
s
e

c
o

n
d

 

e
d

it
io

n

COMPATIBLE WITH JAVA 5,  6 & 7

S E C O N D  E D I T I O N

H
O

R
S

T
M

A
N

N

JAVA
L A T E  O B J E C T s

F O R  E V E R Y O N E

This Second Edition of Horstmann’s Java for Everyone provides an introduction to Java programming that 

focuses on the essentials and on the problem-solving skills all good programmers need to be successful. 

The book is suitable for a first course in programming for computer scientists, engineers, and students in 

other technical or scientific disciplines—no prior programming experience is required.

KeY FeAtURes

•   Increased coverage of problem-solving: This edition adds practical, step-by-step illustrations 

of techniques that will help students devise and evaluate solutions to programming problems.  

Introduced within the chapters where they are most relevant, these strategies include 

Algorithm design (using pseudocode)

Hand-tracing

Storyboards

Stepwise refinement

•   New author videos:  Video Examples feature Cay Horstmann explaining the steps he is taking and 

showing his work as he solves a programming problem

•   Optional science/engineering and business exercises:  End-of-chapter exercises have been 

enhanced with problems from engineering and business domains.  Geared to students learning Java 

for engineering or business/information systems majors, the exercises are designed to illustrate the 

value of programming in those fields.

•   New and reorganized topics: All chapters were fully revised and enhanced to respond to user 

feedback and improve the flow of topics. The printed book now contains a chapter on Graphical User 

Interfaces, and web chapters now include Advanced GUI, Object-Oriented Design, Recursion, Sorting 

and Searching, and the Java Collections Framework.. New example tables, photos, and exercises 

appear throughout the book.

•   Additional programming examples:  The author has added many new programming examples and 

augmented the source code for the examples in the book with additional program examples.

An AccessiBLe intRodUction to tHe essentiALs oF JAVA 

WitH A PRoBLeM-soLVinG eMPHAsis, 

ideAL FoR A FiRst coURse in PRoGRAMMinG

cAY s. HoRstMAnn is a Professor of Computer Science in the Department of Computer Science at San 

Jose State University. He is an experienced professional programmer and was Vice President and Chief 

Technology Officer for Preview Systems, Inc. He is also a consultant for major corporations, universities, 

and organizations on Java, C++, Windows, and Internet programming. Horstmann is the author of many 

successful professional and academic books, including Big C++, C++ for Everyone, Big Java, and Big Java: 

Late Objects—all with John Wiley & Sons, Inc.

www.wiley.com/college/horstmann

JAVA F
O

R
 E

V
E

R
Y

O
N

E
L

A
T

E
 

O
B

J
E

C
T

S

CAY HORSTMANN

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


For more information, visit www.wileyplus.com 

WileyPLUS builds students’ confidence because it takes the guesswork 
out of studying by providing students with a clear roadmap:  

• what to do
• how to do it
• if they did it right

It offers interactive resources along with a complete digital textbook that help  
students learn more. With WileyPLUS, students take more initiative so you’ll have 

greater impact on their achievement in the classroom and beyond.

WileyPLUS is a research-based online environment  
for effective teaching and learning.

www.allitebooks.com

http://www.allitebooks.org


ALL THE HELP, RESOURCES, AND PERSONAL 
SUPPORT YOU AND YOUR STUDENTS NEED!

www.wileyplus.com/resources

Technical Support 24/7
FAQs, online chat,
and phone support

www.wileyplus.com/support

Student support from an  
experienced student user

Collaborate with your colleagues,
find a mentor, attend virtual and live

events, and view resources

2-Minute Tutorials and all
of the resources you and your
students need to get started

Your WileyPLUS Account Manager, 
providing personal training  

and support

www.WhereFacultyConnect.com

Pre-loaded, ready-to-use  
assignments and presentations

created by subject matter experts

www.allitebooks.com

http://www.allitebooks.org


Java for  
EvEryonE
L at e  O b j e c t s

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Java for  
EvEryonE
L at e  O b j e c t s

s e c O n d  e d i t i O n

cay Horstmann 
San Jose State University

John Wiley & Sons, Inc.

www.allitebooks.com

http://www.allitebooks.org


VICE PRESIDENT AND EXECUTIVE PUBLISHER Don Fowley
EXECUTIVE EDITOR Beth Lang Golub
CONTENT MANAGER Kevin Holm
SENIOR PRODUCTION EDITOR John Curley 
EXECUTIVE MARKETING MANAGER Christopher Ruel
CREATIVE DIRECTOR Harry Nolan
SENIOR DESIGNER Madelyn Lesure
SENIOR PHOTO EDITOR Lisa Gee 
PRODUCT DESIGNER Thomas Kulesa
CONTENT EDITOR Wendy Ashenberg
EDITORIAL PROGRAM ASSISTANT Elizabeth Mills
MEDIA SPECIALIST Lisa Sabatini
PRODUCTION SERVICES  Cindy Johnson
COVER PHOTO © TeeJe/Flickr/Getty Images

This book was set in Stempel Garamond by Publishing Services, and printed and bound by R.R. Donnelley & 
Sons Company. The cover was printed by R.R. Donnelley & Sons, Jefferson City. 

This book is printed on acid-free paper.   ∞ 

Copyright © 2013, 2010 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be 
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, 
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 
United States Copyright Act, without either the prior written permission of the Publisher, or authorization 
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood 
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be 
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, 
(201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in 
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a 
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the 
United States, please contact your local representative.

ISBN 978-1-118-06331-6 (Main Book)
ISBN 978-1-118-12941-8 (Binder-Ready Version)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.allitebooks.org


PrEfacE

vii

This book is an introduction to Java and computer programming that focuses on the 
essentials—and on effective learning. The book is designed to serve a wide range of 
student interests and abilities and is suitable for a first course in programming for 
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is 
needed. Here are the key features of this book:

Present fundamentals first.
The book takes a traditional route, first stressing control structures, methods, pro-
cedural decomposition, and arrays. Objects are used when appropriate in the early 
chapters. Students start designing and implementing their own classes in Chapter 8.

Guidance and worked examples help students succeed. 
Beginning programmers often ask “How do I start? Now what do I do?” Of course, 
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence 
and providing an outline for the task at hand. “Problem Solving” sections stress the 
importance of design and planning. “How To” guides help students with common 
programming tasks. Additional Worked Examples are available online.

Practice makes perfect. 
Of course, programming students need to be able to implement nontrivial programs, 
but they first need to have the confidence that they can succeed. This book contains 
a substantial number of self-check questions at the end of each section. “Practice It” 
pointers suggest exercises to try after each section. And additional practice opportu-
nities, including code completion questions, guided lab exercises, and skill-oriented 
multiple-choice questions are available online.

a visual approach motivates the reader and eases navigation. 
Photographs present visual analogies that explain the 
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations. 
Syntax boxes and example tables present a variety 
of typical and special cases in a compact format. It 
is easy to get the “lay of the land” by browsing the 
visuals, before focusing on the textual material.

Focus on the essentials while being 
technically accurate. 
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials 
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information. 
You will not find artificial over-simplifications that give an illusion of knowledge. 

Visual features help the reader  
with navigation.

www.allitebooks.com

http://www.allitebooks.org


viii Preface 

new to This Edition
Problem Solving Strategies
This edition adds practical, step-by-step illustrations of techniques that can help stu-
dents devise and evaluate solutions to programming problems. Introduced where 
they are most relevant, these strategies address barriers to success for many students. 
Strategies included are: 

• Algorithm Design (with pseudocode)
• First Do It By Hand (doing sample 

calculations by hand)
• Flowcharts
• Test Cases
• Hand-Tracing
• Storyboards
• Reusable Methods
• Stepwise Refinement

• Adapting Algorithms 
• Discovering Algorithms by 

Manipulating Physical Objects
• Tracing Objects (identifying state and 

behavior)
• Patterns for Object Data
• Thinking Recursively
• Estimating the Running Time of an 

Algorithm

optional Science and Business Exercises
End-of-chapter exercises have been enhanced with problems from scientific and 
business domains. Designed to engage students, the exercises illustrate the value of 
programming in applied fields.

new and reorganized Topics
All chapters were revised and enhanced to respond to user feedback and improve the 
flow of topics. Loop algorithms are now introduced explicitly in Chapter 4. Debug-
ging is now introduced in a lengthy Video Example in Chapter 5. Additional array 
algorithms are presented in Chapter 6 and incorporated into the problem-solving 
sections. Input/output is moved up to Chapter 7, but the first two sections may be 
used to introduce simple text file processing sooner. New example tables, photos, and 
exercises appear throughout the book.

a Tour of the Book
Figure 1 shows the dependencies between the chapters and how topics are organized. 
The core material of the book is:

chapter 1. Introduction
chapter 2. Fundamental Data Types
chapter 3. Decisions
chapter 4. Loops
chapter 5. Methods
chapter 6. Arrays and Array Lists
chapter 7. Input/Output and Exception Handling

These chapters use a traditional approach. Objects are only used for input/output 
and string processing.

www.allitebooks.com

http://www.allitebooks.org


Preface ix

Three chapters cover object-oriented programming and design:

chapter 8. Objects and Classes
chapter 9. Inheritance
chapter 12. Object-Oriented Design  (on the Web)

Graphical user interfaces are presented in two chapters:

chapter 10. Graphical User Interfaces
chapter 11. Advanced User Interfaces  (on the Web)

The first of these chapters enables students to write programs with buttons, text com-
ponents, and simple drawings. The second chapter covers layout management and 
additional user-interface components.

Figure 1  
chapter  
Dependencies

9. Inheritance 
and Interfaces

12. Object-
Oriented Design

13. Recursion

14. Sorting 
and Searching

15. The Java 
Collections 
Framework

6. Iteration

8. Objects and 
Classes

Fundamentals

Object-Oriented Design

GUI and Web Programming

Data Structures & Algorithms

Web / WileyPLUS

10. Graphical
User Interfaces

1. Introduction

2. Fundamental 
Data Types

3. Decisions

4. Loops

5. Methods

6. Arrays 
and Array Lists

7. Input/Output
and Exception

Handling

11. Advanced 
User Interfaces

A gentle 
introduction to recursion 

is optional.

Sections 7.1 and 7.2
(text file processing) can be 

covered with Chapter 4.



x Preface 

To support a course that goes more deeply into algorithms and data structures, three 
additional chapters are available in electronic form on the Web and in WileyPLUS:

chapter 13. Recursion 
chapter 14. Sorting and Searching 
chapter 15. The Java Collections Framework 

Any chapters can be incorporated into a custom print version of this text; ask your 
Wiley sales representative for details.

Appendices  The first four appendices are in the book; the remainder on the Web.

a. The Basic Latin and Latin-1 
Subsets of Unicode

B. Java Operator Summary
c. Java Reserved Word Summary
D. The Java Library
E. Java Syntax Summary 
f. HTML Summary 

G. Tool Summary 
H. Javadoc Summary 
I. Number Systems 
J. Bit and Shift Operations 
K. UML Summary 
L. Java Language Coding Guidelines 

Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix L conflicts with instructor sentiment or local 
customs, however, it is available in electronic form so that it can be modified.

Web resources
This book is complemented by a complete suite of online resources and a robust
WileyPLUS course. Go to www.wiley.com/college/horstmann to visit the online compan-
ion sites, which include

• Source code for all examples in the book.
• Worked Examples that apply the problem-solving steps in the book to other 

realistic examples.
• Video Examples in which the author explains the steps he is taking and shows his 

work as he solves a programming problem.
• Lab exercises that apply chapter concepts (with solutions for instructors only).
• Lecture presentation slides (in PowerPoint format).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only).

WileyPLUS
WileyPLUS is an online teaching and learning environment that integrates the digital 
textbook with instructor and student resources. See pages xv–xvi for details.

O N L I N E E X A M P L E

A program using 
common loop 
algorithms.

VIDEO EXAMPLE 4.2 Drawing a Spiral

In this Video Example, you will see how to develop a program 
that draws a spiral.

Pointers in the book 
describe what students
will find on the Web.



Walkthrough xi

a Walkthrough of the Learning aids
The pedagogical elements in this book work together to focus on and reinforce key 
concepts and fundamental principles of programming, with additional tips and detail 
organized to support and deepen these fundamentals. In addition to traditional fea-
tures, such as chapter objectives and a wealth of exercises, each chapter contains ele-
ments geared to today’s visual learner.

O N L I N E  E X A M P L E

A program using 
common loop 
algorithms.

4.2  The for Loop 135

It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example: 

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
   System.out.println(counter);
   counter++; // Update the counter
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 4.2). 

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance
reaches the target. Another commonly used term
for a count-controlled loop is definite. You know
from the outset that the loop body will be executed
a definite number of times; ten times in our exam-
ple. In contrast, you do not know how many itera-
tions it takes to accumulate a target balance. Such a
loop is called indefinite.

4.2 The for Loop
The for loop is 
used when a 
value runs from a 
starting point to an 
ending point with a 
constant increment 
or decrement. 

You can visualize the for loop as 
an orderly sequence of steps. 

Throughout each chapter, 
margin notes show where 
new concepts are introduced 
and provide an outline of key ideas. 

Annotated syntax boxes 
provide a quick, visual overview 
of new language constructs.

Like a variable in a computer 
program, a parking space has 
an identifier and a contents. 

Analogies to everyday objects are 
used to explain the nature and behavior 
of concepts such as variables, data 
types, loops, and more.

Syntax 4.2 for Statement

for (int i = 5; i <= 10; i++)
{
   sum = sum + i;
}

This loop executes 6 times. 
   See page 164.

This initialization 
happens once 
before the loop starts.

The condition is 
checked before 
each iteration.

This update is 
executed after 
each iteration.

The variable i is 
defined only in this for loop. 

See page 161.

These three 
expressions should be related.

        See page 163.

for (initialization; condition; update)
{
   statements
}

Syntax

Additional online example code 
provides complete programs for 
students to run and modify.

Annotations explain required 
components and point to more 
information on common errors 
or best practices associated 
with the syntax.



xii Walkthrough 

A recipe for a fruit pie may say to use any kind of fruit.  
Here, “fruit” is an example of a parameter variable.  
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects  277

Now how does that help us with our problem, switching the first and the second 
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as 
Java programmers, we will say that we swap the coins in positions 0 and 4:  

  

  

 
 
 

Problem Solving sections teach 
techniques for generating ideas and 
evaluating proposed solutions, often
using pencil and paper or other 
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

   

Next, we swap the coins in positions 1 and 5: 

  

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
• purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English. 

For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car for
ten years. Assume a price of $4 per gallon of gas and usage of
15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal? 

How To guides give step-by-step 
guidance for common programming 
tasks, emphasizing planning and 
testing. They answer the beginner’s 
question, “Now what do I do?” and 
integrate key concepts into a 
problem-solving sequence.

Table 1  Variable Declarations in Java

tnemmoCemaN elbairaV

int cans = 6; Declares an integer variable and initializes it with 6.

int total = cans + bottles; The initial value need not be a constant. (Of course, cans and bottles 
must have been previously declared.)

bottles = 1; Error: The type is missing. This statement is not a declaration but an 
assignment of a new value to an existing variable—see Section 2.1.4. 

int bottles = "10"; Error: You cannot initialize a number with a string.

int bottles; Declares an integer variable without initializing it. This can be a 
cause for errors—see Common Error 2.1 on page 37.

int cans, bottles; Declares two integer variables in a single statement. In this book, we 
will declare each variable in a separate statement.

Memorable photos reinforce 
analogies and help students 
remember the concepts.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors. 

Example tables support beginners 
with multiple, concrete examples. 
These tables point out common 
errors and present another quick 
reference to the section’s topic.

Worked Examples and 
Video Examples apply the 
steps in the How To to a 
different example, showing 
how they can be used to 
plan, implement, and test 
a solution to another 
programming problem.



Walkthrough xiii

• 

Figure 3 Parameter Passing

1 Method call result1 =

sideLength =

2 Initializing method parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After method  call result1 = 8

double result1 = cubeVolume(2);

double volume = sideLength * sideLength * sideLength;
return volume;

double result1 = cubeVolume(2);

double result1 = cubeVolume(2);

The parameter variable sideLength of the cubeVolume method is created when the 
method is called.  1

• The parameter variable is initialized with the value of the argument that was 
passed in the call. In our case, sideLength is set to 2.  2  

• The method computes the expression sideLength * sideLength * sideLength, which 
has the value 8. That value is stored in the variable volume.  3

• The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubeVolume method. The caller 
puts the return value in the result1 variable.  4    

A N I M AT I O N
Parameter Passing

Figure 3
Execution of 
a for Loop

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{

System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Progressive figures trace code 
segments to help students visualize 
the program flow. Color is used 
consistently to make variables and 
other elements easily recognizable.

Students can view animations 
of key concepts on the Web.

section_1/DoubleInvestment.java

1 /**
2 This program computes the time required to double an investment.
3 */
4 public class DoubleInvestment
5 {
6 public static void main(String[] args)
7    { 
8 final double RATE = 5;
9 final double INITIAL_BALANCE = 10000;

10 final double TARGET = 2 * INITIAL_BALANCE;
11
12 double balance = INITIAL_BALANCE;
13 int year = 0;
14
15       // Count the years required for the investment to double
16
17 while (balance < TARGET)
18       { 
19          year++;
20 double interest = balance * RATE / 100;
21          balance = balance + interest;
22       }
23
24       System.out.println("The investment doubled after "
25          + year + " years.");
26    }
27 }

6. Write the for loop of the InvestmentTable.java program as a while loop.
7. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{
   System.out.println(n);
}

8. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
9. Write a for loop that computes the sum of the integers from 1 to n.

10. How would you modify the for loop of the InvestmentTable.java program to 
print all balances until the investment has doubled? 

Now you can try these exercises at the end of the chapter: R4.3, R4.8, P4.8, P4.13.

S E L F  C H E C K

Self-check exercises at the 
end of each section are designed 
to make students think through 
the new material—and can  
spark discussion in lecture.

Optional science and business 
exercises engage students with 
realistic applications of Java.

•• Science P6.32 Sounds can be represented by an array of “sample 
val ues” that describe the intensity of the sound at a 
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a 
method process for processing the sample values, and 
saves the sound file. Your task is to implement the 
process method by introducing an echo. For each 
sound value, add the value from 0.2 seconds ago. 
Scale the result so that no value is larger than 32767. •• Business P9.21 Implement a superclass Appointment and sub-

classes Onetime, Daily, and Monthly. An appoint-
ment has a description (for example, “see the 
dentist”) and a date and time. Write a method 
occursOn(int year, int month, int day) that checks 
whether the appointment occurs on that date. 
For example, for a monthly appointment, you 
must check whether the day of the month 
matches. Then fill an array of Appointment objects 
with a mixture of appointments. Have the user enter a date and print out all appoint-
ments that occur on that date.

Program listings are carefully 
designed for easy reading, 
going well beyond simple 
color coding. Methods are set 
off by a subtle outline. 



xiv Walkthrough 

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate 
the program’s activity on a sheet of paper. You can use this 
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet 
of paper is within reach. Make a column for each variable. 
Have the program code ready. Use a marker, such as a 
paper clip, to mark the current statement. In your mind, 
execute statements one at a time. Every time the value of a 
variable changes, cross out the old value and write the new 
value below the old one. 

For example, let’s trace the tax program with the data 
from the program run on page 102. In lines 15 and 16, tax1 and 
tax2 are initialized to 0. 

8 public static void main(String[] args)
9 {  

10    final double RATE1 = 0.10;
11    final double RATE2 = 0.25;
12    final double RATE1_SINGLE_LIMIT = 32000;
13    final double RATE1_MARRIED_LIMIT = 64000;
14 
15    double tax1 = 0;
16    double tax2 = 0;
17 

In lines 22 and 25, income and maritalStatus are 
initialized by input statements.

20    Scanner in = new Scanner(System.in);
21    System.out.print("Please enter your income: ");
22    double income = in.nextDouble();
23 
24    System.out.print("Please enter s for single, m for married: ");
25    String maritalStatus = in.next();

Programming Tip 3.5 

Hand-tracing helps you  
understand whether a  
program works correctly.

    marital
 tax1 tax2 income status

 0 0   

    

    marital
 tax1 tax2 income status

 0 0 80000 m 

    

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the 
one shown in the fig ure below) whenever the users of your program need to pick a file. The 
JFileChooser class implements a file dialog box for the Swing user-interface toolkit. 

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its 
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog 
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call. 

For better placement of the dialog box on the screen, you can specify the user-interface 
component over which to pop up the dialog box. If you don’t care where the dialog box pops 
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either 
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the 
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to 
obtain a File object that describes the file. Here is a complete example: 

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{ 
   File selectedFile = chooser.getSelectedFile();
   in = new Scanner(selectedFile);
   . . .
}

Special Topic 7.2 

O N L I N E  E X A M P L E

A program that 
demonstrates how to 
use a file chooser.

A JFileChooser Dialog Box

Call with 
showOpenDialog 

method

Button is “Save” when 
showSaveDialog method 

is called

According to legend,
the first bug was

found in the Mark II, a huge electrome-
chanical computer at Harvard Univer-
sity. It really was caused by a bug—a
moth was trapped in a relay switch.

Actually, from the note that the
operator left in the log book next to
the moth (see the figure), it appears as
if the term “bug” had already been in
active use at the time.

The First Bug

The pioneering computer scientist
Maurice Wilkes wrote, “Somehow, at
the Moore School and afterwards, one
had always assumed there would be
no particular difficulty in getting pro-

grams right. I can remember the exact
instant in time at which it dawned on
me that a great part of my future life
would be spent finding mistakes in
my own programs.” 

Random Fact 4.1 The First Bug

Programming Tips explain 
good programming practices, 
and encourage students to be 
more productive with tips and 
techniques such as hand-tracing.

Length and Size

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax
for every data type.

Common Error 6.4

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Common Errors describe the kinds 
of errors that students often make, 
with an explanation of why the errors 
occur, and what to do about them. 

Special Topics present optional 
topics and provide additional 
explanation of others. New 
features of Java 7 are also 
covered in these notes. 

Random Facts provide historical and 
social information on computing—for 
interest and to fulfill the “historical and 
social context” requirements of the 
ACM/IEEE curriculum guidelines.



Walkthrough xv

WileyPLUS
WileyPLUS is an online environment that supports students and instructors. This
book’s WileyPLUS course can complement the printed text or replace it altogether.

for Students
Different learning styles, different levels of proficiency, different levels of prepara-
tion—each student is unique. WileyPLUS empowers all students to take advantage
of their individual strengths.

Integrated, multi-media resources—including audio and visual exhibits and demon-
stration problems—encourage active learning and provide multiple study paths to
fit each student’s learning preferences.

• Worked Examples apply the problem-solving steps in the book to another realis-
tic example.

• Video Examples present the author explaining the steps he is taking and showing 
his work as he solves a programming problem.

• Animations of key concepts allow students to replay dynamic explanations that 
instructors usually provide on a whiteboard.

Self-assessments are linked to relevant portions of the text. Students can take control 
of their own learning and practice until they master the material.

• Practice quizzes can reveal areas where students need to focus.
• “Learn by doing” lab exercises can be assigned for self-study or for use in the lab.
• “Code completion” questions enable students to practice programming skills by 

filling in small code snippets and getting immediate feedback.

for Instructors
WileyPLUS includes all of the instructor resources found on the companion site,
and more.

WileyPLUS gives you tools for identifying those students who are falling behind,
allowing you to intervene accordingly, without having to wait for them to come to
office hours.

• Practice quizzes for pre-reading assessment, self-quizzing, or additional practice 
can be used as-is or modified for your course needs.

• Multi-step laboratory exercises can be used in lab or assigned for extra student 
practice.

WileyPLUS simplifies and automates student performance assessment, making 
assignments, and scoring student work.

• An extensive set of multiple-choice questions for quizzing and testing have been 
developed to focus on skills, not just terminology.

• “Code completion” questions can also be added to online quizzes.
• Solutions to all review and programming exercises are provided.

To order Java for Everyone, 2e, with its WileyPLUS course for your students, use isbn 978-1-118-28614-2.



xvi Walkthrough 

Students can read the book online 
and take advantage of searching 
and cross-linking.

With WileyPLUS …

Students can practice programming 
by filling in small code snippets 
and getting immediate feedback.

Instructors can assign drill-and-practice 
questions to check that students did 
their reading and grasp basic concepts.

Students can play and replay 
dynamic explanations of
concepts and program flow.

Students can watch and listen as the author
solves a problem step-by-step.



acknowledgments xvii

acknowledgments
Many thanks to Beth Lang Golub, Don Fowley, Elizabeth Mills, Thomas Kulesa, 
Wendy Ashenberg, Lisa Gee, Andre Legaspi, Kevin Holm, and John Curley at John 
Wiley & Sons, and Vickie Piercey at Publishing Services for their help with this proj-
ect. An especially deep acknowledgment and thanks goes to Cindy Johnson for her 
hard work, sound judgment, and amazing attention to detail.

I am grateful to Jose Cordova, University of Louisiana, Monroe, Amitava Kar-
maker, University of Wisconsin, Stout, Khaled Mansour, Washtenaw Community 
College, Patricia McDermott-Wells, Florida International University, Brent Seales, 
University of Kentucky, Donald Smith, Columbia College, and David Woolbright, 
Columbus State University, for their excellent work on the supplemental mate-
rial. Thank you also to Jose-Arturo Mora-Soto, Jesica Rivero-Espinosa, and Julio-
Angel Cano-Romero of the University of Madrid for their contribution of business 
exercises.

Many thanks to the individuals who provided feedback, reviewed the manuscript, 
made valuable suggestions, and brought errors and omissions to my attention. They 
include:

Lynn Aaron, SUNY Rockland 
Community College

Karen Arlien, Bismarck State College
Jay Asundi, University of Texas, Dallas
Eugene Backlin, DePaul University
William C. Barge, Trine University
Bruce J. Barton, Suffolk County 

Community College
Sanjiv K. Bhatia, University of Missouri, 

St. Louis
Anna Bieszczad, California State 

University, Channel Islands
Jackie Bird, Northwestern University
Eric Bishop, Northland Pioneer College
Paul Bladek, Edmonds Community 

College
Paul Logasa Bogen II, Texas A&M 

University
Irene Bruno, George Mason University
Paolo Bucci, Ohio State University
Joe Burgin, College of Southern 

Maryland
Robert P. Burton, Brigham Young 

University
Leonello Calabresi, University of 

Maryland University College
Martine Ceberio, University of Texas, 

El Paso

Uday Chakraborty, University of 
Missouri, St. Louis

Xuemin Chen, Texas Southern 
University

Haiyan Cheng, Willamette University
Chakib Chraibi, Barry University
Ta-Tao Chuang, Gonzaga University
Vincent Cicirello, Richard Stockton 

College
Mark Clement, Brigham Young 

University
Gerald Cohen, St. Joseph’s College
Rebecca Crellin, Community College 

of Allegheny County
Leslie Damon, Vermont Technical 

College
Geoffrey D. Decker, Northern Illinois 

University
Khaled Deeb, Barry University, School 

of Adult and Continuing Education
Akshaye Dhawan, Ursinus College
Julius Dichter, University of Bridgeport
Mike Domaratzki, University of 

Manitoba
Philip Dorin, Loyola Marymount 

University
Anthony J. Dos Reis, SUNY New Paltz
Elizabeth Drake, Santa Fe College



xviii acknowledgments 

Tom Duffy, Norwalk Community 
College

Michael Eckmann, Skidmore College
Sander Eller, California State 

Polytechnic University, Pomona
Amita Engineer, Valencia Community 

College
Dave Evans, Pasadena Community 

College
James Factor, Alverno College
Chris Fietkiewicz, Case Western 

Reserve University
Terrell Foty, Portland Community 

College
Valerie Frear, Daytona State College
Ryan Garlick, University of North Texas
Aaron Garrett, Jacksonville State 

University
Stephen Gilbert, Orange Coast College
Peter van der Goes, Rose State College
Billie Goldstein, Temple University
Michael Gourley, University of Central 

Oklahoma
Grigoriy Grinberg, Montgomery 

College
Linwu Gu, Indiana University
Bruce Haft, Glendale Community 

College
Nancy Harris, James Madison 

University
Allan M. Hart, Minnesota State 

University, Mankato
Ric Heishman, George Mason 

University
Guy Helmer, Iowa State University
Katherin Herbert, Montclair State 

University
Rodney Hoffman, Occidental College
May Hou, Norfolk State University
John Houlihan, Loyola University
Andree Jacobson, University of New 

Mexico
Eric Jiang, University of San Diego
Christopher M. Johnson, Guilford 

College
Jonathan Kapleau, New Jersey Institute 

of Technology

Amitava Karmaker, University of 
Wisconsin, Stout

Rajkumar Kempaiah, College of Mount 
Saint Vincent

Mugdha Khaladkar, New Jersey 
Institute of Technology

Julie King, Sullivan University, 
Lexington

Samuel Kohn, Touro College
April Kontostathis, Ursinus College
Ron Krawitz, DeVry University
Debbie Lamprecht, Texas Tech 

University
Jian Lin, Eastern Connecticut State 

University
Hunter Lloyd, Montana State 

University
Cheng Luo, Coppin State University
Kelvin Lwin, University of California, 

Merced
Frank Malinowski, Dalton College
John S. Mallozzi, Iona College
Kenneth Martin, University of North 

Florida
Deborah Mathews, J. Sargeant 

Reynolds Community College
Louis Mazzucco, State University of 

New York at Cobleskill and 
Excelsior College

Drew McDermott, Yale University
Hugh McGuire, Grand Valley State 

University
Michael L. Mick, Purdue University, 

Calumet
Jeanne Milostan, University of 

California, Merced
Sandeep Mitra, SUNY Brockport
Kenrick Mock, University of Alaska 

Anchorage
Namdar Mogharreban, Southern 

Illinois University
Shamsi Moussavi, Massbay Community 

College
Nannette Napier, Georgia Gwinnett 

College
Tony Tuan Nguyen, De Anza College
Michael Ondrasek, Wright State 

University

www.allitebooks.com

http://www.allitebooks.org


acknowledgments xix

K. Palaniappan, University of Missouri
James Papademas, Oakton Community 

College
Gary Parker, Connecticut College
Jody Paul, Metropolitan State College 

of Denver
Mark Pendergast, Florida Gulf Coast 

University
James T. Pepe, Bentley University
Jeff Pittges, Radford University
Tom Plunkett, Virginia Tech
Linda L. Preece, Southern Illinois 

University
Vijay Ramachandran, Colgate 

University
Craig Reinhart, California Lutheran 

University
Jonathan Robinson, Touro College
Chaman Lal Sabharwal, Missouri 

University of Science & Technology
Namita Sarawagi, Rhode Island College
Ben Schafer, University of Northern 

Iowa
Walter Schilling, Milwaukee School of 

Engineering
Jeffrey Paul Scott, Blackhawk Technical 

College
Amon Seagull, NOVA Southeastern 

University
Linda Seiter, John Carroll University
Kevin Seppi, Brigham Young University
Ricky J. Sethi, UCLA, USC ISI, and 

DeVry University
Ali Shaykhian, Florida Institute of 

Technology
Lal Shimpi, Saint Augustine’s College
Victor Shtern, Boston University
Rahul Simha, George Washington 

University
Jeff Six, University of Delaware
Donald W. Smith, Columbia College
Peter Spoerri, Fairfield University
David R. Stampf, Suffolk County 

Community College
Peter Stanchev, Kettering University
Stu Steiner, Eastern Washington 

University

Robert Strader, Stephen F. Austin 
State University

David Stucki, Otterbein University
Jeremy Suing, University of Nebraska, 

Lincoln
Dave Sullivan, Boston University
Vaidy Sunderam, Emory University
Hong Sung, University of Central 

Oklahoma
Monica Sweat, Georgia Tech University
Joseph Szurek, University of Pittsburgh, 

Greensburg
Jack Tan, University of Wisconsin
Cynthia Tanner, West Virginia 

University
Russell Tessier, University of 

Massachusetts, Amherst
Krishnaprasad Thirunarayan, Wright 

State University
Megan Thomas, California State 

University, Stanislaus
Timothy Urness, Drake University
Eliana Valenzuela-Andrade, University 

of Puerto Rico at Arecibo
Tammy VanDeGrift, University of 

Portland
Philip Ventura, Broward College
David R. Vineyard, Kettering 

University
Qi Wang, Northwest Vista College
Jonathan Weissman, Finger Lakes 

Community College
Reginald White, Black Hawk 

Community College
Ying Xie, Kennesaw State University
Arthur Yanushka, Christian Brothers 

University
Chen Ye, University of Illinois, Chicago
Wook-Sung Yoo, Fairfield University
Bahram Zartoshty, California State 

University, Northridge
Frank Zeng, Indiana Wesleyan 

University
Hairong Zhao, Purdue University 

Calumet
Stephen Zilora, Rochester Institute of 

Technology



xx acknowledgments 

A special thank you to our class testers for this edition:

Nancy Harris and the students of James Madison University
Mohammed Morovati and the students of College of DuPage
Chris Taylor and the students of Milwaukee School of Engineering

and the first edition:

