC, but I’ll restrict that debate to the practical consideration of resource management. This
includes closing files, database connections, operating system handles, and more.

To release resources, there’s a pattern commonly referred to as the Dispose Pattern. It relies on
the IDisposable interface, flags that manage the disposal state of the object, and a destructor.

The following code has constructor and Dispose method comments that imply a scenario where

the class could be logging operations during its lifetime, and the log should be opened during
instantiation and closed when the object is no longer needed.

using System;

public class Calculator : IDisposable
{
 static Calculator()
 {
 // Initialize log file stream.
 }

 #region IDisposable Support
 private bool disposedValue = false; // To detect redundant calls.

 protected virtual void Dispose(bool disposing)
 {
 if (!disposedValue)

60

 {
 if (disposing)
 {
 // TODO: dispose managed state (managed objects).
 // Close log file stream.
 }

 // TODO: free unmanaged resources (unmanaged objects) and override a
finalizer below.
 // TODO: set large fields to null.

 disposedValue = true;
 }
 }

 // TODO: override a finalizer only if Dispose(bool disposing) above has code to
free unmanaged resources.
 // ~Calculator() {
 // // Do not change this code. Put cleanup code in Dispose(bool disposing) above.
 // Dispose(false);
 // }

 // This code added to correctly implement the disposable pattern.
 public void Dispose()
 {
 // Do not change this code. Put cleanup code in Dispose(bool disposing) above.
 Dispose(true);
 // TODO: uncomment the following line if the finalizer is overridden above.
 // GC.SuppressFinalize(this);
 }
 #endregion
}

Code Listing 72

The code between #region and #endregion is automatically generated by VS. To generate

this code, select IDisposable in the editor and the Quick Action icon (a light bulb) will appear.

Open the Quick Action menu and select Implement interface with Dispose pattern. The

#region and #endregion let VS fold the code so you won’t have to see it in the editor.

The Calculator class implements the IDisposable interface, which is only the Dispose

method. The constructor initializes a resource you want to open, like a file handle or database,
and the GC calls the destructor, ~Calculator(), if it’s uncommented. The Dispose() method

calls Dispose(bool) with a true argument and ~Calculator() calls Dispose(bool) with a

false argument. This lets Dispose(bool) know whether it should clean up managed

resources that belong to the CLR or unmanaged resources that belong to the operating system.
The flag disposedValue helps to prevent the object from being disposed more than one time.

The following sample shows how calling code can use this class, disposing it when it is no
longer needed.

 ScientificCalculator calc3 = null;

61

 try
 {
 calc3 = new ScientificCalculator();
 // Do stuff.
 }
 finally
 {
 if (calc3 != null)
 calc3.Dispose();
 }

Code Listing 73

This shows the reason try-finally exists, to guarantee that resources can be closed or

disposed. Because the finally block is guaranteed to execute after code in the try block

starts, calc3 can be safely disposed. While that works, it’s more verbose than necessary. The

following listing simplifies the code.

 using (var calc4 = new ScientificCalculator())
 {
 // Do stuff.
 }

Code Listing 74

The using statement accepts parameters with any type that implements IDisposable. It takes

care of calling Dispose() after the block completes execution. Behind the scenes, the logic is

similar to the previous try-finally block.

Summary

C# supports object-oriented programming. For inheritance, you have single inheritance for
classes, multiple inheritance for interfaces, and structs that can only inherit interfaces. Use
abstract classes for classes that shouldn’t stand alone, but provide interface and structure to
derived classes. Use interfaces when you don’t have implementation, need value type (struct)
polymorphism, or need to implement multiple interfaces. I also discussed structs and how they
are ideal for situations where copy by value leads to performance gains and value type
semantics make sense. Unlike interfaces that you need to be public, use encapsulation to hide
the internal workings that you don’t want other developers to use in their code. Polymorphism is
a powerful concept that allows you to write a single algorithm that is coded the same for every
instance, yet allows each instance to vary with an implementation specific to the runtime type of
the instance. Pay attention to the sequence of object instantiation to ensure your types initialize
correctly. If you need to dispose a type, make that type implement IDisposable with the

Dispose Pattern. You can use a using statement to simplify the instantiation and safe cleanup

of the type.

62

Chapter 5 Handling Delegates, Events, and
Lambdas

Much of the user interface work you’ll do is event based, and C# supports this through type
members called events. For events to work, you need some infrastructure to specify methods
that can be called, which surfaces through delegates and lambdas. This chapter will explain
how delegates, events, and lambdas work in C#.

Referencing Methods with Delegates

Delegates have a few capabilities in C#: referencing methods, dispatching multiple methods,
asynchronous execution, and event typing. This can be confusing because many other
language features serve only a single purpose. Differentiating and comparing all of these
capabilities of C# delegates adds complexity that you might not be familiar with. This discussion
is going to cut the feature list somewhat to hopefully illuminate delegates and make them less
complex as you move forward with practical implementation. In particular, I’ll focus on delegates
as method references and event types.

Note: I’ll avoid deep discussion of delegate multi-cast and asynchronous
execution because they’re rarely used and largely replaced by other language
features. For example, events support multi-cast dispatch and C# 5.0 introduces
a capability referred to as async.

Let’s first examine the role of a delegate as a reference to a method. To do this, the delegate
specifies the signature of a method that it can reference, like this:

Code Listing 75

You might notice that a delegate looks like an abstract method, except it has the delegate type

definition keyword. A delegate definition is a reference type, just like a class, struct, or

interface. The previous delegate definition is for a delegate type named Add that takes two

double arguments and returns a result of type double. Just like other types, delegate

accessibility can only be public or internal and is internal by default.

There are esoteric uses of delegates that I won’t get into, but I do want to focus on the most
practical and common way to use delegates: as event types.

public delegate double Add(double num1, double num2);

63

Firing Events

Events are type members that allow a type to notify other types of things that have happened. A
very common example is a user interface with a button. You’ll want to write code that does
something when a user clicks that button. Here are the pieces you need to make that happen:

1. A Button class, which is typically supplied by the UI technology you’re using.

2. An event member of the Button class, named Clicked.

3. The UI technology takes care of knowing when that Clicked event should fire. I’ll use a
SimulateClick method in an upcoming code listing.

4. The event has a delegate type. Only methods that conform to the signature of that
delegate type can assign to this delegate.

5. Your code defines a method to be called when that event fires.

6. The method you write must have a signature that matches the delegate type of the
event. If the method signature doesn’t match the event delegate type signature, the
compiler won’t let you assign that method to the delegate.

As you can see, delegates have a lot of moving parts. In particular, pay attention to #6.
Delegates prevent you, or anyone, or anything from assigning an arbitrary method to an event.
Here’s an example that defines a delegate and a class with an event of that delegate type.

Code Listing 76

An event can be a member of a class, struct, or interface. If it is an interface member, it means
that classes or structs that implement that interface must also have the event in their definitions.
An event has the event modifier and adheres to the same accessibility rules as other type

members like methods and properties.

If a delegate serves the purpose you need, you can use it. In fact, the FCL includes many
reusable types, including reusable delegate types that you can use without needing to create
your own. There’s even a .NET type named EventHandler that nearly matches the signature of

ClickHandler, where the sender is typically the source of the event, and EventArgs is a base

class you can derive from to create your own custom type for sharing information with methods
and event calls when fired. The previous code, with ClickEventArgs, derives from EventArgs,

a type that comes with the .NET Framework. The following example simulates an event to
demonstrate how to write a method that handles that event in code.

using System;

public class ClickEventArgs : EventArgs
{
 public string Name { get; set; }
}

public delegate void ClickHandler(object sender, ClickEventArgs e);

public class CalculatorButton
{
 public event ClickHandler Clicked;
}

64

Code Listing 77

Again, this example has a lot of moving parts, but they follow the list at the start of this section
about defining and using events. First, notice that CalculateButton has a new method,

SimulateClick. Since we simplified the code by avoiding the UI, we have to fake a user

clicking a button. That said, SimulateClick demonstrates the proper way to fire an event in

your own code. Before firing an event, make sure that a user has assigned methods to the
event by checking for null. Whenever no methods are assigned, the event will be null.

