
Tantek Çelik

HTML5
NOW

A Step-by-Step Tutorial
for Getting Started Today

<!DOCTYPE html>

<meta charset= "utf-8"><title>HTML5 Now</title>

<hgroup>

	 <h1>

	 </h1>

	 <h2>

	 </h2>

</hgroup>

<div class="vcard">

	

	

<div>

extended Reference Guide

HTML5
NOW

A Step-by-Step Tutorial
for Getting Started Today

Tantek Çelik

HTML5 Now
A Step-by-Step Tutorial for Getting Started Today
Tantek Çelik

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
Fax: 510/524-2221
Find us on the web at www.newriders.com

To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2011 by Pearson Education, Inc.

Senior Editor: Karyn Johnson
Production Editor: Hilal Sala
Copy Editor: Kelly Anton
Technical Editor: Ben Ward
Interior Design and Composition: Andreas deDanaan
Presentation Graphics and Design: Coley Wopperer
Author Photo: Matt Nuzzaco
Cover Design: Mimi Heft
Cover Production: Andreas deDanaan
Video Production and Direction: Mary Sweeney

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts, contact
permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution
has been taken in the preparation of the book, neither the author nor Peachpit shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the instructions contained in this book or by the computer software and hardware products
described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark
claim, the designations appear as requested by the owner of the trademark. All other product names
and services identified throughout this book are used in editorial fashion only and for the benefit of
such companies with no intention of infringement of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-71991-1
ISBN-10: 0-321-71991-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com
mailto:errata@peachpit.com
mailto:permissions@peachpit.com

About the author
Tantek Çelik is a computer scientist for Microformats.
org and works with numerous clients, such as Mozilla
and Revision3, on open web standards leadership and
HTML5 upgrades. Previously, as Chief Technologist at
Technorati, he led the design and development of new
standards and technologies. Prior to Technorati, he
was a veteran representative to the World Wide Web
Consortium (W3C) for Microsoft, where he also helped
lead the development of the award-winning Internet

Explorer for Macintosh. Tantek lives in San Francisco, and has bachelor’s and
master’s degrees in Computer Science from Stanford University, as well as
a strong background in human interface and user-centered design from his
many years at Apple Inc. He shares his thoughts at tantek.com.

image credits

John Allsopp  johnfallsopp.com

Dmitry Baranovskiy  dmitry.baranovskiy.com

Dan Cederholm  simplebits.com

Ian Hickson  ln.hixie.ch

Ryanne Hodson  ryanishungry.com

Jeremy Keith  adactio.com

Emily Lewis  ablognotlimited.com

Henri Sivonen  hsivonen.iki.fi

Neal Stephenson  nealstephenson.com

Brian Suda  suda.co.uk

Edward Tufte  edwardtufte.com

Ben Ward  benward.me

Apple  apple.com

Google  google.com

microformats  microformats.org

Mozilla Foundation  mozilla.org

Opera Software  opera.com

WHATWG  whatwg.org

The WebM Project  webmproject.org

World Web Web Consortium  w3.org

www.johnfallsopp.com
www.dmitry.baranovskiy.com
www.simplebits.com
www.ln.hixie.ch
www.ryanishungry.com
www.adactio.com
http://tantek.com/html5
www.hsivonen.iki.fi
www.nealstephenson.com
www.suda.co.uk
www.edwardtufte.com
www.benward.me
www.apple.com
www.google.com
www.microformats.org
www.mozilla.org
www.opera.com
www.whatwg.org
www.webmproject.org
www.w3.org

Table of Contents

	01 	 Introduction	 6

	02 	 Background: Where did HTML5 come from?	 7

	03 	 HTML5 overview	 11

	04 	 HTML5 basics	 12

	05 	 HTML5 transition	 15

	06	 Notable changes to HTML4 features	 22

	07	 HTML5 flexibility, universality, and consistency	 33

	08	 Adopted from XHTML 1.1: Ruby	 38

	09	 Checkpoint: Validating HTML5	 40

	10	 New HTML5 semantics	 44

	 11	 HTML5 native vector graphics	 59

	12	 HTML5 native audio and video	 67

	13	 New HTML5 user interface elements	 75

	14	 The HTML5 bleeding edge	 88

	15	 Checkpoint: Revalidate	 91

	16	 Conclusion	 93

6	 HTML5 Now

01
Introduction

“In times of profound change, the learners inherit the earth, while the learned find them-
selves beautifully equipped to deal with a world that no longer exists.”

— Eric Hoffer

We are in the midst of the biggest change in web development since Cascading
Style Sheets (CSS) cleansed our content of presentational markup and inspired
us to think outside table layout boxes. Do you work on the web? HTML5 is
for you.

We live in the era of the World Wide Web, a globally shared collection of hyper-
text and interactive building blocks that have multiplied access to communica-
tion and expression more than anything in history, perhaps even more than the
printing press.

After the twin failed revolutions of draconian purity and invisible machine-cen-
tric semantics, the web’s building blocks of interlinked expression and content
are finally taking an evolutionary leap forward along paths well worn by the
web’s working class: authors, designers, and developers, just like you.

HTML5 and related technologies are upgrading the potential of the web with

■	 simplification, cleanup, and fixes to HTML4 and XHTML

■	 richer semantic markup

■	 new forms capabilities

■	 native multimedia

■	 programmable vector graphics

■	 powerful, bleeding-edge APIs

All of this is just potential. For this potential to be realized, it needs people like
you, learning and applying these new and evolving building blocks in your practi-
cal day-to-day creative acts on the web.

The browsers are implementing these improvements at their fastest rate in 10
years. Huge amounts of HTML5 are ready and reliably usable today. On the

	 02  Background: Where did HTML5 come from? 	 7

other hand, we must keep in mind that HTML5 is a work in progress — it still has
parts that are in flux, have issues, or are downright broken.

HTML5 Now provides you with HTML5 examples, tutorials, and explanations
you can start using today along with details about what you can start enhanc-
ing, what to be careful with, and what you can start experimenting with to get a
head start on future possibilities.

Are you ready? Let’s get started.

02
Background: Where
did HTML5 come from?
Tim Berners-Lee first documented, proposed, implemented, and wrote HTML in
the early 1990s. From there, the evolution of HTML slowly accelerated for nearly
a decade.

From evolution to revolution and back
The delicate and sometimes contentious dance between browser manufactur-
ers and architects of the web helped HTML evolve to version 2, then take the
optimistic sidestep of HTML3, which was quickly reality-checked by HTML 3.2.
The language finally evolved into HTML4 and capped off with HTML 4.01.

In the trailing years of the web’s first decade, the World Wide Web Consortium
(W3C) pursued the revolution of XML, with its promise of bringing cleaner, lim-
itless markup, and enabling everyone to make up their own tags for even richer
expression. However, while XML did liberate many corporations from propri-
etary formats and protocols on their intranets, the envisioned XML-based World
Wide Web never materialized.

The web is a global communications medium for sharing information and under-
standing. It turns out that “making up your own tags” leads to Babel — confusion

http://tantek.com/html5
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/1998/REC-xml-19980210

8	 HTML5 Now

caused by different languages. To communicate, clearly we need shared vocabu-
laries; on the scale of the web, shared vocabularies are even more essential.

Fortunately, back in 2000 a small group of idealistic pragmatists at W3C
combined the immensely successful shared vocabulary of HTML with the clean
redesign of XML and produced XHTML, an XML-compatible version of HTML.

In the early 2000s, the modern web design community adopted XHTML 1.0 in
ways compatible with the existing web. Leaders in the community unified and
rallied designers and developers around their best practices of standards-based
design, using CSS to separate presentation from markup, and maximizing the
use of rich semantic markup.

Modern web development leapt forward and brought us fluid and flexible user
experiences across a plethora of media and devices. The web design community
rediscovered semantic (X)HTML and pushed it to its limits.

The “Great Web Schism” of 2004
In 2004, the W3C held a two day workshop in San Jose, California on Web
Applications and Compound Documents. The conclusion was nothing short of
a schism between browser makers and the W3C regarding approaches to web
standards. A poll taken at the end of the workshop showed that browser mak-
ers unanimously favored an incremental approach based on evolving HTML4/
XHTML1 + CSS + DOM, in contrast to the more dominant position led by W3C
staff (and a few minor vendors) advocating replacing that stack with non-back-
ward-compatible XHTML2 + XForms + SVG + MathML + RDFa.

Like many critical moments in history, the significance of this poll was not
immediately apparent, and has only in recent years come to be known as the

“Great Web Semantic(s) Schism” or the “Great Web Standards Schism” of June
2004. That moment inspired the creation of not one, but two mutually comple-
mentary efforts — outside the W3C — that drove large evolutionary changes
in the web in the latter half of the 2000s. These are changes we’re still in the
middle of.

http://www.w3.org/TR/2000/REC-xhtml1-20000126/

	 02  Background: Where did HTML5 come from? 	 9

The minutes from the end of the workshop document the poll that revealed the stark split in
opinions.

Microformats and the WHATWG
The concept of microformats — extending web semantics using existing valid
semantic HTML4 and XHTML1 (primarily with HTML4’s rel attribute, e.g., XFN
and rel-license) — would leap forward in just three months following that fateful
workshop. The leap came from the introduction of hCalendar for representing
events on the web, and hCard for representing people and organizations, subse-
quently birthing another new standards community in 2005: microformats.org.

Given their obvious unanimity in opinion, in 2004 the browser makers went
on to form The Web Hypertext Application Technologies Working Group
(WHATWG) to pursue the evolution of HTML itself and new APIs for web
applications. (See the sidebar for information about one browser maker that
chose not to join the working group.) A bit more than a year later they published
the first specifications for “Web Applications 1.0” as well as an update of “Web
Forms 2.0.” Meanwhile, W3C largely ignored both efforts and continued to pour
time and effort into XHTML 2.0 as the future of HTML.

http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html#topic28.1
http://www.w3.org/2004/04/webapps-cdf-ws/minutes-20040602.html#topic28.1

10	 HTML5 Now

The microformats.org launch and first blog post.

Microsoft’s Neutral Stance

Microsoft, whose delegates agreed with and voted in the poll alongside the other
browser makers, chose to stay more neutral, agreeing with them in principle yet
declining to join the WHATWG while simultaneously quitting the W3C’s XHTML
2.0 effort.

Microformats.org grew as an open independent standards community, produc-
ing additional simple formats for marking up reviews (hReview), tags (rel-tag),
episodic content (hAtom), products (hProduct), listings (hListing), and even
recipes (hRecipe) — nearly all of which are now supported by popular search
engines such as Google.

Browsers began to implement portions of Web Apps 1.0 and Web Forms 2.0,
which merged and were eventually renamed to HTML5. In 2007 the W3C
finally started a new HTML working group to adopt and develop HTML5 in
cooperation with the WHATWG, publishing the first W3C HTML5 draft in
2008. In 2009, the W3C finally closed the XHTML2 working group and stopped
work on XHTML2 to focus on HTML5.

http://microformats.org/2005/06/20/welcome
http://microformats.org/2005/06/20/welcome

	 03  HTML5 overview	 11

The whatwg.org open mailing list announcement.

To the benefit of all of us who work on the web, the world of web standards had
finally begun to re-converge.

03
HTML5 overview
Eager to get started with HTML5? In this tutorial, you’ll learn

■	 how to create your first HTML5 page

■	 key transitions from HTML4 and XHTML1

■	 how to validate HTML5

■	 new semantics

■	 multimedia: audio, video, and canvas

■	 new forms features

■	 bleeding-edge APIs for web applications

12	 HTML5 Now

Adoption strategy
There’s a lot to HTML5, from simple to powerful, from reliable to experimental.

To learn HTML5 and become productive with it as quickly as possible, keep the
following adoption strategy in mind while you go through each section.

■	 Start with the basics.

■	 Update your HTML4 and XHTML.

■	 Add new HTML5 features incrementally, as needed.

With that in mind, onto the basics and creating your first HTML5 page.

04
HTML5 basics
Before we dive into some code examples, let’s go over some typographical con-
ventions used in this tutorial.

HTML5 Now text conventions
In this reference guide, we’ll be using the following conventions for old code vs.
new code:

convention description

monospace Code in general is shown in monospace type.

bold gray monospace Old or obsolete code is bold, gray, italicized.

bold orange monospace Transitional code is orange, bold, dotted-underlined.

bold fuchsia monospace New and recommended code is fuchsia and bold.

blue text Hyperlinked text.

Now that you know how to read the code, let’s jump straight into using it!

	 04  HTML5 basics	 13

New DOCTYPE
Currently you may be using HTML4 or XHTML1 DOCTYPEs like these in your
web pages:

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

HTML5 has drastically shortened the DOCTYPE:

<!DOCTYPE html>

That’s it — just 15 characters. Short enough to type from memory. What about
the rest of that stuff in the previous DOCTYPEs?

Turns out it doesn’t matter anymore. Browsers don’t do anything with it except
for “DOCTYPE switching” between standards and legacy modes. The new
HTML5 DOCTYPE puts existing browsers in standards mode, and since we’re
all using standards mode now, that’s all we need.

Simpler character set code
On the web, people express themselves in numerous languages, with potentially
thousands of different characters, glyphs, and symbols. In the past, web devel-
opers from different countries had to use different character sets to encode their
content for the web.

Unicode has solved that problem, and UTF-8 is the simplest and most back-
ward-compatible encoding for Unicode. Web servers can be configured to send
the character set of a web page along with the “text/xhtml” content type with
the following HTTP header:

Content-Type: text/html; charset=UTF-8

14	 HTML5 Now

However, if you, like most web developers, use a text editor to edit your HTML,
you need to indicate in the HTML file itself what its character set is. Before
HTML5, here’s how you would do so with a <meta http-equiv> tag that would
emulate that HTTP header:

<meta
 http-equiv="content-type" content="text/html;
 charset=utf-8">

In another nice feat of simplification, HTML5 has shortened this essential meta
tag down to 22 characters.