Michael Ondrasek and the students of Wright State University
Irene Bruno and the students of George Mason University
Cihan Varol and the students of Sam Houston University
David Vineyard and the students of Kettering University
Cindy Tanner and the students of West Virginia University
Andrew Juraszek and the students of J. Sargeant Reynolds Community College
Daisy Sang and the students of California State Polytechnic University, Pomona
Dawn McKinney and the students of University of South Alabama
Nadimpalli Mahadev and the students of Fitchburg State College
Robert Burton and the students of Brigham Young University
Nancy Harris and the students of James Madison University
Tim Weale, Paolo Bucci, and the students of Ohio State University



conTEnTS

xxi

PrEfacE vii

SPEcIaL fEaTUrES xxvi

InTroDUcTIon 1

1.1 computer Programs  2

1.2 The anatomy of a computer  3

1.3 The Java Programming Language  5

1.4 Becoming familiar with your Programming Environment  8

1.5 analyzing your first Program  12

1.6 Errors  15

1.7 Problem Solving: algorithm Design  16

fUnDamEnTaL DaTa TyPES 29

2.1 variables  30

2.2 arithmetic  41

2.3 Input and output  48

2.4 Problem Solving: first Do It By Hand  57

2.5 Strings  59

DEcISIonS 81

3.1 The if Statement  82

3.2 comparing numbers and Strings  88

3.3 multiple alternatives  96

3.4 nested Branches  100

3.5 Problem Solving: flowcharts  105

3.6 Problem Solving: Test cases  108

3.7 Boolean variables and operators  111

3.8 application: Input validation  116

LooPS 139

4.1 The while Loop  140

4.2 Problem Solving: Hand-Tracing  147

4.3 The for Loop  150

4.4 The do Loop  156

cHaPter 1   

cHaPter 2   

cHaPter 3   

cHaPter 4   



xxii contents 

4.5 application: Processing Sentinel values  158

4.6 Problem Solving: Storyboards  162

4.7 common Loop algorithms  165

4.8 nested Loops  172

4.9 application: random numbers and Simulations  176

mETHoDS 201

5.1 methods as Black Boxes  202

5.2 Implementing methods  204

5.3 Parameter Passing  207

5.4 return values  210

5.5 methods Without return values  214

5.6 Problem Solving: reusable methods  215

5.7 Problem Solving: Stepwise refinement  218

5.8 variable Scope  225

5.9 recursive methods (optional)  228

arrayS anD array LISTS 249

6.1 arrays  250

6.2 The Enhanced for Loop  257

6.3 common array algorithms  258

6.4 Using arrays with methods  268

6.5 Problem Solving: adapting algorithms  272

6.6 Problem Solving: Discovering algorithms by manipulating  

Physical objects  279

6.7 Two-Dimensional arrays  282

6.8 array Lists  289

InPUT/oUTPUT anD ExcEPTIon HanDLInG 317

7.1 reading and Writing Text files  318

7.2 Text Input and output  323

7.3 command Line arguments  330

7.4 Exception Handling  337

7.5 application: Handling Input Errors  347

oBJEcTS anD cLaSSES 361

8.1 object-oriented Programming  362

8.2 Implementing a Simple class  364

cHaPter 5   

cHaPter 6   

cHaPter 7   

cHaPter 8   



contents xxiii

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

8.3 Specifying the Public Interface of a class  367

8.4 Designing the Data representation  371

8.5 Implementing Instance methods  372

8.6 constructors  375

8.7 Testing a class  380

8.8 Problem Solving: Tracing objects   386

8.9 Problem Solving: Patterns for object Data  388

8.10 object references  395

8.11 Static variables and methods  400

InHErITancE anD InTErfacES 415

9.1 Inheritance Hierarchies  416

9.2 Implementing Subclasses  420

9.3 overriding methods  424

9.4 Polymorphism  430

9.5 object: The cosmic Superclass  441

9.6 Interface Types  448

GraPHIcaL USEr InTErfacES 465

10.1 frame Windows  466

10.2 Events and Event Handling  470

10.3 Processing Text Input  481

10.4 creating Drawings  487

aDvancED USEr InTErfacES (WEB onLy) 

11.1 Layout management  

11.2 choices  

11.3 menus  

11.4 Exploring the Swing Documentation  

11.5 Using Timer Events for animations

11.6 mouse Events

oBJEcT-orIEnTED DESIGn (WEB onLy) 

12.1 classes and Their responsibilities

12.2 relationships Between classes

12.3 application: Printing an Invoice

12.4 Packages

cHaPter 9   

cHaPter 10   

cHaPter 11   

cHaPter 12   



xxiv contents 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

rEcUrSIon (WEB onLy) 

13.1 Triangle numbers revisited

13.2 Problem Solving: Thinking recursively 

13.3 recursive Helper methods

13.4 The Efficiency of recursion

13.5 Permutations

13.6 mutual recursion

13.7 Backtracking

SorTInG anD SEarcHInG (WEB onLy) 

14.1 Selection Sort

14.2 Profiling the Selection Sort algorithm

14.3 analyzing the Performance of the Selection Sort algorithm

14.4 merge Sort

14.5 analyzing the merge Sort algorithm

14.6 Searching

14.7 Problem Solving: Estimating the running Time of an algorithm

14.8 Sorting and Searching in the Java Library

THE Java coLLEcTIonS framEWorK (WEB onLy) 

15.1 an overview of the collections framework

15.2 Linked Lists

15.3 Sets

15.4 maps

15.5 Stacks, Queues, and Priority Queues

15.6 Stack and Queue applications

aPPEnDIx a THE BaSIc LaTIn anD LaTIn-1 SUBSETS of UnIcoDE   507

aPPEnDIx B Java oPEraTor SUmmary  511

aPPEnDIx c Java rESErvED WorD SUmmary  513

aPPEnDIx D THE Java LIBrary  515

aPPEnDIx E Java SynTax SUmmary 
aPPEnDIx f HTmL SUmmary 
aPPEnDIx G TooL SUmmary 
aPPEnDIx H JavaDoc SUmmary 

cHaPter 13   

cHaPter 14   

cHaPter 15   

aPPendices 



contents xxv

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

aPPEnDIx I nUmBEr SySTEmS 
aPPEnDIx J BIT anD SHIfT oPEraTIonS 
aPPEnDIx K UmL SUmmary 
aPPEnDIx L Java LanGUaGE coDInG GUIDELInES 

GLoSSary  547

InDEx  559

crEDITS  585

 SynTax BoxES

arrays   251
array Lists   290
assignment   34

cast  44 
catching Exceptions   341
comparisons   89
constant Declaration  35
constructor with Superclass Initializer  430
constructors   376

for Statement   152

if Statement   84
Input Statement   49
Instance methods   373
Instance variable Declaration  365
Interface Types   449

Java Program  13

Static method Declaration  205
Subclass Declaration  422

The Enhanced for Loop  258
The finally clause  344
The instanceof operator  445
The throws clause  343
Throwing an Exception  338
Two-Dimensional array Declaration  283

while Statement  141

variable Declaration  31

aLPHabeticaL List OF 



xxvi Special features

cHaPTEr

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

common 
Errors

How Tos 
                      and 

Worked Examples

1 Introduction omitting Semicolons 14

misspelling Words 16

Describing an algorithm  
with Pseudocode 20

compiling and running  
a Program 

Writing an algorithm for  
Tiling a floor 

Dividing Household Expenses 

2 fundamental  
Data Types

Using Undeclared or  
Uninitialized variables 37

overflow 38

roundoff Errors 38

Unintended Integer Division 46

Unbalanced Parentheses 46

Using Integer Division 

carrying out computations 54

computing the cost  
of Stamps 

computing Travel Time 

computing Distances on Earth 

3 Decisions a Semicolon after the  
if condition 86

Exact comparison of  
floating-Point numbers 91

Using == to compare Strings 92

The Dangling else Problem 104

combining multiple  
relational operators 113

confusing && and || 
conditions 114

Implementing an  
if Statement  93

Extracting the middle 

computing the Plural of  
an English Word 

The Genetic code 

4 Loops Don’t Think “are We 
There yet?” 144

Infinite Loops 145

off-by-one Errors 145

Evaluating a cell Phone Plan  

Writing a Loop 169

credit card Processing 

manipulating the Pixels  
in an Image 

Drawing a Spiral 



Special features xxvii

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming 
Tips Special Topics random facts

Backup copies 11 

 

 

The EnIac and the Dawn  
of computing 5

choose Descriptive variable 
names 38

Do not Use magic numbers 39

Spaces in Expressions 47

Use the aPI Documentation 53

numeric Types in Java 39

Big numbers  40

combining assignment  
and arithmetic 47

Instance methods and  
Static methods 64

Using Dialog Boxes for Input  
and output 65

The Pentium  
floating-Point Bug 48

International alphabets  
and Unicode 66

Brace Layout 86

always Use Braces 86

Tabs 87

avoid Duplication in Branches 88

Hand-Tracing 103

make a Schedule and make  
Time for Unexpected  
Problems 109

The conditional operator 87

Lexicographic ordering  
of Strings 92

The switch Statement 99

Enumeration Types 105

Logging 110

Short-circuit Evaluation  
of Boolean operators 114

De morgan’s Law 115

The Denver airport 
Luggage Handling System 95

artificial Intelligence 119

 
 

Use for Loops for Their
Intended Purpose only 155

choose Loop Bounds That 
match your Task 155

count Iterations 156 

The Loop-and-a-Half Problem  
and the break Statement 160

redirection of Input  
and output 161

Drawing Graphical Shapes 179

The first Bug 146

Software Piracy 182



xxviii Special features

cHaPTEr

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming 
Tips Special Topics random facts

method comments 207

Do not modify Parameter  
variables 209

Keep methods Short 223

Tracing methods 223

Stubs 224

The Explosive Growth of  
Personal computers 232 
 

Use arrays for Sequences 
of related Items 256

reading Exception reports 274

Sorting with the Java Library 267

Binary Search 267

methods with a variable number 
of Parameters  272 

Two-Dimensional arrays with  
variable row Lengths  288

multidimensional arrays  289

The Diamond Syntax in  
Java 7 299

an Early Internet Worm 256

 
 
 

Throw Early, catch Late 345

Do not Squelch Exceptions 345

Do not Use catch and finally 
in the Same try Statement 346

reading Web Pages 321

file Dialog Boxes 321

reading and Writing  
Binary Data 322

regular Expressions 330

automatic resource  
management in Java 7 346

Encryption algorithms 336 

The ariane rocket Incident 347

all Data variables Should  
Be Private; most methods  
Should Be Public 374

The javadoc Utility   370

overloading   380

calling one constructor  
from another   399 
 

Electronic voting machines   394

open Source and  
free Software   402

common 
Errors

How Tos 
                      and 

Worked Examples

5 methods Trying to modify arguments 209

missing return value 212

Implementing a method 212

Generating random  
Passwords 

calculating a course Grade 

Debugging 

Thinking recursively 231

fully Justified Text 

6 arrays and array Lists Bounds Errors 255

Uninitialized arrays 255

Underestimating the Size  
of a Data Set 267

Length and Size 299

Working with arrays 275

rolling the Dice 

removing Duplicates from  
an array 

a World Population Table 

Game of Life 

7 Input/output and  
Exception Handling

Backslashes in file names 321

constructing a Scanner with 
a String 321

computing a Document’s  
readability 

Processing Text files 333

analyzing Baby names 

Detecting accounting fraud 

8 objects and classes forgetting to Initialize  
object references  
in a constructor  378

Trying to call a constructor 379

Declaring a constructor  
as void  379

Implementing a class 382

Implementing a  
Bank account class 

Paying off a Loan 

modeling a robot Escaping  
from a maze 

www.allitebooks.com

http://www.allitebooks.org


Special features xxix

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming 
Tips Special Topics random facts

method comments 207

Do not modify Parameter  
variables 209

Keep methods Short 223

Tracing methods 223

Stubs 224

The Explosive Growth of  
Personal computers 232 
 

Use arrays for Sequences 
of related Items 256

reading Exception reports 274

Sorting with the Java Library 267

Binary Search 267

methods with a variable number 
of Parameters  272 

Two-Dimensional arrays with  
variable row Lengths  288

multidimensional arrays  289

The Diamond Syntax in  
Java 7 299

an Early Internet Worm 256

 
 
 

Throw Early, catch Late 345

Do not Squelch Exceptions 345

Do not Use catch and finally 
in the Same try Statement 346

reading Web Pages 321

file Dialog Boxes 321

reading and Writing  
Binary Data 322

regular Expressions 330

automatic resource  
management in Java 7 346

Encryption algorithms 336 

The ariane rocket Incident 347

all Data variables Should  
Be Private; most methods  
Should Be Public 374

The javadoc Utility   370

overloading   380

calling one constructor  
from another   399 
 

Electronic voting machines   394

open Source and  
free Software   402



xxx Special features

cHaPTEr

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

common 
Errors

How Tos 
                      and 

Worked Examples

9 Inheritance and Interfaces replicating Instance variables 
from the Superclass 423

confusing Super- and  
Subclasses  424

accidental overloading  428

forgetting to Use super 
When Invoking a  
Superclass method  429

Don’t Use Type Tests  446

forgetting to Declare Implement-
ing methods as Public  453

Developing an  
Inheritance Hierarchy 436

Implementing an  
Employee Hierarchy for  
Payroll Processing 

Building a Discussion Board 

Drawing Geometric Shapes 

10 Graphical User  
Interfaces

modifying Parameter Types  
in the Implementing 
method 478

forgetting to attach  
a Listener 478

forgetting to repaint 496

By Default, components Have 
Zero Width and Height 497

Drawing Graphical Shapes  497

coding a Bar chart creator 

Solving crossword Puzzles 

11 advanced User Interfaces  
(WEB onLy) 

Laying out a User Interface 

Programming a Working  
calculator 

adding mouse and  
Keyboard Support to the  
Bar chart creator 

Designing a Baby  
naming Program 

12 object-oriented Design 
(WEB onLy) 

Using crc cards and  
UmL Diagrams in  
Program Design 

Simulating an automatic  
Teller machine 

Programming 
Tips Special Topics random facts

Use a Single class for variation 
in values, Inheritance for  
variation in Behavior 420

calling the Superclass  
constructor 429

Dynamic method Lookup and  
the Implicit Parameter  433

abstract classes  434

final methods and classes  435

Protected access  436

Inheritance and the  
toString method  446

Inheritance and the  
equals method  447

constants in Interfaces 453

function objects  454

Don’t Use a frame  
as a Listener 478

adding the main method to the 
frame class 470

Local Inner classes 479

anonymous Inner classes 480

Use a GUI Builder Keyboard Events 

Event adapters 

make Parallel arrays into  
arrays of objects 

consistency 

attributes and methods in  
UmL Diagrams 

multiplicities 

aggregation, association,  
and composition 



Special features xxxi

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming 
Tips Special Topics random facts

Use a Single class for variation 
in values, Inheritance for  
variation in Behavior 420

calling the Superclass  
constructor 429

Dynamic method Lookup and  
the Implicit Parameter  433

abstract classes  434

final methods and classes  435

Protected access  436

Inheritance and the  
toString method  446

Inheritance and the  
equals method  447

constants in Interfaces 453

function objects  454

Don’t Use a frame  
as a Listener 478

adding the main method to the 
frame class 470

Local Inner classes 479

anonymous Inner classes 480

Use a GUI Builder Keyboard Events 

Event adapters 

make Parallel arrays into  
arrays of objects 

consistency 

attributes and methods in  
UmL Diagrams 

multiplicities 

aggregation, association,  
and composition 



xxxii Special features

cHaPTEr

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

common 
Errors

How Tos 
                      and 

Worked Examples

13 recursion 
(WEB onLy) 

Infinite recursion finding files 

Towers of Hanoi 

14 Sorting and Searching 
(WEB onLy) 

The compareTo method can 
return any Integer,  
not Just –1, 0, and 1 

Enhancing the Insertion Sort 
algorithm 

15 The Java collections 
framework 
(WEB onLy) 

choosing a collection 

Word frequency 

Simulating a Queue of  
Waiting customers 

Building a Table of contents 



Special features xxxiii

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming 
Tips Special Topics random facts

The Limits of computation 

oh, omega, and Theta 

Insertion Sort 

The Quicksort algorithm 

The Parameterized  
Comparable Interface 

The Comparator Interface 

The first Programmer 

Use Interface references to  
manipulate Data Structures 

Standardization 

reverse Polish notation 





1C h a p t e r

1

IntroduCtIon

to learn about computers  
and programming

to compile and run your first Java program

to recognize compile-time and run-time errors

to describe an algorithm with pseudocode

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

1.1  Computer programs  2

1.2  the anatomy of a Computer  3

Random Fact 1.1: the enIaC and the dawn of 
Computing 5

1.3  the Java programming 
Language  5

1.4  BeComing famiLiar with your 
programming environment  8

Programming Tip 1.1: Backup Copies 11
Video Example 1.1: Compiling and running 

a program 

1.5  anaLyzing your first 
program  12

Syntax 1.1: Java program 13
Common Error 1.1: omitting semicolons 14

1.6  errors  15

Common Error 1.2: Misspelling Words 16

1.7  proBLem soLving: 
aLgorithm Design  16

How To 1.1: describing an algorithm with 
pseudocode 20

Worked Example 1.1: Writing an algorithm for 
tiling a Floor 

Video Example 1.2: dividing household 
expenses 



2

Just as you gather tools, study a project, and make a plan for 
tackling it, in this chapter you will gather up the basics you 
need to start learning to program. after a brief introduction 
to computer hardware, software, and programming in 
general, you will learn how to write and run your first 
Java program. You will also learn how to diagnose and 
fix programming errors, and how to use pseudocode to 
describe an algorithm—a step-by-step description of how 
to solve a problem—as you plan your computer programs.

1.1 Computer programs
You have probably used a computer for work or fun. Many people use computers 
for everyday tasks such as electronic banking or writing a term paper. Computers are 
good for such tasks. They can handle repetitive chores, such as totaling up numbers 
or placing words on a page, without getting bored or exhausted. 

The flexibility of a computer is quite an amazing phenomenon. The same machine 
can balance your checkbook, lay out your term paper, and play a game. In contrast, 
other machines carry out a much nar rower range of tasks; a car drives and a toaster 
toasts. Computers can carry out a wide range of tasks because they execute different 
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs. 
A computer program tells a computer, in minute detail, the sequence of steps that are 
needed to fulfill a task. The physical computer and periph eral devices are collectively 
called the hardware. The programs the computer executes are called the soft ware. 

Today’s computer programs are so sophisticated that it is hard to believe that they 
are composed of extremely primitive instructions. A typical instruction may be one 
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains 
a huge number of such instructions, and because the computer can execute them at 
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct 
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor 
that supports fancy fonts and pictures is a complex task that requires a team of many 
highly-skilled programmers. Your first programming efforts will be more mundane. 
The concepts and skills you learn in this book form an important foundation, and 
you should not be disappointed if your first programs do not rival the sophis ticated 
software that is familiar to you. Actually, you will find that there is an immense thrill 
even in sim ple programming tasks. It is an amazing experience to see the computer 
precisely and quickly carry out a task that would take you hours of drudgery, to 

Computers execute 
very basic 
instructions in  
rapid succession. 

a computer program 
is a sequence  
of instructions  
and decisions.

programming is the 
act of designing and 
implementing 
computer programs.



1.2 the anatomy of a Computer  3

make small changes in a program that lead to immediate improvements, and to see the 
computer become an extension of your mental powers.

1.  What is required to play music on a computer? 
2.  Why is a CD player less flexible than a computer? 
3.  What does a computer user need to know about programming in order to play a 

video game?

1.2 the anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal 
computer. Larger computers have faster, larger, or more powerful components, but 
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure 
1). The inside wiring of the CPU is enormously complicated. For example, the Intel 
Core processor (a popular CPU for per sonal computers at the time of this writing) is 
composed of several hundred million structural elements, called transistors.

The CPU performs program control and data processing. That is, the CPU locates 
and executes the program instructions; it carries out arithmetic operations such as 
addition, subtraction, multiplication, and division; it fetches data from external mem-
ory or devices and places processed data into storage. 

There are two kinds of storage. Primary storage is made from memory chips: 
electronic circuits that can store data, provided they are supplied with electric power. 
Secondary storage, usually a hard disk (see Figure 2), provides slower and less 
expensive storage that persists without electricity. A hard disk consists of rotating 
platters, which are coated with a mag netic material, and read/write heads, which can 
detect and change the magnetic flux on the platters.

The computer stores both data and programs. They are located in secondary stor-
age and loaded into memory when the program starts. The program then updates the 
data in memory and writes the modified data back to secondary storage.

s e L f   C h e C k

the central 
processing unit (Cpu) 
performs program 
control and  
data processing.

storage devices 
include memory and 
secondary storage.

figure 1  Central processing unit figure 2  a hard disk



4 Chapter 1  Introduction

figure 3  schematic design of a personal Computer

Printer

Mouse

Keyboard

Ports

CPU

Memory

Disk
Controller

Hard disk

CD/DVD drive

Monitor

Speakers

Internet

Graphics
card

Sound
card

Network
card

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen, 
speakers, and printers. The user can enter information (called input) for the computer 
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected 
through networks. Through the network cabling, the computer can read data and 
programs from central storage locations or send data to other computers. To the user 
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network. 

Figure 3 gives a schematic overview of the architecture of a personal computer. 
Program instructions and data (such as text, numbers, audio, or video) are stored on 
the hard disk, on a compact disk (or DVD), or elsewhere on the network. When a 
program is started, it is brought into memory, where the CPU can read it. The CPU 
reads the program one instruction at a time. As directed by these instructions, the 
CPU reads data, modifies it, and writes it back to memory or the hard disk. Some pro-
gram instruc tions will cause the CPU to place dots on the display screen or printer or 
to vibrate the speaker. As these actions happen many times over and at great speed, 
the human user will perceive images and sound. Some program instructions read user 
input from the keyboard or mouse. The program analyzes the nature of these inputs 
and then executes the next appropriate instruction.

4.  Where is a program stored when it is not currently running?
5.  Which part of the computer carries out arithmetic operations, such as addition 

and multiplication?

practice it  Now you can try these exercises at the end of the chapter: R1.2, R1.3.

s e L f   C h e C k

www.allitebooks.com

http://www.allitebooks.org


1.3 the Java programming language  5

1.3 the Java programming language
In order to write a computer program, you need 
to provide a sequence of instructions that the CPU 
can execute. A computer program consists of a large 
number of simple CPU instructions, and it is tedious 
and error-prone to specify them one by one. For that 
reason, high-level programming languages have 
been created. In a high-level language, you specify 
the actions that your program should carry out. A 
compiler translates the high-level instructions into 
the more detailed instructions required by the CPU. 
Many different programming languages have been 
designed for different purposes. 

In 1991, a group led by James Gosling and Patrick 
Naughton at Sun Microsystems designed a program-
ming language, code-named “Green”, for use in 

the enIaC (electronic 
numerical integrator 
and computer) was 

the first usable electronic computer. It 
was designed by J. presper eckert and 
John Mauchly at the university of penn-
sylvania and was completed in 1946—
two years before transistors were 
invented. the computer was housed in 
a large room and consisted of many 
cabinets con taining about 18,000 vac-
uum tubes (see Figure 4). Vacuum 
tubes burned out at the rate of several 
tubes per day. an attendant with a 
shopping cart full of tubes constantly 
made the rounds and replaced defec-
tive ones. the computer was pro-
grammed by connecting wires on pan-
els. each wir ing configuration would 
set up the computer for a particular 
problem. to have the computer work 
on a different problem, the wires had to 
be replugged. 

Work on the enIaC was supported 
by the u.s. navy, which was interested 
in computations of ballistic tables that 
would give the trajectory of a projec-
tile, depending on the wind resis tance, 
initial velocity, and atmospheric con-
ditions. to compute the trajecto ries, 

one must find the numerical solu-
tions of certain differential equations; 
hence the name “numerical integra-
tor”. Before machines like the enIaC 
were developed, humans did this kind 

of work, and until the 1950s the word 
“computer” referred to these people. 
the enIaC was later used for peace-
ful purposes, such as the tabulation of 
u.s. Census data.

figure 4  the enIaC

Random Fact 1.1 the enIaC and the dawn of Computing

James Gosling



6 Chapter 1  Introduction

consumer devices, such as intelligent television “set-top” boxes. The language was 
designed to be simple, secure, and usable for many dif ferent processor types. No cus-
tomer was ever found for this technology.

Gosling recounts that in 1994 the team realized, “We could write a really cool 
browser. It was one of the few things in the client/server main stream that needed 
some of the weird things we’d done: architecture neu tral, real-time, reliable, secure.” 
Java was introduced to an enthusiastic crowd at the SunWorld exhibition in 1995, 
together with a browser that ran applets—Java code that can be located anywhere on 
the Internet. Figure 5 shows a typical example of an applet. 

Since then, Java has grown at a phenomenal rate. Programmers have embraced the 
language because it is easier to use than its closest rival, C++. In addition, Java has a 
rich library that makes it possible to write portable programs that can bypass pro-
prietary operating systems—a feature that was eagerly sought by those who wanted 
to be independent of those proprietary systems and was bitterly fought by their ven-
dors. A “micro edition” and an “enterprise edition” of the Java library allow Java 
programmers to target hardware ranging from smart cards and cell phones to the 
largest Internet servers. 

Because Java was designed for the Internet, it has two attributes that make it very 
suitable for begin ners: safety and portability. 

The safety features of the Java language make it possible to run Java programs in 
a browser without fear that they might attack your computer. As an added benefit, 
these features also help you to learn the language faster. When you make an error that 
results in unsafe behavior, you receive an accurate error report. 

The other benefit of Java is portability. The same Java program will run, without 
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability, 
the Java compiler does not translate Java programs directly into CPU instructions. 
Instead, compiled Java programs contain instructions for the Java virtual machine, 

Java was originally 
designed for 
programming 
consumer devices, 
but it was first 
successfully used 
to write Internet 
applets.

figure 5  an applet for Visualizing Molecules running in 
a Browser Window (http://jmol.sourceforge.net/)

Java was designed to 
be safe and portable, 
benefiting both 
Internet users  
and students.



1.3 the Java programming language  7

a program that simulates a real CPU. Portability is another benefit for the begin ning 
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for 
general-purpose pro gramming as well as for computer science instruction. However, 
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given 
to making it really sim ple to write basic programs. A certain amount of technical 
machinery is necessary in Java to write even the simplest programs. This is not a prob-
lem for professional programmers, but it can be a nuisance for beginning students. As 
you learn how to program in Java, there will be times when you will be asked to be 
satisfied with a preliminary explanation and wait for more complete detail in a later 
chapter.

Java has been extended many times during its life—see Table 1. In this book, we 
assume that you have Java version 5 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself 
is relatively simple, but Java contains a vast set of library packages that are required 
to write useful programs. There are pack ages for graphics, user-interface design, 
cryptography, networking, sound, database storage, and many other purposes. Even 
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects. 

Using this book, you should expect to learn a good deal about the Java language 
and about the most important packages. Keep in mind that the central goal of this 
book is not to make you memorize Java minutiae, but to teach you how to think 
about programming.  

table 1  Java Versions

Version Year Important new Features

1.0 1996

1.1 1997 Inner classes

1.2 1998 Swing, Collections framework

1.3 2000 Performance enhancements

1.4 2002 Assertions, XML support

5 2004 Generic classes, enhanced for loop, auto-boxing, enumerations, annotations

6 2006 Library improvements

7 2011 Small language changes and library improvements

6.  What are the two most important benefits of the Java language? 
7.  How long does it take to learn the entire Java library?

practice it  Now you can try this exercise at the end of the chapter: R1.5.

Java programs are 
distributed as 
instructions for a 
virtual machine, 
making them 
platform-
independent.

Java has a very large 
library. Focus on 
learning those parts 
of the library that  
you need for your 
programming 
projects.

s e L f   C h e C k



8 Chapter 1  Introduction

1.4 Becoming Familiar with Your 
programming environment

Many students find that the tools they need as programmers are very different from 
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary 
widely, this book can only give an outline of the steps you need to follow. It is a good 
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a 
tour.

step 1 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs. 
On other computers you first launch an editor, a program that functions like a word 
processor, in which you can enter your Java instructions; you then open a console 
window and type commands to execute your program. You need to find out how to 
get started with your environment.

step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is 
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Java:

public class HelloPrinter
{
   public static void main(String[] args)
   {  
      System.out.println("Hello, World!");
   }
}

We will examine this program in the next section. 
No matter which programming environment you use, you begin your activity by 

typing the program statements into an editor window. 
Create a new file and call it HelloPrinter.java, using the steps that are appropriate 

for your environ ment. (If your environment requires that you supply a project name 
in addition to the file name, use the name hello for the project.) Enter the program 
instructions exactly as they are given above. Alternatively, locate the electronic copy 
in this book’s companion code and paste it into your editor. 

set aside some time 
to become familiar 
with the 
programming 
environment that  
you will use for your 
class work. 

an editor is a 
program for entering 
and modifying text, 
such as a  
Java program.

figure 6  running the HelloPrinter program in a Console Window



1.4 Becoming Familiar with Your programming environment  9

figure 7   
running the  
HelloPrinter 
program in an  
Integrated  
development  
environment

As you write this program, pay careful attention to the various symbols, and keep 
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly 
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not 
careful, you will run into problems—see Common Error 1.2 on page 16. 

step 3 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the 
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 6 and 7).
In order to run your program, the Java compiler translates your source code (that 

is, the statements that you wrote) into class files. (A class file contains instructions for 
the Java virtual machine.) After the compiler has translated your program into virtual 
machine instructions, the virtual machine executes them. Figure 8 summarizes the 
process of creating and running a Java program. In some programming environments, 

Java is case sensitive. 
You must be careful 
about distinguishing 
between upper- and 
lowercase letters.

the Java compiler 
translates source 
code into class files 
that contain 
instructions for the 
Java virtual machine.

figure 8  From source Code to running program

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class files



10 Chapter 1  Introduction

the compiler and virtual machine are essentially invisible to the programmer—they 
are automatically executed whenever you ask to run a Java program. In other envi-
ronments, you need to launch the compiler and virtual machine explicitly. 

step 4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store 
your programs in files. Files are stored in folders or directories. A folder can contain 
files as well as other folders, which themselves can contain more files and folders (see 
Figure 9). This hierarchy can be quite large, and you need not be concerned with all 
of its branches. However, you should create folders for organizing your work. It is 
a good idea to make a separate folder for your programming class. Inside that folder, 
make a separate folder for each program.

Some programming environments place your programs into a default location if 
you don’t specify a folder yourself. In that case, you need to find out where those files 
are located. 

Be sure that you understand where your files are located in the folder hierarchy. 
This information is essential when you submit files for grading, and for making 
backup copies (see Programming Tip 1.1).

A N I M AT I O N
Compilation Process

figure 9  a Folder hierarchy



1.4 Becoming Familiar with Your programming environment  11

8.  Where is the HelloPrinter.java file stored on your computer? 
9.  What do you do to protect yourself from data loss when you work on program-

ming projects?

practice it  Now you can try this exercise at the end of the chapter: R1.6.

Backup Copies

You will spend many hours creating and improving Java pro-
grams. It is easy to delete a file by accident, and occasionally files 
are lost because of a computer malfunction. Retyping the contents 
of lost files is frustrating and time-consuming. It is therefore cru-
cially impor tant that you learn how to safeguard files and get in 
the habit of doing so before disaster strikes. Backing up files on a 
memory stick is an easy and convenient storage method for many 
people. Another increasingly popular form of backup is Internet 
file storage. Here are a few pointers to keep in mind:
• Back up often. Backing up a file takes only a few seconds, and you will hate yourself if you 

have to spend many hours recreating work that you could have saved easily. I rec ommend 
that you back up your work once every thirty minutes.

• Rotate backups. Use more than one directory for backups, and 
rotate them. That is, first back up onto the first directory. Then 
back up onto the second directory. Then use the third, and then 
go back to the first. That way you always have three recent 
backups. If your recent changes made matters worse, you can 
then go back to the older version. 

• Pay attention to the backup direction. Backing up involves copying files from one place to 
another. It is important that you do this right—that is, copy from your work location to 
the backup location. If you do it the wrong way, you will overwrite a newer file with an 
older version.

• Check your backups once in a while. Double-check that your backups are where you think 
they are. There is nothing more frustrating than to find out that the backups are not there 
when you need them. 

• Relax, then restore. When you lose a file and need to restore it from a backup, you are 
likely to be in an unhappy, nervous state. Take a deep breath and think through the 
recovery process before you start. It is not uncommon for an agitated computer user to 
wipe out the last backup when trying to restore a damaged file.

s e L f   C h e C k

programming tip 1.1 

develop a strategy 
for keeping backup 
copies of your  
work before  
disaster strikes.

VIdeo exaMple 1.1 Compiling and running a program

This Video Example shows how to compile and run a simple Java 
program.



12 Chapter 1  Introduction

1.5 analyzing Your First program
In this section, we will analyze the first Java program in detail. Here again is the 
source code:

section_5/helloprinter.java 

1 public class HelloPrinter
2 {
3    public static void main(String[] args)
4    {  
5       System.out.println("Hello, World!");
6    }
7 }

The line
public class HelloPrinter

indicates the declaration of a class called HelloPrinter. 
Every Java program consists of one or more classes. Classes are the fundamental 

building blocks of Java programs. You will have to wait until Chapter 8 for a full 
explanation of classes.

The word public denotes that the class is usable by the “public”. You will later 
encounter private fea tures.

In Java, every source file can contain at most one public class, and the name of the 
public class must match the name of the file containing the class. For example, the 
class HelloPrinter must be contained in a file named HelloPrinter.java.

The construction

public static void main(String[] args)
{
   . . .
}

declares a method called main. A method contains a collection of programming 
instructions that describe how to carry out a particular task. Every Java application 
must have a main method. Most Java programs contain other methods besides main, 
and you will see in Chapter 5 how to write other methods.

The term static is explained in more detail in Chapter 8, and the meaning of 
String[] args is covered in Chapter 7. At this time, simply consider

public class ClassName 
{  
   public static void main(String[] args)
   {
      . . .
   }
} 

as a part of the “plumbing” that is required to create a Java program. Our first pro-
gram has all instructions inside the main method of the class. 

The main method contains one or more instructions called statements. Each state-
ment ends in a semi colon (;). When a program runs, the statements in the main method 
are executed one by one.

Classes are the 
fundamental  
building blocks of 
Java programs.

every Java 
application contains 
a class with a main 
method. When the 
application starts, 
the instructions in 
the main method 
are executed.

each class contains 
declarations of 
methods. each 
method contains  
a sequence  
of instructions.



1.5 analyzing Your First program  13

syntax 1.1 Java program

public class HelloPrinter
{
   public static void main(String[] args)
   {
      System.out.println("Hello, World!");
   }
}

Every program contains at least one class. 
Choose a class name that describes 
the program action.

The statements inside the 
main method are executed 
when the program runs.

Every Java program 
contains a main method 
with this header.

Replace this 
statement when you 

write your own 
programs.

Be sure to match the 
opening and closing braces.

Each statement 
ends in a semicolon.  
      See page 14.

