
M A N N I N G

Rob Crowther
Joe Lennon
Ash Blue
Greg Wanish

FOREWORD BY Christian Heilmann

IN ACTION

HTML5 in Action

ROB CROWTHER
JOE LENNON

ASH BLUE
GREG WANISH

M A N N I N G
SHELTER ISLAND
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Renae Gregoire
20 Baldwin Road Copyeditor: Tiffany Taylor
PO Box 261 Proofreader: Elizabeth Martin
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617290497
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.manning.com

brief contents
PART 1 INTRODUCTION ..1

1 ■ HTML5: from documents to applications 3

PART 2 BROWSER-BASED APPS..35

2 ■ Form creation: input widgets, data binding,
and data validation 37

3 ■ File editing and management: rich formatting, file storage,
drag and drop 71

4 ■ Messaging: communicating to and from scripts in HTML5 101

5 ■ Mobile applications: client storage and offline execution 131

PART 3 INTERACTIVE GRAPHICS, MEDIA, AND GAMING163

6 ■ 2D Canvas: low-level, 2D graphics rendering 165

7 ■ SVG: responsive in-browser graphics 199

8 ■ Video and audio: playing media in the browser 237

9 ■ WebGL: 3D application development 267
iii

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

contents
foreword xi
preface xiii
acknowledgments xv
about this book xvii

PART 1 INTRODUCTION...1

1 HTML5: from documents to applications 3
1.1 Exploring the markup: a whirlwind tour of HTML5 4

Creating the basic structure of an HTML5 document 5
Using the new semantic elements 6 ■ Enhancing accessibility
using ARIA roles 9 ■ Enabling support in Internet Explorer
versions 6 to 8 10 ■ Introducing HTML5’s new
form features 11 ■ Progress bars, meters,
and collapsible content 13

1.2 Beyond the markup: additional web standards 15
Microdata 16 ■ CSS3 18 ■ JavaScript and the DOM 19

1.3 The HTML5 DOM APIs 20
Canvas 21 ■ Audio and video 21 ■ Drag and drop 22
Cross-document messaging, server-sent events, and WebSockets 23
v

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

CONTENTSvi
Document editing 25 ■ Web storage 26
Offline web applications 27

1.4 Additional APIs and specifications 28
Geolocation API 29 ■ Indexed database (IndexedDB API) 29
File, File Reader, File Writer, and File System APIs 30
Scalable Vector Graphics 31 ■ Web Graphics Library 33

1.5 Summary 33

PART 2 BROWSER-BASED APPS35

2 Form creation: input widgets, data binding,
and data validation 37
2.1 Previewing the form and gathering prerequisites 38

Gathering the application prerequisites 39

2.2 Building a form’s user interface 40
Defining a form’s basic HTML document structure 40
Using the form input types email and tel and the input attributes
autofocus, required, and placeholder 41 ■ Using the form input
attribute required 44 ■ Building a calculator-style form using
the input type number, the input attributes min/max and data-*,
and the element <output> 45 ■ Using the form input type month
and input attribute pattern 49 ■ Allowing users to choose whether
to save or submit a form: using the input attributes formnovalidate
and formaction 51

2.3 Calculating totals and displaying form output 53
Building calculation functions 53 ■ Accessing values from
HTML5 data-* attributes 55

2.4 Checking form input data with the Constraint
Validation API 58
Creating custom validation tests and error messages with
the setCustomValidity method and the validationMessage
property 59 ■ Detecting a failed form validation with
the invalid event 60 ■ Styling invalid elements using
CSS3 pseudo-classes 61

2.5 Providing fallbacks for unsupported browsers 62
Detecting features and loading resources with Modernizr:
an overview 63 ■ Using polyfills and Modernizr to plug
the gaps 64 ■ Performing validation without the Constraint
Validation API 65

2.6 Summary 68
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

CONTENTS vii
3 File editing and management: rich formatting, file storage,
drag and drop 71

3.1 The Super HTML5 Editor: application overview,
prerequisites, and first steps 72
Defining the HTML document structure 74
Implementing navigation and state management in JavaScript 76

3.2 Rich-text editing and geolocation 78
Using designMode to make an HTML document editable 79
Providing rich-text editing controls with execCommand 81
Mapping a user’s current location with the Geolocation API 82

3.3 Managing files locally: the File System, Quota
Management, File, and File Writer APIs 84
Creating an application filesystem 86 ■ Getting a list of files
from the filesystem 87 ■ Loading, viewing, editing,
and deleting files 89 ■ Creating new files 91
Saving files using the File Writer API 94

3.4 Adding drag-and-drop interactivity 96
Dragging files into an application for import 97
Dragging files out of an application for export 98

3.5 Summary 99

4 Messaging: communicating to and from scripts
in HTML5 101

4.1 Server-sent events (SSE) 102
A simple SSE chat application 102 ■ When to use SSE 112

4.2 Using WebSockets to build a real-time messaging
web app 112
Application overview and prerequisites 113
Creating a WebSocket with Node.js 115
Building the planner application 117

4.3 Messaging on the client side 125
Communicating across domains with postMessage 126
Joining the applications with cross-document messaging 127

4.4 Summary 129
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

CONTENTSviii
5 Mobile applications: client storage and offline execution 131
5.1 My Tasks: application overview, prerequisites,

and first steps 132
Defining the HTML document structure 135
Controlling visibility of views using CSS 137
Implementing navigation with JavaScript 137

5.2 Managing data with the Web Storage API 139
Reading data from localStorage 140 ■ Saving data
to localStorage 141 ■ Deleting data from localStorage 141

5.3 Managing data using IndexedDB 143
Detecting database support on a browser 144 ■ Creating or
connecting to an IndexedDB database, creating an object store
and index 145 ■ Developing a dynamic list with HTML
and JavaScript 148 ■ Searching an IndexedDB database 150
Adding data to a database using IndexedDB or Web SQL 152
Updating and deleting data from an IndexedDB database 154
Dropping a database using IndexedDB 155

5.4 Creating a web application that works offline: using the
application cache manifest 156
Configuring a web server for an application cache manifest’s
MIME type 157 ■ Creating a cache manifest file 158
Automating application updates 160

5.5 Summary 162

PART 3 INTERACTIVE GRAPHICS, MEDIA, AND GAMING....163

6 2D Canvas: low-level, 2D graphics rendering 165
6.1 Canvas basics 166

Setting the Canvas context 166
Generating a Canvas context 169

6.2 Creating a Canvas game 170
Creating the main engine components 171 ■ Creating dynamic
rectangles 175 ■ Creating arcs and circles 178 ■ Using paths to
create complex shapes 179

6.3 Breathing life into Canvas elements 181
Animating game elements 181 ■ Detecting overlap 183
Creating keyboard, mouse, and touch controls 185
Control input considerations 188
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

CONTENTS ix
6.4 Polishing Canvas games 189
Tracking score and levels 189 ■ Adding opening and
closing screens 193 ■ Getting help from code libraries 195

6.5 Summary 196

7 SVG: responsive in-browser graphics 199
7.1 How bitmap and vector graphics compare 200
7.2 Starting SVG Aliens with XML 202

Setting up SVG inside HTML 204 ■ Programming simple shapes
and text 206 ■ Using XLink and advanced shapes 208

7.3 Adding JavaScript for interactivity 212
Game engine essentials and using screens 214 ■ Design patterns,
dynamic object creation, and input 216 ■ Creating and
organizing complex shapes 221 ■ Maintaining a complex
SVG group 227 ■ SVG vs. Canvas 232

7.4 Summary 235

8 Video and audio: playing media in the browser 237
8.1 Playing video with HTML5 238

Application preview and prerequisites 238 ■ Building the basic
jukebox framework 240 ■ Using the video element to add videos
to web pages 241

8.2 Controlling videos with the HTMLMediaElement
interface 243

8.3 Specifying multiple formats with the <source> element 248
Discovering which video is playing with .currentSrc 249
Converting between media formats 252

8.4 Combining user input with video to build a telestrator 252
Playing video through the <canvas> element 253
Creating custom video playback controls 255
Manipulating video as it’s playing 257
Building the telestrator features 262

8.5 Summary 265

9 WebGL: 3D application development 267
9.1 Building a WebGL engine 269

Setting up the engine’s layout 271 ■ Tools to create, alter,
and delete objects 277
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

CONTENTSx
9.2 Communicating with a graphics card 282
Graphics cards: a quick primer 283 ■ Creating shaders
for 3D data 284 ■ Creating buffers for shape, color,
and dimension 287 ■ Displaying shape data on a screen 288

9.3 Putting it all together: creating Geometry Destroyer 293
Creating a game interface and control objects 293 ■ Creating 2D
shapes in 3D 296 ■ Creating 3D shapes and particles 300

9.4 Summary 309

appendix A HTML5 and related specifications 310
appendix B HTML5 API reference 317
appendix C Installing PHP and MySQL 336
appendix D Computer networking primer 354
appendix E Setting up Node.js 364
appendix F Channel messaging 373
appendix G Tools and libraries 378
appendix H Encoding with FFmpeg 385
appendix I HTML next 390
appendix J Links and references 425

index 429
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

foreword
Explaining what HTML5 is can be a very daunting task. I’ve been doing this since its
inception, and I’m still amazed by how many myths abound and how much confusion
there is on the topic. With HTML5, we rebooted web development. The world of
HTML4 and the nonstarter XHTML stranded those who wanted to use the web as a
platform for applications. HTML4 was meant for linked documents, and XHTML was
far too strict for its own good and lacked real support in browsers.

 HTML5 started with a clean slate. We analyzed what was used on the web and
added a lot of features we didn’t have before, like Canvas for creating visuals on the
fly or accessing images and videos on a pixel level, native audio and video without
the need for plug-ins, and forms that validate in the browser without our having to
write extra JavaScript. We also started muddying the waters by merging HTML and
JavaScript functionality—a lot of HTML5 won’t do anything without accessing the
elements via a JavaScript API. This confuses many people. We moved on from a
document-based web, and in that process we needed more technical expertise. And
this meant we needed to rethink a few of our “best practices,” which can annoy peo-
ple so that they spread nasty rumors about the viability of HTML5 as a choice for pro-
fessional development.

 HTML5 is built on the robustness principle, which means that a browser will make
a lot of educated guesses as to what you might have meant when you make a syntax
error instead of simply giving up and showing an error. This gives it backward compat-
ibility, and we can show pages developed for a never-to-arrive XHTML world in brows-
ers these days. A large part of the standard is just that: it tells you how to write a
xi

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

FOREWORDxii
browser that renders HTML5 rather than using it as a web developer. Again, this
angers some people, and they shout about the verbosity of the standard.

 HTML5 is also the new hotness. Much of the advertising talk, shiny demos, and prom-
ises of fidelity that matches native apps on phones makes us cynical, battle-hardened
web developers think back on Java, Flash, and Silverlight and their promises, and sigh.
There’s a lot of buzz about HTML5, and many things that aren’t part of the standard
are simply declared part of it, because it makes a good punch line.

 When it comes to extending the language and bringing new features into it, we’re
running wild right now. Every browser maker and web company comes up with great
new concepts on almost a weekly level. That can be frustrating for developers who
want only to get a job done. Can we rely on the functionality that’s currently devel-
oped, or will the standard be changed later on? We’re pushing browsers further into
the OS and allowing them to access hardware directly, which comes with security and
robustness issues that need to be fixed by trial and error. Can you take that risk with us
when it comes to delivering your product?

 These are exciting times, and when you want to be part of the ride, you can help
forge the future development environment for all of us. If you don’t have the time to
follow the discussions on mailing lists, do a lot of browser testing in previews, and pro-
pose your own ideas, you can be left quite confused.

 And this is where a book like HTML5 in Action comes in. Instead of promising a cor-
nucopia of functionality that will soon be available, you get examples that work right
now, based on examples that worked in the past. Instead of getting experimental
demos, you’ll learn how to build production code based on proven ideas, using the
features in modern browsers that make it easier for developers and much more enjoy-
able for end users. All the examples come with a legend telling you which browsers
support the features, and you’ll learn how not to give features to old browsers that will
choke on them.

 You’ll learn how to use HTML5 now, using secure and intelligent solutions like
Modernizr and HTML5 Boilerplate, and you’ll come out at the end understanding
how to write things in HTML5 that currently work. This will make you a part of the
movement to get HTML5 production-ready for all of us.

 Those who live on the bleeding edge of defining the next browser and language
features need implementations in the wild—right now. We’re past the “show-and-tell”
stage, and we need to get to “deliver and enhance.” And you can become an integral
part of this process by following the advice and applying the examples you find here.
Go forth and deliver.

CHRISTIAN HEILMANN

PRINCIPAL EVANGELIST HTML5, MOZILLA
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

preface
Writing a book about all things HTML5 is more difficult than it sounds. Primarily
because of browser and specification changes, it seemed that no matter how much we
wrote every six months, browsers would adjust an implementation enough to break a
few chapters. This pushed progress back and forth, making chapter revisions a con-
stant fear, especially after we had seen so many books released on HTML5 that were
outdated months later. After fighting the tides of change, we eventually nailed down
solid app techniques that were resistant to change. These apps should continue to
work as HTML5 continues past this book’s release date.

 To add to our book’s track record of chaos, it originally started with just Robert
Crowther (who was already writing another book) and Joe Lennon. Rob’s death-defying
stunt while writing the book was that he somehow managed to write another book
called Hello! HTML5 and CSS3 (Manning, 2012) at the same time. If that weren’t enough,
he reviewed chapters from his coauthors and provided helpful feedback (still wonder-
ing when he finds time to sleep).

 Joe Lennon wrote about forms, about file storage, appendices, and an awesome
general overview of the HTML5 specification. Greg Wanish (originally our editor)
worked with Joe on his sections. The two tackled some of the most difficult and vola-
tile specifications that are still being implemented in most browsers. Ash Blue came
on board to tackle HTML5’s massive APIs for interactive visual data.

 Greg and Ash are from the United States, while Joe lives in Ireland and Rob in
London. Our team’s geographical makeup made meeting as a group very difficult. At
almost every meeting, somebody was missing. If you’ve ever worked on a group project,
xiii

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

PREFACExiv
then you know how essential meetings for something like this book can be. Even with
all four of us dedicating much of our free time to work on the book, it took much lon-
ger than expected. The delay was partially because we wanted to keep the book up to
date with the latest techniques and specification changes. Another time-consuming
task was integrating feedback from our MEAP readers, who gave us great information
on how to improve the book.

 The true lesson we learned from writing HTML5 in Action is that you should never
write on an experimental subject—just kidding! But in all honesty, HTML5’s volatile
state did make things both difficult and rewarding. Our hope is that our long nights of
handcrafting every letter of this book will make learning HTML5 much easier for you.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

acknowledgments
We’d like to thank our editor at Manning, Renae Gregoire, for putting up with us in
general. Without her reviewing our thousands and thousands of lines of text, sending
weekly status reports, and organizing meetings, this book would never have hap-
pened. She was dropped into our book halfway through the writing process and made
quite the effort to get up to speed as quickly as she could. Also big thanks to our first
editor, Maria Townsley, for getting the ball rolling.

 Thanks to everyone at Manning for their extreme patience on this book’s timeline.
They could have released a broken book that was half-baked, but they were really true
to their readers and pushed to produce a great product. Without Troy Mott’s magical
ability to find tech writers, we would never have finished. He staffed the book quickly
and helped when he could with the feedback process.

 Thanks also to our MEAP readers and peer reviewers whose comments and correc-
tions helped make this a much better book. We would like to acknowledge the follow-
ing reviewers for reading our manuscript at various stages of its development: “Anil”
Radhakrishna, Alexander Esser, Arun Noronha, Chris Zimmerman, Dave Pawson,
Dmitry Skylut, Donald Matheson, Federico Tomassetti, James Hatheway, Jeff Kirkell,
John Ryan III, Jonas Bandi, Joseph Morgan, Julio Guijarro, Leonel Waisblatt, Lester
Lobo, Lloyd S. Derbyshire, Michael Caro, Osama A. Morad PhD, Robert Williams,
Sebastian Rogers, Stan Bice, Timothy Hanna, and Tyson S. Maxwell.

 Finally, special thanks to Chris Heilmann at Mozilla for contributing the foreword
to our book, and to Adam London for his careful technical proofread of the manu-
script shortly before it went into production.
xv

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

ACKNOWLEDGMENTSxvi
Rob Crowther
This is the second set of acknowledgments I've written in less than a year, so take it as
read that all the family, friends, and people who got me started in web development
and whom I thanked in my first book are just as important to me now as they were
then. For this book I’d like to thank my colleagues at work over the last two years for
their (sometimes inadvertent) contributions to my sanity while I was trying to write
two books at once: Ade, Adriana, Alexandru, Amy, Angelique, Annie, Anusha, Boris,
Carlos, Chani, Dan, Danielle, Darren, Dave, David, Delia, Denis, Don, Dorin, Dragos,
Eric, Gary, Gemma, Gifty, Hazel, Indrani, Ioan, Ionel, Jack, Jhumi, Jo, Katie, Liam,
Liming, Lindsay, Lisa, Louise, Marc, Marinela, Mark K., Mark R., Mark W., Martin H.,
Martin J., Mihai, Nancy, Natalie, Nia, Patricia, Paul, Paula, Phil, Razvan, Rhavy, Rob,
Sally, Scott, Sean, Simon, Stella, Sudini, Tal, Tom H., and Tom W. (and if I forgot any-
one, sorry, but you managed to avoid emailing me for two years!).

Joe Lennon
I'd like to thank my wife, Jill, for her love and support—I’d be lost without her. I’d also
like to thank my parents, Jim and Maria; my sisters, Laura and Kelly; the Mac Sweeney
family; and all at Core International. Finally, special thanks to Prof. Ciaran Murphy
and Patricia Lynch at University College Cork and to Troy Mott for bringing me on
board this project in the first place.

Ash Blue
I would like to thank my beautiful wife for contributing artwork and time to make this
book happen, my family for their patience with my writing over the holidays, and also
friends who let me lock myself in a room for over a year to write this thing. Despite
how crazy as I got while trying to balance life and writing this book, I’m happy nobody
carted me off to the funny farm.

Greg Wanish
I would like to thank my parents for supporting my dreams and ambitions throughout
the years. All the adventures and experiences that I had in pursuit of those goals have
given me a wealth of wisdom beyond my grandest expectations.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

about this book
HTML5 is one of the fastest-growing technologies in web development. The reason for
such a quick adoption is the technology’s usability across desktops and mobile devices.
In theory, you program an application once, and it magically works everywhere. It also
gives powerful native functionality through simple API access.

 Because of HTML5’s dynamic nature, it’s usable for far more than just mobile
and desktop browsers. It can be compiled into a native mobile app through plat-
forms such as PhoneGap and appMobi, which can save developers and companies
lots of money because they don’t have to maintain two completely separate code
bases for apps on iOS and Android.

 Most HTML5 APIs are still quite young, so we’ll guide you around pitfalls develop-
ers experience while building their first HTML5 apps. In addition, you’ll learn about
modern fallback techniques, application-oriented JavaScript, and what is/isn’t an
HTML5 API.

Who should read this book?
If you’re looking to build full-functioning, in-browser applications for the real world,
then this book is for you. It covers everything from data storage, to messaging, and
even interactive development such as video games.

 This book is for developers who have a decent understanding of JavaScript and
HTML syntax. If the terms loop, array, and JSON are completely unfamiliar to you, you
should brush up on those before proceeding.
xvii

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

ABOUT THIS BOOKxviii
Roadmap
Part 1 Introduction

Chapter 1 covers a basic overview of HTML5’s markup syntax and all the APIs this
book covers.

Part 2 Browser-based apps

Chapter 2 focuses on building HTML5 forms for an ecommerce site from markup to
completion. It goes in depth about calculations and input validation.

 Chapter 3 walks you through creating a filesystem and managing data. It also cov-
ers drag-and-drop functionality and the Geolocation API.

 Chapter 4 is one of the more complicated chapters, because it focuses on messag-
ing with WebSockets and other technologies to build a chat system.

 Chapter 5 is an in-depth look at the various HTML5 APIs for storage, such as
IndexedDB and local storage. It covers building a mobile task list.

Part 3 Interactive graphics, media, and gaming

Chapter 6 covers building an HTML5 game called Canvas Ricochet with the Canvas
API. The game features a simple leveling system.

 Chapter 7 shows you how to use Canvas’s counterpart, Scalable Vector Graphics
(SVG), to create a 2D space shooter game.

 Chapter 8 takes a complex look at the audio and video API to show some powerful
techniques you can use in your applications. It also covers format issues, inputs, and
building a video player.

 Chapter 9 is one of the most complex chapters because it covers WebGL for 3D
programming. By the end of this chapter, you’ll have created your own 3D space
shooter with complex shapes rolled from scratch.

Appendixes

There are nine appendixes in HTML5 in Action, further explaining ideas in the book,
offering suggestions for setting up or installing programs, and listing important links
and references:

Appendix A: HTML5 and related specifications
Appendix B: HTML5 API reference
Appendix C: Installing PHP and MySQL
Appendix D: Computer networking primer
Appendix E: Setting up Node.js
Appendix F: Channel messaging
Appendix G: Tools and libraries
Appendix H: Encoding with FFmpeg
Appendix I: HTML Next
Appendix J: Links and references
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

ABOUT THIS BOOK xix
Chapter features
Each chapter starts with an “At a Glance” table, letting you see which topics will be
covered in the chapter, with the corresponding page numbers listed for each topic.
Throughout the book, we include Core API icons in the margins

that highlight the main topics and help you locate the section you need, quickly
and easily.

Code conventions and downloads
Code samples are presented in a monospaced font like this. It should be noted that
although we attempted to keep code snippets as small as possible, they overflow on
some of the pages. Lines of code that are too wide will overflow onto the next line,
and code sections that take up more than a whole page will continue on the next. To
help with understanding, code sample annotations have been included. These would
normally be written with JavaScript comments such as // or /* */.

 Source code for all chapters in this book is available for download from the pub-
lisher’s site at www.manning.com/crowther2/ or at www.manning.com/HTML5inAction,
and from the GitHub repository https://github.com/html5-ia/html5-ia.

Software requirements
To complete this book’s applications, you’ll need the latest version of Chrome on a Mac
or Windows operating system. If additional setup is required to run an app, it will be
stated in the readme.txt file in the source files.

About the authors
Rob Crowther is a web developer and blogger from London, UK, and the author of Man-
ning’s Hello! HTML5 and CSS3. Joe Lennon is an enterprise mobile application developer
from Ireland. Ash Blue is the developer for game dev studio Clever Crow Games. As an
indie developer, he utilizes HTML5 to distribute games to several different platforms. In
the past, he has developed robust front-end architecture and application solutions for
companies such as Hasbro, Tastemaker, and Wikia. His blog is at blueashes.com. Greg
Wanish is an independent developer of client-side web and e-commerce applications. He
also designs and sells a line of graphic and message t-shirts.

Author Online
Purchase of HTML5 in Action incudes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/HTML5inaction.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.manning.com/crowther2/
www.manning.com/HTML5inAction
https://github.com/html5-ia/html5-ia
http://www.manning.com/HTML5inaction

ABOUT THIS BOOKxx
 Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors challenging questions, lest their interest stray.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of HTML5 in Action is captioned “Le touriste,” which means
tourist or traveler. The illustration is taken from a 19th-century edition of Sylvain
Maréchal’s four-volume compendium of regional dress customs published in France.
Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s
collection reminds us vividly of how culturally apart the world’s towns and regions
were just 200 years ago. Isolated from each other, people spoke different dialects and
languages. In the streets or in the countryside, it was easy to identify where they lived
and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Part 1

Introduction

It’s important that you know about HTML5’s semantic markup basics and
wide variety of APIs. For the introduction, we’ll cover these concepts briefly, but
in heavy detail, to ramp you up.

 If you’re already building sites with HTML5’s new tag structure you could skip
this section. However, you’ll miss advanced markup concepts such as ARIA and
microdata (if you aren’t already familiar with them).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

HTML5: from documents
to applications
HTML5 is one of the hottest topics in web development, and with good reason. Not
only is it the latest version of the markup language for the web, but it also defines a
whole new standard for developing web applications. Previous iterations of HTML
(and its rigid XML-based sibling, XHTML) have been centered primarily on the
concept of HTML as a markup language for documents. HTML5 is the first version
to embrace the web as a platform for web application development.

 HTML5 defines a series of new elements that you can use to develop rich inter-
net applications as well as a range of standard JavaScript APIs for browsers to imple-
ment natively. A good example of HTML5’s new elements is <video>, which
provides a means of playing video content in the browser without requiring an
additional plug-in. HTML5 also provides the Media Element Interface that allows
you to control video playback with JavaScript. It lets you create games, build mobile
applications, and much more.

This chapter covers
■ The basics of using HTML5
■ New semantic markup and media features
■ New JavaScript APIs
■ Closely related web specifications
3

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

4 CHAPTER 1 HTML5: from documents to applications
By the end of this chapter, you’ll have a broad sense of what HTML5 has to offer and
be able to use it in your own web applications.

To get started, we’ll show you how to get up and running by creating an HTML5
document.

1.1 Exploring the markup: a whirlwind tour of HTML5
The best way to learn what’s new in HTML5 is to jump right in and explore. The
goal of this section isn’t only to give you a high-level tour of the new features but
also to give you enough knowledge to be able to update your existing applications
to use HTML5 conventions, without upsetting users who don’t have the latest and
greatest browsers.

In this chapter, you’ll learn
■ About great new features introduced in HTML5 and how to immediately use

them in your web applications.
■ How to provide fallbacks and workarounds for users with older or incompatible

browsers.
■ How to use ARIA (Accessible Rich Internet Applications) roles and microdata to

further enhance the semantics of your HTML pages.
■ The wide range of JavaScript APIs available in HTML5 itself, as well as a number

of closely related API specifications you can use in your applications.

Documents (HTML4) versus applications (HTML5)
Initially the web was all about documents. Forms were added by the Mosaic browser
in 1993, but this was merely data entry; all application logic remained on the server.
The introduction of JavaScript in 1995 made browser-based applications theoretically
possible, but things didn’t really take off until after the arrival of the XMLHTTPRequest
object in 1999. The last major version of the HTML specification, 4.01, only became
a recommendation in 1999. So it's not surprising that the 4.01 spec still concen-
trated almost entirely on the use of markup to describe documents, what we now nor-
mally refer to as semantic markup.

The next version of HTML has been a long time coming, and the web has changed a
lot in the meantime. As you’ll see in the following sections, HTML5 contains improve-
ments in the area of semantic markup. The majority of the differences and improve-
ments in HTML5 over HTML4, however, are in facilities for building browser-based
applications with JavaScript. Because of that, and because this book is focused on
the new features of HTML5, we spend a lot more time dealing with JavaScript than
with markup. We do cover some markup, but, as you’ll see, JavaScript is the real big
deal in HTML5.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

5Exploring the markup: a whirlwind tour of HTML5

ng

tag
).
Let’s get started by examining the basic structure of an HTML5 document. If you’re
not interested in the basics, you can read quickly until you reach section 1.2, which
goes beyond semantic markup and into the HTML5 ecosystem.

1.1.1 Creating the basic structure of an HTML5 document

HTML5 documents are structured in the same way as older versions of HTML: you put
a <!DOCTYPE> declaration at the top of the document and open and close the HTML
document with matching <html> and </html> tags. Between these tags, you have a
<head> section, where you place <meta> information and other noncontent items
such as stylesheets, and a <body> section, where your page content should go. If
you’ve written HTML pages or applications before, none of this will be new to you, but
you need to be aware of some subtle differences, which we’ll cover in this section:

■ The HTML5 DOCTYPE declaration syntax.
■ How to use the opening <html> element.
■ How to use the shorter versions of the various elements in the <head> section.

Let’s look more closely at these differences by examining hello.html, the HTML5
equivalent of a “Hello, World!” application, shown in the following listing.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Hello, HTML5!</title>

In this section, you’ll learn
■ How to create a basic HTML5 document structure.
■ How to use the new semantic elements to lay out a page.
■ How to deal with older versions of Internet Explorer that don’t recognize the

new elements.
■ About the new form features you can implement immediately in HTML5.
■ How to use new UI elements, such as progress bars and collapsible sections.

Listing 1.1 hello.html—The basic structure of an HTML5 document

The DOCTYPE declaration in HTML5 is short and sweet—no ridiculously
long DTDs and URLs to remember. This DOCTYPE will force standards
mode in all modern browsers, so you can start using it in your
applications immediately, without negative consequence.

The xmlns attribute from XHTML isn’t valid in the HTML serialization of
HTML5, so don’t use it (see the sidebar “HTML and XML”). You should
always use the lang attribute to specify the language of your documents.

The <meta> element now supports a charset attribute,
allowing for a more memorable syntax than the older
combination of http-equiv and content attributes for defini
the page’s character set (in this case we’re using 8-bit
Unicode). Note that in the XML serialization of HTML5 this
is required to be self-closing (e.g., <meta charset="utf-8"/>
See the sidebar “HTML and XML” for further details.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/PraC
http://mng.bz/cJhc

6 CHAPTER 1 HTML5: from documents to applications
 <link rel="stylesheet" href="style.css">

 <script src="app.js"></script>

</head>

<body>

 <h1>Hello, HTML5!</h1>

</body>

</html>

That’s a basic page structure. Next, we’ll show you how to use the new semantic ele-
ments to construct a page—in this case, a sample blog post page.

1.1.2 Using the new semantic elements

If you’ve read about HTML5 before you picked up this book, chances are you’ve
heard plenty about the new semantic elements. They’re important, particularly if you
want search engines and assistive technologies such as screen readers to understand
your pages better, but they’re no more difficult to use than the elements you know
and love from HTML4.

 Don’t get too excited about this new set of tags. If you’re expecting these new ele-
ments to do something magical in terms of how they look on your page, you’re in for
some disappointment. Using these new elements on your page is functionally equiva-
lent to using a series of <div> elements; they behave as block elements by default and
can be styled as required using CSS. Their importance comes from the standard
semantic meaning they have.

HTML and XML
Previous versions of what we think of as the HTML specification were either HTML or
XHTML. HTML markup was designed to be fairly forgiving, whereas XHTML was built
around XML and a strict parsing model. XHTML required all elements to have closing
tags (
 instead of
, for example) and all tags and attributes to be lowercase.
A single error would cause the whole page to fail. Because of this draconian error han-
dling, most websites never properly implemented XHTML. They tended to use XHTML
syntax forms but send pages with a content type of text/html, causing HTML pars-
ing of the XML markup.

HTML5 unifies everything in a single specification by allowing both HTML and XML
serializations; that is, the specification provides a vocabulary that can be expressed
in either HTML or XHTML. The XHTML serialization must be sent with an XML content
type such as application/xml+xhtml. It also conforms to XML parsing rules rather
than HTML ones, requiring an xmlns declaration, closing tags, and so on. In the code
download there are two additional versions of listing 1.1 showing the same markup
in valid and invalid XHTML markup: hello-invalid.xhtml, which uses HTML syntax in an
XML document, and hello-valid.xhtml, which corrects the markup to valid XML.

All modern browsers will assume that
a stylesheet’s <link> element will
have a type of text/css by default, so
you can safely omit that attribute in
your HTML5 documents.

Browsers assume that <script> elements
have a type of text/javascript, so you don’t
need to specify the attribute unless you’re
using it for something other than JavaScript.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

7Exploring the markup: a whirlwind tour of HTML5
 Consider, for example, a typical blog post, in which the web page contains a series
of sections. First, you’d have the site heading and navigation, maybe some sidebar nav-
igation, a main content area, a footer area with further navigation links, and perhaps
some copyright and legal links. The next listing demonstrates how such a blog post
might have been marked up in HTML4 or XHTML.

<div class="header">
 <h1>My Site Name</h1>
 <h2>My Site Slogan</h2>
 <div class="nav">
 <!-- Main Site Nav here -->
 </div>
</div>

<div class="sidebar">
 <h3>Links Heading</h3>
 <!-- Sidebar links -->
</div>

<div class="main">
 <h4>Blog Post Title</h4>
 <div class="meta">
 Published by Joe on 01 May 2011 @ 12:30pm
 </div>
 <div class="post">
 <!-- Actual blog post -->
 </div>
</div>

<div class="footer">
 <!-- Footer links -->
 <!-- Copyright info -->
</div>

The previous code isn’t wrong. It’s perfectly valid to use it in HTML5, and you can
absolutely continue to use <div> elements with semantic class names if you wish. But
from a semantic point of view, this approach poses a couple of problems:

■ By using the old standard, you wind up separating areas of the blog post using
named classes. This is fine, but the class-naming convention is up to the author.
Our “header” might be your “heading”; we call the main section “main,” but
you might call it “body” or “article.”

■ Some people may prefer to use IDs instead of classes. They may use id=“header”
whereas others might use class=“header.”

In short, a search engine or other computer-controlled application has no way to reli-
ably determine what each section represents.

 This is where the new semantic elements come into play. Rather than using classes
and IDs for sections like headings, navigation, and footers, you now use several different

Listing 1.2 html4-blog.html—HTML4 markup for a blog post
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

8 CHAPTER 1 HTML5: from documents to applications

Gro
numbe

head
(<h1>

<h6

lt,
ays
me>
he
ur
g
s can
e

If the
attribute

set,
conte

<time>
can be
you w

“next T
but if the

at
omitted,
content
valid da
time fo

appen
e

HTML elements, shown in the following listing. Add this code between the <body> tags
of the hello.html file.

<header>

 <hgroup>

 <h1>My Site Name</h1>
 <h2>My Site Slogan</h2>

 </hgroup>

 <nav>
 <!-- Main Site Nav Here -->
 </nav>

</header>

<nav>
 <h1>Links Heading</h1>
 <!-- Sidebar links -->
</nav>

<section>

 <article>

 <header>
 <h1>Blog Post Title</h1>
 <div class="meta">

 Published by Joe on
 <time datetime="2012-05-01T12:30+00:00">
 01 May 2012 @ 12:30pm
 </time>

 </div>
 </header>
 <section>
 <!-- Actual blog post -->
 </section>
 </article>
</section>

<footer>

 <!-- Footer Links -->
 <!-- Copyright info -->
</footer>

TWO OTHER IMPORTANT HTML5 ELEMENTS: <ASIDE> AND <MARK>
We don’t want to move on without telling you about two other important HTML5 ele-
ments that you’ll use a lot: <aside> and <mark>. You can use the <aside> element to
define a section of a page that’s separate from the content area in which it’s defined.

Listing 1.3 html5-blog.html—HTML5 markup for a blog post

Reusable element for the title and other important
details (blog post title, permalink, meta information).

up’s
red

ings
 to

>).

You can have an <h1> in your <hgroup> and a
separate <h1> in your <article>. Heading structure
doesn’t operate as it did in HTML4.

Section of links within the article’s
page. Specification says only “major
navigation blocks” should use the
<nav> element, such as the main
nav or table of contents.

Defines a chunk of content, such as a major wiki
article section or an important form. Sections can
have their own headers, navigation, and footers.

Marks a self-contained publishable component,
which can be redistributed on its own, such as
RSS entries, blog posts, comments, forum posts,
news entries, and so on. Articles also allow
headers, navigation, and footer elements.

Parsing dates is difficu
because of the many w
they’re presented. <ti
allows you to present t
date/time format of yo
choice to the user alon
with a value computer
easily understand in th
datetime attribute.

 datetime
 has been
 then the
nt of the
 element
 any text
ant (e.g.,

uesday”),
 datetime
tribute is
 then the
has to be
te and/or
rmat (see
dix B for

xamples).

This usually appears at the bottom of a
page or section, typically used for things
like related posts or links, copyright
information, and metadata.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

9Exploring the markup: a whirlwind tour of HTML5

The ele
providin
autocom

option
have th
In a book or magazine, this might be represented as a sidebar that contains informa-
tion on the same topic but doesn’t quite fit into the main article itself. For example, if
you had a blog, you may have advertisements displaying alongside posts—these could
be placed in an <aside> element. In a web application, you might use <aside> for a
pop-up or a floating window that appears over the main part of the application itself.

 You can use the <mark> element to represent a part of text in your document that
should be marked or highlighted. A common use for this would be to highlight search
terms within a document.

 With the new semantic elements, not only is your page’s markup easier on the eye, but
search engine spiders and assistive technologies will also more easily understand your
pages. Speaking of assistive technologies brings us to our next important topic: ARIA roles.

1.1.3 Enhancing accessibility using ARIA roles

When building web applications, you must ensure that your application is accessible
to all users, including those who require assistive technologies such as screen readers.
Ensuring that your documents are accessible requires careful consideration when it
comes to the semantic meaning of your markup. Using simple HTML markup makes
this relatively straightforward, and HTML5’s new elements improve the semantics even
further. But when you’re creating web applications, it becomes much more difficult
to cater to assistive technology. The increasing amount of JavaScript code used to
dynamically modify web pages in modern web applications makes it far more difficult
to deliver accessibility through good markup alone. This is where the Web Accessibil-
ity Initiative (WAI) and ARIA standards come into play.

 The WAI-ARIA specification aims to improve web applications by expanding on the
accessibility information provided by the author of an HTML document. ARIA roles,
relationships, states, and properties allow you to define exactly how your web applica-
tion works in a way that an assistive technology such as a screen reader can under-
stand. If, for example, you build a drop-down list out of a text input and an
unordered list, you can apply the ARIA role combobox to the input element so that it
can be rendered appropriately to the user’s device. The following listing shows an
example of this style of markup taken directly from the WAI-ARIA 1.0 spec.

<input type="text"
 aria-label="Tag"
 role="combobox"
 aria-autocomplete="list"
 aria-owns="owned_listbox">
<ul role="listbox"
 id="owned_listbox">
 <li role="option">Zebra
 <li role="option">Zoom

Listing 1.4 ARIA combobox example from www.w3.org/TR/wai-aria/roles#combobox

The role attribute allows you to
declare what sort of widget it is.

ARIA has a number of autocomplete types; in this
case, a list will provide the combo values.

ment
g the
plete
s will
is ID. The unordered list has the role

listbox, to complement the type
provided in the ARIA annotation.

This ID corresponds to the
one given previously.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.w3.org/TR/wai-aria/roles#combobox

10 CHAPTER 1 HTML5: from documents to applications
The HTML5 specification explicitly states that you may use the ARIA role and aria-*
attributes on HTML elements as described in the ARIA specification; this wasn’t
allowed in HTML4. HTML5 also defines a set of default ARIA roles that apply to certain
HTML elements. For example, it’s implied that a checkbox <input> element has an
ARIA role of checkbox, and you shouldn’t explicitly use role or aria-* attributes that
differ from those implied in these cases.

 You’ll also find HTML elements where the native semantics can be modified so that
they behave differently. For example, you might create an <a> element that behaves
like a button and use it to submit a form after performing some validation. The
HTML5 specification defines a list of valid semantics for these elements. When you use
the <a> element to create a hyperlink, it assumes the link role by default, and if this is
modified, its role can only be changed to one of the following: button, checkbox,
menuitem, menuitemcheckbox, menuitemradio, tab, or treeitem.

 For a complete list of the default, implied ARIA semantics, and the restrictions on
how you can modify the semantics of certain elements, see the WAI-ARIA section of the
HTML5 specification at http://mng.bz/6hb2.

1.1.4 Enabling support in Internet Explorer versions 6 to 8

A subject you may wonder about as you consider HTML5 elements is compatibility with
older browsers, and rightly so. Each new version of HTML brings with it new elements
that you can use in your documents. HTML5 is no different. Most modern browsers
are more than capable of rendering these elements, even versions that don’t specifi-
cally support them. The way that most browsers handle unrecognized elements is by
rendering them like normal in-line elements. All that is required is to set them
to display: block with CSS. Unfortunately, Internet Explorer (IE) is the one exception.
In versions prior to IE9, the browser would render unrecognized elements but
wouldn’t allow you to style them using Cascading Style Sheets (CSS). As you can imag-
ine, this makes it difficult to start using the new HTML5 elements in a production
application, because your users may still be using IE6, 7, or 8.

RENDERING NEW ELEMENTS PROPERLY IN IE
Fortunately, this problem has a simple remedy. If you want to use the element
<header> on your page and need to apply CSS styles, include the following snippet in
the <head> section of your page. This will force IE to apply the CSS rules to the tag,
even if the version of IE used doesn’t support a particular element natively:

<!--[if lte IE 8]>
<script>document.createElement("header");</script>
<![endif]-->

You’ll need to execute an equivalent of this JavaScript statement for every HTML5-
specific element you wish to use in your page. As you’re doing this, it will cause IE ver-
sions 6 to 8 to render the style correctly, with the problem persisting if you attempt to
print the page.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/6hb2

11Exploring the markup: a whirlwind tour of HTML5
RENDERING NEW ELEMENTS PROPERLY ON PAGES PRINTED FROM IE
Fortunately, a solution known as IE Print Protector fixes the printing issue. But
rather than reinvent the wheel, we recommend you use an HTML shiv script. The
most popular HTML5 shiv was originally created by Remy Sharp and has since been
improved by many others. For more information and to get the latest version of the
script, see http://mng.bz/50dt.

WARNING The HTML5 shiv solution requires JavaScript. If you want a JavaScript-
free solution, you can use HTML5’s XML-based sibling, XHTML5, instead. See
Eric Klingen’s post on the subject at http://mng.bz/QBIw.

What else can you do to boost the presence of your existing applications using
HTML5? How about integrating easy features that jazz up your forms? Even though
forms are ubiquitous, in HTML5 that doesn’t mean they have to be boring and plain.

1.1.5 Introducing HTML5’s new form features

It rarely receives acclaim, but the humble web form has played a major role in the
emergence of the web as a platform for application development. HTML5’s focus on
web applications led to many improvements in web forms, all of which you can use
today, without breaking compatibility with older web browsers.

IMPROVING THE SEMANTICS OF DATA INPUT USING NEW FORM INPUT TYPES

The basic text field has been used far beyond its primitive capabilities. In the same way
that the <div> element was used in HTML4 for all sorts of block content, the text input
is used for all sorts of textual input. HTML5 aims to ease its burden by offering a num-
ber of new and backward-compatible types, each of which provides enhancements
over the simple text field. Table 1.1 identifies the new input types in HTML5.

You can use these new input types in your web pages immediately because older
browsers will fall back to a standard text input type when they find a type they don’t
understand. Some of the new input types will also allow browsers to provide
standard widget controls for given types of form fields. Figure 1.1 shows examples of
these new widgets.

 In chapter 2, you’ll learn about Modernizr, an HTML5 feature-detection script.
Using Modernizr, you’ll be able to detect if a browser supports a given input type, pro-
viding a fallback JavaScript-powered widget if required.

Table 1.1 The new form input types introduced in HTML5

color date datetime datetime-local email

month number range search tel

time url week
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/50dt
http://mng.bz/QBIw

12 CHAPTER 1 HTML5: from documents to applications
NEW ATTRIBUTES FOR ALTERING THE BEHAVIOR OF FIELDS

In addition to new form field types, HTML5 introduces ten common attributes, shown
in table 1.2, that allow you to alter the behavior of a given field. The placeholder

Figure 1.1 Examples of some of the new form input widgets introduced in HTML5. Note that
not all browsers provide support for widgets yet.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

13Exploring the markup: a whirlwind tour of HTML5
attribute is an example of one of these new attributes, and it allows you to define text
that will appear in the field before it contains a value. This is illustrated in figure 1.2.

 Table 1.2 provides a list of the new input attributes introduced in HTML5. You’ll
look at which attributes apply to which input types in chapter 2.

NEW ATTRIBUTES FOR PERFORMING CLIENT-SIDE VALIDATION

Some of these attributes allow the browser to perform client-side validation without
JavaScript. For example, the required attribute specifies that a field must be popu-
lated, or the browser will produce an error. The pattern attribute allows you to define
a regular expression that the input value will be tested against. The max and min attri-
butes allow you to restrict the maximum and minimum values on number and date
field types.

 In addition, the browser will perform validation on some of the new input types to
warn users when they have entered values in an incorrect format. If the user enters an
invalid email address in an email input field, for example, the browser will flag an error
and prevent the form from being submitted to the server.

WARNING You should never rely solely on client-side validation, whether it’s
the new native browser validation in HTML5 or JavaScript validation code. It’s
easy to bypass client-side validation, so you should always check input on the
server side. Client-side validation should be used to improve the user experi-
ence, not as application security.

You’ll learn much more about the new input types and attributes in chapter 2. First
we’ll show you other new elements introduced in HTML5 that you can easily, and
immediately, integrate into your applications.

1.1.6 Progress bars, meters, and collapsible content

HTML5 defines a series of new elements that you can use to convey information to the
user. These include widgets that developers would previously have relied on third-party
JavaScript libraries for, such as progress bars, meters, and collapsible sections.

Table 1.2 HTML5’s new input element attributes

autocomplete autofocus list max min

multiple pattern
placeholder

required step

Figure 1.2 You can use the new placeholder attribute to provide a piece of text
that should be displayed in a field when it’s empty. This text is typically gray and will
be removed when you populate the field with a value.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

14 CHAPTER 1 HTML5: from documents to applications

De
ranges of

using t
max, lo

and o
att
USING PROGRESS BARS TO SHOW PERCENTAGE COMPLETION

The <progress> element allows you to present the user with either a determinate or
indeterminate progress bar. A determinate progress bar has a given value, and the bar
will fill up to that value—this is useful for displaying the progress of a file upload,
where you dynamically update the value of the progress bar as the file is uploaded. An
indeterminate progress bar has no particular value, and the bar will be full but ani-
mated—this is useful for informing the user that the application is loading when
you’re unsure of the exact progress of the operation. An example of both types of
progress bar is shown in figure 1.3.

 The code to create the progress bars in figure 1.3 is as follows:

<progress value="50" max="100"></progress>
<progress></progress>

USING METERS TO SHOW USERS MEASURES WITHIN KNOWN RANGES
Following along the same path as the <progress> element is the <meter> element.
You’d use the <progress> element primarily to show the percentage of completion of
a task and you’d use the <meter> element to give a representation of a scalar measure-
ment within a known range. In addition to showing the value using a filled bar
graphic, the <meter> element allows you to define low, high, and optimum ranges that
you can use to give further meaning. When the value is in the low range, the meter
will display in red; in the medium range, it’ll display in yellow; and in the high and
optimum ranges, it’ll display in green. Figure 1.4 illustrates the appearances the
<meter> element can have.

 The code for the <meter> element in figure 1.4 is as follows:

<meter min="0" max="10" low="3" high="7" optimum="9" value="0"></meter>
<meter min="0" max="10" low="3" high="7" optimum="9" value="1"></meter>
<meter min="0" max="10" low="3" high="7" optimum="9" value="4"></meter>
<meter min="0" max="10" low="3" high="7" optimum="9" value="7"></meter>
<meter min="0" max="10" low="3" high="7" optimum="9" value="10"></meter>

USING DETAILS AND SUMMARY TO CREATE COLLAPSIBLE CONTENT WITHOUT JAVASCRIPT

In the past, the only way to create collapsible content sections was to use JavaScript
to toggle the display CSS property of the section so it would show or hide. HTML5

Figure 1.3 The left-hand progress bar is an example of a
determinate progress bar. In this example, the value of the
bar is set to 50 percent, and the appearance of the bar
reflects this because it’s half filled. The right-hand progress
bar is an indeterminate bar and doesn’t have a value. It
displays an animated full bar to indicate that something’s
happening, but the percentage complete isn’t known.

Determinate progress bar must have a
value and optionally a max attribute.

Indeterminate progress
bar has no value.

fine the
a meter
he min,
w, high,
ptimum
ributes.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

15Beyond the markup: additional web standards
introduces the <details> and <summary> elements to provide a script-free method
for providing such functionality. Figure 1.5 illustrates these new elements in action.

 The code to create the <details> and <summary> example is as follows:

<details>
 <summary>Section Heading</summary>
 This is an example of using <details> and <summary>
 to create collapsible content without using JavaScript.
</details>

Unfortunately, browser support for these new elements has been rather slow to date.
Fortunately, it’s simple to provide a fallback for this using JavaScript, several of which
are provided at http://mng.bz/cJhc.

 Using the techniques you learned in this section, you should now be able to
update your existing applications to use HTML5 conventions, without having a nega-
tive impact on users who lack the latest and greatest browser. In the next section,
you’ll learn how you can take things further by going beyond HTML markup and
using related concepts such as CSS3 and JavaScript to improve the style and interactiv-
ity of your documents.

1.2 Beyond the markup: additional web standards
As we mentioned, the web is no longer all about documents; it’s a platform for applica-
tion development. As a result, HTML5 doesn’t include only markup for outlining docu-
ment structure; it also encompasses many more features and associated specifications

Figure 1.4 A screenshot of the states in
which you can represent a <meter> element:
empty, low, medium, high, and full.

Figure 1.5 An example of the <details> and <summary>
elements in action, first in the closed state, where only the code
inside the <summary> element is visible, and second in the open
state, where the entire contents of the <details> element
are visible.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/cJhc

16 CHAPTER 1 HTML5: from documents to applications
for ensuring that your applications look great and provide the best possible experi-
ence to the user. One example of this is microdata and the associated Microdata API,
which enable you to provide additional semantics in your documents and then retrieve
and modify them. Another example is CSS3; its evolved stylesheets allow you to apply
the latest innovations in styling and effects—without relying on external images and
JavaScript hacks.

To begin, let’s look at microdata.

1.2.1 Microdata
Microdata in HTML5 allows you to add semantic information to a web page, which in
turn could be used by applications such as search engines and web browsers to provide
additional functionality to the user based on that data. An example of how Google uses
microdata to provide smart search results is illustrated in figure 1.6.

In this section, you’ll learn
■ How to use microdata and microdata vocabularies to provide search engines

with better information about your pages.
■ The microdata DOM API that lets you dynamically retrieve and modify microdata

items using JavaScript.
■ Several of the new features in CSS3 that allow you to enhance the visual appeal

of your applications while providing better user interactions and feedback.
■ How HTML5 treats JavaScript as a first-class citizen with detailed specifications

and advanced APIs.

Figure 1.6 Google reads microdata from HTML documents to provide improved search
results to users. By using microdata in your pages, you enable Google to provide similar
search result listings for your website or application.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

17Beyond the markup: additional web standards

 the
is

ide
e

e

s
d.

es
ich
y for
g
und.

The item
attr

indicate
name o

micro
property

the co
o

ele
shou

assigne
This attr

is the
you’ll

use the

working
micro
To use microdata, you need a vocabulary, which defines the semantics you’ll use. You
can define your own vocabularies, but more likely you’ll want to use a published
vocabulary, such as those provided by Google at www.data-vocabulary.org/, including
Event, Organization, Person, Product, Review, Review-aggregate, Breadcrumb, Offer,
and AggregateOffer. By using a published vocabulary, you can be sure search engines
and other applications will interpret your microdata consistently.

 Listing 1.5 illustrates microdata in action using an event item that adheres to
Google’s Event microdata vocabulary at www.data-vocabulary.org/Event. This code
creates a snippet of HTML code for an event, with defined microdata properties that
will allow a search engine to unambiguously interpret the event information and use it
to enhance search results, perhaps by showing the event date in a calendar or as a
location on a map.

<div itemscope itemtype="http://data-vocabulary.org/Event">

 John's 40th Birthday Party

 To celebrate John turning 40,
 we're throwing a BBQ party in his honour this Friday evening
 at close of business. Please come and bring your friends and
 family!

 Location:
 <span itemprop="location"
 itemscope
 itemtype=http://data-vocabulary.org/Address>
 500 Market Way
 Ballincollig
 Cork

 Date and Time:
 <time itemprop="startDate" datetime="2011-05-06T18:00+00:00">
 Fri, May 6th @ 6pm
 </time>
</div>

The HTML5 specification also defines a DOM API that you can use to dynamically
retrieve and modify microdata items using JavaScript. Descriptions of the API are pro-
vided in table 1.3.

Listing 1.5 html5-microdata.html—Microdata in action

Table 1.3 The microdata DOM API

Method/property Description

document.getItems([types]) Gets all elements that are top-level microdata items (ele-
ments with an itemscope attribute). You can use the
types argument to filter by one or more itemtype attri-
bute values.

The itemscope
attribute tells
parser that th
element and
everything
contained ins
it describes th
entity being
referenced. Th
value of this
attribute is
Boolean and i
usually omitte
The itemtype
attribute defin
the URL at wh
the vocabular
the item bein
specified is fo

prop
ibute
s the
f the
data
 that
ntent
f the
ment
ld be
d to.
ibute
 one

likely
most
when
 with
data.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.data-vocabulary.org/
www.data-vocabulary.org/Event

18 CHAPTER 1 HTML5: from documents to applications
Using microdata is an excellent way to improve how your application (or document)
looks in search results. In the next section, you’ll learn how you can use CSS3 to make
your application visually stunning with the new styles and effects it has to offer.

1.2.2 CSS3

If you’ve been developing on the web for a long time, you may remember when styling
HTML documents was facilitated by the use of elements like and the clever use
of <table> elements. Thankfully, the introduction of Cascading Style Sheets has
meant that such approaches are no longer necessary.

 As the web has evolved, developers have come up with innovative ways to present
content, using effects like drop shadows, rounded corners, and gradients to
improve their application’s visual appeal. Even more impressive has been the use of
transition and animation to provide better feedback to and interaction with the user.
The main issue with all of these wonderful enhancements is that they’ve tradition-
ally required a degree of trickery to implement using images and JavaScript (or at
least required the use of a JavaScript library). CSS3 sets out to change that. Table 1.4
lists some of the new style features available in CSS3—all without JavaScript or the
clever use of images.

As you work through the samples in this book, you’ll learn to build applications pri-
marily using HTML and JavaScript. We do use CSS3 throughout for styling, but we
won’t be covering it in the chapters themselves. You can download the CSS source for
all the examples from the book’s web page. If you’re looking for detailed insight into
CSS3, check out Hello! HTML5 and CSS3 (Manning, 2012). Rob Crowther, the author of
that book, is one of this book’s coauthors.

element.properties Gets all item properties (those elements with an itemprop
attribute) for a given microdata item (element).

element.itemValue [= value] Gets or sets the value of an item property.

Table 1.4 A partial list of the new features in CSS3

New selectors New pseudo-classes Rounded borders Border images

Gradients Box shadow Box sizing Background sizing

Text shadow Word wrapping Multiple columns Web fonts

Multiple backgrounds Alpha color channels Media queries Speech style

Transitions Animations 3D transforms 2D transforms

Table 1.3 The microdata DOM API (continued)

Method/property Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

19Beyond the markup: additional web standards
1.2.3 JavaScript and the DOM

JavaScript and the Document Object Model (DOM) play a hugely important role in
modern web applications. The ability to dynamically interact with elements on the
page has enabled developers to provide rich functionality and interactivity previously
found only in desktop applications. The advent of Asynchronous JavaScript and XML
(AJAX) has removed the burden of page refreshes, allowing server-side actions to be
updated inline, providing a much-improved user experience. JavaScript Object Nota-
tion (JSON) has become the de facto data interchange format for web applications,
with most server-side languages and frameworks now supporting it natively. In addi-
tion, a range of powerful JavaScript frameworks and libraries has risen to provide an
abstraction of JavaScript that allows developers to worry less about the cross-browser
inconsistencies that plagued earlier web development, concentrating their efforts
more on crafting highly functional applications.

WARNING Each and every chapter in this book shows you to how to build
powerful applications using HTML5 and JavaScript. But this isn’t a book for
JavaScript beginners. At the least, you should be familiar with JavaScript syn-
tax and the basics like variable declarations, conditional statements, func-
tions, closures, callbacks, and scopes as well as other concepts like AJAX,
JSON, and interacting with the DOM. If you have experience using JavaScript
libraries such as jQuery, you should be able to follow along. To learn more
about JavaScript or if you’re feeling rusty, check out Ajax in Action (Manning,
2005) by David Crane and Eric Pascarello with Darren James and Secrets of the
JavaScript Ninja (Manning, 2012) by John Resig and Bear Bibeault.

In previous versions of the HTML (and XHTML) specification, the only coverage of
JavaScript was a minor section on use of the <script> element and some of the attri-
butes that could be added to HTML elements to provide event-handling functionality.
In HTML5, JavaScript is treated as a first-class citizen, with each section of the specifi-
cation detailing what DOM API methods and properties are available for any given
element. In addition, HTML5 defines advanced APIs that allow you to develop appli-
cations that use audio and video, work offline, store data locally on the client, and do
much more. We’ll cover these APIs briefly later in this chapter and in greater detail
throughout the book.

HTML5 vs. HTML Living Standard vs. HTML5 for web developers
The HTML5 specification has a long history. Without getting caught up in the details,
the end result is that the specification has two versions, both with the same editor:
Ian Hickson of Google. The HTML5 specification is published by the W3C, whereas
the HTML Living Standard specification is published by WHATWG (Web Hypertext
Application Technology Working Group). To make things even more confusing,
WHATWG also published a document, “HTML5: A technical specification for web
developers,” which is more concise and easier to read.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

20 CHAPTER 1 HTML5: from documents to applications
In the next section, we’ll take a look at the DOM APIs currently included in the HTML5
specification itself.

1.3 The HTML5 DOM APIs
DOM APIs exist for nearly everything in HTML5. In fact, many have been around for a
long time but have never been defined in the HTML specification itself. These include
features that enable you to get a DOM element by its ID attribute and that allow you to
manipulate form element values. All of this is included in HTML5 and the specifica-
tion also defines new DOM APIs for developing advanced applications, many of which
aren’t at all associated with HTML elements.

We cover all of these topics in great detail throughout the book, with full working
examples that often integrate multiple APIs at once. In this chapter, you’ll get a
glimpse of what’s to come, starting with the new <canvas> element and its associ-
ated API.

(continued)
The specifications are similar in many respects, but you’ll find considerable differ-
ences. For example, the HTML Living Standard specification includes several APIs
that are published as completely separate specifications by the W3C, such as
Microdata, Web Storage, and Web Workers. For the latest differences between the
specifications, see “Is this HTML5?” in the HTML Living Standard specification at
http://mng.bz/PraC.

In this chapter, we treat the APIs that exist in the HTML Living Standard as “part of
HTML5 itself” and any APIs outside of that specification as separate. As you progress
in the book, you’ll see that we’re much less concerned about the differences and
treat any of the new specifications as “HTML5.” For further discussion of the differ-
ences between the WHATWG and W3C versions as well as the differences in
approach between the WHATWG and W3C themselves, see appendix A.

This section provides an overview of the new DOM APIs in HTML5:
■ 2D Canvas
■ Audio and Video
■ Drag and Drop
■ Cross-document Messaging
■ Server-sent Events
■ WebSockets
■ Document Editing
■ Web Storage
■ Offline Web Applications
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/PraC

21The HTML5 DOM APIs
1.3.1 Canvas

HTML5 provides numerous elements that allow you to present information on a web
page. You can style these in many different ways, and you can use JavaScript to ani-
mate them and apply dynamic effects. If you’re comfortable with complex JavaScript
code (and expect your users to be running high-performance browsers), you can do
amazing things with HTML and JavaScript.

 The problem is, designers and developers have many things they may want to
implement that HTML doesn’t cater to. What if you want to insert a circle, square, or
other shape? What if you want to display an image and dynamically alter it based on
user selections, on the fly? You could use static images or a server-side solution, but
these aren’t optimal. The only viable solution had been to use a third-party plug-in
such as Adobe Flash.

 HTML5 introduces the <canvas> element and a series of related drawing APIs
that will allow you to do amazing things, without requiring the user to install a
plug-in. The <canvas> element’s name describes this new feature well: it’s a canvas
for your web pages. Figure 1.7 depicts a game, “Canvas Break,” which we created
entirely in HTML5 and JavaScript, with the game’s visuals output on a <canvas> ele-
ment. Neat, huh? You’ll learn how to use the Canvas API as you build this game your-
self in chapter 6.

 The Canvas API defines a 2D context, which provides a series of methods for draw-
ing on the canvas. These include methods to create shapes, define paths, use color
and gradients, provide text, and much more. The API also provides developers with a
way to export the current content of the canvas as a PNG or JPG format image using
data URLs or Blob objects.

1.3.2 Audio and video

The majority of internet bandwidth in recent years has been driven by the delivery of
multimedia content: video and audio. Today, the majority of web video is deployed in
Flash video (FLV) format, an Adobe Flash container for various types of video codec. If
users have a Flash plug-in installed, they can view the video. Some developers have
raised questions about the security and performance of Flash as a platform for video

Figure 1.7 The <canvas> element
allows developers to present information
in more creative ways. You’ll learn how
to build this game in chapter 6.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

22 CHAPTER 1 HTML5: from documents to applications
delivery and are looking for alternative solutions. In addition, the lack of support for
Flash on mobile devices has meant that if you want your multimedia content to be
available on devices such as the iPad, you’re out of luck.

 HTML5 provides a solution for this with the new <video> and <audio> elements,
which allow supported multimedia files to be played back natively by the browser, with
no third-party plug-ins required. An example is shown in figure 1.8.

 The <video> and <audio> elements both support the <track> element, which you
can use to deliver accompanying text content such as subtitles. You can use the
<source> element to provide a variety of file formats, ensuring that visitors can con-
sume the content, regardless of what OS or browser they’re using.

 HTML5 also defines an API with a series of methods for controlling the playback of
a video or audio file. These include methods for playing, pausing, fast-forwarding,
rewinding, adjusting the volume, and more. You’ll learn about these APIs in detail as
you build a working video jukebox with telestration capabilities in chapter 8.

1.3.3 Drag and drop

Lack of drag-and-drop interactivity had been an issue that has plagued web applica-
tion developers for a long time. This type of functionality has been prevalent in
desktop applications for as long as graphical UIs have been around. As a result, users
have come to expect to be able to drag objects around applications and are sometimes
shocked to learn that their favorite web applications can’t do it.

 Attempts at implementing drag and drop in the browser began in the late 1990s,
with Netscape 4.0 providing a basic implementation and Microsoft following up
with a more complete offering in IE 5.0. At the time, it was seen as a nonstandard,

Figure 1.8 YouTube HTML5 video in action. As you can see from the code in the inspector, the YouTube
video in this screenshot doesn’t use the Adobe Flash plug-in but is fully implemented using the HTML5
<video> element and related APIs.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

23The HTML5 DOM APIs
browser-specific extension to IE, but over time other browser vendors adopted the
same API, leading to its eventual inclusion in HTML5.

 The great news is that HTML5 drag and drop is supported on all modern browsers,
including IE from version 5.0 up. The bad news is that the original Microsoft imple-
mentation used is, quite frankly, terrible. Ian Hickson, the editor of the HTML5 speci-
fication, once tweeted, “The drag-and-drop API is horrible, but it has one thing going
for it: IE6 implements it, as do Safari and Firefox.”

 To use drag and drop in HTML5, you can use the draggable attribute on an ele-
ment to explicitly define that element as draggable. (Many elements, such as images,
are draggable by default.) You can then use a series of events to listen for changes as
the user drags the element into and out of other elements and indeed when the user
drops the element. The API allows you to set the data you want to associate with the
drag operation and then to read this back when dropped.

 A new feature of HTML5 drag and drop is the ability to drag files from your com-
puter and drop them into a web application. An example of this functionality can be
seen in Gmail, as shown in figure 1.9.

 You’ll learn how to use drag and drop to import and export files from an applica-
tion in chapter 3.

1.3.4 Cross-document messaging, server-sent events, and WebSockets

Web applications work on a request-response model, where the client issues a request to
the server, and the server in turn sends a response to the client. After this, if the client
requires further information from the server, the client needs to initiate another request.
This makes it difficult to send changes from the server to the client, without frequently
sending requests to check for these changes. In this section, you’ll learn about some of
the new messaging features in HTML5 that allow the server to communicate with the cli-
ent. Before that, let’s look at how to use messaging to send updates between documents.

Figure 1.9 Gmail allows you to drag files into the browser window and drop them into a
designated area to add them as attachments to your messages.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

24 CHAPTER 1 HTML5: from documents to applications
ENABLING COMMUNICATION BETWEEN CLIENTS WITH CROSS-DOCUMENT AND CHANNEL MESSAGING

When working with web applications that use multiple browser windows, you’ll often
want to pass messages between the documents in each window. Traditionally, this was
accomplished using direct DOM manipulation. For example, an old airline reservation
system may have opened a calendar widget in a new browser window, and when the
user clicked a date, it would directly manipulate the value of the date form field on
the parent window.

 One problem with direct DOM manipulation is that it directly connects the two
documents; each document has to have detailed knowledge of the structure of the
other in order to manipulate each other to share information. HTML5 provides a
much-improved solution in the form of cross-document messaging and channel mes-
saging, illustrated in figure 1.10.

 Cross-document messaging enables documents to communicate with each other
via messages—one document posts a message, and the other document has an event
handler registered to listen for any messages posted by the other document.

 Another issue with direct DOM manipulation surfaces when you consider the security
of including remote script files in your application—a common use case for imple-
menting the likes of Google Analytics and Facebook “Like” buttons in your applica-
tions. These scripts have complete access to your entire DOM—it’s not possible to give
them only partial access when they’re loaded this way. Cross-document messaging
works cross-domain, enabling messages to be sent between separate applications with-
out exposing each application’s DOM.

Figure 1.10 A simple application demonstrating channel messaging. You'll build
this in appendix J, one of the companion appendices to chapter 4.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

25The HTML5 DOM APIs
ENABLING ONE-WAY COMMUNICATIONS FROM SERVER TO CLIENT WITH SERVER-SENT EVENTS

Cross-document messaging is a great way to
communicate between two clients—but what if
you want to allow your web server to send mes-
sages that can be read by the browser? Server-
sent events are designed to do that. Using the
EventSource interface, your application can
subscribe to a server-side event stream, which
will only receive messages when the server sends
an update. This is a considerable improvement
over approaches like AJAX long polling, which
can be cumbersome to implement. This works
well for a chat application, where you can post
new chat messages using AJAX and receive any
chat messages from other users over the event
stream. Figure 1.11 is a screenshot of such an
application, which you’ll build later on.

ENABLING TWO-WAY COMMUNICATIONS BETWEEN SERVER AND CLIENT WITH WEBSOCKETS

The obvious drawback with server-sent events is that they only facilitate one-way com-
munication—messages can only be sent from the server to the client, not vice versa. If
you need two-way communication, HTML5 provides WebSockets—bare-bones net-
working between clients and servers, without the overhead associated with HTTP. Web-
Sockets are great for passing small amounts of data quickly, which is critical in
applications like online multiplayer games and time-sensitive financial systems.

 In chapter 4, you’ll learn how to use all three of these new messaging technologies
as you build a simple chat application and a multiuser planning board, using server-
sent events and WebSockets via Node.js, and then allow them to communicate with
each other through cross-document messaging.

1.3.5 Document editing

Earlier in this chapter, we talked about the new forms features in HTML5. Web forms
are a great means of capturing simple plain-text user input, but they don’t allow the
user to edit HTML content. Sure, you could load HTML source code in a <textarea>
element and allow the user to edit that, but wouldn’t it be great if you could allow the
user to edit the content using a series of rich-text editing controls?

 HTML5 defines two new attributes that allow you to enable rich-text editing in your
HTML documents. The first, contenteditable, can be set on any HTML element in
your page to make that element editable. The second, designMode, can be set on the
HTML document itself to make the entire document editable.

 These attributes are supported by all modern browsers and were first introduced
by Microsoft in IE 5.5.

Figure 1.11 A chat application
implemented using server-sent events
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

26 CHAPTER 1 HTML5: from documents to applications
When an element or document is editable, you can manipulate its content using the
API method document.execCommand, part of the Editing DOM API in HTML5. This
method accepts a wide selection of commands that will be applied to the current
selection or block, such as Bold, Italic, CreateLink, and many others. An example of
the type of editor you can create with this functionality is shown in figure 1.12; even
better, you’ll learn how to use these new features as you build that rich-text editor in
chapter 3.

1.3.6 Web storage

For many years, web applications have used cookies to store small chunks of data in
the client that persist for the session or between multiple sessions. This is the technol-
ogy underlying web authentication systems—they store on the client a cookie that

Figure 1.12 The Super HTML5 Editor application that you’ll learn to build in chapter 3
uses the designMode attribute and the Editing DOM API to allow users to edit HTML
markup using a set of rich-text editing controls. The toolbar in this screenshot allows
you to use Bold, Italic, Underline, Strikethrough, List, Link, and Image formatting
commands on the contents of the area below the toolbar.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

27The HTML5 DOM APIs
holds some form of identifier used to tell the application who’s logged in. Cookies
present a number of issues, making them less useful for storing all but the smallest
chunks of data.

 The first issue is that most browsers limit the size of cookies to 4 kilobytes, and the
number of cookies stored per domain to 20. After reaching these limits, the browser
will start discarding older cookies to make way for the newer ones, which means
there’s no guarantee it’ll keep them. Another issue is that when an application uses
cookies, those cookies are sent in every HTTP request made for the session, adding
overhead to each and every transaction. This might not be an issue if you’re using one
or two cookies, but what if you use several? And consider that the cookies will be sent
along with every HTTP request—slowing down every page load and AJAX request your
application makes.

 The Web Storage DOM API provides a JavaScript alternative to cookies for web
applications. It defines two interfaces:

■ sessionStorage—Client-side data storage that persists for the length of the
current session only

■ localStorage—Client-side data storage that persists for multiple sessions

These APIs expose methods that allow developers to
store simple key/value pair data in a client-side
store. The data items stored using these interfaces
are accessible only by pages in the same domain. In
chapter 5 you’ll build the application shown in fig-
ure 1.13, which stores user settings and preferences
in local storage.

 Although the Web Storage API can store mega-
bytes of data (5 megabytes is the limit imposed by
most browsers), it’s not ideal for storing complex
data structures that would typically be stored in a
database. Later in this chapter, you’ll learn about
IndexedDB, which defines a full indexed database
API for storing data locally on the client.

1.3.7 Offline web applications

These days, it seems we’re permanently online—our
internet connections are always on, our mobile devices
have data plans that work over cellular data networks,
and now we can even get connected as we travel by
air. That said, we may still have times when we need
to make do with working offline. Maybe your network
connection is down, or you’re abroad and don’t want to pay exorbitant data roaming
fees. Or you’re using one of the few devices that doesn’t have a wireless data connection.

Figure 1.13 In chapter 5, you’ll
learn how to use the
localStorage interface to
persist user settings in a mobile
task-management application.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

28 CHAPTER 1 HTML5: from documents to applications
Solutions have long existed for saving HTML documents for offline use. As useful as
these are for reading static content like news articles, they’re useless when it comes to
web applications. HTML5 goes a step beyond saving documents, by providing develop-
ers the ability to define a cache manifest file that defines how their applications’ files
should be cached for offline use.

 The cache manifest file can also define those files that shouldn’t be cached for offline
use. In this case, a fallback can be provided that will be loaded by the browser when the
user is offline. This enables you to provide separate files for online and offline use.

 An example use case might be where your application saves data to a database on
a server. When online, the application may perform AJAX requests to retrieve and
update data on this database. In the background, the application may be storing data
locally in an IndexedDB database, which we’ll talk more about in an upcoming sec-
tion. Now, when the user is offline, the application could load a JavaScript file specifi-
cally designed for use in offline mode. Instead of firing AJAX requests to the server, it
would retrieve and modify the data in the local IndexedDB database. The next time
the user connects to the network, the application can then submit the data from the
local database to the server-side database.

 You’ll learn how to develop the offline-capable web application shown in figure 1.14
in chapter 5.

1.4 Additional APIs and specifications
As you learned earlier, the HTML5 family doesn’t stop at the HTML5 specification
itself. A host of other technologies and specifications exist that define new functionality,

Figure 1.14 A screenshot
of the mobile application
with offline capabilities that
you’ll create in chapter 5
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

29Additional APIs and specifications
which modern browser vendors are steadily including in their latest offerings, such as
the Geolocation API; the IndexedDB API; the File Reader, File Writer, and File System
APIs; and SVG and WebGL.

We’ll talk about each ancillary yet important specification, starting with Geolocation.

1.4.1 Geolocation API

As mobile device usage has surged in recent years, so has the use of location-aware
applications. The Global Positioning System (GPS) sensors found on modern smart-
phones enable applications to locate users to a high degree of accuracy. If GPS isn’t
available (if the device doesn’t have a sensor, or if the user is out of satellite line of
sight), devices can fall back to other means of tracking location, using information
such as your cellular network, Wi-Fi network, or IP address.

 The Geolocation API defines methods that allow web applications to find a user’s
location. When these methods are called, the browser will notify the user that the appli-
cation is requesting access to their location. The user can then choose to accept or reject
this request, ensuring that applications don’t track user location without their express
prior permission. If the user accepts the request, the API then provides the application
with a series of data about the user’s location including coordinates (latitude and longi-
tude), altitude, heading, and speed, as well as the level of accuracy of the result.

 You’ll learn how to use geolocation in chapter 3, where you’ll use it to get the
user’s current location and include a map of that location in an HTML document (fig-
ure 1.15).

1.4.2 Indexed database (IndexedDB API)

The IndexedDB API provides developers with a means of storing complex data struc-
tures in a full client-side database. The main advantage of the IndexedDB API over the
Web Storage API is that in Web Storage the only index is the key of the key/value pair,
whereas in IndexedDB the values are fully indexable too, making it a more viable solu-
tion for any application where you need to search or filter data. The trade-off is that
the API for IndexedDB is much more complex, and it can be difficult to get to grips
with initially.

In this section, you’ll learn
■ The Geolocation API and how you can use it to determine a user’s geographic

location
■ The IndexedDB API and how it allows you to store an entire database on the cli-

ent side
■ File-oriented specifications and how you can use them to work with and store

files locally on the user’s filesystem
■ SVG and WebGL and how they’re enabling developers to produce impressive

high-quality vector graphics and 3D animations on the web
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

30 CHAPTER 1 HTML5: from documents to applications
IndexedDB is a relative newcomer to the HTML5 specification family. There had
been a different proposed solution, Web SQL (Structured Query Language), a
specification that defined a relational client-side database that used SQL statements
for query and data manipulation. In the end, it was dropped because all the brows-
ers that had adopted it were using the same implementation (an SQLite database)
so it could never meet the WHATWG’s and W3C’s standardization criteria of having
“two independent, interoperable implementations of each feature.” When it was
dropped, support had already been included in several browsers, including mobile
browsers like Mobile Safari and Android. Browser support for IndexedDB has been
slow-moving, and as a result, most applications that use IndexedDB also use Web
SQL as a fallback.

 In chapter 5, you’ll learn how to use IndexedDB (with a Web SQL fallback) to store
task data in a mobile task-management application, as illustrated in figure 1.16.

1.4.3 File, File Reader, File Writer, and File System APIs

Working with files in web applications has traditionally been a pain. The only native
means of allowing users to select files from their computers was to use the file input
type, which is well known for being cumbersome, particularly when it comes to styling

Figure 1.15 Adding maps showing your current location in the chapter 3 application
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

31Additional APIs and specifications
the UI of the widget. When the user selected the file,
the application would have to upload the entire file to
the server in order to do anything with it. Although
Flash- and Java-based offerings are available that pro-
vide improved functionality, these aren’t ideal given
that they require a third-party plug-in.

 The HTML5 family includes a number of related
file-based specifications that promise to make working
with files in web applications much easier. The File API
allows developers to get a reference to a file object in
JavaScript, reading properties such as its name, size,
and MIME type. You can use the File Reader API to read
a file object, either in its entirety or partially in chunks.
Similarly, you can use the File Writer API to output data
to a file. The File System API allows developers to
manipulate file objects in a sandboxed local filesystem
on the client. This enables you to perform much of the
file interaction on the client, significantly saving the
load on the server. No longer do you have to upload
the entire file to the server, only to discover it’s of the
wrong MIME type, and then have to tell the user that
the file wasn’t of the correct type. You can imagine how
annoying this would be to users after they’ve uploaded
a large file.

 You’ll use all of these APIs to provide a full local filesystem, and we’ll cover where
HTML files will be stored in chapter 3. A screenshot of how you can use some of this
functionality is illustrated in figure 1.17.

1.4.4 Scalable Vector Graphics

Scalable Vector Graphics (SVG) is an XML language that allows you to create impres-
sive vector graphics using markup that can be styled using CSS and interacted with via
the DOM using JavaScript. One of the primary issues with bitmap graphics is that as
you scale their dimensions up, the quality of the graphic degrades and produces a
“pixelated” result. Vector graphics are constructed using math equations rather than
pixels, and as a result they can scale up to look impressive even at large sizes.

 In chapter 7, you’ll learn how to use SVG as you build the app SVG Aliens (fig-
ure 1.18), an exercise that illustrates how to create shapes and complex objects using
SVG, implement collision detection, and understand the pros and cons of using SVG
rather than the <canvas> element.

Figure 1.16 The chapter 5
application will use IndexedDB
to store a list of tasks and allow
fast sorting and searching.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

32 CHAPTER 1 HTML5: from documents to applications
Figure 1.17 The
Super HTML5 Editor
you’ll build in chapter
3 will allow you to
perform file operations
such as creating a new
blank file and
importing an existing
file either by selecting
it or dragging it into
the application. It’ll
store these files in a
sandboxed local
filesystem, from which
you can view, edit, and
delete the files or
export them to your
computer by dragging
them out of the
application.

Figure 1.18 The SVG Aliens game in
action. You’ll learn to build this game
in its entirety later in this book.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

33Summary
1.4.5 Web Graphics Library

Last but not least is the Web Graphics Library (WebGL), a JavaScript API for creating
3D graphics using the <canvas> element. WebGL is based on the Open Graphics
Library for Embedded Systems (OpenGL ES) standard, which was designed for imple-
menting 3D on embedded devices including mobile phones. It provides developers
with an API that allows them to control graphics hardware at a low level using shader,
buffer, and drawing methods.

 In chapter 9, you’ll learn not only about the WebGL API but also about 3D graph-
ics programming in general, including how to create shaders, work with data using
buffers, assemble 3D data onto the screen using matrix manipulation, and more.
You’ll do these tasks through the lens of our sample application, which has you
building an entire 3D game, Geometry Destroyer, a screenshot of which you can see
in figure 1.19.

1.5 Summary
HTML5 is the most important revision of HTML since its inception in 1991. Although
HTML began as a relatively straightforward markup language, it has since become a
platform for complex web page design and web application development, particularly
when coupled with its close relations CSS and JavaScript. HTML5 is the first version of
the language to acknowledge this significance and include a number of application-
oriented JavaScript APIs within the specification.

Figure 1.19 The 3D Geometry Destroyer game in all its glory. Building this
game is covered in chapter 9.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

34 CHAPTER 1 HTML5: from documents to applications
 Over the course of the next eight chapters, you’ll learn how to build eight separate
applications, everything from mobile applications that work offline to 3D games. In
the next chapter, you move away from introductory concepts and delve deep into the
vast improvements in web forms that HTML5 has to offer, including the new input
types that allow guided entry of a much wider variety of data types, new attributes such
as autofocus and placeholder, and the out-of-the-box features that simplify client-
side validation.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Part 2

Browser-based apps

For a very long time developers were processing everything—form validation,
file management, storage, messaging, and other vital application functionality—
on the server. Server-side processing was a great idea for security reasons, lack of
user processing power, and many other issues. There were workarounds through
technologies such as Flash and Java, but the mobile market explosion revealed
unanticipated limitations that HTML5 is aiming to fix.

 Thanks to major advances in JavaScript processing power and new W3C stan-
dards, you can now perform server-side tasks through a user’s browser (aka client-
side). Performing complex tasks through browsers saves tons of money on server
costs, allows startups to easily create complex apps, and creates seemingly instant
application responses during heavy load times. It also opens up a completely
different thought process on application development and deployment to
mobile and desktop. And they can both be done at the same time if you play
your cards right.

 Many popular web applications use HTML5’s application features. Google
Drive, for example, uses a new storage technology known as the Indexed Data-
base API. You’ve probably also used HTML5’s WebSockets, forms, and many
other features that we’ll be covering throughout this section. By the time you’ve
completed part 2 (chapters 2–5), you’ll know enough to put together a small
application with minimal server usage.

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Chapter 2 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

New input types1 HTML5 <input> element types
■ email
■ tel
■ number
■ month

42
42
46
49

New input attributes1 HTML5 attributes on <input> elements
■ required
■ pattern
■ autofocus
■ placeholder
■ min and max

42
49
43
42
46

data-* attributes Storing key/value data in attributes on elements 46

valueAsNumber property Reading input values in numeric format 54

<output> element Displaying the output of calculations 47

Preventing validation Providing means of bypassing client-side validation
■ formnovalidate attribute
■ formaction attribute

51
51

Constraint Validation API Client-side API for validation
■ setCustomValidity method
■ validationMessage property
■ invalid event

59
59
60

CSS3 pseudo-classes Styling invalid elements with CSS3 61

Backward compatibility Feature detection and unsupported browsers
■ Modernizr.js
■ Polyfills
■ Validation

63
64
65

1 Only the input types and attributes used or discussed in this chapter are listed here. For comprehensive cov-
erage, visit mng.bz/wj56.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Form creation: input
widgets, data binding,

and data validation
As the web has matured, the need for a much richer set of form field types and widgets
has emerged. Today’s users expect a consistent standard between web applications, par-
ticularly when it comes to data validation. HTML5 meets this requirement with 13 new
form input types, ranging from number spinners and sliders to date- and color-pickers.

 The standard also defines new attributes you can apply to <input> elements to
enhance the functionality of your forms, including presentational attributes like
placeholder and autofocus, as well as validation attributes such as required and
pattern. You can even use a set of new CSS3 pseudo-classes to style valid or invalid
form elements with zero JavaScript. And if you have advanced validation requirements
you can’t provide natively, the new Constraint Validation API offers a standardized

This chapter covers
■ New HTML5 input types and attributes
■ data-* attributes, valueAsNumber property,

and the <output> element
■ Constraint Validation API
■ Ways to bypass validation
■ CSS3 pseudo-classes
■ HTML5 feature detection with Modernizr and

backward compatibility with polyfill
37

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

38 CHAPTER 2 Form creation: input widgets, data binding, and data validation
JavaScript API that can test for the validity of form fields, along with a new event you
can use to detect an invalid data entry.

 In this chapter, you’ll implement all of these new features by building an order
form for computer products. The form will use HTML5 validation to “sanitize” the
input on the client side before it’s submitted.

We’ll get started by showing you a preview of the form and helping you get your pre-
requisites in order.

2.1 Previewing the form and gathering prerequisites
The order form you’ll build in this chapter, shown in figure 2.1, allows users to enter
personal data, login details, and order and payment information.

 The form makes use of several new HTML5 features:

■ Form <input> element types (email, tel, number, and month) and attributes (required,
pattern, autofocus, placeholder, and max and min) to provide users with bet-
ter widgets and data validation when appropriate.

■ The data-* attributes to hold the price of each product, the valueAsNumber prop-
erty to read input values in numeric format, and the <output> element to present
subtotals and grand totals.

■ The formnovalidate and formaction attributes to bypass data validation and
save an incomplete form.

■ The Constraint Validation API to perform custom validation and detect when the
user attempts to submit the form with elements that are invalid, and CSS3 pseudo-
class selectors to style invalid elements.

■ The Modernizr.js JavaScript library and polyfills to serve users whose browsers don’t
support various HTML5 features. (Although we admit that Modernizr and poly-
fills aren’t strictly HTML5 features, we recommend that you use them if you’re
serious about developing HTML5 applications.)

When you’ve finished, the order form will be functional in the latest versions of all the
major browsers, although you may find varying levels of support for some features
such as widgets for new input types and inline error messages for the Constraint Vali-
dation API. But browser hiccups will become less and less an issue as support for the
new features increases.

Why build this chapter’s order form?
While working through this chapter’s sample application, you’ll learn to use:

■ New input types to provide more widgets with less coding
■ New input attributes to provide validation with less coding
■ data-* attributes to bind data to HTML elements
■ Constraint Validation API features to create custom validation tests
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

39Previewing the form and gathering prerequisites
NOTE This chapter covers only the client-side portion of the order form.
When the form is submitted, it makes a request to a URL. To perform further
processing, you’ll need to implement the form on the server side using your
choice of server-side language or framework (such as PHP or Ruby on Rails).
The server-side aspect is outside the scope of this book.

2.1.1 Gathering the application prerequisites

You’ll work with five files in this chapter:

■ An HTML document
■ A JavaScript source file
■ A CSS stylesheet
■ The Modernizr library
■ The month-picker polyfill script

The stylesheet and polyfill are part of the chapter’s source code archive, but you’ll
need to download the Modernizr library from its website at http://modernizr.com/.
Rename the .js file to modernizr.js and place it, along with both the CSS file and
monthpicker.js, in the application’s directory.

The form itself comprises four main sections,

each of which is grouped in a <fieldset> block:

Contact details

Requests the user’s name, email

address, postal address, home and

cell phone numbers, Skype name,

and Twitter account.

Login details

Asks the user to enter their password

twice (to ensure they enter it correctly).

Order details

Contains a table with three products; a

product code, description, and price are

provided for each. The user can enter a

quantity value for each product, and the

item and overall order total will be

calculated dynamically.

Payment details

Requires a user to enter credit card

details: the name on the card, the card

number, the expiry date (month/year),

and the CVV2 security code on the

back of the card.

Figure 2.1 The order form running in Google Chrome. The user is given two options when
submitting the form: Submit Order or Save Order. The Submit Order button performs validation and
processes a user’s order, whereas the Save Order button bypasses the validation and saves the
details, so users can come back later and finish filling out their order.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://modernizr.com/

40 CHAPTER 2 Form creation: input widgets, data binding, and data validation
TIP Modernizr offers two choices when you download the library—develop-
ment or production builds. The development build contains the entire Mod-
ernizr test suite and isn’t compressed or minified. If you’re in a hurry and
don’t mind the large file size, use the development build. On the other hand,
the production build allows you to configure which tests you want to include
and will be compressed and minified to ensure a minimal file size. If you
choose to use the production build, be sure to include the Input Attributes,
Input Types, and Modernizr.load tests, because these are required in this
chapter. You’ll learn more about Modernizr later in the chapter.

With the preview and prerequisites out of the way, it’s time to start working on the
form’s UI.

2.2 Building a form’s user interface
The work in this section—building the UI—involves defining the HTML document
structure, building the individual form sections, and allowing users to determine
whether to save or submit form details.

We’ll walk you through the UI work in seven steps:

■ Step 1: Create index.html and load external files.
■ Step 2: Create the Contact Details form section.
■ Step 3: Build the Login Details form section.
■ Step 4: Build the Order Details form section.
■ Step 5: Build the Payment Details form section.
■ Step 6: Bypass form validation and save form data.
■ Step 7: Change the form action in older browsers.

First up, the HTML document.

2.2.1 Defining a form’s basic HTML document structure

Before you begin, we recommend that you create a new directory on your system.
Ideally, it would be a location on a web server, but that’s not a requirement for
the example.

In this section, you’ll learn
■ How to provide users with widgets and data validation using HTML5 form <input>

element types and attributes
■ How to store the price of each product with data-* attributes
■ How to present subtotals and grand totals using the <output> element
■ How to bypass form validation and save an incomplete form using the form attri-

bute properties, formnovalidate and formaction
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

41Building a form’s user interface
STEP 1: CREATE INDEX.HTML AND LOAD EXTERNAL FILES

Create a new file named index.html and place it in the new directory. Then, add the
contents of the following listing to that file. The code loads external dependencies
(CSS and JavaScript files) and defines the <form> element with the heading at the top
and the buttons at the bottom.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Order Form</title>
 <link rel="stylesheet" href="style.css">
 <script src="modernizr.js"></script>
 <script src="app.js"></script>
</head>
<body>
 <form name="order" method="post" action="/submit">
 <h1>Order Form</h1>

 <div class="buttons">
 <input type="submit" value="Submit Order">
 <input type="submit" id="saveOrder" value="Save Order">
 </div>
 </form>
</body>
</html>

The order form is split into four sections, which we’ll work on sequentially: Contact
Details, Login Details, and Payment Details in this section, and Order Details in the
section that follows.

2.2.2 Using the form input types email and tel and the input attributes
autofocus, required, and placeholder

Before you actually start building the order form, we’d like to give you more details
about the new input types and attributes and show you how to use these types and
attributes to build your forms in less time. As we proceed, we’ll improve the example
form with the email and tel (for telephone) input types and also make use of the
autofocus, required, and placeholder attributes.

Listing 2.1 index.html—HTML document structure

email input type 10.0 4.0 10.0 10.6 5.0*

tel input type 10.0 4.0 10.0 10.6 5.0

* Indicates partial support

Load the Modernizr library. You may
wonder why we don’t include the
monthpicker.js file—later we’ll use the
Modernizr.load method to dynamically
load that file, but only if it’s needed by
the user’s web browser.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

42 CHAPTER 2 Form creation: input widgets, data binding, and data validation
Both the email and tel input types look identical to the standard text input element.
But if the user is browsing on a mobile device that supports these input types, it can
display different virtual keyboard layouts depending on what type of data the user is
entering. See figure 2.2 for an example of this in action.

 In the case of the email input type, the browser will also check that the user inputs
a valid email address. If not, it will raise an error when the user submits the form. The
error style is defined by the browser, which means it will look somewhat different
depending on the user’s browser. Figure 2.3 illustrates this.

 Now, let’s look at three additional attributes: autofocus, required, and place-
holder.

Core API

input[type=text]

Regular keyboard

input[type=email]

Smaller spacebar,

@ and . added

input[type=url]

Spacebar removed,

., /, and .com added

input[type=tel]

Numeric keyboard

Figure 2.2 Different virtual keyboards are displayed on an iPhone for different input types—
from left to right: text, email, url, and tel. Notice how symbols are added and removed for
the email and url input types. An entirely different keyboard is displayed for the number
input type.

Figure 2.3 Each web browser vendor implements a different style when presenting input validation
errors to the user. As more websites begin to use HTML5 form validation, users will become more
familiar with the standard style of error message displayed by their browser of choice.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

43Building a form’s user interface
THE AUTOFOCUS, REQUIRED, AND PLACEHOLDER ATTRIBUTES

The autofocus attribute is self-explanatory; it allows you to define which input ele-
ment should receive focus when the page loads. The required attribute is also
straightforward—it allows you to define that a field must contain input from the user
in order to be valid. You’ll learn much more about HTML5 form validation later in the
chapter. The placeholder attribute allows you to define a piece of text that will
appear in a field when it’s empty and inactive. As soon as the user types in the field,
the placeholder text will be cleared and replaced with the user’s input. This is illus-
trated in figure 2.4.

STEP 2: CREATE THE CONTACT DETAILS FORM SECTION

Let’s integrate those new features into the Contact Details section of the form, the markup
for which is shown in the next listing. You should add this code to the index.html file,
immediately after the line <h1>Order Form</h1> from the previous listing.

<fieldset>
 <legend>Contact Details</legend>

 <label class="required">
 <div>Full Name</div>
 <input name="name" required autofocus>
 </label>

 <label class="required">
 <div>Email Address</div>
 <input type="email" name="email" required>
 </label>

autofocus attribute 6.0 4.0 10.0 11.0 5.0

required attribute 10.0 4.0 10.0 10.0 5.0*

placeholder attribute 4.0 4.0 10.0 11.6 5.0

* Indicates partial support

Listing 2.2 index.html—The Contact Details form section

Figure 2.4 Demonstration of the placeholder attribute. This example displays a search input
field, with the placeholder text “What are you looking for?” When the user enters a value, the
placeholder text is replaced with that value.

The name field is the
first in the form, so
it makes sense to
autofocus it. It’s also
a required field.

The email field
uses the new
email input
type. It’s also a
required field.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

44 CHAPTER 2 Form creation: input widgets, data binding, and data validation

Ea
a

pla

in
 <label>
 <div>Postal Address</div>
 <input name="address1" placeholder="Address Line 1">
 </label>
 <div> </div>
 <input name="address2" placeholder="Address Line 2">
 <div> </div>
 <input name="city" class="city" placeholder="Town/City">
 <input name="state" class="state" placeholder="State">
 <input name="zip" class="zip" placeholder="Zip Code">
 <div> </div>
 <select name="country">
 <option value="0">Country</option>
 <option value="US">United States</option>
 <option value="CA">Canada</option>
 </select>

 <label>
 <div>Home Phone No.</div>
 <input type="tel" name="homephone">
 </label>

 <label>
 <div>Cell Phone No.</div>
 <input type="tel" name="cellphone">
 </label>

 <label>
 <div>Skype Name</div>
 <input name="skype">
 </label>

 <label>
 <div>Twitter</div>
 @
 <input name="twitter" class="twitter">
 </label>

</fieldset>

2.2.3 Using the form input attribute required
The Login Details form section is the most unremarkable part of the form. It asks the
user to enter an account password and to enter it a second time to confirm. The
markup doesn’t introduce any new HTML5 features, but later in this chapter you’ll
learn how to use the Constraints Validation API to provide password confirmation.

STEP 3: BUILD THE LOGIN DETAILS FORM SECTION

At this point, you need only to add the code from the following listing to index.html,
after the end of the previous listing; then we’ll move on to a more interesting section.

ch of the lines in the
ddress field uses the
ceholder attribute to
indicate what type of
formation is relevant
for each of the fields.

The homephone and
cellphone fields both use
the tel input type.
Although this will make
no apparent difference on
a regular browser, visitors
using mobile browsers
will benefit from a virtual
keyboard that’s designed
specifically for entering
telephone numbers.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/cJhc
http://manning.com/crowther2
http://afarkas.github.com/webshim/demos/
https://github.com/ryanseddon/H5F
https://github.com/westonruter/webforms2
https://github.com/westonruter/webforms2
https://github.com/westonruter/webforms2

45Building a form’s user interface

co
fie
<fieldset>
 <legend>Login Details</legend>

 <label class="required">
 <div>Password</div>
 <input type="password" name="password" required>
 </label>

 <label class="required">
 <div>Confirm Password</div>
 <input type="password" name="confirm_password" required>
 </label>

</fieldset>

2.2.4 Building a calculator-style form using the input type number, the
input attributes min/max and data-*, and the element <output>

If you look at figure 2.5, you’d be forgiven for thinking there’s not much HTML5 form
functionality in the Order Details section.

 However, several HTML5 features are at work in the Order Details section of the form:

■ The number input type for the quantity input fields
■ The min and max attributes for validating the quantity inputs
■ The data-* attributes for storing price data
■ The <output> element for displaying totals

Listing 2.3 index.html—The Login Details form section

Both the
password and

nfirm_password
lds are required

fields.

Results of calculations are shown

using the <output> element.

The fields for entering quantity values are

<input> elements with the type “number.”

Figure 2.5 There's more going on here than meets the eye. This simple-looking
form uses several HTML5 features: the number input type, min and max
attributes, data-* attributes, and the <output> element.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

46 CHAPTER 2 Form creation: input widgets, data binding, and data validation
THE NUMBER INPUT TYPE

The number input type should display a new UI widget on supported browsers—a spin-
box component that allows the user to change the value by pressing the up button to
increase the value and the down button to decrease the value. An example of this is
shown in figure 2.6.

Two other new attributes that go hand in hand with the number input type are the min
and max attributes.

THE MIN AND MAX ATTRIBUTES

These attributes define the minimum and maximum numbers that a user can enter in
a number input field (or the bounds of a slider input using the range input type). Yet
data-* attributes, another new form of attribute, allow an elegant solution for auto-
matically calculating updated totals when users enter numbers.

DATA-* ATTRIBUTES

The order form you’re building will allow a user to enter a quantity for each of the
products in the form. The form should then automatically calculate the total price for
this item and the total order price. In order to do this, you’ll need to know the price
of a given item. In the past, you may have inserted a hidden field in each row to hold
the price for that item, or perhaps you would have stored the price data in a JavaScript
array and performed a lookup to get the price for a given product. Neither solution is
elegant—that’s where HTML5 data-* attributes come into play.

number input type 10.0 N/A 10.0* 11.0** 5.2

* Indicates partial support; although IE10 does support validation of the number
input type, it doesn’t display a spinbox widget for the field.
** Opera 11 correctly displays a spinbox widget for picking a number but doesn’t
enforce numeric validation on the field.

min and max attributes 6.0 N/A 10.0 10.6 5.0

Core API

Figure 2.6 The number input type allows the user to increment and
decrement the field value using the up and down buttons in the spinbox
on the right-hand side of the field. The user can also change the value by
typing a numeric value into the text field itself.

Core API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

47Building a form’s user interface
HTML5 data-* attributes allow you to bind arbitrary key/value pair data to any ele-
ment. JavaScript can then read this data to perform calculations and further client-
side manipulation.

 Using data-* attributes is simple: prefix the key with data- to form the attribute
name and assign it a value. In this example, you’re binding a price to a quantity
input field:

<input type="number" data-price="399.99" name="quantity">

You can then listen to this field for changes and multiply the value of the user’s
input (the quantity) by the value of the data-price attribute to calculate the total
price of the item. You’ll see how to retrieve data-* attribute values a little later. First,
we want to talk about the final feature we’re introducing in this section: the new
<output> element.

THE <OUTPUT> ELEMENT

The name of this element explains its purpose—it’s used to display output to the user.
A typical use case for the <output> element is displaying the result of a calculation
based on some data, such as that entered by a user in an <input> element. You’ll learn
how to update the value of the <output> element later on, as the work progresses. For
now, you’ll add these new features to your application code.

STEP 4: CREATE THE ORDER DETAILS FORM SECTION

The following listing contains the code for the Order Details section. Let’s put the
number input type, min/max attributes, data-* attribute, and <output> element to work.
Notice how these new features can simplify programming tasks for HTML5-compatible
browsers. Add this code directly after the code from the previous listing.

<fieldset>
 <legend>Order Details</legend>
 <table>
 <thead>
 <tr>
 <th>Product Code</th><th>Description</th><th>Qty</th>
 <th>Price</th><th>Total</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>
 COMP001
 <input type="hidden" name="product_code" value="COMP001">

data-* attributes 7.0 6.0 N/A 11.1 5.1

Listing 2.4 index.html—The Order Details form section

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

48 CHAPTER 2 Form creation: input widgets, data binding, and data validation

a
e
f

in

val

att
t

99
a d
d
ho
 </td>
 <td>The Ultimate Smartphone</td>
 <td>
 <input type="number" data-price="399.99" name="quantity"
 value="0" min="0" max="99" maxlength="2">
 </td>
 <td>$399.99</td>
 <td>
 <output name="item_total" class="item_total">$0.00</output>
 </td>
 </tr>
 <tr>
 <td>
 COMP002
 <input type="hidden" name="product_code" value="COMP002">
 </td>
 <td>The Ultimate Tablet</td>
 <td>
 <input type="number" data-price="499.99" name="quantity"
 value="0" min="0" max="99" maxlength="2">
 </td>
 <td>$499.99</td>
 <td>
 <output name="item_total" class="item_total">$0.00</output>
 </td>
 </tr>
 <tr>
 <td>
 COMP003
 <input type="hidden" name="product_code" value="COMP003">
 </td>
 <td>The Ultimate Netbook</td>
 <td>
 <input type="number" data-price="299.99" name="quantity"
 value="0" min="0" max="99" maxlength="2">
 </td>
 <td>$299.99</td>
 <td>
 <output name="item_total" class="item_total">$0.00</output>
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="4">Order Total</td>
 <td>
 <output name="order_total" id="order_total">$0.00</output>
 </td>
 </tr>
 </tfoot>
 </table>
</fieldset>

Use a number
input type to

llow the user to
nter a quantity

or each product
the order form.

The minimum
ue is set to zero

using the min
ribute, whereas
he max is set to
. Each field has
ata-* attribute,

ata-price, which
lds the price of

the product.

The <output> element will store
the line total for each product and

has a default value of $0.00.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

49Building a form’s user interface
2.2.5 Using the form input type month and input attribute pattern

The Payment Details section of the form asks users to enter their credit card details—
the name on the card, the card number, the expiry date, and the CVV2 security code,
found on the back of most cards. These fields use some of the HTML5 form features
introduced in the Contact Details section: required and placeholder input attri-
butes. The Payment Details section also uses some new features: the pattern input
attribute and the month input type.

THE MONTH INPUT TYPE

The month type allows the user to select a month and year combination from a date-
picker widget. HTML5 defines a number of date-related types: date, datetime, datetime-
local, month, week, and time. Browser support for these widgets and validation has been
slow moving—with the exception of Opera, which has had good support for these types
for quite some time, albeit with an ugly date-picker widget, as shown in figure 2.7.

Later in the chapter you’ll learn how to provide a fallback for the month input type,
which gives users something a little more intuitive than a plain text box to enter a
month value.

THE PATTERN ATTRIBUTE

The pattern attribute allows you to specify a regular expression pattern to test
against data input in a field. In the order form, we’ll use the pattern attribute on
both the card_number and card_cvv2 fields to ensure they’re numeric and of appro-
priate length.

month input type N/A N/A N/A 9.0 N/A

pattern attribute 10.0 4.0 10.0 11.0 N/A

Core API

Figure 2.7 The Opera date-picker
widget is used for all date/time input
types, including month, as shown in
this screenshot. When the date picker
is used to select a month, clicking any
day in the month will select that month.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

50 CHAPTER 2 Form creation: input widgets, data binding, and data validation

T
fo
th

d
pi

s

When using the pattern attribute, you can give a hint to your users about what format
your data field requires by using the title attribute. This hint will be shown to users
in a tooltip when they move their mouse over the field, but it will also be appended to
the error message if users enter an invalid value in the field, as shown in figure 2.8.

STEP 5: BUILD THE PAYMENT DETAILS FORM SECTION

Let’s add those two new features: the month-picker to give the user a quick and easy
way to enter dates and the pattern attribute to define valid data patterns. Add the
code from the following listing to index.html, directly after the code from the previ-
ous listing.

<fieldset>
 <legend>Payment Details</legend>

 <label class="required">
 <div>Name on Card</div>
 <input name="card_name" required>
 </label>

 <label class="required">
 <div>Credit Card No.</div>
 <input name="card_number" pattern="[0-9]{13,16}"
 maxlength="16" required title="13-16 digits, no spaces">
 </label>

 <label class="required">
 <div>Expiry Date</div>
 <input type="month" name="card_expiry" maxlength="7"
 placeholder="YYYY-MM" required value="2015-06">
 </label>

 <label class="required">
 <div>CVV2 No.</div>
 <input name="card_cvv2" class="cvv" maxlength="3"
 pattern="[0-9]{3}" required title="exactly 3 digits">
 (Three digit code at back of card)
 </label>

</fieldset>

Listing 2.5 index.html—The Payment Details form section

Figure 2.8 When the pattern matching fails, the browser
will pick up extra information about the format required
from the title attribute. If it’s provided, tag it onto the
end of the error message displayed to the user.

