

HTML5 Boilerplate Web
Development

Master Web Development with a robust set
of templates to get your projects done quickly
and effectively

Divya Manian

BIRMINGHAM - MUMBAI

HTML5 Boilerplate Web Development

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 1091112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-850-5

www.packtpub.com

Cover Image by Neha Rajappan (neha.rajappan1@gmail.com)

Credits

Author
Divya Manian

Reviewers
Chad Darby

Melanie Archer

Miriam Salzer

Acquisition Editor
Joanna Finchen

Lead Technical Editor
Arun Nadar

Technical Editor
Dominic Pereira

Copy Editor
Laxmi Subramanian

Project Coordinator
Joel Goveya

Proofreaders
Aaron Nash

Maria Gould

Indexer
Hemangini Bari

Production Coordinators
Manu Joseph

Conidon Miranda

Cover Work
Manu Joseph

About the Author

Divya Manian is the co-creator of the HTML5 Boilerplate framework. She has
worked on projects to benefit the web development community such as HTML5
Please, Move the Web Forward, and HTML5 Readiness. She is also a member of
the W3C. Previously, she used to be an embedded C++ programmer.

I would like to thank Nicolas Gallagher, the lead developer and
maintainer of HTML5 Boilerplate for all the work in keeping the
project up-to-date, and Paul Irish, co-creator of HTML5 Boilerplate for
the initial effort and collaboration in bringing this framework alive.

About the Reviewers

Chád Darby is an author, instructor and speaker in the Java development world.
As a recognized authority on Java applications and architectures, he has presented
technical sessions at software development conferences worldwide. In his 15 years
as a professional software architect, he's had the opportunity to work for Blue Cross/
Blue Shield, Merck, Boeing, Northrop Grumman, and a handful of startup companies.

Chád is a contributing author to several Java books, including Professional Java
E-Commerce, Wrox Press; Beginning Java Networking, Wrox Press; and XML and
Web Services Unleashed, Sams Publishing. Chád has Java certifications from Sun
Microsystems and IBM. He holds a B.S. degree in Computer Science from
Carnegie Mellon University.

You can read Chád's blog at http://www.luv2code.com/ and follow him on his
Twitter handle at @darbyluvs2code.

Melanie Archer is a front-end web developer living in Oakland, California, USA.
Since handcoding her first web page in 1997, she's worked with design agencies and
startups to bring standards-compliant delight to dozens of user interfaces.

Miriam Salzer has a background in studio art and design, but became hooked on
creating websites. She is the owner of Salzer Design, which primarily designs and
builds websites for visual and performing artists and for non-profit organizations.
Since 2006, Miriam has worked as a software engineer for companies on products
as diverse as blogging and medical applications. She lives in the San Francisco Bay
Area with her family.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Before We Begin 7

Features of HTML5 Boilerplate 7
Cross-browser compatibility 8

Doctype 8
Normalize.css 8
Clearfix	 8
Search box styling 8
Conditional classes 9
Modernizr 9
No console.log errors 9
Helper classes 9

Performance optimizations 9
Progressive enhancement 10
Accessible focus styles 10
Print styles 10

Tools to start with 10
Beware 11

Where to get files 11
An overview of H5BP files 12
Asking for help 13
Summary 14

Chapter 2: Starting Your Project 15
Creating your initial project folder 15

Downloading the latest version of HTML5 Boilerplate 15
Using the shell script 16

Creating our project 17
House-keeping 18

Setting the tags 18

Table of Contents

[ii]

Editing favicons 19
Adding third-party libraries 22

Using a Content Delivery Network 22
Adding Google Analytics ID 25
Updating humans.txt 25

Summary 26
Chapter 3: Creating Your Site 27

Working on the markup 27
Creating the markup 28

Deciding which element to use 30
Writing valid markup 30

Creating the styles 30
Helpful style classes we can use 32

Image replacement 33
Hiding elements 33
Hiding elements visually 35
Hiding elements without impacting layout 36
Clearing	floats	 39

Writing valid stylesheets 42
Style languages to write productive stylesheets 42

Advantages 43
Disadvantages 43
Where to learn? 44
Using HTML5 Boilerplate with style languages 44

Summary 45
Chapter 4: Adding Interactivity and Completing Your Site 47

Using jQuery 47
Using other libraries 47
Adding smooth-scroll plugin and interaction 48
Adding HTML5 features safely with Modernizr 52

When to use Modernizr.load 55
Using Modernizr to load CSS features 55

Testing our site 56
Testing on non-desktop browsers 64

Summary 66
Chapter 5: Customizing the Apache Server 67

Server-side configurations 67
Setting up the Apache server 67

Installing Apache 68
Mac 68
Windows 68
Linux 69

Configuring	Apache	 70

Table of Contents

[iii]

Features available out of the box 71
Removing	ETags	 71
Gzip	components	 72
Using	Expires	header	for	better	cache	control	 74
Custom	404	page	 76
Forcing	the	latest	IE	version	 77
Using	UTF-8	encoding	 78
Serving	the	right	MIME	types	 78
Blocking	access	to	hidden	folders	 79
Blocking	access	to	backup	and	source	files	 79
Starting Rewrite engine 80
Preventing 404 errors for non-existing redirected folders 80

Additional customizations 80
Suppressing or forcing the "www." at the beginning of URLs 80
Setting cookies from iFrames 82
PHP security defaults 83
Stop advertising Apache version 83
Allowing	concatenation	from	within	specific	JS	and	CSS	files	 84
Stopping	screen	flicker	in	IE	on	CSS	rollovers	 86
Preventing	SSL	certificate	warnings	 86
Cross-domain	policies	you	should	be	aware	of	 87
Cross-domain AJAX requests 88
CORS-enabled images 89
Webfont access 89

Using other server configuration files 90
web.config	 91
lighttpd.conf 91
nginx.conf 91
node.js 91
Google App Engine 92

Summary 93
Chapter 6: Making Your Site Better 95

Finding the best experience for Internet Explorer 95
Mobile-first	styles	for	IE	 95

ie.scss 96
main.scss 96

Printing	with	jQuery	in	IE6	and	IE7	 97
Styling disabled form elements in Internet Explorer 98
Suppressing IE6 image toolbar 99

Writing CSS3 easier with tools 99
Sass 100

Table of Contents

[iv]

Less 100
Output CSS 100
Converting HTML5 Boilerplate CSS to Sass
or Less 101

HTML5 Boilerplate Compass extension 101
HTMl5 Boilerplate Sass fork 101

Print considerations 101
Finding and using polyfills 102
Making your site faster 102

DNS prefetching 102
Making your site more visible on search engines 103

Directing search spiders to your site map 103
Implementing X-Robots-Tag headers 104
Trailing slash redirects 105

Option 1: Rewrite example.com/foo to example.com/foo/ 105
Option 2: Rewrite example.com/foo/ to example.com/foo 105

Handling users without JavaScript 106
Optimizing your images 108

8-bit PNGs 108
Tools for image optimization 108

ImageAlpha 108
ImageOptim 108

Using image sprites 109
CSS sprites from within Adobe Photoshop 111
CSS sprites with Compass 111
SpriteMe 112

Augmenting Google Analytics 112
Adding more tracking settings 112
Anonymize IP addresses 113
Tracking jQuery AJAX requests in Google Analytics 113
Tracking JavaScript errors in Google Analytics 113

Summary 114
Chapter 7: Automate Deployment With the Build Script 115

The build script 115
Ant build script 116
Node build script 116
Which	build	script	to	use	 117

Using the Ant build script 117
Installing the build script 118
Smaller	image	files	 120
Smaller	CSS	file	 121
Smaller	and	fewer	JS	files	 121

Table of Contents

[v]

No	comments	in	files	 122
Build options 122

Minifying markup 122
Preventing image optimization 122
Using CSSLint 122
Using JSHint 123
Setting	up	the	SHA	filenames	 123

Using with Drupal or WordPress 124
Updating build.xml 124
Setting	up	the	project	configuration	properties	 124
Setting	the	JS	file	delineator	 124

Using the Node build script 125
Grunt 125

Installing Node build script 125
Initializing your project 126
Using	the	Node	build	script	with	an	existing	project	 127

Using	the	Node	build	script	to	build	your	project	 127
Text	 127
Minify	 127
Server 128
Connect 129

Using with Drupal or WordPress 129
Next steps 130
Summary 130

Appendix: You Are an Expert, Now What 131
Writing unit tests for your code 131

Creating a testing environment 132
Esoteric defaults you should know about 135

Meta UTF-8 135
The HTML Doctype 136
The	details	behind	the	clearfix	solution	 136
What do the print styles do 138

Print media query 138
Optimizing colors and backgrounds 138
Better links 139
Rendering all code and quotes within one page 140
Rendering tables better 141
Rendering images better 141
Margins on pages 141
Optimal settings for orphans and widows 142
Keeping headings with content 142

What are protocol-relative URLs 142
Using conditional comments 143

Browser style hacks 143
Server-side browser detection 144
Stylesheets based on conditional comments 144

Table of Contents

[vi]

Class names based on conditional comments 145
What is meta x-ua-compatible 146

Meta tag in your HTML page 146
HTTP header response from the server 146

Contribute 148
Reporting issues 148
Pull requests 149

Index 151

Preface
Getting Started with HTML5 Boilerplate will enable you to master setting up new
projects with minimal effort and deploy them to production in the most effective
manner with the least time spent while also ensuring robust performance. It takes
you through a step-by-step process of creating a website and teaches you to take full
advantage of the defaults provided within HTML5 Boilerplate, be it styles, mark up,
or code, so that you can accomplish your goals with as few cross-browser issues
as possible.

What this book covers
Chapter 1, Before We Begin, covers all you need to get set up for your projects to use
HTML5 Boilerplate without much effort. We also broadly look at the files that are
included as part of this project and how they help you.

Chapter 2, Starting Your Project, covers how to get started with HTML5 Boilerplate
with an example, single page website. In this chapter, we look at the basic essentials
of configuring the default setup that works for your project.

Chapter 3, Creating Your Site, covers how to customize the styles and the markup of
your website along with some tips on how to take advantage of HTML5 Boilerplate's
default style options.

Chapter 4, Adding Interactivity and Completing Your Site, will help you discover how
to do feature-detection, add some interactivity with JavaScript, and finalize your
website implementation.

Chapter 5, Customizing the Server, looks at how you can ensure that your website gets
loaded as quickly as possible by using HTML5 Boilerplate's custom configurations
for the web servers that host your site.

Preface

[2]

Chapter 6, Making Your Site Better, looks at the optional features that can also be used
to provide a better experience for the users of your site, which would fit well with
HTML5 Boilerplate.

Chapter 7, Automate Deployment With the Build Script, helps you to make your sites
ready to be deployed live by looking at the Build Script that provides tools to minify
CSS, JS, HTML, and images.

Appendix, You Are an Expert, Now What? covers some basics of unit testing and
provides additional research information on some of the decisions that were
arrived at for the features that HTML5 Boilerplate provides.

What you need for this book
As we will be working on a website, we will need the following basic tools to get our
work done:

• A text editor that you are comfortable using with; SublimeText is
recommended with. If you do not have one yet, please download
it from sublimetext.com/.

• Apache Web Server (available from httpd.apache.org) to apply
HTML5 Boilerplate's server configurations.

• A browser to verify the rendering of your website on the screen. Chrome
is recommended, because its developer tools are available for debugging.
Download Chrome from google.com/chrome.

• Git, for making sure software is under version control; download it from
git-scm.com.

• You also obviously need HTML5 Boilerplate, which you can download
from html5boilerplate.com.

Preface

[3]

Who this book is for
This book is for all the authors who are familiar with creating web projects using
HTML, CSS, and JavaScript. No in-depth knowledge is necessary. Some knowledge of
what a web server is and how it can be configured is good to have. Also, you should
not be afraid to use the command-line tool (fear not! There are links within the book
that should make you less afraid). There are no expectations that you should know
about HTML5 Boilerplate, except that you only try it once to see if it works for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "However, Normalize.css makes sure
that these default styles are consistent across all browsers."

A block of code is set as follows:

header h1 {
background-image: url('/img/heading-banner.png');
width: 800px;
height: 300px;
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
following screenshot shows how the Skip Navigation link is instantly visible
when the user switches keyboard focus to it."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Before We Begin
How deliriously happy do you get when you begin a new project? Me too! The smell
of a fresh new project folder is pretty exciting. Sadly, it soon devolves into a mess of
folders, subfolders, and hastily written markup and before you know it, it is launch
day and you realize with horror you have a page that is missing some essential
metadata (uh those favicons!), some sections are unreadable in some browsers—what?
It needs to look good when printed too?

HTML5 Boilerplate was born out of frustration of starting from scratch and missing
out the important pieces. Having a checklist is not as useful as starting with a project
that already comes with the files that your checklist demands.

HTML5 Boilerplate assembles the best tools for you to get started with your next
web development project.

Features of HTML5 Boilerplate
Before we dive deep into the internals of HTML5 Boilerplate, let us look at some of
its features that would help you in your next project. HTML5 Boilerplate is available
for download from html5boilerplate.com and is licensed under MIT license for
use in any free or commercial product. The source code is available on Github's URL,
which is github.com/h5bp/html5-boilerplate/.

Before We Begin

[8]

Cross-browser compatibility
HTML5 Boilerplate comes with a set of files that make it easy to do cross-browser
development.

Doctype
The single most significant cause of cross-browser compatibilities is the use of incorrect
doctype declarations. By using the HTML5 doctype declaration, you are assured that
your browsers will render your site in a standard mode.

If you are interested in learning more about doctypes, I wrote about it
in detail at nimbupani.com/the-truth-about-doctypes.html.

Normalize.css
Browsers apply their default styles on elements whose properties you do not specify.
The trouble is, the kind of styles that each browser applies are different. However,
Normalize.css makes sure that these default styles are consistent across
all browsers.

Nicolas Gallagher writes in detail about the motivation behind
Normalize.css at necolas.github.com/normalize.
css/.

Clearfix
Clearfix has been a popular way of clearing floats. In HTML5 Boilerplate, this has been
streamlined to use the micro-clearfix solution, a smaller set of selectors to accomplish
the same goal, tested and verified to work on Opera 9 and higher, Safari 4 and higher,
IE6 and higher, Firefox 3.5 and higher, and Chrome.

Nicolas Gallagher, the inventor of the micro-clearfix solution,
writes more about the choices behind the declarations used at
nicolasgallagher.com/micro-clearfix-hack/.

Search box styling
When you set the type of an input element to search, all WebKit browsers like Safari,
Chrome, Mobile Safari, and so on, add UI chrome, which is difficult to style. HTML5
Boilerplate comes with a set of styles that normalize the look and feel of the search
box across all browsers while also making it easy to style.

http://nimbupani.com/the-truth-about-doctypes.html

Chapter 1

[9]

Conditional classes
The index.html page comes with a set of classes on the HTML element that makes it
easy to tweak your styles for IE versions below 9.

Modernizr
Modernizr is a JavaScript library that tests for the existence of HTML5 technologies
and outputs a set of classes on the HTML element based on their presence or absence
in the browser that is loading your website. For example, if a browser lacks support
for border radius, Modernizr outputs the class no-borderradius, while on browsers
that support border radius, it will output the class borderradius. A custom build of
Modernizr is included within Boilerplate.

Learn more about developing with Modernizr from their
documentation at http://modernizr.com/docs/ and this
slide deck at http://www.slideshare.net/michaelenslow/
its-a-mod-world-a-practical-guide-to-rocking-
modernizr is a good introduction to using Modernizr.

No console.log errors
Oftentimes, when working in modern browsers, you tend to use the console.log
function to debug your JavaScript code. How many times have you forgotten to
remove them or comment them out in production, only to find them throwing
errors in Internet Explorer or other browsers that do not support the use of this
function? You can safely use the log function included within the plugin.js file
to log statements only in browsers with tools that support it.

Helper classes
Ever had to hide text to show images? How about making extra text available
for those who use screen readers or hide from all browsers? HTML5 Boilerplate
provides classes for both and more, which have been field-tested to work across
edge cases and across all browsers.

Performance optimizations
The .htaccess file includes the best out-of-the-box defaults for caching, which
makes your pages load significantly faster when they are served by the Apache
Web Server. There are also configuration files for other web servers available to
provide similar functionality.

Before We Begin

[10]

Progressive enhancement
The HTML element has a no-js class that can be used to provide alternative styles
for browsers that do not support JavaScript. With Modernizr, this class name is
replaced when used in a browser that does support JavaScript to js.

Accessible focus styles
All browsers provide a default focus style for links when clicked. HTML5 Boilerplate
ensures that these styles are only applied when the elements are in focus while using
keyboard navigation.

Print styles
A good default print stylesheet is something most of us fail to think of when we
create web pages. However, HTML5 Boilerplate already does this for you by
providing best-performing defaults for print styles.

Tools to start with
You can start using Boilerplate with your favorite editor. If you use Git as your version
control system, we also include a .gitignore file that would automatically ignore files
such as .DS_STORE or other unnecessary files from being marked for versioning.
Some editors that can be used to work with HTML5 Boilerplate are as follows:

• Aptana Studio: HTML5 Boilerplate comes out of the box with Aptana
Studio. Choose a Web Project and then select Boilerplate to start with.
Robert Gravelle has a write-up explaining how to use HTML5 Boilerplate
in your Aptana Studio projects, which can be found at www.htmlgoodies.
com/html5/tutorials/aptana-studio-3-guided-tour-and-tutorial-
create-a-web-project-using-the-html-5-boilerplate-framework.
html.

• Visual Studio: There are two templates available for use in Visual Studio 2010.
One for Web forms, which is downloadable from h5bpwebapptemplate.
codeplex.com/ and the other is downloadable from www.jondavis.net/
techblog/post/2011/04/24/HTML5-Boilerplate-Visual-Studio-2010-
Template.aspx.

Chapter 1

[11]

• TextMate: A year-old project, this URL hosts TextMate bundles of HTML5
Boilerplate's markup and styles at www.dontcom.com/post/1546820479/
html5-boilerplate-textmate-template-bundles.

Beware
These tools are not officially maintained by the HTML5 Boilerplate project and
hence are likely to be out of date. You are best off using the process outlined in
the following section.

Where to get files
There are three ways to get HTML5 Boilerplate, which are as follows:

• From the website: The latest stable version of the project is available at
html5boilerplate.com.

• From Initializr: Jonathan Verecchia hosts a more expansive set of modules
to choose from at initializr.com. All the modules here are from the stable
version that is available on the website.

• From the Github home page: HTML5 Boilerplate is hosted on Github. The
latest files are available from the project's github page at github.com/h5bp/
html5-boilerplate. You are safe to use these files when starting your new
project and you are guaranteed to get the latest version of these files when
you download from Github.

As you are just getting started with HTML5 Boilerplate, I strongly recommend you
to download the files from Github, and even better to do so via Git, so you can easily
update them when the master files on Github get updated.

If you are unfamiliar with Git, Roger Dudler maintains a great
introduction to get you started at rogerdudler.github.com/
git-guide/; if you are new to the concept of version control,
there is a good explanation of what it is and why it is useful
at hoth.entp.com/output/git_for_designers.html.

http://initializr.com

Before We Begin

[12]

An overview of H5BP files
The different files and folders that are a part of HTML5 Boilerplate are explained
as follows:

• index.html: This is the markup that we recommend you start all your
HTML pages with.

• main.css: The styles are located in a single stylesheet known as main.css,
found within the css folder.

• normalize.css: This file is located separately, so that you can use the latest
updated version of normalize.css immediately. In production, ideally
you should combine both main.css and normalize.css into a single file to
ensure minimum number of network requests, so your pages load quicker.

• doc: This folder contains all the documentation necessary to understand the
HTML5 Boilerplate files.

• img: This folder should contain all the images you will be using to create
your website. This is empty to begin with, but you should include all the
images you work with here.

• js: This is the parent folder for all your scripts. HTML5 Boilerplate comes
with a set of scripts that make it easier for you to get started. This folder
contains the following files and folders:

 ° vendor: This folder contains all the script libraries. You get the latest
minified and unminified versions of jQuery and a custom build of
modernizr. Any other libraries you will be using should ideally go
within this folder.

 ° plugins.js: All the jQuery plugins that you would be using should
be inlined in this file. If you are using a jQuery carousel plugin, you
would copy the code to plugins.js.

 ° main.js: This will be the file from where you would invoke scripts
that run on your page. Taking the example of the jQuery carousel
plugin, we will invoke the plugin to run on our pages from this file.

• 404.html: If you have a page that is not found, then this page can be served.
Make sure it has all the information available and uses the same look and
feel as other pages in your website.

• humans.txt: This is a wonderful initiative that allows you to denote who
worked on a website (read more about this initiative at humanstxt.org). We
highly recommend you use this to indicate your work, and to inform anyone
who is curious, whose work it was.

Chapter 1

[13]

• crossdomain.xml: This is useful if you would like to have flash files hosted
elsewhere to access assets located on the domain where your website will be
hosted. You could have a flash audio player from another domain using the
files hosted on your website. In this case, you need to carefully choose your
cross-domain policy (we will cover this file in detail in Chapter 5, Customizing
the server).

• robots.txt: Search engines use this file to understand which files to index
and which not to index.

• .htaccess: This is an Apache server configuration file specific to your
website. Loads of best practices are included by default.

• favicion.ico: Most browsers use the favicon when you bookmark a page
on a website or next to the title of the page on a tab. By using a distinctive
identifiable icon, you will be able to make your website stand out and be
easy to navigate to.

• apple-touch-icon-*.png: iOS and Android devices allow websites to be
bookmarked to the homescreen of your phone. Both of them use these
touch icons to represent your site when it is added to your home screen.
Boilerplate comes with a set of icons to identify all the sizes and formats
you need to create your icons in.

• readme.md: The readme has all the license information and a list of features
and where to get more information from, on using these files.

Asking for help
Now that we have seen what these files are and where to get them from, it's
important that you are familiar with how to ask for help and, most importantly,
where. Do remember that most of the maintainers of the HTML5 Boilerplate project
work on it in their free time. The more you spend time being specific about what
you want help with, the faster and better they will be able to help you. Here is how
to ask for help:

• Isolate the problem: What is the exact issue? Use dabblet.com, codepen.io,
jsfiddle.net, or jsbin.com to create a test case that reproduces the issue with
least markup, style, and script. Most of the time the act of doing so will, in
itself, have you find what the issue is.

• If you can reproduce this issue and isolate it to a problem arising because of a
feature of HTML5 Boilerplate, go to github.com/h5bp/html5boilerplate.
com/issues and use the Search field to check if it has already been reported.
If not, create a new issue with a link to your test case.

http://tinkerbin.com
http://tinkerbin.com
http://jsfiddle.net
http://jsfiddle.net
http://jsbin.com/

Before We Begin

[14]

• If this issue is not a result of HTML5 Boilerplate, but an interaction that
you can't quite place, go to stackoverflow.com/questions/tagged/
html5boilerplate and create a question linking to the isolated test case.
Make sure you tag the question as html5boilerplate or h5bp, so one of the
maintainers can catch it and answer quickly.

• If it is a small enough question to be asked on Twitter, tweet at
https://twitter.com/h5bp with a link to the test case and the
specific section you want help with.

Lea Verou has written a great article on submitting
browser bug reports at coding.smashingmagazine.
com/2011/09/07/help-the-community-report-
browser-bugs/and it is equally useful for asking for
help with any open source web development project.

Summary
In this chapter, we have learnt about why HTML5 Boilerplate is a great toolbox
for a web developer. In addition, we have seen what features are most useful for
your web development projects and what each of the files in HTML5 Boilerplate
does. We have also spent some time looking at where to get the files for HTML5
Boilerplate and how to ask for help. In the next chapter, we will get started with
a sample project using HTML5 Boilerplate.

Starting Your Project
You would like to get up and running as quickly as possible with your projects, and
in this chapter we will see some of the quickest ways to do so with HTML5 Boilerplate.

There are many flavors of HTML5 Boilerplate to choose from, and we will look
into some of the mechanisms of creating your starting folder and take a look at
the immediate tasks you can take care of once you get going.

Creating your initial project folder
HTML5 Boilerplate is available in three versions from the website, as we saw in the
previous chapter. Here are two of the quickest ways to get started with the latest files:

• Download the latest version of HTML5 Boilerplate for every new project you
start with

• Maintain a local, up-to-date copy of the HTML5 Boilerplate and use a script
to copy files into your project

We will look at both these ways now.

Downloading the latest version of HTML5
Boilerplate
This is the easiest way to get started with the latest files on HTML5 Boilerplate.
If you are conversant with Git, you can download HTML5 Boilerplate as a folder.
In your command-line interface, navigate to the folder where you store your projects
typically, and then enter the following command in your command-line interface:

git clone git://github.com/h5bp/html5-boilerplate.git

Starting Your Project

[16]

This will download a folder called html5-boilerplate to that folder. You can then
rename it to your own project and get started with it.

If you are unfamiliar with the command-line interface, you can download the latest
files as a ZIP file and unzip it into a folder that you can rename to the project you
want to work with.

If you find these options tedious, I recommend you go with the shell script. However,
it requires you to have Git set up and be familiar with the command-line interface.