SimulateClick sets up the ClickEventArgs parameter. In this case, it’s only a Name property,

but you would provide any relevant information available for the EventArgs type you were using

and what information a method that received this event might need. Next, fire the event by
calling it like a method. This causes the event to call each method assigned to it, one by one, in
the order they were assigned. The first parameter is the this keyword, which indicates that the

using System;

public class CalculatorButton
{
 public event ClickHandler Clicked;
 public void SimulateClick()
 {
 if (Clicked != null)
 {
 ClickEventArgs args = new ClickEventArgs();
 args.Name = "Add";

 Clicked(this, args);
 }
 }
}

public class Program
{
 public static void Main()
 {
 Program prg = new Program();
 CalculatorButton calcBtn = new CalculatorButton();

 calcBtn.Clicked += new ClickHandler(prg.CalculatorBtnClicked);
 calcBtn.Clicked += prg.CalculatorBtnClicked;

 calcBtn.SimulateClick();

 Console.ReadKey();
 }

 public void CalculatorBtnClicked(object sender, ClickEventArgs e)
 {
 Console.WriteLine(
 $"Caller is a CalculatorButton: {sender is CalculatorButton} and is named
{e.Name}");
 }
}

65

instance of the containing type, CalculatorButton, gets passed to the methods. The second is

the ClickEventArgs variable that was previously instantiated and had its Name property set.

The Main method shows how to assign methods to events. Notice the += operator is used twice

to assign two methods to the CalculateButton instance, calcBtn, and Clicked event. The

CalculatorBtnClicked method is an instance method, so the prg instance provides access to

that method during assignment.

The first assignment creates a new instance of the ClickHandler delegate. Delegates are

types and you can instantiate them. You instantiate delegates with a method, which becomes
the method the delegate refers to. Remember how I explained that delegates are references to
methods? In this case, the new instance of the ClickHandler delegate refers to the

CalculatorBtnClicked method. The second assignment shows a newer and simpler syntax

for accomplishing the same task as the first; it just uses the method name. This is called
delegate inference and means that since the method assigned to the event has the same
signature of the event’s delegate, the C# compiler will take care of instantiating the delegate
with that method behind the scenes for you.

Finally, calling SimulateClick on the CalculatorButton instance, calcBtn, fires the event as

explained previously. Regardless of whether the program assigns the same method to the event
twice, firing the event causes all assigned delegates to fire, which calls the methods assigned to
each delegate to execute. Therefore, the CalculatorBtnClicked method will execute two

times.

You might wonder why I had to define SimulateClick inside of CalculatorButton instead of

just firing the event from Main. The reason is because external code can’t fire an event. An

event can only be fired from inside of its containing type.

Instead of assigning named methods, you can assign code blocks directly to events.

Working with Lambdas

A lambda is a nameless method. Sometimes you have a block of code that serves one specific
purpose and you don’t need to define it as a method. Methods are nice because they let you
modularize your code and have something to refer to with delegates and call from multiple
places. But a lot of times you just need to run some code for a specific operation. Lambdas are
quick and simple ways to assign and execute a block of code.

Note: A lambda is also a very sophisticated language feature that lets you
translate between parse trees and code. This is a core feature of Language
Integrated Query (LINQ), which I’ll discuss more in Chapter 7. For daily practical
use, working with lambdas as parse trees is rare.

Just like methods, lambdas can have parameters, a body, and can return values. The following
code listing is an example of a lambda.

66

Code Listing 78

Action is a reusable delegate in the .NET Framework, and hello is variable of the Action

delegate type. The lambda starts with an empty parameter list, meaning no parameters. The =>

operator separates the parameter list and body and is referred to as either “such that” or “goes
to”. Next, you see the body, which is a single statement. Since hello is a delegate, you can call it
just like a method and it will execute the lambda, which prints “Hello!” to the console.

With a single statement, you don’t need to use curly braces on the body, but you do with
multiple statements, as in the following example.

using System;

public class Program
{
 public static void Main()
 {
 Action hello = () => Console.WriteLine("Hello!");
 hello();

 Console.ReadKey();
 }
}

using System;

public class Program
{
 public static void Main()
 {
 Predicate<string> validator =
 word =>
 {
 int count = word.Length;
 return count > 3;
 };
 ValidateInput(validator);
 ValidateInput(word =>
 {
 int count = word.Length;
 return count > 3;
 });

 Console.ReadKey();
 }

 public static void ValidateInput(Predicate<string> validator)
 {
 string input = "Hello";

67

Code Listing 79

The previous example assigns a lambda to the .NET Framework’s Predicate delegate, which

is designed to return a bool. The lambda has a single parameter, word, of type string. Since

the lamba has more than one statement, it requires curly braces. The example shows how to
pass the lambda both as a variable and as an entire lambda.

Predicate is a generic delegate. The type parameter is set to <string>, meaning that the

lambda parameter is type string. You’ll learn more about generics in Chapter 6.

The ValidateInput method passes a string to validator and assigns the results to the

isValid variable. It’s just like a method call, except there isn’t a method, just code; it is quick to

write and limited in scope.

Another way to use lambdas is with events. The following example shows a different way to
write an event handler method for the Clicked event in the previous CalculatorButton

example.

Code Listing 80

The first thing you might notice in this example is that the delegate assignment to the Clicked

event is now a lambda. If you have two or more parameters, they must be enclosed in
parentheses as a comma-separated list. If the body of the lambda includes two or more lines,

 bool isValid = validator(input);
 Console.WriteLine($"Is Valid: {isValid}");
 }
}

using System;

public class Program
{
 public static void Main()
 {
 CalculatorButton calcBtn = new CalculatorButton();

 calcBtn.Clicked += (object sender, ClickEventArgs e) =>
 {
 Console.WriteLine(
 $"Caller is a CalculatorButton: {sender is CalculatorButton} and is
named {e.Name}");

 Console.WriteLine(message);
 };

 calcBtn.SimulateClick();

 Console.ReadKey();
 }
}

68

they must be terminated with semicolons and enclosed in braces. Notice that the signature of
the lambda matches the ClickEventHandler defined previously.

More FCL Delegate Types

In addition to the Action and Predicate<T> delegates you’ve seen in previous examples, the

FCL has a set of delegates named Func<T> that you can reuse at will. Here’s an example that

rewrites the previous example, using Func<T, TResult> instead of Predicate<T>.

Code Listing 81

This is nearly identical to the previous program, except it uses Func<string, bool> instead of

Predicate<string>. As mentioned previously, both Func<T, TResult> and Predicate<T>

are generic delegates. The type specifications in angle brackets are plug-ins for types applied to
parameters and return types. The following listing shows the Predicate<T> delegate as defined

in the FCL.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

class Program
{
 public static void Main()
 {
 Func<string, bool> validator =
 word =>
 {
 int count = word.Length;
 return count > 3;
 };
 ValidateInput(validator);
 ValidateInput(word =>
 {
 int count = word.Length;
 return count > 3;
 });

 Console.ReadKey();
 }

 public static void ValidateInput(Func<string, bool> validator)
 {
 string input = "Hello";
 bool isValid = validator(input);
 Console.WriteLine($"Is Valid: {isValid}");
 }
}

69

Code Listing 82

It refers to a method that returns a bool, but accepts a parameter of type T. So,

Predicate<string> means that the parameter to the method referred to is a string. Similarly,

here’s the FCL definition of Func<T, TResult>.