The regular expression in the
card number field specifies

that the value should be
numeric and between 13 and
16 characters in length. The

title attribute is used to give
users more detail about the
field’s requirements, should

they attempt to submit an
invalid value.

he expiry date
r the card uses
e month input

type, which
isplays a date-
cker widget on

supported
browsers and
hould validate
based on the
format mask

YYYY-MM.

The CVV2 security code uses a pattern attribute and
title hint to specify that the field value should

contain exactly three numeric characters.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

51Building a form’s user interface
TRY IT OUT!
You should be able to use the form now. In browsers with good support for HTML5’s
form features, you’ll be able to see the new input types, attributes, and validation func-
tionality in action. In the next section, we’ll allow users to choose whether they want
to save the data in the form for later completion or to submit it right away.

2.2.6 Allowing users to choose whether to save or submit a form: using
the input attributes formnovalidate and formaction

When users are filling out a form, they may not be able to complete the form in one
session; you need to provide them with a means of saving their progress and returning
to the form later. Because a user may need to leave the form quickly, forcing them to
correct any validation errors before saving doesn’t make sense; this is required only
when the form is finally submitted. Therefore, you need to give the user a way to
bypass validation.

 You can force an entire form to bypass validation using the new novalidate attri-
bute on the form itself. This is useful only if you want to use the new HTML5 form wid-
gets but don’t want to use any of the new validation features. An alternative approach
is to have a separate button for saving progress, which uses the formnovalidate
attribute to prevent the form from being validated when it’s used. In addition, you
may want to change the formaction property of the form to call a different URL
when saving the data rather than submitting it. You can do this in HTML5 with the
formaction attribute.

STEP 6: BYPASS FORM VALIDATION AND SAVE FORM DATA

Let’s change the order form’s Save Order button to make use of these new attributes:

■ Find the line in index.html that reads

<input type="submit" id="saveOrder" value="Save Order">

Replace that line with the following:

<input type="submit" id="saveOrder" value="Save Order" formnovalidate
formaction="/save">

■ Open the Order Form page in IE10 (and higher) and leave all the fields blank.
■ Click the Submit Order button, and an error message will pop up on the Name

field telling you that this field must be filled out.
■ Click the Save Order button, and you’ll notice that the validation will no longer

be performed, and the URL the form has been submitted to will be /save rather
than /submit.

That was easy, huh? Unfortunately, it’s not all that simple, because this won’t work on
browsers that don’t support these new attributes. Thankfully, with a little bit of Java-
Script you can fix this problem.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

52 CHAPTER 2 Form creation: input widgets, data binding, and data validation
STEP 7: CHANGE THE FORM ACTION IN OLDER BROWSERS

On older browsers, the application should also be able to change the form action.
When the user submits the form, it should call a different URL than when saving
the data.

 Create a new file named app.js in the same directory as the index.html file. Add
the contents of the next listing to this file.

(function() {
 var init = function() {
 var orderForm = document.forms.order,
 saveBtn = document.getElementById('saveOrder'),
 saveBtnClicked = false;

 var saveForm = function() {
 if(!('formAction' in document.createElement('input'))) {
 var formAction = saveBtn.getAttribute('formaction');
 orderForm.setAttribute('action', formAction);
 }
 saveBtnClicked = true;
 };

 saveBtn.addEventListener('click', saveForm, false);
 };

 window.addEventListener('load', init, false);
})();

If you open the page in a browser that doesn’t support the formaction attribute, such
as IE9, clicking the Submit Order button submits the form to the /submit URL. Under
the same initial conditions, clicking the Save Order button submits the form to the /save
URL. You’ll also notice that the validation doesn’t work; don’t worry, you’ll add a fall-
back for that later in the chapter.

PROGRESS CHECK

To this point, you’ve created the major pieces of the form: the Contact Details, Login
Details, Order Details, and Payment Details sections. Using new HTML5 input types,
such as email or tel, the new input attributes such as required, and the general
data-* attribute and <output> element, can simplify coding for some browsers. Another
tedious task, the implementation of bypassing data validation when saving an incom-
plete form, can be simplified for browsers that support the new input attributes
formnovalidate and formaction.

 In the next section, you’ll implement the computational logic behind the Order
Details section, taking the quantity values entered by the user, then calculating and
displaying the total values for each item and the entire order.

Listing 2.6 app.js—Changing the form action in older browsers

When users click the
Save button, check if

their browser
supports the

formaction
attribute.

If the
browser
doesn’t
support

formaction,
manually set

the action
attribute on

the form
using the

setAttribute
method.

This flag will be used
later in the chapter
when you provide
fallback validation
for browsers that
don’t support
HTML5 validation.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

53Calculating totals and displaying form output

r
2.3 Calculating totals and displaying form output
In the previous section, you used data-* attributes to associate key/value pair data
with the quantity field, and you added <output> elements to the totals for each
product and for the order total. Yet, in its present state, the order form doesn’t
seem to care what values you enter for the quantity fields—the total amounts are
always $0.00.

In this section, you’ll use the data-* attributes and <output> element to calculate the
totals and output the results to the user’s browser. Four steps will get you there:

■ Step 1: Add functions to calculate total values.
■ Step 2: Retrieve the value of quantity input fields.
■ Step 3: Retrieve price values and calculate line and form totals.
■ Step 4: Display updated totals on the order form.

2.3.1 Building calculation functions

We’ll start by building the functions that will perform the calculations in the order
form example.

STEP 1: ADD FUNCTIONS TO CALCULATE TOTAL VALUES

The code in listing 2.7 gets the relevant fields (quantity, item total, and order total)
from the DOM and sets up an event listener on each of the quantity fields to calculate
the totals whenever the user modifies the quantity value. The calculation code isn’t
shown in the listing; you’ll add that later in the chapter.

 Open app.js and add the following code to the end of the init function, below the
line saveBtn.addEventListener('click', saveForm, false);.

var qtyFields = orderForm.quantity,
 totalFields = document.getElementsByClassName('item_total'),
 orderTotalField = document.getElementById('order_total');

var formatMoney = function(value) {
 return value.toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",");
}

var calculateTotals = function() {
 var i = 0,
 ln = qtyFields.length,

In this section, you’ll learn
■ How to read input values in numeric format using the valueAsNumber property
■ How to access data from HTML5 data-* attributes
■ How to update the <output> element

Listing 2.7 app.js—Functions to calculate total values

Returns a
number
formatted for
currency, using
a comma as a
1,000 separato
character.

Calculates the
totals for each
item and the
overall order total.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

54 CHAPTER 2 Form creation: input widgets, data binding, and data validation

Calls
qtyListen

functio
add e

listener
fie
 itemQty = 0,
 itemPrice = 0.00,
 itemTotal = 0.00,
 itemTotalMoney = '$0.00',
 orderTotal = 0.00,
 orderTotalMoney = '$0.00';

 for(; i<ln; i++) {
 }
};

calculateTotals();

var qtyListeners = function() {
 var i = 0,
 ln = qtyFields.length;

 for(; i<ln; i++) {
 qtyFields[i].addEventListener('input', calculateTotals, false);
 qtyFields[i].addEventListener('keyup', calculateTotals, false);
 }
};

qtyListeners();

We’ll now look at valueAsNumber, a new HTML5 property that allows you to get a
numeric representation of the value of an input field element.

THE VALUEASNUMBER PROPERTY

The value property of an input element like qtyFields[i] allows you to read the cur-
rent value of that element in JavaScript. But this value is always returned as a string. If
you needed to convert the value to a floating-point number, you likely used parse-
Float, but HTML5 has provided a new solution, the valueAsNumber property.

 When you read the valueAsNumber property of a number input type, the property
returns the number as a floating-point number. If you assign a floating-point number
to the valueAsNumber property of a number input type, the property will convert the
floating-point number to a string-based value.

The valueAsNumber property should be available on browsers that support the new
number input type—but what if the browser doesn’t support this and has fallen back
to a regular text input? In this case, you can fall back on the JavaScript parseFloat

Using valueAsDate for date and time fields
In the case of date/time fields, there is a property, valueAsDate, that works much
like the valueAsNumber property. When you use it to retrieve the value of a date-
oriented field, it will return a Date object. Similarly, you can use the property to set
the value of the field to a Date object.

You’ll add
calculation code in
this for loop later
in the section.

Perform an initial calculation, just in case
any fields are prepopulated. Because the
init function is called on page load, any
prepopulated data will be ready for access.

The input event doesn’t detect backspace or
delete keystrokes or cut actions in IE9, so

bind to the keyup event as well.

 the
ers

n to
vent
s to
lds.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

55Calculating totals and displaying form output

er

n
s

valueAsNum
isn’t availab
older brows

so fall bac
use parseFl
function. The following statements are equivalent for reading the floating-point
value of a field:

value = field.valueAsNumber; //HTML5 version
value = parseFloat(field.value); //Fallback version

Similarly, the following statements provide the same result when modifying the floating-
point value of a field:

field.valueAsNumber = value; //HTML5 version
field.value = value.toString(); //Fallback version

STEP 2: RETRIEVE THE VALUE OF QUANTITY INPUT FIELDS

In the order form example, you’ll use the valueAsNumber property to get the value of
the quantity fields for each product row in the Order Details section. Inside the empty
for loop from listing 2.7, add the following code.

if(!!qtyFields[i].valueAsNumber) {
 itemQty = qtyFields[i].valueAsNumber || 0;
} else {
 itemQty = parseFloat(qtyFields[i].value) || 0;
}

Next you’ll learn how to read HTML5 data-* attribute values to get the prices for each
of the items, and then you’ll implement it in the sample application.

2.3.2 Accessing values from HTML5 data-* attributes

Earlier, you learned how to bind key/value pair data to elements using the new
data-* attributes in HTML5. This information is useful when you want to add extra

Why use valueAsNumber instead of parseFloat?
At this point, you may be wondering why you’d use valueAsNumber at all, when you
can use parseFloat instead, and it’ll work consistently across all browsers. value-
AsNumber offers a more concise way to convert values between string and floating-
point. Also, using valueAsNumber over parseFloat could lead to a tiny increase in
performance, but this is unlikely to be noticeable in most web applications. When the
usefulness of valueAsNumber was questioned on a W3C mailing list, HTML5 editor
Ian Hickson provided a use case where the valueAsNumber property was much more
concise than parseFloat—incrementing the value of a field programmatically.
Here’s an example:

field.valueAsNumber += 1; //HTML5 version
field.value = (parseFloat(field.value) + 1).toString() //Fallback

version

Listing 2.8 app.js—Getting the value of the quantity input fields

Testing for existence of valueAsNumb
property. The !! is used to cast the
property valueAsNumber to a Boolea
type. The first ! negates the truthnes
of the property and converts it to a
Boolean. The second ! converts the
Boolean to its original truth state.

ber
le in
ers,
k to
oat.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

56 CHAPTER 2 Form creation: input widgets, data binding, and data validation
data to an element that can be easily picked up and used in your JavaScript code. It’s
straightforward to read data-* attributes—each element has a dataset property that
contains all of the data-* attributes for that element. Each of the items in the data-
set property has a key name that matches the key name in the element markup,
with the data- prefix dropped. In listing 2.4 you defined the item’s price using the
data-price attribute. To retrieve that value, you can use the following code:

var price = element.dataset.price;

WARNING If you hyphenate your data-* attribute names, they’ll be camelcased
in the dataset property. For example, if you use the attribute name data-
person-name, you’d read this using element.dataset.personName rather
than element.dataset.person-name.

The dataset property is new in HTML5, but it’s not yet supported in all browsers.
Thankfully, we can show you an easy fallback that’ll work on all modern browsers (yes,
even IE6)—the getAttribute method. To get the value of the data-price attribute
using this fallback, you’d use the following code:

var price = element.getAttribute('data-price');

STEP 3: RETRIEVE PRICE VALUES AND CALCULATE LINE AND FORM TOTALS

In the order form example, let’s add some code to get the price of each item and use
it to calculate the total cost for each line by multiplying the quantity by the price, as
well as the total cost for the entire order. Add the code from the following listing right
below the code from the previous listing and before the terminating bracket of the
for loop.

if(!!qtyFields[i].dataset) {
 itemPrice = parseFloat(qtyFields[i].dataset.price);
} else {
 itemPrice = parseFloat(qtyFields[i].getAttribute('data-price'));
}

itemTotal = itemQty * itemPrice;
itemTotalMoney = '$'+formatMoney(itemTotal.toFixed(2));
orderTotal += itemTotal;
orderTotalMoney = '$'+formatMoney(orderTotal.toFixed(2));

Now that you’ve calculated the totals for each item and the overall order total, all
that’s left is to display these values on the form using <output> elements. By writing
values to the <output> element in browsers that support the <output> element, you
can access it through the form, for example:

var element = document.forms.formname.outputname;

Listing 2.9 app.js—Getting the price values using data-* attributes

Fall back to getAttribute
if the dataset property

isn’t available.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

57Calculating totals and displaying form output
To update the value of an <output> element, you can set the value property:

element.value = newValue;

Let’s add the code you need to update the totals in your order form example.

STEP 4: DISPLAY UPDATED TOTALS ON THE ORDER FORM

Add the code from the next listing to app.js, right after the code from the previous
listing and before the terminating bracket of the for loop.

if(!!totalFields[i].value) {
 totalFields[i].value = itemTotalMoney;
 orderTotalField.value = orderTotalMoney;
} else {
 totalFields[i].innerHTML = itemTotalMoney;
 orderTotalField.innerHTML = orderTotalMoney;
}

TRY IT OUT!
At this point, the calculation of item line and overall order total values should be
working. Load the page in a modern browser and try changing the value of the quan-
tity fields—you should notice the totals change accordingly. This is demonstrated in
the screenshot in figure 2.9.

 Your form now has the ability to compute totals and validate data, but what if you
want to provide additional validation functions with custom error messages? In the
next section, you’ll extend the validation of the form to perform custom validation
using the Constraint Validation API and to style invalid fields using CSS3.

What to do for browsers that don’t support <output>
To access the element in browsers that don’t support <output>, you’ll need to give
the element an ID and use document.getElementById instead:

 var element = document.getElementById('outputid');

To update the value of the element, set the innerHTML property:

 element.innerHTML = newValue;

Listing 2.10 app.js—Displaying updated totals using the <output> element

Test if the <output>
element is supported
by the user’s browser.

Figure 2.9 When the user
enters a quantity for an item,
the application multiplies it by
the price for that item to get the
total, then adds up all totals to
get the overall order total.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

58 CHAPTER 2 Form creation: input widgets, data binding, and data validation
2.4 Checking form input data with the Constraint
Validation API
Earlier in the chapter, you learned about some of HTML5’s new validation features—
the required, pattern, and min and max attributes—that enable the browser itself to
perform native validation on form input fields without requiring any additional Java-
Script. These attributes are only the beginning when it comes to HTML5 validation—
the Constraint Validation API offers many more possibilities.

The Constraint Validation API defines new properties and methods you can use to
detect and modify the validity of a given element. Using this API, you can provide
additional validation functionality and use custom error messages. The API allows you
to detect whether a field has an error and, if so, what type of error and what error mes-
sage you’ll display. It also provides a method that allows you to set your own custom
validation message that will be displayed natively by the browser.

In this section, as you continue working on this chapter’s sample application, you’ll
walk through two steps:

■ Step 1: Add custom validation and error messages to input fields.
■ Step 2: Detect form validation failure.

Also, although you won’t have to do any coding because we’ve already provided the
full CSS file for the sample application, at the end of the section we’ll show you how
to style invalid fields using CSS so you’ll be prepared to do so in your own apps.
First up, let’s explore and use some of the Constraint Validation API’s properties
and methods.

In this section, you’ll learn
■ How to use validation properties and methods to design custom validation tests
■ How to use the invalid event to detect invalid fields on a submitted form
■ How to use the new pseudo-class selectors in CSS3 to apply styling to invalid

fields without adding redundant class names to your input elements

Constraint Validation API 10.0 4.0 10.0 10.0 5.0*

* Indicates partial support; although Safari 5.0 supports the Constraints Validation API, it
doesn’t currently enforce it automatically and display inline error messages like other
browsers do.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

59Checking form input data with the Constraint Validation API

v

d

2.4.1 Creating custom validation tests and error messages with the
setCustomValidity method and the validationMessage property

When a validation function isn’t supported by a browser or by HTML5, the application
will have to implement a custom validation test. In these cases, you’ll have to write
some JavaScript to test the validity of the entered data and provide a custom error
message when the validation fails. The Constraint Validation API simplifies the imple-
mentation of custom error messages by providing a setCustomValidity method and
a validationMessage property. Both constructs allow the application to assign an
error message to the <input> element’s validationMessage attribute. Determining
which construct to use will depend on the browser’s support for setCustomValidity.

STEP 1: ADD CUSTOM VALIDATION AND ERROR MESSAGES TO INPUT FIELDS

The order form example will perform custom validation for a number of tests using
the setCustomValidity method:

■ Full Name must be at least four characters long.
■ Password must be at least eight characters long.
■ Password and Confirm Password must match.
■ Name on Card must be at least four characters long.

Let’s add this custom validation to the app.js file. Add the code from this listing to the
end of the init function, directly after the call to qtyListeners.

var doCustomValidity = function(field, msg) {
 if('setCustomValidity' in field) {
 field.setCustomValidity(msg);
 } else {
 field.validationMessage = msg;
 }
};

var validateForm = function() {
 doCustomValidity(orderForm.name, '');
 doCustomValidity(orderForm.password, '');
 doCustomValidity(orderForm.confirm_password, '');
 doCustomValidity(orderForm.card_name, '');

 if(orderForm.name.value.length < 4) {
 doCustomValidity(
 orderForm.name, 'Full Name must be at least 4 characters long'
);
 }

 if(orderForm.password.value.length < 8) {
 doCustomValidity(
 orderForm.password,
 'Password must be at least 8 characters long'
);
 }

Listing 2.11 app.js—Performing custom validation

Core API

Check if the browser supports
the setCustomValidity method;
if not, manually set the value
of validationMessage.

Perform
custom

alidation
check; if

that fails,
call the

oCustom-
Validity

function.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

60 CHAPTER 2 Form creation: input widgets, data binding, and data validation

v

d

 if(orderForm.password.value != orderForm.confirm_password.value) {
 doCustomValidity(
 orderForm.confirm_password,
 'Confirm Password must match Password'
);
 }

 if(orderForm.card_name.value.length < 4) {
 doCustomValidity(
 orderForm.card_name,
 'Name on Card must be at least 4 characters long'
);
 }
};

orderForm.addEventListener('input', validateForm, false);
orderForm.addEventListener('keyup', validateForm, false);

TRY IT OUT!
If you load the form in a compatible browser and try to break the custom validation
rules described previously, you’ll notice that the custom error message will be dis-
played to the user, as illustrated in figure 2.10.

 Next you’ll use the invalid event, which fires any time the user tries to submit a
form with one or more fields that are marked as invalid.

2.4.2 Detecting a failed form validation with the invalid event

When the user attempts to submit a form that uses HTML5 validation features, the
submit event will only fire if the entire form has passed the validation tests. If you
need to detect when form validation has failed, you can listen for the new invalid
event. This event is fired when one of the following occurs:

■ The user attempts to submit the form and validation fails.
■ The checkValidity method has been called by the application and has

returned false.

STEP 2: DETECT ORDER FORM VALIDATION FAILURE

Let’s add a listener to the invalid event in the order form. Add the following code
directly after the code from the previous listing.

Perform
custom

alidation
check; if

that fails,
call the

oCustom-
Validity

function.

The keyup event
binding is
required to
detect backspace,
delete, and cut
actions in IE9.

Figure 2.10 A demonstration of custom validation in action. In this case, the user has entered a valid
password (at least eight characters in length), but they’ve entered a value in the Confirm Password
field that doesn’t match the value in the Password field. This causes the error “Confirm Password must
match Password” to be displayed.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

61Checking form input data with the Constraint Validation API
var styleInvalidForm = function() {
 orderForm.className = 'invalid';
}

orderForm.addEventListener('invalid', styleInvalidForm, true);

The invalid event is useful if you want to apply styling to erroneous form fields on a
submitted form. You’ll learn how to do that next.

2.4.3 Styling invalid elements using CSS3 pseudo-classes

One way to style invalid elements would be to iterate over the fields, checking if each
one is invalid and applying CSS classes to those that have errors. But this is a bit cum-
bersome, and you can do this much more elegantly using a bit of CSS3 magic.

 CSS3 introduces a range of new pseudo-classes for styling form fields based on their
validity. These styles will be applied only if the condition defined by the pseudo-class is
true. The following self-explanatory pseudo-classes are available:

■ :valid

■ :invalid

■ :in-range

■ :out-of-range

■ :required

■ :optional

As you can probably guess, pseudo-classes make styling invalid fields easy. For exam-
ple, the following code would style any element declared invalid by the Constraint Val-
idation API with a light red background and a maroon border:

:invalid {
 background-color: #FFD4D4;
 border: 1px solid maroon;
}

But this declaration has a problem: Any field that uses validation attributes like
required or pattern will be initially invalid because these order form fields are blank.
As a result, those fields that apply validation attributes will display a red background
and maroon border, which isn’t nice.

 Fortunately, you can easily get around this by applying a class to the parent form
when the invalid event has fired and adding the pseudo-class selector, :invalid, to
the CSS rules for the input and selector elements in the form.

Listing 2.12 app.js—Listening to the invalid event

Add a class invalid to the <form> element.
You’ll use this in the next section to style
invalid fields on a submitted form.

Listens to the invalid event on the form
and all other elements in the form.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

62 CHAPTER 2 Form creation: input widgets, data binding, and data validation
NOTE Please don’t change the CSS file that you included in your applica-
tion’s directory when you started the chapter. In this section, we’re walking
through the theoretical changes you might make rather than directing you to
make changes.

In the previous section, you applied a class to the parent form. So, now add the
pseudo-class selector, :invalid, to the CSS:

form.invalid input:invalid, form.invalid select:invalid,
form.invalid input.invalid, form.invalid select.invalid {
 background-color: #FFD4D4;
 border: 1px solid maroon;
}

The order form also uses the :required pseudo-class to style required fields with a
light yellow background:

input:required, select:required {
 background-color: lightyellow;
}

A screenshot of the required and invalid field styling is shown in figure 2.11.

At this point, the form is more or less fully functional for most recent versions of all
browsers (with the exception of Safari). In the next section, you’ll learn how to per-
form rock-solid feature detection using the Modernizr library and how to plug feature
gaps using polyfills.

2.5 Providing fallbacks for unsupported browsers
One of the main drawbacks to using HTML5’s new features is that browser support
isn’t uniform. Thus, you need to find ways to allow those with the latest and greatest
browsers to make use of HTML5 features while ensuring that those using slightly older
versions aren’t left behind.

Figure 2.11 The required fields are styled with a light yellow background (left), as you can see in the
Name on Card and Expiry Date fields. The invalid fields are styled with a light red background and a
maroon border (right), as shown in the Credit Card No. and CVV2 No. fields.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

63Providing fallbacks for unsupported browsers
You’ll learn about these topics as you build out your form using these three steps:

■ Step 1: Build feature detection and conditionally deploy a fallback for month-
picker.

■ Step 2: Build fallback constraint validation for Safari 5.1.
■ Step 3: Build fallback constraint validation for IE9.

First up, though, we’d like to give you an overview of feature detection with Modernizr.

2.5.1 Detecting features and loading resources with Modernizr: an overview

An important concept when you’re working with HTML5’s new APIs is that of feature
detection—testing to see if the browser supports a given feature. Unfortunately, the
approaches for detecting feature support vary widely, making it difficult to remember
how to test for each individual feature. Another issue with feature detection is that you
may wish to load certain external resources only if the user’s browser supports (or
doesn’t support) a given feature. We don’t see a point, for example, to loading a large
WebGL support framework if the user’s browser doesn’t support WebGL. In a similar
way, why should we load a color-picker widget library if the user’s browser includes a
native widget that will be used instead? Dynamic loading of external resources is possi-
ble, but the JavaScript for doing so is hardly straightforward.

 Enter Modernizr, a purpose-built JavaScript library for performing bulletproof
feature detection and dynamic loading. When you include Modernizr in a web
page, you can detect support for a feature using a much easier syntax. For exam-
ple, to check to see if the user’s browser supports the Canvas element, you’d use
the following:

if(Modernizr.canvas) {
 //Canvas is supported, fire one up!
} else {
 //Canvas is not supported, use a fallback
}

In this section, you’ll learn
■ How Modernizr simplifies detection of browser support for various features of

HTML5 and conditionally loads fallbacks
■ How to plug gaps in browser support with polyfills, a JavaScript fallback, that will

only deploy if the browser lacks native support
■ How to use JavaScript to implement basic fallback validation for those browsers

that don’t yet fully support the Constraint Validation API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

64 CHAPTER 2 Form creation: input widgets, data binding, and data validation
To detect Canvas support without Modernizr, you’d need to use the following:

if(!!document.createElement('canvas').getContext) {
 //Canvas is supported, fire one up!
} else {
 //Canvas is not supported, use a fallback
}

It’s also simple to use Modernizr to dynamically load resources (either .js or .css files)
based on a feature test. Consider this example, in which Modernizr will determine if
the browser supports the localStorage API. If supported, it will load the localstorage.js
file, which would likely contain code that interacts with this API. Otherwise, it will load
the localstorage-polyfill.js file, which contains a fallback.

Modernizr.load({
 test: Modernizr.localstorage,
 yep: 'localstorage.js',
 nope: 'localstorage-polyfill.js'
});

Moving on, let’s explore the concept of a polyfill and how you can use it to plug fea-
tures that aren’t supported by a given browser.

2.5.2 Using polyfills and Modernizr to plug the gaps
The term polyfill was coined by Remy Sharp and refers to a piece of code (or shim)
that aims to implement missing parts of an API specification. The origin of the term is
from a product named Polyfilla, which builders use to fill gaps or cracks in walls. Like-
wise, we developers can use polyfills to fill the gaps or cracks in various web browsers’
support for HTML5.

TIP Paul Irish, one of the key contributors to the Modernizr library, edits
and maintains a comprehensive list of polyfills, shims, and fallbacks for a wide
variety of HTML5 features. This list is available on Modernizr’s GitHub wiki at:
http://mng.bz/cJhc.

STEP 1: BUILD FEATURE DETECTION AND CONDITIONALLY DEPLOY A FALLBACK FOR MONTH-PICKER

Let’s look at how to use Modernizr to load a month-picker polyfill into those browsers
without a built-in month-picker. We expect that you’ve already placed the monthpicker.js
file from this chapter’s source code (available at http://manning.com/crowther2) in
the same directory as the files you’ve been building in this chapter. Now add the code
from the next listing to the end of the init function, directly after the code you
added from the previous listing.

Modernizr.load({
 test: Modernizr.inputtypes.month,
 nope: 'monthpicker.js'
});

Listing 2.13 app.js—Using the month-picker polyfill

Core API

If the user’s browser doesn’t support the
month input type, load the monthpicker.js file.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/cJhc
http://manning.com/crowther2

65Providing fallbacks for unsupported browsers
If you load the order form in any browser that doesn’t natively support the month
input type, you should see the standard text input replaced with a month drop-down
and a year number input field. This is illustrated in the side-by-side screenshots in fig-
ure 2.12.

 You can apply the same technique to most of the HTML5 form’s functionality. In
fact, several projects are in the works that aim to polyfill the entire set of forms fea-
tures in HTML5. These projects include

■ Webshims Lib by Alexander Farkas (http://afarkas.github.com/webshim/
demos/)

■ H5F by Ryan Seddon (https://github.com/ryanseddon/H5F)
■ Webforms2 by Weston Ruter (https://github.com/westonruter/webforms2)
■ html5Widgets by Zoltan “Du Lac” Hawryluk (https://github.com/zoltan-dulac/

html5Forms.js)

Let’s wrap up this chapter by performing some basic validation, even on browsers that
don’t support the Constraint Validation API.

2.5.3 Performing validation without the Constraint Validation API

If you run the order form example in Safari 5.1 or older versions of other browsers
(such as IE9), you’ll notice that the validation functionality doesn’t work—the form
will submit without performing any validation. In this section, you’ll learn how to use
JavaScript to perform this validation and, if any errors are found, prevent submission
of the form.

STEP 2: BUILD FALLBACK CONSTRAINT VALIDATION FOR SAFARI 5.1
In the case of Safari 5.1, the Constraint Validation API is partially supported. This
means if you have an <input> element in your form with the required attribute set,
the element wouldn’t pass validation in Safari 5.1. But Safari doesn’t implement any
of the UI features, such as displaying error messages next to invalid fields, nor does
it prevent the form from submitting if errors exist in the form. Let’s start off by
reversing this and displaying an error message to the user if there are errors. Add
the code from the following listing to your app.js file, right after the code from the
previous listing.

Figure 2.12 Before the polyfill has been loaded, the Expiry Date field is represented merely by a text
input. After the polyfill has been loaded, the field has been replaced with a month drop-down and a
year number input field. The polyfill listens for changes to these fields and populates a hidden field,
which stores the month in YYYY-MM format. This hidden field will be sent to the server when the
form is submitted.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://afarkas.github.com/webshim/demos/
https://github.com/ryanseddon/H5F
https://github.com/westonruter/webforms2
https://github.com/zoltan-dulac/html5Forms.js
http://afarkas.github.com/webshim/demos/
https://github.com/zoltan-dulac/html5Forms.js

66 CHAPTER 2 Form creation: input widgets, data binding, and data validation

func
retri
the l

for a
u

either
la

prop
o

checkin
the fie

pa
elemen

a la

and
e

var getFieldLabel = function(field) {
 if('labels' in field && field.labels.length > 0) {
 return field.labels[0].innerText;
 }
 if(field.parentNode && field.parentNode.tagName.toLowerCase()=== 'label')

{
 return field.parentNode.innerText;
 }
 return '';
}

var submitForm = function(e) {
 if(!saveBtnClicked) {
 validateForm();
 var i = 0,
 ln = orderForm.length,
 field,
 errors = [],
 errorFields = [],
 errorMsg = '';

 for(; i<ln; i++) {
 field = orderForm[i];
 if((!!field.validationMessage &&
 field.validationMessage.length > 0) || (!!field.checkValidity
 && !field.checkValidity())
) {
 errors.push(
 getFieldLabel(field)+': '+field.validationMessage
);
 errorFields.push(field);
 }
 }

 if(errors.length > 0) {
 e.preventDefault();

 errorMsg = errors.join('\n');

 alert('Please fix the following errors:\n'+errorMsg, 'Error');
 orderForm.className = 'invalid';
 errorFields[0].focus();
 }
 }
};

orderForm.addEventListener('submit', submitForm, false);

If you load the form in Safari and try to submit with invalid fields, you’ll get an error
message like the one shown in figure 2.13, and the invalid fields will highlight in red.
This isn’t the prettiest way to inform your users of errors—in practice you’d probably
try to mimic the behavior of one of the other browsers by showing an error bubble
next to the first error that’s encountered.

Listing 2.14 app.js—Preventing an invalid form from submitting in Safari 5.1

This
tion
eves
abel
field
sing
 the
bels
erty
r by
g if
ld’s

rent
t is
bel.

You previously added an event to the Save Order
button. When it’s clicked, a saveBtnClicked flag is
marked as true. This flag is used to determine
whether or not the form should be validated.

Loop through the fields in the order
form and check if each field is valid.

If the checkValidity method is available
returns false, or if the validationMessag
property is populated, then the field
contains an error and should be pushed
into the errors and errorFields arrays.

If there are errors, this stops the form
from submitting and alerts the user with
the errors that have been found. Also, this
adds the class invalid to the order form to
ensure invalid fields are styled correctly
and sets the focus on the first invalid field.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

67Providing fallbacks for unsupported browsers

STEP 3: BUILD CONSTRAINT FALLBACK VALIDATION FOR IE9
You need to solve one last issue. If you try to submit the form in IE9, you’ll see error
messages if any input fields don’t pass the custom validation tests you wrote earlier.
This is great, but IE9 doesn’t support the standard attribute-based validation parame-
ters or the email input type. To fix this, you need to create a function to scan the form
for the input field attributes required and pattern and input type email. When the
app has collected those fields, you’ll test their validity. Add the code from the next list-
ing to app.js, directly after the code from the previous listing.

var fallbackValidation = function() {
 var i = 0,
 ln = orderForm.length,
 field;

 for(;i<ln;i++) {
 field = orderForm[i];
 doCustomValidity(field, '');

 if(field.hasAttribute('pattern')) {
 var pattern = new
 RegExp(field.getAttribute('pattern').toString());
 if(!pattern.test(field.value)) {
 var msg = 'Please match the requested format.';
 if(field.hasAttribute('title') &&
 field.getAttribute('title').length > 0) {
 msg += ' '+field.getAttribute('title');
 }
 doCustomValidity(field, msg);
 }
 }
 if(field.hasAttribute('type') &&
 field.getAttribute('type').toLowerCase()=== 'email') {

Listing 2.15 app.js—Fallback validation in IE9

Figure 2.13 Safari now
validates the form, displaying
a generic alert dialog box with
a list of errors that the user
needs to correct. You’ll notice
that for each invalid field, the
field’s label has been picked
up along with the relevant
error message that’s to be
displayed to the user.

If the pattern attribute is set, this
matches its regular expression
against the field’s value.

If the input
type is email,
validate it
with the
defined
pattern.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

68 CHAPTER 2 Form creation: input widgets, data binding, and data validation
 var pattern = new RegExp(/\S+@\S+\.\S+/);
 if(!pattern.test(field.value)) {
 doCustomValidity(field, 'Please enter an email address.');
 }
 }
 if(field.hasAttribute('required') && field.value.length < 1) {
 doCustomValidity(field, 'Please fill out this field.');
 }
 }
};

var pattern was chosen for brevity, not reliability. Designing a good pattern depends
on many issues and exceeds this chapter’s scope. To use this code, you need to call the
fallbackValidation function when validating the form. Locate the validateForm
function in your app.js file, and add the following snippet before the line if(order-
Form.name.value.length < 4) {.

if(!Modernizr.input.required || !Modernizr.input.pattern) {
 fallbackValidation();
}

The snippet uses Modernizr to test whether the required and pattern attributes are
supported, and if not, it calls the fallbackValidation function. If you run the exam-
ple in IE9, you should see that the validation includes checking required, pattern,
and email, as well as custom validation.

 This fallback, Modernizr, and the month-picker polyfill are only a sample of the
tools you can use to quickly provide backward compatibility in your HTML5 applica-
tions. You could easily expand on these to provide support for even older browsers
such as IE6 (hint: use a library like jQuery to help with things like event handlers and
DOM traversal). You shouldn’t let a lack of browser support stop you from using
HTML5 form features—it’s easy to fill any gaps.

2.6 Summary
HTML5 gives you a lot of functionality for improving web forms. New input types like
email and tel provide more widgets with less coding. Using the new input attribute,
pattern, enables many validation tasks to be done with no JavaScript. Creating cus-
tom validation tests and error message is now much easier with the Constraint Valida-
tion API. Also, binding data to HTML elements can be done more efficiently with the
data-* attribute.

 Unfortunately, browser support is spotty, and browser vendors have been relatively
slow to implement these features. Slow and partial implementation of form features
appears unlikely to change anytime soon. But this shouldn’t stop you from adding
HTML5 form functionality to your web apps. When you have a powerful tool like
Modernizr for detecting feature support and a growing list of polyfills, you have an
efficient way to add HTML5 form support to your applications.

If the required attribute is set, verify
that the user has entered a value.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

69Summary
 During the development of this form, you had to provide the form with a save fea-
ture. The application had no way to save the form on the client, so the application had
to save the form on the server. Saving the form on the client’s local system would have
been a better solution; it would have delivered a faster response and required little or
no server resources. And that’s what you’ll learn in the next chapter: how to create
and save files on the client side with the File System API.

 You’ll also learn how to augment a form’s editing functions with the Editing and
Geolocation APIs. Sometimes, forms require users to add more than just plain num-
bers and names. For instance, text entered into a blog posting form will need special
formatting (for example, bolding or italics). The Editing API has powerful constructs
to quickly build in this kind of rich media support. If you need to insert a map, the
next chapter will show you how to use the Geolocation API to add a localized mapping
service to a web-based editor.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Chapter 3 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

Editing API Allowing users to compose and edit HTML content
■ execCommand()
■ File Editor view markup

81
77

Geolocation API Providing geographic data about the user’s location
■ getCurrentPosition() 82

Quota Management
API

Querying local storage about availability and usage; request-
ing a local storage quota
■ File System API 85

File API Reading file objects
■ readAsText() 89

File Writer API Writing data to files stored with the File System API
■ Editing files
■ CreateFormSubmit

89
91

Drag and Drop API Using the mouse to select files for import and export
■ Importing files using the drop and dragover events
■ Saving files using the draggable attribute and
dragstart event

97

98

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

File editing and
management: rich

formatting, file storage,
drag and drop
The web is no longer merely a set of interconnected documents that people use to
find information; it’s also an application platform that allows developers to build
web apps that anyone with a computer and browser can use. In HTML5, new stan-
dardized JavaScript APIs enable web apps to present an application interface similar
to current desktop apps. Features such as rich-text editing, drag/drop interactions,
local file management, and geolocation are now possible.

 This chapter teaches you how to use all of these new features and APIs by walk-
ing you through the build of the Super HTML5 Editor, an HTML editor application
that runs entirely on the client side, with no server-side requirements. The applica-
tion allows users to manipulate HTML documents using one of two editor modes:

This chapter covers
■ Rich-text HTML editing
■ Location awareness with geolocation
■ Working with files in a local filesystem
■ Implementing drag and drop
71

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html

72 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
■ A visual WYSIWYG editor for formatting text, inserting hyperlinks, adding images,
and inserting maps

■ An HTML markup editor for changing, adding, and deleting markup elements, use-
ful when you need formatting or a layout feature not supported in the visual editor

To make things more fun, the application also offers a client-side sandboxed filesys-
tem where the user can create, import, export, edit, view, and delete files. To put icing
on the cake, users will also be able to import and export files using drag and drop.

 Let’s jump right in with a high-level overview of the sample application you’re
going to build, followed by work on prerequisites and first steps.

3.1 The Super HTML5 Editor: application overview,
prerequisites, and first steps
As you can see in figure 3.1, the final application will be split into two major views, the
File Browser view and the File Editor view.

Why build the Super HTML5 Editor?
While working through this chapter’s sample application, you’ll learn to use the following:

■ The HTML Editing API to allow users to edit HTML markup using rich-text controls
■ The Geolocation API to capture the user’s current location for use in a map
■ The File System API to provide a client-side sandbox to store the user’s files
■ Drag and drop to simplify the importation and exportation of files

File Browser view File Editor view

Figure 3.1 The two views of the Super HTML5 Editor application are shown. The File
Browser view (left) allows users to manipulate the files stored in the app; the File Editor
view (right) enables the file to be modified using rich-text editing controls or directly using
HTML markup.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

73The Super HTML5 Editor: application overview, prerequisites, and first steps
The File Browser view allows users to create empty files, import files from their computers,
view a list of existing files, and perform an action on one of these files such as View, Edit,
Delete, and Export. This view also provides drag-and-drop support for working with files.

 The File Editor view provides two editors for manipulating the file’s contents: a visual
WYSIWYG editor and a raw HTML markup editor. This view also allows the user to save
their changes, preview the file, and return to the File Editor view. It will also warn the user
if they try to navigate away from the File Editor view when they have unsaved changes.

In this section, you’ll build the HTML document for the application and implement
basic navigation and state management functionality using JavaScript. The work hap-
pens in five steps:

■ Step 1: Create index.html.
■ Step 2: Add markup for the File Browser view.
■ Step 3: Add markup for the File Editor view.
■ Step 4: Initialize the application.
■ Step 5: Enable navigation between views and manage the state of documents

being edited.

Before you begin: important browser notes
The File System API (also known as the File Directories and System API) is a relatively
late addition to the HTML5 specification and thus hasn’t yet been implemented by
most browser vendors. Although most have provided partial support for the accompa-
nying File API, which you can use to read the contents of local files that the user
selects or drops into the application, only Google Chrome currently supports the File
System and File Writer APIs that are used to actually create and store files on the
client side. The sample application has been written to include vendor prefixes that
will probably be used when the other browsers start to include support for these fea-
tures, but we can’t guarantee that their actual implementation will follow this path.

Also, if you’re using Chrome and plan to test this application in your local directory
instead of on a server, you’ll need to start Chrome with the following option:

 --Allow-File-Access-From-Files

If you don’t, your application’s client-side filesystem will be inaccessible and the Geo-
location API won’t be able to access your location.

Prerequisites
Before you create the index page, you need to handle a couple of prerequisites:

1 Create a directory, and put the style.css file from this chapter’s source code in it.
2 Create an empty app.js file, and put it in the same directory as the style.css file.

Note that all files for the book are available at the book’s website: http://www.man-
ning.com/crowther2.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.manning.com/crowther2
http://www.manning.com/crowther2

74 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
At this stage you’re probably itching to get started, so let’s do just that.

3.1.1 Defining the HTML document structure

The initial code you need loads in the CSS and JavaScript resources for the application
and defines the <section> elements for each of the two views.

STEP 1: CREATE INDEX.HTML

Begin by creating a file named index.html, and add the contents of the following list-
ing to it.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Super HTML5 Editor</title>
 <link rel="stylesheet" href="style.css">
 <script src="app.js"></script>
</head>
<body class="browser-view">
 <header><h1>Super HTML5 Editor</h1></header>
 <section id="list">

 </section>
 <section id="editor">

 </section>
</body>
</html>

STEP 2: ADD MARKUP FOR THE FILE BROWSER VIEW

The File Browser view is split into two zones. The first zone contains two forms:

■ A form for creating an empty file
■ A form for importing a file from the user’s computer

The second zone includes a list of files that the user has created or imported. To build
these zones you’ll use the <details> and <summary> elements, both of which are new in
HTML5. The <details> element allows you to create a collapsible section in your
code, which would previously have only been possible using a combination of
JavaScript and CSS. Adding a <summary> element within <details> will put a label on
the expanded <details> content. Add the code from the next listing to the
index.html file, inside the <section> element with the ID attribute value list.

<h1>File Browser</h1>
<details open id="filedrop">
 <summary>Create File</summary>
 <form name="create">
 <div>

Listing 3.1 index.html—Application HTML structure

Listing 3.2 index.html–File Browser view markup

The value of class will determine
the currently displayed view.
Navigating between views will be
implemented later in the section.

The File Browser view markup
should be inserted here.

The File Editor view markup
should be inserted here.

This zone will be a target drop zone for files later in
this chapter. The open attribute on the <details>
element sets it to be expanded by default.

The create form allows users
to create a new empty file.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

75The Super HTML5 Editor: application overview, prerequisites, and first steps
 <h2>Create an empty file</h2>
 <input type="text" name="name" placeholder=" e.g. index.html">
 <input type="submit" value="Create">
 </div>
 </form>
 <div class="spacer">OR</div>
 <form name="import">
 <div>
 <h2>Import existing file(s)</h2>
 <input type="file" name="files" multiple accept="text/html">
 <input type="submit" value="Import">
 </div>
 </form>

 <div class="note">
 Note: You can drag files from your computer and
 drop them anywhere in this box to import them into the application.
 </div>
</details>

<details open>
 <summary>My Files</summary>
 <div class="note top">
 You currently have 0 file(s):
 </div>
 <ul id="files">
 <div class="note">
 Note: You can drag any of the files in the list
 above to your computer to export them from the application.
 </div>
</details>

STEP 3: ADD MARKUP FOR THE FILE EDITOR VIEW

This File Editor view features a switch button that allows the user to change between
Visual edit mode and HTML edit mode. In Visual mode, the editor will behave much
like a basic word processor, and it includes buttons for formatting the content in bold,
italic, and so forth. Each button has an attribute named data-command, which is an
example of an HTML5 data attribute. These attributes make it easy to associate primi-
tive data with an HTML element, and an accompanying JavaScript API makes it a
breeze to get back this data when it’s needed. The code for the File Editor view is
shown in the following listing and should be added to index.html, inside the <sec-
tion> element with the ID attribute value editor.

<h1>Editing Back to File
Browser</h1>

<div class="mode-toolbar">
 <div class="left">
 <div>Edit Mode:</div>
 <button id="edit_visual" class="split_left active">Visual</button>
 <button id="edit_html" class="split_right">HTML</button>
 </div>

Listing 3.3 index.html–File Editor view markup

The import form allows users to
import files from their computer.

This will be populated
later with a list of files.

Two buttons allow the user to switch
between Visual and HTML edit modes.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

76 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
 <div class="right">
 <button id="file_save" class="green">Save File</button>
 <button id="file_preview">Save & Preview</button>
 </div>
</div>

<details open>
 <summary>File Contents</summary>
 <div id="file_contents">
 <div id="file_contents_visual">
 <div id="file_contents_visual_toolbar">
 <button data-command="bold">B</button>
 <button data-command="italic">I</button>
 <button data-command="underline"><u>U</u></button>
 <button data-command="strikethrough">S</button>
 <button data-command="insertUnorderedList">List</button>
 <button data-command="createLink">Link</button>
 <button data-command="unlink">Unlink</button>
 <button data-command="insertImage">Image</button>
 <button data-command="insertMap">Location Map</button>
 </div>
 <iframe id="file_contents_visual_editor"></iframe>
 </div>
 <div id="file_contents_html">
 <textarea id="file_contents_html_editor"></textarea>
 </div>
 </div>
</details>

With the two views defined, you can now implement JavaScript code to enable naviga-
tion between them.

3.1.2 Implementing navigation and state management in JavaScript

First, let’s create an anonymous function block to ensure that the application doesn’t
pollute the global JavaScript namespace. This block will initialize the application
when the DOM has finished loading.

STEP 4: INITIALIZE THE APPLICATION

Create a new file named app.js and save it in the same directory as the index.html file
you created previously. Add the contents of the following listing to this file.

(function() {
 var SuperEditor = function() {

 };

 var init = function() {
 new SuperEditor();
 }

 window.addEventListener('load', init, false);
})();

Listing 3.4 app.js–Application initialization code

Contains several buttons that
allow the user to format the
currently selected content in
the editor window.

The visual
editor is an
<iframe>

element,
which will

later be
made

editable
using the

designMode
property.

The HTML markup editor is a
regular <textarea> element.

This constructor function is
where the rest of the app’s
code should be inserted.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

77The Super HTML5 Editor: application overview, prerequisites, and first steps
STEP 5: ENABLE NAVIGATION BETWEEN VIEWS, MANAGE THE STATE OF DOCUMENTS BEING EDITED

With the code to initialize the application out of the way, let’s add code to keep track
of whether the user has made changes to a document and to switch between the File
Browser and File Editor views. The code in the next listing should be added inside the
SuperEditor constructor function that you created in the previous listing.

var view, fileName, isDirty = false,
 unsavedMsg = 'Unsaved changes will be lost. Are you sure?',
 unsavedTitle = 'Discard changes';

var markDirty = function() {
 isDirty = true;
};

var markClean = function() {
 isDirty = false;
};

var checkDirty = function() {
 if(isDirty) { return unsavedMsg; }
};

window.addEventListener('beforeunload', checkDirty, false);

var jump = function(e) {
 var hash = location.hash;

 if(hash.indexOf('/') > -1) {
 var parts = hash.split('/'),
 fileNameEl = document.getElementById('file_name');

 view = parts[0].substring(1) + '-view';
 fileName = parts[1];
 fileNameEl.innerHTML = fileName;
 } else {
 if(!isDirty || confirm(unsavedMsg, unsavedTitle)) {
 markClean();
 view = 'browser-view';
 if(hash != '#list') {
 location.hash = '#list';
 }
 } else {
 location.href = e.oldURL;
 }
 }

 document.body.className = view;
};

jump();

window.addEventListener('hashchange', jump, false);

Listing 3.5 app.js—View navigation and state management code

These variables will store the current
view and filename (if in the File Editor

view) and a marker to indicate if the
document has been modified (isDirty).

If the user tries to close the window or
navigate to another page, you’ll check

to see if they’ve made unsaved changes
and warn them first if necessary.

The jump event handler uses hashes in
the URL to switch between the two views.

If the URL hash
contains a forward
slash, it should
show the File
Editor view for the
file after the slash
(if it exists).

Use the class attribute on the
<body> element to indicate
which is the current view–the CSS
will take care of showing/hiding
the views as necessary.

The jump function is called
on page load and whenever
the URL hash changes.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

78 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
TRY IT OUT

At this point, you should be able to navigate around the application. One slight incon-
venience is that you won’t be able to easily get to the File Editor view just yet, because
you haven’t added any of the File System functionality. To cheat your way around this,
modify the URL manually, changing the #list at the end to #editor/index.html, as
illustrated in figure 3.2.

 With a modest amount of effort, you’ve roughed out the basic HTML structure,
navigation functions, and state management for the application. In the next section,
you’ll discover how to enable the visual editor and connect it to the HTML editor, how
to implement the formatting buttons, and how to use geolocation to insert a map of
the user’s current position coordinates.

3.2 Rich-text editing and geolocation
The visual editor in this chapter’s sample application will allow users to write and edit
rich-text content using formatting buttons that are similar to those in most word-
processing applications. After formatting the document, users may need to see the
underlying HTML markup to make adjustments, so the application will enable them to
switch between the visual editor and the HTML editor. Also, so that you can at least get
your hands dirty with the Geolocation API, we’ll have you add into the application a
button that inserts a location map.

The work happens in three steps:

■ Step 1: Turn designMode on and synchronize the content of both editors.
■ Step 2: Implement the rich-text editing toolbar in the visual editor.
■ Step 3: Use geolocation to insert a map of the user’s location.

In this section, you’ll learn
■ To use the designMode property to signal to the browser that an HTML docu-

ment is editable
■ To use the Editing API’s execCommand method to provide rich-text editing controls
■ To use the Geolocation API

Figure 3.2 When you load the application right now, a hash value #list will
be appended to the end of the URL. To navigate to the editor view manually,
change this to #editor/index.html as shown.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

79Rich-text editing and geolocation

En
editin
the vi

ed
ifram
switc

on
designM

prope

ty

al-
you
r.
3.2.1 Using designMode to make an HTML document editable

To facilitate the visual editor mode in your app, you need to allow users to directly
edit the HTML document without needing to use HTML markup. In order to make
this work, you need to take advantage of a JavaScript object property, designMode.
When you set this property’s value to on for a given document, the entire document
becomes editable, including its <!DOCTYPE> declaration, and <head> section. You’ll
use this property with our visual editor’s <iframe> to make the entire contents of the
<iframe> editable.

NOTE If you need to edit the contents of only a specific HTML element, then
use the contenteditable attribute. Although contenteditable is new in
HTML5, it started out as a proprietary extension in IE and was later adopted
by other browser vendors. As a result, browser support for it is widespread, so
you can use it without fear of leaving anyone behind.

Setting designMode to on is straightforward, but you also need to build logic that will
connect the visual editor to the HTML markup editor so that any changes are synced
across them when appropriate. You also need to implement the switch button to allow
the user to switch between the two editor modes. Enough chat about what you need to
do—let’s go ahead and do it.

STEP 1: TURN DESIGNMODE ON AND SYNCHRONIZE THE CONTENT OF BOTH EDITORS

In the app.js file, add the following code immediately after the line window.addEvent-
Listener('hashchange', jump, false).

var editVisualButton = document.getElementById('edit_visual'),
 visualView = document.getElementById('file_contents_visual'),
 visualEditor = document.getElementById('file_contents_visual_editor'),
 visualEditorDoc = visualEditor.contentDocument,
 editHtmlButton = document.getElementById('edit_html'),
 htmlView = document.getElementById('file_contents_html'),
 htmlEditor = document.getElementById('file_contents_html_editor');

visualEditorDoc.designMode = 'on';

visualEditorDoc.addEventListener('keyup', markDirty, false);
htmlEditor.addEventListener('keyup', markDirty, false);

var updateVisualEditor = function(content) {
 visualEditorDoc.open();
 visualEditorDoc.write(content);
 visualEditorDoc.close();
 visualEditorDoc.addEventListener('keyup', markDirty, false);
};

var updateHtmlEditor = function(content) {
 htmlEditor.value = content;
};

Listing 3.6 app.js—Enabling designMode and connecting the two editors

able
g of
sual
itor
e by
hing
 its
ode
rty.

Mark the file as dir
whenever the user
makes changes to
either editor.

This function updates the visual editor
content. Every execution of updateVisu
Editor constructs a new document, so
must attach a new keyup event listene

This function updates
the HTML editor content.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

80 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
var toggleActiveView = function() {
 if(htmlView.style.display == 'block') {
 editVisualButton.className = 'split_left active';
 visualView.style.display = 'block';
 editHtmlButton.className = 'split_right';
 htmlView.style.display = 'none';
 updateVisualEditor(htmlEditor.value);
 } else {
 editHtmlButton.className = 'split_right active';
 htmlView.style.display = 'block';
 editVisualButton.className = 'split_left';
 visualView.style.display = 'none';

 var x = new XMLSerializer();
 var content = x.serializeToString(visualEditorDoc);
 updateHtmlEditor(content);
 }
}

editVisualButton.addEventListener('click', toggleActiveView, false);
editHtmlButton.addEventListener('click', toggleActiveView, false);

PROGRESS CHECK: TRY IT OUT

At this point, you should be able to type text in the visual editor. You’ll notice that if
you switch to the HTML editor, the contents should match. Similarly, if you make
changes in the HTML editor and switch back to the visual editor, your changes should
be shown. Try putting some arbitrary HTML styling markup in the HTML editor and
notice the impact it has in the visual editor.

NOTE If you try to use the formatting toolbar to style the contents of the
visual editor, you’ll notice that none of these buttons work. Don’t fret; you’ll
fix that in the next section.

After you’ve made changes, try closing the window. You should see a warning message
like the one shown in figure 3.3.

 Because the saving function hasn’t been implemented yet, you can ignore this
warning and leave the page. You’ll add the saving function in a later section.

 Now that you have the basic visual and HTML editors working, let’s move on and
add some formatting functions to those do-nothing toolbar buttons.

This event handler
toggles between the
visual and HTML
editors. When updating
the HTML editor, the
XMLSerializer object is
used to retrieve the
HTML content of the
iframe element.

Figure 3.3 The isDirty variable we
created earlier allows the application to
keep track of whether the user has made
changes to the document. If they’ve made
changes and try to close the window
without saving, they’ll be shown this
warning message to confirm they want to
leave the page.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

81Rich-text editing and geolocation
3.2.2 Providing rich-text editing controls with execCommand
As you’ve already seen, the contenteditable attribute and designMode property
allow developers to make any HTML element editable by the user. But up until now,
all users have been able to do is type and edit text, which is hardly exciting; they’ve
been able to do that with HTML form elements for ages! It’d be much more impres-
sive if users could format the text using rich-text editing controls, as they would in
a word processing application. That’s where the Editing API method execCommand
comes in.

EXECCOMMAND: FORMATTING AND EDITING ELEMENTS VIA CODE

Invoking the execCommand method of an editable element applies a selected format-
ting command to the current selection or at the current caret position. This
includes basic formatting like italicizing or bolding text and block changes like cre-
ating a bullet list or changing the alignment of a selection. ExecCommand can also be
used to create hyperlinks and insert images. Basic editing commands like copy, cut,
and paste can also be used by execCommand if the browser implements these fea-
tures. Although the HTML5 standard specifies these editing commands, it doesn’t
require the browser to support them. For a full list of commands standardized in
HTML5, see appendix B.

 To initiate a formatting or editing action, you must pass one to three arguments to
execCommand:

■ The first argument, command, is a string. command contains the name of the edit-
ing or formatting action.

■ The second argument, showUI, is a bool. showUI determines whether the user will
see the default UI associated with command. (Some commands don’t have a UI.)

■ The third argument, value, is a string. execCommand will invoke command with
value as its argument.

The number of required arguments for an execCommand depends on the command
passed to the first argument. See appendix B or http://dvcs.w3.org/hg/editing/raw-
file/tip/editing.html for a list of argument specifications for each formatting and
editing command.

STEP 2: IMPLEMENT THE RICH-TEXT EDITING TOOLBAR IN THE VISUAL EDITOR

To use execCommand, the application will use a click event handler to pass the func-
tion name of a pressed toolbar button to execCommand’s command argument. This
function name will be retrieved from the button’s data-command attribute. Add the
code from the following listing to app.js, directly after the code you added in the pre-
vious section.

Editing API 4.0 3.5 5.5 9.0 3.1

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html

82 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

The
obje

co
acces

HTML
attri
the

supp
the
bac

getA
var visualEditorToolbar =
document.getElementById('file_contents_visual_toolbar');

var richTextAction = function(e) {
 var command,
 node = (e.target.nodeName === "BUTTON") ? e.target :
 e.target.parentNode;

 if(node.dataset) {
 command = node.dataset.command;
 } else {
 command = node.getAttribute('data-command');
 }

 var doPopupCommand = function(command, promptText, promptDefault) {
 visualEditorDoc.execCommand(command, false, prompt(promptText,
 promptDefault));
 }

 if(command === 'createLink') {
 doPopupCommand(command, 'Enter link URL:', 'http://www.example.com');
 } else if(command === 'insertImage') {
 doPopupCommand(command, 'Enter image URL:',
 'http://www.example.com/image.png');
 } else {
 visualEditorDoc.execCommand(command);
 }
};

visualEditorToolbar.addEventListener('click', richTextAction, false);

TRY IT OUT—AND CHALLENGE YOURSELF!
With the exception of the Location Map button, which you’ll implement in the next
section, you should be able to format the text in the visual editor to your heart’s con-
tent using the rich-text editing toolbar. A few easy enhancements you could include
here would be to provide support for more commands, to bind a keyboard event to
a command (for example, Ctrl-B or Cmd-B could be mapped to bold), and to indi-
cate the current selection state of the toolbar (for example, the Bold button should
be depressed when the selected text is bold). To implement the latter, you can use
the Editing API method queryCommandState, which is covered in more detail in
appendix B.

3.2.3 Mapping a user’s current location with the Geolocation API

To enable your application to insert a map based on the user’s position, you’ll need to
use the Geolocation and Google Maps APIs. The Geolocation API provides the method
getCurrentPosition, which will enable the application to obtain the user’s geographic

Listing 3.7 app.js–Implementing the rich-text editing toolbar in the visual editor

RichTextAction is
the event handler
for all buttons on
the visual editor
toolbar. When a
user clicks a
toolbar button,
the event handler
determines which
button the user
clicked.

 dataset
ct offers
nvenient
s to the
5 data-*
butes. If
browser
doesn’t

ort this,
app falls
k to the
ttribute
method.

Because this app will require a customized UI, showUI will be set to false. The
third argument, value, is passed a prompt method (of the Window object). It

contains a string prompting the user for an input value and another string
containing a default input value.

Core API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

83Rich-text editing and geolocation

Use
t

Goo
coordinates. The Google Maps API provides a querying function to return a static map
from a set of submitted coordinates.

 When Google Maps returns the selected map, your application will paste the map
into the visual editor using the execCommand’s insertImage function.

Before you dive in, we want you to know that although this sample application doesn’t
explore all of the features of geolocation, it does show you how simple it is to acquire
a user’s position and integrate it with a mapping service. If you’re looking to build a
more dynamic mapping app, you’ll be glad to know that the Geolocation API can also
support features like:

■ Tracking user movement over set time intervals
■ Obtaining the user’s altitude, heading, and speed
■ Limiting GPS use when battery life is a concern

To find out more about these geolocation features, see appendix B.

STEP 3: USE GEOLOCATION TO INSERT A MAP OF THE USER’S LOCATION

To implement geolocation in your application, in the app.js file locate the if block
that checks whether the command is createLink, insertImage, or something else.
Add the following code before the last else and after the }.

else if(command === 'insertMap') {
 if(navigator.geolocation) {
 node.innerHTML = 'Loading';
 navigator.geolocation.getCurrentPosition(function(pos) {
 var coords = pos.coords.latitude+','+pos.coords.longitude;
 var img = 'http://maps.googleapis.com/maps/api/staticmap?markers='
 +coords+'&zoom=11&size=200x200&sensor=false';
 visualEditorDoc.execCommand('insertImage', false, img);
 node.innerHTML = 'Location Map';
 });
 } else {
 alert('Geolocation not available', 'No geolocation data');
 }
}

When the user clicks the Location Map button on the rich-text editor toolbar, the
browser will request permission for the application to access their location data, as
shown in figure 3.4.

Geolocation API 5.0 3.5 9.0 10.6 5.0

Listing 3.8 app.js–Using geolocation to insert a map of the user’s location

Check to see if the user’s
browser supports geolocation.

The getCurrentPosition method will trigger the browser to ask the user
for access to the user’s location. If permission is granted,

getCurrentPosition executes a callback function, passing the user’s
location data in the form of a Position object.

 execCommand
o insert a static
gle Maps image

of the user’s
location.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

84 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
If the user chooses to allow access to their location, a map with a marker on their posi-
tion will be added to the editor, as illustrated in the screenshot in figure 3.5. In order
for the map to appear, you must click inside the editor’s text box before clicking the
Location Map button.

 Now that users can see their location on a map and manipulate HTML documents,
you need to provide a way of saving their work in actual files. In the next section,
you’ll learn how to use the HTML5 File System API to do just that.

3.3 Managing files locally: the File System, Quota
Management, File, and File Writer APIs
Working with files in web applications has always been tricky. If you wanted to save
a file, you’d select it using a file <input> element, then the browser would upload

Figure 3.4 The browser will request the user’s permission to enable the Geolocation
API. If access is denied, the browser will behave as though it doesn’t support
geolocation.

Figure 3.5 A map of the user’s location will be added to the editor. This map is actually an image
generated by the Google Maps Static API. Easy, huh?
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

85Managing files locally: the File System, Quota Management, File, and File Writer APIs
the file to the server for storage. Downloading a previously stored file was a simi-
larly slow and cumbersome process. In addition, you were burdened with the
tedious task of developing yet another file management system using one set of
tools and languages on the server and another on the browser side. Suffice it to
say, files and web applications have always been a bit of a bitter cocktail. Thank-
fully, HTML5 is going to greatly speed up this development process with the File
System API.

The File System API offers web applications access to a sandboxed storage space on
the client’s local filesystem. For security purposes, applications can only access the
files in their own sandbox on the client, preventing malicious apps from accessing
and manipulating data stored by other applications. The File System API also offers
applications a choice between a temporary or persistent filesystem. Data in a tem-
porary filesystem can be removed at any stage by the browser, and the data’s contin-
ued existence shouldn’t be relied on, whereas data in a persistent filesystem can
only be removed if specifically requested by the user. Because we want the Super
HTML5 Editor to save a user’s work for later use, we’ll show you how to build a per-
sistent filesystem.

WARNING The File System API was added to HTML5 much later than most
APIs, and so browser support for it is far less mature. Because Chrome is the
only browser currently offering any implementation of the API, the code in
this section has been tested only on Chrome. Every effort has been made to
ensure that it will work in other browsers at a later stage, but unfortunately we
can’t guarantee anything on that front.

The File System API offers almost all the needed functionality to create and manage a
sandboxed filesystem except the ability to request local storage and analyze local stor-
age availability. To do this, you need the Quota Management API.

File System API 13.0 N/A N/A N/A N/A

In this section, you’ll learn
■ How to create a sandboxed filesystem using the File System API
■ How to use the Quota Management API to allocate local storage space
■ How to create filesystem services using the File Writer and File APIs

Quota Management API 13.0 N/A N/A N/A N/A
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

86 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

conven
poi

files
obje

possible v
prefixes.

browser d
support

objec
objec
have
The Quota Management API enables the application to determine if enough local file
storage exists to save data. If sufficient space exists, the application can use the Quota
Management API to request storage via a request for quota.

NOTE The File System API makes use of other file-related APIs such as the
File Writer and File APIs. This section will be making calls to these underlying
APIs and pointing them out as the sandboxed filesystem is built.

You’ll walk through seven steps to create the filesystem:

■ Step 1: Create a persistent filesystem.
■ Step 2: Retrieve and display a file list.
■ Step 3: Load files in the File Editor view using the File API.
■ Step 4: View, edit, and delete files in the filesystem.
■ Step 5: Create new, empty files in the filesystem.
■ Step 6: Import existing files from the user’s computer.
■ Step 7: Implement the Save and Preview buttons.

3.3.1 Creating an application filesystem

Using the File System and Quota Management APIs, the process of creating the first
part of the filesystem, the base persistent filesystem, becomes relatively straightfor-
ward and is accomplished in a single listing, listing 3.9. To help you navigate the code,
look out for the following implementation process within the code:

■ Assign a filesystem object to the window fileSystem field.
■ Assign a storage and quota management object to the window storageInfo

field.
■ Set the filesystem as persistent.
■ Request a quota from the local storage system.

STEP 1: CREATE A PERSISTENT FILESYSTEM

With the process in mind, review the following listing to see the detailed implementa-
tion. Then add the code after the call to addEventListener('click', richText-
Action, false).

window.requestFileSystem = window.requestFileSystem ||
window.webkitRequestFileSystem

 || window.mozRequestFileSystem || window.msRequestFileSystem || false;
window.storageInfo = navigator.persistentStorage ||

navigator.webkitPersistentStorage || navigator.mozPersistentStorage ||
navigator.msPersistentStorage || false;

var stType = window.PERSISTENT || 1,
 stSize = (5*1024*1024),
 fileSystem,
 fileListEl = document.getElementById('files'),
 currentFile;

Listing 3.9 app.js–Creating a persistent filesystem

Core API

For
ience,
nt the
ystem
cts to
endor
 If the
oesn’t
 these
ts, the
ts will
a false
value.

Define basic variables for use in
the app: storage type and size,
filesystem object, the file list
element, and the currently
selected file (when editing).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

87Managing files locally: the File System, Quota Management, File, and File Writer APIs

d
o

Th

u
the
var fsError = function(e) {
 if(e.code === 9) {
 alert('File name already exists.', 'File System Error');
 } else {
 alert('An unexpected error occured. Error code: '+e.code);
 }
};
var qmError = function(e) {
 if(e.code === 22) {
 alert('Quota exceeded.', 'Quota Management Error');
 } else {
 alert('An unexpected error occurred. Error code: '+e.code);
 }
};

if(requestFileSystem && storageInfo) {
 var checkQuota = function(currentUsage, quota) {
 if(quota === 0) {
 storageInfo.requestQuota(stType, stSize, getFS, qmError);

 } else {
 getFS(quota);
 }
 };
 storageInfo.queryUsageAndQuota(stType, checkQuota, qmError);

 var getFS = function(quota) {
 requestFileSystem(stType, quota, displayFileSystem, fsError);
 }
 var displayFileSystem = function(fs) {
 fileSystem = fs;
 updateBrowserFilesList();
 if(view === 'editor') {
 loadFile(fileName);
 }
 }
} else {
 alert('File System API not supported', 'Unsupported');
}

Unfortunately, you aren’t quite ready to test your filesystem. You need to implement
some functions to retrieve and display any existing files in the app’s filesystem.

3.3.2 Getting a list of files from the filesystem

In listing 3.9, the displayFileSystem function receives a reference to the filesystem
object and then calls a function named updatebrowserFilesList. In this section,
you’ll create this function, which will retrieve a list of files in the app’s filesystem direc-
tory and display it in the My Files zone of the File Browser.

Standard error
function for all
File System API
method calls.

Standard error function for all Quota
Management API method calls.

Check to see if the browser
supports the File System API an
the Quota Management API (als
known as StorageInfo).

Because this app has a persistent filesystem, the request
for quota will trigger a message asking the user’s

permission to access the browser’s filesystem.

If queryUsageAndQuota successfully executes, it passes usage and quota
info to the callback function, checkQuota; otherwise, qmError is called.

CheckQuota determines if sufficient quota exists to store files; if not, then
it needs to request a larger quota.

e request-
FileSystem
method is
sed to get

 filesystem
object.

You’ll implement
updateBrowser-
FilesList and
displayBrowserFile-
List in a later section.
These functions will
retrieve and display
files in the app’s
filesystem.

You’ll implement loadFile in a
later section. If the editor
view is the current view, then
load the file into the editor.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

88 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

e file
ith
er of

.I

th

fo
STEP 2: RETRIEVE AND DISPLAY A FILE LIST

You’ll need the next two listings for this work: one to create the updateBrowser-
FilesList function, another to create the displayBrowserFileList function. First,
displayBrowserFileList will accept a complete list of files as an argument and
update the UI to display each of these files with View, Edit, and Delete buttons. Right
after the displayFileSystem function you created previously, add the code from the
next listing.

var displayBrowserFileList = function(files) {
 fileListEl.innerHTML = '';
 document.getElementById('file_count').innerHTML = files.length;
 if(files.length > 0) {
 files.forEach(function(file, i) {
 var li = '<li id="li_'+i+'" draggable="true">'+file.name
 + '<div><button id="view_'+i+'">View</button>'
 + '<button class="green" id="edit_'+i+'">Edit</button>'
 + '<button class="red" id="del_'+i+'">Delete</button>'
 + '</div>';
 fileListEl.insertAdjacentHTML('beforeend', li);

 var listItem = document.getElementById('li_'+i),
 viewBtn = document.getElementById('view_'+i),
 editBtn = document.getElementById('edit_'+i),
 deleteBtn = document.getElementById('del_'+i);

 var doDrag = function(e) { dragFile(file, e); }
 var doView = function() { viewFile(file); }
 var doEdit = function() { editFile(file); }
 var doDelete = function() { deleteFile(file); }

 viewBtn.addEventListener('click', doView, false);
 editBtn.addEventListener('click', doEdit, false);
 deleteBtn.addEventListener('click', doDelete, false);
 listItem.addEventListener('dragstart', doDrag, false);
 });
 } else {
 fileListEl.innerHTML = '<li class="empty">No files to display'
 }
};

Now, to execute the displayBrowserFileList function you just created, you need to
pass an array of all the files in the app’s directory. The updateBrowserFilesList func-
tion will do just that, using a DirectoryReader object and reading the list of files one
set of files at a time until all files in the app’s directory have been read. Add the code
from the next listing right after the displayBrowserFileList function.

var updateBrowserFilesList = function() {
 var dirReader = fileSystem.root.createReader(),
 files = [];

Listing 3.10 app.js—Building the file list UI from an array of files

Listing 3.11 app.js—Reading the file list using the directory reader

Update th
counter w
the numb
files in the
filesystemterate over

each file in
e filesystem

using the
rEach array

function.
Draggable will be

discussed in a later
section on drag-and-

drop interactivity.

Attach event
handlers to the
View, Edit, and
Delete buttons
and the list item
itself.

Later in the
chapter, you’ll

implement
doDrag to

support drag-
and-drop
functions.

If there are no files, show an
empty list message.

Create a directory reader. Later
in the listing, you’ll use it to
get the complete list of files.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

89Managing files locally: the File System, Quota Management, File, and File Writer APIs

The
listin
in o

files
so yo

fu
kee
unt

h
r

t

A Fil
object
is used
the con
the fil

reader
it trig

on
event
to up

vi
HTML
 var readFileList = function() {
 dirReader.readEntries(function(fileSet) {
 if(!fileSet.length) {
 displayBrowserFileList(files.sort());
 } else {
 for(var i=0,len=fileSet.length; i<len; i++) {
 files.push(fileSet[i]);
 }
 readFileList();
 }
 }, fsError);
 }
 readFileList();
};

Next, you’ll discover how to implement the View, Edit, and Delete buttons displayed
for each of the files in the filesystem.

3.3.3 Loading, viewing, editing, and deleting files

Back in the displayFileSystem function in listing 3.9, you may have noticed an if
block that called a function named loadFile if the current view was the editor view.
Let’s go ahead and implement that function now, as well as some small functions that
will allow users to view, edit, and delete files in the filesystem.

STEP 3: LOAD FILES IN THE FILE EDITOR VIEW USING THE FILE API
The loadFile function uses the File System API method getFile to retrieve the
FileEntry from the filesystem. In order to read the file contents, loadFile uses the File
API method readAsText. Lastly, loadFile displays the file contents to the visual and
HTML editors. Add the code from the following listing to app.js right after the update-
BrowserFilesList function you added previously.

var loadFile = function(name) {
 fileSystem.root.getFile(name, {}, function(fileEntry) {
 currentFile = fileEntry;
 fileEntry.file(function(file) {
 var reader = new FileReader();
 reader.onloadend = function(e) {
 updateVisualEditor(this.result);

File API 13.0 3.6 N/A 11.1 N/A

Listing 3.12 app.js—Loading files in the File Editor view

directory
g is read
ne set of

at a time,
u’ll use a
recursive
nction to
p reading
il all files
ave been
etrieved.

When the end of the
directory is reached,
call the
displayBrowserFileLis
function, passing the
alphabetically sorted
files array as an
argument.

If you’re not at the end of the
directory, push the files just read into
the files array and recursively call the
readFileList function again.

Core API

The getFile method takes four arguments: (1) relative or absolute path to filename, (2) options
object ({create: boolean, exclusive: boolean}—both default to false), (3) success callback

function, and (4) error callback function. If a FileEntry is found, getFile passes the selected
FileEntry to the fileEntry argument of the success callback function. See table 3.1 for a list of

possible options arguments and their effect on getFile behavior.

The file method of the File System
API is used to retrieve the file
from the fileEntry and pass the
file to the callback function.

eReader
, reader,
 to read
tents of

e. When
 is done,
gers the
loadend
 handler
date the
sual and
 editors.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

90 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
 updateHtmlEditor(this.result);
 }
 reader.readAsText(file);
 }, fsError);
 }, fsError);
};

Table 3.1 reviews the behavior of the File System API method getFile when passed
different values of the options object. The object consists of two Boolean fields. The
first, create, determines if getFile should try to create a new FileEntry object
(create:true) or retrieve an existing FileEntry object (create:false). The second
field, exclusive, determines if getFile should check for the existence of a FileEntry
object with the same file path name as getFile’s filename argument (exclusive:true).

We know that at this point you may be thinking, “When am I going to be able to test
this code?” Just a few more sections, we promise.

STEP 4: VIEW, EDIT, AND DELETE FILES IN THE FILESYSTEM

The code to view, edit, and delete files in the filesystem is quite straightforward. The
three functions in listing 3.13 use two File System API methods: toURL and remove.

■ The toURL method retrieves a URL location at which the file resource can be
accessed. Using toURL is really convenient for viewing files. It saves you from
having to read the contents of the file and display it using JavaScript. Instead,
you can invoke a popup window and pass the URL location to it.

■ The remove method deletes the file and executes a callback when it’s done.

To implement the view, edit, and delete functionality, add the code from the next list-
ing to app.js right after the loadFile function.

Table 3.1 A list of getFile’s responses to various configurations of the options argumenta

a. http://www.w3.org/TR/file-system-api/ .

FileEntry state options object getFile response

FileEntry found at given file path name create: false
exclusive ignored

FileEntry is returned

create: true
exclusive: true

Error is thrown

FileEntry found at given file path name,
but the FileEntry is a directory

create: false
exclusive ignored

Error is thrown

No FileEntry found at given file path name create: false
exclusive ignored

Error is thrown

create: true
exclusive ignored

FileEntry created exclusive
ignored and returnedb

b. You cannot create a FileEntry if its immediate parent directory doesn’t exist.

With a new FileReader created and
its onloadend event defined, call
readAsText to read the file and load it
into reader’s result attribute.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/file-system-api/

91Managing files locally: the File System, Quota Management, File, and File Writer APIs
var viewFile = function(file) {
 window.open(file.toURL(), 'SuperEditorPreview', 'width=800,height=600');
};

var editFile = function(file) {
 loadFile(file.name);
 location.href = '#editor/'+file.name;
};

var deleteFile = function(file) {
 var deleteSuccess = function() {
 alert('File '+file.name+' deleted successfully', 'File deleted');
 updateBrowserFilesList();
 }

 if(confirm('File will be deleted. Are you sure?', 'Confirm delete')) {
 file.remove(deleteSuccess, fsError);
 }
};

If you’ve been trying to test this functionality as you made your way through the sec-
tion, you may have found it difficult given that there are no files to load, view, edit, or
delete! Next, you’ll learn how to create new empty files and how to allow users to
import existing files from their computer using a traditional file <input> element.

3.3.4 Creating new files

There are two ways of creating new files in the File System API. The first is to create a
new, empty file. The second is to allow the user to import an existing file from their
computer using a file <input> element. You’ll now implement both of these options,
starting with creating empty files.

STEP 5: CREATE NEW, EMPTY FILES IN THE FILESYSTEM

In listing 3.12 you saw how the getFile method returns a FileEntry object for a given
filename if it exists:

var loadFile = function(name) {
 fileSystem.root.getFile(name, {}, function(fileEntry) {...

You can also use getFile to create a new FileEntry, if it doesn’t exist, by passing a con-
figuration object to the method. The code in listing 3.14 shows how to do this. The
logic for creating a new file will be placed in the event handler, createFormSubmit,
and attached to the File Browser create button. CreateFormSubmit will perform basic
validation to ensure that the user is creating an HTML file and that the file doesn’t
already exist, and if all validation passes, it will create the file. Add this code directly
after the deleteFile function.

Listing 3.13 app.js—Viewing, editing, and deleting files

The toURL method makes it a breeze to view
the contents of a file, because you can

simply launch it in a new browser window.

To edit the file, you load the file
into the visual and HTML editors
and make the File Editor view
active by changing the URL hash.

When the remove function has completed, it will execute the
deleteSuccess callback function, which calls the updateBrowserFilesList

function to ensure the listing is updated.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

92 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
var createFile = function(field) {
 var config = {
 create: true,
 exclusive: true
 };

 var createSuccess = function(file) {
 alert('File '+file.name+' created successfully', 'File created');
 updateBrowserFilesList();
 field.value = '';
 };

 fileSystem.root.getFile(field.value, config, createSuccess, fsError);
};

var createFormSubmit = function(e) {
 e.preventDefault();
 var name = document.forms.create.name;
 if(name.value.length > 0) {
 var len = name.value.length;
 if(name.value.substring(len-5, len) === '.html') {
 createFile(name);
 } else {
 alert('Only extension .html allowed', 'Create Error');
 }
 } else {
 alert('You must enter a file name', 'Create Error');
 }
};

document.forms.create.addEventListener('submit', createFormSubmit, false);

PROGRESS CHECK: TRY IT OUT!
Finally! You can test the code! You should be able to create empty files using the form
on the File Browser view, as illustrated in figure 3.6. When the file has been created,
you should be able to view it (it will be just an empty document, of course), edit it
(although you won’t be able to save changes just yet), and delete it.

 The app is finally starting to take shape! Next, let’s see how you can allow a user to
import existing files on their computer into the application.

STEP 6: IMPORT EXISTING FILES FROM THE USER’S COMPUTER

Importing files from the user’s computer is a little more complicated than creating an
empty file. You need to create a FileEntry and then write the contents of the imported
file to the FileEntry using the File Writer API.

Listing 3.14 app.js—Creating a new empty file

File Writer API 13.0 N/A N/A N/A N/A

The config object is passed to the
getFile method, telling getFile to create
a FileEntry, but only if a FileEntry with
that name doesn’t exist.

When the getFile method returns successfully,
display a confirmation message, reload and

display the files list, and clear the form field.

This is the event
handler for the File
Browser create button.
When the create form
is submitted, perform
validation, and if it
passes, call the
createFile function.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

93Managing files locally: the File System, Quota Management, File, and File Writer APIs
In addition, because you added the multiple attribute to the File Browser Import form,

...<form name="import">
 <div>
 <h2>Import existing file(s)</h2>
 <input type="file" name="files" multiple accept="text/html">
 <input type="submit" value="Import">
 </div>...

you must handle the possibility of importing multiple files at one time. Although imple-
menting this isn’t difficult, the validation process becomes more complicated, as you’ll see.
Copy the following code, and insert it right after the event listener you added to the create
form in the previous section.

var importFiles = function(files) {
 var count = 0, validCount = 0;

 var checkCount = function() {
 count++;
 if(count === files.length) {
 var errorCount = count - validCount;
 alert(validCount+' file(s) imported. '+errorCount+'
 error(s) encountered.', 'Import complete');
 updateBrowserFilesList();
 }
 };

Listing 3.15 app.js—Importing files from the user’s computer

Figure 3.6 The file index.html has been successfully created!

If all of the files have been
checked, show how many were
imported and how many failed
and update the file list.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

94 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
 for(var i=0,len=files.length;i<len;i++) {
 var file = files[i];

 (function(f) {
 var config = {create: true, exclusive: true};
 if(f.type == 'text/html') {
 fileSystem.root.getFile(f.name, config,
 function(theFileEntry) {
 theFileEntry.createWriter(function(fw) {
 fw.write(f);
 validCount++;
 checkCount();
 }, function(e) {
 checkCount();
 });
 }, function(e) {
 checkCount();
 });
 } else {
 checkCount();
 }
 })(file);
 }
};

var importFormSubmit = function(e) {
 e.preventDefault();
 var files = document.forms.import.files.files;
 if(files.length > 0) {
 importFiles(files);
 } else {
 alert('No file(s) selected', 'Import Error');
 }
};

document.forms.import.addEventListener('submit', importFormSubmit, false);

At this point you should be able to import existing HTML files from your computer into
the application. You should also be able to view, edit (well, you can view in the File Edi-
tor view; you won’t be able to save changes just yet), and delete files. Figure 3.7 illus-
trates the dialog window that pops up when you click the Choose Files button.

3.3.5 Saving files using the File Writer API
The final part of the filesystem functionality you need to add to the application is saving
files in the File Editor view using the File Writer API. You’ve already seen the File Writer
API in action; in the previous section when importing files from the user’s computer,
you used the File Writer API to save the contents of existing files into the newly created
files in the application’s filesystem. Now you’ll use a similar approach to implement the
Save and Preview buttons in the File Editor view of the application.

STEP 7: IMPLEMENT THE SAVE AND PREVIEW BUTTONS

To implement the Save and Preview buttons, add the code from the next listing just
after the event listener you added to the import form in the previous section.

Loop through the files the user has
selected and attempt to create
them in the app’s filesystem.

Because this for loop
may execute a
callback function that
uses a file object, f,
defined by the loop,
and because an
iteration of the loop
may finish before the
callback has fired, a
closure was
implemented to
preserve the file
object state.

GetFile creates a new
FileEntry in the app’s
filesystem, and then

createWriter creates a
FileWriter for the

FileEntry. At this point,
you can copy the

imported file, f, by
calling the FileWriter

method, write, and
passing f as an

argument.

Read the files from the file’s
<input> element and call the
importFiles function if at least
one file has been selected.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

95Managing files locally: the File System, Quota Management, File, and File Writer APIs
var saveFile = function(callback) {
 var currentView = function() {
 if(htmlView.style.display === 'block') {
 return 'html';
 } else {
 return 'editor';
 }
 }

 var content;

 if(currentView() === 'editor') {
 var x = new XMLSerializer();
 content = x.serializeToString(visualEditorDoc);
 } else {
 content = htmlEditor.value;
 }

 currentFile.createWriter(function(fw) {
 fw.onwriteend = function(e) {

Listing 3.16 app.js—Saving files using the File Writer API

Figure 3.7 After the user clicks the Choose Files button, a dialog window pops up.

Check if the currently
displayed view is the
visual or HTML editor.

Get the
contents of the
relevant editor. When the file writer, fw,

finishes resetting the
file’s length to zero, fw
triggers the onwriteend
event handler. This event
handler redefines fw’s
onwriteend event
handler and then saves
the file by calling write.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

96 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

Whe
finis

t

han
C

callb
to t

b to
t a
ct
tent,
based
tation
itor’s

param
spec

type o
line

should
A

native i

constr
use an

line
nativ

br
underl

 fw.onwriteend = function(e) {
 if(typeof callback === 'function') {
 callback(currentFile);
 } else {
 alert('File saved successfully', 'File saved');
 }
 isDirty = false;
 };
 var blob = new Blob([content],
 {text: 'text/html’, endings:’native'});
 fw.write(blob);
 };
 fw.onerror = fsError;
 fw.truncate(0);
 }, fsError);
};

var previewFile = function() {
 saveFile(viewFile);
};

var saveBtn = document.getElementById('file_save');
var previewBtn = document.getElementById('file_preview');

saveBtn.addEventListener('click', saveFile, false);
previewBtn.addEventListener('click', previewFile, false);

The filesystem functionality of the application is now complete. You should be able to
create, load, view, edit, save, and delete HTML files using the app. If you want to take
the application further, you could easily extend it so that it supports multiple directo-
ries, allows editing of additional file types (CSS and JavaScript support would be nice),
and provides syntax highlighting of the HTML markup. There are a plethora of oppor-
tunities for expansion.

 We’ll wrap up this chapter in the next section by adding a jazzy extra—drag-and-
drop support.

3.4 Adding drag-and-drop interactivity
Drag-and-drop interactions are a popular feature in computer applications. For exam-
ple, consider the GUIs of current OSes. They allow you to move files, documents, and
applications around by dragging them from one location and dropping them to
another. In Mac OS X, if you have an external hard drive plugged into your computer,
you can eject it by dragging it to the trash icon in the dock.

 In recent years, web applications have started to provide drag-and-drop support.
Common examples are copying/moving items from one list to another; rearranging
the order of a list; moving regions of the page around for a customized experience;
and moving images, files, or documents to virtual directories in content management
systems. Up until now, developers had to rely on using JavaScript frameworks to pro-
vide web apps with decent drag-and-drop features. In HTML5, however, a full Drag and
Drop API has been specified to supplant these JavaScript frameworks.

n file writer, fw, has
hed writing content
o the currentfile, fw

triggers the event
dler for onwriteend.
allback refers to the
ack function passed
he saveFile function.

Use a Blo
construc
blob obje
from con
a string-
represen
of the ed
content.

Use the
endings
eter to

ify what
f end-of-
 marker
be used.
 value of
nstructs

a Blob
uctor to
 end-of-
 marker
e to the
owser’s
ying OS.

Before saving data with file writer, fw, use truncate(0) to
ensure its length attribute is set to zero. Otherwise, when
the application saves a file that’s shorter than its previous
version, the length attribute will be unchanged. As a result,
you’d see old text filling in the gap between the new
shorter file and its previous longer version.

SaveFile has been passed
a callback function,
viewFile. It’s called when
saveFile has finished
writing the editor
contents to currentFile.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

97Adding drag-and-drop interactivity

Design
the d
zone

files as
elem

with th
filed
In this section, you’ll use the Drag and Drop API to enhance the Super HTML5 Editor
application by

■ Enabling users to import files into the application by dragging them in from
their computer

■ Allowing users to export files from the application by dragging them to their
computer

3.4.1 Dragging files into an application for import

To allow users to drag files into the application, you need to create a target zone or
drop zone where the user can drag the files and expect them to be imported. If you’ve
already loaded the application in your browser, you’ll probably have noticed a note at
the bottom of the Create File zone in the File Browser view. The note informs users to
import files by dropping them anywhere in this zone. Let’s stay true to our word and
provide this functionality.

 To enable the Create File zone, you need to implement two event handlers for the
zone: one for the drop event and another for the dragover event. The drop event han-
dler will enable the application to import files that are dropped into the Create File
zone, and the dragover event handler will signal a pending copy operation to the app.
The app will respond to the signal by adding a copy decal to the file icon(s) being
dragged into the Create File zone.

 Add the code in the following listing right after the line previewBtn.addEvent-
Listener('click', previewFile, false).

var fileDropZone = document.getElementById('filedrop');

var importByDrop = function(e) {

 e.stopPropagation();
 e.preventDefault();

 var files = e.dataTransfer.files;

 if(files.length > 0) {
 importFiles(files);
 }
};

Drag and Drop API 4.0 3.5 5.5 12.0 3.1

Listing 3.17 app.js—Allowing users to import files by dropping them in the application

Core API

ate
rop
 for
 the
ent

e ID
rop.

When files are dropped into the browser window,
the default browser behavior is to load the files and
navigate away from the app, so you need to cancel
this default behavior. First, invoke stopPropagation
to prevent the drop event from bubbling up to any
ancestor elements of fileDropZone. Second, invoke
preventDefault to stop the browser from calling the
default event handler attached to fileDropZone.

If the user is dragging files, these
will reside in the dataTransfer
object. To load them into the app,
pass them to the importFiles
function (defined in listing 3.15).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

98 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop
var importDragOver = function(e) {
 e.preventDefault();
 e.dataTransfer.effectAllowed = 'copy';

 e.dataTransfer.dropEffect = 'copy';
 return false;
};

fileDropZone.addEventListener('drop', importByDrop, false);
fileDropZone.addEventListener('dragover', importDragOver, false);

TRY IT OUT!
With this code added to your app, try it out by dragging an HTML file from your com-
puter into the designated drop zone. If a file with the same name doesn’t exist, it
should be successfully imported into the filesystem, just as if you had manually
selected the file using the regular file <input> dialog box. You can even drag multiple
files into the application at a time. Next, you’ll wrap things up by enabling users to
export files by dragging them out of the application.

3.4.2 Dragging files out of an application for export

Some of the groundwork for your export drag-and-drop functionality has already
been set. In listing 3.10 in the displayBrowserFileList function, you added code
that created a new list item for each of the files in the filesystem. If you look at this
code, you’ll notice that the element you constructed has an attribute, draggable,
set to true:

...
files.forEach(function(file, i) {
 var li = '<li id="li_'+i+'" draggable="true">'+file.name
 + '<div><button id="view_'+i+'">View</button>'
 + '<button class="green" id="edit_'+i+'">Edit</button>'
 + '<button class="red" id="del_'+i+'">Delete</button>'
 + '</div>';
...

In addition, you’ll see that a listener was added to the dragstart event of this item:

...
var doDrag = function(e) { dragFile(file, e); }
...
listItem.addEventListener('dragstart', doDrag, false);...

Believe it or not, all you need to do to implement the export functionality is to define
the dragFile function. One last time, add the code in the next listing to app.js, right
after the line fileDropZone.addEventListener('dragover', importDragOver, false).

var dragFile = function(file, e) {
 e.dataTransfer.effectAllowed = 'copy';
 e.dataTransfer.dropEffect = 'copy';

Listing 3.18 app.js—Allowing users to export files by dragging them out of the app

Because you want the imported file(s) to
be copied when they’re dropped into the
zone, set the dragover event properties,
effectAllowed and dropEffect, to copy.
When the user drags the file over the
drop zone, the file image(s) will change
to indicate a pending copy operation.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

99Summary
 e.dataTransfer.setData('DownloadURL', 'application/octet-
stream:'+file.name+':'+file.toURL());

};

If you were hoping for more code than that to implement the export functionality,
you’re probably disappointed—that really is all you need. The toURL method that was
used previously in the viewFile method is put to use again, this time to construct a
downloadable object (DownloadURL) that’s saved to the user’s computer. Be sure to
give it a try; drag one of the files out of your application and drop it on your com-
puter’s desktop.

 At long last the application is complete. At this point you should have a fully func-
tional web-based HTML editor that allows you to import and export files using drag
and drop.

3.5 Summary
Not long ago the idea that you could build a full client-side WYSIWYG HTML editor
application featuring the ability to create, edit, save, and drag/drop files was nothing
more than a daydream for web application developers. In HTML5 this is all now a real-
ity, and as browser support steadily improves, we’re getting closer to a situation where
users will come to expect features like these to be a part of every web application. Pro-
gressive functionality like this will ensure that web applications can continue to evolve
and become more innovative, while maintaining the web’s tradition of openness and
preference for standards-driven development.

 Although we’ve been looking at HTML5 features for supporting rich UI applica-
tions, HTML5 can also support the development of social and collaborative applications.
In the next chapter, you’ll look at creating chat message and project planner applica-
tions. These apps will teach you about the many new messaging features in HTML5,
including cross-domain messaging, WebSockets, and server-sent events (SSE).

When the user starts dragging a draggable item in the app, the setData method
of the dataTransfer object can be used to define what data should be dropped.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Chapter 4 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

Server-sent events Creating events in the browser from the server:
■ Creating an EventSource()
■ Listening to server events with addEventListener()

111
111

WebSockets Two-way, event-driven communication:
■ Writing applications using WebSockets
■ Messaging on the client side

116
125

Cross-document
messaging

Communication between scripts in different windows:
■ Sending messages with postMessage()
■ Receiving messages with onmessage()

126
126

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Messaging:
communicating to and

from scripts in HTML5
In the last decade, the web has moved from communication based on uploading
static content, similar to the traditional print publishing model, to a real-time com-
munication system where tweets and friendings are instantly announced to hun-
dreds of followers. We’ve all become so used to dynamically updating web pages
that we don’t realize most of this is built as a series of hacks on top of HTML4 and
HTTP 1.0/1.1. HTML5 cleans up these hacks by providing well-defined APIs for mes-
saging—between the browser and web servers and between different iframes or
other objects loaded in the browser.

 Because messaging is a complex subject, this will be a complex chapter. You’re
going to do a lot and learn a lot. Specifically, you’re going to

This chapter covers
■ Server-sent events and event-driven

communications from the server
■ WebSockets for bidirectional, event-driven

communication
■ Client-side messaging between pages from

different domains
101

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

102 CHAPTER 4 Messaging: communicating to and from scripts in HTML5
■ Learn how to use server-sent events (SSE). This new client-server API allows
communication from the server without a specific client request.

■ Learn how to use WebSockets.
■ Dabble in one of the new event-driven, server-side technologies: Node.js.
■ Learn about cross-document messaging, an API for communication between

pages and scripts already loaded in the browser.

After you build those two applications, we’ll show you how to integrate them on the
client using cross-document messaging.

 If you need background on the principles of computer networking, take a side trip
through appendix D. It’ll help you understand the performance trade-offs to using
the new HTML5 client-server APIs, as well as define terms like protocol, network stack,
latency, throughput, polling, and event-driven. The appendix will also give you the back-
ground to understand why and when to use the new approaches we introduce in this
chapter, such as server-sent events, which we cover in the next section.

4.1 Server-sent events (SSE)
Server-sent events (SSE) allow the web server to create an event in the browser. The event
can contain raw data or it can be a notification or a ping. The API for SSE in the browser
is the event listener in JavaScript, created using the same addEventListener() method
you’d use for any other event listener. The only difference is that instead of adding a
listener to the document object or an element, you add it to an instance of the new
WebSocket object. Why is this any better than requesting new data with AJAX? SSE
offers two main advantages:

■ The server drives communication.
■ There’s less overhead of repeatedly creating a connection and adding headers.

In this section you’ll learn how to use SSE as you build a simple chat application. As
the section winds down, you’ll also learn when it’s good to use SSE and when another
tool might be better.

4.1.1 A simple SSE chat application

Server-sent events are delivered to the browser in the form of a special file the browser
requests by creating an EventSource object. Instead of a regular HTML file or image,
the browser requests an event stream. Normally, the server attempts to deliver any file
as fast as possible, but with the event stream the file is purposely delivered slowly. The

Why build this chapter’s chat and planning board applications?
■ You’ll build a chat application based on a traditional LAMP/WIMP (Linux, Apache,

MySQL, PHP/Windows, IIS, MySQL, PHP) server stack to learn about SSE.
■ You’ll build a collaborative agile planning board with WebSockets and Node.js.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

103Server-sent events (SSE)
browser stays connected to the server for as long as the file takes to be delivered, and
the server can add data to the file at any time. This approach is identical to that used
by the forever frame technique (defined in appendix D) except that instead of devel-
opers having to decide for themselves how to format the response, the format is laid
down in the HTML5 standard. In return for following SSE conventions, you use the
familiar addEventListener() approach you’d use for any other events.

As we discuss how to build an SSE chat application, we’ll focus on the front-end code,
because we’re not trying to teach PHP or MySQL. That said, the easiest way forward is
to download the server files, listed in the “Chat application prerequisites” sidebar.

Figure 4.1 shows a screenshot of the finished
application.

 As you can see, the user types a message
into the text input and hits Enter or the Chat
button, and his words of wisdom are immedi-
ately distributed to everyone else online. The
chat shown in figure 4.1 is, of course, entirely
manufactured. Rest assured; the authors are
not that corny in real life.

 As you might guess from the name, server-
sent events, the server sends events to the
browser; it can’t receive information via SSE.
Communication from the browser back to
the server, new chat messages entered by the

Server-sent events 9 6 N/A 11 5

Chat application prerequisites
You’ll need the following programs to make the application in this section work:

■ A web server that can host PHP—We used Apache (http://apache.org/) for the
example, but IIS on Windows also should work.

■ PHP—Download from http://php.net/ with PDO support.
■ MySQL—Download from http://dev.mysql.com/.
■ jQuery—Download from http://jquery.com/ (included in code download).

The other files you need are available in the code download section of our book’s
website. If you don’t want to do the setup yourself, you can also get all the needed
components as part of most inexpensive web-hosting packages.

Figure 4.1 The simple chat application
in action
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://apache.org/
http://php.net/
http://dev.mysql.com/
http://jquery.com/

104 CHAPTER 4 Messaging: communicating to and from scripts in HTML5
user, will use traditional AJAX methods. Figure 4.2 illustrates the flow of chat messages
in the application.

 The file structure you’ll create, and which is provided in the companion source
code for this book, is illustrated in figure 4.3.

 For everything to work, these files will need to be located in a directory where your
web server can find them. For Apache, this will likely be under /var/www/html, and
for IIS, this will be C:\Inetpub\WWWRoot; check the details in the documentation for
your OS and web server. Usually these folders have restricted access, so either create
and edit the files in your home directory and copy them across or run your editor with
appropriate permissions. Through the following steps we’ll refer to this directory as
the working directory.

 We’ll walk you through the build in eight steps:

■ Step 1: Create a database in which to store chat messages.
■ Step 2: Create a chat form.
■ Step 3: Create a login form.
■ Step 4: Implement a login process.
■ Step 5: Send new chat messages to the server with AJAX.
■ Step 6: Store new chat messages in the database.
■ Step 7: Build an SSE stream at the server.
■ Step 8: Connect to an SSE stream in the browser.

Browser

AJAX

Chat messages

SSE

Server

Figure 4.2 The conceptual flow of chat
messages in this section’s application.
Messages will be sent back to the server using
standard AJAX techniques, but chat messages
will be received from the server through server-
sent events.

Figure 4.3 The file layout for
the chat application
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

105Server-sent events (SSE)
STEP 1: CREATE A DATABASE IN WHICH TO STORE CHAT MESSAGES

Use your MySQL administration tool to create a database called ssechat (see appen-
dix C). Included in the code download is a chat.sql file, which, when run, will create two
tables in the database called sessions, to record who is logged in, and log, to record
a log of the chat messages. Get the file credentials.php from the source code down-
load and edit it to contain your database connection details. The example expects
$user, $pass, and $db to define strings for the username, password, and connection
string, respectively. The $db variable will look something like "mysql:host=local-
host;dbname=ssechat".

STEP 2: CREATE A CHAT FORM

Create the index.php page and the markup that users will see. The markup will con-
tain two forms that will be visible or not, depending on the status of the user. In this
step you’ll create the list of chat messages and a form for adding new ones; in the
next step you’ll create a form for logging in. The following listing shows the PHP
source for the form shown in figure 4.1. It’s a simple HTML template that makes a cou-
ple of function calls to render the main content, and it contains a form to allow new
chat messages to be added.

<body>
 Online now:
 <ul class="chatusers">
 <?php
 print_user_list($dbh);
 ?>

 <div class="chatwindow">
 <ul class="chatlog">
 <?php
 print_chat_log($dbh);
 ?>

 </div>
 <form id="chat" class="chatform" method="post"
 action="add-chat.php">
 <label for="message">Share your thoughts:</label>
 <input name="message" id="message" maxlength="512" autofocus>

SSE on older browsers
Server-sent events are a rationalized version of the forever-frame hack discussed in
appendix D. The required server-side code is similar, so the most obvious approach
for fallback in older browsers is to use the forever frame if SSE isn’t available. An
alternative is to use one of the prebuilt libraries, which implement a fallback trans-
parently. One such library is Remy Sharp’s EventSource.js polyfill: https://github.com/
remy/polyfills/blob/master/EventSource.js.

Listing 4.1 index.php body content

The print_user_list function
outputs an unordered list
(the HTML element) of
currently logged-on users.

The print_chat_log
function outputs an
unordered list of
chat messages.

The chatform has an
action defined that allows
it to work, in a limited
sense, without JavaScript
enabled, but JavaScript
will be used to override
the default action in
listing 4.6.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://github.com/remy/polyfills/blob/master/EventSource.js
https://github.com/remy/polyfills/blob/master/EventSource.js

106 CHAPTER 4 Messaging: communicating to and from scripts in HTML5
 <input type="submit" value="Chat">
 </form>
</body>

You’ll also need to set up basic links in the <head> section of index.php. The required
code is shown in the next listing.

<?php
session_start();
include_once "credentials.php";
include_once "functions.php";
try {
 $dbh = new PDO($db, $user, $pass);
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
?><!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>SSE Chat</title>
 <link href="style.css" rel="stylesheet">
 <script src="jquery-1.7.1.min.js"></script>
 <script>var uid='<?php print session_id(); ?>';</script>
 <script src="chat.js"></script>
</head>

STEP 3: CREATE A LOGIN FORM

In order to track which user is which, you need to have them log in, which means
recording their chat handle along with their PHP session ID. As mentioned in step 2,
rather than create a separate page for this, you’re going to add another form into the
index.php file, then use conditional statements to turn the visibility of the form on
and off. You’re not going to do anything fancy—the index.php page with the login
form enabled is shown in figure 4.4.

As we just discussed, you don’t need to create a separate PHP file for displaying the pre-
vious form—instead, you’ll add conditional functionality to your existing index.php
page. The following listing contains the code that determines whether to show the login
form or the chat form. It should go immediately after the <body> tag in listing 4.1.

Listing 4.2 index.php head

This enables the standard
PHP session tracking.

Common variables and functions
are included from separate files.

You’ll be using PHP Data
Objects (PDO) to connect
to the database.

Make the PHP
session ID
easily available
to JavaScript
(saves reading
the cookie).

chat.js is the file where you’ll later
implement the client-side code for SSE.