<meta charset="utf-8">

The XML-compatible version is down to 23 characters:

<meta charset="utf-8"/>

HTML5 exercise
Here’s a simple exercise. Type the following into a text editor from sight, 10
times in a row:

<!DOCTYPE html>
<meta charset="utf-8">

When you’re finished, try opening a brand new blank document, and typing
in that same text from memory. Let your muscle memory take over, and you’ll
likely find that you’ve typed in the start of an HTML5 document.

Congratulations! You’ve started an HTML5 document off the top of your head.
Now let’s finish it.

Your first HTML5 document
You only need two more things to complete your first HTML5 document. First,
add a <title> element just as you would in previous versions of HTML:

<title>Hello</title>

	 05  HTML5 transition	 15

Second, add just a bit of content, perhaps with a paragraph tag:

<p>
World Wide Web
</p>

All put together:

What it
looks like in
a browser

<!DOCTYPE html>
<meta charset="utf-8">
<title>Hello</title>
<p>
World Wide Web
</p>

But where are the html, head, and body tags? It can’t possibly be that simple
can it? How can you have an HTML document without an <html> tag? Or a
<head> or <body>?

In short, you didn’t need those tags in HTML4 either — the head and body tags,
both opening and closing, were all optional. They’re optional in HTML5 as well.

But what about in XHTML? We’ll get to that in the next section.

05
HTML5 transition
Now that you know how to create an HTML5 document from scratch, let’s
talk about how to transition your existing HTML4 and XHTML1 documents
to HTML5.

Remove presentational markup
If you’re a modern web designer who has been keeping up to date, who lives
and breathes clean semantic markup, you can almost certainly skip this section.

16	 HTML5 Now

None of this should apply to you. For everyone else, yes, including those of you
still using “Transitional” DOCTYPES, time is up. If you want to embrace HTML5,
you must remove all presentational markup.

Rather than go into details, here’s a simple summary of what to remove, and
what you can use instead.

Obsolete presentational
markup

CSS replacement

<basefont> <big> <tt> font properties

<s> <strike> <u> text-decoration

<center> and align=center text-align:center and margin:auto

align=left, right, or justify on <div>
and other text elements

text-align:left, right, justify
respectively

align=left or align=right on and
other replaced elements

float:left and float:right respectively

<body text link alink vlink> color property and
:link,:visited,:active pseudo-classes

<body background> background-image

bgcolor attribute background-color

border attribute and <table frame rules> border properties

<table cellspacing> border-spacing

<table cellpadding> padding on the table cells (<th> and <td>)
themselves

<br clear> clear

hspace, vspace, marginheight,
marginwidth

margin properties

<hr noshade size> border-style:solid and border-width

nowrap attribute white-space:nowrap

valign attribute vertical-align

height and width attributes height and width properties

<plaintext> No CSS for this. Use <pre> or serve that
content as text/plain, not HTML

	 05  HTML5 transition	 17

Now would be a good time to take a big fat red marker and write “OBSOLETE”
on any presentational markup examples in web design books you have from the
1990s and early 2000s. Or, just toss those books into the recycling bin.

Remove failed features
HTML5 has gone beyond purging presentational markup and has removed failed
features as well. Thus, you must remove these tags from your HTML as well.

Failed HTML4 feature Use this instead

 use a visible description or link to one

<frameset> <frame> redesign your content, with <iframe> if necessary

<html version> nothing, just drop the version attribute.

<meta scheme> avoid all invisible metadata, add microformats to visible
content instead

rev attribute use rel microformats instead

Very few sites and developers use these features in practice these days.
However, if your site happens to, or if you’re maintaining someone else’s old
code, now you know to drop them.

Just for compatibility
A couple HTML4 attributes have been kept around only for compatibility rea-
sons. You should drop these if you can. However, if your site needs to support
the older browsers that need these features, then you may use them as follows
in HTML5.

The border attribute on the tag is perhaps the only remaining presen-
tational attribute in HTML5. The only reason it’s there is to undo a default
presentational annoyance from certain older browsers (they put a blue border
on images inside hyperlinks).

Thus HTML5 permits border="0" (no other values) on the tag (no other
tags) for this purpose:

http://microformats.org/

18	 HTML5 Now

Personally, I think the border attribute is unnecessary and a bit of CSS like this
is sufficient:

:link img,:visited img { border:0; }

However, apparently enough of a case was made to keep that bit of transitional
code in HTML5.

The second bit of compatibility markup has to do with scripting. In HTML5, the
type attribute is no longer necessary on the <script> tag. It’s 2010 and on
the web, JavaScript has won, so there’s no need to state the obvious. However,
some older browsers my require that you specify the language explicitly. For
that case, and that case only, HTML5 permits type="text/javascript" on the
<script> tag:

<script type="text/javascript">

In this case, not only is the explicit type attribute harmless, but it does express
a semantic (in contrast to the border="0" above). As such, I think it is reason-
able to include it.

Transitioning your XHTML
Lots of web designers and developers adopted XHTML 1.0 in the early 2000s
along with their transition away from presentational markup to semantic
markup. You may wish to maintain XHTML compatibility while upgrading
to HTML5, or perhaps you wish to author HTML5 documents that are also
well-formed XML. While XML in web browsers never took off, many still use
XML-based tools on their web server to process their (X)HTML content. Some
developers go the extra mile to serve HTML that is also valid XML to browsers
so that their web pages themselves can function as APIs for their site.

Whatever your reason for doing so, the point is that HTML5 permits you to con-
tinue to maintain XHTML compatibility. This does require you to be a bit more
careful with your code. Here are a few simple rules that will take care of most
of the work for you. Since these rules help keep your code clean and consistent
in general, it’s not a bad idea to keep them in mind even if you don’t care about
XHTML or XML.

	 05  HTML5 transition	 19

1. Self-close empty HTML4 tags

A handful of elements in HTML4 never have close tags. In order for them to be
properly parsed by XML processors, you need to use XML self-closing syntax.

In short, put a slash (/) just inside the closing angle bracket (>) on these tags:

<hr/>

<input/>
<link/>
<meta/>
<option/>

2. Always use quoted attribute values

XHTML required all attribute values to be quoted, and in HTML5, you can con-
tinue to do so. Not only is there no harm in doing so, but quoting attribute val-
ues is a good habit that will help you avoid inadvertent errors, such as attribute
values that contain spaces or other punctuation. The before-and-after example
below demonstrates the use of quoted attribute values.

Before:

After:

<img src="photo1.jpg" alt="photograph"/

3. Use explicit tags for a consistent DOM

In the previous section we constructed a simple HTML5 document:

<!DOCTYPE html>
<meta charset="utf-8">
<title>Hello</title>
<p>
World Wide Web
</p>

20	 HTML5 Now

And we noted that it lacked <html>, <head>, and <body> tags — because it
doesn’t actually need them since they’re implied.

In XML (and thus XHTML), however, there are no implied tags. Therefore, you
need to write them out yourself. We’re going to self-close the meta tag here as
well:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>Hello</title>
</head>
<body>
<p>
World Wide Web
</p>
</body>
</html>

This is particularly essential for consistent DOM and CSS treatment of the docu-
ment, whether the document is parsed as HTML or XHTML.

Creating a table is another common situation in which tags are implied in HTML
(and therefore you must add them explicitly for XHTML/XML compatibility).
HTML permits you to create simple tables with just rows and cells:

<table>
 <tr>
 <td> row 1 cell 1 </td> <td> row 1 cell 2 </td>
 </tr>
 <tr>
 <td> row 2 cell 1 </td> <td> row 2 cell 2 </td>
 </tr>
</table>

And that implies a <tbody> around all the rows. For XHTML/XML compatibility,
you must explicitly include a <tbody>. Just add the tag along with the opening
and closing tags of every <table>:

	 05  HTML5 transition	 21

<table><tbody>
 <tr>
 <td> row 1 cell 1 </td> <td> row 1 cell 2 </td>
 </tr>
 <tr>
 <td> row 2 cell 1 </td> <td> row 2 cell 2 </td>
 </tr>
</tbody></table>

Update obsolete markup

Now that you’ve removed any presentational markup and failed features, as well
as cleaned things up and made all your tags explicit for XHTML/XML, there
may be a few remaining bits of obsolete markup in need of transition.

HTML5 has finally done away with a few more deprecated HTML4 tags and
attributes that don’t fall into any of the above categories. If your code uses of
any of these, be sure to use the equivalent instead.

Removed HTML4 feature HTML5 replacement

<acronym> <abbr>

<applet> <object>

<dir>

 <div id="a1"> ... </div>

<acronym> to <abbr> and <dir> to are both simple direct conversions;
<applet> to <object> involves a bit more work, and the specific techniques for
doing so are lengthy enough that I won’t explain them here; I encourage you to
consult online resources

Named anchors are finally recognized as unnecessary. Browsers have supported
the id attribute on all elements for more than 10 years, so you can always use
an id on a relevant container element instead of an empty anorexic anchor.
Similarly, there is no need to use the name attribute on images as the id attri-
bute works fine for that, too.

22	 HTML5 Now

06
Notable changes
to HTML4 features
Several HTML4 features have been refined in HTML5, several former presenta-
tional tags received new semantic lives, and some black sheep markup has been
welcomed into the fold.

Semantic refinements to HTML4 elements
First, let’s take a look at what has been improved through refinement.

Nestable phasis elements

The element can be nested to indicate even stronger levels of emphasis.
In HTML4, you used the element to indicate stronger emphasis, but
it only provided two levels of emphasis. Now, you simply use another
element to indicate stronger emphasis and yet another nested to indicate
even stronger emphasis.

The following examples help you visualize the changes and see how old markup
converts to new.

Old HTML4 semantic markup Now in HTML5

... ...

 ...

 ...

Some web designers may have been depending on the default styling of
and . As a modern designer, I’m sure you always explicitly style your
emphasis.

Either way, when you update your uses of to nested elements,
you will likely want to rewrite your CSS. Since nested elements look no dif-
ferent by default, here are a few sets of CSS rules that you can use and adjust as
needed for your designs.

	 06 Notable changes to HTML4 features 	 23

/* ruleset 1: immitate typical old em/strong styling */
em { font-style:italic }
em em { font-weight:bold }
/* end of ruleset */

/* ruleset 2: nested emphasis alternate italics */
em { font-style:italic }
em em { font-style:normal }
em em em { font-style:italic }
em em em em { font-style:normal }
em em em em em { font-style:italic }
/* etc. as needed. end of ruleset */

/* ruleset 3: nested emphasis italic, bold, both, alternate ital-
ics */
em { font-style:italic }
em em { font-style:normal; font-weight:bold }
em em em { font-style:italic }
em em em em { font-style:normal }
em em em em em { font-style:italic }
/* etc. as needed. end of ruleset */

Does this mean the element has been forgotten? Not forgotten, but
repurposed.

The importance of

The element has been redefined to mean “importance” rather than
“strong emphasis.” This may sound like semantic nitpicking — in practice
important things are usually strongly emphasized, and if something is strongly
emphasized it’s typically important. Ironically, that’s exactly why HTML5 is able
to redefine and still have it “work” with a lot of existing content.

Take a look your existing uses of . Did you happen to also markup
something that was important? If so, good — no code changes are needed. If
not, reflect on the precise semantic you were expressing. If you were expressing
strong emphasis as defined in HTML4, go ahead and make the changes noted
above to nested elements. If you intended some other semantic, you might

24	 HTML5 Now

need to use a plain and a semantic class name that you can then style
accordingly.

Just like the new element, the new element may be nested, and
used to indicate increasing levels of importance.

Semantic recasting of HTML4 elements
A small handful of presentational HTML4 elements have been recast with
semantic meaning in HTML5.

<small> disclaimers, caveats, and copyrights

The <small> element is now used to express a set of semantics present on
nearly every web page: little bits of legalese or other items that publishers
attempt to explicitly de-emphasize. Things such as

■	 small print legalese

■	 disclaimers

■	 caveats

■	 copyright statements

You know the kind of text I’m talking about — and all of it is typically styled with
a smaller font size. But that’s just a visual distinction. If the text is read out loud
(like in a TV commercial), it might be spoken quickly in a quieter, monotonic
voice.

When you’re updating pages, at a minimum wrap copyright statements in the
new semantic <small> element. As you use it more and more, you’ll develop a
good intuitive feel for when it applies.

<i>nstances of idioms and taxonomic terms

The formerly presentational <i> for the italics element has been redefined to
semantically express any one of the following:

■	 idioms

■	 terms from taxonomies (such as names of species)

	 06 Notable changes to HTML4 features 	 25

■	 technical terms

■	 ship names

■	 other obscure semantics you likely haven’t used

In essence, the new <i> element represents a set of disparate text semantics, all
of which were typically styled with italics per common style guidelines. Is such
a semantically vague recasting actually worth much? It’s not clear at this time.
The new <i> element may be so ambiguous as to not amount anything more
than a heap of E. coli. We’ll have to wait and see how — and if — authors decide
to make much semantic use of the new <i> element.

old leads, keywords, products,
and other stylistic offsets

The element has always meant bold, until now.

Similar to the reverse semantic derivation of the new <i> element, the new
element now represents one or more of the following:

■	 keyword

■	 product name

■	 lead sentence or paragraph

■	 other text that is stylistically offset for some semantic reason

While at first this set of semantics seems arbitrary, these uses are similar and
fairly frequent in practice. In particular, the last use case — that of stylistically
offset text — serves to cover the other more specific cases and to illustrate why
the new makes sense semantically.