In our example program, the main method has a single statement:
System.out.println("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. In this statement, we call 
a method which, for reasons that we will not explain here, is specified by the rather 
long name System.out.println.

We do not have to implement this method—the programmers who wrote the Java 
library already did that for us. We simply want the method to perform its intended 
task, namely to print a value.

Whenever you call a method in Java, you need to specify 

1. The method you want to use (in this case, System.out.println).
2. Any values the method needs to carry out its task (in this case, "Hello, World!"). 

The technical term for such a value is an argument. Arguments are enclosed in 
parentheses. Multiple arguments are sep arated by commas.

A sequence of characters enclosed in quotation marks
"Hello, World!"

is called a string. You must enclose the contents of the string inside quotation marks 
so that the compiler knows you literally mean "Hello, World!". There is a reason for 
this requirement. Suppose you need to print the word main. By enclosing it in quota-
tion marks, "main", the compiler knows you mean the sequence of characters m a i n, 
not the method named main. The rule is simply that you must enclose all text strings 
in quotation marks, so that the compiler considers them plain text and does not try to 
inter pret them as program instructions.

You can also print numerical values. For example, the statement
System.out.println(3 + 4);

evaluates the expression 3 + 4 and displays the number 7.

a method is called  
by specifying the 
method and  
its arguments.

a string is a sequence 
of characters 
enclosed in  
quotation marks.



14 Chapter 1  Introduction

The System.out.println method prints a string or a number and then starts a new 
line. For example, the sequence of statements

System.out.println("Hello");
System.out.println("World!");

prints two lines of text:
Hello
World!

There is a second method, System.out.print, that you can use to print an item without 
starting a new line. For example, the output of the two statements

System.out.print("00");
System.out.println(3 + 4);

is the single line
007

10.  How do you modify the HelloPrinter program to greet you instead?
11.  How would you modify the HelloPrinter program to print the word “Hello” 

vertically?
12.  Would the program continue to work if you replaced line 5 with this statement?

System.out.println(Hello); 

13.  What does the following set of statements print?
System.out.print("My lucky number is");
System.out.println(3 + 4 + 5);

14.  What do the following statements print?
System.out.println("Hello"); 
System.out.println(""); 
System.out.println("World");

practice it  Now you can try these exercises at the end of the chapter: R1.7, R1.8, P1.5, P1.7.

omitting semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a common 
error. It confuses the compiler, because the compiler uses the semicolon to find where one 
statement ends and the next one starts. The compiler does not use line breaks or closing braces 
to recognize the end of statements. For example, the compiler considers

System.out.println("Hello")
System.out.println("World!");

a single statement, as if you had written

System.out.println("Hello") System.out.println("World!");

Then it doesn’t understand that statement, because it does not expect the word System follow-
ing the closing parenthe sis after "Hello". 

The remedy is simple. Scan every statement for a terminating semicolon, just as you would 
check that every English sentence ends in a period.

o n L i n e  e x a m p L e

a program to 
demonstrate print 
commands.

s e L f   C h e C k

Common error 1.1 

www.allitebooks.com

http://www.allitebooks.org


1.6 errors  15

1.6 errors
Experiment a little with the HelloPrinter program. 
What happens if you make a typing error such as

System.ou.println("Hello, World!");
System.out.println("Hello, Word!");

In the first case, the compiler will complain. It will 
say that it has no clue what you mean by ou. The 
exact wording of the error message is dependent 
on your development environment, but it might 
be something like “Cannot find symbol ou”. 
This is a compile-time error. Something is wrong 
accord ing to the rules of the language and the com-
piler finds it. For this reason, compile-time errors 
are often called syntax errors. When the compiler 
finds one or more errors, it refuses to translate the program into Java virtual machine 
instructions, and as a consequence you have no program that you can run. You must 
fix the error and compile again. In fact, the compiler is quite picky, and it is common 
to go through several rounds of fixing compile-time errors before compila tion suc-
ceeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to 
report as many errors as it can find, so you can fix them all at once. 

Sometimes, an error throws the compiler off track. Suppose, for example, you 
forget the quotation marks around a string: System.out.println(Hello, World!). The 
compiler will not complain about the missing quotation marks. Instead, it will report 
“Cannot find symbol Hello”. Unfortunately, the com piler is not very smart and it 
does not realize that you meant to use a string. It is up to you to realize that you need 
to enclose strings in quotation marks.  

The error in the second line above is of a different kind. The program will compile 
and run, but its output will be wrong. It will print

Hello, Word!

This is a run-time error. The program is syntactically correct and does something, 
but it doesn’t do what it is supposed to do. Because run-time errors are caused by 
logical flaws in the program, they are often called logic errors.

This particular run-time error did not include an error message. It simply pro-
duced the wrong output. Some kinds of run-time errors are so severe that they gen-
erate an exception: an error message from the Java virtual machine. For example, if 
your program includes the statement

System.out.println(1 / 0);

you will get a run-time error message “Division by zero”.
During program development, errors are unavoidable. Once a program is longer 

than a few lines, it would require superhuman concentration to enter it correctly 
without slipping up once. You will find yourself omitting semicolons or quotation 
marks more often than you would like, but the compiler will track down these prob-
lems for you.

Run-time errors are more troublesome. The compiler will not find them—in fact, 
the compiler will cheerfully translate any program as long as its syntax is correct—

Programmers spend a fair amount 
of time fixing compile-time and run-
time errors.

a compile-time error 
is a violation of  
the programming 
language rules that 
is detected by  
the compiler.

a run-time error 
causes a program to 
take an action that 
the programmer did 
not intend. 

o n L i n e  e x a m p L e

three programs to 
illustrate errors.



16 Chapter 1  Introduction

but the resulting program will do some thing wrong. It is the responsibility of the 
program author to test the program and find any run-time errors. 

15.  Suppose you omit the "" characters around Hello, World! from the HelloPrinter.
java program. Is this a compile-time error or a run-time error?

16.  Suppose you change println to printline in the HelloPrinter.java program. Is this 
a compile-time error or a run-time error?

17.  Suppose you change main to hello in the HelloPrinter.java program. Is this a 
compile-time error or a run-time error?

18.  When you used your computer, you may have experienced a program that 
“crashed” (quit spontane ously) or “hung” (failed to respond to your input). Is 
that behavior a compile-time error or a run-time error?

19.  Why can’t you test a program for run-time errors when it has compiler errors? 

practice it  Now you can try these exercises at the end of the chapter: R1.9, R1.10, R1.11.

misspelling words

If you accidentally misspell a word, then strange things may happen, and it may not always be 
completely obvious from the error messages what went wrong. Here is a good example of how 
simple spelling errors can cause trouble:

public class HelloPrinter
{  
   public static void Main(String[] args)
   {  
      System.out.println("Hello, World!");
   }
}

This class declares a method called Main. The compiler will not consider this to be the same as 
the main method, because Main starts with an uppercase letter and the Java language is case sen-
sitive. Upper- and lowercase letters are considered to be completely different from each other, 
and to the compiler Main is no better match for main than rain. The compiler will cheerfully 
compile your Main method, but when the Java virtual machine reads the compiled file, it will 
complain about the missing main method and refuse to run the program. Of course, the mes-
sage “missing main method” should give you a clue where to look for the error.

If you get an error message that seems to indicate that the compiler or virtual machine is on 
the wrong track, it is a good idea to check for spelling and capitalization. If you misspell the 
name of a symbol (for example, ou instead of out), the compiler will produce a message such as 
“cannot find symbol ou”. That error message is usually a good clue that you made a spelling 
error.

1.7 problem solving: algorithm design
You will soon learn how to program calculations and decision making in Java. But 
before we look at the mechanics of implementing computations in the next chapter, 
let’s consider how you can describe the steps that are necessary for finding the solu-
tion for a problem. 

s e L f   C h e C k

Common error 1.2 



1.7 problem solving: algorithm design  17

You may have run across advertisements that encourage you to pay for a comput-
erized service that matches you up with a love partner. Think how this might work. 
You fill out a form and send it in. Others do the same. The data are processed by a 
computer program. Is it reasonable to assume that 
the computer can perform the task of finding the best 
match for you? Suppose your younger brother, not 
the computer, had all the forms on his desk. What 
instructions could you give him? You can’t say, “Find 
the best-looking person who likes inline skating and 
browsing the Internet”. There is no objective stan-
dard for good looks, and your brother’s opinion (or 
that of a computer program analyzing the digitized 
photo) will likely be different from yours. If you 
can’t give written instructions for someone to solve 
the problem, there is no way the com puter can magi-
cally find the right solution. The computer can only 
do what you tell it to do. It just does it faster, without 
getting bored or exhausted. 

For that reason, a computerized match-making service cannot guarantee to find 
the optimal match for you. Instead, you may be presented with a set of potential part-
ners who share common interests with you. That is a task that a computer program 
can solve. 

Now consider the following investment problem:

You put $10,000 into a bank account that earns 5 percent interest per year. How many 
years does it take for the account balance to be double the original?

Could you solve this problem by hand? Sure, you could. You figure out the balance 
as follows:

 year interest balance
 0  10000
 1 10000.00 x 0.05 = 500.00 10000.00 + 500.00 = 10500.00
 2 10500.00 x 0.05 = 525.00 10500.00 + 525.00 = 11025.00
 3 11025.00 x 0.05 = 551.25 11025.00 + 551.25 = 11576.25
 4 11576.25 x 0.05 = 578.81 11576.25 + 578.81 = 12155.06

You keep going until the balance is at least $20,000. Then the last number in the year 
column is the answer.

Of course, carrying out this computation is intensely boring to you or your 
younger brother. But computers are very good at carrying out repetitive calcula-
tions quickly and flawlessly. What is important to the computer is a description of the 
steps for finding the solution. Each step must be clear and unam biguous, requiring no 
guesswork. Here is such a description:

Start with a year value of 0, a column for the interest, and a balance of $10,000.

 year     interest balance
 0     10000

 

Finding the perfect partner  
is not a problem that a  
computer can solve.



18 Chapter 1  Introduction

Repeat the following steps while the balance is less than $20,000
 Add 1 to the year value. 
 Compute the interest as balance x 0.05 (i.e., 5 percent interest).
 Add the interest to the balance.

 year interest balance
 0  10000
 1 500.00 10500.00

 14 942.82 19799.32
 15 989.96 20789.28 

Report the final year value as the answer. 

Of course, these steps are not yet in a language that a computer can understand, but 
you will soon learn how to formulate them in Java. This informal description is called 
pseudocode. 

There are no strict requirements for pseudocode because it is read by human read-
ers, not a computer program. Here are the kinds of pseudocode statements that we 
will use in this book:

• Use statements such as the following to describe how a value is set or changed: 

total cost = purchase price + operating cost
Multiply the balance value by 1.05.
Remove the first and last character from the word.

• You can describe decisions and repetitions as follows: 

If total cost 1 < total cost 2
While the balance is less than $20,000
For each picture in the sequence

Use indentation to indicate which statements should be selected or repeated:

For each car
 operating cost = 10 x annual fuel cost
 total cost = purchase price + operating cost

Here, the indentation indicates that both statements should be executed for 
each car.

• Indicate results with statements such as:

Choose car1.
Report the final year value as the answer.

The exact wording is not important. What is important is that pseudocode describes 
a sequence of steps that is

• Unambiguous
• Executable
• Terminating 

pseudocode is an 
informal description 
of a sequence of 
steps for solving  
a problem.



1.7 problem solving: algorithm design  19

The step sequence is unambiguous when there are 
precise instructions for what to do at each step and 
where to go next. There is no room for guesswork 
or personal opinion. A step is executable when it 
can be carried out in practice. Had we said to use 
the actual interest rate that will be charged in years 
to come, and not a fixed rate of 5 percent per year, 
that step would not have been executable, because 
there is no way for anyone to know what that 
interest rate will be. A sequence of steps is termi-
nating if it will eventually come to an end. In our 
example, it requires a bit of thought to see that the 
sequence will not go on forever: With every step, 
the balance goes up by at least $500, so eventually 
it must reach $20,000.   

A sequence of steps that is unambiguous, executable, and terminating is called an 
algorithm. We have found an algorithm to solve our investment problem, and thus 
we can find the solution by programming a computer. The existence of an algorithm 
is an essential prerequisite for programming a task. You need to first discover and 
describe an algorithm for the task that you want to solve before you start program-
ming (see Figure 10). 

figure 10  the software development process

20.  Suppose the interest rate was 20 percent. How long would it take for the invest-
ment to double?

21.  Suppose your cell phone carrier charges you $29.95 for up to 300 minutes of 
calls, and $0.45 for each additional minute, plus 12.5 percent taxes and fees. Give 
an algorithm to compute the monthly charge from a given number of minutes.

22.  Consider the following pseudocode for finding the most attractive photo from a 
sequence of photos:

Pick the first photo and call it "the best so far".
For each photo in the sequence
 If it is more attractive than the "best so far"
  Discard "the best so far".
  Call this photo "the best so far".
The photo called "the best so far" is the most attractive photo in the sequence.

Is this an algorithm that will find the most attractive photo?

an algorithm for 
solving a problem is 
a sequence of steps 
that is unambiguous, 
executable, and 
terminating.

An algorithm is a recipe for  
finding a solution.

Understand 
the problem

Develop and 
describe an 
algorithm

Translate 
the algorithm 

into Java

Test the 
algorithm with 
simple inputs

Compile and test 
your program

s e L f   C h e C k



20 Chapter 1  Introduction

23.  Suppose each photo in Self Check 22 had a price tag. Give an algorithm for find-
ing the most expen sive photo. 

24.  Suppose you have a random sequence of black and white marbles and want to 
rearrange it so that the black and white marbles are grouped together. Consider 
this algorithm:

Repeat until sorted
 Locate the first black marble that is preceded by a white marble, and switch them.

What does the algorithm do with the sequence mlmll? Spell out the steps 
until the algorithm stops.

25.  Suppose you have a random sequence of colored marbles. Consider this pseudo-
code: 

Repeat until sorted
 Locate the first marble that is preceded by a marble of a different color, and switch them.

Why is this not an algorithm?

practice it  Now you can try these exercises at the end of the chapter: R1.15, R1.17, P1.4.

step 1  Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
• purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

step 2  Break down the problem into smaller tasks.

For each car, we need to know the total cost of driving it. Let’s do this computation separately 
for each car. Once we have the total cost for each car, we can decide which car is the better deal. 

The total cost for each car is purchase price + operating cost.

We assume a constant usage and gas price for ten years, so the operating cost depends on the 
cost of driving the car for one year. 

The operating cost is 10 x annual fuel cost.
The annual fuel cost is price per gallon x annual fuel consumed.

hoW to 1.1 Describing an algorithm with pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a 
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code: a sequence of precise steps formulated in English. 

For example, consider this problem: You have the choice of 
buying two cars. One is more fuel efficient than the other, but 
also more expensive. You know the price and fuel efficiency (in 
miles per gallon, mpg) of both cars. You plan to keep the car 
for ten years. Assume a price of $4 per gallon of gas and usage 
of 15,000 miles per year. You will pay cash for the car and not 
worry about financing costs. Which car is the better deal? 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

1.7 problem solving: algorithm design  21

The annual fuel consumed is annual miles driven / fuel efficiency. For example, if you drive the car 
for 15,000 miles and the fuel efficiency is 15 miles/gallon, the car consumes 1,000 gallons. 

step 3  Describe each subtask in pseudocode.

In your description, arrange the steps so that any intermediate values are computed before 
they are needed in other computations. For example, list the step

total cost = purchase price + operating cost

after you have computed operating cost.
Here is the algorithm for deciding which car to buy:

For each car, compute the total cost as follows: 
 annual fuel consumed = annual miles driven / fuel efficiency
 annual fuel cost = price per gallon x annual fuel consumed
 operating cost = 10 x annual fuel cost
 total cost = purchase price + operating cost
If total cost1 < total cost2
 Choose car1.
Else
 Choose car2.

step 4  Test your pseudocode by working a problem.

We will use these sample values:

Car 1: $25,000, 50 miles/gallon
Car 2: $20,000, 30 miles/gallon

Here is the calculation for the cost of the first car:

annual fuel consumed = annual miles driven / fuel efficiency = 15000 / 50 = 300
annual fuel cost = price per gallon x annual fuel consumed = 4 x 300 = 1200
operating cost = 10 x annual fuel cost = 10 x 1200 = 12000
total cost = purchase price + operating cost = 25000 + 12000 = 37000

Similarly, the total cost for the second car is $40,000. Therefore, the output of the algorithm is 
to choose car 1. 

Worked exaMple 1.1 writing an algorithm for tiling a floor

This Worked Example shows how to develop an algorithm for laying 
tile in an alternating pattern of colors. 

VIdeo exaMple 1.2 Dividing household expenses

This Video Example shows how to develop an algorithm for 
dividing household expenses among roommates.



22 Chapter 1  Introduction

Define “computer program” and programming.

• Computers execute very basic instructions in rapid succession.
• A computer program is a sequence of instructions and decisions.
• Programming is the act of designing and implementing computer programs.

Describe the components of a computer.

• The central processing unit (CPU) performs program control and data 
processing.

• Storage devices include memory and secondary storage.

Describe the process of translating high-level languages to machine code.

• Java was originally designed for programming consumer devices, but it was first 
successfully used to write Internet applets.

• Java was designed to be safe and portable, benefiting both Internet users and 
stu dents.

• Java programs are distributed as instructions for a virtual machine, making them 
platform-independent.

• Java has a very large library. Focus on learning those parts of the library that you 
need for your programming projects.

Become familiar with your Java programming environment.

• Set aside some time to become familiar with the programming environment that 
you will use for your class work.

• An editor is a program for entering and modifying text, such as a Java program.
• Java is case sensitive. You must be careful about distinguishing between upper- 

and lowercase letters.
• The Java compiler translates source code into class files that contain instructions 

for the Java virtual machine.
• Develop a strategy for keeping backup copies of your 

work before disaster strikes.

Describe the building blocks of a simple program.

• Classes are the fundamental building blocks of Java programs.
• Every Java application contains a class with a main method. When the application 

starts, the instructions in the main method are executed.
• Each class contains declarations of methods. Each method contains a sequence of 

instructions.
• A method is called by specifying the method and its arguments.
• A string is a sequence of characters enclosed in quotation marks.

C h a p t e r  s u M M a r Y



review exercises 23

Classify program errors as compile-time and run-time errors.

• A compile-time error is a violation of the programming language rules that is  
detected by the compiler.

• A run-time error causes a program to take an action that the programmer did not 
intend.

write pseudocode for simple algorithms.

• Pseudocode is an informal description of a sequence of steps 
for solving a problem.

• An algorithm for solving a problem is a sequence of steps that 
is unambiguous, executable, and terminating.

• r1.1  Explain the difference between using a computer program and programming a 
computer.

• r1.2  Which parts of a computer can store program code? Which can store user data?

• r1.3  Which parts of a computer serve to give information to the user? Which parts take 
user input?

••• r1.4  A toaster is a single-function device, but a computer can be programmed to carry out 
different tasks. Is your cell phone a single-function device, or is it a programma ble 
computer? (Your answer will depend on your cell phone model.)

• r1.5  Explain two benefits of using Java over machine code. 

•• r1.6  On your own computer or on a lab computer, find the exact location (folder or 
directory name) of

a. The sample file HelloPrinter.java, which you wrote with the editor 
b. The Java program launcher java.exe or java
c. The library file rt.jar that contains the run-time library

•• r1.7  What does this program print?
public class Test
{
   public static void main(String[] args)
   {
      System.out.println("39 + 3");
      System.out.println(39 + 3);
   }
}

s ta n d a r d  l I B r a r Y  I t e M s  I n t r o d u C e d  I n  t h I s  C h a p t e r

java.io.PrintStream
   print
   println

java.lang.System
   out

r e V I e W  e x e r C I s e s



24 Chapter 1  Introduction

•• r1.8  What does this program print? Pay close attention to spaces.
public class Test
{
   public static void main(String[] args)
   {
      System.out.print("Hello");
      System.out.println("World");
   }
}

•• r1.9  What is the compile-time error in this program?
public class Test
{
   public static void main(String[] args)
   {
      System.out.println("Hello", "World!");
   }
}

•• r1.10  Write three versions of the HelloPrinter.java program that have different compile-
time errors. Write a version that has a run-time error.

• r1.11  How do you discover syntax errors? How do you discover logic errors?

•• r1.12  Write an algorithm to settle the following question: A bank account starts out with 
$10,000. Interest is compounded monthly at 6 percent per year (0.5 percent per 
month). Every month, $500 is withdrawn to meet college expenses. After how many 
years is the account depleted?

••• r1.13  Consider the question in Exercise R1.12. Suppose the numbers ($10,000, 6 percent, 
$500) were user selectable. Are there values for which the algorithm you developed 
would not terminate? If so, change the algorithm to make sure it always terminates.

••• r1.14  In order to estimate the cost of painting a house, a painter needs to know the surface 
area of the exterior. Develop an algorithm for computing that value. Your inputs are 
the width, length, and height of the house, the number of windows and doors, and 
their dimensions. (Assume the windows and doors have a uniform size.)

•• r1.15  You want to decide whether you should drive your car to work or take the train. 
You know the one-way distance from your home to your place of work, and the 
fuel efficiency of your car (in miles per gallon). You also know the one-way price of 
a train ticket. You assume the cost of gas at $4 per gallon, and car maintenance at 5 
cents per mile. Write an algorithm to decide which commute is cheaper. 

•• r1.16  You want to find out which fraction of your car’s use is for commuting to work, 
and which is for personal use. You know the one-way distance from your home to 
work. For a particular period, you recorded the beginning and ending mileage on the 
odometer and the number of work days. Write an algorithm to settle this question.

• r1.17  In How To 1.1, you made assumptions about the price of gas and annual usage to 
compare cars. Ideally, you would like to know which car is the better deal without 
making these assumptions. Why can’t a computer program solve that problem?

••• r1.18  The value of p can be computed according to the following formula:

π
4

1
1
3

1
5

1
7

1
9

= − + − + −�

www.allitebooks.com

http://www.allitebooks.org


programming exercises 25

Write an algorithm to compute p. Because the formula is an infinite series and an 
algorithm must stop after a finite number of steps, you should stop when you have 
the result determined to six significant dig its.

•• r1.19  Suppose you put your younger brother in charge of backing up your work. Write a 
set of detailed instructions for carrying out his task. Explain how often he should do 
it, and what files he needs to copy from which folder to which location. Explain how 
he should verify that the backup was carried out correctly.

• Business r1.20  Imagine that you and a number of friends go to a luxury restaurant, and when you 
ask for the bill you want to split the amount and the tip (15 percent) between all. 
Write pseudocode for calculating the amount of money that everyone has to pay. 
Your program should print the amount of the bill, the tip, the total cost, and the 
amount each person has to pay. It should also print how much of what each person 
pays is for the bill and for the tip.

• p1.1  Write a program that prints a greeting of your choice, perhaps in a language other 
than English.

•• p1.2  Write a program that prints the sum of the first ten positive integers, 1 + 2 + … + 10.

•• p1.3  Write a program that prints the product of the first ten positive integers, 1 × 2 × … × 
10. (Use * to indicate multiplication in Java.)

•• p1.4  Write a program that prints the balance of an account after the first, second, and 
third year. The account has an initial balance of $1,000 and earns 5 percent interest 
per year.

• p1.5  Write a program that displays your name inside a box on the screen, like this:

Dave

Do your best to approximate lines with characters such as | - +.

••• p1.6  Write a program that prints your name in large letters, such as
*   *    **    ****    ****   *   *
*   *   *  *   *   *   *   *  *   *
*****  *    *  ****    ****    * *
*   *  ******  *   *   *   *    *
*   *  *    *  *    *  *    *   *

•• p1.7  Write a program that prints a face similar to (but different from) the following:
   /////
  +"""""+
 (| o o |)
  |  ^  |
  | ‘-’ |
  +-----+

•• p1.8  Write a program that prints an imitation of a Piet Mondrian painting. (Search the 
Internet if you are not familiar with his paintings.) Use character sequences such as 
@@@ or ::: to indicate different colors, and use - and | to form lines. 

p r o G r a M M I n G  e x e r C I s e s



26 Chapter 1  Introduction

•• p1.9  Write a program that prints a house that looks exactly like the following:
      +
     + +
    +   +
   +-----+
   | .-. |
   | | | |
   +-+-+-+ 

••• p1.10  Write a program that prints an animal speaking a greeting, similar to (but different 
from) the following:

 /\_/\     ----- 
( ‘ ’ )  / Hello \'
(  -  ) <  Junior |
 | | |   \ Coder!/
(__|__)    -----

• p1.11  Write a program that prints three items, such as the names of your three best friends 
or favorite movies, on three separate lines.

• p1.12  Write a program that prints a poem of your choice. If you don’t have a favorite 
poem, search the Internet for “Emily Dickinson” or “e e cummings”.

•• p1.13  Write a program that prints the United States flag, using * and = characters.

•• p1.14  Type in and run the following program:
import javax.swing.JOptionPane;

public class DialogViewer
{
   public static void main(String[] args)
   {
      JOptionPane.showMessageDialog(null, "Hello, World!");
   }
}

Then modify the program to show the message “Hello, your name!”.

•• p1.15  Type in and run the following program:
import javax.swing.JOptionPane;

public class DialogViewer
{
   public static void main(String[] args)
   {
      String name = JOptionPane.showInputDialog("What is your name?");
      System.out.println(name);
   }
}

Then modify the program to print “Hello, name!”, displaying the name that the user 
typed in.

••• p1.16  Modify the program from Exercise P1.15 so that the dialog continues with the mes-
sage “My name is Hal! What would you like me to do?” Discard the user’s input and 
display a message such as

I'm sorry, Dave. I'm afraid I can't do that.

Replace Dave with the name that was provided by the user.



answers to self-Check Questions 27

•• p1.17  Type in and run the following program:
import java.net.URL;
import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class Test
{
   public static void main(String[] args) throws Exception
   {
      URL imageLocation = new URL(
            "http://horstmann.com/java4everyone/duke.gif");
      JOptionPane.showMessageDialog(null, "Hello", "Title", 
            JOptionPane.PLAIN_MESSAGE, new ImageIcon(imageLocation));
   }
}

Then modify it to show a different greeting and image.

• Business p1.18  Write a program that prints a two-column list of your friends’ birthdays. In the 
first column, print the names of your best friends; in the second column, print their 
birthdays.

• Business p1.19  In the United States there is no federal sales tax, so every state may impose its own 
sales taxes. Look on the Internet for the sales tax charged in five U.S. states, then 
write a program that prints the tax rate for five states of your choice.

Sales Tax Rates
---------------
Alaska:      0%
Hawaii:      4%
. . .

• Business p1.20  To speak more than one language is a valuable skill in the labor market today. One of 
the basic skills is learning to greet people. Write a program that prints a two-column 
list with the greeting phrases shown in the following table; in the first column, print 
the phrase in English, in the second column, print the phrase in a language of your 
choice. If you don’t speak any language other than English, use an online translator 
or ask a friend.

list of phrases to translate

Good morning.

It is a pleasure to meet you.

Please call me tomorrow.

Have a nice day!

a n s W e r s  t o  s e l F - C h e C k  Q u e s t I o n s

1.  A program that reads the data on the CD and 
sends output to the speakers and the screen.

2.  A CD player can do one thing—play music 
CDs. It cannot execute programs.

3.  Nothing.
4.  In secondary storage, typically a hard disk.
5.  The central processing unit.



28 Chapter 1  Introduction

6.  Safety and portability.
7.  No one person can learn the entire library—it 

is too large.
8.  The answer varies among systems. A typical 

answer might be /home/dave/cs1/hello/Hello-
Printer.java or c:\Users\Dave\Workspace\hello\
HelloPrinter.java

9.  You back up your files and folders.
10.  Change World to your name (here, Dave):

System.out.println("Hello, Dave!");

11.  System.out.println("H");
System.out.println("e");
System.out.println("l"); 
System.out.println("l"); 
System.out.println("o"); 

12.  No. The compiler would look for an 
item whose name is Hello. You need to 
enclose Hello in quotation marks: 
System.out.println("Hello");

13.  The printout is My lucky number is12. It would 
be a good idea to add a space after the is.

14.  Hello 
a blank line
World

15.  This is a compile-time error. The compiler will 
complain that it does not know the meanings 
of the words Hello and World.

16.  This is a compile-time error. The compiler 
will complain that System.out does not have a 
method called printline.

17.  This is a run-time error. It is perfectly legal to 
give the name hello to a method, so the com-
piler won’t complain. But when the program 
is run, the virtual machine will look for a main 
method and won’t find one.

18.  It is a run-time error. After all, the program 
had been compiled in order for you to run it.

19.  When a program has compiler errors, no class 
file is produced, and there is nothing to run.

20.  4 years:
0  10,000
1  12,000
2  14,400
3  17,280
4  20,736

21.  Is the number of minutes at most 300?
a. If so, the answer is $29.95 × 1.125 = $33.70.
b. If not,

1. Compute the difference: (number of 
minutes) – 300.

2. Multiply that difference by 0.45.
3. Add $29.95.
4. Multiply the total by 1.125. That is the 

answer.
22.  No. The step If it is more attractive than the "best 

so far" is not executable because there is no 
objective way of deciding which of two photos 
is more attractive.

23.  Pick the first photo and call it "the most expensive so far". 
For each photo in the sequence
 If it is more expensive than "the most expensive so far"
  Discard "the most expensive so far".
  Call this photo "the most expensive so far".
The photo called "the most expensive so far" is the most 

expensive photo in the sequence.

24.  The first black marble that is preceded by a 
white one is marked in blue:
mlmll

Switching the two yields
lmmll

The next black marble to be switched is
lmmll

yielding 
lmlml

The next steps are
llmml

llmlm

lllmm

Now the sequence is sorted.
25.  The sequence doesn’t terminate. Consider the 

input mlmlm. The first two marbles keep 
getting switched.



2C h a p t e r

29

Fundamental  
data types

to declare and initialize variables  
and constants

to understand the properties and limitations of integers and floating-point numbers

to appreciate the importance of comments and good code layout

to write arithmetic expressions and assignment statements

to create programs that read and process inputs, and display the results

to learn how to use the Java String type

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

2.1  Variables  30

Syntax 2.1: Variable declaration 31
Syntax 2.2: assignment 34 
Syntax 2.3: Constant declaration 35
Common Error 2.1: using undeclared or 

uninitialized Variables 37
Programming Tip 2.1: Choose descriptive 

Variable names 38
Common Error 2.2: overflow 38
Common Error 2.3: roundoff errors 38
Programming Tip 2.2: do not use 

magic numbers 39
Special Topic 2.1: numeric types in Java 39
Special Topic 2.2: Big numbers 40

2.2  arithmetic  41

Syntax 2.4: Cast 44
Common Error 2.4: unintended 

Integer division 46
Common Error 2.5: unbalanced parentheses 46
Programming Tip 2.3: spaces in expressions 47
Special Topic 2.3: Combining assignment 

and arithmetic 47
Video Example 2.1: using Integer division 

Random Fact 2.1: the pentium 
Floating-point Bug 48

2.3  input and Output  48

Syntax 2.5: Input statement 49
Programming Tip 2.4: use the apI 

documentation 53
How To 2.1: Carrying out Computations 54
Worked Example 2.1: Computing the Cost 

of stamps 

2.4  prOblem sOlVing: First 
dO it by hand  57

Worked Example 2.2: Computing travel time 

2.5  strings  59

Special Topic 2.4: Instance methods and 
static methods 64

Special Topic 2.5: using dialog Boxes for 
Input and output 65

Video Example 2.2: Computing distances 
on earth 

Random Fact 2.2: International alphabets 
and unicode 66



30

numbers and character strings (such as the ones on this 
display board) are important data types in any Java program. 
In this chapter, you will learn how to work with numbers 
and text, and how to write simple programs that perform 
useful tasks with them. 

2.1 Variables
When your program carries out computations, you will want to store values so that 
you can use them later. In a Java program, you use variables to store values. In this 
section, you will learn how to declare and use variables. 

To illustrate the use of variables, we 
will develop a pro gram that solves the 
following problem. Soft drinks are sold 
in cans and bottles. A store offers a six-
pack of 12-ounce cans for the same price 
as a two-liter bottle. Which should you 
buy? (Twelve fluid ounces equal approx-
imately 0.355 liters.) 

In our program, we will declare vari-
ables for the number of cans per pack 
and for the volume of each can. Then we 
will compute the volume of a six-pack in 
liters and print out the answer.

2.1.1 Variable declarations

The following statement declares a variable named cansPerPack:
intcansPerPack=6;

A variable is a storage location in a computer program. Each variable has a name and 
holds a value. 

A variable is similar to a parking space in a parking garage. The parking space has 
an identifier (such as “J 053”), and it can hold a vehicle. A variable has a name (such as 
cansPerPack), and it can hold a value (such as 6).   

 
What contains more soda? A six-pack of 
12-ounce cans or a two-liter bottle?

a variable is a 
storage location  
with a name. 

Like a variable in a computer  
program, a parking space has  
an identifier and a contents.



2.1 Variables  31

syntax 2.1 Variable declaration

int cansPerPack = 6;
A variable declaration ends 
with a semicolon. 

Types introduced in 
this chapter are 
the number types 
int and double 
(page 32) 
and the String type 
(page 59).

Supplying an initial value is optional, 
but it is usually a good idea.  
      See page 37.

See page 33 for rules and 
examples of valid names.

Use a descriptive 
        variable name. 

    See page 38.

typeName variableName = value;
or
typeName variableName;

Syntax

When declaring a variable, you usually want to initialize it. That is, you specify the 
value that should be stored in the variable. Consider again this variable declaration:

intcansPerPack=6;

The variable cansPerPack is initialized with the value 6. 
Like a parking space that is restricted to a certain type of vehicle (such as a compact 

car, motorcycle, or electric vehicle), a variable in Java stores data of a specific type. 
Java supports quite a few data types: num bers, text strings, files, dates, and many oth-
ers. You must specify the type whenever you declare a variable (see Syntax 2.1).  

The cansPerPack variable is an integer, a whole number without a fractional part. In 
Java, this type is called int. (See the next section for more information about number 
types in Java.)