Code Listing 83

This shows that Func<T, TResult> accepts a parameter of type T and returns a value of type

TResult. In Code Listing 81, Func<string, bool> refers to a method with a parameter of type

string that returns type bool.

For convenience, the FCL offers 18 overloads of the Func delegate, allowing between 0 and 16

input parameters and 1 return parameter type. This covers many scenarios, and you can reuse
the provided delegates from the FCL to go a long way. You can create your own delegates only
when you need to.

Expression-Bodied Members

While not necessarily lambdas, expression-bodied members give you some shorthand syntax
for properties and methods. The following listing provides an example.

Code Listing 84

The Program class defines the Today property and Log method as expression-bodied members.

Main shows how these members are used like normal methods and properties.

public delegate bool Predicate<T>(T obj);

public delegate TResult Func<T, TResult>(T arg);

using System;

class Program
{
 public static string Today => DateTime.Now.ToShortDateString();

 public static void Log(string message) => Console.WriteLine(message);

 public static void Main()
 {
 Log($"{Today} is a good day.");

 Console.ReadKey();
 }
}

70

Summary

You learned about delegates, events, and lambdas. A delegate is a reference to a method. You
can pass a delegate around in code or assign it to an event. The method a delegate refers to
must have the same signature of the delegate. An event is a type member, defined with a
delegate type. You can assign as many delegates to an event as you need and each one
executes when the event fires. You can only fire an event from within the type the event is
defined in. Instead of methods, you can use lambdas when you don’t need to define a separate
method. You can refer to a lambda with a delegate, pass a lambda as a parameter, or assign a
lambda to an event. Expression-bodied members let you write properties and methods with a
shorthand syntax.

71

Chapter 6 Working with Collections and
Generics

You’ve seen arrays in previous chapters and they can be useful in scenarios where you need a
fixed size, strongly typed list of objects. However, there are many times when you need to
organize objects into different types of data structures like lists, queues, stacks, and
dictionaries. These capabilities are available to C# developers via collection classes in the .NET
Framework.

A core part of working with collections is the use of generics, which allow you to use
parameterized code. This allows you to strongly type your collections. You can even write your
own code that uses generics, allowing you to create strongly typed reusable libraries.

Note: The first version of .NET offered a collection library based on Object which
isn’t strongly typed. Since all .NET types are assignable to Object, this worked.
However, you had to write a lot of code that used cast operators to convert from
Object back to the type you added to the collection. Generics solves this
problem, and using generic collections is standard practice in .NET today.

Using Collections

.NET collection classes let you work with data in many different ways. Instead of an array, you
can use a List. If you need a first-in first-out set of items, you can use a Queue. If you need to

work with items that have unique IDs, you can use a Dictionary. With generics, you can build

your own collection to manage data any way that you need.

Tip: Check out the System.Collections.Generic namespace before writing your own
collection; you might find that what you need is already written.

A common collection is a List, which is a nice replacement for an array. The following listing

provides an example.

using System;
using System.Collections.Generic;

public class Company
{
 public string Name { get; set; }
}

public class Program

72

Code Listing 85

The previous program demonstrates the versatility of collections. You have a List of string,

which only holds objects of type string. This is a generic collection, meaning that its type

parameters, inside < and >, specify the type of object the collection works with. Each item added

is appended to the list and the list grows dynamically. The Insert operation adds a new

string at the first position of the list and pushes down the first, "Joe", into the second position

at index 1. The second Add puts "Jill" at index 2. Notice how you can use indexer (array-like)

syntax to access elements of the list. The RemoveAt deleted the string at the first index of the

collection, moving "Joe" to 0 and "Jill" to 1.

The second List in Main shows how to use custom types. Since List derives from IList, you

can assign the instance to that interface. This is convenient because it means you can create
code that operates on an IList; whether the caller passes in a List<T> or any other collection

type that derives from IList, your code will still work.

The example also uses collection initialization syntax, where you can instantiate a comma-
separated list of the collection type that populates the List. The foreach statement iterates

through the collection, printing each item.

The previous example uses a foreach loop, but you could also use the ForEach method of

List, as shown in the following example.

Code Listing 86

{
 public static void Main()
 {
 List<string> names = new List<string>();
 names.Add("Joe");
 names.Insert(0, "Car");
 names.Add("Jill");
 names[0] = "Building";
 names.RemoveAt(0);
 Console.WriteLine($"First name: {names[0]}");

 IList<Company> companies = new List<Company>
 {
 new Company { Name = "Syncfusion" },
 new Company { Name = "Microsoft" },
 new Company { Name = "Acme" }
 };

 foreach (Company cmp in companies)
 Console.WriteLine(cmp.Name);
 Console.ReadKey();
 }
}

 List<Company> companyList = companies as List<Company>;
 companyList.ForEach(cmp => Console.WriteLine(cmp.Name));

73

The first line uses the as operator to convert the IList<Company> to List<Company>. With an

instance of List<T>, you can call the ForEach method, which takes a lambda parameter. This

lambda executes for each of the items in the List<T> and the lambda parameter, cmp, contains

the current item.

This should give you an idea of how List works. There are more methods available that you

can learn about by reading the documentation for the List class.

Another useful collection is a Dictionary. It works like a hash table where you store and

retrieve objects by index as shown in the following sample.

Code Listing 87

A Dictionary in the previous example takes two type parameters for the key and value,

respectively. The first example instantiates the dictionary to take an int key and Customer

value. The Customer class has two properties, where the ID will be used as a key for the

dictionary. Notice the two different ways you can add values to a dictionary, via the Add method

or indexer assignment. The first parameter to Add is the index and the second is the value.

When using the indexer, put the index in brackets and assign the value. Just as in other
collections, there are many methods available and you should review the documentation of that
collection.

using System;
using System.Collections.Generic;

public class Customer
{
 public int ID { get; set; }
 public string Name { get; set; }
}

public class Program
{
 public static void Main()
 {
 Dictionary<int, Customer> customers = new Dictionary<int, Customer>();
 Customer jane = new Customer { ID = 0, Name = "Jane" };
 Customer joe = new Customer { ID = 1, Name = "Joe" };
 customers.Add(jane.ID, jane);
 customers[joe.ID] = joe;

 foreach (int key in customers.Keys)
 Console.WriteLine(customers[key].Name);

 Dictionary<int, Customer> customers2 = new Dictionary<int, Customer>
 {
 [0] = new Customer { ID = 0, Name = "Chris" },
 [1] = new Customer { ID = 1, Name = "Alex" }
 };

 Console.ReadKey();
 }
}

74

The foreach loop shows how to iterate through Dictionary items. A Dictionary has a Keys

property, which is a collection of keys, and a Values property, which is a collection of values

(the Customer instances in the previous example). Notice how the loop uses the indexer

customers[key] to access the value associated with each key.

The second Dictionary in the example shows how to use the dictionary initializer syntax. Just

assign the value to the index that matches the key for that value.

Writing Generic Code

One of the primary applications of generics is to support collections. In the previous section, you
saw how to use collections. You could also write your own collection class. If you wrote a
generic linked list, you would need a Node class to hold an object and reference the next in the

list, and a LinkedList collection class that performed list operations. The Node class in the

following listing contains an object instance.

Code Listing 88

The <T> syntax makes the Node<T> class generic. Whenever code instantiates a Node, it

specifies a type that replaces T. Anywhere you’re using an object of that type, specify T.

Node<T> doesn’t have an access modifier because it’s only used with the code inside this

assembly and the default internal accessibility is appropriate. The following sample shows how
to instantiate a Node<T>.

Code Listing 89

Here, you see Node<string> as the type, meaning that all of the places you see T inside of the

Node class are now string. You’re protected from passing an int, decimal, or any other type

to the constructor of this class because it will only hold a string. It is strongly typed.