If you are on Windows, be sure to download Cygwin at sources.
redhat.com/cygwin/cygwin-ug-net/cygwin-ug-net.html
and use it for typing all the command lines that I mention.
There is also an illustrated guide to setting up and using Git on
Windows at nathanj.github.com/gitguide/tour.html.

Using the shell script
Using this script, we will set up a local repository for HTML5 Boilerplate that can
be kept up-to-date with the changes that are made in the project.

Go to a folder where you want to keep your copy of the latest HTML5 Boilerplate files
that you would like to use as a reference for all your projects. In my case, I would like
to keep it in a folder called source.

Then, use the same command-line script as mentioned in the previous section to
download the latest copy of the files. The script is as follows:

git clone git://github.com/h5bp/html5-boilerplate.git

Instead of renaming the folder, we will let this folder be as it is. Next, we shall copy
the createproject.sh shell script to this folder.

In your shell, navigate to the html5 Boilerplate folder, and download the
createproject.sh file as shown in the following command-line script:

curl https://raw.github.com/h5bp/ant-build-script/master/createproject.sh
> createproject.sh

Make sure it is executable by executing the following in the shell:

chmod +x createproject.sh

Chapter 2

[17]

The execution of these command-line scripts are shown in the following screenshot:

Then execute the following script from the command line:

./createproject.sh <project-name>

This will create a folder titled with the project name in the parent folder of the html5-
boilerplate folder. If you want your project files to be located elsewhere, you can
also use the absolute path to the project folder, as shown in the following script:

./createproject.sh /Users/divya/projects/<project-name>

Creating our project
Throughout this book, we will be working on an example project to understand
how to use HTML5 Boilerplate. All our project source files are available at
nimbu.in/h5bp-book/sun-shine-festival-2012/.

Let us pretend that we need to create a website for a hypothetical sun and sand
festival in Ngor and Terou Bi, Dakar, Senegal, November 12, 2012 to November 16,
2012. I would like to label this project as sun-sand-festival-2012.

I store all my projects in a projects folder, and all my frameworks and starter kits
in a source folder.

In my source folder, I have the html5-boilerplate folder that I initially created
with the following script:

git clone git://github.com/h5bp/html5-boilerplate.git

http://nimbu.in/h5bp-book/sun-shine-festival-2012/
http://nimbu.in/h5bp-book/sun-shine-festival-2012/

Starting Your Project

[18]

I keep it up-to-date regularly by pulling the latest changes in the master repository
hosted on Github, using the following script:

git pull origin master

I also have the createproject.sh shell script in the same folder, which we will use
to create our new project. In the shell interface, I navigate to the html5-boilerplate
folder and enter the following script:

./createproject.sh ../projects/sun-sand-festival-2012

This creates the project folder with all the required files to get started. The files that
are created are shown in the following screenshot:

House-keeping
Now we have our project ready, let us get started with some basic housekeeping that
we would need to do with any project. Open the project in any text editor you are
comfortable using.

I highly recommend the cross-platform Sublime Text text editor,
downloadable from www.sublimetext.com, if you are looking
for a good text editor. The command-line masters might want to
try using the Vim text editor, downloadable from www.vim.org.

Setting the tags
Our index.html page contains a few tags that we need to fill in:

<title></title>
<meta name="description" content="">

For the title tag for our project, let us enter the following:

<title>Home | Sun and Sand Festival 2012, Dakar</title>

Chapter 2

[19]

The meta tag with a name description is useful when the site is listed in search engine
results. This tag would be used to render the snippet of text explaining what this page
is about. Let us set this to the following:

<meta name="description" content="Sun and Sand Festival is occurring
between Nov 12 to Nov 16 2012 at the Ngor and Terou Bi, Dakar
featuring performances by top Senegal artists">

Editing favicons
Adding favicons would be the next trivial thing that most of us forget to do when we
start a project. This is the next easy goal that you can reach, before you need to start
thinking about the code you will be creating.

Favicons help in uniquely identifying your website. As the following screenshot
shows, having a favicon makes it easy to tell which tab or bookmark you want
to visit:

Starting Your Project

[20]

Touch icons are useful when your page gets added to the home screen on iOS
(as shown in the following screenshot on the right-hand side) and Android
devices (as shown in the following screenshot on the left-hand side):

HTML5 Boilerplate comes with a set of icons in the root folder that are of the right
sizes for all the required icons for both touch screen icons (used by both Android
and iOS devices) and favicons. You can use them as a guide when you are working
on your icons.

Chapter 2

[21]

HTML5 Boilerplate comes with the following set of icons:

• favicon.ico: The default icon used by desktop browsers to render the icons
on tabs or next to the title.

• apple-touch-icon.png: If nothing else is specified, iOS will use this icon to
render on the home screen. Unfortunately, this also means iOS will add its
own effects such as drop-shadow, rounded corners, and reflective shine on
top of this icon. This is also a good fallback icon format if nothing else is
supported, for example, iOS 1 and BlackBerry OS 6.

• apple-touch-icon-precomposed.png: This prevents iOS from applying any
kind of effects on top of your icon and have it be presented as it is. Providing
this icon will also ensure that Android 2.1 and above devices will use this as
the icon when your web page is added to the home screen.

• apple-touch-icon-57x57-precomposed.png: This will be used by iOS devices
that do not have Retina display.

• apple-touch-icon-72x72-precomposed.png: This will be used by iPad,
which does not have a high-resolution display.

• apple-touch-icons-114x114-precomposed.png: This will be used by
high-resolution iPhone Retina displays.

• apple-touch-icons-144x144-precomposed.png: This will be used by
high-resolution iPad Retina displays.

The rationale for why we have so many icons has been documented by Mathias
Bynens at http://mathiasbynens.be/notes/touch-icons.

Hans Christian Reinl hosts a PSD template of all the icons at
drublic.de/blog/html5-boilerplate-favicons-psd-
template/, you can use to get started with creating icons for
your project. If you need direction on how to create these icons,
Jon Hicks writes about how to do so at www.netmagazine.
com/features/create-perfect-favicon.

If you have the graphic elements necessary for creating icons, you can get started
with adding these icons to the root folder of the project. It is likely that you would
forget to do it later when deadlines loom.

Starting Your Project

[22]

For our sun and sand festival example, we already have critical graphic elements
assembled, the following screenshot shows the icons generated from the PSD template:

Adding third-party libraries
If you already have a list of libraries that you will be using, you can start adding them
into the folder.

HTML5 Boilerplate comes with the latest stable version of jQuery, so you already
have that. If you are inclined to use other libraries such as jQuery UI, you can copy
them over to the libs folder.

Suppose you would like to use jQuery UI for your project, available at www.jqueryui.
com, then copy the latest version of jQuery UI to the libs folder and then at the bottom
of the markup in index.html, refer to it using the script tag.

Using a Content Delivery Network
By using a Content Delivery Network (CDN), we can reduce the number of resources
to serve on our web servers and by referring to resources that are universally hosted by
Google or Microsoft, it is more likely that the file will be cached, as a lot of other sites
the user visits will also be referencing this particular resource.

If you paid close attention, you would have noticed that the source for the script that
links to jQuery is different from our jQuery UI source. This is for two reasons, which
are explained in the following sections.

Chapter 2

[23]

Protocol-relative URLs
Typically most URLs that link to assets on the Web start with http://. However, there
are occasions when the page is hosted on a server that uses encrypted communication.
So, your page will be served with https:// instead of the typical http://. Alas, as
your script source is still referenced with the http:// protocol, IE will throw a nasty
dialog asking the following question to the visitors on your page:

You definitely do not want your visitors panicking over this. So, the easiest way to
prevent this is to remove the protocol (http:) part of the URL completely, as follows:

//ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js

This way, the browser will use whatever protocol the page has been served with for
the request. You can learn more about protocol-relative URLs in the Appendix section.

Of course, this means if you are testing locally, and if you view your page on the
browser, the browser will use a URL that looks like file://users/divya/projects,
and hence the browser will attempt to look for a jQuery file using the following URL:

file://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js

This request will definitely fail, as there is no resource locally at that path. Hence, if
you are using protocol-relative URLs, you need to set up a local server to test your
files. This is easily done on a Mac or Unix-based OS by navigating to your project
folder in your shell interface and executing the following command:

python -m SimpleHTTPServer

This will start a server and your project's index.html file will be available on
http://localhost:8000.

Starting Your Project

[24]

If you are on Windows, copy the Mongoose executable (the
latest version at the time of writing was mongoose-3.3.exe)
from code.google.com/p/mongoose/ to your project folder
and launch it. Your project's index.html will then be available
at http://localhost:8080.

Google CDN hosting
Google hosts a lot of popular JavaScript libraries. A list of all libraries hosted on
Google's CDN is available at code.google.com/apis/libraries/devguide.html.

We could take advantage of Google's CDN for jQuery UI too, as it is hosted on it.
Let us convert it to use Google's CDN by changing the source of the script file from
js/libs/jqueryui-jquery-ui-1.8.17.min.js to the following:

//ajax.googleapis.com/ajax/libs/jqueryui/1.8.16/jquery-ui.min.js

But wait! Let us take a look at how we refer to jQuery CDN in HTML5 Boilerplate.
This is shown in the following code snippet:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.
js"></script>
<script>window.jQuery || document.write('<script src="js/vendor/
jquery-1.8.2.min.js"><\/script>')
</script>

Do you notice how we also refer to a local copy of the jQuery file? We do this just so
that in the event Google's CDN fails, we still have our local copy to use. Granted this
does not happen often, but it is useful to have a fallback when or if it does.

The statement window.jQuery || document.write(…) does two things. These are
as follows:

• Check if the jQuery object exists: If it does, it means Google's CDN worked.
If it exists, do nothing.

• If the window.jQuery object does not exist: This means Google's CDN failed;
it immediately renders a script tag with a reference to the copy of jQuery
in the project's libs folder. This tells the browser to immediately make a
request for that resource.

We can do something similar for jQuery UI.

Chapter 2

[25]

All jQuery plugins are objects within the jQuery object. So, we only need to verify
whether the plugin object exists and if it doesn't, load the copy of the plugin in the
libs folder, using the following code snippet:

<script>window.jQuery.ui || document.write('<script src="js/libs/
jqueryui-jquery-ui-1.8.17.min.js"><\/script>')
</script>

Hence, our complete script file for referencing jQuery UI would be as shown in the
following code snippet:

<script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.8.16/jquery-
ui.min.js "></script>
<script>window.jQuery.ui || document.write('<script src="js/libs/
jqueryui-jquery-ui-1.8.16.custom.min.js"><\/script>')
</script>

There are other CDNs that host libraries too. The cdnjs.
com URL hosts a lot of JavaScript libraries. Microsoft also
hosts a few libraries on its CDN; the list is available at
www.asp.net/ajaxlibrary/cdn.ashx.

Adding Google Analytics ID
This is another of those minor actions that gets forgotten when deadlines come
calling. HTML5 Boilerplate already provides the ready snippet for you to use.
All you need to include is the unique identifier for your website.

Note that HTML5 Boilerplate includes the snippet at the footer of the page, which
means the metrics get sent only after the page is loaded. However, there are a few
people who believe Analytics should occur even before the page gets loaded to
measure who leaves the page even before it has completed loading. If you would
like to do that, you should move the Analytics snippet to just above the closing
</head> tag in the index.html page.

Updating humans.txt
humans.txt makes known the people who have worked on a website. Anyone can
simply visit example.com/humanx.txt to immediately know the names of people
who have worked on that website. Add your name and those of your team members
to the humans.txt file that comes within HTML5 Boilerplate.

Starting Your Project

[26]

For our sun and sand festival example, the following screenshot shows how our
humans.txt will look:

Summary
In this chapter, we looked at how to get started on a project with HTML5 Boilerplate
and the first steps we should take in our new project. On the way, we learned about
protocol-relative URLs and linking to libraries hosted on CDNs. We updated the
humans.txt file and the icons to be used in our project. All the changes that we
have made so far to our example project are available at nimbu.in/h5bp-book/
chapter-2/. In the next chapter, we will look at writing some code for our project.

http://nimbu.in/h5bp-book/chapter-2/

Creating Your Site
Now that we have done all the basic housekeeping with respect to our project, let us
look at the actual task of building this site. We will first start with the markup, jump
into the stylesheets, and finally add interactivity with scripts.

Working on the markup
We have a simple design in mind for our Sun and Sand festival project. The design is
shown in the following screenshot:

Creating Your Site

[28]

Looking at how it is organized, the broad structure of the page is explained as follows:

• Header: A banner logo with a set of navigation links
• Main content: The meat of the page with sections that the navigation links

will link to
• Left column: This contains the main content
• Right column: This contains the secondary information that would be

interesting to the viewers, but not essential
• Footer: Sponsor logos and an audio player with music of artists, who will

be participating in the festival

Creating the markup
The HTML5 Doctor has a list of all elements that you can use in a web page at
html5doctor.com/element-index/. Comparing this to the list we made earlier,
it looks like the header tag would be good to park our logo and navigation links
in, while the sponsor logos and audio player can go inside the footer tag. That
leaves us with the main content; it seems like the div tag with the role of main
would be the best fit for it!

Here is the markup we end up with. The index.html page in Chapter 2, Starting
Your Project, contains the following code as well:

<header>
 Skip Navigation

 <h1>Sun & Sand Festival 2012</h1>
 <h2>Ngor& Terou Bi, Dakar</h2>
 <nav class="site-nav">
 Tickets
 <ahref="#about">About
 Line-up
 Contact
 Getting Here
 </nav>
</header>
<div role="main">
 <section id="primary">
 <article id="tickets">

 </article>
 <article id="about">

Chapter 3

[29]

 </article>
 <article id="lineup">

 </article>
 <article id="contact">

 </article>
 <article id="gettinghere">
 </article>
 </section>

 <aside id="secondary">
 <article>
 <h2>Get some sun!</h2>

 Follow us on twitter</
a>!
 Stalk us on facebook!
 Get some sun through <a href="http://flickr.com/photos/
sunnsand">flickr!

 </article>
 </aside>
</div>
<footer>
 <article class="sponsors">
 Boca-Cola
 Darbucks
 Kugle
 Pling
 </article>
 <audio src="audio.webm" controls></audio>
</footer>

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Creating Your Site

[30]

Deciding which element to use
With HTML5, we have a glut of elements to choose from, causing choice paralysis
for some of us. If there is anything in the structure of your document that seems to
very obviously fit any of the new elements, go ahead and mark them so. If they don't,
continue using div or any other element that seems to obviously fit.

In our code, we use the section element when we have primary content that is
structurally different and the article element for which we have similar, but
repeating sections of content. Your views on these choices may well be different;
in which case, I recommend you choose what you are comfortable with.

If you wish to know more about the new HTML5 elements, I recommend you check
out the chapter on semantics in HTML5: Up & Running, Mark Pilgrim, O'Reilly, under
the Google Press imprint, at diveintohtml5.info/semantics.html.

Writing valid markup
Writing valid markup ensures your page behaves consistently across all browsers
that render it. Valid markup refers to markup that adheres to the Web standards
that browsers comply with. This way, you will prevent any unpredictable behavior.

The easiest way to write valid markup is to use tools that validate it instantly as and
when you save your file.

In Chapter 2, Starting Your Project, I recommended using Sublime Text and Vim
for Web development. Both of these tools have inline validation that you can use
to write valid markup. Moreover, these tools also provide autocompletion of tags
and elements that make writing valid markup trivial.

In the event of you not having access to these tools, I recommend using validator.
w3.org/ to validate your markup.

It is essential to have these tools automated for you to make sure you reduce
any issues with your site to the absolute minimum.

Creating the styles
Now that we have the markup ready, let us look at how we should be styling it.
HTML5 Boilerplate comes with a stylesheet that has the best default styles. If you
open main.css, you will find the following section in between the Chrome Frame
prompt style rules and the Helper classes section:

http://validator.w3.org/

Chapter 3

[31]

This is where we will compose our style rules. Later on, we will look at how
you can use some of the style frameworks to make writing this easier with
Sass (http://sass-lang.com) or Less (http://lesscss.org/).

Without even writing a line of CSS, you will note that our page looks like the
website displayed in the following screenshot:

This default style is thanks to the normalize style rules that are available in
HTML5 Boilerplate.

Why not reset.css?
For a very long time, the recommendation was to use reset.css, which is available at
html5doctor.com/html-5-reset-stylesheet/ and resets the margin and padding
of every available element to 0, in addition to making the font size of all headings the
same as the body text and without a higher font weight.

HTML5 Boilerplate recommends against this policy. Browsers provide useful browser
defaults, which would make your stylesheets smaller as you don't have to redeclare
those styles again.

http://sass-lang.com
http://sass-lang.com
http://lesscss.org/

Creating Your Site

[32]

With normalize.css, you wouldn't be seeing the following kind of clutter in your
debugging tools:

Nicolas Gallagher, one of the co-creators of normalize.css, has written in great
detail about why it is better than reset.css at nicolasgallagher.com/about-
normalize-css/, which is a good read for those still unconvinced about the
merits of normalizing CSS.

Helpful style classes we can use
In Chapter 1, Before We Begin, we briefly saw that HTML5 Boilerplate comes with a
bunch of default classes that are useful to work with. You would have noticed that
we are using some of these classes in our style rules.

All our helper classes are defined last, so they can override all your other styles
when used. Make sure the properties they override are not over-specified elsewhere;
you can read more about specificity at www.w3.org/community/webed/wiki/
Inheritance_and_cascade#Specificity.

http://nicolasgallagher.com/about-normalize-css/

Chapter 3

[33]

Image replacement
In our project, we want to have a spiffy logo for the Sun & Sand Festival 2012
heading. HTML5 Boilerplate has a handy image replacement class that can be used
for this. In the markup, we will simply add a class called ir to the h1 tag, as shown
in the following code:

<h1 class="ir">Sun & Sand Festival 2012</h1>

What this does is apply the styles specified in HTML5 Boilerplate's image replacement
class (ir) to hide the text. All you need to do then is add a background image to the
h1 element along with its width and height, so it displays as per your specification as
shown in the following code:

header h1 {
background-image: url('/img/heading-banner.png');
width: 800px;
height: 300px;
}

This will result in the heading looking similar to the following screenshot:

Hiding elements
Our markup has content, which we want to show only when a user clicks.
In our website, we want a Google Map to show, when the user clicks on the
Getting Here link. It is very simple to do so by using an iframe, as shown
in the following code snippet:

<iframe width="425" height="350" frameborder="0" scrolling="no"
marginheight="0" marginwidth="0" src="http://maps.google.com/maps?f=q
&source=s_q&hl=en&geocode=&q=ngor+terrou+bi,+dakar,+
senegal&aq=&sll=37.0625,-95.677068&sspn=90.404249,95.9765-
62&ie=UTF8&hq=ngor&hnear=Terrou-Bi,+Bd+Martin+Luther+Kin
g,+Gueule+Tapee,+Dakar+Region,+Guediawaye,+Dakar+221,+Senegal&t=
m&fll=14.751996,-17.513559&fspn=0.014276,0.011716&st=10
9146043351405611748&rq=1&ev=p&split=1&ll=14.711109,-
17.483921&spn=0.014276,0.011716&output=embed">
</iframe>

Creating Your Site

[34]

But this means, as soon as your page loads in a browser, the browser will attempt
to show the map immediately and fetch assets from Google Maps. But we only want
this map to show when the user clicks on the Getting Here link. HTML5 Boilerplate
provides a class name that you can use for such purposes. We will apply a class
called hidden to make sure these elements do not render until they are explicitly
made to display. The hidden class is used in the following code snippet:

<iframe class="hidden" width="425" height="350" frameborder="0"
scrolling="no" marginheight="0" marginwidth="0" src="http://maps.
google.com/maps?f=q&source=s_q&hl=en&geocode=&q=ngor
+terrou+bi,+dakar,+senegal&aq=&sll=37.0625,-95.677068&ss
pn=90.404249,95.976562&ie=UTF8&hq=ngor&hnear=Terrou-Bi,+Bd
+Martin+Luther+King,+Gueule+Tapee,+Dakar+Region,+Guediawaye,+Dakar+22
1,+Senegal&t=m&fll=14.751996,-17.513559&fspn=0.014276,0.0
11716&st=109146043351405611748&rq=1&ev=p&split=1&
ll=14.711109,-17.483921&spn=0.014276,0.011716&output=embed">
</iframe>

Do note that this makes the content disappear from screen readers and the
browser displays.

Screen readers are devices used to aid in reading a web page for those
who are unable to view text on the screen. Victor Tsaran has a great
introduction to screen readers in a video available at www.yuiblog.
com/blog/2007/05/14/video-intro-to-screenreaders/.

The rule that makes this happen is as follows:

.hidden {
display: none !important;
visibility: hidden;
}

This ensures all screen readers (JAWS and Windows-Eyes being the most popular
ones) would hide all elements that have this class name applied to them.

If you want the content to be available to those who use screen readers, you should
use the next class that we will be learning about the visuallyhidden class.

Chapter 3

[35]

Hiding elements visually
Sometimes, you don't want to render something to the screen, but have it available
for screen readers using a Skip Navigation link. This would ensure that those who
use screen readers can skip to the meat of the content immediately rather than listen
to a list of navigation links. So, let's add this class to our Skip Navigation link that
we have in the header, as shown in the following code:

Skip Navigation

This makes the link disappear from our screen, but is it available to screen readers.
The web page displayed in the following screenshot does not show the Skip
Navigation link:

The CSS rule that makes this happen is as follows:

.visuallyhidden {
border: 0;
clip: rect(0 000);
height: 1px;
margin: -1px;
overflow: hidden;
padding: 0;
position: absolute;
width: 1px;
}

A typical solution used to involve having them positioned absolutely with a
height of 0px, but this would prevent Apple's VoiceOver screen reader from
reading the content.

Another solution involves using the text-indent property to position the text
off-screen, but then care needs to be taken when content is written in Right-To-Left
language, where this solution would fail.

Creating Your Site

[36]

Using the clip property would avoid all of these problems, while having the content
readable across all screen readers.

Jonathan Snook writes about why the clip property is the
best way to hide content visually, but still have it available
for screen readers, at snook.ca/archives/html_and_
css/hiding-content-for-accessibility.

Those who extensively use keyboard navigation would also want to skip navigation.
But, because it is visually hidden, they would not know that this option exists. For
this case, you want this to be available when this element is in focus. Let us add an
additional class called focusable to make this available for our Skip Navigation
link that would make this option visible when they make this link active via
keyboard navigation.

Skip Navigation

The following screenshot shows how the Skip Navigation link is instantly visible
when the user switches keyboard focus to it:

Hiding elements without impacting layout
In our website, we want a tabbed display of line up over several days, as shown in
the following screenshot:

Chapter 3

[37]

The following is a simplified view of the markup:

<article class="t-tabs t-section" id="lineup">
<nav class="t-tab__nav">
Day 1</
a>
Day 2
</nav>
<ul id="day-1" class="t-tab__body t-grid t-before-1-6 t-after-1-6">
<li class="t-grid__cell t-unit-1-2">

<img width="100" height="100" class="t-media__aside t-image--artist"
src="/img/artist-kidjo.png">
<b class="t-media__body t-title-tabartist t-artist__name">Angelique
Kidjo

<ul id="day-2" class="t-tab__body t-grid t-before-1-6 t-after-1-6">
<li class="t-grid__cell t-unit-1-2">

<img width="100" height="100" class="t-media__aside t-image--artist"
src="/img/artist-sangre.png">
<b class="t-media__body t-title-tabartist t-artist__name">Oumou
Sangre

</article>

Creating Your Site

[38]

The simplest way to do this would be to show only Day 1 and use the hidden class
to hide the rest of the days, as shown in the following code snippet:

<article class="t-tabs t-section" id="lineup">
<nav class="t-tab__nav">
Day 1</
a>
Day 2
</nav>
<ul id="day-1" class="t-tab__body t-grid t-before-1-6 t-after-1-6">
<!--list content below -->

<ul id="day-2" class="t-tab__body t-grid t-before-1-6 t-after-1-6
hidden">
<!--list content below -->

</article>

By hiding the elements, we make the dimensions that they occupy vanish to 0. This
means the area previously occupied by that content collapses.

As the user clicks on one or the other navigation links for each day's line up, the
content for each day will frequently be hidden and shown, which will look jarring,
as shown in the following screenshot:

Chapter 3

[39]

In such a case, we can use the helper class invisible to make the element not render,
but maintain its dimensions; it will not be visible on the screen or be available to screen
readers. As you can see in the following screenshot, the TICKETS section does not
change its position depending on which tab is active:

Clearing floats
We are positioning the image elements on the left-hand side of the artists' names.
We do this by floating the images to the left. Luckily for us, we do not have any content
that follows the container with floated elements. If we did, then that content would be
overlaid on top of the floated element. You can prevent this from occurring by setting
a class called clearfix on the parent container of the floated elements. In our case, to
ensure our floated elements never trigger this behavior, we shall add the clearfix
class to the parent element of the artist image element:

To learn more about how the clearfix class works, read about it in Appendix, You
Are an Expert, Now What?