Note that the type comes before the variable name: 
intcansPerPack=6;

After you have declared and initialized a variable, you can use it. For example,
intcansPerPack=6;
System.out.println(cansPerPack);
intcansPerCrate=4*cansPerPack;

Table 1 shows several examples of variable 
declarations.

Each parking space is suitable for a particular type of vehicle,  
just as each variable holds a value of a particular type.

When declaring a 
variable, you  
usually specify an 
initial value.

When declaring a 
variable, you also 
specify the type of  
its values.



32 Chapter 2  Fundamental data types 

table 1  Variable declarations in Java

Variable name Comment

intcans=6; Declares an integer variable and initializes it with 6.

inttotal=cans+bottles; The initial value need not be a fixed value. (Of course, cans and 
bottles must have been previously declared.)

bottles=1; error: The type is missing. This statement is not a declaration but an 
assignment of a new value to an existing variable—see Section 2.1.4. 

intvolume="2"; error: You cannot initialize a number with a string.

intcansPerPack; Declares an integer variable without initializing it. This can be a 
cause for errors—see Common Error 2.1 on page 37.

intdollars,cents; Declares two integer variables in a single statement. In this book, we 
will declare each variable in a separate statement.

2.1.2 number types

In Java, there are several different types of numbers. You use the int type to denote a 
whole number with out a fractional part. For example, there must be an integer num-
ber of cans in any pack of cans—you can not have a fraction of a can. 

When a fractional part is required (such as in the number 0.335), we use floating-
point numbers. The most commonly used type for floating-point numbers in Java is 
called double. (If you want to know the reason, read Special Topic 2.1 on page 39 .) Here 
is the declaration of a floating-point variable:

doublecanVolume=0.335;

table 2  number literals in Java

number type Comment

6 int An integer has no fractional part.

–6 int Integers can be negative.

0 int Zero is an integer.

0.5 double A number with a fractional part has type double.

1.0 double An integer with a fractional part .0 has type double.

1E6 double A number in exponential notation: 1 × 106 or 1000000. 
Numbers in exponential notation always have type double.

2.96E-2 double Negative exponent: 2.96 × 10–2 = 2.96 / 100 = 0.0296

100,000 error: Do not use a comma as a decimal separator. 

31/2 error: Do not use fractions; use decimal notation: 3.5

use the int type 
for numbers that 
cannot have a 
fractional part.



2.1 Variables  33

When a value such as 6 or 0.335 occurs in a Java program, it is called a number literal. 
If a number literal has a decimal point, it is a floating-point number; otherwise, it is an 
integer. Table 2 shows how to write integer and floating-point literals in Java.  

2.1.3 Variable names

When you declare a variable, you should pick a name that explains its purpose. For 
example, it is better to use a descriptive name, such as canVolume, than a terse name, 
such as cv. 

In Java, there are a few simple rules for variable names:

1. Variable names must start with a letter or the underscore (_) character, and the 
remaining characters must be letters, numbers, or underscores. (Technically, 
the $ symbol is allowed as well, but you should not use it—it is intended for 
names that are automatically generated by tools.)

2. You cannot use other symbols such as ? or %. Spaces are not permitted inside 
names either. You can use uppercase letters to denote word bound aries, as in 
cansPerPack. This naming convention is called camel 
case because the uppercase letters in the middle of the 
name look like the humps of a camel.) 

3. Variable names are case sensitive, that is, canVolume and 
canvolume are differ ent names. 

4. You cannot use reserved words such as double or class 
as names; these words are reserved exclusively for their 
special Java meanings. (See Appendix C for a listing of all reserved words in 
Java.)

It is a convention among Java programmers that variable names should start with a 
lowercase letter (such as canVolume) and class names should start with an uppercase 
letter (such as HelloPrinter). That way, it is easy to tell them apart. 

Table 3 shows examples of legal and illegal variable names in Java.

table 3  Variable names in Java

Variable name Comment

canVolume1 Variable names consist of letters, numbers, and the underscore character.

x In mathematics, you use short variable names such as x or y. This is legal in Java, but not 
very common, because it can make programs harder to understand (see Programming Tip 
2.1 on page 38).

! CanVolume caution: Variable names are case sensitive. This variable name is different from canVolume, 
and it violates the convention that variable names should start with a lowercase letter.

6pack error: Variable names cannot start with a number.

canvolume error: Variable names cannot contain spaces.

double error: You cannot use a reserved word as a variable name.

ltr/fl.oz error: You cannot use symbols such as / or. 

use the double 
type for floating-
point numbers.

By convention, 
variable names 
should start with a 
lowercase letter.



34 Chapter 2  Fundamental data types 

2.1.4 the assignment statement

You use the assignment statement to place a new value into a variable. Here is an 
example:

cansPerPack=8;

The left-hand side of an assignment statement consists of a variable. The right-hand 
side is an expression that has a value. That value is stored in the variable, overwriting 
its previous contents.

There is an important difference between a variable declaration and an assignment 
statement:

intcansPerPack=6;
...
cansPerPack=8;

The first statement is the declaration of cansPerPack. It is an instruction to create a 
new variable of type int, to give it the name cansPerPack, and to initialize it with 6. The 
second statement is an assignment statement: an instruction to replace the contents of 
the existing variable cansPerPack with another value.  

The = sign doesn’t mean that the left-hand side is equal to the right-hand side. The 
expression on the right is evaluated, and its value is placed into the variable on the left. 

Do not confuse this assignment operation with the = used in algebra to denote 
equality. The assign ment operator is an instruction to do something—namely, place a 
value into a variable. The mathematical equality states that two values are equal. 

For example, in Java, it is perfectly legal to write
totalVolume=totalVolume+2;

It means to look up the value stored in the variable totalVolume, add 2 to it, and place 
the result back into totalVolume. (See Figure 1.) The net effect of executing this state-
ment is to increment totalVolume by 2. For example, if totalVolume was 2.13 before 
execution of the statement, it is set to 4.13 afterwards. Of course, in mathematics it 
would make no sense to write that x = x + 2. No value can equal itself plus 2.

an assignment 
statement stores a 
new value in a 
variable, replacing 
the previously  
stored value.

A N I M AT I O N
Variable Initialization 

and Assignment

Assignment statement

Variable declaration

the assignment 
operator = does not 
denote mathematical 
equality.

syntax 2.2 assignment

double total = 0;
  .
  .
total = bottles * BOTTLE_VOLUME;
  
  .
  .
  .
total = total + cans * CAN_VOLUME;

The name of a previously 
defined variable

The same name 
can occur on both sides. 

See Figure 1.

The expression that replaces the previous value

This is an initialization 
of a new variable, 
NOT an assignment.

This is an assignment.

variableName = value;Syntax

www.allitebooks.com

http://www.allitebooks.org


2.1 Variables  35

2.1.5 

Figure 1  executing the assignment totalVolume=totalVolume+2

1

totalVolume =

totalVolume + 2

2.13

2

totalVolume =

4.13

4.13

totalVolume + 2

Constants

When a variable is defined with the reserved word final, its value can never change. 
Constants are com monly written using capital letters to distinguish them visually 
from regular variables:

finaldoubleBOTTLE_VOLUME=2;

It is good programming style to use named constants in your program to explain the 
meanings of numeric values. For example, compare the statements

doubletotalVolume=bottles*2;

and
doubletotalVolume=bottles*BOTTLE_VOLUME;

A programmer reading the first statement may not understand the significance of the 
number 2. The sec ond statement, with a named constant, makes the computation 
much clearer.

2.1.6 Comments

As your programs get more complex, you should add comments, explanations for 
human readers of your code. For example, here is a comment that explains the value 
used in a variable initialization:

finaldoubleCAN_VOLUME=0.355;//Liters in a 12-ounce can

This comment explains the significance of the value 0.355 to a human reader. The 
compiler does not pro cess comments at all. It ignores everything from a // delimiter 
to the end of the line. 

you cannot change 
the value of a 
variable that is 
defined as final.

syntax 2.3 Constant declaration

Syntax

final double CAN_VOLUME = 0.355; // Liters in a 12-ounce canThe final reserved word 
indicates that this value 
cannot be modified.

final typeName variableName = expression;

This comment explains how 
the value for the constant 
was determined.

Use uppercase letters for constants. 



36 Chapter 2  Fundamental data types 

It is a good practice to provide comments. This helps programmers who read your 
code understand your intent. In addition, you will find comments helpful when you 
review your own programs. 

You use the // delimiter for short comments. If you have a longer comment, 
enclose it between /* and */ delimiters. The compiler ignores these delimiters and 
everything in between. For example,

/*
There are approximately 0.335 liters in a 12-ounce can because one ounce
equals 0.02957353 liter; see The International Systems of Units (SI) - Conversion
Factors for General Use (NIST Special Publication 1038).
*/

Finally, start a comment that explains the purpose of a program with the /** delimiter 
instead of /*. Tools that analyze source files rely on that convention. For example,

/**
This program computes the volume (in liters) of a six-pack of soda cans.
*/

The following program shows the use of variables, constants, and the assignment 
statement. The program displays the volume of a six-pack of cans and the total vol-
ume of the six-pack and a two-liter bottle. We use constants for the can and bottle 
volumes. The totalVolume variable is initialized with the volume of the cans. Using an 
assignment statement, we add the bottle volume. As you can see from the program 
output, the six-pack of cans contains over two liters of soda.

section_1/Volume1.java

1 /**
2 This program computes the volume (in liters) of a six-pack of soda
3 cans and the total volume of a six-pack and a two-liter bottle.
4 */
5 publicclassVolume1
6 {
7 publicstaticvoidmain(String[]args)
8 {
9 intcansPerPack=6;

10 finaldoubleCAN_VOLUME=0.355;//Liters in a 12-ounce can
11 doubletotalVolume=cansPerPack*CAN_VOLUME;
12
13 System.out.print("Asix-packof12-ouncecanscontains");
14 System.out.print(totalVolume);
15 System.out.println("liters.");
16
17 finaldoubleBOTTLE_VOLUME=2;//Two-liter bottle
18
19 totalVolume=totalVolume+BOTTLE_VOLUME;
20
21 System.out.print("Asix-packandatwo-literbottlecontain");
22 System.out.print(totalVolume);
23 System.out.println("liters.");
24 }
25 }

program run

Asix-packof12-ouncecanscontains2.13liters.
Asix-packandatwo-literbottlecontain4.13liters.

use comments to add 
explanations for 
humans who read 
your code. the 
compiler ignores 
comments.



2.1 Variables  37

1. 

Just as a television commentator explains the news,  
you use comments in your program to explain its behavior.

Declare a variable suitable for holding the number of bottles in a case.
2.  What is wrong with the following variable declaration?

intouncesperliter=28.35

3.  Declare and initialize two variables, unitPrice and quantity, to contain the unit 
price of a single bottle and the number of bottles purchased. Use reasonable 
initial values.

4.  Use the variables declared in Self Check 3 to display the total purchase price.
5.  Some drinks are sold in four-packs instead of six-packs. How would you change 

the Volume1.java pro gram to compute the total volume?
6.  What is wrong with this comment?

doublecanVolume=0.355;/*Liters in a 12-ounce can//

7.  Suppose the type of the cansPerPack variable in Volume1.java was changed from int 
to double. What would be the effect on the program?

8.  Why can’t the variable totalVolume in the Volume1.java program be declared as 
final?

9.  How would you explain assignment using the parking space analogy?

practice it  Now you can try these exercises at the end of the chapter: R2.1, R2.2, P2.1.

using undeclared or uninitialized Variables

You must declare a variable before you use it for the first time. For example, the following 
sequence of statements would not be legal:

doublecanVolume=12*literPerOunce;//ERROR: literPerOunce is not yet declared 
doubleliterPerOunce=0.0296;

In your program, the statements are compiled in order. When the compiler reaches the first 
statement, it does not know that literPerOunce will be declared in the next line, and it reports 
an error. The remedy is to reorder the decla rations so that each variable is declared before it is 
used.

s e l F   c h e c k

Common error 2.1 



38 Chapter 2  Fundamental data types 

A related error is to leave a variable uninitialized:

intbottles;
intbottleVolume=bottles*2;//ERROR: bottles is not yet initialized

The Java compiler will complain that you are using a variable that has not yet been given a 
value. The remedy is to assign a value to the variable before it is used.

choose descriptive Variable names

We could have saved ourselves a lot of typing by using shorter variable names, as in

doublecv=0.355;

Compare this declaration with the one that we actually used, though. Which one is easier to 
read? There is no com parison. Just reading canVolume is a lot less trouble than reading cv and 
then figuring out it must mean “can volume”.

In practical programming, this is particularly important when programs are written by 
more than one person. It may be obvious to you that cv stands for can volume and not cur-
rent velocity, but will it be obvious to the person who needs to update your code years later? 
For that matter, will you remember yourself what cv means when you look at the code three 
months from now?

Overflow

Because numbers are represented in the computer with a limited number of digits, they cannot 
represent arbitrary numbers. 

The int type has a limited range: It can represent numbers up to a little more than two bil-
lion. For many applica tions, this is not a problem, but you cannot use an int to represent the 
world population. 

If a computation yields a value that is outside the int range, the result overflows. No error is 
displayed. Instead, the result is truncated, yielding a useless value. For example,

intfiftyMillion=50000000;
System.out.println(100*fiftyMillion);//Expected:5000000000

displays 705032704.
In situations such as this, you can switch to double values. However, read Common Error 

2.3 for more information about a related issue: roundoff errors.

roundoff errors

Roundoff errors are a fact of life when calculating with floating-point numbers. You probably 
have encountered that phenomenon yourself with manual calculations. If you calculate 1 3  to 
two decimal places, you get 0.33. Multiply ing again by 3, you obtain 0.99, not 1.00.

In the processor hardware, numbers are represented in the binary number system, using 
only digits 0 and 1. As with decimal numbers, you can get roundoff errors when binary digits 
are lost. They just may crop up at different places than you might expect. 

programming tip 2.1 

Common error 2.2 

Common error 2.3 



2.1 Variables  39

Here is an example:

doubleprice=4.35;
doublequantity=100;
doubletotal=price*quantity;//Should be100*4.35=435
System.out.println(total);//Prints434.99999999999999

In the binary system, there is no exact representation for 4.35, just as there is no exact repre-
sentation for 1 3  in the decimal system. The representation used by the computer is just a 
little less than 4.35, so 100 times that value is just a little less than 435. 

You can deal with roundoff errors by rounding to the nearest integer (see Section 2.2.5) or 
by displaying a fixed number of digits after the decimal separator (see Section 2.3.2).

do not use magic numbers

A magic number is a numeric constant that appears in your code without explanation. For 
example,

totalVolume=bottles*2;

Why 2? Are bottles twice as voluminous as cans? No, the reason is that every bottle con tains 2 
liters. Use a named constant to make the code self-documenting:

finaldoubleBOTTLE_VOLUME=2;
totalVolume=bottles*BOTTLE_VOLUME;

There is another reason for using named constants. Suppose cir-
cumstances change, and the bottle volume is now 1.5 liters. If 
you used a named constant, you make a single change, and you 
are done. Other wise, you have to look at every value of 2 in your 
program and ponder whether it meant a bottle volume, or some-
thing else. In a program that is more than a few pages long, that 
is incredibly tedious and error-prone.

Even the most reasonable cosmic constant is going to change 
one day. You think there are seven days per week? Your cus-
tomers on Mars are going to be pretty unhappy about your silly 
prejudice. Make a constant

finalintDAYS_PER_WEEK=7;

numeric types in Java

In addition to the int and double types, Java has several other numeric types.
Java has two floating-point types. The float type uses half the storage of the double type 

that we use in this book, but it can only store about 7 decimal digits. (In the computer, num-
bers are represented in the binary number system, using digits 0 and 1.) Many years ago, when 
computers had far less memory than they have today, float was the stan dard type for floating-
point computations, and programmers would indulge in the luxury of “double precision” 
only when they needed the additional digits. Today, the float type is rarely used. 

By the way, these numbers are called “floating-point” because of their internal representa-
tion in the computer. Consider numbers 29600, 2.96, and 0.0296. They can be represented in 
a very similar way: namely, as a sequence of the significant digits—296—and an indication of 
the position of the decimal point. When the values are multiplied or divided by 10, only the 

programming tip 2.2 

We prefer programs that 
are easy to understand 
over those that appear 
to work by magic.

special topic 2.1 



40 Chapter 2  Fundamental data types 

position of the decimal point changes; it “floats”. Computers use base 2, not base 10, but the 
principle is the same.

In addition to the int type, Java has integer types byte, short, and long. Their ranges are 
shown in Table 4. (Their strange-looking limits are related to powers of 2, another conse-
quence of the fact that computers use binary num bers.)

table 4  Java number types

type description size

int The integer type, with range  
–2,147,483,648 (Integer.MIN_VALUE) . . . 2,147,483,647 

(Integer.MAX_VALUE, about 2.14 billion)

4 bytes

byte The type describing a single byte consisting of 8 bits,  
with range –128 . . . 127

1 byte

short The short integer type, with range –32,768 . . . 32,767 2 bytes

long The long integer type, with about 19 decimal digits 8 bytes

double The double-precision floating-point type,  
with about 15 decimal digits and a range of about ±10308 

8 bytes

float The single-precision floating-point type,  
with about 7 decimal digits and a range of about ±1038

4 bytes

char The character type, representing code units in the  
Unicode encoding scheme (see Random Fact 2.2)

2 bytes

big numbers

If you want to compute with really large numbers, you can use big number objects. Big num-
ber objects are objects of the BigInteger and BigDecimal classes in the java.math package. Unlike 
the number types such as int or double, big number objects have essentially no limits on their 
size and precision. However, computations with big number objects are much slower than 
those that involve number types. Perhaps more importantly, you can’t use the familiar arith-
metic operators such as (+-*) with them. Instead, you have to use methods called add, sub-
tract, and multiply. Here is an example of how to create a BigInteger object and how to call the 
multiply method: 

BigIntegeroneHundred=newBigInteger("100");
BigIntegerfiftyMillion=newBigInteger("50000000");
System.out.println(oneHundred.multiply(fiftyMillion));//Prints 5000000000

The BigDecimal type carries out floating-point computations without roundoff errors. For 
example,

BigDecimalprice=newBigDecimal("4.35");
BigDecimalquantity=newBigDecimal("100");
BigDecimaltotal=price.multiply(quantity);
System.out.println(total);//Prints 435.00

special topic 2.2 



2.2 arithmetic  41

2.2 arithmetic
In the following sections, you will learn how to carry out arithmetic calculations 
in Java. 

2.2.1 arithmetic operators

Java supports the same four basic arithmetic operations as a calculator—addition, 
subtraction, multiplica tion, and division—but it uses different symbols for multipli-
cation and division. 

You must write a*b to denote multiplication. Unlike in mathematics, you cannot 
write ab, a · b, or a × b. Similarly, division is always indicated with a /, never a ÷ or a 
fraction bar. 

For example,
a b+

2
 becomes (a+b)/2.

The combination of variables, literals, operators, and/or method calls is called an 
expression. For exam ple, (a+b)/2 is an expression. 

Parentheses are used just as in algebra: to indicate in which order the parts of the 
expression should be computed. For example, in the expression (a+b)/2, the sum 
a+b is computed first, and then the sum is divided by 2. In contrast, in the expression 

a+b/2

only b is divided by 2, and then the sum of a and b/2 is formed. As in regular algebraic 
notation, multi plication and division have a higher precedence than addition and sub-
traction. For example, in the expres sion a+b/2, the / is carried out first, even though 
the + operation occurs further to the left. 

If you mix integer and floating-point values in an arithmetic expression, the result 
is a floating-point value. For example, 7+4.0 is the floating-point value 11.0. 

2.2.2 Increment and decrement

Changing a variable by adding or subtracting 1 is so common that there is a special 
shorthand for it. The ++ operator increments a variable––see Figure 2:

counter++;//Adds 1 to the variable counter

Similarly, the -- operator decrements a variable:
counter--;//Subtracts 1 from counter

mixing integers and 
floating-point values 
in an arithmetic 
expression yields a 
floating-point value.

the ++ operator adds 
1 to a variable; the -- 
operator subtracts 1.

Figure 2  Incrementing a Variable  

1
counter =

counter + 1

3
2

counter =

4

4

counter + 1



42 Chapter 2  Fundamental data types 

2.2.3 Integer division and remainder

Division works as you would expect, as long as at least 
one of the numbers involved is a floating-point number. 
That is,

7.0/4.0
7/4.0
7.0/4

all yield 1.75. However, if both numbers are integers, 
then the result of the division is always an integer, with 
the remainder discarded. That is,

7/4

evaluates to 1 because 7 divided by 4 is 1 with a remain-
der of 3 (which is discarded). This can be a source of 
subtle programming errors—see Common Error 2.4.

If you are interested in the remainder only, use the % operator:
7%4

is 3, the remainder of the integer division of 7 by 4. The % symbol has no analog in alge-
bra. It was chosen because it looks similar to /, and the remainder operation is related 
to division. The operator is called modulus. (Some people call it modulo or mod.) It 
has no relationship with the percent operation that you find on some calculators.

Here is a typical use for the integer / and % operations. Suppose you have an amount 
of pennies in a piggybank:

intpennies=1729;

You want to determine the value in dollars and cents. You obtain the dollars through 
an integer division by 100:

intdollars=pennies/100;//Sets dollars to 17

The integer division discards the remainder. To obtain the remainder, use the % operator:
intcents=pennies%100;//Sets cents to 29 

See Table 5 for additional examples.

table 5  Integer division and remainder

expression
(where n = 1729)

Value Comment

n%10 9 n%10is always the last digit of n.

n/10 172 This is always n without the last digit.

n%100 29 The last two digits of n.

n/10.0 172.9 Because 10.0 is a floating-point number, the fractional part is not discarded.

–n%10 -9 Because the first argument is negative, the remainder is also negative.

n%2 1 n%2 is 0 if n is even, 1 or –1 if n is odd.

Integer division and the%
operator yield the dollar and 
cent values of a piggybank  
full of pennies.

If both arguments  
of / are integers, 
the remainder  
is discarded.

the % operator 
computes the 
remainder of an 
integer division. 



2.2 arithmetic  43

2.2.4 powers and roots

In Java, there are no symbols for powers and roots. To compute them, you must call 
methods. To take the square root of a number, you use the Math.sqrt method. For 
example, x  is written as Math.sqrt(x). To compute xn, you write Math.pow(x,n). 

In algebra, you use fractions, exponents, and roots to arrange expressions in a 
compact two-dimen sional form. In Java, you have to write all expressions in a linear 
arrangement. For example, the mathematical expression

b
r n

× +





1
100

becomes
b*Math.pow(1+r/100,n)

Figure 3 shows how to analyze such an expression. Table 6 shows additional mathe-
matical methods.  

table 6  mathematical methods

method returns

Math.sqrt(x) Square root of x (≥ 0)

Math.pow(x,y) xy (x > 0, or x = 0 and y > 0, or x < 0 and y is an integer)

Math.sin(x) Sine of x (x in radians)

Math.cos(x) Cosine of x

Math.tan(x) Tangent of x

Math.toRadians(x) Convert x degrees to radians (i.e., returns x · π/180)

Math.toDegrees(x) Convert x radians to degrees (i.e., returns x · 180/π)

Math.exp(x) ex

Math.log(x) Natural log (ln(x), x > 0)

the Java library 
declares many 
mathematical 
functions, such as 
Math.sqrt (square 
root) and Math.pow 
(raising to a power).

Figure 3   
analyzing an expression

b * Math.pow(1 + r / 100, n)

r
100

r
1 +

100

r n





1 +
100

b
r n

× +





1
100



44 Chapter 2  Fundamental data types 

table 6  mathematical methods

method returns

Math.log10(x) Decimal log (log10 (x), x > 0)

Math.round(x) Closest integer to x (as a long)

Math.abs(x) Absolute value | x |

Math.max(x,y) The larger of x and y

Math.min(x,y) The smaller of x and y

2.2.5 Converting Floating-point numbers to Integers

Occasionally, you have a value of type double that you need to convert to the type int. 
It is an error to assign a floating-point value to an integer:

doublebalance=total+tax;
intdollars=balance;//Error: Cannot assign double to int

The compiler disallows this assignment because it is potentially dangerous:

• The fractional part is lost. 
• The magnitude may be too large. (The largest integer is about 2 billion, but a 

floating-point number can be much larger.)

You must use the cast operator (int) to convert a convert floating-point value to an 
integer. Write the cast operator before the expression that you want to convert:

doublebalance=total+tax;
intdollars=(int)balance;

The cast (int) converts the floating-point value balance to an integer by discarding the 
fractional part. For example, if balance is 13.75, then dollars is set to 13. 

When applying the cast operator to an arithmetic expression, you need to place the 
expression inside parentheses:

intdollars=(int)(total+tax);

you use a cast 
(typeName) to 
convert a value to a 
different type.

syntax 2.4 Cast

Syntax

(int) (balance * 100)

This is the type of the expression after casting.

These parentheses are a 
part of the cast operator.

Use parentheses here if 
the cast is applied to an expression 

with arithmetic operators.

(typeName) expression



2.2 arithmetic  45

Discarding the fractional part is not always appropriate. If you want to round a 
floating-point number to the nearest whole number, use the Math.round method. This 
method returns a long integer, because large floating-point numbers cannot be stored 
in an int. 

longrounded=Math.round(balance);

If balance is 13.75, then rounded is set to 14. 
If you know that the result can be stored in an int and does not require a long, you 

can use a cast:
introunded=(int)Math.round(balance);

table 7  arithmetic expressions

mathematical 
expression

Java 
expression

Comments

x y+
2

(x+y)/2 The parentheses are required; 
x+y/2 computes x

y+
2 .

xy
2

x*y/2 Parentheses are not required; operators with 
the same precedence are evaluated left to right.

1
100

+






r
n Math.pow(1+r/100,n) Use Math.pow(x,n) to compute xn.

a b2 2+ Math.sqrt(a*a+b*b) a*a is simpler than Math.pow(a,2).

i j k+ +
3

(i+j+k)/3.0 If i, j, and k are integers, using a denominator 
of 3.0 forces floating-point division.

π Math.PI Math.PI is a constant declared in the Math class.

10.  A bank account earns interest once per year. In Java, how do you compute the 
interest earned in the first year? Assume variables percent and balance of type 
double have already been declared.

11.  In Java, how do you compute the side length of a square whose area is stored in 
the variable area?

12.  The volume of a sphere is given by

V r= 4
3

3π

If the radius is given by a variable radius of type double, write a Java expression 
for the volume. 

13.  What is the value of 1729/10 and 1729%10?
14.  If n is a positive number, what is(n/10)%10?

practice it  Now you can try these exercises at the end of the chapter: R2.3, R2.5, P2.4, P2.25.

O n l i n e  e x a m p l e

a program 
demonstrating casts, 
rounding, and the 
% operator.

s e l F   c h e c k



46 Chapter 2  Fundamental data types 

unintended integer division

It is unfortunate that Java uses the same symbol, namely /, for both integer and floating-point 
division. These are really quite different operations. It is a common error to use integer divi-
sion by accident. Consider this segment that computes the average of three integers.

intscore1=10;
intscore2=4;
intscore3=9;

doubleaverage=(score1+score2+score3)/3;//Error
System.out.println("Averagescore:"+average);//Prints7.0, not7.666666666666667

What could be wrong with that? Of course, the average of score1, score2, and score3 is

score1 score2 score3+ +

3

Here, however, the / does not mean division in the mathematical sense. It denotes integer divi-
sion because both score1+score2+score3 and 3 are integers. Because the scores add up to 23, 
the average is computed to be 7, the result of the integer division of 23 by 3. That integer 7 is 
then moved into the floating-point variable average. The remedy is to make the numerator or 
denominator into a floating-point number:

doubletotal=score1+score2+score3;
doubleaverage=total/3;

or

doubleaverage=(score1+score2+score3)/3.0;

unbalanced parentheses

Consider the expression

((a+b)*t/2*(1-t)

What is wrong with it? Count the parentheses. There are three ( and two ). The parenthe-
ses are unbalanced. This kind of typing error is very common with complicated expressions. 
Now consider this expression.

(a+b)*t)/(2*(1-t)

This expression has three ( and three ), but it still is not correct. In the middle of the 
expression,

(a+b)*t)/(2*(1-t)
↑

there is only one ( but two ), which is an error. In the middle of an expression, the count of ( 
must be greater than or equal to the count of ), and at the end of the expression the two counts 
must be the same.

Here is a simple trick to make the counting easier without using 
pencil and paper. It is difficult for the brain to keep two counts 
simultaneously. Keep only one count when scan ning the expres-
sion. Start with 1 at the first opening parenthesis, add 1 whenever 
you see an opening parenthesis, and subtract one whenever you 
see a closing parenthesis. Say the num bers aloud as you scan the 

Common error 2.4 

Common error 2.5 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

2.2 arithmetic  47

expression. If the count ever drops below zero, or is not zero at the end, the parentheses are 
unbalanced. For example, when scanning the previous expres sion, you would mutter

(a+b)*t)/(2*(1-t)
10-1

and you would find the error.

spaces in expressions

It is easier to read

x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

than

x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

Simply put spaces around all operators +-*/%=. However, don’t put a space after a unary 
minus: a – used to negate a single quantity, such as -b. That way, it can be easily distinguished 
from a binary minus, as in a-b. 

It is customary not to put a space after a method name. That is, write Math.sqrt(x) and not
Math.sqrt(x).

combining assignment and arithmetic

In Java, you can combine arithmetic and assignment. For example, the instruction

total+=cans;

is a shortcut for

total=total+cans;

Similarly,

total*=2;

is another way of writing

total=total*2;

Many programmers find this a convenient shortcut. If you like it, go ahead and use it in your 
own code. For simplic ity, we won’t use it in this book, though.

programming tip 2.3 

special topic 2.3 

VIdeo example 2.1 using integer division

A punch recipe calls for a given amount of orange soda. In this 
Video Example, you will see how to compute the required number 
of 12-ounce cans, using integer division.



48 Chapter 2  Fundamental data types 

2.3 Input and output
In the following sections, you will see how to read user input and how to control the 
appearance of the output that your programs produce.

2.3.1 reading Input 

You can make your programs more flexible if you ask the program user for inputs 
rather than using fixed values. Consider, for example, a program that processes prices 

In 1994, Intel Corporation released what 
was then its most powerful processor, the 

pentium. unlike previous generations of its processors, it 
had a very fast floating-point unit. Intel’s goal was to com-
pete aggressively with the makers of higher-end proces sors 
for engineering workstations. the pentium was a huge suc-
cess immediately.

In the summer of 1994, dr. thomas nicely of lynchburg 
College in Virginia ran an extensive set of computations 
to analyze the sums of reciprocals of certain sequences of 
prime numbers. the results were not always what his the-
ory predicted, even after he took into account the inevita ble 
roundoff errors. then dr. nicely noted that the same pro-
gram did produce the correct results when running on the 
slower 486 processor that preceded the pentium in Intel’s 
lineup. this should not have happened. the optimal round-
off behavior of floating-point calculations has been stan-
dardized by the Institute for electrical and electronic engi-
neers (Ieee) and Intel claimed to adhere to the Ieee standard 
in both the 486 and the pentium processors. upon further 
checking, dr. nicely discovered that indeed there was a very 
small set of numbers for which the prod uct of two num-
bers was computed differently on the two processors. For 
example,

4195 835 4195 835 3145727 3145727, , , , , , , ,− ( ) ×( )
is mathematically equal to 0, and it did compute as 0 on a 
486 processor. on his pentium processor the result was 
256.

as it turned out, Intel had independently discovered 
the bug in its testing and had started to produce chips that 
fixed it. the bug was caused by an error in a table that was 
used to speed up the floating-point multiplication algo rithm 
of the processor. Intel determined that the problem was 
exceedingly rare. they claimed that under normal use, a 
typical consumer would only notice the problem once every 
27,000 years. unfortunately for Intel, dr. nicely had not 
been a normal user.

now Intel had a real problem on its hands. It figured that 
the cost of replacing all pentium processors that it had sold 
so far would cost a great deal of money. Intel already had 
more orders for the chip than it could produce, and it would 
be particularly galling to have to give out the scarce chips 
as free replacements instead of selling them. Intel’s man-
agement decided to punt on the issue and initially offered 
to replace the processors only for those customers who 
could prove that their work required absolute preci sion in 
mathematical calculations. naturally, that did not go over 
well with the hundreds of thousands of customers who had 
paid retail prices of $700 and more for a pentium chip and 
did not want to live with the nagging feeling that perhaps, 
one day, their income tax program would pro duce a faulty 
return.

ultimately, Intel caved in to public demand and replaced 
all defective chips, at a cost of about 475 million dollars.

1.
40

1.
20

1.
00

0.
80

0.
60

0.
40

0.
20

0.
00

-0
.2

0

-0
.4

0

-0
.6

0

-0
.8

0

-1
.0

0

-1
.2

0

-1
.4

0

-1
.6

0

-1
.8

0

-2
.0

0

1.40

1.10

0.80

0.50

0.20

-0.10

-0.40

-0.70
-1.00

-1.30

1.333680000

1.333700000

1.333720000

1.333740000

1.333760000

1.333780000

1.333800000

1.333820000

1.333840000

x/
y

4195835+

3145727+

Pentium FDIV error  

This graph shows a set of numbers for which the original 
Pentium processor obtained the wrong quotient. 

Random Fact 2.1 the pentium Floating-point Bug



2.3 Input and output  49

and quantities of soda containers. Prices and quantities are likely to fluctuate. The 
program user should provide them as inputs.

When a program asks for user input, it should first print a message that tells the 
user which input is expected. Such a message is called a prompt. 

System.out.print("Pleaseenterthenumberofbottles:");//Display prompt

Use the print method, not println, to display the prompt. You want the input to 
appear after the colon, not on the following line. Also remember to leave a space after 
the colon.

Because output is sent to System.out, you might think that you use System.in for 
input. Unfortunately, it isn’t quite that simple. When Java was first designed, not 
much attention was given to reading keyboard input. It was assumed that all pro-
grammers would produce graphical user interfaces with text fields and menus. 
System.in was given a minimal set of features and must be combined with other classes 
to be use ful. 