Next, you need a collection that holds Node<T> instances as a linked list, as shown in the

following listing.

class Node<T>
{
 public T Item { get; set; }
 public Node<T> Next;

 public Node(T item)
 {
 Item = item;
 }
}

Node<string> name = new Node<string>(“May”);

75

Code Listing 90

The LinkedList class is generic and holds items of the type it’s instantiated as. The IList<T>

interface belongs to the FCL and facilitates creating collections. As you would expect with
interfaces, developers who write code to the IList interface can use this collection too. The

LinkedList class implements all the members of the IList<T> interface, as it must.

Add is a minimal implementation, but illustrates some concepts of working with generics. Even

though the code instantiates a new Node<T>, the actual type will be the same as the type that

LinkedList is defined as. The same concept applies to the interface where IList<T> becomes

the same type as LinkedList. The following example instantiates a LinkedList<T>.

Code Listing 91

Using System;
using System.Collections;
using System.Collections.Generic;

public class LinkedList<T> : IList<T>
{
 Node<T> head;
 Node<T> tail;

 public void Add(T item)
 {
 var node = new Node<T>(item);

 if (head == null)
 head = node;
 else
 tail.Next = node;

 tail = node;
 }

 // Other IList members…
}

public class Program
{
 public static void Main()
 {
 var llist = new LinkedList<string>();
 llist.Add("Jamie");
 llist.Add("Ron");
 //...

 Node<string> name = new Node<string>("May");
 }
}

76

This shows that you instantiate and use your generic collection like any other collection. Just
supply the type during instantiation and the collection will work with objects of that type.

Any place you see the object type being used is a potential candidate for creating a generic

type. All types inherit the object type, which is why you’ll see types in the FCL and elsewhere

work with object type values.

You can also create generic methods. The following example shows a couple factory methods
where one is type object and the other is generic.

Code Listing 92

What you should get out of the previous ReportFactory implementation is that there’s a lot of

duplication in the code and the use of cast and typeof operators in the Main method includes

using System;

public class CustomerReport
{
 public DateTime Date { get; set; }
}

public class OrdersReport
{
 public DateTime Date { get; set; }
}

public class ReportFactory
{
 public static object Create(Type reportType)
 {
 switch (reportType.ToString())
 {
 case "CustomerReport":
 var custRpt = new CustomerReport();
 custRpt.Date = DateTime.Now;
 return custRpt;
 default:
 case "OrdersReport":
 var ordsRpt = new OrdersReport();
 ordsRpt.Date = DateTime.Now;
 return ordsRpt;
 }
 }
}

public class Program
{
 public static void Main()
 {
 var rpt = (CustomerReport)ReportFactory.Create(typeof(CustomerReport));
 Console.ReadKey();
 }
}

77

more syntax than necessary. You can probably see where this code might become less
maintainable with more complexity. The following example shows how to refactor the Create

method into a generic method.

Code Listing 93

The Create method has a new type parameter, TReport. You’ve seen the use of just T in

previous examples, but sometimes—as in Dictionary<TKey and TValue>—you have to

using System;

public abstract class Report { }

public class CustomerReport : Report
{
 public DateTime Date { get; set; }
}

public class OrdersReport : Report
{
 public DateTime Date { get; set; }
}

public class ReportFactory
{
 public static TReport Create<TReport>()
 where TReport : Report
 {
 switch (typeof(TReport).Name)
 {
 case "CustomerReport":
 var custRpt = new CustomerReport();
 custRpt.Date = DateTime.Now;
 return (TReport)(Report)custRpt;
 default:
 case "OrdersReport":
 var ordsRpt = new OrdersReport();
 ordsRpt.Date = DateTime.Now;
 return (TReport)(Report)ordsRpt;
 }
 }
}

public class Program
{
 public static void Main()
 {
 var rpt2 = ReportFactory.Create<CustomerReport>();

 Console.ReadKey();
 }
}

78

differentiate between multiple type parameters or make the code more self-documenting. The
return type is now strongly typed too. The code is able to cast from the derived type to Report,

and then to TReport to return the proper type. This is allowed because of the generic constraint,

where TReport : Report says that TReport must derive from Report. The calling code is

much simpler.

The Create<TReport> method is still longer than it has to be and contains too much

duplication. We can solve that problem with generic constraints. A constraint does what the
name implies: it limits how generic a type can be. You saw the base class constraint on Report

in the previous code. The following table describes all available constraints.

 Generic Type Constraints

Constraint Description

interface Type must implement specified interfaces.

base class Type must derive from specified base class.

class Type must be a reference type.

struct Type must be a value type.

new Type must have a default (no parameter) constructor.

We need two constraints to simplify our code: interface and new. The following example

shows how they can be used.

using System;

public interface IReport
{
 DateTime Date { get; set; }
}

public class CustomerReport : IReport
{
 public DateTime Date { get; set; }
}

public class OrdersReport : Report, IReport
{
 public DateTime Date { get; set; }
}

public class ReportFactory
{
 public static TReport Create<TReport>()
 where TReport : IReport, new()
 {
 return new TReport() { Date = DateTime.Now };
 }

79

Code Listing 94

In this demo, there’s a new interface, IReport, which CustomerReport and OrdersReport

derive from. Since we know the classes we expect are IReport, we can make assumptions

about the type and write code that operates on any IReport.

The Create<TReport> method has additional syntax following the method signature. To specify

a constraint, follow the where keyword with the type being constrained, append a semicolon,

and then add a comma-separated list of constraints from the previous table. This example uses
an interface and new() constraint. The new() constraint means we can create a new instance

of a type, new TReport(). Further, since the type is an IReport, we know it has a Date

property and can populate its Date property. Gone are the duplication and excessive code,

simplified by generic code in both implementation and use.

Tip: You can also create generic delegates. As usual, you should seek to reuse types
already present in the FCL. A popular reusable delegate in the .NET Framework is
EventHandler<TEventArgs>. In fact, you can replace all the references to
ClickHandler in Chapter 5 with EventHandler<ClickEventArgs> and your code will
still work.

Summary

You’ve seen how to use generics and that they let you write reusable code. The .NET collection
classes are more versatile than arrays and allow you to manage your objects in ways that better
help the design of your application.

}

public class Program
{
 public static void Main()
 {
 var rpt2 = ReportFactory.Create<CustomerReport>();

 Console.ReadKey();
 }
}

80

Chapter 7 Querying Objects with LINQ

Language-Integrated Query (LINQ) allows you to query data with a SQL-like syntax. LINQ can
be used with many different types of data and both Microsoft and third parties have built LINQ
providers to access a wide range of data sources. This chapter narrows that list by showing you
how to use LINQ to Objects. Once you know LINQ to Objects, understanding other LINQ
providers is easy because of similar syntax.

Getting Started

Before you write any LINQ code, remember to add a using declaration to the System.Linq

namespace at the top of your file. Each example in this chapter will use the following class,
containing collections to work with:

using System.Collections.Generic;

public class Customer
{
 public int ID { get; set; }
 public string Name { get; set; }
}
public class Order
{
 public int CustomerID { get; set; }
 public string Description { get; set; }
}

public static class Company
{
 static Company()
 {
 Customers = new List<Customer>
 {
 new Customer { ID = 0, Name = "May" },
 new Customer { ID = 1, Name = "Gary" },
 new Customer { ID = 2, Name = "Jennifer" }
 };
 Orders = new List<Order>
 {
 new Order { CustomerID = 0, Description = "Shoes" },
 new Order { CustomerID = 0, Description = "Purse" },
 new Order { CustomerID = 2, Description = "Headphones" }
 };
 }

81

Code Listing 95

These are collections of objects in memory. To make the collection easier to query, Company is

a static class, with a static constructor that initializes static properties. If you abstract this

concept, that data could have been read from a file, database, or REST service. Regardless of
the data source or the LINQ provider, the basic LINQ syntax remains the same.