Now that we have taken care of the basic essentials, let us apply styles to spruce
up the page itself to look more like the design we had in mind. The following code
snippet shows how to add styles to our page:

html {
background: url('/img/waves-bg.png') repeat-x,
url(/img/heading-banner-back.png) 50% 100px no-repeat,

Creating Your Site

[40]

url(/img/bg-active.png) 50% 72px repeat-x,
url('/img/bg.png') #e7dcbb;
box-sizing: border-box;
margin: 0 1em;
font: 100%/1.5 georgia, serif;
}

body {
max-width: 80%;
margin: 0 auto;
text-align: center;
}

.t-tabs {
min-height: 400px;
position: relative;
}

.t-tab__body {
position: absolute;
left: 0;
right: 0;
}

.t-tab__navitem--active {
position: relative;
}

.t-tab__navitem--active::after{
position: absolute;
bottom: -2em;
left: 0;
height: 2em;
width: 100%;
content: "";
border-radius: 0 0 20em 20em;
background: #305da1;
box-shadow: 0 -0.3em 0 0 #77aec3 inset, 0 0.3em 0 0 #1A9DC8;
}

/* TICKETS */
.t-tickets__currency {
font-family: georgia, serif;
text-align: center;

Chapter 3

[41]

position: absolute;
transform-origin: 100% 100%;
transform: rotate(-90deg) translate(0, -2.1em);
 }

/* MEDIA OBJECT */
.t-media,
.t-media--column,
.t-media--row,
.t-media__body {
text-align: left;
list-style: none;
}
.t-media--row .t-media__aside {
float:left;
margin-right: 16px;
}

/* Image replaced social media links */
.t-links__item--twitter,
.t-links__item--facebook,
.t-links__item--flickr {
padding: 0.25rem 1rem;
display: inline-block;
}

.ir.t-links__item--twitter,

.ir.t-links__item--facebook,

.ir.t-links__item--flickr {
background-size: contain;
background-repeat: no-repeat;
width: 1rem;
height: 1rem;
background-position: center center;
display: inline-block;
}

.ir.t-links__item--twitter {
background-image: url(/img/logo-twitter.svg);
}

.t-title--h1,

.t-title--h2,

.t-title--navsite,

Creating Your Site

[42]

.t-title-tabartist {
font-family: FolkSolidRegular, sans-serif;
text-transform: uppercase;
color: #E4773A;
text-shadow: 3px 3px 1px #C84134,
 4px 4px 1px #C84134;
letter-spacing: 2px;
}

Writing valid stylesheets
When we went through that, you might have noticed that the styles have no typos
whatsoever. The kind copy editors have no doubt done a wonderful job, but I realize
you have no such assistants when you write your stylesheets! An errant typo could
cause us untold trauma as we hunt why a particular style does not get applied.
This is why it is important to also automate validation of your styles and use
autocompletion to automate as much of your style declarations as possible.

Sublime Text and Vim both have autocompletion of CSS properties available,
and you can automate the insertion of the semicolon at the end too! If you have no
access to these tools, you can use the online CSS validator at jigsaw.w3.org/css-
validator/ to test your CSS.

There is another way to automate writing valid and productive style rules—by using
an alternative style language that compiles into CSS. We shall be looking into some
of these languages next.

Style languages to write productive
stylesheets
For a very long time, the only way to write stylesheets was to use the syntax that
W3C provided for within the specifications that it produced. However, there are a
lot of productivity benefits to be gained by using some programming logic to write
stylesheets. But browsers could only understand syntaxes that are mandated by the
W3C specifications. This means, any style language that uses additional programmable
features should be converted to a browser-understandable typical stylesheet (this is
called compilation).

One of the earliest style languages designed for this is called Sass. Now, we have a
few more, the most popular ones being Sass, Less, and Stylus. In both Sass and Less,
valid CSS is automatically valid Sass and Less code. This makes it trivial to port it
from CSS to these languages.

http://jigsaw.w3.org/css-validator/

Chapter 3

[43]

Typically, you would be writing your style rules in files named as main.scss (if you
are using Sass), main.less (if you are using Less), or main.styl (if you are using
Stylus). Using the compilers that come with each of these languages, these files will
respectively be compiled to styles.css.

Advantages
Using style languages has many merits, such as the following:

• These languages enable you to always write syntactically valid stylesheets
as they all throw an error if you use any invalid syntax.

• All of these languages provide some of the sought-after features in CSS,
such as variables, ability to re-use style rules in other classes without
repeating yourself several times, arithmetic calculations, color functions,
and more.

• You can choose to output expanded readable styles when developing,
and then output a compact performance-optimized, whitespace-stripped
stylesheet when you are using it in production.

Disadvantages
However, using style languages also has some disadvantages, as explained in the
following points:

• While it is easy to convert to Sass or Less, it is not possible to make
modifications in the resulting stylesheet and have those changes be
ported over to their original Sass/Less/Style files. So, you need to
be careful to make sure nobody edits the resulting CSS files.

• Working in a team requires the whole team to co-opt to use one of these
languages. Without that, it is impossible to maintain two forks of the
stylesheets and keep them in sync.

• When debugging, if you are inspecting an element, most debuggers only
reveal the line numbers in a stylesheet and not in the original language
files. This might make it difficult to find out where in your original files
the particular rule would be found.

Creating Your Site

[44]

Where to learn?
If you are interested in learning more about these languages, read on for some good
places to get started.

Sass
The official website is sass-lang.com. Chris Coyier has a good introduction video
on Sass at css-tricks.com/video-screencasts/88-intro-to-compass-sass/.

Less
The official website is lesscss.org. A video overview of Less is available at net.
tutsplus.com/tutorials/html-css-techniques/quick-tip-you-need-to-
check-out-less-js/

Stylus
The official website is at learnboost.github.com/stylus. A video overview of
Stylus is available at thechangelog.com/post/3036532096/stylus-expressive-
robust-feature-rich-css-language.

Using HTML5 Boilerplate with style languages
If you are fairly confident in navigating your way with any of these languages,
then you could use any of the available ports that we will look at next, to start
your projects:

Sass
There is a fairly up-to-date port of HTML5 Boilerplate to Sass requiring Compass,
which is a framework on top of Sass at github.com/sporkd/compass-html5-
boilerplate.

Less
A less frequently updated port of HTML5 Boilerplate to Less exists at github.com/
m6tt/less-boilerplate.

Stylus
There is no fully functional port of HTML5 Boilerplate available for Stylus,
although using the command-line to convert it to stylus seems to be the easiest
way. More information about using this method can be found at learnboost.
github.com/stylus/docs/executable.html.

http://css-tricks.com/video-screencasts/88-intro-to-compass-sass/
http://css-tricks.com/video-screencasts/88-intro-to-compass-sass/
http://lesscss.org/
http://learnboost.github.com/stylus/
http://learnboost.github.com/stylus/
http://learnboost.github.com/stylus/
https://github.com/sporkd/compass-html5-boilerplate
https://github.com/sporkd/compass-html5-boilerplate
https://github.com/m6tt/less-boilerplate
http://learnboost.github.com/stylus/docs/executable.html

Chapter 3

[45]

Summary
Woah! That was an intense coding session. In this chapter, we almost created
a whole site based on HTML5 Boilerplate. We looked at how to write markup,
styles, and scripts. In addition, we explored some tools to make writing valid
markup and styles easier.

All the changes that we have made so far to our example project are available
at nimbu.in/h5bp-book/chapter-3/.

In the next chapter, we will look at adding some interactivity to this pretty static
page with jQuery and make it easier to navigate around the site.

http://nimbu.in/h5bp-book/chapter-2/

Adding Interactivity and
Completing Your Site

We have created the first cut of how the site will look. While the site looks
pretty readable and navigable, making the interaction smoother would make
it a significantly better experience.

Using jQuery
As we saw in Chapter 2, Starting Your Project, HTML5 Boilerplate provides a handy
and safe way to load jQuery. With jQuery, it is vastly simple to work on writing
scripts to access elements.

If you are writing custom jQuery script either to kick off a plugin you are using or
to do some small interaction, put it in the main.js file in the js folder.

Using other libraries
If you are more comfortable using other libraries, you can also load and use them in
a similar way to jQuery.

The following is how we load jQuery:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.
js"></script>
<script>window.jQuery || document.write('<script src="js/vendor/
jquery-1.8.2.min.js"><\/script>')
</script>

Adding Interactivity and Completing Your Site

[48]

Let us say, you want to use another library (like MooTools), then look up the Google
Libraries API to see if that library is available at developers.google.com/speed/
libraries/. If it is available, just replace the reference with the appropriate reference
from the site. For example, if we want to replace our jQuery link with a link to
MooTools, we would simply replace the following code:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.
js">
</script>

With the following line of code:

<script src="ajax.googleapis.com/ajax/libs/mootools/1.4.5/mootools-
yui-compressed.js">
</script>

We will also download Mootools' minified file to the js/vendor folder locally and
replace the following code:

<script>window.jQuery||document.write('<script src="js/vendor/jquery-
1.7.2.min.js"><\/script>')
</script>

With the following line of code:

<script>window.jQuery||document.write('<script src="js/vendor/
mootools-core-1.4.5-full-compat-yc.js"><\/script>')
</script>

For more information on why we use local copies of the code, please check Chapter 2,
Starting Your Project. But we are pretty happy with our default choice of jQuery, so let
us proceed with it.

Adding smooth-scroll plugin and
interaction
If you have not noticed it already, the website we are building is a single page site!
All content that is required is found on the same page. The way our site is currently
designed, it would mean clicking on one of the site navigation links would scroll
roughly to the section that the navigation link refers to. We would like this interaction
to be smooth. Let us use jQuery's smooth-scroll plugin to provide this.

Let us download the plugin file from the Github repository, hosted on github.com/
kswedberg/jquery-smooth-scroll.

https://developers.google.com/speed/libraries/
https://developers.google.com/speed/libraries/
https://github.com/kswedberg/jquery-smooth-scroll
https://github.com/kswedberg/jquery-smooth-scroll

Chapter 4

[49]

In it, we find a minimized version of the plugin (jquery.smooth-scroll.min.js)
that we shall open in our text editor.

Then copy all the code and paste it within the plugins.js file.

Let us add a class name js-scrollitem to let us distinguish that this element has
a script that will be used on those elements. This way, there will be a lesser chance
of accidentally deleting class names that are required for interactions prompted
via JavaScript.

Now, we shall write the code to invoke this plugin in the main.js file. Open the
main.js file in your text editor and type:

$('.js-scrollitem').smoothScroll();

This will make all the clickable links that link to sections on the same page within
the parent container with class js-scrollitem scroll smoothly with the help of the
plugin. If we have used our HTML5 Boilerplate defaults correctly, adding this will
be more than sufficient to get started with smooth scrolling.

Next, we would like the navigation links in the line up section to open the right-hand
side line up depending on which day was clicked on. Right now, in the following
screenshot, it simply shows the line up for the first day, and does not do anything else:

Adding Interactivity and Completing Your Site

[50]

Let us continue editing the main.js file and add in the code that would enable this.

First, let's add the class names that we will use to control the styling, and the hiding/
showing behavior within our code. The code for this functionality is as follows:

<nav class="t-tab__nav">
<a class="t-tab__navitem--active t-tab__navitemjs-tabitem" href="#day-
1">Day 1
Day 2
</nav>

Now, we shall write the code that will show the element we clicked on. This code is
as follows:

var $navlinks = $('#lineup .js-tabitem');
var $tabs = $('.t-tab__body');

var hiddenClass = 'hidden';

var activeClass = 't-tab__navitem--active';

$navlinks.click(function() {
// our code for showing or hiding the current day's line up
$(this.hash).removeClass(hiddenClass);
});

By checking how we have done so far, we notice it keeps each day's line up always
visible and does not hide them once done! Let us add that too, as shown in the
following code snippet:

var $navlinks = $('#lineup .js-tabitem');
var $tabs = $('.t-tab__body');

var hiddenClass = 'hidden';

var activeClass = 't-tab__navitem--active';

var $lastactivetab = null;

$navlinks.click(function() {
var $this = $(this);
 //take note of what was the immediately previous tab and tab nav
that was active
 $lastactivetab = $lastactivetab || $tabs.not('.' + hiddenClass);
 // our code for showing or hiding the current day's line up
$lastactivetab.addClass(hiddenClass);
$(this.hash).removeClass(hiddenClass);

Chapter 4

[51]

$lastactivetab = $(this.hash);
return false;
}

You would notice that the active tab navigation item still seems to suggest it is
Day 1! Let us fix that by changing our code to do something similar with the
tabbed navigation anchors, as shown in the following code snippet:

var $navlinks = $('#lineup .js-tabitem');
var $tabs = $('.t-tab__body');

var hiddenClass = 'hidden';

var activeClass = 't-tab__navitem--active';

var $lastactivetab = null;
var $lastactivenav = null;

$navlinks.click(function() {
var $this = $(this);
//take note of what was the immediately previous tab and tab nav that
was active
$lastactivetab = $lastactivetab || $tabs.not('.' + hiddenClass);
$lastactivenav = $lastactivenav || $navlinks.filter('.' +
activeClass);

 // our code for showing or hiding the current day's line up
$lastactivetab.addClass(hiddenClass);
$(this.hash).removeClass(hiddenClass);
$lastactivetab = $(this.hash);

 // change active navigation item
$lastactivenav.removeClass(activeClass);
$this.addClass(activeClass);
$lastactivenav = $this;

return false;
});

Bingo! We have our day-by-day line up ready. We now need to ensure our Google
Maps iframe renders when users click on the Locate on a map link. We also want
to use the same link to hide the map if the users want to do so.

Adding Interactivity and Completing Your Site

[52]

First, we add some identifiable features to the anchor element used to trigger the
showing/hiding of map and the iframe for the maps, as shown in the following
code snippet:

<p>The festival will be held on the beautiful beaches of NgorTerrou
Bi in Dakar.
<ahref="#" class="js-map-link">Locate it on a map
</p>

<iframe id="venue-map" class="hidden" width="425"
height="350" frameborder="0" scrolling="no" marginheight="0"
marginwidth="0" src="http://maps.google.com/maps?f=q&source=s
_q&hl=en&geocode=&q=ngor+terrou+bi,+dakar,+senegal&
;aq=&sll=37.0625,-95.677068&sspn=90.404249,95.976562&i
e=UTF8&hq=ngor&hnear=Terrou-Bi,+Bd+Martin+Luther+King,+Gue
ule+Tapee,+Dakar+Region,+Guediawaye,+Dakar+221,+Senegal&t=m&am
p;fll=14.751996,-17.513559&fspn=0.014276,0.011716&st=1091
46043351405611748&rq=1&ev=p&split=1&ll=14.711109,-
17.483921&spn=0.014276,0.011716&output=embed">
</iframe>

Then we use the following JavaScript to trigger the link:

 $maplink = $('.js-map-link');
 $maplinkText = $maplink.text();

 $maplink.toggle(function() {
 $('#venue-map').removeClass(hiddenClass);
 $maplink.text('Hide Map');
 }, function() {
 $('#venue-map').addClass(hiddenClass);
 $maplink.text($maplinkText);
 });

Now, let us look at how we can make our audio player work on all browsers.

Adding HTML5 features safely with
Modernizr
We looked at Modernizr briefly in Chapter 1, Before We Begin, but we haven't used
it for anything much yet. It is highly recommended that we create a custom build
of Modernizr. HTML5 Boilerplate comes with a custom build of Modernizr that
includes every option available in the custom builder (modernizr.com/download/)
including extras such as HTML5Shiv, resource loader (modernizr.load), media
queries test, and the addition of CSS class names to the html tag based on the test
results from Modernizr.

Chapter 4

[53]

The custom build of Modernizr enables HTML5 elements in IE (read more about it
at paulirish.com/2011/the-history-of-the-html5-shiv/). But, now, with our
audio player, we have the opportunity to use the other Modernizr function that is
available as an extra, that is, modernizr.load.

Audio support in browsers is not as simple as we would expect it to be. Different
browsers expect different formats because of licensing restrictions. Some browsers
do not even support HTML5 audio. It would be perfect to use a framework that
abstracts away all these for us. Looking at html5please.com, we see that the
recommended suggestion is to use a framework called mediaelement.js to help
us deal with these issues.

html5please.com is a site that tells you which of these new
features are available for use and how they should be used on
browsers that do not support them.

Let us use this framework for our audio player only when audio support is
not detected.

First, we download the framework from mediaelementjs.com and copy all the
files from the build folder into js/vendor/mediaelement/. Then, we shall add
the cross-browser friendly audio markup for our player in index.html, as shown
in the following code snippet:

<article class="t-audio">
<audio controls preload="none" autobuffer>
<sourcesrc="festival.mp3" />
<sourcesrc="festival.ogg" />
</audio>
</article>

Note that we need to specify the stylesheet in the head element to make sure it
works perfectly on all browsers (instead of loading it just in time), as shown in
the following code:

<link rel="stylesheet" href="js/vendor/mediaelement/
mediaelementplayer.css">

We then load the mediaelement.js only when audio support is missing by using
Modernizr in our main.js file, as shown in the following code:

Modernizr.load({
test: Modernizr.audio,
nope: {

Adding Interactivity and Completing Your Site

[54]

'mediaelementjs': 'js/vendor/mediaelement/mediaelement-and-player.min.
js'
},

callback: {
 'mediaelementjs': function() {
$('audio').mediaelementplayer();
}
}
});

This code first tests if audio is supported with Modernizr. If it is not supported, then
we load the necessary resources to make the audio work using our mediaelement.js
framework. Once mediaelement.js is loaded, we call it, so that it runs and converts
our audio files to a format that browsers which lack audio support will understand.

Chapter 4

[55]

The previous screenshot shows our page rendering on a browser without support for
HTML5 audio (falling back to Flash with mediaelement.js) and in a browser with
support for HTML5 audio (using native controls provided by the browser).

When to use Modernizr.load?
Modernizr.load is a great utility when you have multiple files you want to load
conditionally like in our audio player.

Sometimes, you want something to happen only when the user clicks on a link
or an element. Instead of loading all the required assets beforehand and making
the browser render the page slowly, you can load these assets just in time after
the user has clicked on the element.

Using Modernizr to load CSS features
Modernizr also outputs the results of its tests for various HTML5/CSS3 features on
the html tag of your page, as shown in the following screenshot:

This is very useful if you would like to style experiences based on the kind of features
available. For example, we notice the class name called no-touch in the html element.
This means the browser this page was loaded in, did not support touch interfaces.
If touch was supported, then we could make all links with slightly more padding to
account for large fingers trying to click on them. Let us add styles to our css/style.
css file to do this, as follows:

.touch a {
padding: 0.25em;
background: #CEC3A1;
border-radius: 0.5em;
display: inline-block;
}

Adding Interactivity and Completing Your Site

[56]

Here is how our site looks on a browser that supports touch events (on the left-hand
side) and one that does not (on the right-hand side):

Testing our site
Whew! That was a lot to get by! But wait, we are not done yet! We have written all
the code, but how about some testing? There are so many variants of browsers out
there and it is impossible to test on each and every one of them. Fortunately, it is
pretty simple to test on most major versions of browsers.

If you are on Windows, I recommend you install the latest versions of Opera, Opera
Next, Safari, Chrome, Chrome Canary, Firefox, Firefox Nightly, IE8, and IE10.

If you are on Mac, get every browser listed above, except IE. If you are able to afford it,
buy a Windows Operating System and install it as a virtual image on Virtual Box (www.
virtualbox.org/). Microsoft provides older IEs as virtual images for testing, which
you could also install on Virtual Box using ievms (github.com/xdissent/ievms).

For a far easier but less rigorous testing option—say when you have not yet finalized
your website—try www.browserstack.com or browserling.com.

All of these browsers have developer tools that make it very easy to detect when a
page is not rendered as expected.

https://www.virtualbox.org/
http://www.browserstack.com/
http://www.browserstack.com/

Chapter 4

[57]

Let us test our Sun and Sand Festival website in Internet Explorer 7. At first glance,
everything appears to work as expected. But looking at the tabs, it seems like
everything has gone haywire! The following screenshot displays our page on
the Internet Explorer browser:

To debug this, let us use Firebug Lite to check what styles are being applied on these
elements. You can install Firebug Lite as a bookmarklet on IE7 (http://getfirebug.
com/firebuglite). Clicking on that bookmarklet would enable us to use a constrained
version of Firebug on IE7.

Adding Interactivity and Completing Your Site

[58]

Using Firebug, we see a debugging window, as shown in the following screenshot:

Checking into our main.css, it seems like our media query-based styles are all being
parsed and interpreted by IE7, irrespective of the conditionals within! For example:

.t-unit-1-2{
width: 100%;
}

The previous style was declared within the media query @media only screen
and (max-width: 750px), which is supposed to override the existing rule
(.t-unit-1-2 { width: 50%; }) only if the query is satisfied. But IE7 simply
ignores the features mentioned and blindly applies all the style rules it finds.

Thanks to conditional CSS class names, we can fix this trivially by adding an
additional style rule to the original CSS declaration to prevent this override in
IE6 to IE8. The Appendix, You Are an Expert, Now What? covers conditional CSS
class names in greater detail.

Chapter 4

[59]

HTML5 Boilerplate gives you three class names to use for such cases, described
as follows:

• .lt-ie7: Targets all IE versions that are lower than IE7 with this class name.
This would apply styles to IE 6 and below.

• .lt-ie8: Targets all IE versions that are lower than IE8 with this class name.
This would apply styles to IE6 and IE7.

• .lt-ie9: Targets all IE versions lower than IE9. This would apply styles to
all IE versions 8 and below.

Thanks to this, we can now apply rules that target IE8 and below, which do not
understand conditions in media queries by applying style rules as follows:

.lt-ie9 .t-unit-1-2 {
width: 45%;
}

As IE8 and below also do not support the box-sizing property (Mozilla Developer
Network describes the effects of this property at developer.mozilla.org/En/CSS/
Box-sizing), this means the widths of these boxes will expand as we add padding.
Let us remove the margins on the parent element to prevent the boxes from stacking
up, as shown in the following code snippet:

.lt-ie9 .t-before-1-6,

.lt-ie9 .t-after-1-6 {
margin-left: 0;
margin-right: 0;
}

However, that doesn't quite solve our problem. Then, looking further up, we notice
that our grid cells, that is, the elements with the class t-grid__cell, have the
display property set to inline-block. Knowing that IE7 does not apply this to any
element other than those with natural inline property, we would have to add an
additional declaration to make this work, as shown in the following code snippet:

.lt-ie9 .t-grid__cell {
display: inline;
}

Adding Interactivity and Completing Your Site

[60]

Finally, now this works as we wanted it to!

Let us scroll to the bottom of the page. We notice the prices are all scrambled because
of a lack of CSS3 transforms support in IE7, as shown in the following screenshot:

Chapter 4

[61]

With Modernizr, all we need to do is to add this rule to our stylesheet:

.no-csstransforms .t-tickets__currency {
position: static;
}

This would make it more readable for any browser that does not support CSS
transforms, as shown in the following screenshot:

Adding Interactivity and Completing Your Site

[62]

Scrolling further down, we notice our SVG icons are missing as IE8 and below do not
recognize SVG files, as shown in the following screenshot:

Again Modernizr comes to our rescue! In our main.js file, we will check the outcome
of the SVG test in Modernizr and then replace all the SVG images with their equivalent
PNG ones. Do note that this means you need a PNG equivalent for every SVG file you
use in your HTML page. The code to replace SVG with PNG files is as follows:

if(Modernizr.svg == false) {
 $('img[src$=".svg"]').each(function() {
 this.src = /(.*)\.svg$/.exec(this.src)[1] + '.png';
 });
}

Chapter 4

[63]

Why use SVG?
We are using SVG icons as these can scale as per our needs of a
responsive website, as SVG is a vector image format. Moreover,
they are extremely lightweight compared to typical PNG files
and can load significantly faster than PNG formats.

The following screenshot shows how IE7 renders the icons in PNG format thanks
to Modernizr:

As you get into web development, you should spend more time using browser
developer tools; Andi Smith wrote a good post outlining some of the features
of each of them at andismith.com/blog/2011/11/25-dev-tool-secrets/.

Adding Interactivity and Completing Your Site

[64]

Testing on non-desktop browsers
Let us look at how the site looks on smaller-scale devices. The quickest and easiest
way to do this would be to download Opera Mobile Emulator from www.opera.com/
developer/tools/mobile/ and use one of the several available options to load our
page. This emulator is shown in the following screenshot:

Choose one of the options on the left-hand side of the emulator and click on the
Launch button to open an Opera browser instance that emulates how it would
appear on the device you have selected.

For example, the following screenshot shows how our page renders on an instance
of Opera Mobile Emulator for Amazon Kindle Fire:

Chapter 4

[65]

The best part is that the Opera Mobile browser is one of the most modern mobile
browsers available, which makes it a very good browser to test on when you are
actively developing your website. It is also available on a wide variety of devices,
which makes it easy to use Opera Mobile Emulator for testing various device
widths if you are using media queries to style the page to adapt to different
device dimensions.

If you also possess an iPhone running iOS 6, it is fairly easy to use Remote
Debugging with Safari 6 and inspect the code using Safari developer tools
(Max Firtman has more information on how to enable this at http://www.
mobilexweb.com/blog/iphone-5-ios-6-html5-developers).