To read keyboard input, you use a class called Scanner. You obtain a Scanner object 
by using the following statement: 

Scannerin=newScanner(System.in);

You will learn more about objects and classes in Chapter 8. For now, simply include 
this statement when ever you want to read keyboard input. 

When using the Scanner class, you need to carry out another step: import the class 
from its package. A package is a collection of classes with a related purpose. All 
classes in the Java library are contained in packages. The System class belongs to the 
package java.lang. The Scanner class belongs to the package java.util.

Only the classes in the java.lang package are automatically available in your pro-
grams. To use the Scanner class from the java.util package, place the following decla-
ration at the top of your program file:

importjava.util.Scanner;

Once you have a scanner, you use its nextInt method to read an integer value: 
System.out.print("Pleaseenterthenumberofbottles:");
intbottles=in.nextInt();

A supermarket  
scanner reads bar 
codes. The Java  
Scanner reads 
numbers and text.

Java classes are 
grouped into 
packages. use the 
import statement 
to use classes  
from packages.

syntax 2.5 Input statement

import java.util.Scanner;
.
.

Scanner in = new Scanner(System.in);
.
.

System.out.print("Please enter the number of bottles: ");
int bottles = in.nextInt();

Display a prompt in the console window.

The program waits for user input,
then places the input into the variable.

Define a variable to hold the input value.

Don't use println here.

Create a Scanner object 
to read keyboard input.

Include this line so you can 
use the Scanner class.



50 Chapter 2  Fundamental data types 

When the nextInt method is called, the program waits until the user types a number 
and presses the Enter key. After the user supplies the input, the number is placed into 
the bottles variable, and the program continues.

To read a floating-point number, use the nextDouble method instead: 
System.out.print("Enterprice:");
doubleprice=in.nextDouble();

2.3.2 Formatted output

When you print the result of a computation, you often want to control its appear-
ance. For exam ple, when you print an amount in dollars and cents, you usually want 
it to be rounded to two significant digits. That is, you want the output to look like

Priceperliter:1.22

instead of
Priceperliter:1.215962441314554

The following command displays the price with two digits after the decimal point:
System.out.printf("%.2f",price);

You can also specify a field width:
System.out.printf("%10.2f",price);

The price is printed using ten characters: six spaces followed by the four characters 
1.22. 

1 . 2 2

The construct %10.2f is called a format specifier: it describes how a value should be for-
matted. The letter f at the end of the format specifier indicates that we are displaying a 
floating-point number. Use d for an integer and s for a string; see Table 8 for examples.

table 8  Format specifier examples

Format string sample output Comments

"%d" 24 Use d with an integer.

"%5d" 24 Spaces are added so that the field width is 5.

"Quantity:%5d" Quantity:24 Characters inside a format string but outside a 
format specifier appear in the output.

"%f" 1.21997 Use f with a floating-point number.

"%.2f" 1.22 Prints two digits after the decimal point.

"%7.2f" 1.22 Spaces are added so that the field width is 7.

"%s" Hello Use s with a string.

"%d%.2f" 241.22 You can format multiple values at once.

use the Scanner class 
to read keyboard 
input in a  
console window.

use the printf 
method to specify 
how values should  
be formatted.



2.3 Input and output  51

You use the printf method to line 
up your output in neat columns.

A format string contains format specifiers and literal characters. Any characters that 
are not format specifiers are printed verbatim. For example, the command

System.out.printf("Priceperliter:%10.2f",price);

prints
Priceperliter:1.22

You can print multiple values with a single call to the printf method. Here is a typical 
example:

System.out.printf("Quantity:%dTotal:%10.2f",quantity,total);

The printf method, like the print method, does not start a new line after the output. 
If you want the next output to be on a separate line, you can call System.out.println(). 
Alternatively, Section 2.5.4 shows you how to add a newline character to the format 
string. 

Our next example program will prompt for the price of a six-pack and the volume 
of each can, then print out the price per ounce. The program puts to work what you 
just learned about reading input and formatting output.

section_3/Volume2.java

1 importjava.util.Scanner;
2
3 /**
4 This program prints the price per ounce for a six-pack of cans.
5 */
6 publicclassVolume2
7 {
8 publicstaticvoidmain(String[]args)
9 {

Q u a n t i t y :  2 4 :latoT 1 7 . 2 9

Two digits after 
the decimal point

The printf method does not 
start a new line here.width 10

No field width was specified, 
so no padding added



52 Chapter 2  Fundamental data types 

10 //Read price per pack
11
12 Scannerin=newScanner(System.in);
13
14 System.out.print("Pleaseenterthepriceforasix-pack:");
15 doublepackPrice=in.nextDouble();
16
17 //Read can volume
18
19 System.out.print("Pleaseenterthevolumeforeachcan(inounces):");
20 doublecanVolume=in.nextDouble();
21
22 //Compute pack volume 
23 
24 finaldoubleCANS_PER_PACK=6;
25 doublepackVolume=canVolume*CANS_PER_PACK;
26
27 //Compute and print price per ounce
28
29 doublepricePerOunce=packPrice/packVolume;
30
31 System.out.printf("Priceperounce:%8.2f",pricePerOunce);
32 System.out.println();
33 }
34 }

program run

Pleaseenterthepriceforasix-pack:2.95
Pleaseenterthevolumeforeachcan(inounces):12
Priceperounce:0.04

15.  Write statements to prompt for and read the user’s age using a Scanner variable 
named in.

16.  What is wrong with the following statement sequence?
System.out.print("Pleaseentertheunitprice:");
doubleunitPrice=in.nextDouble();
intquantity=in.nextInt();

17.  What is problematic about the following statement sequence?
System.out.print("Pleaseentertheunitprice:");
doubleunitPrice=in.nextInt();

18.  What is problematic about the following statement sequence?
System.out.print("Pleaseenterthenumberofcans");
intcans=in.nextInt();

19.  What is the output of the following statement sequence?
intvolume=10;
System.out.printf("Thevolumeis%5d",volume);

20.  Using the printf method, print the values of the integer variables bottles and cans 
so that the output looks like this:
Bottles:8
Cans:24

The numbers to the right should line up. (You may assume that the numbers 
have at most 8 digits.)

s e l F   c h e c k



2.3 Input and output  53

practice it  Now you can try these exercises at the end of the chapter: R2.10, P2.6, P2.7.

use the api documentation

The classes and methods of the Java library are listed in the API doc-
umentation. The API is the “application programming interface”. 
A programmer who uses the Java classes to put together a computer 
program (or application) is an application programmer. That’s you. 
In contrast, the programmers who designed and implemented the 
library classes (such as Scanner) are system programmers. 

You can find the API documentation at http://download.oracle.com/javase/7/docs/api. The 
API documentation describes all classes in the Java library—there are thousands of them. For-
tunately, only a few are of interest to the beginning programmer. To learn more about a class, 
click on its name in the left hand column. You can then find out the package to which the class 
belongs, and which methods it supports (see Figure 4). Click on the link of a method to get a 
detailed description. 

Appendix D contains an abbreviated version of the API docu mentation. 

programming tip 2.4 

the apI (application 
programming Inter-
face) documenta tion 
lists the classes and 
methods of the  
Java library. 

Figure 4  the apI documentation of the standard Java library



54 Chapter 2  Fundamental data types 

step 1  Understand the problem: What are the inputs? What are the desired outputs?

In this problem, there are two inputs:
• The denomination of the bill that the customer inserts
• The price of the purchased item

There are two desired outputs: 
• The number of dollar coins that the machine returns
• The number of quarters that the machine returns

step 2  Work out examples by hand. 

This is a very important step. If you can’t compute a couple of solutions by hand, it’s unlikely 
that you’ll be able to write a program that automates the computation.

Let’s assume that a customer purchased an item that cost $2.25 and inserted a $5 bill. The 
customer is due $2.75, or two dollar coins and three quarters, in change.

That is easy for you to see, but how can a Java program come to the same conclusion? The 
key is to work in pen nies, not dollars. The change due the customer is 275 pennies. Dividing 
by 100 yields 2, the number of dollars. Dividing the remainder (75) by 25 yields 3, the number 
of quarters.

step 3  Write pseudocode for computing the answers. 

In the previous step, you worked out a specific instance of the problem. You now need to 
come up with a method that works in general. 

Given an arbitrary item price and payment, how can you compute the coins due? First, 
compute the change due in pennies:

change due = 100 x bill value - item price in pennies

To get the dollars, divide by 100 and discard the remainder:

dollar coins = change due / 100 (without remainder)

The remaining change due can be computed in two ways. If you are familiar with the modulus 
operator, you can simply compute

change due = change due % 100

Alternatively, subtract the penny value of the dollar coins from the change due:

change due = change due - 100 x dollar coins

To get the quarters due, divide by 25:

quarters = change due / 25

hoW to 2.1 carrying out computations

Many programming problems require arithmetic computations. This How To shows you 
how to turn a problem statement into pseudocode and, ultimately, a Java program.

For example, suppose you are asked to write a program that simulates a vending machine. 
A customer selects an item for purchase and inserts a bill into the vending machine. The vend-
ing machine dispenses the purchased item and gives change. We will assume that all item prices 
are multiples of 25 cents, and the machine gives all change in dollar coins and quarters. 

Your task is to compute how many coins of each type to return.



2.3 Input and output  55

step 4  Declare the variables and constants that you need, and specify their types.

Here, we have five variables:
• billValue

• itemPrice

• changeDue

• dollarCoins

• quarters

Should we introduce constants to explain 100 and 25 as PENNIES_PER_DOLLAR and PENNIES_PER_
QUARTER? Doing so will make it easier to convert the program to international markets, so we 
will take this step. 

It is very important that changeDue and PENNIES_PER_DOLLAR are of type int because the com-
putation of dollarCoins uses integer division. Similarly, the other variables are integers.

step 5  Turn the pseudocode into Java statements. 

If you did a thorough job with the pseudocode, this step should be easy. Of course, you have 
to know how to express mathematical operations (such as powers or integer division) in Java.

changeDue=PENNIES_PER_DOLLAR*billValue-itemPrice;
dollarCoins=changeDue/PENNIES_PER_DOLLAR;
changeDue=changeDue%PENNIES_PER_DOLLAR;
quarters=changeDue/PENNIES_PER_QUARTER;

step 6  Provide input and output. 

Before starting the computation, we prompt the user for the bill value and item price:

System.out.print("Enterbillvalue(1=$1bill,5=$5bill,etc.):");
billValue=in.nextInt();
System.out.print("Enteritempriceinpennies:");
itemPrice=in.nextInt();

When the computation is finished, we display the result. For extra credit, we use the printf 
method to make sure that the output lines up neatly. 

System.out.printf("Dollarcoins:%6d",dollarCoins);
System.out.printf("Quarters:%6d",quarters);

step 7  Provide a class with a main method.

Your computation needs to be placed into a class. Find an appropriate name for the class that 
describes the purpose of the computation. In our example, we will choose the name Vending-
Machine. 

Inside the class, supply a main method. 

A vending machine takes bills  
and gives change in coins.



56 Chapter 2  Fundamental data types 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

In the main method, you need to declare constants and variables (Step 4), carry out compu-
tations (Step 5), and provide input and output (Step 6). Clearly, you will want to first get the 
input, then do the computations, and finally show the output. Declare the constants at the 
beginning of the method, and declare each variable just before it is needed. 

Here is the complete program, how_to_1/VendingMachine.java:

importjava.util.Scanner;

/**
This program simulates a vending machine that gives change.
*/
publicclassVendingMachine
{
publicstaticvoidmain(String[]args)
{
Scannerin=newScanner(System.in);

finalintPENNIES_PER_DOLLAR=100;
finalintPENNIES_PER_QUARTER=25;

System.out.print("Enterbillvalue(1=$1bill,5=$5bill,etc.):");
intbillValue=in.nextInt();
System.out.print("Enteritempriceinpennies:");
intitemPrice=in.nextInt();

//Compute change due

intchangeDue=PENNIES_PER_DOLLAR*billValue-itemPrice;
intdollarCoins=changeDue/PENNIES_PER_DOLLAR;
changeDue=changeDue%PENNIES_PER_DOLLAR;
intquarters=changeDue/PENNIES_PER_QUARTER;

//Print change due

System.out.printf("Dollarcoins:%6d",dollarCoins);
System.out.println();
System.out.printf("Quarters:%6d",quarters);
System.out.println();
}
}

program run

Enterbillvalue(1=$1bill,5=$5bill,etc.):5
Enteritempriceinpennies:225
Dollarcoins:2
Quarters:3

Worked example 2.1 computing the cost of stamps

This Worked Example uses arithmetic functions to simulate a stamp vending machine.



2.4 problem solving: First do It By hand  57

2.4 problem solving: First do It By hand
A very important step for developing an algorithm is to first carry out the computa-
tions by hand. If you can’t compute a solution yourself, it’s unlikely that you’ll be 
able to write a program that automates the computation.

To illustrate the use of hand calculations, consider the following problem. 
A row of black and white tiles needs to be placed along a wall. For aesthetic rea-

sons, the architect has specified that the first and last tile shall be black. 
Your task is to compute the number of tiles needed and the gap at each end, given 

the space available and the width of each tile.

Total width

Gap

To make the problem more concrete, let’s assume the following dimensions: 

• Total width: 100 inches
• Tile width: 5 inches

The obvious solution would be to fill the space with 20 tiles, but that would not 
work—the last tile would be white.

Instead, look at the problem this way: The first tile must always be black, and then 
we add some num ber of white/black pairs:

The first tile takes up 5 inches, leaving 95 inches to be covered by pairs. Each pair is 
10 inches wide. Therefore the number of pairs is 95 / 10 = 9.5. However, we need to 
discard the fractional part since we can’t have fractions of tile pairs. 

Therefore, we will use 9 tile pairs or 18 tiles, plus the initial black tile. Altogether, 
we require 19 tiles. 

The tiles span 19 × 5 = 95 inches, leaving a total gap of 100 – 19 × 5 = 5 inches. 
The gap should be evenly distributed at both ends. At each end, the gap is 

(100 – 19 × 5) / 2 = 2.5 inches.
This computation gives us enough information to devise an algorithm with arbi-

trary values for the total width and tile width.

number of pairs = integer part of (total width - tile width) / (2 x tile width)
number of tiles = 1 + 2 x number of pairs
gap at each end = (total width - number of tiles x tile width) / 2

As you can see, doing a hand calculation gives enough insight into the problem that it 
becomes easy to develop an algorithm.

pick concrete values 
for a typical situation 
to use in a hand 
calculation.

O n l i n e  e x a m p l e

a program that 
implements this 
algorithm.



58  Chapter 2   Fundamental Data Types 

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

21.	 Translate the pseudocode for computing the number of tiles and the gap width 
into Java.

22.	 Suppose the architect specifies a pattern with black, gray, and white tiles, like 
this: 

Again, the first and last tile should be black. How do you need to modify the 
algorithm?

23.	 A robot needs to tile a floor with alternating black and white tiles. Develop 
an algorithm that yields the color (0 for black, 1 for white), given the row and 
column number. Start with specific values for the row and column, and then 
generalize. 

1 2 3 4

1

2

3

4

24.	 For a particular car, repair and maintenance costs in year 1 are estimated at $100; 
in year 10, at $1,500. Assuming that the repair cost increases by the same amount 
every year, develop pseudocode to com pute the repair cost in year 3 and then 
generalize to year n.

25.	 The shape of a bottle is approximated by two cylinders of radius r1 and r2 and 
heights h1 and h2, joined by a cone section of height h3. 
Using the formulas for the volume of a cylinder,V r h= π 2 , and a cone section,

V
r r r r h

=
+ +( )

π 1
2

1 2 2
2

3 ,

develop pseudocode to compute the volume of the bottle. Using an actual bottle 
with known volume as a sample, make a hand calculation of your pseudocode.

Practice	It	 Now you can try these exercises at the end of the chapter: R2.15, R2.17, R2.18.

S e l f 	 C h e C k

r2

h2

h1

h3

r1

WorkeD example 2.2  Computing	Travel	Time

In this Worked Example, we develop a hand calculation to compute  
the time that a robot requires to retrieve an item from rocky terrain.



2.5 strings  59

2.5 strings
Many programs process text, not numbers. Text 
consists of characters: letters, numbers, punc-
tuation, spaces, and so on. A string is a sequence 
of characters. For example, the string "Harry" is a 
sequence of five char acters. 

2.5.1 the String type

You can declare variables that hold strings.
Stringname="Harry";

We distinguish between string variables (such as the variable name declared above) and 
string literals (char acter sequences enclosed in quotes, such as "Harry"). A string vari-
able is simply a variable that can hold a string, just as an integer variable can hold an 
integer. A string literal denotes a particular string, just as a number literal (such as 2) 
denotes a particular number.

The number of characters in a string is called the length of the string. For exam-
ple, the length of "Harry" is 5. You can compute the length of a string with the length 
method. 

intn=name.length();

A string of length 0 is called the empty string. It contains no characters and is written 
as "".

2.5.2 Concatenation

Given two strings, such as "Harry" and "Morgan", you can concatenate them to one 
long string. The result consists of all characters in the first string, followed by all 
characters in the second string. In Java, you use the + operator to concatenate two 
strings.

For example, 
StringfName="Harry";
StringlName="Morgan";
Stringname=fName+lName;

results in the string 
"HarryMorgan"

What if you’d like the first and last name separated by a space? No problem:
Stringname=fName+""+lName;

This statement concatenates three strings: fName, the string literal "", and lName. The 
result is

"HarryMorgan"

When the expression to the left or the right of a + operator is a string, the other one 
is automatically forced to become a string as well, and both strings are concatenated. 

strings are sequences 
of characters. 

the length method 
yields the number  
of characters in  
a string.

use the + operator to 
concatenate strings; 
that is, to put them 
together to yield a 
longer string.



60 Chapter 2  Fundamental data types 

For example, consider this code: 
StringjobTitle="Agent";
intemployeeId=7;
Stringbond=jobTitle+employeeId;

Because jobTitle is a string, employeeId is converted from the integer 7 to the string "7". 
Then the two strings "Agent" and "7" are concatenated to form the string "Agent7". 

This concatenation is very useful for reducing the number of System.out.print 
instructions. For exam ple, you can combine 

System.out.print("Thetotalis");
System.out.println(total);

to the single call 
System.out.println("Thetotalis"+total);

The concatenation "Thetotalis"+total computes a single string that consists of the 
string "Thetotalis", followed by the string equivalent of the number total. 

2.5.3 string Input

You can read a string from the console:
System.out.print("Pleaseenteryourname:");
Stringname=in.next();

When a string is read with the next method, only one word is read. For example, sup-
pose the user types

HarryMorgan

as the response to the prompt. This input consists of two words. The call in.next() 
yields the string "Harry". You can use another call to in.next() to read the second word. 

2.5.4 escape sequences

To include a quotation mark in a literal string, precede it with a backslash (\), like this:
"Hesaid\"Hello\""

The backslash is not included in the string. It indicates that the quotation mark that 
follows should be a part of the string and not mark the end of the string. The sequence 
\" is called an escape sequence. 

To include a backslash in a string, use the escape sequence \\, like this:
"C:\\Temp\\Secret.txt"

Another common escape sequence is \n, which denotes a newline character. Print-
ing a newline character causes the start of a new line on the display. For example, the 
statement

System.out.print("*\n**\n***\n");

prints the characters
*
**
***

on three separate lines. 

Whenever one of  
the arguments of the 
+ operator is a string, 
the other argument is 
converted to  
a string.

use the next method 
of the Scanner class 
to read a string 
containing a 
single word.



2.5 strings  61

You often want to add a newline character to the end of the format string when 
you use System.out.printf:

System.out.printf("Price:%10.2f\n",price);

2.5.5 strings and Characters

Strings are sequences of Unicode characters (see Random 
Fact 2.2). In Java, a character is a value of the type char. 
Characters have numeric values. You can find the values 
of the characters that are used in Western European lan-
guages in Appendix A. For example, if you look up the 
value for the charac ter 'H', you can see that is actually 
encoded as the number 72. 

Character literals are delimited by single quotes, and you should not con fuse them 
with strings.

• 'H' is a character, a value of type char.
•  "H" is a string containing a single character, a value of type String.

The charAt method returns a char value from a string. The first string position is 
labeled 0, the second one 1, and so on. 

0 1 2 3 4

H a r r y

The position number of the last character (4 for the string "Harry") is always one less 
than the length of the string. 

For example, the statement
Stringname="Harry";
charstart=name.charAt(0);
charlast=name.charAt(4);

sets start to the value 'H' and last to the value 'y'.

2.5.6 substrings

Once you have a string, you can extract substrings by using the substring method. 
The method call 

str.substring(start,pastEnd)

returns a string that is made up of the characters in the string str, starting at posi-
tion start, and containing all characters up to, but not including, the position pastEnd. 
Here is an example: 

Stringgreeting="Hello,World!";
Stringsub=greeting.substring(0,5);//subis"Hello"

The substring operation makes a string that consists of the first five characters taken 
from the string greeting.

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

A string is a sequence of 
characters.

string positions are 
counted starting  
with 0.

use the substring 
method to extract a 
part of a string.



62 Chapter 2  Fundamental data types 

Let’s figure out how to extract the substring "World". Count characters starting at 0, 
not 1. You find that W has position number 7. The first character that you don’t want, 
!, is the character at position 12. There fore, the appropriate substring command is 

Stringsub2=greeting.substring(7,12);

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

5

It is curious that you must specify the position of the first character that you do want 
and then the first character that you don’t want. There is one advantage to this setup. 
You can easily compute the length of the substring: It is pastEnd-start. For example, 
the string "World" has length 12 – 7 = 5. 

If you omit the end position when calling the substring method, then all characters 
from the starting position to the end of the string are copied. For example, 

Stringtail=greeting.substring(7);//Copies all characters from position 7 on

sets tail to the string "World!".
Following is a simple program that puts these concepts to work. The program asks 

for your name and that of your significant other. It then prints out your initials. 
The operation first.substring(0, 1) makes a 

string consisting of one character, taken from the 
start of first. The program does the same for the 
second. Then it concatenates the resulting one-
character strings with the string literal "&" to get 
a string of length 3, the initials string. (See 
Figure 5.) 

section_5/initials.java

1 importjava.util.Scanner;
2
3 /**
4 This program prints a pair of initials.
5 */
6 publicclassInitials
7 {
8 publicstaticvoidmain(String[]args)
9 {

10 Scannerin=newScanner(System.in);
11

Initials are formed from the first 
letter of each name.Figure 5  Building the initials string

0 1 2
R & Sinitials =

0 1 2 3 4
S a l l ysecond =

0 1 2 3 4 5
R o d o l f

6
ofirst =



2.5 strings  63

12 //Get the names of the couple
13
14 System.out.print("Enteryourfirstname:");
15 Stringfirst=in.next();
16 System.out.print("Enteryoursignificantother'sfirstname:");
17 Stringsecond=in.next();
18
19 //Compute and display the inscription
20
21 Stringinitials=first.substring(0,1)
22 +"&"+second.substring(0,1);
23 System.out.println(initials);
24 }
25 }

program run

Enteryourfirstname:Rodolfo
Enteryoursignificantother'sfirstname:Sally
R&S

table 9  string operations

statement result Comment

stringstr="Ja";
str=str+"va";

str is set to "Java" When applied to strings, 
+ denotes concatenation.

System.out.println("Please"
+"enteryourname:");

Prints  
Pleaseenteryourname:

Use concatenation to break up strings 
that don’t fit into one line.

team=49+"ers" team is set to "49ers" Because "ers" is a string, 49 is converted 
to a string.

Stringfirst=in.next();
Stringlast=in.next();
(Userinput:HarryMorgan)

first contains "Harry"
last contains "Morgan"

The next method places the next word 
into the string variable.

Stringgreeting="H&S";
intn=greeting.length();

n is set to 5 Each space counts as one character.

Stringstr="Sally";
charch=str.charAt(1);

ch is set to 'a' This is a char value, not a String. Note 
that the initial position is 0.

Stringstr="Sally";
Stringstr2=str.substring(1,4);

str2 is set to "all" Extracts the substring starting at 
position 1 and ending before position 4. 

Stringstr="Sally";
Stringstr2=str.substring(1);

str2 is set to "ally" If you omit the end position, all 
characters from the position until the 
end of the string are included.

Stringstr="Sally";
Stringstr2=str.substring(1,2);

str2 is set to "a" Extracts a String of length 
1; contrast with str.charAt(1).

Stringlast=str.substring(
str.length()-1);

last is set to the string 
containing the last 
character in str

The last character has position 
str.length()-1. 



64 Chapter 2  Fundamental data types 

26.  What is the length of the string"JavaProgram"?
27.  Consider this string variable.

Stringstr="JavaProgram";

Give a call to the substring method that returns the substring "gram".
28.  Use string concatenation to turn the string variable str from Self Check 27 into 

"JavaProgramming".
29.  What does the following statement sequence print?

Stringstr="Harry";
intn=str.length();
Stringmystery=str.substring(0,1)+str.substring(n-1,n);
System.out.println(mystery);

30.  Give an input statement to read a name of the form “John Q. Public”.

practice it  Now you can try these exercises at the end of the chapter: R2.7, R2.11, P2.15, P2.23.

  
instance methods and static methods

In this chapter, you have learned how to read, process, and print numbers and strings. Many of 
these tasks involve various method calls. You may have noticed syntactical differences in these 
method calls. For example, to compute the square root of a number num, you call Math.sqrt(num), 
but to compute the length of a string str, you call str.length(). This section explains the rea-
sons behind these differences. 

The Java language distinguishes between values of primitive types and objects. Numbers 
and characters, as well as the values false and true that you will see in Chapter 3, are primitive. 
All other values are objects. Examples of objects are
• a string such as "Hello".
• a Scanner object obtained by calling in=newScanner(System.in).
• System.in and System.out.

In Java, each object belongs to a class. For example,
• All strings are objects of the String class.
• A scanner object belongs to the Scanner class.
• System.out is an object of the PrintStream class. (It is useful to know this so that you can 

look up the valid methods in the API documentation; see Programming Tip 2.4 on page 53.)
A class declares the methods that you can use with its objects. Here are examples of methods 
that are invoked on objects:

"Hello".substring(0,1)
in.nextDouble()
System.out.println("Hello")

A method is invoked with the dot notation: the object is followed by the name of the method, 
and the method is fol lowed by parameters enclosed in parentheses. 

This is the 
name of the method.

These parameters are 
inputs to the method.

The method is 
invoked on this object.

System.out.println("Hello")

You cannot invoke methods on numbers. For example, the call 2.sqrt() would be an error. 

s e l F   c h e c k

special topic 2.4 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

2.5 strings  65

In Java, classes can declare methods that are not invoked on objects. Such methods are called 
static methods. (The term “static” is a historical holdover from the C and C++ programming 
languages. It has nothing to do with the usual meaning of the word.) For example, the Math 
class declares a static method sqrt. You call it by giving the name of the class and method, then 
the name of the numeric input: Math.sqrt(2).

The name of the static methodThe name of the class

Math.sqrt(2)

In contrast, a method that is invoked on an object is called an instance method. As a rule of 
thumb, you use static methods when you manipulate numbers. You use instance methods 
when you process strings or perform input/out put. You will learn more about the distinction 
between static and instance methods in Chapter 8.

using dialog boxes for input and Output

Most program users find the console window rather old-fashioned. The easiest alternative is 
to create a separate pop-up window for each input.

Call the static showInputDialog method of the JOptionPane class, and supply the string that 
prompts the input from the user. For example,

Stringinput=JOptionPane.showInputDialog("Enterprice:");

That method returns a String object. Of course, often you need the input as a number. Use the 
Integer.parseInt and Double.parseDouble methods to convert the string to a number:

doubleprice=Double.parseDouble(input);

You can also display output in a dialog box:

JOptionPane.showMessageDialog(null,"Price:"+price);

special topic 2.5 

An Input Dialog Box

O n l i n e  e x a m p l e

a complete program 
that uses option 
panes for input  
and output.

VIdeo example 2.2 computing distances on earth

In this Video Example, you will see how to write a program that 
computes the distance between any two points on Earth.



66 Chapter 2  Fundamental data types 

declare variables with appropriate names and types.

• A variable is a storage location with a name.
• When declaring a variable, you usually specify an 

initial value.
• When declaring a variable, you also specify the type 

of its values.
• Use the int type for numbers that cannot have a fractional part.
• Use the double type for floating-point numbers.
• By convention, variable names should start with a lowercase letter.
• An assignment statement stores a new value in a variable, replacing 

the previ ously stored value.
• The assignment operator = does not denote mathematical equality.

the english alpha-
bet is pretty simple: 

upper- and lowercase a to z. other 
european languages have accent marks 
and special characters. For example, 
German has three so-called umlaut 
characters, ä, ö, ü, and a double-s char-
acter ß. these are not optional frills; 
you couldn’t write a page of German 
text without using these characters 
a few times. German keyboards have 
keys for these characters. 

The German Keyboard Layout

many countries don’t use the roman 
script at all. russian, Greek, hebrew, 

arabic, and thai letters, to name just a 
few, have completely diff erent shapes. 
to complicate matters, hebrew and 
arabic are typed from right to left. each 
of these alphabets has about as many 
characters as the english alphabet.

Hebrew, Arabic, and English

the Chi nese languages as well as 
Japanese and korean use Chinese char-
acters. each character represents an 
idea or thing. Words are made up of 
one or more of these ideo graphic char-
acters. over 70,000 ideo graphs are 
known. 

starting in 1988, a consortium of 
hardware and software manufacturers 
developed a uniform encoding scheme 

called unicode that is capable of 
encoding text in essentially all writ ten 
languages of the world. an early ver-
sion of unicode used 16 bits for each 
character. the Java char type corre-
sponds to that encoding. 

today unicode has grown to a 
21-bit code, with definitions for over 
100,000 characters. there are even 
plans to add codes for extinct lan-
guages, such as egyptian hieroglyph-
ics. unfortunately, that means that a 
Java char value does not always cor-
respond to a unicode character. some 
characters in languages such as Chi-
nese or ancient egyptian occupy two 
char values. 

The Chinese Script

Random Fact 2.2 International alphabets and unicode

C h a p t e r  s u m m a r y



Chapter summary 67

• You cannot change the value of a variable that is defined as final.
• Use comments to add explanations for humans who read your 

code. The compiler ignores comments.

Write arithmetic expressions in Java.

• Mixing integers and floating-point values in an arithmetic expression yields a 
floating-point value.

• The ++ operator adds 1 to a variable; the -- operator subtracts 1. 
• If both arguments of / are integers, the remainder is discarded.
• The % operator computes the remainder of an integer division.
• The Java library declares many mathematical functions, such as Math.sqrt (square 

root) and Math.pow (raising to a power).
• You use a cast (typeName) to convert a value to a different type.

Write programs that read user input and print formatted output.

• Java classes are grouped into packages. Use the import statement to use classes 
from packages.

• Use the Scanner class to read keyboard input in a console window.
• Use the printf method to specify how values should be 

formatted.
• The API (Application Programming Interface) 

documenta tion lists the classes and methods of the  
Java library.

carry out hand calculations when developing an algorithm.

• Pick concrete values for a typical situation to use in a hand calculation.

Write programs that process strings.

• Strings are sequences of characters. 
• The length method yields the number of characters in 

a string.
• Use the + operator to concatenate strings; that is, to put them together to yield a 

longer string.
• Whenever one of the arguments of the + operator is a string, the other argument is 

converted to a string.
• Use the next method of the Scanner class to read a string containing 

a single word.
• String positions are counted starting with 0.
• Use the substring method to extract a part of a string.



68  Chapter 2   Fundamental Data Types 

• R2.1 What is the value of mystery after this sequence of statements?
int mystery = 1;
mystery = 1 - 2 * mystery;
mystery = mystery + 1;

• R2.2 What is wrong with the following sequence of statements?
int mystery = 1;
mystery = mystery + 1;
int mystery = 1 - 2 * mystery;

•• R2.3 Write the following mathematical expressions in Java.

s s v t gt

G
a

p m m

= + +

=
+

= ⋅ +

0 0
2

2
3

2
1 2

1
2

4

1

π
( )

FV PV
INT
1000

YRS





= + −c a b ab2 2 2 cosγ

•• R2.4 Write the following Java expressions in mathematical notation.
a. dm = m * (Math.sqrt(1 + v / c) / Math.sqrt(1 - v / c) - 1);
b. volume = Math.PI * r * r * h;
c. volume = 4 * Math.PI * Math.pow(r, 3) / 3;
d. z = Math.sqrt(x * x + y * y);

•• R2.5 What are the values of the following expressions? In each line, assume that
double x = 2.5;
double y = -1.5;

java.io.PrintStream
   printf
java.lang.Double
   parseDouble
java.lang.Integer
   MAX_VALUE
   MIN_VALUE
   parseInt
java.lang.Math
   PI
   abs
   cos
   exp
   log
   log10

   max
   min
   pow
   round
   sin
   sqrt
   tan
   toDegrees
   toRadians
java.lang.String
   charAt
   length
   substring
java.lang.System
   in

java.math.BigDecimal
   add
   multiply
   subtract
java.math.BigInteger
   add
   multiply
   subtract
java.util.Scanner
   next
   nextDouble
   nextInt
javax.swing.JOptionPane
   showInputDialog
   showMessageDialog

S Ta n D a r D  L i b r a r y   i T e m S   i n T r o D u C e D   i n  T h i S  C h a p T e r

r e v i e w  e x e r C i S e S



review exercises 69

intm=18;
intn=4;

a. x+n*y-(x+n)*y
b. m/n+m%n
c. 5*x-n/5
d. 1-(1-(1-(1-(1-n))))
e. Math.sqrt(Math.sqrt(n))

• r2.6  What are the values of the following expressions, assuming that n is 17 and m is 18?
a. n/10+n%10
b. n%2+m%2
c. (m+n)/2
d. (m+n)/2.0
e. (int)(0.5*(m+n))
f.  (int)Math.round(0.5*(m+n))

•• r2.7  What are the values of the following expressions? In each line, assume that
Strings="Hello";
Stringt="World";

a. s.length()+t.length()
b. s.substring(1,2)
c. s.substring(s.length()/2,s.length())
d. s+t
e. t+s

• r2.8  Find at least five compile-time errors in the following program.
publicclassHasErrors
{
publicstaticvoidmain();
{
System.out.print(Pleaseentertwonumbers:)
x=in.readDouble;
y=in.readDouble;
System.out.printline("Thesumis"+x+y);
}
}

•• r2.9  Find three run-time errors in the following program.
publicclassHasErrors
{
publicstaticvoidmain(String[]args)
{
intx=0;
inty=0;
Scannerin=newScanner("System.in");
System.out.print("Pleaseenteraninteger:");
x=in.readInt();
System.out.print("Pleaseenteranotherinteger:");
x=in.readInt();
System.out.println("Thesumis"+x+y);
}
}



70 Chapter 2  Fundamental data types 

• r2.10  Consider the following code segment.
doublepurchase=19.93;
doublepayment=20.00;
doublechange=payment-purchase;
System.out.println(change);

The code segment prints the change as 0.07000000000000028. Explain why. Give a 
recommendation to improve the code so that users will not be confused.