By indicating that a portion of text is stylistically offset rather than just bold,
browsers have just enough of a hook to know to present the element differently
from surrounding text in other mediums as well. When a new element is
spoken by a screen reader, for example, it might use a different voice to provide
a stylistically offset experience for the listener.

In addition to the cases of keywords, product names, and lead sentences/para-
graphs — typically styled in bold — I’ve found a few more use cases where it

26	 HTML5 Now

makes sense to use the new , such as using a spot color in text or in a title
(as in the title of this work).

eaking lines for fun and poetry

The
 element bears a mixed history at best. Introduced in the context of
presentational markup, as a no-margin alternative to <p> tags, it’s largely been
used as such. During the rediscovery of semantic HTML4 in the early 2000s,
a few creative web designers looked past br’s presentational roots and found
semantic uses — in particular for poetry and addresses, where placing text on
different lines actually expresses different meaning. HTML5 has codified this
in-the-wild semantic adoption of the
 element.

With the introduction and broad adoption of microformats, especially for poetry
and addresses, it turns out we no longer need
 elements to express separa-
tion between the different components of an address. For example, addresses
might previously have been marked up like:

<div class=”address”>
US Library of Congress

101 Independence Ave. SE

Washington, DC 20540-0002

United States of America
</div>

With microformats, in particular hCard and adr, we now mark them up as:

<div class=”vcard”>
 <div class=”fn org”>US Library of Congress</div>
 <div class=”adr”>
 <div class=”street-address”>101 Independence Ave. SE</div>
 Washington,
 DC
 20540-0002
 <div class=”country-name”>United States of America</div>
 </div>
</div>

	 06 Notable changes to HTML4 features 	 27

This not only expresses the separation between the address components, but
also indicates that the address belongs to a specific organization.

That leaves lines of poetry as the primary remaining semantic use for the new

 element.

<hr>Horizontal rules and thematic breaks

The last presentational HTML4 element that HTML5 has reclaimed for semantic
purposes is the <hr> element. From its very name, the horizontal rule <hr> ele-
ment has conveyed nothing but a visual affordance. However, just as the purely
presentational
 found semantic life separating lines of meaning in poetry
and addresses, the <hr> element has found meaning in separating paragraphs
to indicate a thematic break between them (perhaps when the focus shifts from
one subject to another).

Books often use ornate breaks and flourishes between paragraphs to indicate a
meaningful shift in context, and that’s exactly the semantic the new <hr> ele-
ment is intended to convey.

The particular appearance of an <hr> element can be controlled with CSS. If you
wish to eliminate the ”rule” of the <hr> element completely, you may create a
style rule such as:

hr { border:0 }

From there, if you want to replace it with an image, you can give the <hr> ele-
ment width, height, and a background-image:

hr {
 width:100%; height:3em;
 background:url(http://example.com/flourish.jpg) no-repeat;
 }

Note that since the image is purely decorative, and the <hr> itself conveys the
thematic break semantic — which is all that screen-readers should need to
provide an appropriate interface/experience — there is no need for alternative
text for the image.

28	 HTML5 Now

HTML black sheep acknowledged
Several elements and attributes, both in HTML4 and never before a part of any
W3C specification, have been properly recognized and incorporated into HTML5.

The iframe element

Omitted from the HTML 4.01 Strict DTD, the <iframe> element was long
regarded as unnecessary, easily replaced with an <object type=”text/html”>.
It turns out that embedding one HTML document inside another is a sufficiently
special case that it’s worth keeping, and HTML5 recognizes it as such.

Its presentational attributes such as frameborder, marginheight, marginwidth
have been dropped, deferring to CSS instead. One new presentational attribute
has been introduced: the seamless attribute

You can use the seamless attribute to undo any default presentation that brows-
ers typically place around iframes. Whether borders, scroll bars, or spacing,
the seamless attribute tells the browser to include the nested HTML from the
iframe in a manner that makes it appear to be part of the document. Inside an
<iframe> element you may include content for browsers that do not support
iframes. Here is a simple example of both:

<iframe src=”embedded.html” seamless=”seamless”>
 Your browser doesn’t support iframes, otherwise you would see
embedded.html
</iframe>

Currently, the <iframe> element supports only text fallback content for non-
iframe supporting browsers. This is a shortcoming, as typically you would want
to at least link to the iframe content. For example:

<iframe src=”embedded.html” seamless=”seamless”>
 Your browser doesn’t support iframes,
 view the embedded HTML content
</iframe>

However, HTML5 does not allow this at this time. If you want to provide fallback
content with markup, you must use the <object> element instead.

	 06 Notable changes to HTML4 features 	 29

The <iframe> element has also been recently enhanced with sandboxing capa-
bilities, potentially useful for when you want to embed an external (and perhaps
not trustworthy) chunk of HTML. These capabilities are still quite new, so I
recommend staying apprised of them but not using them yet.

In general, if you want to use an iframe for embedding HTML content, there’s
almost always a better solution that integrates the content directly into the
document. Despite its newly upgraded status in HTML5, I recommend avoiding
the use of iframes whenever you can.

The embed element

For years browsers have supported the embedding of plug-ins such as Flash and
QuickTime via the <embed> element, and yet it never made it into any version of
any W3C specification — until now.

HTML5 recognizes that browsers already support <embed> — and a good
portion of the web uses and depends on it for interactive games, advertise-
ments, streaming video, and the like. Here is a simple example from the HTML5
specification:

<embed src=”catgame.swf”>

Numerous lengthy texts are written about how to use the <embed> element for
specific plug-ins such as Flash and QuickTime, so I will not replicate that here.
Suffice it to say, if you’re a web designer who uses plug-ins in your documents,
you now can do so with the <embed> element and at least have a chance at
validating your documents as HTML5.

The target Attribute

HTML4 deprecated the target attribute, presuming it to be either presenta-
tional, or exclusively for framesets, which were also deprecated. However, since
HTML5 recognizes the <iframe> element, it only made sense to recognize the
target attribute as well, so that hyperlinks could alter the content of iframes.

Thus the target attribute is now valid on a, area, and base:

■	 - the hyperlink targets the iframe or window named “t1”.

■	 <area target=”t1”> - the imagemap area link targets “t1”.

■	 <base target=”t1”> - all links target “t1” by default.

30	 HTML5 Now

The lists: empty, numbered, and reversed

The last set of black sheep markup that HTML5 has recognized has to do with
lists. Perhaps due to its static document focus, the HTML4 specification forbade
empty lists; both and elements were required to have at least one
 inside. In today’s world of web applications, it makes sense to allow empty
lists that are later filled in with scripts. Therefore, HTML5 now permits them.

Two key list numbering attributes were mistakenly deprecated in HTML4.
HTML5 finally acknowledges that explicitly numbering both specific items, and
whole ordered lists, can communicate underlying semantics, such as rankings
with ties and paginated ordered results.

Use the value attribute on a list item to give it a particular number:

Results list with a tie for second.

<!DOCTYPE html>
<meta charset=”utf-8”>
<title>League Results</title>

 <li value=”1”>Peter
 <li value=”2”>tied - Hana
 <li value=”2”>tied - Gabriel
 <li value=”4”>Molly
 Charlie

Note that there is no need to explicitly number item 5 because list numbers
automatically increment after the last explicitly specified list item value.

For numbered lists that start at a certain number but are otherwise normally
numbered, use the start attribute on an element:

	 06 Notable changes to HTML4 features 	 31

The second page of an ordered list that
uses the start attribute to continue the
numbering.

<!DOCTYPE html>
<meta charset=”utf-8”>
<title>League Results p.2</title>

<ol start=”6”>
 Monica
 Kaito
 Eden
 Micah
 Angela

When using the start attribute, the entire list is numbered automatically, and
there is no need to explicitly number each individual list item.

Lastly, there’s one new HTML5 feature that affects list numbering, and that’s
the reversed attribute, which makes ordered lists count down rather than up.

However, as of this writing, two big problems exist with the reversed attribute:

	 1. 	No browser supports the reversed attribute as of this writing.

	 2. 	No declarative backward-compatible method exists to use it. Even if some
browsers supported it, you would need custom JavaScript to make it work
in other browsers.

Thus, for now and in the immediate future, you can safely ignore the reversed
attribute.

Questionable HTML5
restriction: The <cite> element
One of the few questionable changes in HTML5 is its semantic restriction of the
<cite> element. HTML4 encourages us to markup works and names of speak-
ers (when there isn’t a specific work) with the <cite> element. Examples from
the HTML 4.01 specification include:

<cite>Harry S. Truman</cite> said,
<q lang=”en-us”>The buck stops here.</q>
More information can be found in <cite>[ISO-8601]</cite>

32	 HTML5 Now

HTML5, on the other hand, only permits the “title of a work” to be marked up
with the <cite> element.

Given the lengths to which HTML5 has gone to add broad semantics to ele-
ments such as and <i>, and the fact that <cite> is currently used by
numerous web designers to semantically markup names related to quotes, this
cite restriction seems quite odd, and frankly a mistake, perhaps based on bad
assumptions, stubbornness, or both.

What do to? Well, the HTML5 Validator (which we’ll get to soon) doesn’t
complain about use of the cite element for people’s names as it can’t tell the dif-
ference. Thus, I’m encouraging a bit of civil disobedience in this case.

When you’re marking up the name of a speaker, in relation to a quote, or a blog
commenter next to their comment, use the <cite> element. Be sure to mark it
up with the hCard microformat to indicate the more precise semantic (that it is
the name of a person):

A quote with the name of the speaker
marked up with the cite element.

<!DOCTYPE html><meta charset=”utf-8”>
<title>cite speaker</title>
<p>
 <q cite=”#ak”>
 The best way to predict the
 future is to invent it.</q>
 —  <cite class=”vcard” id=”ak”>

 Alan Kay

 </cite>
</p>

Numerous web designers and developers have spoken out about this apparent
mistake in HTML5, and documented millions of instances on the web where the
<cite> element is used to semantically markup names of speakers/commentors
on the WHATWG wiki.

I encourage you to create an account on the WHATWG wiki and edit the Cite_
element page: http://wiki.whatwg.org/wiki/Cite_element. Add your opinions

http://wiki.whatwg.org/wiki/Cite_element

	 07 HTML5 flexibility, universality, and consistency 	 33

and links to real-world cases where you used the <cite> element to markup
names of speakers, and there’s a good chance you can help get the spec fixed.

The WHATWG wiki’s Cite element page.

Fortunately for us, there are far more areas that the spec has fixed (rather than
broken) things from HTML4. That leads us to the next section, where we’ll
explore a few bits of markup that HTML5 has made more flexible, universal, and
consistent.

07
HTML5 flexibility,
universality, and consistency
In this chapter we cover the last of the major changes/fixes from HTML4 to
HTML5 — and the best part is, all of them make HTML, as a whole, just a bit
easier to learn and use.

34	 HTML5 Now

Flexibility: hyperlinks and blocks
HTML4 (especially the strict version) has a few seemingly arbitrary rules about what
elements can reside inside what other elements. It’s hard to keep track of them all,
and when you forget, it usually means errors from the validator, some headscratching,
and some reorganizing of your markup. One of the most frequent headscratchers
is the requirement that hyperlinks contain only “inline” content, that is, HTML4
forbade you from linking entire headings, paragraphs, blockquotes, etc.

HTML5 now lets you do so, because browsers have supported this for years. For
example, bloggers typically link their post headlines to their permalinks, and
over time most figured out how to put the hyperlinks inside the headings to
make them validate.

<h3>
 Less is
more
</h3>

With HTML5, you now have the flexibility of wrapping your links around the
heading:

 <h3>Less is more</h3>

In addition to fewer odd and arbitrary validation errors, sometimes this will save
you some markup.

Often, headings have an associated image that also links to the relevant post or
article. These are typically adjacent in the markup — but not contained, as the
image isn’t semantically part of the heading. Previously, you had to create two
hyperlinks, one for the image and one for the heading.

<h3>
 Moving
forward
</h3>

	 07 HTML5 flexibility, universality, and consistency 	 35

In HTML5, you can now use one hyperlink for both, simplifying your markup,
eliminating a potential source of data drift errors, and helping with accessibil-
ity by getting rid of the adjacent duplicate hyperlink (especially surrounding an
image without alt text).

<In the following code block, the highlight code is bold fuchsia>

<h3>Moving forward</h3>

Other uses for hyperlinks around blocks exist as well, such as linking an entire
blockquote (with perhaps several paragraphs) back to the original source. As
more web designers take advantage of this new flexibility, I’m sure we’ll see
more interesting and creative uses of hyperlinks around blocks.

Universality: global attributes
HTML5 finally allows the following attributes on all elements:

■	 class

■	 dir

■	 id

■	 lang

■	 style

■	 tabindex

■	 title

These attributes always seemed global — but weren’t until now. Previously in
HTML4, a few elements here and there didn’t allow some or all of these attri-
butes, and whenever you happened upon one of those cases, you’d get an odd
validation error.

The new global class attribute in particular enables you to mark up an entire
page as being a specific microformat, such as an hCard:

<!DOCTYPE html>
<html class="vcard">

36	 HTML5 Now

<meta charset="utf-8">
<title class="fn">Tantek Çelik</title>
<p>
 Hi, I’m Tantek and this is my simple home page at
 tantek.com.
 You can also find me on Twitter as
 @t
<p>
</html>

Or perhaps an hAtom blog post entry page:

<production note: spaces instead of tabs OK?>
<!DOCTYPE html>
<html class="hentry">
<meta charset="utf-8">
<title class="entry-title">Less is more</title>
<p class="entry-content">
 It seems nearly every blogger is
 posting less often on their own blog
 and more often on Twitter.
</p>
<div class="post-info"> written by
 <address class="author vcard">

 Tantek Çelik

 </address>
 on

 2010-06-09

</div>
</html>

Or any other microformat that represents the entire page. See microformats.org
for a list of microformats.