Adding Interactivity and Completing Your Site

[66]

If you have an Android device, you can enable debugging with Chrome for
Android browser, but you need to install Android developer tools to do so.
More help on how to do this is found in this guide to remote debugging on
Chrome for Android at https://developers.google.com/chrome/mobile
/docs/debugging.

If you have multiple mobile devices that run different browsers
available at your fingertips, you can also use Adobe Edge Inspect
from html.adobe.com/edge/inspect/ to test how these pages
look in tandem across all of these devices.

Summary
In this chapter, we looked at adding some interaction to the site using jQuery
plugins. We also looked at how to use Modernizr.load to load scripts to make
it easy to conditionally detect support for HTML5 audio and load resources for
browsers that lack support and render the audio correctly. We also looked at
some of the ways we can debug our site using browser developer tools and
verify how the page appears on various browsers.

In the next chapter, we will look at how to optimize our site server-side on
Apache and other web servers.

Customizing the
Apache Server

Our Sun and Sand festival site is more or less done! But before we deploy it to
production, let us make sure we have optimized the configuration of the server
where the page and the associated files will be served from, so that the end users
can load the page as quickly as possible, while we check against security
vulnerabilities that might cause our site to get hacked.

Server-side configurations
Before we go further, let us briefly look at what a server does. The server understands
a browser's request for a page of your site and then looks for the file the URL requests.
The server then sends the file back to the browser with additional information called
HTTP headers. Apache is the most popular server software for websites, and HTML5
Boilerplate comes with a configuration file for Apache called .htaccess.

Setting up the Apache server
Before we check out the various features of the Apache configuration file provided
by HTML5 Boilerplate, let us set up a local Apache server, so that we can see these
features in action.

Customizing the Apache Server

[68]

Installing Apache
We will look at the installations of Apache on Mac, Windows, and Linux.

Mac
You do not have to do anything special; Apache is already installed. But to use it for
this project, ensure you copy all the files to the website's folder in your home folder
(/~<username>). Edit the /etc/apache2/httpd.conf file to change the following
highlighted code:

<Directory /usr/share/web>
AllowOverride None
 Options MultiViewsFollowSymlinks
 Order allow,deny
 Allow from all
 Header Set Cache-Control no-cache
</Directory>

To the following:

<Directory /usr/share/web>
AllowOverrideAll
 Options MultiViewsFollowSymlinks
 Order allow,deny
 Allow from all
 Header Set Cache-Control no-cache
</Directory>

You will also need to change this entry in /etc/apache2/<username>.conf the
same way.

Windows
You need to download and install Apache on Windows; it can be downloaded from
httpd.apache.org/docs/2.2/platform/windows.html. Note that you need to add
the following code snippet to conf/httpd.conf, located within the folder where the
Apache application is found:

<Directory "/apache/htdocs/">
AllowOverride All
Options None
Order deny, allow
</Directory>

Chapter 5

[69]

Linux
If you are using Ubuntu, there is a friendly documentation available at https://help.
ubuntu.com/8.04/serverguide/C/httpd.html. To enable .htaccess files, used to
configure your Apache server, you need to edit /etc/apache2/sites-available/
default from the following code snippet:

<Directory /var/www/>
Options Indexes FollowSymLinksMultiViews
AllowOverride None
 Order allow,deny
allow from all
 # Uncomment this directive is you want to see apache2's
 # default start page (in /apache2-default) when you go to /
 #RedirectMatch ^/$ /apache2-default/
</Directory>

To the following code snippet:

<Directory /var/www/>
Options Indexes FollowSymLinksMultiViews
AllowOverrideAll
 Order allow,deny
allow from all
 # Uncomment this directive is you want to see apache2's
 # default start page (in /apache2-default) when you go to /
 #RedirectMatch ^/$ /apache2-default/
</Directory>

Customizing the Apache Server

[70]

Configuring Apache
Our folder for HTML5 Boilerplate contains a file called .htaccess. As the
filename starts with a ., it is likely that .htaccess won't show up when you
list your files in Finder/Windows Explorer or other file manager utilities, as
shown in the following screenshot:

But if you enable the hidden files to appear on your OS, you will be able to see this file.

All that is required now is to move our site files (including the .htaccess file) to the
server we just set up. Apache looks for a .htaccess file on all folders (unless told not
to by a configuration setting) and so having our .htaccess file in the parent folder of
our site is just fine.

Using a .htaccess file for testing is not a bad idea in general. However, if you want
to make your site really zippy, it is best to put the configuration directly on the Apache
server's main configuration file (httpd.conf). Unfortunately, not all hosting providers
allow this.

Chapter 5

[71]

If you do have access to the Apache server's main configuration file (httpd.conf),
you should copy the configurations from HTML5 Boilerplate's .htaccess file and
put them within httpd.conf inside a Directory tag, as shown in the following
code snippet:

<Directory /path/to/website/root>
[htaccess rules]
</Directory>

You should then remove the .htaccess file as the directives are already on the
server's main configuration file.

Features available out of the box
Most of the advantages that HTML5 Boilerplate's .htaccess file provides are not
immediately obvious. If your site receives low traffic and does not make too many
network requests, you may not notice any significant difference using HTML5
Boilerplate's .htaccess file. However, when you do have spikes of high activity
(not uncommon!) or suddenly have a lot of network requests for images and
videos that your site requires, HTML5 Boilerplate's .htaccess comes to your
rescue automatically.

All of these features are available to you as soon as you either put a .htaccess file in
the project folder or if you set up Apache's main configuration file as indicated earlier.

Removing ETags
Entity Tags (ETags) validate whether components, that is, images, files, and so on,
in a browser's cache match components on the server. Unfortunately, ETags do more
harm than good. Most servers have ETags available by default, which is why HTML5
Boilerplate's server configuration file prevents a server from serving them, as shown
in the following code snippet:

<IfModule mod_headers.c>
 Header unset ETag
</IfModule>
FileETag None

Steve Souders writes in depth on why ETags fail to solve
the problem they were designed for and why you should
remove them, at developer.yahoo.com/blogs/ydn/
posts/2007/07/high_performanc_11/.

Customizing the Apache Server

[72]

Gzip components
Gzip is the most popular compression method. By compressing your files with Gzip,
you can make sure your files get transferred more quickly, even with low bandwidth
connections. Sometimes the savings are as much as 70 percent of file size, making
this a great performance configuration default.

Let us look at how big our files are without our .htaccess Gzip feature in place. To do
this, we simply comment out that section, as shown in the following code snippet:

#<IfModule mod_deflate.c>
#
Force deflate for mangled headers developer.yahoo.com/blogs/ydn/
posts/2010/12/pushing-beyond-gzipping/
<IfModule mod_setenvif.c>
<IfModule mod_headers.c>
SetEnvIfNoCase ^(Accept-EncodXng|X-cept-
Encoding|X{15}|~{15}|-{15})$ ^((gzip|deflate)\s*,?\s*)+|[X~-]{4,13}$
#HAVE_Accept-Encoding
RequestHeader append Accept-Encoding "gzip,deflate" env=HAVE_
Accept-Encoding
</IfModule>
</IfModule>
#
HTML, TXT, CSS, JavaScript, JSON, XML, HTC:
<IfModule filter_module>
FilterDeclare COMPRESS
FilterProvider COMPRESS DEFLATE resp=Content-Type $text/html
FilterProvider COMPRESS DEFLATE resp=Content-Type $text/css
FilterProvider COMPRESS DEFLATE resp=Content-Type $text/plain
FilterProvider COMPRESS DEFLATE resp=Content-Type $text/xml
FilterProvider COMPRESS DEFLATE resp=Content-Type $text/x-
component
FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
javascript
FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
json
FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
xml
FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
xhtml+xml
FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
rss+xml
FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
atom+xml

Chapter 5

[73]

FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
vnd.ms-fontobject
FilterProvider COMPRESS DEFLATE resp=Content-Type $image/
svg+xml
FilterProvider COMPRESS DEFLATE resp=Content-Type $image/x-icon
FilterProvider COMPRESS DEFLATE resp=Content-Type $application/
x-font-ttf
FilterProvider COMPRESS DEFLATE resp=Content-Type $font/
opentype
FilterChain COMPRESS
FilterProtocol COMPRESS DEFLATE change=yes;byteranges=no
</IfModule>
#
<IfModule !mod_filter.c>
Legacy versions of Apache
AddOutputFilterByType DEFLATE text/html text/plain text/css
application/json
AddOutputFilterByType DEFLATE application/javascript
AddOutputFilterByType DEFLATE text/xml application/xml text/x-
component
AddOutputFilterByType DEFLATE application/xhtml+xml application/
rss+xml application/atom+xml
AddOutputFilterByType DEFLATE image/x-icon image/svg+xml
application/vnd.ms-fontobject application/x-font-ttf #font/opentype
</IfModule>
#
#</IfModule>

Now, let us look at the sizes of files that get delivered to our browser through
the network tools available in browser developer tools (in this case, Chrome
Developer Tools):

Customizing the Apache Server

[74]

Now, let's enable Gzip by enabling the appropriate rules in .htaccess by
removing # from the beginning of the lines. Notice the difference, as shown
in the following screenshot:

If you would like to learn more about Gzip, Chapter 4, Smaller Components, Book of
Speed, Stoyan Stefanov, found at www.bookofspeed.com/chapter4.html, would
be a good place to start from.

Using Expires header for better cache control
Servers can indicate to browsers how long they can keep files in the cache. This
is pretty useful for static files that don't change frequently, and will reduce your
page-load time. HTML5 Boilerplate's .htaccess file has a set of defaults for most
static files, as shown in the following code snippet:

<IfModule mod_expires.c>
ExpiresActive on

Perhaps better to whitelist expires rules? Perhaps.
ExpiresDefault "access plus 1 month"

cache.appcache needs re-requests in FF 3.6 (thanks Remy ~Introducing
HTML5)
ExpiresByType text/cache-manifest "access plus 0 seconds"

Your document html
ExpiresByType text/html "access plus 0 seconds"

Data

http://www.bookofspeed.com/chapter4.html

Chapter 5

[75]

ExpiresByType text/xml "access plus 0 seconds"
ExpiresByType application/xml "access plus 0 seconds"
ExpiresByType application/json "access plus 0 seconds"

Feed
ExpiresByType application/rss+xml "access plus 1 hour"
ExpiresByType application/atom+xml "access plus 1 hour"

Favicon (cannot be renamed)
ExpiresByType image/x-icon "access plus 1 week"

Media: images, video, audio
ExpiresByType image/gif "access plus 1 month"
ExpiresByType image/png "access plus 1 month"
ExpiresByType image/jpg "access plus 1 month"
ExpiresByType image/jpeg "access plus 1 month"
ExpiresByType video/ogg "access plus 1 month"
ExpiresByType audio/ogg "access plus 1 month"
ExpiresByType video/mp4 "access plus 1 month"
ExpiresByType video/webm "access plus 1 month"

HTC files (css3pie)
ExpiresByType text/x-component "access plus 1 month"

Webfonts
ExpiresByType application/x-font-ttf "access plus 1 month"
ExpiresByType font/opentype "access plus 1 month"
ExpiresByType application/x-font-woff "access plus 1 month"
ExpiresByType image/svg+xml "access plus 1 month"
ExpiresByType application/vnd.ms-fontobject "access plus 1 month"

CSS and JavaScript
ExpiresByType text/css "access plus 1 year"
ExpiresByType application/javascript "access plus 1 year"
</IfModule>

This tells the server to cache requests for files of each type as soon as it is accessed
freshly for the period specified by the text "access plus…". For example, consider
the following code snippet:

CSS and JavaScript
ExpiresByType text/css "access plus 1 year"
ExpiresByType application/javascript "access plus 1 year"

Customizing the Apache Server

[76]

This fragment makes the server tell the browser, requesting CSS and JavaScript files,
to cache each of these files for at least a year since the first time it was accessed, unless
the user deliberately clears their cache.

Yahoo's best practices for speeding up your site has a detailed
explanation of what the Expires header does at developer.
yahoo.com/performance/rules.html#expires.

Custom 404 page
HTML5 Boilerplate provides a custom 404 page called 404.html. But, this will never
be used, unless the server knows to serve this file every time a resource is not found.
HTML5 Boilerplate's .htaccess file has a configuration that tells the server to use
this file as follows:

ErrorDocument 404 /404.html

Make sure to refer to the 404.html using the full path. For example, on a Mac, the
full path would be /~<username>/404.html, if you are hosting it in the website's
folder under your <username> folder.

The following screenshot shows how a browser renders the default HTML5
Boilerplate 404 page, when HTML5 Boilerplate's .htaccess file is used:

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html

Chapter 5

[77]

Forcing the latest IE version
Internet Explorer utilizes a meta tag to decide whether it should render a site in
compatibility mode or use the latest rendering engine to render it.

Google Chrome has released a plugin named Chrome Frame, downloadable from
https://developers.google.com/chrome/chrome-frame/ that, if installed on
a user's computer, will provide the experience of a modern browser when the user
uses older versions of Internet Explorer. Your site can opt-in to using this plugin on
a user's computer, when your page is being viewed on older versions of Internet
Explorer. To opt-in to using this plugin automatically, append ", chrome=1" to the
content attribute value for the http-equiv meta tag.

This tag can be set within the HTML file itself, which is what HTML5 Boilerplate
does, as shown in the following code snippet:

<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">

However, as HTML5 Boilerplate uses conditional comments around the html tag,
IE will render the HTML in Compatibility View, not with Chrome Frame. Hence,
using the meta tag with conditional comments around the html tag would not work.
HTML5 Boilerplate's .htaccess file sets this as an HTTP header instead, as shown in
the following code snippet:

<IfModule mod_headers.c>
 Header set X-UA-Compatible "IE=Edge,chrome=1"
 # mod_headers can't match by content-type, but we don't want to send
this header on *everything*...
<FilesMatch "\.(js|css|gif|png|jpe?g|pdf|xml|oga|ogg|m4a|ogv|mp4|m4v|w
ebm|svg|svgz|eot|ttf|otf|woff|ico|webp|appcache|manifest|htc|crx|oex|x
pi|safariextz|vcf)$" >
 Header unset X-UA-Compatible
</FilesMatch>
</IfModule>

This forces IE to respect the HTTP header that is sent, and use the latest rendering
engine irrespective of what the meta tag states. You can also set IE to use whatever
rendering engine you like. We discuss this feature in depth in Appendix, You Are an
Expert, Now What?, under the section What is meta x-ua-compatible?.

There is a great level of detailed testing and comments that informed
our decision to recommend this method for setting IE Compatibility
mode, which is available from the Issue Tracker on Github at
github.com/h5bp/html5-boilerplate/issues/378.

Customizing the Apache Server

[78]

Using UTF-8 encoding
Character encoding is a way to represent your text data in byte sequences. There have
been different standards available for different scripts, for example, Greek, Japanese,
and so on, but the standards body that creates HTML specifications, W3C, strongly
endorses the use of UTF-8 as the de-facto encoding scheme for all text served on the
Web to ensure all browsers can render your text data correctly. The .htaccess file
sets it in the following manner:

Use UTF-8 encoding for anything served text/plain or text/html
AddDefaultCharset utf-8
Force UTF-8 for a number of file formats
AddCharset utf-8 .css .js .xml .json .rss .atom

Edward Z. Yang wrote an informative post on why UTF-8 is the
best choice for character encoding at htmlpurifier.org/docs/
enduser-utf8.html#whyutf8; it is worth reading if you are
interested in this topic.

Serving the right MIME types
A Multipurpose Internet Mail Extensions (MIME) type sent as a HTTP header
helps the browser decide how to process the content that is sent. For example, a
browser needs to know when a file is a stylesheet and when it is a downloadable
text document. This information is provided by the MIME type HTTP header that
the server returns when sending that resource. HTML5 Boilerplate's .htaccess file
ensures your server provides the right MIME type when serving content.

For example, in our Senegal music festival website, we need our Web fonts to be
understood by the browser to be a font file and not garbled text. In our HTML5
Boilerplate .htaccess file, the following lines make sure the server returns the
correct MIME type so browsers can do that:

AddType application/vnd.ms-fontobjecteot
AddType application/x-font-ttfttfttc
AddType font/opentypeotf
AddType application/x-font-woffwoff

More information on MIME types can be found on the
Mozilla Developer Network at developer.mozilla.
org/en/Properly_Configuring_Server_MIME_
Types#What_are_MIME_types.3F.

Chapter 5

[79]

Blocking access to hidden folders
If you use a Version Control System (VCS) to manage your website's code, the
hidden folders used to manage versioning (.git or .svn) are likely to exist in your
production servers too. You do not want anyone to access these files and find any
information that could be used to hack your website. HTML5 Boilerplate prevents
the server from providing content requested of these folders within the .htaccess
file, as shown in the following code snippet:

Block access to "hidden" directories whose names begin with a
period. This
includes directories used by version control systems such as
Subversion or Git.
<IfModule mod_rewrite.c>
RewriteCond %{SCRIPT_FILENAME} -d
RewriteCond %{SCRIPT_FILENAME} -f
RewriteRule "(^|/)\." - [F]
</IfModule>

Blocking access to backup and source files
If you have your databases backed up on the server, for example, database.sql.
bak, you do not want anyone to access that either, nor logfiles or any of your source
files, such as Photoshop files for logos—we know it happens! The following code in
the .htaccess file prevents access to these files:

Block access to backup and source files
This files may be left by some text/html editors and
pose a great security danger, when someone can access them
<FilesMatch "(\.(bak|config|sql|fla|psd|ini|log|sh|inc|swp|dist)|~)$">
 Order allow,deny
 Deny from all
 Satisfy All
</FilesMatch>

This tells the server to look for files that end with any of these extensions:
<filename>.bak, <filename>.config, and so on, and if so, deny processing
requests for such files. It will return a 403 Forbidden error instead.

Customizing the Apache Server

[80]

Starting Rewrite engine
The Apache server requires you to start the rewrite engine before you do any URL
rewriting. The HTML5 Boilerplate .htaccess file enables this as shown in the
following code snippet:

<IfModule mod_rewrite.c>
 Options +FollowSymlinks
RewriteEngine On
RewriteBase /
</IfModule>

If your site is in a subfolder, remove the # from the RewriteBase line and set it to the
full path to the subfolder from the root.

Preventing 404 errors for non-existing
redirected folders
In Apache, you need to disable MultiViews if you want to redirect URLs requested
from paths, that do not exist, to another path.

For example, if you have an incoming request to http://example.com/beaches/10
and you want it to internally redirect to http://example.com/index.php?q=10 and
the folder beaches does not exist in the root folder of your website, Apache would
throw an error. The HTML5 Boilerplate's .htaccess file prevents this from occurring
by using the following code statement:

Options -MultiViews

Additional customizations
Many additional customizations are provided but are commented out, as they
require careful consideration and sometimes may have unwanted repercussions.

Suppressing or forcing the "www." at the
beginning of URLs
Most of us do not realize that http://example.com and http://www.example.com
are treated as two separate sites by search engines. You can either force rewriting of
URLs to www or the non-www ones. I prefer the non-www URL, because it is three
characters shorter!

Chapter 5

[81]

HTML5 Boilerplate's .htaccess file provides you with choices for doing either of
them. By default, the configuration forces the server to rewrite requests for http://
www.example.com to http://example.com. If you prefer the other way around,
have the server rewrite requests for http://example.com to http://www.example.
com, as described in the following steps:

1. Comment out the default option shown in the following code snippet:
Option 1:
Rewrite "www.example.com -> example.com"
<IfModule mod_rewrite.c>
 RewriteCond %{HTTPS} !=on
 RewriteCond %{HTTP_HOST} ^www\.(.+)$ [NC]
 RewriteRule ^ http://%1%{REQUEST_URI} [R=301,L]
</IfModule>

2. The commented-out default section should now look like the following
code snippet:
Option 1:
Rewrite "www.example.com -> example.com"

<IfModule mod_rewrite.c>
RewriteCond %{HTTPS} !=on
RewriteCond %{HTTP_HOST} ^www\.(.+)$ [NC]
RewriteRule ^ http://%1%{REQUEST_URI} [R=301,L]
#</IfModule>

As you might notice, all we did was add a # character and a space before
each of those lines.

3. Now, we shall enable the second option by uncommenting it. Change the
following code snippet by uncommenting it:
Option 2:
To rewrite "example.com -> www.example.com" uncomment the
following lines.
Be aware that the following rule might not be a good idea if you
use "real" subdomains for certain parts of your website.

<IfModule mod_rewrite.c>
RewriteCond %{HTTPS} !=on
RewriteCond %{HTTP_HOST} !^www\..+$ [NC]
RewriteRule ^ http://www.%{HTTP_HOST}%{REQUEST_URI} [R=301,L]
</IfModule>

Customizing the Apache Server

[82]

4. The uncommented code section should look like the following code snippet:
Option 2:
To rewrite "example.com -> www.example.com" uncomment the
following lines.
Be aware that the following rule might not be a good idea if you
use "real" subdomains for certain parts of your website.

<IfModule mod_rewrite.c>
RewriteCond %{HTTPS} !=on
RewriteCond %{HTTP_HOST} !^www\..+$ [NC]
RewriteRule ^ http://www.%{HTTP_HOST}%{REQUEST_URI} [R=301,L]
</IfModule>

All we did was remove the # character and a space in front of the lines
starting with <IfModule mod_rewrite.c> and ending with </IfModule>.

Whichever option you want to use, make sure you don't have both these options
enabled at the same time, as that would prevent Apache from serving your page.

Setting cookies from iFrames
IE usually blocks cookies set from within an IFrame. If you require such cookies to
be set, especially if you have advertisements or social networking plugins, you need
to send a Platform for Privacy Preferences Project (P3P) header.

Look for the comment in the .htaccess file with the same text as the title of this
section and change the following lines:

<IfModule mod_headers.c>
Header set P3P "policyref=\"/w3c/p3p.xml\", CP=\"IDC DSP COR ADM
DEVi TAIi PSA PSD IVAi IVDi CONi HIS OUR IND CNT\""
</IfModule>

To the following code snippet:

<IfModule mod_headers.c>
 Header set P3P "policyref=\"/w3c/p3p.xml\", CP=\"IDC DSP COR ADM
DEVi TAIi PSA PSD IVAi IVDi CONi HIS OUR IND CNT\""
</IfModule>

Eric Law wrote about IE's cookie policies in detail,
which makes for good reading at blogs.msdn.
com/b/ieinternals/archive/2009/08/20/
wininet-ie-cookie-internals-faq.aspx.

Chapter 5

[83]

PHP security defaults
If you are serving PHP, there are a lot of configuration options in the HTML5
Boilerplate's .htaccess file that could make your PHP installation more secure.
If you are using PHP, you can turn them on using the same procedure as the one
outlined in the section titled Suppress or force the "www."' at the beginning of URLs.

Given we aren't using PHP in our website, we do not need to turn them on.

Stop advertising Apache version
You can prevent Apache from advertising its version to mitigate chances of malicious
programmers exploiting vulnerabilities in a particular version. Here is how the Apache
version is advertised:

This previous screenshot shows the Apache version number sent as a HTTP header
to the browser.

You can use the developer tools that come with most browsers
to verify HTTP headers. In this case, we are using Chrome's
Developer Tools Resources tab. More information on how to use
this tool is available on Chrome's help center at developers.
google.com/chrome-developer-tools/docs/network.

Customizing the Apache Server

[84]

This needs to be configured from within the server's main configuration file, and
we cannot do this from within the .htaccess file. So, let's remove the following
directive from the HTML5 Boilerplate's .htaccess file and replace the one found
in /etc/apache2/httpd.conf (the path to this file will be different if you are using
Windows or Linux):

ServerTokens Prod

The following screenshot shows the version-less HTTP header sent by Apache after
applying the configuration value to the Apache server's main configuration file:

Allowing concatenation from within specific
JS and CSS files
Sometimes, you may want the server to combine multiple script or stylesheet files
into one response when a request is made. Note that doing so does not make it
any faster for your page to load, as the server takes its own time to stitch these
files together.

This is an option I recommend you consider last, when every other solution has
failed. Ideally, you should never be doing this.

To do this, first uncomment the following lines in the .htaccess file from:

#<FilesMatch "\.combined\.js$">
Options +Includes
AddOutputFilterByType INCLUDES application/javascript application/
json

Chapter 5

[85]

SetOutputFilter INCLUDES
#</FilesMatch>
#<FilesMatch "\.combined\.css$">
Options +Includes
AddOutputFilterByType INCLUDES text/css
SetOutputFilter INCLUDES
#</FilesMatch>

To the following code snippet:

<FilesMatch "\.combined\.js$">
 Options +Includes
AddOutputFilterByType INCLUDES application/javascript application/json
SetOutputFilter INCLUDES
</FilesMatch>
<FilesMatch "\.combined\.css$">
 Options +Includes
AddOutputFilterByType INCLUDES text/css
SetOutputFilter INCLUDES
</FilesMatch>

Then, in the js folder, create a file called script.combined.js.

Open the script.combined.js file in your text editor, and use the following syntax
with all the files that should be combined and output in the script.combined.js file:

<!--#include file="<path/to/file.js>" -->
<!--#include file="<path/to/another-file.js>" -->

If you are looking to combine stylesheets on the fly, you can do the same. Create a file
in the css folder called style.combined.css.