Querying Collections

To query data, you only need the from and select keywords. Remember to add a using

clause for the System.Linq namespace. The syntax looks like SQL, as you can see in the

following example.

Code Listing 96

LINQ to Objects queries result in a collection of type IEnumerable<T>. In this case, it’s a

collection of Customer objects. The from keyword specifies a range variable, cust, which holds

each object from the collection. You specify the collection after the in keyword.

The select defines what to query. In this example, you’re just returning the whole object. In

fact, the collection you get is identical to what is in Company.Customers. This isn’t particularly

useful in LINQ to Objects, but is very useful if the data was read from an external data source,
like a database where you just wanted to get a collection of objects into memory for further
manipulation. The select allows you to reshape the data you get back into various projections.

The following is a query that gets the customer name.

 public static List<Customer> Customers { get; set; }
 public static List<Order> Orders { get; set; }
}

using System;
using System.Linq;
using System.Collections.Generic;

public class Program
{
 public void Main()
 {
 IEnumerable<Customer> customers =
 from cust in Company.Customers
 select cust;

 foreach (Customer cust in customers)
 Console.WriteLine(cust.Name);
 }
}

82

Code Listing 97

The select uses the cust2 variable to access the Name, resulting in a collection of string (the

Name property’s type). Sometimes you need a whole different object, where that object might be

defined as:

Code Listing 98

And a new projection could be written as:

Code Listing 99

Here, select instantiates a new CustomerViewModel. Then it populates values, using object

initialization syntax, to assign the custVM.Name to the new object’s Name property. This results

in a collection of type CustomerViewModel.

The previous example assumed you needed to work with a specifically typed collection.
However, what if you don’t care what type the collection is and what if you didn’t want to create
a new class just to do manipulation in a single algorithm? In that case, you could use an
anonymous type, as shown in the following listing.

Code Listing 100

 IEnumerable<string> customers2 =
 from cust2 in Company.Customers
 select cust2.Name;

public class CustomerViewModel
{
 public string Name { get; set; }
}

 IEnumerable<CustomerViewModel> customerVMs =
 from custVM in Company.Customers
 select new CustomerViewModel
 {
 Name = custVM.Name
 };

 var customers3 =
 from cust3 in Company.Customers
 select new
 {
 Name = cust3.Name
 };
 foreach (var cust3 in customers3)
 Console.WriteLine(cust3.Name);

83

Anonymous types don’t have names you can use, even though C# might create an internal
name for its own use. To work around this problem, use the var keyword as the type. Notice

how the projection uses new without a type name: an anonymous type. You can define whatever

properties you want for an anonymous type; just write them in. Notice also that you can use var

in the foreach loop.

If you need to return a collection from a method, create a new (named) type and project into
that. Anonymous types are designed for situations limited to the scope in which they are used.
You’ll see the var keyword used elsewhere in code, but the reason it was added to the

language was to support this scenario. The following listing shows a common way to use var,

other than the previous scenario.

Code Listing 101

The previous statement is shorter than specifying the object type of the variable, which is
redundant in this case and is obviously Customer. However, the following example is less

obvious.

Code Listing 102

The problem in the previous statement is that just reading the code doesn’t tell you what type
var is. You don’t know whether it’s a single object or a collection. In this case, the code might

be more maintainable by specifying the type.

Note: A common misconception is that var is dangerous because it behaves like
object, allowing you to set the variable to any type. This is not true. When you
use var, the code is still strongly typed. Once you assign a value to a variable of
type var, you can’t assign any other type to that variable. In the previous
examples, customers is an instance of type Customer. You can’t write code later
to assign an object of another instance type—for example, an Order type—to that
variable.

Filtering Data

You can filter a collection with the where clause, as shown in the following example.

var customer = new Customer();

var response = DoSomethingAndReturnResults();

 var customers4 =
 from cust4 in Company.Customers
 where cust4.Name.Length > 3 && !cust4.Name.StartsWith("G")

84

Code Listing 103

In the previous listing, a customer’s name must be longer than 3, which filters the list down to

Gary and Jennifer. The clause to the right of the && operator filters that list even further to the

name whose first character is not "G".

In LINQ to Objects, you can create complex conditions in the where clause using logical

operators, parentheses for grouping, and any other logic to filter results. You can even call
another method that will evaluate the current object being evaluated. The result of the where

clause must evaluate to a bool. Other LINQ providers might restrict the type of expressions in a

where clause, so you’ll have to review documentation for that particular provider to learn more.

Ordering Collections

In LINQ, the orderby clause lets you sort collection results. The following listing demonstrates

this.

Code Listing 104

In this example, the orderby clause sorts the list by the customer name in descending order.

The default order is ascending, which you’ll get by either omitting descending or specifying

ascending instead. The output is:

May

Jennifer

Gary

Joining Objects

Sometimes you’ll have two different collections of objects or related tables in a database and
you need to join them together. To do this, use the join clause.

 select cust4;

 foreach (var cust4 in customers4)
 Console.WriteLine(cust4.Name);

 var customers5 =
 from cust5 in Company.Customers
 orderby cust5.Name descending
 select cust5;

 foreach (var cust5 in customers5)
 Console.WriteLine(cust5.Name);

85

Code Listing 105

After the from clause, you can use one or more join clauses to access the types you need.

The on keyword lets you specify the keys to match between tables. This example creates a

projection on an anonymous type to create a report based on the joined information. This was a
normal join, which omits any Customers where there isn’t a matching Order. The following

example lets you do the equivalent of a left join.

Code Listing 106

The difference here is the call to DefaultIfEmpty, which includes the Customer with the Name

Gary, even though there aren’t any orders in the join that match his ID.

Using Standard Operators

You’ve seen basic LINQ syntax, but there’s much more available in the form of standard query
operators. There are literally dozens of standard query operators, and you can view all of them
on MSDN at https://msdn.microsoft.com/en-us/library/vstudio/bb397896(v=vs.120).aspx.

 var customerOrders =
 from cust in Company.Customers
 join ord in Company.Orders
 on cust.ID equals ord.CustomerID
 select new
 {
 ID = cust.ID,
 Customer = cust.Name,
 Item = ord.Description
 };

 foreach (var custOrd in customerOrders)
 Console.WriteLine(
 $"Customer: {custOrd.Customer}, Item: {custOrd.Item}");

 var customerOrders2 =
 from cust in Company.Customers
 join ord in Company.Orders.DefaultIfEmpty()
 on cust.ID equals ord.CustomerID
 select new
 {

 ID = cust.ID,
 Customer = cust.Name,
 Item = ord.Description
 };

 foreach (var custOrd2 in customerOrders)
 Console.WriteLine(
 $"Customer: {custOrd2.Customer}, Item: {custOrd2.Item}");

https://msdn.microsoft.com/en-us/library/vstudio/bb397896(v=vs.120).aspx

86

The following code listings are a grab bag of examples, demonstrating how to use standard
query operators that you might find useful.

So far, you’ve been working with IEnumerable<T>, where T is the projected type of the query.

There are a set of standard query operators that will return different collection types, including
ToList, ToArray, ToDictionary, and more. Here’s an example that turns the results into a

List.

Code Listing 107

The previous code enclosed the query in parentheses and then called the ToList operator. The

ForEach method on List<T> lets you pass a lambda.

LINQ queries use deferred execution. This means that the query doesn’t execute until you
execute a foreach loop or call one of the standard query operators, like ToList, that requests

the data.

You’ve seen how the C# select, where, orderby, and join keywords help build queries. Each

of these queries have a standard query operator equivalent. These standard query operators
use a fluent syntax and give you a different way to perform the same query as their matching
language syntax. Some people prefer the fluent style and others prefer the language syntax, but
the method you choose is really a personal preference. The following is an example of the
Where and Select operators, which mirror the where and select language syntax clauses.