• r2.11  Explain the differences between 2, 2.0, '2', "2", and "2.0".

• r2.12  Explain what each of the following program segments computes.
a. x=2;

y=x+x;

b. s="2";
t=s+s;

•• r2.13  Write pseudocode for a program that reads a word and then prints the first charac ter, 
the last character, and the characters in the middle. For example, if the input is Harry, 
the program prints Hyarr.

•• r2.14  Write pseudocode for a program that reads a name (such as HaroldJamesMorgan) and 
then prints a monogram consisting of the initial letters of the first, middle, and last 
name (such as HJM). 

••• r2.15  Write pseudocode for a program that computes the first and last digit of a num-
ber. For example, if the input is 23456, the program should print 2 and 6. Hint: %, 
Math.log10.

• r2.16  Modify the pseudocode for the program in How To 2.1 so that the pro gram gives 
change in quarters, dimes, and nickels. You can assume that the price is a multiple of 
5 cents. To develop your pseudocode, first work with a couple of spe cific values.

•• r2.17  A cocktail shaker is composed of three cone sections. 
Using realistic values for the radii and heights, compute the total 
volume, using the formula given in Self Check 25 for a cone section. 
Then develop an algorithm that works for arbitrary dimensions. 

••• r2.18  You are cutting off a piece of pie like this, where c is the length of the 
straight part (called the chord length) and h is the height of the piece. 

hc

d

There is an approximate formula for the area:  A ch
h

c
≈ +2

3

3

2



programming exercises 71

However, h is not so easy to measure, whereas the diameter d of a pie is usually 
well-known. Calculate the area where the diameter of the pie is 12 inches and the 
chord length of the segment is 10 inches. Gen eralize to an algorithm that yields the 
area for any diameter and chord length.

•• r2.19  The following pseudocode describes how to obtain the name of a day, given the day 
number (0 = Sunday, 1 = Monday, and so on.)

Declare a string called names containing "SunMonTueWedThuFriSat".
Compute the starting position as 3 x the day number.
Extract the substring of names at the starting position with length 3.

Check this pseudocode, using the day number 4. Draw a diagram of the string that is 
being computed, similar to Figure 5. 

••• r2.20  The following pseudocode describes how to swap two letters in a word. 

We are given a string str and two positions i and j. (i comes before j)
Set first to the substring from the start of the string to the last position before i.
Set middle to the substring from positions i + 1 to j - 1.
Set last to the substring from position j + 1 to the end of the string.
Concatenate the following five strings: first, the string containing just the character at position j,  

middle, the string containing just the character at position i, and last.

Check this pseudocode, using the string "Gateway" and positions 2 and 4. Draw a 
diagram of the string that is being computed, similar to Figure 5. 

•• r2.21  How do you get the first character of a string? The last character? How do you 
remove the first character? The last character? 

••• r2.22  Write a program that prints the values
3*1000*1000*1000
3.0*1000*1000*1000

Explain the results.

• r2.23  This chapter contains a number of recommendations regarding variables and con-
stants that make programs easier to read and maintain. Briefly summarize these 
rec ommendations.

• p2.1  Write a program that displays the dimensions of a letter-size (8.5 × 11 inches) sheet 
of paper in millimeters. There are 25.4 millimeters per inch. Use con stants and com-
ments in your program.

• p2.2  Write a program that computes and displays the perimeter of a letter-size (8.5 × 11 
inches) sheet of paper and the length of its diagonal.

• p2.3  Write a program that reads a number and displays the square, cube, and fourth 
power. Use the Math.pow method only for the fourth power.

•• p2.4  Write a program that prompts the user for two integers and then prints
• The sum
• The difference

p r o G r a m m I n G  e x e r C I s e s



72 Chapter 2  Fundamental data types 

• The product
• The average
• The distance (absolute value of the difference)
• The maximum (the larger of the two)
• The minimum (the smaller of the two)

Hint: The max and min functions are declared in the Math class. 

•• p2.5  Enhance the output of Exercise P2.4 so that the numbers are properly aligned:
Sum:45
Difference:-5
Product:500
Average:22.50
Distance:5
Maximum:25
Minimum:20

•• p2.6  Write a program that prompts the user for a measurement in meters and then con-
verts it to miles, feet, and inches.

• p2.7  Write a program that prompts the user for a radius and then prints
• The area and circumference of a circle with that radius
• The volume and surface area of a sphere with that radius

•• p2.8  Write a program that asks the user for the lengths of the sides of a rectangle. Then 
print

• The area and perimeter of the rectangle
• The length of the diagonal (use the Pythagorean theorem)

• p2.9  Improve the program discussed in How To 2.1 to allow input of quar ters in addition 
to bills.

••• p2.10  Write a program that helps a person decide whether to buy a hybrid car. Your 
pro gram’s inputs should be:

• The cost of a new car
• The estimated miles driven per year
• The estimated gas price
• The efficiency in miles per gallon
• The estimated resale value after 5 years

Compute the total cost of owning the car for 
five years. (For simplic ity, we will not take the 
cost of financing into account.) Obtain 
realistic prices for a new and used hybrid 
and a com parable car from the Web. Run your program twice, using today’s gas 
price and 15,000 miles per year. Include pseudocode and the program runs with your 
assignment.

•• p2.11  Write a program that asks the user to input
• The number of gallons of gas in the tank
• The fuel efficiency in miles per gallon
• The price of gas per gallon



programming exercises 73

Then print the cost per 100 miles and how far the car can go with the gas in the tank.

• p2.12  File names and extensions. Write a program that prompts the user for the drive letter 
(C), the path (\Windows\System), the file name (Readme), and the extension (txt). Then 
print the complete file name C:\Windows\System\Readme.txt. (If you use UNIX or a 
Macintosh, skip the drive name and use / instead of \ to separate directories.)

••• p2.13  Write a program that reads a number between 1,000 and 999,999 from the user, 
where the user enters a comma in the input. Then print the number without a 
comma. Here is a sample dialog; the user input is in color:

Pleaseenteranintegerbetween1,000and999,999:23,456
23456

Hint: Read the input as a string. Measure the length of the string. Suppose it contains 
n characters. Then extract substrings consisting of the first n – 4 characters and the 
last three characters.

•• p2.14  Write a program that reads a number between 1,000 and 999,999 from the user and 
prints it with a comma separating the thousands. Here is a sample dialog; the user 
input is in color:

Pleaseenteranintegerbetween1000and999999:23456
23,456

• p2.15  Printing a grid. Write a program that prints the following grid to play tic-tac-toe.
+--+--+--+
||||
+--+--+--+
||||
+--+--+--+
||||
+--+--+--+

Of course, you could simply write seven statements of the form

System.out.println("+--+--+--+");

You should do it the smart way, though. Declare string variables to hold two kinds 
of patterns: a comb-shaped pattern and the bottom line. Print the comb three times 
and the bottom line once.

•• p2.16  Write a program that reads in an integer and breaks it into a sequence of individual 
digits. For example, the input 16384 is displayed as

16384

You may assume that the input has no more than five digits and is not negative.

•• p2.17  Write a program that reads two times in military format (0900, 1730) and prints the 
number of hours and minutes between the two times. Here is a sample run. User 
input is in color.

Pleaseenterthefirsttime:0900
Pleaseenterthesecondtime:1730
8hours30minutes

Extra credit if you can deal with the case where the first time is later than the  second:
Pleaseenterthefirsttime:1730
Pleaseenterthesecondtime:0900
15hours30minutes



74 Chapter 2  Fundamental data types 

••• p2.18  Writing large letters. A large letter H can be produced like this:
**
**
*****
**
**

It can be declared as a string literal like this:
finalstringLETTER_H="**\n**\n*****\n**\n**\n";

(The \n escape sequence denotes a “newline” character that causes subsequent 
characters to be printed on a new line.) Do the same for the letters E, L, and O. Then 
write the message

H
E
L
L
O

in large letters.

•• p2.19  Write a program that transforms numbers 1, 2, 3, …, 12 
into the corresponding month names January, February, 
March, …, December. Hint: Make a very long string "January
FebruaryMarch...", in which you add spaces such that each 
month name has the same length. Then use substring to 
extract the month you want.

•• p2.20  Write a program that prints a  Christmas tree:
/\'
/\'
/\'
/\'
--------
""
""
""

Remember to use escape sequences.

•• p2.21  Easter Sunday is the first Sun day after the first full moon of spring. To compute 
the date, you can use this algorithm, invented by the mathe matician Carl Friedrich 
Gauss in 1800:
1.  Let y be the year (such as 1800 or 2001). 
2.  Divide y by 19 and call the remainder a. Ignore the quotient. 
3.  Divide y by 100 to get a quotient b and a remainder c. 
4.  Divide b by 4 to get a quotient d and a remainder e. 
5.  Divide 8*b+13 by 25 to get a quotient g. Ignore the remainder. 
6.  Divide 19*a+b-d-g+15 by 30 to get a remainder h. Ignore the quotient. 
7.  Divide c by 4 to get a quotient j and a remainder k. 
8.  Divide a+11*h by 319 to get a quotient m. Ignore the remainder. 
9.  Divide 2*e+2*j-k-h+m+32 by 7 to get a remainder r. Ignore the 

quotient. 



programming exercises 75

10. Divide h-m+r+90 by 25 to get a quotient n. Ignore the remainder. 
11. Divide h-m+r+n+19 by 32 to get a remainder p. Ignore the quotient. 

Then Easter falls on day p of month n. For example, if y is 2001:
a=6 h=18 n=4
b=20,c=1 j=0,k=1 p=15
d=5,e=0 m=0
g=6 r=6

Therefore, in 2001, Easter Sun day fell on April 15. Write a program that prompts the 
user for a year and prints out the month and day of Easter Sunday.

•• business p2.22  The following pseudocode describes how a bookstore computes the price of an 
order from the total price and the number of the books that were ordered.

Read the total book price and the number of books.
Compute the tax (7.5 percent of the total book price).
Compute the shipping charge ($2 per book).
The price of the order is the sum of the total book price, the tax, and the shipping charge.
Print the price of the order.

Translate this pseudocode into a Java program.

•• business p2.23  The following pseudocode describes how to turn a string containing a ten-digit 
phone number (such as "4155551212") into a more readable string with parentheses 
and dashes, like this: "(415)555-1212". 

Take the substring consisting of the first three characters and surround it with "(" and ") ". This is the 
area code.

Concatenate the area code, the substring consisting of the next three characters, a hyphen, and the 
substring consisting of the last four characters. This is the formatted number.

Translate this pseudocode into a Java program that reads a telephone number into a 
string variable, com putes the formatted number, and prints it.

•• business p2.24  The following pseudocode describes how to extract the dollars and cents from a 
price given as a floating-point value. For example, a price 2.95 yields values 2 and 95 
for the dollars and cents.

Assign the price to an integer variable dollars. 
Multiply the difference price - dollars by 100 and add 0.5. 
Assign the result to an integer variable cents.

Translate this pseudocode into a Java program. Read a price and print the dollars and 
cents. Test your program with inputs 2.95 and 4.35.

•• business p2.25  Giving change. Implement a program that directs a cashier 
how to give change. The program has two inputs: the 
amount due and the amount received from the customer. 
Display the dollars, quarters, dimes, nickels, and pennies 
that the customer should receive in return. In order to avoid 
roundoff errors, the program user should supply both 
amounts in pennies, for example 274 instead of 2.74. 

• business p2.26  An online bank wants you to create a program that shows prospective customers 
how their deposits will grow. Your program should read the initial balance and the 



76 Chapter 2  Fundamental data types 

annual interest rate. Interest is compounded monthly. Print out the balances after the 
first three months. Here is a sample run:

Initialbalance:1000
Annualinterestrateinpercent:6.0
Afterfirstmonth:1005.00
Aftersecondmonth:1010.03
Afterthirdmonth:1015.08

• business p2.27  A video club wants to reward its best members with a discount based on the mem-
ber’s number of movie rentals and the number of new members referred by the 
member. The discount is in percent and is equal to the sum of the rentals and the 
referrals, but it cannot exceed 75 percent. (Hint: Math.min.) Write a program Discount-
Calculator to calculate the value of the discount.
Here is a sample run:

Enterthenumberofmovierentals:56
Enterthenumberofmembersreferredtothevideoclub:3
Thediscountisequalto:59.00percent.

• science p2.28  Consider the following circuit.

R1

R2 R3

Write a program that reads the resistances of the three resistors and computes the 
total resistance, using Ohm’s law.

•• science p2.29  The dew point temperature Td can be calculated (approximately) from the relative 
humidity RH and the actual temperature T by

T
b f T RH

a f T RH

f T RH
a T
b T

RH

d =
⋅ ( )
− ( )

( ) = ⋅
+

+ ( )

,

,

, ln

where a = 17.27 and b = 237.7° C. 
Write a program that reads the relative humidity (between 0 and 1) and the tem-
perature (in degrees C) and prints the dew point value. Use the Java function log to 
compute the natural logarithm.

••• science p2.30  The pipe clip temperature sensors shown here are robust sensors that can be clipped 
directly onto copper pipes to measure the temperature of the liquids in the pipes. 



programming exercises 77

Each sensor contains a device called a thermistor. Thermistors are semiconductor 
devices that exhibit a temperature-dependent resistance described by:

R R e T T=
−











0

1 1

0

β

where R is the resistance (in Ω) at the temperature T (in °K), and R0 is the resistance 
(in Ω) at the temperature T0 (in °K). β is a constant that depends on the material used 
to make the thermistor. Thermistors are specified by providing values for R0, T0, 
and β. 
The thermistors used to make the pipe clip temperature sensors have R0 = 1075 Ω at 
T0 = 85 °C, and β = 3969 °K. (Notice that β has units of °K. Recall that the tempera-
ture in °K is obtained by adding 273 to the temperature in °C.) The liquid tempera-
ture, in °C, is determined from the resistance R, in Ω, using

T
T

T
R

R

=








 +

−
β

β

0

0
0

273

ln

Write a Java program that prompts the user for the thermistor resistance R and prints 
a message giving the liquid temperature in °C.

••• science p2.31  The circuit shown below illustrates some impor-
tant aspects of the connection between a power 
company and one of its customers. The customer is 
represented by three parameters, Vt, P, and pf. Vt is 
the voltage accessed by plugging into a wall outlet. 
Customers depend on having a dependable value 
of Vt in order for their appliances to work prop-
erly. Accordingly, the power company regulates 
the value of Vt carefully. P describes the amount of 
power used by the customer and is the primary factor in determining the customer’s 
electric bill. The power factor, pf, is less familiar. (The power factor is calculated as 
the cosine of an angle so that its value will always be between zero and one.) In this 
problem you will be asked to write a Java program to investigate the significance of 
the power factor. 

Vs 

Customer

+
–

R = 10 Ω

Power
Lines

Power
Company

R = 10 Ω

P = 260 W
pf = 0.6

Vt = 120 Vrms

+

–



78 Chapter 2  Fundamental data types 

In the figure, the power lines are represented, somewhat simplistically, as resistances 
in Ohms. The power company is represented as an AC voltage source. The source 
voltage, Vs, required to provide the customer with power P at voltage Vt can be 
determined using the formula

V V
RP
V

RP
pf V

pfs t
t t

= +






+







−( )2 2

1
2 2

2

(Vs has units of Vrms.) This formula indicates that the value of Vs depends on the 
value of pf. Write a Java program that prompts the user for a power factor value and 
then prints a message giving the corresponding value of Vs, using the values for P, R, 
and Vt shown in the figure above.

••• science p2.32  Consider the following tuning circuit connected to an antenna, where C is a variable 
capacitor whose capacitance ranges from Cmin to Cmax.

L C

Antenna

The tuning circuit selects the frequency f
LC

= 2π
. To design this circuit for a given 

frequency, take C C C= min max  and calculate the required inductance L from f and 

C. Now the circuit can be tuned to any frequency in the range f
LCmin

max

= 2π
 to 

f
LCmax

min

= 2π
.

Write a Java program to design a tuning circuit for a given frequency, using a variable 
capacitor with given values for Cmin and Cmax. (A typical input is f = 16.7 MHz, 
Cmin = 14 pF, and Cmax = 365 pF.) The program should read in f (in Hz), Cmin and 
Cmax (in F), and print the required inductance value and the range of frequencies to 
which the circuit can be tuned by varying the capacitance.

• science p2.33  According to the Coulomb force law, the electric force between two charged 
particles of charge Q1 and Q2 Coulombs, that are a distance r meters apart, is 

F
Q Q

r
= 1 2

24π ε
 Newtons, where ε = × −8 854 10 12.  Farads/meter. Write a program 

that calculates the force on a pair of charged particles, based on the user input of Q1 
Coulombs, Q2 Coulombs, and r meters, and then computes and displays the electric 
force.



answers to self-Check Questions 79

a n s W e r s  t o  s e l F - C h e C k  Q u e s t I o n s

1.  One possible answer is
intbottlesPerCase=8;

You may choose a different variable name or a 
different initialization value, but your variable 
should have type int.

2.  There are three errors:
•  You cannot have spaces in variable names.
•  The variable type should be double because 
 it holds a fractional value.
•  There is a semicolon missing at the end of  
 the statement. 

3.  doubleunitPrice=1.95;
intquantity=2;

4.  System.out.print("Totalprice:");
System.out.println(unitPrice*quantity);

5.  Change the declaration of cansPerPack to 
intcansPerPack=4;

6.  You need to use a */ delimiter to close a com-
ment that begins with a /*:
doublecanVolume=0.355;
/*Liters in a 12-ounce can*/

7.  The program would compile, and it would 
display the same result. However, a  person 
reading the program might find it confusing 
that fractional cans are being considered.

8.  Its value is modified by the assignment 
statement.

9.  Assignment would occur when one car is 
replaced by another in the parking space.

10.  doubleinterest=balance*percent/100; 
11.  doublesideLength=Math.sqrt(area); 
12.  4*PI*Math.pow(radius,3)/3 

or (4.0/3)*PI*Math.pow(radius,3), 
but not (4/3)*PI*Math.pow(radius,3)

13.  172 and 9
14.  It is the second-to-last digit of n. For example, 

if n is 1729, then n/10 is 172, and (n/10)%10
is2.

15.  System.out.print("Howoldareyou?");
intage=in.nextInt();

16.  There is no prompt that alerts the program 
user to enter the quantity.

17.  The second statement calls nextInt, not next-
Double. If the user were to enter a price such as 
1.95, the program would be terminated with an 
“input mismatch exception”.

18.  There is no colon and space at the end of the 
prompt. A dialog would look like this: 
Pleaseenterthenumberofcans6

19.  Thetotalvolumeis10 
There are four spaces between is and 10. One 
space originates from the format string (the 
space between s and %), and three spaces are 
added before 10 to achieve a field width of 5.

20.  Here is a simple solution:
System.out.printf("Bottles:%8d\n",bottles);
System.out.printf("Cans:%8d\n",cans);

Note the spaces after Cans:. Alternatively, 
you can use format specifiers for the strings. 
You can even com bine all output into a single 
statement:
System.out.printf("%-9s%8d\n%-9s%8d\n",

"Bottles:",bottles,"Cans:",cans);

21.  intpairs=(totalWidth-tileWidth)
/(2*tileWidth);
inttiles=1+2*pairs;
doublegap=(totalWidth-
tiles*tileWidth)/2.0;

Be sure that pairs is declared as an int. 
22.  Now there are groups of four tiles (gray/

white/gray/black) following the initial black 
tile. Therefore, the algorithm is now

number of groups = integer part of (total width - tile width) / 
(4 x tile width)

number of tiles = 1 + 4 x number of groups

The formula for the gap is not changed.
23.  Clearly, the answer depends only on whether 

the row and column numbers are even or odd, 
so let’s first take the remainder after divid-
ing by 2. Then we can enumerate all expected 
answers:

Row % 2 Column % 2 Color
 0  0  0
 0 1 1
 1 0 1
 1 1 0



80 Chapter 2  Fundamental data types 

In the first three entries of the table, the color 
is simply the sum of the remainders. In the 
fourth entry, the sum would be 2, but we want 
a zero. We can achieve that by taking another 
remainder operation:

color = ((row % 2) + (column % 2)) % 2

24.  In nine years, the repair costs increased by 
$1,400. Therefore, the increase per year is 
$1,400 / 9 ≈ $156. The repair cost in year 3 
would be $100 + 2 × $156 = $412. The repair 
cost in year n is $100 + n × $156. To avoid 
accumulation of roundoff errors, it is actually 
a good idea to use the original expression that 
yielded $156, that is,

Repair cost in year n = 100 + n x 1400 / 9

25.  The pseudocode follows easily from the 
equations:

bottom volume = π x r1
2 x h1

top volume = π x r2
2 x h2

middle volume = π x (r1
2 + r1 x r2 + r2

2) x h3 / 3
total volume = bottom volume + top volume + middle volume

Measuring a typical wine bottle yields 
r1 = 3.6, r2 = 1.2, h1 = 15, h2 = 7, h3 = 6
(all in centimeters). Therefore,
bottom volume = 610.73
top volume = 31.67
middle volume = 135.72
total volume = 778.12
The actual volume is 750 ml, which is close 
enough to our computation to give confidence 
that it is cor rect.

26.  The length is 12. The space counts as a 
character.

27.  str.substring(8,12) or str.substring(8)
28.  str=str+"ming"; 
29.  Hy 
30.  Stringfirst=in.next();

Stringmiddle=in.next();
Stringlast=in.next();



3C h a p t e r

81

DeCis ions

to implement decisions using if 
statements

to compare integers, floating-point numbers, and strings

to write statements using the Boolean data type

to develop strategies for testing your programs

to validate user input

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

3.1  The if STaTemenT   82

Syntax 3.1: if Statement 84
Programming Tip 3.1: Brace layout 86
Programming Tip 3.2: always Use Braces 86
Common Error 3.1: a semicolon after the 

if Condition 86
Programming Tip 3.3: tabs 87
Special Topic 3.1: the Conditional operator 87
Programming Tip 3.4: avoid 

Duplication in Branches 88

3.2  Comparing numberS 
and STringS  88

Syntax 3.2: Comparisons 89
Common Error 3.2: exact Comparison of 

Floating-point numbers 91
Common Error 3.3: Using == to Compare strings 92
Special Topic 3.2: lexicographic ordering 

of strings 92
How To 3.1: implementing an if statement 93
Worked Example 3.1: extracting the Middle 
Random Fact 3.1: the Denver airport luggage 

handling system 95

3.3  mulTiple alTernaTiveS  96

Special Topic 3.3: the switch statement 99

3.4  neSTed branCheS  100

Programming Tip 3.5: hand-tracing 103
Common Error 3.4: the Dangling else problem 104
Special Topic 3.4: enumeration types 105
Video Example 3.1: Computing the plural of an 

english Word 

3.5  problem Solving: flowCharTS  105

3.6  problem Solving: TeST CaSeS  108

Programming Tip 3.6: Make a schedule and Make 
time for Unexpected problems 109

Special Topic 3.5: logging 110 

3.7  boolean variableS 
and operaTorS  111

Common Error 3.5: Combining Multiple 
relational operators 113

Common Error 3.6: Confusing && and || 
Conditions 114

Special Topic 3.6: short-Circuit evaluation of 
Boolean operators 114

Special Topic 3.7: De Morgan’s law 115

3.8  appliCaTion: inpuT validaTion  116

Video Example 3.2: the Genetic Code 
Random Fact 3.2: artificial intelligence 119



82

one of the essential features of computer programs is  
their ability to make decisions. like a train that changes 
tracks depending on how the switches are set, a program 
can take different actions depending on inputs and other 
circumstances. 

in this chapter, you will learn how to program simple and 
complex decisions. You will apply what you learn to the 
task of checking user input. 

3.1 the if statement
The if statement is used to implement a decision (see Syntax 3.1). When a condition is 
fulfilled, one set of statements is executed. Otherwise, another set of statements is 
executed. 

Here is an example using the if statement: In 
many countries, the number 13 is considered 
unlucky. Rather than offending superstitious ten
ants, building owners sometimes skip the thir
teenth floor; floor 12 is immediately followed by 
floor 14. Of course, floor 13 is not usually left 
empty or, as some conspiracy theorists believe, 
filled with secret offices and research labs. It is 
simply called floor 14. The computer that controls 
the building elevators needs to compensate for 
this foible and adjust all floor numbers above 13. 

Let’s simulate this process in Java. We will ask 
the user to type in the desired floor number and 
then compute the actual floor. When the input is 
above 13, then we need to decrement the input to 
obtain the actual floor. For example, if the user 
provides an input of 20, the program determines 
the actual floor as 19. Otherwise, we simply use 
the supplied floor number.

int actualFloor;

if (floor > 13)
{
   actualFloor = floor - 1;
}
else
{
   actualFloor = floor;
}

The flowchart in Figure 1 shows the branching behavior.
In our example, each branch of the if statement contains a single statement. You 

can include as many statements in each branch as you like. Sometimes, it happens that 

the if statement 
allows a program to 
carry out different 
actions depending on 
the nature of the data 
to be processed.

This elevator panel “skips” the 
thirteenth floor. The floor is not 
actually missing—the computer 
that controls the elevator adjusts 
the floor numbers above 13.



3.1 the if statement  83

figure 1   
Flowchart for if statement

floor > 13?
True False

actualFloor = 
floor - 1

actualFloor = 
floor

Condition

figure 2   
Flowchart for if statement with no else Branch

floor > 13?
True False

actualFloor--

No else branch

there is nothing to do in the else branch of the statement. In that case, you can omit it 
entirely, such as in this example:

int actualFloor = floor;

if (floor > 13)
{
   actualFloor--;
} // No else needed

See Figure 2 for the flowchart.

An if statement is like a fork in 
the road. Depending upon a  
decision, different parts of the  
program are executed. 



84 Chapter 3  Decisions

syntax 3.1 if statement

Don't put a semicolon here!
    See page 86.

Lining up braces
   is a good idea. 

 See page 86.

if (floor > 13)
{
   actualFloor = floor - 1;
}
else
{
   actualFloor = floor;
}

A condition that is true or false.
Often uses relational operators: 
== != < <= > >= (See page 89.)

If the condition is true, the statement(s) 
in this branch are executed in sequence;
if the condition is false, they are skipped.

Braces are not required
if the branch contains a 
single statement, but it's 
good to always use them.  
      See page 86.

If the condition is false, the statement(s) 
in this branch are executed in sequence;
if the condition is true, they are skipped.

Omit the else branch
if there is nothing to do.

if (condition)
{
   statements
}

if (condition) { statements1 }
else { statements2 }

Syntax

The following program puts the if statement to work. This program asks for the 
desired floor and then prints out the actual floor.

section_1/elevatorSimulation.java

1 import java.util.Scanner;
2 
3 /**
4    This program simulates an elevator panel that skips the 13th floor.
5 */
6 public class ElevatorSimulation
7 {
8    public static void main(String[] args)
9    {  

10       Scanner in = new Scanner(System.in);
11       System.out.print("Floor: ");
12       int floor = in.nextInt();
13      
14       // Adjust floor if necessary
15  
16       int actualFloor;
17       if (floor > 13)
18       {  
19          actualFloor = floor - 1;
20       }
21       else
22       {



3.1 the if statement  85

23          actualFloor = floor;
24       }
25 
26       System.out.println("The elevator will travel to the actual floor "
27          + actualFloor);
28    }
29 }

program run

Floor: 20
The elevator will travel to the actual floor 19

1.  In some Asian countries, the number 14 is considered unlucky. Some building 
owners play it safe and skip both the thirteenth and the fourteenth floor. How 
would you modify the sample program to handle such a building?

2.  Consider the following if statement to compute a discounted price:
if (originalPrice > 100)
{
   discountedPrice = originalPrice - 20;
}
else
{
   discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?
3.  Compare this if statement with the one in Self Check 2:

if (originalPrice < 100)
{
   discountedPrice = originalPrice - 10;
}
else
{
   discountedPrice = originalPrice - 20;
}

Do the two statements always compute the same value? If not, when do the 
values differ? 

4.  Consider the following statements to compute a discounted price:
discountedPrice = originalPrice;
if (originalPrice > 100)
{
   discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?
5.  The variables fuelAmount and fuelCapacity hold the actual amount of fuel and the 

size of the fuel tank of a vehicle. If less than 10 percent is remaining in the tank, a 
status light should show a red color; otherwise it shows a green color. Simu late 
this process by printing out either "red" or "green".

practice it  Now you can try these exercises at the end of the chapter: R3.5, R3.6, P3.31.

S e l f   C h e C k



86 Chapter 3  Decisions

brace layout

The compiler doesn’t care where you place 
braces. In this book, we follow the simple rule 
of making { and } line up.

if (floor > 13)
{
   floor--;
}

This style makes it easy to spot matching 
braces. Some programmers put the opening 
brace on the same line as the if:

if (floor > 13) {
   floor--;
}

This style makes it harder to match the braces, but it saves a line of code, allowing you to view 
more code on the screen with out scrolling. There are passionate a dvocates of both styles. 

It is important that you pick a layout style and stick with it consistently within a given 
programming project. Which style you choose may depend on your personal prefer ence or a 
coding style guide that you need to follow.

always use braces

When the body of an if statement consists of a single statement, you need not use braces. For 
example, the following is legal: 

if (floor > 13)
   floor--;

However, it is a good idea to always include the braces:

if (floor > 13) 
{
   floor--;
}

The braces make your code easier to read. They also make it easier for you to maintain the 
code because you won’t have to worry about adding braces when you add statements inside 
an if statement. 

a Semicolon after the if Condition

The following code fragment has an unfortunate error:

if (floor > 13) ; // ERROR
{
   floor--;
}

There should be no semicolon after the if condition. The compiler interprets this statement as 
follows: If floor is greater than 13, execute the statement that is denoted by a single semi colon, 
that is, the donothing statement. The statement enclosed in braces is no longer a part of the if 

programming tip 3.1 

Properly lining up your code makes your pro-
grams easier to read.

programming tip 3.2 

Common error 3.1 



3.1 the if statement  87

statement. It is always executed. In other words, even if the value of floor is not above 13, it is 
decremented.

Tabs

Blockstructured code has the property that nested statements are indented by one or more 
levels:

public class ElevatorSimulation
{
|  public static void main(String[] args)
|  {
|  |  int floor;
|  |  . . .
|  |  if (floor > 13)
|  |  {
|  |  |  floor--;
|  |  }
|  |  . . .
|  }
|  |  |  |
0  1  2  3   Indentation level 

How do you move the cursor from the leftmost col umn to the appropriate indentation level? 
A perfectly reasonable strategy is to hit the space bar a sufficient number of times. With most 
editors, you can use the Tab key instead. A tab moves the cursor to the next indentation level. 
Some editors even have an option to fill in the tabs automatically. 

While the Tab key is nice, some editors use tab characters for alignment, which is not so 
nice. Tab characters can lead to problems when you send your file to another person or a 
printer. There is no univer sal agreement on the width of a tab character, and some software 
will ignore tab characters altogether. It is therefore best to save your files with spaces instead of 
tabs. Most editors have a setting to automatically convert all tabs to spaces. Look at the docu
mentation of your development environment to find out how to activate this useful setting. 

The Conditional operator

Java has a conditional operator of the form

condition ? value1 : value2

The value of that expression is either value1 if the test passes or value2 if it fails. For example, 
we can compute the actual floor number as

actualFloor = floor > 13 ? floor - 1 : floor;

which is equivalent to

if (floor > 13) { actualFloor = floor - 1; } else { actualFloor = floor; }

You can use the conditional operator anywhere that a value is expected, for example:

System.out.println("Actual floor: " + (floor > 13 ? floor - 1 : floor));

We don’t use the conditional operator in this book, but it is a convenient construct that you 
will find in many Java programs.

programming tip 3.3 

You use  
the Tab key  
to move the  
cursor to the next 
indentation level.

special topic 3.1 



88 Chapter 3  Decisions

avoid duplication in branches

Look to see whether you duplicate code in each branch. If so, move it out of the if statement. 
Here is an example of such duplication:

if (floor > 13)
{
   actualFloor = floor - 1;
   System.out.println("Actual floor: " + actualFloor);
}
else
{
   actualFloor = floor;
   System.out.println("Actual floor: " + actualFloor);
}

The output statement is exactly the same in both branches. This is not an error—the program 
will run correctly. However, you can simplify the program by moving the duplicated state
ment, like this:

if (floor > 13)
{
   actualFloor = floor - 1;
}
else
{
   actualFloor = floor;
}
System.out.println("Actual floor: " + actualFloor);

Removing duplication is particularly important when programs are maintained for a long 
time. When there are two sets of statements with the same effect, it can easily happen that a 
programmer modifies one set but not the other. 

3.2 Comparing numbers and strings
Every if statement contains a condi
tion. In many cases, the condition 
involves comparing two values. For 
example, in the previous examples we 
tested floor > 13. The comparison > is 
called a relational operator. Java has 
six relational operators (see Table 1). 

 As you can see, only two Java rela
tional operators (> and <) look as you 
would expect from the mathematical 
notation. Computer keyboards do not 
have keys for ≥, ≤, or ≠, but the >=, <=, 
and != operators are easy to remember 
because they look similar. The == opera
tor is initially confusing to most new
comers to Java. 

programming tip 3.4 

In Java, you use a relational operator to check 
whether one value is greater than another.