Open the style.combined.css file in your text editor, and use the following syntax
with all the files that should be combined and output in the style.combined.css file:

<!--#include file="<path/to/file.css " -->
<!--#include file="<path/to/another-file.css>" -->

As I mentioned earlier, doing this will make Apache slower to respond to these
requests. You should be using a build script to concatenate files (we will look
into the build script in Chapter 7, Automate Deployment with the Build Script).
So uncomment this setting only if you have no other choice.

Customizing the Apache Server

[86]

Stopping screen flicker in IE on CSS rollovers
When you use background images that change on hovering over a link, you will see
a flicker in IE when this occurs. You can prevent this by changing the following lines
in the .htaccess file from:

BrowserMatch "MSIE" brokenvary=1
BrowserMatch "Mozilla/4.[0-9]{2}" brokenvary=1
BrowserMatch "Opera" !brokenvary
SetEnvIfbrokenvary 1 force-no-vary

To the following code snippet:

BrowserMatch "MSIE" brokenvary=1
BrowserMatch "Mozilla/4.[0-9]{2}" brokenvary=1
BrowserMatch "Opera" !brokenvary
SetEnvIfbrokenvary 1 force-no-vary

Preventing SSL certificate warnings
If you want to serve your site only on a secured connection, you need to obtain a
Secure Sockets Layer (SSL) certificate that browsers will use to identify your website.
If the domain on the certificate does not match the domain on the incoming request
—, for example, you had a SSL certificate for https://secure.example.com, and
the assets that are being loaded on the page hosted on that domain are served from
https://example.com, but all of the files are hosted on the same Apache server;
—then browsers will throw warnings and inform the user that the authenticity of
the Web page is unverifiable.

You can make sure the requests to domain, which does not have the SSL certificate,
is rewritten to the one for which you do have an SSL certificate. If you require this,
you can uncomment the following snippet from:

<IfModule mod_rewrite.c>
RewriteCond %{SERVER_PORT} !^443
RewriteRule ^ https://example-domain-please-change-me.
com%{REQUEST_URI} [R=301,L]
</IfModule>

To the following code snippet:

<IfModule mod_rewrite.c>
RewriteCond %{SERVER_PORT} !^443
RewriteRule ^ https://example-domain-please-change-me.com%{REQUEST_
URI} [R=301,L]
</IfModule>

Chapter 5

[87]

Note that the https://example-domain-please-change-me.com URL needs to
point to the domain you have an SSL certificate for.

More details on the SSL and SSL certifications are given in the Linux
documentation project at tldp.org/HOWTO/SSL-Certificates-
HOWTO/x64.html.

That covers all the optional features that HTML5 Boilerplate's .htaccess file
provides. Let us take a look at cross-domain policies and how to set them.

Cross-domain policies you should be
aware of
An HTTP request is called a cross-domain request when a page served from one
domain, for example, http://example.com, requires data from another, say
http://foo.com. By default, most browsers do not allow cross-domain requests
of data–be it data or flash assets– to prevent malicious access.

However, you can set a cross-domain policy file on the server (in the previous
example, the server where http://foo.com is served from), which allows browsers
to access these resources.

Flash requires this policy file to be specified in a file called crossdomain.xml,
where you can specify which domains can make request of assets from the server.

This file is provided within HTML5 Boilerplate, and by default, the most restrictive
policy is enabled. If you do want the least restrictive policy, you can uncomment that
option and comment away the most restrictive one.

Do realize that you need to fully understand the implications of
allowing cross-domain requests for access to assets before you
make it less restrictive.

You can also make cross-domain AJAX requests, or restrict access to images or fonts,
by setting an HTTP header. This is known as the Cross Origin Resource Sharing
(CORS) policy.

http://example.com/
http://foo.com/

Customizing the Apache Server

[88]

Cross-domain AJAX requests
AJAX requests can only be made if the requesting page is on the same domain as the
URL it is requesting data from. CORS is a new HTML5 feature that will allow you to
make AJAX requests from any domain, provided permission has been given to the
requesting domain. By setting an HTTP header on the server from which you are
requesting data using an AJAX request, you can overcome this limitation. Let us
look at how this can be done.

The following is an example of a cross-domain request that you could make:

var CORSRequest = new XMLHttpRequest();
CORSRequest.onload = function(e){
 // Process returned data
}
CORSRequest.open('GET', 'http://nimbupani.com/data.json');
CORSRequest.send(null);

We note that the browser throws an error saying such access is forbidden, as shown
in the following screenshot:

Now, in our .htaccess file hosted on http://nimbupani.com, we will uncomment
the following directive:

<IfModule mod_headers.c>
Header set Access-Control-Allow-Origin "*"
</IfModule>

Let us try our code again. Aha! Now it works!

This is the least restrictive setting, which can allow any domain to make an AJAX
request on your server. It is fairly trivial to make a very high volume of requests
because of this and also to pretend it's your site and fool the visitors, and so on.
Use this setting with care.

Chapter 5

[89]

CORS-enabled images
Typically, browsers allow all images to be linked from any other domain. This is
called hotlinking. Read more about it at en.wikipedia.org/wiki/Inline_linking.
If a high-traffic website links to assets that are hosted on your server, your hosting
provider might even fine you for excessive use of bandwidth (or your site might
go down!). If you want to prevent this, for example, if you do not want http://
example.com to use an img element with an src attribute pointing to an image on
your server http://foo.com/image.jpg, you can enable a more restrictive policy
that only allows certain domains to access your image files by changing the following
line in the .htaccess file from:

Header set Access-Control-Allow-Origin "*" env=IS_CORS

To the following line:

Header set Access-Control-Allow-Origin "http://example.com" env=IS_
CORS

Where you replace http://example.com with the domain name that is only allowed
access to that image. The server will then prevent any other domain from accessing
images on your domain.

If you want your images to be accessed by multiple domains, you will have to write a
convoluted regex comparison for the origin, as shown in the following code snippet:

SetEnvIf Origin »
 "^http(s)?://(.+\.)?(example-1\.com|example-2\.com)$" origin_is=$0
 Header always set Access-Control-Allow-Origin %{origin_is}
eenv=origin_is

In this case, replace example-1\.com with your domain (take care to place the
forward slash before the .com), and likewise for example-2\.com.

Webfont access
Most of the time, you will be hosting fonts on the same domain where you will
be using them. If you do host fonts in a separate domain, Firefox will not request
them without the right HTTP header. This directive is already enabled by default
in .htaccess file. In case you want to restrict access, you need to change these
lines from:

<IfModule mod_headers.c>
 <FilesMatch "\.(ttf|ttc|otf|eot|woff|font.css)$">
 Header set Access-Control-Allow-Origin "*"
 </FilesMatch>
</IfModule>

http://foo.com/image.jpg

Customizing the Apache Server

[90]

To the following code snippet:

<IfModule mod_headers.c>
 <FilesMatch "\.(ttf|ttc|otf|eot|woff|font.css)$">
 Header set Access-Control-Allow-Origin "http://example.com"
 </FilesMatch>
</IfModule>

Replace http://example.com with the domain name you would like to specifically
allow access to the Webfonts.

If you would like to get a good overview of how CORS-enabled image,
Webfont, and AJAX requests work and differ from crossdomain.xml,
you should read the HTML5security project wiki page at code.google.
com/p/html5security/wiki/CrossOriginRequestSecurity.

Using other server configuration files
We have seen how to use the features available in the Apache .htaccess file that
HTML5 Boilerplate comes with. But there is a repository of configuration files for
other kinds of servers such as Ngnix, Node, Google App Engine, IIS, and Lighttpd.
The following table contains the configuration filenames and their corresponding
server software:

Config filename Server software

.htaccess Apache Web server at httpd.apache.org/docs/2.2/howto/
htaccess.html.

Web.config IIS Web server from learn.iis.net/page.aspx/376/
delegating-configuration-to-webconfig-files/.

Node.js Node Web server from nodejs.org.

Ngnix.conf Ngnix server at wiki.nginx.org/Configuration.

Lighttpd.conf Lighttpd server at redmine.lighttpd.net/projects/
lighttpd/wiki/TutorialConfiguration.

App.yaml and gae.
py

Google App Engine at code.google.com/appengine/docs/
python/config/appconfig.html.

The configuration files for these servers are available at github.com/h5bp/server-
configs.

http://code.google.com/p/html5security/wiki/CrossOriginRequestSecurity
http://code.google.com/p/html5security/wiki/CrossOriginRequestSecurity
http://httpd.apache.org/docs/2.2/howto/htaccess.html
http://httpd.apache.org/docs/2.2/howto/htaccess.html
http://learn.iis.net/page.aspx/376/delegating-configuration-to-webconfig-files/
http://learn.iis.net/page.aspx/376/delegating-configuration-to-webconfig-files/
http://nodejs.org/
http://wiki.nginx.org/Configuration
http://redmine.lighttpd.net/projects/lighttpd/wiki/TutorialConfiguration
http://redmine.lighttpd.net/projects/lighttpd/wiki/TutorialConfiguration
http://code.google.com/appengine/docs/python/config/appconfig.html
http://code.google.com/appengine/docs/python/config/appconfig.html

Chapter 5

[91]

web.config
HTML5 Boilerplate's web.config file is used to configure options for your site running
on an IIS7 server or higher.

As with the .htaccess file, merely having it in the root folder of your website allows
it to be recognized and used to configure an IIS7 server.

lighttpd.conf
As with the other configuration files, place it in the root folder for the Lighttpd server
to configure the server.

nginx.conf
Nginx is a lightweight server popular with websites using the Ruby on Rails
framework.

As with the .htaccess file, place this file in the root folder of your website.
In addition, make sure nginx-mime.types is also in the root folder. This file
is required for Ngnix to make sure it sends each file with the right MIME type.

node.js
With the node.js configuration file, the usage is different. The configuration file
assumes you are using the Express/Connect framework for managing resource
requests for your app. In your server-side app code, you can use the following
to start the server:

var h5bp = require('h5bp');
var app = express.createServer();
app.use(h5bp.server());
app.listen(3000);

This requires you to install the h5bp package using Node Package Manager
(NPM) and the express package using the same. The h5bp package has a slew
of configurations that will be used when the server is started. If you wish to use
only some specific configurations, you can pass them in as options to the server
function, as shown in the following code snippet:

app.use(h5bp.server({
server: true,
setContentType: true,
removeEtag: true
});

Customizing the Apache Server

[92]

Google App Engine
Some websites are also served from Google App Engine (http://code.google.
com/appengine/), which requires your website's backend to be written in Java,
Python, or Go.

You need to ensure that the app.yaml file is in the root folder of your website.

The following table contains the summary of all the features available in HTML5
Boilerplate server configurations:

Feature name Apache Nginx IIS Lighttpd Node.js Google
App
Engine

ETags Yes Yes Yes Yes No No
Gzip Yes Yes Yes Yes Yes Yes
Expires header Yes No No No Yes No
Custom 404 page Yes Yes Yes No No No
Forcing the latest IE version Yes Yes Yes Yes Yes Yes
Using UTF-8 encoding Yes Yes Yes No No No
Serving the right
MIME types

Yes Yes Yes Yes No Yes

Blocking access to hidden
folders

Yes No No No Yes No

Blocking access to backup
and source files

Yes No No Yes (only
~&.inc)

Yes No

Stop advertising server
information

No No Yes No Yes No

Starting Rewrite Engine Yes No No No No No
Preventing 404 errors
for non-existing redirected
folder

Yes No No No No No

Suppressing or forcing the
"www." at the beginning
of URLs

Yes No Yes No Yes No

Setting cookies from iFrames Yes No Yes No No No
PHP security defaults Yes No Yes No No No
Stop advertising
Apache version

Yes No No No No No

Chapter 5

[93]

Feature name Apache Nginx IIS Lighttpd Node.js Google
App
Engine

Allowing concatenation
from within JS and CSS files

Yes No Yes No No No

Stopping screen flicker in
IE on CSS rollovers

Yes No Yes No No No

Preventing SSL certificate
Warnings

Yes No Yes No No No

Cross-domain AJAX requests Yes No Yes No Yes No

CORS-enabled Images Yes No No No No No
Webfont Access Yes No No No No No

Summary
We dived deep into the internals of serving pages over several servers and
configuration files for some of the major servers. We looked at some of the
good defaults provided out of the box and some optional ones that you can
enable with careful understanding.

Now that our site is almost ready to get out of the door, we shall look at some
of the other ways to make it better.

Making Your Site Better
The nature of website design and development is such that not all optimizations and
recommendations apply in all scenarios. In this chapter, we will look at the various
optimization tools available and which situations they are best suited for, to make
an HTML5 Boilerplate site load and render faster.

Finding the best experience for Internet
Explorer
Internet Explorer versions 8 and below have had very haphazard support for
standards and consistent rendering. Depending on the number of users who
visit your site using Internet Explorer, you may or may not want to spend the
effort optimizing for Internet Explorer.

Mobile-first styles for IE
Media Queries are CSS features that allow you to apply different sets of rules
depending on the value of a particular media feature. For example, if the browser
has minimum width of 500 pixels, you could make all your h1 elements turn red,
as shown in the following code:

@media only screen and (min-width: 500px) {
h1 { color: red; }
}

Making Your Site Better

[96]

However, IE6, IE7, and IE8 do not understand media queries that are typically used
to adjust widths according to different screen widths. As such, they will never render
the optimized styles you create for browsers with screen widths that match a certain
media query break point (min-width: 500px in the previous snippet). In our Sun and
Sand Music Festival website, we have style rules within three different media queries,
as shown in the following code snippet:

@media only screen and (max-width: 300px){ /*CSS rules */ }

@media only screen and (max-width: 750px) { /*CSS rules */ }

@media only screen and (max-width: 1150px) { /*CSS rules */ }

This means IE6, IE7, and IE8 will render the styles as though these queries did not
exist! If you specify rules for device widths that are smaller at the end, it is likely
that those will be overriding the rules for device widths that are larger, leading to
less than optimal designs on Internet Explorer 8 and below.

Ideally, in this situation, you simply want IE to render all the styles and have the
user scroll, if necessary, so that the style rules for the largest widths always apply.
To do this, we can create a separate ie.css file that will render all the rules within
main.css except these rules will no longer be contained in media queries.

Doing this manually is hard work, and almost impossible to maintain. However,
Nicolas Gallagher writes about an elegant solution he invented, which uses Sass
to import separate stylesheets for each media query breakpoint and compile them
into two separate stylesheets; one without media queries (ie.css) and the other
with media queries (main.css); we will look at this next.

ie.scss
The code snippet for ie.scss is as follows:

@import "300-up";
@import "750-up";
@import "1150-up" /* Make sure largest is last */

main.scss
The code snippet for main.scss is as follows:

@import "base";
@media (min-width:300px) {
 @import "300-up"; }

Chapter 6

[97]

@media (min-width:750px) {
 @import "750-up"; }
@media (min-width:1150px) {
 @import "1150-up"; }

Do note that you need each file titled 300-up.scss, 750-up.scss, and 1150-up.scss
within the same parent folder as main.scss and ie.scss.

In the head tag of index.html page, you can now write the following code:

<!--[if (gt IE 8) | (IEMobile)]><!-->
<link rel="stylesheet" href="/css/style.css">
<!--<![endif]-->

<!--[if (lt IE 9) & (!IEMobile)]>
<linkrel="stylesheet" href="/css/ie.css">
<![endif]-->

Jake Archibald also has a far more easy-to-write solution using Sass
at jakearchibald.github.com/sass-ie/. It takes advantage
of newer features of Sass 3.2, and has slightly different composition
for main.scss and ie.scss. It requires advanced knowledge of
Sass, which is beyond the scope of this book.

Printing with jQuery in IE6 and IE7
IE6 and IE7 do not support the :after pseudo selector that all other browsers
support. This means our print stylesheet that provides a feature for all links to be
printed alongside the linked text will not work in IE6 and IE7. You can simply use
jQuery code to overcome this.

Bill Beckelman has written a post about this on his blog at beckelman.
net/2009/02/16/use-jquery-to-show-a-links-address-
after-its-text-when-printing-in-ie6-and-ie7/. IE supports
its own proprietary onbeforeprint and onafterprint events that
can be used to our advantage. Based on Bill Beckelman's work, we can
write our own simple jQuery code to print link URLs in IE6 and IE7.

Making Your Site Better

[98]

First, we check if window.onbeforeprint exists, because this would indicate
this code is being executed on one of the IE browsers. We also want to verify if
this browser supports generated content or not, as we only need to use this code
when it is not supported. The following code snippet checks for the presence of
the window.onbeforeprint event:

if (Modernizr.generatedcontent == false &&window.onbeforeprint !==
undefined) {

Then, we set functions to execute when either onbeforeprint or onafterprint
occurs, as shown in the following code:

window.onbeforeprint = printLinkURLs;
window.onafterprint = hideLinkURLs;

Then, we write the following functions:

functionprintLinkURLs() {
$("a[href]").each(function() {
$this = $(this);
$this.data("originalText", $this.text());
$this.append(" (" + $this.attr("href") + ")");
});
}

functionhideLinkURLs() {
 $("a[href]").each (function() {
 $(this).text($(this).data("originalText"));
 });
}

Styling disabled form elements in Internet
Explorer
Internet Explorer up to version 9 has no way to indicate a form field is disabled
other than the color of the text used in that field. Sometimes, a field simply has
an icon rather than text (or it could be an empty input textbox), in which case it
is almost impossible to discern which buttons are disabled and which are not.

For Internet Explorer 7 and above, by just adding the following rules in main.css, you
can get the disabled fields to display significantly differently from the enabled ones:

.lt-ie9 input[type='text'][disabled],

.lt-ie9 textarea[disabled] {

Chapter 6

[99]

background-color: #EBEBE4;
}

If you have to support Internet Explorer 6, then make sure you add a class called
disabled on the form elements that have the disabled attribute set and alter the
previous rule to the following:

.lt-ie9 input.disabled,

.lt-ie9 textarea.disabled {
background-color: #EBEBE4;
}

Suppressing IE6 image toolbar
In IE6, all images, have a toolbar visible when hovered over. You can disable them
by adding the following code within the head tag in the index.html file:

<metahttp-equiv="imagetoolbar" content="false">

Writing CSS3 easier with tools
CSS3 is at the bleeding edge. Some properties require what is known as a vendor
prefix. For example, the 3D transforms property perspective is implemented as
follows, in different browsers:

-webkit-perspective //Safari, Chrome
-ms-perspective // Internet Explorer
perspective // Firefox

Only a short while ago, Firefox implemented this property as –moz-perspective,
but have since dropped support for the –moz- prefix.

As you will come to realize, it is really hard to keep track of which browser requires a
prefix and which browser does not, and it is not quite feasible to keep all the sites that
we create updated on a regular basis every time a browser adds or drops support for
a prefix.

To make this easier, we could use abstractions without these prefixes such that a tool
that has an updated index of which property requires which prefix could convert them
into the required final CSS.

This is exactly what Sass (sass-lang.com) or Less (lesscss.org) provide. Sass is
a language that comes with a compiler that converts code written in Sass to CSS, in
Ruby. Less is a similar language, but written in JavaScript.

Making Your Site Better

[100]

In both cases, the languages are extensions of the syntax used in CSS, which means
you can copy your existing CSS files into Sass or Less files and have them compile
into pure CSS files without any errors.

The extra features that these languages provide are the ability to use mixins, variables,
functions, and more.

For Sass, Compass is an additional framework that provides a ready library of
CSS3 mixins found at compass-style.org/reference/compass/css3. Less has
many options; the most popular and frequently updated can be found within
Twitter Bootstrap and are available at twitter.github.com/bootstrap/less.
html#mixins. The following sections show you how to create a rule that uses
CSS transforms in Sass and Less.

Sass
The code snippet for Sass is as follows:

.btn-arrow {
 @include transform(scale(2));
}

Less
The code snippet for Less is as follows:

.btn-arrow {

.scale(2);
}

Output CSS
The output CSS would be as follows:

.btn-arrow {
-webkit-transform: scale(2);
 -moz-transform: scale(2);
 -ms-transform: scale(2);
 -o-transform: scale(2);
transform: scale(2);
}

Chapter 6

[101]

Converting HTML5 Boilerplate CSS to Sass
or Less
You could typically just rename the main.css file to main.scss or main.less
and start using that as your base Sass or Less file. To compile these files to the
corresponding Less or Sass files, you can either use GUI-based browser refreshing
software that compiles these files automatically like LiveReload (livereload.com/)
or Codekit (incident57.com/codekit).

If you are someone familiar with the command line, you can install Less or Sass and
run their respective command-line interpreters to compile the files into pure CSS.

If you wish to use a pure Sass or Less file to start with (instead of the contents of the
main.css file), there are also forks of HTML5 Boilerplate that have the stylesheet
converted to Sass. We will see two of them in the following sections.

HTML5 Boilerplate Compass extension
There is a Compass extension that is available for use with Compass at github.com/
sporkd/compass-html5-boilerplate. Note that it is not as frequently updated as
the main.css file you find in HTML5 Boilerplate. This is extensively modularized
and splits the main.css file into multiple Sass files. The CSS comments are also
removed from the resulting CSS file.

HTML5 Boilerplate Sass fork
There is a Sass fork of the main.css that is frequently updated at github.com/
grayghostvisuals/html5-boilerplate/tree/h5bp-scss that you can use,
if all you want is a base Sass file to start from. This version uses Sass variables
but does not split the file into individual files.

Unfortunately, there is no up-to-date Less fork of HTML5 Boilerplate. However,
you can rename the main.css to main.less and then use it as a Less file.

Print considerations
If your web page is likely to be printed, you might want to consider using colors
that are printable. Some browsers consider some colors too light to print and force a
darker version of the color for printing; merttol.com/articles/code/too-light-
for-print.html has more details on this interesting quirk.

Appendix, You Are an Expert, Now What?, covers the reasoning and rationale behind
the print styles in great detail.

Making Your Site Better

[102]

Finding and using polyfills
Most of HTML5 and CSS3 features have differing levels of support in different
browsers, hence, either use JavaScript code to mimic these features in browsers
that do not support them or provide an altering view. Such snippets of code are
called polyfills.

I help maintain html5please.com which is an opinionated list of polyfills for some
popular HTML5 and CSS3 features.

Beware of the performance penalty of using a lot of polyfills on a browser that does
not support a lot of features.

When you do use your polyfills, make sure you use Modernizr's load function like
we did for the audio polyfill for Sun and Sand Music Festival website in Chapter
4, Adding Interactivity and Completing Your Site. This would prevent unnecessary
loading of polyfills on browsers that support the features you want to use.

A comprehensive list of all kinds of polyfills is available on the Modernizr Wiki at
github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills.

Making your site faster
If your pages use a lot of resources such as images, then perhaps it would be wise to
prefetch those resources so your page loads faster. DNS prefetching would be a way
to do that.

DNS prefetching
DNS prefetching informs the browser of resources on other domain names that
are referred to within the page early on during the page load, so it can do the
DNS resolution of these domain names.

A browser has to look up a domain name on a Domain Name Server (DNS) to figure
out where it is located on the Internet. Sometimes, it has to go through multiple layers
of Domain Name Servers and it could be very slow and is not always consistent. By
using DNS prefetching, even before a user clicks a link, or loads a resource, the DNS
resolution for that particular domain name is done and the resource can be fetched
much faster.

Google states that this saves about 200 milliseconds on a resource hosted on an
external domain name.

Chapter 6

[103]

If you host your assets on a Content Delivery Network (CDN) like Amazon's S3 or
even if you refer to Google's API or Microsoft's API CDN, it would be faster to get
these files when they are prefetched.

DNS prefetching is invoked by writing the following code within the head tag of a
HTML file:

<link rel="dns-prefetch" href="//image.cdn.url.example.com">

Browsers that understand prefetching would immediately start attempting to resolve
the DNS for the link within the href attribute. The following is how it would look
for Amazon S3:

<link rel="dns-prefetch" href="//s3.amazonaws.com">

Currently, Firefox 3.5 and higher, Safari 5 and higher, and IE9 and higher, support
DNS prefetching.

Making your site more visible on search
engines
While the content of your website matters the most, making sure everything
else supports better visibility of the content on search engines is important too.
The following sections explain some ways you can do this.

Directing search spiders to your site map
Site maps inform search engines of the existence of pages within your site that are
otherwise not discoverable; perhaps they are not linked to from other pages on your
site, or from external sites.

Some CMSs provide plugins to generate site maps, listed at code.google.com/p/
sitemap-generators/wiki/SitemapGenerators, or you can write one yourself
using the guidelines at www.sitemaps.org/protocol.html.

Once you have written your site map, you can let search engine spiders discover
it when they crawl your website if you add a link to the sitemap by using the
following:

<linkrel="sitemap" type="application/xml" title="Sitemap" href="/
sitemap.xml">

Making Your Site Better

[104]

You can also submit the site map to individual search engines instead of linking to
the site map within the HTML page, if you would like to make your page as small
as possible.

Implementing X-Robots-Tag headers
You will likely sometimes have a staging server, such as staging.example.com
for your site example.com. If an external site links to the files on the staging server
(say you were asking a question about some feature not working on a forum and
link to the staging server), it is likely to be indexed by search engines even though
the domain name does not figure in the robots.txt file or does not hold a
robots.txt file.