Figure 4.4 A simple login page for
the chat application
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

107Server-sent events (SSE)

The
of

code f
listing
startin

<stron

cont
h

<?php
try {
 $checkOnline = $dbh->prepare(
 'SELECT * FROM sessions WHERE session_id = :sid');
 $checkOnline->execute(array(':sid' => session_id()));
 $rows = $checkOnline->fetchAll();
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
if (count($rows) > 0) {
?>

Now that you’ve added a conditional statement before the code for the chat form, you
have to close the first block of the condition, then add the code for the login form
inside an else block after the chat page code. The code for the login form is shown
in the next listing. It should be placed immediately before the closing </body> tag in
index.php.

<?php
} else {
?>
<form id="login" class="chatlogin"
 method="post" action="add-session.php">
 <label for="handle">Enter your handle:</label>
 <input name="handle" id="handle" maxlength="127" autofocus>
 <input type="submit" value="Join">
</form>
<?php
}
?>

TRY IT OUT

You should now be able to see the login form by browsing to the index.php file on your
local server. It won’t do anything yet, because you haven’t created a PHP file to process
the logins. In order to get users logged in, you’ll need a working add-session.php file.

STEP 4: IMPLEMENT A LOGIN PROCESS

The add-session.php file is shown next. Put this file in the same directory as index.php,
as per the file layout in figure 4.3.

<?php
session_start();
include_once "credentials.php";
try {
 $dbh = new PDO($db, $user, $pass);
 $preparedStatement = $dbh->prepare(

Listing 4.3 Check to see if the user is logged on

Listing 4.4 Display a login form

Listing 4.5 The add-session.php file

Look up all the sessions in the database with
a session_id equal to the current session_id().

If one is found, assume the
user is logged in. (This is
intended to be the simplest
code that will work—it’s not
best practice, secure PHP.)

rest
 the
rom
 4.1,
g at
g>,
will

inue
ere.

This else statement corresponds
to the if at the end of listing 4.3.

The add-
session.php file
will deal with
inserting the
user into the
database.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

108 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

e

 'INSERT INTO `sessions`(`session_id`, `handle`, `connected`)
 VALUES (:sid,:handle,NOW())');
 $preparedStatement->execute(
 array(':sid' => session_id(), ':handle' => $_POST["handle"]));
 $rows = $preparedStatement->fetchAll();
 $dbh = null;
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
header("Location: index.php");
?>

Now that you have the user’s basic details sorted out, it’s time to implement the appli-
cation functionality.

STEP 5: SEND NEW CHAT MESSAGES TO THE SERVER WITH AJAX
You accomplish the transport of data back to the server with traditional AJAX tech-
niques. The next listing shows the code for processing the chat form submit—noth-
ing surprising for experienced front-end developers. Create a file chat.js in your
working directory to contain all of your JavaScript code; as per figure 4.3 you can
create it in the same directory as index.php and put the code from the following list-
ing in it.

$(document).ready(
 function() {
 var chatlog = $('.chatlog');
 if (chatlog.length > 0) {
 var chatformCallback = function() {
 chatform.find('input')[0].value = '';
 }
 chatform.bind('submit', function() {
 var ajax_params = {
 url: 'add-chat.php',
 type: 'POST',
 data: chatform.serialize(),
 success: chatformCallback,
 error: function () {
 window.alert('An error occurred');
 }
 };
 $.ajax(ajax_params);
 return false;
 })

STEP 6: STORE NEW CHAT MESSAGES IN THE DATABASE

On the server you’ll need a script to insert the chat messages in the database as they’re
created. The next listing shows the source code for add-chat.php, which grabs the
message from a POST request and stores it with the appropriate details.

Listing 4.6 Add a chat message (client code)

You’re not doing anything more
complex than recording the

submitted handle in the
database with the session_id().

Redirect to index.php
when finished.

You’ll close the function
and the condition in
listing 4.9.

A simple function to clear th
chat input after the message
has been successfully sent to
the server.

The add-chat.php takes the message and
adds it to the database, along with some
information from the session; check the
download files for more details.

Because the form is
submitted by AJAX, you don’t
want the page to reload.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

109Server-sent events (SSE)

On
follow
line,

d
keyw
gives

text t
associa

with
ev

tured
ted.
<?php
session_start();
include_once "credentials.php";
$dbh = new PDO($db, $user, $pass);
$preparedStatement = $dbh->prepare('
 INSERT INTO `log`(`session_id`,`handle`, `message`, `timestamp`)
 VALUES (
 :sid,
 (SELECT `handle` FROM `sessions` WHERE `session_id` = :sid),
 :message,NOW()
)');
$preparedStatement->execute(
 array(':sid' => session_id(),
 ':message' => $_POST["message"]));
$rows = $preparedStatement->fetchAll();
$dbh = null;
session_write_close();
header("HTTP/1.1 200 OK");
echo "OK";
ob_flush();
flush();
die();
?>

You’ve created a simple interface and a way to add new chat messages—now at last
you’re ready to start using SSE. What you need next is a way to get the chat messages of
other users to appear in your browser as they’re entered by your fellow chatters. This
is the sort of task SSE is designed for.

STEP 7: BUILD AN SSE STREAM AT THE SERVER

The following snippet shows an excerpt from an SSE event stream like the one you’re
about to create. It’s all plain text and should be served with the MIME type text/
event-stream (typically, because you’re generating the event stream dynamically,
you’ll set the MIME type in your server-side code). A sample of the event stream you’ll
be generating is shown here:

event: useradded
data: Rob

event: message
data: <time datetime="2011-10-24 10:13:17">10:13</time>
 Joe How can we be sure?

event: message
data: <time datetime="2011-10-24 10:13:40">10:13</time>
 Rob Well, according to Wittgenstein...

The event stream itself is similar to the forever-frame approach (see appendix D). A
connection is opened and kept open, and the chat.js script periodically adds content

Listing 4.7 Add a chat message (server code)

The database details are
stored in a separate file.

The message table is simple: an
ID, a user handle, and a time

(the user handle is being stored
for convenience).

All database access in this
example is using PHP’s PDO
database library—this should be
part of your standard PHP install.

An event is defined by the keyword event, followed
by a colon, followed by the name of the event. the

ing
 the
ata
ord
 the
o be
ted
 the
ent.

Any string can be used to define the event name, but note that the events cap
by any script in the browser will have the same name as the events being emit

The data can also be
any string; the script
in the browser is
responsible for
interpreting it
correctly.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

110 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

A qu
PHP is
the se

is si
thread
you lea
open in

script
bloc

other p
usi

l

app

invo
re
lo

amo
app
to it. Each time new content arrives at the browser, it’s converted into the simple
event-driven JavaScript programming model with which we’re all familiar.

 The code on the server is straightforward. Create a file sse.php to generate the
event stream in the same directory as index.php and add the same session_start(),
include_once, and PDO creation code that starts off index.php. You don’t need to
add a !DOCTYPE declaration because you’re not generating an HTML page. Then
add code to loop, constantly looking for new messages. If you already have a forever-
frame script, it’s likely you can easily adapt it. The code for sse.php is shown in the fol-
lowing listing.

<?php
session_start();
include_once "credentials.php";
include_once "functions.php";
try {
 $dbh = new PDO($db, $user, $pass);
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
header('Content-Type: text/event-stream');
header('Cache-Control: no-cache');
$uid = $_REQUEST["uid"];
$lastUpdate = time();
$startedAt = time();
session_write_close();
var $lastupdate = now();
while (is_logged_on($dbh, $uid)) {
 $getChat = $dbh->prepare('SELECT `timestamp`,`handle`, `message`
 FROM `log`
 WHERE `timestamp` >= :lastupdate
 ORDER BY `timestamp`');
 $getChat->execute(
 array(':lastupdate' => strftime("%Y-%m-%d %H:%M:%S", $lastUpdate))
);
 $rows = $getChat->fetchAll();
 foreach($rows as $row) {
 echo "event: message\n";
 echo "data: <time datetime=\"".$row['timestamp']."\">";
 echo strftime("%H:%M",strtotime($row['timestamp']));
 echo "</time> ".$row['handle']." ";
 echo $row['message']."\n\n";
 ob_flush();
 flush();
 }
 $lastUpdate = time();
 sleep(2);
}
?>

Listing 4.8 sse.php key code loop

Set the correct
content-type.

Ensure the stream
isn’t cached.

irk of
 that
ssion
ngle-
ed; if
ve it
 this
, it’ll

k any
ages

ng it.

Loop here until the user logs out. Nearly all
web server configurations limit execution
time to between 30 and 90 seconds to allow
the script to time out, but the browser will
automatically reconnect.

In a real application, you’d factor this
inline SQL into a function. This example
tries to keep all the logic visible.

Fetch all chat messages added to the database
since the last update; to keep things simple you’l
worry about only the message event for now.

In a real
lication

you’d
ke some
ndering
gic here

that’s
shared

ng your
lication

files. Send the data as HTML. You could also
send it as a JSON-encoded object.

Stores the last time you updated, and sleeps for two seconds.
This is necessary in this example because the MySQL timestamp
column is only accurate to the closest second. Implementing a
millisecond-accurate time field in MySQL is possible but has been
avoided here to keep the code simple.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

111Server-sent events (SSE)

de

th
u

o
e
Like the forever frame, you gain a low overhead of passing data from the server to the
client. Once the connection is open, the only data that needs to be transferred is that
which is pertinent to the application. No headers need to be sent with each update.

STEP 8: CONNECT TO AN SSE STREAM IN THE BROWSER

To retrieve chat messages, you’ll connect your index.php page to the event stream using
an EventSource object. The next listing shows the relevant JavaScript. You should add it
to the chat.js you created in step 5. In this listing the EventSource is established and
event listeners are added. The annotations explain the key points.

 var evtSource = new EventSource("sse.php?uid=" + uid);

 evtSource.addEventListener("message", function(e) {
 var el = document.createElement("li");
 el.innerHTML = e.data;
 chatlog.appendChild(el);
 })
 evtSource.addEventListener("useradded", function(e) {
 var el = document.createElement("li");
 el.innerHTML = e.data;
 chatusers.appendChild(el);
 })
 }
 }
)

TRY IT OUT!
Everything is now in place for you to try the application. If you haven’t already, copy
all the files to a location where your web server can access them (as discussed earlier
in this chapter, this is likely to be either /var/www/html or C:\Inetpub\WWWRoot)
and have a go. You can use a couple of different browsers to simulate multiple users
and try talking to yourself.

Listing 4.9 Client code for connecting to an event stream

Controlling the default server timeout
There’s one thing to bear in mind if you’re using PHP on Apache, as in this example:
The default script timeout is 30 seconds. This means that after 30 seconds the script
on the server will be terminated and the connection will be dropped.

This isn’t a problem on the client side, because it should automatically reconnect to
the event source. By default, a reconnection will be attempted every 3 seconds, but
it’s also possible to control this from the event stream by emitting a retry directive:

retry: 10000

The number is a time in milliseconds. This should force the browser to wait 10 sec-
onds before attempting a reconnect. Controlling the retry time would be useful if you
knew the server was going to be unavailable or under high load for a short time.

Core API

Core API

An EventSource is
clared by linking to

the script on the
server that provides
e event stream; the
id is a value passed
via the host page to

link users to their
PHP session on the

server side.

Event listeners
can be added t
the EventSourc
using normal
DOM methods.

What the events will be called is
determined in the server script;

“message” and “useradded” aren’t
regular DOM events but the ones defined

in the server-side code (see listing 4.8).
This closes the function
and conditional opened
in listing 4.6.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

112 CHAPTER 4 Messaging: communicating to and from scripts in HTML5
4.1.2 When to use SSE

Before we move on to WebSockets, let’s step back to consider why it was worth bother-
ing with SSE. After all, server-sent events do have some obvious disadvantages:

■ You can only communicate from the server to the client.
■ SSE offers little advantage over long-polling or forever frame.

If your application implemented one of the older hacks, it would probably not be
worth updating just to take advantage of an event-driven interface consistent with
other HTML5 APIs. SSE won’t dramatically lower the communication overhead com-
pared to these hacks. If you’re starting from scratch, SSE does have advantages over
WebSockets (which we’ll talk about in the next section):

■ It’s an extremely simple wire protocol.
■ It’s easy to implement on cheap hosting.

If you’re working on a hobby project, SSE will probably be a good fit for you. But if
you’re working on high-load, web-scale startups where you’re constantly tweaking the
infrastructure, you’ll want to look closely at WebSockets, the pièce de résistance of the
HTML5 communication protocols.

 In the next section you’ll use Node.js web server (also commonly referred to as just
plain Node) to write an application using WebSockets. Node is well suited to SSE and
WebSockets because it’s designed from the ground up to do event-driven communi-
cation (frequent, small, but irregular message sending; see appendix D). If you’re
used to web servers like Apache or IIS, it works differently than you might expect. It’s
therefore worth spending time becoming familiar with the basics.

4.2 Using WebSockets to build a real-time messaging web app
WebSockets allow bare-bones networking between clients and servers with far less
overhead than the previously more common approach of tunneling other protocols
through HTTP. With WebSockets it’s possible to package your data using the appropri-
ate protocol, XMPP (Extensible Messaging and Presence Protocol) for chat, for exam-
ple, while also benefiting from the strengths of HTTP.

 The WebSockets Protocol, which describes what browser vendors and servers must
implement behind the scenes, is used at the network layer to establish and maintain
socket connections and pass data through them. The WebSockets API describes the
interface that needs to be available in the DOM so that WebSockets can be used from
JavaScript. Appendix D more fully describes the protocol and API, so if you’d like
more information before you build the next piece of this chapter’s sample applica-
tion—an agile planning board—detour to section D.6, “Understanding the WebSock-
ets Protocol,” now.

 When you return, we’ll give you an overview of the application you’re going to
build and help you get your prerequisites in order, have you create and test a Web-
Socket with Node.js, and build the planner application.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

113Using WebSockets to build a real-time messaging web app
4.2.1 Application overview and prerequisites

In section 4.1 you built a simple chat system based on SSE. In this section you’ll use
WebSockets and Node.js to build an agile planning board which is intended to be a
simple way to group tasks according to their status so that progress on the overall proj-
ect can be discerned at a glance. Tasks, originally represented by sticky notes on a
notice board (figure 4.5), are slotted into three or more simple categories such as to
do, in progress, and done.

 Agile methodologies are a particularly attractive target for tools based on messag-
ing because agile is intended to be collaborative rather than dictatorial. So it’s expected

Figure 4.5 A real-life agile planning board at the TotalMobile offices in
Belfast. The sticky notes describe tasks to be done, and the four quadrants
are labeled, from top-left clockwise, NOT DONE, IN PROGRESS, DONE, and
REVIEW. In this section you’ll develop an electronic version of this board.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

114 CHAPTER 4 Messaging: communicating to and from scripts in HTML5
that you might have a bunch of people online trying to update the same plan at the
same time.

BEFORE YOU PROCEED: PREREQUISITES

Before you begin this portion of the application, you’ll need certain prerequisites to
make the application in this section work. Specifically, you’ll need the following:

■ The chat app—See section 4.1.
■ Node.js—Download from http://nodejs.org/; see appendix E for install instructions.
■ You’ll also need to install four Node modules (see appendix E for details of how

to install):
– Director—Download from https://github.com/flatiron/director or install with

NPM; for handling routing (assigning requested URLs to handlers).
– Session.js—Download from https://github.com/Marak/session.js or install

with NPM; for handling user sessions.
– Mustache—Download from http://mustache.github.com/ or install with NPM;

for generating HTML from combining objects and templates, both within
Node and in client-side JavaScript.

– WebSocket-Node—Download from https://github.com/Worlize/WebSocket-
Node or install with NPM; for extending Node to support WebSockets.

■ jQuery—Download from http://jquery.com/.
■ EventEmitter.js—Download from https://github.com/Wolfy87/EventEmitter.

The rest of the files you need are available in the code download from the Manning
.com website; we won’t list them here because they’re not relevant to the WebSockets
logic. You’ll need to either create your own or grab the ones from the download.

AN OVERVIEW OF THE BUILDING PROCESS

After you load your prerequisites and test your installation, the building process will
flow like this:

1 Create a template page.
2 Build planner logic that can be used both in the client and on the server.
3 Create browser event listeners to deal with incoming WebSocket events and

update the plan.
4 Create server logic to listen to incoming messages, update the plan, and send

updates to other clients.

The finished application (figure 4.6) won’t look quite like the real-life example, but it
will feature of the main components. To simulate the experience of a bunch of people
all standing around a real notice board, sipping their coffee, and arguing about where
to put particular tasks, the chat application from section 4.1 is provided in an iframe.
All participants will still have to provide their own coffee.

 The final file layout you’ll create during the build is shown in figure 4.7.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://nodejs.org/
https://github.com/flatiron/director
https://github.com/Marak/session.js
http://mustache.github.com/
https://github.com/Worlize/WebSocket-Node
http://jquery.com/
https://github.com/Wolfy87/EventEmitter
https://github.com/Worlize/WebSocket-Node

115Using WebSockets to build a real-time messaging web app
With prerequisites installed, but before you build the planner application, let’s make
sure that WebSockets are working for you. In the next section you’ll write a quick test
page to confirm that WebSockets are working correctly in Node and in the browser,
before it all is obscured by your application logic.

4.2.2 Creating a WebSocket with Node.js
Rather than deal with all the low-level, bit-by-bit data manipulation required by the
WebSockets Protocol, you’ll be using the WebSocket-Node module. It allows you to
concentrate on the APIs involved rather than the mundane details of packing bits
together in the correct format—details described for you in appendix C. In this sec-
tion you’ll create two files:

■ A JavaScript file to be run with Node.js
■ An HTML page, which will be sent to the browser

WebSocket API 3 6 10 11 5

Figure 4.6 The finished planning application

Figure 4.7 Planner application
file layout
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

116 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

fam
onmess

e

The onmessage event is used in every other messaging API in HTML5, so it should
come as no surprise to you that it gets used in WebSockets, too. For WebSockets you
need to create a WebSocket object and attach a function to the message event listener.

 The code you write will dump information to the console as it receives it; sample
console output is shown in the following listing.

Sun Nov 27 2011 23:59:13 GMT-0800 (PST) Server is listening on port 8080
Sun Nov 27 2011 23:59:24 GMT-0800 (PST) Connection accepted.
Received Message: My Message

Figure 4.8 shows the corresponding output in the browser developer console. The
browser requests the page; then it upgrades the connection to a WebSocket. It sends
the message “My Message” before receiving the response from the server; in this case
the same “My Message” string is sent back as a message.

 The next listing shows JavaScript that opens a WebSocket, then listens for messages
from the server. You should create a page named websocket-sample.html and include
this listing in a <script> block. The page doesn’t need to do anything or have any
content; you’ll determine success by examining the JavaScript console (see step C in
the listing).

var ws = new WebSocket('ws://localhost:8080');
ws.onmessage = function(e) {
 console.log(e.data);
};
ws.onopen = function() {
 ws.send('My Message');
};

Listing 4.10 Server output for a simple WebSocket test

Listing 4.11 A simple JavaScript WebSockets client

As each message is received, it’s reflected
back in a message to the client.

Figure 4.8 The simple WebSocket client running in the browser

Core API

This line creates a WebSocket
object; note that the URL uses
the ws:// protocol.The

iliar
age

vent

Log the data to the
console so you can see it.

The onopen event fires when the socket created in the
first step is successfully opened by a browser—this
function then sends a message to the server.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

117Using WebSockets to build a real-time messaging web app

W

co

Web

han
r

me
On the server, the WebSocket-Node library is used to extend the base HTTP server.
Appendix E provides the steps you need to take to install this module in Node; if
you’re following along step-by-step, please take that detour now.

 With the module installed, you’re ready to continue. Our next listing shows a
Node.js app that will accept a WebSocket request and echo back any message sent to
it. Save it as websocket-sample.js in the same directory as the file from listing 4.11.

var http = require("http");
var fs = require('fs');
var WebSocketServer = require('websocket').server;

function handler (req, res) {
 fs.readFile(__dirname + '/websocket-sample.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading websocket-sample.html');
 }
 res.writeHead(200);
 res.end(data);
 });
}

var app = http.createServer(handler);

app.listen(8080, function() {
 console.log((new Date()) + " Server is listening on port 8080");
});

wsServer = new WebSocketServer({
 httpServer: app
});

wsServer.on('request', function(request) {
 var connection = request.accept(null, request.origin);
 console.log((new Date()) + " Connection accepted.");
 connection.on('message', function(message) {
 console.log("Received Message: " + message.utf8Data);
 connection.sendUTF(message.utf8Data);
 });
});

TRY IT OUT

Run listing 4.12 with Node (enter node websocket-sample.js on the command line).
Now open your browser and connect to http://localhost:8080/ and check the console
for the output.

4.2.3 Building the planner application

Now that you’ve confirmed that WebSockets are functioning both in Node and in
your browser, and you know how to implement the WebSocket API in the client and

Listing 4.12 A simple Node.js WebSockets server

This handler function
will be run in response
to any HTTP request.

Create a basic HTTP
server object.

Start the server
listening on port 8080.

The WebSocket-Node module is designed to extend an
existing HTTP server; the HTTP server object is passed
to the WebSocket server object as a parameter.

This handler function
will be run in
response to any
WebSocket request.

hen a
client

nnects
to the

Socket,
add a

dler for
eceived
ssages.

The handler will echo any
message received back to the
socket it was received from.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://localhost:8080/

118 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

sect
ha
o

res
eac
sect
to
pr

com
how to set up Node.js to service those WebSockets, you’re ready to build a real applica-
tion that takes advantage of all of these features.

 The steps you’ll follow to build the planner application are these:

■ Step 1: Create a template page.
■ Step 2: Build multipurpose business logic in JavaScript to create and update

plans.
■ Step 3: Handle updates in the browser.
■ Step 4: Handle updates on the server.

STEP 1: CREATE A TEMPLATE PAGE

The markup for the application page, index.html as normal, is shown in the following
listing, though most of the interesting things in this application will be in the linked
JavaScript files.

<body>
 Online now:
 <ul class="chatusers">
 <?php
 print_user_list($dbh);
 ?>

 <div class="chatwindow">
 <ul class="chatlog">
 <?php
 print_chat_log($dbh);
 ?>

 </div><!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Planner</title>
 <link rel="stylesheet" href="style.css">
 <script src="jquery-1.7.2.min.js"></script>
 <script src="EventEmitter.js"></script>
 <script src="planner.js"></script>
</head>
<body>
 <div id="plan">
 <div class="taskqueue">
 Unassigned tasks
 </div>
 <div class="grid">
 Planning board
 <div class="user">
 <div class="who">
 </div>
 <div>
 <div class="todo">

Listing 4.13 The planner index.html file

This section will
contain a list of
tasks that are
currently
unassigned.

This
ion will
ve one
r more
ources;
h has a
ion for
-do, in-
ogress,

and
pleted
tasks.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

119Using WebSockets to build a real-time messaging web app
 To Do
 </div>
 <div class="inprogress">
 In Progress
 </div>
 <div class="done">
 Done
 </div>
 </div>
 </div>
 </div>
 <div class="external">
 Chat
 <iframe src="http://localhost/sse-chat/index.php">
 </iframe>
 </div>
 </div>
</body>
</html>

 <form id="chat" class="chatform" method="post"
 action="add-chat.php">
 <label for="message">Share your thoughts:</label>
 <input name="message" id="message" maxlength="512" autofocus>
 <input type="submit" value="Chat">
 </form>
</body>

You now have the basic page structure out of the way, so let’s delve into the JavaScript
APIs that will make it all work.

STEP 2: BUILD MULTIPURPOSE BUSINESS LOGIC IN JAVASCRIPT TO CREATE AND UPDATE PLANS

A key advantage of having the server use the same programming language as the cli-
ent is that they can share code. Instead of implementing the same functionality once
in the server-side language and then again in JavaScript, implement it only one time.
Figure 4.9 shows how this works.

 Figure 4.10 shows the architecture of the application on the server and in two identi-
cal connected clients. As you can see, the structure on both client and server is similar.
As each user makes changes, the same methods get fired on their local copy of the plan-
ner object as will be fired on the server planner object and on the planner objects used
by other clients as the messages are passed between them using WebSockets.

 Your model (the object containing the plan) will make use of the events framework,
EventEmitter.js, as mentioned in the prerequisites. This is a browser-compatible version
of the events module that comes as standard with Node. As methods are called on the
model object, events will be fired. You’ll then attach listeners to those events; when
the model is run in the browser, those events will update the UI and send the changes
back to the server. When the model is run on the server, those events will update all the
other connected clients. The following listing shows the basic outline of the object you’ll
be using to store the plan, including some types and some utility functions. Add it to a
file called planner.js. In the next listing you’ll add some functionality.

The final section
embeds the chat
application from
section 4.1.2.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

120 CHAPTER 4 Messaging: communicating to and from scripts in HTML5
var Planner = function(ee) {
 var plan = {};
 plan.tasks = [];
 plan.workers = [];
 plan.statuses = ['todo','inprogress','done'];
 var Task = function(task_name, task_id) {
 var that = {};
 that.name = task_name;
 if (typeof task_id === 'undefined') {
 that.id = guidGenerator();
 } else {
 that.id = task_id;
 }

Listing 4.14 Creating the plan object and utility functions in planner.js

The planner object maintains

a copy of the plan and allows

other code to access that plan

through a collection of methods.

In this application the planner object

is implemented in the planner.js file.

Because the server and client

are implemented in JavaScript,

the same planner.js file can

be used on both.

Client files Server files

Planner object

planner.js

load_plan(new_plan)

get_plan()

add_task(task_name, task_id, source)

move_tesk(task_id, owner, status, source)

delete_task(task_id, source)

add_worker(worker_name, source)

delete_worker(worker_name, source)

Figure 4.9 By using the same model (the plan held by the planner object) in the browser and on
the server, the business logic (the methods in the planner object) can be the same in both places.

The planner expects an EventEmitter object
to be passed in when it’s created.

This first section sets
up a few private
variables.

A utility function to
create a new task.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

121Using WebSockets to build a real-time messaging web app
 that.owner = '';
 that.status = '';
 }
 function get_task(task_id) {
 return plan.tasks[get_task_index(task_id)];
 }
 function get_task_index(task_id) {
 for (var i = 0; i < plan.tasks.length; i++) {
 if (plan.tasks[i].id == task_id) { return i; }
 }
 return -1;
 }
 function guidGenerator(){
 var S4 = function() {
 return (
 ((1+Math.random())
 *0x10000)|0).toString(16).substring(1);
 };
 return (S4()+S4()+"-"+S4()+"-"+S4()+"-"+S4()+"-"+S4()+S4()+S4());
 }
 var that = { }
 return that;
}

Using the EventEmitter library allows the event code to be identical on both server
and client. The model, your plan object, emits events as the methods on it are called.
On the client side, you’ll listen to these events and update the display appropriately.

Planner

object

Planner

User
events

= Events raised

object

UI

updater

Web

socket

Web

socket

Orches-

trator

Orches-

trator

Client A

Server

Planner

object

UI

updater

Web

socket

Orches-

trator

Client B

Web

socket

Orches-

trator

User
events

Figure 4.10 Planner application architecture following through from User events in Client A:
Events are generated by the client and update the local plan; an orchestrator monitors the plan
and sends those updates through a WebSocket to the server. An orchestrator on the server
updates the server planner object; then those updates are sent out via other WebSockets to
the other connected clients, culminating in the UI of the other clients being updated.

A couple of utility
functions for picking
out tasks from the plan.

A utility function to return a pseudo-GUID
(Globally Unique Identifier), so that every object
created in the plan can have a unique ID.

You’ll populate this object in
listing 4.16; it will contain all the
public properties and methods.As mentioned in the previous

step, the that object is returned.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

122 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

a

valid
her

to
J

co ll

ok

l.

er

n
ed,

is
ed
er
The model itself will be updated from two sources:

■ User input
■ Messages from the server

The next listing is the part of planner.js that creates the plan object (that), which
will be returned when the planner is initialized; it should replace var that = { } in
listing 4.14.

 var that = {
 load_plan: function(new_plan) {
 plan = JSON.parse(new_plan);
 ee.emit('loadPlan',plan);
 },
 get_plan: function() {
 return JSON.stringify(plan);
 },
 add_task: function(task_name, task_id, source) {
 var task = Task(task_name, task_id);
 plan.tasks.push(task);
 ee.emit('addTask',task, source);
 return task.id;
 },
 move_task: function(task_id, owner, status, source) {
 var task = get_task(task_id);
 task.owner = owner;
 task.status = status;
 ee.emit('moveTask', task, source);
 },
 delete_task: function(task_id, source) {
 var task_index = get_task_index(task_id);
 if (task_index >= 0) {
 var head = plan.tasks.splice(task_index,1);
 head.concat(plan.tasks);
 plan.tasks = head;
 ee.emit('deleteTask', task_id, source);
 }
 },
 add_worker: function(worker_name, source) {
 var worker = {};
 worker.name = worker_name;
 worker.id = guidGenerator();
 plan.workers.push(worker);
 ee.emit('addWorker', worker, source);
 },
 eachListener: ee.eachListener,
 addListener: ee.addListener,
 on: ee.on,
 once: ee.once,
 removeListener: ee.removeListener,
 removeAllListeners: ee.removeAllListeners,
 listeners: ee.listeners,

Listing 4.15 More planner.js

Once the that object is returned by planner
constructor (listing 4.14), it will access private
functions of planner (i.e., get_task()) via
JavaScript’s closure feature.

In a real
pplication
you’d add
ation logic
e to check
 see if the

SON string
nstitutes a
valid plan.

A corresponding method to allow the plan’s
current state to be saved outside the object.

Each method wi
follow a similar
pattern. Let’s lo
at the add_task
method in detai
Note that the
task_id paramet
is optional—it’s
not needed whe
the task is creat
but it will be
needed when th
event is replicat
back on the serv
and in other
clients.

The task is
created with

the utility
function and
then pushed

into the
task’s array
on the plan.

An event is
emitted containing
the new task.

For brevity, the
corresponding
delete_worker() method
isn’t shown here; it will
move all the worker’s
tasks back to the queue
and delete the worker.

The EventEmitter methods are now
monkey-patched onto the return object.

You’ll be able to use the on
method to add event listeners
to the plan object.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

123Using WebSockets to build a real-time messaging web app

new

u
Event

al

.

We

p

m
w
d
c

 emit: ee.emit,
 setMaxListeners: ee.setMaxListeners
 };

The UI is mostly drag and drop. We covered this HTML5 API in great detail in chap-
ter 3, so there’s no need to go over it all again. Similarly, updating the display uses
the standard jQuery DOM manipulation methods you’re already familiar with. More
interesting to us right now is what happens when the plan object is updated by these
UI actions and events that arrive via a WebSocket. In the next step, you’ll look at the
code that handles this; in the following step, you’ll look at the server-side code to
handle the updates.

STEP 3: HANDLE UPDATES IN THE BROWSER

Now create the client orchestrator code; for this create a new file called planner-
browser.js in your working directory. The next listing shows the event listeners on the
WebSocket that will update the model and the event listeners on the planner object
that trigger messages to be sent through the WebSocket.

 The WebSocket listeners are added by setting ws.onmessage. And listeners on the
planner object are added with plan.on().

function init() {
 var ee = new EventEmitter();
 var planner = new Planner(ee);
 var render;
 if (typeof MozWebSocket !== 'undefined') {
 WebSocket = MozWebSocket;
 }
 var ws = new WebSocket('ws://localhost:8080');
 ws.onmessage = function(msg_json) {
 var msg = JSON.parse(msg_json);
 switch (msg.type) {
 case 'loadPlan':
 planner.load_plan(msg.args.plan);
 render = new Renderer(planner);
 break;
 case 'addTask':
 planner.add_task(msg.args.task_name,
 msg.args.task_id,
 'socket');
 break;
 case 'moveTask':
 planner.move_task(msg.args.task_id,
 msg.args.task_owner,
 msg.args.task_status,
 'socket');
 break;
 case 'deleteTask':
 planner.delete_task(msg.args.task_id,
 'socket');

Listing 4.16 The planner-browser.js (partial) browser code

Core API

Because this code creates the planner object,
it also has to create the EventEmitter.

Create a
 planner

object
sing the
Emitter.

In Firefox the WebSocket object is
called MozWebSocket and will be
until the spec is finalized. For practic
use, MozWebSocket is identical to
WebSocket, so map one to the other

Add a
listener

to the
bSocket.

Assume that anything received on the
WebSocket is a JSON-encoded object.

The type
roperty of the

decoded
essage object
ill be used to
etermine the

orrect action.

When the client first
connects, expect the
server to deliver a
JSON-encoded planner
object with the latest
version of the plan.

The rest of the potential
messages are mapped
onto their equivalent
planner actions.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

124 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

t

t
n
a

th
sou

e

y.

Th
need
the

cli
origi
 break;
 }
 };
 ws.onerror = function(e) {
 console.log(e.reason);
 }
 planner.on('addTask', function(task, source) {
 if (source !== 'socket') {
 var msg = {};
 msg.type = 'addTask';
 msg.args = { 'task_name': task.name, 'task_id': task.id };
 ws.send(JSON.stringify(msg));
 }
 });
 planner.on('moveTask', function(task, source) {
 if (source !== 'socket') {
 var msg = {};
 msg.type = 'moveTask';
 msg.args = { 'task_id': task.id, 'owner': task.owner,
 'status': task.status };
 ws.send(JSON.stringify(msg))
 }
 });
 planner.on('deleteTask', function(task_id, source) {
 if (source !== 'socket') {
 var msg = {};
 msg.type = 'deleteTask';
 msg.args = { 'task_id': task_id };
 ws.send(JSON.stringify(msg))
 }
 });
}

STEP 4: HANDLE UPDATES ON THE SERVER

Similarly on the server, the model will be updated by incoming messages from various
clients. Create a file called planner-server.js in your working directory for this code, or
grab the version from the code download. In this file you’ll need to set up listeners on
the model to send those same updates to any other connected client. The key part of
the code for responding to a moveTask message is shown in the following listing.
Check the planner-server.js file in the code download for the rest of the code.

planner.on('moveTask', function(task, source) {
 var msg = {};
 msg.type = 'moveTask';
 msg.args = { 'task_id': task.id, 'owner': task.owner,
 'status': task.status };
 var jMsg = JSON.stringify(msg);
 for (var i=0; i<clients.length; i++) {
 if (source !== clients[i].client_id) {

Listing 4.17 planner-server.js server code

Log any errors to
the console to aid
any debugging. The on method on the planner

object attaches an event
listener. When events are raised
by the in-browser planner
object, they are detected and
sent to the server.Because

adding a
task will

rigger an
addTask

event,
here’s no
eed to do
nything if
e original
rce of the
vent was

this code.

This part of the code is the
same as the equivalent in
listing 4.16. In a more
complex application, you
may want to extract it to a
separate shared module.

The clients variable is an array of
objects representing connected
clients. Each time a connection is
created, an entry is added to the arra

ere’s no
 to send
message

to the
ent that
nated it.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

125Messaging on the client side
 clients[i].ws.send(jMsg)
 }
 }
});

If you’ve followed along and either downloaded or re-created the UI logic, you should
now have a working planning-board application. In this model of web application
development, the server becomes another client. The bulk of the code involved is
identical to what’s running in all the users’ browsers. You should also have the chat
application from section 4.1 sitting in an iframe alongside it, but so far they’re inde-
pendent applications on different domains. We assume you have the chat application
on port 80 from a standard web server, and the planning board is running on port
8080 from Node. Normally, the browser wouldn’t allow scripts on either page to
exchange data with each other. In the next section, you’ll learn about some HTML5
APIs that enable client-side communication between scripts from different domains.

4.3 Messaging on the client side
Client-side messaging refers to the communication between windows and scripts that are
loaded in the browser. These could be browser windows, iframes, framesets, or worker
threads; the HTML5 specification refers to these with the umbrella term script contexts.

 Before HTML5, communication between different script contexts has been done
by direct DOM manipulation. If you want to build web pages out of loosely coupled
components, this isn’t a good approach for two reasons:

■ Changes to the structure of one component could easily break all the compo-
nents that try to communicate with it.

■ Each component needs access to the full DOM of the hosting page and vice
versa. You can’t share only a limited set of information. Often it’s easier to com-
municate via the server. In the new world of disconnected web applications,
that’s sometimes no longer an option.

Security and validation
In a real application, the server has additional responsibilities in terms of validating
data and persistence. A general tenet of server-side development is to never trust
data you’ve received over the wire. In order to concentrate on using WebSockets,
those features have been left out of the sample application in this section.

Cross-document versus cross-domain
You’ll often hear cross-document messaging referred to as cross-domain messaging. It’s
not a requirement to have the two documents served from different domains. Messaging
will work just as well if the two pages are on the same domain. But that option doesn’t
represent new functionality in HTML, rather a different way of doing something we’ve
been doing for years. As a result, people tend to focus on the cross-domain aspect.

The WebSocket is also
stored in the clients array.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

126 CHAPTER 4 Messaging: communicating to and from scripts in HTML5
In this section you’ll have a brief introduction to HTML5’s cross-document messaging API,
and then you’ll look at how to use it to connect the applications from sections 4.1 and 4.2.

4.3.1 Communicating across domains with postMessage

Web browsers usually restrict communication between windows according to the
Same Origin Policy: Scripts on pages loaded from one domain can’t access content in
windows loaded from another domain. This is a sound security approach. Without it,
a website could create an iframe, load your Facebook page into it, and steal your per-
sonal details or post on your wall. But you’ll find plenty of situations where you’ll want
to embed content from other sites in web pages; for example, Google ads and analyt-
ics, Facebook Like buttons, and Twitter feed widgets. You can implement all these
examples by loading JavaScript from other sites using <script> elements. When
scripts are included this way, they have as much access to your content as scripts on
your own domain; they bypass the Same Origin Policy.

Until HTML5, the options for any foreign domain content embedded in your pages
were these:

■ No access to any of your content
■ Complete access to all of your content

It would be nice to have a middle ground between these extremes. Although there
may be some sources you don’t trust at all, it’s likely you have plenty you trust a little
bit. HTML5 satisfies this demand for flexibility with cross-document messaging. The
cross-document messaging API allows a controlled messaging channel to be created
between two pages by using the postMessage method and the onmessage event.

 The postMessage method should be passed two parameters:

■ The message itself
■ The domain of the page being targeted:

windowRef.postMessage('The message', 'http://domain2.com');

The domain parameter is important because it ensures that if a different page is
loaded into the iframe, either by the user clicking a link or through some other activ-
ity, the message won’t be passed. It’s possible to pass a wildcard, '*', as the second
parameter and avoid all the security, but be careful because you could end up sending
your user’s information to a malicious website.

 When a window receives a message, the aptly named message event is fired. As
usual, with DOM events this handler can either be attached declaratively using an
onmessage attribute on the body element or with addEventListener:

window.addEventListener('message', receiver, false);

Cross-document messaging 1 3 8 9.5 4

Core API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

127Messaging on the client side

Ca
from

onKeyP
listene

the
text in

stand
onmess

liste
The receiver function will accept the event as a parameter. The message passed will
be in the data property of the event. In the next section, you’ll implement receiver
functions in the context of the planner and chat apps you built in previous sections.

4.3.2 Joining the applications with cross-document messaging

At this point, you have two applications, from
different servers, coexisting in the same web
page. In this section, you’ll use the cross-domain
messaging API to allow the data in the planner
object to be used to feed an auto-complete fea-
ture in the chat window. This will offer user
names and task titles in a drop-down list to
speed up typing while retaining accuracy, as
shown in figure 4.11.

To implement auto-complete, you need to set up message handlers on both the plan-
ner and the chat applications. The chat application will wait for the user to start typing
and then send the letters of each word as they are typed to the parent window. The
parent window will receive the message, compare the typed letters to the labels exist-
ing within the plan object, and send a message back with a list of matching words. The
code for the chat application part of this is shown in the following listing; add it to the
chat.js file in the SSE chat application.

function getWords(letters) {
 var msg = {};
 msg.type = 'getWordList';
 msg.params = {};
 msg.params.letters = letter;
 parent.postMessage(JSON.stringify(msg), 'http://localhost');
}

window.addEventListener('message', receiver, false);
function receiver(e) {

Auto-complete prerequisite
This section relies on having a JavaScript auto-completer script. In order to con-
centrate on the HTML5 features, this section won’t cover the details; a suitable
script is included in the code download. Add the file to the working directory of the
chat application.

Listing 4.18 Auto-complete interface for the chat application

Figure 4.11 As the user types into the
chat, the letters will be compared to words
in the plan and matches will be shown in a
drop-down list, where they can be selected
using the down arrow.

lled
 an

ress
r on
chat
put.

Create an object to contain the message; the variety of
message types sent by the chat app is what defines the
services provided by the parent window and is what
defines the interface expected in the parent window. In
more complex applications, you might want to create a
function to define the interface explicitly.

Encode the object to a
string and send it in
the message to the

parent window.

The
ard
age
ner.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

128 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

T

 if (e.origin == 'http://localhost:8080') {
 var msg = JSON.parse(e.data);
 switch (msg.type) {
 case 'wordList':
 showAutocompleter(msg.params.words);
 break;
 }
 }
}

Note that the chat application code is entirely generic—it doesn’t matter what appli-
cation has embedded it as long as it can return a list of words when sent a message in
the correct form. The corresponding code in the planner application is necessarily
specific to the planner. The following listing shows a new method for the planner
object; add it to the planner.js file.

get_words: function(letters) {
 var words = [];
 for (var i=0; i<plan.tasks.length; i++) {
 var tokens = plan.tasks[i].name.split(' ');
 for (var j=0; j<tokens.length; j++) {
 if (tokens[j].length > 3 &&
 tokens[j].indexOf(letters) > -1) {
 words.push(tokens[j]);
 }
 }
 }
 return words;
}

The planner.get_words method needs to be hooked up to the window’s onmessage
event. The next listing shows the code for this, still in planner.js.

window.addEventListener('message', receiver, false);
function receiver(e) {
 if (e.origin == 'http://localhost') {
 var msg = JSON.parse(e.data);
 switch (msg.type) {
 case 'getWordList':
 var words = planner.get_words(msg.params.letters);
 var el = document
 .getElementsByTagName('iframe')[0]
 .contentWindow;
 var response = {};
 response.type = 'wordList';
 response.params = {};
 response.params.words = words;

Listing 4.19 Word-completion service in the planner application

Listing 4.20 Listening to the onmessage event in the planner application

In the sample, there’s
only one domain you
expect to receive
messages from, but
more complex
checking could be
inserted here to allow
dynamic registration
of components.

he messages
accepted

here define
the interface

for the
calling page.

For brevity, the code to create an
element containing the list of words isn’t shown
here, but it’s much the same as the hundreds of

auto-complete scripts available on the web.
Download the sample code for further details.

This method goes inside the
planner object from listing 4.16.

Go through each
task in the plan. . .

. . .and each
word in the
task name.

Add them to the list if
they are at least two
letters long and contain
the requested letters.

This is the list of words that will end
up getting passed to listing 4.18.

Check that the message
came from the page you
expected it to come from.

Create an object to contain the
message, as in listing 4.20. For more
complex applications, you might want
to create a function to define this.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

129Summary

 el.postMessage(JSON.stringify(response),
 'http://localhost:8080');
 break;
 }
 }
}

With all this code in place, your work is complete. You should now be able to re-create
the drop-down, shown again here for your convenience in figure 4.12.

4.4 Summary
In this chapter, you’ve learned about the new messaging APIs in HTML5, between pages
in different windows on the client, with cross-document messaging, and between client
and server, with server-sent events and WebSockets. You’ve also gained a practical
understanding of how to use one of the new wave of web servers optimized for event-
driven communication, Node.js. With all this new knowledge you’re well equipped
to build the next generation of web applications, based on lightweight, event-driven
data communication between client and server, and you’ll be able to join several
such applications together in client browsers in a lightly coupled way thanks to
cross-document messaging.

 In the next chapter, you’ll move on to consider an application environment where
saving every byte makes a real difference: mobile web applications. HTML5 offers new
capabilities that allow your application to keep working when no network is available.

Cross-document versus channel messaging
HTML5 has a more general-purpose alternative to cross-document messaging known
as channel messaging. It allows you to create as many message ports as you want,
not only between windows but also between any sorts of JavaScript object. Channel
messaging wasn’t necessary to complete the application in this chapter, but if you
think you’ll find it useful in your own applications, we’ve included a short introduction
in appendix F.

Encode the object to a
string and send it in the
message to the iframe.

This value needs to match the
return words; line in listing 4.19.

Figure 4.12 Planner-chat auto-complete
one more time
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Chapter 5 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

Web storage and
management of sim-
ple key/value pair
data on client-side
local storage

Methods:
■ getItem()
■ localStorage
■ removeItem()
■ clear()

140
140
141
142

Indexed database Complex, indexed client-side database functionality
Database/object store methods:
■ open()
■ createObjectStore()
■ createIndex()
■ loadTasks
■ objectStore()
■ deleteDatabase()

Cursor method
■ continue

145
145
146
150
152
155

150

Application cache Enable web applications to be used when client is offline
Method:
■ swapCache() 160

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Mobile applications:
client storage

and offline execution
HTML5 is finally providing the web with a solution to the problem of working
offline. Although a plethora of solutions for saving web pages for later use in an
offline environment already exist, until now there’s been no solution for using web
applications in such a manner. By allowing web applications to store data locally on
the client, HTML5 now enables web applications to work without a constant connec-
tion to a central server.

 When might this be useful? Think of a sales representative in the field being
able to use his firm’s customer relationship management application on the go,
even in areas with poor network coverage, such as a remote location or an under-
ground train. With the new capabilities provided by HTML5, that rep can still use
the application in such areas, viewing data that has already been downloaded to the
device, and even being able to enter new data, which is stored temporarily on
the device and synchronized back to the central server when the network is available

This chapter covers
■ Storing data on the client side with the Web

Storage API
■ Managing a full client-side IndexedDB database
■ Enabling applications to work offline with the

Application Cache API
131

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

132 CHAPTER 5 Mobile applications: client storage and offline execution
again. Also, think of an HTML5 game like the ones you will build in chapters 6 and 7.
Rather than storing game saves and state data on a server, you can increase perfor-
mance and reduce latency and load by saving the data locally. One feature in particu-
lar—the application cache manifest—gives you the ability to create a game that can be
run completely offline.

 In this chapter, we’re going to show you how to put these features and concepts
into practice by building a simple mobile web application called My Tasks. This appli-
cation, which will be fully functional when the user is offline, will create, update, and
delete tasks that are stored locally in the browser. In addition, My Tasks will allow the
user to change settings for the application’s display.

Let’s get started by taking a closer look at the sample application.

5.1 My Tasks: application overview, prerequisites,
and first steps
My Tasks is a simple task management application for mobile devices. All data will be
stored on the client side, and the application will be fully functional offline. In build-
ing it, you’ll take advantage of the following HTML5 features:

■ Storage—Allows the app to save small amounts of data to the user’s local storage.
My Tasks will use this feature to store user settings like name and preferred
color scheme.

■ Indexed database (aka IndexedDB)—Enables the application to create a database
of key/value records. My Tasks will use IndexedDB to store task data, allowing
users to easily view, add, update, and delete task items. The application will use
the now-defunct Web SQL to provide a fallback for devices that don’t yet sup-
port IndexedDB.

■ Application cache manifest—Enables the application to be used offline. The cache
manifest ensures that the user’s browser keeps a copy of needed files for offline
use. Upon reconnection to the web, the browser can look for updates and allow
the user to reload the application and apply the updates.

As you can see in figure 5.1, the application is split into three distinct views—Task List,
Add Task, and Settings.

Why build the sample My Tasks application?
While working through this chapter’s sample application, you’ll learn how to

■ Store data on the client side using the Web Storage API
■ Store data on the client side using the IndexedDB database
■ Use the application cache manifest file to build web applications that will func-

tion while offline
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

133My Tasks: application overview, prerequisites, and first steps
Task List displays a list of existing tasks, each with a check box to mark the task as
completed and a Delete button to remove it. Task List also features a search box,
which allows you to filter the task list by description. Add Task contains a form to
add a new task to the database. Settings contains a form to customize the application
and to reset all locally stored data (deleting all Storage data and IndexedDB/Web
SQL data). The navigation bar at the top of the screen lets you easily switch among
the three views.

 All three views are contained in a single HTML page, and you will use location
.hash to switch among them, ensuring the application is highly responsive and fast.

 We’ll walk you through seven major steps to build the application:

■ Step 1: Create the basic structure of the application: the HTML page with the
application’s three views and the JavaScript code to navigate among them.

■ Step 2: Implement the data management of the Settings view using the Web
Storage API.

■ Step 3: Connect to the database and create a storage area for tasks.
■ Step 4: Enable data entry and search of the Task List view using the IndexedDB API.
■ Step 5: Allow users to add, update, and delete tasks.
■ Step 6: Create a cache manifest file to allow the application to work offline.
■ Step 7: Implement automatic updating of the application.

Figure 5.1 The three main views of the My Tasks application: Task List, Add Task, and Settings. To
select a view, the application includes a navigation bar near the top.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

134 CHAPTER 5 Mobile applications: client storage and offline execution
NOTE The application should be run from a web server rather than the local
filesystem. Otherwise, you won’t be able to use it on a mobile device and
offline support won’t work. Also note that the application has been tested on
iOS, Android, and BlackBerry Torch mobile devices, as well as on Opera
Mobile. It’s also fully functional in the Chrome, Firefox, Safari, and Opera
desktop browsers.

If you’re looking for a quick and easy way to set up a web server for this chapter’s
application, we suggest you try Python’s built-in server, http.server. You can get this
server module by downloading and installing the latest version of the Python pro-
gramming language from http://python.org/download/. Once you have it installed,
you can start the server by changing your current directory to the directory of your
web app and then invoking the web server with the following command:

python –m http.server

Python’s web server will start running on port 8000. If you don’t like the default 8000
port, you can specify another port by adding the desired port number at the end of
the python command:

python –m http.server 8080

In this section, you’ll define the application’s HTML structure, use CSS to define visi-
bility for each view, and write the JavaScript to implement navigation between the
views. For the development of the My Tasks basic structure, the process consists of
four steps:

■ Step 1: Define the top-level HTML structure.
■ Step 2: Write HTML code for the navigation bar.
■ Step 3: Create views with <section> elements.
■ Step 4a: Enable navigation between views by using CSS to define section visibil-

ity rules.
■ Step 4b: Enable navigation between views by using JavaScript to initiate

view changes.

Prerequisites
Before you create the application, you need to handle a few prerequisites:

■ Create a new directory on your web server. When the chapter tells you to create
or edit a file, save it to this directory.

■ You won’t be creating the CSS style sheet. Instead copy the CSS style sheet for
chapter 5 from the code package at the book’s website: www.manning.com/
crowther2; then save the style sheet to the directory mentioned in the first pre-
requisite.

Note that all files for this chapter and the book are available at the Manning website:
www.manning.com/crowther2.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.manning.com/crowther2
http://www.manning.com/crowther2
www.manning.com/crowther2
http://python.org/download/

135My Tasks: application overview, prerequisites, and first steps

Cre
w
li

for
in
Enough chatter about what you’re going to build, let’s get building!

5.1.1 Defining the HTML document structure

In this section, the index.html file will define a very basic <head> and <body> frame-
work for the application. The index.html file will contain a title and font for the appli-
cation, as well as a <script> element to tell the application where the JavaScript file is
located. Near the end of index.html, a <body> element will be added to hold the
HTML markup coming in subsequent sections.

STEP 1: DEFINE THE TOP-LEVEL HTML STRUCTURE

Create a file named index.html and include the contents of the following listing.
This code defines the basic layout of the page and loads external CSS and Java-
Script files.

<!DOCTYPE html>
<html lang="en" class="blue">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=0">
 <title>My Tasks</title>
 <link rel="stylesheet"
 href="http://fonts.googleapis.com/css?family=Carter+One">
 <link rel="stylesheet" href="style.css">
 <script src="app.js"></script>
</head>
<body class="list">
</body>
</html>

STEP 2: WRITE HTML CODE FOR THE NAVIGATION BAR

This code comprises a <nav> element with three list items, one for each view in the
application: Task List, Add Task, and Settings. Add the navigation bar’s HTML code in
the next listing within the <body> of your HTML document.

<header>
 <h1>My Tasks</h1>
 <nav>

 Task List
 Add Task
 Settings

 </nav>
</header>

Listing 5.1 index.html—Application HTML structure

Listing 5.2 index.html—Adding a navigation bar

A class attribute on the root element defines the color
scheme. Later in the chapter, the application will use this
attribute to allow the user to change the color scheme.

Load a
custom font
using the
Google Font
API.

A class attribute on the <body> element will direct the browser, via
a CSS rule, to display one of three views: Task List, Add Task, or
Settings. The class attribute also directs the browser, via another CSS
rule, to highlight the corresponding button on the navigation bar.

In the Settings view, the user has the option to replace the “My”
with any other string of characters. The markup surrounding

“My” will make finding and changing the title easy.

ate a list
ith three
nks, each
pointing

to a hash
reference
 the view
question.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

136 CHAPTER 5 Mobile applications: client storage and offline execution
STEP 3: CREATE VIEWS WITH <SECTION> ELEMENTS

The final part of the HTML page uses <section> elements to define the application’s
three views. The first view, Task List, contains a search form and a results list, which
will be generated by a JavaScript function. The next view, Add Task, contains a form
that allows the user to create a new task and due date. The last view, Settings, contains
a form to set the name and color scheme preference for the application. A class attri-
bute bound to each <section> element will allow the forthcoming CSS and JavaScript
code to control the view’s visibility. Insert the code in the following listing directly
after the code from listing 5.2.

<section class="list">
 <form name="search">
 <input type="search" name="query" placeholder="Search tasks...">
 </form>
 <ul id="task_list">
</section>
<section class="add">
 <form name="add">
 <label>
 Task Description
 <textarea name="desc"></textarea>
 </label>
 <label>
 Due Date (MM/DD/YYYY)
 <input type="date" name="due_date">
 </label>
 <input type="submit" value="Add Task">
 </form>
</section>
<section class="settings">
 <form name="settings">
 <label>
 Your Name
 <input type="text" name="name">
 </label>
 <label>
 Color Scheme
 <select name="color_scheme">
 <option>Blue</option>
 <option>Red</option>
 <option>Green</option>
 </select>
 </label>
 <input type="submit" value="Save Settings">
 <input type="reset" value="Reset All Data">
 </form>
</section>

Listing 5.3 index.html—Main application views

This form allows the user to search
the Task List by task description.

Place the results of the search
in an empty unordered list
with the ID “task_list.”

Put a form in the Add Task section
that allows users to add a new
task to the list. The form contains
a task description <textarea>
and a due date <input>.

In the Settings section, create a
settings form that allows users to
set their name and choose a color
scheme for the application (red,
blue, or green).

Use an <input> element
to implement a button
that resets user settings
and removes all tasks.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

137My Tasks: application overview, prerequisites, and first steps
5.1.2 Controlling visibility of views using CSS

Now that you have the three views implemented in one HTML file, you need the ability
to switch among the different views. You will do this by turning off the visibility of the
previous view and turning on the visibility of the next view. (You won’t need to make
these changes to the CSS file, because you should have already copied the Manning-
supplied CSS file to your server’s directory. See “Prerequisites.”)

STEP 4A: ENABLE NAVIGATION BETWEEN VIEWS BY USING CSS TO DEFINE <SECTION> VISIBILITY RULES

In order to have only one view visible at a time, the application’s CSS file defines rules
to control the visibility of each view’s <section> element:

section {
 display: none;
}

The first rule declares that a section element should be invisible wherever a section
element is defined.

 In order to make a specific view visible, the application defines some counteracting
rules:

body.list section.list,
body.add section.add,
body.settings section.settings {
 display: block;
}

These rules declare that a <section> element should be visible when a <body> ele-
ment and its embedded <section> element have a class attribute in common (either
list, add, or settings). In this situation, the <section> element would also match
the first rule, but the more specific rule will override the first rule.

 To see how this works, consider what happens when the user wants to switch views.
When the user taps the Add Task button on the navigation bar, the application
changes the <body>’s class attribute to add. Because the <body>’s class attribute now
matches the <section> with a class attribute of add, the section.add element
becomes visible, and all other <section>s are rendered invisible.

 The CSS rules only get you part of the way toward implementing the navigation of
the views. Although the CSS rules declare the conditions for switching views, the rules
can’t initiate the view switching. As mentioned earlier, a user’s tap of a button on the
navigation bar initiates the view switch by changing the class attribute of the <body>
element. The next section describes how to implement this attribute change and link
it to the view buttons.

5.1.3 Implementing navigation with JavaScript

In this section, you’ll use JavaScript to modify the class attribute of the <body> ele-
ment. Each time the class value is changed to a different value, one or more CSS
rules will be activated to change the application’s view. The user will initiate these
changes by tapping one of three buttons: Add Task, Settings, or Task List. Each button
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

138 CHAPTER 5 Mobile applications: client storage and offline execution

wa

clic
t

ba
chan

of

ev
to ca

a h
is implemented as a link with an anchor name of #add, #settings, or #list. So when
a link is selected, it will change the location.hash property to one of the three
anchor names. The browser will detect the change in location.hash and then invoke
an event handler defined by the application. The event handler will respond by using
the value of the location.hash property to set the value of the <body> element’s
class attribute. If the attribute value is different from the previous one, the applica-
tion will switch to the new view.

STEP 4B: ENABLE NAVIGATION BETWEEN VIEWS USING JAVASCRIPT TO INITIATE VIEW CHANGES

Let’s start off by defining methods to switch between views in the application. The
code in the next listing creates a new object constructor, Tasks, containing two func-
tions, nudge and jump. When the page has loaded, a new Tasks object is created,
which forms the basis for your application. Take the code in the following listing and
insert it into a new file, app.js. Store this file in the same directory as index.html.

(function() {
 var Tasks = function() {
 var nudge = function() {
 setTimeout(function(){ window.scrollTo(0,0); }, 1000);
 }
 var jump = function() {
 switch(location.hash) {
 case '#add':
 document.body.className = 'add';
 break;
 case '#settings':
 document.body.className = 'settings';
 break;
 default:
 document.body.className = 'list';
 }
 nudge();
 }
 jump();
 window.addEventListener('hashchange', jump, false);
 window.addEventListener('orientationchange', nudge, false);
 }

 window.addEventListener('load', function() {
 new Tasks();
 }, false);
})();

TRY IT OUT

If you run the application in any HTML5-compatible web browser, you should be able
to navigate between the different views of the application and see the current view
highlighted in the navigation bar. This is illustrated in figure 5.2.

 If you are trying to run this app on your desktop browser with the Python web
server, start the My Tasks app by entering localhost:8000 into your browser’s address

Listing 5.4 app.js—Foundation JavaScript code for the application

The nudge function hides the browser toolbar on
iOS devices to gain extra space for the application.

The jump function takes
the value of location.hash
and uses it to define the
current view. Notice how
the Tasks constructor calls
jump after its definition.
Because the user may have
bookmarked a view other
than the application’s
home view of Task List, the
Tasks constructor uses
jump to check the value
of location.hash for a
non-default view.

When a user
nts to change
the view, they
k a button on
he navigation
r. This action
ges the value
location.hash
and raises a
hashchange

ent. You want
ll jump when
ashchange is

detected.

On mobile devices, when
the screen orientation

changes, call the nudge
function to hide the

browser toolbar, if possible.
After the page loads, create a new instance
of the Tasks object to start the application.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

139Managing data with the Web Storage API
box. (If you configured the web server with a different port number, use that number
instead of 8000.)

 With the basics out of the way, let’s move on to implementing the Settings view
using the Web Storage API in HTML5.

5.2 Managing data with the Web Storage API
Among other features, the Settings view allows users to choose a name and color
scheme for the application. Traditionally, web applications would have implemented
this either by storing the user’s settings in a remote database on the server side or by
storing the preferences in a cookie, which often gets deleted when the user clears
their browsing history.

Fortunately, we have better options with HTML5: the Web Storage specification. It
defines two window attributes for storing data locally on the client: localStorage and
sessionStorage. The localStorage attribute allows you to store data that will persist
on the client machine between sessions. The data can be overwritten or erased only by
the application itself or by the user performing a manual clear down of the local stor-
age area. The API of the sessionStorage attribute is identical to that of the local-
Storage attribute, but sessionStorage won’t persist data between browser sessions, so
if the user closes the browser, the data is immediately erased.

TIP You can try sessionStorage in this section by replacing any reference to
localStorage with sessionStorage in the listing to come.

To implement the management of the application’s settings using the Web Storage API
and to integrate the setting functions with the UI, you’ll need to follow these four steps:

Web Storage API 4.0 3.5 8.0 10.5 4.0

In this section, you’ll learn
■ How to read data from localStorage
■ How to write data to localStorage
■ How to delete some or all data from localStorage

Figure 5.2 The application highlights the
current view by displaying a navigation button
with a darker background and blue text.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

140 CHAPTER 5 Mobile applications: client storage and offline execution

d

■ Step 1: Read application settings from localStorage.
■ Step 2: Save application settings to localStorage.
■ Step 3: Clear all settings and data from localStorage.
■ Step 4: Connect the UI to localStorage functions.

NOTE You need to complete all the steps before you can run and test the
code in this section.

5.2.1 Reading data from localStorage
When the application starts, it will need to read the user’s name and chosen color
scheme from some client-based data store, then apply them to the UI. You’ll use
localStorage as a repository for this information and store each piece of data as a
key/value pair. Retrieving items from localStorage is done by calling its Storage API
method getItem with the value’s key.

STEP 1: READING APPLICATION SETTINGS FROM LOCALSTORAGE

For the purpose of retrieving application settings from localStorage, the application
will need a loadSettings function. This function reads the user’s name and color
scheme from localStorage using the Web Storage API method getItem and then
adjusts the navigation bar’s header to include the user’s name, and changes the docu-
ment element’s class attribute to assign the selected color scheme.

 Open the app.js file you created earlier in the chapter, and add the code from the
next listing to the Tasks constructor function (just below the line where you attach a
handler to the orientationchange event).

var localStorageAvailable = ('localStorage' in window);

var loadSettings = function() {
 if(localStorageAvailable) {
 var name = localStorage.getItem('name'),
 colorScheme = localStorage.getItem('colorScheme'),
 nameDisplay = document.getElementById('user_name'),
 nameField = document.forms.settings.name,
 doc = document.documentElement,
 colorSchemeField = document.forms.settings.color_scheme;
 if(name) {
 nameDisplay.innerHTML = name+"'s";
 nameField.value = name;
 } else {
 nameDisplay.innerHTML = 'My';
 nameField.value = '';
 }
 if(colorScheme) {
 doc.className = colorScheme.toLowerCase();
 colorSchemeField.value = colorScheme;
 } else {
 doc.className = 'blue';
 colorSchemeField.value = 'Blue';

Listing 5.5 app.js—Reading data from localStorage

Core API

Before you start to access
localStorage, query the window

object for a localStorage
attribute. The variable

localStorageAvailable will be
true if the browser supports the

localStorage attribute.

Use the
Storage API

method
getItem to

retrieve
data from

localStorage.
If the data

oes not exist,
getItem will

return a null
value instead.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

141Managing data with the Web Storage API

 }
 }
}

At this point you’re probably wondering how your application is going to read data
from localStorage when you haven’t actually saved anything in the first place. Fear
not! You’re going to solve that problem next by creating a function that will save the
user’s selected settings to localStorage.

5.2.2 Saving data to localStorage

Saving the user’s settings is relatively easy. Save data in localStorage by using its Web
Storage API method setItem, passing two arguments: a key and value.

STEP 2: SAVE NAME AND COLOR SCHEME TO LOCALSTORAGE

In order to save the user’s name and chosen color scheme, you’ll implement a new
function, saveSettings. It will store the user’s preferences and change the location
.hash to #list, the Task List view. Add the code from the next listing directly after the
loadSettings function from the previous listing.

var saveSettings = function(e) {
 e.preventDefault();
 if(localStorageAvailable) {
 var name = document.forms.settings.name.value;
 if(name.length > 0) {
 var colorScheme = document.forms.settings.color_scheme.value;

 localStorage.setItem('name', name);
 localStorage.setItem('colorScheme', colorScheme);
 loadSettings();
 alert('Settings saved successfully', 'Settings saved');
 location.hash = '#list';
 } else {
 alert('Please enter your name', 'Settings error');
 }
 } else {
 alert('Browser does not support localStorage', 'Settings error');
 }
}

You’ve now seen how to read and write data using the Web Storage API. Next, we’ll
show you how to remove data.

5.2.3 Deleting data from localStorage

In the Settings view of My Tasks, the user has an option to remove all items and set-
tings from the application. So, you’ll need to consider the two data-removal methods
in the Storage API. The first, removeItem, is useful when you need to delete a single
item from localStorage. The method requires one argument, the key to identify and
remove the value from localStorage. Because the application needs to reset all settings

Listing 5.6 app.js—Saving data to localStorage

Core API

Use the setItem method to store
data in localStorage. If an item with

this name already exists,
it will be overwritten

without warning.

When the
data has been

stored, call
loadSettings

to update the
application

with the new
settings.

Setting location.hash
to #list will trigger a
redirect to the Task
List view.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

142 CHAPTER 5 Mobile applications: client storage and offline execution

d
r

and data in the application, you won’t use removeItem. Instead, you’ll want the second
method, clear, which removes all items from localStorage.

STEP 3: CLEAR ALL SETTINGS AND DATA FROM LOCALSTORAGE

You’ll need a function, resetSettings, to erase all the settings data in the applica-
tion. Before resetSettings erases the data, you should ask the user to confirm this
action. After erasing the data, load the default user settings into the application and
change the location.hash to #list, the Task List view.

 Add the following code immediately after the code from the previous listing.

var resetSettings = function(e) {
 e.preventDefault();
 if(confirm('This will erase all data. Are you sure?', 'Reset data')) {
 if(localStorageAvailable) {
 localStorage.clear();
 }
 loadSettings();
 alert('Application data has been reset', 'Reset successful');
 location.hash = '#list';
 }
}

At this point, all of the functions for interacting with localStorage have been cre-
ated, and all that’s left is to connect the UI to these functions.

STEP 4: CONNECT THE UI TO THE LOCALSTORAGE FUNCTIONS

The final piece of the puzzle for our sample application is to add event handlers to the
Settings view so that data is saved and reset when the buttons are pressed. Aside from con-
necting the storage methods to the buttons, you’ll need to call loadSettings so that data
is read from localStorage each time the application page loads. The code you need to
add (again, add it below the code from the previous listing) is in the following listing.

loadSettings();
document.forms.settings.addEventListener('submit', saveSettings, false);
document.forms.settings.addEventListener('reset', resetSettings, false);

TRY IT OUT!
If you now launch the application in a compatible browser, you should be able to nav-
igate to the Settings view and change the name and color scheme from the default set-
tings. Figure 5.3 shows this happening on a BlackBerry Torch 9860 smartphone.

 If you were to press the Reset All Data button, the application would return to its
default color and name.

 Because you’re using localStorage, these name and color settings will persist
between browser sessions (unless the user specifically clears down their localStorage

Listing 5.7 app.js—Clearing data from localStorage

Listing 5.8 app.js—Connecting the UI to the localStorage functions

Before clear down of localStorage, the
application will prompt the user to
confirm deletion of user settings.

When the
ata has been
emoved, call
loadSettings

to restore
application

defaults. Change location.hash to trigger
a redirect to the Task List view.

Attach event handlers to the submit and
reset events of the Settings form.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

143Managing data using IndexedDB
area via the browser preferences screen). Try refreshing the page, restarting your
browser, and even restarting your computer; the data should persist. Pretty neat.

 In the next section, we’ll show you how to take things even further with client-
side data storage using the IndexedDB API. We’ll do so by having you add real meat
to your sample application by implementing the ability to add, edit, delete, view,
and search tasks.

5.3 Managing data using IndexedDB
IndexedDB provides an API for a transactional database that is stored on the client
side. The Web Storage API stores and retrieves values using keys; IndexedDB supports
more advanced functionality, including in-order retrieval of keys, support for dupli-
cate values, and efficient value searching using indexes.

In the cases where the application detects no browser support for IndexedDB, you’ll
use Web SQL as a fallback.

IndexedDB 11.0 4.0 10.0 N/A N/A

Navigate to the

Settings page

Enter your name

and color scheme.

Press Save

Settings.

Receive a success message.

Dismiss the message

by pressing OK.
You will be returned

to the Task List view

(which is empty in

this case).

Figure 5.3 The user fills out the Settings form and presses the Save Settings button.
When the data has been saved to localStorage, the settings are reloaded, and a
message is displayed to the user. When the user dismisses this message, they are taken
back to the Task List view (which is empty for now).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

144 CHAPTER 5 Mobile applications: client storage and offline execution
Using the IndexedDB API can be notoriously complex at first glance, particularly if
you don’t have experience writing asynchronous JavaScript code that uses callback
functions. But this section will slowly guide you in the use of IndexedDB as you add
task management features to My Tasks.

As you learn how to use the database services of IndexedDB and Web SQL, you’ll also
implement the UI for the Add Task and Task List views. Overall, building out the UI
and application features happens in eight steps:

■ Step 1: Detect IndexedDB or Web SQL.
■ Step 2: Connect to the database and create an object store.
■ Step 3: Develop the UI for the Task List view.
■ Step 4: Implement a search engine for the database and display search results.
■ Step 5: Implement the search interface for the Task List view.
■ Step 6: Add new tasks from the Add Task view to the database.
■ Step 7: Update and delete tasks from the Task List view.
■ Step 8: Drop the database to clear all tasks.

5.3.1 Detecting database support on a browser

Before you can create a database, you need to detect what database system is running
within a browser. Currently two systems can be found: IndexedDB and Web SQL.
Detection of the database system is done by assigning a variable to a logical expression
of alternating or operators (||) and vendor-prefixed IndexDB object identifiers.
Because IndexedDB isn’t a standard feature, you must use the vendor prefixes to
access the database system object on the various browsers.

FYI: More about Web SQL
IndexedDB was added to HTML5 quite late in the specification process. As a result,
browser support for it has been much slower than with other parts of the specifica-
tion. Prior to IndexedDB, HTML5 included a client-side database specification known
as Web SQL, which defined an API for a full relational database that would live in the
browser. Although Web SQL is no longer part of HTML5, many browser vendors had
already provided decent support for it, particularly mobile browsers.

In this section, you’ll learn
■ How to create and connect to an IndexedDB database
■ How to load existing data from an IndexedDB database
■ How to perform queries on an IndexedDB database using IndexedDB’s key ranges
■ How to store new data in an IndexedDB database
■ How to delete single data items from an IndexedDB database
■ How to clear an entire data store from an IndexedDB database
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

145Managing data using IndexedDB

 is not
 a
ow. To
wser
QL,
istence
e as a
ow.
 If a database object is found, the application saves the found database object to a
variable for later use; otherwise, the application assigns a false value to the variable.
You also need to find and save the database key range. We’ll discuss the key range later
in the section.

STEP 1: DETECT INDEXEDDB OR WEB SQL
Now, to add feature detection to the sample application, add the code from the fol-
lowing listing to the app.js file. This code should be added immediately after the code
you inserted in the previous section.

var indexedDB = window.indexedDB || window.webkitIndexedDB
 || window.mozIndexedDB || window.msIndexedDB || false,

IDBKeyRange = window.IDBKeyRange || window.webkitIDBKeyRange
 || window.mozIDBKeyRange || window.msIDBKeyRange || false,

 webSQLSupport = ('openDatabase' in window);

5.3.2 Creating or connecting to an IndexedDB database,
creating an object store and index

To create or connect to an IndexedDB database, the application needs to invoke the
IndexedDB method open. If no database exists when the open method is called, a new
database will be created, and a connection object will be created. Once indexedDB.open
successfully creates a connection, the onsuccess and/or upgradeNeeded event han-
dler will be called, and the connection object will be accessible through the event
object passed to the event handler.1 With this connection object, the application can
create an object store or index for the application.

 Before looking at how an application would create object stores and indexes, let’s
discuss how data is stored in an IndexedDB database. All data in an IndexedDB data-
base is stored inside an object store. Each database can contain many object stores,
which can be roughly thought of as equivalent to tables in a relational database man-
agement system (RDBMS). In turn, each object store comprises a collection of zero or
more objects, the equivalent of rows in a RDBMS. Figure 5.4 illustrates the structure of
an IndexedDB database.

 Now that you have a better idea of how objects are stored in the IndexedDB data-
base, let’s get back to creating object stores and indexes.

 Object stores can only be created while the application is handling an upgrad-
Needed event. This event can occur in two situations: when a new database is cre-
ated and when a database’s version number is increased. Once the application has
entered the upgradeNeeded event handler, the object store is created by calling the

Listing 5.9 app.js—Feature detection for database-related objects

1 If a new database is created, events upgradeNeeded and onsuccess will be fired, but upgradeNeeded will
be handled before onsuccess.

Web SQL object
implemented as
member of wind
detect if the bro
supports Web S
check for the ex
of openDatabas
member of wind

Core API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

146 CHAPTER 5 Mobile applications: client storage and offline execution
createObjectStore method with two arguments: a name and keypath for the new
object store. The keypath defines what property within each object will serve as the
key for retrieving the object from its store.

 Once the object store is created, you can create one or more indexes for it. Creat-
ing an index allows the application to retrieve an object with a key different than the
one defined in the object store. To create a new index, use the object store’s method
createIndex and pass it three arguments: the name of the new index, the name of the
object property that will serve as the key, and an options object.

 The options object has two properties that serve as flag parameters. The first flag,
unique, allows the application to specify whether or not a key can be shared. The sec-
ond flag, multiEntry, allows the application to specify how to handle array-based keys:
Either enter an object under several different keys listed in an array, or enter an object
using the entire array as a key. You won’t need to use the second flag in the My Tasks
application (for more detail about multiEntry, see appendix B or www.w3.org/TR/
IndexedDB/#dfn-multientry).

 Let’s look at the database-creation process and apply it to our application.

STEP 2: CONNECT TO THE DATABASE AND CREATE AN OBJECT STORE

You will need to create an object store, “tasks”, for all the tasks the user will want to
keep track of. Remember to first create the database connection, because you’ll need
this to create the object store and the index. You’ll use the index to access the object
store by the task’s description. This will be useful when you implement the applica-
tion’s search engine that allows the user to filter their task list by a task’s description.

 You’ll also add a call to the loadTasks function here. It’s not related to object store
or index creation, but it will be useful later when the application is in the startup
phase and needs to load the existing task objects into the Task List view. You’ll imple-
ment loadTasks later in this section.

 The following listing might seem like a lot of code, but it’s doing quite a bit for us:
opening a database connection, creating an object store, and providing a Web SQL
fallback for browsers that don’t support IndexedDB. Add the code from this listing to
app.js, just below the code you added from listing 5.9.

Database

Object store

Object

Object store

Object Object Object Object Object

Figure 5.4 Hierarchical structure of an IndexedDB database. Each database can have
many object stores, which themselves can contain many objects. The object is the
structure for a data record, equivalent to a row in a relational database.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.w3.org/TR/IndexedDB/#dfn-multientry
www.w3.org/TR/IndexedDB/#dfn-multientry

147Managing data using IndexedDB

 while

t. If
 then
e.If upgr

a m
reques

the brow
upgradeN

’t
er
ted
var db;

var openDB = function() {
 if(indexedDB) {
 var request = indexedDB.open('tasks', 1),
 upgradeNeeded = ('onupgradeneeded' in request);
 request.onsuccess = function(e) {
 db = e.target.result;
 if(!upgradeNeeded && db.version != '1') {
 var setVersionRequest = db.setVersion('1');
 setVersionRequest.onsuccess = function(e) {
 var objectStore = db.createObjectStore('tasks', {
 keyPath: 'id'
 });
 objectStore.createIndex('desc', 'descUpper', {
 unique: false
 });
 loadTasks();
 }
 } else {
 loadTasks();
 }
 }
 if(upgradeNeeded) {
 request.onupgradeneeded = function(e) {
 db = e.target.result;
 var objectStore = db.createObjectStore('tasks', {
 keyPath: 'id'
 });
 objectStore.createIndex('desc', 'descUpper', {
 unique: false
 });
 }
 }
 } else if(webSQLSupport) {
 db = openDatabase('tasks','1.0','Tasks database',(5*1024*1024));
 db.transaction(function(tx) {
 var sql = 'CREATE TABLE IF NOT EXISTS tasks ('+
 'id INTEGER PRIMARY KEY ASC,'+
 'desc TEXT,'+
 'due DATETIME,'+
 'complete BOOLEAN'+
 ')';
 tx.executeSql(sql, [], loadTasks);
 });
 }
}

openDB();

Now that you can open a connection to the database and create an object store, let’s
look at how users will interact with the tasks database by developing the UI for the

Listing 5.10 app.js—Connecting to and configuring the database

Use db to store the
database connection.

The open method is asynchronous;
the request is in progress, open
immediately returns an IDBReques
no database exists, create one, and
create a connection to the databasadeNeeded is

ember of the
t object, then
ser supports
eeded event.

If the event
upgradeNeeded doesn
exist, then the brows
supports the depreca
setVersion method.If db.version is

not equal to 1,
then no object

store exists
and it must be
created. Object
stores can only

be created
during a

version-change
transaction.
So, increase
the version

number of the
current

database by
calling

db.setVersion
with a version
argument set

to '1'.

Use createIndex to create another index for the
objectStore. This index will be used later to
implement the application’s search feature.

This event handler will be
called when the database is
created for the first time.

Allocate 5 MB
(5 * 1024 * 1024) for
the tasks database.

Use the executeSql method of the transaction object, tx, to create a
tasks table if it doesn’t already exist. A [] means no optional

argument array being passed. loadTasks is the callback function.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

148 CHAPTER 5 Mobile applications: client storage and offline execution
Task List view. Building this interface will generate a list of user features to guide your
later development of database management functions.

5.3.3 Developing a dynamic list with HTML and JavaScript

Your Task List view will require a list of to-do items that can change as the user adds
and deletes tasks. Building a web page with a varying list requires the use of JavaScript
to generate new HTML markup for each list item and its UI controls. In addition,
you’ll need to insert those new list items by making modifications to the DOM. If a
user needs to delete an item, the application will regenerate the entire list rather than
try to remove an individual list item from the DOM. Although this isn’t the most effi-
cient way to handle list management, it’s fast to implement and allows you to get on to
more interesting tasks like learning about the HTML5 IndexedDB API!

STEP 3: DEVELOP THE UI FOR THE TASK LIST VIEW
The Task List view is a dynamic part of the application’s webpage that updates itself in
response to user actions. Here’s a list of those actions and how to implement them:

■ Adding a task to the list—The application needs to define a function, showTask,
to generate the HTML markup for each added task and then insert the markup
into the view’s DOM.

■ Checking off and deleting tasks—You’ll also use showTask to add check boxes and
Delete buttons to each added task. showTask will also define and bind an event
handler for each check box and delete button.

Figure 5.5 illustrates how the buttons and check boxes will appear.
 The code in listing 5.11 implements the showTask and createEmptyItem func-

tions. CreateEmptyItem is a helper function to handle the boundary conditions where
the user has no task items to display in the to-do list. This can occur in two situations:

Tapping Delete to the

right of a task removes

the task from the app.

The user can check the

box to the left of a task

to mark it as complete.

Figure 5.5 Each task item has two components that allow the user to update the
task list. Checking the box on the left-hand side will mark the task as complete,
whereas pressing the red Delete button on the right-hand side will remove the task.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

149Managing data using IndexedDB
when no task items exist in the database and when a search of the task list yields no
matches. In order to handle these cases, createEmptyItem will create an “empty
item,” actually a message that says either “No tasks to display. Add one?” or “No tasks
match your query.”

 Add the following code to your application, just after the code from the previ-
ous listing.

 var createEmptyItem = function(query, taskList) {
 var emptyItem = document.createElement('li');
 if(query.length > 0) {
 emptyItem.innerHTML = '<div class="item_title">'+
 'No tasks match your query '+query+'.'+
 '</div>';
 } else {
 emptyItem.innerHTML = '<div class="item_title">'+
 'No tasks to display. Add one?'+
 '</div>';
 }
 taskList.appendChild(emptyItem);
 }

 var showTask = function(task, list) {
 var newItem = document.createElement('li'),
 checked = (task.complete == 1) ? ' checked="checked"' : '';

 newItem.innerHTML =
 '<div class="item_complete">'+
 '<input type="checkbox" name="item_complete" '+
 'id="chk_'+task.id+'"'+checked+'>'+
 '</div>'+
 '<div class="item_delete">'+
 'Delete'+
 '</div>'+
 '<div class="item_title">'+task.desc+'</div>'+
 '<div class="item_due">'+task.due+'</div>';
 list.appendChild(newItem);

 var markAsComplete = function(e) {
 e.preventDefault();
 var updatedTask = {
 id: task.id,
 desc: task.desc,
 descUpper: task.desc.toUpperCase(),
 due: task.due,
 complete: e.target.checked
 };
 updateTask(updatedTask);
 }

 var remove = function(e) {
 e.preventDefault();
 if(confirm('Deleting task. Are you sure?', 'Delete')) {

Listing 5.11 app.js—Generating the markup for task items

If a query doesn’t
exist, the search will
return zero results.

The showTask function creates
and displays a task list item
containing a title, due date,
check box, and Delete button.

The markAsComplete event
handler is executed when
the user marks or unmarks
the check box.

The remove event handler
is executed when the user
clicks the Delete button for
a task item.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

150 CHAPTER 5 Mobile applications: client storage and offline execution
 deleteTask(task.id);
 }
 }

 document.getElementById('chk_'+task.id).onchange =
 markAsComplete;
 document.getElementById('del_'+task.id).onclick = remove;
 }

5.3.4 Searching an IndexedDB database

Now that the UI for the Task List view is complete, you need to search the IndexedDB
database to extract a list of task objects for display in the Task View list. To do this,
IndexedDB requires the creation of a transaction to define an array of object stores to
scan and the type of transaction to execute. The transaction type defines how the
database will be accessed. IndexedDB provides two options: read-only and read-write.
In the case of implementing a search for the My Tasks application, the transaction would
need to be defined with tasks as the object store to search and a transaction type of
'readonly'. The application could use the read/write option, but the search perfor-
mance would be slower.

 Once the transaction is defined, you then need to extract the index from the
object store. The index will enable the application to filter the object store based on
some property of the object. In your application, the index’s key is based on the task’s
description property. Using this index and a string describing some portion of the task
description, you’ll create a database cursor using the IndexedDB API method open-
Cursor. The application will then use this cursor’s continue method to iterate over
the database and find all of the tasks containing a portion of the task description.

STEP 4: IMPLEMENT A SEARCH ENGINE FOR THE DATABASE AND DISPLAY SEARCH RESULTS

In the application, the loadTasks function is responsible for retrieving and displaying
tasks from the IndexedDB or Web SQL database. loadTasks will either retrieve a fil-
tered set of tasks or all tasks and then pass them to the showTask function, which will
render them onto the Task List view. Add the code from the next listing immediately
after the code from the previous listing.

Using cursors to iterate through database records
Cursor is a generic term describing a control structure in a database that allows you
to iterate through the records stored in it. Cursors typically enable you to filter out
records based on certain characteristics and to define the order in which the result
set is returned. Using the cursor’s continue method, you can then sequentially
move through the record set returned by the cursor, retrieving the data for use in
your applications. Cursors in IndexedDB allow you to traverse a result set that’s
defined by a key range, moving in a direction of either an increasing or decreasing
order of keys.

This code attaches
event handlers to the
task item’s check box
and remove button.

Core API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

151Managing data using IndexedDB

tas
b

th

,

]

var loadTasks = function(q) {
 var taskList = document.getElementById('task_list'),
 query = q || '';
 taskList.innerHTML = '';

 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readonly'),
 objectStore = tx.objectStore('tasks'), cursor, i = 0;
 if(query.length > 0) {
 var index = objectStore.index('desc'),
 upperQ = query.toUpperCase(),
 keyRange = IDBKeyRange.bound(upperQ, upperQ+'z');
 cursor = index.openCursor(keyRange);
 } else {
 cursor = objectStore.openCursor();
 }

 cursor.onsuccess = function(e) {
 var result = e.target.result;
 if(result == null) return;
 i++;
 showTask(result.value, taskList);
 result['continue']();
 }

 tx.oncomplete = function(e) {
 if(i == 0) { createEmptyItem(query, taskList); }
 }
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql, args = [];
 if(query.length > 0) {
 sql = 'SELECT * FROM tasks WHERE desc LIKE ?';
 args[0] = query+'%';
 } else {
 sql = 'SELECT * FROM tasks';
 }
 var iterateRows = function(tx, results) {
 var i = 0, len = results.rows.length;
 for(;i<len;i++) {
 showTask(results.rows.item(i), taskList);
 }
 if(len === 0) { createEmptyItem(query, taskList); }
 }
 tx.executeSql(sql, args, iterateRows);
 });
 }
}

NOTE You may have noticed that the loadTasks function accepts an optional
argument, q. The application will only pass a query to loadTasks when it
wants to filter the results by what the user has entered in the search box.

Listing 5.12 app.js—Searching the database and displaying the resulting tasks

Build a key
range on the

uppercase
version of

the task
description.

The 'z'
appended to

the second
argument
allows the

application to
search for a

k description
eginning with
e search term
(otherwise, it

would only
return exact

matches).

e.target references the cursor, so
get the result set from the cursor.

Count the number of tasks passed to
showTask. The resulting value will be
used by the transaction event handler
tx.onComplete, to determine if an
empty task list should be rendered.

Use result['continue'
to find the next
matching task in the
index or next task in
the object store (if
not searching). Using
result.continue,
rather than
result['continue'],
might result in a
conflict with the
JavaScript reserved
word continue.

If IndexedDB
isn’t

supported
and Web

SQL is, build
a query that
will retrieve

the tasks
from the

database.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

152 CHAPTER 5 Mobile applications: client storage and offline execution
STEP 5: IMPLEMENT THE SEARCH INTERFACE FOR THE TASK VIEW LIST

To implement the search interface for the application, add the following code imme-
diately after the code from the previous listing.

var searchTasks = function(e) {
 e.preventDefault();
 var query = document.forms.search.query.value;
 if(query.length > 0) {
 loadTasks(query);
 } else {
 loadTasks();
 }
}

document.forms.search.addEventListener('submit', searchTasks, false);

TRY IT OUT

If you reload the application in your browser, you should see a friendly message telling
you that you have no tasks to display, as shown in figure 5.6.

 As you can see from figure 5.6, displaying a list of tasks isn’t very useful if you have
no way of adding tasks to the database. Let’s solve that problem right now.

5.3.5 Adding data to a database using IndexedDB or Web SQL

Adding data to an IndexedDB database requires the creation of a transaction to
define an array of object stores you’ll be using to store the data and the type of
transaction needed, in this case 'readwrite'. Once you have the transaction cre-
ated, you then call its method objectStore, with the name of the object store you
want to add a data item to. The method will respond to this call by returning the
object store. From here, adding the data item to the store is easy. Call the object

Listing 5.13 app.js—Searching for tasks

If a query was typed in, pass
the query as an argument to
the loadTasks function.

When the user submits the search
form, call the searchTasks function.

Figure 5.6 In the left
screenshot, the application
finds no tasks in the database.
Therefore, it displays a
message and links the
question “Add one?” to the
Add Task form. In the right
screenshot, if you try to search
for a task, you’ll see that no
tasks match your query, no
matter what you enter.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

153Managing data using IndexedDB

f

store’s method add, and pass the new data item to its only argument. The method
will immediately return a request object. If you’d like the application to respond to
the object store’s successful addition of the data item, then define an event handler
for the transaction’s oncomplete event.

 Now, let’s see how this addition procedure can be applied to the application.

STEP 6: ADD NEW TASKS FROM THE ADD TASK VIEW TO THE DATABASE

This code creates a new function called insertTask that manages the process of
inserting the task into the database and updating the display of the Task List view.
InsertTask first constructs a new task object from the Add Task form; second, it adds
the task to the IndexedDB database (or Web SQL if the browser doesn’t support
IndexedDB). Finally, it triggers the callback function, updateView, when the task has
been successfully added to the database. Add the code from the following listing after
the code from the previous listing.

var insertTask = function(e) {
 e.preventDefault();
 var desc = document.forms.add.desc.value,
 dueDate = document.forms.add.due_date.value;
 if(desc.length > 0 && dueDate.length > 0) {
 var task = {
 id: new Date().getTime(),
 desc: desc,
 descUpper: desc.toUpperCase(),
 due: dueDate,
 complete: false
 }

 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readwrite');
 var objectStore = tx.objectStore('tasks');
 var request = objectStore.add(task);
 tx.oncomplete = updateView;
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql = 'INSERT INTO tasks(desc, due, complete) '+
 'VALUES(?, ?, ?)',
 args = [task.desc, task.due, task.complete];
 tx.executeSql(sql, args, updateView);
 });
 }
 } else {
 alert('Please fill out all fields', 'Add task error');
 }
}
function updateView(){
 loadTasks();
 alert('Task added successfully', 'Task added');
 document.forms.add.desc.value = '';
 document.forms.add.due_date.value = '';

Listing 5.14 app.js—Adding new tasks

Construct a task object to
store in the database. The
key is the id property, which
is the current time, and you
also store the uppercase
version of the description
in order to implement
case-insensitive indexing.

Add the task to the
object store using
the IndexedDB
method add.

When a task
has been

successfully
added, call the
event handler

updateView.
The definition

or updateView
appears

immediately
after

insertTask.

For the Web SQL fallback,
use an INSERT statement

to add the task.

updateView loads tasks from the database,
clears input fields in the Add Task form, and
redirects the user to the Task List view.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

154 CHAPTER 5 Mobile applications: client storage and offline execution
 location.hash = '#list';
 }
document.forms.add.addEventListener('submit', insertTask, false);

TRY IT OUT

At this point, you should be able to add tasks to the database using the Add Task form.
When the task has been saved, you are taken back to the Task List view, which should
display the task you just created. Feel free to try it now—add some tasks. Also, be sure to
try out the Search form, because this should now be fully functional. The application is
starting to take shape, but you still have a small number of features to add before it’s
complete. Next, you’ll write code to allow users to update and delete existing tasks.

5.3.6 Updating and deleting data from an IndexedDB database

The IndexedDB database has a relatively simple procedure for changing existing data
objects in the object store. First, the application needs to define the database transac-
tion about to occur, and then the application uses the transaction to write a data
object to the specified object store.

 In order to define the database transaction for updating an object store, the appli-
cation would call the IndexedDB method transaction to define the type and scope of
the transaction. Because updating a database requires writing to the object store, the
type is specified as 'readwrite'. The second parameter, the scope of the transaction,
specifies the various object stores the application will be writing to.

 With the transaction defined, the application can now get the object store it needs
to update. Calling the transaction’s method, objectStore, with a parameter specify-
ing the name of the object store will return the object store. At this point, the applica-
tion can update the object store by invoking its put method, with the changed data
object as its parameter.

 Deleting task items follows a similar procedure. But once the application has the
object store, it will invoke the object store’s delete method, with the data object’s key
as a parameter. Delete will use the key to find and delete the data object within the
object store.

 Let’s apply these update and delete operations to the application.

STEP 7: UPDATE AND DELETE TASKS FROM THE TASK LIST VIEW

You’ve already done some of the work required for updating and deleting a task. If
you look at the Task List view in the application, you’ll notice that each task has a
check box and a Delete button. The check box has an updateTask embedded into the
markAsComplete event handler, and the Delete button has a deleteTask embedded
into the remove event handler.

 All that’s left to do is to insert the procedures for updating and deleting the object
store into their respective updateTask and deleteTask function definitions. Because
not all browsers support IndexedDB, you’ll also insert a Web SQL fallback. Add the
code from this listing right beneath the code from the previous listing..

Add the event handler insertTask to
the Add Task form’s submit button.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

155Managing data using IndexedDB

 the
 to
ase.
he

an
var updateTask = function(task) {
 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readwrite');
 var objectStore = tx.objectStore('tasks');
 var request = objectStore.put(task);
 } else if(webSQLSupport) {
 var complete = (task.complete) ? 1 : 0;
 db.transaction(function(tx) {
 var sql = 'UPDATE tasks SET complete = ? WHERE id = ?',
 args = [complete, task.id];
 tx.executeSql(sql, args);
 });
 }
}

var deleteTask = function(id) {
 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readwrite');
 var objectStore = tx.objectStore('tasks');
 var request = objectStore['delete'](id);
 tx.oncomplete = loadTasks;
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql = 'DELETE FROM tasks WHERE id = ?',
 args = [id];
 tx.executeSql(sql, args, loadTasks);
 });
 }
}

TRY IT OUT

You should now be able to mark the completed check box and delete items in the
Task List view. But one final function remains to complete the application: the drop-
Database function. This will delete the entire tasks database (or truncate the tasks
table if using the Web SQL fallback).

5.3.7 Dropping a database using IndexedDB
Dropping a database in IndexedDB is easy and involves just one method: the delete-
Database method of the IndexedDB object. Call deleteDatabase while passing the
name of the target object store, and then the entire database will be removed.

STEP 8: DROP THE DATABASE TO CLEAR ALL TASKS

To enable a user to clear all tasks from the application, you need to do two things:

1 Create a new function, dropDatabase, that will remove the tasks database, and
therefore all task items, from the application.

2 Call dropDatabase from the resetSettings function you created earlier in the
localStorage section of this chapter. Adding this call now completes reset-
Settings’s function, which is to reset a user’s personal settings and erase all of a
user’s tasks.

Listing 5.15 app.js—Updating and deleting tasks

Use the put method, passing
task object as an argument,
update the task in the datab
The task object must have t
correct key value, or the
database may create a new
object in the store rather th
update the existing one.

Use the delete method
to remove a task. Some
browsers will choke if
you use dot-notation
here, because delete is
a reserved word in
JavaScript. So to be safe,
use the square bracket
notation.

When the delete operation
has successfully completed,
load the Task List view to
show the updated items.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

156 CHAPTER 5 Mobile applications: client storage and offline execution

de

d

f
For browsers that don’t support IndexedDB, you’ll need to provide a Web SQL fallback
as well. In this case, you won’t drop the database; you’ll just delete the tasks table from
the Web SQL database.

 To define the dropDatabase function, add the code from the next listing directly
below the code from the previous listing in your app.js file.

var dropDatabase = function() {
 if(indexedDB) {
 var delDBRequest = indexedDB.deleteDatabase('tasks');
 delDBRequest.onsuccess = window.location.reload();
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql = 'DELETE FROM tasks';
 tx.executeSql(sql, [], loadTasks);
 });
 }
}

With the dropDatabase function defined, you can now call it from the resetSettings
function you created in section 5.2.3. In this function, locate the line location.hash =
'#list'; and add the following line just beneath it:

dropDatabase();

TRY IT OUT

That’s it! The sample application should now be fully functional. Try it out on a device
or browser that supports IndexedDB or Web SQL. (iOS, Android, BlackBerry Torch,
Opera Mobile, Chrome, Firefox, Safari, and Opera all work.) If both IndexedDB and
Web SQL are available in the browser, the application will favor the former. In the next
and final section of this chapter, you’ll learn how to ensure an application will work
offline using an application cache manifest file. You should then have an application
that stores all of its data on the client and is usable both online and offline.

5.4 Creating a web application that works offline:
using the application cache manifest
Until recently, web applications have been used primarily in connected environments,
on desktop or laptop computers, where the majority of the time an internet connec-
tion is available. But as rich web applications become more prominent as realistic
alternatives to their desktop counterparts, and as mobile applications continue to
gather momentum, the need grows for web applications to work in scenarios where
connectivity is not available.

Listing 5.16 app.js—Dropping the database

Application cache manifest 4.0 3.5 10.0 10.6 4.0

Use the
leteDatabase

method to
rop the tasks

database.

Reload the page to
initiate a load event.
This will trigger the
load event handler to
create a fresh copy o
the database.

In your Web SQL fallback, clear
down the tasks table rather than
drop the entire database.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

157Creating a web application that works offline: using the application cache manifest
To address these demands, HTML5 provides a file called the application cache mani-
fest. This file, in its most basic form, specifies a list of web resources needed by a web
application. Browsers that support the manifest feature will use the list to provide a
web application with access to a local cache of these web resources. As a result, the
web application can run offline.

 For resources only available from the network, the cache manifest can specify fall-
back client-side URIs for offline activity. For instance, if an application relies on a
JavaScript file to save data to a server, then the cache manifest would specify a client-
side URI pointing to a JavaScript file that uses local requests for client-side storage.

NOTE If you’ve been working through this chapter’s example without a web
server, it’s worth pointing out that you won’t be able to use the application
cache manifest unless your application resides on an actual web server (rather
than just sitting in a local directory). You’ll also need to do a small bit of config-
uration to get cache manifests to work, which we’ll cover later in the section.

The cache manifest can also specify URIs that must be fetched from the network. They
will never be downloaded from the application cache, even if the application is offline.

Now that you have a basic understanding of the application cache manifest, let’s
implement offline functionality for My Tasks. This process will be broken down into
three steps:

■ Step 1: Configure the web server to serve application cache manifest files for
My Tasks.

■ Step 2: Create an application cache manifest file for My Tasks.
■ Step 3: Detect changes in the My Tasks application cache manifest file.

5.4.1 Configuring a web server for an application cache manifest’s
MIME type

In order for a manifest file to be correctly loaded, your web server needs to serve a
manifest file using the correct MIME type. The manifest MIME type is not typically set
by default in a web server’s configuration, so you’ll need to add the MIME type, text/
cache-manifest, to your web server’s configuration.

STEP 1: CONFIGURE THE WEB SERVER TO SERVE APPLICATION MANIFEST FILES FOR MY TASKS

If you’re using the Apache web server, you can typically add MIME types by either mod-
ifying the httpd.conf configuration file or by serving an .htaccess file in the root of your

In this section, you’ll learn
■ How to configure a web server for an application cache manifest MIME type
■ How to create a cache manifest file
■ How to detect changes in the manifest file
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

158 CHAPTER 5 Mobile applications: client storage and offline execution
web application. If you’re using Python’s built-in web server, then create an .htaccess
file in the root directory of your web application, and then add the MIME type to the
.htaccess file. In either case, to serve the correct MIME type for files with the exten-
sion .appcache, you need to add the following line to the end of the configuration
or .htaccess file:

addType text/cache-manifest .appcache

NOTE A cache manifest file can have any file extension, but the file must be
served with the MIME type text/cache-manifest.

If you’re using the nginx web server, you add MIME types by adding an entry to the
mime.types file in the nginx conf directory. This file typically has the following format:

types {
 text/html html htm shtml;
 text/css css;
 text/xml xml;
 ...
}

To enable the cache manifest MIME type, add an entry to this file as follows:

 text/cache-manifest appcache;

After editing the configuration file, restart your web server, and your cache manifest
file should be served correctly from now on. If you’re using another web server,
please consult your web server’s documentation for further information on how to
add MIME types.

 With the web server configured correctly, you’re now ready to create a cache man-
ifest file, which we’ll cover next.

5.4.2 Creating a cache manifest file

The manifest file is a basic text file that contains a title header, CACHE MANIFEST, and
up to three subsections with the headings CACHE, NETWORK, and FALLBACK. For explan-
atory purposes only, here’s a sample cache manifest file:

CACHE MANIFEST
Rev 3

CACHE:
index.html
pics/logo.png
stylesheet.css

FALLBACK:
*.html /offline.html

NETWORK:
http://api.stockwebsite.com

The CACHE section represents the default section for entries. URIs listed under this
header will be cached after they’re downloaded for the first time.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

159Creating a web application that works offline: using the application cache manifest

den
the

o
c

man
NOTE You can also forgo specifying a CACHE header and simply place the URIs
to be cached immediately under the title header, CACHE MANIFEST.

The FALLBACK section is optional and specifies one or more pairs of URIs to use when
a resource is offline. The first URI in a pair is the online resource; the second is the
local fallback resource. Wildcards can be used.

NOTE Both URIs must have a relative path name. Also, the URIs here, as well
as in other sections of the cache manifest, must have the same scheme, host,
and port as the manifest.

The NETWORK section serves as the application’s whitelist for online access. All URIs
listed under this header must bypass the cache and access an online source. Wildcards
can be used.

 You can also specify comments in the application cache manifest. They consist
of any number of tabs or spaces followed by a single # and then followed by a string
of characters. Comments must exist on a line separate from other section headers
and URIs.

 Now, equipped with knowledge of the basic structure and syntax of an application
cache manifest, let’s put that knowledge to work by creating one for My Tasks.

STEP 2: CREATE THE APPLICATION CACHE MANIFEST FILE FOR MY TASKS

Your cache manifest will have a CACHE section and a NETWORK section. The CACHE sec-
tion will list the index.html, style.css, and app.js files as cacheable resources. The
NETWORK section will contain only an asterisk, the wildcard character. Create a new file
named tasks.appcache in the root directory of your web application, then add the
contents of the following listing to tasks.appcache.

NOTE After entering this code listing, don’t try to run the application. It will
work, but you’ll have to do extra work in the final section of this chapter,
“Automating application updates,” to get it working correctly.

CACHE MANIFEST
Rev 1
CACHE:
index.html
style.css
app.js

NETWORK:
*

In order for your application to read this file, you need to modify your HTML docu-
ment with the manifest’s filename. Open index.html and replace the current opening
<html> element definition with the following:

<html lang="en" class="blue" manifest="tasks.appcache">

Listing 5.17 tasks.appcache—Defining resources that are available offline

This
otes
start
f the
ache
ifest
file.

Use a comment in your manifest to define the current revision number of the
web application. This allows you to easily monitor and log application
revisions, even if no changes are being made to the manifest file itself. Later,
we’ll show how to use these revision numbers to trigger application updates.

The wildcard under NETWORK specifies that the online whitelist is open; any other
URIs not listed under CACHE MANIFEST, CACHE must be retrieved from the network.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

160 CHAPTER 5 Mobile applications: client storage and offline execution
We’re almost there. In the final step, you will give My Tasks the ability to detect
changes in the manifest file. My Tasks will use this ability to determine when to down-
load a newer version of My Tasks.

5.4.3 Automating application updates

When you created the cache manifest file, you used a comment with a revision num-
ber to update the manifest, to document changes in the manifest or in one or more of
the web resources listed in the manifest. This practice has a function beyond docu-
mentation; it can also be used to detect and trigger application updates.