Code Listing 108

The Where lambda must evaluate to a bool and the Select lambda lets you specify the

projection.

You can perform set operations like Union, Except, and Intersect. The following listing is an

example of Union.

 var custList =
 (from cust in Company.Customers
 select cust)
 .ToList();
 custList.ForEach(cust => Console.WriteLine(cust.Name));

 var customers6 =
 Company.Customers
 .Where(cust => cust.Name.StartsWith("J"));
 foreach (var cust6 in customers6)
 Console.WriteLine(cust6.Name);

 var customers7 =
 Company.Customers.Select(cust => cust.Name);
 foreach (var cust7 in customers7)
 Console.WriteLine(cust7);

87

Code Listing 109

Just pass a compatible collection and Union will produce a combined collection of all objects. I

used the ToArray operator in this example too, which results in an array of the collection type,

Customer.

There is a useful set of operators for selecting First, FirstOrDefault, Single,

SingleOrDefault, Last, and LastOrDefault. The following example demonstrates First.

Code Listing 110

The only thing about using First this way is the possibility of an InvalidOperationException

with the message “Sequence contains no elements.” This sequence contains elements, but this
isn’t guaranteed. You would be safer using the operator with the OrDefault suffix, as in the

following listing.

Code Listing 111

The previous example writes "No values returned." Because there isn’t a customer with ID
== 999, the SingleOrDefault returns null, which is the default value of a reference type

object.

These were only a handful of available operators, but hopefully you have a sense for the wealth
of support in language syntax as well as the standard query operators that comprise LINQ.

 var additionalCustomers =
 new List<Customer>
 {
 new Customer { ID = 1, Name = "Gary" }
 };
 var customerUnion =
 Company.Customers
 .Union(additionalCustomers)
 .ToArray();
 foreach (var cust in customerUnion)
 Console.WriteLine(cust.Name);

 Console.WriteLine(Company.Customers.First().Name);

 var empty =
 Company.Customers
 .Where(cust => cust.ID == 999)
 .SingleOrDefault();

 if (empty == null)
 Console.WriteLine("No values returned.");

88

Summary

LINQ allows you to use SQL-like syntax to query data. The LINQ provider used in this chapter is
LINQ to Objects, which lets you query objects in memory, but there are many other LINQ
providers for other data sources. Use a from to specify the collection being queried and a

select to shape the results. The where clause lets you filter results and takes a bool

expression to evaluate if a given object should be included. The orderby clause lets you sort

results. The join clause lets you combine two collections. Standard query operators extend

LINQ and make it even more powerful than the language keywords.

89

Chapter 8 Making Your Code Asynchronous

In version 5, C# introduced the capability to write and call code asynchronously, commonly
referred to as async. To understand async, it’s useful to consider the normal behavior of code,
which is synchronous. In synchronous code you call a method, wait for it to complete, and move
on to the rest of the code. The primary point of this behavior is that the thread calling the
synchronous method is also executing the synchronous code in that method. If that
synchronous method runs for a long time, your UI will become unresponsive and your users
might not know whether the program crashed or if they should just wait.

Asynchronous code improves this situation by allowing the long-running operation to continue
on a separate thread, and free your calling thread to resume its responsibilities. When the
calling thread is the UI thread, the application becomes responsive again and you can show a
status or busy indicators, or let the user operate another part of the program while the
asynchronous process runs. When the asynchronous process returns, you can interact with
users in some way, if that makes sense for your application. In the past, writing this
asynchronous code has been a challenge. Though the task of writing asynchronous code has
improved with new patterns and libraries, the C# async features makes asynchronous
programming much easier.

There are a couple different perspectives of async that determine how you code: library
consumer or library creator. From a consumer perspective, you make assumptions about async
code based on an implied contract. However, from the library creator perspective, you have
additional responsibilities to ensure your code provides the async contract users expect.

Consuming Async Code

C# has two keywords that support async: async and await. Decorating a method with the

async modifier says that the method can contain async code. You use the await keyword on a

Task to start an async operation.

using System.IO;
using System.Threading.Tasks;

public class Program
{
 public static void Main()
 {
 Program.CreateFileAsync("test.txt").Wait();
 }

 public static async Task CreateFileAsync(string filename)
 {

90

Code Listing 112

In the previous program, the CreateFileAsync method is asynchronous. You can tell by the

async modifier on the method. You need to add using clauses for the System.IO and

System.Threading.Tasks namespaces for writing to a file and async Task support,

respectively. The File class is part of the FCL and its CreateText method returns a

StreamWriter that you use to write to the file.

Note: Appending a method name with Async is not required, but it is a common
convention.

The proper way to call an async method is to await its Task or Task<T>. The WriteAsync

method returns Task, which means you can await it.

The using statement closes the file when its enclosing block completes. In this case, the block

is only a single line, so no curly braces are required.

Part of the async contract is an expectation that some code in the library you’re using will run
the operation on another thread, releasing your thread for other operations; that’s what
WriteAsync does too. So, the thread returns to the code calling this async method. But the

caller in this program is the Main method, which is calling Wait() on the Task returned from

CreateFileAsync. This keeps the program from ending before the thread that’s running the

async operation completes.

Warning: The previous example is a console application, which doesn’t have the
underlying infrastructure (referred to as a synchronization context) to manage
proper thread handling. Therefore, it was necessary to Wait() on the task
returned from CreateFileAsync. In a normal UI application, you will have a
synchronization context, meaning you won’t have to worry about the program
ending, and won’t need to call Wait() on an async method. The preferred method
of waiting on an async method is via async and await as shown in the
CreateFileAsync method. In fact, you should never call Wait on an async
method. That’s because when the second thread returns from doing work on the
async call, it will attempt to marshal the call back onto the calling thread. If that
calling thread is in a synchronous Wait(), the thread will be blocked, preventing
the second thread from performing that marshaling operation. Then you’ll have a
deadlock. To prevent deadlock, never call Wait(), use async and await instead.

The async modifier is required on the method if you use await. If a method has the async

modifier, but no awaits, C# will give you a compiler warning and let you know that the method

will run synchronously.

 using (StreamWriter writer = File.CreateText(filename))
 await writer.WriteAsync("This is a test.");
 }
}

91

Async Return Types

With async, you can await any awaitable type. The FCL has Task and Task<T>, which are

awaitable and are what you should use in most situations. Returning Task means that the

method does not return a value, which is what you saw with the previous CreateFileAsync

method.

Tip: Stephen Toub’s blog post “await anything;” explains how to create a custom
awaitable type and is a good reference if you see it as a way to improve your code.
You can read it at
http://blogs.msdn.com/b/pfxteam/archive/2011/01/13/10115642.aspx.

Use Task<T> when your method returns a value. The following listing shows an example.

Code Listing 113

Task.Delay is a way to sleep the thread by a number of milliseconds, but I’ll be using it in more

examples to simplify code and as a placeholder for where you would normally add async code.

The previous example shows a return type of Task<string>. The method only returns the

string "Hello" instead of an instance of Task<string> because the C# compiler takes care of

that for you.

An async method can return void rather than an awaitable type too. This is done in the

following listing.

Code Listing 114

This method executes asynchronously, but async void methods have important caveats you

must be aware of: they aren’t awaitable, and they don’t protect against exceptions, but they are
necessary for scenarios like event handling where the method must be void.