To prevent this, you can add X-Robots-Tag HTTP header tags by appending and
uncommenting the following code snippet to the .htaccess file on the staging server:

--
Disable URL indexing by crawlers (FOR DEVELOPMENT/STAGE)
--

Avoid search engines (Google, Yahoo, etc) indexing website's content
http://yoast.com/prevent-site-being-indexed/
http://code.google.com/web/controlcrawlindex/docs/robots_meta_tag.
html
Matt Cutt (from Google Webmaster Central) on this topic:
http://www.youtube.com/watch?v=KBdEwpRQRD0

IMPORTANT: serving this header is recommended only for
development/stage websites (or for live websites that don't
want to be indexed). This will avoid the website
being indexed in SERPs (search engines result pages).
This is a better approach than using robots.txt
to disallow the SE robots crawling your website,
because disallowing the robots doesn't exactly
mean that your website won't get indexed (read links above).

<IfModulemod_headers.c>
Header set X-Robots-Tag "noindex, nofollow, noarchive"
<FilesMatch "\.(doc|pdf|png|jpe?g|gif)$">
Header set X-Robots-Tag "noindex, noarchive, nosnippet"
</FilesMatch>
</IfModule>

Chapter 6

[105]

Trailing slash redirects
Search engines consider folder URLs http://example.com/foo and http://
example.com/foo/ as two different URLs and as such would consider the content
to be duplicates of each other. To prevent this, rewrite the URLs either to change
http://example.com/foo to http://example.com/foo/ or http://example.com/
foo/ to http://example.com/foo.

The way we do this is to edit the .htaccess file for Apache server and add the
following rewrite rules (see Chapter 5, Customizing the Apache Server, for details
on how we edit .htaccess files).

Option 1: Rewrite example.com/foo to example.
com/foo/
The following code snippet helps us to rewrite example.com/foo to example.com/
foo/:

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !(\.[a-zA-Z0-9]{1,5}|/|#(.*))$
RewriteRule ^(.*)$ $1/ [R=301,L]

Option 2: Rewrite example.com/foo/ to example.
com/foo
The following code snippet helps us to rewrite example.com/foo/ to example.com/
foo:

RewriteRule ^(.*)/$ $1 [R=301,L]

If you have existing rewrite rules, perform the following steps to make sure you set up
your rewrite rules correctly. Not doing so can cause incorrect redirects and 404 errors.

• Keep a backup: Back up the .htaccess file you are going to add redirects
to, before you start adding them. This way you can quickly go back to the
backup file if you are unable to access your site because of an error in the
.htaccess file.

• Do not append or replace existing rewrite rules: Instead of appending or
replacing existing rules from CMSes you are using, merge them within.

Making Your Site Better

[106]

• Watch the order of rewrite rules: Make sure you add the slash first and then
your existing rules, which might rewrite the end paths.

• Confirm the RewriteBase path: If your website is in a subfolder, ensure you
have set the right RewriteBase path for your rewrite rules. If you have a
working RewriteBase path, do not remove it.

Finally, consider implementing guidelines from Google's SEO
Starter Guide at http://googlewebmastercentral.blogspot.
com/2008/11/googles-seo-starter-guide.html.

Handling users without JavaScript
HTML5 Boilerplate provides a class called no-js that gets replaced with a class
called js, when JavaScript is detected by Modernizr on the html tag. Using this
class name, you can craft the style for how the website should look when JavaScript
is disabled.

In our Sun and Sand Festival website, when JavaScript is not enabled, clicking on
the Day 2 link produces nothing.

You can view how the site works when JavaScript is disabled on various browsers,
in the following ways:

• Firefox: Go to Preferences, click on Content, and then uncheck the
EnableJavaScript checkbox.

• Chrome: Download the Chrome Web Developer extension and disable
JavaScript from within the extension.

• Safari: Click the Disable JavaScript menu item on the Develop menu.
You can see the Develop menu when you check the Show Develop
toolbar on the Advanced tab in the Safari Preferences pane.

• Internet Explorer: Click the Internet Options in the Settings menu, and
click Custom Level and check the Disable in the Active scripting menu.

• Opera: Click Quick Preferences and unselect the Enable JavaScript option.

Let us make sure that the tabs do not render when JavaScript is not available,
and make sure the whole listing is displayed at the same time, as shown in the
following screenshot:

Chapter 6

[107]

We can do this by editing main.css to take advantage of the no-js class. First,
we need to remove the tabbed navigation, as shown in the following code:

.no-js .t-tab__nav {
display: none;
}

Then, we need to make the two lists be positioned statically instead of being
absolutely positioned one below the other, as shown in the following code:

.no-js .t-tab__body {
position: static;
}

We need to make sure the hidden class does not get applied in this specific instance
for Day 2, so we can see all the artists at once, as shown in the following code:

.no-js .t-tab__body.hidden {
display: block !important;
visibility: visible;
}

Now, when you enable JavaScript again, you will notice that the tabbed navigation
appears and everything functions as you expected.

Making Your Site Better

[108]

Optimizing your images
Every resource you add to your page is an extra request to the server and extra
network trip for the browser before it declares the page complete. Network requests
are typically the slowest components of a page load. This is especially obvious on
mobile devices when surfing websites on 3G or even lower connections. The smaller
your files are, the faster they will reach the browser.

If you can avoid using a large image, you are better off not using them.

8-bit PNGs
If you are considering using a GIF format for your images, always use PNG. PNG
formats for images are far less heavy and much smaller. Even further, 8-bit PNGs
are significantly smaller in size.

If you are using PNGs, you should use PNG-8 with a full alpha channel that gives
you compatibility all the way back to IE6. Ensure you verify the final output to
ensure they are not too grainy or pixelated.

Tools for image optimization
There are build tools in HTML5 Boilerplate that will optimize images,which we will
look into in the next chapter. There are also standalone tools that are worth looking
at, when you want to compress a bunch of images in one go. If you wish to upload
your images and optimize them, you can do so at smushit.com/ysmush.it/.

ImageAlpha
If you have 24-bit PNG images, you can convert them into 8-bit PNGs that have a full
alpha channel with this tool that you can download from pngmini.com. It is only for
Mac OS X.

GUIs and command-line tools that work on other Operating Systems are outlined at
pngquant.org.

ImageOptim
If you would like to optimize images of various formats in one go, ImageOptim
would be your best tool of choice. You can download this from imageoptim.com.
This is also for Mac OS X only, and takes advantage of several tools to perform
these optimizations.

Chapter 6

[109]

If you would like to use something similar on other systems, you can download the
specific tool you need for each image format. The following table lists tools for some
of the popular image formats:

Format Tool

Animated GIF Gifsiclewww.lcdf.org/gifsicle/

JPEG Jpegtranjpegclub.org/

PNG Pngcrushpmt.sourceforge.net/pngcrush/

Imageworsenerentropymine.com/imageworsener/

Optipngoptipng.sourceforge.net/

PNGOUT advsys.net/ken/utils.htm

If you would like to learn more about using these tools for optimization, read more
on the slides by Stoyan Stefanov about image optimization for the Web at www.
slideshare.net/stoyan/image-optimization-for-the-web-at-phpworks-
presentation. There are even more clever optimizations that could be done
for PNG and JPEG image formats, detailed over on Smashing Magazine at www.
smashingmagazine.com/2009/07/15/clever-png-optimization-techniques
/ and http://www.smashingmagazine.com/2009/07/01/clever-jpeg-
optimization-techniques/ respectively.

Using image sprites
Network requests take a long time to make for each resource. To make these smaller,
you could combine multiple image files into one single image file that needs to be
requested once and be cached for a very long time so that the page loads significantly
faster. This is especially useful if your page is going to be viewed on devices with very
low bandwidth connections to the Internet.

This means, you combine multiple images in one large image and use the CSS
background property on all selectors where these images would be used. Let us
convert all our artist images into a big sprite and replace the image elements into
background images.

Making Your Site Better

[110]

The following is our final sprite:

Let us replace our image elements in index.html, like the following one:

<img width="100" height="100" class="t-media__aside t-image--artist"
src="img/artist-tinariwen.png">

With the following:

<i class="t-artist__image artist-tinariwen"></i>

We do this for each of the artists. Then, in our style.css, we add the following
code snippet:

.t-artist__image {
background: url(../img/artists-image.png) top left no-repeat,
url(../img/bg-artist.png) no-repeat center center;
float: left;
display: block;
}
.artist-asa { background-position: -0px -0px, 0 0; }
.artist-kidjo { background-position: -0px -100px, 0 0; }
.artist-kuti { background-position: -100px -0px, 0 0; }
.artist-sangre { background-position: -100px -100px, 0 0; }
.artist-tinariwen { background-position: -200px -0px, 0 0; }
.artist-toure { background-position: -200px -100px, 0 0; }

Chapter 6

[111]

Nothing has changed in the final page, except we have now reduced the number
of network requests to 1 instead of 6 for these images. By optimizing the final sprite,
we can make this request even faster.

Generating a sprite would seem like a lot of work, but there are many tools to help
with this.

CSS sprites from within Adobe Photoshop
Using the instructions documented at arnaumarch.com/en/sprites.html, you
can use a script file from Photoshop to select a folder of images and also generate
the associated CSS file using images within these files positioned and corrected as
a background image.

There are some things to note when using this tool, as explained in the
following points:

• Make sure the folder only contains the images you want to add to a sprite
• The resulting CSS file is generated within the folder used to create the sprite
• The generated sprite is opened in Adobe Photoshop and you are required to

crop it before you save it out as an image at the location of your choice

CSS sprites with Compass
Compass—the framework on top of Sass—can stitch your images together at compile
time and have the images referenced in your Sass file, turned into a sprite in the
resulting CSS file.

All you need to do is to make sure you set up a folder within your images folder,
such that you have the right names for each of the images, as described in the
following list (taken from Compass documentation):

• images/my-icons/new.png

• images/my-icons/edit.png

• images/my-icons/save.png

• images/my-icons/delete.png

The name my-icons can be any name you prefer. Then in the Sass file, use the
following code:

@import "my-icons/*.png";
@include all-my-icons-sprites;

Making Your Site Better

[112]

Use the same name you used instead of my-icons in the previous step. Presto!
You are done! Compass generates a CSS file that has the following code:

.my-icons-sprite,

.my-icons-delete,

.my-icons-edit,

.my-icons-new,

.my-icons-save { background: url('/images/my-icons-s34fe0604ab.png')
no-repeat; }

.my-icons-delete { background-position: 0 0; }

.my-icons-edit { background-position: 0 -32px; }

.my-icons-new { background-position: 0 -64px; }

.my-icons-save { background-position: 0 -96px; }

Now, use the appropriate class name in your markup to add the appropriate image
to your element.

SpriteMe
SpriteME, available at spriteme.org/, is a bookmarklet that analyses images used
on a page and creates sprites out of them. If you have an existing site to convert to
using sprites, this would be a great place to start from.

Augmenting Google Analytics
Google Analytics can track several kinds of data and here are some easy, obvious
augments you can make to your Analytics data.

Adding more tracking settings
Google Analytics gives you a number of optional settings to track, which you need
not use the .push() method on; instead you can directly append to the initial array.
Instead of the following:

var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-XXXXX-X'']);
_gaq.push(['_trackPageview']);

You can do the following:

var _gaq = [['_setAccount', 'UA-XXXXX-X'],['_trackPageview']];

Chapter 6

[113]

Anonymize IP addresses
In some countries, no personal data may be transferred outside jurisdictions that
do not have similarly strict laws (that is, from Germany to outside the EU). Thus,
a webmaster using the Google Analytics script may have to ensure that no personal
(trackable) data is transferred to the U.S. You can do that with the _gat.anonymizeIp
option. In use it looks like the following:

var _gaq = [['_setAccount', 'UA-XXXXX-X'], ['_gat._anonymizeIp'], ['_
trackPageview']];

Tracking jQuery AJAX requests in Google
Analytics
Steve Schwartz writes about a simple script you can use in the plugins.js that
will allow you to track jQuery AJAX requests at www.alfajango.com/blog/track-
jquery-ajax-requests-in-google-analytics. The following code snippet shows
that script:

/*
 * Log all jQuery AJAX requests to Google Analytics
 * See: http://www.alfajango.com/blog/track-jquery-ajax-requests
-in-google-analytics/
 */
if (typeof _gaq !== "undefined" && _gaq !== null) {
 $(document).ajaxSend(function(event, xhr, settings){
 _gaq.push(['_trackPageview', settings.url]);
 });
}

Tracking JavaScript errors in Google
Analytics
If you want to track JavaScript errors on your page using Google Analytics, it is
possible to do so with the following script, which you need to add after the Google
Analytics variable _gaq has been defined in the index.html page:

(function(window){
var undefined,
link = function (href) {
var a = window.document.createElement('a');

Making Your Site Better

[114]

a.href = href;
return a;
 };
window.onerror = function (message, file, row) {
var host = link(file).hostname;
 _gaq.push([
 '_trackEvent',
 (host == window.location.hostname || host == undefined || host
== '' ? '' : 'external ') + 'error',
message, file + ' LINE: ' + row, undefined, undefined, true
]);
 };
}(window));

Summary
In this chapter, we looked at how we can provide a better experience for users of
Internet Explorer. We also considered very briefly some tools that can help us write
more efficient and robust stylesheets that are easier to maintain in the light of cutting
edge developments in CSS. We looked at how to use polyfills and write pages that
are faster to load and more secure in general. We looked in detail at how to render
the Sun and Sand website when JavaScript is disabled and also stitched the artists'
images together into a sprite and saved on several network requests.

In the next chapter, we will look at automating deployment of our site using the build
script that HTML5 Boilerplate provides.

Automate Deployment With
the Build Script

We are ready to deploy our site! But before we do that, we should ensure we minimize
all our scripts and optimize the images, so that these pages load as quickly as possible
anywhere in the world. We can automate these tasks by executing a script on the
command line. Let us look at the options we have.

The build script
Once you are done with your project, you would like to generate files that strip
comments and are optimized for loading quickly. There are software build systems
that are typically used in software projects with similar goals. HTML5 Boilerplate's
build scripts provide tasks scoped to what a typical web development project
would need.

The script should be used only after you have confirmed your project is ready
for deployment and it has been well tested. The build script merely automates
the process of removing comments, optimizing files, and making sure the files
are production ready.

Automate Deployment With the Build Script

[116]

There are currently two kinds of build scripts that are actively maintained by HTML5
Boilerplate contributors; these are explored in the following section.

Ant build script
The Ant build script is a set of files that work on top of the Apache Ant build system
(ant.apache.org/) that has been available since the early days of HTML5 Boilerplate.
It offers a variety of options, described as follows:

• Publishes files to test, development, and production environments
• Checks syntax and code quality of your script files with JSHint or JSLint,

or your stylesheets with CSSLint
• Concatenates and minifies all your JavaScript files into a single file and

updates the HTML pages with reference to this new file
• Cleans up and tidies HTML markup by removing comments, whitespaces,

and compressing inline styles and scripts
• Concatenates and minifies all your stylesheets and updates the HTML pages

with reference to the new file instead of multiple CSS files
• Compiles style preprocessor files such as Less or Sass into the resulting CSS

stylesheets and updates references in HTML pages
• Optimizes PNG and JPEG images within the img folder using OptiPNG from

optipng.sourceforge.net/ and JPEGTran from jpegclub.org/jpegtran/
respectively

• Builds documentation from your scripts using JSDoc3 from github.com/
jsdoc3/jsdoc

Node build script
A new build script that builds on top of Node, found at nodejs.org/, is under active
development. While it is not out for production use yet, it offers a lot of tasks that are
similar to the Ant build script with some new features described as follows:

• Concatenates and minifies all your JavaScript files into a single file and
updates the HTML pages with reference to this new file

• Concatenates and minifies all your stylesheets and update the HTML pages
with reference to the new file instead of multiple CSS files

• Cleans up and tidy HTML markup by removing comments, whitespaces,
and compressing inline styles and scripts

Chapter 7

[117]

• Optimizes PNG and JPEG images within the img folder using OptiPNG and
JPEGTran respectively

Watch the project files for changes, and automatically run the build script and reload
open pages in browsers when they do.

Which build script to use?
Depending on what platforms you are comfortable with, you can choose one over
the other. Both the build scripts are stable enough to use to deploy your production
files, so your choice is down to what you are most comfortable using.

If you already have Ant installed, the Ant build script might be an obvious choice. If
you find yourself using Node frequently or using it in your projects, then the Node
build script could be a good start. In this chapter, we will look at using both, so you
can become comfortable with either of them.

Using the Ant build script
First, confirm you have Ant installed on your system by entering the following in
your command-line tool:

ant–version

If you do not have Ant, install it first before proceeding to the next step.

Ant is installed by default on Macs, while it is available as a package
to install on most Linux platforms. For Windows, installing Ant is
slightly more complicated. You need to install the Java SDK from www.
oracle.com/technetwork/java/javase/downloads/index.
html and then download WinAntcode.google.com/p/winant/
and point the installer to Program Files/Java/jre6/bin/.

Next, you need to install ant-contrib, a utility that makes a lot of functionality
available for Ant that HTML5 build script uses. WinAnt does this automatically,
when you use it to install Ant on Windows. However, for Linux users, you can use
yum to install it as a package. On Mac, you can install MacPorts (www.macports.
org/install.php) and then enter the following in your command-line tool
(typically Terminal):

sudo port install ant-contrib

Automate Deployment With the Build Script

[118]

Finally, ensure that the image optimization tools are installed. For Mac users,
you need to make sure you have jpegtran (www.ijg.org/) and optipng (optipng.
sourceforge.net/) installed and on your path. You can install these two files by
entering the following in your command-line terminal:

sudoport install jpeg optipng

The PATH is an environmental variable that holds a list of folders
that your command-line interface searches through when you enter
a command. You can learn about how to add folders to the path
from www.cs.purdue.edu/homes/cs348/unix_path.html.

If you are on Windows, the Ant build script project contains the required binaries
for these image tools for you to install.

Installing the build script
In Terminal (or your command-line tool), we will navigate to our project folder and
install the build script using Git, as shown in the following screenshot:

We now have to rename the build script folder from ant-build-script to build
before we continue. This is done by using the following command:
mv ant-build-script build

Once that is done, let us navigate to the build script folder by using the
following command:

cd build

Now, we shall execute the build script! Go to your command-line tool
and enter the following:

ant build

http://www.ijg.org/

Chapter 7

[119]

If you set up your build script folder correctly, then you should get the
following screen:

Then, after the tasks are executed, you should get the following output:

Now, you have a brand new publish folder where the optimized files are stored.
Let us look at what all have been optimized, by opening the index.html page from
the publish folder, in Chrome browser and using the Chrome Developer Tools'
Network tab to observe the files that are loaded and their associated sizes.

Please note that you must load the page with the Network tab open to log the files
being requested.

Automate Deployment With the Build Script

[120]

Smaller image files
The Network tab records all images that are fetched for use on index.html. We can
see that the images that are fetched for the index.html page in the publish folder are
noticeably smaller in size.

In the following screenshot, the bottom section of the screenshot shows the list of
images in the publish folder, which are noticeably smaller than the images used
in our original project (listed in the top section of the screenshot):

Chapter 7

[121]

Smaller CSS file
We note that before we used the build script, our CSS file was called main.css and
was approximately 21 KB, but after using the build script, the file has been renamed
and is now almost half the original size, as shown in the following screenshot:

Smaller and fewer JS files
After executing the build script, you will notice that main.js and plugin.js have
been combined into one. Not only have they been combined together, but they have
also been minified, leading to a smaller file size of the final script file.

The index.html page from the publish folder generated via the build script invokes
only four JavaScript files as shown in the bottom section of the following screenshot,
compared to five JavaScript files originally placed in the folder (top section):

Automate Deployment With the Build Script

[122]

No comments in files
The HTML, CSS, and JS files in the publish folder have no comments that HTML5
Boilerplate files contain.

Build options
The Ant build script has a few tasks that are not executed by default, but are
available to you if you need them. The following sections explain what these
tasks allow you to do.

Minifying markup
By default, the Ant build script does not remove whitespaces from the index.html
page when optimizing; if you want to also remove whitespaces in the HTML file
and minify it, you can execute the following:

ant minify

Preventing image optimization
When executing the build script, you will notice that the script takes the longest
time to optimize images. If you are executing the build script to merely test the
final production-ready files, then you would not have to optimize images. In this
case, you should execute the following command:

ant text

Using CSSLint
CSS Lint (csslint.net) is an open source CSS code-quality tool that performs a
static analysis of your code and flags style rules that are invalid or may be the cause
of problems. To use CSS Lint on your project's CSS files, just enter the following:

ant csslint

Typically, you will observe a bunch of warnings. CSS Lint has a lot of options you
can set. To do this, open the project.properties file within the config folder in
build. Uncomment this line by removing the #, by using the following command:

#tool.csslint.opts =

Enter all the options you want to use with CSS Lint after the = sign and save.
The various options that you can use are mentioned at github.com/stubbornella/
csslint/tree/master/src/rules.

Chapter 7

[123]

Using JSHint
JSHint (jshint.com) is a community-driven tool to detect errors and potential
problems with your JavaScript code and enforce your team's coding conventions. To
execute JSHint on your JavaScript files, go to your project and execute the following:

ant jshint

Once executed, we see a bunch of errors being listed for our main.js. The corrected
file is included within the code for this chapter. Once corrected, you will also notice a
whole slew of errors being thrown for the code in plugin.js. This is because we used
the minified code of the smooth-scroll plugin. Let us replace it with the unminified
code from the project repository at github.com/kswedberg/jquery-smooth-scroll/
blob/master/jquery.smooth-scroll.js.

Now, we get a bunch of errors all telling us we need to use the stricter comparison
operator. Let us turn this off for our current project. We can do this by opening the
project.properties file within the config folder under our build folder and
uncomment the following line that allows you to use your own options for JSHint:

#tool.jshint.opts

Change it to the following snippet:

tool.jshint.opts = maxerr=25,eqeqeq=false

More options are listed on the JSHint website at jshint.com.

Our errors have disappeared!

Setting up the SHA filenames
The concatenated and minified CSS and JS filenames are set to uniquely generated
strings, which ensures a cached local copy of these files never get loaded when a new
production build is deployed to the server. By default, the number of characters used in
the filename is 7. You can set it to a smaller or larger number by changing the following
line in project.properties within the config folder inside the build folder:

#hash.length = 7

Uncomment the previous line and then alter the number 7 to the number of characters
you prefer, using the following syntax:

hash.length = <number of characters you prefer>

Automate Deployment With the Build Script

[124]

Using with Drupal or WordPress
Minor changes need to be made to make sure that these Ant build scripts work
as intended for Drupal. Do note that there is not much help in minifying the
HTML pages as a significant portion of the markup will be generated by Drupal
or WordPress.

Updating build.xml
There is a minor change you need to make to build.xml to make it work with the
file structure of Drupal or WordPress.

Look for <echo message="Minifying any unconcatenatedcss files..."/>
within the file. Just after that line of code, change the following:

<filesetdir="${dir.source}/${dir.css}/" excludes="${concat-files}"
includes="**/*.css"/>

To the following:

<filesetdir="${dir.source}/${dir.css}/" excludes="${concat-files},
${dir.build.tools}/**/*.css, ${dir.intermediate}/**/*.css, ${dir.
publish}/**/*.css" includes="**/*.css"/>

Setting up the project configuration properties
In the project.properties file within the config folder of the build folder, add
the following code:

dir.css = .
dir.images = images
file.root.stylesheet = style.css

Setting the JS file delineator
WordPress or Drupal themes require you to split your markup into separate files
(for example, footer.php for WordPress or footer.tpl.php for Drupal). You need
to know in which of these files the following code is located:

<!-- scripts concatenated and minified via build script -->
<scriptsrc="js/plugins.js"></script>
<scriptsrc="js/main.js"></script>
<!-- end scripts -->

Chapter 7

[125]

Use that filename (for example, footer.php) to set the file.root.page property in
the project.properties file by using the following code:

file.root.page = <name of file>

A sample Drupal and WordPress theme that contains the modified build script are
provided in the code for this chapter.

Using the Node build script
The Node build script is different from the Ant build script in the following two ways:

• It installs universally and does not need to be copied from one project to
the other.

• All projects should be initialized with the Node build script. It is significantly
more troublesome to add it on to a project that is already underway.

The Node build script requires Node, so verify you have Node installed by entering
the following command:

node -v

If you do not have Node already, you can install it from nodejs.org/ (or by using
package manager from github.com/joyent/node/wiki/Installing-Node.js-
via-package-manager.

Grunt
Grunt (gruntjs.com/) is a Node-based command-line build tool on which this Node
build script is based. The Node build script provides HTML5 Boilerplate optimized
tasks that plug into Grunt.

This requires using a package.json file along with a grunt.js file within your
project folder, which can be set up when you initialize your project.

Installing Node build script
In your command-line tool, first install the Node build script package, by entering
the following command:

npm install https://github.com/h5bp/node-build-script/tarball/master -g

Automate Deployment With the Build Script

[126]

The Node build script can also be used as a part of a bigger build setup. If you are
inclined to using it differently, take a look at all the possible ways of doing so here
at github.com/h5bp/node-build-script/wiki/install.