 If any change is made to the text in the manifest, the application will download the
new manifest and all files listed in the CACHE MANIFEST or CACHE section. When this is
done, a new cache is created and an updateready event is fired. To update the appli-
cation, you have to attach an event handler to updateready. The handler will swap
the old cache for the new one, then ask the user for permission to update the applica-
tion. If the user grants permission, the event handler will force an application reload.
The reload ensures that resources from the new cache are loaded into the applica-
tion. If the user declines the update, the application will use the new cache the next
time the user loads the application.

 Now, let’s add this update feature to My Tasks.

STEP 3: DETECT CHANGES IN THE MY TASKS APPLICATION CACHE MANIFEST FILE

As mentioned before, you’ll use the updateready event to detect changes in the
application manifest. So, all you need to do is define and attach an event handler to
the application cache’s updateready event. The event handler will call the applica-
tion cache’s swapCache method and ask the user for permission to reload the appli-
cation using the new version of the cache. If the user confirms, the event handler will
call window.location.reload to reload the application using the new cache version.

 Add the code from the following listing to app.js, just after the dropDatabase func-
tion you created in listing 5.16.

if('applicationCache' in window) {
 var appCache = window.applicationCache;
 appCache.addEventListener('updateready', function() {
 appCache.swapCache();
 if(confirm('App update is available. Update now?')) {
 window.location.reload();
 }
 }, false);
}

Listing 5.18 app.js—Automatic update detection and loading

Core API

Detect if the user’s browser
supports the Application Cache API.

When updateready fires, the browser will have already redownloaded the
resources listed in the manifest and created a new cache. The event handler for

updateready will call swapCache to replace the old cache with the new cache.

Ask the user if they want to update the application now. If they
click Yes, the page will reload using the new cache; otherwise,

the new cache will be used the next time they load the page.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

161Creating a web application that works offline: using the application cache manifest
TRY IT OUT

That’s all there is to it! If you’ve followed these steps correctly, you should now be able
to use your application offline. If you put this application on a server with a registered
domain name, you could test this application on your mobile device’s browser. Just
visit the site in order to load the application for the first time. Now, turn on Airplane
Mode on your device, which should kill all network connectivity. Refresh the page in
your device’s web browser, and you should still be able to use the application in full.
The result can be seen in the screenshots in figure 5.7.

 If you are trying to run this app on your desktop browser with the Python web server,
start the My Tasks app by entering localhost:8000 into your browser’s address box. (If
you configured the web server with a different port number, use that number instead.)

 To simulate an offline condition for the My Tasks app running in your desktop
browser, kill the Python web server process, then refresh the page in your web browser.
You should still be able to use the application in full.

NOTE If you tried to run this application with the cache manifest before enter-
ing the code from this final listing, then you must first flush your browser’s
cache before loading the application from the server.

To test the application’s ability to load a newer version, update the revision number in
the tasks.appcache file and save it. Next, reload the application. You should see the

Figure 5.7 My Tasks application running offline. You’ll notice the airplane icon in the top left
indicating that the phone has no network access. You may also notice that the jazzy font we used in
the heading is no longer showing; this font was loaded from the Google Font API, which isn’t available
when you’re offline.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

162 CHAPTER 5 Mobile applications: client storage and offline execution
confirmation dialog asking you if you want to update. This is illustrated in the Android
device screenshot in figure 5.8.

5.5 Summary
As you’ve learned in this chapter, HTML5 makes it possible to create offline database
applications using client-side code. This allows you to build faster, more responsive
applications that store data on the device itself and work regardless of the browser’s state
of internet connectivity. These abilities expand the range of web applications and make
the web a more viable platform for cross-platform mobile application development.

 In the next chapter, you’ll learn about the 2D canvas API in HTML5 and how it
allows you to build animations and games using native JavaScript APIs. The chapter
will introduce you to Canvas’s support for drawing graphic elements using gradients,
paths, and arcs. You’ll also learn how to use the API to create smooth, high-frame-rate
animations. In addition, the chapter will show the API in action while building an
entire game.

Figure 5.8 When the
manifest file has been updated
and a new application cache
has been created, the
updateready event is fired.
The application attaches a
handler to this event that
swaps the old cache for the
new cache, then asks the user
if they want to update the
application (this simply
reloads the page, which loads
the latest application version
from the new cache).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Part 3

Interactive graphics,
media, and gaming

Interactive media APIs such as Canvas, SVG, Video, and WebGL are making
graphics creation, media players, and games available without plugins. You’ve
probably used these technologies with YouTube’s HTML5 video player and/or
Google Maps WebGL version. Some companies such as Ludei (CocoonJS) and
Goo Technologies (Goo Engine) are investing in such tech for game engines.
Once you’ve completed this section, you’ll be fully equipped to start rolling your
own interactive applications without plugins.

 How do HTML5’s interactive media APIs stand up to RIA (Rich Internet Applica-
tion) plugins such as Flash, Unity, and Silverlight? These systems are much more
mature, but they’re limited in mobile distribution by requiring a native app or some
form of conversion. You can write a game in HTML5, for example, and it magically
becomes accessible in-browser on mobile and desktop. (Please note that this is ideal
and not quite how it works yet.) There are many limitations on mobile for HTML5
APIs and you should check caniuse.com for more details. Some people argue that
RIAs provide advanced encryption security over web apps and they’re right. On the
other hand, demand is rapidly increasing for non-plugin-based solutions.

 How important are the interactive media APIs? To front-end and some mobile
developers they’re becoming vital tools. Many companies are hiring specifically
for HTML5 specialists in Canvas. One of us worked at a shop where they moved
most of their Flash work to Canvas development. In fact they’re still hiring more
Canvas developers because they can’t supply all of the requests they get from cli-
ents. What we’re trying to say is, these skills will make you more in demand and
increase your long-term value.

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Chapter 6 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

API overview Fundamentals for drawing with the Canvas API
■ Canvas context and origins
■ getContext()

166
169

Drawing assets Creating static Canvas objects with visual output
■ App’s general structure
■ requestAnimationFrame()
■ ctx.drawImage()
■ ctx.fillRect()
■ ctx.createLinearGradient()
■ ctx.arc() for circles
■ Paths via moveTo() and lineTo()
■ ctx.arcTo() for round corners

170
173
174
175
177
178
179
179

Animate/overlap Making assets interactive and detecting overlap
■ Moving your visual assets
■ Overlap detection
■ Keyboard and mouse input
■ Touch input

182
183
185
187

Game mechanics Game features such as counters and screens
■ Score and level output
■ Progressive level enhancement
■ Welcome and Game Over screens
■ HTML5 game libraries

190
191
193
195

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

2D Canvas: low-level,
2D graphics rendering
For many years, developers used Adobe’s Flash to create highly interactive web
applications. Sadly, Flash wasn’t ready when the mobile market explosion for
smartphones occurred. Those dark days without an alternative have ended
because of HTML5’s Canvas API. It allows you to create 2D shapes in a single DOM
element without a plug-in. An application written with Canvas is distributable to
multiple platforms and through frameworks like PhoneGap.com. Although sim-
ple to use, Canvas lets you do complex work, like emulating medical training
procedures, creating interactive lobbying presentations, and even building edu-
cation applications.

This chapter covers
■ Canvas basics
■ Shape, path, and text creation
■ Creating animation
■ Overlap detection
■ HTML5 Canvas games from scratch
165

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://html5inaction.com/app/ch6/
http://html5inaction.com/app/ch6/

166 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
In this chapter, you’ll explore the Canvas API by implementing a simple engine pat-
tern to maintain and draw graphics. After that, you’ll create and animate unique
shapes. When you’ve finished, you’ll be able to apply both of those exercises to creat-
ing full-length animations, interactive data, or drawing applications. Here, though,
you’ll use the principles for the true reason of all technology: creating games!

You’ll create a simple ball-and-paddle–based game called Canvas Ricochet, which
includes animated elements, collision detection, and keyboard/mouse/touch con-
trols. After you assemble those components, you’ll take everything a step further and
create a fully polished product, which includes a score counter, progressively increas-
ing difficulty, and an opening/closing screen. Adding polish greatly helps to monetize
a game’s worth, resulting in a better return on investment.

 After completing this chapter on 2D Canvas, you’ll have learned all the necessary
tools to build your own Canvas applications from scratch. First up is the Canvas context.

6.1 Canvas basics
No matter what type of Canvas application you build, your first two steps will involve
the Canvas context: setting it and generating it. Without a context, you won’t be able
to draw anything. Then, you’ll need to verify that the current browser can actually sup-
port Canvas.

6.1.1 Setting the Canvas context

Before working with Canvas, you must choose a set of drawing tools from the API via
JavaScript (also known as setting the context). As with most HTML5, you must use

Can I use Canvas for drawing graphs and infographics?
One common misconception about Canvas is that it’s good for creating graphs and
infographics. Although you could use it to visualize simple information, the Canvas
API is better for complex animations and interactivity. If you want simple visuals or
animation, check out SVG in chapter 7. It’s for creating logos, graphs, and infograph-
ics, and it comes with many built-in features Canvas lacks, such as animation, resiz-
ability, and CSS support.

What makes this tutorial special
We know you can find tutorials similar to Canvas Ricochet online, but our lesson is
far more in-depth. Here are a few of the topics covered in this chapter that go beyond
what you find in free tutorials:

■ Advanced Canvas API usage (gradients, paths, arcs, and more)
■ Progressive level enhancement with scorekeeping
■ Implementing a Canvas design pattern into a fully functional application

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.manning.com/crowther2/
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Working_with_Objects

167Canvas basics
JavaScript to program with the API. The most commonly used context draws a 2D
plane where everything is flat. Figure 6.1 features a robust drawing application known
as Sketchpad, which utilizes Canvas’s built-in drawing tools. We’ll have you set the con-
text for this chapter’s game right after we explain more about what it does.

 An alternative to the 2D context is a set of 3D drawing tools. Although 3D context
allows for advanced applications, not all browsers support it. With 3D graphics and
JavaScript, you can create interactive 3D applications such as the music video shown in
figure 6.2 (more about 3D when we get to WebGL in chapter 9).

Because 2D is great for programming simple games, we’ll teach you how to use Canvas
as we guide you through building Canvas Ricochet with the 2D Canvas context,
JavaScript, and HTML. As you’ll soon see, a majority of the creation process involves

Canvas: a product of Apple’s iOS
Canvas isn’t the W3C’s brainchild for HTML5. It originally came in 2004 as part of the
Mac OS X WebKit by Apple. Two years later, Gecko and Opera browsers adopted it. Pop-
ularity since then has significantly grown, and Canvas is now an official HTML5 API.

Figure 6.1 Sketchpad (http://mudcu.be/sketchpad/) is a robust drawing application that features
gradients, textures, swatches, shape creation, and more. You’ll be using a lot of these drawing features
during your game’s creation process.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mudcu.be/sketchpad/
http://mudcu.be/sketchpad/
http://mudcu.be/sketchpad/
http://mudcu.be/sketchpad/

168 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
accessing a set of drawing tools via JavaScript, so you can send an object to the
CanvasRenderingContext2D interface object. Although CanvasRenderingContext2D
interface object sounds long and fancy, it really means accessing Canvas to draw. Each
newly drawn piece sits on top of any previous drawings.

PREREQUISITE Before you begin, download the book’s complementary files
from http://www.manning.com/crowther2/. Also, test-drive the game at
http://html5inaction.com/app/ch6/ to see all of its cool features in action.

Each drawing you create is layered on a simple graph system inside the <canvas> tag,
as shown in figure 6.3. At first glance, the graph appears to be a normal Cartesian

Figure 6.2 “3 Dreams of
Black” is an interactive music
video created exclusively for
Google Chrome. You can
experience Chris Milk’s
masterpiece at http://ro.me
and download the source code!

(0, 0)
x

y

Figure 6.3 The invisible
Cartesian graph where Canvas
drawings are created. Notice
that the x and y coordinates
begin in the top left and the
y-axis increments downward.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.manning.com/crowther2/
http://www.manning.com/crowther2/
http://html5inaction.com/app/ch6/
http://ro.me

169Canvas basics

,

er.
graph. Upon further investigation, you’ll notice that the starting point is located in
the top-left corner. Another difference is that the y-axis increases while moving down-
ward, instead of incrementing upward.

6.1.2 Generating a Canvas context

Although you get the context with JavaScript, you have to pull it out of the <canvas> ele-
ment’s DOM data.

PREPARING THE CANVAS FOR YOUR GAME

Start by opening a text editor to create a document called index.html. Inside your
document place a <canvas> tag in the <body> with id, width, and height attributes, as
shown in listing 6.1. Failure to declare this size information via HTML, CSS, or
JavaScript will result in Canvas receiving a default width and height from the browser.
Note that you can place whatever you want inside the <canvas> tag, because its con-
tents are thrown out when rendered. Create an empty game.js file and include it right
next to index.html.

<!DOCTYPE html>

<html>
<head>
 <title>Canvas Ricochet</title>
</head>

<body style="text-align: center">
 <canvas id="canvas" width="408" height="250">
 Your browser shall not pass! Download Google Chrome to view this.
 </canvas>

 <script type="text/javascript" src="game.js"></script>
</body>

</html>

VERIFYING BROWSER SUPPORT

Refreshing your browser will remove the nested text inside your <canvas> element.
When a Canvas element is successfully rendered, all the content inside is removed,
which makes it a great place to include content or messages for browsers that can’t
support it.

 You can access the Canvas API’s context from <canvas> and store it in a variable.
Code used to render your Canvas would look something like the following two lines;
you’ll implement it in the next section.

var canvas = document.getElementById('canvas');
var context = canvas.getContext('2d');

Canvas’s context element is useful for defining 2D drawing and you can use it for fea-
ture detection. Simply encapsulate the context variable in an if statement, and it will

Listing 6.1 index.html—Default Canvas HTML

When the browser successfully
loads the Canvas element, it

replaces all content inside.

Create this file now
because you’ll be
placing all your
game logic in it lat

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/h9v9
http://creativejs.com/resources/requestanimationframe/
http://creativejs.com/resources/requestanimationframe/

170 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
check to make sure the Canvas variable has a getContext method. Here’s what basic
feature detection looks like with Canvas.

var canvas = document.getElementById('canvas');

if (canvas.getContext && canvas.getContext('2d'))
 var ctx = canvas.getContext('2d');

This checks both getContext and getContext('2d') because some mobile browsers
return true for the getContext test but false for the getContext('2d') test.

NOTE IE7 and IE8 will crash when using Canvas API commands unless you use
explorercanvas (http://code.google.com/p/explorercanvas/wiki/Instructions).
To use it, click the download tab, unzip the files, put excanvas.js in your root
directory, and add a script element loading excanvas.js inside a conditional
comment targeting IE. IE9 gives great support, and IE10’s support is looking
quite solid. Our disclaimer for explorercanvas is that with it you can do simple
animations, but more advanced support (such as that needed for the Canvas
Ricochet game tutorial) might not work.

Now that you have your index.html file set up and you understand exactly what the
Canvas context is, it’s time to create your first game, Canvas Ricochet.

6.2 Creating a Canvas game
Your first Canvas game, shown in figure 6.4, will make use of overlap detection, anima-
tion, keyboard/mouse/touch controls, and some polish.

 Although overlap detection and advanced animation might sound scary, no prior
knowledge is necessary, and we’ll walk you through each step of the way.

Canvas API 4 3.5 9 10.5 4

Figure 6.4 Canvas Ricochet’s objective is
to bounce a ball via a paddle to break
bricks. When the ball goes out of bounds,
the game shuts down. You can play the
game now at http://html5inaction.com/
app/ch6/ and download all the files needed
to complete your own Canvas Ricochet
game from www.manning.com/crowther2/.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.manning.com/crowther2/
http://html5inaction.com/app/ch6/
http://html5inaction.com/app/ch6/
http://code.google.com/p/explorercanvas/wiki/Instructions

171Creating a Canvas game
In this section, you’ll create the main game engine and the game’s visual assets in
7 steps:

■ Step 1: Create the main engine components.
■ Step 2: Create HTML5-optimized animation.
■ Step 3: Display a background image.
■ Step 4: Calculate the width and height of rectangular bricks.
■ Step 5: Color the bricks.
■ Step 6: Create the game ball.
■ Step 7: Create the paddle.

6.2.1 Creating the main engine components

You’re going to place all proceeding JavaScript listings you write into a single self-
executing function. Why would we have you do this? Because it allows you to keep
variable names from appearing in the global scope and prevents conflicts with code
from other files.

STEP 1: CREATE THE MAIN ENGINE COMPONENTS

Fill game.js with the code in listing 6.2. The listing has you create a Canvas engine
object. Instead of declaring variables and functions, the object uses methods (the
equivalent of functions) and properties (act like variables). For example, you can
access the number of bricks on a page by declaring var bricks = {count: 20, row: 3,
col: 2 }; and then calling bricks.count to get the current value. For more informa-
tion on working with JavaScript objects, please see https://developer.mozilla.org/en-
US/docs/JavaScript/Guide/Working_with_Objects.

In this section, you’ll learn
■ How to use the Canvas API to dynamically draw squares and circles, then shade

them with specific coloring techniques (solid colors and gradients)
■ How to use basic visual programming concepts that can be applied to other

languages
■ How to draw an image via the Canvas API

Optional HTML5 Canvas companions
Before you proceed, we strongly recommend that you download and print nihilogic’s
HTML5 Canvas Cheat Sheet for reference: http://blog.nihilogic.dk/2009/02/html5-
canvas-cheat-sheet.html. Another great companion is WHATWG’s (Web Hypertext
Application Technology Working Group) Canvas element document at http://www
.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html. It pro-
vides detailed documentation about the Canvas element’s inner workings, meant
more for browser vendors but very useful for the curious developer.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Working_with_Objects

172 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

An
v

th
2D

d

(function () {

 var ctx = null;

 var Game = {
 canvas: document.getElementById('canvas'),

 setup: function() {
 if (this.canvas.getContext) {
 ctx = this.canvas.getContext('2d');

 this.width = this.canvas.width;
 this.height = this.canvas.height;

 this.init();
 Ctrl.init();
 }
 },

 animate: function() {},

 init: function() {
 Background.init();
 Ball.init();
 Paddle.init();
 Bricks.init();

 this.animate();
 },

 draw: function() {
 ctx.clearRect(0, 0, this.width, this.height);

 Background.draw();
 Bricks.draw();
 Paddle.draw();
 Ball.draw();
 }
 };

 var Background = {
 init: function() {},
 draw: function() {}
 };

 var Bricks = {
 init: function() {},
 draw: function() {}
 };

 var Ball = {
 init: function() {},
 draw: function() {}
 };

 var Paddle = {
 init: function() {},
 draw: function() {}

Listing 6.2 game.js—Default JavaScript

Place all proceeding JavaScript code listings inside
this self-executing function. It prevents your
variables from leaking into the global scope. empty

ariable
at your
context
will be
umped

into.

Cache width and height
from the Canvas element.

init() houses all
of your object
instantiations.

draw() handles all the
logic to update and
draw your objects.

This clears the
Canvas drawing
board, so previously
drawn shapes are
removed each time
it’s updated.

Proceeding objects will contain all of
the game’s visual assets. As of now,
they’re placeholders to prevent your
game from crashing when it runs.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

173Creating a Canvas game
 };

 var Ctrl = {
 init: function() {}
 };

 window.onload = function() {
 Game.setup();
 };
}());

You’ll notice that you’ve wrapped your Game.setup() code in window.onload. It
makes the browser wait to fire setup until index.html has completely loaded. Running
Canvas code too soon could result in crashing if essential assets (such as libraries)
haven’t loaded yet.

STEP 2: CREATE HTML5-OPTIMIZED ANIMATION

Before you start drawing, you’ll need to set up animation. But there’s a catch: Can-
vas relies on JavaScript timers because animation isn’t built in. To create animation
you must use a timer to constantly draw shapes. Normally you’d use JavaScript’s
setInterval(), but that won’t provide users with an optimal experience. setInter-
val() is designed for running equations or carrying out DOM manipulation, not pro-
cessor-intensive animation loops.

 In response, browser vendors created a JavaScript function, requestAnimation-
Frame(), that interprets the number of frames to display for a user’s computer
(https://developer.mozilla.org/en/DOM/window.requestAnimationFrame). The bad
news is that requestAnimationFrame() isn’t supported by all major browsers. The
good news is that Paul Irish created a polyfill that lets you use it anyway (http://
mng.bz/h9v9).

Integrate animations into your engine with the following listing by adding window
.requestAnimFrame directly above your Game object. Then add to your existing Game
object with a new method that uses requestAnimFrame().

Controlling fluctuating frames
requestAnimationFrame() is inconsistent in how many frames it shows per sec-
ond. It dynamically adjusts to what a computer can handle with a goal of 60 fps, so
it might return anywhere from 1 to 60 fps. If it’s returning less than 60 fps, it can
cause movement logic such as x += 1 to tear, become choppy, or randomly speed up
and slow down because of frame rates fluctuating. If you need your code to run at a
consistent speed, you have two options.

Option 1 is to put logic updates into setInterval() and drawing logic into request-
AnimationFrame(). The second and best option is to create a delta and multiply all
of your movement values by it (example x += 1 * delta); that way, animation is always
consistent (more info on rolling your own delta is available at http://creativejs.com/
resources/requestanimationframe/).

window.onload will delay your
code from running until everything
else has completely loaded.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://developer.mozilla.org/en/DOM/window.requestAnimationFrame
http:// mng.bz/h9v9
http:// mng.bz/h9v9
http://creativejs.com/resources/requestanimationframe/
http://creativejs.com/resources/requestanimationframe/

174 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

window.requestAnimFrame = (function() {
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback) {
 window.setTimeout(callback, 1000 / 60);
 };
})();

var Game = {
 animate: function() {
 Game.play = requestAnimFrame(Game.animate);
 Game.draw();
 }
};

NOTE You should be aware of two important points related to listing 6.3.
First, if a code example repeats an object property/method declaration, then
you need to replace the existing code. For example, new methods inside var
Game = should be added onto your existing Game object. Worried about modi-
fying objects while you follow along? We’ll let you know whenever you need to
modify or replace objects. Second, instead of using a clear rectangle to wipe a
Canvas clean during animation, some developers set a new width to clear
the Canvas drawing area. Although changing the width sounds more clever
than creating clear rectangles, it causes instability in browsers. We recom-
mend using clear rectangles to erase all previously drawn frames instead of
fiddling with the width constantly.

STEP 3: DISPLAY A BACKGROUND IMAGE

Replace your background object code with the following code so it displays an image.
You must get background.jpg from Manning’s source files and place it in your root
directory for the listing to work.

var Background = {
 init: function() {
 this.ready = false;
 this.img = new Image();
 this.img.src = 'background.jpg';

 this.img.onload = function() {
 Background.ready = true;
 };
 },

 draw: function() {
 if (this.ready) {

Listing 6.3 game.js—Animating Canvas Ricochet

Listing 6.4 game.js—Default JavaScript

Animate constantly refers
back to itself when called.

Because animate() is a self-
referring function that fires
outside the Game object, you
must refer to Game instead
of referring to “this.”

Make sure all of your properties/methods end with
a comma unless they are the last method. In that
case, there should be no comma at the end.

Core API

Canvas requires an Image object to
draw the background. Image.src uses
the filename of the background image
you retrieved from Manning’s website.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/2011/CR-touch-events-20111215/

175Creating a Canvas game
 ctx.drawImage(this.img, 0, 0);
 }
 }
};

Now that you’ve set up the main engine components, the next step is to create the
game’s visual assets. If you have no experience creating visual assets with a language
like C++, you might find some of the following listings difficult. Once you’ve com-
pleted the listings, you’ll understand basic concepts that you can use for 2D program-
ming in multiple languages.

6.2.2 Creating dynamic rectangles

Bricks are the easiest shape to create because they’re rectangles. Rectangles in Canvas
are clear, filled, or outlined and accept four parameters, as shown in figure 6.5. The
first two parameters determine the spawning position (x and y on a graph). Although
the current viewing space shows only positive x and y coordinates, you can also
spawn shapes at negative values. The next two parameters specify the width and
height in pixels.

STEP 4: CALCULATE THE WIDTH OF AND HEIGHT OF RECTANGULAR BRICKS

To get the width for each brick, you’ll need to do some calculations. Five bricks need
to be placed on a row with 2px gaps between each brick (4 gaps x 2px = 8px). These
bricks need to fit inside the <canvas> width of 408px that was placed in your HTML
markup earlier. Removing the gaps from the total width (408px – 8px), five bricks
need to fit inside 400px. Each brick therefore needs to be 80px (400px / 5 bricks =
80px). Following all our math for the bricks can be frustrating; we’ve included a visual
diagram (figure 6.6) to help you out.

 You could place bricks by rewriting a basic shape command over and over and
over. Instead, create a two-dimensional array as shown in the following listing to hold
each brick’s row and column. To lay down the bricks, loop through the array data and
place each according to its row and column. Modify the Bricks object with the code
in listing 6.5.

Core API

context.fillRect(20, 20, 100, 100);

X Y Width Height

Figure 6.5 Creating a rectangle requires four different parameters. The
current figure would create a 100 x 100 pixel square at the 20-pixel x and
y position. Currently, rectangles are the only universally supported basic
shape component in Canvas. To create items that are more complex, you’ll
need to use paths or images.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

176 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
var Bricks = {
 gap: 2,
 col: 5,
 w: 80,
 h: 15,

 init: function() {
 this.row = 3;
 this.total = 0;

 this.count = [this.row];
 for (var i = this.row; i--;) {
 this.count[i] = [this.col];
 }
 },

 draw: function() {
 var i, j;

 for (i = this.row; i--;) {
 for (j = this.col; j--;) {
 if (this.count[i][j] !== false) {
 ctx.fillStyle = this.gradient(i);
 ctx.fillRect(this.x(j), this.y(i), this.w, this.h);
 }
 }
 }
 },

 x: function(row) {
 return (row * this.w) + (row * this.gap);
 },

Listing 6.5 game.js—Brick array creation

(0, 0)
x

y

2px gaps

5 bricks

Canvas width of 408px

Figure 6.6 Include four gaps at 2px each. You’ll need to subtract 8px from the <canvas>
width, leaving 400px. Distribute the remaining width to each brick, leaving 80px for each
(400px / 5 bricks = 80px).

Array of bricks based
on your brick.row
and brick.col data.

Stored bricks are drawn
here unless they’re set
to false, which means
they’re destroyed.

When you create color code in the
next listing, this will automatically

color your brick with a pretty
gradient based on its row.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

177Creating a Canvas game

If a
use

g
te

nt
 y: function(col) {
 return (col * this.h) + (col * this.gap);
 }
};

STEP 5: COLOR THE BRICKS

Your bricks are set up, but you need to skin them so they’re visible. You’ll create a cached
linear gradient (colors that change between two defined points on a Cartesian graph)
with the following listing by coloring each brick based on its row via a switch statement.
Add your new gradient and makeGradient methods to the existing Bricks object.

var Bricks = {
 gradient: function(row) {
 switch(row) {
 case 0:
 return this.gradientPurple ?
 this.gradientPurple :
 this.gradientPurple =
 this.makeGradient(row, '#bd06f9', '#9604c7');
 case 1:
 return this.gradientRed ?
 this.gradientRed :
 this.gradientRed =
 this.makeGradient(row, '#F9064A', '#c7043b');
 case 2:
 return this.gradientGreen ?
 this.gradientGreen :
 this.gradientGreen =
 this.makeGradient(row, '#05fa15', '#04c711');
 default:
 return this.gradientOrange ?
 this.gradientOrange :
 this.gradientOrange =
 this.makeGradient(row, '#faa105', '#c77f04');
 }
 },

 makeGradient: function(row, color1, color2) {
 var y = this.y(row);
 var grad = ctx.createLinearGradient(0, y, 0, y + this.h);

No box model?
If you've worked with CSS, you’re probably familiar with the box model, which deter-
mines layout and positioning of HTML elements. Canvas doesn’t use it, meaning
shapes won’t grow and shrink to the proportion of their container; instead, they over-
flow without stopping. A line of text that’s too long, for example, won’t automatically
wrap to fit the <canvas> tag’s width and height. Also, Canvas doesn’t use CSS; you
must manually program all visual output in JavaScript.

Listing 6.6 game.js—Coloring bricks

Core API

Row 1,
purple.

cached gradient exists,
 it; if not, create a new
radient. Makes use of a
rnary operator instead

of an if statement.
Row 2, red.

Row 3, green.

Row 4 or
greater, orange.

Creates a new
linear gradie
at a specific
location.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

178 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
 grad.addColorStop(0, color1);
 grad.addColorStop(1, color2);

 return grad;
 }
};

Your bricks are ready to go; now let’s work on the ball.

6.2.3 Creating arcs and circles

You’ll create the ball using arc(x, y, radius, startAngle, endAngle), as illustrated
in figure 6.7, which is what you use to create circular shapes. Unlike the rectangles you
drew, which started from the top left, arc()’s starting point is in the center. You’ll give
the arc() a radius in pixels, then a startAngle and endAngle, which creates the cir-
cle. StartAngle is usually 0pi, whereas the endAngle is 2pi because it’s the circumfer-
ence of a circle (using only 1pi will create half a circle).

STEP 6: CREATE THE BALL

Now, with your new knowledge of arcs, you can create the ball using the next listing.
Modify the existing Ball object with the following code.

var Ball = {
 r: 10,

 init: function() {
 this.x = 120;
 this.y = 120;
 this.sx = 2;
 this.sy = -2;
 },

 draw: function() {
 this.edges();
 this.collide();
 this.move();

 ctx.beginPath();
 ctx.arc(this.x, this.y, this.r, 0, 2 * Math.PI);

Listing 6.7 game.js—Ball creation

Makes the gradient start at
color1 and end at color2.

Core API

context.arc(7, 22, 20, 0, 2 * Math.PI);

X Y Radius Angle Start Angle End

Figure 6.7 An arc with these parameters creates a shape at 7, 22 (x, y)
on a graph. Because the angle starts from 0 and goes to 2pi, it creates a
full circle. If you were to make the end angle 1pi, it would produce half
a circle.

Ball’s radius, which can increase or
decrease its size if you adjust this number.

init() contains only values that need to be reset if the game
is currently running (more on that later). Values like radius
(r) are kept separate because they don’t need to change.

this.sx increments the speed on the
x-axis, whereas this.sy increments
the speed on the y-axis. These
properties will be integrated later
when you add movement.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

179Creating a Canvas game
 ctx.closePath();
 ctx.fillStyle = '#eee';
 ctx.fill();
 },

 edges: function() {},
 collide: function() {},
 move: function() {}
};

Next up, you’ll work on the paddle.

6.2.4 Using paths to create complex shapes

Creating the game’s paddle requires a Canvas path composed of multiple arcs and
lines. This single step of creating a paddle is pretty complex, so we’ve broken it down
into another step-wise process, all of which will happen within a single listing:

1 Start drawing a path with ctx.beginPath().
2 Use ctx.moveTo(x, y) to move the path without drawing on the Canvas (optional).
3 Draw lines as needed with ctx.lineTo(x, y).
4 Close the currently drawn path via ctx.closePath() to prevent abnormal draw-

ing behavior.
5 Use steps 2 and 3 as often as you want.
6 Set the color of the line with ctx.strokeStyle or ctx.fillStyle; the game

uses the browser’s default color if you don’t manually set it.
7 Fill in the path by using ctx.stroke().

In addition to the lineTo command, you’ll use arcTo(x1, y1, x2, y2, radius) to cre-
ate curves for your paddle.

NOTE arcTo() is slightly unstable in Opera v12.01. It won’t break your game,
but it will cause the paddle you’re creating to look like surreal art. IE9
requires you to declare an extra lineTo() between the arcTo()s; otherwise,
the paddle will look like a bunch of randomly placed curves. Normally you
can use arcTo() without lineTo()s between them, and the arcs will form a
full shape without crashing.

STEP 7: CREATE THE PADDLE

To complete all of these tasks and create a paddle, follow the next listing, which com-
bines four arcs into a pill shape and colors that shape with a gradient. Add the follow-
ing methods and properties to your existing Paddle object.

var Paddle = {
 w: 90,
 h: 20,
 r: 9,

Listing 6.8 game.js—Paddle creation

Placeholder methods for
configuring your ball’s
movement logic later.

Core API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

180 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
 init: function() {
 this.x = 100;
 this.y = 210;
 this.speed = 4;
 },

 draw: function() {
 this.move();

 ctx.beginPath();
 ctx.moveTo(this.x, this.y);
 ctx.arcTo(this.x + this.w, this.y,
 this.x + this.w, this.y + this.r, this.r);
 ctx.lineTo(this.x + this.w, this.y + this.h - this.r);
 ctx.arcTo(this.x + this.w, this.y + this.h,
 this.x + this.w - this.r, this.y + this.h, this.r);
 ctx.lineTo(this.x + this.r, this.y + this.h);
 ctx.arcTo(this.x, this.y + this.h,
 this.x, this.y + this.h - this.r, this.r);
 ctx.lineTo(this.x, this.y + this.r);
 ctx.arcTo(this.x, this.y, this.x + this.r, this.y, this.r);
 ctx.closePath();

 ctx.fillStyle = this.gradient();
 ctx.fill();
 },

 move: function() {},

 gradient: function() {
 if (this.gradientCache) {
 return this.gradientCache;
 }

 this.gradientCache = ctx.createLinearGradient(this.x, this.y,
 this.x, this.y + 20);
 this.gradientCache.addColorStop(0, '#eee');
 this.gradientCache.addColorStop(1, '#999');

 return this.gradientCache;
 }
};

PROGRESS CHECK!
With all the static assets in place, double-check that your game looks like what you see
in figure 6.8. If it doesn’t, make sure your browser is up to date. If that fails, make sure
that your Game object is set up correctly; then proceed to tackle each object that isn’t
outputting correctly.

 So far, you’ve created all the core graphic assets of Canvas Ricochet. Because nothing
moves, the game is as useless as a rod without a reel. In the next section, we’ll teach
you how to bring your game’s static design to life!

Useful for determining your
ball’s speed, which you’ll
configure in a later listing.

Set paddle’s spawn
origin by moving it
before drawing arcs.

Closing paths can prevent
buggy behavior such as graphic
tears and vanishing objects.

Used at a later time to
configure movement.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

181Breathing life into Canvas elements
6.3 Breathing life into Canvas elements
Your game looks cool right now, but it doesn’t do anything. Using several different
techniques, we’ll show you how to animate game elements, detect collisions, and
move the paddle with a keyboard/mouse/touch.

This section’s work will happen in two groups of steps.

Let’s get started.

6.3.1 Animating game elements

Diving into the first set of tasks, let’s make the paddle move horizontally. After that,
you’ll make the ball move diagonally.

In this section, you’ll learn
■ How to dynamically move objects around the screen
■ How to create responses between overlapping objects
■ How to prevent moving objects from leaving the <canvas> boundaries
■ How to remove basic objects (bricks) from the game
■ How to create keyboard, mouse, and touch controls from scratch
■ How to trigger a Game Over

Group 1—Making the application interactive. Group 2—Capturing user input.

■ Step 1: Move the paddle horizontally.
■ Step 2: Make the ball move.
■ Step 3: Enable edge detection for the paddle and ball.
■ Step 4: Enable collision detection.
■ Step 5: Remove hit bricks.

■ Step 1: Create a keyboard listener.
■ Step 2: Add mouse control.
■ Step 3: Add touch support.
■ Step 4: Add control info via HTML.

Figure 6.8 Using previous code
snippets, you created a ball, paddle,
and bricks with gradients. After
refreshing your browser, the current
result should look like this.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

182 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
STEP 1: MOVE THE PADDLE HORIZONTALLY

To make the paddle move, adjust the x-axis each time it’s drawn. Making x positive will
draw the paddle forward (pushed to the right), a negative value will pull it back
(pushed to the left). Earlier you created a Paddle.speed property with a value of 4 in
your init(). Just fill the empty Paddle.move() method with the following snippet,
and your paddle will move:

var Paddle = {
 move: function() {
 this.x += this.speed;
 }
};

Now, refresh your page. Oh no! The paddle swims off into oblivion because it lacks a
movement limiter. The only way to keep your paddle from vanishing is to integrate
overlap detection, which you’ll deal with in the next section. First though, you need to
get the ball moving.

STEP 2: MAKE THE BALL MOVE

Making the ball move is almost identical to moving the paddle. Use the Ball.sx and
Ball.sy properties you declared earlier to modify the ball’s x and y coordinates.
Replace Ball.move() with the following snippet:

var Ball = {
 move: function() {
 this.x += this.sx;
 this.y += this.sy;
 }
};

If you’d like to try refreshing, you’ll notice that the ball and paddle fly off the screen
and disappear. Although their disappearance may leave you depressed and lonely,
never fear! You’ll soon retrieve them by integrating overlap detection.

Canvas data processing
When creating Canvas drawings through JavaScript, the browser re-creates all graph-
ical assets from scratch because it uses bitmap technology. Bitmap graphics are cre-
ated by storing graphical data in an organized array. When the data is processed by
a computer, Canvas spits out pixels to create an image. This means that Canvas has
a memory span shorter than that of a goldfish, so it redraws everything constantly.

If you’re wondering why Canvas infinitely re-creates its images, you aren’t alone.
Many people have asked why Apple used a bitmap-based system when a solution
exists that doesn’t require everything to be constantly redrawn (Scalable Vector
Graphics, or SVG). Canvas, though, is currently stomping SVG in popularity. One could
explain Canvas’s triumph through the lack of awareness and knowledge developers
have of SVG.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

183Breathing life into Canvas elements
6.3.2 Detecting overlap

In simple 2D games, you create collisions by testing for object overlap. These checks
occur each time the interval refreshes and draws an updated set of objects. If an object
is overlapping another, some logic that causes a response is activated. For instance, if a
ball and paddle overlap, then one object should repel the other.

You’ll start building collisions detection into Canvas Ricochet by keeping objects con-
tained inside the play area. After taming objects, you’ll focus on using the paddle to
bounce the ball at the bricks. Once the ball is bouncing back, you’ll configure ball-to-
brick overlap logic. When that’s done, you’ll create rules to determine when the game
shuts down. Let’s get started.

STEP 3: ENABLE EDGE DETECTION FOR THE PADDLE AND BALL

To prevent your ball and paddle from flying offscreen, check them against the <canvas>
DOM element’s width and height stored in Game.width and Game.height.

 Go to your Paddle.move() method and replace its contents with the following
snippet, which checks to see if the paddle has a positive x coordinate and is within the
play area’s width. If it is, then Paddle.x updates as normal; otherwise, it stops halfway
into the right edge.

var Paddle = {
 move: function() {
 if (this.x > -(this.w / 2) &&
 this.x < Game.width - (this.w / 2))
 this.x += this.speed;
 }
};

To stop the ball from dropping out of gameplay, reverse the direction if the ball is
overlapping the <canvas>’s edge. In addition to reversing the ball, you must place it
inside the play area; otherwise, it will stick to edges at higher movement speeds. Use
the code in the next listing to make the ball repel off the gameplay area’s sides by
replacing edges()in your Ball object.

var Ball = {
 edges: function() {
 if (this.y < 1) {

What about real game physics?
Sad to say, we’re teaching you only how to detect overlapping shapes, which isn’t
real physics integration. Physics in programming is a complicated subject that we
could easily fill a hundred books with and still have more to write about. If you’re inter-
ested in learning how to make games more lifelike, please see Glenn Fiedler’s robust
article on game physics at http://gafferongames.com/game-physics/.

Listing 6.9 game.js—Ball edge detection

Core API

Top edge of your
game’s container.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://gafferongames.com/game-physics/

184 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

H

o

 this.y = 1;
 this.sy = -this.sy;
 } else if (this.y > Game.height) {
 this.sy = this.sx = 0;
 this.y = this.x = 1000;
 Screen.gameover();
 canvas.addEventListener('click', Game.restartGame, false);
 return;
 }

 if (this.x < 1) {
 this.x = 1;
 this.sx = -this.sx;
 } else if (this.x > Game.width) {
 this.x = Game.width - 1;
 this.sx = -this.sx;
 }
 }
};

STEP 4: ENABLE COLLISION DETECTION

With the ball ricocheting, you’ll need to use the paddle to deflect it toward the bricks.
Because the ball changes direction on impact and the paddle stays stationary, you’ll
put your deflection logic inside a Ball.collide() method, as in the following snip-
pet. When the ball’s x and y coordinates overlap the paddle, you’ll make the ball
bounce in the opposite direction by reversing the y-axis direction. Replace the Ball
object’s collide() with the following listing.

var Ball = {
 collide: function() {
 if (this.x >= Paddle.x &&
 this.x <= (Paddle.x + Paddle.w) &&
 this.y >= Paddle.y &&
 this.y <= (Paddle.y + Paddle.h)) {
 this.sx = 7 * ((this.x - (Paddle.x + Paddle.w / 2)) / Paddle.w);
 this.sy = -this.sy;
 }
 }
};

STEP 5: REMOVE HIT BRICKS

When the ball hits a brick, that brick needs to disappear. Replace Brick.draw() with
the code in the next listing, which tests if the ball is overlapping when a brick is drawn.
If so, it reverses the ball’s y-axis and sets the brick’s array data to false to remove it
from gameplay. Use the following listing to add a new Bricks.collide() method.

var Bricks = {
 draw: function() {
 var i, j;

Listing 6.10 game.js—Ball touching paddle

Listing 6.11 game.js—Removing bricks

Bottom
edge.ides the ball and

triggers a Game
Over with some

methods and
bjects created in

a later section.

Left
edge.

Right
edge.

Modifies the x coordinate for the
ball when it bounces back, based

on where it hits the paddle.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

185Breathing life into Canvas elements
 for (i = this.row; i--;) {
 for (j = this.col; j--;) {
 if (this.count[i][j] !== false) {
 if (Ball.x >= this.x(j) &&
 Ball.x <= (this.x(j) + this.w) &&
 Ball.y >= this.y(i) &&
 Ball.y <= (this.y(i) + this.h)) {
 this.collide(i, j);
 continue;
 }

 ctx.fillStyle = this.gradient(i);
 ctx.fillRect(this.x(j), this.y(i), this.w, this.h);
 }
 }
 }

 if (this.total === (this.row * this.col)) {
 Game.levelUp();
 }
 },

 collide: function(i, j) {
 this.count[i][j] = false;
 Ball.sy = -Ball.sy;
 }
};

Now that the paddle can deflect the ball back toward the bricks, players have the abil-
ity to defend themselves. Well, not exactly. You still haven’t given players the ability to
control the paddle. Whipping up a little bit of window event magic, we’ll give you some
simple code recipes to create keyboard, mouse, and touch functionality—the second
group of tasks in this section.

6.3.3 Creating keyboard, mouse, and touch controls
To create an interactive game experience, keyboard, mouse, and/or touch input is
required. Although you could build controller detection into your Game object, we’ll
have you build it into a separate Ctrl object to prevent cluttering your objects. Here
are the steps you’ll follow in this group of tasks:

■ Group 2—Capture user input.
– Step 1: Create a keyboard listener.
– Step 2: Add mouse control.
– Step 3: Add touch support.
– Step 4: Add control info via HTML.

First, you’ll create keyboard listeners for left- and right-arrow keys. Second, you’ll cre-
ate a mouse listener that monitors cursor movement and places the paddle there.
Third, you’ll add touch functionality for devices that support the W3C’s Touch Events
draft (http://www.w3.org/TR/2011/CR-touch-events-20111215/). When you’ve fin-
ished with the controls, we’ll give you a few tips on best practices for input techniques
that improve user experience.

Collision test to see
if a ball overlaps
the currently
drawn brick.

If the ball really is overlapping a brick, set it to
false and reverse the ball’s y-axis direction.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/2011/CR-touch-events-20111215/

186 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
STEP 1: CREATE A KEYBOARD LISTENER

To detect keyboard events, you’ll need to modify the existing Ctrl object with meth-
ods to monitor up and down key presses shown in the next listing. Think of these as
switches for activating left or right paddle movement. Note that the listing’s
Ctrl.init() is called from Game.setup()to fire input monitoring.

var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 },

 keyDown: function(event) {
 switch(event.keyCode) {
 case 39:
 Ctrl.left = true;
 break;
 case 37:
 Ctrl.right = true;
 break;
 default:
 break;
 }
 },

 keyUp: function(event) {
 switch(event.keyCode) {
 case 39:
 Ctrl.left = false;
 break;
 case 37:
 Ctrl.right = false;
 break;
 default:
 break;
 }
 }
};

If you want to try it, refresh the page; you’ll see that the paddle won’t acknowledge
input commands. With Ctrl.left and Ctrl.right properties storing keyboard input,
your Paddle.move() needs to references those properties with the following snippet:

var Paddle = {
 move: function() {
 if (Ctrl.left && (this.x < Game.width - (this.w / 2))) {
 this.x += this.speed;
 } else if (Ctrl.right && this.x > -this.w / 2) {
 this.x += -this.speed;
 }
 }
};

Listing 6.12 game.js—Keyboard listeners

Core API

39 will monitor a player’s
left-arrow key.

37 will monitor a player’s
right-arrow key.

keyUp will reset Ctrl’s
keyboard monitoring
when a key is released.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

187Breathing life into Canvas elements
STEP 2: ADD MOUSE CONTROL

Monitoring for mouse movement is similar to keyboard monitoring, except you need
to take into account the Canvas’s position on the page and cross-reference it with the
mouse. To get the current mouse location, update Ctrl.init() and add a new move-
Paddle() method with the following listing.

var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 window.addEventListener('mousemove', this. movePaddle, true);
 },

 movePaddle: function(event) {
 var mouseX = event.pageX;
 var canvasX = Game.canvas.offsetLeft;

 var paddleMid = Paddle.w / 2;

 if (mouseX > canvasX && mouseX < canvasX + Game.width) {
 var newX = mouseX - canvasX;
 newX -= paddleMid;

 Paddle.x = newX;
 }
 }
};

STEP 3: ADD TOUCH SUPPORT

Adding touch support to your game requires only six additional lines of code. What’s
even better is that you don’t have to modify your existing objects. Just drop the code
from the next listing into the Ctrl object and Boom!, touch support is added.

var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 window.addEventListener('mousemove', this.movePaddle, true);

 Game.canvas.addEventListener('touchstart', this.movePaddle, false);
 Game.canvas.addEventListener('touchmove', this.movePaddle, false);

More key codes!
If you’d like to know more about the state of keyboard detection and get a complete
list of key codes, please see Jan Wolter’s article “JavaScript Madness: Keyboard
Events” (http://unixpapa.com/js/key.html).

Listing 6.13 game.js—Mouse controls

Listing 6.14 game.js—Touch controls

X location of
the mouse.

Measurement from the
left side of the browser
window to the Canvas
element in pixels.

Offsets the paddle’s new
location so it lines up in
the middle of the mouse.Hijacks the existing

Paddle object and
replaces the x coordinate.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://unixpapa.com/js/key.html

188 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
 Game.canvas.addEventListener('touchmove', this.stopTouchScroll,
 false);
 },

 stopTouchScroll: function(event) {
 event.preventDefault();
 }
};

NOTE If a device doesn’t support the touch events you created, don’t worry;
unsupported events will be ignored and the game will run normally. You can
try any mobile device, but we can’t guarantee it will work.

6.3.4 Control input considerations

In the past couple of years JavaScript keyboard support for applications and websites
has grown by leaps and bounds. YouTube, Gmail, and other popular applications use
keyboard shortcuts to increase user productivity. Although allowing users to speed up
interaction is great, it can quickly unravel into a usability nightmare.

 You need to be careful when declaring keyboard keys in JavaScript. You could over-
ride default browser shortcuts, remove OS functionality (copy, paste, and so on), and
even accidentally close the browser. The best way to avoid angering players is to stick
to arrow and letter keys. Specialty keys such as the spacebar can be used, but overrid-
ing Shift, the Mac/Windows key, and/or Caps Lock could have unforeseen repercus-
sions. If you must use a keyboard combination or specialty key, ask yourself, “Will
these controls be problematic for my users?”

 Application users don’t want to spend their first 10 minutes randomly smashing
keys and clicking everywhere. Put your game’s controls in an easy-to-find location and
use concise wording. For instance, placing the controls directly under a game is a
great way to help users.

STEP 4: ADD CONTROL INFO VIA HTML
To add a control description to Canvas Ricochet, add a simple <p> tag directly below
<canvas>. It should say, “LEFT and RIGHT arrow keys or MOUSE to move.” If you really
want, you could create a graphical illustration that’s easier to see, but for now you’ll
just use text for simplicity.

<canvas id="canvas" width="408" height="250">
 Your browser shall not pass! Download Google Chrome to view this.
</canvas>

<p>LEFT and RIGHT arrow keys or MOUSE to move</p>

<script type="text/javascript" src="game.js"></script>

Congratulations! You’ve just completed an HTML5 game from beginning to end. You
can now play a complete level of Canvas Ricochet without interruption. We know it’s
been a difficult journey to get this far, but why not take your game farther? With just a

Touch scrolling causes issues with
Canvas Ricochet, so you have to disable
touchmove’s default functionality.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

189Polishing Canvas games
little more work, you can add progressive level enhancement and screens to make
your game shine.

6.4 Polishing Canvas games
Your game is technically complete, but it lacks the polish necessary to attract players.
Addictive elements such as scoreboards, increased difficulty levels, and an enjoyable
user experience are essential. They help to increase game revenue, maximize the
number of users, and, most important, keep people playing.

We’re going to skyrocket the usefulness of your Canvas Ricochet game by showing you
how to polish it to perfection in only four steps.

■ Step 1: Create a score and level counter.
■ Step 2: Store high scores online (optional).
■ Step 3: Create a Welcome screen.
■ Step 4: Create a Game Over screen.

After you add a point system and optional Facebook scoreboard for users, you’ll cre-
ate a dynamic leveling system with a few code modifications, so users play harder and
faster as their skills improve. Then, you’ll place the cherry on top of Canvas Ricochet
with opening and closing screens. Lastly, we’ll cover the current Canvas gaming
engines to help with writing your next game.

 First up is tracking score and levels.

6.4.1 Tracking score and levels

When we were about 10 years old (okay, maybe some of us were older!), we played
Breakout all the time. One of us played on the now-ancient Atari gaming system;
another played at Pizza Hut every Friday. We’d play over and over to keep raising our
scores. Back then, you could only compete with a local community; now, with social
media, it’s quite easy to put your game’s scoreboard online so people can compete on
a global scale. But before your users can post their high scores online, you’ll need to
tweak your game to record brick breaks.

In this section you’ll learn
■ How to implement and maintain a player’s score
■ How to integrate social score-sharing
■ How to avoid security issues in your apps
■ How to integrate a leveling system
■ How to create an introduction and Game Over screen
■ How to choose a Canvas game engine
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

190 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
STEP 1: CREATE A SCORE AND LEVEL COUNTER

Your heads-up display (HUD) requires that you create text with the Canvas API. Just
like CSS you have access to text align, vertical align (called text baseline), and @font-
face fonts. Be warned: You don’t have access to any letter-spacing properties, so your
text might end up looking a bit cramped.

WARNING Use vector fonts instead of bitmap for your Canvas applications.
According to the W3C Canvas Working Draft, “transformations would likely
make the font look very ugly.” What that means is that if you use a bitmap-
based font, your text will corrode in a macabre fashion when rotated.

The simplest way to create counters is to add a new Hud object below your Game object
and then run it through Game.init() and Game.draw(), which is what the next listing
does. Also note that including HUD’s startup logic in init will automatically reset it
when you integrate Game Over functionality later.

var Hud = {
 init: function() {
 this.lv = 1;
 this.score = 0;
 },

 draw: function() {
 ctx.font = '12px helvetica, arial';
 ctx.fillStyle = 'white';
 ctx.textAlign = 'left';
 ctx.fillText('Score: ' + this.score, 5, Game.height - 5);
 ctx.textAlign = 'right';
 ctx.fillText('Lv: ' + this.lv, Game.width - 5, Game.height - 5);
 }
};

var Game = {
 init: function() {
 Background.init();
 Hud.init();
 Bricks.init();
 Ball.init();
 Paddle.init();

 this.animate();
 },
 draw: function() {
 ctx.clearRect(0, 0, this.width, this.height);

 Background.draw();
 Bricks.draw();
 Paddle.draw();
 Hud.draw();
 Ball.draw();
 }
};

Listing 6.15 game.js—Score and level output

Core API

Specify text’s
display properties. Create

score
text.

Create level text.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

191Polishing Canvas games
You need to increment the score counter every time a brick is hit. To do so, add logic
to increment Hud.score by modifying Bricks.collide() with the following listing.
Note that you already added the code to fire the level up earlier in a Brick.draw()
listing, so you don’t need to worry about that.

var Bricks = {
 collide: function(i, j) {
 Hud.score += 1;
 this.total += 1;
 this.count[i][j] = false;
 Ball.sy = -Ball.sy;
 }
};

Next, increment the ball’s speed in Ball.init() and multiply the number of bricks in
Bricks.init() with a level multiplier. A level multiplier is a technique that scales cer-
tain properties based on a player’s current level. Using the level multiplier in the fol-
lowing listing, you can change object properties when a level up occurs.

var Ball = {
 init: function() {
 this.x = 120;
 this.y = 120;
 this.sx = 1 + (0.4 * Hud.lv);
 this.sy = -1.5 - (0.4 * Hud.lv);
 }
};

var Bricks = {
 init: function() {
 this.row = 2 + Hud.lv;
 this.total = 0;

 this.count = [this.row];
 for (var i = this.row; i--;) {
 this.count[i] = [this.col];
 }
 }
};

When a level up occurs, everything except the Hud needs to be updated with a new
method called Game.levelUp(). Problem is, allowing players to level up past 5 will
cause your game’s bricks to take over the screen. To prevent brick overflow, you need
to add a Game.levelLimit() method and modify the Bricks.init() logic to use it.
Once you’ve inserted the code from the next listing, Canvas Ricochet can be played
with multiple levels.

Listing 6.16 game.js—Adjusting brick destruction

Listing 6.17 game.js—Ball and brick upgrades

Increments your score counter
after a brick is destroyed.

Increments brick count so
the game can figure out
when all the bricks are gone.

Core API

Makes ball’s speed relative
to the current level.

Number of brick rows now
relative to current level.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

192 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
var Game = {
 levelUp: function() {
 Hud.lv += 1;
 Bricks.init();
 Ball.init();
 Paddle.init();
 },

 levelLimit: function(lv) {
 return lv > 5 ? 5 : lv;
 }
};

var Bricks = {
 init: function() {
 this.row = 2 + Game.levelLimit(Hud.lv);
 this.total = 0;

 this.count = [this.row];
 for (var i = this.row; i--;) {
 this.count[i] = [this.col];
 }
 }
};

STEP 2: STORE HIGH SCORES ONLINE (OPTIONAL)
With a live score counter, you can easily let users post their high scores. The easiest
way to do this is visit http://clay.io and check out their leaderboard documentation.

Listing 6.18 game.js—Game upgrades

Security, because cheaters are gonna cheat
Because your game is running in JavaScript, it’s quite easy for hackers to manipulate
high scores, lives, and other information. Many consider JavaScript’s security limita-
tions a huge problem for scoreboards and making income from in-game content.

If you absolutely need some security, a few options are available.

The most straightforward is to have a server handle all of the play data and run
checks before storing anything. The downside is it requires users to have an account
to cross-reference play data with heavy-duty servers.

A less-used option is to hide a security code in your JavaScript files that AJAX uses as
a handshake with the database to see if the current game is valid. Or you can use a
design pattern that emulates private properties/variables in JavaScript. Although these
two methods will work, they’ll only temporarily prevent users from hacking your game.

If you’re thinking that you’ll have to develop your game in Flash or Java because of
security issues, then please realize that these systems also have security flaws.

Anyway, it’s about how you program for security instead of the programming language
used to achieve it.

Level-up logic fired every
time the level increases.

Limits bricks growth
to five rows.

Only line changed in this
method so you prevent
bricks from overflowing
on the screen.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://clay.io

193Polishing Canvas games
6.4.2 Adding opening and closing screens

When a user loads up your game, they must play
immediately or lose. In order to let the user begin
the game, create a Welcome screen (figure 6.9) that
starts on click via an event listener.

STEP 3: CREATE A WELCOME SCREEN

The first step to making a Welcome screen is adding
a new object called Screen (in the following listing)
right below your Game object. The screen needs a
background with a width and height large enough to
cover everything. It should say “CANVAS RICOCHET”
and “Click To Start.”

var Screen = {
 welcome: function() {
 this.text = 'CANVAS RICOCHET';
 this.textSub = 'Click To Start';
 this.textColor = 'white';

 this.create();
 },

 create: function() {
 ctx.fillStyle = 'black';
 ctx.fillRect(0, 0, Game.width, Game.height);

 ctx.fillStyle = this.textColor;
 ctx.textAlign = 'center';
 ctx.font = '40px helvetica, arial';
 ctx.fillText(this.text, Game.width / 2, Game.height / 2);

 ctx.fillStyle = '#999999';
 ctx.font = '20px helvetica, arial';
 ctx.fillText(this.textSub, Game.width / 2, Game.height / 2 + 30);
 }
};

Your Welcome screen needs a click event listener added into a new method called
Game.setup(). Also, Game.init() needs to be modified so it fires from the new screen
listener. In addition, with the next listing, you’ll make the listener reusable by adding
its logic into a new Game.runGame() method.

var Game = {
 init: function() {
 Background.init();
 Hud.init();

Listing 6.19 game.js—Creating the Welcome screen and listener

Listing 6.20 game.js—Creating the Welcome screen and new event listener

Figure 6.9 A simple Welcome
screen that initiates gameplay
through a click listener. All text and
coloring are created through Canvas.

Core API

Creation of screen’s
base values. Setup screen after

initial properties
have been set.

create() only outputs the set parameters so the
screen’s text can be adjusted as necessary.

Background.

Main text.

Subtext.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

194 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
 Bricks.init();
 Ball.init();
 Paddle.init();
 },

 setup: function() {
 if (this.canvas.getContext){
 ctx = this.canvas.getContext('2d');

 this.width = this.canvas.width;
 this.height = this.canvas.height;

 Screen.welcome();
 this.canvas.addEventListener('click', this.runGame, false);
 Ctrl.init();
 }
 },

 runGame: function() {
 Game.canvas.removeEventListener('click', Game.runGame, false);
 Game.init();

 Game.animate();
 }
};

The next screen you’ll set up, the Game Over screen, is shown in figure 6.10.

STEP 4: CREATE A GAME OVER SCREEN

With a Welcome screen in place, users can seamlessly play until their ball disap-
pears. When the ball is gone, you’ll throw up a Game Over screen by adding a
Screen.gameover() method with the following snippet. You don’t need to call
Screen.gameover() in your code, because it was placed in Ball.draw().

var Screen = {
 gameover: function() {
 this.text = 'Game Over';
 this.textSub = 'Click To Retry';
 this.textColor = 'red';

 this.create();
 }
};

Adds the new
event listener.

Removes event
listener after firing.

Figure 6.10 Game Over screen
with a second chance at life.
Letting users easily try again
allows them to continue playing
without a page refresh.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

195Polishing Canvas games
You also need to add code for another listener placed earlier called Game.restart-
Game(). On a click event, that listener fires to the following snippet to reset the game
to its initial setup state. You’ll need to add Game.restartGame() as a new method to
Game for it to work:

var Game = {
 restartGame: function() {
 Game.canvas.removeEventListener('click', Game.restartGame, false);
 Game.init();
 }
};

And that’s it! With that last snippet, your Canvas Ricochet application is complete. Try
it out, and then share it to amaze your family and friends.

6.4.3 Getting help from code libraries

By completing Canvas Ricochet, you’re now capable of coding games from scratch
in Canvas. It did take a while to code everything. To help save time and money on
projects, you might want to use a JavaScript library. For example, Impact.js would
let you write Canvas Ricochet in 100 lines or less (but then you wouldn’t have
learned how to use Canvas, either). You also need to consider that engines aren’t
optimized for your code and will often decrease a game’s speed performance. Cur-
rently most developers prefer ImpactJS, but there are other options you can find
out more about at http://html5gameengine.com/.

IMPACTJS
ImpactJS, or the Impact JavaScript Engine, is one of the fastest and most-effective
HTML5 libraries. It has documentation that’s rapidly growing and video tutorials to
get you moving. The only catch is that it costs $99 per license, which is kind of steep if
you just want to test it. Figure 6.11 shows a complex game created with this library.

Core API

Figure 6.11 Code libraries
like ImpactJS allow you to
create complex games in
significantly less time than
coding a game from scratch.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://html5gameengine.com/

196 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering
6.5 Summary
Canvas isn’t limited to a small box for video games; it’s useful for a multitude of pur-
poses and works well for websites. Thinking out of the box, you can create interactive
backgrounds, image-editing tools, and more. For instance, you could make a footer in
which users play a game of Canvas Ricochet, destroying footer elements once they’ve
initiated the game.

 Although you did play with many Canvas features, we’ve barely delved into its capa-
bilities. For instance, you could animate a small film, which will become more possible
as Canvas’s GUI tools become available. In the meantime, you can make pages react
to mouse position location or activate animation sequences based on mouse clicks
or hover.

 2D Canvas games can be fun to make, but they aren’t exactly generating record sales.
In addition, most HTML5 Canvas game startups haven’t been successful. If in-browser
application developers wants to compete with native desktop applications (games and
anything else), better libraries and processing power are necessary. On the other
hand, Canvas-based 2D applications can be cheap to produce and widely accessible.
The only problem with these applications is that they don’t scale well to various screen
sizes without additional programming, although Canvas’s 3D context from WebGL
gives it the ability to do so. If you want a simple and effective way to scale 2D graphics
for any device’s size, you may want to consider SVG. It has an incredibly large set of
features and puts Canvas to shame for graphic creation. And we’re going to explore it
in more detail next.

Want to convert HTML5 games into mobile apps?
HTML5 apps should be written once and work on all devices, but it’s no secret that
mobile devices aren’t there yet. If you want to turn your HTML5 games into mobile
applications for Android, iOS, and other systems, check out appMobi.com and Phone-
Gap.com. They offer powerful conversion tools that give you access to all major
mobile devices. We’d love to walk you through creating a mobile app from Canvas
Ricochet, but it’s complicated enough that entire books are available on the subject.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Chapter 7 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

Setting up SVG Overview of basic setup for using SVG
■ Vector vs. bitmap
■ <svg> configuration
■ CSS for SVG and DOM

200
204
205

SVG tags How to create shapes with the XML syntax
■ Basic shapes
■ Gradients and <g>
■ <text> and animation
■ XLink
■ Paths for advanced shapes
■ viewBox

206
207
208
208
209
211

JavaScript usage Advanced usage with JavaScript and SVG
■ XML namespacing
■ SVG libraries
■ Simple design pattern
■ Dynamically generating a large SVG group
■ Generating SVG paths via software
■ CSS for SVG animation
■ getBBox()

212
213
216
227
228
229
231

Canvas vs. SVG Using SVG vs. Canvas for projects
■ Community
■ Code comparison
■ DOM

232
233
233

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

SVG: responsive
in-browser graphics
Scalable Vector Graphics (SVG), an XML language for creating vector graphics, has
been around since 2001. Its draft isn’t part of HTML5, but the HTML5 specification
gives you the ability to use SVG directly in your HTML markup. When you harness
SVG’s power, simple shapes, gradients, and complex illustrations will automatically
adjust to your website and application’s layout. What could be better than images
that automatically resize without degrading? How about creating images inside
HTML5 documents without graphical editing programs like Photoshop or Illustra-
tor? That’s the power of SVG.

 As the chapter unfolds, you’ll glide through a refresher on bitmaps and vectors
to understand how SVG works. Then, you’ll start constructing the chapter’s teach-
ing application, SVG Aliens, by developing SVG assets for constructing UFOs, ships,
and shields with simple XML tags. With all the necessary components set up, you’ll

This chapter covers
■ Comparing bitmap and vector graphics
■ Creating SVG from scratch
■ Harnessing SVG for liquid layout graphics
■ Using JavaScript with SVG
■ Using SVG versus Canvas
199

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://html5inaction.com/app/ch7
http://html5inaction.com/app/ch7
http://html5inaction.com/app/ch7
http://html5inaction.com/app/ch7
http://www.manning.com/crowther2/
http://www.manning.com/crowther2/
http://www.linkedin.com/pub/rachel-blue/23/702/99b
http://www.w3.org/TR/SVG

200 CHAPTER 7 SVG: responsive in-browser graphics
focus on integrating JavaScript to bring your creations to life and allow players to
interact with the game’s assets. You’ll polish your application by adding screen tran-
sitions, a score counter, and progressively enhanced difficulty. Finally, you’ll decide
whether Canvas or SVG would be best for your next project with a summary review of
Canvas and SVG features.

 After completing this chapter on SVG, you’ll be ready to build your own SVG appli-
cations, use SVG inside HTML documents, and take advantage of SVG’s CSS support.
To get started, let’s review the pros and cons of vectors.

7.1 How bitmap and vector graphics compare
Resizable files such as SVG use vectors (mathematical equations that create shapes)
instead of bitmaps (arrays of image data), letting you change the height and width of
an image without degrading its quality. Although vector graphics may seem like a
replacement for all graphics, they bring with them several issues. If you’re familiar
with the differences between bitmaps and vectors, this section might be a review for
you; if you’d like, glance at table 7.1 for a quick summary, or skip to section 7.2 and
start building the game.

As the dominant form of computer graphics on the web, bitmap has been ruling with
.gif, .jpg, and .png formats. Opening a bitmap in a text editor reveals data for every

Why build SVG Aliens?
In our SVG tutorial, SVG Aliens, you’ll find lots of great content you won’t find else-
where, such as:

■ A reusable SVG JavaScript design pattern
■ How to control a dynamically resizable SVG element via attributes and CSS
■ Optimized SVG animation with CSS for imported graphics
■ How to manage large-scale SVG groups

Table 7.1 Major differences between bitmap and vector (SVG). Note that neither has a clear advantage.

Topic Bitmap Vector (SVG)

Files .gif, .jpg, .png .svg, .ai, .eps

Created with Pixels Math equations

Created in programs like Photoshop, Gimp Illustrator, Inkscape

When you enlarge images Image deterioration No issues

Mainly used for Websites, photography Icons, logos

File size Large Small

3D usage Textures Objects (shapes)

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://manning.com/crowther2/

201How bitmap and vector graphics compare

,

equ
of C
arc

m

pixel in an image. Because a fixed number of pixels are individually declared, bitmaps
suffer from image deterioration when you increase the size. When it comes to resiz-
ing, SVG has a clear advantage because it doesn’t pixelate images when you enlarge
them (see figure 7.1).

 Another advantage is that you can write SVG directly into an HTML document with-
out a file reference. It also requires less code to create graphics, resulting in faster
page loads.

 You’ve probably worked with an .ai, .eps, or .svg vector file for a website’s logo. Vec-
tor images are composed of mathematical equations with plotted points, Bezier
curves, and shapes. Because of their mathematical nature, these images don’t suffer
from resizing limitations, also shown in figure 7.1.

WILSON, THE RESIZABLE SMILEY

To help you see how a vector graphic works, we’ve created a simple smiley face known
as Wilson with SVG’s XML tags, as shown in figure 7.2.

Look at our first listing, where you can see that Wilson is composed entirely of XML
data. Drop the code for Wilson into a file called wilson.svg and open it in any modern
browser to see its smooth edges and amazing ability to resize.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/

SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" x="0px" y="0px"
 viewBox="0 0 140 140" xml:space="preserve">

 <circle cx="70" cy="70" r="70" style="fill:#ff0"/>

Listing 7.1 wilson.svg—SVG code sample

Figure 7.1 Effects of zooming into a vector
versus a bitmap image. Our evil coffee cup
demonstrates that vector is the clear winner. But
great zoomability comes with great issues when
you’re creating complex graphics.

Figure 7.2 Wilson is capable of changing to any size at
will, and you can edit him in a graphical editing program
like Illustrator. No JavaScript is required to create him,
only SVG tags and a little bit of CSS.

SVG tags usually contain
XML data, version number
a viewBox, and more.

Circles
are the
ivalent
anvas’s
() draw
ethod.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/SVG11/animate.html
http://www.w3.org/TR/SVG11/animate.html
http://www.w3.org/TR/SVG11/animate.html
http://tutorials.jenkov.com/svg/a-element.html
http://tutorials.jenkov.com/svg/a-element.html

202 CHAPTER 7 SVG: responsive in-browser graphics

ly

t

n
 <path d="M38,57 A7,7 0 0,1 52,57 z" style="fill:#777;"/>
 <path d="M88,57 A7,7 0 0,1 102,57 z" style="fill:#777;"/>
 <path d="M40,90 A30,30 0 0,0 100,90 z" style="stroke:#000;
 fill:#fff;"/>
 <path d="M30,40 L30,70 L60,70 L60,40 L30,40 z
 M60,60 L80,60 M80,40 L80,70 L110,70 L110,40 L80,40 z"
 style="stroke:#000; stroke-width:3; stroke-linejoin:round;
 fill:none;"/>
</svg>

Creating Wilson’s .svg file requires an XML declaration with specific attributes on an
<svg> tag. If you open Wilson’s file in a browser and resize the window, you’ll notice
that it conforms to the new size. Wilson’s face could move if you used a simple <animate>
tag, and it could respond to mouse clicks with a little bit of JavaScript.

All modern browsers can open SVG files, which is why using SVG in your HTML docu-
ments works well for drawing shapes and scaling graphics. But support waivers if you
try to perform complicated animations or use features implemented only in a specific
browser. This makes sense, because the W3C Recommendation for SVG is a gigantic
document (http://www.w3.org/TR/SVG); you can’t expect browser vendors to inte-
grate everything. No need to worry; the features you’ll use in the proceeding code will
be consistent across modern browsers unless otherwise noted.

 Vectors aren’t a perfect image format, but they have a clear advantage over bit-
maps for simple graphics and illustrations. By running Wilson’s code example, you’ve
seen how seamlessly SVG can resize graphics in a liquid website layout.

 Now, let’s take your new SVG knowledge and use it to create graphic assets for this
chapter’s game, SVG Aliens.

7.2 Starting SVG Aliens with XML
Before building your SVG game (see figure 7.3), play it at the HTML5 in Action website
(http://html5inaction.com/app/ch7). After a few test runs, head over to http://
manning.com/crowther2/ and download the source code. Inside a zip file, you’ll
find ufo.svg, mothership.svg, and cursor.png, all of which go into your application’s
root directory.

 In the previous chapter, you built Canvas Ricochet, a game using a ball and paddle
to destroy bricks. SVG Aliens uses similar mechanics but adds a few layers of complex-
ity. Your paddle will become a ship that moves left or right. Lasers will replace a
bouncing ball, destroying both friend and foe. Instead of bricks, aliens progressively
scurry toward the ship to destroy it. With increased complexity comes more difficulty,
so we’ll show you how to add a life counter and shields to help ships survive incoming
laser fire.

Basic SVG support 4 3 9 9 3.2

Path tags
work similar
to Canvas’s
paths, excep
you declare
everything i
one line.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/SVG
http://www.w3.org/TR/pointerlock/
http://html5inaction.com/app/ch7
http://manning.com/crowther2/
http://manning.com/crowther2/

203Starting SVG Aliens with XML
Note that SVG requires the use of a modern browser. Chrome seems to have the
smoothest SVG performance, but you can use any browser except for Opera, which
lacks the bounding box support you need to complete this chapter’s application.
Please note that SVG is a massive specification and no browser supports it 100%.

In this section, you’ll start building SVG Aliens by setting up an SVG XML tag in an
HTML document, along with CSS and a JavaScript file. You’ll also make a flexible view-
ing window similar to Wilson’s by configuring the viewBox property on an <svg> tag.
Let’s get started with the basic game setup.

In this section, you’ll learn the following reusable SVG techniques:
■ How to integrate SVG’s XML language into an HTML document
■ How to create text and simple shapes
■ How to make simple illustrations with paths
■ How to use XLink to inject .svg files into a page
■ How to animate elements with properties
■ How to tweak SVG shapes with CSS
■ How to work with the viewBox property for liquid layouts

Inline SVG in HTML5 7 4 9 11.6 5.1

Figure 7.3 Get ready to defend Earth from
the coming apocalypse in SVG Aliens. Play
the game at http://html5inaction.com/
app/ch7 before you build it from scratch.
Download the source code from
http://www.manning.com/crowther2/.
The game’s artwork is by Rachel Blue,
http://www.linkedin.com/pub/rachel-
blue/23/702/99b.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://html5inaction.com/app/ch7
http://html5inaction.com/app/ch7
http://www.linkedin.com/pub/rachel-blue/23/702/99b
http://www.linkedin.com/pub/rachel-blue/23/702/99b
http://www.linkedin.com/pub/rachel-blue/23/702/99b

204 CHAPTER 7 SVG: responsive in-browser graphics
7.2.1 Setting up SVG inside HTML

As you move through the rest of this section, you’ll follow seven steps that will yield
the basic framework for a resizable, browser-based game:

■ Step 1: Set up SVG tag basics.
■ Step 2: Create your CSS file.
■ Step 3: Add shapes for the Game Start screen.
■ Step 4: Add text to the screen and animate it.
■ Step 5: Import existing SVG files via XLink.
■ Step 6: Create the Game Over screen.
■ Step 7: Configure the game’s flexible viewBox.

Let’s get started.

STEP 1: SET UP SVG TAG BASICS

Open a simple text editor to create three files called index.html, style.css, and
game.js, and save them all to the same folder. In this section, we’ll start populating
the first two files.

 Create a file called index.html in the root and paste listing 7.2 into it. Inside the
pasted code you now have an <svg> tag that accepts parameters for width, height,
and an additional declaration for its viewing window called viewBox. We’re going to
hold off configuring your viewBox, because you need some CSS for it to work.

<!DOCTYPE html>
<html>
<head>
 <title>SVG Aliens</title>
 <meta charset="UTF-8">
 <link rel="stylesheet" type="text/css" href="style.css" />
</head>

<body>

 <div id="container">

 <svg
 id="svg"
 version="1.1"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">

 </svg>

 <div id="instructions">
 <p>Arrow keys or mouse to move. Space or click to shoot.</p>
 </div>

 </div>

 <script type="text/javascript" src="game.js"></script>

Listing 7.2 index.html—Default html

Core API

Your
application’s
colors and
basic layout
are determined
by a CSS file.

Wrapping your SVG tag
with a container allows
more placement control.

XML naming scheme. Using
<svg> requires an xmlns
(XML naming scheme) so
your browser knows how
to process the XML data.

XML naming
scheme for
XLink (XML

Linking
Language).

It’s considered a best
practice to display
game controls in an
easy-to-see location.

game.js will be
responsible for your
game’s functionality.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://inkscape.org/
http://inkscape.org/

205Starting SVG Aliens with XML

</body>
</html>

STEP 2: CREATE YOUR CSS FILE

Create a style.css file with the following listing and place it in your root next to
index.html. Its contents will configure your game’s color and layout. You must have cur-
sor.png in your root folder from Manning’s website for the following listing to work.

body { margin: 0; background: black; color: #999;
 -webkit-user-select: none; -moz-user-select: none;
 -ms-user-select: none; user-select: none; }

#container { margin: auto auto; text-align: center }
#instructions { position: absolute; display: block; bottom: 1%; width:
 100%; height: 10% }
#instructions p { font-size: 1em; margin: 0 0 5px; padding: 0 }

svg {
 overflow: hidden;
 display: block;
 height: 90%;
 position: absolute;
 top: 0%;
 width: 100%;
 min-height: 500px;
 min-width: 500px;
 font: bold 14px arial;
 cursor: url('cursor.png'), default;
 cursor: none;
 fill: #ddd;
}

#screenWelcome text { font-size: 20px; }
#screenWelcome #title1 { font: bold 130px arial }
#screenWelcome #title2 { font: bold 73px arial; fill: #0af }
text#more { font: 28px 'Courier New', Courier, monospace }

#goTitle { font: bold 45px arial; fill: #c00 }
#retry { font: 20px 'Courier New', Courier, monospace }
.quote { font: bold 12px arial; fill: #000 }

.life, .player, .shield, .ship { fill: #0af }

.ufo .a { fill: #8C19FF }

.ufo .b { fill: #1EE861 }

.ufo .c { fill: #FFE14D }

.closed .anim1, .open .anim2 { display: none }

.open .anim1, .closed .anim2 { display: inherit }

TRY IT OUT

Refresh your browser to reveal a black screen with one line of text. Don’t be alarmed
that your mouse has disappeared. We had you replace the default mouse cursor with a

Listing 7.3 style.css—Primary CSS

Core API

The CSS property user-
select prevents users from
accidentally highlighting
text or images.

Width needs to be set at 100%,
and make sure to set a minimum
width and height so your viewing
window doesn’t get too small.

‘cursor.png’ replaces a user’s mouse with a
blank 1px image for all browsers except IE.
Setting cursor: none will hide the cursor
from IE. Usually, a mouse cursor vanishes
via the Pointer Lock API, but it isn’t
supported across enough browsers.

The fill property is
how SVG determines
color. Fills are the
equivalent of CSS’s
color and background
combined into one
property because they
literally “fill” objects.

You can overwrite the color of an
imported SVG file by setting a fill via
CSS. More on that in a later section.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

206 CHAPTER 7 SVG: responsive in-browser graphics
blank image called cursor.png from the assets you downloaded earlier (placed in your
root folder).

7.2.2 Programming simple shapes and text

Those who actively use CSS3 are probably guessing that CSS or JavaScript determines
SVG Alien’s animation, gradients, and other complex features. Thankfully, SVG has an
<animate> tag and built-in gradient support. With these features in mind, let’s create
your Game Start and Game Over screens.

STEP 3: ADD SHAPES FOR THE GAME START SCREEN

The start screen in figure 7.4 requires a game title, information about the point sys-
tem, and a message that clicking activates game play. We’ll create this start screen first.

CREATING SIMPLE SHAPES

To create a square, use the rectangle tag <rect x y width height>. You can create cir-
cles with <circle cx cy r>, ellipses with <ellipse cx cy rx ry>, lines with <line x1 x2
y1 y2>, polylines with <polyline points>, and polygons with <polygon points>.
These shapes usually take x and y coordinates, whereas others require multiple points

HTML5 Pointer Lock API and CSS coloring alternative
Normally when you want to collect movement data and hide the cursor, you lock the
mouse in a specific position. Although browsers don’t allow you to toggle OS move-
ment controls for security reasons, there’s an HTML5 API called Pointer Lock that
allows you to collect mouse data with movement locked. See http://www.w3.org/TR/
pointerlock/ for more information from the latest W3C draft.

An alternative to declaring CSS fills would be adding the property fill="#453"
directly to XML tags. Professional frontend developers consider inline styles bad prac-
tice with applications, because repeating properties on HTML elements can quickly
make files an unmaintainable mess.

Figure 7.4 SVG Alien’s Welcome screen
teaches players about its point system and
allows them a chance to initiate gameplay.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/pointerlock/
http://www.w3.org/TR/pointerlock/

207Starting SVG Aliens with XML

p

Your r
acts
gra

tags
its ce

(cy=0
down

Size
gra

70% (
shape
plotted out on a Cartesian graph. Each shape accepts attributes for fill, stroke colors/
width, and even gradients. Table 7.2 offers an overview on how to use these tags.

You can combine XML tags from table 7.2 into a group as follows: <g>content</g>.
Think of groups as <div>s for storing complex shape creations. You can easily target
groups with JavaScript and CSS selectors instead of individually selecting every ele-
ment inside. Create your first group and a gradient by integrating the following listing
inside your <svg> tag.

<svg id="svg" version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" clip-path="url(#clip)">

 <defs>

 <radialGradient id="background" cx="0.5" cy="0.3" r="0.7">

 <stop offset="0%" stop-color="#333" />
 <stop offset="70%" stop-color="#000" />

 </radialGradient>

 <clipPath id="clip">
 <rect x="0" y="0" width="100%" height="100%" />
 </clipPath>

 </defs>

 <rect x="0" y="0" width="500" height="500"
 fill="url(#background)" />

 <g id="screenWelcome"></g>

 <g id="screenGameover"></g>

</svg>

Table 7.2 Shapes you can create with SVG and corresponding examples

Shape Formatting example

Rectangle <rect x="5" y="20" width="80" height="20" fill="#c00" />

Circle <circle cx="130" cy="43" r="20" fill="black" stroke="#aaa"
stroke-width="5" />

Ellipse <ellipse cx="45" cy="130" rx="40" ry="20" fill="#00f" />

Line <line x1="110" x2="160" y1="110" y2="150" fill="#000" />

Polyline <polyline points="5 200 20 220 30 230 40 210 50 240 60 200
80 210 90 190 60 300 5 200" fill="transparent"
stroke="orange" stroke-width="5" />

Polygon <polygon points="110 200 110 240 130 280 150 240 150 200"
stroke="#0f0" fill="#000" stroke-width="5" />

Listing 7.4 index.html—Background setup

Core API

<svg clip-
ath> clips

the SVG
container
with the

referenced
id #clip.

Stores special SVG rendering instructions.

adial gradient
 like a fillable
dient for SVG
. It goes from
nter (cx=0.5)

to one-third
.3) of the way
 its container.
 of the radial

dient is set to
r=0.7) of the
 it resides in.

Literal declaration of the
gradient’s stop colors

clipPath declares a
clipping path (similar
to Illustrator’s
pathfinder). Setting a
simple <clipPath>
at 100% width and
height will hide any
overflowing elements.

This rectangle is the same width and height
as your application’s viewing window. A radial
gradient definition is applied to your
rectangle with fill="url(#background)".
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

208 CHAPTER 7 SVG: responsive in-browser graphics
When you refresh your screen, you should see a black background with a subtle circu-
lar gradient. Don’t be alarmed that your gradient is off-center (you’ll fix that when the
viewBox is set up). If you cannot see the background gradient on your monitor, adjust
<stop offset="0%" stop-color="#333" /> to a brighter color such as #555.

STEP 4: ADD TEXT TO THE SCREEN AND ANIMATE IT
With a background set up, it’s time for typography. Each <text> tag accepts x and y
coordinates for placement. You might have noticed that “Click To Play” slowly faded
in when you demonstrated the complete SVG Aliens game. You perform fades by
inserting an <animate> tag inside text tags. You create animation by targeting the CSS
(attributeType), declaring a specific style attribute (attributeName), start (from)
and end (to) values, and the duration (dur) in seconds. Nest an <animate> tag inside
most SVG elements, and you’ll be able to create animation without the need for
JavaScript or CSS3. Create your text with animation by including the following snippet
inside <g id="screenWelcome"></g>:

<g id="screenWelcome">

 <text id="title1" x="110" y="137">SVG</text>
 <text id="title2" x="115" y="200">ALIENS</text>

 <text id="more" x="130" y="400">
 <animate attributeType="CSS" attributeName="opacity" from="0"
 to="1" dur="5s" />
 Click To Play
 </text>

</g>

7.2.3 Using XLink and advanced shapes

With basic shapes, text, and gradients set up, we’ll make use of more advanced SVG tags
to create graphics. First, we’ll start by showing you a shortcut method to pull graphics in
through XLink. After that, you can create graphics from scratch using a <path>.

 XLink, a W3C specification, stands for XML Linking Language. We’re primarily
using it to import SVG files, but it serves other purposes, such as creating links inside
SVG through the <a> element.

What else can you animate?
In addition to CSS, you can animate transforms and movement directions and more.
Visit http://www.w3.org/TR/SVG11/animate.html to delve into the nitty-gritty details.
Be warned, the document contains more than 14,000 words and seems to favor
browser vendors over developers in its terminology and examples.

Want more information on XLink?
Would you like to learn more about XLink? Check out Jakob Jenkov’s tutorial, “SVG:
a Element” at http://tutorials.jenkov.com/svg/a-element.html.

Core API

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/SVG11/animate.html
http://tutorials.jenkov.com/svg/a-element.html

209Starting SVG Aliens with XML
Although you could draw your UFOs from scratch in SVG, you’ll find it easier to use
<image> with XLink to import an .svg file. You can quickly resize imported .svg files
and create them with popular vector-editing programs such as Adobe Illustrator or
Inkscape. The only trick is that creating files in a visual editor requires you to save as
.svg in the Save As menu.

WARNING Before proceeding, make sure the mothership.svg and ufo.svg
assets you retrieved from Manning’s website are in your root folder. Without
these files, nothing will appear where XLink images should be.

STEP 5: IMPORT EXISTING SVG FILES VIA XLINK

Create a player’s ship using a <path> tag, by inserting the following code snippet into
<g id="screenWelcome">. Notice that your path’s d attribute contains a series of
points to create your ship’s shape. Insert your new XLink images and path by append-
ing the following listing inside <g id="screenWelcome"></g>.

<image x="200" y="230" width="25" height="19" xlink:href="ufo.svg" />
<text x="233" y="247">= 1pt</text>

<text x="145" y="328">+1</text>
<path class="ship" d="M 175 312 m 0 15 l 9 5 h 17 l 9 -5 l -2 -5 l -10
 3 l -6 -15 l -6 15 l -10 -3 l -2 5" />
<text x="217" y="328">life = 100pts</text>

<image x="185" y="270" width="40" height="20" xlink:href="mothership.svg" />
<text x="233" y="287">= 30pts</text>

USING PATHS FOR ADVANCED SHAPES

You probably noticed that the previous listing’s <path> used a series of letters and
numbers to indicate particular directions. For an explanation of the different move-
ment commands, see table 7.3.

Listing 7.5 index.html—Using XLink

Table 7.3 Capital letters indicate measurements relative to the SVG element; lowercase letters indicate
measurements relative to previous x and y coordinates.

Path drawing commands Explanation

M or m Move path to specific x and y point without drawing

H or h Draw path horizontally to x

V or v Draw path vertically to y

L or l Draw path to a specific x and y point

xlink:href allows you to include
SVG files in your HTML.

Declares a drawing path with a d attribute. Notice that paths don’t have x and y
attributes; instead they use M followed by an x and y declaration to set the

initial position. m, l, and h move the drawing points.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

210 CHAPTER 7 SVG: responsive in-browser graphics
Using a capital letter to declare a location, such as V, indicates the measurement is rel-
ative to the <svg> tag’s position in your HTML document. Using a lowercase letter,
such as v, indicates it’s relative to any previously declared x and y coordinates.

CODE AND PROGRESS CHECK
You’ve integrated several different code snippets throughout this chapter. Double-
check index.html against the following listing to verify that you’ve properly set up
your SVG code.

<g id="screenWelcome">
 <text id="title1" x="110" y="137">SVG</text>
 <text id="title2" x="115" y="200">ALIENS</text>

 <image x="200" y="230" width="25" height="19" xlink:href="ufo.svg" />

 <text x="233" y="247">= 1pt</text>

 <image x="185" y="270" width="40" height="20"
 xlink:href="mothership.svg" />
 <text x="233" y="287">= 30pts</text>

 <text x="145" y="328">+1</text>
 <path class="ship" d="M 175 312 m 0 15 l 9 5 h 17 l 9 -5 l -2 -5
 l -10 3 l -6 -15 l -6 15 l -10 -3 l -2 5" />
 <text x="217" y="328">life = 100pts</text>

 <text id="more" x="130" y="400">
 <animate attributeType="CSS" attributeName="opacity" from="0"
 to="1" dur="5s" />
 Click To Play
 </text>
</g>

After a browser refresh, your screen should look identical to the Welcome screen
shown in figure 7.5.

Listing 7.6 index.html—Welcome screen

Figure 7.5 The Welcome screen
should look like this one after you
refresh your browser.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

211Starting SVG Aliens with XML
Make sure to set display to none for your Welcome screen by inserting the following
code snippet at the bottom of style.css. Hiding your Welcome screen makes creating
the Game Over screen, explained in the next step, much easier.

#screenWelcome { display: none }

STEP 6: CREATE THE GAME OVER SCREEN

Ideal Game Over screens entertain and encourage players to try again. Using the
same tools from the Welcome screen, you can quickly assemble what you need to cre-
ate the Game Over screen shown in figure 7.6.

 Use the following listing to replace <g id="screenGameover"></g> right after
<g id="screenWelcome"></g>. It uses all the same tags and attributes used to create
your Welcome screen. Therefore, its code content should be straightforward.

<g id="screenGameover">
 <text id="goTitle" x="110" y="199">GAME OVER</text>
 <text id="retry" x="165" y="224">Click To Retry</text>

 <image x="145" y="289" width="60" height="40" xlink:href="ufo.svg" />

 <rect x="230" y="249" width="134" height="50" />
 <path d="M 231 274 l -20 20 L 231 289 L 231 284" />
 <text class="quote" x="240" y="269">Ready to be powned</text>
 <text class="quote" x="240" y="286">again human?</text>
</g>

STEP 7: CONFIGURE THE GAME’S FLEXIBLE VIEWBOX

Let’s configure your viewBox by altering <svg> to conform to a user’s window size,
without affecting the game’s Cartesian graph. Set viewBox with four different attributes

Listing 7.7 index.html—Game Over screen

Figure 7.6 Nothing makes people rage
quite like getting powned by an SVG alien.
Game Over screens are a great way to
encourage players to develop addictive
behaviors (such as playing repeatedly).

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

212 CHAPTER 7 SVG: responsive in-browser graphics
for min-x, min-y, width, and height (<svg viewBox="min-x min-y width height">).
You don’t need a minimum x and y because you want to center the game, so feed it
0 values for both. Then set the width and height to 500, which is the size of your
SVG application.

 Your modified <svg> tag should look like the following snippet:

<svg id="svg" viewBox="0 0 500 500" version="1.1"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" clip-path="url(#clip)">

Confirm that your game’s flexible layout is working with a browser refresh; then replace
#screenWelcome { display: none } with #screenGameover { display: none } in your
style.css. You should now see the Welcome screen when you refresh your browser.

#screenWelcome { display: none }
#screenGameover { display: none }

Understanding how <svg>’s viewBox parameter works is difficult if you’re new to the
concept of vector-based viewports. If you’re confused about how all the resizing works,
we recommend tinkering with the viewBox parameter before proceeding.

 Wow, you created two game screens that dynamically resize with HTML, XML, and
CSS. Although it would be ideal to finish the game with these languages, it’s not possi-
ble. We’ll have to rely on JavaScript to create game logic, collisions, and artificial intel-
ligence (AI).

7.3 Adding JavaScript for interactivity
When you consider how easy it is to create vector assets with SVG, you might expect it
to have revolutionary JavaScript integration. Sadly, it doesn’t. In fact, it can be clunky
to access and modify SVG because it relies heavily on the DOM. It would be nice to
stick with SVG tag attributes, but using the language at its full potential requires
JavaScript (just like HTML5 APIs).

Matters become further complicated because JavaScript needs extra configuration at
times to play nicely with XML. Because of these limitations, a clever design pattern is
required to program your game. Never fear. We’ve a couple of JavaScript solutions
that will ride in to save the day.

In this section, you’ll learn
■ How to create an SVG JavaScript engine
■ How to create a simple SVG design pattern
■ How to dynamically generate elements
■ How to properly get XML data through JavaScript with a naming scheme
■ How to use CSS to simplify complicated path animations

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

213Adding JavaScript for interactivity
Until recently, you had to work with VML (Vector Markup Language), Flash, or
another program to use vector graphics on the web. Because IE8 and below don’t sup-
port SVG, in production applications you may want to use a JavaScript vector graphics
library that generates code that can be rendered by both older and newer browsers.
Currently, the most popular of these libraries is RaphaelJS, which was used to create
the tiger in figure 7.7.

 RaphaelJS uses SVG and its predecessor Vector Markup Language (VML) to create
vector graphics. It also has great plug-ins that calculate complex math for pie charts
and other data visualizations. RaphaelJS’s competitor is svgweb, which uses Flash to
render SVG elements. If you don’t need to support older browsers, d3.js (http://
d3js.org) is a good library to consider.

 Because we aren’t concerned with old versions of IE, you’ll be using JavaScript
without a fallback library to write your game. We’ll walk you through the creation of a
basic SVG design pattern, plus teach you to create reusable a reusable asset with
JavaScript objects. Then you’ll develop shields to protect players from enemy fire. As a

XML namespace issues
Before proceeding, we need to warn you about namespaces and JavaScript.
Namespaces are keys that define what kind of information you’re asking the browser
to interpret (in this case XML or HTML data). When interacting with XML, you must
declare a namespace or the browser won’t know you’ve changed namespaces.
Some of the symptoms of incorrect namespace usage include incorrectly returned
data, new DOM elements inserting into the wrong location, and instability in gen-
eral. To prevent namespace issues, make use of methods ending in NS such as get-
AttributeNS(NS,element). For a complete list of namespace methods, visit Mozilla’s
documentation on JavaScript DOM elements at https://developer.mozilla.org/en-US/
docs/DOM/element#Methods.

Major JavaScript libraries such as jQuery and MooTools are ignorant of namespaces
in most situations, meaning they won’t mix well with manipulating SVG elements.

Core API

Figure 7.7 RaphaelJS is capable of
creating astounding graphics in all
modern-day browsers.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://developer.mozilla.org/en-US/docs/DOM/element#Methods
https://developer.mozilla.org/en-US/docs/DOM/element#Methods
http://d3js.org
http://d3js.org

214 CHAPTER 7 SVG: responsive in-browser graphics

t
final step, you’ll set up the UFO flock, which is a bit complex because it requires you to
create 50-plus objects.

 To make a complex task somewhat easier, we’ve broken the work down into three
groups of steps.

First up, the core programming of the game’s engine.

7.3.1 Game engine essentials and using screens

Because building SVG Aliens involves complex logic, an effective design pattern is
required for organizing your code. At the core you’re going to need an object called
Game that acts as an engine to manage initializing, updating objects, screen transitions,
Game Overs, removing objects, and more.

STEP 1: SET UP BASIC GAME UTILITIES, METADATA, AND XML NAMING SCHEMES

From here on out, place all of your code inside a self-executing function to prevent
JavaScript variables from leaking into the global scope. The following provides every-
thing your game engine needs to set up the game’s basic utilities, metadata (such as
width and height), XML naming schemes, and anything extra that doesn’t belong in
your other objects. Place all of the following code into game.js.

(function() {
 var Game = {
 svg: document.getElementById('svg'),
 welcome: document.getElementById('screenWelcome'),
 restart: document.getElementById('screenGameover'),

 support: document.implementation.hasFeature(
 "http://www.w3.org/TR/SVG11/feature#Shape", "1.1"),

 width: 500,
 height: 500,

 ns: 'http://www.w3.org/2000/svg',
 xlink: 'http://www.w3.org/1999/xlink',

Group 1: Engine and basic object setup Group 2: Complex objects
and overlap

Group 3: The UFO flock

■ Step 1: Set up basic game utilities,
metadata, and XML naming schemes.

■ Step 2: Integrate screen transitions.
■ Step 3: Create the big UFO.
■ Step 4: Create the player’s ship.
■ Step 5: Make the player respond to

keyboard input.
■ Step 6: Capture keyboard and mouse

controls.

■ Step 1: Create shields for
defense.

■ Step 2: Construct lasers.
■ Step 3: Integrate laser colli-

sion detection.
■ Step 4: Create the heads-up

display.

■ Step 1: Set up the UFO
flock.

■ Step 2: Generate paths for
the UFOs.

■ Step 3: Animate the UFOs.
■ Step 4: Make the UFOs

randomly shoot.

Listing 7.8 game.js—Game engine base

Store your screens to
easily access them later.

Using this
property, you
can easily detec
SVG support.

Name schemes are
sometimes necessary for
JavaScript to properly
access XML data.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

215Adding JavaScript for interactivity
 run: function() {
 this.svg.addEventListener('click', this.runGame, false);
 },

 init: function() {
 Hud.init();
 Shield.init();
 Ufo.init();
 Ship.init();
 UfoBig.init();

 if (!this.play) {
 this.play = window.setInterval(Game.update, 20);
 }
 },

 update: function() {
 Ship.update();
 UfoBig.update();
 Laser.update();
 }
 };

 var Ctrl = {
 init: function() {}
 };

 window.onload = function() {
 Game.run();
 };
}());

Your engine starts out with run() to test for SVG support, then moves on to setting up
all of the game’s objects. The update() method is responsible for removing and/or
changing game assets. You’ll notice that a few of the init() items aren’t in the
update() because they require a separate timer to fire.

WARNING Although it might seem like a good idea to use the animation timer
requestAnimationFrame here—as you did in the Canvas game in chapter 6—
don’t. Clearing an animation timer is difficult, programming in polyfills for inter-
vals and/or timeouts is very buggy, and some browsers don’t like SVG coupled
with timer-based animation. Until support improves, you’re better off using set-
Timeout() and setInterval() unless you’re working with a Canvas application.

STEP 2: INTEGRATE SCREEN TRANSITIONS

In order to make use of the Welcome and Game Over screens you created earlier,
you’ll need the code in the following listing to add a few more methods for deleting
SVG elements and mouse-click monitoring.

var Game = {
 runGame: function() {
 Game.svg.removeEventListener('click', Game.runGame, false);
 Game.svg.removeChild(Game.welcome);

Listing 7.9 game.js—Screen transitions

All of your object setup
methods are run here.

Creates
animation
for the SVG
elements.

update() method handles x/y
attributes, collision data,
and advanced game logic.

Placeholder controller object to
prevent listing 7.9 from crashing.

Starts the game after
the user clicks Start.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

216 CHAPTER 7 SVG: responsive in-browser graphics
 Ctrl.init();
 Game.init();
 },

 restartGame: function() {
 Game.svg.removeEventListener('click', Game.restartGame, false);
 Game.restart.setAttribute('style', 'display: none');

 Game.init();
 },

 endGame: function() {
 window.clearInterval(UfoBig.timer);
 window.clearInterval(Ufo.timer);

 this.elRemove('.shield .player .life .laser
 #flock #ufoShip #textScore #textLives');

 this.restart.setAttribute('style', 'display: inline');
 this.svg.addEventListener('click', this.restartGame, false);
 },

 elRemove: function(name) {
 var items = name.split(' '), type, string, el;
 for (var i = items.length; i--;) {
 type = items[i].charAt(0);
 string = items[i].slice(1);

 el = (type === '.') ?
 document.getElementsByClassName(string) :
 document.getElementById(string);

 if (type === '.') {
 while(el[0])
 el[0].parentNode.removeChild(el[0]);
 } else {
 if (typeof el === 'object' && el !== null)
 this.svg.removeChild(el);
 }
 }
 }
};

Everything is set up to maintain your game’s objects. Now let’s create them. You’ll
start with the simplest objects and work your way toward more complex ones in the
next section.

7.3.2 Design patterns, dynamic object creation, and input

Every game object created will follow a design pattern with specific methods. You’ll
place all nonchanging properties for an object at the top before any methods. Some
of these properties will include path data, width, height, speeds, and so on. All objects
require an init() method that handles all necessary setup for x/y coordinates and
timers and resets properties. init(), which should also call to an object’s build()
method if necessary, will create any DOM-related data. Use update() to execute any

Resets all game data;
should occur after clicking
a Game Over screen.

Logic for handling a Game
Over. It clears out all active
elements and waits for a
user to restart the game.

To remove all the
leftover DOM
elements at the end
of a game, you add a
cleanup helping
method. It'll remove
multiple elements
with one call.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

217Adding JavaScript for interactivity
logic that needs to fire inside a timer. The last method you’ll need to use is collide(),
which handles collision logic. To review how your objects are structured, see table 7.4.

Now that you know how to organize your objects, let’s start programming one of the
larger UFOs.

STEP 3: CREATE THE BIG UFO
Big UFOs (see figure 7.8) spawn out of view in the top left
after a set amount of time. You’ll want to create them at
an x coordinate equal to negative their width so they’re
hidden initially from view. For instance, if a ship is 45px
wide, spawn it at x = -45px. Killing a big UFO will reward
players with a nice sum of 30 points because of their rarity.

 Using the previously discussed design pattern, create a
big UFO object by pasting the code from the following
listing into the self-executing function after the Game
object declaration.

var UfoBig = {
 width: 45,
 height: 20,
 x: -46,
 y: 50,
 speed: 1,

 delay: 30000,
 init: function() {
 this.timer = window.setInterval(this.build, this.delay);
 },

 build: function() {
 var el = document.createElementNS(Game.ns, 'image');

 el.setAttribute('id', 'ufoShip');
 el.setAttribute('class', 'ufoShip active');
 el.setAttribute('x', UfoBig.x);

Table 7.4 An explanation of major methods used in the SVG Aliens design pattern

Method Explanation

Constant properties All unchanging properties are set up before any methods.

init() Place all setup logic in this method, except DOM element creation.

build() Anything related to creating DOM elements.

update() Logic that fires every time a timer is updated.

collide() Logic that resolves a collision caused by hitting a laser.

Listing 7.10 game.js—Big UFO (mothership)

Figure 7.8 A big UFO that
randomly appears. Players
may shoot it down for
bonus points.

A negative x value
makes the ship fly
in from offscreen. 1 is a fairly slow

speed but okay
for the ship. Your timer

will build a
new ship
once every
30 seconds.

You have to make
use of SVG’s
naming scheme
(Game.ns) to
create an element.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

218 CHAPTER 7 SVG: responsive in-browser graphics
 el.setAttribute('y', UfoBig.y);
 el.setAttribute('width', UfoBig.width);
 el.setAttribute('height', UfoBig.height);
 el.setAttributeNS(Game.xlink, 'xlink:href', ' mothership.svg');

 Game.svg.appendChild(el);
 },

 update: function() {
 var el = document.getElementById('ufoShip');
 if (el) {
 var x = parseInt(el.getAttribute('x'), 10);

 if (x > Game.width) {
 Game.svg.removeChild(el);
 } else {
 el.setAttribute('x', x + this.speed);
 }
 }
 },

 collide: function(el) {
 Hud. updateScore(30);
 Game.svg.removeChild(el);
 }
};

Your big UFO ship object wasn’t too difficult to create. Let’s tackle the player’s ship
next, because it follows similar mechanics but adds an input monitor and SVG path.

STEP 4: CREATE THE PLAYER’S SHIP
Because you created a path for a player’s green ship with the Welcome screen, you can
reuse that code. Path d attributes have x and y coordinates built in, so you’ll need to
separate the x/y coordinates and path data into two separate parameters. By doing so,
you can dynamically generate an x/y position for the ship’s graphic. Create the
player’s ship with the following listing.

var Ship = {
 width: 35,
 height: 12,
 speed: 3,
 path: 'm 0 15 l 9 5 h 17 l 9 -5 l -2 -5 l -10 3 l -6 -15 l -6 15 l
 -10 -3 l -2 5',

 init: function() {
 this.x = 220;
 this.y = 460;

 this.build(this.x, this.y, 'player active');
 },

 build: function(x, y , shipClass) {
 var el = document.createElementNS(Game.ns,'path');

Listing 7.11 game.js—Player ship setup

XLink must be set with a
separate NS from Game.xlink.