	 07 HTML5 flexibility, universality, and consistency 	 37

Consistency:
media, hreflang, rel for all links
HTML4 introduced the ability to specify which types of media that <link> ele-
ments applied to — for example, you could indicate a print style sheet:

<link media="print" rel="stylesheet" href="default.css">

But you could only specify the media on <link> elements, not other types of
links such as <a> and <area>.

HTML5 fixes this inconsistency, and adds the media attribute to the <a> and
<area> elements.

Nearly every press site links to alternate print versions of their articles, and they
can now do so semantically:

 print version

Mobile web usage is growing faster that desktop web usage, and as such, while
some sites create mobile style sheets or use CSS Media Queries that adjust
their content layout for smaller screens, many sites create whole separate
mobile sites. They, too, can now link to them semantically:

 mobile site

Doing so empowers browsers, mobile devices, etc., to automatically detect such
alternate versions. So, perhaps when users choose to print a page, you offer to
let them print the print version; on a mobile device, give them the option to visit
the mobile site instead.

In HTML4, the <area> element was even more inconsistent than the <a> ele-
ment as it lacked the hreflang and rel attributes. HTML5 fixes this, so you
may now use the following attributes on all <a>, <area>, and <link> elements:

38	 HTML5 Now

■	 media (to indicate applicable media)

■	 hreflang (language of the destination)

■	 rel (relation of the destination to the source)

All the changes we’ve discussed in this chapter — the new flexibility afforded
to hyperlinks, the new universally global attributes, and consistent link attri-
butes — reduce the number of rules we have to keep in mind and make using
HTML that much simpler. Each HTML5 simplification makes it easier to learn
as well, making it more accessible, lowering barriers, and enabling even more
people to express themselves on the web.

We’ve covered a lot about all the cleanup that HTML5 brings us. It’s time to
start looking at some of the new features, the first of which has been adopted
from XHTML 1.1: Ruby.

08
Adopted from XHTML 1.1: Ruby
Only one major new feature has survived from the otherwise evolutionary
dead-end of XHTML 1.1, and that is the <ruby> element — along with its children,
<rt> and <rp>. (Note that the <ruby> element has nothing to do with the Ruby
programming language.) It is the element used for marking up short bits of text
with “ruby” annotations, typically used in East Asian typography for pronuncia-
tion or other annotations.

Inside a <ruby> element, the <rt> element is for marking up the ruby text anno-
tations themselves, and the <rp> element is used to markup the ruby parenthe-
ses that separate the annotation from the text they are annotating (also called
the ruby base).

Here’s an example of ruby markup for Japanese with hiragana reading (a
Japanese syllabary) and sample rendering:

	 08 Adopted from XHTML 1.1: Ruby	 39

The two main ideographs, each with its
annotation in hiragana rendered in a
smaller font above it.

 ...
<ruby>
漢 <rp>(</rp><rt>かん</rt><rp>)</rp>
字 <rp>(</rp><rt>じ</rt><rp>)</rp>
</ruby>
 ...

Note that the parentheses in the source markup text will not be drawn in the
sample rendering. Browsers that support the <ruby> element and place the ruby
text near but offset from the ruby base — above for horizontal layout as shown
in the example, or to the side in vertical layout — have no need to display the
parentheses that separate the ruby text, and thus hide all the <rp> elements and
their contents. It’s still important to include the <rp> elements and the paren-
theses for a decent fallback rendering in browsers that don’t support <ruby>.

Here’s an example of ruby markup for Japanese with hiragana reading and
fallback rendering:

The two main ideographs, each with its
annotation in hiragana rendered inside
parentheses immediately following each
respective ideograph.

 ...
<ruby>
漢 <rp>(</rp><rt>かん</rt><rp>)</rp>
字 <rp>(</rp><rt>じ</rt><rp>)</rp>
</ruby>
 ...

Browser Support
The good news is that the <ruby> element is already supported in three major
browsers (two rendering engines):

■	 Internet Explorer 5+ (has supported <ruby> for over 10 years!)

■	 Safari (WebKit)

■	 Chrome (WebKit)

In addition, experts predict that Firefox (Gecko) will support it soon, and from

past experience we can predict that, after that, Opera will likely follow.

40	 HTML5 Now

In conclusion, go ahead and use the <ruby> element — it works in most brows-
ers today and provides a graceful fallback rendering when it doesn’t work. Plus,
most browsers are likely to support it within the next year.

09
Checkpoint: Validating HTML5
You’ve already learned a lot about HTML5. Whether you’ve written a new
HTML5 document from scratch or made incremental updates to your existing
HTML4 or XHTML1 documents, it’s time to make sure that your changes are
correct.

The W3C Validator at http://validator.w3.org has long been an indispensable
tool for modern web designers and developers alike. The W3C Validator has
been updated to validate HTML5 documents automatically by detecting the
HTML5 <!DOCTYPE html>. When you run the W3C Validator on your site, if
everything is correct, you’ll see something like the following results page.

The “Result: Passed, 1 warning(s)” message that displays is not your fault — and
it has nothing to do with your HTML5 code. The W3C Validator is merely warn-
ing you that the validator itself is using an “experimental feature: the HTML5
Conformance Checker.”

http://validator.w3.org

	 09 Checkpoint: Validating HTML5	 41

W3C Validator results with a warning.

W3C Validator issue that triggers the warning.

42	 HTML5 Now

In addition to the W3C Validator, a new validator dedicated to checking HTML5,
called Validator.nu, has a few more options for custom validating your HTML5
documents.

The Validator.nu home page.

I recommend that you continue to use the W3C Validator as part of your web
authoring workflow. When your documents validate there, go ahead and check
them with Validator.nu as well.

I’ve created browser buttons (aka bookmarklets or favelets) that enable a
one-click validation of your web pages using the W3C Validator or Validator.nu.
Check out http://favelets.com for the latest.

Drag the links in the right column (the highlighted “V.nu HTML5 Validator” and
“W3C HTML Validator”) to the links toolbar in your browser. Then, when you
view a web page in the browser, you can click the Validator favelet links in your
toolbar to validate the page.

While you’re at favelets.com, grab the “microformats validator” favelet at the
top of the right column. Whether you’re using microformats already or you want
to try some of the enhanced HTML5+microformats markup we’ve discussed, it’s
a good idea to make sure your microformats are working properly.

http://validator.nu/
http://favelets.com

	 09 Checkpoint: Validating HTML5	 43

Favelets.com home page with the V.nu HTML5 Validator and W3C HTML Validator highlighted.

The microformats validator favelet uses the Optimus Microformats Transformer,
open source code to validate or transform your microfomats into other for-
mats — such as JSON, JSON-P, or XML — useful for quickly creating APIs for
your web site from your semantic HTML5+microformats markup.

The Optimus Microformats Transformer home page.

44	 HTML5 Now

HTML5 validators are useful for finding general markup problems and identify-
ing code that may need to be upgraded to be valid and proper HTML5. We’ve
already covered all the major changes from HTML4 to HTML5. For more
detailed changes, take a look at the W3C document outlining the latest HTML5
differences from HTML4 at http://dev.w3.org/html5/html4-differences.

Now that you’re all set with validation tools, have checked your HTML5 updates
so far, acquired a good reference for changes from HTML4 to HTML5, and fixed
any problems in your code, it’s time to start learning new HTML5 semantics.

10
New HTML5 semantics
HTML5 is finally upgrading the HTML4 tags with semantics commonly used
across the web.

Markup studies
In December 2005, Google published a study of Web Authoring Statistics that
documented the class names used on the most pages:

This bar chart shows which class names are used on the most pages.

http://dev.w3.org/html5/html4-differences
http://code.google.com/webstats/2005-12/classes.html

	 10 New HTML5 semantics	 45

In many ways, Google’s study was an expansion of earlier studies, such as John
Allsopp’s “Semantics in the wild” study: http://westciv.typepad.com/dog_or_
higher/2005/11/real_world_sema.html.

This table displays which class names are used on the most pages.

For the first time in the history of HTML, studies such as these have helped
drive the choice of what semantic elements to add — relying on actual data
rather than the intuition of experts and standards committee compromises.

Standardized page structure
Page-level structures consisting of multiple sections — including a header sec-
tion, navigation tools (usually), a main content area, and a footer section — are
perhaps the most common of the widely used semantics. According to the class
name studies mentioned previously, many pages even used common terms for
these sections. Now, HTML5 provides the corresponding elements.

http://westciv.typepad.com/dog_or_higher/2005/11/real_world_sema.html
http://westciv.typepad.com/dog_or_higher/2005/11/real_world_sema.html

46	 HTML5 Now

<DOCTYPE html><meta charset=”utf-8”>
<title>HTML5 structural elements</title>
<body>
 <section>
 <header>
 <nav>
 ...
 </nav>
 </header>
 <div>
 ...
 </div>
 <footer>
 ...
 </footer>
 </section>
</body>

Strictly speaking, the top-level <section> element is unnecessary in the previ-
ous document, as the <body> element is enhanced by HTML5 to also be a ”sec-
tioning” element. A sectioning element sets a scope for various elements such
as headings <h1> thru <h6> and the <address> element.

However, it is still good practice to use such a top-level section as it enhances
the portability of your markup by turning your page into a building block.
Sections can be nested to express the overall structure of more complex pages.
Thus, if you always author your pages as sections, you can easily rearrange sec-
tions from page-level to nested within one another, perhaps combining multiple
sections to create larger compound documents.

The new <header> element is for exactly what it sounds like: introductory
material, navigation, and headings. Speaking of navigation, if your section has
navigation links (which web designers typically organize into unordered lists of
hyperlinks), you can simply wrap them in the new <nav> element to help iden-
tify navigation areas for HTML5 browsers.

Note that there is no new “main” or “content” element that goes between the
new <header> and <footer> elements — that is why the previous example uses

This outline
demonstrates new
HTML5 structural
elements.

	 10 New HTML5 semantics	 47

a plain old <div> for that purpose. In HTML5, everything between the <header>
and <footer> elements is considered to be the ”main” content area of a
<section>. However, I recommend using an explicit <div> for the main/content
area with a class name of your choice. At a minimum, use the <div> as a styling
hook for that chunk of stuff between the header and footer.

This brings us to the new <footer> element for completing the section. In the
past couple of years, web designers have popularized “fat footers,” which often
contain information about the section such as authorship and copyright notices
along with additional navigation links. Wherever you include clusters of naviga-
tion links, including inside a footer, wrap them in a <nav> element.

Articles of independence
In addition to the hierarchy of sections with headers and footers, many web
pages are themselves self-contained posts, entries, news items, or comments.
Semantically, all of these can be considered sections, but their self-standing
nature merits a more specific semantic.

HTML5 introduces the <article> element, a special type of <section> ele-
ment, to represent potentially independent content components that may
be distributed or syndicated as items in feeds. Cases exist where <article>
elements may be nested. An example in the HTML5 specification uses a page
representing a blog post, which would be marked up as an <article> with com-
ments on the post represented by nested <article> elements:

<article>
 I think HTML5 is pretty neat! -Tantek
 <article>
 But how useful is it really? -anonymous
 </article>
 <article>
 You can use HTML5 to express new semantics, provide
 native multimedia like audio, video, vector graphics,
 and there’s lots of potential for building powerful
 web applications as well. -Tantek
 </article>
</article>

48	 HTML5 Now

This example is greatly simplified to illustrate the basic utility of the new
<article> element. Any time you mark up a blog post or comments, you should
also use the hAtom microformat; be sure to mark up the authors of the post and
comments with the hCard microformat as well.

Finally, note that <article> elements are just as portable and modular as
<section> elements. If you find yourself using a <section> element for a piece
of content that you would be willing to place on its own page, or syndicate as an
independent item in an Atom feed, go ahead and upgrade it to the more seman-
tically specific <article> element.

Tangential asides
All content cannot be considered as “main” content or an article. Quite often,
longer articles will contain a few paragraphs of related material that didn’t quite
fit or flow in the main text (such as a sidebar to a magazine story). To represent
such tangential topics, side comments, or even pull quotes, HTML5 introduces
the new <aside> element.

<aside>
 <h1>After HTML5?</h1>
 <p>What happens after HTML5?
 Will there be an HTML6?
 Or will the web standards community repeat history,
 and fork off an attempt to generalize semantics instead?
 </p>
</aside>

Just like the <article> element, the <aside> element is a special type of
<section> element and thus can include its own headings (as the previous
example demonstrates) and header and footer sections.

On the web, most tangential content tends to be linked to rather than included
with the main content. However, there are certainly online magazines and other
such publications that include sidebars and other loosely related content. The
<aside> element helps to clearly separate such content.

http://microformats.org/wiki/hatom
http://microformats.org/wiki/hcard

	 10 New HTML5 semantics	 49

Heading groups:
two at a time or perhaps more
In print, you can find numerous examples where headings of various levels are
clustered together for greater effect. One of my favorite examples is the title of
a novel by Neal Stephenson:

Part of the cover of
Neal Stephenson’s book,
Diamond Age, showing the
title heading and subhead.