Once installed, you can create your HTML5 Boilerplate project folder by initializing it.

Initializing your project
You can choose from various options to set up a project folder for yourself. Let us
use this to set up a temporary project, to learn how to use this script to start your
HTML5 Boilerplate project.

Create a folder where your HTML5 Boilerplate project should be. Navigate to it
within your command-line tool and enter the following command:

h5bpinit

This will start setting up a whole set of command-line interactions for you to choose
from. It is mostly used to set up information for package management that will be
used by Grunt.

Once you have done that, you have three options to choose from for setting up the
files you want to start with; these options are as follows:

• [D]efault: Standard set of files for HTML5 Boilerplate.
• [C]ustom: Get all the standard files with the option of choosing to rename

js/, css/, or img/ folders. You would typically want to do this if your
files are going to be used as templates for other systems such as Drupal
or WordPress.

• [S]illy: Prompts to rename every folder/file in HTML5 Boilerplate. You are
least likely to use this option, unless you are a semantic perfectionist.

After you choose the type of installation you want to do, there are also more questions
that are asked. Note that if you press Enter, the default value as indicated within
parenthesis will be set.

This will then download the latest version of HTML5 Boilerplate from the Github
repository for you to start as your base.

Chapter 7

[127]

Using the Node build script with an existing project
It is not impossible to use the script with an existing project, but it's just a bit more
tedious. There is work underway in the project to make this happen at github.com/
h5bp/node-build-script/issues/55, but until then, the following is how we can
use it with our Sun and Sand website:

1. First, create a temporary folder, and execute the Node build script to initialize
an empty project from the command line as described in the earlier section.

2. Then, copy only package.json and grunt.js into your project folder.

You can see the code in the nimbu.in/h5bp-book/chapter-7-node-init/ folder to
see this in action.

Using the Node build script to build your
project
Navigate to the Sun and Sand project folder (that you initialized it in the previous
section) in your command-line tool and enter the following command:

h5bpbuild:default

This will combine the files and the results are published in the publish folder
just like the Ant build script. You can also use these other build options like
the Ant build script.

Text
If you would like to leave out compressing images when building your project,
then use the following command:

h5bpbuild:text

Minify
If you would like to additionally minify HTML files, then use the following
command:

h5bpbuild:minify

Automate Deployment With the Build Script

[128]

The results are similar to what you would find with Ant build script; the following
screenshot shows the result of the minification process:

There are some additional options available that you don't get with Ant build script.

Server
This will open a local server instance you can immediately preview your website on.
This is useful when you want to test the pages where protocol-relative URLs are used
to link to files. To do this, simply navigate to your project folder in the command-line
tool and enter the following command:

h5bp server

You will see the server being started for both the publish folder and the
intermediate folder, as shown in the following screenshot:

Then, open http://localhost:3001 to view the published site.

Chapter 7

[129]

Connect
Using this command, you can see your page reload on browsers it is open in as soon as
you have made changes to any asset within the project. This saves you from refreshing
the page manually to see the change. To do this, just navigate to your project folder in
the command-line tool and enter the following command:

h5bp connect

Using with Drupal or WordPress
It is fairly trivial to initialize an HTML5 Boilerplate project with Node build script
and then convert it into a template you are building for Drupal or WordPress. First,
make sure you choose the Custom option when executing h5bp init. Then, when
setting the folders, set inc as the folder where your stylesheet will be, and images
as the name of the folder that would contain your template images. When you
are prompted again, enter in the same values and the project framework will be
generated for you. Make sure you replace index.html with your template files.

Once you have done this, open the grunt.js file in your project folder and confirm
that the stylesheet's folder is set to the parent folder by using the following code:

css: {
 'style.css': ['*.css']
 },

Make sure that only JavaScript files and stylesheets get prefixed with the SHA
filenames, by editing or removing images from being renamed. This is done by
using the following code:

rev: {
js: 'js/**/*.js',
css: '*.css',
},

The script also needs to know the new location of the images folder. We can do this
by setting the source and destination folders for images, as shown in the following
code snippet:

img: {
dist: {
src: 'images',
dest: 'images'
 }
 },

Automate Deployment With the Build Script

[130]

Next steps
Once we are satisfied with our production files in the publish folder, then we
can move it to our hosting provider to replace the files that make our website.

Ideally, you would be using a Version Control System to do this, so you can
quickly roll back an update in the unlikely event of this update making some
page unavailable.

If you are only creating a template for Drupal or WordPress, then it may help to
move this to within the WordPress folder on the server that is under a Version
Control System.

Alternatively, you can compress your project and then copy the files to the server
where they can be decompressed and used. The Node build script provides an
option to do this. Go to your project folder in your command-line tool and enter
the following command:

h5bptar –-input publish –-output <project-name>.tgz

Use the name that best describes your project instead of <project-name>. Then,
copy the <project-name>.tgz to your server and expand it into the folder you
would want the files in.

Summary
In this chapter, we learned how to use two kinds of build scripts that are available
from the HTML5 Boilerplate team. We also looked at how we can use them both
with Drupal or WordPress templates. We also looked at what we can do once the
files have been built.

In the next chapter, we will look at some advanced tasks you can take on, now that
you know how to create and deploy projects using HTML5 Boilerplate.

You Are an Expert,
Now What?

We are all set with our website. We have learned how to write its code, build it with
the build scripts and deploy it to the production code, so that it goes live without any
hiccups. You are effectively done learning HTML5 Boilerplate. If you are curious in
becoming a better web developer, you could spend time understanding some other
relevant and useful parts of the Web! Let us explore a few of them.

Writing unit tests for your code
We wrote some JavaScript for our website. While the browsers let us know if the
code is written incorrectly, there is no way to tell if the code works as intended.
Perhaps there are edge cases that we failed to account for. The code should be
as robust as possible and works around all expected use cases and is capable of
handling most error conditions. You can ensure this is possible by writing tests
to test every function your code calls.

A unit can be considered as the smallest testable part of your code. When you write
unit tests, you ensure every section of the code behaves correctly. The easiest way to
get started with unit tests is to use a test suite.

QUnit.js is a popular browser-based test suite that tests your code in the browser.
Let us use this on our code that we wrote for the Sun and Sand Festival website.

You Are an Expert, Now What

[132]

Creating a testing environment
Let us create a tests folder within our project.

Then, we download QUnit.js from code.jquery.com/qunit/qunit-1.9.0.js and
the associated CSS file qunit.css from code.jquery.com/qunit/qunit-1.9.0.css.
The latest versions of these files can be found at github.com/jquery/qunit.

We now create a testing environment by creating a tests.html page within the
tests folder, and have the following code:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Tests for Sun n' Sand Festival Code</title>
<link rel="stylesheet" href="qunit-1.9.0.css">
</head>
<body>
<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.
js"></script>
<script>window.jQuery || document.write('<script src="js/vendor/
jquery-1.7.2.min.js"><\/script>')</script>
<script src="qunit-1.9.0.js"></script>
<script src="../js/main.js"></script>
<script src="test.js"></script>
</body>
</html>

In this code, we have included our main.js, file that we are using on our website.
We will be testing the code we wrote for the tabs used to display the line up.

Now, we will create the test.js file, where we will write all our tests for our code.

As our test depends on the markup that is used for the tabs, let us copy the markup
without the content from index.html to tests.html.

If we execute this test as it is, we will get an error claiming global failure. If you open
up the console of your browser's developer tools, you should see the following error:

Uncaught TypeError: Object [object Object] has no method
'smoothScroll'

Appendix

[133]

This is because we invoke the plugins from main.js but we have not included
those plugins here because we are not testing them. We can corral all of our
plugin-dependent code and invoke them only if QUnit is not used, by testing
for the existence of QUnit first before invoking plugins and frameworks like
in the following snippet of code:

if(window.QUnit == undefined) {
 $('.js-scrollitem').smoothScroll();
 if(Modernizr.svg === false) {
 $('img[src$=".svg"]').each(function() {
 this.src = /(.*)\.svg$/.exec(this.src)[1] + '.png';
 });
 }

 if (Modernizr.generatedcontent === false && window.onbeforeprint !==
undefined) {
 window.onbeforeprint = printLinkURLs;
 window.onafterprint = hideLinkURLs;
 }

 Modernizr.load({
 test: Modernizr.audio,
 nope: {
 'mediaelementjs': 'js/vendor/mediaelement/mediaelement-and-
player.min.js'
},
 callback: {
 'mediaelementjs': function() {
 $('audio').mediaelementplayer();
 }
 }
 });
}

Make sure you remove the condition—if(window.QUnit == undefined)—in the
production code.

Now, let us write a test to confirm that when a navigation tab is clicked the correct
class is applied to itself by using the following code snippet:

$('.js-tabitem').each(function() {
 var $this = $(this);
 $this.trigger('click');

You Are an Expert, Now What

[134]

 test("navigation tabs", function() {
 ok($this.hasClass('t-tab__navitem--active'),
 'The clicked navigation item has the correct active class
applied');
 });
});

The test() function is a function available from the QUnit test suite. The first
argument is the title of the text, and the second is the actual test function you
want to execute.

We also use ok(), which is one of the assertions from the QUnit test suite to confirm
the class does apply. An assertion is an essential element of unit testing, where you
test if the result of the execution of your code returns the expected value. QUnit
has different kinds of assertions that are all documented at api.qunitjs.com/
category/assert/.

In ok(), the first argument we pass to this function is an expression that evaluates
to true or false. The second argument is the message you want to display when the
assertion is executed.

Now, let us test that the inactive navigation items do not contain the class name that
makes a navigation item appear active, by using the following code snippet:

$('.js-tabitem').not(this).each(function() {
 ok(!$(this).hasClass('t-tab__navitem--active'),
 'Inactive item does not have active class');
});

Let us now execute these tests! Open the tests.html page in your browser.
You should see something like the following screenshot:

Appendix

[135]

You can execute more complicated tests too! Learn more about QUnit from their
online cookbook at qunitjs.com/cookbook/.

Esoteric defaults you should know about
There is a lot of research that was done to arrive at the defaults that are part of
HTML5 Boilerplate. It is really fun to understand how different browsers behave
and what drove us to choose the defaults as they are.

Meta UTF-8
The meta element represents any metadata information for the page. Setting
<meta charset="utf-8"> in the <head> element will ensure browsers parse
the page with UTF-8 encoding in the absence of any other information about
the encoding of the page.

The interesting thing to note is that most browsers look for character encoding
metadata only within the first 512 bytes of the page. Hence, you need to ensure
that if you have a lot of data in your <head> element, this meta element occurs
before everything else.

In the absence of charset encoding information, browsers have to guess which
charset encoding to apply. The HTML5 spec outlines the sniffing algorithm that
all browsers must implement at www.whatwg.org/specs/web-apps/current-
work/multipage/parsing.html#encoding-sniffing-algorithm. Unfortunately,
older browsers had their own mechanisms for guessing character encoding.

In the case of Internet Explorer 7 and below, the default character encoding preference
is typically set to Auto Select. This means the browser scans the content of the page
to detect what character encoding would best apply. In case of Internet Explorer, if it
finds a UTF-7 string within 4096 characters of the page, it would assume the page uses
UTF-7 encoding and your page will become vulnerable to cross-site scripting attacks
using UTF-7 encoding. Hence, the meta element declaration and right on top of the
page in the index.html page.

Note that if your server sends an HTTP header that is of a different encoding, then
that would take precedence. Make sure your server is set up to serve the right
charset encoding as an HTTP header.

You Are an Expert, Now What

[136]

The HTML Doctype
Before the standardization of HTML and CSS, most markup and styles did not render
consistently in any browser. But when we had standards about how markup should
be written and more and more developers started adopting these standards, browsers
then had to face the problem of detecting which of the pages on the Internet conformed
to these standards and which weren't.

The Doctype was invented so that developers could inform the browser to render
the page using the newer standards mode. Without a Doctype declaration, browsers
would render the page in what is known as Quirks Mode (the way browsers used
to render the pages before standards became an acceptable practice). In IE6, having a
comment or an XML namespace declaration above the Doctype would render the page
in Quirks Mode too. In the early 2000s when using the XHTML Doctype with an XML
namespace declaration was recommended, this would be the cause of significant issues
in Internet Explorer.

Not all Doctype declarations render in standards mode. The easiest way to use
standards mode is to use the smallest recommended Doctype, <!doctype html>.
You can use any mix of upper or lowercases in the Doctype declaration (for example,
<!DoCtYpE hTmL>).

The details behind the clearfix solution
The clearfix CSS class is used to make sure floated elements fit in their parent
container. The very first exploration of this idea occurred in 2002, and is elaborated
further in the article at www.positioniseverything.net/easyclearing.html.

The clearfix selector works in the following manner:

.clearfix:after {
 content: ".";
 display: block;
 height: 0;
 clear: both;
 visibility: hidden;
}
.clearfix { zoom: 1; } /* IE 5.5/6/7 */

The biggest problem with this method is that margins do not collapse consistently
across all browsers. Thierry Koblentz writes more about it at www.tjkdesign.com/
lab/clearfix/new-clearfix.html.

Appendix

[137]

Thierry Koblentz updated this method in 2010 introducing the use of both :before
and :after pseudo-elements in the post at www.yuiblog.com/blog/2010/09/27/
clearfix-reloaded-overflowhidden-demystified/ to be so. Both the pseudo-
elements are used in the following code snippet:

.clearfix:before,

.clearfix:after {
 content: ".";
 display: block;
 height: 0;
 overflow: hidden;
}
.clearfix:after {clear: both;}
.clearfix {zoom: 1;} /* IE < 8 */

Using both pseudo-elements prevents the problem of inconsistent margin collapsing
while using the clearfix class.

Nicolas Gallagher, in 2011, found an alternative way that reduces the lines of code
necessary for the clearfix class if our target browsers are IE6 and higher and other
modern browsers, as he explains in his article at nicolasgallagher.com/micro-
clearfix-hack/. Nicolas' code is given in the following code snippet:

.cf:before,

.cf:after {
 content: " ";
 display: table;
}

.cf:after {
 clear: both;
}

/**
 * For IE 6/7 only
 * Include this rule to trigger hasLayout and contain floats.
 */
.cf {
 *zoom: 1;
}

You Are an Expert, Now What

[138]

In this method, using display: table would create an anonymous table cell (more
information on what this means is available in the specification at www.w3.org/TR/
CSS2/tables.html#anonymous-boxes) within the pseudo-element, which prevents
the collapsing of top margins. The content property does not require any content
within to work, but this method uses a space character to overcome an Opera bug
when used on elements that are editable.

This is how the clearfix class evolved! As you can see, a great deal of research and
development went into crafting the best clearfix class possible that would work
across dominant browser platforms.

What do the print styles do?
The HTML5 Boilerplate stylesheet comes with a set of styles that are useful defaults
when a user prints your page. Styling how a page would appear in print is something
that most of us do not consider while designing a web page, and HTML5 Boilerplate
gives you a set of good defaults, so you do not have to consider it most of the time
(however, it would be good practice to do so).

Print media query
We have inlined all our print styles within a CSS media query called "print".
This media query is matched whenever a user selects a page for printing, and
these style rules will be applied in that case. We declare all of our rules within
the @media print query as shown in the following code snippet:

@media print {
 a, a:visited { text-decoration: underline; }
 /* More Styles below */
}

Optimizing colors and backgrounds
We then make sure we optimize the page to appear most readable when printed and
also ensure we are not wasting too much printing ink printing superfluous images,
colors, and text. This means we make sure we remove all background images or
images, which are just of a slightly different shade of white or transparent for all
elements. We also make sure all of the colors are black as it means the printer does
not have to mix any ink and hence can print faster. We also remove shadows, as that
would make the text less readable.

Appendix

[139]

The final rule we have for these updates is as follows:

* {
 background: transparent !important;
 color: #000 !important; /* Black prints faster: h5bp.com/s */
 box-shadow:none !important;
 text-shadow: none !important;
 }

Better links
Not many designers now use text-decoration: underline to style links on pages.
Typically, people use colors to indicate something is a link. However, underlines
are easier to discern in case of print, especially when you have no control over the
printer and colors used to render them. Hence, we have all links (active or visited)
to be styled with a line below the text by using the following code snippet:

 a,
 a:visited {
 text-decoration: underline;
 }

It would also be helpful to have a reference to the actual link in print as there is no
way for the user to navigate to that link if they are reading from a printed page and
would like to visit the link. We do this by using the attr() function in CSS. attr()
returns the value of an attribute of the element that the current rule will be applied to.
In this case, as we are applying it on links, we can use attr() to obtain the value of the
href attribute of links and print them. A space character is used to concatenate strings
together when they are used as a value in the content property. We also want to make
sure that if a link has a title, we print that too as a title is only visible on hovering on a
link. All of this expressed in CSS looks like the following code snippet:

 a[href]:after {
 content: " (" attr(href) ")";
 }

 abbr[title]:after {
 content: " (" attr(title) ")";
 }

You Are an Expert, Now What

[140]

But, this means even links that are just linking to another location in the same page
or are used for JavaScript actions (with the javascript: prefix) would render the
same way! So, we would need to make sure we do not do this for these links.

For this, we use the attribute selector that allows us to select elements that
have properties that begin, end, or contain certain values. By using the selector
a[href^="javascript:"]:after, we ensure we are only selecting the :after
pseudo-elements of links that have the attribute href, whose value starts with
the string javascript:.

Similarly, we also select all links which have the href attribute that begin with the #
character, as that means such links are inline links linking to another location within
the same page.

We then make sure we render no content for pseudo-elements within these links.
The rule then looks like the following code snippet:

 .ir a:after,
 a[href^="javascript:"]:after,
 a[href^="#"]:after {
 content: "";
 }

Do note that these rules are not available for IE6 and if it is highly necessary to offer
this functionality in IE6, you would like to use JavaScript that provides this.

Rendering all code and quotes within one page
It sometimes happens that your printed page would contain quotes or code, and as
a reader, it is annoying to keep referring back to a previous page when the code (or
the quote) could all have been within one page without any break. For this, we can
use the CSS page-break-inside property that allows you to tell the browser if you
prefer these elements to break over two pages or stay within the same page. The code
for this is shown in the following code snippet:

pre,
 blockquote {
 border: 1px solid #999;
 page-break-inside: avoid;
 }

Do note that page-break-inside is not supported in Firefox, but is available in all
other browsers.

Appendix

[141]

Rendering tables better
By default, putting headings within the thead tag would ensure that the headings
get repeated every time a table breaks across two pages. However, only Firefox and
Opera have support for this at the moment. In IE, you can do this but you would
have to explicitly state it, as stated in the following code snippet:

 thead {
 display: table-header-group; /* h5bp.com/t */
 }

Rendering images better
Ideally, we want to prevent table rows and images from breaking across pages, so
we use the now familiar page-break-inside property to tell the browser of our
preference, as shown in the following code snippet:

 tr,
 img {
 page-break-inside: avoid;
 }

It also does not appear too well, when images run off beyond the page or print
cropped while appearing in full on the website. Hence, we restrict the maximum
width to be as wide as the page itself and no more, as shown in the following
code snippet:

 img {
 max-width: 100% !important;
 }

Margins on pages
The @page rule allows you to modify the properties of a page when printing. All
browsers except Firefox support this rule. This rule sets the margins to be 0.5 cm
per page, as shown in the following code snippet:

 @page {
 margin: 0.5cm;
 }

You Are an Expert, Now What

[142]

Optimal settings for orphans and widows
Orphans are the lines of text that appear at the bottom of the page. Widows are those
that appear at the top of the page. We make sure that lines do not break in a manner
that leaves fewer lines at the bottom or top than desired. This will create a more
readable experience. The following code snippet is used for that purpose:

 p,
 h2,
 h3 {
 orphans: 3;
 widows: 3;
 }

Keeping headings with content
It is not readable to have the headings appear at the bottom of one page and the
content that the heading is for, appearing on the next. To tell the browsers to avoid
doing this, we can use the page-break-after setting, as shown in the following
code snippet:

 h2,
 h3 {
 page-break-after: avoid;
 }
}

What are protocol-relative URLs?
In HTML5 Boilerplate, when we refer to jQuery, we refer to it as follows:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.1/jquery.min.
js">
</script>

Note that we do not have either http or https in front of the URL; instead, it starts
with //. These are called protocol-relative URLs and are useful when you want to
use a protocol-agnostic resource in a HTTP or HTTPS environment.

Appendix

[143]

When you serve pages using HTTPS, browsers will throw warnings and errors when
the page loads assets and resources that use HTTP protocol. To prevent this, you
need to ensure you use the HTTPS protocol for all the assets you are requesting. This
is typically not a problem if you are using relative URLs to refer to assets within the
parent folder of your page. However, if you are referring to external URLs like the
CDN URL for jQuery (shown previously), then you need to ensure you use https
when the page is being served with the HTTPS protocol and the http prefix when
the page is being served with HTTP protocol.

Instead of using JavaScript to do that determination, simply omitting the protocol
ensures browsers use the currently used protocol when requesting that external
URL. In this case, if this page gets served on HTTPS as https://example.com,
then the URL requested will be https://ajax.googleapis.com/ajax/libs/
jquery/1.8.1/jquery.min.js.

You can learn more about this at paulirish.com/2010/the-protocol-relative-
url/.

Using conditional comments
Historically, IE6, IE7, and IE8 have been browsers with the most bugs and inconsistent
rendering of styles. There are many ways to serve styles to IE versions 8 and below,
here are a few.

Browser style hacks
The most prevalent technique is to use hacks in CSS style rules that target only
one browser.

For IE6 and below, use the following code snippet:

* html #uno { color: red }

For IE7, use the following code snippet:

*:first-child+html #dos { color: red }

For IE8, use the following code snippet:

@media \0screen {
 #tres { color: red }
}

You Are an Expert, Now What

[144]

There are more hacks that target two or more browsers (or exclude two or more
browsers) all listed in the post at paulirish.com/2009/browser-specific-css-
hacks/.

The problem with these hacks is that first they exploit holes in the browser's parsing
technology. If browsers fix these parsing errors then they may not work. Luckily, we
do not have to fear about this for older browsers such as IE6 and IE7.

These hacks are also not readable and without comments it is impossible to
understand which browsers they target.

The advantage of these methods is that you can keep your style rules together, and
you do not have to serve a separate stylesheet for the browsers requiring hacks.

Server-side browser detection
When they make a request to a web server, browsers send a User Agent String along
with the request. Servers can serve different resources based on their interpretation
of the User Agent String. For example, if a browser identifies itself as IE6 with the
following User Agent String:

Mozilla/4.0 (compatible; MSIE 6.0; Windows XP)

Then, the server can send back a different stylesheet to IE6. While this may seem like
a simple, easy solution, the problem occurs when browsers lie. Historically, browsers
have never exactly claimed to be which browser they are, and hence, it is likely that
you may send the wrong stylesheet to a browser.

It also involves a little overhead server-side to process the request according to
the browser's User Agent setting, and hence is not an ideal way to serve different
stylesheets to IE8 and below.

Stylesheets based on conditional comments
Conditional comments are HTML comments with special syntax that are understood
by IE9 and below. The following is a sample conditional comment:

<!--[if lt IE 9]>
<p>HTML Markup here</p>
<!--<![endif]-->

All browsers except Internet Explorer 9 and below ignore content within these
conditional comments. IE9 and below try to interpret the if condition within
these comments and selectively render the content if the version number of the
IE browser matches the one within the if condition.

Appendix

[145]

The previous example will render the p tag on all 8, 7, 6, and below versions of IE.

Conditional comments are perfect to target older versions of IE and this is what
HTML5 Boilerplate uses. There are two ways of using them. The first is to output
a separate stylesheet based on matching a conditional comment, as shown in the
following code snippet:

<!--[if lt IE 9]>
<link rel="stylesheet" href="/css/legacy.css">
<![endif]-->

This will make IE8 and below use legacy.css and other browsers will ignore this
snippet of code.

The problem with a standalone stylesheet is that while you develop your styles you
have two different stylesheets to target, and occasionally IE-specific stylesheets could
be forgotten.

Some people provide only a very basic experience for IE8 and below, as shown in
the following code snippet:

<!--[if ! lte IE 6]><!-->
/* Stylesheets for browsers other than Internet Explorer 6 */
<!--<![endif]-->
<!--[if lte IE 6]>
<link rel="stylesheet" href="http://universal-ie6-css.googlecode.com/
files/ie6.1.1.css" media="screen, projection">
<![endif]-->

But HTML5 Boilerplate prefers a more readable and targeted approach that provides
the best possible styles to all browsers using class names, which we will look at next.

Class names based on conditional comments
An iteration of the previous conditional comments method would be to append
class names on the root element based on conditional comments, as shown in the
following code snippet:

<!--[if IE 8]>
<html class="no-js lt-ie9">
<![endif]-->

Then in your stylesheet, you can use it to set styles in IE8 and below as follows:

.lt-ie9 h1 { color: red }

You Are an Expert, Now What

[146]

You can read more about this solution at paulirish.com/2008/conditional-
stylesheets-vs-css-hacks-answer-neither/.