Moves the ship
from left to
right and then
removes it.

When destroyed,
the red ship will
grant 30 points.

Path contains only the shape data
of the ship; x and y information

will be generated later.

Sets the default spawning
location at game startup. You need to make

the build method
take parameters so
it’s reusable later
to draw lives in the
heads-up display.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

219Adding JavaScript for interactivity

ke

d
a

playe
late
co
 var pathNew = 'M' + x + ' ' + (y + 8) + this.path;

 el.setAttribute('class', shipClass);
 el.setAttribute('d', pathNew);
 Game.svg.appendChild(el);

 this.player = document.getElementsByClassName('player');
 }
};

STEP 5: MAKE THE PLAYER RESPOND TO KEYBOARD INPUT

In addition to the previous listing, you’ll need an update() method to add values
for monitoring keyboard input. Using a mouse will also be available, but it’s stored
inside a Ctrl object that you’ll create. First, finish your Ship object with the code in
the next listing.

var Ship = {
 update: function() {
 if (Ctrl.left && this.x >= 0) {
 this.x -= this.speed;
 } else if (Ctrl.right && this.x <= (Game.width - this.width)) {
 this.x += this.speed;
 }

 var pathNew = 'M' + this.x + ' ' + (this.y + 8) + this.path;
 if (this.player[0]) this.player[0].setAttribute('d', pathNew);
 },

 collide: function() {
 Hud.lives -= 1;
 Game.svg.removeChild(this.player[0]);
 Game.svg.removeChild(this.lives[Hud.lives]);

 if (Hud.lives > 0) {
 window.setTimeout(function() {
 Ship.build(Ship.x, Ship.y, 'player active');
 }, 1000);
 } else {
 return Game.endGame();
 }
 }
};

Note that you can test your new blue ship by commenting out uncreated objects in
Game to suppress errors. Be careful to check your browser’s console log to make sure
no errors accidentally fire. If you choose to tinker with your game, make sure to repair
it to look like our previous listings before proceeding. You may need to suppress any
errors from missing objects to make the following snippets work too.

STEP 6: CAPTURE KEYBOARD AND MOUSE CONTROLS

Many tutorials depend on jQuery or another library to create keyboard bindings.
Most keyboard keys are consistent enough between browsers these days that you don’t

Listing 7.12 game.js—Player ship interactivity

Sets x and y to
generate the
ship’s path at a
specific position.

Move left if keyboard input is
detected and not against a wall.

Move
right if
yboard
input is
etected
nd not
against
a wall.

Updates a
r with the
st x and y
ordinates.

Logic for when the player’s
ship gets hit by a bullet.

Removes a life visually
and decrements
a counter.

Whether to
generate a new
ship or shut
down the game.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

220 CHAPTER 7 SVG: responsive in-browser graphics

On

m

re
veri

alre
need a library. You can safely implement arrow keys, a spacebar, letters, mouse move-
ment, and a mouse click at the least, which is what you’ll do in the next listing by
replacing your existing Ctrl object.

var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 window.addEventListener('mousemove', this.mouse, true);
 window.addEventListener('click', this.click, true);
 },

 keyDown: function(event) {
 switch(event.keyCode) {
 case 32:
 var laser = document.getElementsByClassName('negative');
 var player = document.getElementsByClassName('player');
 if (! laser.length && player.length)
 Laser.build(Ship.x + (Ship.width / 2) - Laser.width,
 Ship.y - Laser.height, true);
 break;
 case 39: Ctrl.right = true; break;
 case 37: Ctrl.left = true; break;
 default: break;
 }
 },

 keyUp: function(event) {
 switch(event.keyCode) {
 case 39: Ctrl.right = false; break;
 case 37: Ctrl.left = false; break;
 default: break;
 }
 },

 mouse: function(event) {
 var mouseX = event.pageX;
 var xNew = mouseX - Ship.xPrev + Ship.x;

 if (xNew > 0 && xNew < Game.width - Ship.width)
 Ship.x = xNew;

 Ship.xPrev = mouseX;
 },

 click: function(event) {
 var laser = document.getElementsByClassName('negative');

 var player = document.getElementsByClassName('player');

 if (event.button === 0 &&
 player.length &&
 !laser.length)

Listing 7.13 game.js—Keyboard/mouse setup

Binds all mouse and keyboard
events to their proper methods.

Passes an event on
keydown to move or shoot.

Spacebar
key.

Right-arrow
key.

Left-arrow
key.

Stops movement
or shooting input
on keyup.

Makes sure your
player’s ship stays
inside the game’s
boundaries.

For firing lasers, a click() method is
used. It only fires if a laser isn’t present
and a player’s ship is still alive.ly player’s

lasers are
arked as
negative.
These are
trieved to
fy that no

laser is
ady firing.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

221Adding JavaScript for interactivity
 Laser.build(Ship.x + (Ship.width / 2) - Laser.width,
 Ship.y - Laser.height, true);
 }
};

After suppressing any errors, you should be able to move your players around via key-
board and mouse. Make sure if you fiddle with any code to reset it to the previous list-
ings, as mentioned before.

 Now that the player’s ship is set up and your input bindings are complete, it’s time
to work through the steps in group 2, in which you’ll start programming objects that
are a bit complex. These objects will require more logic, because they’re more depen-
dent on data in their surrounding environment.

7.3.3 Creating and organizing complex shapes

In group 2 you’ll create a couple of objects that require abstract logic for movement
and placement.

■ Group 2: Complex objects and overlap
– Step 1: Create shields for defense.
– Step 2: Construct lasers.
– Step 3: Integrate laser collision detection.
– Step 4: Create the heads-up display.

You’ll start by creating blue shields that protect a player’s ships from incoming fire.
After that, you’ll create laser rounds, which need to handle the game’s collision logic.
Lastly, you’ll set up the HUD, which presents a player’s remaining lives and accumu-
lated points. Here we go.

STEP 1: CREATE SHIELDS FOR DEFENSE

The shield in figure 7.9 is more complex than anything you’ve created because it
comprises several pieces. Every shield piece must have hit points (hp) and an opac-
ity value attached to it. Hit points are a measurement of how many times something
can take damage.

 You’ll create four shields, each with eight different pieces. Assemble them with the
following listing.

Fires laser from
center of the ship.

Figure 7.9 Shields comprise eight
different pieces (right image) that take
three shots each before disappearing.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

222 CHAPTER 7 SVG: responsive in-browser graphics
var Shield = {
 x: 64,
 y: 390,
 hp: 3,
 size: 15,

 init: function() {
 for (var block = 4; block--;) {
 for (var piece = 8; piece--;) {
 this.build(block, piece);
 }
 }
 },

 build: function(loc, piece) {
 var x = this.x + (loc * this.x) + (loc * (this.size * 3));

 var el = document.createElementNS(Game.ns, 'rect');
 el.setAttribute('x', this.locX(piece, x));
 el.setAttribute('y', this.locY(piece));
 el.setAttribute('class', 'shield active');
 el.setAttribute('hp', this.hp);
 el.setAttribute('width', this.size);
 el.setAttribute('height', this.size);
 Game.svg.appendChild(el);
 },

 collide: function(el) {
 var hp = parseInt(el.getAttribute('hp'), 10) - 1;

 switch(hp) {
 case 1: var opacity = 0.33; break;
 case 2: var opacity = 0.66; break;
 default: return Game.svg.removeChild(el);
 }

 el.setAttribute('hp', hp);
 el.setAttribute('fill-opacity', opacity);
 }
};

Your shield-building process requires a 2D array. It’ll have four shields with eight
pieces inside each. This data is then translated into physical objects by passing it to
build(). Notice that you’ll need to generate the x and y attributes dynamically, as
shown in the following listing.

var Shield = {
 locX: function(piece, x) {
 switch(piece) {
 case 0: return x;
 case 1: return x;
 case 2: return x;

Listing 7.14 game.js—Shield setup

Listing 7.15 game.js—Shield helpers

Number of pixels
per shield piece.

Loops through and
creates all four shields
with eight pieces.

Structured to build
individual shield
pieces based on their
location in an array.

A shield’s opacity drops
each time it takes a hit.
When opacity reaches
zero, it’s removed from
the game.

Returns a shield piece’s
coordinates based on the
current array loop.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

223Adding JavaScript for interactivity
 case 3: return x + this.size;
 case 4: return x + this.size;
 case 5: return x + (this.size * 2);
 case 6: return x + (this.size * 2);
 case 7: return x + (this.size * 2);
 }
 },

 locY: function(piece) {
 switch(piece) {
 case 0: return this.y;
 case 1: return this.y + this.size;
 case 2: return this.y + (this.size * 2);
 case 3: return this.y;
 case 4: return this.y + this.size;
 case 5: return this.y;
 case 6: return this.y + this.size;
 case 7: return this.y + (this.size * 2);
 }
 }
};

STEP 2: CONSTRUCT LASERS

Now create a universal laser that can hit any element tagged with class="active".
UFOs and players will use the exact same laser object when they shoot. Create a new
Laser object with the following code.

var Laser = {
 speed: 8,
 width: 2,
 height: 10,

 build: function(x, y, negative) {
 var el = document.createElementNS(Game.ns,'rect');

 if (negative) {
 el.setAttribute('class', 'laser negative');
 } else {
 el.setAttribute('class', 'laser');
 }

 el.setAttribute('x', x);
 el.setAttribute('y', y);
 el.setAttribute('width', this.width);
 el.setAttribute('height', this.height);
 Game.svg.appendChild(el);
 },

 direction: function(y, laserClass) {
 var speed = laserClass === 'laser negative' ?
 -this.speed : this.speed;
 return y += speed;
 },

Listing 7.16 game.js—Building lasers

If negative is set to true,
the laser travels in the
opposite direction.
Mainly used for the
player’s lasers.

Uses the passed
laser class to see if
the current laser
moves up or down.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

224 CHAPTER 7 SVG: responsive in-browser graphics
 collide: function(laser) {
 if (laser !== undefined) Game.svg.removeChild(laser);
 }
};

STEP 3: INTEGRATE LASER COLLISION DETECTION

Collision detection in SVG Aliens requires a couple of simple steps:

1 Collect all of the active lasers and store their DOM data.
2 Compare their retrieved information against currently active SVG elements. If a

collision is true, then fire that object’s hit method.

Use the following listing to configure your Laser.update(), because it allows you to
integrate collision detection. It’s a bit difficult to follow because of all the DOM access,
but please bear with us for this listing.

var Laser = {
 update: function() {
 var lasers = document.getElementsByClassName('laser');

 if (lasers.length) {
 var active = document.getElementsByClassName('active');

 var laserX, laserY, cur, num, activeClass,
 activeX, activeY, activeW, activeH;

 for (cur = lasers.length; cur--;) {
 laserX = parseInt(lasers[cur].getAttribute('x'), 10)
 laserY = parseInt(lasers[cur].getAttribute('y'), 10);

 if (laserY < 0 || laserY > Game.height) {
 this.collide(lasers[cur]);
 continue;
 } else {
 laserY = this.direction(laserY,
 lasers[cur].getAttribute('class'));
 lasers[cur].setAttribute('y', laserY);
 }

 for (num = active.length; num--;) {
 if (active[num] === undefined) return;

 activeX = parseInt(active[num].getAttribute('x'), 10)
 || Ship.x;
 activeY = parseInt(active[num].getAttribute('y'), 10)
 || Ship.y;
 activeW = parseInt(active[num].getAttribute('width'),
 10) || Ship.width;
 activeH = parseInt(active[num].getAttribute('height'),
 10) || Ship.height;

 if (laserX + this.width >= activeX &&
 laserX <= (activeX + activeW) &&
 laserY + this.height >= activeY &&
 laserY <= (activeY + activeH)) {

Listing 7.17 game.js—Moving lasers

When hit, a laser
dissolves, as long
as it’s present.

Collect all
active lasers.

Retrieve laser’s
x and y from the
DOM. You’ll need
it for comparison

against active
objects.

Double-check that
the laser hasn’t
gone out of bounds.

Compare each
laser against all
active elements
for overlap.

Collision check for
overlapping squares.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

225Adding JavaScript for interactivity
 this.collide(lasers[cur]);

 activeClass = active[num].getAttribute('class');
 if (activeClass === 'ufo active') {
 Ufo.collide(active[num]);
 } else if (activeClass === 'shield active') {
 Shield.collide(active[num]);
 } else if (activeClass === 'ufoShip active') {
 UfoBig.collide(active[num]);
 } else if (Ship.player[0]) {
 Ship.collide();
 }
 }
 }
 }
 }
 }
};

TRY IT OUT

Suppress any errors you might have, and you can see your collision detection in action
by shooting shields via clicking. As before, make sure to set any code you might have
fiddled with back to look like previous listings.

STEP 4: CREATE THE HEADS-UP DISPLAY

Users need to know their life count and current score. You can easily present this
information by creating a few SVG elements (as you’ll see in the next listing). Once
you’ve created it, you’ll need extra logic to maintain the presented game data.

var Hud = {
 livesX: 360,
 livesY: 10,
 livesGap: 10,
 init: function() {
 this.score = 0;
 this.bonus = 0;
 this.lives = 3;
 this.level = 1;

 var x;
 for (var life = 0; life < Hud.lives; life++) {
 x = this.livesX + (Ship.width * life) + (this.livesGap * life);
 Ship.build(x, this.livesY, 'life');
 }

 this.build('Lives:', 310, 30, 'textLives');
 this.build('Score: 0', 20, 30, 'textScore');

 Ship.lives = document.getElementsByClassName('life');
 },

 build: function(text, x, y, classText) {
 var el = document.createElementNS(Game.ns, 'text');
 el.setAttribute('x', x);

Listing 7.18 game.js—HUD building

Regular UFO
minion hit.

Shield
hit.

The big UFO
ship has
been hit.

Player
ship hit.

Information on where
to place life counter.

All of these properties
need to be reset when
your HUD is built.

Logic to visually create
a life counter with
preexisting player
ship’s build method.

Builds an SVG
text element
associated
with the HUD.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

226 CHAPTER 7 SVG: responsive in-browser graphics

 el.setAttribute('y', y);
 el.setAttribute('id', classText);
 el.appendChild(document.createTextNode(text));
 Game.svg.appendChild(el);
 }
};

Your HUD creates all of its necessary text elements when you set it up. To create the
life counter, it uses your existing method for building a player’s ship. Next, let’s outfit
your HUD with the ability to update its information, using the following listing.

var Hud = {
 updateScore: function(pts) {
 this.score += pts;
 this.bonus += pts;

 var el = document.getElementById('textScore');
 el.replaceChild(document.createTextNode('Score: ' + this.score),
 el.firstChild);

 if (this.bonus < 100 || this.lives === 3) return;

 var x = this.livesX + (Ship.width * this.lives) +
 (this.livesGap * this.lives);
 Ship.build(x, this.livesY, 'life');
 this.lives += 1;
 this.bonus = 0;
 },

 levelUp: function() {
 Ufo.counter += 1;
 var invTotal = Ufo.col * Ufo.row;

 if (Ufo.counter === invTotal) {
 this.level += 1;
 Ufo.counter = 0;

 window.clearInterval(Ufo.timer);
 Game.svg.removeChild(Ufo.flock);

 setTimeout(function() {
 Ufo.init();
 }, 300);

 } else if (Ufo.counter === Math.round(invTotal / 2)) {
 Ufo.delay -= 250;
 window.clearInterval(Ufo.timer);
 Ufo.timer = window.setInterval(Ufo.update, Ufo.delay);
 } else if (Ufo.counter === (Ufo.col * Ufo.row) - 3) {
 Ufo.delay -= 300;
 window.clearInterval(Ufo.timer);
 Ufo.timer = window.setInterval(Ufo.update, Ufo.delay);
 }
 }
};

Listing 7.19 game.js—HUD updating

Increments the
existing score.

Updates
the score

counter
visually by
re-creating
the display

text.

Stops executing logic
if the player can’t
receive a bonus life;
otherwise, it adds a
new life.

Logic to increment
the level’s difficulty
by speeding up UFOs.

Always clear
an interval
before trying
to set it.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

227Adding JavaScript for interactivity
As your HUD updates a player’s score, it increments and checks to see if they’ve
earned an extra life. At each update, the score text is completely replaced in the
DOM, whereas an extra life tacks on a new life image. Each time a UFO dies,
Hud.update.level() fires to see if you need to adjust the UFO’s speed. If you need to
make a UFO speed adjustment, its timer must be stopped, then started again with a
fresh timer.

7.3.4 Maintaining a complex SVG group

With the work in group 3, which creates your UFO flock, you need to account for 55
UFOs (see figure 7.10) that dynamically move around the screen. Although it’s possi-
ble to build each one manually, that’s pointless when you can program a method to do
it for you. Instead, you’ll use our code to generate your UFOs.

 Here for your reference are the steps for this section.

■ Group 3: The UFO flock
– Step 1: Set up the UFO flock.
– Step 2: Generate paths for the UFOs.
– Step 3: Animate the UFOs.
– Step 4: Make the UFOs randomly shoot.

STEP 1: SET UP THE UFO FLOCK

Logic for creating your UFO’s placement and AI requires a lot of math. We won’t pre-
tend it’s easy, but working through the following listings will help you to understand
very basic AI programming in games. The next listing determines the number of UFOs
to create, groups those UFOs, and sets up to animate them.

var Ufo = {
 width: 25,
 height: 19,
 x: 64,
 y: 90,
 gap: 10,
 row: 5,
 col: 11,

 init: function() {
 this.speed = 10;
 this.counter = 0;

 this.build();

 this.delay = 800 - (20 * Hud.level);

Listing 7.20 game.js—UFO flock setup

Figure 7.10 UFOs are not only
cute; they’re also an evil dominant
force in numbers.

Core API

Determines the number
of UFOs to generate.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

228 CHAPTER 7 SVG: responsive in-browser graphics

 if (this.timer)
 window.clearInterval(Ufo.timer);

 this.timer = window.setInterval(this.update, this.delay);
 },

 build: function() {
 var group = document.createElementNS(Game.ns, 'g');
 group.setAttribute('class', 'open');
 group.setAttribute('id', 'flock');

 var col, el, imageA, imageB;
 for (var row = this.row; row--;) {
 for (col = this.col; col--;) {
 el = document.createElementNS(Game.ns, 'svg');
 el.setAttribute('x', this.locX(col));
 el.setAttribute('y', this.locY(row));
 el.setAttribute('class', 'ufo active');
 el.setAttribute('row', row);
 el.setAttribute('col', col);
 el.setAttribute('width', this.width);
 el.setAttribute('height', this.height);
 el.setAttribute('viewBox', '0 0 25 19');

 imageA = document.createElementNS(Game.ns, 'path');
 imageB = document.createElementNS(Game.ns, 'path');
 imageA.setAttribute('d', this.pathA);
 imageB.setAttribute('d', this.pathB);
 imageA.setAttribute('class','anim1 ' + this.type(row));
 imageB.setAttribute('class','anim2 ' + this.type(row));
 el.appendChild(imageA);
 el.appendChild(imageB);

 group.appendChild(el);
 }
 }

 Game.svg.appendChild(group);

 this.flock = document.getElementById('flock');
 }
};

STEP 2: GENERATE PATHS FOR THE UFOS

To generate the massive paths required for different UFOs, you can use Adobe Illustra-
tor or Inkscape (http://inkscape.org/). Either program can save vector creations in
SVG format. Once it’s saved as SVG, pop open your creation in a text editor, and you’ll
get all the path information you need to create an illustration. (You can use the ufo
SVG file from the book’s website for this task.)

Using CSS to make SVG easier
Similar to the concept of placing content inside <div>s in HTML, your UFOs are in an
SVG group. Working with groups allows you to target all of the elements inside
through CSS inheritance to tweak color, display, and more. In short, groups give you

Stores all your
UFO creations
inside a group.
You’ll find it
much easier to
target them as a
whole this way.

For animating between the two
UFO turning paths, you’ll need to
add an “open” CSS class. More on
that later in this tutorial.

Creates an offset
for the UFO’s
SVG image; that
way, it lines up
properly with its
width and height
boxes.

Two different paths
are used for each
UFO’s animation.
You can alternate
between these by

using class “open”
and “closed.”

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://inkscape.org/

229Adding JavaScript for interactivity

Path
these c

gene

Inks
a

Illust
by s

and op
SVG fi

a
e

We’ve prebuilt the paths for you in the next listing so you don’t have to go through all
the work required to create them.

var Ufo = {
 pathA: 'M6.5,8.8c1.1,1.6,3.2,2.5,6.2,2.5c3.3,0,4.9-1.4,5.6-2.6c0.9-

1.5,0.9-3.4,0.5-4.4c0,0,0,0,0,0 c0,0-1.9-3.4-6.5-3.4c-4.3,0-5.9,2.8-
6.1,3.2l0,0C5.7,5.3,5.5,7.2,6.5,8.8z M19.2,4.4c0.4,1.2,0.4,2.9-0.4,4.6
c-0.6,1.3-2.5,3.6-6.1,3.6c-4.1,0-5.9-2.2-6.7-
3.5C5.4,8,5.3,6.9,5.5,5.8C5.4,5.9,5.2,6,4.9,6C4.5,6,4.2,5.8,4.2,5.6 c0-
0.2,0.3-0.3,0.7-0.3c0.3,0,0.6,0.1,0.6,0.3c0.1-0.5,0.2-0.9,0.4-
1.3C2.4,5.6,0,7.4,0,10.1c0,4.2,5.5,7.6,12.4,7.6 c6.8,0,12.4-3.4,12.4-
7.6C24.7,7.4,22.7,5.7,19.2,4.4z M6.9,13.9c-0.8,0-1.5-0.4-1.5-0.9c0-
0.5,0.7-0.9,1.5-0.9 c0.8,0,1.5,0.4,1.5,0.9C8.4,13.5,7.7,13.9,6.9,13.9z
M21.2,10.7c-0.7,0-1.3-0.3-1.3-0.7c0-0.4,0.6-0.7,1.3-0.7s1.3,0.3,1.3,0.7
C22.4,10.4,21.9,10.7,21.2,10.7z',

 pathB: 'M6.5,8.8c1.1,1.6,3.2,2.5,6.3,2.5c3.4,0,4.9-1.4,5.7-2.6c0.9-
1.5,0.9-3.4,0.5-4.4c0,0,0,0,0,0 c0,0-1.9-3.4-6.5-
3.4C8.1,1,6.5,3.7,6.3,4.1l0,0C5.8,5.3,5.5,7.2,6.5,8.8z
M19.3,4.4c0.4,1.2,0.4,2.9-0.4,4.6 c-0.6,1.3-2.5,3.6-6.1,3.6c-4.1,0-5.9-
2.2-6.8-
3.5C5,7.5,5.4,5.6,5.9,4.3C2.4,5.6,0,7.4,0,10.1c0,4.2,5.6,7.6,12.4,7.6
c6.9,0,12.4-3.4,12.4-7.6C24.8,7.4,22.8,5.7,19.3,4.4z M3.5,9.2c-0.6,0-
1.1-0.3-1.1-0.6C2.4,8.2,2.9,8,3.5,8
c0.6,0,1.1,0.3,1.1,0.6C4.6,8.9,4.2,9.2,3.5,9.2z M16.5,14.6c-0.9,0-1.7-
0.4-1.7-0.9c0-0.5,0.8-0.9,1.7-0.9s1.7,0.4,1.7,0.9
C18.2,14.2,17.5,14.6,16.5,14.6z M20.2,5.6c-0.4,0-0.6-0.1-0.6-0.3c0-
0.2,0.3-0.3,0.6-0.3c0.4,0,0.6,0.1,0.6,0.3 C20.8,5.5,20.5,5.6,20.2,5.6z'

};

STEP 3: ANIMATE THE UFOS

To create simple animation we’re hiding and displaying one of two illustrations for
each UFO. SVG can create animation on its own, but using a CSS method is cleaner
and less processor-intensive when applicable. To finish your animation and helper
methods for build(), integrate the following listing into your UFO object.

(continued)

more control and require less maintenance and markup. The following snippet shows
CSS rules you’ve already added to style.css, so you don’t need to add them. The
.open and .closed selectors will toggle between the two paths for each UFO. The fol-
lowing snippet will also paint UFOs with different colors depending on a class of .a,
.b, or .c.

.closed .anim1, .open .anim2 { display: none }

.open .anim1, .closed .anim2 { display: inherit }

.ufo .a { fill: #8C19FF }

.ufo .b { fill: #1EE861 }

.ufo .c { fill: #FFE14D }

Listing 7.21 game.js—UFO paths

s like
an be
rated
from
cape

nd/or
rator
aving
ening
les in
 text

ditor.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

230 CHAPTER 7 SVG: responsive in-browser graphics
var Ufo = {
 animate: function() {
 if (this.flock.getAttribute('class') === 'open') {
 this.flock.setAttribute('class','closed');
 } else {
 this.flock.setAttribute('class','open');
 }
 },

 type: function(row) {
 switch(row) {
 case 0: return 'a';
 case 1: return 'b';
 case 2: return 'b';
 case 3: return 'c';
 case 4: return 'c';
 }
 },

 locX: function(col) {
 return this.x + (col * this.width) + (col * this.gap);
 },

 locY: function(row) {
 return this.y + (row * this.height) + (row * this.gap);
 },

 collide: function(el) {
 Hud.updateScore(1);
 Hud.levelUp();
 el.parentNode.removeChild(el);
 }
};

CREATING DYNAMIC MOVEMENT

Every time the flock moves, it needs to test against the game’s width and height
because SVG’s collision detection isn’t stable in all browsers at the time of writing.
When SVG’s collision detection is more usable, you’ll be able to use getInter-
sectionList, getEnclosureList, checkIntersection, and checkEnclosure (more info
at the official W3C docs www.w3.org/TR/SVG/struct.html#__svg__SVGSVGElement
__getIntersectionList).

Listing 7.22 game.js—UFO animation and helpers

Help! What to do if your SVG file paths are broken
If you notice that SVG path information from a vector-editing tool is offset or broken,
you can probably fix it. In some cases, moving the graphics to the center or top-left
corner of your SVG file’s canvas fixes the issue. Another method is to remove any
whitespace surrounding your graphics (crop it). If all else fails, you can usually get
away with manually adding an offset by configuring SVG’s viewBox property (as we
did for your UFOs).

A CSS trick to
alternate UFO
graphics between
two different images.

Returns a class for
coloring based on
the UFO’s row.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.w3.org/TR/SVG/struct.html#__svg__SVGSVGElement__getIntersectionList
www.w3.org/TR/SVG/struct.html#__svg__SVGSVGElement__getIntersectionList

231Adding JavaScript for interactivity

i

 You need to calculate an imaginary box around all the existing UFOs (called a
bounding box). Instead of trying to manually calculate a bounding box, you’re going to
call getBBox() on the SVG flock element <g id="flock">. It will do all the heavy lift-
ing of calculating a box around the UFOs and return it to you as an object similar to
{ x: 20, y: 20, width: 325, height: 120 }.

 To summarize, the logic flows like this:

1 Get the bounding box of the UFO flock.
2 Check if they’ve hit a wall (if so increment their positions differently).
3 Increment each x/y as appropriate and check if the player lost.
4 Toggle animations.
5 Potentially shoot.

Now, create your update() method to move UFOs in the flock with this code.

var Ufo = {
 update: function() {
 var invs = document.getElementsByClassName('ufo');

 if (invs.length === 0) return;

 var flockData = Ufo.flock.getBBox(),
 flockWidth = Math.round(flockData.width),
 flockHeight = Math.round(flockData.height),
 flockX = Math.round(flockData.x),
 flockY = Math.round(flockData.y),
 moveX = 0,
 moveY = 0;

 if (flockWidth + flockX + Ufo.speed >= Game.width ||
 flockX + Ufo.speed <= 0) {
 moveY = Math.abs(Ufo.speed);
 Ufo.speed = Ufo.speed * -1;
 } else {
 moveX = Ufo.speed;
 }

 var newX, newY;
 for (var i = invs.length; i--;) {
 newX = parseInt(invs[i].getAttribute('x'), 10) + moveX;
 newY = parseInt(invs[i].getAttribute('y'), 10) + moveY;

 invs[i].setAttribute('x', newX);
 invs[i].setAttribute('y', newY);
 }

 if (flockY + flockHeight >= Shield.y) {
 return Game.endGame();
 }

 Ufo.animate();
 Ufo.shoot(invs, flockY + flockHeight - Ufo.height);
 }
};

Listing 7.23 game.js—UFO movement AI

Core API

Immediately
returns if no
UFOs exist.

Calling getBBox() on an
SVG elements returns a
representation of it as a
rectangle and as an object, for
example: { x, y, width, height }.

Decides where to
move next, based
on the current
flock position.

Loops through and
updates the positions
of all the UFOs.

Causes a Game Over if
UFOs have pushed too far.

Switches out the
UFO graphic to
emulate rotating.

You’ll set
up UFO

shooting
n the next

listing.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

232 CHAPTER 7 SVG: responsive in-browser graphics

ra

b
sho
NOTE Until Opera comes up with a fix, using getBBox() on an SVG element
in Opera won’t work as expected.

STEP 4: MAKE THE UFOS RANDOMLY SHOOT

Each time your update() method is called, a shot might be fired based on a random
number check. If a UFO does shoot, you’re going to use a piece of the bounding box
you generated in the previous listing to fire from one of the bottom-row UFOs. You
could make the firing more dynamic, such as only from the bottom row of each column,
but that takes a lot more logic, and this way you can use the SVG bounding box data
again to speed things up. Integrate the following listing to make your UFOs fire lasers.

var Ufo = {
 shoot: function(invs, lastRowY) {
 if (Math.floor(Math.random() * 5) !== 1) return;

 var stack = [], currentY;
 for (var i = invs.length; i--;) {
 currentY = parseInt(invs[i].getAttribute('y'), 10);
 if (currentY >= lastRowY)
 stack.push(invs[i]);
 }

 var invRandom = Math.floor(Math.random() * stack.length);
 Laser.build(parseInt(stack[invRandom].getAttribute('x'), 10) +
 (this.width / 2), lastRowY + this.height + 10, false);
 }
};

TRY IT OUT!
You’ve completed your UFO flock, thereby successfully creating SVG Aliens. When you
run the game, it should look similar to figure 7.11. Because you’ve worked a bit with
SVG and understand its basic concepts, we’ll compare and contrast it against Canvas
(from chapter 6) in the next section.

7.3.5 SVG vs. Canvas

Currently, the optimal way to generate in-browser graphics is through Canvas or SVG.
Because you know that Canvas is bitmap-based, you’re probably inclined to choose
SVG, considering its graphic flexibility. But you might not be aware of a few issues.

WHERE’S THE COMMUNITY?
Anybody with intermediate JavaScript skills can quickly digest Canvas’s documenta-
tion. If the official documentation is too complex, you’ll find entire websites available
with educational materials. Contrast that with SVG’s documentation, which is massive,
difficult to comprehend, and aims to tackle a much larger scope. A lot of SVG’s docu-
mentation can be difficult to follow, and we had to look for articles that translated
what we read into easy explanations. Searching online for SVG tutorials led to more
woe, because few experts are writing on the subject.

Listing 7.24 game.js—UFO shooting AI

A random number test
that checks to see if
the UFOs can fire.

Gets all the
UFOs from the
bottommost
row and
stores them
in an array.Choose a

ndom UFO
from the

ottom and
ot with it.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

233Adding JavaScript for interactivity

r
Entire libraries for Canvas seem to materialize overnight. Its community is growing
surprisingly fast and could easily become a major competitor to Flash in the next few
years. Sadly, SVG doesn’t have this kind of community involvement yet.

WHAT ABOUT JAVASCRIPT INTEGRATION?
When it comes to creating complex applications, Canvas handles JavaScript integra-
tion much better than SVG, because Canvas doesn’t interact with the DOM. For
instance, if you want to update SVG elements, they’ll need to be loaded into the DOM,
processed, and then injected into the page. Although programmers may find some
advantages to using the DOM, it also adds a thick layer of extra coding many won’t
enjoy. Look at the next listing, where you can see how much code it takes to update a
square with Canvas versus SVG.

x += 1;
y += 1;
context.fillRect(x, y, 100, 100);

rect = document.getElementById('rect');
x = parseInt(rect.getAttribute('x'));
y = parseInt(rect.getAttribute('y'));
rect.setAttribute('x', x + 1);
rect.setAttribute('y', y + 1);

PROS AND CONS OF SVG IN THE DOM
SVG’s ability to use inline XML elements with HTML markup is its greatest strength, even
if it makes the language difficult with JavaScript. Using XML allows developers to create
animated graphics without relying on another language. In addition, these shapes
are DOM elements, meaning they can be selected and modified during runtime, event

Listing 7.25 example.js—Canvas and SVG JS code samples, respectively

Figure 7.11 Congratulations. You’ve
created a complete game of SVG Aliens.
Alternatively, you’ve also created an
endless loop of UFOs, dooming an
addicted player to a life of gaming.

Core API

Canvas requires only three
lines of code to animate a
simple rectangle.

SVG requires significantly
more programming to move
a rectangle in JavaScript,
although it would be simple
to use <animate> tags.

Accessing DOM data makes SVG slower
than Canvas when using JavaScript.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

234 CHAPTER 7 SVG: responsive in-browser graphics
listeners can be easily attached, and CSS can be applied. Canvas doesn’t reside in the
DOM, so it doesn’t have any of the cool out-of-the-box features that SVG gets. Figure 7.12
shows you how Firebug can highlight an SVG image on a page. Try doing this with Can-
vas elements, and you’ll only be able to see the container’s <canvas> tag.

 One of the most frustrating problems with Canvas is the poor quality of text ren-
dering. It’s so bad many developers have resorted to creating old-school text glyphs
(prerendered images of text) and writing custom scripts to parse them with Canvas.
SVG’s text is crystal clear, making it the obvious choice for text-heavy applications.

When you want to create a circle in Canvas, you need to create a path and add a series
of declarations. SVG gives you the ability to declare a <circle> and other complex
shapes with a single HTML element instead of creating them in JavaScript with multi-
ple points. This makes for quick and simple creation of complex shapes.

 Because Canvas is self-contained inside JavaScript, we think there’s little hope it
could one day be accessible to screen readers. On the other hand, SVG uses real page
elements (such as <text>), which means a screen reader “could” potentially interpret
the information.

The current state of SVG
SVG 1.1 has its flaws, but the group that created it is working on SVG 2 to fix those.
For mobile devices, SVG Tiny 1.2 is in production. Although you won’t yet find good
support for SVG on mobile devices, it’s coming along. For official updates on the
state of SVG, see the W3C page at http://www.w3.org/Graphics/SVG/.

Where are all the SVG games?
You won’t find many results from a Google search on “SVG games” as compared to
the results for “Canvas games.” People in the development community aren’t catch-
ing on to SVG, in particular for game-based applications. Games require lots of ren-
dering power and the ability to generate many assets such as particles, enemies, and
scenery on the fly. Because SVG is inside the DOM, large amounts of assets may
cause slow performance. In addition, the large amount of Canvas propaganda isn’t
helping (in particular for its 3D counterpart, WebGL).

Figure 7.12 SVG allows
you to interact with
elements in real time.
Because of this, you can use
Firebug for debugging and
coding help. Looking at the
screenshot of the UFO flock,
you can see that Firebug is
highlighting the UFO in the
third row and third column.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/Graphics/SVG/

235Summary
WHICH SHOULD YOU USE?
In our opinion, generating simple graphics and animation is for SVG. If you want to
create an application heavy on raster graphics and processing, use Canvas.

7.4 Summary
SVG isn’t limited to games; developers use it for graphic-editing programs, animation
tools, charts, and even HTML5 video. It also allows for resizing backgrounds, screen-
conforming artwork, and interactive logo designs that don’t pixelate when enlarged.
SVG awareness is growing, and frontend developers are using it primarily to create
flexible website graphics, like the one you see in figure 7.13.

 Although SVG is an ambitious language, because of its DOM integration and massive
scope developers aren’t yet pursuing it. If SVG is to compete with Canvas, it needs to
come up with an API that’s more JavaScript friendly. But by exploring it now, you’ve put
yourself ahead of the curve; you’ll be ready to leap forward when SVG 2.0 hits the market.

 A vital part of interactive applications is sound effects and video integration for
complex animations. In the next chapter, we’ll be covering HTML5’s audio and video
APIs so you can integrate them into your applications.

Figure 7.13 We drew you this epic piece of artwork in SVG-edit (MIT Licensed and
source code at http://code.google.com/p/svg-edit/). Look closely and you can observe
the epic struggle between SVG and Canvas.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://code.google.com/p/svg-edit/

Chapter 8 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

<video> element Using declarative markup to embed video in web pages:
■ The <video> element
■ Common <video> element attributes: src,
controls, width, height

■ The <source> element

241

242
248

Media Element
Interface

Controlling video and audio through JavaScript:
■ The src DOM attribute
■ The play() method
■ The currentSrc DOM attribute
■ currentTime, duration, and playbackRate

DOM attributes

242
244
249

255

Using <canvas>
with <video>

Using the <video> element as an image source in the
<canvas> element:
■ <video> as a parameter to context.drawImage()
■ context.globalAlpha
■ context.globalCompositeOperation
■ Using context.getImageData() and
context.putImageData() to process the video

259
260
258

261

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Video and audio:
playing media
in the browser
Clearly, the web is about more than text, but until HTML5 came along we had no
built-in way to play audio and video in the HTML standard. Instead, browsers had to
depend on third-party applications known as plug-ins.

 Not so today. The web is increasingly being used as a replacement for traditional
broadcast media. Services like Netflix, YouTube, Spotify, last.fm, and Google Music
seek to replace your DVD and CD collections with online players. With HTML5, video
and audio become first-class citizens of web content. Rather than handing responsi-
bility for playing media to a third-party application, it’s played within the browser,
allowing you to control and manipulate media from within your web application.

This chapter covers
■ Navigating the cross-browser and cross-device

issues inherent in video
■ Converting between different audio and

video formats
■ Controlling video playback
■ Performing video post-processing in the

browser using the <canvas> element
■ Integrating video playback with other content
237

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

238 CHAPTER 8 Video and audio: playing media in the browser
 In this chapter you’ll learn to use HTML5’s Media Element Interface while build-
ing a video telestrator jukebox. A telestrator, made famous by U.S. football coach and
announcer John Madden, allows the user to draw directly onto a playing video; the
term comes from television sports broadcasting (television + illustrate = telestrate).

As you move through the chapter, you’ll do the following:

■ Build the basic jukebox framework
■ Add videos to the web page with HTML5
■ Use the HTMLMediaElement interface to load and play videos based on user

selection
■ Attach event handlers to provide user feedback, enable UI options, and start

playback
■ Use the <source> element to provide multiple videos in different formats to

support all browsers
■ Control video from JavaScript with the HTMLMediaElement interface
■ Combine playing video with other web content

We’ll show you the application and help you get your prerequisites in order, and then
we’ll get you started building the basic video player.

8.1 Playing video with HTML5
Placing a video in HTML5 markup is simple, and no more complex for any given
browser than placing an image. In this section you’ll take full advantage of the built-
in browser support to build the simplest possible video jukebox.

 We’ll show you what the finished product will look like and help you get your pre-
requisites aligned. Next, you’ll lay the application’s basic framework and then use the
<video> element to add videos to the web page.

8.1.1 Application preview and prerequisites

The sample player you’ll be building in this chapter is shown in figure 8.1.

Why build the video telestrator jukebox?
These are the benefits:

■ You’ll learn to use the <video> element to add a video to a web page.
■ You’ll see how to control video playback with JavaScript using Media Element

Interface.
■ You’ll discover how to support different browsers with different file formats using

the <source> element.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

239Playing video with HTML5
The figure shows the four main components of the player:

■ The video itself, showing American football action
■ Some artistic telestration saying “HTML5 in Action”
■ A playlist of videos to choose from on the right side
■ A toolbar to control the playback below the video

WHICH BROWSER TO USE?
For this section please use Chrome, Safari, or Internet Explorer. For the time being
you’ll have to avoid Firefox and Opera because of the cross-browser video file format
issues. We’ll discuss these issues, and perform a few tricks to make everything work in
Firefox and Opera, in section 8.1.3.

PREREQUISITES

Before you begin, download the set of sample videos from this book’s website and the
latest version of jQuery from http://jquery.com/. Put the videos in a directory of the
same name in your working directory, and place jQuery in the working directory itself.

<video>/<audio> elements 3 3.5 9 10.5 4.0

Figure 8.1 The finished telestrator jukebox application, showing a video, some
artistic telestration, a playlist of videos to choose from, and, underneath the video, a
toolbar for controlling the playback
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://jquery.com/

240 CHAPTER 8 Video and audio: playing media in the browser
You’ll also need the requestAnimationFrame polyfill from https://gist.github.com/
1579671 for the later sections. The code at that URL will go in the script section when
you start animating in section 8.4.1.

 With those preliminaries out of the way, you’re ready to build the framework.

8.1.2 Building the basic jukebox framework

Listing 8.1 shows the framework around which you’ll be building the application. It
creates a simple layout and has placeholders for the video player and the playlist, the
major components you’ll be adding in the later sections.

 Create a new HTML page in your working directory called index.html, with the fol-
lowing listing as its contents.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Video Telestrator Jukebox</title>
 <script src="jquery-1.8.2.min.js"></script>
 <script src="raf-polyfill.js"></script>
 <style>
 body {
 font-family: sans-serif;
 border: 0;
 margin: 0;
 padding: 0;
 }
 header {
 text-align: center;
 }
 #player {
 display: table;
 width: 100%;
 padding: 4px;
 }
 #player > div, #player > nav {
 display: table-cell;
 vertical-align: top;
 }

 #player canvas {
 display: block;
 }
 #player menu, #player label {
 display: inline-block;
 padding: 0;
 }
 input[type=number] {
 width: 36px;
 }
 </style>

Listing 8.1 index.html—Basic jukebox layout

Latest version
of jQuery.

requestAnimationFrame polyfill from
https://gist.github.com/1579671.

Basic CSS to lay
everything out.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://gist.github.com/1579671
https://gist.github.com/1579671
https://gist.github.com/1579671

241Playing video with HTML5
</head>
<body>
 <header>
 <h1>HTML5 Video Telestrator Jukebox</h1>
 </header>
 <section id="player">
 <div>
 <!-- The video will appear here-->
 </div>
 <nav>
 <h2>Playlist</h2>

 <!-- The video playlist will appear here-->

 </nav>
 </section>
</body>
</html>

Now, with the foundation laid, let’s get to the fun parts of the application by adding a
video to the page.

8.1.3 Using the video element to add videos to web pages

The goal in designing HTML5’s <video> element was to make the embedding of video
within a web page as straightforward as embedding an image. Although you’ll encoun-
ter additional complexities due to video file formats being more feature-rich than
image formats, the design goal has been attained. Figure 8.2 shows the <video> ele-
ment applied in Google Chrome.

 The next listing shows all of the code required to display the video in figure 8.2. As
you can see, it’s not complicated. Insert this code in place of the first comment in list-
ing 8.1, and refresh the page to reproduce figure 8.2.

You’ll add a <video>
element here in
section 8.1.3.

You’ll add a
playlist here in
section 8.2.

Figure 8.2 Basic
HTML5 video player
in Chrome

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

242 CHAPTER 8 Video and audio: playing media in the browser

Sh
st

play
fast f

con
th

<video src="videos/VID_20120122_133036.mp4"
 controls
 width="720" height="480">
 Your browser does not support the video element, please
 try downloading
 the video instead
</video>

You used four attributes, src, controls, width, and height, in the code in listing 8.2.
Table 8.1 summarizes those attributes; for a full list of attributes see appendix B.

For your application, displaying a single video isn’t enough. You need more videos
and the ability to switch between them and control their playback in response to user
commands. To do this you’ll need to learn about the HTMLMediaElement interface—
a collection of attributes and functions for both <video> and <audio> elements,
which can be used to start playing the media, pause the media, and change the vol-
ume, among other things. We’ll tackle that in the next section.

Listing 8.2 index.html—Embed a video

Table 8.1 Media element attributes

Attribute Description

src The video to play.

controls A Boolean attribute. If you add it, the browser will provide a standard set of controls
for play/pause/seek/volume, and so on. If you leave the attribute out, your code
has to control the player (see section 8.3.2).

width The width of the media (video only).

height The height of the media (video only).

Where’s the audio?
Perhaps you’ve already noticed, but in this chapter you’ll be considering and using
the <video> element rather than the <audio> element. This isn’t because the
<audio> element is less important (it isn’t) or because it’s more complex (it’s not)
but because this is a book. Although a book may not be an ideal medium for present-
ing moving pictures, it’s an even worse one for invisible sound. But both elements
share a single API, the HTMLMediaElement interface, and it’s this API that’s the focus
of this chapter. The only differences between the <audio> and <video> elements are
related to visual properties. The <video> element allows you to specify a width and
a height for the media, the <audio> element does not.

The src attribute specifies
the video to display, like
the element.

ow the
andard
/pause/
orward
trols to
e user.

The width and
height don’t
have to match
the video—the
browser will
scale everything
to fit, as with
images.

Browsers that don’t support the <video>
element will display the fallback content.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

243Controlling videos with the HTMLMediaElement interface
8.2 Controlling videos with the HTMLMediaElement interface
Now that you have a video playing, let’s start implementing the jukebox feature by
allowing users to select from a list of videos, which will appear alongside the <video>
element (figure 8.3).

 Over the next two sections you’ll work through five steps, writing code that allows
you to do the following:

■ Step 1: Load a list of videos.
■ Step 2: Start a video when selected.
■ Step 3: Change between videos.
■ Step 4: Use event handlers to handle the changing of video in greater detail.
■ Step 5: Provide multiple video formats to support all browsers.

As we mentioned, in this section you’ll be making use of the HTMLMediaElement
interface from JavaScript; as usual with HTML5, the markup only gets you so far. Most
of the interesting stuff is done with JavaScript!

STEP 1: LOAD A LIST OF VIDEOS

First, let’s hardcode a list of videos into the playlist and hook up everything so that
when a user clicks a video it starts playing. Listing 8.3 shows the markup for the play-
list; insert it in place of the second comment placeholder in listing 8.1. In a real appli-
cation you’d almost certainly be generating this list dynamically, but we’re going to
avoid requiring backend code in this chapter.

Figure 8.3 A video playing in IE9 selected from the playlist. The videos have been
taken directly off of author Rob Crowther’s mobile phone, default names included.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

244 CHAPTER 8 Video and audio: playing media in the browser

The fu
that h

th
eve

the pl
<h2>Playlist</h2>
<ul class="playlist">
 VID_20120122_133036.mp4
 VID_20120122_132933.mp4
 VID_20120122_132348.mp4
 VID_20120122_132307.mp4
 VID_20120122_132223.mp4
 VID_20120122_132134.mp4

STEP 2: START A VIDEO WHEN SELECTED
In order to start a video when the user clicks one of the list items, you’ll need to know
one property and one method of the HTMLMediaElement interface, both of which
are summarized in table 8.2.

STEP 3: CHANGE BETWEEN VIDEOS

You’ll also need the change_video function, shown in the next listing. As you can see,
it uses both the src property and the play() method to change the video being
played. Include the listing in a script block at the end of your code’s head section.

function change_video(event) {

 var v = $(event.target).text().trim();

 var p = $('#player video:first-of-type')[0];

 p.src = 'videos/' + v;

 p.play();

}

$(document).ready(

 function() {

 $('.playlist').bind('click', change_video);

 }

)

Listing 8.3 index.html—Markup for the video playlist

Table 8.2 HTMLMediaElement interface

Attribute/method Description

.src Read/write, reflects the value of the src attribute; use it to select a new video.

.play() Start playing the current media.

Listing 8.4 index.html—Handling the user clicking the playlist

Slot this code in the placeholder
section in listing 8.1.

The videos listed are available
in the book’s code download.

Core API

nction
andles
e click
nts on
aylist.

The video name is the text content of
the clicked-on item; if you want a more
user-friendly interface, you could put in
a more readable text label and have the
filename on a data-* attribute.

Get a reference to the
<video> element.

Set the src value to
the new filename.

Start playing
the file.

Bind the handler to the
click event of the playlist.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

245Controlling videos with the HTMLMediaElement interface
STEP 4: USE EVENT HANDLERS TO HANDLE THE CHANGING OF VIDEO IN GREATER DETAIL

In the previous code, the src of the <video> element is set, and the play() method is
called immediately. This works well because all of the videos are relatively small and
everything is being loaded off the local disk. If you had a much larger video, it’s likely that
not enough of it will have loaded to start playback if the play() method is called immedi-
ately, leading to an error. A more reliable approach would be to wait until the video is
loaded before starting to play. The HTMLMediaElement interface includes a number of
events that fire as the media is loading. The events fired during the loading of a media
file are listed in table 8.3 (all of them will fire during the loading of the media).

If you were loading a large media file across the network, then you’d have time to dis-
play a notification to the user as each of these events occurred. In this section you’ll
bind event listeners to each of these events and start the playback on canplaythrough.
But first, let’s look at the network-related information available through the HTMLMedia-
Element interface.

DETERMINING THE STATE OF MEDIA RESOURCES WITH .NETWORKSTATE AND .READYSTATE

The HTMLMediaElement interface includes two useful properties that allow you to deter-
mine the state that the media resource is in: .networkState and .readyState. In a real
application you could use the information provided by these properties to give visual
feedback about the state of the loading media resource; for example, a progress bar or a
loading spinner. Table 8.4 lists the values each property can assume. The .networkState
is similar to the .readyState property on the request object in an XMLHTTPRequest and
the media .readyState corresponds closely to the events listed in table 8.3.

Table 8.3 Media element events

Event Occurs when

loadedmetadata The browser has determined the duration and dimensions of the media
resource and the text tracks are ready.

loadeddata The browser can render the media data at the current playback position for the
first time.

canplay The browser can resume playback of the media but estimates that if playback
were to be started, the media couldn’t be rendered at the current playback rate
up to its end, without having to stop for further buffering of content.

canplaythrough The browser estimates that if playback were to be started, the media could be
rendered at the current playback rate all the way to its end, without having to
stop for further buffering.

Table 8.4 HTMLMediaElement interface properties and values

Property/values Description

.networkState Returns the current network state of the element; the value returned is
one of the four shown next.

 NETWORK_EMPTY Numeric value: 0 (no data yet).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

246 CHAPTER 8 Video and audio: playing media in the browser

This g
functio

log
inform
abou

ev
i

PLAYING VIDEO ON THE CANPLAYTHROUGH EVENT

The next listing shows a simple example of how to use the HTMLMediaEvent interface
events and investigate the networkState and readyState. Insert this code in place of
the $(document).ready part of listing 8.4.

function play_video(event) {
 event.target.play();
}
function log_state(event) {
 console.log(event.type);
 console.log('networkState: ' + event.target.networkState);
 console.log('readyState: ' + event.target.readyState);
}
$(document).ready(
 function() {
 $('.playlist').bind('click', change_video);
 var v = $('#player video:first-of-type')[0];
 v.addEventListener('loadedmetadata', log_state);
 v.addEventListener('loadeddata', log_state);
 v.addEventListener('canplay', log_state);
 v.addEventListener('canplaythrough', log_state);
 v.addEventListener('canplaythrough', play_video);
 }

)

TRY IT OUT

Apart from the video playing automatically, the previous listing shouldn’t work any dif-
ferently from listing 8.4, which allowed you to switch between videos. But if you open

 NETWORK_IDLE Numeric value: 1 (the network is temporarily idle).

 NETWORK_LOADING Numeric value: 2 (the network is currently active).

 NETWORK_NO_SOURCE Numeric value: 3 (no source has been set on the media element).

.readyState Returns a value that expresses the current state of the element, with
respect to rendering the current playback position.

 HAVE_NOTHING Numeric value: 0 (no data has yet been loaded).

 HAVE_METADATA Numeric value: 1 (enough data has loaded to provide media metadata).

 HAVE_CURRENT_DATA Numeric value: 2 (enough data is available to play the current frame, but
not enough for continuous streaming).

 HAVE_FUTURE_DATA Numeric value: 3 (enough data is available to play several frames into
the future).

 HAVE_ENOUGH_DATA Numeric value: 4 (enough data is available and continuing to become
available that the media can be streamed).

Listing 8.5 index.html—Capturing HTMLMediaElement interface events

Table 8.4 HTMLMediaElement interface properties and values (continued)

Property/values Description

You’ll use this function to start playing the video
as soon as it hits the canplaythrough event; this
replaces p.play() in listing 8.4. (This is functionally
equivalent to adding the autoplay attribute.)

eneric
n will
 some
ation

t each
ent as
t fires.

Bind all four
events to the
log_state
function.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

247Controlling videos with the HTMLMediaElement interface
up your browser’s console, you should see output similar to that shown in the follow-
ing listing (exact values may vary from browser to browser).

loadedmetadata
networkState: 1
readyState: 4
loadeddata
networkState: 1
readyState: 4
canplay
networkState: 1
readyState: 4
canplaythrough
networkState: 1
readyState: 4

Remember that networkState: 1 is NETWORK_IDLE and readyState: 4 is HAVE_ENOUGH
_DATA. With all of the videos on local disk you shouldn’t expect too much else,
although you may see a networkState of 2 on IE. If you have some larger videos
online, you should see some different values in each event.

PROGRESS CHECK!
If you’ve been following along in Chrome, Safari, or IE9 as we recommended at the start
of this chapter, you should now have a simple interface, which allows you to click a list of
videos and see them play. Figure 8.4 shows what you should be seeing; compare your code
to the file index-2.html in the chapter’s code download if you’re having any problems.

Listing 8.6 Console output from listing 8.5

Figure 8.4 What your app should look like in the browser at this point
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

248 CHAPTER 8 Video and audio: playing media in the browser
USING FIREFOX OR OPERA?
If you’ve tried out the page in Firefox or Opera, you’ve probably seen a gray screen sim-
ilar to the one in figure 8.5, which says “Video format or MIME type is not supported.”

 The issue illustrated in figure 8.5 is that neither Firefox nor Opera supports the
MP4 video format even though they support the <video> element itself.1 But the
<video> and <audio> elements provide a workaround for this issue: It’s possible to
specify multiple media files by using the <source> element.

8.3 Specifying multiple formats with the <source> element
Each <video> element can have multiple <source> elements as children. Each <source>
specifies a video, and the browser tries each one in turn and uses the first video format it
can support. Figure 8.6 shows the same video player in Firefox we showed you earlier
after <source> elements have been added, instead of using the src attribute.

STEP 5: PROVIDE MULTIPLE VIDEO FORMATS TO SUPPORT ALL BROWSERS

Now let’s implement. The next listing shows the new markup for the <video> ele-
ment, using child <source> elements. Insert the code in place of the existing <video>
element in your working file.

<video controls
 width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4"
 type="video/mp4">
 <source src="videos/VID_20120122_133036.webm"
 type="video/webm">
 Your browser does not support for video element, please
 try downloading
 the video instead
</video>

1 Recent versions of Firefox will play MP4 videos on Windows using the support available in the OS.

Listing 8.7 index.html—Adding the <source> element

Figure 8.5 An MP4 video in Firefox, where video format or MIME type isn’t supported

Core API

The original
.mp4 video.

A version of the video
in .webm format.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

249Specifying multiple formats with the <source> element
CODE CHECK!
This is a good time to stop and check your progress in the browser. You can find the
code to this point in the build in the code download, in a file named index-3.html.
Compare your index.html code with that code if you have any problems.

8.3.1 Discovering which video is playing with .currentSrc

With the new code, Firefox will now load the video it’s able to play. This does intro-
duce a problem for your jukebox feature. Before, you were able to set the .src prop-
erty to change the video, but now you need to set the .src differently depending on
what video file the browser selected to play. Unfortunately, you can’t replace all of the
child <source> elements with a new set; to change the playing video you have to set
the .src property.

 To solve this problem you need to know about another property of the HTMLMedia-
Element interface: .currentSrc. This property tells you the filename of the currently
selected media.

 Because all of your video files are consistently named, you can remove the file
extension for all of the elements in the playlist (do this now). Instead of get-
ting the complete filename from the elements, the change_video method can
copy the file extension from the .currentSrc property and use that to compose
the filename of the selected video. The following listing shows the updated
change_video function, which used this approach; use it to replace the existing one
in your file.

Figure 8.6 <video> element in Firefox with multiple sources

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

250 CHAPTER 8 Video and audio: playing media in the browser
function change_video(event) {
 var v = $(event.target).text().trim();
 var p = $('#player video:first-of-type')[0];
 var ext = p.currentSrc.slice(
 p.currentSrc.lastIndexOf('.'),
 p.currentSrc.length);
 p.src = 'videos/' + v + ext;
}

Listing 8.8 index.html—Using currentSrc to determine the video type

A workaround for IE9's currentSrc bug
The code in listing 8.8 is straightforward, but you may find that it doesn’t work prop-
erly in IE9. The problem is a bug in IE9: Once a <source> element is added, it imme-
diately takes priority over the src attribute and the currentSrc property of the
<video> element. This means that if you run the app in IE9, then instead of selecting
a new video when you click the playlist, you’ll see the first video repeated.

Another limitation of IE9 is that updating <source> elements with JavaScript has no
effect. If you want to update the playing video in IE9 when you’ve used <source> ele-
ments, then the only workable solution is to replace the entire <video> element. The
following snippet shows just such an approach:

function change_video(event) {
 var v = $(event.target).text().trim();
 var vp = $('#player video:first-of-type');
 var p = vp[0];
 var ext = p.currentSrc.slice(
 p.currentSrc.lastIndexOf('.'),
 p.currentSrc.length);
 var nv = $('<video controls src="videos/' + v + ext + '" ' +
 'width="720" height="480">' +
 'Your browser does not support the video element, please ' +
 'try downloading ' +
 'the video instead</video>');
 vp.parent().append(nv);
 vp.remove();
 nv[0].play();
}.

Fortunately this bug is fixed in IE10. Because of this, and to avoid the code complex-
ity getting in the way of learning about the APIs, not to mention that this approach will
create new issues in other browsers (which will require further workarounds), the rest
of the code in this chapter will ignore this issue. If you’re using IE9, then please check
the code download files for versions that have been fixed to work in IE9 (they have
IE9 in the filename).

The playlist should now contain
only extension-less entries like
VID_20120122_132933.

Slice the file extension from
the value of currentSrc
starting at the last period.

Combine the file extension with
the name to set the new source.

For this workaround you’ll
need a reference to both the
actual <video> element
and the jQuery object.

Instead of
updating
currentSrc,
create a new
<video>
element with
the correct
src attribute.

Add the new <video> element
alongside the current one.

Remove the current <video>
element, leaving only the new one.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

251Specifying multiple formats with the <source> element
You now have a working video jukebox, but you probably still have questions:

■ What are these different video formats such as .mp4 and .webm?
■ How many different formats do I need to provide to support all browsers?
■ If I don’t have a particular video in a certain format, how can I convert

between them?

We’ll discuss changing video formats in the next section. Before we do, we want to
answer the first two questions by looking at which browsers support which video and
audio formats; table 8.5 summarizes this information.

As you can see, no single format is universally adopted across all browsers. For broad
desktop support, you need to provide at least two versions of your media: for video at
least WebM/VP8 and MPEG-4/H.264, for audio MP3 and OGG.

 Media format support is something of a contentious issue in the HTML5 world.
The sidebar “Why doesn’t HTML5 mandate a format that all browsers support?”
explains why.

Table 8.5 Browser video and audio format support

Video formats/
codecs

For broad desktop support, you
should provide at least two versions
of your media.

MPEG-4/H.264 3 ~ 9 ~ 3.2 For video, your best bet is to
provide MPEG-4/H.264 and
WebM/VP8, at minimum, to
cover all current browsers.

Ogg/Theora 3 3.6 ~ 10.5 *

WebM/VP8 6 4 * 10.6 *

* IE and Safari will play additional formats if users install the codec within Windows Media Player or QuickTime,
respectively. Currently there’s no compatible Ogg/Theora codec for Windows.

Audio formats/
codecs

MP3 3 ~ 9 ~ 3.2
For audio, we recommend that
you provide MP3 and Ogg, at
minimum, to cover all current
browsers.

AAC 3 ~ 9 ~ 3.2

Ogg 3 3.6 ~ 10.5 *

WAV 3 3.6 ~ 10.5 3.2

* Safari will play additional formats if users install the codec within QuickTime.

Why doesn’t HTML5 mandate a format that all browsers support?
Initially, the HTML5 specification mandated the Ogg/Theora video format. This
seemed like a good choice because it’s an open source format and the codec is
royalty free. But Apple and Microsoft refused to implement Ogg/Theora, preferring
instead the MP4/h.264 combination. MPEG LA, LLC, administers MP4/h.264 and
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

252 CHAPTER 8 Video and audio: playing media in the browser
8.3.2 Converting between media formats

For practical purposes, what you need to know is how to convert a video in one of the
supported formats to a different format. A tool called a transcoder can convert between
different container formats and encodings. There are several online and download-
able tools that convert individual media files; several are listed in the links and
resources in appendix J. But for batch processing large numbers of files you’ll need to
use a command-line tool. Appendix H explains how to use ffmpeg to transcode the
video files used in this chapter.

 You’re at the point where you can play a video in every browser that supports the
<video> element, thanks to the <source> element. You also know which video formats
you need to provide to support which browsers. Now it’s time to create the telestrator
feature, which will let you draw directly onto the playing video.

8.4 Combining user input with video to build a telestrator
As we mentioned earlier, the telestrator allows the user to draw directly on a playing
video to illustrate the action to the television audience. To create this feature in your
application, you’ll need a way to combine the video with other image data. For this
you’ll use the <canvas> element. You should be familiar with Canvas from chapter 6.

(continued)

sells licenses for encoders and decoders on behalf of companies that hold patents
covering the h.264 codec. (Apple and Microsoft are two such companies.)

Supporters of h.264 argue that Ogg/Theora is technically lower quality, has no hard-
ware support (important on battery-powered devices with low-end CPUs), and is more
at risk from patent trolls because the obvious way to make money out of infringers is
to sue them, whereas submarine patents affecting h.264 can be monetized through
MPEG LA.

Supporters of Ogg/Theora argue that the openness of the web requires an open video
format. Mozilla couldn’t distribute its source code if it contained an h.264 decoder
because then everyone who downloaded the code would require a license from MPEG
LA. Google avoided this issue by splitting its browser into free parts (the open source
Chromium project) and closed parts.

Because the vendors were divided on which format to make standard, and because
one of the goals of HTML5 is to document the reality of the implementation, the
requirement for supporting any particular codec was removed from the specifica-
tion. This isn’t without precedent in the HTML world—the element doesn’t
specify which image formats should be supported. We can see some light at the
end of the tunnel: Google subsequently released the WebM format as open source
with an open license. As the owner of the number-one video site on the web, You-
Tube, and a provider of the Android mobile OS, it’s well-positioned to overcome
h.264’s commercial advantages.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

253Combining user input with video to build a telestrator
In that chapter you learned about the drawing capabilities of Canvas to create an
interactive game. In this chapter you’ll concentrate on the general-purpose, image
data-manipulation features to combine images and other content with a video feed.

Your work on the telestrator will happen in three groups of steps:

Let’s start with how to play video through the <canvas> element.

8.4.1 Playing video through the <canvas> element

The first requirement is to be able to modify the video as it’s being played back. You
could do this by layering elements on the page and hiding and showing things at the
required time. If you were stuck using plug-ins to render the video, that would be your
only option for modifying the video from HTML. But the <video> element makes its
data available as images. You can access each frame of the video as it’s ready and treat
it as image data. It’s then quite straightforward to use the <canvas> element to grab
that image data and display it.

STEP 1: ADD THE <CANVAS> ELEMENT

The following listing shows the basic setup required in the markup. The <style> ele-
ment should be placed in the head section of the document, or you can add the rule
to your existing <style> element. The div replaces the existing one, where your
<video> element is located.

In this section, you’ll learn
■ How to use the <canvas> element to play a video
■ How to create controls for video playback (because the <canvas> element ren-

ders the video image data, not the <video> element)
■ How to combine the video on the canvas with other content, such as images
■ How to perform basic image-processing using the <canvas> element
■ How to capture the user’s drawings (telestrations) and add them to the video

during playback

Group 1: Playing video through
a <canvas> element

Group 2: Manipulating video as
it’s playing

Group 3: Building the telestra-
tor feature

■ Step 1: Add the <canvas>
element.

■ Step 2: Grab and display
image data.

■ Step 3: Add markup for
and implement video player
controls.

■ Step 1: Add a frame image to
the video.

■ Step 2: Adjust how the frame and
video combine on the canvas.

■ Step 3: Adjust the opacity of
the video.

■ Step 4: Grayscale the video being
played back.

■ Step 1: Capture mouse
movement.

■ Step 2: Display the cap-
tured path over the video.

■ Step 3: Add a “clear”
button so users can
remove telestrations and
start again.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

254 CHAPTER 8 Video and audio: playing media in the browser

l
<style>
 #player video:first-of-type {
 display: none;
 }
</style>

<div>
 <canvas width="720" height="480"></canvas>
 <video controls
 width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4"
 type="video/mp4">
 <source src="videos/VID_20120122_133036.webm"
 type="video/webm">
 Your browser does not support for the video element, please
 try downloading
 the video instead
 </video>
</div>

STEP 2: GRAB AND DISPLAY IMAGE DATA

Now you need to listen for the play event on the <video> element and use that as a
trigger to start grabbing video frames and rendering on the canvas. The $(docu-
ment).ready in the next listing should replace the existing function you added previ-
ously in listing 8.8.

$(document).ready(
 function() {
 $('.playlist').bind('click', change_video);
 var v = $('#player video:first-of-type')[0];
 var canvas = $('#player canvas:first-of-type')[0];
 var context = canvas.getContext('2d');
 function draw() {
 if(v.paused || v.ended) return false;
 context.drawImage(v,0,0,720,480);
 requestAnimationFrame(draw);
 }
 v.addEventListener('play', draw);
 }
)

Now you’re able to play back the video through the <canvas> element, but you’ll
notice that something is missing. The controls you got for free as part of the <video>
element are no longer accessible now that the video is being played through <canvas>.
The next section deals with creating your own controls.

Listing 8.9 index.html—Adding a <canvas> element to display video

Listing 8.10 index.html—Adjusting the draw() function to use the <canvas> element

CSS is used to hide the
<video> element.

Add a <canvas> element
with the same dimensions
as the video.

The <video> element
remains as it was, although
now that it’s invisible, the
controls parameter and
fallback content aren’t
strictly necessary.

Core API

This part of the
code remains the
same as before.

The draw() function will
draw the video frames
one by one on the canvas;
a closure is used to cache
references to the video
and the canvas context.

If the
video has

stopped
playing,

don’t
do any

additional
work. A recursive call is made to the

draw() function using the
requestAnimationFrame polyfil
(see listing 8.1).Listen for the play event on the <video>

element to kick off the draw function.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

255Combining user input with video to build a telestrator
8.4.2 Creating custom video playback controls
In this section you’ll create a simple menu of buttons to control video playback. Fig-
ure 8.7 shows the final effect. Obviously, we’re not aiming to win any points for design
here; it’s the functionality we’re interested in.

STEP 3: ADD MARKUP FOR AND IMPLEMENT VIDEO PLAYER CONTROLS

The simple markup for the controls we’re adding—return to start, slow down play-
back, pause, play, and speed up playback—is shown here; add this code directly after
the <canvas> element.

<menu>
 <button>|<</button>
 <button><<</button>
 <button>||</button>
 <button> > </button>
 <button>>></button>
</menu>

To make the buttons functional, you’ll have to learn about a few more properties and
methods on the HTMLMediaElement interface. A summary of these methods is shown
in table 8.6.

Listing 8.11 index.html—Creating video player controls

Table 8.6 More HTMLMediaElement interface methods

Attribute/method Description

.currentTime Read/write the current position (in seconds) of the playback

.duration The length of the media in seconds

Figure 8.7 Custom
playback buttons
in Opera

Return to start.

Slow down playback.

Pause.

Play.

Speed up playback.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

256 CHAPTER 8 Video and audio: playing media in the browser

s

With these properties and methods you have enough information to implement the
five buttons. In the $(document).ready function you added in listing 8.10, you’ll need
to bind a handler to the menu, like the one shown next. It can be added anywhere in
that function as long as it’s after the declaration for the v variable. If you’re not sure,
add it at the end.

$('menu').bind('click', function(event) {
 var action = $(event.target).text().trim();
 switch (action) {
 case '|<':
 v.currentTime = 0;
 break;
 case '<<':
 v.playbackRate = v.playbackRate * 0.5;
 break;
 case '||':
 v.pause();
 break;
 case '>':
 v.playbackRate = 1.0;
 v.play();
 break;
 case '>>':
 v.playbackRate = v.playbackRate * 2.0
 break;
 }
 return false;
})

CODE CHECK!
You’ve now restored basic functionality to your video player. The working code to this
point in the chapter is in the file index-5.html in the code download, so you can com-
pare what you’ve written. For extra credit, consider how you might use .currentTime
and .duration in concert with a <meter> element (see section 2.3.3) to reproduce the
seek bar. Otherwise, move on to the next section, where you’ll explore the effects you
can achieve now that playback is occurring through a <canvas> element.

.defaultPlaybackRate The speed, expressed as a multiple of the standard playback speed
of the media

.playbackRate The rate at which the media is currently playing back as a positive
multiple of the standard playback speed of the media (less than 1 is
slower; greater than 1 is faster)

.pause() Pauses the currently playing media

Listing 8.12 index.html—Handler function for the control menu

Table 8.6 More HTMLMediaElement interface methods (continued)

Attribute/method Description

For simplicity, you can use the
text content of the buttons to
determine which one was clicked.

To go back to the start of the
video, set the currentTime to 0.

Repeatedly hitting
the fast or slow
buttons will multiply
the playback rate,
but hitting play will
reset it to 1.

pause() and
play() do

exactly what it
ays on the tin.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

257Combining user input with video to build a telestrator
8.4.3 Manipulating video as it’s playing

The point of playing the video through the <canvas> element wasn’t to merely repli-
cate the behavior you get for free with the <video> element but to process the video
output. In this section you’ll learn basic techniques for processing the video, ending
up with something that looks like figure 8.8. You’ll use these same techniques in later
sections to build the telestrator.

 Figure 8.8 also shows the result of the next group of four steps you’ll walk through:

■ Group 2: Manipulating video as it’s playing
– Step 1: Add a frame image to the video.
– Step 2: Adjust how the frame and video combine on the canvas.
– Step 3: Adjust the opacity of the video.
– Step 4: Grayscale the video being played back.

STEP 1: ADD A FRAME IMAGE TO THE VIDEO

You learned about drawing images on canvas in chapter 6; the basic approach is the
same for this step. First, you need an image on the page. It can go anywhere inside
the <#player> element (hide it with CSS display: none):

To give users the ability to turn the frame on and off, you’ll need a button in the menu
from listing 8.11:

<button>Framed</button>

Figure 8.8 Grayscale video playback through canvas combined with an image at 90
percent opacity
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

258 CHAPTER 8 Video and audio: playing media in the browser

Because it’s on the menu, you can take advantage of the existing click-handling code
for that—the additional cases for the switch statement are shown in the following list-
ing—and add them to the handler from listing 8.11.

case 'Framed':
 framed = false;
 $(event.target).text('Frame');
 break;
case 'Frame':
 framed = true;
 $(event.target).text('Framed');
 break;

With this next listing, you need to adjust the draw() function to draw the frame.

var framed = true;
var frame = $('#player img:first-of-type')[0];
//...
function draw() {
 if(v.paused || v.ended) return false;
 context.drawImage(v,0,0,720,480);
 if (framed) {
 context.drawImage(frame,0,0,720,480);
 }
 requestAnimationFrame(draw);
 return true;
}

And that’s it! You should now be able to get a frame to appear over the video playback
at the click of a button. In the next step you’ll learn how to adjust how the two images,
the frame and video, are composed (combined) together on the Canvas.

STEP 2: ADJUST HOW THE FRAME AND VIDEO COMBINE ON THE CANVAS

By default, things you draw on the Canvas layer on top of each other; each new draw-
ing replaces the pixels below it. But it’s possible to make this layering work differently
with the .globalCompositeOperation property of the context.

 Figure 8.9 provides an example of each composition mode available to you.
 To allow you to experiment, we’ve created a <select> element with all of the possi-

ble modes in listing 8.15. The composition operations split the world into two segments:

■ Destination, what’s already drawn
■ Source, the new stuff you’re trying to draw

Add the code from the following listing (place it after the <menu> element you added
in listing 8.11).

Listing 8.13 index.html—Handler for the Frame button

Listing 8.14 index.html—Adjust the draw() function to show the frame

You’ll set up the
framed variable
in listing 8.14.

This is the framed variable you
were promised in listing 8.13.

For brevity, all the other declarations
have been left out; leave them as
they are in your code.

Draw the frame only if
the user has requested it.

The drawImage function is as you
remember it; note that the frame gets
drawn after (on top of) the video.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

259Combining user input with video to build a telestrator

.

n.

i

s
e
<label>
 Composition:
 <select>
 <option>copy</option>

 <option>destination-atop</option>

 <option>destination-in</option>

 <option>destination-out</option>

 <option>destination-over</option>

 <option>source-atop</option>

 <option>source-in</option>

 <option>source-out</option>

 <option selected>source-over</option>

 <option>lighter</option>

 <option>xor</option>
 </select>
</label>

Listing 8.15 index.html—<select> element for composition mode

Figure 8.9 Canvas
composition modes. The
code used to generate this
figure is in the source code
download in a file called
canvas-composition-
modes.html.

Display the source, where
source and destination overlap.

Display the source in the transparent
parts of the destination.

Add the source only where it overlaps
destination, but put the destination on top

Set the overlap of destination and source to
transparent; elsewhere display the destinatio

Where the two overlap, display the
destination; elsewhere display the source.

Display the source where it overlaps the
destination; show the destination elsewhere.

Add the
source where
t overlaps the

destination,
with the

ource on top;
lsewhere, the
destination is
transparent.

Set the destination to transparent. Set the
overlap of source and destination to
transparent; elsewhere display the source.

The default; draw the
new stuff over the old.

Add the source and
destination colors together.

Parts are transparent where both overlap;
elsewhere display destination or source.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

260 CHAPTER 8 Video and audio: playing media in the browser
Now, so that your application can respond to changes, you need to bind the <select>
element to an event handler. The next listing has code that replaces your existing
draw() function.

var c_mode = 'source-over';
$('select').bind('change', function(event) {
 c_mode = event.target.value;
})
function draw() {
 if(v.paused || v.ended) return false;
 context.clearRect(0,0,720,480);
 context.globalCompositeOperation = c_mode;
 context.drawImage(v,0,0,720,480);
 if (framed) {
 context.drawImage(frame,0,0,720,480);
 }
 requestAnimationFrame(draw);
 return true;
}

Video isn’t the ideal format to experiment with composition modes because it’s always
a fully opaque image, and in this example it’s taking up all the pixels. But this simple
implementation will allow you to experiment and consider where you might use them
in your own projects.

STEP 3: ADJUST THE OPACITY OF THE VIDEO

The opacity is set with the .globalAlpha property. It should be a value between 0 and
1; in common with CSS, 1 is fully opaque and 0 is completely transparent. In your
application you can add an item to let the user set the value with a number input; add
this code after the <menu> element:

<label>
 Opacity:<input type="number" step="0.1" min="0" max="1" value="1.0">
</label>

As before, you need to attach an event handler to this input and feed the results into
the draw() function through a variable. The following listing has the additional code
to capture the opacity and another new draw() function. Replace the draw() function
from listing 8.15 with this new code (retaining the composition mode binding to
$('select')):

var c_opac = 1;
$('input[type=number]').bind('input', function(event) {
 c_opac = event.target.value;
})
function draw() {
 if(v.paused || v.ended) return false;
 context.clearRect(0,0,720,480);

Listing 8.16 index.html—Change the composition mode in the draw() function

Listing 8.17 index.html—Change the opacity in the draw() function

Create a variable to keep track of the
state as before; saves expensive DOM
lookups in the video playback loop.

You’ve used the JavaScript names in
the select options, so this bit is easy.

If you don’t clear
the canvas, each
successive frame
of the video will
be composited
with the
previous one.

Set the
mode.

Core API

The default opacity
is 1 (fully opaque).

Set the variable when the
user changes the value.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

261Combining user input with video to build a telestrator
 context.globalCompositeOperation = c_mode;
 context.globalAlpha = c_opac;
 context.drawImage(v,0,0,720,480);
 if (framed) {
 context.drawImage(frame,0,0,720,480);
 }
 requestAnimationFrame(draw);
 return true;
}

STEP 4: GRAYSCALE THE VIDEO BEING PLAYED BACK

The <canvas> element is also a general-purpose, image-processing tool, thanks to its
.getImageData and .putImageData methods. These methods directly access the array
of pixels making up the canvas. Once you have the pixels, you can implement stan-
dard image-processing algorithms in JavaScript. The next listing is a JavaScript imple-
mentation of an algorithm to turn an image gray. This code can be included anywhere
inside your <script> element.

function grayscale(pixels) {
 var d = pixels.data;
 for (var i=0; i<d.length; i+=4) {
 var r = d[i];
 var g = d[i+1];
 var b = d[i+2];
 var v = 0.2126*r + 0.7152*g + 0.0722*b;
 d[i] = d[i+1] = d[i+2] = v
 }
 return pixels;
};

NOTE The grayscale function in listing 8.18 is adapted from the HTML
Rocks article on image filters; see www.html5rocks.com/en/tutorials/canvas/
imagefilters/ for more details.

With the complex math all safely hidden in a general-purpose function, all that
remains is to apply it to the canvas. Listing 8.19 shows how you’d call the grayscale()
function from within your draw() function. For this to work, you need to declare a
variable grayed alongside the framed one you created in listing 8.14 and set it to an
initial value of false.

context.drawImage(v,0,0,720,480);
if (grayed) {
 context.putImageData(
 grayscale(context.getImageData(0,0,720,480))
 ,0
 ,0
);
}

Listing 8.18 index.html—A function to make an image grayscale

Listing 8.19 index.html—Use the grayscale() function within draw()

Use the variable to set the
opacity within the draw()
function. You can use opacity
to create interesting effects
when used in combination
with the composition mode.

Core API

You have to first draw the video as an image to
the canvas before you can start processing it.

Get the image data from the
canvas and pass it through
the grayscale function.Draw the results back on to the

canvas starting at the top left (0,0).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

www.html5rocks.com/en/tutorials/canvas/imagefilters/
www.html5rocks.com/en/tutorials/canvas/imagefilters/

262 CHAPTER 8 Video and audio: playing media in the browser
NOTE The getImageData() method will trigger a security error if you access
the example from a file:// URL. If you run into any problems, try accessing
the file using a local web server. In Chrome there’s also a bug that causes a
security violation when getImageData() is called after an SVG image has been
drawn on the canvas. Check https://code.google.com/p/chromium/issues/
detail?id=68568 for updates.

You will also need a Grayed button inside the menu and a handler in the switch state-
ment. This will work analogously to the Framed button you created in listing 8.13, so
we won’t repeat the code here.

CODE CHECK!
The file index-6.html in the book’s code download is a working version of the code to
this point (but see section 8.3.1 if you’re using IE9).

NOTE Image processing works pixel by pixel, which means it becomes
increasingly more expensive the higher the quality of the video. Unless you’re
building an application to preview video processing results, your users will
usually be grateful if you do expensive real-time processing on the server,
instead of in their browser.

8.4.4 Building the telestrator features

Using the techniques from the previous section of rendering the video through a
<canvas> element and overlaying graphics on that video, you can now add the
telestration feature. The results, demonstrating the artistic abilities of the authors, are
shown in figure 8.10.

Figure 8.10 After
working through this
final section, you’ll be
ready to telestrate!
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://code.google.com/p/chromium/issues/detail?id=68568
https://code.google.com/p/chromium/issues/detail?id=68568

263Combining user input with video to build a telestrator

va
deter

wh

cur
reco

m
movem

As th
mov

m
aroun

if
cur
pa

add f
pos
It will take just three remaining steps to get you there:

■ Group 3: Building the telestrator feature
– Step 1: Capture mouse movement.
– Step 2: Display the captured path over the video.
– Step 3: Add a “clear” button so users can remove telestrations and start again.

STEP 1: CAPTURE MOUSE MOVEMENT

To capture mouse movement, you’ll need to modify your $(document).ready func-
tion to include the following code. It doesn’t matter where you add it; in the down-
loadable example it’s between the initial declarations and the draw() function.

var clickX = new Array();
var clickY = new Array();
var clickDrag = new Array();
var paint = false;

var canvas = $('#player canvas:first-of-type');
var pos = canvas.position();
canvas.bind('mousedown', function(event) {
 var mouseX = event.pageX - pos.left;
 var mouseY = event.pageY - pos.top;
 paint = true;
 addClick(mouseX, mouseY);
}).bind('mousemove', function(event) {
 if(paint){
 var mouseX = event.pageX - pos.left;
 var mouseY = event.pageY - pos.top;
 addClick(mouseX, mouseY, true);
 }
}).bind('mouseup', function(event) {
 paint = false;
}).bind('mouseleave', function(event) {
 paint = false;
});

function addClick(x, y, dragging) {
 clickX.push(x);
 clickY.push(y);
 clickDrag.push(dragging);
}

NOTE To keep the draw() function simple, in this section we’ve removed the
code and buttons for Grayed and Framed. Leaving them in your code won’t
harm anything, but bear this in mind as you follow the instructions to replace
and include code in this section.

STEP 2: DISPLAY THE CAPTURED PATH OVER THE VIDEO

The next step is to display the path within the draw() function. The following listing
has yet another new draw() function.

Listing 8.20 index.html—Capturing the mouse movement

Set up global variables
to record the movement
of the mouse.

This
riable
mines
ether

you’re
rently
rding
ouse
ents.

You are now using jQuery to
attach event handlers to the
canvas, so you will use the jQuery
reference in code rather than the
DOM reference as before.
Remember to update the
assignment which gets the context
to use canvas[0] instead of canvas.

Cache the position of the <canvas>
element on the page so you don’t
have to do expensive DOM queries.

When the user presses the mouse
button, set the paint variable to true
and record the initial position with
the addClick function.

e user
es the

ouse
d, and
you’re
rently
inting,
urther
itions.

If the user releases the button
or moves off the canvas, set the
paint variable to false.

The addClick function
populates the variables created
in the first step in this listing.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

264 CHAPTER 8 Video and audio: playing media in the browser
function draw() {

 if(v.paused || v.ended) return false;

 context.clearRect(0,0,720,480);
 context.globalCompositeOperation = c_mode;
 context.globalAlpha = c_opac;
 context.drawImage(v,0,0,720,480);
 context.strokeStyle = "#ffff00";
 context.lineJoin = "round";
 context.lineWidth = 8;
 for(var i=0; i < clickX.length; i++) {
 context.beginPath();
 if(clickDrag[i] && i){
 context.moveTo(clickX[i-1], clickY[i-1]);
 } else {
 context.moveTo(clickX[i]-1, clickY[i]);
 }
 context.lineTo(clickX[i], clickY[i]);
 context.closePath();
 context.stroke();
 }
 requestAnimationFrame(draw);
 return true;
}

STEP 3: ADD A CLEAR BUTTON SO USERS CAN REMOVE TELESTRATIONS AND START AGAIN

As a final step you need to add a Clear button so users can remove their telestrations
and start again. An easy place to put this is in the controls menu you already have, by
adding another button:

<button>Clear</button>

The new case for your big switch statement is shown in the next listing.

case 'Clear':
 clickX = new Array();
 clickY = new Array();
 clickDrag = new Array();
 paint = false;
 break;

With that you should have a fully functioning video jukebox telestrator and be well on
your way to adding your own garish yellow annotations to the videos of your choice.
Figure 8.11 shows the authors’ feeble attempt at a John Madden impersonation along
with the Clear button ready to consign that attempt to history.

CODE CHECK!
In the code download you’ll find a working version of the code from this section in
the file index-9.html. There’s also an index-10.html file, which includes the code from

Listing 8.21 index.html—Modifying the draw() function to show the path

Listing 8.22 index.html—Process the clear action

Note that to keep things simple, if the
video is paused, nothing will be drawn,
even though new telestrations will
continue to be recorded.

We will telestrate in
a nice, visible yellow.

Loop through the coordinates
stored in the path.

Special handling for
the first coordinate
because you can’t
access element <-1>
of an array.

Reset all the
stored path data.

Stop capturing
new drawing data.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

265Summary
this section as well as the Grayed and Framed functionality from the previous section
we took out to simplify the listings.

8.5 Summary
In this chapter you’ve learned how HTML5 makes it as straightforward a process to
add video and audio to web pages as it is to add images. You’ve taken the news of
browser incompatibilities in format support in stride and learned how to convert
between video formats, and you’ve learned how to control media elements with
JavaScript. The added bonus of having video within HTML5 is that you can use it as
input for other content, in particular the <canvas> element. You’ve also learned how
to combine video with images and, finally, how to combine it with live drawing. We
hope that in addition to all the technical knowledge you’ve gained, you’ve also
thought of ideas on how to incorporate media within your web applications, as well as
playing media on your page.

 In the next chapter, you’ll continue to learn about exciting visual effects you can
create with HTML5 as you learn about WebGL. The WebGL format allows you direct
access to the computer’s graphics hardware from JavaScript, raising the possibility of
implementing real 3D games and data visualizations.

Figure 8.11 The finished application in Firefox
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Chapter 9 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined
in this table.

Topic Description, methods, and so on Page

Engine creation Creating a WebGL engine from scratch
■ Time-saving scripts
■ Basic engine pattern
■ Default entity class
■ Helper methods

274
277
279
280

Graphics cards Interacting with a graphics card
■ OpenGL
■ Creating shaders
■ Attaching 3D data to entities
■ Outputting shapes
■ Matrices usage

282
284
283
288
288

WebGL app Putting everything together to create an app
■ 2D triangle in 3D
■ 3D basics
■ Large complex polygons
■ Cubes
■ Particle generation

296
297
300
305
308

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

WebGL: 3D
 application development
Web developers have been trying for years to overcome 3D limitations to create bet-
ter interactive games, education tools, and infographics. In the past, plug-ins such
as Unity, Flash, and Quicksilver created Google Maps and online 3D explorations
programs. Plug-ins can be useful, but they leave you at the browser vendor’s mercy
for updates, usually lack hardware acceleration, and are often proprietary. To solve
these issues, the Khronos Group created a Web Graphics Library (WebGL). WebGL,
as mentioned in chapter 1, gives you the ability to create awesome 3D applications
like X-Wing, shown in figure 9.1, without plug-ins. Several developers have even
used WebGL to make drawing interfaces that create 2D images and rotate those
creations in 3D.

WARNING! You should be very familiar with Canvas and JavaScript object-
oriented programming (OOP) before working through this chapter’s sam-
ple application. If you aren’t, please go through chapter 6 on 2D Canvas
first, because the concepts we cover here build on chapter 6’s application,
mainly because WebGL builds on top of the Canvas API.

This chapter covers
■ Developing a WebGL engine
■ Communicating with a graphics card
■ Creating 3D shapes
267

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

268 CHAPTER 9 WebGL: 3D application development
You could learn basic 3D programming elsewhere, but we’ve provided it all for you—
all in one place—along with thorough explanations of 3D programming concepts,
mathematics, diagrams, and more. We even teach you how to apply your new knowl-
edge by walking you through the creation of a game: Geometry Destroyer!

In this chapter you’ll first learn how to use WebGL to create an engine from
scratch. Knowing how an engine works teaches you the fundamentals of managing
3D assets.

 After you’ve built the engine’s entity management to control visual objects, we’ll
walk you through making a request with WebGL, processing returned data, and dis-
playing the resulting 3D shapes. For the last part of the lesson, we’ll show you how to
create your game’s player and bullets with 2D shapes in 3D. We’ll then expand on the

Why build Geometry Destroyer?
Some online tutorials teach the basics of what you can do with WebGL. But this chap-
ter’s tutorial doesn’t cover creating simple demos—you’ll be creating a real application
from the ground up. A few of the subjects you’ll learn during the build include how to

■ Create a reusable WebGL class
■ Generate and maintain large numbers of WebGL entities
■ Create different shape buffers with reusable code
■ Work with assets in 2D and 3D space
■ Handle 2D collision detection in 3D space with particle generation

Figure 9.1 A simple WebGL application called X-Wing created by OutsideOfSociety. He
worked on the popular WebGL project http://ro.me.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://ro.me

269Building a WebGL engine
2D drawing ideas to create 3D rotating polygons that explode into cubes and squares
when destroyed.

 After completing this chapter, you’ll understand how WebGL creates and manages
3D data. In addition, you’ll walk away with a reusable basic WebGL engine and a fun
game! Let’s start by rolling out the engine’s entity-management components.

9.1 Building a WebGL engine
Even though using a prebuilt engine can save a lot of time, it may cause problems if it
doesn’t support the functionality you need. We recommend rolling your own engine
for JavaScript applications when time permits. You’ll not only learn how to be a better
programmer, you’ll also create reusable code for future projects.

For example, the techniques you’ll learn building Geometry Destroyer (figure 9.2) in
this chapter will be transferable to other visual APIs such as Canvas and SVG.

WARNING: BUILDING AN ENGINE ISN’T EASY! If you don’t want to copy and paste
tons of JavaScript code to create the 3D engine, we recommend that you sim-
ply read along in sections 9.1 and 9.2 and then download the engine from
Manning’s source code. You can use that source code as your starting point
and then write the game with us in section 9.3. Feeling adventurous and want
to put your coding chops to work? Great! We invite you to build the engine
from scratch by following and using the code listings.

Need a prebuilt WebGL engine?
In a rush to get a WebGL application rolling? We recommend downloading Copper-
Licht for 3D gaming at http://www.ambiera.com/copperlicht/download.html. After
you’ve downloaded the package, you should take a look at the documentation and
demos at www.ambiera.com/copperlicht/documentation/ to get started. For any
other projects (interactive data representations, architecture, animated videos,
maps, and the like), grab a copy of Mr. Doob’s three.js from GitHub at https://
github.com/mrdoob/three.js. You’ll find examples, documents, and usage guides to
get you started at http://mng.bz/1iDu.

In this section, you’ll learn the following reusable WebGL concepts:
■ How to structure an engine that creates visual output
■ How to create simple JavaScript inheritance with John Resig’s script
■ Where to get and how to use assets that make writing WebGL faster
■ Methods for handling collisions, deletion, and other entity-management-

related tasks
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.ambiera.com/copperlicht/download.html
www.ambiera.com/copperlicht/documentation/
http:// mng.bz/1iDu
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js

270 CHAPTER 9 WebGL: 3D application development
BROWSER NOTE: USE CHROME OR FIREFOX FOR THIS CHAPTER’S SAMPLE APPLICATION

Whether or not you’re building the engine with us, we recommend that you use
Google Chrome or Firefox’s latest version. Other browsers may not support advanced
3D features or the necessary graphics acceleration. Although browsers may “support”
WebGL, “support” doesn’t mean that all features have been implemented.

WebGL for IE?
Want to enable WebGL in older versions of IE? Check out a plug-in called IEWebGL
(http://iewebgl.com). It provides support for IE 6, 7, 8, 9, and 10. Because it’s a
downloaded executable, you can present it to users when they’re using IE. Keep in
mind that it doesn’t work with our demo, but it works great with libraries like Three.js
(see the site for a complete list).

WebGL 8 4 12 5.1

Figure 9.2 Get pumped to build your application by going to http://html5inaction.com/
app/ch9/ and playing Geometry Destroyer before you build it. Download the source code
from Manning’s website at http://manning.com/crowther2/.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://iewebgl.com
http://html5inaction.com/app/ch9/
http://html5inaction.com/app/ch9/
http://manning.com/crowther2/

271Building a WebGL engine
We’ve broken the engine-building work into seven steps to help you follow along and
see the big picture:

■ Step 1: Review/create the JavaScript code base and index.html.
■ Step 2: Create style.css.
■ Step 3: Implement time-saving scripts.
■ Step 4: Create base engine logic.
■ Step 5: Manage entity storage.
■ Step 6: Create shape entities with 3D data.
■ Step 7: Add reusable methods that speed up programming and make files eas-

ier to maintain.

Let’s get started.

9.1.1 Setting up the engine’s layout

Creating a WebGL engine requires several different developer tools and a file struc-
ture like the one you see in figure 9.3.

 For now you can create an empty copy of each folder and file with the proper hierar-
chy ahead of time, or you can follow along and create each file and folder as we mention
them. The JavaScript folder (named js) will house everything for your engine. Inside the
JavaScript folder, place a run.js file and an engine folder. We’re keeping engine’s con-
tents separate from everything else to keep things neatly organized.

GRAPHICS CARD WARNING Please note that not all graphics cards will support
WebGL. If you’re running the latest version of Chrome or Firefox and can’t
run the 3D files for this chapter on your hardware, the only solution we can
think of is to try another computer. We apologize if you can’t run WebGL; the
lack of graphics card support has been frustrating for many developers.

js Index.html style.css

enginerun.js

root

assets

game.js

Engine

webgl_util.js

sylvester.js

classes.js

animation.js

core.js template.js

Figure 9.3 Your engine’s file structure should be identical to this figure. We’ve
organized it in a manner that’s conducive to learning.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/h9v9
https://developer.mozilla.org/en/WebGL
https://developer.mozilla.org/en/WebGL
https://developer.mozilla.org/en/WebGL
http://ejohn.org/blog/simple-javascript-inheritance/
http://www.contextis.com/resources/blog/webgl2/
http://www.contextis.com/resources/blog/webgl2/
http://learningwebgl.com/
http://learningwebgl.com/

272 CHAPTER 9 WebGL: 3D application development

I
p

to

I

J
f

STEP 1: REVIEW/CREATE THE JAVASCRIPT CODE BASE AND INDEX.HTML

Create a file called index.html from the following listing, as a base for running all of
your JavaScript code. You’ll be including a <canvas> tag because WebGL runs on top
of the Canvas API.

<!DOCTYPE html>
<html>
<head>
 <title>Geometry Destroyer</title>
 <link rel="stylesheet" type="text/css" href="style.css" />
</head>

<body>
 <div id="container">
 <canvas id="canvas" width="800" height="600">
 Download Chrome to experience the demo!
 </canvas>

 Score: 0

 <p id="title" class="strong screen">Geometry Destroyer</p>
 <p id="start" class="screen">Push X to

Start</p>

 <p id="end" class="screen hide">
 Game Over
 </p>

 <p id="ctrls">Move: Arrow Keys | Shoot: Hold X</p>
 </div>

 <script type="text/javascript" src="js/engine/assets/sylvester.js"></
script>

 <script type="text/javascript" src="js/engine/assets/webgl_util.js"></
script>

 <script type="text/javascript" src="js/engine/assets/animation.js"></
script>

 <script type="text/javascript" src="js/engine/assets/classes.js"></
script>

 <script type="text/javascript" src="js/engine/core.js"></script>
 <script type="text/javascript" src="js/engine/game.js"></script>
 <script type="text/javascript" src="js/engine/template.js"></script>
 <script type="text/javascript" src="js/run.js"></script>
</body>
</html>

Listing 9.1 index.html—Creating the engine HTML

Can I use 2D Canvas in WebGL?
Sadly, you can’t use 2D Canvas and the WebGL API in the same context. The trick to
getting around this is to use two <canvas> elements to create two different contexts
and then sit one on top of the other via CSS.

Canvas is
required to run
WebGL. Make
sure you include
a canvas tag
when running it.

Score
counter.

nitial text
resented
 a player.

Text presented
at Game Over.

nclude all
of your

engine’s
avaScript
iles here.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://sylvester.jcoglan.com/
http://mng.bz/P7Vi
http://mng.bz/STHc
http://mng.bz/STHc

273Building a WebGL engine
STEP 2: CREATE STYLE.CSS

Because creating text in WebGL isn’t easy, you’ll use text from HTML markup. We’ve
included in the previous index.html listing an introduction and starting screen, but it
needs some styling (see figure 9.4).

 Place the next listing inside a new file called style.css. Put the file in the same
folder that contains index.html.

body {
 background: #111;
 color: #aaa;
 font-family: Impact, Helvetica, Arial;
 letter-spacing: 1px;
}

#container {
 width: 800px;
 margin: 40px auto;
 position: relative;
}

#canvas {
 border: 1px solid #333;
}

Listing 9.2 style.css—Adding styling

Figure 9.4 Result of running the index.html file with CSS and HTML only. In
the final screen, the triangular player will appear between the words Geometry
and Destroyer.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/4Lao

274 CHAPTER 9 WebGL: 3D application development
#score {
 position: absolute;
 top: 5px;
 left: 8px;
 margin: 0;
 font-size: 15px;
}

.strong {
 color: #a00;
}

.screen {
 font-size: 34px;
 text-transform: uppercase;
 text-align: center;
 text-align: center;
 position: absolute;
 width: 100%;
 left: 0;
}

#title {
 top: 214px;
 font-size: 50px;
 word-spacing: 20px;
}

#start {
 top: 300px;
}

#end {
 top: 220px;
 display: none;
 font-size: 50px;
}

#ctrls {
 text-align: center;
 font-size: 18px;
}

STEP 3: IMPLEMENT TIME-SAVING SCRIPTS

Next, create a folder called js to house all of your JavaScript files. Inside create a file
called run.js that will house all of your run code. Next to run.js create a folder called
engine. Inside of engine create another folder called assets. You’ll fill up the assets
folder with four scripts that will save you time.

 Getting your engine up and running requires several different external files. You’ll
need the following:

■ Paul Irish’s requestAnimationFrame() inside animation.js
■ A slightly modified version of John Resig’s Class Extension script called classes.js
■ A transformation matrix library called sylvester.js
■ Helpers from webgl_util.js

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html
http://3dengine.org/Modelview_matrix
http://mng.bz/VitL

275Building a WebGL engine
We’ll explain exactly what each component does and how it aids your engine’s func-
tionality as we proceed.

PAUL IRISH’S REQUESTANIMATIONFRAME
Our goal is to equip your engine with best animation practices similar to those we dis-
cussed in chapter 6 on 2D Canvas. When we say “best animation practices,” we mean

■ Using requestAnimationFrame() instead of setInterval for mobile compatibil-
ity, to prevent updates when in another tab, and to prevent frame rate tearing

■ Testing for the requestAnimationFrame() in other browsers with Paul Irish’s
polyfill and guaranteeing support for older browsers like IE8

To start building your dependencies, or the files your engine is dependent on, navi-
gate to the assets folder. Inside create a file called animation.js using Paul Irish’s
requestAnimationFrame() shown in the following listing (http://mng.bz/h9v9).

window.requestAnimFrame = (function() {
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback) {
 window.setTimeout(callback, 1000 / 60);
 };
})();

JOHN RESIG’S SIMPLE JAVASCRIPT INHERITANCE

Because your engine requires you to create objects that can be modified, tweaked,
and inherited on the fly, you need an extendable class. The problem is that classes
usually require a robust library like prototype.js because JavaScript doesn’t natively
support them. To keep your engine’s file size and dependencies limited, we’re using a
slightly modified version of John Resig’s Simple JavaScript Inheritance script (http://
ejohn.org/blog/simple-javascript-inheritance/). Insert a modified version of John
Resig’s script from the following listing into a file called classes.js in the assets folder.

(function(){
 var initializing = false, fnTest = /xyz/.test(function(){xyz;}) ?
 /\b_super\b/ : /.*/;
 this.Class = function(){};

 Class.extend = function(prop) {
 var _super = this.prototype;

 initializing = true;
 var prototype = new this();
 initializing = false;

Listing 9.3 animation.js—Requesting animation and intervals

Listing 9.4 classes.js—JavaScript inheritance
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://ejohn.org/blog/simple-javascript-inheritance/
http:// mng.bz/h9v9
http://ejohn.org/blog/simple-javascript-inheritance/

276 CHAPTER 9 WebGL: 3D application development
 for (var name in prop) {
 prototype[name] = typeof prop[name] == "function" &&
 typeof _super[name] == "function" && fnTest.test(prop[name]) ?
 (function(name, fn){
 return function() {
 var tmp = this._super;

 this._super = _super[name];

 var ret = fn.apply(this, arguments);
 this._super = tmp;

 return ret;
 };
 })(name, prop[name]) :
 prop[name];
 }

 function Class() {}

 Class.prototype = prototype;
 Class.prototype.constructor = Class;
 Class.extend = arguments.callee;

 return Class;
 };
})();

SYLVESTER.JS
To create 3D shape objects, you also need to send the graphics card some packaged
matrix information, such as [0 1 3 0], but JavaScript doesn’t have built-in tools for
handling such information. You could write a matrix processing library for your
engine from scratch, but it’s quite a lot of work. Instead, you’ll use sylvester.js to pro-
cess everything. Get the latest version of the script from http://sylvester.jcoglan.com/,
unzip it, and include the sylvester.js file in your assets folder.

WEBGL_UTIL.JS
The last asset you need is webgl_util.js, which contains lots of prewritten code to help
with generating a perspective, processing matrixes, and more. We wish we could credit
the author of this great script, but as Mozilla says, “Nobody seems entirely clear on
where it came from.” Grab the file at http://mng.bz/P7Vi and place it in assets.

WANT MORE JAVASCRIPT?

If you want to learn more about JavaScript’s prototype-based inheritance, pick up a
copy of John Resig and Bear Bibeault’s Secrets of the JavaScript Ninja (Manning,
2012). It’s loaded with great techniques to help you work with libraries, create cross-
browser solutions, and maintain your code.

The only piece of code we
changed from the original
inheritance script was
removing a call to init() here.
Originally, the script would
automatically call init() if it
were present on an object.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://sylvester.jcoglan.com/
http:// mng.bz/P7Vi

277Building a WebGL engine
9.1.2 Tools to create, alter, and delete objects

With your assets in place, let’s get to work on the engine.