The full name of the book is split into a heading and a subhead with obvious sty-
listic differences. Newspapers and magazines often use such heading/subhead
pairings for articles as well (referred to as heds and deks). In HTML5, you can
now semantically indicate such pairings (or more) of headings using the new
<hgroup> element:

<hgroup>
 <h1>The Diamond Age</h1>
 <h2>or, A Young Lady’s Illustrated Primer</h2>
</hgroup>

In the actual cover, notice the break between “The” and “Diamond Age””
(never mind the ALL-CAPS effect, which can be achieved with a trivial
text-transform:uppercase). Your first instinct might be to use a
 for that
line break. However, HTML5 gives us a more semantic way of doing so. Diamond
Age is clearly stylistically offset (with a larger font size for starters) from the

“The,” thus it makes sense to use the new element, which we can style as its
own block:

http://tantek.com/html5
http://tantek.com/html5

50	 HTML5 Now

<hgroup>
 <h1 style=”text-transform:uppercase”>The
 <b style=”display:block”>Diamond Age
 </h1>
 <h2>or, A Young Lady’s Illustrated Primer</h2>
</hgroup>

The remainder of restyling this <hgroup> example to recreate the original cover
is left as an exercise for the reader.

Styling new semantics:
introducing bulletproof HTML5
As of this writing, all modern browsers, except Internet Explorer, support styl-
ing the new HTML5 semantic elements. Even modern smart-phone browsers,
most of which use Webkit (iPhone, iPad touch, Palm Pre, Android), and modern
BlackBerry browsers, all support the styling of new HTML5 semantic elements!

However, Internet Explorer versions 8 (IE8) and earlier — as well as much older
versions of Firefox, Safari, Opera, and older smart-phone browsers — all simply
ignore these new elements, or technically speaking, create empty DOM nodes
for them.

Why would they do such a thing?

Because that’s what HTML has specified since the first paragraph of the first
documentation of HTML (emphasis and stronger emphasis added).

The WWW system uses marked-up text to represent a hypertext
document for transmision [sic] over the network. The hypertext
mark-up language is an SGML format. WWW parsers should ignore
tags which they do not understand, and ignore attributes which they
do not understand of tags which they do understand.

 — �From “HyperText Mark-up Language,” by Tim Berners-Lee,
published on the W3C’s web site in 1992.

As of HTML5, unknown elements are no longer ignored and are parsed into the
hierarchy of a document, just as if they were divs or spans by other names.

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html

	 10 New HTML5 semantics	 51

That’s all fine when we live in a world where everyone’s browser handles ele-
ments both known and unknown. However, we want to use new HTML5 seman-
tics now and have them work in new browsers as well as old.

Bringing back the bulletproofing

In his book Bulletproof Web Design, Dan Cederholm introduced the concept of
writing HTML/XHTML and CSS that gracefully handles variations in content,
text sizes, window sizes, etc. Jeremy Keith expanded the notion of “bulletproof-
ing” to include JavaScript as well in his book Bulletproof Ajax.

As professional web workers, we must now also design (and thus bulletproof)
for the varying levels (and features) of HTML5 support in browsers, both today
and in the near future.

Since unknown or new tags are ignored in IE8 and other older browsers, styling
new elements in particular requires a bulletproofing technique that we will likely
need for several years, until IE8 fades from view. It starts with a time-honored
workaround technique: nesting an extra <div> element. This simple example
uses the new <article> element, but could apply equally to any new HTML5
element.

<article>
 <div>
 ...
 </div>
</article>

To which we now add a class name the same as the new element:

<article>
 <div class=”article”>
 ...
 </div>
</article>

And now, whenever you want to reference an <article> element in your style
sheet, instead of using “article,” use “.article” as follows:

.article { margin:3em 0; /* more article styling etc. */ }

http://tantek.com/isbn/0321509021
http://tantek.com/isbn/0321472667

52	 HTML5 Now

By styling the <div> that is immediately nested inside the <article>, you are
essentially styling the same element — and doing so in a way that is compatible
with existing browsers. HTML5 browsers will gain the semantic benefits of your
use of new elements such as <article> while your CSS will continue to work in
older browsers.

Beware of JavaScript Shims

As some folks have pointed out, it is possible to use a bit of JavaScript with
document.createElement with the new elements to get them recognized, parsed,
and styled by IE8. This technique is too fragile to be reliable and must be avoided for
a few reasons. (And if you’ve never heard of this technique, you may skip this aside.)

Your CSS must not depend on your JavaScript. Your styling should never depend
on your scripting, your CSS should stand on its own, and in fact (this is part of the
original philosophy in the book Bulletproof Web Design), each piece should work as
well as it can without the other pieces.

You cannot assume the presence of JavaScript. Up to 10 percent of users
browse the web without JavaScript. Either their devices don’t support it or they
have it turned off for performance or security reasons. Again, another element of
bulletproof web design is that your site should work without JavaScript.

There are non-HTML5 browsers for which document.createElement does
not do the trick. IE8 (and earlier) is not the only non-HTML5 browser out there.
Numerous devices, such as older BlackBerries, have their own browsers, which
don’t yet support HTML5 but do offer very good HTML4 and CSS support. The
document.createElement trick won’t work on them.

To really indicate that tight coupling between the <article> element and its
styling surrogate <div>, place their start/end tags immediately adjacent to each
other on the same line.

<article><div class=”article”>
 ...
</div></article>

	 10 New HTML5 semantics	 53

Some new elements, such as <hgroup>, disallow <div> elements as immediate
children. For such cases — or, if you, prefer in general — you can place the extra
div outside the element instead. (The validator will quickly alert you of issues
such as this.)

<div class=”hgroup”><hgroup>
 ...
</hgroup></div>

Finally, if you have other classes you want to add to the new element, add them
to the extra <div> instead. For example, you’ll likely be using the hAtom micro-
format in addition to the <article> element. In that case, add the hAtom entry
class name hentry.

<article><div class=”article hentry”>
 ...
</div></article>

This is just the first of many bulletproof HTML5 techniques that are likely to
be developed as HTML5 is adopted and deployed on real-world web sites that
must continue working in browsers that lack support either for HTML5 or for
specific features.

Figures, marks, and dates
The last set of new HTML5 semantic elements are the <figure>, <mark>, and
<time> elements.

Pictures are worth a few associated words

Another very common semantic that web authors have expressed for years is
the association between images and their captions. Some particularly beautiful
examples are on Edward Tufte’s home page:

54	 HTML5 Now

Part of Edward Tufte’s home page showing a series of figures with associated captions.

HTML5 introduces the <figure> and <figcaption> elements to explicitly
semantically connect images (or other types of figures) with their captions.
They’re fairly easy to use: simply wrap the caption for an image with the
<figcaption> element and then put a <figure> element around both the
image and the <figcaption>.

<figure>

 <figcaption>Figure 1</figcaption>
</figure>

One warning, though: The <figure> element has undergone quite a few
changes in the HTML5 specification. Recently, the decision made to wrap the
caption text in the <figcaption> element. Previously, attempts were made
to reuse the <caption>, <legend>, and even <dt> and <dd> elements — all of
which turned out to have too much legacy baggage in current browser imple-
mentations to be usable inside a new element.

http://www.edwardtufte.com/tufte/
http://tantek.com/html5

	 10 New HTML5 semantics	 55

The <figure> and <figcaption> elements may still be subject to change — at
least more so than the other new semantic elements. Thus, it may be worth
waiting until it is more clear that they have stabilized.

Marked text

HTML5 introduces the <mark> element to represent text that is highlighted for
some reason outside its current context or by someone other than the author. A
few cases where you might do this include:

■	 Highlighting portions of a quote to draw attention to it but not imply
emphasis

■	 Pointing out errors, perhaps in source code

■	 Arriving at a page via a search engine then highlighting the terms that
brought the user to the page

The following example shows a page found through a web search, where
instances of the search terms are highlighted:

Brian Suda’s X2V project page with highlight on the search terms used to find the page.

The highlights at the top of the page might be marked up with the <mark>
element:

http://suda.co.uk/projects/X2V/
http://suda.co.uk/projects/X2V/

56	 HTML5 Now

<p>Why are
 <mark class=”t1”>hCard</mark>
 <mark class=”t2”>hCalendar</mark>
 <mark class=”t3”>X2V</mark>
 <mark class=”t4”>microformats</mark>
 highlighted?
</p>

Note the use of class names t1 t2 t3 t4 to indicate the different search terms,
which can then be styled with different background color highlights to help
distinguish them on the page.

Dates and times

Time and date information is published all over the web, perhaps most often in
event listings and date/timestamps of articles and blog posts.

You can use the new <time> element to mark up either 24-hour time, a date, or
date and time (with optional time zone).

<p>
 When I said <time>13:37</time>,
 I meant on <time>2010-03-03</time>,
 as in <time>2010-03-03T13:37</time>,
 in particular <time>2010-03-03T13:37-0800</time>.
</p>

The first two uses of the <time> element are quite readable and understandable
because more people worldwide understand 24-hour time and ISO dates than
any other single (and often culture-specific) date or time format. The latter two
examples use the ISO8601 datetime format (the last with time zone offset) and
are not very human friendly (except to programmers who deal with dates/times
on a daily basis).

To address this problem, the <time> element has a datetime attribute where
you can specify the machine readable ISO8601 date or datetime, while placing a
more human-friendly equivalent in the contents of the element.

	 10 New HTML5 semantics	 57

We can update the previous example with datetime attribute for the latter two
instances:

<p>
 When I said <time>13:37</time>,
 I meant on <time>2010-03-03</time>,
 as in <time datetime=”2010-03-03T13:37”>1:37pm on March 3rd,
2010</time>,
 in particular <time datetime=”2010-03-03T13:37-0800”>1:37pm
PST</time>.
</p>

We’ve seen several examples where the <time> element works well to represent
date and time information. Several instances of dates and times, however, don’t
work with the <time> element.

The <time> element does not work for

■	 imprecise times, such as “sometime this afternoon”

■	 imprecise dates, such as “the most recent Ice Age”

■	 dates before the introduction of the Gregorian calendar

■	 dates in countries before they adopted the Gregorian calendar

Almost all of these examples are related to historical dates and times, which
often have additional semantics or information associated with them — such as
different possible dates, sources of evidence for the dates, etc. The <time> ele-
ment does not attempt to solve the larger problem of how to represent histori-
cal dates, and it frankly doesn’t make sense to use it for those cases.

Unfortunately, the <time> element currently has several seemingly artificial
limitations that could be fixed. The <time> element does not currently allow
usage in the following real-world web situations:

■	 whole years, such as blog archives, years of birth

■	 years and months, such as blog archives once again

■	 month and day of a year, such as birthdays given without a year

■	 week of a year, not commonly seen on the web

58	 HTML5 Now

The seemingly obvious and widespread use case of links to blog archives should
justify the first two cases mentioned, which have corresponding ISO8601 date
formats: YYYY and YYYY-MM.

Two blog archives with year and month archive links, and just month archive links with the
year implied.

Most social networks and online profiles permit the display of only the month
and day of a person’s birthday without the precise year. This, too, has a stan-
dard ISO8601 date representation: --MM-DD. I’ve documented the use cases
and numerous examples in the wild for all three of these additional uses on the
WHATWG wiki: http://wiki.whatwg.org/wiki/Time_element.

As HTML5 is still a working draft, this is one limitation/problem that we may be
able to fix. If you agree with the additional use cases outlined here, I encourage
you to visit the WHATWG wiki Time element page, create an account, and add
your use cases and opinions as well.

http://wiki.whatwg.org/wiki/Time_element

	 11 HTML5 native vector graphics	 59

The WHATWG wiki page documenting additional use cases for the time element.

11
HTML5 native vector graphics
The introduction of inline image support in the Mosaic web browser in the mid-
1990s breathed life into otherwise staid pages of hypertext. Yet other than a few
changes in bitmap formats, from GIF to JPEG and PNG, very few truly revolu-
tionary advances have occurred in web graphics. In recent years, SVG (W3C’s
Structured Vector Graphics format) has slowly been gaining adoption — for
example, for external images in Wikipedia pages.

HTML5 takes a major step forward with vector graphics support by incorporat-
ing two approaches:

■	 Inline SVG: the ability to place SVG markup directly into your HTML

■	 The <canvas> element: a graphics API for JavaScript

60	 HTML5 Now

Inline SVG
HTML5 defines how to natively embed and parse <svg> elements and their
children. For example:

<p>
The following SVG should show a green circle:
 <svg>
 <circle r=”50” cx=”50” cy=”50” fill=”green”/>
 </svg>
</p>

However, as of this writing, no browser supports this.

Note that HTML5 has a provision for inline MathML that’s not supported by any
of today’s HTML5 browsers either. This provision will be very useful for scien-
tists and mathematicians when browsers do support it. However, just like inline
SVG, it’s not something we can use on the web today.

Maybe someday inline SVG will work. Until then, I recommend only using SVG
as Wikipedia does — for external decorative images that are better represented
by vector graphics than bitmapped images.

	 11 HTML5 native vector graphics	 61

Canvas
HTML5 introduces the new <canvas> element for
drawing arbitrary vector graphics using JavaScript
code in contrast to SVG’s approach of using XML
markup. Here’s a simple example.