Since you can only await awaitable types like Task and Task<T>, there’s no way to await an

async void method. The implication of this is that when a library’s code starts another thread, it

 public async Task<string> ReturnGreeting()
 {
 await Task.Delay(1000);
 return "Hello";
 }

 public async void SayGreeting()
 {
 await Task.Delay(1000);
 Console.WriteLine("Hello");
 }

http://blogs.msdn.com/b/pfxteam/archive/2011/01/13/10115642.aspx

92

allows the calling thread to return. Calling an async void method means you can’t wait until that

method completes and you won’t ever know when or if the method completes. As with anything,
there are no absolutes and one could argue that it would be possible to write some cross-thread
communication mechanism, but I’m referring to the general out of the box behavior, which will
lead to some important implications. Because of this behavior, there are pros and cons on when
you should use an async void method.

The largest problem with async void methods is that you can’t throw an exception back to the

calling code. With Task and Task<T> returning methods, you can await and wrap the async

method call in a try-catch, but you can’t do that with async void methods. If an async void

method throws an unhandled exception, the application will crash.

With such problems, it would be easy to assume that async void should not be used at all.

However, the C# language designers added async void for one specific reason: to support

event handling. Event handlers in the .NET Framework follow a pattern where their delegates
return void. Therefore, you can’t use an awaitable type, like Task or Task<T>, and must assign

async void methods as event handlers.

In UI applications, a UI control might fire an event, async void methods assigned to the event

execute, the async code starts a new thread and releases the UI thread, and the UI thread
returns and processes messages to keep the UI responsive. So, using async void as event

handlers is appropriate.

Developing Async Libraries

Writing an async library is mostly normal coding, but the key thing to keep in mind is what is
happening to the thread. First, all code executes by default on the calling thread. Second, you
need to marshal execution onto a new thread and release the calling thread to the caller.

Understanding What Thread the Code is Running On

The following code doesn’t necessarily make any logical sense, but represents the potential
structure of some library code that you might write. In particular, it demonstrates what happens
with threads before and after the first await in your async method. In the following code,

UserInfo is just a type to hold and return data. UserService and AddressService have async

methods that the GetUserInfoAsync method calls.

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

public class UserInfo
{
 public string Info { get; set; }
 public string Address { get; set; }
}

93

Code Listing 115

Remember, you’re writing reusable library code, so it could be called from many different
technologies, such as WPF, Windows Store apps, Windows Phone, and more. What’s common
about these type of applications is that a user interacts with the UI controls and those UI
controls fire events. This means an async void event handler awaits your GetUserInfoAsync

method.

When the event handler code calls your code, it’s running on the UI thread. Your code will
continue running on the UI thread until some other code explicitly marshals the call to another
thread and releases the UI thread.

Note: More accurately, the thread calling your code might not necessarily be the
UI thread if there was another async method that called your code and already
released the UI thread. However, defensive coding is a safe approach because

class UserService
{
 internal static async Task<string> GetUserAsync(string user)
 {
 // Do some long running synchronous processing.
 return await Task.FromResult(user);
 }
}

class AddressService
{
 internal static async Task<string> GetAddressAsync(string user)
 {
 return await Task.FromResult(user);
 }
}

public class UserSearch
{
 public async Task<UserInfo> GetUserInfoAsync(string term, List<string> names)
 {
 var userName =
 (from name in names
 where name.StartsWith(term)
 select name)
 .FirstOrDefault();

 var user = new UserInfo();
 user.Info = await UserService.GetUserAsync(userName);
 user.Address = await AddressService.GetAddressAsync(userName);

 return user;
 }
}

94

there exists the possibility that your code will be called on the UI thread by some
developer in the future.

Notice the LINQ query in GetUserInfoAsync before reaching the first await. That is

synchronous code that runs on the calling thread, which could also be the UI thread. The issue
here is that the UI thread is tied up doing work in your async method, rather than returning to
the UI. Imagine a UI with a progress indicator that locks up because your async method is
holding onto the UI thread and doing a lot of processing before the first async call.

The code is still on the UI thread when it calls UserService.GetUserAsync. I added a

comment to GetUserAsync to represent more long-running synchronous processing that is also

running on the UI thread. Finally, awaiting Task.FromResult releases the UI thread and the

rest of the code runs asynchronously. That’s because Task.FromResult implements the async

contract properly. Before showing you how to fix this problem, let’s look at the rest of the code
so you can understand how it runs.

When the code returns from Task.FromResult, the UI thread has been released and the code

is running on the new async thread. When returning from GetUserAsync to its caller,

GetUserInfoAsync, the call automatically marshals back to the calling thread, which could be

the UI thread. Again, this program eats up CPU cycles on the UI thread, making the application
less responsive. Fortunately, there’s a way to fix this problem.

Fulfilling the Async Contract

The previous section explained how the code runs on the calling thread by default, which could
be the UI thread. Whenever you call an async method in the FCL, that code will release the
calling thread and continue on a new thread, which is proper behavior of the async contract that
developers expect. You should do the same in your code.

To do this, use the Task.ConfigureAwait method, passing false as the parameter. The

following is an example that fixes the problem in GetUserInfoAsync.

Code Listing 116

 public async Task<UserInfo> GetUserInfoAsync(string term, List<string> names)
 {
 var userName =
 (from name in names
 where name.StartsWith(term)
 select name)
 .FirstOrDefault();

 var user = new UserInfo();
 user.Info = await UserService.GetUserAsync(userName).ConfigureAwait(false);
 user.Address = await AddressService.GetAddressAsync(userName);

 return user;
 }

95

The GetUserInfoAsync method appends ConfigureAwait(false) to the call to

GetUserAsync. GetUserAsync returns a Task<string> and ConfigureAwait(false)

operates on that return value, releasing the calling thread and running the rest of the method on
a new async thread. That’s it; that’s all you have to do.

You still have the issue of synchronous processing before the first call to ConfigureAwait.

Sometimes, you can’t do anything about it because it’s necessary to execute that code before
the first await. However, if it’s possible to rearrange the code to do any processing after the first

await, you should do so.

A Few More Notes on Async

I made this point previously, but I feel it bears repeating. Especially for library code, you should
prefer async methods that return Task or Task<T>. In the UI you don’t have a choice if you’re

writing an event handler. If you’re using a Model View ViewModel (MVVM) architecture, you’ll
also need void Command handlers. You shouldn’t have these issues in reusable library code and

in this scenario, async void methods are dangerous.

Async void methods that throw exceptions will crash your application.

Much of the discussion in this chapter is around how async improves the user experience by
releasing the UI thread. In addition to that, async also improves application performance by not
blocking threads. These scenarios usually involve some type of out-of-process operation such
as network communication, file I/O, or REST service calls. These operations can use Windows
operating system services such as I/O completion ports to free threads while the long-running
out-of-process operation executes; they can then reallocate those threads when the operation
completes and needs to return to your code. In addition to performance increases through
efficient thread management, you can also improve the scalability of a server application by
using async to avoid blocking threads more than you have to.

For all the seeming complexity that this chapter introduces, attempting to perform many of the
operations associated with managing threads for application responsiveness, performance, and
scalability is made much easier through the use of async.

Summary

Async is a useful capability that allows your application to be responsive and perform well. The
user experience of async is a method with an async modifier and the ability to await an async

method’s Task. In addition to the user experience, there are additional considerations for writing

async libraries. You should be aware of the threading behavior and how an async method runs

on the caller’s thread by default. Remember that you should minimize synchronous code before
the first await and that you should call ConfigureAwait(false) at the earliest opportunity,

releasing the UI thread and running the remaining algorithm on the new async thread.

96

Chapter 9 Moving Forward and More Things
to Know

To keep subject matter succinct, I’ve passed up features that could evolve into deeper
discussions. This chapter is about some of those features, if only to highlight that they are part
of the C# language and that you are likely to encounter them regularly.

Decorating Code with Attributes

An attribute is a feature of C# that lets you decorate code with meta-information for various
tools. I use the term “tool” loosely, but it could be the C# compiler, a testing framework, or a UI
technology. Essentially, these tools read the attributes to make some decision on how to work
with your code. I’ll show you a few examples so you can be familiar with attribute syntax when
you encounter it in code.