STEP 4: CREATE BASE ENGINE LOGIC

Use the following listing to create your first engine file, core.js, inside js/engine. With
this listing, you are detecting WebGL support, setting up the base configuration for
WebGL, creating a helper method to detect collisions, and creating placeholders for
code in later listings.

var gd = gd || {};

gd.core = {
 canvas: document.getElementById("canvas"),

 size: function(width, height) {
 this.horizAspect = width / height;
 },

 init: function(width, height, run) {
 this.size(width, height);

 if (!this.canvas.getContext) return alert('Please download ' +
 'a browser that supports Canvas like Google Chrome ' +
 'to proceed.');
 gd.gl = this.canvas.getContext("experimental-webgl");

 if (gd.gl === null || gd.gl === undefined)
 return alert('Uhhh, your browser doesn\'t support WebGL. ' +
 'Your options are build a large wooden badger ' +
 'or download Google Chrome.');

 gd.gl.clearColor(0.05, 0.05, 0.05, 1.0);
 gd.gl.enable(gd.gl.DEPTH_TEST);
 gd.gl.depthFunc(gd.gl.LEQUAL);
 gd.gl.clear(gd.gl.COLOR_BUFFER_BIT | gd.gl.DEPTH_BUFFER_BIT);

 this.shader.init();
 this.animate();

 window.onload = run;
 },

 animate: function() {
 requestAnimFrame(gd.core.animate);

Wait—didn’t you say “custom rolled engine”?
Earlier we said that our WebGL tutorial centers on a built-from-scratch engine, which
may lead you to ask, “Why are you making me use assets that aren’t from scratch?”
Truth is, we don’t have time to custom roll everything; it would take at least 100 more
pages to explain a complete engine step by step, so we thought that adding a few
scripts to simplify everything was a good idea. We hope you agree!

Listing 9.5 core.js—Engine startup

Core API

Inherits a previously existing gd variable or creates a
new one. Great for accessing gd across multiple files.

WebGL requires you to set an
aspect ratio; failure to do so
will distort the correct aspect
ratio of your canvas.

Manually
check for

WebGL
support;

some
browsers

return null
and some

undefined if
getContext()

fails.

Sets a clear color of slightly
off-black for WebGL.These two

lines of code
set up depth
perception.

Fires the run code
argument after everything
has been set up.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

278 CHAPTER 9 WebGL: 3D application development
 gd.core.draw();
 },

 shader: {
 init: function() {},
 get: function(id) {},
 store: function() {}
 },

 draw: function() {},

 overlap: function(
 x1, y1, width1, height1,
 x2, y2, width2, height2) {
 x1 = x1 - (width1 / 2);
 y1 = y1 - (height1 / 2);
 x2 = x2 - (width2 / 2);
 y2 = y2 - (height2 / 2);

 return x1 < x2 + width2 &&
 x1 + width1 > x2 &&
 y1 < y2 + width2 &&
 y1 + height1 > y2;
 }
};

STEP 5: MANAGE ENTITY STORAGE

Now you need to manage entity storage and create a graveyard to handle cleaning out
deleted entities. Add the following listing to complete core.js’s entity management
inside your existing gd.core object. These methods make maintaining entities signifi-
cantly easier when you program the run.js file later.

gd.core = {
 id: {
 count: 0,
 get: function() {
 return this.count++;
 }
 },

 storage: {
 all: [],
 a: [],
 b: []
 },

 graveyard: {
 storage: [],
 purge: function() {
 if (this.storage) {
 for (var obj = this.storage.length; obj--;) {
 this.remove(this.storage[obj]);
 }
 this.graveyard = [];

Listing 9.6 core.js—Engine entity management

Shaders will be covered later;
this is a placeholder for now.

Drawing will be covered
during graphic creation; this
is currently a placeholder.

The gd.core.overlap() method is for
detecting overlap between two squares.

WebGL objects are drawn from the center,
and you need to calculate from the top left.
You need to adjust the width and height
calculations to account for that.

Gives new entities a unique ID identifier.
Speeds up searching for and deleting objects.

Storage container for holding all the
objects you generate. The A and B
containers are used to cut down on
collision-detection comparisons by
placing friendlies in A, enemies in B.

Used to destroy entities at the end of
your update loop to prevent accidentally
referencing a nonexistent entity.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

279Building a WebGL engine
 }
 },
 remove: function(object) {
 var obj;
 for (obj = gd.core.storage.all.length; obj--;) {
 if (gd.core.storage.all[obj].id === object.id) {
 gd.core.storage.all.splice(obj, 1);
 break;
 }
 }

 switch (object.type) {
 case 'a':
 for (obj = gd.core.storage.a.length; obj--;) {
 if (gd.core.storage.a[obj].id === object.id) {
 gd.core.storage.a.splice(obj, 1);
 break;
 }
 }
 break;
 case 'b':
 for (obj = gd.core.storage.b.length; obj--;) {
 if (gd.core.storage.b[obj].id === object.id) {
 gd.core.storage.b.splice(obj, 1);
 break;
 }
 }
 break;
 default:
 break;
 }

 gd.gl.deleteBuffer(object.colorStorage);
 gd.gl.deleteBuffer(object.shapeStorage);
 }
 }
};

STEP 6: CREATE SHAPE ENTITIES WITH 3D DATA

You need to set up an extendable class to create entities that contain 3D data. You’ll
use John Resig’s Simple JavaScript Inheritance script that you added earlier in combi-
nation with a template object. Think of templates as molds for all of your game’s reus-
able visual assets, such as players, enemies, and particles. Add the next listing in a file
right next to core.js called template.js.

var gd = gd || {};

gd.template = {
 Entity: Class.extend({
 type: 0,

 x: 0,
 y: 0,
 z: 0,

Listing 9.7 template.js—Entity default template

JavaScript’s garbage
cleanup is subpar.
You need to
manually purge 3D
data from entities to
prevent your
application from
slowing down.

Core API

Set the collision detection to a string of
“a” = friendly, “b” = enemy, and “0” = passive.
Friends and enemies will collide, but passive
entities won’t during collision detection.

Z-axis makes elements 3D; we’ll
cover this in more detail later.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

280 CHAPTER 9 WebGL: 3D application development

zo

pr
re

k

p

 zoom: -80,

 position: function() {
 return [this.x, this.y, this.z + this.zoom];
 },

 width: 0,
 height: 0,

 update: function() {},

 collide: function() {
 this.kill();
 },

 kill: function() {
 gd.core.graveyard.storage.push(this);
 },

 rotate: {
 angle: 0,
 axis: false
 }
 })
};

STEP 7: ADD REUSABLE METHODS THAT SPEED UP PROGRAMMING AND MAKE FILES EASIER
TO MAINTAIN

We know that the previous code doesn’t directly create any 3D graphics, but it makes
working with 3D much easier. Bear with us for one more code snippet, and we’ll cover
WebGL right after.

 Let’s create the last file, game.js, which will have several generic methods to speed
up programming. These methods will slim down your run.js file and make it easier to
maintain. Populate the game.js file in the engine directory with the following listing.

var gd = gd || {};

gd.game = {
 spawn: function(name, params) {
 var entity = new gd.template[name];

 entity.id = gd.core.id.get();

 gd.core.storage.all.push(entity);
 switch (entity.type) {
 case 'a':
 gd.core.storage.a.push(entity);
 break;
 case 'b':
 gd.core.storage.b.push(entity);
 break;
 default:
 break;
 }

Listing 9.8 game.js—Entity helper methods

We’re using
om to create

an artificial
camera in

WebGL.
Normally, a
good chunk

of extra
ogramming is
quired, so it’s
ind of a hack
to speed up

rogramming.

Assembles and
returns a position
in a WebGL
editable format.

update() is always called
before an entity is drawn.

Collisions fire the
kill method.

Send the entity to the
graveyard for deletion
before cp.core.draw()
can run again.

Rotation will be used
later to configure unique
angles for entities.

Core API

gd.game.spawn() will generate any
entity template when given a name
with type String. It’ll also pass any
additional parameters to your init()
method if you declared them.

Pushes the newly created
entity into storage.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

281Building a WebGL engine

Allo
easil
for le

ga
a

ma
t

he
b

env

s

meas

n
b

 if (arguments.length > 1 && entity.init) {
 var args = [].slice.call(arguments, 1);
 entity.init.apply(entity, args);
 } else if (entity.init) {
 entity.init();
 }
 },

 boundaries: function(obj, top, right, bottom, left, offset) {
 if (offset === undefined)
 offset = 0;

 if (obj.x < - this.size.width - offset) {
 return left.call(obj);
 } else if (obj.x > this.size.width + offset) {
 return right.call(obj);
 } else if (obj.y < - this.size.height - offset) {
 return bottom.call(obj);
 } else if (obj.y > this.size.height + offset) {
 return top.call(obj);
 }
 },

 rotate: function(obj) {
 var currentTime = Date.now();
 if (obj.lastUpdate < currentTime) {
 var delta = currentTime - obj.lastUpdate;

 obj.rotate.angle += (30 * delta) / obj.rotate.speed;
 }
 obj.lastUpdate = currentTime;
 },

 random: {
 polarity: function() {
 return Math.random() < 0.5 ? -1 : 1;
 },
 number: function(max, min) {
 return Math.floor(Math.random() * (max - min + 1) + min);
 }
 }
};12

If everything was set up correctly, you can run index.html, and your browser’s console
will only inform you of no errors or that run.js doesn’t exist. If you happened to create
the run.js file earlier, it won’t fire the error shown in figure 9.5.

 Now that your engine’s mechanics are set up, you need to complete it by sending your
object’s 3D data to a user’s graphics card, then displaying the returned information.

1 John Resig blog, “Partial Application in JavaScript,” last updated February 2008, http://mng.bz/6SU0.
2 “Animating objects with WebGL,” Mozilla Developer Network, last updated Aug 7, 2012, http://mng.bz/

O5Z2.

If you added
additional
arguments to
init(), they’ll be
passed in via
the currying
technique of
prefilling
function
arguments.
John Resig blogs
about curring
in JavaScript.1

ws you to
y set logic
aving the
me’s play
rea. You’ll

need to
nually set
he game’s
width and
ight later
ecause 3D
ironment
units are

ubjective.
Most 3D
engines

allow you
to set

urements
because

one exist
y default.

Rotation method will
allow you to move an
object around its
center point (originally
taken from Mozilla’s
WebGL tutorial).2

Random number
generation
helpers.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/6SU0
http://mng.bz/O5Z2
http://mng.bz/O5Z2

282 CHAPTER 9 WebGL: 3D application development
9.2 Communicating with a graphics card
While a war rages on to establish online standards, so does another for computer graph-
ics. OpenGL and Direct X are two heavily competing graphics API libraries for 3D appli-
cations. Although the two have many differences between them, you mainly need to
know that OpenGL is open source and Direct X is proprietary. Because of OpenGL’s
open source nature, support for its internet baby, WebGL, has grown significantly.

NOTE We’re deeply indebted to Mozilla’s WebGL tutorials (https://developer
.mozilla.org/en/WebGL) and Learning WebGL’s lessons (http://learningwebgl
.com) for the code you’ll be using in this section. Thanks, Mozilla and WebGL!

OpenGL is a cross-platform library for Mac OS X, Unix/Linux, and Windows. It allows
for graphics hardware control at a low level. WebGL is based on OpenGL ES (OpenGL
for Embedded Systems), which is a subset of OpenGL for mobile devices. Although
WebGL’s ability to render 3D data via browser seems great, it’s also violating the inter-
net’s security model of not letting web pages access hardware. The good news,
though, is that browsers integrate extra security features to “hopefully” prevent some-
one from setting your graphics card on fire, stealing graphic memory, and/or launch-
ing DoS attacks (more details at http://www.contextis.com/resources/blog/webgl2/).
We’re going to be optimistic here and assume those things won’t happen.

Let’s start by looking at how WebGL renders data before you see it.

In this section, you’ll learn how
■ WebGL processes data inside a computer
■ To create shader data and store
■ To create and store shape data with buffers
■ To manipulate matrices to output assembled 3D data on a screen
■ To use a few scripts that make writing matrices easier

Figure 9.5 If you load up index.html and take a look at your console, it will display no errors or that
run.js is missing. Know that if you’ve created a run.js file already, it won’t fire the shown error.

Core API
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://developer.mozilla.org/en/WebGL
http://learningwebgl.com
http://www.contextis.com/resources/blog/webgl2/
https://developer.mozilla.org/en/WebGL
http://learningwebgl.com

283Communicating with a graphics card
9.2.1 Graphics cards: a quick primer

Consider the game you’re creating: How will a user’s browser process and display the
3D data for your objects? Take a look at figure 9.6.

 What figure 9.6 shows you is that when sending over the 3D data B for entities to a
graphics card, the data starts as arrays c (computer data) and gets processed by the
GPU (graphics processing unit) into vertex buffers d (more data). During this render-
ing stage, additional information is required to assemble your 3D shapes (such as buf-
fer variables). After processing vertex buffers, the data runs through a vertex shader e
to generate screen positioning and color information. 3D data is then further pro-
cessed by the GPU into triangle segments through the triangle assembler f and then
sent to a rasterizer g that removes unnecessary visual data from shapes, generates pixel
fragments, and smooth’s out color surfaces. Shape data then flows through a fragment
shader h, which outputs color and depth for each pixel. Lastly, everything is drawn
onto a user’s screen by a framebuffer i.

If you need more detailed information on how WebGL processes data, we recommend
reading Opera’s explanation at http://mng.bz/4Lao. Our version is quick and simple,
because we don’t want to put you to sleep.

3D graphics and triangles? I don’t get it.
When you’re learning to create shapes with a 2D surface, you usually create a rect-
angle first. But it isn’t the simplest of shapes, and you can’t easily fit a bunch of tiny
rectangles together to create a person’s face or a ball. On the other hand, tiny trian-
gles can fit together to easily create almost any shape imaginable. For a great over-
view of triangles in 3D programming, see Rene Froeleke’s article “Introduction to 3D
graphics” at http://mng.bz/STHc.

3D Data Graphics Card

Arrays Vertex Buffers Vertex Shader

Rasterizer Fragment Shader FramebufferTriangle Assembler

3D data

Graphics Card

1

2

5 6 7 8

3 4

Figure 9.6 A clean version of the rendering pipeline. Although not a be-all-end-all
explanation, it explains the basic steps WebGL goes through as it processes 3D data from
start to finish.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http:// mng.bz/STHc
http:// mng.bz/4Lao

284 CHAPTER 9 WebGL: 3D application development
MEANWHILE, BACK AT THE ENGINE

Your engine currently doesn’t communicate with a graphics card. To do so, you’ll fol-
low two groups of steps:

Once you’ve completed these tasks, you’ll be ready to program the game.

9.2.2 Creating shaders for 3D data

Before you begin with the Group 1 set of tasks, pick up Jacob Seidelin’s helpful
WebGL Cheat Sheet at http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html. It
breaks down all of the methods for WebGL’s context into categories such as shaders,
buffers, and more, which will help as you move through these next few sections.

STEP 1: CREATE AND CONFIGURE COLOR, VERTEX, AND SHAPE SHADERS VIA OPENGL ES
To start up your shaders, gd.core.shader.init() needs to call gd.core.shader.get()
and gd.core.shader.store() to retrieve shading data. In addition, you’ll need to
write a little bit of code in a mystery language—OpenGL ES (see the sidebar on
OpenGL ES for more information)—and place that code in your HTML document.
Add the following listing inside index.html right before your JavaScript files. Note that
if you put it anywhere other than right before your JavaScript files, your game will
probably fail to load.

<script id="shader-vertex" type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec4 aVertexColor;

 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

Group 1—Creating shaders and buffers Group 2—Working with matrices and drawing shapes

■ Step 1: Create and configure color, vertex,
and shape shaders via OpenGL ES.

■ Step 2: Set up shader retrieval from
the DOM.

■ Step 3: Pull shader data from the DOM.
■ Step 4: Create shape, color, and dimension

buffers for entities.

■ Step 1: Use matrices and buffers to visually output
information.

■ Step 2: Bind and draw shapes.
■ Step 3: Detect overlap and remove entities.
■ Step 4: Add matrix helpers to simplify matrix

interaction.
■ Step 5: Add Vlad Vukićević’s WebGL helpers

for rotation.

WHAT ARE SHADERS AGAIN?
We’re throwing “shaders” around like it’s a hip word. A long time ago it may have
meant shading in shapes with color, but now it means much more than that. Today’s
shaders program the GPU for transformations, pixel shading, and special effects
such as lighting.

Listing 9.9 index.html—Color, vertex, and shape shaders

Core API

Configuration for position
and color in your shaders.

Uniform declares this is a constant variable,
and mat4 references a 4-by-4 float matrix.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html

285Communicating with a graphics card

d
co

w
o

surf
p

r
 varying lowp vec4 vColor;

 void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
 vColor = aVertexColor;
 }
</script>

<script id="shader-fragment" type="x-shader/x-fragment">

 varying lowp vec4 vColor;

 void main(void) {
 gl_FragColor = vColor;
 }
</script>

STEP 2: SET UP SHADER RETRIEVAL FROM THE DOM
With your shader scripts configured, you need to process them via JavaScript. Replace
gd.core.shader.init() with the following listing in core.js.

gd.core = {
 shader: {
 init: function() {
 this.fragments = this.get('shader-fragment');
 this.vertex = this.get('shader-vertex');

 this.program = gd.gl.createProgram();

 gd.gl.attachShader(this.program, this.vertex);
 gd.gl.attachShader(this.program, this.fragments);
 gd.gl.linkProgram(this.program);

 if (!gd.gl.getProgramParameter(this.program, gd.gl.LINK_STATUS)) {
 return alert("Shaders have FAILED to load.");
 }

 gd.gl.useProgram(this.program);

 this.store();

 gd.gl.deleteShader(this.fragments);
 gd.gl.deleteShader(this.vertex);
 gd.gl.deleteProgram(this.program);
 }
 }
};

OpenGL ES shading language cheat sheet
OpenGL ES is a subset of OpenGL aimed at embedded systems such as mobile
phones, game consoles, and similar devices. The Khronos Group has compiled a
PDF for WebGL that contains a cheat sheet on OpenGL ES Shading Language. It
significantly helps with writing your own custom shader scripts. Pick up your copy
at http://mng.bz/1TA3.

Listing 9.10 core.js—Shader setup

Varying
eclares

lor data
ill vary
ver the
ace of a
rimitive
shape.

Stores your data inside appropriate variables.

shader-vertex
handles position
and vertex info;
shader-fragment
handles color
assignment.

Pulls shader programs
from the DOM. Notice
that shader-fragment
and shader-vertex
reference the two shade
scripts you wrote.

Creates a
“program” for

your shader (holds
one fragment and

vertex shader). Links your shaders
and newly created
“program” together.

Failsafe in case
shaders crash as
they’re loading.

Stores the
shader

data for
later use.

Clears out leftover shader
data so it doesn’t sit uselessly
in memory. You could delete
these shaders manually by
waiting for JavaScript’s
garbage collector, but this
gives more control.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http:// mng.bz/1TA3

286 CHAPTER 9 WebGL: 3D application development

ta
STEP 3: PULL SHADER DATA FROM THE DOM
In the previous listing, gd.core.shader.init() accesses the shader-vertex and shader-
fragment scripts you put in index.html. gd.core.shader.get()retrieves and pro-
cesses your shader by pulling it from the DOM, sending back a compiled package of
data or an error. gd.core.shader.init() continues processing and attaches your
DOM results to a program. The program sets up vertices, fragments, and color in a
store method. Lastly, all the leftover graphics data is deleted. Replace gd.core.shader
.get() and gd.core.shader.store() with the next listing in core.js to complete load-
ing your shaders.

gd.core = {
 shader: {
 get: function(id) {
 this.script = document.getElementById(id);

 if (!this.script) {
 alert('The requested shader script was not found ' +
 'in the DOM. Make sure that gd.shader.get(id) ' +
 'is properly setup.');
 return null;
 }

 this.source = "";
 this.currentChild = this.script.firstChild;

 while (this.currentChild) {

 if (this.currentChild.nodeType ===

➥ this.currentChild.TEXT_NODE) {
 this.source += this.currentChild.textContent;
 }
 this.currentChild = this.currentChild.nextSibling;
 }

 if (this.script.type === 'x-shader/x-fragment') {
 this.shader = gd.gl.createShader(gd.gl.FRAGMENT_SHADER);
 } else if (this.script.type === 'x-shader/x-vertex') {
 this.shader = gd.gl.createShader(gd.gl.VERTEX_SHADER);
 } else {
 return null;
 }

 gd.gl.shaderSource(this.shader, this.source);
 gd.gl.compileShader(this.shader);

 if (!gd.gl.getShaderParameter(this.shader,

➥ gd.gl.COMPILE_STATUS)) {
 alert('Shader compiling error: ' +
 gd.gl.getShaderInfoLog(this.shader));
 return null;
 }

 return this.shader;
 },

Listing 9.11 core.js—Shader retrieval

No shader script
in the DOM?

Return nothing
and an error.

Returns the compiled
shader data after
being collected via a
while loop.

Tests what kind of
shader is being used
(fragment or vertex)

and processes it
based on the results.

Takes all of your shader da
and compiles it together.

Compile success? If
not, fire an error.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

287Communicating with a graphics card

R

pro

fro

St
b
yo

e

m
r

a

sy
e

 store: function() {
 this.vertexPositionAttribute =
 gd.gl.getAttribLocation(
 this.program, "aVertexPosition");
 gd.gl.enableVertexAttribArray(this.vertexPositionAttribute);

 this.vertexColorAttribute = gd.gl.getAttribLocation(
 this.program, "aVertexColor");
 gd.gl.enableVertexAttribArray(this.vertexColorAttribute);
 }
 }
};

9.2.3 Creating buffers for shape, color, and dimension
With all that shader data present, you now need to create buffers for shape, color, and
dimension. One interesting fact about buffer data is that each object will have its own
independent set of buffers.

STEP 4: CREATE SHAPE, COLOR, AND DIMENSION BUFFERS FOR ENTITIES

To buffer your data, open template.js and append gd.template.Entity.shape(),
gd.template.Entity.color(), and gd.template.Entity.indices() to the Entity
object with the following listing.

gd.template = {
 Entity: Class.extend({
 shape: function(vertices) {
 this.shapeStorage = gd.gl.createBuffer();
 gd.gl.bindBuffer(gd.gl.ARRAY_BUFFER, this.shapeStorage);
 gd.gl.bufferData(gd.gl.ARRAY_BUFFER,
 new Float32Array(vertices), gd.gl.STATIC_DRAW);

 this.shapeColumns = 3;
 this.shapeRows = vertices.length / this.shapeColumns;
 },

 color: function(vertices) {
 this.colorStorage = gd.gl.createBuffer();

 if (typeof vertices[0] === 'object') {

 var colorNew = [];

 for (var v = 0; v < vertices.length; v++) {
 var colorLine = vertices[v];
 for (var c = 0; c < 4; c++) {
 colorNew = colorNew.concat(colorLine);
 }
 }

 vertices = colorNew;
 }

 gd.gl.bindBuffer(gd.gl.ARRAY_BUFFER, this.colorStorage);
 gd.gl.bufferData(gd.gl.ARRAY_BUFFER,
 new Float32Array(vertices), gd.gl.STATIC_DRAW);

Listing 9.12 template.js—Buffer configuration

etrieves vertex data
from your shader

gram for rendering
3D objects later.

Color data retrieval
m shader program.

Core API

When creating a shape you’ll pass
in vertices, and this method will
take care of everything else.

Creates
buffer
data.ores created

uffer data so
u can use it.

Uses float32
to change th
array into
a WebGL
editable
format.

At the end of each
ethod you need to
ecord information
about the passed

rray because your
dependency

lvester.js requires
xtra array details. A helper to

disassemble
large packages
of color data.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

288 CHAPTER 9 WebGL: 3D application development
 this.colorColumns = 4;
 this.colorRows = vertices.length / this.colorColumns;
 },

 indices: function(vertices) {
 this.indicesStorage = gd.gl.createBuffer();
 gd.gl.bindBuffer(gd.gl.ELEMENT_ARRAY_BUFFER,
 this.indicesStorage);
 gd.gl.bufferData(gd.gl.ELEMENT_ARRAY_BUFFER,
 new Uint16Array(vertices), gd.gl.STATIC_DRAW);

 this.indicesCount = vertices.length;
 }
 })
};

To use the buffer methods you created, you’ll need to manually call this.shape(),
this.color(), and possibly this.indices() when you create a new entity. More on
how to use these new methods when you program run.js later in this chapter. In order
to output the created buffer data, you’ll need to configure gd.core.draw() next.

9.2.4 Displaying shape data on a screen
Using gd.core.draw(), you’ll loop through all of the current entities in gd.core
.storage.all. For each entity, you’ll use a three-step process that spans three code
listings, which means you need to make sure each of the next three listings continues
from the previous one or the code won’t work. Note also that we’re now working
through the second group of steps.

■ Group 2—Working with matrices and drawing shapes
– Step 1: Use matrices and buffers to visually output information.
– Step 2: Bind and draw shapes.
– Step 3: Detect overlap and remove entities.
– Step 4: Add matrix helpers to simplify matrix interaction.
– Step 5: Add Vlad Vukićević’s WebGL helpers for rotation.

STEP 1: USE MATRICES AND BUFFERS TO VISUALLY OUTPUT INFORMATION

Let’s start step 1 by opening core.js and replacing gd.core.draw() with listing 9.13.
The listing will clear out the canvas’s previous draw data and set the current perspec-
tive to draw all entities currently in storage. For all of the entities, it will run their
update and rotation logic if it’s configured. Be careful with the for loop in this listing,
because it’s continued for two more listings (up to listing 9.15).

gd.core = {
 draw: function() {
 gd.gl.clear(gd.gl.COLOR_BUFFER_BIT | gd.gl.DEPTH_BUFFER_BIT);

 this.perspectiveMatrix = makePerspective(45, this.horizAspect,
 0.1, 300.0);

Listing 9.13 core.js—Drawing shapes

Indices is plural for
index. In WebGL
buffers are used to
assemble triangles
into a single shape.
By using indices
you can define the
location of a pair
of triangles,
instead of just
one at a time.

Core API

Wipes your WebGL viewport clean
to draw a brand-new frame.

Sets the viewing perspective from 1 to 300 units
of distance (prevents aspect ratio distortion).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

289Communicating with a graphics card

es

 for (var i in this.storage.all) {
 this.loadIdentity();

 this.storage.all[i].update();

 this.mvTranslate(this.storage.all[i].position());
 this.mvPushMatrix();

 if (this.storage.all[i].rotate.axis) {
 this.mvRotate(
 this.storage.all[i].rotate.angle,
 this.storage.all[i].rotate.axis);
 }
 }
};3

STEP 2: BIND AND DRAW SHAPES

With the matrix set up properly and rotation applied, you need to output the buffer
information for the current 3D object. Do this by binding 3D data and then outputting
it through gd.gl.vertexAttribPointer(), which passes along bound buffer data.
Use the next listing to continue your gd.core.draw() method.

gd.core = {
 draw: function() {
 gd.gl.bindBuffer(
 gd.gl.ARRAY_BUFFER,
 this.storage.all[i].shapeStorage);
 gd.gl.vertexAttribPointer(
 this.shader.vertexPositionAttribute,
 this.storage.all[i].shapeColumns,
 gd.gl.FLOAT,
 false, 0, 0);

 gd.gl.bindBuffer(
 gd.gl.ARRAY_BUFFER,
 this.storage.all[i].colorStorage);
 gd.gl.vertexAttribPointer(
 this.shader.vertexColorAttribute,
 this.storage.all[i].colorColumns,
 gd.gl.FLOAT,
 false, 0, 0);

 this.setMatrixUniforms();

 if (this.storage.all[i].indicesStorage) {
 gd.gl.drawElements(
 gd.gl.TRIANGLES,
 this.storage.all[i].indicesCount,

3 Weisstein, Eric W., “Identity Matrix,” MathWorld, a Wolfram Web Resource, http://mng.bz/CO1M.

Listing 9.14 core.js—Drawing shapes (continued)

Loops through every entity in storage and
draws it. The for statement doesn’t end in this
listing because it’s continued in the next two.

Resets and creates a matrix that has 1s
diagonally and 0s everywhere else3.

Run the update()
before outputting
shapes to prevent
new entities from
showing up in the
wrong location for

a split second.

Grabs x, y, and z
coordinates from
your entity to
clarify a draw
location and push
it into an array.

Standardized method
for pushing the current
matrix item to the top
of the matrix stack.

If rotate data is present,
it will be run here.

Binds ARRAY_BUFFER to
your shapeStorage object.

Defines an array of
generic vertex
attribute data.

Pushes your matrix
data from JavaScript to
WebGL so the shaders
can be properly seen.

Depending on
whether or
not indices

were used, the
buffer data
needs to be

output
differently.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/CO1M

290 CHAPTER 9 WebGL: 3D application development
 gd.gl.UNSIGNED_SHORT,
 0);
 } else {
 gd.gl.drawArrays(
 gd.gl.TRIANGLE_STRIP,
 0,
 this.storage.all[i].shapeRows);
 }

 this.mvPopMatrix();
 }
};

NOTE We know it’s frustrating that you can’t see 3D models by simply refresh-
ing your browser. Bear with us to output 3D models through the engine’s
draw loop, and we’ll show you the awesome result of what you’ve created.

STEP 3: DETECT OVERLAP AND REMOVE ENTITIES
You’ve completed your output for 3D objects, but you need to append one more
chunk of code to cp.core.draw() with the following listing. It will add optimized col-
lision detection to properly monitor a (friendly) to b (enemy) overlap and clean up
your graveyard.

gd.core = {
 draw: function() {
 if (this.storage.all[i].type === 'a') {
 for (var en = this.storage.b.length; en--;) {
 if (this.overlap(
 this.storage.all[i].x,
 this.storage.all[i].y,
 this.storage.all[i].width,
 this.storage.all[i].height,
 this.storage.b[en].x,
 this.storage.b[en].y,
 this.storage.b[en].width,
 this.storage.b[en].height)) {
 this.storage.all[i].collide(this.storage.b[en]);
 this.storage.b[en].collide(this.storage.all[i]);
 }
 }
 }
 }

 this.graveyard.purge();
 }
};

PROGRESS CHECK!
Now is a good time to check your browser’s console for errors other than run.js being
missing. If so, you’re good to move on to the next section.

Listing 9.15 core.js—Drawing shapes (continued)

Removes an item from the
current matrix stack.

Collision detection
compares a type
and b type entities
to minimize logic.

Closes the for
statement from two
listings back.

Deleted elements are dumped out of the graveyard.
This is accomplished here instead of in the loop to
prevent accidentally referencing a nonexistent entity.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

291Communicating with a graphics card
STEP 4: ADD MATRIX HELPERS TO SIMPLIFY MATRIX INTERACTION.
For gd.core.draw() you’d normally have to write some extremely complex logic to
handle matrices for colors and shapes. Instead, you’re going to use some prewritten
helpers for modelview (http://3dengine.org/Modelview_matrix), perspective (http://
mng.bz/VitL), and identity matrices (http://en.wikipedia.org/wiki/Identity_matrix).
Append listing 9.16 to your gd.core object. Like webgl_util.js, the following chunk of
code comes from an unknown source, but you’ll find that Mozilla’s WebGL tutorials,
Learning WebGL, and many other online lessons make use of it.

gd.core = {
 loadIdentity: function() {
 mvMatrix = Matrix.I(4);
 },
 multMatrix: function(m) {
 mvMatrix = mvMatrix.x(m);
 },
 mvTranslate: function(v) {
 this.multMatrix(Matrix.Translation($V([v[0], v[1],
 v[2]])).ensure4x4());
 },
 setMatrixUniforms: function() {
 var pUniform = gd.gl.getUniformLocation(
 this.shader.program, "uPMatrix");
 gd.gl.uniformMatrix4fv(pUniform, false,
 new Float32Array(this.perspectiveMatrix.flatten()));

 var mvUniform = gd.gl.getUniformLocation(
 this.shader.program, "uMVMatrix");
 gd.gl.uniformMatrix4fv(
 mvUniform, false, new Float32Array(mvMatrix.flatten()));
 }
};45

STEP 5: ADD VLAD VUKIĆEVIĆ’S WEBGL HELPERS FOR ROTATION.
The code in listing 9.17 comes from Mozilla’s site at http://mng.bz/BU9f. Mozilla tells
us that “these routines were borrowed from a sample previously written by Vlad
Vukićević,” whose blog you can find at http://blog.vlad1.com. Vlad has created a cou-
ple of tools to help with rotation and with pushing and popping data. Append his
rotation logic to gd.core with the following code.

gd.core = {
 mvMatrixStack: [],

 mvPushMatrix: function(m) {
 if (m) {

Listing 9.16 core.js—Matrix helpers

4 “Matrix multiplication,” Wikipedia, last modified April 8, 2013, http://mng.bz/yo4D.
5 “Translation (geometry),” Wikipedia, last modified Feb. 21, 2013, http://mng.bz/2dbB.

Listing 9.17 core.js—Vlad Vukićević utilities

Core API

Loads up an identity matrix, which
is a series of 1s surrounded by 0s.

Multiplies a matrix4.

Runs matrix multiplication
and then translation5.

Sets the perspective
and model view matrix.

Your stack will be used to manipulate
matrix data with the following methods.

Moves given data to
the top of the stack.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://3dengine.org/Modelview_matrix
http:// mng.bz/VitL
http://mng.bz/yo4D
http://mng.bz/2dbB
http://en.wikipedia.org/wiki/Identity_matrix
http://mng.bz/BU9f
http://blog.vlad1.com
http:// mng.bz/VitL

292 CHAPTER 9 WebGL: 3D application development
 this.mvMatrixStack.push(m.dup());
 mvMatrix = m.dup();
 } else {
 this.mvMatrixStack.push(mvMatrix.dup());
 }
 },

 mvPopMatrix: function() {
 if (! this.mvMatrixStack.length) {
 throw("Can't pop from an empty matrix stack.");
 }

 mvMatrix = this.mvMatrixStack.pop();
 return mvMatrix;
 },

 mvRotate: function(angle, v) {
 var inRadians = angle * Math.PI / 180.0;

 var m = Matrix.Rotation(inRadians, $V([v[0], v[1],
v[2]])).ensure4x4();

 this.multMatrix(m);
 }
};

PROGRESS CHECK!
Run index.html now and check your browser’s console. You should see the screen
shown in figure 9.7, possibly without the missing-file error. If you get additional errors
or have trouble with your engine’s code as you proceed, you might find it easier and
less frustrating to replace the engine files with chapter 9’s source code instead of
debugging files. Debugging WebGL is a bit of a nightmare because browsers don’t
have easily accessible graphic monitoring tools.

 With the last of the utility helpers in place, you should now feel somewhat comfort-
able with graphics card communication, comfortable enough to write basic 3D output
for a WebGL application at least. Next, we’ll take the foundation you created and use
it to build your interactive 3D game: Geometry Destroyer.

Pop in JavaScript refers to an
array method that removes
the last element from an array
and returns that value to the
caller. Here, mvPopMatrix() is
returning an error or removing
and returning the last item.

This is the method that fires
rotation in cp.core.draw().

Figure 9.7 Your code should output the displayed error of “run.js is missing” or no errors at all when
running index.html. If you have trouble with the engine files as you proceed, just replace them with the
source files from Manning’s website. It’s a nightmare to debug WebGL because of browsers not having
easily accessible graphic monitoring tools.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

293Putting it all together: creating Geometry Destroyer
9.3 Putting it all together: creating Geometry Destroyer
Creating 3D shapes is tough, but you just created (or read through as we created) a 3D
engine that will significantly simplify the process. You can create new entities and
attach 3D data via matrices; the engine will take care of outputting all the data for you.
The engine will also take care of cleaning data out of memory whenever you need to.

As you understand how to create entities, you’ll learn about 3D modeling and efficient
OOP programming. If you don’t have any knowledge about creating 3D shapes or
entity management, don’t worry; we’ll guide you along the way.

The work in this section is bundled into three groups of steps:

Let’s dive in to the first group and make your player.

9.3.1 Creating a game interface and control objects

The first thing we’ll focus on is setting up the intro screen’s non-3D logic, the result of
which appears in figure 9.8.

In this section, you’ll build a cool game as you learn to
■ Write a simple matrix to output shape and color in 3D space
■ Create 3D rotation data and use it with a controller to indicate direction in 2D
■ Create and control entity generations for enemies and particles
■ Use indices to turn triangles into squares for easy matrix creation
■ Draw simple 2D shapes in 3D, plus unique polygons and cubes

Prereqs: play the game, grab the code, and test your engine
If you haven’t done so already, head over to http://html5inaction.com/app/ch9/
and play the game. And make sure you pick up the game’s files from http://
www.manning.com/crowther2/ by downloading HTML5 in Action’s source files.

Group 1—Making your player Group 2—Outputting enemies Group 3—Generating particles

■ Step 1: Capture user input.
■ Step 2: Program the

heads-up display.
■ Step 3: Create the 2D

player entity.
■ Step 4: Animate the player

entity.
■ Step 5: Create the player’s

bullets.

■ Step 1: Create a 3D polygon
enemy.

■ Step 2: Create a complex
3D model.

■ Step 3: Generate random
enemy properties.

■ Step 4: Resolve enemy
collisions.

■ Step 5: Spawn enemies in a
controlled manner.

■ Step 1: Create a 3D cube
particle.

■ Step 2: Add color, rotation, and
index data for cubes.

■ Step 3: Add size, type, and
other cube metadata.

■ Step 4: Generate square
particles.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://html5inaction.com/app/ch9/
http://www.manning.com/crowther2/
http://www.manning.com/crowther2/

294 CHAPTER 9 WebGL: 3D application development

hei
gam

f

your
STEP 1: CAPTURE USER INPUT

In your js folder, create and/or open run.js in the text editor of your choice. You
should notice that it’s completely blank. Set up the game’s basic input monitor and
methods by inserting everything into a self-executing function with the following list-
ing in run.js. Make sure to place all code from here on out in this self-executing func-
tion to prevent variables from leaking into the global scope.

(function() {
 gd.core.init(800, 600, function() {
 Ctrl.init();
 Hud.init();
 gd.game.spawn('Player');
 });

 gd.game.size = {
 width: 43,
 height: 32
 };

 var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 },

Listing 9.18 run.js–Initial game setup

Figure 9.8 The first thing you’ll do is set up the intro screen logic. After that,
you’ll create the triangular player between the words Geometry and Destroyer,
which you haven’t seen previously.

Place all code from here on out inside the
self-executing function to prevent variables
from leaking into the global scope.

Declares
width,

ght, and
e setup
logic to

ire after
loading
 engine.

The width and height of the play
area in 3D units. Everything is
measured from the middle with a
Cartesian graph, so this is only half
the width and height.

Controller for user input.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

295Putting it all together: creating Geometry Destroyer
 keyDown: function(event) {
 switch(event.keyCode) {
 case 38: Ctrl.up = true; break;
 case 40: Ctrl.down = true; break;
 case 37: Ctrl.left = true; break;
 case 39: Ctrl.right = true; break;
 case 88: Ctrl.x = true; break;
 default: break;
 }
 },

 keyUp: function(event) {
 switch(event.keyCode) {
 case 38: Ctrl.up = false; break;
 case 40: Ctrl.down = false; break;
 case 37: Ctrl.left = false; break;
 case 39: Ctrl.right = false; break;
 case 88: Ctrl.x = false; break;
 default: break;
 }
 }
 };
}());

STEP 2: PROGRAM THE HEADS-UP DISPLAY

Controller input is now detectable, and the game engine will launch as expected. But
you still need to create the heads-up display (HUD) to manage score and initial setup.
You also need the player, but let’s start with the HUD by creating a new variable called
Hud below Ctrl with the following listing.

var Hud = {
 init: function() {
 var self = this;

 var callback = function() {
 if (Ctrl.x) {
 window.removeEventListener('keydown', callback, true);
 PolygonGen.init();
 self.el.start.style.display = 'none';
 self.el.title.style.display = 'none';
 }
 };

 window.addEventListener('keydown', callback, true);
 },

 end: function() {
 var self = this;
 this.el.end.style.display = 'block';
 },

 score: {
 count: 0,
 update: function() {

Listing 9.19 run.js—Heads-up display (HUD)

Up arrow.

Down arrow.

Left arrow.
Right arrow.

x keyboard key.

Begins polygon generation
when a players presses X.

Ends the game by displaying
the Game Over screen.

Simple method that increments
and tracks a player’s score.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

296 CHAPTER 9 WebGL: 3D application development
 this.count++;
 Hud.el.score.innerHTML = this.count;
 }
 },

 el: {
 score: document.getElementById('count'),
 start: document.getElementById('start'),
 end: document.getElementById('end'),
 title: document.getElementById('title')
 }
};

9.3.2 Creating 2D shapes in 3D

With your HUD and controller built, you can program the player entity, a simple white
triangle that can move when certain keyboard keys are pressed. You’ll also make it
generate bullets whenever a player presses the X key. Figure 9.9 shows the white, trian-
gular player and a single red bullet.

STEP 3: CREATE THE 2D PLAYER ENTITY
Append the next listing after your Hud object to create all of the data required to ini-
tialize your player. Most of the initializing information will be stored in variables at the
top, so you can easily tweak the player’s data in the future.

gd.template.Player = gd.template.Entity.extend({
 type: 'a',
 x: -1.4,
 width: 1,
 height: 1,
 speed: 0.5,
 shoot: true,
 shootDelay: 400,
 rotate: {
 angle: 0,
 axis: [0, 0, 1],
 speed: 3
 },

Listing 9.20 run.js—Player creation

Captures and stores
alterable elements
for easy reference.

Figure 9.9 Displays the player’s ship firing a bullet. Notice that both shapes are 2D
but drawn in a 3D environment.

Core API

Offsets player to line
up nicely with text.

All width and height measurements
are equal to one player unit.

A variable we’ll use to decide how
fast a player’s position increments.

Can be a
value from

0 to 360.
Allows you to only
rotate the player in 2D.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

297Putting it all together: creating Geometry Destroyer
 init: function() {
 this.shape([
 0.0, 2.0, 0.0,
 -1.0, -1.0, 0.0,
 1.0, -1.0, 0.0
]);

 this.color([
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0
]);
 },

 boundaryTop: function() { this.y = gd.game.size.height; },
 boundaryRight: function() { this.x = gd.game.size.width; },
 boundaryBottom: function() { this.y = -gd.game.size.height; },
 boundaryLeft: function() { this.x = -gd.game.size.width; },

 kill: function() {
 this._super();
 PolygonGen.clear();
 Hud.end();
 }
});

3D DRAWING BASICS

The most confusing part of creating players is probably the shape() and color() meth-
ods. The shape() method assembles the triangle in figure 9.10, and the color() method
fills it in with white.

Creates a triangle by plotting and
connecting three different points from the
passed array data. Each line of the array
plots a point in the format of x, y, and z.

Creates a color for each point you
created with the shape method.
Each line of this array outputs a
color as red, green, blue, alpha.

Outputs white
for all three

points you
created with the

shape method.

When the player is destroyed,
the HUD and polygon generator
(set up later) will be shut down.

Core API

Point

Point

Point

Color

x

y

z

Row [0, 2, 0] of your shape matrix creates the top

point of the triangle with x, y, and z coordinates. All

three of your lines create three points for a triangle.

If you’re wondering what the

z is in the x, y, z declaration,

it adds 3D to the Cartesian

graph you’re drawing on.

Color data matrix assists by

coloring the triangle white.

0 2 0

-1 -1 0

1 -1 0

Figure 9.10 Diagram on the left shows a triangle comprising three points from the player’s
matrix data. The right diagram shows a Cartesian coordinate system with x, y, and z.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

298 CHAPTER 9 WebGL: 3D application development
The single form of the word vertices is vertex. In math,
a vertex of an angle is an endpoint where two line
segments meet. Declaring three vertices, you created
a triangle, as shown in the previous figure. Adding
one more vertex to the triangle creates the square
shown in figure 9.11, as you probably guessed.

STEP 4: ANIMATE THE PLAYER ENTITY
Getting back to your Player entity, you need to
append an update() method with the following list-
ing to complete it with movement, rotation, and
shooting controls via the keyboard. You’re already
generating keyboard properties from the Ctrl object
you integrated earlier.

gd.template.Player = gd.template.Entity.extend({
 update: function() {
 var self = this;

 if (Ctrl.left) {
 this.rotate.angle += this.rotate.speed;
 } else if (Ctrl.right) {
 this.rotate.angle -= this.rotate.speed;
 }

 if (Ctrl.up) {
 this.x -= Math.sin(this.rotate.angle * Math.PI / 180)
 * this.speed;
 this.y += Math.cos(this.rotate.angle * Math.PI / 180)
 * this.speed;
 } else if (Ctrl.down) {
 this.x += Math.sin(this.rotate.angle * Math.PI / 180)
 * this.speed;
 this.y -= Math.cos(this.rotate.angle * Math.PI / 180)
 * this.speed;
 }

 gd.game.boundaries(this, this.boundaryTop, this.boundaryRight,
 this.boundaryBottom, this.boundaryLeft);

 if (Ctrl.x && this.shoot) {
 gd.game.spawn('Bullet', this.rotate.angle, this.x, this.y);

 this.shoot = false;
 window.setTimeout(function() {
 self.shoot = true;
 }, this.shootDelay);
 }
 }
});

Listing 9.21 run.js—Player update

Line

L
in

e

Vertex

Figure 9.11 Demonstrates where
a vertex is located on a square

Update logic fires every time
a new frame is drawn.

When pushing left or right,
rotation will be triggered
for the player. Rotation is
automatically applied by
the cp.core.draw method
you set up earlier.

Updates
the

player’s
position

using the
current

angle.

Prevents
the player

from going
out of the

game’s
boundaries.

Generates a bullet from
ship’s current location and

moves it at its current angle.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

299Putting it all together: creating Geometry Destroyer
PROGRESS CHECK!
At this point, you should be able to move your ship around the page without errors, as
shown in figure 9.12. If you press X on the keyboard, though, your application will
explode because bullets haven’t been configured yet. Let’s fix that.

STEP 5: CREATE THE PLAYER’S BULLETS

Create bullets to shoot by appending the following listing after your Player entity.
Your player will shoot small triangles that destroy enemy entities on collision.
Bullets will spawn at the Player’s position when you pass in parameters through
the init() method.

gd.template.Bullet = gd.template.Entity.extend({
 type: 'a',
 width: 0.6,
 height: 0.6,
 speed: 0.8,
 angle: 0,

 init: function(angle, x, y) {
 this.shape([
 0.0, 0.3, 0.0,
 -0.3, -0.3, 0.3,
 0.3, -0.3, 0.3
]);

 var stack = [];
 for (var line = this.shapeRows; line--;)
 stack.push(1.0, 0.0, 0.0, 1.0);
 this.color(stack);

 this.angle = angle;
 this.x = x;
 this.y = y;
 },

 update: function() {
 gd.game.boundaries(this, this.kill, this.kill, this.kill, this.kill);

Listing 9.22 run.js—Making bullets

Figure 9.12 You should be able to move your player around the screen now. We’ve moved
him from between “Geometry Destroyer” to the upper-left corner. Be warned: You can’t
shoot bullets with X yet.

Angle is used to determine
the movement direction (0
to 360 degrees).

Notice how init() allows the bullet to
spawn at an x and y location and then
move at the player’s current angle.

Alternative method for creating a
color matrix. Useful when creating
a massive number of points that
have the same color value.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

300 CHAPTER 9 WebGL: 3D application development
 this.x -= Math.sin(this.angle * Math.PI / 180) * this.speed;
 this.y += Math.cos(this.angle * Math.PI / 180) * this.speed;
 },

 collide: function() {
 this._super();
 Hud.score.update();
 }
});

Armed with bullets, you should be able to run the game and fly your ship around. Try
it out if you’d like. You’ll notice that once you fire a bullet, the game fails because you
haven’t yet created the enemy assets. Let’s create those targets next.

9.3.3 Creating 3D shapes and particles
Enemies in Geometry Destroyer are complex and robust because of their dynamic
color and spawning points. As you can see in figure 9.13, they explode on contact,
shattering into cubes and rectangle particles to create an interesting effect.

Let’s get started with the second group of tasks:

■ Group 2—Outputting enemies
– Step 1: Create a 3D polygon enemy.
– Step 2: Create a complex 3D model.
– Step 3: Generate random enemy properties.
– Step 4: Resolve enemy collisions.
– Step 5: Spawn enemies in a controlled manner.

STEP 1: CREATE A 3D POLYGON ENEMY

Set up the large Polygon first by adding it below gd.template.Bullet with the follow-
ing listing. You’re only going to create its base right now; you’ll configure its 3D data
in the next listing.

gd.template.Polygon = gd.template.Entity.extend({
 type: 'b',

Listing 9.23 run.js—Polygon base

Figure 9.13 Enemies in the game have three major components. First is the large shape
shown on the far left. When destroyed, it spawns the next two components: cubes (middle)
and particles (far right).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

301Putting it all together: creating Geometry Destroyer
 width: 7,
 height: 9,

 init: function() {
 this.randomSide();
 this.randomMeta();

 var stack = [];
 for (var v = 0; v < this.shapeRows * this.shapeColumns; v += 3) {

 if (v > 108 || v <= 36) {
 stack.push(this.colorData.pyramid[0],

this.colorData.pyramid[1], this.colorData.pyramid[2], 1);

 } else {
 stack.push(this.colorData.cube[0], this.colorData.cube[1],

this.colorData.cube[2], 1);
 }
 }
 this.color(stack);
 }
});

STEP 2: CREATE A COMPLEX 3D MODEL

You need to add a massive amount of vertex data to finish gd.template.Polygon
.init()from the previous listing. It comprises a pyramid on the top and bottom, with
a cube in the middle. You’ll notice a massive array of data is needed to create the 3D
model. We recommend copying and pasting this from the downloaded source code; if
you don’t have that option, we sincerely apologize. Prepend this.shape() call from
the following listing to the top of gd.template.Polygon.init()’s existing code
from the previous listing.

gd.template.Polygon = gd.template.Entity.extend({
 init: function() {
 this.shape([
 0.0, 7.0, 0.0,
 -4.0, 2.0, 4.0,
 4.0, 2.0, 4.0,

 0.0, 7.0, 0.0,
 4.0, 2.0, 4.0,
 4.0, 2.0, -4.0,

 0.0, 7.0, 0.0,
 4.0, 2.0, -4.0,
 -4.0, 2.0, -4.0,

 0.0, 7.0, 0.0,
 -4.0, 2.0, -4.0,
 -4.0, 2.0, 4.0,

 -4.0, 2.0, 4.0,
 -4.0, -5.0, 4.0,
 -4.0, -5.0, -4.0,

Listing 9.24 run.js—Polygon shape init() prepend

Width is the measurement of the shape’s span of vertices
from left to right, whereas height is top to bottom.

Because you have an insane number of points that
need to be colored, you’ll have to dynamically create

a map of colors instead of writing them by hand.

Tests if a
triangle is

being
drawn

instead of
a square.

Core API

Top pyramid’s front.

Top pyramid’s right.

Top pyramid’s back.

Top pyramid’s left.

Each middle plate section comprises a side of the
polygon’s cubic body. The sections comprised two
triangles drawn together, which creates a square plate.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

302 CHAPTER 9 WebGL: 3D application development
 -4.0, 2.0, 4.0,
 -4.0, 2.0, -4.0,
 -4.0, -5.0, -4.0,

 -4.0, 2.0, -4.0,
 -4.0, -5.0, -4.0,
 4.0, -5.0, -4.0,
 -4.0, 2.0, -4.0,
 4.0, 2.0, -4.0,
 4.0, -5.0, -4.0,

 4.0, 2.0, 4.0,
 4.0, 2.0, -4.0,
 4.0, -5.0, -4.0,
 4.0, 2.0, 4.0,
 4.0, -5.0, 4.0,
 4.0, -5.0, -4.0,

 -4.0, 2.0, 4.0,
 4.0, 2.0, 4.0,
 4.0, -5.0, 4.0,
 -4.0, 2.0, 4.0,
 -4.0, -5.0, 4.0,
 4.0, -5.0, 4.0,

 0.0, -10.0, 0.0,
 -4.0, -5.0, 4.0,
 4.0, -5.0, 4.0,

 0.0, -10.0, 0.0,
 4.0, -5.0, 4.0,
 4.0, -5.0, -4.0,

 0.0, -10.0, 0.0,
 4.0, -5.0, -4.0,
 -4.0, -5.0, -4.0,

 0.0, -10.0, 0.0,
 -4.0, -5.0, -4.0,
 -4.0, -5.0, 4.0
]);
 }
}:

STEP 3: GENERATE RANDOM ENEMY PROPERTIES

With your polygon’s 3D data built, you need to generate speed, rotation, color, and a
spawning point so it functions properly. Append randomMeta() and cube() methods
to gd.template.Polygon with the next listing.

xgd.template.Polygon = gd.template.Entity.extend({
 randomMeta: function() {
 this.rotate = {
 speed: gd.game.random.number(400, 100),
 axis: [
 gd.game.random.number(10, 1) / 10,

Listing 9.25 run.js—Polygon shape init() prepend

Each middle plate
section comprises a side
of the polygon’s cubic
body. The sections
comprised two triangles
drawn together, which
creates a square plate.

Bottom pyramid
parallels the drawing
format of the top
pyramid, except it’s
drawn pointing down
instead of up.

Responsible for creating
random details about
rotation, speed, and color.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

303Putting it all together: creating Geometry Destroyer
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10
],
 angle: gd.game.random.number(250, 1)
 };

 this.speed = {
 x: gd.game.random.number(10, 4) / 100,
 y: gd.game.random.number(10, 4) / 100
 };

 this.colorData = {
 pyramid: [
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10
],
 cube: [
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10
]
 };
 }
});

STEP 4: RESOLVE ENEMY COLLISIONS
The last step to create the gd.template.Polygon requires you to add methods for
generating shape data from a random side and cube particles when it’s destroyed. You
also need to update logic and collision information. Append your remaining methods
to gd.template.Polygon with the following listing.

gd.template.Polygon = gd.template.Entity.extend({
 randomSide: function() {
 var side = gd.game.random.number(4, 1);

 if (side === 1) {
 this.angle = gd.game.random.number(200, 160);
 var range = gd.game.size.width - this.width;
 this.x = gd.game.random.number(range, -range);
 this.y = gd.game.size.height + this.height;
 } else if (side === 2) {
 this.angle = gd.game.random.number(290, 250);
 var range = gd.game.size.height - this.height;
 this.x = (gd.game.size.width + this.width) * -1;
 this.y = gd.game.random.number(range, -range);
 } else if (side === 3) {
 this.angle = gd.game.random.number(380, 340);
 var range = gd.game.size.width - this.width;
 this.x = gd.game.random.number(range, -range);
 this.y = (this.height + gd.game.size.height) * -1;
 } else {
 this.angle = gd.game.random.number(110, 70);

Listing 9.26 run.js—Polygon side, update, and collide

Generates random
color details for
pyramids and cubes.
Data is processed and
arranged by methods
in Polygon.init() you
already created.

Determines from which
side to randomly spawn
a polygon.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

304 CHAPTER 9 WebGL: 3D application development

th
p

O

 var range = gd.game.size.height - this.height;
 this.x = gd.game.size.width + this.width;
 this.y = gd.game.random.number(range, -range);
 }
 },

 update: function() {
 gd.game.boundaries(this, this.kill, this.kill, this.kill, this.kill,
 (this.width * 2));

 this.x -= Math.sin(this.angle * Math.PI / 180) * this.speed.x;
 this.y += Math.cos(this.angle * Math.PI / 180) * this.speed.y;

 gd.game.rotate(this);
 },

 collide: function() {
 if (gd.core.storage.all.length < 50) {
 for (var p = 15; p--;) {
 gd.game.spawn('Particle', this.x, this.y);
 }
 }

 var num = gd.game.random.number(2, 4);
 for (var c = num; c--;) {
 gd.game.spawn('Cube', this.x, this.y);
 }

 this.kill();
 }
});

STEP 5: SPAWN ENEMIES IN A CONTROLLED MANNER

Although you now have a class for polygon entities, you’ll need a separate object to
generate them. You can create this with a new object called PolygonGen right below
gd.template.Polygon with the next listing.

var PolygonGen = {
 delay: 7000,
 limit: 9,

 init: function() {

 var self = this;

 this.count = 1;
 gd.game.spawn('Polygon');

 this.create = window.setInterval(function() {
 if (gd.core.storage.b.length < self.limit) {
 if (self.count < 3)
 self.count++;

 for (var c = self.count; c--;) {
 gd.game.spawn('Polygon');
 }
 }

Listing 9.27 run.js—Polygon generator

Uses randomly generated
rotate data to make the
polygon slowly rotate.

Creates a
number of

particles at
e center of a
olygon upon
destruction.
nly occurs if
the storage

isn’t too full
to prevent

hogging
memory.

Generates a random
number of cubes at the
center of a polygon
upon destruction.

Initiates polygon
generation by
creating an interval.

Failsafe to prevent
too many objects
spawning and
potentially
crashing the
browser.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

305Putting it all together: creating Geometry Destroyer

g

 }, self.delay);
 },

 clear: function() {
 window.clearInterval(this.create);
 this.count = 0;
 this.delay = 7000;
 }
};

Polygons will now generate after you press X on a keyboard for the first time. If you
shoot them, they’ll fire an error because the game tries to use nonexistent entity tem-
plates for cubes and particles. You’ll set up those with the next set of tasks:

■ Group 3—Generating particles
– Step 1: Create a 3D cube particle.
– Step 2: Add color, rotation, and index data for cubes.
– Step 3: Add size, type, and other cube metadata.
– Step 4: Generate square particles.

STEP 1: CREATE A 3D CUBE PARTICLE

Create a new gd.template.Cube entity below PolygonGen with this listing.

gd.template.Cube = gd.template.Entity.extend({
 init: function(x, y) {
 this.x = x;
 this.y = y;

 this.meta();

 this.shape([

 -this.s, -this.s, this.s,
 this.s, -this.s, this.s,
 this.s, this.s, this.s,
 -this.s, this.s, this.s,

Issues with requestAnimationFrame() and other timers
Your method in gd.core.animate() that fires requestAnimationFrame() stops run-
ning when a user leaves a tab open in the background, unlike JavaScript’s traditional
timers setInterval() and setTimeout(), which keep on running. This means cou-
pling animation with traditional timers is generally not a good idea, because traditional
timers keep on running in the background. There used to be polyfills that relied on a
frame counter in the draw() loop, but some implementations of requestAnimation-
Frame() still update a frame after a couple seconds when a user navigates away from
a tab. The most bulletproof way to use traditional and nontraditional timers is to build
a custom timer script that checks elapsed time and fires in your draw loop. But this
subject is complicated, and we don’t have the time to cover it here. Instead, we’ve given
the polygonGen object a limit to how many enemies it can spawn for a quick patch.

Listing 9.28 run.js—Cube shape

Shuts down
polygon
generation.

Core API

Sets position for x and y with the
parameters passed at spawn.

Our shape declaration is using a much
more efficient method than our polygon
to create rectangles by using four points
instead of six. The catch is we need to
provide a set of indices.

Front plate; this.s is a
reference to a random
size generated later in

d.template.Cube.meta().
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

306 CHAPTER 9 WebGL: 3D application development
 -this.s, -this.s, -this.s,
 -this.s, this.s, -this.s,
 this.s, this.s, -this.s,
 this.s, -this.s, -this.s,

 -this.s, this.s, -this.s,
 -this.s, this.s, this.s,
 this.s, this.s, this.s,
 this.s, this.s, -this.s,

 -this.s, -this.s, -this.s,
 this.s, -this.s, -this.s,
 this.s, -this.s, this.s,
 -this.s, -this.s, this.s,

 this.s, -this.s, -this.s,
 this.s, this.s, -this.s,
 this.s, this.s, this.s,
 this.s, -this.s, this.s,

 -this.s, -this.s, -this.s,
 -this.s, -this.s, this.s,
 -this.s, this.s, this.s,
 -this.s, this.s, -this.s
]);
 }
});

STEP 2: ADD COLOR, ROTATION, AND INDEX DATA FOR CUBES

You now need to append the gd.template.Cube.init() method with color, rota-
tion, and indices data from the next listing. If you’re wondering what indices are,
they allow you to draw the sides of a square with four points. Normally, a square’s
side requires six points to create two triangles—this cuts down on code and makes it
easier to maintain.

gd.template.Cube = gd.template.Entity.extend({
 init: function(x, y) {
 this.indices([
 0, 1, 2, 0, 2, 3,
 4, 5, 6, 4, 6, 7,
 8, 9, 10, 8, 10, 11,
 12, 13, 14, 12, 14, 15,
 16, 17, 18, 16, 18, 19,
 20, 21, 22, 20, 22, 23
]);

 this.color([
 [1, 0, 0, 1],
 [0, 1, 0, 1],
 [0, 0, 1, 1],
 [1, 1, 0, 1],
 [1, 0, 1, 1],
 [0, 1, 1, 1]
]);

Listing 9.29 run.js—Cube indices and color

Back plate.

Top plate.

Bottom plate.

Right plate.

Left plate.

Each row of indices assembles
the shape coordinates of two
triangles into a plate. Each
number here represents an
index to an indice, not x, y, z
coordinates.

We’re passing an array of
indices for the colors; you
previously set up the color
method in your template.js
file to output large amounts
of color data for indices.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

307Putting it all together: creating Geometry Destroyer
 if (this.rotate)
 this.rotate = {
 axis: [
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10],
 angle: gd.game.random.number(350, 1),
 speed: gd.game.random.number(400, 200)
 };
 }
});

STEP 3: ADD SIZE, TYPE, AND OTHER CUBE METADATA
Before gd.template.Cube is complete, you need to add metadata, such as size, type,
and other details. Append the following listing to your existing Cube object.

gd.template.Cube = gd.template.Entity.extend({
 type: 'b',
 size: {
 max: 3,
 min: 2,
 divider: 1
 },
 pressure: 50,

 meta: function() {
 this.speed = {
 x: (gd.game.random.number(this.pressure, 1) / 100)
 * gd.game.random.polarity(),
 y: (gd.game.random.number(this.pressure, 1) / 100)
 * gd.game.random.polarity()
 };

 this.angle = gd.game.random.number(360, 1);

 this.s = gd.game.random.number(this.size.max, this.size.min)
 / this.size.divider;
 this.width = this.s * 2;
 this.height = this.s * 2;
 },

 update: function() {
 gd.game.boundaries(this, this.kill, this.kill, this.kill,
 this.kill, this.width);

 this.x -= Math.sin(this.angle * Math.PI / 180) * this.speed.x;
 this.y += Math.cos(this.angle * Math.PI / 180) * this.speed.y;

 if (this.rotate)
 gd.game.rotate(this);
 }
});

Listing 9.30 run.js—Cube metadata

You’ll use a size object and the meta
method to randomly generate a cube’s size.
This makes size changes easy for when you
extend this entity for particles later.

Pressure will be used to generate
how much speed a cube has after
exploding out of a polygon.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

308 CHAPTER 9 WebGL: 3D application development

.

STEP 4: GENERATE SQUARE PARTICLES
Finish your game by adding gd.template.Particle right after gd.template.Cube
with the following listing. For awesome special effects, you can turn up the number of
particles and turn off the particle limiter in Polygon.collide(). Keep in mind that
generating lots of particles can cause memory issues and frame-rate drops.

gd.template.Particle = gd.template.Cube.extend({
 pressure: 20,
 type: 0,
 size: {
 min: 2,
 max: 6,
 divider: 10
 },

 init: function(x, y) {
 this.x = x;
 this.y = y;

 this.meta();

 this.shape([
 this.s, this.s, 0.0,
 -this.s, this.s, 0.0,
 this.s, -this.s, 0.0,
 -this.s, -this.s, 0.0
]);

 var r = gd.game.random.number(10, 0) / 10,
 g = gd.game.random.number(10, 0) / 10,
 b = gd.game.random.number(10, 0) / 10;
 this.color([
 r, g, b, 1,
 r, g, b, 1,
 r, g, b, 1,
 r, g, b, 1
]);

 var self = this;
 this.create = window.setTimeout(function() {
 self.kill();
 }, 5000);
 }
});

Boot up the completed application in your browser, and everything should work cor-
rectly. You did it! You created a real 3D game—a basic WebGL engine—and learned
foundational 3D programming concepts at the same time. With these tools, you can
start using WebGL in your JavaScript projects immediately to create logos, illustra-
tions, and more—especially with robust 3D libraries like three.js.

Listing 9.31 run.js—Particle generation

Core API

Extends the cube logic
instead of writing a
new particle entity
from scratch.

Creates a flat
rectangle shape
with four points.

Randomly generates a red,
green, blue color with a
constant alpha level.

Cleans the particle out of
memory after five seconds
to prevent memory hogging
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

309Summary
9.4 Summary
The words 3D application evoke thoughts of video games and animation that illuminate
the mind’s eye. Even though you can use WebGL for entertainment purposes, this
function makes up a small percentage of what you can do. Some authors have created
3D simulations for various scenarios, such as walking through architecture and operat-
ing vehicles. Uses for 3D in-browser can also transcend Canvas’s 2D space limitations.
For instance, Bjork’s website (bjork.com) uses 2D shapes in a 3D environment for an
amazing effect (shown in figure 9.14).

 Various websites and companies are investing big money in WebGL. It’s too power-
ful to ignore, and as support improves, it will drastically change how websites and
mobile devices are programmed, mostly because WebGL will eventually give mobile
developers the ability to write one 3D application with graphics acceleration for multi-
ple devices. Therefore, we think it’s important for developers to learn more about it
now by playing with demos and tutorials.

 You’ll also be glad to know that WebGL isn’t the only API that’s evolving the Net;
we’ll talk about several others, such as the Full-Screen, Orientation, and Pointer Lock
APIs in appendix I.

Figure 9.14 Almost every illustration on the bjork.com home page is drawn in a 2D fashion. When
they’re moved, you can tell that all the illustrations are 3D.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

appendix A
HTML5 and related

specifications

It would be odd if you hadn’t heard buzzwords such as HTML5, CSS3, and Node.JS
used inaccurately, or even incorrectly, at some point. In particular, HTML5 has
become a catchall word for emerging web technologies. For example, one of the
authors once met a marketer who said, “I can create an SEO-optimized video game
with HTML5.” At the least, it’s important to know what an HTML5 specification is,
and what it isn’t, to keep you from making a fool of yourself. For appendix A, we’ll
cover what’s officially HTML5 and what isn’t.

A.1 The origins of HTML5
You might be surprised to learn that the Worldwide Web Consortium (W3C) didn’t
advocate HTML5 in the beginning. W3C considered HTML to be dead after HTML4
and was working on XHTML2, continuing the trend of web markup based on an
XML syntax. If you thought XHTML1 was strict, the second version promised to take

This appendix covers
■ Development of the HTML5 specification
■ Popular W3C-accepted HTML5 specifications

(non-drafts)
■ Related, popular specifications (non-HTML5)
310

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

311The origins of HTML5
things further. As a result, many members in the W3C felt a need for a change of direc-
tion, and the WHATWG (Web Hypertext Application Technology Working Group) was
formed to begin work on HTML5.

 HTML5 started off as Web Apps 1.0 and Web Forms 2.0, then later merged into a
single specification: HTML5. Before long, W3C began to realize that there was merit to
the case for HTML and began working on version 5 of HTML (not quite the same as
HTML5, it should be noted), taking the work of WHATWG as the starting point for the
new standard. For a time, this only added to the confusion. Not only was WHATWG
continuing to work on HTML5, but W3C was also working on version 5 of HTML,
derived from an earlier version of the HTML5 specification, while it was also continu-
ing work on XHTML2. Confused? We certainly were.

 Since that time, XHTML2 finally died, and developers at both WHATWG and W3C
worked on the HTML5 specification, with each maintaining a separate version, albeit
both overseen by the same editor. Why the need for two separate groups? Politics. For
various reasons, some stakeholders in the process can’t join WHATWG and others can’t
join W3C. As a result, both groups continue to work concurrently.

A.1.1 WHATWG vs. W3C

The goal of WHATWG is to continually update the “HTML Living Standard” based on
feedback from all stakeholders to maintain a position slightly ahead of current imple-
mentations. WHATWG has given up on version numbers and sees the standard as an
evolving document. It aims to stay just ahead of the functionality in browsers, provid-
ing a forum for everyone to agree on the details of any new feature and documenta-
tion of the final implementations.

 W3C is sticking with the traditional version-based approach. We can expect HTML5
to be followed by HTML6 and HTML7, all using a snapshot of the WHATWG document
as a basis. As a result, W3C has split what exists as one specification at the WHATWG
into (currently) eight different specifications so that features can develop at their own
pace without holding up the release of standards. You can find a list of the individual
specifications at WHATWG’s FAQ page: http://mng.bz/dWRb.

 Another key difference between the groups is decision making. In WHATWG, the
editor has complete control when it comes to making decisions regarding the HTML5
specification. W3C has an HTML Working Group with its own escalation process for
making decisions on disputed issues.

 W3C has a large number of specifications outside of HTML, and one goal is that all
the specs should be compatible. W3C has been focused on XML-based technologies for
a number of years, and WHATWG was formed in opposition to the pure XML
approach, so this has been the underlying source of the disagreements so far. But
despite some heated discussions, the two specs are yet to diverge.

 To help you keep the key differences straight, refer to the summary in table A.1.

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/dWRb

312 APPENDIX A HTML5 and related specifications
The real-life interactions of thousands of smart people are, of course, more complex
than can be described in a simple table, especially when you remember that many of
these people are in both W3C and WHATWG. But this section has given you some use-
ful context if you ever have to dive into a debate on the WHATWG mailing list or the
W3C bug tracker over some detail of one of the specs when you’re just trying to figure
out which browser is “doing the right thing.”

A.1.2 So ... what is HTML5 anyway?

We consider a technology an official part of HTML5 if it’s part of the WHATWG Living
Standard or it’s one of W3C’s specifications derived from that standard. But many of
the technologies, such as CSS3, Geolocation, and the Storage APIs, that partake of the
buzzword HTML5 aren’t part of this official definition. In the next section, you’ll have
a quick review of the HTML5 technologies that are officially HTML5, and in the follow-
ing section, those that are not.

Table A.1 WHATWG and W3C compared

Topic W3C WHATWG

Membership Mostly paid members with corporate
sponsors.

Anyone can join the mailing list.

Editorial process Editor is subject to strictures of
W3C’s feedback and review
processes.

Editor is “benevolent dictator.”

HTML-related specifications
managed

8 (derived from WHATWG’s 1 spec). 1.

Non-HTML specifications
managed

Lots (e.g., CSS, DOM, SVG,
XML, RDF).

None.

Release process Versioned snapshots. Rolling release, constantly
updated.

Does it really matter what is or isn’t HTML5?
The short answer is no! When you’re building web apps, you need to pick and choose
technologies in the modern web platform based not on which spec they appear in but
on whether they do something you need and they work in browsers. Although you may
end up in some heated social network debates, you’ll receive no explicit punishment
for claiming things like Geolocation as a key part of your HTML5 app. As you’ll see,
even the authors of this book have stretched the definition of HTML5 to include sev-
eral “unofficial” technologies.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

313Popular HTML5 specifications
A.2 Popular HTML5 specifications
In this section, we’ll discuss the technologies that are part of WHATWG’s HTML Living
Standard and the HTML5 family of specifications at W3C. Although the WHATWG spec
hasn’t always been called the HTML Living Standard, we’ll use that term to differentiate
it from the HTML5 spec at W3C. Each section will mention which specification at the
W3C applies and the relevant chapter or chapters in this book.

A.2.1 Semantic markup, forms

HTML5 introduces HTML elements that change how people structure website markup
and use form elements. It also gives programmers more control over their markup
through attributes such as data. These attributes can hold important metadata inside an
HTML element. This is all core HTML stuff and so is in the W3C HTML5 specification.

 You can learn about semantic markup and forms in chapters 1 and 2.

A.2.2 Video and sound (multimedia)

In the past, web developers have primarily relied on Flash or another plug-in to pro-
vide audio and video support. The HTML5 audio and video elements allow a browser
to run both, without any additional configuration. Both use the Media Element API,
which means their event systems for toggling playback, sound, stopping, and so on are
similar. This is also in the core W3C HTML5 specification.

 Audio and video are covered in chapter 8; also check out appendix I for some of
the more cutting-edge video technologies.

A.2.3 Canvas and SVG (interactive media)

The Canvas API and SVG give you the ability to create interactive media via JavaScript
programming. The first and most popular Canvas API was originally an Apple product
from Mac OS X. Developers can create raster-based graphics on the fly inside a
<canvas> element with it. Although the <canvas> element itself is covered in the core
HTML5 spec, the 2D context (the JavaScript API that lets you draw stuff) is in a sepa-
rate specification called “HTML Canvas 2D Context.” Note that although WebGL
allows Canvas to display 3D graphics, the 3D context is not officially part of HTML5
(see section A.3 for details).

 SVG is an XML-based language that’s been around since 2001. All HTML5 adds is
the ability to inject SVG elements into HTML pages (it has always been allowed to
inject SVG into XHTML pages), nothing more. It’s important to understand that SVG is
a piece of HTML5 but not a specification created by it.

 Canvas, the 2D context, and SVG are covered in chapters 6 and 7; Canvas is also
used in chapter 8 to manipulate live video and in chapter 9 along with the 3D context.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

314 APPENDIX A HTML5 and related specifications
A.2.4 Storage

HTML5 is associated with several storage-based APIs; the ones that are part of the
HTML5 specifications are Web Storage and Offline Applications.

 At W3C, offline apps are covered in the core HTML5 spec, and session and local
storage are covered by the Web Storage spec. Both are discussed in chapter 5.

A.2.5 Messaging

Web Messaging (cross-document and channel messaging), Server-Sent Events, and
WebSockets are all core HTML5 technologies. At W3C they are covered by three specs:
“HTML5 Web Messaging,” “Server-Sent Events,” and “WebSockets API.” Note that the
WebSockets Protocol, which describes the format of the transmitted data, is defined
by a specification at the Internet Engineering Task Force (IETF). Messaging is covered
in chapter 4 and appendix F.

A.2.6 The XML HTTP Request object

This API has existed in IE since the late 1990s and has been heavily used in web appli-
cations since Firefox implemented its version between 2000 and 2002, giving birth to
AJAX (Asynchronous JavaScript And XML). But XHR had never been documented in
any specification until WHATWG added it to its specifications in 2004. Currently, the
XML HTTP Request (XHR) object has a specification all to itself at the W3C. XHR and
AJAX are well known and well used, so even though XHR is, strictly speaking, HTML5,
we don’t cover it specifically in this book.

A.3 Popular non-HTML5 technologies
Some popular specifications and technologies are commonly mistaken for HTML5
because of their intriguing features. Although these new technologies began to
emerge around the same time that HTML5 was becoming established and fre-
quently featured in HTML5 Showcase sites and HTML5 books (including this one),
they’re not HTML5 by the definition given earlier. One good way to describe this
group of web development technologies, suggested by Bruce Lawson, is “HTML5
and friends.”

A.3.1 CSS3

CSS3 brings several amazing features to web development, such as transitions and 3D
transforms. But it’s an entirely separate specification from HTML5. There is no specific
CSS3 coverage in this book, but CSS will be used to support all of this book’s apps.

 For a gentle introduction to CSS3, see Hello! HTML5 & CSS3 by Rob Crowther
(Manning, 2012). There’s also good information on tools for CSS3 in Sass and Compass
in Action by Wynn Netherland, Nathan Weizenbaum, Chris Eppstein, and Brandon
Mathis (Manning, 2013).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

315Popular non-HTML5 technologies
A.3.2 Geolocation

A lot of early HTML5 demos featured the Geolocation API. But this API has never been
a part of the HTML Living Standard or the HTML5 family of specifications at W3C.

 The Geolocation API has its own specification at the W3C; it’s covered briefly in
chapter 3.

A.3.3 Storage

We mentioned storage in the previous sections. There are two key storage technolo-
gies that aren’t part of the HTML5 spec: IndexedDB and the File System API. These are
in the Indexed Database API, File API, File API: Directories and System, and File API:
Writer specs at the W3C.

 Check out chapter 5 for more on IndexedDB and chapter 3 for the File API.

A.3.4 WebGL

The WebGL technology is based on OpenGL. The Khronos Group has taken OpenGL
and adapted it for use in web browsers; the result is WebGL. All desktop browsers
have support for WebGL. Even Microsoft, after initially being opposed to the technol-
ogy, has implemented WebGL in IE11.

A.3.5 Node.js

Many people have mistaken the new software platform Node.js (often simply called
Node) for an HTML5 API. Although it makes use of emerging web-standard technolo-
gies and improves the use of many HTML5 APIs, it’s not part of any web standard. It
runs on Google’s V8 JavaScript engine and is primarily sponsored by Joyent. This
book covers basic Node usage; for more, check out Node.js in Action by Mike Cantelon,
TJ Holowaychuk, and Nathan Rajlich (Manning, 2013). Jode.js is also covered in chap-
ter 4 and appendix E.

A.3.6 jQuery and other JavaScript libraries

JavaScript libraries followed along after the last “buzzword fad” on the web: AJAX. The
main problem they initially solved was to provide a compatibility layer over the dif-
fering browser implementations of the XHR object that underlies AJAX, but each
also added its own features. The popular Prototype.js added features and encour-
aged a style of programming inspired by the Ruby programming language; Dojo did
a similar thing except in the style of Python. For many years, the ultimate solution in
cross-browser compatibility has been the jQuery library. HTML5 doesn’t replace librar-
ies like jQuery, but it should help make them more performant. The extensive effort
to standardize browser behavior through the process of building the HTML5 spec will
also make the compatibility provided by these libraries less important. Some common
JS library features that are replaced by HTML5 are shown in table A.2.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

316 APPENDIX A HTML5 and related specifications
A.4 Keeping up with the specs
The best way to keep up with the main HTML specification is to follow The WHATWG
Blog (http://blog.whatwg.org/). Reading the specification in its raw form can be
tedious, to say the least. We find it much easier to read the spec using the edition for
web authors, which is available at http://developers.whatwg.org/. This edition doesn’t
include the technical information targeted at browser vendors and is far easier to read.

 For the rest of the specifications there’s no central source. Each individual W3C
working group has its own blog and/or mailing list. One approach is to keep an eye
on the development blogs for the major browsers to find out what new features
they’re experimenting with:

■ Mozilla Hacks: https://hacks.mozilla.org/
■ Google Chrome Blog : http://chrome.blogspot.co.uk/
■ IEBlog : http://blogs.msdn.com/b/ie/
■ Surfin’ Safari: https://www.webkit.org/blog/
■ Opera Desktop Team: http://my.opera.com/desktopteam/blog/
■ Opera Mobile: http://my.opera.com/mobile/blog/

Table A.2 JS Library functionality and modern web platform equivalents

Feature JS libraries HTML5 (or related) feature

Selecting elements
by class

Nearly all The getElementsByClassName() method
was originally introduced in the HTML Living Stan-
dard; it’s currently in the DOM CORE spec at W3C.
The querySelector() and
querySelectorAll() methods are defined in
the Selectors API Level 1 spec at the W3C.

Drag and drop Scriptaculous, jQuery-UI,
ExtJS, Dojo, YUI

Added to the HTML Living Standard as a reverse
engineering of the IE feature.

Advanced form controls
(date pickers, sliders,
spinboxes, etc.)

jQuery-UI, ExtJS,
Dojo, YUI

New form controls are part of the core HTML5
specification.

Storing arbitrary data on
elements

Jquery, Dojo HTML5 has data-* attributes for storing data for
scripting.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://hacks.mozilla.org/
http://chrome.blogspot.co.uk/
http://blogs.msdn.com/b/ie/
https://www.webkit.org/blog/
http://my.opera.com/desktopteam/blog/
http://my.opera.com/mobile/blog/
http://developers.whatwg.org/
http://blog.whatwg.org/
http://blog.whatwg.org/

appendix B
HTML5 API reference

In this appendix, you’ll find numerous references that give you a quick overview of
various HTML5 and related APIs. We’ve compiled lists of methods, attributes, and
events that should make it easy for you to look up how to use API information when
you need it.

 The material is broken down into three sections:

■ The HTML5 APIs
■ Other APIs and specifications, which cover Geolocation and IndexedDB
■ The File System API

We begin with the HTML5 APIs.

B.1 HTML5 APIs
In this section, we cover what you need to know for the

■ Constraint Validation API
■ API for offline web applications
■ Editing API
■ Drag and Drop API
■ Microdata API
■ APIs for Web Storage
■ Media Element API

B.1.1 Constraint Validation API

The Constraint Validation API defines a series of new attributes and methods, out-
lined in table B.1, that you can use to detect and modify the validity of a given
form element.
317

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

318 APPENDIX B HTML5 API reference
B.1.2 API for offline web applications

The API for offline web applications consists of a collection of events and a number of
DOM attributes and methods. Table B.2 lists the events.

Table B.1 Constraint Validation API

Attribute/method Description

willValidate Checks if the element validates when the form is submitted.

validationMessage Holds the error message the user will see if the element is
checked for validity.

validity An object that contains attributes representing the validity
states of the element. Each attribute defines a validation error
condition. When “getting” an attribute, a value of true is
returned if the error condition is true, otherwise false.

validity contains the following boolean attributes:

■ valueMissing (required field but has no value)
■ typeMismatch (incorrect data type)
■ patternMismatch (doesn’t match required pattern)
■ tooLong (longer than maxlength content attribute value)
■ rangeUnderflow (lower than min content attribute value)
■ rangeOverflow (higher than max content attribute value)
■ stepMismatch (not a multiple of step content attribute)
■ customError (has a custom error)
■ valid (field is valid)

checkValidity() Checks if the element is valid.

setCustomValidity(message) Sets a custom error message on the element.

Table B.2 Application cache events

Event name Description

checking Fires when checking for an update or trying to download the cache manifest for
the first time.

noupdate Fires when manifest has not been modified.

downloading Fires when the browser is downloading items in the manifest for the first
time. Also fires when the browser is downloading items after detecting a
manifest update.

progress Fires once per file as the browser downloads each file listed in the manifest. The
event object’s total attribute returns the total number of files to be down-
loaded. The event object’s loaded attribute returns the number of files pro-
cessed so far.

cached The application is cached and the download is complete.

updateready Resources have been downloaded and an update is available. The application
can use the swapCache method to switch to the new resources.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/1M6o

319HTML5 APIs
Table B.3 lists the DOM attributes and methods for offline applications. All apply to
the application cache object itself, apart from the ones where an explicit root object
is listed.

The Browser State API is covered in table B.4, though this is less useful than you might
think. Deciding whether the browser is online isn’t the same thing as being able to
connect to the internet or your application. It’s merely a reflection of the browser’s
online mode.

obsolete The manifest was not found and the cache is being removed.

error The manifest or one of the resources in it was not found, or the manifest
changed while the update was in progress, or some other error has occurred, so
caching has been canceled.

Table B.3 Application cache API

Attribute/method Description

window.applicationCache Returns an application cache object for the active document.

self.applicationCache Returns an application cache object for a shared worker.

status Gets the current status of the cache:

■ UNCACHED (numeric value: 0)
■ IDLE (1)
■ CHECKING (2)
■ DOWNLOADING (3)
■ UPDATEREADY (4)
■ OBSOLETE (5)

update() Starts downloading resources into a new application cache.

abort() Cancels downloading of resources.

swapCache() Switches to the newest application cache, if a newer one
is available.

Table B.4 Browser State attributes and events

Attribute/method, event name Description

window.navigator.onLine Checks if the browser mode is online (returns true) or offline
(returns false).

online The browser’s online status has changed to online.

offline The browser’s online status has changed to offline.

Table B.2 Application cache events (continued)

Event name Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

320 APPENDIX B HTML5 API reference
B.1.3 Editing API

The Editing API allows you to implement direct editing of HTML pages loaded in the
browser. This is commonly referred to as rich-text editing; it enables the web applica-
tion to use all the formatting options available to HTML. This ability distinguishes rich-
text editing from plain-text editing that can be achieved in textarea elements and
other form inputs.

 The Editing API was created by reverse engineering the behavior of IE. The documen-
tation had always been incomplete, so there are many parts of it that exist simply because
IE has them rather than because there’s a rational explanation for their existence.

 All the methods in table B.5 are on the document object; in most cases they will apply
to any selected block of text within a contenteditable section of the current document.

As you can see, the API isn’t much use without a value to enter for command. Tables B.6–
B.8 list categories of available commands. Pass the command as a string to the meth-
ods in table B.6, for example: execCommand('bold',false,''). For more information
on these commands, see http://mng.bz/4216.

 Table B.6 lists commands for formatting inline elements.

Table B.5 Editing API

Method Description

execCommand(command, showUI,
value)

Executes the command described in the first argument.
The command argument is a string value. The showUI
argument is a Boolean value to determine whether or not
to show the default UI associated with command. The
value argument is passed to command. Not all com-
mands need a value argument.

queryCommandEnabled(command) Checks if command is supported and enabled.

queryCommandIndeterm(command) Checks if command is indeterminate (if the selected text
is part active and part inactive).

queryCommandState(command) Returns a Boolean value indicating whether command is
currently applied to the selected text.

queryCommandSupported(command) Checks if command is supported.

queryCommandValue(command) Returns command’s value, if it has one.

Table B.6 Inline formatting commands

backColor bold createLink

fontName fontSize foreColor

hiliteColor italic removeFormat

strikethroug subscript superscript

underline unlink
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/4216

321HTML5 APIs
Table B.7 lists commands for formatting block elements.

Table B.8 lists commands for other formatting and editing issues.

B.1.4 Drag and Drop API

The Drag and Drop API is another API that’s reverse engineered from the IE imple-
mentation. The API has three main parts: the dataTransfer object, the dataTransfer
item, and a collection of events. These are covered in tables B.9, B.10, and B.11,
respectively. A drag operation will create a dataTransfer object; this will contain one
or more dataTransfer items in the items attribute, and you can gain access to both
by listening to the events.

Table B.7 Block formatting commands

delete formatBlock forwardDelete

indent insertHorizontalRule insertHTML

insertImage insertLineBreak insertOrderedList

insertParagraph insertText insertUnorderedList

justifyCenter justifyFull justifyLeft

justifyRight outdent

Table B.8 Miscellaneous commands

copy cut defaultParagraphSeparator

paste redo selectAll

styleWithCSS undo useCSS

Table B.9 dataTransfer object

Attribute/method Description

dropEffect This is the type of operation taking place (copy, link,
move, none).

effectAllowed Contains the type of operations allowed (copy, copyLink, copy-
Move, link, linkMove, move, all, uninitialized, none).

items Returns a list of dataTransfer items with the drag data
(see table B.12).

setDragImage(element, x, y) Updates the drag feedback image with the given element
and coordinates.

addElement(element) Adds an element to the list of elements used to render
drag feedback.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

322 APPENDIX B HTML5 API reference
Table B.10 lists the attributes and methods of the dataTransfer item. The data-
Transfer item defines an object being dragged to the drop zone.

Table B.11 lists the drag-and-drop events. When the application listens for these
events, it can use the event object to gain access to the dataTransfer object or data-
Transfer items. To access the dataTransfer object, use e.dataTransfer, where e is
an event object. To access dataTransfer items, use e.dataTransfer.items, where
items is a list of dataTransfer items.

types List of data formats set in the dragstart event.

getData(format) Returns the data being dragged.

setData(format, data) Sets the data being dragged.

clearData([format]) Removes data of the specified format (or all formats if omitted).

files Returns a list of files being dragged, if any.

Table B.10 dataTransfer item

Attribute/method Description

kind This is the kind of item being dragged (string or file).

type This is the data item type string.

getAsString(callback) If the data kind is string, this invokes the callback with the string
data as an argument.

getAsFile() If the data kind is file, this returns a file object.

Table B.11 Drag-and-drop events

Event name Description

dragstart Fires on the source element when the user starts to drag the source element.

drag Fires on the source element as the user is dragging the source element.

dragenter Fires on the target element when the user drags the source element into it.

dragleave Fires on the target element when the user drags the source element out of it.

dragover Fires on the target element as the user is dragging the source element over it.

drop Fires on the target element when the user drops the source element on it.

dragend Fires on the source element when the user stops dragging the source element.

Table B.9 dataTransfer object (continued)

Attribute/method Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

323HTML5 APIs
B.1.5 Microdata API

The Microdata API (table B.12) has one method on the document object and a couple
of DOM attributes on elements that have Microdata content attributes (itemscope
and itemprop).

B.1.6 APIs for Web Storage

Web Storage defines APIs on two objects, window.localStorage and window.session-
Storage; see table B.13. The APIs for both of these objects are identical.

Web Storage also defines an event, storage, that fires when the storage area changes.
This event returns a storage event object, which contains attributes to determine what
changed; see table B.14.

Table B.12 Microdata API

Attribute/method Description

document.getItems([type]) Returns a list of top-level Microdata items. If you’re looking
for a particular type of Microdata item, such as event items,
you can select all event items by specifying 'http://
microformats.org/profile/hcalendar#event' as
the type parameter. Multiple types can be specified in a space-
separated list.

element.properties Gets the element’s attributes (only if it has an itemscope
attribute).

element.itemValue Gets or sets the element’s Microdata item value (only if it has
an itemprop attribute).

Table B.13 localStorage and sessionStorage API

Attribute/method Description

length Number of items (key/value pairs) currently stored in the storage area.

key(index) Gets the name of the key at the given index.

getItem(key) Gets the value of the item at the given key.

setItem(key, value) Sets the value of the item at the given key to the value provided.

removeItem(key) Removes the item at the given key.

clear() Removes all items in the storage area.

Table B.14 Storage event object

Attribute/method Description

key The key of the item that was modified

oldValue The previous value of the modified item
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://developer.mozilla.org/en-US/docs/DOM/File
https://developer.mozilla.org/en-US/docs/DOM/File
https://developer.mozilla.org/en-US/docs/DOM/Blob
https://developer.mozilla.org/en-US/docs/DOM/Blob

324 APPENDIX B HTML5 API reference
The methods in table B.15 apply to localStorage, sessionStorage, and to cookies cre-
ated using the document.cookie API. It’s available on the window.navigator object.

B.1.7 Media Element API

The Media Element API, shown in table B.16, is implemented by both the <audio>
and <video> elements.

newValue The new value of the modified item

url The address of the document that contains the item

storageArea The storage object in which the change was made

Table B.15 Another storage method

Attribute/method Description

yieldForStorageUpdates() Allows scripts to access storage areas, even if other scripts are
currently blocking those areas.

Table B.16 Media Element API

Attribute/method Description

autoplay Corresponding DOM attribute to the autoplay content attribute.

buffered Returns a TimeRanges object (an array of start and end times) that
represents the ranges of the media resource that the browser
has buffered.

canPlayType(type) Accepts a MIME type, for example, video/webm, and returns a value
indicating whether or not the browser thinks it will be able to play media
of that type. The possible return values, in decreasing order of certainty,
are 'probably', 'maybe', and an empty string.

controller The MediaController object associated with the element’s
mediagroup.

controls Corresponding DOM attribute to the controls content attribute.

crossOrigin Reflects the value of the crossorigin content attribute. This setting
is for Cross Origin Resource Sharing (CORS). The value can be either
anonymous or use-credentials, depending on whether the omit
credentials flag should be set or unset in the CORS headers.

currentSrc The address of the currently playing media.

currentTime The offset, in seconds, from the start of the media to the point
currently playing.

Table B.14 Storage event object (continued)

Attribute/method Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

325HTML5 APIs
defaultMuted Corresponding DOM attribute to the muted content attribute.

defaultPlaybackRate The default playback rate of the media; if this differs from the
playbackRate, then the user is using fast forward or slow motion.

duration The playing time, in seconds, of the media (if available).

ended Boolean attribute that returns true if the media has reached the end
of playback.

error If any error has occurred, this attribute will be set to a MediaError
object, which can be examined for the details.

load() Resets the media element, clearing any currently playing media and
rerunning the media-selection algorithm as if the page had just
been loaded.

loop Corresponding DOM attribute to the loop content attribute.

mediaGroup Corresponding DOM attribute to the mediagroup content attribute.
Allows the grouping of multiple media elements for synchronized playback.

muted Boolean value indicating whether or not the current media is muted.

networkState The state of any interaction between the media element and the
network. Returns an integer value from 0 to 3, which corresponds
to the constants NETWORK_EMPTY, NETWORK_IDLE,
NETWORK_LOADING, and NETWORK_NO_SOURCE, respectively.

pause() Sets the paused attribute to true, loading the media resource
if necessary.

paused Boolean value indicating whether or not the media is paused.

play() Sets the paused attribute to false, loading the media and beginning
playback if necessary. If the playback had ended, will restart it from
the beginning.

playbackRate The current effective playback rate; 1.0 is normal speed.

played Returns a TimeRanges object (an array of start and end times) that
represents the ranges of the media resource that the browser has played.

preload Corresponds to the value of the preload content attribute; can have
the value none, metadata, or auto.

readyState The readiness of the element to play media. Returns an integer
value from 0 to 4, which corresponds to the constants HAVE_NOTHING,
HAVE_METADATA, HAVE_CURRENT_DATA, HAVE_FUTURE_DATA,
and HAVE_ENOUGH_DATA, respectively.

seekable Returns a TimeRanges object (an array of start and end times) that
represents the ranges of the media resource that the browser is able to
seek to (if any).

Table B.16 Media Element API (continued)

Attribute/method Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

326 APPENDIX B HTML5 API reference
B.2 Other APIs and specifications
In this section, we cover the Geolocation API and the IndexedDB specification.

B.2.1 Geolocation API

The Geolocation API methods are defined on the window.navigator.geolocation
object. The options argument in the two position-retrieval API methods in table B.17
is a Position Options object and can have any of the attributes defined in table B.18.

seeking Boolean value indicating whether or not the browser is seeking (i.e., load-
ing new data) because the playback position has been skipped forward.

src Corresponds to the value of the src content attribute.

startDate If the media has an embedded explicit time (for example, timestamped
CCTV footage), this attribute will return the start date. This attribute was
previously called startOffsetTime.

volume Returns the current playback volume as a value between 0.0 and 1.0,
inclusive.

Table B.17 Geolocation API

Attribute/method Description

getCurrentPosition(successCallback,
[errorCallback], [options])

Gets the current position of the device, invoking
the relevant success callback function when it has
been located. If a problem is encountered, the
error callback function will be called.

watchPosition(successCallback,
[errorCallback], [options])

Monitors the position of the device and invokes
the relevant success callback provided as the loca-
tion of the device is updated or the error callback if
there’s a problem. Calling this function returns a
watch ID, which can be passed to clearWatch
to cancel a watch.

clearWatch(watchId) Clears an existing geolocation watch.

Table B.18 Position Options object

Attribute/method Description

enableHighAccuracy Informs the browser that the application would like to receive the maxi-
mum possible results. The browser can use this to determine whether it
should use a more accurate sensor such as a Global Positioning System
(GPS) sensor.

timeout The maximum length of time (in milliseconds) allowed to pass before the
relevant callback function is invoked.

Table B.16 Media Element API (continued)

Attribute/method Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://developer.mozilla.org/en-US/docs/DOM/Blob
https://developer.mozilla.org/en-US/docs/DOM/Blob

327Other APIs and specifications
When one of the Geolocation API methods invokes a success callback function, it
passes a Position object to that function; see table B.19.

coords, an attribute of the position object, lists the device’s coordinates, the esti-
mated accuracy of those coordinates, the device’s direction of travel, and its speed.

B.2.2 IndexedDB specification

IndexedDB is a very large specification, approximately 105 printed pages, so there’s not
room in this appendix to discuss every single attribute, method, and the like. Instead,
this section lists only the most important components used in this book. These compo-
nents have been grouped under their respective IndexedDB interfaces, and presented
in a table format. Summaries for each component have been prepared by Joe Lennon
and Greg Wanish and are derived from IndexedDB content (http://mng.bz/1M6o) by

maximumAge Typically, a device will store position information for a period of time to
avoid wasting battery by having the position-detection hardware running
constantly. If you’re willing to accept slightly out-of-date position data, you
can specify an acceptable maximum age in milliseconds in this parameter.
If the value is 0 or omitted, the browser must fetch a new position, even if
a cached position is available.

Table B.19 Position object

Attribute/method Description

coords A Coordinates object including the geographic coordinates of the user’s
location and the estimated accuracy. Further details are shown in table B.20.

timestamp The time when the user’s position was acquired.

Table B.20 Coordinates object

Attribute/method Description

latitude Geographic latitude coordinate, in degrees

longitude Geographic longitude coordinate, in degrees

altitude The height, in meters, above (approximately) sea level

accuracy The accuracy of the latitude and longitude values, in meters

altitudeAccuracy The accuracy of the altitude value, in meters

heading The direction the device is traveling in, specified in degrees

speed The device’s current velocity in meters per second

Table B.18 Position Options object (continued)

Attribute/method Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/1M6o

328 APPENDIX B HTML5 API reference
Mozilla contributors at the Mozilla Developer Network (MDN) and used under Creative
Commons CC-BY-SA (http://creativecommons.org/licenses/by-sa/2.5/). These tables of
IndexedDB interfaces are licensed under Creative Commons CC-BY-SA (http://creative
commons.org/licenses/by-sa/2.5/) by Joe Lennon and Greg Wanish. See http://mng.bz/
1M6o for a more complete explanation of the IndexedDB specification.

 The object window.indexedDB implements the IDBFactory interface and enables
applications to create, access, and delete an indexed database. Table B.21 lists the
methods and attributes for the asynchronous version of the IDBFactory interface.
The asynchronous version works with or without web workers; no browser at this time
supports the synchronous version.

Table B.22 lists the attributes and methods of the IDBCursor object. The cursor iter-
ates over object stores and indexes within an indexed database.

Table B.21 IDBFactory interface

Attribute/method Description

open(name, [version]) Requests a connection to a database with given name and version
number. If no database with name exists, create a database with given
name and version number.

deleteDatabase(name) Requests deletion of a database with given name.

cmp(first, second) Compares two keys to determine equality and ordering for IndexedDB
operations, such as ordering. Returns a -1, if first key is less than sec-
ond key; 0, if first key is equal to second key; 1, if first key is greater
than second key.

Table B.22 IDBCursor interface

Attribute/method Description

source On getting, returns the IDBOjectStore or IDBIndex that the cursor is
iterating over.

direction On getting, returns the cursor’s current direction of traversal.

key On getting, returns the key for the record at the cursor’s position. If the cursor
is outside its range, this is undefined.

primaryKey On getting, returns the cursor’s current effective key. If the cursor is currently
being iterated or has iterated outside its range, returns undefined.

update(value) Returns an IDBRequest object. In a separate thread, uses value to update
the value at the current position of the cursor in the object store. If the cursor
points to a record that has just been deleted, a new record is created with the
given value.

continue(key) Continues along the cursor’s current direction of movement, and finds the next
item with a key matching the optional key parameter. If no key is specified,
goes to the immediate next position, based on the cursor’s current direction
of movement.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://mng.bz/1M6o
http://mng.bz/1M6o
http://creativecommons.org/licenses/by-sa/2.5/

329Other APIs and specifications
Table B.23 lists the methods and attributes of the IDBDatabase object. The IDBData-
base serves primarily as a container for indexes and object stores. The IDBDatabase
object is the only way to get a transaction on the database.

Table B.24 defines the interface for the IDBEnvironment object; it has only a single
attribute, indexedDB. The IDBEnvironment provides access to a client-side database.

Table B.25 lists the IBDIndex object method, openCursor. This method is useful for
filtering through an index. The IBDIndex provides methods to access an index of
a database.

delete() Returns an IDBRequest object. In a separate thread, deletes the record at
the cursor’s position without moving the cursor. Afterward, the cursor’s value is
set to null.

Table B.23 IDBDatabase interface

Attribute/method Description

createObjectStore(name,
[parameters])

Creates and returns a new object store or index with a given name.
parameters is an optional object with the following properties:

keyPath Specifies a field in the object as a key. Each
object must have a unique key.

autoIncrement If true, the object store creates keys auto-
matically via a key generator.

setversion (deprecated) Updates the version of the database. Upon invocation, returns
immediately, and, on a separate thread, runs a versionchange
transaction on the connected database.

transaction(storeNames,
[mode])

Immediately returns an IDBTransaction object and, on a
separate thread, starts a transaction. The parameter
storeNames, an array of strings, identifies the object stores
and indexes that are to be accessible to the new transaction. The
mode parameter defines the new transaction’s type of access:
'readonly' or 'readwrite'. The default is 'readonly'.

version The version of the connected database. When a database is first
created, this attribute is the empty string.

Table B.24 IDBEnvironment interface

Attribute/method Description

indexedDB Provides a mechanism for applications to asynchronously access the capabili-
ties of indexed databases.

Table B.22 IDBCursor interface (continued)

Attribute/method Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

330 APPENDIX B HTML5 API reference
Table B.26 lists some of the methods for creating indexes and working with the object
store. These methods belong to the IDBObjectStore object.

Table B.27 lists the onupgradeneeded event handler used in the My Tasks application.
onupgradeneeded is an event in the IDBOpenDBRequest interface that provides access
to results of requests to open a database using event handler attributes.

Table B.25 IDBIndex interface

Attribute/method Description

openCursor([range],
[direction])

Immediately returns an IDBRequest object, then, on a separate
thread, creates a cursor over the specified key range. The optional
parameter range specifies the key range of the cursor. The other
optional parameter, direction, specifies the cursor’s direction of
movement through the index.

Table B.26 IDBObjectStore interface

Attribute/method Description

createIndex(name,
keypath, [parameters])

Creates and returns a new IDBIndex object with given name and
keypath. This method can only be called from a
VersionChange transaction mode callback. The optional
parameters object has the following properties:

■ unique If true, the index won’t allow duplicate values for a single key.

■ multiEntry If true, when the keypath resolves to an Array, the index will add
an entry in the index for each array element. If false, the index will
add one single entry containing the Array.

index(name) Returns the name index in the object store.

openCursor([range],
[direction])

Immediately returns an IDBRequest object, then, on a separate
thread, creates a cursor over the records in the object store. The
range parameter specifies the key range of the cursor. If the
range is not specified, it defaults to all records in the object
store. The direction parameter defines the cursor’s direction
of movement.

put(value, [key]) Immediately returns an IDBRequest object, then, on a separate
thread, creates a clone of the value and stores it in the object store.
The value parameter defines the value to be stored. The parame-
ter key identifies the record. If not defined, it defaults to null.

Table B.27 IDBOpenDBRequest interface

Attribute/method Description

onupgradeneeded The event handler attribute for the upgrade needed event. This event handler
is executed when a database’s version number has increased.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

331File System API
Table B.28 lists the onsuccess event handler used in the My Tasks application to
access the results of an asynchronous request. onsuccess is an event in the IDB-
Request interface that provides access to results of asynchronous requests to databases
and database objects using event handler attributes. Reading and writing operations
on a database are executed with a request.