<!DOCTYPE html><meta charset=”utf-8”>
<title>Canvas example</title>
<script>
function draw()
{
 var canvas = document.getElementById(“c1”);
 if (canvas.getContext) {
 var c = canvas.getContext(“2d”);

 c.fillStyle = “rgb(171,213,16)”;
 c.fillRect(32, 32, 96, 96);

 c.fillStyle = “rgba(255,0,102,0.75)”;
 c.fillRect(64, 64, 96, 96);
 }
}
</script>
<body onload=”draw();”>
 <canvas id=”c1” width=”128” height=”128”>
 two overlapping squares.
 </canvas>
</body>

62	 HTML5 Now

Let’s break this example down step-by-step. First, we’ll start with the <canvas>
element itself:

<canvas id=”c1” width=”128” height=”128”>
two overlapping squares.
</canvas>

In this example, notice three important aspects of the <canvas> element:

■	 An id attribute, which provides a simple hook for JavaScript code to refer
to it

■	 The width and height attributes that indicate the dimensions of the can-
vas’s drawing area

■	 Text fallback content inside for nonvisual browsers, and visual brows-
ers that either have scripting disabled or do not support the <canvas>
element

Next let’s take a look at the <body> element surrounding the canvas:

<body onload=”draw();”>
 <canvas id=”c1” width=”128” height=”128”>
 two overlapping squares.
 </canvas>
</body>

The only purpose the <body> element serves in this example is to call the
JavaScript function draw() after the document has finished loading.

Employing unobtrusive JavaScript

Note that for the simplicity’s sake, the canvas example uses the inline event
handler attribute onload. In practice, however, you should assign all event handlers
dynamically, using the modern web developer practice of unobtrusive JavaScript.
For more on unobtrusive JavaScript, see the “Behavioral Separation” article at A List
Apart and the book DOM Scripting, both by Jeremy Keith:

http://www.alistapart.com/articles/behavioralseparation

http://domscripting.com

http://www.alistapart.com/articles/behavioralseparation
http://domscripting.com

	 11 HTML5 native vector graphics	 63

Finally we get to where the action happens: the JavaScript that draws on the
canvas:
<script>
function draw()
{
 var canvas = document.getElementById(“c1”);
 if (canvas.getContext) {
 var c = canvas.getContext(“2d”);

 c.fillStyle = “rgb(171,213,16)”;
 c.fillRect(32, 32, 96, 96);

 c.fillStyle = “rgba(255,0,102,0.75)”;
 c.fillRect(64, 64, 96, 96);
 }
}
</script>

Let’s break down the draw() function even further:

var canvas = document.getElementById(“c1”);

Here’s where the id attribute on the <canvas> element comes in handy: The
first thing the script does is get a reference to the canvas.

if (canvas.getContext) {
 var c = canvas.getContext(“2d”);

The if test for canvas.getContext is effectively checking to see if the browser
supports the <canvas> element. If so, next it retrieves the canvas’s two-
dimensional (“2d”) drawing context. Which is the object that responds to
JavaScript drawing commands?

c.fillStyle = “rgb(171,213,16)”;
c.fillRect(32, 32, 96, 96);

The 2d drawing context offers many commands, two of which set the fillStyle
and draw a rectangle with the fillRect function. You can set the fillStyle

64	 HTML5 Now

with an = assignment statement — in this case, to a solid green color using the
rgb() syntax same as in CSS.

The fillRect() function takes four parameters, in order: the left, top, width, and
height of a rectangle. Combined, these two statements draw a solid green square:

c.fillStyle = “rgba(255,0,102,0.75)”;
c.fillRect(64, 64, 96, 96);

These next two lines of code do almost exactly the same thing except:

■	 The rgba() function sets a partially transparent (75% opaque) pink
fillStyle. The syntax for rgba() is reused from CSS color (http://
w3.org/TR/css3-color).

■	 The fillRect() is nearly identical, with its top left offset down and to
the right.

Altogether, the example draws a solid green square, and then a slightly transpar-
ent pink square on top of it.

One of the best ways to learn is the time-honored web development practice of:

	 1.	 View source

	 2.	 Copy/paste

	 3.	 Make some changes

	 4.	 See what happened

	 5.	 Repeat steps 3–4 as necessary to understand how the code works

Let’s copy/paste the fillStyle/fillRect lines of code to create another
square of a different color:

<script>
function draw()
{
 var canvas = document.getElementById(“c1”);
 if (canvas.getContext) {
 var c = canvas.getContext(“2d”);

 c.fillStyle = “rgb(171,213,16)”;
 c.fillRect(32, 32, 96, 96);

http://w3.org/TR/css3-color
http://w3.org/TR/css3-color

	 11 HTML5 native vector graphics	 65

 c.fillStyle = “rgba(255,0,102,0.75)”;
 c.fillRect(64, 64, 96, 96);

 c.fillStyle = “rgba(0,0,255,0.5)”;
 c.fillRect(96, 96, 96, 96);
 }
}
</script>

The new code we added sets the fillStyle to a
50% transparent blue, and then draws another
square 32 pixels down and to the right of the sec-
ond square.

But we’re not quite finished. One more bit to
update remains: the fallback text.

<canvas id=”c1” width=”128” height=”128”>
 three overlapping squares.
</canvas>

Our complete updated example:

<!DOCTYPE html><meta charset=”utf-8”>
<title>Canvas example</title>
<script>
function draw()
{
 var canvas = document.getElementById(“c1”);
 if (canvas.getContext) {

66	 HTML5 Now

 var c = canvas.getContext(“2d”);

 c.fillStyle = “rgb(171,213,16)”;
 c.fillRect(32, 32, 96, 96);

 c.fillStyle = “rgba(255,0,102,0.75)”;
 c.fillRect(64, 64, 96, 96);

 c.fillStyle = “rgba(0,0,255,0.5)”;
 c.fillRect(96, 96, 96, 96);
 }
}
</script>
<body onload=”draw();”>
 <canvas id=”c1” width=”128” height=”128”>
 three overlapping squares.
 </canvas>
</body>

Numerous JavaScript drawing commands exist for the <canvas> element to per-
form all the usual graphics primitives, drawing and/or filling lines, paths, circles,
arbitrary polygons, etc. To learn more I recommend the Mozilla Developer
Center online canvas tutorial: https://developer.mozilla.org/en/Canvas_tutorial.

Browser support
As with any graphical element, you must make sure to provide good fallback
content for browsers that don’t support <canvas>, for text browsers, for acces-
sibility, and of course, for search engines.

I recommend that you limit your use of <canvas> on production web sites to
decorative images only. This way, you can provide reasonably equivalent fall-
back content — for example by nesting an element with alt text.

<canvas id=”c1” width=”128” height=”128”>

</canvas>

https://developer.mozilla.org/en/Canvas_tutorial

	 12 HTML5 native audio and video	 67

Finally, do go ahead and experiment with the potential of <canvas>, building
more complex interactive pages that push the limits of what’s possible. My one
request is that while you’re designing such rich interactive experiences, keep
in mind — and simultaneously develop — similar interactive functionality with
semantic markup and forms as well.

Most of the beautiful canvas experiments to date have not bothered with
any kind of fallback or accessibility, and so consider this your opportunity to
create both beautiful and accessible experiences, because it is possible, espe-
cially when you do so from the start. These new vector graphics capabilities
in HTML5 are just one part of its new multimedia features, which also include
native audio and video support.

12
HTML5 native audio and video
With the exception of low-quality animated GIFs and the proprietary <bgsound>
tag, HTML’s native multimedia support has been limited to static images. Nearly
all of the audio and video on the web has been handled by plug-ins, typically
Flash or QuickTime, until now. HTML5 introduces the <audio> and <video> ele-
ments, bringing rich declarative sound and motion to our otherwise static text
and graphics.

Audio and video basics
In their simplest forms, both new tags work like the trusty tag, with a
src attribute for the URL of the audio or video file respectively — except that
both new tags have end tags as well.

<audio src=”chess.wav”></audio>
<video src=”chess.avi”></video>

Where the tag has an alt attribute for a simple text alternate, the
<audio> and <video> elements are containers, thus wrapping their fallback
alternate content.

68	 HTML5 Now

<audio src=”chess.wav”>
 Joshua asks in a synthetic voice:
 <samp>HOW ABOUT A NICE GAME OF CHESS?</samp>
</audio>

<video src=”chess.avi”>
 Video of Joshua simultaneously displaying on a terminal
 while asking in a synthetic voice:
 <samp>HOW ABOUT A NICE GAME OF CHESS?</samp>
</video>

One advantage of fallback content inside an element is that you’re able to use
additional markup, while attributes such as alt are limited to plain text content.
Note that the examples above use the <samp> rather than <q> tags as Joshua is
a computer program.

Supporting multiple formats
The biggest challenge facing both <audio> and <video> elements is that there
is currently no single format (either audio or video) that is natively supported
across all browsers.

To demonstrate this, we’re going to code another example, this time using
some freely available open source/community video from the Internet Archive
(archive.org). To get started, download the following video files:

■	 http://www.archive.org/download/Ryanne-BarCampSF816/Ryanne-
BarCampSF816.ogv

■	 http://www.archive.org/download/Ryanne-BarCampSF816/Ryanne-
BarCampSF816_512kb.mp4

Rename your local copies to just barcampsf.ogv and barcampsf.mp4, respec-
tively. Doing so will keep our examples shorter/simpler.

http://www.archive.org/download/Ryanne-BarCampSF816/Ryanne-BarCampSF816.ogv
http://www.archive.org/download/Ryanne-BarCampSF816/Ryanne-BarCampSF816.ogv
http://www.archive.org/download/Ryanne-BarCampSF816/Ryanne-BarCampSF816_512kb.mp4
http://www.archive.org/download/Ryanne-BarCampSF816/Ryanne-BarCampSF816_512kb.mp4

	 12 HTML5 native audio and video	 69

Note: As the earlier examples demonstrate, audio and video examples
are nearly identical. In the remaining examples, we’re going to focus on
video — although they all apply to audio with just a change in formats. Where
there are differences in browser support between H.264 (typically .mp4 files)
and Ogg Theora (.ogv files) formats in video, there are essentially the same
differences in browser support between MP3 (.mp3) and Ogg Vorbis (.ogv) in
audio.

Now back to a simple video example using these new files.

<!DOCTYPE html><meta charset=”utf-8”>
<title>video example</title>
<video src=”barcampsf.mp4”>
 A video showing BarCampSanFrancisco.
</video>

By default no controls are shown for video or audio. The expectation is that you,
the web designer, will build your own controls from HTML elements styled with
CSS, and wire them up to your audio and video elements with JavaScript. The
full DOM APIs for controlling the <audio> and <video> elements are listed in
the HTML5 specification itself (and potentially in a bit of flux). We’re going to
use the controls attribute to instruct the browser to give us a default set of
controls so that we can focus on the content itself.

<!DOCTYPE html><meta charset=”utf-8”>
<title>video example</title>
<video src=”barcampsf.mp4” controls>
A video showing BarCampSanFrancisco.
</video>

If you post this example to your web site along with the video file, you can
then view it using Safari, Chrome, or an iPad, as all of them use WebKit, which
supports HTML5 video and also supports the H.264 format. Here is how Safari
displays default video controls:

70	 HTML5 Now

If you take a look at this same example in Firefox, you’ll see something a little
different, because Firefox does not support the H.264 video format.

However, Firefox does support the Ogg Theora video format, and thus if we
change the example to use Ogg instead of H.264:

<!DOCTYPE html><meta charset=”utf-8”>
<title>video example</title>
<video src=”barcampsf.ogv” controls>
 A video showing BarCampSanFrancisco.
</video>

	 12 HTML5 native audio and video	 71

Now it looks much better in Firefox.

Note how the default controls in Firefox look different from the default controls
in Safari. Expect different browsers — or even different devices with the same
browser (or browser engine), such as desktop Safari vs. the iPad — to all have
different default controls. The differences typically are designed to fit better
with the overall user experience offered by the platform or browser.

With the Ogg Theora (.ogv) file, however, now the video example doesn’t work
in Safari:

72	 HTML5 Now

Safari handles failure worse than Firefox. By providing a play button and
a “Loading…” status indicator, Safari indicates that if we just wait, the video
will load and play, which is, of course, not true — Safari does not support Ogg
Theora. At least with Firefox, you get immediate feedback (if a bit cryptic with
a medium gray X on a darker gray background) that the video format is not
supported.

Now the challenge is to create an HTML5 video element that works in both
Firefox and Safari, which are reasonably representative of HTML5 video sup-
porting browsers.

HTML5 introduces a <source> element for just this purpose. It has an src attri-
bute just like the <audio> and <video> elements themselves. The key to using
<source> elements is that you place them inside <audio> and <video> elements,
in the order in which you want the browser to check their compatibility, followed
by the fallback content for browsers that don’t support the <video> element .

<!DOCTYPE html><meta charset=”utf-8”>
<title>video example</title>
<video controls>
 <source src=”barcampsf.ogv”>
 <source src=”barcampsf.mp4”>
 A video showing BarCampSanFrancisco.
</video>

	 12 HTML5 native audio and video	 73

If you reload this example in both Safari and Firefox, you’ll see that it now works
in both and properly displays the video with default controls. For interactive
demonstrations of the <video> element in various browsers, please see the
HTML5 Now video.

Update on browser support and formats
Right now, the following video formats are supported by the following browsers:

■	 H.264: Safari, Chrome

■	 Ogg Theora: Firefox, Opera, Chrome

Two recent developments have changed the support scenario a bit. Microsoft
has announced that Internet Explorer 9 (IE9) will support HTML5 video, and,
in particular, the H.264 format. You can download the IE9 Preview and see for
yourself that it does support HTML5 video with H.264.

Second, Google and Mozilla have open sourced a new video format, VP8, which
Firefox and Opera have either announced or already shipped support for. Thus,
in the near future — or potentially already shipping by the time you’re reading
this — you’ll be able to depend on more:

■	 H.264: Safari, Chrome, IE9

■	 Ogg Theora: Firefox, Opera, Chrome

■	 VP8: Firefox, Opera, Chrome

In addition, Microsoft has said that IE9 will support VP8 through an optional
user-installable extension, and YouTube has already started converting their
videos and serving VP8 video. For more on VP8, I recommend that you keep an
eye on The WebM Project at http://www.Webmproject.org. There’s a very good
chance that VP8 will quickly eclipse Ogg Theora. However, due to widespread
support across mobile devices, H.264 is here to stay for at least a few years and
web sites will need to support both.

http://www.Webmproject.org

74	 HTML5 Now

Multiple video formats for several years

Despite the open source appeal of the newly released VP8, web sites will likely
need to support H.264 for at least a few years.