This solution does not require separate stylesheets, but allows you to write readable
class names that indicate why that style rule exists in the stylesheet. This is the solution
we have adopted in HTML5 Boilerplate, and recommend.

What is meta x-ua-compatible?
x-ua-compatible is a header that defines how Internet Explorer renders your pages.
It declares which mode Internet Explorer should use to render your page. This is
primarily targeted towards older websites that break in Internet Explorer 9 onwards
because of better support for standards. It can be set in two ways.

Meta tag in your HTML page
In this case, we merely add a meta tag between the <head></head> tag in your
HTML pages as follows:

<head>
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" >
</head>

HTTP header response from the server
In Apache, in the .htaccess file, writing the following would make the server
send the X-UA-Compatible HTTP header as a response to any request on that
parent folder:

LoadModule headers_module modules/mod_headers.so
Header set X-UA-Compatible "IE=EmulateIE7"

We recommend this method of setting its value because HTTP header values
override any value set via the meta tag. Moreover, using the meta tag with IE
conditional comments on the html element causes this meta tag to be ignored.
The X-UA-Compatible header can have the following values.

Edge
This would use the latest mode of rendering available. For example, within Internet
Explorer 10, it would be IE10. We would want to always use the latest rendering mode
available, as this means we have access to the latest and most standards-compliant
version of the browser. This is why it is our default option in HTML5 Boilerplate.

Appendix

[147]

IE9
This would use only IE9 mode to render the page. For example, when you use this
mode and this page is viewed in Internet Explorer 10, it would use the IE9 mode to
render the page.

IE8
This would render the page as though it is being viewed on Internet Explorer 8.

IE7
This mode renders content, as it would display if Internet Explorer 7 rendered it in
standards mode.

Emulate IE9
This mode tells Internet Explorer to use the <!DOCTYPE> directive to determine how
to render content. Standards mode directives are displayed in IE9 mode and quirks
mode directives are displayed in IE5 mode. All Emulate modes, unlike the previous
modes, respect the <!DOCTYPE> directive.

Emulate IE8
This mode tells Internet Explorer to use the <!DOCTYPE> directive to determine how
to render content. Standards mode directives are displayed in IE8 mode and quirks
mode directives are displayed in IE5 mode. Unlike IE8 mode, Emulate IE8 mode
respects the <!DOCTYPE> directive.

Emulate IE7
This mode tells Internet Explorer to use the <!DOCTYPE> directive to determine how
to render content. Standards mode directives are displayed in Internet Explorer 7
standards mode and quirks mode directives are displayed in IE5 mode. Unlike IE7
mode, Emulate IE7 mode respects the <!DOCTYPE> directive. For many websites,
this is the preferred compatibility mode.

IE5
This mode renders content as if Internet Explorer 7 displayed it in quirks mode. You
can learn more about these modes on MSDN documentation at msdn.microsoft.com/
en-us/library/cc288325(v=VS.85).aspx.

You Are an Expert, Now What

[148]

Contribute
If you like what you have seen so far of the project, you might want to contribute!
Contributing to HTML5 Boilerplate is rewarding in all the learning and understanding
that you get out of making even the smallest of changes. There are two ways to
contribute; these are as follows:

• Reporting issues
• Submitting pull requests

Reporting issues
If you find something that is a mistake or is incorrect in one of the files in HTML5
Boilerplate, then you can file an issue so any of the contributors can take a look at
it and see if it can be resolved.

The trick is to find out if something is an issue on HTML5 Boilerplate or something is
caused by the code your project uses. You can verify if this is a problem with HTML5
Boilerplate by starting a clean install of HTML5 Boilerplate and verifying if the error
still occurs.

If it is an issue with HTML5 Boilerplate, before you file an issue, make sure it has
not been already reported. The GitHub Issues page at github.com/h5bp/html5-
boilerplate/issues lists all open issues. Use the Search bar on top to search for
the issue you are facing. It is likely that it may have been fixed, but the fix has not
yet been pushed to stable branch.

If the issue is brand new, then make sure you isolate the problem in a way that is
obvious through a reduced test case (Chris Coyier writes about what a reduced test
case is in css-tricks.com/reduced-test-cases/). When you file a bug report,
make sure it is easy to understand, so we can find a speedy solution. Ideally your
bug report should contain the following:

• A short and descriptive title
• A summary of the issue and the browser/Operating Systems where this

bug occurs
• If it is possible, steps to reproduce the bug
• A URL to the reduced test case (you can host one on jsfiddle.net

or codepen.io)
• Any other information that would be relevant to the bug, including lines

of code that might be the cause of the bug, and potential solutions

Appendix

[149]

Ideally, a bug report should be self-contained, so contributors do not have to follow up
with you again to find out more about the bug and can instead focus on resolving it.

Following this process to file a bug report is a learning experience in itself in how to
find out what is wrong with the markup, style, or script that you wrote.

Pull requests
If you have ideas on how to improve HTML5 Boilerplate, patches to fix some existing
issues, improvements or new features, you would submit what is known as a pull
request. A pull request is a set of changes you can submit for review to the HTML5
Boilerplate GitHub repository, so it can be reviewed by the core contributors and
merged into HTML5 Boilerplate if found to be useful.

A good way to start contributing would be to find a small issue that you think you
can fix, fork the GitHub project (learn more on what this means at help.github.
com/articles/fork-a-repo), work on your changes and submit a pull request.

If your contribution changes a lot of lines of code and alters the nature of the project
drastically, consider opening an issue on the GitHub project first.

The following are the steps to get started with creating a pull request:

• Fork the project.
• Clone your fork (in your terminal, enter git clone https://github.

com/<your-username>/html5-boilerplate.git and press Enter).
• Add an upstream remote (in your terminal enter git remote add upstream

https://github.com/h5bp/html5-boilerplate.git and press Enter).
• Get the latest changes from upstream (for example, by entering git pull

upstream master and pressing Enter in your terminal).
• Create a new topic branch to contain your feature, change, or fix (git

checkout -b <topic-branch-name>).
• Make sure that your changes adhere to the current coding conventions used

throughout the project; that is, indentation, accurate comments, and so on.
• Commit your changes in logical chunks; use Git's interactive rebase feature

(more about this feature at help.github.com/articles/interactive-
rebase) to tidy up your commits before making them public. Please adhere
to these Git commit message guidelines at tbaggery.com/2008/04/19/a-
note-about-git-commit-messages.html or your pull request is unlikely
be merged into the main project.

You Are an Expert, Now What

[150]

• Locally merge (or rebase) the upstream branch into your topic branch.
• Push your topic branch up to your fork (git push origin <topic-

branch-name>).
• Open a pull request with a clear title and description. Please mention which

browsers you tested in.

This may seem like a lot of work, but it makes your pull requests significantly easier
to understand and faster to merge. Moreover, your code becomes the documentation
of the work you have done and anyone who wants to know why that section looks the
way it does can go back to your commits and understand exactly why it is the case.

Working on HTML5 Boilerplate would get you started with best practices of
collaborative development that you can take back to your workplace or any
other collaborative work you do.

Index
Symbols
8-bit PNGs

using 108
404.html 12
.htaccess file 9, 13
.lt-ie7 class 59
.lt-ie8 class 59
.lt-ie9 class 59

A
Adobe Edge Inspect

URL 66
Animated GIF 109
Ant build script

about 116
ant-contrib, installing 117
build options 122
build script, installing 118, 119
CSS file 121
Drupal or WordPress, using with 124
features 116
image files 120
installing 117
JS files 121
using 117, 118

ant-contrib
installing 117

Apache
about 67
configuring 70, 71
installing 68
installing, on Linux 69
installing, on Mac 68

installing, on Windows 68
Apache Server

customizing 67
server configuration files 90
server-side configurations 67
setting up 67

Apache Server customizations
.htaccess file features 71

apple-touch-icon-*.png 13
Aptana Studio 10

B
borderradius class 9
build options, Ant build script

about 122
CSSLint, using 122
image optimization, preventing 122
JSHint, using 123
markup, minifying 122
SHA filenames, setting up 123

build options, Node build script
about 127
connect 129
minify 127
server 128
text 127

build script
about 115
Ant build script 116
Node build script 116
selecting 117

build.xml
updating 124

[152]

C
CDN

about 22, 103
Google CDN hosting 24, 25
Protocol-relative URLs 23
using 22

Chrome 8
Chrome Frame 77
Clearfix 8
clearfix class

about 39
working 39

clearfix CSS class 136, 137
code and quotes

rendering 140
Codekit

URL 101
colors and backgrounds

optimizing 138
Compass 44, 100
Compass extension 101
conditional comments

browser style hacks 143, 144
class names 145, 146
server-side browser detection 144
stylesheets 144
using 143

console.log function 9
Content Delivery Network. See CDN
cross-browser compatibility

about 8
Clearfix 8
conditional classes 9
doctype 8
helper class 9
Modernizr 9
no console.log errors 9
normalize.css 8
search box styling 8

crossdomain.xml 13
CSS3

about 99
output CSS 100
writing, easier with tools 99

CSSLint
about 122

URL 122
using 122

CSS sprites, from within Adobe Photoshop
111

CSS sprites, with Compass 111
CSS validator 42
custom 404 page 76

D
disabled form elements

styling, in IE 98
DNS prefetching 102
doc 12
doctype declarations 8
Domain Name Server (DNS) 102
Drupal or WordPress, using with Ant build

script
about 124
build.xml, updating 124
JS file delineator, setting up 124
project configuration properties, setting up

124
Drupal or WordPress, using with Node

build script 129

E
Entity Tags. See ETags
esoteric defaults 135
ETags 71
example.com/foo

rewriting, to example.com/foo/ 105
example.com/foo/

rewriting, to example.com/foo 105, 106
example project

creating 17, 18
housekeeping 18

Expires header
using 74, 75

F
favicion.ico 13
favicons

editing 19, 20
features, HTML5 Boilerplate

accessible focus styles 10

[153]

cross-browser compatibility 8
performance optimizations 9
print styles 10
progressive enhancement 10

Firebug Lite
installing 57
using 57, 58

Firefox 3.5 8
focus styles 10

G
Google Analytics

about 112
augmenting 112
IP addresses, anonymizing 113
JavaScript errors, tracking 113
jQuery AJAX requests, tracking 113
tracking settings, adding 112

Google Analytics ID
adding 25

Google CDN hosting 24, 25
Google Libraries API

using 48
Grunt

about 125
URL 125

Gzip
about 72
enabling 74
used, for compressing files 72, 73

H
H5BP files. See HTML5 Boilerplate
headings

keeping, with content 142
helper class invisible

using 39
help, HTML5 Boilerplate 13, 14
hidden class

about 33, 34
using 36, 38

housekeeping, example project
about 18
favicons, editing 19-21
Google Analytics ID, adding 25
humans.txt, updating 25

tags, setting 18, 19
third-party libraries, adding 22

HTML5 Boilerplate
about 7
backup and source files access, blocking

with .htaccess file 79
build script 115
contributing 148
downloading 15, 16
example project 17
features 7, 71
Google Libraries API, using 48
Gzip components 72
help 13, 14
hidden folder access, blocking with .htac-

cess file 79
icons 21
issues, reporting 148, 149
jQuery, using 47
MooTools, using 48
pull request 149, 150
shell script, using 16, 17
site, creating 27
tools 10
using, with style languages 44

HTML5 Boilerplate Compass extension 101
HTML5 Boilerplate CSS

converting, to Sass or Less 101
HTML5 Boilerplate files

404.html 12
.htaccess 13
apple-touch-icon-*.png 13
crossdomain.xml 13
doc 12
downloading 11
downloading, from Github 11
downloading, from Initializr 11
favicion.ico 13
humans.txt 12
img 12
index.html 12
js 12
main.css 12
main.js 12
normalize.css 12
overview 12, 13
plugins.js 12

[154]

readme.md 13
robots.txt 13
vendor 12

HTML5 Boilerplate Sass fork 101
HTML5 Boilerplate site

CSS3, writing 99
Google Analytics, augmenting 112
images, optimizing 108
performance, improving 102
Polyfills, using 102
print considerations 101
smooth-scroll plugin, adding 48
testing 56-63
testing, on non-desktop browsers 64-66
users, handling without JavaScript 106
visibility, improving 103
visiting, using IE 95

HTML5 Boilerplate site, optimizing for IE
disabled form elements, styling 98
IE6 image toolbar, suppressing 99
mobile-first styles 95, 96
printing, jQuery used 97

HTML5 Doctor 28
HTML5 feature

adding, with Modernizr 52
Html5please.com 102
HTML Doctype 136
HTTP header response, from server

about 146
edge 146
Emulate IE7 147
Emulate IE8 147
Emulate IE9 147
IE5 147
IE7 147
IE8 147
IE9 147

humans.txt
about 12, 25
updating 25

I
icons, HTML5 Boilerplate

apple-touch-icon-57x57-precomposed.png
21

apple-touch-icon-72x72-precomposed.png
21

apple-touch-icon.png 21
apple-touch-icon-precomposed.png 21
apple-touch-icons-114x114-precomposed.

png 21
apple-touch-icons-144x144-precomposed.

png 21
favicon.ico 21

IE6 8
IE6 image toolbar

suppressing 99
ie.css 96
iframe 52
ImageAlpha 108
ImageOptim 108
image optimization

8-bit PNGs 108
image sprites, using 109-111
tools 108

image replacement class 33
images

rendering 141
image sprites

CSS sprites, from within Adobe Photoshop
111

CSS sprites, with Compass 111
SpriteMe 112
using 109-111

img 12
index.html 12
Internet Explorer

about 77
setting 77
setting, for rendering site 77

IP addresses
anonymizing, in Google Analytics 113

issues
reporting 148, 149

J
JavaScript

disabling, on Chrome 106
disabling, on Firefox 106
disabling, on IE 106

[155]

disabling, on Opera 106
disabling, on Safari 106

JavaScript errors
tracking, in Google Analytics 113

JPEG 109
jpegtran

URL 118
jQuery

used, for printing with IE6 and IE7 97
using 47

jQuery AJAX requests
tracking, in Google Analytics 113

js 12
JS file delineator

setting up 124
JSHint

about 123
URL 123
using 123

L
learning resources, style languages

Less 44
Sass 44
Stylus 44

Less
about 99
code snippet 100
URL 31, 44

Linux
Apache, installing 69

LiveReload
URL 101

M
Mac

Apache, installing 68
MacPorts

URL 117
main.css 12
main.js 12
main.scss 96
markup

creating 28

section element, using 30
valid markup, writing 30

Media Queries
about 95, 96
ie.css 96
main.css 96

Meta UTF-8 135
meta x-ua-compatible

HTTP header response, from server 146
meta tag 146

micro-clearfix solution 8
MIME types 78
Modernizr

about 9, 53, 54
custom build 53
used, for loading CSS features 55

modernizr.load
about 52-54
using 55

MooTools
using 48

N
no-borderradius class 9
Node build script

build options 127
Drupal or WordPress, using with 129
features 116
Grunt 125
installing 125
project, initializing 126
used, for building project 127
using 125
using, with existing project 127

normalize.css 12, 32
Normalize.css 8

O
Opera 9 8
Opera Mobile browser 65
Opera Mobile Emulator

URL 64
optipng

URL 118
orphans 142

[156]

P
plugin.js file 9
plugins.js 12
PNG 109
Polyfills

about 102
finding 102
using 102

print media query 138
print styles

about 10, 138
code and quotes, rendering within page

140
colors and backgrounds, optimizing 138
functionalities 138
headings, keeping with content 142
images, rendering 141
margins, setting 141
optimal settings 142
print media query 138
style links 139, 140
tables, rendering 141

progressive enhancement 10
project configuration properties

setting up 124
protocol-relative URLs 23, 24, 142
pull request

about 149, 150
creating 149

Q
QUnit.js 131

R
readme.md 13
Remote Debugging with Safari 6 65
reset.css 31
RewriteBase path 106
robots.txt 13

S
Safari 4 8
Sass

about 99

code snippet 100
URL 31, 44

Sass fork 101
search box styling 8
section element

using, in markup 30
server configuration files, Apache 90
SHA filenames

setting up 123
site, creating

markup, working on 27
styles, creating 30

site performance
improving 102

site visibility, improving
about 103
search spiders, directing to site map 103
slash redirects, trailing 105
X-Robots-Tag headers, implementing 104

slash redirects, trailing
example.com/foo, rewriting to example.

com/foo/ 105
example.com/foo/, rewriting to example.

com/foo 105
smooth-scroll plugin

adding, to site 48
class names, adding 50
js-scrollitem class 49
navigation links 49
plugin file, downloading 48
using 48-52

SpriteMe
about 112
URL 112

style classes
about 32
clearfix class 39
hidden class 33, 34
image replacement class 33
visuallyhidden class 35, 36

style languages
about 42
advantages 43
disadvantages 43
HTML5 Boilerplate, using with 44
learning resources 44

style links 139, 140

[157]

styles
creating 30, 31
reset.css, using 31
style classes 32
style languages 42
valid stylesheets, writing 42

Stylus
URL 44

T
tables

rendering 141
test() function 134
testing environment

creating 132-134
TextMate 11
third-party libraries

adding 22
Content Delivery Network, using 22

tools
Aptana Studio 10
TextMate 11
Visual Studio 10

tools, for image optimization
about 108
ImageAlpha 108
ImageOptim 108

Twitter Bootstrap 100

U
unit tests

clearfix CSS class 136, 137
conditional comments, using 143
HTML Doctype 136
Meta UTF-8 135
meta x-ua-compatible 146
print styles 138

testing environment, creating 132-135
writing 131

up-to-date port, HTML5 Boilerplate
Less 44
Sass 44
Stylus 44

users
handling, without JavaScript 106, 107

UTF-8 78
UTF-8 encoding

using 78

V
valid markup

writing 30
valid stylesheets

writing 42
vendor 12
Virtual Box

URL 56
visuallyhidden class 35
Visual Studio 10

W
WebKit browsers 8
widows 142
WinAnt 117
Windows

Apache, installing 68

X
x-ua-compatible 146

Y
yum 117

Thank you for buying
HTML5 Boilerplate Web Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

HTML5 Mobile Development
Cookbook
ISBN: 978-1-849691-96-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows
Phone, and Blackberry

1. Solve your cross platform development issues
by implementing device and content adaptation
recipes.

2. Maximum action, minimum theory allowing
you to dive straight into HTML5 mobile web
development.

3. Incorporate HTML5-rich media and
geo-location into your mobile websites.

HTML5 Multimedia Development
Cookbook
ISBN: 978-1-849691-04-8 Paperback: 288 pages

Recipes for practical, real-world HTML5
multimedia-driven development

1. Use HTML5 to enhance JavaScript
functionality. Display videos dynamically and
create movable ads using JQuery.

2. Set up the canvas environment, process
shapes dynamically and create interactive
visualizations.

3. Enhance accessibility by testing browser
support, providing alternative site views
and displaying alternate content for non
supported browsers.

Please check www.PacktPub.com for information on our titles

HTML5 Graphics & Data
Visualization Cookbook
ISBN: 978-1-849693-70-7 Paperback: 396 pages

Learn how to create interactive HTML5 charts and
graphs with canvas, JavaScript and open source tools.

1. Build interactive visualizations of data from
scratch with integrated animations and events

2. Draw with canvas and other html5 elements
that improve your ability to draw directly in
the browser

3. Work and improve existing 3rd party charting
solutions such as Google Maps

HTML5 Video How-to
ISBN: 978-1-849693-64-6 Paperback: 82 pages

Over 20 practical, hands-on recipes to encode and
display videos in the HTML5 video standard

1. Encode and embed videos into web pages
using the HTML5 video standard

2. Publish videos to popular sites, such as
YouTube or VideoBin

3. Provide cross-browser support for HTML5
videos and create your own custom video
player using jQuery

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Before We Begin
	Features of HTML5 Boilerplate
	Cross-browser compatibility
	Doctype
	Normalize.css
	Clearfix
	Search box styling
	Conditional classes
	Modernizr
	No console.log errors
	Helper classes

	Performance optimizations
	Progressive enhancement
	Accessible focus styles
	Print styles

	Tools to start with
	Beware

	Where to get files
	An overview of H5BP files
	Asking for help
	Summary

	Chapter 2: Starting Your Project
	Creating your initial project folder
	Downloading the latest version of HTML5 Boilerplate
	Using the shell script

	Creating our project
	House-keeping
	Setting the tags
	Editing favicons
	Adding third-party libraries
	Using a Content Delivery Network

	Adding Google Analytics ID
	Updating humans.txt

	Summary

	Chapter 3: Creating Your Site
	Working on the markup
	Creating the markup
	Deciding which element to use
	Writing valid markup

	Creating the styles
	Helpful style classes we can use
	Image replacement
	Hiding elements
	Hiding elements visually
	Hiding elements without impacting layout
	Clearing floats

	Writing valid stylesheets
	Style languages to write productive stylesheets
	Advantages
	Disadvantages
	Where to learn?
	Using HTML5 Boilerplate with style languages

	Summary

	Chapter 4: Adding Interactivity and Completing Your Site
	Using jQuery
	Using other libraries
	Adding smooth-scroll plugin and interaction
	Adding HTML5 features safely with Modernizr
	When to use Modernizr.load?
	Using Modernizr to load CSS features

	Testing our site
	Testing on non-desktop browsers

	Summary

	Chapter 5: Customizing the Apache Server
	Server-side configurations
	Setting up the Apache server
	Installing Apache
	Mac
	Windows
	Linux

	Configuring Apache

	Features available out of the box
	Removing ETags
	Gzip components
	Using Expires header for better cache control
	Custom 404 page
	Forcing the latest IE version
	Using UTF-8 encoding
	Serving the right MIME types
	Blocking access to hidden folders
	Blocking access to backup and source files
	Starting Rewrite engine
	Preventing 404 errors for non-existing redirected folders

	Additional customizations
	Suppressing or forcing the "www." at the beginning of URLs
	Setting cookies from iFrames
	PHP security defaults
	Stop advertising Apache version
	Allowing concatenation from within specific JS and CSS files
	Stopping screen flicker in IE on CSS rollovers
	Preventing SSL certificate warnings
	Cross-domain policies you should be aware of
	Cross-domain AJAX requests
	CORS-enabled images
	Webfont access

	Using other server configuration files
	web.config
	lighttpd.conf
	nginx.conf
	node.js
	Google App Engine

	Summary

	Chapter 6: Making Your Site Better
	Finding the best experience for Internet Explorer
	Mobile-first styles for IE
	ie.scss
	main.scss

	Printing with jQuery in IE6 and IE7
	Styling disabled form elements in Internet Explorer
	Suppressing IE6 image toolbar

	Writing CSS3 easier with tools
	Sass
	Less
	Output CSS
	Converting HTML5 Boilerplate CSS to Sass
or Less
	HTML5 Boilerplate Compass extension
	HTMl5 Boilerplate Sass fork

	Print considerations
	Finding and using polyfills
	Making your site faster
	DNS prefetching

	Making your site more visible on search engines
	Directing search spiders to your site map
	Implementing X-Robots-Tag headers
	Trailing slash redirects
	Option 1: Rewrite example.com/foo to example.com/foo/
	Option 2: Rewrite example.com/foo/ to example.com/foo

	Handling users without JavaScript
	Optimizing your images
	8-bit PNGs
	Tools for image optimization
	ImageAlpha
	ImageOptim

	Using image sprites
	CSS sprites from within Adobe Photoshop
	CSS sprites with Compass
	SpriteMe

	Augmenting Google Analytics
	Adding more tracking settings
	Anonymize IP addresses
	Tracking jQuery AJAX requests in Google Analytics
	Tracking JavaScript errors in Google Analytics

	Summary

	Chapter 7: Automate Deployment With the Build Script
	The build script
	Ant build script
	Node build script
	Which build script to use?

	Using the Ant build script
	Installing the build script
	Smaller image files
	Smaller CSS file
	Smaller and fewer JS files
	No comments in files
	Build options
	Minifying markup
	Preventing image optimization
	Using CSSLint
	Using JSHint
	Setting up the SHA filenames

	Using with Drupal or WordPress
	Updating build.xml
	Setting up the project configuration properties
	Setting the JS file delineator

	Using the Node build script
	Grunt
	Installing Node build script
	Initializing your project
	Using the Node build script with an existing project

	Using the Node build script to build your project
	Text
	Minify
	Server
	Connect

	Using with Drupal or WordPress

	Next steps
	Summary

	Appendix: You Are an Expert, Now What?
	Writing unit tests for your code
	Creating a testing environment
	Esoteric defaults you should know about

	Meta UTF-8
	The HTML Doctype
	The details behind the clearfix solution
	What do the print styles do?
	Print media query
	Optimizing colors and backgrounds
	Better links
	Rendering all code and quotes within one page
	Rendering tables better
	Rendering images better
	Margins on pages
	Optimal settings for orphans and widows
	Keeping headings with content

	What are protocol-relative URLs?
	Using conditional comments
	Browser style hacks
	Server-side browser detection
	Stylesheets based on conditional comments
	Class names based on conditional comments

	What is meta x-ua-compatible?
	Meta tag in your HTML page
	HTTP header response from the server

	Contribute
	Reporting issues
	Pull requests

	Index