Table B.29 shows the method of the IDBKeyRange object used to search for keys within
the index created for the My Tasks database. The IDBKeyRange interface defines a
range of keys.

B.3 File System API
The File System API is massive; it will change how people think about managing web
application data. In this section, we cover directory-based APIs within the File System
API, as well as Blob data APIs. The following tables will give you some references and
shortcuts for better managing your file data.

 Table B.30 lists attributes associated with a File object.

Table B.31 lists attributes and methods associated with the FileList object. A File-
List object is returned by the files property of the HTML <input> element.

Table B.28 IDBRequest interface

Attribute/method Description

onsuccess The event handler attribute for the success event.

Table B.29 IDBKeyRange interface

Attribute/method Description

bound(lower, upper,
[lowerOpen],
[upperOpen])

Creates and returns a key range with upper and lower bounds. If
optional parameter lowerOpen is false (the default value), then the
range includes the lower bound of the key range. If optional parameter
upperOpen is false (the default value), then the range includes the
upper bound value of the key range.

Table B.30 File API

Attribute/method Description

name The name of the file

size The size of the file in bytes

type The MIME type of the file
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

332 APPENDIX B HTML5 API reference
Table B.32 lists attributes and methods associated with the FileReader object. A File-
Reader object lets web applications asynchronously read the contents of files (or raw
data buffers) stored on the user’s computer, using File or Blob objects to specify the
file or data to read.

Table B.33 lists events associated with the FileReader object.

Table B.31 FileList API

Attribute/method Description

length Number of files in the list.

item(index) Gets the file at the given index (zero-based).

Table B.32 FileReader API

Attribute/method Description

abort() Aborts reading the file

readAsArrayBuffer(blob) Reads the contents of the blob (which is either a File or a
Blob object) into an array buffer.

readAsDataURL(blob) Reads the contents of a Blob or File object and returns a
data: URL to it.

readAsText(blob,[encoding]) Reads the contents of a Blob or File object into a text
string if the optional encoding parameter is specified (e.g.,
'ISO-8859-1' or 'UTF-8'); then the string will be
encoded using that character set.

error If an error occurs, it will be loaded into this property.

readyState The state of the file read operation (0 = EMPTY, 1 = LOADING,
2 = DONE).

result This will be populated with the file’s contents when a read
operation has been completed. The format of the result will
depend on the method used to read the file.

Table B.33 FileReader events

Event name Description

abort Fires when the read operation is aborted.

error Fires when an error occurs while reading the file.

load Fires when the read operation has successfully completed.

loadend Fires after onload or onerror, regardless of whether the operation
was successful.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

333File System API
Table B.34 lists methods associated with the FileWriter object. A FileWriter object
can perform multiple write actions, rather than just saving a single Blob.

Table B.35 lists the methods associated with the FileSaver object which has methods
to write a Blob object to a file.

Table B.36 lists the events associated with the FileSaver object which has events to
monitor the progress of writing a Blob to a file.

Table B.37 lists the methods associated with the FileEntry object. A FileEntry object
has methods to write and inspect the state of a file.

loadstart Fires when the read operation is about to start.

progress Fires periodically during the read operation.

Table B.34 FileWriter API

Attribute/method Description

seek(offset) Sets a specific file location at which the next write will occur.

truncate(size) Alters the length of the file to the size passed in bytes.

write(data) Writes the input data to a Blob object.

Table B.35 FileSaver API

Constructor/attribute/method Description

FileSaver(data) Creates a FileSaver object with Blob data.

abort() Terminates file saving.

Table B.36 FileSaver events

Event name Description

writestart Fires when starting a writing event.

progress Fires repeatedly while file is being written.

write Fires when a file is being written to.

abort Fires when file writing is canceled.

error Fires in response to an error or an abort.

writeend Fires when writing to a file has ended.

Table B.33 FileReader events (continued)

Event name Description
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

334 APPENDIX B HTML5 API reference
B.3.1 Directory-based APIs within the File System API

The File System API contains APIs to read directory entries in a directory. It also con-
tains APIs to create, read, look up, and recursively remove files in a directory. Direc-
tory entries are objects that describe either a file or subdirectory. A directory entry
contains attributes defining the entry’s status as a file or subdirectory, the pathname
to the entry, and the filesystem containing the entry.

 Table B.38 lists the methods for the directory entry object. This object represents a
directory entry in a filesystem. It includes methods for creating, reading, looking up,
and recursively removing files and subdirectories in a directory.

Table B.39 lists the only method for the DirectoryReader object.

Table B.37 FileEntry API

Constructor/attribute/method Description

createWriter(success, error) Creates a new FileWriter associated with the file that
FileEntry represents. If successful, calls function
success; otherwise calls function error.

file(success, error) Returns a file that represents the current state of the file
that the FileEntry represents. If successful, calls func-
tion success; otherwise calls function error.

Table B.38 DirectoryEntry API

Constructor/attribute/method Description

createReader() Creates a new DirectoryReader object to read
the directory.

getDirectory(path,[options],
[success], [error])

Creates or looks up a directory depending on set options.
Successful creation or location is handled by the success
callback; any errors will cause the error callback to
be executed.

getFile(path,
[options],[success],
[error])

Creates or looks up a file depending on set options. Success-
ful creation or location is handled by the success callback;
any errors will cause the error callback to be executed.

removeRecursively(success,
[error])

Deletes a directory and all contents; may only partially
delete a directory if an error occurs. Successful creation or
location is handled by the success callback; any errors
will cause the error callback to be executed.

Table B.39 DirectoryReader API

Attribute/method Description

readEntries(success,
error)

Allows you to read the next block of entries from the current directory,
with a successful read being handled by the success callback and
errors being handled by the error callback.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

335File System API
B.3.2 Blob data APIs

A Blob is an object of immutable data. Blobs are usually used to store the contents of a
file. Part of the File API is inherited from the Blob API. Table B.40 lists the methods
and attributes of a Blob.

Table B.41 lists the methods for the BlobBuilder object. The BlobBuilder provides a
way to construct Blob objects by calling one or more append methods on the Blob-
Builder object. This API has been deprecated.

Table B.40 Blob interface

Constructor/attribute/method Description

blob([array], [attributes]) Creates a Blob object without BlobBuilder. The array can
be any number of ArrayBuffer, ArrayBufferView
(typed array), Blob, or DOMString objects, in any order.
attributes is an object that can specify the media type
and line endings in the type and ending properties,
respectively.

size Size in bytes of Blob’s data; read only.

type MIME type of the Blob’s data.

slice([start],[end],[type] Returns a specific chunk of Blob data, from offset start to
offset end with MIME type type.

Table B.41 BlobBuilder API

Attribute/method Description

append(ArrayBuffer) Appends the ArrayBuffer to the Blob.

append(Blob) Appends the Blob parameter to the Blob.

append(data, [endings]) Appends the string data to the Blob. The endings parameter
specifies how strings containing \n are to be written out. This can
be 'transparent' (endings unchanged) or 'native' (endings
changed to match host system convention).

getBlob([contentType]) Returns the Blob object that’s the result of all the append
operations. If specified, the content type will be set on the
returned Blob. This operation will also empty the BlobBuilder
of all data.

getFile(name,
[contentType])

Returns a file object with an optional content type.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

appendix C
Installing PHP

and MySQL

To make the SSE Chat application from chapter 4 work, you’ll need to set up a web
server with PHP and MySQL. This combination is available free from various online
providers, but setting up your own local install will allow you to experiment more
freely. In this appendix we’ll walk you through setting up PHP and then MySQL on
Windows 7 and Mac OS X Mountain Lion.

C.1 Installing PHP on Windows 7
In this section you’re going to download and install PHP and get it working with
Windows’s built-in web server component, Internet Information Services (IIS).

C.1.1 Configuring Windows 7 IIS

IIS is not installed by default in Windows 7 but can be added through the Control
Panel option Turn Windows Features On and Off. Follow three steps to install IIS:

1 Open Control Panel and use the search feature to locate the Turn Windows
Features On and Off option. Double-click it, and you’ll see a dialog box like
the one shown in figure C.1.

In figure C.1 the functionality is divided into a tree of options. A check
mark shows that the feature and all its subfeatures are installed. A blue
square indicates that the feature, but only some of the subfeatures, are
installed. Selecting a feature with subfeatures will select the default set of
subfeatures; this isn’t necessarily all of the subfeatures. In the figure you can
see that Application Development Features is selected, but only six of the
seven subfeatures are selected.
336

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

337Installing PHP on Windows 7
2 Ensure that the options for IIS, World Wide Web Services, and, under the Appli-
cation Development Features section, CGI are all selected. Selecting IIS will
automatically select World Wide Web Services but not the CGI feature. Make
sure you expand the tree and select the CGI feature explicitly.

3 After you make all your changes, click OK. There will be a short delay while the
new features are installed.

C.1.2 Downloading PHP

PHP installers for Windows are available from http://windows.php.net/download/;
look for the links that say “Installer.” To follow along with us, use the latest 5.3 version
(5.3.16 at the time of writing, see figure C.2), which has an Installer option. The
installer will do a lot of automatic setup for you, so it’s the better option even if it’s not
the most recent version on the page.

 One other feature you should notice on the download page is that the Windows
binaries are available in Thread Safe and Non Thread Safe varieties. The difference is
only relevant if you want to integrate PHP with Apache; for installing PHP with IIS, you
want the Non Thread Safe version, so download that now.

 After clicking the link, you should have a file called php-5.3.16-nts-Win32-VC9-
x86.msi (or a similar name with a larger version number) to use in the next step.

Figure C.1 Adding the IIS
components to Windows 7
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://windows.php.net/download/

338 APPENDIX C Installing PHP and MySQL
C.1.3 Installing PHP
Now that you have the installation files downloaded you’re ready to install PHP by fol-
lowing these steps:

1 The MSI file you downloaded in C.1.2 will do most of the work for you. There
are only two steps, which we’ll walk you through, where you have to make deci-
sions. Double-click the file to start, and accept the license agreement and the
default file location.

2 For IIS configuration, select the option IIS FastCGI, which appears in the first
decision screen, as shown in figure C.3. Note that this is why we had you take
special care to select the CGI option earlier.

Figure C.2 The download
page at php.net; use the
latest 5.3 version to follow
along as you read.

Figure C.3
Selecting the web
server configuration
in the PHP setup
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

339Installing MySQL on Windows 7
3 When you see the next decision screen (figure C.4), accepting the defaults
should be fine, but just in case, you want both PHP and Extensions selected.

Continue to the end of the installer, and you’ll have a working PHP installation. As a
final step, let’s check that everything is working.

C.1.4 Confirm PHP is installed

IIS by default will serve files from the directory C:\Inetpub\WWWRoot\.

1 Create a file in that directory called index.php. Add the following code to it:

<?php phpinfo(); ?>

2 Load the URL http://localhost/index.php in your web browser. You should see
a page like the one shown in figure C.5.

When it comes time to run chapter 4’s SSE Chat application, you can make this work
in a similar way; copy the entire working folder into C:\Inetpub\WWWRoot\, then
browse to http://localhost/sse-chat/index.php (substitute sse-chat for whatever name
you gave your working directory). Now that you have PHP installed, it’s time to move
on to setting up MySQL.

C.2 Installing MySQL on Windows 7
MySQL also has a convenient MSI-based installation process, which will take care of
everything for you. In this section you’ll walk through downloading and installing the
database and client tools and then creating a database for use with the sample applica-
tion in the book.

Figure C.4 Select
the PHP components
to install
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://localhost/index.php
http://localhost/sse-chat/index.php

340 APPENDIX C Installing PHP and MySQL
C.2.1 Downloading MySQL

MySQL can be downloaded from http://dev.mysql.com/downloads/. The Download
button is hard to miss because it’s prominently displayed in the middle of the page, as
you can see from figure C.6.

Figure C.5 PHP is successfully installed.

Figure C.6 The Download button is very prominent on the MySQL website.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://dev.mysql.com/downloads/

341Installing MySQL on Windows 7
1 Click the button to download.
2 On the next page, you’ll be presented with an option to create an account

(figure C.7). You don’t have to do this, although you can if you want to. To
start the download, just click the link at the bottom that says, “No thanks, just start
my download!”

C.2.2 Installing MySQL

In this section, you’ll install the MySQL server:

1 You should now have an MSI file called mysql-installer-community-5.5.27.3.msi,
except you’ll have a more recent version number; double-click it to start.

2 Although you should be able to accept the defaults at every step to get a work-
ing installation, the next few steps highlight a few of the screens involved to
help you stay on track. When you get to the Setup Type screen, shown in fig-
ure C.8, make sure the option Developer Default is selected.

Selecting the Developer Default option will install all the necessary tools to run and
manage a local database instance.

3 When you get to the Configuration page, shown in figure C.9, you don’t have to
change the defaults, but you should consider whether you really want your
MySQL Server available to anyone on your local network. If you want only local
connections allowed, deselect the option Enable TCP/IP Networking. If you

Figure C.7 Click the “No thanks”
link at the bottom of the page to
download without registering.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

342 APPENDIX C Installing PHP and MySQL
Figure C.8 Choosing the MySQL setup type

Figure C.9 The MySQL installer Configuration page
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

343Installing MySQL on Windows 7
spend a lot of time connected to public Wi-Fi networks, you should definitely
deselect this option.

Figure C.10 shows the next key configuration step, setting the root password.
Although it’s important to set a strong password, it’s also important to set a memora-
ble one. If you forget this password, you won’t be able to access the database server. If
you deselected the option to allow network access in the previous screen, then the
password strength is less of an issue. On this screen you can also create other user
accounts and assign them to various administrative roles within the database server.
This isn’t necessary to get anything in this book working but shouldn’t break anything
if you’d like to add some.

4 Enter a password, and click Next until the installer has finished.
5 At the end of the process, the installer will ask if you want to launch MySQL

Workbench now; click Yes before proceeding to the next section. This is a tool
for managing databases and running scripts; in the next section you’ll use it to
create a database you can use for the SSE Chat application.

C.2.3 Creating a database and running scripts

Having a database server available is only half the battle; you also need to create a
database on that server for your app to use. In this section you’ll create a database and

Figure C.10 Setting the root password
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

344 APPENDIX C Installing PHP and MySQL
add the required structures for the chapter 4 SSE Chat app by running the chat.sql
script provided in the code download for that chapter. Before you start, make sure you
can see the MySQL Workbench welcome screen shown in figure C.11.

 The first task is to connect to your new database server. Double-click the local
instance in the leftmost box on the Welcome screen, under the heading Open Con-
nection to Start Querying. You’ll then be asked to enter your root password, as shown
in figure C.12.

Figure C.11 The home page of MySQL Workbench

Figure C.12 The enter
root password dialog box
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

345Installing MySQL on Windows 7
Type in the password you set earlier and click OK. You’ll be taken to the SQL Editor
screen. In the left pane you’ll see a list of databases (MySQL Workbench calls them
Schemas), and on the right is a text editor to use to enter queries.

 The second task is to create a database. On the toolbar you’ll see an icon of a yel-
low cylindrical object with a plus sign in front of it; it’s the third icon from the left.

1 Click that third icon, and you should see the create database dialog box shown
on the right side of figure C.13.

2 Enter a suitable name like ssechat. Click the Apply button toward the bottom of
the screen. Confirm that the script is being run, as shown in figure C.14, which
will create the database for you.

3 Open the chat.sql file from the chapter 4 code download; the File menu has all
the usual options for this sort of thing.

4 Run the script on the database you’ve just created by selecting the Execute (All
or Selection) option from the Query menu. This will set up the tables required
for the app.

Figure C.13 Creating a database

Figure C.14 The chat.sql file open in the MySQL workbench
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

346 APPENDIX C Installing PHP and MySQL
Note that if you see an error 1046 like the one shown in figure C.15, this is because the
database isn’t selected.

 If you get that error, double-click the database name in the left pane and run the
script again.

 You now have PHP and MySQL set up and working on your Windows 7 machine.

C.3 Installing PHP and MySQL on Mac OS X Mountain Lion
All recent versions of Mac OS X come equipped with Apache and PHP. By default,
Apache is not running, nor is it configured to load PHP when it runs. To get every-
thing running, you’ll need to follow along with a few steps.

C.3.1 Configuring Apache and PHP

To get PHP running on your computer you must first edit a couple of Apache configura-
tion files. By default, these files are hidden from the Finder, so the easiest way to access
them is through the Terminal application. Don’t worry if you’re not familiar with the
Terminal and command line in OS X; just follow along and you should be okay.

NOTE For brevity, when we display the command line we’ll simply use $ to
represent the prompt. Any bold text is text that you’ll type in, and any non-
bold text is what will appear in the Terminal.

USING THE TERMINAL

The Terminal app can be found in the Applications/Utilities folder on your system.
 Open the Terminal and you’ll be presented with a greeting message followed by a

prompt that looks similar to this:

MacBook:~ scott$

The first part of the prompt, MacBook, is the hostname of your computer; this will most
likely be different on your computer. (The hostname can be set to whatever you’d like
in the Computer Name: text field of the Sharing System Preference pane.) After the
colon (:) is your current path. The path represents what folder you are currently in.
Most likely, when you start the terminal you’re in the Home directory (/Users/YourUser-
name); Terminal abbreviates a user’s Home directory with the ~ symbol. After that the

Figure C.15 If you see an error 1046, it’s because you’ve not selected a database for running
the query.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

347Installing PHP and MySQL on Mac OS X Mountain Lion
prompt shows you your username (which won’t be scott unless that’s actually your user-
name) followed by the $ prompt and a cursor awaiting your input.

 Our first Terminal command will take you to the location where the Apache con-
figuration files are stored:

$ cd /etc/apache2/

This will take you to the apache2 folder where the configuration files are kept. (Note
that after you type this command the ~ in the prompt changes to apache2.) It does
this with the cd (change directory) command, which tells the terminal to go to a spe-
cific directory.

 Next, let’s look at the files in this directory:

$ ls –FG

You should get a response showing the following:

extra/ magic original/ users/
httpd.conf mime.types other/

The ls (list directory) command lists the contents of a directory. The -FG part is flags
that add features to the basic ls command. In this case the -F adds symbols to special
files (in this case the trailing / for subdirectories) and the -G adds color to special files.
These two are slightly redundant, but they make the listing prettier.

 At this point, your first step is to edit the httpd.conf file. This is the master Apache
configuration file.

EDITING APACHE CONFIGURATION FILES

Editing the httpd.conf file involves a few tricks. By default, only a superuser (aka
root) can edit this file; for this reason most graphical text editors (including any
downloaded through the App Store) will refuse to save any changes to this file (see fig-
ures C.16 and C.17)

NOTE Some graphical text editors will allow you to unlock and edit files like
httpd.conf, but such capabilities aren’t allowed in applications found in the
App Store. For example, BBEdit, which is available in the App Store, will allow
you to edit httpd.conf, but if you purchase the App Store version you’ll need to
download an additional file from the BareBones website to enable this feature.

Figure C.16 When you
try to edit httpd.conf in
most text editors, you’ll
first get a warning saying
the file is locked.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

348 APPENDIX C Installing PHP and MySQL
So, if there are many roadblocks to editing the httpd.conf file, how do you go about
it? It’s not too difficult from the Terminal app using sudo along with a command-
line text editor.

NOTE The sudo (switch user and do) command is available to any user on
Mac OS X with Admin rights. Most users have Admin rights to their Mac. But
if a business, school, parent, or untrusting spouse provided your computer for
you, you may not have Admin rights. If this is the case, you can’t continue on
your own; rather you should bug the person who provided you your computer
incessantly until they either give you Admin rights to your system or set all of
this up for you.

To begin, though, we’ll test out sudo and create a backup copy of httpd.conf just in
case, all at the same time with the following:

$ sudo cp httpd.conf httpd.conf.orig
Password:

After typing this command you’ll be prompted to enter your system password to
complete the command. Also, if this is the first time you’ve used sudo, you’ll be
given a warning about the dangers of using sudo inappropriately. Upon successfully
typing in your password, you can run the ls command, and you should see a new
httpd.conf.orig file listed. If not, something went wrong (check the previous note
about being Admin).

 Assuming you were able to create a copy of httpd.conf, you should be ready to go,
assured that even if you do something horribly wrong, you can recover using your
backup file. So begin the editing with

$ sudo nano httpd.conf

Now, because you recently ran the sudo command to create your backup, you may not
be prompted again for your password. sudo will remember you for short periods of
time between sudo commands, so you don’t need to enter your password every time
you run the command.

 This command will open the httpd.conf file in the nano text editor with superuser
permissions, allowing you to edit and save the file. As a result, nano will take over your
terminal screen, which should now look something like this:

Figure C.17 If you try to
unlock httpd.conf, in most
text editors you’ll get
another warning saying that
it can’t be unlocked here.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

349Installing PHP and MySQL on Mac OS X Mountain Lion

#
This is the main Apache HTTP server configuration file. It contains the
configuration directives that give the server its instructions.
See <URL:http://httpd.apache.org/docs/2.2> for detailed information.
In particular, see
<URL:http://httpd.apache.org/docs/2.2/mod/directives.html>
for a discussion of each configuration directive.
#
Do NOT simply read the instructions in here without understanding
what they do. They're here only as hints or reminders. If you are unsure
consult the online docs. You have been warned.
#
Configuration and logfile names: If the filenames you specify for many
of the server's control files begin with "/" (or "drive:/" for Win32), the
server will use that explicit path. If the filenames do *not* begin
with "/", the value of ServerRoot is prepended -- so "log/foo_log"
with ServerRoot set to "/usr" will be interpreted by the
server as "/usr/log/foo_log".

 [Read 500 lines]

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos
^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text ^T To Spell

Now your primary goal in this file is to set up and enable PHP. To do this you need to
scroll down to the directive that loads the PHP module. By default this should be on
line 117. You can use the Ctrl+Shift+_ keyboard shortcut to invoke the Enter line
number, column number: command in nano and enter 117 to go directly to line 117.
Alternatively, just scroll down using the down-arrow key until you reach the part of the
file that looks like this:

LoadModule alias_module libexec/apache2/mod_alias.so
LoadModule rewrite_module libexec/apache2/mod_rewrite.so
#LoadModule perl_module libexec/apache2/mod_perl.so
#LoadModule php5_module libexec/apache2/libphp5.so
#LoadModule hfs_apple_module libexec/apache2/mod_hfs_apple.so

<IfModule !mpm_netware_module>

The line that reads #LoadModule php5_module libexec/apache2/libphp5.so is the
line you’re interested in. Once you’re there, place the cursor in front of the # at the
beginning of the line and delete it (with the Delete key). That’s it. Now hit Ctrl+X to
exit. Upon exiting you’ll be asked if you want to save the buffer (geek speak for “save
the file”). Press Y for yes, then Enter to accept httpd.conf as the name you want to save
it as. Finished!

NOTE nano is one of the command-line options for text editors available to
Mac OS X users. You could also choose to use vi (or vim) or emacs, both of
which are significantly more powerful then nano, but both also present a much
steeper learning curve, one that isn’t appropriate for this discussion. If you
already know and wish to use one of these other text editors, it’ll work just fine.

GNU nano 2.0.6 File: httpd.conf

[Read 500 lines]

^G
^X

^O
^J

^R
^W

^Y
^V

^K
^U

^C
^T
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

350 APPENDIX C Installing PHP and MySQL
Now, to make sure everything works right, start Apache (or restart it) with the follow-
ing command:

$ sudo apachectl graceful

NOTE Prior to Mountain Lion you could control Apache by selecting the
Web Sharing option in the Sharing System Preference pane. This, to much
criticism, was removed for Mountain Lion. Apple feels that if you really must
run a web server, you’d be better served by loading OS X Server ($19.99) from
the App Store.

If you inadvertently created any errors in your httpd.conf file, you may receive an
error here. If so, compare your httpd.conf file to your httpd.conf.orig backup and see
if there are any changes other than removing the # from the PHP LoadModule line.

 If you see nothing, you’re probably in good shape. Try opening http://localhost in
a web browser. If you get a web page that by default says “It Works!” you’re in good
shape; Apache is running.

SERVING WEB FILES FROM YOUR OWN SITES DIRECTORY

There’s one more configuration step for files so you can easily create and serve web
pages from a Sites folder in your Home folder. The first thing is to go to your Home
folder in the Finder (once you’re in the Finder, the Command+Shift+H keyboard
shortcut will take you directly to your Home folder) and create a new folder called
Sites. This is where you’ll create your web files.

NOTE The editing of the httpd-userdir.conf file isn’t necessary on OS X prior
to Mountain Lion.

Now upon restarting Apache (with the apachectl graceful command), Apache will
immediately recognize your folder, but if you try to access it through a web browser,
you’ll get an error. The reason for this is Apache has very restrictive default directory
settings as a security precaution. To override this for user directories you need to edit
the httpd-userdir.conf file. To open the file for editing, use this command:

$ sudo nano /etc/apache2/extra/httpd-userdir.conf

You may or may not be prompted for your password depending on when you last
used sudo.

 Once the httpd.userdir.conf file is open, scroll to the bottom and add the following:

<Directory "/Users/*/Sites/">
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Exit nano as you did before saving the revised httpd.userdir.conf file.
 In short, this bit of code tells Apache that it has permission to look and serve con-

tent from any user’s Sites folder.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://localhost

351Installing PHP and MySQL on Mac OS X Mountain Lion
To test everything and make sure it all works, type the following at the terminal prompt:

$ echo "<? phpinfo() ?>" > ~/Sites/test.php
$ sudo apachectl graceful

Then point your web browser to http://localhost/~user/test.php (where user is
replaced by your username). The resulting web page should look like figure C.18.

C.3.2 Installing MySQL on Mac OS X

The easiest way to get MySQL up and running on your Mac is as follows:

1 Go to the MySQL website and download the latest version of MySQL community
edition (http://www.mysql.com/downloads/mysql). If you’re running Moun-
tain Lion (which is a 64-bit OS), then the appropriate version to download is the
X86, 64-bit version of MySQL in DMG format. Once the disk image is down-
loaded, open it and right-click the MySQL installer package and select Open.
This will install MySQL into your /usr/local/ directory. For convenience, right-
click the MySQL.prefPane item on the disk image, and select Open. This will
install a preference pane, allowing you to control MySQL from the System Pref-
erences (see figure C.19).

2 Start MySQL (click the Start MySQL Server button in the Control Panel).

Figure C.18 If the PHP info page shows up, Apache is configured and running properly.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.mysql.com/downloads/mysql
http://localhost/~user/test.php

352 APPENDIX C Installing PHP and MySQL
3 Set a root password for MySQL by issuing the following command at the termi-
nal prompt:

$ /usr/local/mysql/bin/mysqladmin –u root password “newpassword”

This will set the root password for MySQL to newpassword or whatever you put in the
quotes (remember it!).

 That completes the basic configuration of MySQL (easy!). Now you can invoke the
MySQL client from the command prompt using

$ /usr/local/mysql/bin/mysql –u root –p

and entering your password when prompted.

C.3.3 Getting MySQL and PHP to play nice together

There’s one frustrating issue with getting PHP and MySQL to play nice together in Mac
OS X: the location of mysql.sock. mysql.sock is a Unix socket file that allows bidirec-
tional communication between MySQL and any other local application. In the case of
our sample application, we want PHP and MySQL to talk to each other, but if you look
at the PHP info (using your test.php web page from before), you’ll see that PHP is
looking for mysql.sock in /var/mysql, whereas the actual mysql.sock file is by default
in /tmp/. What to do?

 There are four ways to fix this. Read through the options and decide which is the
sanest approach for you.

■ Create the /var/mysql directory (sudo mkdir /var/mysql) and create a sym-
bolic link from /tmp/mysql.sock to /var/mysql/mysql.sock (with: sudo ln -s
/tmp/mysql.sock /var/mysql/mysql.sock). This method is easiest but a bit
of a hack.

Figure C.19 The MySQL preference pane will allow you to start and stop MySQL as needed.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

353Installing PHP and MySQL on Mac OS X Mountain Lion
■ Edit the /etc/php.ini file (it may not exist, in which case just sudo cp /etc/
php.ini.default /etc/php.ini) so that pdo_mysql.default_socket=/tmp/
mysql.sock (by default line 1065), mysql.default_socket = /tmp/mysql.sock
(by default line 1219), and mysqli.default_socket = /tmp/mysql.sock (by
default line 1278). This method is the easiest real way.

■ Edit (or create) /etc/my.cnf, adding the following lines: [mysqld] socket=/
var/mysql/mysql.sock [client] socket=/var/mysql/mysql.sock. This will
tell MySQL to create its socket where Mac OS X’s default PHP is looking for it.
Next, you also need to create the /var/mysql directory and sudo chown mysql
/var/mysql it, or MySQL won’t start because it won’t be able to create the
socket. (Various sample my.cnf files can be found in /usr/local/mysql/support-
files.) This method isn’t too bad, but it could cause issues with other MySQL cli-
ents that look for the socket in /tmp/mysql.sock.

■ Recompile php for your version of MySQL. This method, although a pain, isn’t a
terrible idea; it’s actually the best fix although clearly neither fast nor easy.

Pick the way that works for you and do it. When you’ve finished, your computer will be
ready to serve up MySQL-driven, PHP-based web apps—including the sample app in
chapter 4.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

appendix D
Computer

networking primer

The client-server model is the foundation of the web: Your browser is the client,
servers sit out in the internet cloud, and computer networking is how they talk to
each other. JavaScript can only do so much by itself; most web applications are still
built around the communication back to the web server. The fundamentals of com-
puter networking—and terminology like headers, latency, throughput, and poll-
ing—are covered in most undergraduate computer science programs, but because
web development attracts people from a broad range of backgrounds, this appen-
dix assumes you’ve not been through a program like that. Here, we’ll introduce
you to the following concepts:

■ The basics of computer networking
■ The overhead of headers
■ Two important network performance metrics: latency and throughput
■ Polling versus event-driven communications
■ Server-side choices for event-driven web applications
■ The WebSocket protocol

Along the way, you’ll also briefly review the hacks used in HTML4 to avoid the par-
ticular performance trade-offs inherent in the fundamental web protocol, HTTP.
For starters, if you’re not sure what real-time web development even means, this appen-
dix will provide some context.

D.1 The basics of computer networking
Computer networks have both hardware and software components. Physically,
they’re wires, fiber optics, or radio waves, but in software they’re defined by what’s
354

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

355The overhead of headers
called a protocol. The physical wires transmit pure bits of data, zeros and ones; it’s the
protocols that give those bits wider meaning.

 To keep life simple, the software protocols are divided into layers. At the “bottom”
of the stack are things like Ethernet, which is a protocol for pushing bits along wires
by dividing them into packets. Above that sit protocols like the Internet Protocol (IP),
which can deal with routing messages across several Ethernet connections. On top of
this are protocols such as the Transmission Control Protocol (TCP), which deals with
keeping track of which messages have been sent, which have been received, when to
consider a message lost and repeat it, and what order they should all be in when they
arrive. It’s only once you get above TCP that you hit protocols like HTTP, which was
designed specifically for passing web pages around.

 When writing a web server it’s not necessary to consider how to communicate with
different types of network hardware. It doesn’t need different methods for sending
messages across Ethernet or Wi-Fi. All it needs to know is how to describe HTTP
requests to the TCP layer of the local network stack.

 Figure D.1 shows this arrangement in pictorial form.
 This arrangement allows communication to be conceptually simple. Applications

that want to talk HTTP only need to know about HTTP and not all the other layers. But
this simplicity doesn’t come without cost. Each layer needs to add some information
to what’s being transmitted—this information generally can be referred to as headers,
and you’ll learn more about them in the next section.

D.2 The overhead of headers
Figure D.2 focuses on exactly what’s going on at the interchange between the layers,
when data needs to be passed from an application over HTTP and down the network

HTTP

TCP

IP

Ethernet

Cable

Conceptual data flow

Web browser Web server

ServerYour computer

Actual data flow

HTTP

TCP

IP

Ethernet

Cable

Figure D.1 A network stack.
Conceptually, each layer
communicates directly with its
counterpart on another computer.
In reality, the data flow is down the
stack, across the physical wires,
and back up the other stack.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

356 APPENDIX D Computer networking primer
stack. At each stage, a small amount of information is added to allow the receiving
layer to understand what the data is and what it’s for.

 The HTTP, TCP, and later IP layers each add a different type of header information.
The TCP and IP header information is binary data. In binary data each of the headers
can be represented by the minimum number of bits—if there are only four possible
values, then only 2 bits need to be used. HTTP headers are plain text, which makes
them easy to read but more verbose. The smallest possible theoretical header is a single-
character label, a colon, and a single-character value. In ASCII encoding this adds up
to 24 bits. Most labels and values are made up of several letters, and each HTTP
request has several headers attached, with the result that most HTTP requests attach
between 0.7 and 2 kilobytes of headers. This is one of the disadvantages of HTTP for
data communication. If a single chat message needs to be sent, and the message is
only 20 or 30 bytes, it needs to be sent with all this extra data.

 In network performance terms we talk about throughput (or bandwidth): the
amount of data that the server can send per second. If the server is limited to a
throughput of 10 kilobytes per second, then it can deliver around 10 HTTP responses
per second. If it only had to send the chat data, it would be able to send about 330
chat messages. From a slightly different point of view, an application based on thou-
sands of users receiving small, real-time updates will need 33 times as many servers if
you send that data over HTTP than if you’re just sending the chat data.

Application

1. The application has

some data it wants

to send via HTTP.

3. The combined header

and data become

the input data for the

next layer.

5. The new combined

header and data

become the data

for the next layer.

4. TCP splits the

data into equal size

chunks and adds

its own header to

each chunk.

2. HTTP takes the

data and adds

some headers.

Input data

Data

DataHeader

Header

Input data

HTTP layer

TCP layer

IP layer

Figure D.2 Each layer adds header information and passes the data down the stack.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

357Polling vs. event-driven
 Throughput is only one measure of network performance. In the next section
you’ll consider the other key factor, latency.

D.3 Network performance metrics: latency and throughput
Throughput, the amount of raw data that can be transferred in a given time period, is
only one aspect of networking performance. The other key factor is latency: the time it
takes for a single bit of data to travel between two computers. Latency is important
when you expect to have a lot of requests, and those requests depend on one or more
of the previous requests completing.

 In the previous section you learned that all the extra headers used by HTTP impact
the throughput. You have every right to wonder, then, why bother with them. One rea-
son is to improve latency. All of those headers include information about caching.
This allows a browser to only download a resource, such as an image or a style sheet, a
single time and then reuse the cached version for every other page that uses it. For
any users who visit more than one page on your site, this means fewer network requests
and therefore lower latency.

 For transferring small and largely independent portions of data, all of these extra
headers are a waste. The data is unique; otherwise, there’s no point sending it, which
means you’ve nothing to gain from caching.

 That’s not the only problem with using HTTP for data transfer. What if the client
only wants to check to see if there’s new data available, a process known as polling?
Each poll will come with all the baggage of those HTTP headers. Polling can be ineffi-
cient to start with, which makes it a poor choice for real-time applications. The next
section will examine this issue in more detail.

D.4 Polling vs. event-driven
The phrase “real-time web” has become fashionable in recent years. Although it’s
based on a number of trends, the real-time web embodies a shift from the traditional
client polling approach in web applications to a more event-driven approach. Instead
of clients deciding when to ask the server if there’s new information, the server sends
new information to the client when it’s ready.

 Event-driven approaches are far more efficient than polling. This section will dem-
onstrate that point with a series of timeline diagrams. Figure D.3 illustrates an opti-
mum case for polling.

 Even with the optimum polling solution you’ll still have polls when there’s no data,
and for other polls data will be available for nearly the full length of time between
polls. And the optimum polling solution is hard to achieve. The average chat room
will have busy periods and quiet periods, and when those occur depends on the con-
fluence of schedules of people living thousands of miles apart. It’s more likely the
application will spend more time in the degenerate cases (see figure D.4).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

358 APPENDIX D Computer networking primer
The solution is to switch from polling to event-driven communication, as illustrated in
figure D.5. Then the server, which knows when the information is available, is in
charge of when information is delivered.

 Event-driven communication is clearly more efficient because it exactly matches
the frequency of communication with the frequency of the availability of new data.
With no built-in support for event-driven messaging, web developers who wanted to
avoid the use of plug-ins have resorted to two HTML/JavaScript hacks to simulate it:
long polling and the forever frame.

Time

Server has

new data

Web browser

polls

Figure D.3 The optimum case for polling: new data is available regularly, and
the frequency of the new data being available is similar to the number of polls.

Time

Server has

new data

Web browser

polls

Time

Server has

new data

Web browser

polls

Figure D.4 The worst cases for polling: top—when new data is available far
more frequently than it’s polled for; bottom—when polling happens far more
frequently than there’s data available.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

359Polling vs. event-driven
Long polling allows for an increased chance of instantaneous updates by being pur-
posefully slow in responding to a request. Instead of responding to a request immedi-
ately, the server holds the connection open and waits until there’s new data. As soon
as the browser receives the new data, another long poll is initiated.

 The forever frame is a way of loading a web page slowly. The web page is loaded into
a hidden iframe element. Instead of delivering all the content as quickly as possible,
the server sends a chunk at a time, as updates become available. In the main page, the
iframe is repeatedly scanned for new content.

 Long polling approximates event-driven communication, but each request still
requires a full set of HTTP headers. The forever frame approach requires the headers
to be sent only once, but it still requires a lot of messing around in client code to
check the contents of the frame to see if they’ve been updated.

 Server-sent events (SSE) work along the same lines as forever frames, except the
browser has a convenient API that’s similar to the cross-document and channel-
messaging APIs you’ve already seen.

Time

Server has

new data

Events are

sent

Time

Server has

new data

Events are

sent

Figure D.5 Having event-driven communication means data is sent exactly as
often and exactly when it becomes available. Data is received without any wasted
requests or delays.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

360 APPENDIX D Computer networking primer
D.5 Server-side choices for event-driven web applications
The two new event-driven, client-server APIs in HTML5 are SSEs and WebSocket. Event-
driven, client-server approaches are ideal for applications that need to send small
amounts of data quickly to many clients; for example, stock-trading applications,
where a few milliseconds’ delay in updating can have measurable financial impact, or
network gaming where delays (or lag) can make the game unplayable.

 On a traditional web server, each connection is allocated a dedicated thread or
process (a flow of execution within a program), which suits the model where each
connection is data-intensive but short lived, such as when a web page and its linked
resources are being downloaded. Event-driven communication expects the connec-
tions to be long lived but with relatively little activity. When each thread is assigned a
connection, the maximum limit is soon reached and the server becomes unable to
respond to new requests.

 This can be a problem for traditional web servers like Apache, which allocate a
process or thread per connection. The number of processes or threads that can be
created is limited, even if, as is usually the case, all of those processes or threads spend
most of their time doing nothing. Servers such as Lighttpd and nginx share the pro-
cesses between the connections to allow them to handle a far larger number; these
servers have risen in popularity along with event-driven, real-time web applications.

D.6 Understanding the WebSocket protocol
The WebSocket protocol allows bare-bones networking between clients and servers
with little overhead—certainly far less overhead than the previously more common
approach of attempting to tunnel other protocols through HTTP. With WebSockets
it’s possible to package your data using the appropriate protocol, the eXtensible Mes-
saging and Presence Protocol (XMPP) for chat, for example, but benefit from the
strengths of HTTP, which, like MasterCard, is accepted nearly everywhere.

D.6.1 WebSocket protocol vs. WebSocket API
The specifications for WebSockets are split into two parts. The WebSocket protocol
describes what browser vendors and servers have to implement behind the scenes; it’s
the protocol used at the network layer to establish and maintain socket connections
and pass data through them. The WebSocket API describes the interface that needs to
be available in the DOM so that WebSockets can be used from JavaScript.

 The Internet Engineering Task Force (IETF) maintains the specification for the
WebSocket protocol. This is the same organization that manages the specifications for
HTTP, TCP, and IP.

 WHATWG maintains the specification for the WebSocket API in concert with W3C,
the same as for the HTML5 specification itself.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

361Understanding the WebSocket protocol

o
e

’re
et.

The
s

annou
that i

acce

upg
req
D.6.2 The WebSocket protocol

Like parts of the HTML5 specification, the WebSocket protocol spent many months
under heavy development, but unlike HTML5, the versions that the client and server
are using need to match for everything to work.

 The WebSocket protocol describes, in detail, the exact steps a client and server
take to establish a WebSocket connection, exchange messages, and ultimately close
the WebSocket. To make a node, or any web server, accept WebSocket connections,
you need to implement the WebSocket protocol. In this section you’ll get an overview
of how that protocol works. The following listing is a set of HTTP headers that the
browser will send to the server in order to initiate a WebSocket connection.

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat.example.com, chatplus.example.com
Sec-WebSocket-Version: 13

A typical server response is shown in the next listing.

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat.example.com

Listing D.1 The WebSocket handshake

Listing D.2 The server response

The format is intentionally modeled after HTTP requests; t
web servers, routers, proxies, and other web infrastructur
this request should look like a normal HTTP request.

These headers indicate to the server that you
expecting an upgrade from HTTP to WebSock

This header is a base64-encoded string (decoded, this one reads “the sample nonce”). The
decoded string must be 16 bytes long. It will be transformed by the server and returned to the
browser for security verification in listing D.2.

This tells the server where the script making the
WebSocket request originated, allowing cross-

domain requests to be blocked if necessary.

The list of subprotocols the browser understands;
the protocol the application will be using across
the Web Socket—these are application-specific

and the whole header is optional.

The WebSocket protocol version the web
browser is expecting; for hybi-17 the version is
13 because hybi-13 was the last version where a

noncompatible change was made.

 web
erver
nces
t has
pted
the

rade
uest.

The upgrade headers
are echoed back. Response to the Sec-

WebSocket-Key header in
listing D.1. The string
258EAFA5-E914-47DA-95CA-
C5AB0DC85B11 is appended
to the value; it’s hashed
with SHA-1 and then
base64-encoded again and
placed in this field.

Of the subprotocols listed by the client,
this is the one the server understands.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

362 APPENDIX D Computer networking primer
Once the handshake is complete, data exchange can begin. The messages in Web-
Sockets are sent in what are referred to as frames. Figure D.6 shows the structure of a
frame. Frames are a lightweight container for the data with minimal binary headers.
The overhead per message is only 6 bytes.

D.6.3 WebSocket browser support

Although the protocol is well-defined, let’s review further complications. The Web-
Socket protocol was only finalized in spring 2012. Before that, seven different versions
of it had seen some browser support. Table D.1 shows the different versions and the
browsers that support each of them.

 Table D.1 lists only the versions where noncompatible changes were made. But you
can see from the numbers in the table that there have been many versions of the spec-
ification, up to version 76 when the specification was still maintained by WHATWG
(hixie-76), which then became the initial version of the IETF-maintained specification.

Data

Mask

Data length

Mask flag

Op code

Header4 bits

A web socket frame

4 bits

1 bit

32 bits

Variable

7 bits

(or 23 bits

or 71 bits)

Currently this will always be 1000.

Always 1

If the length of the data can’t be

described in 7 bits, 23 or 71 bits

can be used.

The mask is a random 32-bit value

that’s XORed against the data.

It should be different on every

request to deter sniffing.

The application data

There are six opcodes defined

• Continuous frame

• Text frame

• Binary frame

• Close

• Ping

• Pong

Figure D.6 Diagram of a WebSocket frame—the non-data parts take up only 48 bits,
equivalent to six characters.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

363Understanding the WebSocket protocol
It has since seen 17 further revisions before finally being released as RFC 6455. The cli-
ent passes the version it understands in the initial request (listing D.1). On the server
side you can decide whether or not to support the version the client understands.
Obviously, the more versions you choose to support, the more work you have to do on
the server.

Table D.1 WebSocket protocol versions and browser support

WebSocket
protocol version

hixie-75 4 5.0.0

hixie-76 / hybi-00 6 4
(disabled)

11
(disabled)

5.0.1
(and iOS5)

hybi-06 8/9
(add-on)

hybi-07 6

hybi-09 8/9
(add-on)

hybi-10 14 7 10 (DP1)

hybi-17 / RFC 6455 16 11 10 12.50 6.0, iOS6
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

appendix E
Setting up Node.js

This appendix is provided for readers who need to set up Node.js for the chapter 4
application. You might be wondering why we chose Node.js. There are several alter-
native web servers that are much better suited to WebSockets than the traditional
choices of Apache or IIS (IIS8 will have built-in WebSocket support). These servers
share connections between threads, taking advantage of the mostly idle nature of
event-driven connections. In chapter 4, you’ll be using Node.js for two reasons:

■ It uses JavaScript, which you’re already familiar with.
■ It has an easy-to-use library implementing the WebSocket protocol.

This appendix will walk you through installing and setting up Node.js for the chap-
ter 4 application. You’ll also learn how to build basic web applications with Node.js
and how to use the Node Package Manager (NPM). NPM lets you easily install mod-
ules to extend the functionality of Node. You’ll also create a simple application to
confirm that the modules are installed correctly.

E.1 Setting up Node.js to serve web content
Node.js is an event-driven web server based on the V8 JavaScript engine, which is
part of the Google Chrome browser. The basic process for installing Node is to
download the source code and compile it. For Linux and Unix users, this isn’t an
unfamiliar approach, but this may come as a bit of a shock to Windows users. For
Windows, a prebuilt binary is available from the installation page: https://
github.com/joyent/node/wiki/Installation.

 Even if you’re using the prebuilt binaries, the prerequisites mentioned on the
installation page are still required because they’re used in the installation of mod-
ules (which you’ll look at in E.2). Unfortunately, the installation page doesn’t do a
very good job of explicitly stating the requirements for each platform; table E.1
summarizes the prerequisites for all the major platforms.
364

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://github.com/joyent/node/wiki/Installation
https://github.com/joyent/node/wiki/Installation

365Setting up Node.js to serve web content

The
m

ind
th

con
com
Once you’ve installed your prerequisites correctly you can get started. This appendix
will walk you through a few simple example Node applications, which will confirm
that your installation is correct and let you see how common web application scenar-
ios are handled in Node.

E.1.1 Create a Node Hello World application

In this section you’ll build, in two steps, the
traditional Hello World application shown in fig-
ure E.1. You’ll generate a page entirely dynami-
cally using JavaScript.

STEP 1: CREATE A NODE APPLICATION

The first listing is a simple Hello World applica-
tion for Node, as shown in figure E.1. Create a
file called app.js in your working directory and
place this code into it.

var http = require('http');

http.createServer(function(request, response) {
 response.writeHead(200);
 response.write("<!DOCTYPE html>");
 response.write("<html>");
 response.write("<head>");
 response.write("<title>Hello</title>");
 response.write("</head>");
 response.write("<body>");
 response.write("Hello World");
 response.write("</body>");
 response.write("</html>");
 response.end();
}).listen(8080);

STEP 2: RUN A NODE APPLICATION

After you’ve created your app.js file you should be able to start Node. Issue a com-
mand like the following from your shell or command prompt, making sure you’re in

Table E.1 Node.js prerequisites by platform

Platform Prerequisites

Linux GCC 4.x.x; GNU make 3.81 or newer; Python 2.6 or 2.7

Unix/BSD GCC 4.x.x; GNU make 3.81 or newer; Python 2.6 or 2.7; libexecinfo

Mac Xcode 4.5; GNU make 3.81 or newer; Python 2.6 or 2.7

Windows Visual Studio 2010 or Visual C++ 2010 Express; Python 2.6 or 2.7

Listing E.1 Node Hello World

Figure E.1 Node says “Hello World.”

Most functionality in Node is implemented through a
system of modules; here the built-in http module is loaded.

The http module has a create
server method, which is passed
a handler function that will be
called when requests are made.

The response itself is a simple
web page; each line is explicitly
written into the response.

 end()
ethod
icates
at the
tent is
plete. After the server is created, it’s set to listen on

port 8080; any requests to http://localhost:8080
will now be passed to the handler function.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://localhost:8080

366 APPENDIX E Setting up Node.js
your working directory (you may need to log off and back on for the Node folder to
be added to your path):

node app.js

This command will start Node running in the current directory using the file app.js to
determine behavior. Start the Node server with the command shown previously. Once
the Node server is running, point your browser at http://localhost:8080/ and re-create
figure E.1.

E.1.2 Serving static files with Node

Node is a bare-bones web server, which means many things you might take for granted
with more traditional web servers won’t happen in Node, unless you write code to
make them happen. For instance, Node won’t transparently transfer any static files
that happen to be sitting in the execution directory. If you want a file called
index.html to be sent to the browser in response to a request, it’s up to you to detect
the requested URL, locate the file, and then send it in response.

 In this section you’ll create, in four steps, a static file and serve it with Node:

■ Step 1: Create a static file.
■ Step 2: Load a file from a disk.
■ Step 3: Send the file to the browser.
■ Step 4: Run the application.

The end result will look identical to what you achieved in the previous section, but the
architecture will be improved because your display rendering is separated from your
application logic.

STEP 1: CREATE A STATIC FILE

The next listing is a simple index.html file—place it in a new working directory.

<!DOCTYPE html>
<html>
<head>
 <title>Hello</title>
</head>
<body>
Hello world
</body>
</html>

STEP 2: LOAD A FILE FROM A DISK

Now that you have a static HTML file, you need to load it from a disk. Node has a built-
in module for reading files from a disk called fs. You can use the fs.readFile()
method to load a file. Create a new app.js file in your working directory and add the
code from the following listing.

Listing E.2 A static index.html file
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://localhost:8080/

367Setting up Node.js to serve web content

 a
at
e
var http = require('http');
var fs = require('fs');

http.createServer(function(request, response) {
 fs.readFile('./index.html', function(error, content) {
 //Code to handle the file goes here
 });
}).listen(8080);

STEP 3: SEND THE FILE TO THE BROWSER

After the readFile() function has completed, your callback function will execute;
you need to check that the file was read successfully and send it to the browser. You
can use the same http module methods from section E.1.1 to do this. Replace the
comment in listing E.3 with the code in the following listing.

 if (error) {
 response.writeHead(500);
 response.end();
 } else {
 response.writeHead(200,
 { 'Content-Type': 'text/html' });
 response.end(content, 'utf-8');
 }

STEP 4: RUN THE APPLICATION

Just as in the last example, start your application from the command line:

node app.js

Point your browser at http://localhost:8080/ and check that you can see the Hello
World page.

 Serving static files isn’t interesting in and of itself, but serving purely dynamic files,
as in section E.1.1, isn’t practical either; in a real application you don’t want your web
designers attempting to edit HTML and CSS inside your JavaScript application logic.
You need to be able to mix static content with the results of the application logic, and
you’ll look at that in the next section.

E.1.3 Serving mixed static and dynamic content with Node

In this section you’re going to create an HTML template file with placeholders that
will be replaced with dynamic values when the page is requested.

STEP 1: CREATE A STATIC TEMPLATE WITH PLACEHOLDERS

The index.html template is shown in the next listing. It’s identical to the previous
index.html file, apart from the added placeholder for the dynamic variable. Create a
new working directory and place this index.html file into it.

Listing E.3 An app.js file that reads a file from a disk

Listing E.4 Sending the file to the browser in app.js

To read from the filesystem,
the fs module is needed.

Two parameters
are required for
readFile(), a path to
file and a function th
will be called after th
file has been read.

In the next
step you’ll fill
in this code.

If there’s an error reading the file,
it will be handled gracefully here...

...otherwise, send
the file to the user.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://localhost:8080/

368 APPENDIX E Setting up Node.js

.

<!DOCTYPE html>
<html>
<head>
 <title>Hello</title>
</head>
<body>
Hello world {0}
</body>
</html>

STEP 2: MIX DYNAMIC CONTENT INTO YOUR TEMPLATE

The following listing inserts dynamic values into a static template file using the stan-
dard JavaScript String.Replace function. Create an app.js file in your working direc-
tory and add this code to it.

var http = require("http");
var fs = require("fs");
var inc = 0;

http.createServer(function(request, response) {
 fs.readFile('./index.html', function(error, content) {
 if (error) {
 response.writeHead(500);
 response.end();
 } else {
 response.writeHead(200, { 'Content-Type': 'text/html' });
 response.end(
 content.toString().replace(/\{0\}/g,++inc),
 'utf-8'
);
 }
 });
}).listen(8080);

STEP 3: TEST IN THE BROWSER

Start Node with your new app.js file as you did in the previous examples, and load the
page in the browser. Each time the page gets refreshed in the browser, the variable
should get incremented once. You can expect the number on the page to increase by
one with every page load. Let’s try it in real time in a few browsers. Figure E.2 shows
the results.

 You may be scratching your head at this result—we certainly did. Chrome’s Net-
work tab in its developer tools shows only a single request, so why does the variable get
incremented twice? The answer is that Chrome makes an additional request that it
doesn’t tell you about for favicon.ico. In case you’re not familiar with it, favi-
con.ico is the standard name for the little icon that appears alongside the URL in the
address bar. Because your Node server is configured to respond to every request with

Listing E.5 A simple template index.html

Listing E.6 Mixing static and dynamic content in app.js

{0} is a placeholder for
your dynamic content.

The file is loaded
as before.

A simple dynamic
page is implemented
by replacing all
instances of {0}
with the value of a
pre-incremented inc
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

369Setting up Node.js to serve web content
the same HTML file, it sends that file in response to the request for favicon.ico, too.
This results in the variable being incremented twice.

 To stop this from happening, you need a way to route requests for different
URLs to different server responses. This is called routing and will be the subject of
the next section.

E.1.4 Routing: serving different files for different URLs

Routing is the matching up of the URL requested by the browser with the appropriate
response from the server. The following listing demonstrates a simple approach.

var http = require("http");
var fs = require("fs");
var inc = 0;

http.createServer(
function(request, response) {
 if (request.url === '/index.html' || request.url === '/') {
 fs.readFile('./index.html', function(error, content) {
 if (error) {
 response.writeHead(500);
 response.end();
 } else {
 response.writeHead(200, { 'Content-Type': 'text/html' });
 response.end(

Listing E.7 Simple routing app.js example

+1 +2

Each time the page is

loaded in Firefox, the

variable increments once.

But each time the page

is reloaded in Chrome,

the variable increments

by two. What’s going on?

Figure E.2 The results of reloading the simple dynamic page in Firefox and Chrome

Only respond
with the file to
requests for
index.html or
the default
document.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

370 APPENDIX E Setting up Node.js
 content.toString().replace(/\{0\}/g,++inc),
 'utf-8'
);
 }
 });
 } else {
 response.writeHead(404);
 console.log(request.url + ' not found');
 }
}).listen(8080);

The example increments the variable only once for every page reload in Chrome,
because the index.html is sent only to explicit requests for it or for the root document.

 In this section, we’ve provided a low-level understanding of how Node handles web
applications. In real life, you don’t want to spend hours figuring out how to do things
such as sending each individual file to your users, or slicing up your data to fit into
WebSocket frames, or keeping up with all the changes in the specification. To avoid
repeatedly doing the boring stuff in Node.js, you need more modules. But the mod-
ules you’ll need aren’t included as standard with Node like http and fs that you’ve
already used. In the next section, you’ll learn how to go above and beyond the stan-
dard set of modules by downloading third-party modules using the Node Package
Manager (NPM).

E.2 Easy web apps with Node modules
In the previous section, you explored several functions that need to be performed in
Node in order to create real web applications: placing dynamic content inside static
files (or templating) and mapping requests at different URLs to appropriate handlers
(or routing). But you also need to handle WebSocket requests. That was the point of
installing Node in the first place. If you looked at the explanation of the WebSocket
protocol in appendix D, you know that handling WebSockets involves a lot of slicing
and dicing of binary data. This is hardly the use case for which JavaScript was
designed. You don’t want to spend all your time dealing with low-level stuff like that
when you could be writing applications. All of this can be more easily accomplished in
Node by taking advantage of third-party modules. In this section we’ll set you up with
the following modules:

■ Director—for routing
■ Mustache—for templating
■ WebSocket-Node—for the WebSocket protocol

You can easily manage modules with the NPM script. Because modules have become
fundamental to using Node, NPM, once a handy add-on, now comes as part of the
main Node.js distribution.

 It’s easy to install the modules; Node looks for them in the node_modules direc-
tory of the current directory. This will be the same place where your app.js file is

For any other request,
return a 404 not
found error.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

371Easy web apps with Node modules
located, so make sure you’re in that directory before installing modules. Then, run
these commands:

npm install director
npm install mustache
npm install websocket

Modules are now installed local to your application, and you have a file structure like
that shown in figure E.3.

 Now you’re going to create an application
that’s going to try loading all three of these mod-
ules and show a message if it is successful. This
will tell you the modules have been installed
correctly. The result is shown in figure E.4.

 The following listing is the app.js file in fig-
ure E.3. Create a new working directory and
add app.js to it. When you run it with Node,
it’ll attempt to load all the modules you’ve
installed and create a simple page.

var http = require("http");
var director = require("director");
var mustache = require("mustache");
var WebSocketServer = require('websocket').server;

var template = '<!DOCTYPE html>\n'
 + '<html>\n'
 + '<head>\n'
 + '<title>Modules test</title>\n'
 + '</head>\n'
 + '<body>\n'
 + 'Director is {{director_status}}
\n'
 + 'Mustache is {{mustache_status}}
\n'
 + 'WebSocket-Node is {{socket_status}}\n'
 + '</body>\n'
 + '</html>';

Listing E.8 An app.js using Director, Mustache, and WebSocket-Node

Figure E.3 Application file
layout with modules installed

Figure E.4 If you see this page,
everything is working correctly.

When installed with NPM, add-on
modules are referenced in the
same way as built-in modules.

Instead of emitting the markup
directly, we’ll use this variable to
store a template for mustache.
In later examples you’ll load the
template from disk.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

372 APPENDIX E Setting up Node.js
var dict = {
 'director_status': director.http.Router ? 'working':'broken',
 'mustache_status': mustache.to_html ? 'working':'broken',
 'socket_status' : typeof WebSocketServer !== 'undefined'
 ? 'working':'broken'
};

var html = mustache.to_html(template,dict);

http.createServer(
 function(request, response) {
 response.writeHead(200);
 response.write(html);
 response.end();
 }
).listen(8080);

If everything has gone according to plan, you should see a page similar to that shown
in figure E.4 when you fire up Node and browse to port 8080.

 Now that you know everything is installed correctly you’re ready to build your first
WebSocket application. If you came to this appendix from the build prerequisites (sec-
tion 4.2) in chapter 4, you can head back to that chapter and continue with the build.

This object restores the results of a
few simple tests, which confirm all

the modules loaded correctly.

Mustache is the only
module this example uses.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

appendix F
Channel messaging

Channel messaging is similar to cross-document messaging (see chapter 4) except
instead of one message channel per window, it allows multiple channels to be cre-
ated. This is useful if you want to build the page out of a number of loosely cou-
pled, event-driven, independent components. Rather than adapt them all to share
a single cross-document messaging interface and ensure they don’t clash with each
other’s internal API for message formats, each component can have its own set of
private channels.

In the next few pages you’ll build a simple test bed by setting up a page that loads a
document from a different domain. You can easily fake running multiple domains
from your own computer, and in this section you’ll walk through setting up two
pages on your computer that run from different domains. One page will load the
other in an iframe, and you’ll use channel messaging to communicate between
the two. Figure F.1 shows the test bed after channel messaging has occurred. You
can use the textboxes to create the messages, and any message received will be
added to the document.

 You can build the example by following these five steps:

■ Step 1: Install a local development web server.
■ Step 2: Set up a cross-domain test environment.
■ Step 3: Create the example pages.
■ Step 4: Add JavaScript to the first page.
■ Step 5: Add JavaScript to the second page.

Channel messaging 4 ~ 10 11 5
373

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

374 APPENDIX F Channel messaging
STEP 1: INSTALL A LOCAL DEVELOPMENT WEB SERVER

You’ll need to be able to serve web pages from your local machine. In other words,
you need to have a web server. If you already have one, please skip ahead; otherwise,
follow along, and we’ll review some easy options:

STEP 2: SET UP A CROSS-DOMAIN TEST ENVIRONMENT

To experiment with messaging between scripts in different domains, you need to have
multiple domains available. The easiest way to do this is to fake some domains by
editing the hosts file on your computer. On Windows this file is usually found at
C:\Windows\System32\drivers\etc\hosts (note the lack of a file extension; also note
that this is a system file, so run your editor as administrator); on Mac OS X and Linux
it’ll be found at /etc/hosts. Opening that file in a simple text editor should reveal
some lines like the following:

127.0.0.1 localhost

Add your fake domains to the end of the line starting 127.0.0.1:

127.0.0.1 localhost domain1.com domain2.com

Now you can browse to http://domain1.com and http://domain2.com, and the pages
will be served from your local web server.

Windows Microsoft Visual Web Developer Express comes with a built-in web server. You can easily
create a web application project and place the files you create in the next section within it.
See the download pages at http://mng.bz/gu1b for further details.

Mac Go into System Preferences > Sharing, and check the Web Sharing box. The default folder
is /Library/WebServer/Documents/.

Linux Most Linux distributions come with Python already installed, and Python includes the
SimpleHTTPServer module. To start it, open a command prompt and set the current
directory to the one containing your files; then issue the command python -m
SimpleHTTPServer 8000 to start a server listening on port 8000.

The parent window

Child window

in iframe

Messages received

from child

Messages received

from parent

Figure F.1 A simple channel-messaging example, such as the one you’ll build in chapter
4’s listings 4.5 and 4.6
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/gu1b
http://domain1.com
http://domain2.com

375Channel messaging

-

nt
nto it.

tion;
lue
ow

do
me
the

param
the

the m
is

pa
STEP 3: CREATE THE EXAMPLE PAGES

First, you’ll need two pages in your working directory. Call them example-1.html and
example-2.html, and add the markup shown in the following listing to the body sec-
tion. This markup is even simpler than the cross-document messaging example in
chapter 4 because JavaScript will add the iframe.

 <ul id="log">
 <form id="msgform">
 <input type="text" id="msg">
 <input type="submit">
 </form>

STEP 4: ADD JAVASCRIPT TO THE FIRST PAGE

Now you need to add code to initiate the messaging.
 Channel messaging works by creating a pair of ports. A port is a generic object that

allows messaging. It supports the postMessage method and onmessage event that you’re
familiar with from cross-document messaging. Anything sent to one port will appear as
output from the other port; in HTML5 terms they’re described as entangled. This is by
analogy to quantum entanglement: two particles that, no matter what distance separates
them, change simultaneously. One of the ports is then sent to another script context.
This could be a script in another document or window or a web worker. Listing F.2
shows the details. The code from listing F.2 should go in a <script> block after the form
in example-1.html (you could add it in the head element, but then you’d need to wrap it
in a function and execute it on the load event). As you can see, the channel-messaging
API is similar to the cross-document messaging API you looked at in chapter 4.

var f = document.getElementById('msgform');
var m = document.getElementById('msg');
var l = document.getElementById('log');

var channel = new MessageChannel();

var w = document.createElement('iframe');
document.body.appendChild(w);
w.setAttribute('src','http://domain2.com/example-2.html');
var sendPort = function() {
 w.contentWindow.postMessage({"code":"port"},
 'http://domain2.com',
 [channel.port2]);
}
w.addEventListener('load', sendPort, false)

Listing F.1 Channel messaging/example-1.html body content

Listing F.2 Channel messaging/example-1.html JavaScript

For convenience, several global variables
are set up; if this was more than a single
page example, it would be better to wrap
this whole listing in a reusable object.

The MessageChannel constructor
returns a pair of entangled ports.

Create an iframe eleme
and load a document i

Here’s the familiar postMessage func
the first argument is a string. The va
used here isn’t necessary, but it’ll all
for easy detection in the other page.

As with
cross-

cument
ssaging,
 second
eter is

domain
essage

 getting
ssed to.

The new parameter for channel messaging is an
array of port objects; the second port from the
MessageChannel is passed.

There’s no point in sending the port if
the document isn’t loaded, so wait for
the load event before sending the port.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

376 APPENDIX F Channel messaging

e

re
the p
globa

L

po
var channel_message = function(e) {
 var li = document.createElement('li');
 li.appendChild(
 document.createTextNode(
 'channel:' + JSON.stringify(e.data)
)
);
 l.appendChild(li);
}
channel.port1.onmessage = channel_message;
var send_message = function(e) {
 var s = {};
 s.msg = m.value;
 channel.port1.postMessage(s);
 m.value = '';
 e.preventDefault();
}
f.addEventListener('submit', send_message, false);

STEP 5: ADD THE JAVASCRIPT TO THE SECOND PAGE

Now you need to set up the second page to allow it to receive the port and then send
and receive messages through it. The code from the next listing should go in a
<script> block after the form in example-2.html.

var f = document.getElementById('msgform');
var m = document.getElementById('msg');
var l = document.getElementById('log');
var port;
var receive_port = function(e) {
 var d = typeof e.data === "string"
 ? JSON.parse(e.data)
 : e.data;
 if (d.code == "port") {
 port = e.ports[0];
 port.postMessage("Port received.");
 port.onmessage = function(e) {
 var d = typeof e.data === "string"
 ? JSON.parse(e.data)
 : e.data;
 var li = document.createElement('li');
 li.appendChild(
 document.createTextNode('channel:' + d)
);
 l.appendChild(li);
 }
 var send_message = function(e) {
 var s = {};
 s.msg = m.value;
 port.postMessage(s);
 m.value = '';
 e.preventDefault();
 }

Listing F.3 Channel messaging/example-2.html JavaScript

The first port of your channel
is now entangled with the
port sent to the other
document, so to receive the
messages you need to listen
to the onmessage event.

Reversing that, if you use postMessage on
the first port, the message will appear on
the second port in the other document.

The send_message function is
bound to the form’s submit event
to allow the user to send
messages to the other document.

Several global variables are set up, but this tim
there’s no need to create a new MessagePort.
Instead, a variable is created to store the port
that will be sent to this window.

This function will be used when you’re
passed a message from another document.

The convention is that if there’s a
message code of “port,” then
you should grab the attached
port and use it for messaging.
You don’t have to use “port”;
anything else would work as
well, but it’s here that you would
start to define an API for clients.

Store a
ference to
ort in the
l variable.

et the caller
know the

rt has been
received.

Attach a
handler to

the port
message

event.

Any messages received
will be logged.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

377Channel messaging

Set

t
c

m

t
th

t

r
.

 f.addEventListener('submit', send_message, false);
 }
 var li = document.createElement('li');
 li.appendChild(document.createTextNode('window:' + d));
 l.appendChild(li);
}
window.addEventListener('message', receive_port, false);

Now you’re ready to try to re-create figure F.1. If you’ve been following along, the URL
should be similar to http://domain1.com:8000/example-1.html. The port number
(8000) might be different, depending on which local web server you used; refer to the
documentation for details.

 up the
form so
he user
an send
essages

back
hrough
e port.

The fact that a
message event has
been handled is
logged for the benefi
of your audience.

The receive_port handle
is bound to the window
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://domain1.com:8000/example-1.html
http://domain1.com:8000/example-1.html

appendix G
Tools and libraries

It’s important to know what tools and libraries are available for developers looking to
leverage HTML5 APIs. These can save time and make your projects less buggy. In this
appendix, you’ll find out about several tools for mobile and HTML5 applications.

G.1 Tools for mobile web applications
If you’re an experienced web application developer, you’ll probably be familiar
with web and JavaScript frameworks that make your life easier when it comes to
ensuring cross-browser compatibility with your code, or that reduce your workload
by giving you access to UI widgets and components. If so, you may have been won-
dering if there’s any such framework for mobile web applications. Fortunately, the
answer is yes, and there’s a decent choice of frameworks on offer, including:

■ jQuery Mobile
■ Sencha Touch
■ Dojo Mobile
■ Jo

These frameworks provide a means of building mobile web applications that lever-
age HTML5 to create a native app experience. They all feature a set of rich UI com-
ponents that mimic native mobile UI features such as lists, navigation bars, toolbars,
tab bars, form controls, carousels, and more. Each also provides a data abstraction
layer that makes it easier to interact with HTML5’s storage features, which are cov-
ered in chapter 5. All of these frameworks can be used in tandem with frame-
works, such as PhoneGap, for deploying mobile web applications as native apps
on various platforms.
378

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

379Tools for HTML5 applications
G.2 Tools for HTML5 applications
This section covers things that you’ll find useful when developing HTML5 applica-
tions. It includes tools within browsers, development versions of browsers, and exter-
nal tools and scripts to make your life easier.

G.2.1 Firebug, Chrome/Safari developer tools, Dragonfly, IE developer tools

When developing HTML5 applications, your development environment will primarily
consist of a text editor or integrated development environment (IDE) and a web
browser. Every web developer should at least have a copy of the latest versions of the
major browsers:

■ Apple Safari
■ Google Chrome
■ Microsoft IE
■ Mozilla Firefox
■ Opera

In addition to installing the major web browsers, you should ensure that you have the
available relevant tools to make your life easier. All of the major browsers now include
a suite of web developer tools. These tools are vital when it comes to testing, debug-
ging, and analyzing the performance of your web pages and applications. The fea-
tures provided by these tools include the following:

■ Console output
■ JavaScript debugging
■ Element and property inspection
■ Network activity and traffic analysis
■ JavaScript performance profiling
■ On-the-fly element styling and manipulation

G.2.2 Browser development versions

In addition to the release (or stable) versions of browsers your users have right now,
you should also consider installing one or more of the development versions. Devel-
opment versions of browsers are where the testing of new features happens, so they
allow you to try out new standards as they’re being finalized and also test your web
applications in the next version of the browser.

 Table G.1 lists the major browsers and where to get development versions of them.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.modernizr.com/

380 APPENDIX G Tools and libraries
The different browsers’ development versions each use their own terminology. Table G.2
will help you to understand what to expect from each version.

G.2.3 HTML5 Shiv

HTML5 Shiv is a shim (a small, compatibility-focused library) for enabling support
for HTML5’s new elements in older versions of IE. That it’s called HTML5 Shiv rather
than HTML5 Shim is an accident of history, but it does serve to differentiate it from
the large number of shims that have arisen around HTML5 in recent years. Down-
load the latest version from https://github.com/aFarkas/html5shiv or use Modernizr
(described in the next section), which includes the Shiv.

G.2.4 Modernizr

One of the problems with using HTML5 is the lack of consistent browser support for
the various features defined in the specification. For example, the new autofocus

Table G.1 Browsers and their development versions

Browser Development Versions

■ Chrome Beta: https://www.google.com/landing/chrome/beta/ (can’t be installed side by
side with stable or dev versions)

■ Chrome Dev: http://mng.bz/XKev (can’t be installed side by side with stable or beta versions)
■ Chrome Canary: https://tools.google.com/dlpage/chromesxs (can be installed side by

side with stable, beta, or dev versions)

■ Firefox Beta: https://www.mozilla.org/en-US/firefox/beta/
■ Firefox Aurora: https://www.mozilla.org/en-US/firefox/aurora/
■ Firefox Nightly: http://nightly.mozilla.org/

Internet Explorer has a much slower release cycle than the other major browsers, so there
isn’t a regular snapshot available. Check http://ie.microsoft.com/testdrive/ for information
on any beta versions or release candidates available.

Opera: Beta and alpha versions are called Opera Next; get them here:
http://www.opera.com/browser/next/
Whether a particular Opera Next release is a beta or an alpha depends on how close to the
next release they’re getting; closer to release and they’ll be betas.

Safari: There are no beta releases of Safari as such, but you can download a nightly version
of the WebKit rendering engine that powers Safari and use it within your existing Safari
install: http://nightly.webkit.org/

Table G.2 Development version terminology

Term Description

Beta/Release Candidate Mostly stable and approaching release, updated once every week or two

Dev/Aurora/Alpha Not guaranteed to be stable, updated once a week or more

Nightly/Canary Cutting edge and unstable, updated every night
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://www.google.com/landing/chrome/beta/
http://mng.bz/XKev
https://tools.google.com/dlpage/chromesxs
https://www.mozilla.org/en-US/firefox/beta/
https://www.mozilla.org/en-US/firefox/aurora/
http://nightly.mozilla.org/
http://ie.microsoft.com/testdrive/
http://www.opera.com/browser/next/
http://nightly.webkit.org/
https://github.com/aFarkas/html5shiv

381Tools for HTML5 applications
attribute for input elements works in Firefox4 but not in Firefox3.6. Safari4 didn’t
have support for WebSockets; these were introduced in Safari5. With the ever-expanding
set of features in HTML5, and the ever-changing state of browser support among the
major vendors, it would be exhausting trying to maintain a list of which browser sup-
ports which feature.

 You can use JavaScript to easily detect if the visitor’s browser supports a particular
feature. For example, to check if they have support for offline applications, you’d use
the following code:

!!window.applicationCache

This statement will evaluate to true if the HTML5 application cache is supported or
false if it is not. Unfortunately, not every HTML5 feature is detected in the same way.
Local storage is also implemented as a property of the window object. As such, you
might expect the following to work:

!!window.localStorage

This will work in many places, but if you try to use it in a debugging tool like Firebug, it
will raise a security exception. Instead, you can consistently use the following statement:

'localStorage' in window

To detect some features, you have to go to much more trouble than the previous
approach. Let’s take the <canvas> element as an example:

!!document.createElement('canvas').getContext

This code basically creates a dummy <canvas> element and calls the getContext
method on it. The double-negative prefix on this statement will force the result of this
expression to evaluate to either true or false, in this case informing you of whether
or not the browser supports the <canvas> element.

 As a final example, let’s look at how you’d detect one of the new HTML5 form
input element types, in this case the date type:

var el = document.createElement('input');
el.setAttribute('type', 'date');
el.type !== 'text';

Pretty ghastly stuff, huh? Of course, you could wrap this in a function to make it reus-
able, but writing functions for each and every HTML5 feature would be painstaking.
Thankfully, there’s a JavaScript library named Modernizr that does all this for you.

 To use Modernizr, grab the minified JavaScript source file for the library from
http://www.modernizr.com, and include it in your HTML document by adding it to
the <head> section:

<script src="modernizr-1.7.min.js"></script>
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.modernizr.com

382 APPENDIX G Tools and libraries
You’ll also need to add a class attribute to your document’s <html> element, with the
value no-js, as follows:

<html lang="en" class="no-js">

You can now use Modernizr to detect support for various HTML5 features. Let’s see
how you’d use it to detect the four features we detected earlier in this section:

Modernizr.applicationcache //true if offline apps supported
Modernizr.localstorage //true if local storage supported
Modernizr.canvas //true if canvas supported
Modernizr.inputtypes.date //true if date input type supported

We’re sure you’ll agree that this is much easier to remember and read. Modernizr
also adds a host of CSS classes to the <html> element of your document to indi-
cate if a particular feature is available in the visitor’s browser. This allows you to
serve up different styles to users based on whether their browser supports a given
feature. For further information on the Modernizr library, visit the project’s website
at http://www.modernizr.com.

G.2.5 HTML5 Boilerplate

If you’re building an HTML5 application from scratch, there’s quite a lot to watch out
for. Ensuring your app is cross-browser compatible, supporting caching in an efficient
manner, optimizing for mobile browsers, performance profiling, unit testing, writing
printer-friendly styles—these are just a sample of the various complexities that come
with the territory when building modern web applications.

 Rather than learning about and catering to all of these issues individually, wouldn’t
it be nice if you could get up and running quickly using a template that takes care of
all of this for you? This is exactly what the HTML5 Boilerplate does. The following is
just a snippet of the features the Boilerplate includes:

■ Modernizr
■ jQuery (hot-links to a Google-hosted file for performance, with a local fallback)
■ Optimized code for including Google Analytics
■ Conditional comments to allow for Internet Explorer–specific styling
■ CSS reset, printer-friendly styles
■ Google-friendly robots.txt file
■ .htaccess file jam-packed with site-optimization goodness

We highly recommend using HTML5 Boilerplate as a starting point for all of your
HTML5 applications. As the creators of the Boilerplate point out, it’s Delete-key
friendly, so if you don’t want to include anything that comes as part of the Boiler-
plate, you can remove it. The latest version of the project also supports custom
builds, allowing you to include only those parts that you really need. For further
information and to download the HTML5 Boilerplate, visit the project’s website at
http://html5boilerplate.com.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.modernizr.com
http://html5boilerplate.com

383Tools for HTML5 applications
G.2.6 jsFiddle

Sometimes you may want to try out HTML, CSS, and JavaScript code quickly and store it
as a snippet that you can return to at some point in the future. To do this on your own
machine, you’d need to open a text editor, create one or more text files (if you want to
separate the HTML, CSS, and JavaScript elements), save the files, and open them in a
browser. If you wanted to share the snippet, you’d need to upload the files to a web
server, and the person you’re sharing with must use their browser’s View Source feature
to see the code behind it. This is, quite frankly, a bit of a pain. Wouldn’t it be great if
there were an integrated solution that allows you to enter HTML, CSS, and JavaScript
code and view the results in a single window? How awesome would it be to be able to
save that snippet so that when you share it, the recipient sees the same view as you?

 There is a nifty little web application named jsFiddle that provides all of this func-
tionality. Not only that, but it also gives you a really simple way to include various
JavaScript libraries, tidy up your markup, check the validity of your JavaScript code
with JSLint, test AJAX requests, and much more besides. A screenshot of jsFiddle in
action is shown in figure G.1.

Figure G.1 The jsFiddle web app allows you to quickly write HTML, CSS, and JavaScript code and see
a preview of the result, all in a single browser window.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

384 APPENDIX G Tools and libraries
To use jsFiddle, simply visit http://jsfiddle.net—you don’t even need an account.
Check out the examples to get an idea of some of the neat things you can do with this
excellent tool.

G.2.7 Feature support websites

For information on the current implementation status of new features, there are a
couple of useful websites:

■ http://caniuse.com/
■ http://html5test.com/
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://jsfiddle.net
http://caniuse.com/
http://html5test.com/

appendix H
Encoding with FFmpeg

You can convert video between container formats and re-encode the audio and
video streams within them using several different utilities. In this appendix you’ll
concentrate on FFmpeg, a command-line tool. Let’s review several good reasons for
using this tool:

■ It’s open source and freely downloadable.1

■ It’s available for all the major client and server platforms: Windows, OS X,
and Linux.

■ Command-line tools lend themselves to scripting, if you have to process
many videos.

■ It can be called from server-side code.

Let’s also look at disadvantages:

■ You may be unfamiliar with command-line tools if you’ve mainly used Win-
dows OSes.

■ The sheer flexibility of FFmpeg means it has a confusing plethora of options
and configurations.

In this appendix, we’ll do our best to walk you through using FFmpeg, but if
you’re planning to do serious video work, you’ll need to get down to the nuts
and bolts. If you’re only interested in playing around with the video element
itself, you can just stick with an easy-to-use tool such as Miro Video Converter
(http://www.mirovideoconverter.com/).

1 FFmpeg is free, but you may be required to pay a licensing fee to the MPEG-LA if you use it to encode
h264 video.
385

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.mirovideoconverter.com/

386 APPENDIX H Encoding with FFmpeg

Sum
th
co
vi

0.0
o Stream

is the
stream

enc
H.1 How to get FFmpeg
If you don’t have FFmpeg, the first thing you need to do is to install it. FFmpeg is pri-
marily distributed as source code. Fortunately, several helpful developers have pro-
duced binary versions of it for all the major platforms. Check the officially sanctioned
downloads on the website for Windows binaries: http://ffmpeg.org/download.html. If
you have a Mac, go here: http://ffmpegmac.net.

 If you run Linux, or your server does, FFmpeg will almost certainly be available
through one of your standard repositories (although possibly in the non-free section).
Note that to do any encoding, you’ll also need libraries to supply the codecs (like MP4 or
OGG). On Linux, you’ll download them using the same package manager you used to
install the main binary, but Windows and Mac users may have to do a bit of extra work.

NOTE If you have problems with the examples in this section, we recommend
using a virtual machine and installing one of the popular Linux distributions
on it. The examples in this chapter have been tested with Fedora 17 using
FFmpeg version 0.10.4 recompiled from the source RPM to enable FAAC.

H.2 Finding out what codecs were used on source video
The first useful thing you can do with FFmpeg is investigate which codecs have been
used on your source video. Following is an example command line:

ffmpeg -i VID_20120122_132134.mp4

This code will produce a whole load of output describing what options your FFmpeg
binary was built with, but at the end you should see something like what’s shown in
the following listing.

Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'VID_20120122_132134.mp4':
 Metadata:
 major_brand : isom
 minor_version : 0
 compatible_brands: isom3gp4
 Duration: 00:00:11.59, start: 0.000000, bitrate: 3259 kb/s
 Stream #0.0(eng): Video: h264, yuv420p, 720x480, 3014 kb/s, PAR
 65536:65536 DAR 3:2, 30.01 fps, 90k tbr, 90k tbn, 180k tbc
 Stream #0.1(eng): Audio: aac, 16000 Hz, mono, s16, 95 kb/s

For comparison, the next listing shows the output from a file recorded on a “proper”
HD video camera.

Input #0, mpegts, from '00003.MTS':
 Duration: 00:00:46.59, start: 0.332544, bitrate: 13305 kb/s
 Program 1

Listing H.1 Output from the ffmpeg -i command

Listing H.2 Output from the ffmpeg -i command

Describes the container format; in this case it
includes a number of equivalent file extensions.

marizes
e entire
ntent—
deo and

audio.

Stream #
is the vide
stream,
h264
encoded.

 #0.1
audio
, AAC
oded.

This time the
container format
is mpegts.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://ffmpeg.org/download.html
http://ffmpegmac.net/

387Encoding to MP4/h264 with AAC
 Stream #0.0[0x1011]: Video: h264, yuv420p, 1920x1080 [PAR 1:1 DAR
 16:9], 50 fps, 50 tbr, 90k tbn, 50 tbc
 Stream #0.1[0x1100]: Audio: ac3, 48000 Hz, 5.1, s16, 384 kb/s

H.3 Determining container formats and supported codecs
A couple of other useful commands allow you to check what formats and codecs
your version of FFmpeg has available. To see a list of available container formats, issue
this command:

ffmpeg -formats

The hyphen indicates a parameter. What comes immediately after the parameter is
the parameter name. In the previous command line the parameter is formats; in the
command line at the start of the section the parameter is i, for input file, followed by
the data for that parameter. Here it is again to remind you:

ffmpeg -i VID_20120122_132134.mp4

To see the list of supported codecs, issue this command:

ffmpeg -codecs

Now that you’ve learned the basics, the next few sections will cover converting to sev-
eral key video formats. Note that all of the listings that follow show each ffmpeg
option on a line by itself for clarity, but when you type the commands into the termi-
nal, they should all be on a single line.

H.4 Encoding to MP4/h264 with AAC
The videos you’re using in this appendix are already MP4 containers with h264 video
and AAC audio. This means for the application you don’t need to know how to convert
files to this format. In fact, because h264 is a lossy format, re-encoding the files to MP4
at the same resolution will lower the quality. But in real applications it’s likely your
source video is in a different format or is at least an HD recording (for example, 1080p

Recompiling FFmpeg to add codec support
As mentioned in the previous note, the examples in this chapter have been tested
with Fedora 17 using FFmpeg version 0.10.4 recompiled from the source RPM to
enable FAAC. This was necessary because the Fedora version of FFmpeg doesn’t
support AAC by default. Although this may sound scary, it’s a straightforward pro-
cess on Linux; check out this blog post for a description of the process we followed:
http://mng.bz/hF3O.

On Windows and Mac, you may have to search around for a build of FFmpeg that sup-
ports all the required codecs.

The first stream is again an h264-encoded
video, but this time it’s 1080p HD.

This time the second stream
is AC3 (Dolby Digital).
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/hF3O

388 APPENDIX H Encoding with FFmpeg

e
in

The
encod

prov
audi

The
encode

prov
vide

s,

d
is 1920px by 1080px resolution), and one of your key targets will be iOS devices, where
all those extra pixels will be wasted. Fortunately, FFmpeg allows you to re-encode a
video at a lower resolution in the same way you would re-encode to a different format.
A command line for encoding to MP4 with h264 and AAC is shown in the following list-
ing. Again, although it’s shown across multiple lines for clarity, you should type it into
your command prompt in a single line.

ffmpeg -i VID_20120122_133702.mp4
 -acodec libfaac
 -b:a 96k
 -vcodec libx264
 -preset slower -preset main
 -level 21
 -refs 2
 -b:v 3000k
 -s 720x480
 VID_20120122_133702_2.mp4

The input video can be any format that FFmpeg supports. If you have a non-MP4 video,
replace the filename (after the -i) with your video.

H.5 Encoding to MP4/h264 with MP3
Converting from AAC audio to MP3 isn’t a common requirement for web develop-
ment, but it does allow us to demonstrate another useful feature of FFmpeg. As you
already know, h264 is a lossy codec, so re-encoding h264 at the same resolution will
reduce quality. But sometimes you may want to re-encode the audio—how can you do
that without reducing the quality of the video? Our next listing has the answer—again,
type it into your command prompt on a single line.

ffmpeg -i VID_20120122_132134.mp4
 -acodec libmp3lame
 -b:a 96k
 -vcodec copy
 VID_20120122_132134_3.mp4

You can use the copy codec for several tricks like this. It’s also useful if you want to con-
vert between container formats without re-encoding either the audio or video streams.

Listing H.3 ffmpeg command line

Listing H.4 ffmpeg command line

This example is re-encoding a video at th
same bit rate and the same resolution;
real life there’s no need to do this.

 libfaac
er (AAC)
ides the
o codec. The audio bit rate will be

96 kilobits per second.
 libx264
r (h264)
ides the
o codec.

FFmpeg includes several preset
which means you don’t have to
repeatedly enter large numbers
of command-line options; these
two specify using the slower
(higher-quality) encoding metho
and the main h264 profile.

The video bit rate will be approximately 3,000
kilobits per second; lower this number to make
a smaller, lower-quality version of the file.

The output video resolution. Adjust this to make a smaller
version of the video. Although you could also use this to make
a higher-resolution video, doing that will reduce the quality.

Re-encode the audio to MP3
using the libmp3lame codec.

Use the copy codec so the video
stream is copied across unchanged.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

389Encoding to Ogg/Theora

The libv
en

(Ogg a
provide
audio c

The a
bit rat

be ar
96 kil

per sec
H.6 Encoding to WebM/VP8
It’s likely that WebM will be your second most required format after MP4. With MP4 and
WebM format videos, you’ll have more than 80% of desktop browser users supported
and significant mobile platforms, including iOS and Android. The next listing shows
the command line for converting to the WebM format, using its associated VP8 video
codec and Ogg audio.

ffmpeg -i VID_20120122_133702.mp4
 -acodec libvorbis
 -ac 2
 -b:a 96k
 -ar 44100
 -vcodec libvpx
 -b:v 3072k
 -s 720x480
 VID_20120122_133702.webm

H.7 Encoding to Ogg/Theora
Every browser that supports Ogg/Theora also supports WebM, which means most of the
time it’ll be technically unnecessary to create an Ogg/Theora version of your video. But
if you want to support the older versions of those browsers or you prefer the Ogg/
Theora format for ideological reasons, your best bet is to download ffmpeg2theora.
This is a command-line tool based on the FFmpeg libraries that works out all of the
correct video encoding settings: http://v2v.cc/~j/ffmpeg2theora/.

 Binaries are available for all the major OSes. It’s similar to FFmpeg in how you use
it; an example command is shown here.

ffmpeg2theora
 --optimize
 --deinterlace
 -v 7.8
 -F 30
 -x 720
 -y 480
 -A 96
 -c 2
 -H 44100
 -o VID_20120122_132134.ogv
 VID_20120122_132134.mp4

Listing H.5 FFmpeg command line

Listing H.6 Use ffmpeg2theora to convert to Ogg/Theora video

The input file is an MP4, but it doesn’t matter what
format it’s in as long as FFmpeg can decode it.

orbis
coder
udio)
s the
odec.

Two audio channels will
be used (stereo playback).udio

e will
ound
obits
ond.

The audio sample frequency
will be 44100 hertz.

The video bit rate will be
around 3,072 kilobits per
second, which should provide
comparable file size to the
MP4 original from a phone.

The size of the output video
will be 720 pixels by 480
pixels, the same as the
original in this case.The output filename

The video quality—this was chosen by trial and
error to give a similar file size to the original.

The frame rate—ffmpeg2theora uses the input
frame rate if you leave off this parameter.

Size of the video.
Audio bit rate.

Number of audio channels.

Audio sample rate.

Output filename.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://v2v.cc/~j/ffmpeg2theora/

appendix I
HTML next

This book concentrates on how best to use the major features of HTML5 available
in browsers right now. In this appendix, we’ll look at HTML5 capabilities that aren’t
yet finalized and are under heavy development in a browser’s beta versions, such as
video captioning, media capture, and full-screen modes. You’ll also learn about sev-
eral proposed features so you can plan for these features of the future web plat-
form, such as peer-to-peer connectivity (for example, for video conferencing) and
rotation lock (so that games on mobile devices don’t keep flipping between land-
scape and portrait modes).

 Specifically, we’ll cover the following:

■ Accessing and sharing media
■ Providing subtitling and captions for media
■ Capturing mouse events outside the bounds of an element
■ Expanding elements to full screen
■ Measuring orientation to control animation
■ Locking the pointer to the center of the screen.

I.1 Accessing and sharing media devices
Many devices where HTML5 is expected to be used come equipped with built-in
cameras, but until now you’ve needed to use Flash or write a native application to
get access to them. One of the goals of the HTML5 spec was to build an open appli-
cation platform to replace native apps in common use cases. With this in mind a
W3C working group has been set up to produce standards for real-time media
access and communication (http://www.w3.org/2011/04/webrtc/). The charter of
this group specifically mentions six deliverables, summarized in table I.1 alongside
pointers for the features we’ll discuss in this section.
390

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/2011/04/webrtc/

391Accessing and sharing media devices
In this section you’re going to learn about the experimental implementation for
point 2 in table I.1, getUserMedia(), as well as discuss point 4, which, in concert
with getUserMedia(), will allow the creation of web applications for telephony and
video conferencing.

I.1.1 Grab input with getUserMedia()

The getUserMedia() function allows you to grab a media stream from the user’s
device and use it within the browser. The current focus is on audio and video streams,
since the elements to output those already exist in HTML5, but there’s no reason why
other sources of data couldn’t be accessed in the future and handled with the File API
(see chapter 3) or new elements.

 Opera, Google, and Mozilla have already implemented a significant chunk of the
functionality targeted by the working group thanks to getUserMedia(). You will, of
course, need a PC or laptop with a webcam. You could also use your mobile phone or
tablet device, but then you’d need some way of making the files you create on your
computer available over the network your device is on. This might involve setting up a
local web server and possibly fiddling around with your firewall and router settings to
allow access to it, or if you already have a web server online, you could upload your
files to that.

Table I.1 Deliverables of the Web Real-Time Communications Working Group

Deliverable Being worked on? In this appendix?

1. API functions to explore device capabil-
ities; e.g., camera, microphone,
speakers

In scope for the Device APIs & Policy
Working Group

Not covered

2. API functions to capture media from
local devices (camera and microphone)

In scope for the Device APIs & Policy
Working Group, experimental imple-
mentations available

Covered in sec-
tion I.1.1

3. API functions for encoding and other
processing of those media streams

Not covered

4. API functions for establishing direct
peer-to-peer connections, including
firewall/NAT traversal

Being worked on at the IETF, experi-
mental implementations available

Discussed in sec-
tion I.1.2

5. API functions for decoding and pro-
cessing (including echo canceling,
stream synchronization, and a number
of other functions) of those streams at
the incoming end

Not covered

6. Delivery to the user of those media
streams via local screens and audio
output devices

Part of the HTML5 specification
work, experimental implementations
available

Covered in chap-
ter 8
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

392 APPENDIX I HTML next
In this section, to demonstrate how to use getUserMedia(), you’re going to modify
the video telestrator jukebox code from chapter 8 to accept video input from your
camera. Figure I.1 shows what you’re going to be finishing up with—a live video
stream that you can telestrate.1

 The method signature for getUserMedia() is shown in the first listing. It follows
the pattern of accepting an array of options along with callback functions, similar to
the Geolocation API (see chapter 3).

getUserMedia(options,
 successCallback,
 errorCallback)

getUserMedia() 21 191 N/A 12.0 N/A

1 In Firefox 19 you need to set media.enabled to true in about:config to turn on the experimental support.

Listing I.1 getUserMedia() method signature

Figure I.1 Author Rob Crowther after tweaking the code from the video
telestrator application in chapter 8 to incorporate a live video stream. With
the live video stream appearing on the browser, Rob was then able to
telestrate, or draw, additional features on his face, perhaps to impress a
potential client during a video meeting.

An object specifying what sort of media stream
you’re after, currently either {audio: true} or
{video: true} but extensible in the future (e.g.,
devices with multiple cameras).

Called if the media stream
is grabbed successfully.

Called if an error occurs when
grabbing the media stream.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://media.tojicode.com/q3bsp/
http://media.tojicode.com/q3bsp/

393Accessing and sharing media devices

as

Req
video s

I
ex

you’
simple

‘video’ p
the c
synta

pas
The following shows practical code for making getUserMedia work in Opera and
Chrome. It will grab a video stream from the camera and pipe the output directly into
a video element. The annotations indicate where this code fits in the finished code
(index-8.html) from chapter 8.

var context = canvas[0].getContext('2d');
navigator.getUserMedia =
 navigator.getUserMedia ||
 navigator.mozGetUserMedia ||
 navigator.webkitGetUserMedia;
if (navigator.getUserMedia) {
 navigator.getUserMedia({ video: true },
 successCallback,
 errorCallback);
 function successCallback(stream) {
 console.log('success');
 if (window.webkitURL) {
 v.src = window.webkitURL.createObjectURL(stream);
 } else {
 v.src = stream;
 }
 v.play();
 }
 function errorCallback(error) {
 console.error('An error occurred: [CODE ' + error.code + ']');
 return;
 }
} else {
 console.log('Native web camera streaming (getUserMedia)
 is not supported in this browser.');
}

Now that you have the stream in the video element, everything else functions as before.
The canvas element grabs frames from the video, mixes them with the telestrator
graphics, and outputs the whole thing.

 Being able to let a user display a picture of themselves is a cool gimmick. You can
probably see how this could be extended to more practical applications such as snap-
ping photos for entrance badges. But the main goal of this functionality is to allow you
to share a video stream across the internet, enabling such applications as video chat.
The plan for the future is to combine getUserMedia() with peer-to-peer communica-
tion protocols. This will enable the creation of video conferencing and telephony
applications within the browser; the next section briefly discusses the standard aimed
at achieving this, WebRTC (Web Real Time Communication).

Listing I.2 getUserMedia working in Chrome, Opera, and Firefox

Find this line in the finished code from chapter 8; the new code goes
after it. You can remove the change_video() function and binding.

Currently Opera has implemented an unprefixed
version of getUserMedia in the beta version, where
Chrome and Firefox have a prefixed version.

Everything below is conditional on
support existing in the user’s browser.

uest a
tream.
n older
amples
ll see a
 string
assed;
urrent
x is to
s in an
object.

Called if the video stream
is grabbed successfully.

Called if
it all goes

horribly
wrong.

Chrome supports
the File API; in
that browser you
have to pass the
stream through
createObjectURL.

In Opera and Firefox,
attach the stream directly
to the video element.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

394 APPENDIX I HTML next

.

An
e

I.1.2 Peer-to-peer media connections with WebRTC

The WebRTC specification is focused on initiating a peer-to-peer connection between
two browsers and allowing them to send media streams to each other; a common
application of this would be internet telephony or video chat. Google and Mozilla
have recently announced their initial implementations of this standard in the develop-
ment versions of Chrome and Firefox. The following listing shows an excerpt from the
Mozilla blog post announcing the availability of the feature,2 to give you an idea of
how the final standard will work.

function initiateCall(user) {
 navigator.mozGetUserMedia({video:true, audio:true},
 function(stream) {
 document.getElementById("localvideo").mozSrcObject = stream;
 document.getElementById("localvideo").play();
 document.getElementById("localvideo").muted = true;
 var pc = new mozRTCPeerConnection();
 pc.addStream(stream);

 pc.onaddstream = function(obj) {
 document.getElementById("remotevideo").mozSrcObject = obj.stream;
 document.getElementById("remotevideo").play();
 };

 pc.createOffer(function(offer) {
 pc.setLocalDescription(offer, function() {
 peerc = pc;
 jQuery.post("offer", {
 to: user,
 from: document.getElementById("user").innerHTML,
 offer: JSON.stringify(offer)
 },
 function() { console.log("Offer sent!"); }
).error(error);
 }, error);
 }, error);
 }, error);
 }

Because there’s no stable support for this feature in current browsers, we won’t go
into further detail at this point. Instead, in the next section you’ll look in detail at
another experimental feature that’s complementary to audio playback: subtitling
and captioning.

2 Maire Reavy and Robert Numan, editor, “Hello Chrome, it’s Firefox calling!”, Mozilla Hacks.Mozilla.org, Feb.
4, 2013, http://mng.bz/kbLL.

Listing I.3 Initiating a peer-to-peer video chat with WebRTC

The same getUserMedia
function you were using
in the previous section.

Firefox object
that creates a
PeerConnection

Local stream is added to
the PeerConnection object.

 addstream
vent will be
fired when
the remote

client
connects;

the remote
stream will
be part of
the object

parameter.

A connection is initiated
by sending an offer via
an intermediate server
using a standard HTTP
POST request.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://mng.bz/kbLL

395Media text tracks: providing media subtitles and captioning
I.2 Media text tracks: providing media subtitles and captioning
Grabbing webcam and microphone input isn’t the only experimental feature in the
works for HTML5 media; another potentially very useful feature is text tracks. The cen-
tral feature of text tracks is to provide subtitles and captioning for hearing-impaired
users. All that boils down to is a file format for describing bits of information associ-
ated with time spans and a means of presenting that information within the browser.
With an API, this sort of structure could be useful in all sorts of ways if you want things
to happen in your pages at certain times during playback of media. For example, if
your page contained both a video of a presentation and a widget showing the slides
from the presentation, then you might want the slideshow widget to automatically
switch to the next slide in time with the video.

 Fortunately, HTML5 provides such an API. In this section you’re going to learn how
to use text tracks and the Text Track API by adding subtitles to one of the videos used
in chapter 8. Figures I.2 and I.3 show the basic idea: subtitles overlaid on the video
corresponding to the current action.

 To make this work you’ll need Chrome 18 or later, and you should enable the track
element in the about:flags page; in more recent versions of Chrome (24 and later),

Figure I.2 On the playing video,
the caption reads “PASS.”

Figure I.3 Later on the playing video,
the caption reads “INTERCEPTION.”
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

396 APPENDIX I HTML next

co
of the
it’s enabled by default. The file index-3.html from the chapter 8 code will be used as
the basis for your experimentation here.

I.2.1 Adding a text track to the videoText

Tracks come in cue files, files containing a series of timestamped cues (the word
comes from theater and film/television; think of an actor onstage waiting for a cue to
deliver a line). Chrome supports the WebVTT (Web Video Text Tracks) file format for
cue files; a sample for you to use is shown in the following listing. To keep things sim-
ple in the long run, save this in a file with a name similar to the video file associated
with it, such as VID_20120122_133036.vtt.

WEBVTT

1
00:00:00.400 --> 00:00:01.500
DOWN

2
00:00:01.800 --> 00:00:02.900
SET

3
00:00:03.500 --> 00:00:04.600
HUT

4
00:00:05.000 --> 00:00:07.000
PASS

5
00:00:08.000 --> 00:00:10.000
INTERCEPTION

To associate the WebVTT file with a <video> element, add a <track> element, as
shown in the next listing. Use the index-3.html file from chapter 8’s code download;

Text Track API 18 N/A 10 N/A N/A

Local web server required
If you try to run any of the examples in this section directly from the filesystem (with
a file:/// URI), then Chrome will fail to load the Text tracks because of cross-
domain security restrictions. In order to make them work, you’ll need to either run
a local web server (see appendix F where this is discussed) or upload them to an
online server.

Listing I.4 VTT Captions VID_20120122_133036.vtt

A WebVTT file always
starts with the identifier
WEBVTT on a line by itself.

The file is made up of a
number of cues; each one
starts with an identifier.

Each cue has a time span to
which it applies, (hh:mm:ss.iii)
written twice separated by -->.

Text
ntent
 cue.

A blank line separates
one cue from the next.

The file can contain as
many cues as necessary.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

397Media text tracks: providing media subtitles and captioning

>

ut

ent.

t

s

then you can drop the video element shown in the listing in place of the one already
in that file and save it with a new name.

<video controls
 width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4" type="video/mp4">
 <source src="videos/VID_20120122_133036.webm" type="video/webm">
 <track src="tracks/VID_20120122_133036.vtt"
 kind="captions"
 default>
 Your browser does not support the video element, please
 try downloading
 the video instead
</video>

And that’s all there is to it. With these two additions you can now play the video to re-
create the screenshots from the introduction. Check the file index-vtt-1.html in the
code download for the complete listing.

I.2.2 Adding multiple text tracks

Things get more fun when you add multiple <track> elements. The kind attribute in
listing I.5 can be set to several different values depending on the purpose of the timed
track. A full list is shown in table I.2.

In this section, you’re going to build a simple UI for switching from captions to subti-
tles to descriptions. Figure I.4 shows video with the caption selected; figure I.5 shows

Listing I.5 index-vtt-1.html, video element with a captions track

Table I.2 Values for the kind attribute

Kind Description

subtitles Transcription or translation of the dialogue, suitable for when the sound is avail-
able but not understood (e.g., because the user doesn’t understand the language
of the media resource’s audio track). Overlaid on the video.

captions Transcription or translation of the dialogue, sound effects, relevant musical cues,
and other relevant audio information; suitable for when sound is unavailable or not
clearly audible (e.g., because it’s muted or drowned out by ambient noise, or
because the user is deaf). Overlaid on the video; labeled as appropriate for the
hearing-impaired.

descriptions Textual descriptions of the video component of the media resource, intended for
audio synthesis when the visual component is obscured, unavailable, or not
usable (e.g., because the user is interacting with the application without a screen
while driving, or because the user is blind). Synthesized as audio.

chapters Chapter titles, to be used for navigating the media resource. Displayed as an inter-
active (potentially nested) list in the user agent’s interface.

metadata Tracks intended for use from script. Not displayed by the user agent.

The <track
element; it
should go
after any
<source>
elements b
before any
other cont

The kind of
rack this is.