One of the big reasons H.264 has become particularly important in the past few
years is the popularity of smart phones that have built-in hardware decoding for
H.264. Hardware decoding is much more efficient, consuming less power and thus
being much more battery friendly, which is a very important consideration for all
mobile devices.

VP8 hardware decoders don’t exist yet, as the hardware makers are first waiting to
see if VP8 gains sufficiently popularity. Even if such decoders were to arrive in a year
from now and were incorporated into new mobile devices after another year, there
will still be millions of users of existing smart phones (iPhones, Androids) tied to
2-year contracts who won’t be able to upgrade until their contracts expire. That adds
up to at least four years at best that web sites will have to support H.264 if they
want to support the growing number of video supporting mobile devices out there.

Thus for the foreseeable future, we’ll need to code our HTML5 video to support
multiple formats, VP8, and H.264.

	 13 New HTML5 user interface elements 	 75

13
New HTML5
user interface elements
When HTML was introduced in the early 1990s, the only semblance of inter-
activity it gave the user was the hyperlink — with a single click you could leap
to any other page on the fledgling web. While hypertext certainly changed our
perspective of self-contained linear text documents, all you could do really was
jump around.

In 1995, HTML 2.0 introduced forms and suddenly the web became interac-
tive. Forms enabled e-commerce, adding profit-motive fuel to the fire of self-
expression, and incredibly accelerating the growth of the web. The addition of a
small number of user interface elements (eight types of <input>, <select> and
<option>, and <textarea>) gave us the building blocks for web applications,
and a platform was born.

New form inputs
HTML5 adds more new <input> elements than all previous versions of
HTML — 13 in total. The new elements fall into a few different categories.

search

Nearly every site on the web has a search box for searching the site. The new
search input type is a special kind of text input that conveys the additional
semantic that the user will be entering search terms.

<input type=”search”>

Browsers that understand this additional semantic can display the search input
in a manner consistent with platform search interfaces, as well as perhaps
offer search term suggestions. Safari, for example, renders the search input on
developer.apple.com similar to its own input box, and offers a drop-down menu
of recent searches.

http://dev.w3.org/html5/html4-differences

76	 HTML5 Now

The nice thing about the search input is that non-supporting browsers treat
it like a normal text input. Browsers that support the search input, such as
Safari, typically customize its appearance only a bit. Thus, you can start using
<input type=”search”> on your sites today and on supporting browsers, your
users will experience a subtly improved experience.

tel, url, email

The new input types of tel, url, and email also represent special text inputs,
but with different structures as well as semantics.

<input type=”tel”>
<input type=”url”>
<input type=”email”>

Browsers can choose to present custom interfaces for more easily entering
phone numbers, web addresses, and email addresses — such as providing the
option to pick from an address book or recent history. In particular, mobile brows-
ers on touch devices can choose to present touch keyboards customized for the
keys frequently used for each: numbers and hyphens for phone numbers, slashes
(/), dots (.), .com for URLs, @ for email addresses, etc. As of this writing, the

	 13 New HTML5 user interface elements 	 77

iPhone offers such support, and it’s expected that other mobile devices such as
the Android and Palm Pre already do or will soon support these elements as well.

For now, browsers typically treat these elements the same as text inputs. Of
these three, I frequently use the URL input. Many sites take a web address
(URL) as input and do something with it:

H2VX.com’s hCard to vCard conversion service.

H2VX, for example, converts the hCards on a page to vCards for easy import
into your address book. It’s also a relatively simple design, so if the browser
does something custom or special with the URL input, it’s unlikely that the site
design will be affected much.

number

Many web forms ask users to input numbers (such as quantities on shopping
sites). The <input type=”number”> allows the browser to provide a custom
interface for entering numbers, perhaps with up/down arrows or a simpler
numeric keypad on a touch interface.

http://h2vx.com/vcf/
http://h2vx.com/vcf/

78	 HTML5 Now

Beware of potential number input abuse

Examples of when NOT to use <input type=”number”> include:

ZIP and postal codes: In the United States, ZIP codes are five- or nine-digit
numbers, but in other countries, such as England, postal codes include letters as
well.

Numbered street names: Many street addresses include a street number as well as
a street name, and many of these street numbers actually end with a letter, such as
37A. (Not to mention street numbers that use fractions such as 15 1/2.)

ISBN numbers: ISBN numbers can end with the letter X.

Driver’s license numbers: Many states (inappropriately) reuse Social Security
numbers for driver’s license numbers. California driver’s license numbers, however,
include a leading letter.

In general, any type of data that seems like a number — and perhaps even is a
number most of the time — but is actually a label, categorization, or identifier of
some sort should likely just be a good old trusty <input type=”text”>, not a
number input.

color

Many sites, such as Twitter, allow you to choose various colors for your profile
page, including background, text, hyperlink, and other colors. For this purpose
and for graphical web applications in general, you now can use the color input:

<input type=”color”>

As of this writing, no browsers are known to support the color input. We can
only hope that they’ll come up with some way of presenting the platform user
interface control(s) for easily picking a color.

date and time inputs

In stark contrast to the limitations of the <time> element, there are numerous
date and time inputs for specifying the date and time (with or without each
other, local or not), a month, or a week.

	 13 New HTML5 user interface elements 	 79

<input type=”date”>
<input type=”time”>
<input type=”datetime”>
<input type=”datetime-local”>
<input type=”month”>
<input type=”week”>

Holes in date and time

Conspicuously missing from the list of date and time inputs are the same two real-
world scenarios mentioned regarding the <time> element — that is, the ability to
pick a year, or the ability to pick just a month and a day, for example, for birthdays or
anniversaries. These would be logical additions:

<input type=”year”>
<input type=”month-day”>

What’s also interesting about the new date and time inputs is that for the last two,
month and week, there is no equivalent for semantically marking them up using the
<time> element. Presumably, any form that lets you pick a month or a week will
later display those values (perhaps on a confirmation screen), and thus it makes
sense to be able to mark them up semantically as such. This mismatch is odd to say
the least, and is hopefully something that will be fixed in HTML5.

Today’s browsers offer inconsistent support for the date and time inputs (as noted
in the next section). While support for them does appear to be improving, at this
point, I recommend the date and time inputs only for experimentation, not for
production sites.

Browser challenges

In many ways, Opera has pioneered the implementation of the HTML5 inputs.
As a result, we’re able to see just how big a challenge the implementation is.
Opera 10.10 showed strange icons for the email and url inputs, and clipped the
top and right edges of some values.

80	 HTML5 Now

Opera 10.53 (the latest as of this writing) has removed the strange icons, and
fixed the clipping of the top parts of text values. It still has problems, however,
sizing the inputs wide enough to display their values without clipping, and has
new problems with the up/down arrow indicators on the right edges of most of
the date and time inputs.

	 13 New HTML5 user interface elements 	 81

Other browsers have taken a more cautious approach, rendering very little (if
anything) differently for the new input types. Version 5 of Safari has started to
provide a hint of customization with little up/down buttons next to some of the
new input types.

And yet Safari has its own quirks — for example, if you click the little up button
next to the date and time inputs, all the inputs with years give you “1582” (and
the week input gives you “1583”). A very strange year to start with, except it
turns out that 1582 was the year of the Gregorian Calendar Switch according
to Wikipedia (http://en.wikipedia.org/wiki/1582), and in fact October 15 (as
shown in the screenshot) was the date the switch occurred. This is perhaps why
October 15, 1582 is the earliest date Safari will let you enter with the new date
and time inputs.

In summary, many challenges exist when using the new HTML5 input types. I
recommend the following:

■	 Start with simple uses in pages, for example, the search and URL inputs.

■	 Download the latest versions of Opera, Safari, and Firefox, and then try
the “New input elements in HTML5” page (http://tantek.com/new-inputs.
html) for yourself to get an idea of how browser support is evolving.

http://en.wikipedia.org/wiki/1582
http://tantek.com/new-inputs.html
http://tantek.com/new-inputs.html

82	 HTML5 Now

■	 Try out the new inputs on mobile browsers to see how they customize
and perhaps enable better user input. For mobile use, the benefits may
outweigh the risks. You’ll need to decide on a case-by-case basis.

■	 Beware that the look, feel, and dimensions of the new HTML5 inputs
are changing. If you decide to use them in pages, especially in pages for
clients, be prepared for the look and feel of the pages to change when
browser updates are released (thus possibly requiring you to go back and
tweak your styling and scripts).

The autofocus, required, and placeholder attributes

HTML5 adds more features for all input types, old and new alike. The first is the
new autofocus attribute. On an <input> element, this attribute indicates to the
browser that this input should be focused upon loading the page, so the user
can start typing without having to first activate that input.

<input type=”text” autofocus>

The ASIN.cc web site uses the autofocus attribute to automatically activate its
one text input upon page load.

http://www.ASIN.cc

	 13 New HTML5 user interface elements 	 83

Examples of other sites that could benefit from auto-focus include search
engines and simple status update sites (such as Twitter), where the user inter-
face is designed around a primary input box. Be sure to use only one autofocus
per page.

Many web forms have fields that users are required to fill in. Required fields
often are indicated by an asterisk, a red border, or some other form of styling.
HTML5 introduces the required attribute to make this semantic explicit:

<input type=”text” required>

Beware the Beverly Hills problem

Regardless of how you implement required semantics in your web forms, you are
highly likely to run into what I call the ”Beverly Hills problem.” In short, do you know
the ZIP code that attracts the most users to web sites?

Answer: 90210.

Naïve interaction design and pop culture contribute to this phenomenon. Many (if
not most) instances of “required” inputs on web forms are not actually required
to make the forms or sites work. Typically, they’re required only because some
overzealous marketing person thought they might have a chance at forcing users to
divulge some demographic information — like their ZIP code.

Of course, this is the World Wide Web, and requiring a ZIP code makes little sense
(unless you are operating an e-commerce site, in which case, make it clear to
users which countries you can ship to, and don’t assume everyone has a ZIP code
in your billing/shipping forms). Since people worldwide — and yes, that’s a good
thing — want to use your web site, they’ll put something into any form field that
seems to be required. The most well-known ZIP code in the world is 90210 thanks
to the well-known and worldwide-syndicated TV show called “Beverly Hills, 90210”
and its subsequent follow-ons. So if you have a form that requires a ZIP code, but
you don’t actually need one for site functionality, be prepared to have a lot of people
appear to show up from 90210.

“Requiring” a user to fill in a field that is unnecessary for site functionality will likely
result in lots of bad/noisy data for those supposedly required fields. So don’t bother
wasting time coding unnecessary required fields, nor wasting the user’s time asking
for them. And tell your overzealous marketing person that most of your users will
likely come from Beverly Hills.

84	 HTML5 Now

When browsers support the required attribute, they automatically alert users
when they fail to complete one or more of the required fields in a form.

Until all browsers support the required attribute, you still need to write
JavaScript to check that required form fields are properly filled in on forms.
Regardless, you always need to check the form submissions on your server to
make sure required fields have been filled in, as someone could always fake a
form submission without using a browser.

The bottom line is that you can’t depend on the required attribute alone to guar-
antee that any particular form field will be filled. It may help improve the user
experience in some cases, but you always need to do work on the server side.

When creating forms, it can be quite useful to suggest to users what kind of
information you’re expecting in a specific field, and it may even make your user
interface friendlier.

HTML5 introduces the placeholder attribute for providing such hints in form
fields:

<input type=”text” name=”locality” placeholder=”San Francisco”>
<input type=”text” name=”region” placeholder=”California”>
<input type=”text” name=”country” placeholder=”USA”>

Currently, Webkit browsers (such as Safari and Chrome) and Opera support
these new attributes, and Firefox will be supporting them soon. So you can
start using them immediately, but be sure to still write your JavaScript with the
expectation that not all browsers may support them.

Output and details elements
Many programs perform some sort of computation or calculation based on
input from the user. For this purpose, HTML5 provides the <output> element.
Obvious examples are calculators, financial projection applications, and other
sites that take a bunch of numbers and provide some sort of result. However,
you can use the <output> element for any kind of computed or algorithmic
result, for example, an algorithmic shortlink:

	 13 New HTML5 user interface elements 	 85

The <output> element seems simple enough to start using right away, for the
few situations where it applies. In contrast, the new <details> element applies
to more use cases yet presents more challenges.

The <details> element is for representing and presenting a piece of content
that offers a summary label with further details provided through a progressive
disclosure interface. The new <summary> element marks up the summary or
label inside the <details> element.

<details>
 <summary>shopping list</summary>

 spinach
 tomatoes
 carrots
 avocado
 broccoli
 tofu
 red wine
 dark chocolate

</details>

86	 HTML5 Now

No current browsers support the interactivity portion of the <details> element,
that is, they all show the summary and contents all the time. There’s good rea-
son for this — these new elements have been among the more unstable in the
HTML5 specification. In particular, the <summary> element has gone through a
number of naming revisions. Earlier attempts were made to reuse the <label>,
<caption>, and even <dt> and <dd> elements instead. Given the instability of
this feature, it’s no surprise that no browsers have implemented it yet.