Use relational 
operators  
(< <= > >= == !=) 
to compare numbers.



3.2 Comparing numbers and strings  89

table 1  relational operators

Java Math notation Description

> > Greater than

>= ≥ Greater than or equal

< < Less than

<= ≤ Less than or equal

== = Equal

!= ≠ Not equal

In Java, = already has a meaning, namely assignment. The == operator denotes equality 
testing:

floor = 13; // Assign 13 to floor

if (floor == 13)  // Test whether floor equals 13

You must remember to use == inside tests and to use = outside tests. 

syntax 3.2 Comparisons

floor > 13

floor == 13

String input; 
if (input.equals("Y"))

double x; double y; final double EPSILON = 1E-14;
if (Math.abs(x - y) < EPSILON)

These quantities are compared.

Checks for equality.

Check that you have the right direction: 
> (greater) or < (less)

Use ==, not =.

One of: == != < <= > >= (See page 89.)

Use equals to compare strings. (See page 92.)

Checks that these floating-point numbers are very close. 
     See page 91.

Check the boundary condition: 
> (greater) or >= (greater or equal)?



90 Chapter 3  Decisions

The relational operators in Table 1 have a lower precedence than the arithmetic opera
tors. That means, you can write arithmetic expressions on either side of the relational 
operator without using parentheses. For example, in the expression

floor - 1 < 13

both sides (floor - 1 and 13) of the < operator are evaluated, and the results are com
pared. Appendix B shows a table of the Java operators and their precedence.

To test whether two strings are equal to each other, you must use the method called 
equals:

if (string1.equals(string2)) . . .

Do not use the == operator to compare strings. The comparison 
if (string1 == string2) // Not useful

has an unrelated meaning. It tests whether the two strings are stored in the same loca
tion. You can have strings with identical contents stored in different locations, so this 
test never makes sense in actual programming; see Common Error 3.3 on page 92. 

Table 2 summarizes how to compare values in Java. 

table 2  relational operator examples

expression Value Comment

3 <= 4 true 3 is less than 4; <= tests for “less than or equal”.

3 =< 4 error The “less than or equal” operator is <=, not =<. 
The “less than” symbol comes first.

3 > 4 false > is the opposite of <=.

4 < 4 false The lefthand side must be strictly smaller than 
the righthand side.

4 <= 4 true Both sides are equal; <= tests for “less than or 
equal”.

3 == 5 - 2 true == tests for equality.

3 != 5 - 1 true != tests for inequality. It is true that 3 is not 5 – 1.

3 = 6 / 2 error Use == to test for equality.

1.0 / 3.0 == 0.333333333 false Although the values are very close to one 
another, they are not exactly equal. See Common 
Error 3.2 on page 91.

"10" > 5 error You cannot compare a string to a number.

"Tomato".substring(0, 3).equals("Tom") true Always use the equals method to check whether 
two strings have the same contents.

"Tomato".substring(0, 3) == ("Tom") false Never use == to compare strings; it only checks 
whether the strings are stored in the same 
location. See Common Error 3.3 on page 92.

o n l i n e  e x a m p l e

a program that 
demonstrates 
comparisons of 
numbers and strings.

Do not use the = = 
operator to compare 
strings. Use the 
equals method 
instead.



3.2 Comparing numbers and strings  91

6.  Which of the following conditions are true, provided a is 3 and b is 4?
a.  a + 1 <= b 
b. a + 1 >= b 
c.  a + 1 != b 

7.  Give the opposite of the condition 
floor > 13

8.  What is the error in this statement?
if (scoreA = scoreB)
{
   System.out.println("Tie");
}

9.  Supply a condition in this if statement to test whether the user entered a Y:
System.out.println("Enter Y to quit.");
String input = in.next();
if (. . .)
{
   System.out.println("Goodbye.");
}

10.  How do you test that a string str is the empty string?

practice it  Now you can try these exercises at the end of the chapter: R3.4, R3.7, P3.18.

exact Comparison of floating-point numbers

Floatingpoint numbers have only a limited precision, and cal
culations can introduce round off errors. You must take these 
inevitable roundoffs into account when comparing floating
point numbers. For example, the following code multiplies the 
square root of 2 by itself. Ide ally, we expect to get the answer  2:

double r = Math.sqrt(2.0);
if (r * r == 2.0) 
{   
   System.out.println("Math.sqrt(2.0) squared is 2.0");
}
else 
{
   System.out.println("Math.sqrt(2.0) squared is not 2.0 but "  
      + r * r);
}

This program displays

Math.sqrt(2.0) squared is not 2.0 but 2.00000000000000044

It does not make sense in most circumstances to compare float ingpoint numbers exactly. 
Instead, we should test whether they are close enough. That is, the magnitude of their differ
ence should be less than some threshold. Mathematically, we would write that x and y are close 
enough if

x y− < ε

S e l f   C h e C k

Common error 3.2 

Take limited precision into 
account when comparing 
floating-point numbers.



92 Chapter 3  Decisions

for a very small number, e. e is the Greek letter epsilon, a letter used to denote a very small 
quantity. It is common to set e to 10–14 when comparing double numbers:

final double EPSILON = 1E-14;
double r = Math.sqrt(2.0);
if (Math.abs(r * r - 2.0) < EPSILON) 
{
   System.out.println("Math.sqrt(2.0) squared is approximately 2.0"); 
}

using == to Compare Strings

If you write 

if (nickname == "Rob")

then the test succeeds only if the variable nickname refers to the exact same location as the string 
literal "Rob". The test will pass if a string variable was initialized with the same string literal: 

String nickname = "Rob";
. . .
if (nickname == "Rob") // Test is true 

However, if the string with the letters R o b has been assembled in some other way, then the test 
will fail: 

String name = "Robert";
String nickname = name.substring(0, 3);
. . .
if (nickname == "Rob") // Test is false 

In this case, the substring method produces a string in a different memory location. Even 
though both strings have the same contents, the comparison fails.

You must remember never to use == to compare strings. Always use equals to check whether 
two strings have the same contents. 

lexicographic ordering of Strings

If two strings are not identical to each other, you still 
may want to know the relationship between them. The 
compareTo method compares strings in “lexicographic” 
order. This ordering is very similar to the way in which 
words are sorted in a dictionary. If 

string1.compareTo(string2) < 0   

then the string string1 comes before the string string2 
in the dictionary. For example, this is the case if string1 
is "Harry", and string2 is "Hello". If 

string1.compareTo(string2) > 0

then string1 comes after string2 in dictionary order.
Finally, if 

string1.compareTo(string2) == 0

then string1 and string2 are equal.

Common error 3.3 

special topic 3.2 

To see which of two terms comes 
first in the dictionary, consider the 
first letter in which they differ.



3.2 Comparing numbers and strings  93

There are a few technical differences between the ordering in a 
dictionary and the lexicographic ordering in Java. In Java:
• All uppercase letters come before the lowercase letters. For 

example, "Z" comes before "a".
• The space character comes before all printable characters.
• Numbers come before letters.
• For the ordering of punctuation marks, see Appendix A.
When comparing two strings, you compare the first letters of each 
word, then the second letters, and so on, until one of the strings ends 
or you find the first letter pair that doesn’t match. 

If one of the strings ends, the longer string is considered the 
“larger” one. For example, compare "car" with "cart". The first 
three letters match, and we reach the end of the first string. There
fore "car" comes before "cart" in lexicographic ordering. 

When you reach a mismatch, the string containing the “larger” 
character is considered “larger”. For example, let’s compare "cat" 
with "cart". The first two letters match. Because t comes after r, the 
string "cat" comes after "cart" in the lexicographic ordering. 

Step 1  Decide upon the branching condition.

In our sample problem, the obvious choice for the 
condition is:

original price < 128?

That is just fine, and we will use that condition in 
our solution. 

But you could equally well come up with a 
cor rect solution if you choose the opposite condi
tion: Is the original price at least $128? You might 
choose this condition if you put yourself into the 
position of a shopper who wants to know when 
the bigger discount applies.

Step 2  Give pseudocode for the work that needs to be 
done when the condition is true.

In this step, you list the action or actions that are taken in the “positive” branch. The details 
depend on your problem. You may want to print a message, compute values, or even exit the 
program.

the compareTo 
method compares 
strings in 
lexicographic order.

c a r t

c a r

c a t

Letters
match

r comes
before t

Lexicographic  
Ordering

hoW to 3.1 implementing an if Statement

This How To walks you through the process of implementing an if statement. We will illus
trate the steps with the following example problem:

The university bookstore has a Kilobyte Day sale every October 24, giving an 8 percent 
discount on all computer accessory purchases if the price is less than $128, and a 16 percent 
discount if the price is at least $128. Write a program that asks the cashier for the original price 
and then prints the discounted price.

Sales discounts are often higher for  
expensive products. Use the if state ment 
to implement such a decision.



94 Chapter 3  Decisions

In our example, we need to apply an 8 percent discount:

discounted price = 0.92 x original price

Step 3  Give pseudocode for the work (if any) that needs to be done when the condition is not true.

What do you want to do in the case that the condition of Step 1 is not satisfied? Sometimes, 
you want to do nothing at all. In that case, use an if statement without an else branch. 

In our example, the condition tested whether the price was less than $128. If that condi tion 
is not true, the price is at least $128, so the higher discount of 16 percent applies to the sale:

discounted price = 0.84 x original price

Step 4  Doublecheck relational operators.

First, be sure that the test goes in the right direction. It is a common error to confuse > and <. 
Next, consider whether you should use the < operator or its close cousin, the <= operator. 

What should happen if the original price is exactly $128? Reading the problem carefully, we 
find that the lower discount applies if the original price is less than $128, and the higher dis
count applies when it is at least $128. A price of $128 should therefore not fulfill our con dition, 
and we must use <, not <=. 

Step 5  Remove duplication.

Check which actions are common to both branches, and move them outside. (See Program
ming Tip 3.4 on page 88.)

In our example, we have two statements of the form

discounted price = ___ x original price

They only differ in the discount rate. It is best to just set the rate in the branches, and to do the 
computation afterwards:

If original price < 128
 discount rate = 0.92
Else
 discount rate = 0.84
discounted price = discount rate x original price

Step 6  Test both branches.

Formulate two test cases, one that fulfills the condition of the if statement, and one that does 
not. Ask yourself what should happen in each case. Then follow the pseudocode and act each 
of them out.

In our example, let us consider two scenarios for the original price: $100 and $200. We 
expect that the first price is discounted by $8, the second by $32. 

When the original price is 100, then the condition 100 < 128 is true, and we get 

discount rate = 0.92
discounted price = 0.92 x 100 = 92

When the original price is 200, then the condition 200 < 128 is false, and

discount rate = 0.84
discounted price = 0.84 x 200 = 168

In both cases, we get the expected answer. 

Step 7  Assemble the if statement in Java.

Type the skeleton

if ()
{



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

3.2 Comparing numbers and strings  95

}
else
{
}

and fill it in, as shown in Syntax 3.1 on page 84. Omit the else branch if it is not needed.
In our example, the completed statement is

if (originalPrice < 128)
{
   discountRate = 0.92;
}
else
{
   discountRate = 0.84;
}

discountedPrice = discountRate * originalPrice;

o n l i n e  e x a m p l e

the complete 
program for 
calculating a 
discounted price.

WorkeD exaMple 3.1 extracting the middle

This Worked Example shows how to extract the middle character from a 
string, or the two middle characters if the length of the string is even. 0 1 2 3 4

c r a t e

Making decisions is 
an essential part of 

any computer program. nowhere is 
this more obvious than in a computer 
system that helps sort luggage at an 
airport. after scanning the luggage 
identification codes, the system sorts 
the items and routes them to differ-
ent conveyor belts. human operators 
then place the items onto trucks. When 
the city of Denver built a huge airport 
to replace an outdated and congested 
facility, the luggage system contractor 
went a step further. the new system 
was designed to replace the human 
operators with robotic carts. Unfortu-
nately, the system plainly did not 
work. it was plagued by mechanical 
problems, such as luggage falling onto 
the tracks and jamming carts. equally 
frustrating were the software glitches. 
Carts would uselessly accu mulate at 
some locations when they were needed 
elsewhere. 

the airport had been scheduled 
to open in 1993, but without a func-
tioning luggage system, the opening 
was delayed for over a year while the 
contractor tried to fix the problems. 
the contractor never succeeded, 
and ultimately a manual system was 
installed. the delay cost the city and 
airlines close to a billion dollars, and 
the contractor, once the leading lug-
gage systems vendor in the United 
states, went bankrupt.

Clearly, it is very risky to build a 
large system based on a technology 
that has never been tried on a smaller 
scale. as robots and the software that 
controls them get better over time, 
they will take on a larger share of lug-
gage handling in the future. But it is 
likely that this will happen in an incre-
mental fashion.

The Denver airport originally had a 
fully automatic system for moving lug-
gage, replacing human operators with 
robotic carts. Unfortunately, the sys-
tem never worked and was dismantled 
before the airport was opened.

Random Fact 3.1 the Denver airport luggage handling system



96 Chapter 3  Decisions

3.3 Multiple alternatives
In Section 3.1, you saw how to program a twoway branch with an if statement. In 
many situations, there are more than two cases. In this section, you will see how to 
implement a decision with multiple alternatives. 

For example, consider a program that displays the effect of an earthquake, as mea
sured by the Richter scale (see Table 3). 

table 3  richter scale

Value effect

8 Most structures fall

7 Many buildings destroyed

6 Many buildings considerably 
damaged, some collapse

4.5 Damage to poorly constructed 
buildings

The Richter scale is a measurement of the strength of an earthquake. Every step in 
the scale, for example from 6.0 to 7.0, signifies a tenfold increase in the strength of the 
quake. 

In this case, there are five branches: one each for the four descriptions of damage, 
and one for no destruction. Figure 3 shows the flowchart for this multiplebranch 
statement. 

You use multiple if statements to implement multiple alternatives, like this:
if (richter >= 8.0)
{
   System.out.println("Most structures fall");
}
else if (richter >= 7.0)
{
   System.out.println("Many buildings destroyed");
}
else if (richter >= 6.0)
{
   System.out.println("Many buildings considerably damaged, some collapse");
}
else if (richter >= 4.5)
{
   System.out.println("Damage to poorly constructed buildings");
}
else 
{
   System.out.println("No destruction of buildings");
}

As soon as one of the four tests succeeds, the effect is displayed, and no further tests 
are attempted. If none of the four cases applies, the final else clause applies, and a 
default message is printed. 

Multiple if 
statements can be 
combined to evaluate 
complex decisions. 

The 1989 Loma Prieta 
earth quake that  
damaged the Bay  
Bridge in San Francisco 
and destroyed many 
buildings measured 7.1 
on the Richter scale.

A N I M AT I O N
Multiple Alternatives



3.3 Multiple alternatives  97

figure 3   
Multiple alternatives 

richter ≥ 8.0?

richter ≥ 7.0?

richter ≥ 6.0?

richter ≥ 4.5?

No destruction 
of buildings

False

False

False

False

True

True

True

True

Most 
structures

fall

Many 
buildings 
destroyed

Many buildings 
considerably

damaged, 
some collapse

Damage to 
poorly constructed 

buildings

Here you must sort the conditions and test against the largest cutoff first. 
Suppose we reverse the order of tests:

if (richter >= 4.5) // Tests in wrong order
{
   System.out.println("Damage to poorly constructed buildings");
}
else if (richter >= 6.0)
{
   System.out.println("Many buildings considerably damaged, some collapse");
}
else if (richter >= 7.0)
{
   System.out.println("Many buildings destroyed");



98 Chapter 3  Decisions

}
else if (richter >= 8.0)
{
   System.out.println("Most structures fall");
}

This does not work. Suppose the value of richter is 7.1. That value is at least 4.5, 
matching the first case. The other tests will never be attempted. 

The remedy is to test the more specific conditions first. Here, the condition 
richter >= 8.0 is more specific than the condition richter >= 7.0, and the condition 
richter >= 4.5 is more general (that is, fulfilled by more values) than either of the first 
two.

In this example, it is also important that we use an if/else  if/else sequence, not 
just multiple independent if statements. Consider this sequence of independent tests.

if (richter >= 8.0) // Didn’t use else
{
   System.out.println("Most structures fall");
}
if (richter >= 7.0)
{
   System.out.println("Many buildings destroyed");
}
if (richter >= 6.0)
{
   System.out.println("Many buildings considerably damaged, some collapse");
}
if (richter >= 4.5)
{
   System.out.println("Damage to poorly constructed buildings");
}

Now the alternatives are no longer exclusive. If richter is 7.1, then the last three tests 
all match, and three messages are printed.

11.  In a game program, the scores of players A and B are stored in variables scoreA 
and scoreB. Assuming that the player with the larger score wins, write an if/
else if/else sequence that prints out "A won", "B won", or "Game tied".

12.  Write a conditional statement with three branches that sets s to 1 if x is positive, 
to –1 if x is negative, and to 0 if x is zero.

13.  How could you achieve the task of Self Check 12 with only two branches?
14.  Beginners sometimes write statements such as the following:

if (price > 100)
{
   discountedPrice = price - 20;
}
else if (price <= 100)
{
   discountedPrice = price - 10;
}

Explain how this code can be improved.
15.  Suppose the user enters -1 into the earthquake program. What is printed?

When using multiple 
if statements, test 
general conditions 
after more specific 
conditions.

o n l i n e  e x a m p l e

the complete 
program for printing 
earthquake 
descriptions.

S e l f   C h e C k



3.3 Multiple alternatives  99

16.  Suppose we want to have the earthquake program check whether the user en
tered a negative number. What branch would you add to the if state ment, and 
where?

practice it  Now you can try these exercises at the end of the chapter: R3.22, P3.9, P3.34. 

The switch Statement

An if/else if/else sequence that compares a value against several alternatives can be imple
mented as a switch statement. For example,

int digit = . . .;
switch (digit)
{
   case 1: digitName = "one"; break;
   case 2: digitName = "two"; break;
   case 3: digitName = "three"; break;
   case 4: digitName = "four"; break;
   case 5: digitName = "five"; break;
   case 6: digitName = "six"; break;
   case 7: digitName = "seven"; break;
   case 8: digitName = "eight"; break;
   case 9: digitName = "nine"; break;
   default: digitName = ""; break;
}

This is a shortcut for

int digit = . . .;
if (digit == 1) { digitName = "one"; }
else if (digit == 2) { digitName = "two"; }
else if (digit == 3) { digitName = "three"; }
else if (digit == 4) { digitName = "four"; }
else if (digit == 5) { digitName = "five"; }
else if (digit == 6) { digitName = "six"; }
else if (digit == 7) { digitName = "seven"; }
else if (digit == 8) { digitName = "eight"; }
else if (digit == 9) { digitName = "nine"; }
else { digitName = ""; }

It isn’t much of a shortcut, but it has one advan tage—it is obvious that all branches test the 
same value, namely digit.

The switch statement can be applied only in narrow circumstances. The values in the case 
clauses must be constants. They can be integers or characters. As of Java 7, strings are permit
ted as well. You cannot use a switch statement to branch on floatingpoint values.

Every branch of the switch should be termi nated by a break instruction. If the break is miss
ing, execution falls through to the next branch, and so on, until a break or the end of the switch 
is reached. In practice, this fallthrough behavior is rarely useful, but it is a common cause 
of errors. If you accidentally forget a break statement, your program compiles but executes 
unwanted code. Many programmers consider the switch statement somewhat dangerous and 
prefer the if statement. 

We leave it to you to use the switch statement for your own code or not. At any rate, you 
need to have a reading knowledge of switch in case you find it in other programmers’ code.

special topic 3.3 

The switch statement lets you choose 
from a fixed set of alternatives.



100 Chapter 3  Decisions

3.4 nested Branches
It is often necessary to include an if statement inside another. Such an arrangement is 
called a nested set of statements. 

Here is a typical example: In the United States, different tax rates are used depend
ing on the taxpayer’s marital status. There are different tax schedules for single and 
for married tax payers. Married taxpayers add their income together and pay taxes on 
the total. Table 4 gives the tax rate computations, using a simplification of the sched
ules in effect for the 2008 tax year. A different tax rate applies to each “bracket”. In 
this schedule, the income in the first bracket is taxed at 10 percent, and the income in 
the second bracket is taxed at 25 per cent. The income limits for each bracket depend 
on the marital status.

table 4  Federal tax rate schedule

if your status is single and
if the taxable income is the tax is of the amount over

at most $32,000 10% $0

over $32,000 $3,200 + 25% $32,000

if your status is Married and
if the taxable income is the tax is of the amount over

at most $64,000 10% $0

over $64,000 $6,400 + 25% $64,000

Now compute the taxes due, given a marital status and an income figure. The key 
point is that there are two levels of decision making. First, you must branch on the 
marital status. Then, for each marital status, you must have another branch on income 
level. 

The twolevel decision process is reflected in two levels of if statements in the pro
gram at the end of this section. (See Figure 4 for a flowchart.) In theory, nesting can go 
deeper than two levels. A threelevel decision process (first by state, then by marital 
status, then by income level) requires three nesting levels.

When a decision 
statement is 
contained inside the 
branch of another 
decision statement, 
the statements 
are nested.

nested decisions  
are required for 
problems that  
have two levels of 
decision making.

A N I M AT I O N
Nested Branches

Computing income taxes requires  
multiple levels of decisions.



3.4 nested Branches  101

section_4/

figure 4  income tax Computation

10%
bracket

25%
bracket

Single income
≤ 32,000

10%
bracket

25%
bracket

income
≤ 64,000

False

True

True

False

True

False

TaxCalculator.java

1 import java.util.Scanner;
2 
3 /**
4    This program computes income taxes, using a simplified tax schedule.
5 */
6 public class TaxCalculator
7 {
8    public static void main(String[] args)
9    {  

10       final double RATE1 = 0.10;
11       final double RATE2 = 0.25;
12       final double RATE1_SINGLE_LIMIT = 32000;
13       final double RATE1_MARRIED_LIMIT = 64000;
14       
15       double tax1 = 0;
16       double tax2 = 0;
17 
18       // Read income and marital status
19       
20       Scanner in = new Scanner(System.in);
21       System.out.print("Please enter your income: ");
22       double income = in.nextDouble();
23 
24       System.out.print("Please enter s for single, m for married: ");
25       String maritalStatus = in.next();
26 
27       // Compute taxes due
28 



102 Chapter 3  Decisions

29       if (maritalStatus.equals("s"))
30       {
31          if (income <= RATE1_SINGLE_LIMIT)
32          {
33             tax1 = RATE1 * income;
34          }
35          else
36          {
37             tax1 = RATE1 * RATE1_SINGLE_LIMIT;
38             tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
39          }
40       }
41       else
42       {  
43          if (income <= RATE1_MARRIED_LIMIT)
44          {
45             tax1 = RATE1 * income;
46          }
47          else 
48          {
49             tax1 = RATE1 * RATE1_MARRIED_LIMIT;
50             tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
51          }
52       }
53       
54       double totalTax = tax1 + tax2;
55    
56       System.out.println("The tax is $" + totalTax);
57    }
58 }

program run

Please enter your income: 80000
Please enter s for single, m for married: m
The tax is $10400

17.  What is the amount of tax that a single taxpayer pays on an income of $32,000?
18.  Would that amount change if the first nested if statement changed from

if (income <= RATE1_SINGLE_LIMIT)

to
if (income < RATE1_SINGLE_LIMIT)

19.  Suppose Harry and Sally each make $40,000 per year. Would they save taxes if 
they married?

20.  How would you modify the TaxCalculator.java program in order to check that 
the user entered a correct value for the marital status (i.e., s or m)?

21.  Some people object to higher tax rates for higher incomes, claiming that you 
might end up with less money after taxes when you get a raise for working hard. 
What is the flaw in this argument?

practice it  Now you can try these exercises at the end of the chapter: R3.9, R3.21, P3.18, P3.21. 

S e l f   C h e C k



3.4 nested Branches  103

hand-Tracing

A very useful technique for understanding whether a pro
gram works correctly is called hand-tracing. You simulate 
the program’s activity on a sheet of paper. You can use this 
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet 
of paper is within reach. Make a column for each variable. 
Have the program code ready. Use a marker, such as a 
paper clip, to mark the current statement. In your mind, 
execute statements one at a time. Every time the value of a 
variable changes, cross out the old value and write the new 
value below the old one. 

For example, let’s trace the tax program with the data 
from the program run on page 102. In lines 15 and 16, tax1 and 
tax2 are initialized to 0. 

8  public static void main(String[] args)
9  {  

10     final double RATE1 = 0.10;
11     final double RATE2 = 0.25;
12     final double RATE1_SINGLE_LIMIT = 32000;
13     final double RATE1_MARRIED_LIMIT = 64000;
14 
15     double tax1 = 0;
16     double tax2 = 0;
17 

In lines 22 and 25, income and maritalStatus are 
initialized by input statements.

20     Scanner in = new Scanner(System.in);
21     System.out.print("Please enter your income: ");
22     double income = in.nextDouble();
23 
24     System.out.print("Please enter s for single, m for married: ");
25     String maritalStatus = in.next();

Because maritalStatus is not "s", we move to the else branch of the outer if statement 
(line 41).

29     if (maritalStatus.equals("s"))
30     {
31        if (income <= RATE1_SINGLE_LIMIT)
32        {
33           tax1 = RATE1 * income;
34        }
35        else
36        {
37           tax1 = RATE1 * RATE1_SINGLE_LIMIT;
38           tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
39        }
40     }
41     else
42     {  

Because income is not <= 64000, we move to the else branch of the inner if statement (line 47).

43        if (income <= RATE1_MARRIED_LIMIT)
44        {
45           tax1 = RATE1 * income;
46        }
47        else 
48        {
49           tax1 = RATE1 * RATE1_MARRIED_LIMIT;
50           tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
51        }

programming tip 3.5 

Hand-tracing helps you  
understand whether a  
program works correctly.

    marital
 tax1 tax2 income status

 0 0   

    

    marital
 tax1 tax2 income status

 0 0 80000 m 

    



104 Chapter 3  Decisions

The values of tax1 and tax2 are updated. 

48        {
49           tax1 = RATE1 * RATE1_MARRIED_LIMIT;
50           tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
51        }
52     }
53 

Their sum totalTax is computed and printed. 
Then the program ends.

54     double totalTax = tax1 + tax2;
55 
56    System.out.println("The tax is $" + totalTax);
57  }

Because the program trace shows the expected 
output ($10,400), it successfully demonstrated 
that this test case works correctly.

The dangling else problem

When an if statement is nested inside another if statement, the following error may occur.

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
   if (state.equals("HI"))
      shippingCharge = 10.00; // Hawaii is more expensive
else // Pitfall!
   shippingCharge = 20.00; // As are foreign shipments

The indentation level seems to suggest that the else is grouped with the test  country.
equals("USA"). Unfortunately, that is not the case. The compiler ignores all indenta tion and 
matches the else with the preceding if. That is, the code is actually

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
   if (state.equals("HI"))
      shippingCharge = 10.00; // Hawaii is more expensive
   else // Pitfall!
      shippingCharge = 20.00; // As are foreign shipments

That isn’t what you want. You want to group the else with the first if. 
The ambiguous else is called a dangling else. You can avoid this pitfall if you always use 

braces, as recommended in Programming Tip 3.2 on page 86: 

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
{
   if (state.equals("HI"))
   {
      shippingCharge = 10.00; // Hawaii is more expensive
   }
}
else
{
   shippingCharge = 20.00; // As are foreign shipments
}

    marital
 tax1 tax2 income status

 0 0 80000 m 

 6400 4000  

    marital total 
 tax1 tax2 income status tax

 0 0 80000 m 

 6400 4000   10400

Common error 3.4 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

3.5 problem solving: Flowcharts  105

enumeration Types

In many programs, you use variables that can hold one of a finite number of values. For exam
ple, in the tax return class, the maritalStatus variable holds one of the values "s" or "m". If, due 
to some programming error, the maritalStatus variable is set to another value (such as "d" or 
"w"), then the programming logic may produce invalid results. 

In a simple program, this is not really a problem. But as programs grow over time, and more 
cases are added (such as the “married filing separately” status), errors can slip in. Java version 
5.0 introduces a remedy: enumeration types. An enumeration type has a finite set of values, 
for example

public enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }

You can have any number of values, but you must include them all in the enum declaration. 
You can declare variables of the enumeration type:

FilingStatus status = FilingStatus.SINGLE;

If you try to assign a value that isn’t a FilingStatus, such as 2 or "S", then the compiler reports 
an error. 

Use the == operator to compare enumeration values, for example: 

if (status == FilingStatus.SINGLE) . . .

Place the enum declaration inside the class that implements your program, such as

public class TaxReturn
{
   public enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }

   public static void main(String[] args)
   {
      . . .
   }
}

3.5 problem solving: Flowcharts
You have seen examples of flowcharts earlier in this chapter. A flowchart shows the 
structure of decisions and tasks that are required to solve a problem. When you have 
to solve a complex problem, it is a good idea to draw a flowchart to visualize the flow 
of control.

The basic flowchart elements are shown in Figure 5.

special topic 3.4 

ViDeo exaMple 3.1 Computing the plural of an english word

The plural of apple is apples, but the plural of cherry is cherries. In 
this Video Example, we develop an algorithm for computing the 
plural of an English word.

Flow charts are made 
up of elements for 
tasks, input/output, 
and decisions.



106 Chapter 3  Decisions

figure 5   
Flowchart elements

True

False

ConditionSimple task Input/output

The basic idea is simple enough. Link tasks and input/output boxes in the sequence in 
which they should be executed. Whenever you need to make a decision, draw a dia
mond with two outcomes (see Figure 6). 

Each branch can contain a sequence of tasks and even additional decisions. If there 
are multiple choices for a value, lay them out as in Figure 7.

There is one issue that you need to be aware of when drawing flow charts. Uncon
strained branching and merging can lead to “spaghetti code”, a messy network of 
possible pathways through a program. 

There is a simple rule for avoiding spaghetti code: Never point an arrow inside 
another branch. 

To understand the rule, consider this example: Shipping costs are $5 inside the 
United States, except that to Hawaii and Alaska they are $10. Inter national shipping 
costs are also $10. 

each branch of a 
decision can contain 
tasks and further 
decisions.

never point an  
arrow inside  
another branch. 

figure 6  Flowchart with two outcomes

True

False

False branch True branch

Condition

figure 7  Flowchart with Multiple Choices

True

False

Choice 1
“Choice 1” 

branch

True

False

Choice 2
“Choice 2” 

branch

True

False

Choice 3
“Choice 3” 

branch

“Other” 
branch



3.5 problem solving: Flowcharts  107

You might start out with a flowchart like the following:

False

True

Shipping 
cost = $10

Inside US?

True

False

Continental US? Shipping
cost = $5

Now you may be tempted to reuse the “shipping cost = $10” task: 

False

True

Shipping 
cost = $10

Inside US?

True

False

Continental US? Shipping
cost = $5

Don’t do that! The red arrow points inside a different branch. Instead, add another 
task that sets the ship ping cost to $10, like this: 

False

True

Shipping 
cost = $10

Inside US?

True

False

Continental US?

Shipping 
cost = $10

Shipping
cost = $5



108 Chapter 3  Decisions

Not only do you avoid spaghetti code, but it is also a 
better design. In the future it may well happen that the 
cost for international shipments is different from that 
to Alaska and Hawaii. 

Flowcharts can be very useful for getting an intui
tive understanding of the flow of an algorithm. How
ever, they get large rather quickly when you add more 
details. At that point, it makes sense to switch from 
flowcharts to pseudocode.

22.  Draw a flowchart for a program that reads a value temp and prints “Frozen” if it 
is less than zero.

23.  What is wrong with the flowchart at right? 
24.  How do you fix the flowchart of  

Self Check 23?
25.  Draw a flowchart for a program that reads a 

value x. If it is less than zero, print “Error”. 
Otherwise, print its square root.

26.  Draw a flowchart for a program that reads a 
value temp. If it is less than zero, print “Ice”. 
If it is greater than 100, print “Steam”. Oth
erwise, print “Liquid”.

practice it  Now you can try these exercises at the end of the 
chapter: R3.12, R3.13, R3.14.

3.6 problem solving: test Cases
Consider how to test the tax computation program from Section 3.4. Of course, 
you cannot try out all possible inputs of marital status and income level. Even if you 
could, there would be no point in trying them all. If the program correctly computes 
one or two tax amounts in a given bracket, then we have a good reason to believe that 
all amounts will be correct. 

You want to aim for complete coverage of all decision points. Here is a plan for 
obtaining a compre hensive set of test cases:

• There are two possibilities for the marital status and two tax brackets for each 
status, yielding four test cases.

• Test a handful of boundary conditions, such as an income that is at the boundary 
between two brack ets, and a zero income. 

• If you are responsible for error checking (which is discussed in Section 3.8), also 
test an invalid input, such as a negative income.

o n l i n e  e x a m p l e

a program to 
compute shipping 
costs.

Spaghetti code has so many 
pathways that it becomes 
impossible to understand.

S e l f   C h e C k

True

False

Input < 0?

True

False

Input > 100?

Status = “OK” Status = “Error”

each branch of your 
program should  
be covered by a  
test case.



3.6 problem solving: test Cases  109

Make a list of the test cases and the expected outputs: 

    Test Case Expected Output Comment
 30,000 s 3,000 10% bracket
 72,000 s 13,200 3,200 + 25% of 40,000
 50,000 m 5,000 10% bracket

104,000 m 16,400 6,400 + 25% of 40,000
 32,000 s 3,200 boundary case

  0 0 boundary case

When you develop a set of test cases, it is helpful to have a flowchart of your program 
(see Section 3.5). Check off each branch that has a test case. Include test cases for the 
boundary cases of each decision. For example, if a decision checks whether an input is 
less than 100, test with an input of 100. 

It is always a good idea to design test cases before starting to code. Working 
through the test cases gives you a better understanding of the algorithm that you are 
about to implement. 

27.  Using Figure 1 on page 83 as a guide, follow the process described in Section 3.6 to 
design a set of test cases for the ElevatorSimulation.java program in Section 3.1.