See more
on kinds of

tracks in
ection F.2.2.

Use this track as
the default.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

398 APPENDIX I HTML next
the subtitles after clicking the middle button. The third button, for descriptions, you’ll
deal with in the following section.

 For this to work you’ll need additional WebVTT files. Listings I.6 through I.8 show
the files you need for the captions, subtitles, and descriptions. Note that the long file-
names are provided in code comments.

Listing I.6 Captions Listing I.7 Subtitles Listing I.8 Descriptions

//
VID_20120122_133036-
captions.vtt

WEBVTT

1
00:00:00.400 -->
00:00:01.500
Players line up

2
00:00:01.800 -->
00:00:02.900
Offense gets ready

3
00:00:03.500 -->
00:00:04.600
The ball is snapped

4
00:00:05.000 -->
00:00:07.000
It’s a pass

//
VID_20120122_133036-
subtitles-enGB.vtt

WEBVTT

1
00:00:00.400 -->
00:00:01.500
DOWN

2
00:00:01.800 -->
00:00:02.900
SET

3
00:00:03.500 -->
00:00:04.600
HUT

4
00:00:05.000 -->
00:00:07.000
PASS

//
VID_20120122_133036-
description.vtt

WEBVTT

1
00:00:00.000 -->
00:00:04.000
A rugby field in
Oxfordshire, American
Footballers get ready
for the play

2
00:00:04.000 -->
00:00:08.000
The ball is snapped,
the quarterback drops
back to pass

3
00:00:08.000 -->
00:00:09.000
The pass is thrown
wide of the receiver,

Figure I.4 Video with
captions selected

Figure I.5 Video with
subtitles selected
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

399Media text tracks: providing media subtitles and captioning

ca

t
i

w
f

t

d
,

e
n

Now add the files to the <video> element in multiple <track> elements, as shown in
the following listing.

<video controls
 width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4" type="video/mp4">
 <source src="videos/VID_20120122_133036.webm" type="video/webm">
 <track src="tracks/VID_20120122_133036-captions.vtt"
 kind="captions"
 default
 label="Captions">
 <track src="tracks/VID_20120122_133036-subtitles-enGB.vtt"
 kind="subtitles"
 srclang="en-GB"
 label="English Subtitles">
 <track src="tracks/VID_20120122_133036-description.vtt"
 kind="descriptions"
 label="Text Description">
 Your browser does not support for video element, please
 try downloading
 the video instead
</video>

Next, you’ll need buttons to hang the functionality from. Just as you did in chapter 8,
add a <menu> to the page under the <video> element that looks like the following code.

<menu>
 <button>Captions</button>
 <button>Subtitles</button>
 <button>Descriptions</button>
</menu>

Finally, you need code that makes actions happen when the buttons are clicked. You
can reuse the menu-handling function from chapter 8 with appropriate changes to
reflect the new functions. The code is shown in the next listing.

5
00:00:08.000 -->
00:00:10.000
It’s picked off

5
00:00:08.000 -->
00:00:10.000
INTERCEPTION

a defender makes the
interception

4
00:00:09.000 -->
00:00:12.000
The defender sets off
with the ball, the
offensive players in
pursuit

Listing I.9 <video> element with multiple <track> elements

Listing I.10 A <menu> for choosing the text track

As before, <track> elements come after <source>
elements and before any other content.

The kind attribute
differentiates
the tracks.

Each track
n also have

a label; in
he future it
s envisaged
user agents
ill offer a UI
or selecting

between
racks using

this label.

If the track is of kin
subtitles or captions
then the srclang
attribute allows the
browser to select th
correct one based o
the user’s language
preferences.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

400 APPENDIX I HTML next
$('menu').bind('click', function(event) {
 var action = $(event.target).text().trim();
 var p = $('#player video:first-of-type')[0];
 switch (action) {
 case 'Captions':
 p.textTracks[0].mode = "showing";
 p.textTracks[1].mode
 = "hidden";
 p.textTracks[2].mode = "hidden";
 break;
 case 'Subtitles':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "showing";
 p.textTracks[2].mode = "hidden";
 break;
 case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].mode = "showing";
 break;
 }
 return false;
});

The complete listing is available as index-vtt-3.html in the book’s code download.
 If you experiment with this latest listing, you’ll note that clicking the Descriptions

button doesn’t do anything. This is because tracks of kind description aren’t
intended for visual display but for aural accompaniment. But this does give us an
opportunity to experiment with the rest of the Text Track API. In the next section
you’ll use the API to extract the text content from the description track.

I.2.3 The Text Track API

You got a glimpse of the Text Track API in section I.2.2, where you used the mode
attribute. In this section, you’ll go into more depth, covering reading individual
cues from a track and listening to events that are fired when the active cue changes.
To begin, you will use the API to grab text from the description track you added in
section I.2.2. Figure I.6 shows the basic idea; when the Descriptions button is clicked,
content from the track is shown.

Listing I.11 Changing the track shown with JavaScript

Use the text of the button
to determine the action.

You can get at the text tracks
through the textTracks array
on the <video> element.

In this case, you
know which

tracks are
which, so you

can access them
directly. You

could use the
kind attribute

or any other
DOM methods

to work out
which is which.

Whether or not the track is
displayed is determined by the
mode property of the track
(more on this in I.2.3).

DISABLED, HIDDEN, and
SHOWING are available
as properties of TextTrack
(see table I.3).

Figure I.6 JavaScript has been used to
extract the text content of the normally
invisible description track and
display it on the screen.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

401Media text tracks: providing media subtitles and captioning
Before you dive into the code, review table I.3, which lists the properties and methods
of the Text Track API.

The property you need here is the activeCues array, or a set of cues that should be
displaying currently. Displaying the text from the active cue of the description track
is as simple as grabbing the first element of the array and using the text property, as
shown in the following listing. Replace the last case in the select statement in list-
ing I.11 with this one.

case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].mode = "showing";
 $('#desc').html(p.textTracks[2].activeCues[0].text);
 break;

As you might guess from listing I.12, the cue objects have their own API. Each cue is of
type TextTrackCue; a complete list of properties is shown in table I.4.

Table I.3 The Text Track API

Name Type Description

kind String property The kind of text track, corresponds to the kind attribute.

label String property A human-readable label, corresponds to the label attribute.

language String property The language of the track, such as en-US, corresponds to the
srclang attribute.

mode Integer property The mode of the track: DISABLED (the track will not be loaded),
HIDDEN (the track will be loaded but not displayed), or
SHOWING (the track will be loaded and displayed if appropriate).

cues Array property An array containing the individual cues from the track.

activeCues Array property An array containing the cues that apply to the current point in
the media.

addCue() Method Add a cue to the cues array.

removeCue() Method Remove a cue from the cues array.

Listing I.12 Display the active cue

Table I.4 The TextTrackCue API

Attribute/method Type Description

track TextTrack The track to which this cue belongs.

id string Unique identifier for the cue.

startTime double The time the cue starts.

The mode property
seen in listing I.10. The activeCues

array is made up
of TextTrackCue
objects.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

402 APPENDIX I HTML next
There’s a working version of this code in index-vtt-4.html in the code download in
case you don’t want to piece it together from the snippets here. If you load it, play the
video and click the Descriptions button a few times; you should see the descriptions
appear below the video. But you’ll also probably see the odd error message like that
shown in figure I.7.

 The error in figure I.7 can have two main causes:

■ There isn’t a cue available for the current time.
■ The text track hasn’t loaded yet.

endTime double The time the cue ends.

pauseOnExit boolean Returns true if the media will pause at the end of
the cue.

vertical string Returns a string describing the TextTrack writing
direction. Either empty (horizontal), "rl" for vertical
growing left, or "lr" for vertical growing right.

snapToLines boolean Returns true if the cue is set to render at a point
that’s a multiple of the height of the starting line plus
the starting point or false if its position is a point
at a percentage of the overall size of the video.

line long (or "auto") Returns a number giving the position of the line or
"auto" if there are multiple cues.

position long A number giving the position of the text of the cue
within each line, to be interpreted as a percentage of
the video

size long A number giving the size of the box within which the
text of each line of the cue is to be aligned, to be
interpreted as a percentage of the video.

align string "start", "middle", "end", "left", or
"right".

text string The text of the cue.

getCueAsHTML() DocumentFragment Returns the text of the cue as HTML.

Table I.4 The TextTrackCue API (continued)

Attribute/method Type Description

Figure I.7 An error trying to access the currently active cue in the text track
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

403Media text tracks: providing media subtitles and captioning
Determining whether there is a cue currently available follows the normal rules of
JavaScript; simply do a test like if (typeof p.textTracks[2].activeCues[0] !==
'undefined') before attempting to access the text property. In most real-life cases,
you’ll do this as a matter of course. But it’s clearly the second issue that’s the problem
here because our description cue file has no gaps in its time coverage. One approach
to solving the second issue would be to listen for the load event of the text track, some-
thing we’ll discuss further in the next section when you learn about events. In the
meantime, we’ll look at two alternative approaches to solving the second issue:

■ Loading all the text tracks in advance
■ Checking to see if the text track has loaded

LOADING THE TEXT TRACKS IN ADVANCE

Unless the default attribute is applied to the track, it will be in the default mode of
DISABLED. For the browser to load the tracks, you need to set them to either HIDDEN
or VISIBLE. It’s easy enough to do this in the ready event you already have in your
code, as shown in the following listing.

$(document).ready(
 function() {
 $('.playlist').bind('click', change_video);
 var p = $('#player video:first-of-type')[0];
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "showing";
 p.textTracks[2].mode = "hidden";

Find the complete working example in the index-vtt-4a.html file.

CHECKING TO SEE IF THE TRACK IS LOADED

Text tracks have a ready state similar to other dynamically loadable objects (for example,
XMLHTTP requests). The complete list of values for text tracks is shown in table I.5.

Clearly, all you now need to do is check that the readyState of the track is 2 before you
attempt to access the text property. The next listing shows an updated descriptions
case for the menu-handling function.

Listing I.13 Adjust the document ready event

Table I.5 Track readyState values

State Value Description

NONE 0 The track has not been loaded.

LOADING 1 The track is in the process of being loaded.

LOADED 2 The track has been loaded.

ERROR 3 Attempting to load the track led to an error.

The document ready event
you’re already using.

The three new lines are added here. If
you have more than three tracks, you
might consider using a loop instead.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

404 APPENDIX I HTML next
case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].mode = "hidden";
 var t = v.find('track[kind="descriptions"]');
 if (t[0].readyState == 2) {
 $('#desc').html(p.textTracks[2].activeCues[0].text);
 }
 break;

Find the complete working example in the index-vtt-4b.html file.

I.2.4 Using TextTrack events

Although the examples in the previous sections show some useful techniques and
allow you to explore the API, it’s more in keeping with JavaScript to deal with text
tracks in an event-driven style. The track element has a load event that allows you
to call a function when loading is complete in the same way you’ve done hundreds
of times before. Because we have limited space here, you’re not going to do that
right now; instead, you’re going to learn about an event that’s specific to timed
tracks: cuechange.

 The cuechange event is fired every time a new cue is to be displayed. If you handle
the cuechange event, then instead of showing the current description whenever the
user clicks the Menu button, you can instead show the descriptions at the appropriate
time. The following listing updates the switch statement in the menu handler to
attach an event to the description track’s oncuechange property when the Descrip-
tions button is clicked.

switch (action) {
 case 'Captions':
 p.textTracks[0].mode = "showing";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].oncuechange = null;
 $('#desc').html('');
 break;
 case 'Subtitles':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "showing";
 p.textTracks[2].oncuechange = null;
 $('#desc').html('');
 break;
 case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 $('#desc').html(p.textTracks[2].activeCues[0].text);
 p.textTracks[2].oncuechange = function() {
 if (typeof this.activeCues[0] !== 'undefined') {

Listing I.14 Check the track ready state

Listing I.15 Listening to the cuechange event

Use standard
jQuery to get the
descriptions track.

The ready state is
available on the
track element.

If the captions or
subtitles are
playing, remove
the oncuechange
event handler.

When the user clicks
the Descriptions
button, attach an
oncuechange
handler.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

405Media text tracks: providing media subtitles and captioning

 $('#desc').html(this.activeCues[0].text);
 }
 };
 break;
}

Now when the user clicks the Descriptions button, the descriptions will be updated
automatically as the cues change. Grab file index-vtt-5.html to try it for yourself.

 Although you’ve used the API to read the descriptions in this section, a more com-
mon use would be to perform an action at a particular time with the media. If you
refer to table I.2, you’ll note that the last kind of track is metadata. This can be used
for any kind of data you want to use from within your scripts; for example, you could
have a series of cues populated with data in JSON format.

 Before we move on to other things, let’s
take a look at styling the cues as they appear
on the video.

I.2.5 Styling text tracks

Text tracks can contain simple markup.
Typographical elements like and <i>
are allowed. Figure I.8 shows an updated
captions file in action.

 The new version of the captions file is
shown in the following listing.

WEBVTT

1
00:00:00.400 --> 00:00:01.500
<i>Players line up</i>

2
00:00:01.800 --> 00:00:02.900
<i>Offense gets ready</i>

3
00:00:03.500 --> 00:00:04.600
<i>The ball is snapped</i>

4
00:00:05.000 --> 00:00:07.000
<i>It's a pass</i>

5
00:00:08.000 --> 00:00:10.000
<i>It's picked off</i>

In the future it will also be possible to style the cues in CSS using the ::cue pseudo;
unfortunately, Chrome hasn’t yet implemented this.

Listing I.16 A cue file with simple formatting

The body of the handler
is the same code you
were using already.

Figure I.8 Captions using the <i> element
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

406 APPENDIX I HTML next
 That’s enough media APIs and features for now. For the remainder of this chapter,
you’re going to learn about experimental APIs that will be particularly useful for
games or mobile devices (or games on mobile devices!).

I.3 APIs for gaming and mobile
This section groups together a set of HTML5 APIs that are targeted at gaming, with
particular reference to gaming on mobile devices. In this section you will

■ Build a test bed, which you’ll use to explore the APIs
■ Target mouse events at a single element with setCapture
■ Expand an element to full screen
■ Replace mouse events with touch events
■ Replace mouse events with orientation events
■ Use the vibration and battery APIs
■ Use the pointer lock API to enable immersive experiences

I.3.1 Preparing a test bed—the return of Wilson

We need something with which to demonstrate all these APIs, so initially you’re going
to build a simple canvas app (see chapter 6 for background), which draws an object
that will then follow the mouse around the screen. You’ll use this as the basis for all
the experiments until the end of the appendix, so it’s worth spending time under-
standing how to put it together even if the techniques are familiar to you.

 Your starting point for API exploration is a Wilson head, which follows your mouse
pointer around. The result is shown in figure I.9.

 The process for creating this test bed is as follows:

■ Step 1: Create a basic page with a <canvas> element.
■ Step 2: Create a function that draws an image at a particular position on

the canvas.
■ Step 3: Detect and record mouse movement.
■ Step 4: Update the position of the image each time the animation is updated.

Figure I.9 We have a Wilson following our
mouse pointer! Debugging information
displays in the background showing the
values of important variables.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

407APIs for gaming and mobile
STEP 1: CREATE A BASIC PAGE WITH A CANVAS ELEMENT
To start, you need a simple HTML5 document like the one shown in figure I.10.

 The code for figure I.10 is shown in the following listing. In addition to the code in
this listing, you’ll need the requestAnimationFrame polyfill from https://gist.github.com/
1579671 that you used in chapter 8. It’s also in the code download.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Canvas with HTML5 new features</title>
 <script>
 function go() { }
 function draw_welcome(){
 var canvas = document.getElementById('canvas');
 canvas.width = 400;
 canvas.height = 300;
 if (canvas.getContext) {
 var ctx = canvas.getContext('2d');
 ctx.font = "24pt sans-serif";
 ctx.fillText('Click to start ',
 canvas.width/2-120,
 canvas.height/2);
 }
 }
 window.addEventListener("load", draw_welcome, false);
 </script>
</head>

Listing I.17 Example app page framework

Figure I.10 A simple test
bed for exploring APIs for
gaming and mobile
applications

The go() function, which will
be doing most of the setup in
this and later sections.

Function to display a
welcome message
when the page loads.

Attach the function
to the load event.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://gist.github.com/1579671
https://gist.github.com/1579671

408 APPENDIX I HTML next
<body>
 <h1>Gaming and mobile testbed</h1>
 <canvas id="canvas" onclick="go()"></canvas>
</body>
</html>

STEP 2: CREATE A FUNCTION TO DRAW AN IMAGE AT A PARTICULAR POSITION

Our image will be the Wilson character from chapter 7, this time in canvas form.
Because you’ll need to maintain state information about where Wilson is, what he’s
aiming for, and how quickly he’s moving toward it, the function to draw Wilson will be
part of an object. Listing I.18 shows the initial version of this. It’s a long and mostly
irrelevant listing as far as the new features are concerned, but the rest of the examples
won’t work without this bit of code, so you need it. There’s no need to understand it
thoroughly. This code should go between the go() function and the draw_welcome()
function in listing I.17.

var wilson = {
 x: 0,
 y: 0,
 target_x: 0,
 target_y: 0,
 v_x: 0,
 v_y: 0,
 draw: function (canvas) {
 var tl_x = wilson.x – 70;
 var tl_y = wilson.y - 70;
 if (canvas.getContext){
 var context = canvas.getContext('2d');
 context.beginPath();
 context.arc(tl_x + 70, tl_y + 70,
 70, 0, 2 * Math.PI, false);
 context.fillStyle = 'yellow';
 context.fill();
 context.beginPath();
 context.arc(tl_x + 45, tl_y + 57,
 7, 0, 1 * Math.PI, true);
 context.moveTo(tl_x + 100,tl_y + 57);
 context.arc(tl_x + 95,tl_y + 57,
 7, 0, 1 * Math.PI, true);
 context.fillStyle = '#777777';
 context.fill();
 context.beginPath();
 context.arc(tl_x + 70,tl_y + 90,
 30, 0, 1 * Math.PI, false);
 context.lineTo(tl_x + 100,tl_y + 90);
 context.fillStyle = '#ffffff';
 context.fill();
 context.stroke();
 context.fillStyle = 'black';
 context.lineWidth = 3;

Listing I.18 The wilson object

Variables to store
the current state
of Wilson.

For ease of use, you’re
storing the center point,
but the drawing code
works from the top-left
corner down, so calculate
the offset here.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

409APIs for gaming and mobile
 context.lineJoin = 'round';
 context.lineCap = 'round';
 context.beginPath();
 context.moveTo(tl_x + 30,tl_y + 40);
 context.lineTo(tl_x + 30,tl_y + 70);
 context.lineTo(tl_x + 60,tl_y + 70);
 context.lineTo(tl_x + 60,tl_y + 40);
 context.lineTo(tl_x + 30,tl_y + 40);
 context.moveTo(tl_x + 60,tl_y + 60);
 context.lineTo(tl_x + 80,tl_y + 60);
 context.moveTo(tl_x + 80,tl_y + 40);
 context.lineTo(tl_x + 80,tl_y + 70);
 context.lineTo(tl_x + 110,tl_y + 70);
 context.lineTo(tl_x + 110,tl_y + 40);
 context.lineTo(tl_x + 80,tl_y + 40);
 context.stroke();
 }
 }
}

STEP 3: DETECT AND RECORD MOUSE MOVEMENT

Next, record the mouse movement. The function in the following listing will add an
event listener to the <canvas> element, which updates the wilson object when mouse
movement is detected. Add this code directly after the wilson object you added in list-
ing I.18.

function get_mouse_pos(obj, evt){
 var top = 0, left = 0;
 while (obj && obj.tagName != 'BODY') {
 top += obj.offsetTop;
 left += obj.offsetLeft;
 obj = obj.offsetParent;
 }
 var mouseX = evt.clientX - left + window.pageXOffset;
 var mouseY = evt.clientY - top + window.pageYOffset;
 return { x: mouseX, y: mouseY };
}
function follow_mouse() {
 var canvas = document.getElementById('canvas');
 var context = canvas.getContext('2d');
 canvas.addEventListener('mousemove', function(evt){
 var mousePos = get_mouse_pos(canvas, evt);
 wilson.target_x = mousePos.x;
 wilson.target_y = mousePos.y;
 }, false);
};

Note that you’re not making any attempt to update the canvas within this handler. You
want all drawing to happen in the requestAnimFrame loop to minimize resource usage,
so this function simply records the position and exits. If the browser is ready to make use
of the position, it will; otherwise, it will be replaced by the next mousemove event.

Listing I.19 Listen to mouse events and update Wilson’s target position

Calculate the mouse position
relative to the top left of a
given element.

Set up the event
listener to capture
mouse movement.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

410 APPENDIX I HTML next

Calc
how
mo

c
posit
the

positio
farther
the fa

will

.

t

in
.

STEP 4: UPDATE THE POSITION OF THE IMAGE EACH TIME THE ANIMATION IS UPDATED

So now you need a function to be called each animation frame to move Wilson toward
the current mouse position. The two functions in the listing that follows should be
added to the wilson object so that you can use them later.

get_v: function(t,c) {
 var v = Math.floor(Math.sqrt(t*2) – Math.sqrt(c*2));
 if (isNaN(v)) { v = 0; }
 if (v == 0 && c != t) { v = (t - c) / Math.abs(t – c); }
 return v;
},
update_xy: function() {
 wilson.v_x = wilson.get_v(wilson.target_x,wilson.x);
 wilson.v_y = wilson.get_v(wilson.target_y,wilson.y);
 wilson.x += wilson.v_x;
 wilson.y += wilson.v_y;
 if (isNaN(wilson.x) || wilson.x < 0) { wilson.x = 0; }
 if (isNaN(wilson.y) || wilson.y < 0) { wilson.y = 0; }
},

The code in the previous listing is a bit rough and ready, but it will produce a fairly
natural-looking deceleration toward the target point everywhere but at the edges with-
out your having to worry about mapping floating point numbers into an integer coor-
dinate space. When you write your killer gaming app based on this sample, you should
definitely spend a little more time on it!

 Now you’re ready to hook the various components together in the go() function.
Replace your go() function from listing I.17 with the version in the following listing.

function go() {
 var canvas = document.getElementById('canvas');
 canvas.width--;
 canvas.width++;
 if (canvas.getContext) {
 var context = canvas.getContext('2d');
 wilson.x = canvas.width/2;
 wilson.y = canvas.height/2
 wilson.target_x = wilson.x;
 wilson.target_y = wilson.y;
 wilson.draw(canvas);
 follow_mouse();
 (function anim_loop(){
 requestAnimFrame(anim_loop);
 canvas.width--;
 canvas.width++;
 wilson.update_xy();

Listing I.20 Move Wilson toward the target position

Listing I.21 Draw Wilson

ulates
 far to
ve the
urrent
ion to
target
n; the
 away,
ster it
move.

If the previous
calculation produced an
invalid number, use zero

If the motion is 0 bu
the points don’t yet
match, move 1 pixel
the correct direction

Update the x and
y velocities.

Add the velocity
to the current
position.

Check that the bounds haven’t been
exceeded in some way.

Clear the
canvas.

Set Wilson’s draw point
to be the midpoint of
the canvas.

Draw
Wilson.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

411APIs for gaming and mobile
 wilson.draw(canvas);
 })();
 }
}

Now that you have a basic example application in place, let’s look at some APIs!

I.3.2 The Mouse Event Capture API: continuing movement beyond the
bounds of an element

The first API you’re going to look at is Mouse Event Capture, comprising the set-
Capture() and releaseCapture() methods. The problem this API is trying to solve is
that mouse events immediately stop the moment the mouse pointer moves outside of
the element where they’re being captured. The problem is illustrated in figure I.11.

NOTE The Mouse Event Capture API is not yet part of any standard, but that’s
more because no one has decided where to put it than that it’s not useful or
won’t be standardized. The HTML5 and W3C recommendation requirement
of “two compatible implementations” has already been met. It’s possible it will
appear in the DOM Level 3 specification.

Mouse Capture N/A 4 5.5 N/A N/A

Figure I.11 Although the
mouse pointer has moved to
the right, Wilson has not
followed because the pointer
movement occurred outside
of the bounds of the element.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

412 APPENDIX I HTML next
This is obviously annoying behavior if your user is controlling a game with their
mouse, because as soon as the mouse pointer leaves the element, the game piece
they’re manipulating will stop responding. Figure I.12 shows the difference when
setCapture() is used (you’ll just have to trust that I did the same thing with the
mouse pointer—or download the sample code and try it for yourself).

 The next listing shows how you could use the event capturing API to work around
the issue. It’s a replacement for the follow_mouse() function you implemented in the
previous section.

function follow_mouse() {
 var canvas = document.getElementById('canvas');
 var context = canvas.getContext('2d');
 function mouse_down(e) {
 e.target.setCapture();
 e.target.addEventListener("mousemove",
 mouse_moved, false);
 }
 function mouse_up(e) {
 e.target.removeEventListener("mousemove",
 mouse_moved, false);
 }
 function mouse_moved(evt){
 var mousePos = get_mouse_pos(canvas, evt);

Listing I.22 Following the mouse with setCapture()

Figure I.12 With the
capture events API Wilson
continues to follow the
pointer when it leaves the
element or even the
browser window.

The setCapture() method
needs to be called inside
a mousedown event.

The movement-tracking
function is the same as
before except it’s now a
declared function instead
of an anonymous one.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

413APIs for gaming and mobile

 wilson.target_x = mousePos.x;
 wilson.target_y = mousePos.y;
 }
 canvas.addEventListener('mousedown', mouse_down , false);
 canvas.addEventListener('mouseup', mouse_up , false);
};

That’s all you need to know about capturing mouse events on an element, but there’s
an alternative approach you might want to consider. Instead of attempting to capture
mouse movement as it moves outside the element, you could make the element take
up the full screen. You’ll learn about the Full-Screen API in the next section.

I.3.3 The Full-Screen API: expanding any element to full screen

The Full-Screen API allows any element to expand to take up the entire screen. The
element will be the only thing displayed; no browser chrome will be visible. Figure I.13
shows Wilson in full-screen mode in Firefox12. The text “Press ESC at any time to
exit fullscreen” will fade out after a few seconds; it’s added as a security measure so
that it’s obvious to users that they’ve entered full-screen mode. Otherwise, a nefari-
ous script could simulate their entire desktop in order to steal passwords and other
personal information.

 A summary of the Full-Screen API is shown in table I.6.

For best results here,
implement additional
bounds checking on
Wilson’s movement;
otherwise, he’ll leave
the canvas at the
right or bottom.If you comment out this line, then mouse events will continue to

be captured by the canvas after the mouse button is released.

Figure I.13 Wilson entering full-screen mode in Firefox with the user information
overlay showing
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

414 APPENDIX I HTML next

 The bro

imp
the
ENTERING FULL-SCREEN MODE

Entering full-screen mode is quite straightforward, even accounting for experimental
browser implementations. Undo any changes you made to your example in section I.3.2,
and then place the code from the following listing at the top of your go() function.

function go() {
 var canvas = document.getElementById("canvas");
 if (canvas.requestFullScreen) {
 canvas.requestFullScreen();
 } else if (canvas.mozRequestFullScreen) {
 canvas.mozRequestFullScreen();
 } else if (canvas.webkitRequestFullScreen) {
 canvas.webkitRequestFullScreen();
 }

STYLING THE FULL-SCREEN BACKGROUND

If you try your new example in both Firefox and Chrome, you’ll immediately notice a
compatibility issue: Firefox defaults the full-screen background to black; Chrome
defaults it to white. Fortunately, this problem can be overcome with CSS. Check out
the following listing, which uses the experimental :full-screen pseudo class to set a
consistent background color.

canvas:-moz-full-screen {
 background: #006;
 outline: none;
}
canvas:-webkit-full-screen {
 background: #006;
 outline: none;

Table I.6 The Full-Screen API

Property/event name Type

requestFullscreen() Method Ask for an element to go to full screen.

fullscreenEnabled Read-only boolean Is the page currently in full-screen mode?

fullscreenElement Read-only enabled If full screen is enabled, this property will be set
to the element that’s full screen.

fullscreenchange Event The fullscreenEnabled state has changed.

Full-Screen API 15 9 N/A N/A N/A

Listing I.23 Request FullScreen for the <canvas> element

Listing I.24 Set CSS styles that only apply in full-screen mode

requestFullScreen must be
called from an event handler.
In this case the go() function
is being called from a click
event, so you’re okay.

wser has
lemented
standard.

Mozilla’s experimental
implementation.

Chrome’s experimental
implementation.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

415APIs for gaming and mobile
}
canvas:fullscreen {
 background: #006;
 outline: none;
}

EXITING FULL-SCREEN MODE

Now that the full screen has a pleasant dark-blue background in all browsers, the next
issue to consider is what happens when the user exits full-screen mode by hitting Esc.
In a more complex app, you may want to pause an activity or take the opportunity to
switch to a different mode of interaction. To do this, listen to the fullscreenchange
event. Our next listing has some example code.

document.addEventListener("fullscreenchange", function () {
 console.log(document.fullscreen);
}, false);
document.addEventListener("mozfullscreenchange", function () {
 console.log(document.mozFullScreen);
}, false);
document.addEventListener("webkitfullscreenchange", function () {
 console.log(document.webkitIsFullScreen);
}, false);

Feel free to experiment with these events further; we’re not going to go into any more
detail. In the next section, you’re going to jump to mobile; to get full advantage you
should have an iPhone or Android device handy.

I.3.4 The Device Orientation API: controlling on-screen movement by
tilting a device

The Device Orientation API delivers events to your web page that correspond to the
movement of the device. The device can be rotated around three axes; have a look at
figure I.14.

Listing I.25 Add a listener to the fullscreenchange event

Device Orientation API 7/A3 3.6 N/A N/A iOS4.2

Alpha Beta Gamma

Figure I.14 The directions of
motion used in the Device
Orientation API. (Based on
diagrams at https://developer
.mozilla.org/en/DOM/
Orientation_and_motion_data_
explained.)
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained
https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained
https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained
https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained

416 APPENDIX I HTML next

de
Figure I.15 shows Wilson in full-screen mode on an Android device being controlled
by the Device Orientation API, although the angle of the device is hard to tell from a
flat screenshot!

 So how do you take advantage of the Device Orientation API? It all depends on the
deviceorientation event. The following listing adapts the now inaccurately named
follow_mouse() function to listen to this event. For this listing to work, you’ll need a
device with a built-in accelerometer such as an Android or iOS phone or tablet.

function follow_mouse() {
 var canvas = document.getElementById('canvas');
 var context = canvas.getContext('2d');
 function handleOrientation(orientData) {
 var absolute = orientData.absolute;
 var alpha = orientData.alpha;
 var beta = orientData.beta;
 var gamma = orientData.gamma;
 wilson.v_x = -1 * beta;
 wilson.v_y = gamma;
 }
 window.addEventListener("deviceorientation",
 handleOrientation, true);
};

Because of the slightly different approach in setting the velocity—with mouse events
you’re aiming at a target; with orientation events you’re linking the velocity directly to

Listing I.26 Update the follow_mouse() function to use device-orientation data

Figure I.15 Full-screen mode in Firefox Android version, using device orientation
to control Wilson

A flag indicating whether the
orientation returned is in the
context of earth’s coordinate
frame or relative to the device.

Rotation around
the z-axis in
degrees ranging
between 0 and 360.

Rotation around the
x-axis in degrees ranging
between -180 and 180.

Rotation
around the

y-axis in
grees ranging
between -90

and 90.

Plug the beta and gamma rotation directly into
the wilson object’s velocity properties.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

417APIs for gaming and mobile

the angle—the update_xy() function in the wilson object also needs updating. The
following listing has the code.

update_xy: function(canvas) {
 wilson.x += wilson.v_x;
 wilson.y += wilson.v_y;
 if (isNaN(wilson.x) || wilson.x < 0) { wilson.x = 0; }
 if (isNaN(wilson.y) || wilson.y < 0) { wilson.y = 0; }
 if (wilson.x > canvas.width) { wilson.x = canvas.width; }
 if (wilson.y > canvas.height) { wilson.y = canvas.height; }
},

FUTURE IMPROVEMENTS: LOCKORIENTATION

If you play with this example on your mobile device, you’ll probably notice a minor
annoyance: Everything is set up assuming landscape mode, but as you rotate the
device, it’s very easy to flip the orientation to portrait mode. At the moment your
only option is to detect the orientation change and adjust your code to deal with
both portrait and landscape modes. But plans are afoot to provide web apps with the
same ability to lock orientation that native apps get. Unfortunately, experimental
implementations aren’t yet available.

I.3.5 The Vibration API: accessing a mobile device’s vibration function

Mobile devices offer alternative methods for feedback as well as the alternative meth-
ods for input you looked at in the preceding sections. The Vibration API is a proposal
from Mozilla to provide access to a mobile’s built-in vibration function. You can adapt
the example from section I.3.3 to vibrate when Wilson hits the edges of the screen by
adjusting the update_xy() function again, as shown in the next listing.

update_xy: function(canvas) {
 wilson.x += wilson.v_x;
 wilson.y += wilson.v_y;
 if (isNaN(wilson.x) || wilson.x < 0) {
 wilson.x = 0;
 navigator.mozVibrate(50);
 }
 if (isNaN(wilson.y) || wilson.y < 0) {
 wilson.y = 0;
 navigator.mozVibrate(50);
 }

Listing I.27 Update Wilson’s X and Y positions

Vibration API N/A 11 N/A N/A N/A

Listing I.28 Vibrate when screen edges are reached

No need to calculate the
velocity; use it directly.

The bounds
of Wilson’s
movement are
no longer limited
to the bounds of
mouse movement
in the element, so
add a check to
keep him in view.

Vibrate for 50
milliseconds.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

418 APPENDIX I HTML next
 if (wilson.x > canvas.width) {
 wilson.x = canvas.width;
 navigator.mozVibrate(50);
 }
 if (wilson.y > canvas.height) {
 wilson.y = canvas.height;
 navigator.mozVibrate(50);
 }
},

The Vibration API can also create a pattern if you pass it an array rather than a single
number. The values are again times in milliseconds, but now they alternate between
vibrating and not vibrating. The following listing shows an example of this.

navigator.mozVibrate([100,
 100,
 200,
 200]);

I.3.6 Battery API: adjusting application processing based
on battery life

The Battery API allows you to adjust how much processing your app does depending
on the state of the battery. In a real app, you could avoid doing any heavy processing
or reduce the number of network connections when the battery is low. In our example
app, there isn’t much opportunity to cut back processing, so you’re just going to draw
less of Wilson as the battery level drops. Figure I.16 shows the end result in Firefox on
an Android phone.

The Battery API consists of four properties and four events. See the summary in table I.7.

Listing I.29 Vibrating in a pattern

Table I.7 The Battery API

Property/event name Type Description

charging Read-only boolean Is the power connected?

chargingTime Read-only double Seconds remaining until the battery

is charged.

Vibrate for 50
milliseconds.

Vibrations.
Pauses.

Figure I.16 By integrating the
Battery API, you can make your
app do less work as the charge
level drops.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

419APIs for gaming and mobile
In this example you’re just going to take advantage of the charging and level prop-
erties. The following table shows the browser compatibility; this API will work on
mobile devices but also laptops.

For this example, you can either continue working with the code from the previous
section or, if you don’t have access to a mobile phone, you can use the code from
section I.3.3 as a starting point. The changes required to the draw() function are
shown next.

draw: function (canvas, battery) {
 var tl_x = wilson.x - 70;
 var tl_y = wilson.y - 70;
 if (canvas.getContext){
 var context = canvas.getContext('2d');
 context.beginPath();
 context.arc(tl_x + 70, tl_y + 70,
 70, 0, 2 * Math.PI, false);
 context.fillStyle = 'yellow';
 context.fill();
 if (battery.charging
 || (!battery.charging
 && (battery.level > 0.5))) {
 context.beginPath();
 //...
 }

dischargingTime Read-only double Seconds remaining until the battery is dis-

charged.

level Read-only double A value between 0.0 and 1.0 representing

the current battery charge level, where 1.0

is full.

chargingchange Event The value of charging has changed.

chargingtimechange Event The chargingTime has changed.

dischargingtimechange Event The dischargingTime has changed.

levelchange Event The level has changed.

Battery API 20 10 N/A N/A N/A

Listing I.30 Using the battery object in the draw function

Table I.7 The Battery API (continued)

Property/event name Type Description

The battery object is passed into the draw
function so the browser-compatibility code
can be all in one place.

Always draw the
yellow circle.

If the battery is
charging...

...or the battery isn’t
charging and...

...the battery charge level
is above 50%, then draw
the eyes and mouth.

This code is
the same as
before and

has been
elided for

brevity.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

420 APPENDIX I HTML next
 if (battery.charging) {
 context.fillStyle = 'black';
 //...
 }
 }
}

As the annotation mentions, the battery object needs to be passed in, which necessi-
tates a small change in the go() function. The next listing shows the code for getting a
reference to the battery status and passing it to wilson.draw().

var battery = navigator.battery ||
 navigator.mozBattery ||
 navigator.webkitBattery;
wilson.draw(canvas, battery);

That’s enough mobile excitement for now; in the next section you’re going back to
the desktop and the Pointer Lock API, a necessary component of most 3D games.

I.3.7 The Pointer Lock API: tracking mouse motion instead
of pointer position

Pointer lock may sound like it’s another way of doing setCapture, but it’s targeted at a
different use case. Whereas setCapture allows you to continue tracking the mouse
pointer position even when it moves outside the target element, pointer lock takes
the pointer position out of the equation entirely. Instead of tracking the position
of the mouse pointer, it tracks motion from the mouse itself. The difference is that the
pointer position is limited by the bounds of the screen; the mouse can carry on mov-
ing. This is crucially important in immersive games like first-person shooters, where
the mouse is used to orient the player. Figure I.17 shows an example taken from
http://media.tojicode.com/q3bsp/; note that the mouse pointer doesn’t even appear.

 The Pointer Lock API involves only a few properties, methods, and events. A sum-
mary is shown in table I.8.

Listing I.31 Passing the battery object to the draw() function

Table I.8 The Pointer Lock API

Property/event name Type Description

requestPointerLock() Method Ask for the pointer to be locked.

pointerLockElement Read-only element If the pointer is locked, this property will be set
to the element that requested it.

pointerlockchange Event The pointer lock status has changed.

pointerlockerror Event There was an error requesting pointer lock.

Draw only the glasses if
the battery is charging.

This code is the same as before
and has been elided for brevity.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://media.tojicode.com/q3bsp/

421APIs for gaming and mobile
The Pointer Lock API has experimental implementations in Chrome (with the --enable-
pointer-lock command-line switch) and Firefox.

To experiment with the Pointer Lock API, you’re going to need a world to explore.
Although ideally you’d create your own 3D world, that would take quite some time
(please refer to chapter 9 if you’d like to give it a go). In the meantime, you can fake a
world with a panoramic photograph. A suitable large image is included in the code
download. The following listing shows where you can add the image.

<canvas id="canvas" onclick="go()">

</canvas>

You’ll take this image and add it as a background to the <canvas> element. Because
the image is 9073 pixels wide, it should stretch across more than a single screen on all
but the largest of displays. Figure I.18 shows the initial screen in Firefox 14.

 The first requirement is a function to draw a correctly scaled slice of the image on
the canvas, as shown in listing I.33.

Pointer Lock API 18 14 N/A N/A N/A

Listing I.32 Add a background image to canvas

Figure I.17 Pointer lock in action along with WebGL; note that the mouse pointer
isn’t visible.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

422 APPENDIX I HTML next

ns
function draw_background(canvas,image,x_offset) {
 var scale = canvas.height / image.height;
 var x = x_offset * scale;
 var slice = canvas.width / scale;
 var ctx = canvas.getContext('2d');
 ctx.drawImage(image,
 x, 0, slice, image.height,
 0, 0, canvas.width, canvas.height);
}

The next listing shows the code to activate the Pointer Lock API. This code should go
at the top of the go() function.

canvas.requestPointerLock = canvas.requestPointerLock ||
 canvas.mozRequestPointerLock ||
 canvas.webkitRequestPointerLock;
function on_full_screen() {
 canvas.requestPointerLock();
 follow_mouse();
}
document.addEventListener("fullscreenchange",
 on_full_screen, false);
document.addEventListener("mozfullscreenchange",
 on_full_screen, false);

Listing I.33 Draw a segment of the background image

Listing I.34 Request pointer lock when the mode changes to full screen

Figure I.18 Wilson exploring a London park

Calculate a scaling factor to match
the image to the canvas height.

Use the scaling factor to convert
the offset into a screen length.

Use the scaling factor to convert
the screen width into an image
offset so you can grab a correctly
scaled slice of the image.

Map the different
custom implementatio
to a single function.

The request for a pointer
lock must be made inside
a fullscreenchange event.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

423Summary

t.

document.addEventListener("webkitfullscreenchange",
 on_full_screen, false);

function pointer_lock_change() {
 if (document.pointerLockElement === canvas ||
 document.mozPointerLockElement === canvas ||
 document.webkitPointerLockElement === canvas) {
 console.log("Pointer Lock was successful.");
 } else {
 console.log("Pointer Lock was lost.");
 }
}
document.addEventListener("pointerlockchange",
 pointer_lock_change, false);
document.addEventListener("mozpointerlockchange",
 pointer_lock_change, false);
document.addEventListener("webkitpointerlockchange",
 pointer_lock_change, false);

function pointer_lock_error() {
 console.log("Error while locking pointer.");
}
document.addEventListener("pointerlockerror",
 pointer_lock_error, false);
document.addEventListener("mozpointerlockerror",
 pointer_lock_error, false);
document.addEventListener("webkitpointerlockerror",
 pointer_lock_error, false);

Next, you need to update the follow_mouse() function again, as shown in the follow-
ing listing. The Pointer Lock API adds two additional properties to a mouse event:
movementX and movementY. These can be used in a similar way to the orientation
events in section I.35.

function follow_mouse() {
 document.addEventListener("mousemove", function(e) {
 wilson.v_x = e.movementX ||
 e.mozMovementX ||
 e.webkitMovementX ||
 0;
 wilson.v_y = e.movementY ||
 e.mozMovementY ||
 e.webkitMovementY ||
 0;
 offset += wilson.v_x;
 }, false);
};

I.4 Summary
In this appendix you’ve had a glimpse of the future of HTML5. A lot of effort is
directed toward accessing device capabilities (webcams, microphones, orientation

Listing I.35 Follow the mouse movement

The <pointerlockchange>
event will be fired when the
request is made; you can
test for success of the
request by checking the
document.pointerLockElemen

The <pointerlockerror>
event will let you investigate
any errors that may occur.
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

424 APPENDIX I HTML next
sensors, and so on) as well as toward building seamless gaming and application experi-
ences (full-screen and pointer lock) to rival native applications. As these standards are
finalized and implementations mature over the next few years, we should see a lot of
exciting new web applications. Now that you’ve read this appendix (and the rest of this
book), you should be well equipped to take an active role in developing the World
Wide Web of tomorrow!
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

appendix J
Links and references

In this appendix, you’ll find a chapter-by-chapter list of many of the links to useful
resources, articles, and demos strewn throughout HTML5 in Action. Links for each
chapter start with important applications and references for building your apps.
Near the bottom of each link list, you may also find interesting tidbits such as fun
links, live demos, and extra libraries for future projects.

Chapter 1: Introduction
■ Modernizr—http://modernizr.com/
■ Remy Sharp’s HTML5 Shiv (included in Modernizr)—http://remysharp.com/

2009/01/07/html5-enabling-script/
■ WHATWG—www.whatwg.org/
■ Hello! HTML5 and CSS3—www.manning.com/crowther/
■ ARIA Attributes—http://mng.bz/6hb2
■ Google’s Microdata Vocabulary—http://schema.org/
■ Is This HTML5?— http://mng.bz/PraC

Chapter 2: Forms and validation
■ Webshims Lib—http://afarkas.github.com/webshim/demos/
■ H5F—https://github.com/ryanseddon/H5F
■ Webforms2—https://github.com/westonruter/webforms2
■ html5Widgets—https://github.com/zoltan-dulac/html5Forms.js
■ Modernizr Polyfills—http://mng.bz/cJhc

Chapter 3: Working with files on the client side
■ File API—www.w3.org/TR/FileAPI/
■ File Writer API—www.w3.org/TR/file-writer-api/
425

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://modernizr.com/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://www.whatwg.org/
http://www.manning.com/crowther/
http://mng.bz/6hb2
http://mng.bz/PraC
http://afarkas.github.com/webshim/demos/
https://github.com/ryanseddon/H5F
https://github.com/westonruter/webforms2
http://mng.bz/cJhc
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/file-writer-api/
http://schema.org/
https://github.com/zoltan-dulac/html5Forms.js

426 APPENDIX J Links and references
■ File System API—www.w3.org/TR/file-system-api/
■ Geolocation API—www.w3.org/TR/geolocation-API/

Chapter 4: Messaging
■ Apache—http://apache.org/
■ PHP—http://php.net/
■ MySQL—http://dev.mysql.com/
■ jQuery—http://jquery.com/
■ Node.js—http://nodejs.org/
■ Connect—https://github.com/senchalabs/connect
■ Mustache—http://mustache.github.com
■ WebSocket-Node—https://github.com/Worlize/WebSocket-Node
■ EventEmitter.js—https://github.com/Wolfy87/EventEmitter
■ Polyfills EventSource.js—http://mng.bz/ahX0

Chapter 5: Web storage and working offline
■ Offline API (in HTML5 spec)—http://mng.bz/5u67
■ IndexedDB—www.w3.org/TR/IndexedDB/
■ Web SQL (deprecated)—www.w3.org/TR/webdatabase/

Chapter 6: 2D Canvas
■ HTML5 Canvas Cheat Sheet—http://mng.bz/5r65.
■ explorercanvas—http://code.google.com/p/explorercanvas/
■ Game Physics guide—http://gafferongames.com/game-physics/
■ playtomic—https://playtomic.com/
■ MDN window.requestAnimationFrame—http://mng.bz/D14s
■ requestAnimationFrame for polyfills—http://mng.bz/h9v9
■ JavaScript Madness: Keyboard Events—http://unixpapa.com/js/key.html
■ Sketchpad—http://mudcu.be/sketchpad/
■ Rome: 3 Dreams of Black—http://ro.me
■ ImpactJS—http://impactjs.com/

Chapter 7: SVG
■ Official SVG page—www.w3.org/Graphics/SVG/
■ W3C SVG animation—www.w3.org/TR/SVG11/animate.html
■ Canceling animation requests—http://mng.bz/3Eq1
■ Raphael.JS—http://raphaeljs.com/
■ Svgweb—http://code.google.com/p/svgweb/
■ SVG a element—http://tutorials.jenkov.com/svg/a-element.html
■ svg-edit—https://code.google.com/p/svg-edit/
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/geolocation-API/
http://apache.org/
http://php.net/
http://dev.mysql.com/
http://jquery.com/
http://nodejs.org/
https://github.com/senchalabs/connect
http://mustache.github.com/
https://github.com/Worlize/WebSocket-Node
https://github.com/Wolfy87/EventEmitter
http://mng.bz/ahX0
http://mng.bz/5u67
http://mng.bz/5r65
http://code.google.com/p/explorercanvas/
http://gafferongames.com/game-physics/
https://playtomic.com/
http://mng.bz/D14s
http://mng.bz/h9v9
http://unixpapa.com/js/key.html
http://ro.me/
www.w3.org/TR/IndexedDB/
http://impactjs.com/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/SVG11/animate.html
http://mng.bz/3Eq1
http://raphaeljs.com/
http://code.google.com/p/svgweb/
http://tutorials.jenkov.com/svg/a-element.html
https://code.google.com/p/svg-edit/
www.w3.org/TR/webdatabase/
http://mudcu.be/sketchpad/

427Links and references
Chapter 8: Video and audio
■ FFmpeg—http://ffmpeg.org
■ FFmpeg Mac Version—http://ffmpegmac.net/
■ FFmpeg2theora—http://v2v.cc/~j/ffmpeg2theora/
■ Image Filters with Canvas—http://mng.bz/3OsN
■ Playback Rate Bug—https://bugzilla.mozilla.org/show_bug.cgi?id=495040

Chapter 9: WebGL
■ WebGL Cheat Sheet—http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html
■ OpenGL ES Shading Language Reference—http://mng.bz/1TA3
■ Introduction to 3D graphics—http://mng.bz/STHc
■ Simple JavaScript Inheritance—http://ejohn.org/blog/simple-javascript-inheritance/
■ Sylvester—http://sylvester.jcoglan.com/
■ Wolfram Identity Matrix explanation—http://mathworld.wolfram.com/IdentityMatrix

.html
■ Opera’s Introduction to WebGL—http://mng.bz/4Lao
■ MDN 2D WebGL content and WebGL utilities file—http://mng.bz/2585
■ MDN WebGL rotation—http://mng.bz/O5Z2
■ MDN WebGL tutorials—https://developer.mozilla.org/en/WebGL
■ Joe Lambert’s Request polyfill—http://mng.bz/3epb
■ Learning WebGL—http://learningwebgl.com
■ three.js—https://github.com/mrdoob/three.js/
■ Copperlicht—www.ambiera.com/copperlicht/
■ IEWebGL—http://iewebgl.com/
■ Secrets of the JavaScript Ninja—www.manning.com/resig/
■ X-Wing WebGL app—http://oos.moxiecode.com/js_webgl/xwing/
■ Vlad Vukićević’s blog—http://blog.vlad1.com
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

http://ffmpeg.org/
http://ffmpegmac.net/
http://v2v.cc/~j/ffmpeg2theora/
http://mng.bz/3OsN
https://bugzilla.mozilla.org/show_bug.cgi?id=495040
http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html
http://mng.bz/1TA3
http://mng.bz/STHc
http://ejohn.org/blog/simple-javascript-inheritance/
http://sylvester.jcoglan.com/
http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/IdentityMatrix.html
http://mng.bz/4Lao
http://mng.bz/2585
http://mng.bz/O5Z2
https://developer.mozilla.org/en/WebGL
http://mng.bz/3epb
http://learningwebgl.com/
https://github.com/mrdoob/three.js/
http://www.ambiera.com/copperlicht/
http://iewebgl.com/
http://www.manning.com/resig/
http://oos.moxiecode.com/js_webgl/xwing/
http://blog.vlad1.com/

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

index
Symbols

<!DOCTYPE> declaration 79, 110
$db variable 105
$(document).ready function 256, 263

Numerics

3D drawing
complex models for 301
overview 297–298

A

abort() method 319, 332–333
about:flags page 395
accessibility 9–10
Accessible Rich Internet Applications. See ARIA
accuracy attribute 327
action, forms 52
activeCues array 401
addElement() method 321
addEventListener() method 86, 100, 102–103,

126
agile planning board example

building process for 114–115
business logic for 119–123
handling updates in browser 123
handling updates on server 124–125
overview 113–114
prerequisites for 114
template page 118–119

Airplane Mode 161
Aliens game

collision detection 224
CSS file for 205–206

defense shields 221–222
game engine base 214–215
Game Over screen 211
heads-up display 225–227
html page for 204
keyboard controls 219–221
lasers 223
mouse controls 219–221
overview 202–204
player ship 218
screen transitions 215–216
Start screen 210–211
UFOs

animating 229
creating big UFO 217–218
dynamic movement of 230–231
flocks of 227
making UFOs shoot 232
paths for 228

altitude attribute 327
altitudeAccuracy attribute 327
<animate> tag 202, 206, 208
animation

Canvas Ricochet game 173
for SVG 208
UFOs in SVG Aliens game 229

Apache web server 347–350
API method 19, 26, 140–141
.appcache extension 158
app.js file 59, 73, 365–368, 370–371
application cache manifest file 132

configuring MIME types for 157–158
creating 158–160
detecting changes in 160–162

arc() method 178
arcTo() method 179
429

Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX430
ARIA (Accessible Rich Internet Applications) 4,
9–10

arrays 283
<aside> elements 8–9
attributes

data-* attributes 46–47
for form elements 12–13
for input types 41–43
max attribute 46
min attribute 46
pattern attribute 49–50
required attribute 44

audio
Audio API 21–22, 313
<audio> element 22, 242
browser compatibility 239
converting between formats 252
custom controls for 255–256
Firefox browser 248
Media Element interface

events in 245–246
overview 244
properties of 245

multiple formats with <source> element
browser compatibility 248
discovering which video is playing 249–

251
Opera browser 248
prerequisites for 239–240
reference links for 427
telestrator jukebox application

adding <canvas> element 253–254
adding clear button 264
adding frame around video 257–260
adjusting video opacity 260
capturing mouse movement 263
custom playback controls 255–256
determining state of media

resources 245
displaying captured path over video 263
grayscale video 261–262
layout for 240–241
loading list of videos 243
overview 238–240
playing video on canplaythrough

event 246
starting video when selected 244
switching between videos 244
using event handlers to change

video 245
<video> element 241–242

auto-complete, using cross-document
messaging 127–129

autofocus attribute 41, 43
autoplay attribute 324

B

background
Canvas Ricochet game 174–175
Full-Screen API 414

ball, Canvas Ricochet game
creating 178–179
moving 182

Ball.collide() method 184
Ball.draw() method 194
Ball.move() method 182
Battery API 418–420
bitmap graphics vs. SVG 200–202
bounding box 231
Brick.draw() method 191
bricks, Canvas Ricochet game

coloring 177–178
creating 175
removing hit bricks 184–185

Bricks.collide() method 191
browsers

compatibility
Canvas API 169–170
using <source> element 248
video 239

development versions 379–380
for Geometry Destroyer game 270–271
WebSocket protocol support 362–363

buffered attribute 324
buffers

for color 287–288
for dimension 287–288
displaying shape data using 288
for shape 287–288

build() method 216–217
bullets, Geometry Destroyer game 299–300
business logic 119–123
bypassing form validation 51

C

CACHE section 158–160
cached event 318
calculations in forms

data-* attributes 46–47
functions to calculate total values 53–54
min and max attributes 46
number input type 46
<output> element 47, 57
retrieving price values 56–57
retrieving value of input fields 55
valueAsNumber property 54

canplay event 245
canplaythrough event 245–246
canPlayType() method 324
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX 431
Canvas API
Canvas Ricochet game

animation for 173
background image 174–175
coloring bricks 177–178
creating ball 178–179
creating game bricks 175
creating paddle 179
enabling collision detection 184
enabling edge detection 183
engine object for 171–173
Game Over screen for 194–195
keyboard controls for 186, 188–189
making ball move 182
mouse control for 187
moving paddle 182
removing hit bricks 184–185
score counter for 190–191
storing high scores online 192
testing 180
touch support for 187
Welcome screen for 193–194

contents of canvas element 169
libraries for ImpactJS 195
overview 21, 165–166, 313
reference links for 426
setting context 166–169
vs. SVG

community support 232–233
documentation 232–233
JavaScript integration 233
pros and cons of 233–234

verifying browser support 169–170
<canvas> element 20–21, 32, 168–169, 234, 253–

254
CanvasRenderingContext2D interface 168
card_cvv2 field 49
card_number field 49
Cascading Style Sheets. See CSS
channel messaging 129

adding JavaScript to first page 375
adding JavaScript to second page 376–377
creating example pages 375
cross-domain test environment 373–374
installing local development web

server 374
chargingchange 419
chargingTime 418
chargingtimechange 419
chat application example

chat form 105–106
connecting to stream in browser 111
creating database 105
creating server stream 109–111
implementing login process 107–108

login form 106–107
overview 102–105
sending chat messages to server 108
storing messages in database 108–109

chat.js file 109, 127
chat.sql file 344
checkEnclosure() method 230
checking event 318
checkIntersection() method 230
checkValidity() method 60, 66, 318
Chrome developer tools 379
class attribute 135–137, 140
clear() method 130, 323
clearData() method 322
clearWatch() method 326
client-side validation 13
cmp() method 328
codecs, discovering which used in video 386
collapsible content 14–15
collide() method 184, 217
collision detection

displaying shape data 290
Geometry Destroyer game 303
for items in canvas 184
SVG Aliens game 224

color buffers 287–288
combobox example 9
Command+Shift+H keyboard shortcut 350
community support

for Canvas 232–233
for SVG 232–233

Configuration page, MySQL installer 342
Constraint Validation API 317

See also validating forms
contact details section, order form

example 43
contenteditable attribute 25, 79, 81
context, setting for canvas 166–169
continue() method 328
controller attribute 324
controls attribute 242, 324
controls, video playback 255–256
converting video formats 252
coords attribute 327
core.js file 279
CORS (Cross Origin Resource Sharing) 324
cp.core.draw() method 290
Create File zone 97
createEmptyItem() function 148
createFormSubmit() method 91, 93
createIndex() method 130, 146, 330
createObjectStore() method 130, 146, 329
createReader() method 334
createWriter() method 333
Cross Origin Resource Sharing. See CORS
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX432
cross-document messaging 102
auto-complete using 127–129
overview 24, 125–126
using postMessage method 126–127

cross-domain environment 373–374
cross-domain messaging 125, 127
crossOrigin attribute 324
CSS (Cascading Style Sheets) 10

controlling visibility of views using 137
and HTML5 18
overview 314
pseudo-classes 61–62

Ctrl+Shift+_ keyboard shortcut 349
Ctrl.init() method 186–187
ctx.beginPath() method 179
ctx.closePath() method 179
cube particles, Geometry Destroyer game

creating 305
customizing 306–307

cube() method 302
cuechange event 404
currentSrc attribute 249–251, 324
currentTime attribute 255, 324
cursors 130, 150
customError attribute 318

D

data-* attributes 45–47
dataset property 56
Date object 54
defaultMuted attribute 325
defaultPlaybackRate attribute 256, 325
defense shields, SVG Aliens game 221–222
delete_worker() method 122
delete() method 154–155, 328
deleteDatabase() method 130, 155–156, 328
deleteTask() function 154
designMode property 25, 76, 78–81
<details> element 15, 74
Developer Default option 341
Device Orientation API

locking orientation 417
overview 415–417

dimension buffers 287–288
direction attribute 328
DirectoryReader object 88
dischargingTime 419
dischargingtimechange 419
displayBrowserFileList() function 88, 98
displayFileSystem() function 88–89
<div> elements 6–7, 10
document.execCommand() method 26
document.getElementById() method 57
document.getItems() method 323

DOM (Document Object Model)
and HTML5 19–20
pulling shader data from 285–286

downloading event 318
Drag and Drop API 70, 96–97

exporting files using 98–99
importing files using 97–98
overview 22–23
reference for 321–322

drag event 322
dragend event 322
dragenter event 322
dragFile() function 98
draggable attribute 23, 70
dragleave event 322
Dragonfly 379
dragover event 97–98, 322
dragstart event 70, 98, 322
draw_welcome() function 408
draw() function 254, 260–261, 263–264, 419
drop event 322
dropDatabase() function 155–156, 160
dropEffect() method 321
duration attribute 255, 325
dynamic content, serving with Node.js

creating static template with placeholders 367
mixing dynamic content into template 368
testing in browser 368–369

E

edge detection 183
edges() method 183
Editing API 320
effectAllowed() method 321
element.dataset.personName 56
email input type 41–43, 67
enableHighAccuracy attribute 326
encoding video with FFmpeg

to MP4/h264 with AAC 387–388
to MP4/h264 with MP3 388
to Ogg/Theora 389
to WebM/VP8 388–389

ended attribute 325
enemy, Geometry Destroyer game

collision detection for 303
creating 304–305
generating random properties for 302
overview 300

engine, custom WebGL
base engine logic 277
browser support for example 270–271
entity helper methods 280–281
entity storage 278
index.html 271–272
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX 433
engine, custom WebGL (continued)
overview 269–270
requestAnimationFrame() function 275
shape entities with 3D data 279
Simple JavaScript Inheritance script 275
style.css 273
sylvester.js 276
time-saving scripts for 274–275
webgl_util.js 276

error attribute 325
error event 319, 332–333
event-driven applications

vs. polling 357–360
server-side choices for 360

EventEmitter.js 114, 119–120
events

changing videos using 245
Media Element interface 245–246
Text Track API 404–405

EventSource interface 25, 102, 111
execCommand() method 70, 78, 81, 320
exiting full-screen mode 415
Expiry Date field 65
exporting files using Drag and Drop API 98–99
eXtensible Messaging and Presence Protocol. See

XMPP

F

failure of form validation
detecting with invalid event 60–61
styling invalid elements 61–62

FALLBACK section 159
fallbackValidation() function 68
favicon.ico 368
FFmpeg tool

determining supported codecs 387
discovering codecs used on video 386
encoding with

to MP4/h264 with AAC 387–388
to MP4/h264 with MP3 388
to Ogg/Theora 389
to WebM/VP8 388–389

obtaining 386
File API 30–31
File Browser view 72–73, 92, 97
File Editor view 72–73, 77–78, 86, 91, 94
File Reader API 30–31
File System API 70, 72–73

creating files 90–91
creating persistent filesystem 86–87
deleting files 90–91
getting list of files 87–89
importing files from computer 92–94
loading files in editor 89–90

overview 30–31
reference for 331–335
saving files 94–96
viewing files 90–91

File Writer API 30–31, 94–96
FileSaver() method 333
fileSystem field 86
Firebug 379
Firefox browser 248, 270–271
FLV (Flash video) format 21
follow_mouse() function 412, 416, 423
forever-frame hack 105
<form> element 41
formaction attribute 36, 38, 51–52
formats, video

browser compatibility using multiple 248
converting between 252
discovering which is being played 249–251

formnovalidate attribute 36, 38, 51
forms

action for 52
fallbacks for unsupported browsers

detecting features with Modernizr 63–64
month-picker fallback 64–65
validating form without constraint validation

API 65–68
input types

attributes for 41–43
email input type 41–43
month input type 49
pattern attribute 49–50
required attribute for 44
tel input type 41–43

new features
client-side validation 13
new form attributes 12–13
new form input types 11

order form example
basic document structure 40–41
contact details section 43
login details section 44
order details section 47
overview 38–39
payment details section 50
prerequisites for 39–40

performing calculations in
data-* attributes 46–47
functions to calculate total values 53–54
min and max attributes 46
number input type 46
<output> element 47, 57
retrieving price values 56–57
retrieving value of input fields 55
valueAsNumber property 54

reference links for 425
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX434
forms (continued)
validating

bypassing to save form details 51
custom validation 59–60
detecting failure with invalid

event 60–61
styling invalid elements 61–62

fragment shader 283
frame around video 257–260
framebuffer 283
fs.readFile() method 366
Full-Screen API

entering full-screen mode 414
exiting full-screen mode 415
styling background 414

future HTML developments
Battery API 418–420
Device Orientation API

locking orientation 417
overview 415–417

Full-Screen API
entering full-screen mode 414
exiting full-screen mode 415
styling background 414

Mouse Event Capture API 411–413
Pointer Lock API 420–423
real-time media access and communication

getUserMedia() function 391–393
overview 390–391
WebRTC specification 394

test bed for exploring 406–411
Text Track API

adding multiple track elements 397–
400

adding track element 396–397
checking to see if track is loaded 403–

404
events for 404–405
loading text tracks in advance 403
styling for 405–406

Vibration API 417–418

G

Game Over screen
for Canvas Ricochet game 194–195
for SVG Aliens game 211

Game.draw() method 190
Game.init() method 190, 193
game.js file 280
Game.levelLimit() method 191
Game.levelUp() method 191
Game.restartGame() method 195
Game.runGame() method 193
Game.setup() method 173, 186

gd.core.animate() method 305
gd.core.draw() method 288
gd.core.shader.get() method 286
gd.core.shader.init() method 286
gd.core.shader.store() method 286
gd.gl.vertexAttribPointer() method 289
gd.template.Cube.init() method 306
gd.template.Entity.color() method 287
gd.template.Entity.indices() method 287
gd.template.Entity.shape() method 287
gd.template.Polygon 301–304
Geolocation API

inserting map of user location 83–84
overview 29, 82–83, 315
reference for 326–327

Geometry Destroyer game
3D cube particle 305
3D Polygon enemy 300
animating player entity 298
capturing user input 294
collision detection for enemies 303
creating enemies 304–305
creating player entity 296
customizing cubes 306–307
generating random enemy properties 302
HUD 295
player bullets 299–300
square particles 308

get_task() method 122
getAsFile() method 322
getAsString() method 322
getAttribute() method 56
getAttributeNS() method 213
getBBox() method 231
getBlob() method 335
getContext() method 381
getCueAsHTML() method 402
getCurrentPosition() method 70, 82, 326
getData() method 322
getDirectory() method 334
getEnclosureList() method 230
getFile() method 89–90, 334
getImageData() method 261–262
getIntersectionList() method 230
getItem() method 130, 140, 323
getUserMedia() method 391–393
Global Positioning System. See GPS
globalAlpha property 260
globalCompositeOperation property 258
go() function 407–408, 410, 414, 420, 422
Google Chrome 270–271
GPS (Global Positioning System) 326
gradient() method 177
graphics cards 283–284
grayscale video 261–262
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX 435
H

HAVE_CURRENT_DATA property 246
HAVE_ENOUGH_DATA property 246
HAVE_FUTURE_DATA property 246
HAVE_METADATA property 246
HAVE_NOTHING property 246
headers, HTTP 355–357
heading attribute 327
heads-up display. See HUD
height attibute 242
Hello World application using Node.js 365–

366
history of HTML5 310–311
home page, MySQL Workbench 344
hp (hit points) 221
.htaccess file 157
<html> element 5, 382
HTML5 (HyperText Markup Language 5)

Audio and Video APIs 21–22
Canvas API 21
collapsible content without JavaScript 14–15
cross-document messaging 24
and CSS3 18
and DOM 19–20
Drag and Drop API 22–23
enhancing accessibility using ARIA

roles 9–10
File API 30–31
File Reader API 30–31
File System API 30–31
File Writer API 30–31
forms

client-side validation 13
new form attributes 12–13
new form input types 11

Geolocation API 29
history of 310–311
IndexedDB API 29–30
Internet Explorer support

overview 10
printing new elements properly 11
rendering new elements properly 10

and JavaScript 19–20
meters 14
microdata 16–18
offline web applications 27–28
progress bars 14
rich-text editing of documents 25–26
semantic elements in 6–9
server-sent events 25
specifications for 316
structure of documents 5–6
SVG 31
technologies not officially part of 312

tools for
browser development versions 379–380
Chrome developer tools 379
Dragonfly 379
Firebug 379
HTML5 Boilerplate 382
HTML5 Shiv 379–380
IE developer tools 379
jsFiddle 383–384
Modernizr 380–382
Safari developer tools 379

Web Storage API 25–27
WebGL 32
WHATWG vs. W3C 311–312
See also future HTML developments

HTML5 Boilerplate 382
HTML5 Shiv 379–380
HTTP headers 355–357
httpd.conf file 347–348, 350
httpd.userdir.conf file 350
HUD (heads-up display) 190

Geometry Destroyer game 295
SVG Aliens game 225–227

Hud.update.level() method 227
HyperText Markup Language 5. See HTML5

I

IDBOpenDBRequest interface 330
IDE (integrated development environment) 379
IETF (Internet Engineering Task Force) 360
if statement 169
ImpactJS library 195
importing files

using Drag and Drop API 97–98
using File System API 92–94
with XLink 209

IndexedDB API 132
adding data to 152–154
connecting to 145–148
deleting data 154–155
detecting support for 144–145
dropping database 155–156
overview 29–30
reference for 327–330
searching 150–152
updating data 154–155

index.php file 106–107
init() method 182, 216–217, 276, 280, 299, 306
innerHTML property 57
input types

attributes for 41–43
email input type 41–43
month input type 49
number input type 46
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX436
input types (continued)
pattern attribute 49–50
required attribute for 44
tel input type 41–43

<input> element 36, 38, 40, 47, 59, 65, 331
INSERT statement 153
insertImage() function 83
insertTask() function 153
integrated development environment. See IDE
Internet Engineering Task Force. See IETF
Internet Explorer

developer tools 379
supporting new elements in

overview 10
printing new elements properly 11
rendering new elements properly 10

invalid event 36, 58, 60–61
IP (Internet Protocol) 355
isDirty variable 80

J

JavaScript
collapsible content without using 14–15
and HTML5 19–20
interaction with Canvas 233
interaction with SVG

vs. Canvas 233
overview 212–214

libraries 315–316
navigating between views using 137–139

JavaScript Object Notation. See JSON
jQuery 315–316
jsFiddle 383–384
JSON (JavaScript Object Notation) 19

K

key attribute 328
key() method 323
keyboard controls

Canvas Ricochet game 186, 188–189
SVG Aliens game 219–221

kind attribute 397, 399–401

L

lasers, SVG Aliens game 223
Laser.update() method 224
latency 357
latitude attribute 327
levelchange 419
 element 98, 249
libraries, Canvas API

ImpactJS 195

lineTo() method 179
links

for Canvas API 426
for messaging 425–426
for mobile applications 426
for SVG 426
for video and audio 427
for WebGL 427

list directory command. See ls command
load event 332
load() method 325
loadeddata event 245
loadedmetadata event 245
loadend event 332
loadFile() function 89–90
loadSettings() function 140–141
loadstart event 332
loadTasks() function 146, 150–151
localStorage

deleting data from 141–143
reading data from 140–141
saving data to 141

localStorage interface 27, 139–140
location.hash property 133, 138
locking orientation 417
login details section, order form example 44
longitude attribute 327
loop attribute 325
ls (list directory) command 347

M

Mac OS X
MySQL

configuring PHP for 352–353
installing 351–352

PHP
configuring MySQL for 352–353
editing Apache configuration files 347–350
overview 345–346
serving web files from sites directory 350–351
using Terminal app 346–347

makeGradient() method 177
maps, user location on 83–84
<mark> elements 8–9
markAsComplete event 149, 154
matrices 288
max attribute 13, 45–46
maximumAge attribute 327
media

adjusting opacity of 260
browser compatibility 239
converting between formats 252
custom controls for 255–256
and Firefox browser 248
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX 437
media (continued)
rayscale 261–262
Media Element API

events in 245–246
overview 244
properties of 245

multiple formats with <source> element
browser compatibility 248
discovering which video is playing 249–251

and Opera browser 248
prerequisites for 239–240
telestrator jukebox application

adding <canvas> element 253–254
adding clear button 264
adding frame around video 257–260
adjusting video opacity 260
capturing mouse movement 263
custom playback controls 255–256
determining state of media resources 245
displaying captured path over video 263
grayscale video 261–262
layout for 240–241
loading list of videos 243
overview 238–240
playing video on canplaythrough event 246
starting video when selected 244
switching between videos 244
using event handlers to change video 245
<video> element 241–242

Media Element API
events in 245–246
overview 244
properties of 245
reference for 324

mediaGroup attribute 325
<menu> element 399
messaging

agile planning board example
building process for 114–115
business logic for 119–123
handling updates in browser 123
handling updates on server 124–125
overview 113–114
prerequisites for 114
template page 118–119

chat application example
chat form 105–106
connecting to stream in browser 111
creating database 105
creating server stream 109–111
implementing login process 107–108
login form 106–107
overview 102–105
sending chat messages to server 108
storing messages in database 108–109

cross-document messaging
auto-complete using 127–129
overview 125–126
using postMessage method 126–127

reference links for 426
server-sent events 112
WebSockets 115–117

<meter> element 14
meters 14–15
microdata

API reference 323
overview 16–18

Microsoft Internet Explorer. See Internet Explorer
Microsoft Windows 7. See Windows 7
MIME types 31, 157–158
mime.types file 158
min attribute 13, 45–46
mobile applications

IndexedDB API
adding data to 152–154
connecting to 145–148
detecting support for 144–145
dropping database 155–156
searching 150–152
updating and deleting data 154–155

My Tasks application example
adding new tasks 153
controlling visibility of views using CSS 137
creating views with <section> elements 136
deleting tasks 154
document structure for 135
implementing navigation with

JavaScript 137–139
navigation bar 135
overview 134–135
searching task view list 152
task list view 148–149
updating tasks 154

offline applications
configuring MIME type on server 157–158
creating application cache manifest file 158–

160
detecting changes in manifest file 160–162

reference links for 426
tools for 378
Web Storage API

deleting data from localStorage 141–143
reading data from localStorage 140–141
saving data to localStorage 141

Modernizr 380–382
month input type 49, 64–65
monthpicker.js file 41, 64
mouse controls

Canvas Ricochet game 187
SVG Aliens game 219–221
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX438
Mouse Event Capture API 411–413
movePaddle() method 187
moveTask message 124
Mozilla Firefox. See Firefox browser
MP4/h264 with AAC encoding 387–388
MP4/h264 with MP3 encoding 388
multiEntry flag 146
multimedia 313
multiple attribute 92
muted attribute 325
My Tasks application example 132–133, 161

adding new tasks 153
controlling visibility of views using CSS 137
creating views with <section> elements 136
deleting tasks 154
document structure for 135
implementing navigation with JavaScript 137–

139
navigation bar 135
overview 134–135
searching task view list 152
task list view 148–149
updating tasks 154

MySQL
on Mac OS X

configuring PHP for 352–353
installing 351–352

on Windows 7
creating databases 343–346
downloading 340–341
installing 341–343
running scripts 343–346

mysql.sock file 352

N

navigating between views using JavaScript 137–139
NETWORK section 159
NETWORK_EMPTY property 245
NETWORK_IDLE property 246
NETWORK_LOADING property 246
NETWORK_NO_SOURCE property 246
networking

event-driven applications
vs. polling 357–360
server-side choices for 360

HTTP headers 355–357
latency 357
overview 354–355
throughput 357
WebSocket protocol

browser support for 362–363
overview 361–362
vs. WebSocket API 360–361

networkState attribute 245, 325

node_modules directory 370
Node.js 102, 112–115, 117–118, 129

creating socket using 115–117
creating web apps with 370–372
Hello World application using

creating 365
running 365–366

overview 315
requirements for 364–365
routing with 369–370
serving mixed static and dynamic content with

creating static template with
placeholders 367

mixing dynamic content into template 368
testing in browser 368–369

serving static files with
loading file from disk 366
running application 367
sending file to browser 367

noupdate event 318
novalidate attribute 51
number input type 45

overview 46
retrieving value of 55

O

objectStore() method 152, 154
obsolete event 319
offline applications

API reference 318–319
configuring MIME type on server 157–158
creating application cache manifest file 158–

160
detecting changes in manifest file 160–162
overview 27–28

Ogg/Theora video format 251, 389
oncuechange property 404
onmessage event 116, 126, 128, 375–376
onsuccess property 331
onupgradeneeded event 330
opacity of video 260
Open Connection to Start Querying heading 344
open() method 130
openCursor() method 130, 150, 329–330
OpenGL ES (Open Graphics Library for Embed-

ded Systems) 32, 284
Opera browser 248
options object 146
or operators 144
order form example

basic document structure 40–41
contact details section 43
login details section 44
order details section 47
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX 439
order form example (continued)
overview 38–39
payment details section 50
prerequisites for 39–40

orientationchange event 140
<output> element 40, 47, 57

P

<p> tag 188
paddle, Canvas Ricochet game

creating 179
moving 182

Paddle.move() method 182–183
parseFloat function 55
paths

drawing in SVG 209–210
for UFOs in SVG Aliens game 228

pattern attribute 13, 49–50
patternMismatch attribute 318
pause() method 256, 325
paused attribute 325
payment details section, order form example 49–

50
PDO database 109
persistent filesystem 86–87
PHP

files 106–107
on Mac OS X Mountain Lion

configuring MySQL for 352–353
editing Apache configuration files 347–

350
overview 345–346
serving web files from sites directory 350–

351
using Terminal app 346–347

on Windows 7
configuring Windows 7 IIS 336–337
confirming installation 339
downloading 337
installing 338–339

placeholder attribute 13, 41, 43
planner.get_words() method 128
plan.on() method 123
play() method 325
playbackRate attribute 256, 325
played attribute 325
Pointer Lock API 420–423
pointerlockchange 420
pointerLockElement 420
pointerlockerror 420
polling vs. event-driven applications 357–

360
Polygon.collide() method 308
postMessage() method 100, 126–127, 375

preload attribute 325
primaryKey attribute 328
printing new HTML5 elements correctly

in IE 11
progress bars 14
progress event 318, 332–333
pseudo-classes 61–62
putImageData() method 261
python command 134

Q

quantum entanglement 375
queryCommandEnabled() method 320
queryCommandIndeterm() method 320
queryCommandState() method 70, 82, 320
queryCommandSupported() method 320
queryCommandValue() method 320
queryUsageAndQuota() method 70
Quota Management API 70, 85–87

R

randomMeta() method 302
rangeOverflow attribute 318
rangeUnderflow attribute 318
RDBMS (relational database management

system) 145
readAsArrayBuffer() method 332
readAsText() method 70, 89, 332
readEntries() method 334
readyState attribute 245–246, 325
real-time media access and communication

getUserMedia() function 391–393
overview 390–391
WebRTC specification 394

reference links
for Canvas API 426
for forms 425
for messaging 426
for mobile applications 426
for SVG 426
for video and audio 427
for WebGL 427

relational database management system. See
RDBMS

releaseCapture() method 411
remove() method 90
removeItem() method 130, 141, 323
removeRecursively() method 334
requestAnimationFrame() method 173, 240, 274–

275, 305, 407
requestFullscreen() method 414
requestPointerLock() method 420
requestQuota() method 70, 266
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX440
required attribute 13, 41, 43–44, 65, 68
resetSettings() function 155–156
rich-text editing of documents 25–26, 81
Ricochet game (Canvas)

animation for 173
background image 174–175
coloring bricks 177–178
creating ball 178–179
creating game bricks 175
creating paddle 179
enabling collision detection 184
enabling edge detection 183
engine object for 171–173
Game Over screen for 194–195
keyboard controls for 186, 188–189
making ball move 182
mouse control for 187
moving paddle 182
removing hit bricks 184–185
score counter for 190–191
storing high scores online 192
testing 180
touch support for 187
Welcome screen for 193–194

rotation logic 291
routing with Node.js 369–370
run.js file 271, 278, 280–282

S

Safari developer tools 379
Save Settings button 143
saveBtn.addEventListener() method 53
Scalable Vector Graphics. See SVG
scores, game

counter for 190–191
storing online 192

screen transitions 215–216
Screen.gameover() method 194
script contexts 125
<script> element 19, 116, 375–376
searching using IndexedDB API 150–152
<section> element 136
seek() method 333
seekable attribute 325
seeking attribute 326
self.applicationCache() method 319
semantic elements 4, 6–9
server-sent events. See SSE
session_id() method 107–108
session_start() method 110
sessionStorage interface 27, 139
setCapture() method 411–412
setCustomValidity() method 36, 59, 318
setData() method 322

setDragImage() method 321
setInterval() method 173, 305
setItem() method 130, 323
setTimeout() method 305
setversion() method 329
shaders

creating via OpenGL ES 284
pulling shader data from DOM 285–286

shapes
buffers for 287–288
creating in SVG 206–208

Ship object 219
showTask() function 148–150
showUI argument 81
Simple JavaScript Inheritance script 275
SimpleHTTPServer module 374
source attribute 328
<source> element 248
speed attribute 327
spinbox component 46
SQL database 150, 156
SQLite database 30
src attribute 242, 244, 248, 250, 326
srclang attribute 399, 401
SSE (server-sent events) 25, 102–103, 129, 314,

360
chat application example

chat form 105–106
connecting to stream in browser 111
creating database 105
creating server stream 109–111
implementing login process 107–108
login form 106–107
overview 102–105
sending chat messages to server 108
storing messages in database 108–109

when to use 112
Start screen 210–211
startDate attribute 326
state management 76–78
static files

loading file from disk 366
running application 367
sending file to browser 367

stepMismatch attribute 318
Storage APIs 132, 314–315
storageInfo field 86
streams

connecting to stream in browser 111
creating server stream 109–111

String.Replace() function 368
<style> element 253
style.css file 73, 205
sudo (switch user and do) command 348
<summary> element 15, 74
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX 441
Super HTML5 Editor example
designMode property 79–80
Drag and Drop API

exporting files using 98–99
importing files using 97–98

execCommand method 81
file browser view 74
file editor view 75–76
File System API

creating files 90–91
creating persistent filesystem 86–87
deleting files 90–91
getting list of files 87–89
importing files from computer 92–94
loading files in editor 89–90
saving files 94–96
viewing files 90–91

File Writer API 94–96
Geolocation API

inserting map of user location 83–84
overview 82–83

main document structure 74
navigating between views 76–78
overview 72–74
reference links for 425–426
rich-text editing toolbar 81
state management for 76–78

SuperEditor() function 77
SVG (Scalable Vector Graphics)

adding shapes 206–208
adding text 208
Aliens game

animating UFOS 229
big UFO 217–218
collision detection 224
CSS file for 205–206
defense shields 221–222
dynamic movement of UFOs 230–231
game engine base 214–215
Game Over screen 211
heads-up display 225–227
keyboard controls 219–221
lasers 223
making UFOs shoot 232
mouse controls 219–221
overview 202–204
player ship 218
screen transitions 215–216
Start screen 210–211
svg tags in html 204
UFO flocks 227
UFO paths 228

animation 208
API overview 313
vs. bitmap graphics 200–202

vs. Canvas
community support 232–233
documentation 232–233
JavaScript integration 233
pros and cons of 233–234

drawing with paths 209–210
importing files with XLink 209
JavaScript interaction with 212–214
overview 31, 199–200
reference links for 426
<svg> element 202–204, 207, 210, 212
viewBox parameter 211–212
Wilson smiley example 201–202

swapCache() method 130, 160, 318–319
switch user and do command. See sudo command
sylvester.js file 276

T

TCP (Transmission Control Protocol) 355
tel input type 41–43
telestrator jukebox application

adding <canvas> element 253–254
adding clear button 264
adding frame around video 257–260
adjusting video opacity 260
capturing mouse movement 263
custom playback controls 255–256
determining state of media resources 245
displaying captured path over video 263
grayscale video 261–262
layout for 240–241
loading list of videos 243
overview 238–240
playing video on canplaythrough event 246
starting video when selected 244
switching between videos 244
using event handlers to change video 245
<video> element 241–242

template page, agile planning board
example 118–119

Terminal app 346–347
test bed for exploring future HTML

developments 406–411
text property 401, 403
Text Track API 395–396, 400–401

adding multiple track elements 397–400
adding track element 396–397
checking to see if track is loaded 403–404
events for 404–405
loading text tracks in advance 403
styling for 405–406

text, in SVG 208
text/event-stream type 109
<text> element 208
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX442
<textarea> element 25
throughput 357
timeout attribute 326
timestamp attribute 327
title attribute 50
tooLong attribute 318
tools

for HTML5 applications
browser development versions 379–380
Chrome developer tools 379
Dragonfly 379
Firebug 379
HTML5 Boilerplate 382
HTML5 Shiv 379–380
IE developer tools 379
jsFiddle 383–384
Modernizr 380–382
Safari developer tools 379

for mobile web applications 378
touch support 187
toURL method 90–91, 99
<track> element

adding 396–397
adding multiple 397–400

transaction() method 329
transcoder 252
Transmission Control Protocol. See TCP
triangle assembler 283
truncate() method 333
typeMismatch attribute 318

U

UFOs in SVG Aliens game
animating 229
creating big UFO 217–218
dynamic movement of 230–231
flocks of 227
making UFOs shoot 232
paths for 228

UI (user interface) 378
update_xy() function 417
update() method 215, 231–232, 298, 328
updateBrowserFilesList() function 88–89, 91
updateready event 160, 162, 318
upgradedNeeded event 145
user input 294
user interface. See UI

V

valid attribute 318
validateForm() function 68
validating data 125

validating forms
bypassing to save form details 51
custom validation 59–60
detecting failure with invalid event 60–61
new features for 13
reference links for 425
styling invalid elements 61–62

validationMessage attribute 318
validity attribute 318
value property 54
valueAsDate property 54
valueAsNumber property 38, 53–55
valueMissing attribute 318
Vector Markup Language. See VML
vertex shader 283
Vibration API 417–418
video

adjusting opacity of 260
API overview 21–22, 313
browser compatibility 239
converting between formats 252
custom controls for 255–256
encoding with FFmpeg tool

to MP4/h264 with AAC 387–388
to MP4/h264 with MP3 388
to Ogg/Theora 389
to WebM/VP8 388–389

Firefox browser 248
grayscale 261–262
Media Element interface

events in 245–246
overview 244
properties of 245

multiple formats with <source> element
discovering which video is playing 249–

251
for browser compatibility 247–248

Opera browser 248
prerequisites for 239–240
reference links for 427
telestrator jukebox application

adding <canvas> element 253–254
adding clear button 264
adding frame around video 257–260
adjusting video opacity 260
capturing mouse movement 263
custom playback controls 255–256
determining state of media resources 245
displaying captured path over video 263
grayscale video 261–262
layout for 240–241
loading list of videos 243
overview 238–240
playing video on canplaythrough event 246
starting video when selected 244
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX 443
video (continued)
switching between videos 244
using event handlers to change video 245

<video> element 22, 241–242, 396, 399
viewBox property 203, 211–212, 230
views

controlling visibility of using CSS 137
creating with <section> elements 136
navigating between using JavaScript 137–

139
VML (Vector Markup Language) 213
volume attribute 326

W

W3C (World Wide Web Consortium) 311–312
WAI (Web Accessibility Initiative) 9
watchPosition() method 326
Web Hypertext Application Technology Working

Group. See WHATWG
Web Messaging API 314
Web Socket API 314
Web Storage API

deleting data from localStorage 141–143
overview 26–27
reading data from localStorage 140–141
reference for 323
saving data to localStorage 141

WebGL (Web Graphics Library)
3D drawing basics 297–298
building engine for

base engine logic 277
browser support for example 270–271
entity helper methods 280–281
entity storage 278
index.html 271–272
overview 269–270
requestAnimationFrame() function 275
shape entities with 3D data 279
Simple JavaScript Inheritance script 275
style.css 273
sylvester.js 276
time-saving scripts for 274–275
webgl_util.js 276

complex 3D models 301
creating buffers 287–288
displaying shape data on screen

adding matrix helpers 291
adding rotation logic 291
binding and drawing shapes 289
collision detection 290
using matrices and buffers 288

Geometry Destroyer game
3D cube particle 305
3D Polygon enemy 300

animating player entity 298
capturing user input 294
collision detection for enemies 303
creating enemies 304–305
creating player entity 296
customizing cubes 306–307
generating random enemy properties 302
HUD 295
player bullets 299–300
square particles 308

graphics cards 283–284
overview 32, 315
reference links for 427
shaders for 3D data

creating via OpenGL ES 284
pulling shader data from DOM 285–

286
webgl_util.js file 276
WebM/VP8 encoding 388–389
WebRTC specification 394
WebSocket API

agile planning board example
building process for 114–115
business logic for 119–123
handling updates in browser 123
handling updates on server 124–125
overview 113–114
prerequisites for 114
template page 118–119

creating with Node.js 115–117
overview 25
vs. WebSocket protocol 360–361

WebSocket protocol
browser support for 362–363
overview 361–362
vs. WebSocket API 360–361

WebSocket-Node module 115, 117
websocket-sample.js file 117
WebVTT (Web Video Text Tracks) file

format 396
Welcome screen 193–194
WHATWG (Web Hypertext Application Technol-

ogy Working Group) 19, 311–312
width attribute 242
willValidate attribute 318
Wilson smiley example 201–202
wilson.svg file 201
window event 185
window.location.reload() method 160
Windows 7

MySQL
creating databases 343–346
downloading 340–341
installing 341–343
running scripts 343–346
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

INDEX444
Windows 7 (continued)
PHP

configuring Windows 7 IIS 336–337
confirming installation 339
downloading 337
installing 338–339

World Wide Web Consortium. See W3C
write() method 70, 333
writeend event 333
writestart event 333
ws.onmessage 123

X

XHR (XML HTTP Request) object 4, 314
XLink 209
XMPP (eXtensible Messaging and Presence

Protocol) 360

Y

yieldForStorageUpdates() method 324
Licensed to Sue Brandreth <sbrandreth@bedford.ac.uk>

Crowther ● Lennon ● Blue ● Wanish

H TML5 is not a few new tags and features added to an old
standard—it’s the foundation of the modern web, en-
abling its interactive services, single-page UI, interactive

games, and complex business applications. With support for
standards-driven mobile app development, powerful features
like local storage and WebSockets, superb audio and video
APIs, and new layout options using CSS3, SVG, and Canvas,
HTML5 has entered its prime time.

HTML5 in Action provides a complete introduction to web de-
velopment using HTML5. It explores the HTML5 specifi cation
through real-world examples and code samples. It earns the
name “in Action” by giving you the practical, hands-on guid-
ance you’ll need to confi dently build the sites and applications
you—and your clients—have been wanting for years.

What’s Inside
● New semantic elements and form input types
● Single-page application design
● Creating interactive graphics
● Mobile web apps

This book concentrates on new HTML5 features and assumes
you are familiar with standard HTML.

Rob Crowther is a web developer and blogger and the author
of Hello! HTML5 & CSS3. Joe Lennon is an enterprise mobile
application developer. Ash Blue builds award-winning
interactive projects. Greg Wanish is an independent web
and eCommerce developer.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/HTLM5inAction

$39.99 / Can $41.99 [INCLUDING eBOOK]

HTML5 IN ACTION

WEB DEVELOPMENT/HTML

M A N N I N G

“Learn how to use HTML5
now, using secure and

 intelligent solutions.”
—From the Foreword by

Christian Heilmann, Mozilla

“Manning’s In Action series
has been an invaluable

resource to me, and this
 book is no exception.”

—Robert Williams, Mutual Mobile

“The go-to guide for
 all things HTML5.”—Tyson Maxwell, Raytheon

“If you like to learn by
example, this is your book.”

—Julio Guijarro, HP Labs

“The missing manual on
HTML5 has arrived.
All you need now is

to take action.”—Arun Noronha, Co-eXprise Inc.

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Chapter features
	Code conventions and downloads
	Software requirements
	About the authors
	Author Online
	About the cover illustration

	Part 1—Introduction
	1 HTML5: from documents to applications
	1.1 Exploring the markup: a whirlwind tour of HTML5
	1.1.1 Creating the basic structure of an HTML5 document
	1.1.2 Using the new semantic elements
	1.1.3 Enhancing accessibility using ARIA roles
	1.1.4 Enabling support in Internet Explorer versions 6 to 8
	1.1.5 Introducing HTML5’s new form features
	1.1.6 Progress bars, meters, and collapsible content

	1.2 Beyond the markup: additional web standards
	1.2.1 Microdata
	1.2.2 CSS3
	1.2.3 JavaScript and the DOM

	1.3 The HTML5 DOM APIs
	1.3.1 Canvas
	1.3.2 Audio and video
	1.3.3 Drag and drop
	1.3.4 Cross-document messaging, server-sent events, and WebSockets
	1.3.5 Document editing
	1.3.6 Web storage
	1.3.7 Offline web applications

	1.4 Additional APIs and specifications
	1.4.1 Geolocation API
	1.4.2 Indexed database (IndexedDB API)
	1.4.3 File, File Reader, File Writer, and File System APIs
	1.4.4 Scalable Vector Graphics
	1.4.5 Web Graphics Library

	1.5 Summary

	Part 2—Browser-based apps
	2 Form creation: input widgets, data binding, and data validation
	2.1 Previewing the form and gathering prerequisites
	2.1.1 Gathering the application prerequisites

	2.2 Building a form’s user interface
	2.2.1 Defining a form’s basic HTML document structure
	2.2.2 Using the form input types email and tel and the input attributes autofocus, required, and placeholder
	2.2.3 Using the form input attribute required
	2.2.4 Building a calculator-style form using the input type number, the input attributes min/max and data-*, and the element <output>
	2.2.5 Using the form input type month and input attribute pattern
	2.2.6 Allowing users to choose whether to save or submit a form: using the input attributes formnovalidate and formaction

	2.3 Calculating totals and displaying form output
	2.3.1 Building calculation functions
	2.3.2 Accessing values from HTML5 data-* attributes

	2.4 Checking form input data with the Constraint Validation API
	2.4.1 Creating custom validation tests and error messages with the setCustomValidity method and the validationMessage property
	2.4.2 Detecting a failed form validation with the invalid event
	2.4.3 Styling invalid elements using CSS3 pseudo-classes

	2.5 Providing fallbacks for unsupported browsers
	2.5.1 Detecting features and loading resources with Modernizr: an overview
	2.5.2 Using polyfills and Modernizr to plug the gaps
	2.5.3 Performing validation without the Constraint Validation API

	2.6 Summary

	3 File editing and management: rich formatting, file storage, drag and drop
	3.1 The Super HTML5 Editor: application overview, prerequisites, and first steps
	3.1.1 Defining the HTML document structure
	3.1.2 Implementing navigation and state management in JavaScript

	3.2 Rich-text editing and geolocation
	3.2.1 Using designMode to make an HTML document editable
	3.2.2 Providing rich-text editing controls with execCommand
	3.2.3 Mapping a user’s current location with the Geolocation API

	3.3 Managing files locally: the File System, Quota Management, File, and File Writer APIs
	3.3.1 Creating an application filesystem
	3.3.2 Getting a list of files from the filesystem
	3.3.3 Loading, viewing, editing, and deleting files
	3.3.4 Creating new files
	3.3.5 Saving files using the File Writer API

	3.4 Adding drag-and-drop interactivity
	3.4.1 Dragging files into an application for import
	3.4.2 Dragging files out of an application for export

	3.5 Summary

	4 Messaging: communicating to and from scripts in HTML5
	4.1 Server-sent events (SSE)
	4.1.1 A simple SSE chat application
	4.1.2 When to use SSE

	4.2 Using WebSockets to build a real-time messaging web app
	4.2.1 Application overview and prerequisites
	4.2.2 Creating a WebSocket with Node.js
	4.2.3 Building the planner application

	4.3 Messaging on the client side
	4.3.1 Communicating across domains with postMessage
	4.3.2 Joining the applications with cross-document messaging

	4.4 Summary

	5 Mobile applications: client storage and offline execution
	5.1 My Tasks: application overview, prerequisites, and first steps
	5.1.1 Defining the HTML document structure
	5.1.2 Controlling visibility of views using CSS
	5.1.3 Implementing navigation with JavaScript

	5.2 Managing data with the Web Storage API
	5.2.1 Reading data from localStorage
	5.2.2 Saving data to localStorage
	5.2.3 Deleting data from localStorage

	5.3 Managing data using IndexedDB
	5.3.1 Detecting database support on a browser
	5.3.2 Creating or connecting to an IndexedDB database, creating an object store and index
	5.3.3 Developing a dynamic list with HTML and JavaScript
	5.3.4 Searching an IndexedDB database
	5.3.5 Adding data to a database using IndexedDB or Web SQL
	5.3.6 Updating and deleting data from an IndexedDB database
	5.3.7 Dropping a database using IndexedDB

	5.4 Creating a web application that works offline: using the application cache manifest
	5.4.1 Configuring a web server for an application cache manifest’s MIME type
	5.4.2 Creating a cache manifest file
	5.4.3 Automating application updates

	5.5 Summary

	Part 3—Interactive graphics, media, and gaming
	6 2D Canvas: low-level, 2D graphics rendering
	6.1 Canvas basics
	6.1.1 Setting the Canvas context
	6.1.2 Generating a Canvas context

	6.2 Creating a Canvas game
	6.2.1 Creating the main engine components
	6.2.2 Creating dynamic rectangles
	6.2.3 Creating arcs and circles
	6.2.4 Using paths to create complex shapes

	6.3 Breathing life into Canvas elements
	6.3.1 Animating game elements
	6.3.2 Detecting overlap
	6.3.3 Creating keyboard, mouse, and touch controls
	6.3.4 Control input considerations

	6.4 Polishing Canvas games
	6.4.1 Tracking score and levels
	6.4.2 Adding opening and closing screens
	6.4.3 Getting help from code libraries

	6.5 Summary

	7 SVG: responsive in-browser graphics
	7.1 How bitmap and vector graphics compare
	7.2 Starting SVG Aliens with XML
	7.2.1 Setting up SVG inside HTML
	7.2.2 Programming simple shapes and text
	7.2.3 Using XLink and advanced shapes

	7.3 Adding JavaScript for interactivity
	7.3.1 Game engine essentials and using screens
	7.3.2 Design patterns, dynamic object creation, and input
	7.3.3 Creating and organizing complex shapes
	7.3.4 Maintaining a complex SVG group
	7.3.5 SVG vs. Canvas

	7.4 Summary

	8 Video and audio: playing media in the browser
	8.1 Playing video with HTML5
	8.1.1 Application preview and prerequisites
	8.1.2 Building the basic jukebox framework
	8.1.3 Using the video element to add videos to web pages

	8.2 Controlling videos with the HTMLMediaElement interface
	8.3 Specifying multiple formats with the <source> element
	8.3.1 Discovering which video is playing with .currentSrc
	8.3.2 Converting between media formats

	8.4 Combining user input with video to build a telestrator
	8.4.1 Playing video through the <canvas> element
	8.4.2 Creating custom video playback controls
	8.4.3 Manipulating video as it’s playing
	8.4.4 Building the telestrator features

	8.5 Summary

	9 WebGL: 3D application development
	9.1 Building a WebGL engine
	9.1.1 Setting up the engine’s layout
	9.1.2 Tools to create, alter, and delete objects

	9.2 Communicating with a graphics card
	9.2.1 Graphics cards: a quick primer
	9.2.2 Creating shaders for 3D data
	9.2.3 Creating buffers for shape, color, and dimension
	9.2.4 Displaying shape data on a screen

	9.3 Putting it all together: creating Geometry Destroyer
	9.3.1 Creating a game interface and control objects
	9.3.2 Creating 2D shapes in 3D
	9.3.3 Creating 3D shapes and particles

	9.4 Summary

	appendix A HTML5 and related specifications
	A.1 The origins of HTML5
	A.1.1 WHATWG vs. W3C
	A.1.2 So ... what is HTML5 anyway?

	A.2 Popular HTML5 specifications
	A.2.1 Semantic markup, forms
	A.2.2 Video and sound (multimedia)
	A.2.3 Canvas and SVG (interactive media)
	A.2.4 Storage
	A.2.5 Messaging
	A.2.6 The XML HTTP Request object

	A.3 Popular non-HTML5 technologies
	A.3.1 CSS3
	A.3.2 Geolocation
	A.3.3 Storage
	A.3.4 WebGL
	A.3.5 Node.js
	A.3.6 jQuery and other JavaScript libraries

	A.4 Keeping up with the specs

	appendix B HTML5 API reference
	B.1 HTML5 APIs
	B.1.1 Constraint Validation API
	B.1.2 API for offline web applications
	B.1.3 Editing API
	B.1.4 Drag and Drop API
	B.1.5 Microdata API
	B.1.6 APIs for Web Storage
	B.1.7 Media Element API

	B.2 Other APIs and specifications
	B.2.1 Geolocation API
	B.2.2 IndexedDB specification

	B.3 File System API
	B.3.1 Directory-based APIs within the File System API
	B.3.2 Blob data APIs

	appendix C Installing PHP and MySQL
	C.1 Installing PHP on Windows 7
	C.1.1 Configuring Windows 7 IIS
	C.1.2 Downloading PHP
	C.1.3 Installing PHP
	C.1.4 Confirm PHP is installed

	C.2 Installing MySQL on Windows 7
	C.2.1 Downloading MySQL
	C.2.2 Installing MySQL
	C.2.3 Creating a database and running scripts

	C.3 Installing PHP and MySQL on Mac OS X Mountain Lion
	C.3.1 Configuring Apache and PHP
	C.3.2 Installing MySQL on Mac OS X
	C.3.3 Getting MySQL and PHP to play nice together

	appendix D Computer networking primer
	D.1 The basics of computer networking
	D.2 The overhead of headers
	D.3 Network performance metrics: latency and throughput
	D.4 Polling vs. event-driven
	D.5 Server-side choices for event-driven web applications
	D.6 Understanding the WebSocket protocol
	D.6.1 WebSocket protocol vs. WebSocket API
	D.6.2 The WebSocket protocol
	D.6.3 WebSocket browser support

	appendix E Setting up Node.js
	E.1 Setting up Node.js to serve web content
	E.1.1 Create a Node Hello World application
	E.1.2 Serving static files with Node
	E.1.3 Serving mixed static and dynamic content with Node
	E.1.4 Routing: serving different files for different URLs

	E.2 Easy web apps with Node modules

	appendix F Channel messaging
	appendix G Tools and libraries
	G.1 Tools for mobile web applications
	G.2 Tools for HTML5 applications
	G.2.1 Firebug, Chrome/Safari developer tools, Dragonfly, IE developer tools
	G.2.2 Browser development versions
	G.2.3 HTML5 Shiv
	G.2.4 Modernizr
	G.2.5 HTML5 Boilerplate
	G.2.6 jsFiddle
	G.2.7 Feature support websites

	appendix H Encoding with FFmpeg
	H.1 How to get FFmpeg
	H.2 Finding out what codecs were used on source video
	H.3 Determining container formats and supported codecs
	H.4 Encoding to MP4/h264 with AAC
	H.5 Encoding to MP4/h264 with MP3
	H.6 Encoding to WebM/VP8
	H.7 Encoding to Ogg/Theora

	appendix I HTML next
	I.1 Accessing and sharing media devices
	I.1.1 Grab input with getUserMedia()
	I.1.2 Peer-to-peer media connections with WebRTC

	I.2 Media text tracks: providing media subtitles and captioning
	I.2.1 Adding a text track to the videoText
	I.2.2 Adding multiple text tracks
	I.2.3 The Text Track API
	I.2.4 Using TextTrack events
	I.2.5 Styling text tracks

	I.3 APIs for gaming and mobile
	I.3.1 Preparing a test bed—the return of Wilson
	I.3.2 The Mouse Event Capture API: continuing movement beyond the bounds of an element
	I.3.3 The Full-Screen API: expanding any element to full screen
	I.3.4 The Device Orientation API: controlling on-screen movement by tilting a device
	I.3.5 The Vibration API: accessing a mobile device’s vibration function
	I.3.6 Battery API: adjusting application processing based on battery life
	I.3.7 The Pointer Lock API: tracking mouse motion instead of pointer position

	I.4 Summary

	appendix J Links and references
	Chapter 1: Introduction
	Chapter 2: Forms and validation
	Chapter 3: Working with files on the client side
	Chapter 4: Messaging
	Chapter 5: Web storage and working offline
	Chapter 6: 2D Canvas
	Chapter 7: SVG
	Chapter 8: Video and audio
	Chapter 9: WebGL

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