If you want to implement a disclosure interface that only shows the summary
until the user clicks on it to reveal the rest, you’ll have to build it yourself in
JavaScript. The W3C’s Technical Reports page (http://w3.org/TR) is a good
example:

Note the areas of standards work being used as summary labels, and the
detailed list of specifications in each area only being revealed when the user
clicks the disclosure triangle or the summary labels.

http://w3.org/TR

	 13 New HTML5 user interface elements 	 87

Meter, range, and progress
HTML5 introduces a few elements for displaying and inputting ranges of values.
The new <meter> element can be used to display measurements such as a score,
a rating, a countdown, or donations towards a goal. The new element comes
with min and max attributes to set the bottom and top ends of the range, as well
as a value attribute.

<meter value=”74” max=”100”> 74% </meter>
<meter value=”0.75”> 3/4 </meter>
<meter min=”0” max=”250” value=”185”> 74% </meter>

On the input side, there is also an input type for entering a measurement along
a range of values, <input type=”range”>, also with min, max, and value
attributes:

<input type=”range” min=”0” max=”100” value=”74”>
<input type=”range” min=”0” max=”250” value=”185”>

For the special case of progress towards completion of a task, HTML5 intro-
duces the <progress> element. This element also has max and value attributes,
but has a fixed minimum of zero (0):

<progress value=”75” max=”100”> 75% complete </progress>

The one additional special use of the <progress> element is to indicate inde-
terminate progress — that is, when there is no estimate available as to how
far along a task is. Use the <progress> element on your sites to indicate how
far along various user tasks are, such as uploading, online checkout, or fill-
ing out multipage forms. To indicate indeterminate progress, simply omit the
value attribute:

<progress> working... </progress>

For both the <meter> and <progress> elements, be sure to always include
fallback text like the previous examples for browsers that don’t support those
elements. Speaking of which, although browser support for the <meter>,
<input type=”range”>, <progress> elements is currently quite sparse, recent
improvements in particular in Safari show promise:

88	 HTML5 Now

Opera has implemented a similar range input and we can expect these elements
to be implemented soon in Firefox as well.

A common theme throughout all these new HTML5 user interface elements is
the variance in levels of implementation across browsers, which change rapidly
with each release. It’s both exciting to see, and challenging to design for.

14
The HTML5 bleeding edge
With all the immediate practical utility that HTML5 brings, a larger concept of
HTML5 is broadly championed and cheered on by web developers worldwide
and promoted by companies as large as Apple and Google.

As marketed, the concept would be more accurately framed as “The Open
Web Applications Platform.” While HTML5 is a big part of how we build web
Apps today and for the foreseeable future, other key pieces to learn go beyond
HTML5:

	 1.	 Microformats for additional semantics and data portability

	 2.	 CSS for beautiful design and emerging effects such as animation

	 3.	 JavaScript and DOM for additional behaviors

	 4.	 Numerous Web APIs and other related specifications

	 14 The HTML5 bleeding edge	 89

The first three concepts are immediately practical, dependable, and fairly well-
established; they have entire books written about them.

The fourth concept is a set of working drafts, some of which were spun off from
HTML5 and others of which were never part of HTML5 and yet have sometimes
been included in the HTML5 marketing umbrella. All are fairly experimental in
nature, and you should keep this in mind when considering their use.

For the most part, these related drafts are enabling new classes of applications
on the web while also unstable and volatile enough to require close attention to
depend on them. Following is a brief summary with pointers to their drafts.

Geolocation API (http://www.w3.org/TR/geolocation-API). Allows a web page
to ask the browser for geolocation information about where the user is. Quite
powerful and already implemented in Firefox and Safari. Note: DO NOT tell your
marketing person about this API because they might just try to use it to get
more accurate demographic information (see “Beware the Beverly Hills problem”
in Chapter 13).

HTML Device (http://dev.w3.org/html5/html-device). For accessing various
hardware capabilities, such as built-in cameras or microphones. Just an editor’s
draft currently, it’s not clear when an official working draft will be published.

Microdata (http://www.w3.org/TR/microdata). A way to annotate content in
HTML with custom vocabularies, in many ways much simpler than RDFa. Use
microformats that are already well supported to mark up common semantics
such as people, organizations, events, reviews, etc., and take a look at microdata
if you want to create your own vocabulary.

Web Sockets API (http://www.w3.org/html5/websockets). Defines an API for
two-way communication between web pages and servers.

Web SQL Database (http://www.w3.org/TR/webdatabase). Defines an API for
storing data in a database in the web browser that can be queried using a vari-
ant of SQL. There have also been discussions about using non-SQL databases as
alternatives.

Indexed Database API (http://www.w3.org/TR/IndexedDB). One of those
non-SQL alternatives is the Indexed Database API, which defines a database of
records holding simple values and hierarchical object records of key/value pairs.

http://www.w3.org/TR/geolocation-API
http://dev.w3.org/html5/html-device
http://www.w3.org/TR/microdata
http://www.w3.org/html5/websockets
http://www.w3.org/TR/webdatabase
http://www.w3.org/TR/IndexedDB

90	 HTML5 Now

Web Storage (http://www.w3.org/TR/webstorage). Simpler than a database,
Web Storage defines an API for storing key/value pairs in the browser, a logical
step forward from using cookies.

Web Workers (http://www.w3.org/TR/workers). Web Workers is an API for
creating additional JavaScript threads that are able to run in the background.
They’re useful for any script that performs computations or other tasks that
should not hold up the user interface. If your pages or scripts feel slow or cause
wait cursors such as the infamous spinning rainbow beachball, look into offload-
ing some of your processing onto Web Workers.

Web Messaging (http://dev.w3.org/html5/postmsg). Defines mechanisms
for communicating between different browser windows, tabs, and iframes.
Although currently only an editor’s draft, Web Messaging, also known as
postMessage, has actually been implemented in modern browsers for some
time: Internet Explorer 8+, Firefox 3+, Opera 9+, and Safari 4+.

All these “specifications” are W3C public working drafts or editor’s drafts, which
means that they all issue the following warning about their status (emphasis
from source): “Implementors should be aware that this specification is not
stable. Implementors who are not taking part in the discussions are likely to
find the specification changing out from under them in incompatible ways.”

While HTML5 itself is a working draft as well, enough of it is either based on
what worked in HTML4, what has worked in browsers for many years, or has
been interoperably implemented, that HTML5 is much more dependable than
these related bleeding-edge specifications.

Plenty of ever-changing opportunities are available to push the boundaries of
web applications experiments. Just keep in mind that as the web APIs change,
any web apps using them may break. Also be sure to keep up with the editor’s
drafts of these specifications (noted in their headers) as well as their latest
official working drafts.

http://www.w3.org/TR/webstorage
http://www.w3.org/TR/workers
http://dev.w3.org/html5/postmsg

	 15 Checkpoint: Revalidate	 91

15
Checkpoint: Revalidate
By now you’ve added at least a few new HTML5 features to your pages, from
new semantics to perhaps some native multimedia or new forms support. It’s
time to revalidate your pages and see what we can learn.

Using the same HTML5 validator browser button/favelet used in Chapter 9,
revalidate and note any errors to fix.

Even if your document validates, pay close attention to any warnings and see if
there is something you can improve. In this case, the validator is warning that I
have an “Attribute without value.”

In “Transitioning your XHTML” in Chapter 5, I noted that all attribute values
must be quoted for XHTML compatibility. When checking my documents for
both HTML and XHTML validity (what some call polyglot or biglot documents),
the validator noted a particular case of an unquoted value not having an explicit
value at all! Here’s the errant tag:

92	 HTML5 Now

<input type="url" id="link" readonly value="http://tantek.com" />

HTML5 has several such “standalone” attributes such as the autofocus and
required attributes mentioned in Chapter 13. However, XHTML compatibility
requires that all attributes have explicitly quoted values. The fix is simple—use
the name of the attribute as a value for itself:

<input type="url" id="link" readonly="readonly" value="http://
tantek.com" />

Applying that fix, let’s take a look at what Validator.nu reports:

Repeat this process of validating, finding the sources of errors or warnings,
fixing them, and revalidating until you have fixed all errors/warnings and the
validator returns a clean green validation report.

Congratulations! You’re now using HTML5.

Now, find out where you can learn more, and help make a difference in HTML5.

http://tantek.com/h5n/booklet/16.html

	 16 Conclusion	 93

16
Conclusion
We’ve covered a lot about HTML5, and no doubt you will have further questions,
want to both keep up with the spec as it evolves, and perhaps even help it do so.

Keeping up with HTML5 evolution
You now have a good idea of what HTML5 currently does and doesn’t do. I rec-
ommend following updates to the these resources for keeping up with changes.

HTML5 differences from HTML4 (http://w3.org/TR/html5-diff)

HTML: The Markup Language (http://w3.org/TR/html-markup)

The HTML5 Now Wiki (http://html5now.pbwiki.com)

The HTML5 Now Twitter (http://twitter.com/html5now)

The Differences specification will help serve as a good reminder of what’s
changed (and continues to change) from HTML4, and The Markup Language
specification provides an excellent index and overview of all the tags and
attributes, new and old, in HTML5. Finally, I’ve setup an HTML5 Now Wiki and
Twitter account where I’ll be posting updates both to the HTML5 Now video and
booklet, and about HTML5 in general.

More HTML5 resources
There are a few good HTML5 books that have been recently released or soon
will be that will help provide additional depth and perspective on HTML5.

HTML5 for Web Designers by Jeremy Keith

HTML5: Up and Running by Mark Pilgrim

Introducing HTML5 by Bruce Lawson and Remy Sharp

http://w3.org/TR/html5-diff
http://w3.org/TR/html-markup
http://html5now.pbwiki.com
http://twitter.com/html5now
http://books.alistapart.com/product/html5-for-web-designers
http://tantek.com/isbn/0596806027
http://tantek.com/isbn/0321687299

94	 HTML5 Now

While reading anything about HTML5, whether on the web or in books, keep in
mind what you’ve learned in this video and booklet, especially what we talked
about in Chapter 14, specifically, what is actually HTML5, and what is marketed
or otherwise lumped in with HTML5. If you’re not sure, you can always search
the table of contents of the HTML5 specification itself:

HTML5: A vocabulary and associated APIs for HTML and XHTML
(http://www.w3.org/TR/html5)

If it’s not in that table of contents, it’s not part of HTML5, no matter how many
CEOs or well-meaning books may claim otherwise.

For additional perspectives on HTML5, I recommend the following blogs:

WHATWG blog (http://blog.whatwg.org)

Ian Hickson (http://ln.hixie.ch)

Jeremy Keith (http://adactio.com/journal/tag/html5)

Bruce Lawson (http://www.brucelawson.co.uk/category/html5)

Jeffrey Zeldman (http://www.zeldman.com/category/html5)

Help improve HTML5 while learning
HTML5 is still a working draft, and needs your feedback, input, and suggestions.
In late summer 2009, a group of colleagues (myself included) concerned about
the direction and specifics of HTML5, gathered to share our understandings and
write up a statement of feedback. The result was the following

HTML5 Super Friends statement (http://www.zeldman.com/superfriends)

Guide to HTML5 Hiccups (http://www.zeldman.com/superfriends/guide)

Much of the feedback and hiccups listed in the guide have already been fixed
in HTML5.

You too can use your practical experience to help improve HTML5. Here are
some resources to participate in the evolution of HTML5:

http://www.w3.org/TR/html5
http://blog.whatwg.org
http://ln.hixie.ch
http://adactio.com/journal/tag/html5
http://www.brucelawson.co.uk/category/html5
http://www.zeldman.com/category/html5
http://www.zeldman.com/superfriends
http://www.zeldman.com/superfriends/guide

	 16 Conclusion	 95

WHATWG wiki (http://wiki.whatwg.org): A very good resource for tracking and
contributing research and proposals for changes to HTML5. As with any other
wiki, create an account and first help out with minor fixes and contribute to
existing proposals.

#whatwg IRC channel on Freenode IRC (irc://irc.freenode.org/whatwg): Set up
an IRC client (such as Colloquy.info on the Mac), connect to the irc.freenode.net
server and join the #whatwg channel. A lot of informal communication takes
place on the IRC channel, and HTML5 experts are there nearly every hour of the
day. This is a good place to start if you think you’ve found a problem in HTML5
and/or have suggestions for improvement.

W3C HTML Working Group (http://www.w3.org/html/wg/#join): The HTML
Working Group is open for anyone to join. All you need to do is fill out a few
forms, agree to share your contributions freely (e.g. that you’re not going to
assert any patents), and you can join the HTML Working Group mailing list and
participate directly in HTML5 discussions at W3C.

HTML5 Now
You’ve learned everything you need to know to write your first HTML5 docu-
ment, and update your HTML4/XHTML1 documents to HTML5. Enhance your
pages with new semantics, graphics, multimedia support. Validate and fix your
pages as necessary and publish your HTML5 site!

Follow updates to HTML5, especially if you choose to use any of the bleeding
edge features, give feedback and help move the web forward.

Thank you for reading this book and watching the accompanying video. You
have what it takes to make a difference, in your pages, on the web, and for the
web. I look forward to seeing your work.

Tantek Çelik, http://tantek.com

http://wiki.whatwg.org
irc://irc.freenode.org/whatwg
http://www.w3.org/html/wg/#join
http://tantek.com/html5
http://tantek.com

	01 Introduction
	02 Background: Where did HTML5 come from?
	03 HTML5 overview
	04 HTML5 basics
	05 HTML5 transition
	06 Notable changes to HTML4 features
	07 HTML5 flexibility, universality, and consistency
	08 Adopted from XHTML 1.1: Ruby
	09 Checkpoint: Validating HTML5
	10 New HTML5 semantics
	11 HTML5 native vector graphics
	12 HTML5 native audio and video
	13 New HTML5 user interface elements
	14 The HTML5 bleeding edge
	15 Checkpoint: Revalidate
	16 Conclusion