The Obsolete attribute lets you indicate that some code has been deprecated. It’s a C#

compiler attribute and the compiler will emit a message regarding its use. The following code
shows an example.

Code Listing 117

When the C# compiler sees the Obsolete attribute decorating Add, it will show a warning with

the message argument matching the parameter to the Obsolete attribute. In the second

example, the compiler shows the message as an error and you won’t be able to compile
because the second parameter, true, indicates that the compiler should treat usage of that

method as an error.

The next example uses attributes for a unit test with MSTest, Microsoft’s unit testing software.

using System;

public class ShoppingCart
{
 [Obsolete("Method planned for deprecation on date – use … instead.")]
 public void Add(string item) { }

 [Obsolete("Method is obsolete and can no longer be used", error: true)]
 public decimal CalculateTax(decimal[] prices) { return 0; }
}

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

97

Code Listing 118

As with most unit testing frameworks, MSTest has a test runner that loads the unit test code,
looks for classes decorated with the TestClass attribute, and executes methods with the

TestMethod attribute. It does this with another capability of C# called reflection.

Using Reflection

Reflection gives you the ability to examine compiled .NET code. With reflection, you can build
useful tools like MSTest, dynamically instantiate types and execute their code, and more. The
following code uses reflection to dynamically instantiate a type and execute one of its methods.

namespace UnitTestProject1
{
 [TestClass]
 public class UnitTest1
 {
 [TestMethod]
 public void TestMethod1()
 {
 }
 }
}

using System.Linq;
using System;
using System.Reflection;

public class FinancialCalculator
{
 public decimal Sum(decimal[] numbers)
 {
 return numbers.Sum();
 }
}

public class Program
{
 public static void Main()
 {
 decimal[] prices = { 1m, 2m, 3m };

 Type calcType = typeof(FinancialCalculator);
 MethodInfo sumMethod = calcType.GetMethod("Sum");
 FinancialCalculator calc =
 (FinancialCalculator)Activator.CreateInstance(calcType);
 decimal sum = (decimal)sumMethod.Invoke(calc, new object[] { prices });

 Console.WriteLine($"Sum: {sum}\nPress any key to continue.");

98

Code Listing 119

FinancialCalculator.Sum uses the LINQ Sum method, so add a using clause for

System.Linq. Add a using declaration for System.Reflection to support reflection too.

With reflection, a Type instance gives you access to all of the information about a type. The

Main method calls GetMethod to obtain a MethodInfo reference to the Add method, but there

are many more methods that let you look at various parts of a type. As an example of a subset
of capabilities available, you can call GetMethods, GetProperties, or GetFields to get an

array of MethodInfo, PropertyInfo, or FieldInfo respectively. There are many more

methods in the Type class you can use, and it’s a fun exercise to write code to practice with this.

Activator.CreateInstance creates a new instance of the Type it’s passed. Calling Invoke

lets you run a method and get the results. Much of the previous reflection code is hard-coded for
simplicity, but it’s very useful for when you need to write code that examines the capabilities of
another piece of code and optionally work with the member of a type.

Working with Code Dynamically

C# also has a type called dynamic. Its purpose is to allow you to interoperate with dynamic
languages, like IronPython and IronRuby, and makes reflection easier. Microsoft also has a
technology called Silverlight. Dynamic could make working with the HTML DOM easier, but
Silverlight has been largely replaced by HTML 5 as a dynamic web application technology.

The dynamic type lets you assign any value to a dynamic variable and use any typed members

on that variable. Rather than the C# compiler emitting errors, any errors are handled by the CLR
at runtime. You might see where this has a lot of power through coding flexibility, yet a
drawback of dynamic typing is that it offers no indication of type-related errors until runtime.
Using the FinancialCalculator class from the previous example, the following is an example

of some dynamic code.

 Console.ReadKey();
 }
}

using System;
using System.Reflection;

public class Program
{
 public static void Main()
 {
 decimal[] prices = { 1m, 2m, 3m };

 Type calcType = typeof(FinancialCalculator);
 MethodInfo sumMethod = calcType.GetMethod("Sum");
 dynamic calc = Activator.CreateInstance(calcType);

99

Code Listing 120

You might notice that this code is simpler than the full reflection implementation. You don’t have
an interface and have no guarantee that the calc instance has a member named Sum, but since

the alternative is to use reflection, you’re still in the same situation of runtime evaluation.
Therefore, this might be a reasonable approach for this particular scenario.

Pulling together what you learned about generics, it might be useful to improve the algorithm
even further, as shown in the following listing.

Code Listing 121

The previous example totally eliminates the need for reflection, reduces code, makes the
algorithm strongly typed where it needed to be, and makes it dynamic where it helps. It would
have been possible to use an interface constraint to make GetSum more strongly typed, but I

used this as an exercise to help you think about where dynamic might be useful.

 dynamic sum = calc.Sum(prices);

 Console.WriteLine($"Sum: {sum}\nPress any key to continue.");
 Console.ReadKey();
 }
}

using System;

public class Program
{
 public static void Main()
 {
 decimal[] prices = { 1m, 2m, 3m };

 decimal sum = GetSum<FinancialCalculator, decimal>(prices);

 Console.WriteLine("Sum: {0}\nPress any key to continue.", sum);
 Console.ReadKey();
 }

 public static TValue GetSum<TCalc, TValue>(TValue[] prices)
 where TCalc : new()
 {
 dynamic calc = new TCalc();
 TValue sum = calc.Sum(prices);
 return sum;
 }
}

100

Summary

Attributes are C# features that tell a tool something about your code. Reflection helps you write
meta-code that can evaluate and execute other code. There is a dynamic type that lets you
make assumptions about the code you’re writing, interfacing with dynamic languages, and
making it easy to perform reflection.

This completes C# Succinctly. I hope it has been useful for you. I wish you the best in your
further studies.

	The Story behind the Succinctly Series of Books
	About the Author
	Chapter 1 Introducing C# and .NET
	What can I do with C#?
	What is .NET?
	Writing, Running, and Deploying a C# Program
	Starting a New Program

	Namespaces and Code Organization
	Running the Program
	Deploying the Program

	Summary

	Chapter 2 Coding Expressions and Statements
	Writing Simple Statements
	Overview of C# Types and Operators
	Operator Precedence and Associativity
	Formatting Strings
	Branching Statements
	Arrays and Collections
	Looping Statements
	Wrapping Up
	Summary

	Chapter 3 Methods and Properties
	Starting at Main
	Modularizing with Methods
	Simplifying Code with Methods
	Adding Properties
	Exception Handling
	Summary

	Chapter 4 Writing Object-Oriented Code
	Implementing Inheritance
	Access Modifiers and Encapsulation
	Designing Types: Class vs. Struct
	Creating Enums
	Enabling Polymorphism
	Writing Abstract Classes
	Exposing Interfaces
	Object Lifetime
	Summary

	Chapter 5 Handling Delegates, Events, and Lambdas
	Referencing Methods with Delegates
	Firing Events
	Working with Lambdas
	More FCL Delegate Types
	Expression-Bodied Members
	Summary

	Chapter 6 Working with Collections and Generics
	Using Collections
	Writing Generic Code
	Summary

	Chapter 7 Querying Objects with LINQ
	Getting Started
	Querying Collections
	Filtering Data
	Ordering Collections
	Joining Objects
	Using Standard Operators
	Summary

	Chapter 8 Making Your Code Asynchronous
	Consuming Async Code
	Async Return Types
	Developing Async Libraries
	Understanding What Thread the Code is Running On
	Fulfilling the Async Contract

	A Few More Notes on Async
	Summary

	Chapter 9 Moving Forward and More Things to Know
	Decorating Code with Attributes
	Using Reflection
	Working with Code Dynamically
	Summary