28.  What is a boundary test case for the algorithm in How To 3.1 on page 93? What is 
the expected out put?

29.  Using Figure 3 on page 97 as a guide, follow the process described in Section 3.6 to 
design a set of test cases for the EarthquakeStrength.java program in Section 3.3.

30.  Suppose you are designing a part of a program for a medical ro
bot that has a sensor returning an x- and ylocation (measured in 
cm). You need to check whether the sensor location is inside the 
circle, outside the circle, or on the boundary (specifically, hav
ing a distance of less than 1 mm from the boundary). Assume the 
circle has center (0, 0) and a radius of 2 cm. Give a set of test cases. 

practice it  Now you can try these exercises at the end of the chapter: R3.15, R3.16.

make a Schedule and make Time for unexpected problems

Commercial software is notorious for being delivered later than promised. For example, 
Microsoft originally promised that its Windows Vista operating system would be available late 
in 2003, then in 2005, then in March 2006; it finally was released in January 2007. Some of the 
early promises might not have been realistic. It was in Microsoft’s interest to let pro spective 
customers expect the imminent availability of the product. Had customers known the actual 
delivery date, they might have switched to a different product in the meantime. Undeniably, 
though, Microsoft had not anticipated the full complexity of the tasks it had set itself to solve. 

Microsoft can delay the delivery of its product, but it is likely that you cannot. As a stu dent 
or a programmer, you are expected to manage your time wisely and to finish your assignments 
on time. You can probably do simple programming exercises the night before the due date, 
but an assignment that looks twice as hard may well take four times as long, because more 
things can go wrong. You should therefore make a schedule whenever you start a program
ming project.

it is a good idea to 
design test cases 
before implementing 
a program.

S e l f   C h e C k

programming tip 3.6 



110 Chapter 3  Decisions

First, estimate realistically how much time it 
will take you to:
• Design the program logic.
• Develop test cases.
• Type the program in and fix syntax errors.
• Test and debug the program.
For example, for the income tax program I might 
estimate an hour for the design; 30 min utes for 
developing test cases; an hour for data entry and 
fixing syntax errors; and an hour for testing and 
debugging. That is a total of 3.5 hours. If I work 
two hours a day on this project, it will take me 
almost two days.

Then think of things that can go wrong. Your computer might break down. You might be 
stumped by a problem with the computer system. (That is a particularly important con cern 
for beginners. It is very common to lose a day over a trivial problem just because it takes time 
to track down a person who knows the magic command to overcome it.) As a rule of thumb, 
double the time of your estimate. That is, you should start four days, not two days, before the 
due date. If nothing went wrong, great; you have the program done two days early. When the 
inevitable problem occurs, you have a cushion of time that protects you from embarrassment 
and failure.

logging

Sometimes you run a program and you are not sure where it spends its time. To get a printout 
of the program flow, you can insert trace messages into the program, such as this one:

if (status == SINGLE)
{
   System.out.println("status is SINGLE");
   . . .
}

However, there is a problem with using System.out.println for trace messages. When you are 
done testing the pro gram, you need to remove all print statements that produce trace mes
sages. If you find another error, however, you need to stick the print statements back in.

To overcome this problem, you should use the Logger class, which allows you to turn off the 
trace messages with out removing them from the program. 

Instead of printing directly to System.out, use the global logger object that is returned 
by the call Logger.getGlobal(). (Prior to Java 7, you obtained the global logger as 
Logger.getLogger("global").) Then call the info method:

Logger.getGlobal().info("status is SINGLE");

By default, the message is printed. But if you call

Logger.getGlobal().setLevel(Level.OFF);

at the beginning of the main method of your program, all log message printing is suppressed. 
Set the level to Level.INFO to turn logging of info messages on again. Thus, you can turn off 
the log messages when your program works fine, and you can turn them back on if you find 
another error. In other words, using Logger.getGlobal().info is just like System.out.println, 
except that you can easily activate and deactivate the logging.

The Logger class has many other options for industrialstrength logging. Check out the API 
documentation if you want to have more control over logging.

Make a schedule for your programming 
work and build in time for problems.

special topic 3.5 

logging messages can be 
deactivated when testing  
is complete. 



3.7 Boolean Variables and operators  111

3.7 Boolean Variables and operators
Sometimes, you need to evaluate a logical condi tion in one part of a program and use 
it else where. To store a condition that can be true or false, you use a Boolean variable. 
Boolean vari ables are named after the mathematician George Boole (1815–1864), a 
pioneer in the study of logic. 

In Java, the boolean data type has exactly two values, denoted false and true. These 
values are not strings or integers; they are special values, just for Boolean variables. 
Here is a declaration of a Boolean variable:

boolean failed = true;

You can use the value later in your program to make a decision:
if (failed) // Only executed if failed has been set to true
{
   . . .
}

When you make complex decisions, you often need to combine Boolean values. An 
operator that combines Boolean conditions is called a Boolean operator. In Java, the 
&& operator (called and) yields true only when both conditions are true. The || opera
tor (called or) yields the result true if at least one of the conditions is true.

Suppose you write a program that processes temperature values, and you want 
to test whether a given temperature corresponds to liquid water. (At sea level, water 
freezes at 0 degrees Celsius and boils at 100 degrees.) Water is liquid if the tempera
ture is greater than zero and less than 100: 

if (temp > 0 && temp < 100) { System.out.println("Liquid"); }

The condition of the test has two parts, joined by the && operator. Each part is a Bool
ean value that can be true or false. The combined expression is true if both individual 
expressions are true. If either one of the expressions is false, then the result is also false 
(see Figure 8).

The Boolean operators && and || have a lower precedence than the relational opera
tors. For that reason, you can write relational expressions on either side of the Bool
ean operators without using parentheses. For example, in the expression

temp > 0 && temp < 100    

the expressions temp > 0 and temp < 100 are evaluated first. Then the && operator com
bines the results. Appendix B shows a table of the Java operators and their 
prece dence.

the Boolean type 
boolean has two 
values, false 
and true.

A Boolean variable  
is also called a flag 
because it can be 
either up (true) or 
down (false).

Java has two Boolean 
operators that 
combine conditions: 
&& (and ) and || (or ).

figure 8  Boolean truth tables

a B a && B

true true true

true false false

false true false

false false false

a B a || B

true true true

true false true

false true true

false false false

a !a

true false

false true



112 Chapter 3  Decisions

At this geyser in Iceland,  
you can see ice, liquid  
water, and steam.

Conversely, let’s test whether water is not liquid at a given temperature. That is the 
case when the temperature is at most 0 or at least 100. Use the || (or) operator to com
bine the expressions:

if (temp <= 0 || temp >= 100) { System.out.println("Not liquid"); }

Figure 9 shows flowcharts for these examples. 
Sometimes you need to invert a condition with the not Boolean operator. The 

! operator takes a single condition and evaluates to true if that condition is false and to 
false if the condition is true. In this example, output occurs if the value of the Boolean 
variable frozen is false: 

if (!frozen) { System.out.println("Not frozen"); } 

Table 5 illustrates additional examples of evaluating Boolean operators.

o n l i n e  e x a m p l e

a program 
comparing numbers 
using Boolean 
expressions.

to invert a condition, 
use the ! (not) 
operator.

figure 9  Flowcharts for and and or Combinations

True True True

True

False

False

False False
Temperature

> 0?

Temperature
< 100?

Water is 
liquid

Water is 
not liquid

Temperature
≤ 0?

Temperature
≥ 100?

Both conditions 
must be true

At least 
one condition 
must be true

and or



3.7 Boolean Variables and operators  113

table 5  Boolean operator examples

expression Value Comment

0 < 200 && 200 < 100 false Only the first condition is true.

0 < 200 || 200 < 100 true The first condition is true.

0 < 200 || 100 < 200 true The || is not a test for “eitheror”. If both 
conditions are true, the result is true.

0 < x && x < 100 || x == -1 (0 < x && x < 100) 
 || x == -1

The && operator has a higher precedence than the 
|| operator (see Appendix B).

0 < x < 100 error error: This expression does not test whether x is 
between 0 and 100. The expression 0 < x is a 
Boolean value. You cannot compare a Boolean 
value with the integer 100.

x && y > 0 error error: This expression does not test whether x and 
y are positive. The lefthand side of && is an integer, 
x, and the righthand side, y > 0, is a Boolean value. 
You cannot use && with an integer argument.

!(0 < 200) false 0 < 200 is true, therefore its negation is false.

frozen == true frozen There is no need to compare a Boolean variable 
with true.

frozen == false !frozen It is clearer to use ! than to compare with false.

31.  Suppose x and y are two integers. How do you test whether both of them are 
zero?

32.  How do you test whether at least one of them is zero?
33.  How do you test whether exactly one of them is zero?
34.  What is the value of !!frozen?
35.  What is the advantage of using the type boolean rather than strings "false"/"true" 

or integers 0/1?

practice it  Now you can try these exercises at the end of the chapter: R3.29, P3.25, P3.27.

 
Combining multiple relational operators

Consider the expression

if (0 <= temp <= 100) // Error

This looks just like the mathematical test 0 ≤ temp ≤ 100. But in Java, it is a compiletime error. 
Let us dissect the condition. The first half, 0 <= temp, is a test with an outcome true or false. 

The outcome of that test (true or false) is then compared against 100. This seems to make no 

S e l f   C h e C k

Common error 3.5 



114 Chapter 3  Decisions

sense. Is true larger than 100 or not? Can one compare truth values and numbers? In Java, you 
cannot. The Java compiler rejects this statement. 

Instead, use && to combine two separate tests: 

if (0 <= temp && temp <= 100) . . .

Another common error, along the same lines, is to write 

if (input == 1 || 2) . . . // Error 

to test whether input is 1 or 2. Again, the Java compiler flags this construct as an error. You 
cannot apply the || operator to numbers. You need to write two Boolean expressions and join 
them with the || operator: 

if (input == 1 || input == 2) . . .

Confusing && and || Conditions

It is a surprisingly common error to confuse and and or conditions. A value lies between 0 and 
100 if it is at least 0 and at most 100. It lies outside that range if it is less than 0 or greater than 
100. There is no golden rule; you just have to think carefully.

Often the and or or is clearly stated, and then it isn’t too hard to implement it. But some
times the wording isn’t as explicit. It is quite common that the individual conditions are nicely 
set apart in a bulleted list, but with little indication of how they should be combined. Consider 
these instructions for filing a tax return. You can claim single filing status if any one of the fol
lowing is true:
• You were never married.
• You were legally separated or divorced on the last day of the tax year.
• You were widowed, and did not remarry.
Since the test passes if any one of the conditions is true, you must combine the conditions with 
or. Elsewhere, the same instructions state that you may use the more advantageous sta tus of 
married filing jointly if all five of the following conditions are true:
• Your spouse died less than two years ago and you did not remarry.
• You have a child whom you can claim as dependent.
• That child lived in your home for all of the tax year.
• You paid over half the cost of keeping up your home for this child.
• You filed a joint return with your spouse the year he or she died.
Because all of the conditions must be true for the test to pass, you must combine them with an 
and.

Short-Circuit evaluation of boolean operators

The && and || operators are computed using shortcircuit evaluation. 
In other words, logical expressions are evaluated from left to right, 
and evaluation stops as soon as the truth value is determined. When 
an && is evaluated and the first condition is false, the second condition 
is not evaluated, because it does not matter what the outcome of the 
second test is. 

For example, consider the expression

quantity > 0 && price / quantity < 10

Common error 3.6 

special topic 3.6 

the && and || 
operators are 
computed using 
short-circuit 
evaluation: as soon 
as the truth value is 
determined, no 
further conditions 
are evaluated.



3.7 Boolean Variables and operators  115

Suppose the value of quantity is zero. Then the test quantity > 0 fails, and the second test is not 
attempted. That is just as well, because it is illegal to divide by zero. 

Similarly, when the first condition of an || expression is true, then the remainder is not 
evaluated because the result must be true. 

This process is called short-circuit evaluation. 

In a short circuit, electricity travels along the path of least 
resistance. Similarly, short-circuit evaluation takes the fast-
est path for computing the result of a Boolean expression.

de morgan’s law

Humans generally have a hard time comprehending logical conditions with not operators 
applied to and/or expressions. De Morgan’s Law, named after the logician Augustus De Mor
gan (1806–1871), can be used to simplify these Boolean expressions.

Suppose we want to charge a higher shipping rate if we don’t ship within the continental 
United States.

if (!(country.equals("USA") && !state.equals("AK") && !state.equals("HI")))
{
   shippingCharge = 20.00;

}

This test is a little bit complicated, and you have to think carefully through the logic. When it 
is not true that the country is USA and the state is not Alaska and the state is not Hawaii, then 
charge $20.00. Huh? It is not true that some people won’t be confused by this code.

The computer doesn’t care, but it takes human programmers to write and maintain the 
code. Therefore, it is useful to know how to simplify such a condition.

De Morgan’s Law has two forms: one for the negation of an 
and expression and one for the negation of an or expression:

!(A && B)     is the same as     !A || !B
!(A || B)     is the same as     !A && !B

Pay particular attention to the fact that the and and or operators are reversed by moving the 
not inward. For example, the negation of “the state is Alaska or it is Hawaii”,

!(state.equals("AK") || state.equals("HI"))

is “the state is not Alaska and it is not Hawaii”:

!state.equals("AK") && !state.equals("HI")

Now apply the law to our shipping charge computation:

!(country.equals("USA")
   && !state.equals("AK")
   && !state.equals("HI"))

is equivalent to

!country.equals("USA")
   || !!state.equals("AK")
   || !!state.equals("HI"))

special topic 3.7 

De Morgan’s law tells 
you how to negate && 
and || conditions.



116 Chapter 3  Decisions

Because two ! cancel each other out, the result is the simpler test

!country.equals("USA") 
   || state.equals("AK")
   || state.equals("HI")

In other words, higher shipping charges apply when the destination is outside the United 
States or to Alaska or Hawaii.

To simplify conditions with negations of and or or expressions, it is usually a good idea to 
apply De Morgan’s Law to move the negations to the innermost level.

3.8 application: input Validation
An important application for the if statement is input validation. Whenever 
your program accepts user input, you need to make sure that the usersupplied 
values are valid before you use them in your computations. 

Consider our elevator simulation program. Assume that the elevator panel 
has buttons labeled 1 through 20 (but not 13). The following are illegal inputs:

• The number 13
• Zero or a negative number
• A number larger than 20
• An input that is not a sequence of digits, such as five

In each of these cases, we will want to give an error message and exit the 
program.

It is simple to guard against an input of 13:
if (floor == 13)
{
   System.out.println("Error: There is no thirteenth floor.");
}

Here is how you ensure that the user doesn’t enter a number outside the valid range:
if (floor <= 0 || floor > 20)
{
   System.out.println("Error: The floor must be between 1 and 20.");
}

However, dealing with an input that is not a valid integer is a more serious problem. 
When the statement 

floor = in.nextInt();

is executed, and the user types in an input that is not an integer (such as five), then 
the integer variable floor is not set. Instead, a runtime exception occurs and the pro
gram is terminated. To avoid this problem, you should first call the hasNextInt method 
which checks whether the next input is an integer. If that method returns true, you 
can safely call nextInt. Otherwise, print an error message and exit the  program.

if (in.hasNextInt())
{
   int floor = in.nextInt();   
   Process the input value
}

Like a quality control worker, 
you want to make sure that 
user input is correct before 
processing it.

Call the hasNextInt or 
hasNextDouble 
method to ensure 
that the next input is 
a number.



3.8 application: input Validation  117

else
{
   System.out.println("Error: Not an integer.");
}

Here is the complete elevator simulation program with input validation:

section_8/elevatorSimulation2.java 

1 import java.util.Scanner;
2 
3 /**
4    This program simulates an elevator panel that skips the 13th floor, checking for 
5    input errors.
6 */
7 public class ElevatorSimulation2
8 {
9    public static void main(String[] args)

10    {  
11       Scanner in = new Scanner(System.in);
12       System.out.print("Floor: ");
13       if (in.hasNextInt())
14       {
15          // Now we know that the user entered an integer
16 
17          int floor = in.nextInt();
18 
19          if (floor == 13)
20          {
21             System.out.println("Error: There is no thirteenth floor.");
22          }
23          else if (floor <= 0 || floor > 20)
24          {
25             System.out.println("Error: The floor must be between 1 and 20.");
26          }
27          else
28          {
29             // Now we know that the input is valid
30 
31             int actualFloor = floor;
32             if (floor > 13)
33             {  
34                actualFloor = floor - 1;
35             }
36 
37             System.out.println("The elevator will travel to the actual floor "
38                + actualFloor);
39          }
40       }
41       else
42       {
43          System.out.println("Error: Not an integer.");
44       }
45    }
46 }

program run

Floor: 13
Error: There is no thirteenth floor.



118 Chapter 3  Decisions

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

36.  In the ElevatorSimulation2 program, what is the output when the input is
a.  100?
b. –1?
c.  20?
d. thirteen?

37.  Your task is to rewrite lines 19–26 of the ElevatorSimulation2 program so that 
there is a single if statement with a complex condition. What is the condition?
if (. . .) 
{
   System.out.println("Error: Invalid floor number");
}

38.  In the Sherlock Holmes story “The Adventure of the Sussex Vampire”, the 
inimitable detective uttered these words: “Matilda Briggs was not the name of 
a young woman, Watson, … It was a ship which is associated with the giant rat 
of Sumatra, a story for which the world is not yet prepared.” Over a hundred 
years later, researchers found giant rats in Western New Guinea, another part of 
Indonesia. 
Suppose you are charged with writing a program that processes rat weights. It 
contains the statements
System.out.print("Enter weight in kg: ");
double weight = in.nextDouble();

What input checks should you supply?

When processing inputs, you want to reject values that are too large. But how large is too large? 
These giant rats, found in Western New Guinea, are about five times the size of a city rat.

39.  Run the following test program and supply inputs 2 and three at the prompts. 
What happens? Why? 
import java.util.Scanner

public class Test
{
   public static void main(String[] args)
   {
      Scanner in = new Scanner(System.in);
      System.out.print("Enter an integer: ");
      int m = in.nextInt();
      System.out.print("Enter another integer: ");
      int n = in.nextInt();
      System.out.println(m + " " + n);
   }
}

practice it  Now you can try these exercises at the end of the chapter: R3.3, R3.32, P3.11. 

S e l f   C h e C k

ViDeo exaMple 3.2 The genetic Code

Watch this Video Example to see how to build a “decoder ring” for  
the genetic code.



3.8 application: input Validation  119

When one uses a 
sophisticated com-

puter program such as a tax prepara-
tion package, one is bound to attribute 
some intelligence to the computer. 
the computer asks sensible questions 
and makes computations that we find 
a mental challenge. after all, if doing 
one’s taxes were easy, we wouldn’t 
need a computer to do it for us.

as programmers, however, we 
know that all this apparent intelli gence 
is an illusion. human program mers 
have carefully “coached” the software 
in all possible scenarios, and it simply 
replays the actions and deci sions that 
were programmed into it.

Would it be possible to write com-
puter programs that are genuinely 
intelligent in some sense? From the 
earliest days of computing, there was 
a sense that the human brain might 
be nothing but an immense computer, 
and that it might well be feasible to 
program computers to imitate some 
processes of human thought. serious 
research into artificial intelligence 
began in the mid-1950s, and the first 
twenty years brought some impres-
sive successes. programs that play 
chess—surely an activity that appears 
to require remarkable intellectual pow-
ers—have become so good that they 
now routinely beat all but the best 
human players. as far back as 1975, 
an expert-system program called 
Mycin gained fame for being better in 
diagnosing meningitis in patients than 
the average physician. 

however, there were serious set-
backs as well. From 1982 to 1992, 
the Japanese government embarked 
on a massive research project, funded 
at over 40 billion Japanese yen. it was 
known as the Fifth-Generation Project. 
its goal was to develop new hardware 
and software to greatly improve the 
performance of expert system soft-
ware. at its outset, the project created 
fear in other countries that the Japa-
nese computer industry was about to 
become the undisputed leader in the 
field. however, the end results were 
disappointing and did little to bring 

artificial intelligence applications to 
market.

From the very outset, one of the 
stated goals of the ai community was 
to produce software that could trans-
late text from one language to another, 
for example from english to russian. 
that undertaking proved to be enor-
mously complicated. human language 
appears to be much more subtle and 
interwoven with the human experi-
ence than had originally been thought. 
even the grammar-checking tools that 
come with word-processing programs 
today are more of a gim mick than a 
useful tool, and analyzing grammar 
is just the first step in trans lating 
sentences.

the CYC (from encyclopedia) proj-
ect, started by Douglas lenat in 1984, 
tries to codify the implicit assump-
tions that underlie human speech and 
writing. the team members started 
out analyzing news articles and asked 
themselves what unmen tioned facts 
are necessary to actually understand 
the sentences. For exam ple, consider 
the sentence, “last fall she enrolled in 
Michigan state”. the reader automati-
cally realizes that “fall” is not related 
to falling down in this context, but 
refers to the season. While there is 
a state of Michigan, here Michigan 
state denotes the university. a priori, 
a computer program has none of this 

knowledge. the goal of the CYC proj-
ect is to extract and store the requi-
site facts—that is, (1) people enroll in 
universities; (2) Michigan is a state; (3) 
many states have universi ties named 
x state University, often abbreviated 
as x state; (4) most peo ple enroll in 
a university in the fall. By 1995, the 
project had codified about 100,000 
common-sense concepts and about 
a million facts of knowledge relating 
them. even this massive amount of 
data has not proven suffi cient for use-
ful applications. 

in recent years, artificial intelli-
gence technology has seen substantial 
advances. one of the most astounding 
examples is the outcome of a series 
of “grand challenges” for autono-
mous vehicles posed by the Defense 
advanced research projects agency 
(Darpa). Competitors were invited to 
submit a com puter-controlled vehi-
cle that had to complete an obstacle 
course without a human driver or 
remote control. the first event, in 
2004, was a disap pointment, with 
none of the entrants finishing the 
route. in 2005, five vehicles com-
pleted a grueling 212 km course in the 
Mojave desert. stan ford’s stanley came 
in first, with an average speed of 30 
km/h. in 2007, Darpa moved the com-
petition to an “urban” environment, an 
abandoned air force base. Vehicles 

had to be able to 
interact with each 
other, following Cali-
fornia traffic laws. as 
stanford’s sebastian 
thrun explained: “in 
the last Grand Chal-
lenge, it didn’t really 
mat ter whether an 
obstacle was a rock 
or a bush, because 
either way you’d just 
drive around it. the 
current challenge is to 
move from just sens-
ing the envi ronment 
to understanding it.”

Winner of the 2007 DARPA Urban Challenge

Random Fact 3.2 artificial intelligence



120 Chapter 3  Decisions

use the if statement to implement a decision.

• The if statement allows a program to carry out 
dif ferent actions depending on the nature of the 
data to be processed.

implement comparisons of numbers and objects.

• Use relational operators (< <= > >= == !=) to compare numbers.
• Do not use the = = operator to compare strings. Use the equals method instead.
• The compareTo method compares strings in lexicographic order.

implement complex decisions that require multiple if statements.

• Multiple if statements can be combined to evaluate complex deci sions.
• When using multiple if statements, test general conditions after more specific 

conditions.

implement decisions whose branches require further decisions.

• When a decision statement is contained inside the branch of another decision 
statement, the statements are nested.

• Nested decisions are required for problems that have two levels of decision 
making.

draw flowcharts for visualizing the control flow of a program.

• Flow charts are made up of elements for tasks, 
input/output, and decisions.

• Each branch of a decision can contain tasks and further 
decisions.

• Never point an arrow inside another branch.

design test cases for your programs.

• Each branch of your program should be covered by a test case.
• It is a good idea to design test cases before implementing a program.
• Logging messages can be deactivated when testing is complete. 

C h a p t e r  s U M M a r Y

True

False

Condition



review exercises 121

use the boolean data type to store and combine conditions that can be true or false.

• The Boolean type boolean has two values, false and true.
• Java has two Boolean operators that combine conditions: && (and) and || (or).
• To invert a condition, use the ! (not) operator.
• The && and || operators are computed using short-circuit evaluation: As soon as 

the truth value is determined, no further conditions are evaluated.
• De Morgan’s law tells you how to negate && and || conditions.

apply if statements to detect whether user input is valid.

• Call the hasNextInt or hasNextDouble method to ensure that the 
next input is a number.

• r3.1  What is the value of each variable after the if statement?
a. int n = 1; int k = 2; int r = n;  

if (k < n) { r = k; }

b. int n = 1; int k = 2; int r;  
if (n < k) { r = k; }  
else { r = k + n; }

c. int n = 1; int k = 2; int r = k;  
if (r < k) { n = r; }  
else { k = n; }

d. int n = 1; int k = 2; int r = 3;  
if (r < n + k) { r = 2 * n; }  
else { k = 2 * r; }

•• r3.2  Explain the difference between 
s = 0;
if (x > 0) { s++; }
if (y > 0) { s++; }

and 
s = 0;
if (x > 0) { s++; }
else if (y > 0) { s++; }

java.lang.String
   equals
   compareTo
java.util.Scanner
   hasNextDouble
   hasNextInt

java.util.logging.Level
   INFO
   OFF
java.util.logging.Logger
   getGlobal
   info
   setLevel

s ta n D a r D  l i B r a r Y  i t e M s  i n t r o D U C e D  i n  t h i s  C h a p t e r

r e V i e W  e x e r C i s e s



122 Chapter 3  Decisions

•• r3.3  Find the errors in the following if statements.
a. if x > 0 then System.out.print(x);
b. if (1 + x > Math.pow(x, Math.sqrt(2)) { y = y + x; }
c. if (x = 1) { y++; } 
d. x = in.nextInt();  

if (in.hasNextInt())  
{  
   sum = sum + x;  
} 
else  
{  
   System.out.println("Bad input for x");  
}

e. String letterGrade = "F"; 
if (grade >= 90) { letterGrade = "A"; } 
if (grade >= 80) { letterGrade = "B"; } 
if (grade >= 70) { letterGrade = "C"; } 
if (grade >= 60) { letterGrade = "D"; }

• r3.4  What do these code fragments print?
a. int n = 1;  

int m = -1; 
if (n < -m) { System.out.print(n); }  
else { System.out.print(m); }

b. int n = 1;  
int m = -1; 
if (-n >= m) { System.out.print(n); } 
else { System.out.print(m); }

c. double x = 0;  
double y = 1; 
if (Math.abs(x - y) < 1) { System.out.print(x); }  
else { System.out.print(y); }

d. double x = Math.sqrt(2);  
double y = 2; 
if (x * x == y) { System.out.print(x); }  
else { System.out.print(y); }

•• r3.5  Suppose x and y are variables of type double. Write a code fragment that sets y to x if x 
is positive and to 0 otherwise. 

•• r3.6  Suppose x and y are variables of type double. Write a code fragment that sets y to the 
absolute value of x without calling the Math.abs function. Use an if statement.

•• r3.7  Explain why it is more difficult to compare floatingpoint numbers than integers. 
Write Java code to test whether an integer n equals 10 and whether a floatingpoint 
number x is approximately equal to 10.

• r3.8  It is easy to confuse the = and == operators. Write a test program containing the 
statement

if (floor = 13) 

What error message do you get? Write another test program containing the 
statement

count == 0;

What does your compiler do when you compile the program?



review exercises 123

•• r3.9  Each square on a chess board can be described by a letter and number, such as g5 in 
this example:

1
2

4

6

8

3

5

7

1
2

4

6

8

3

5

7

a

a

b

b

d

d

f

f

h

h

c

c

e

e

g5

g

g

The following pseudocode describes an algorithm that determines whether a square 
with a given letter and number is dark (black) or light (white).

If the letter is an a, c, e, or g
 If the number is odd
  color = "black"
 Else
  color = "white"
Else
 If the number is even
  color = "black"
 Else
  color = "white"

Using the procedure in Programming Tip 3.5, trace this pseudocode with input g5.

•• r3.10  Give a set of four test cases for the algorithm of Exercise R3.9 that covers all 
branches. 

•• r3.11  In a scheduling program, we want to check whether two appointments overlap. For 
simplicity, appointments start at a full hour, and we use military time (with hours 
0–24). The following pseudocode describes an algorithm that determines whether 
the appointment with start time start1 and end time end1 overlaps with the appoint
ment with start time start2 and end time end2.

If start1 > start2
 s = start1
Else
 s = start2
If end1 < end2
 e = endl 
Else
 e = end2 
If s < e 
 The appointments overlap.
Else 
 The appointments don’t overlap.

Trace this algorithm with an appointment from 10–12 and one from 11–13, then with 
an appointment from 10–11 and one from 12–13.



124 Chapter 3  Decisions

• r3.12  Draw a flow chart for the algorithm in Exercise R3.11.

• r3.13  Draw a flow chart for the algorithm in Exercise P3.17.

• r3.14  Draw a flow chart for the algorithm in Exercise P3.18.

•• r3.15  Develop a set of test cases for the algorithm in Exercise R3.11.

•• r3.16  Develop a set of test cases for the algorithm in Exercise P3.18.

•• r3.17  Write pseudocode for a program that prompts the user for a month and day and 
prints out whether it is one of the following four holidays:

• New Year’s Day (January 1)
• Independence Day (July 4)
• Veterans Day (November 11) 
• Christmas Day (December 25)

•• r3.18  Write pseudocode for a program that assigns letter grades for a quiz, according to the 
following table:

Score Grade
90-100 A
80-89 B
70-79 C
60-69 D
 < 60 F

•• r3.19  Explain how the lexicographic ordering of strings in Java differs from the order
ing of words in a dictionary or telephone book. Hint: Consider strings such as IBM, 
wiley.com, Century 21, and While-U-Wait.

•• r3.20  Of the following pairs of strings, which comes first in lexicographic order?
a. "Tom", "Jerry" 
b. "Tom", "Tomato" 
c. "church", "Churchill" 
d. "car manufacturer", "carburetor" 
e. "Harry", "hairy" 
f.  "Java", " Car" 
g. "Tom", "Tom" 
h. "Car", "Carl" 
i.  "car", "bar" 

• r3.21  Explain the difference between an if/else if/else sequence and nested if state ments. 
Give an example of each.

•• r3.22  Give an example of an if/else if/else sequence where the order of the tests does not 
matter. Give an example where the order of the tests matters.

• r3.23  Rewrite the condition in Section 3.3 to use < operators instead of >= operators. What 
is the impact on the order of the comparisons?

•• r3.24  Give a set of test cases for the tax program in Exercise P3.22. Manually compute the 
expected results.



review exercises 125

• r3.25  Make up a Java code example that shows the dangling else problem using the follow
ing statement: A student with a GPA of at least 1.5, but less than 2, is on probation. 
With less than 1.5, the student is failing.

••• r3.26  Complete the following truth table by finding the truth values of the Boolean 
expressions for all combinations of the Boolean inputs p, q, and r.

p q r (p && q) || !r !(p && (q || !r)) 

false false false 

false false true 

false true false 

. . .

5 more combinations

. . .

••• r3.27  True or false? A && B is the same as B && A for any Boolean conditions A and B.

• r3.28  The “advanced search” feature of many search engines allows you to use Boolean 
operators for complex queries, such as “(cats OR dogs) AND NOT pets”. Contrast 
these search operators with the Boolean operators in Java.

•• r3.29  Suppose the value of b is false and the value of x is 0. What is the value of each of the 
following expressions?

a. b && x == 0
b. b || x == 0
c. !b && x == 0
d. !b || x == 0
e. b && x != 0
f.  b || x != 0
g. !b && x != 0
h. !b || x != 0

•• r3.30  Simplify the following expressions. Here, b is a variable of type boolean.
a. b == true
b. b == false
c. b != true
d. b != false

••• r3.31  Simplify the following statements. Here, b is a variable of type boolean and n is a vari
able of type int.

a. if (n == 0) { b = true; } else { b = false; } 

(Hint: What is the value of n == 0?)
b. if (n == 0) { b = false; } else { b = true; }
c. b = false; if (n > 1) { if (n < 2) { b = true; } }
d. if (n < 1) { b = true; } else { b = n > 2; }



126 Chapter 3  Decisions

• r3.32  What is wrong with the following program?
System.out.print("Enter the number of quarters: "); 
int quarters = in.nextInt();
if (in.hasNextInt()) 
{
   total = total + quarters * 0.25; 
   System.out.println("Total: " + total);
}
else
{
   System.out.println("Input error.");
}

• p3.1  Write a program that reads an integer and prints whether it is negative, zero, or 
positive.

•• p3.2  Write a program that reads a floatingpoint number and prints “zero” if the number 
is zero. Otherwise, print “positive” or “negative”. Add “small” if the absolute value 
of the number is less than 1, or “large” if it exceeds 1,000,000.

•• p3.3  Write a program that reads an integer and prints how many digits the number has, by 
checking whether the number is ≥ 10, ≥ 100, and so on. (Assume that all integers are 
less than ten billion.) If the number is negative, first multiply it with –1.

•• p3.4  Write a program that reads three numbers and prints “all the same” if they are all the 
same, “all different” if they are all different, and “neither” otherwise. 

•• p3.5  Write a program that reads three numbers and prints “increasing” if they are in 
increasing order, “decreasing” if they are in decreasing order, and “neither” other
wise. Here, “increasing” means “strictly increasing”, with each value larger than its 
pre decessor. The sequence 3 4 4 would not be considered increasing.

•• p3.6  Repeat Exercise P3.5, but before reading the numbers, ask the user whether increas
ing/decreasing should be “strict” or “lenient”. In lenient mode, the sequence 3 4 4 is 
increasing and the sequence 4 4 4 is both increasing and decreasing.

•• p3.7  Write a program that reads in three integers and prints “in order” if they are sorted in 
ascending or descending order, or “not in order” otherwise. For example,

   1 2 5   in order
   1 5 2   not in order
   5 2 1   in order
   1 2 2   in order

•• p3.8  Write a program that reads four integers and prints “two pairs” if the input consists 
of two matching pairs (in some order) and “not two pairs” otherwise. For example,

   1 2 2 1   two pairs
   1 2 2 3   not two pairs
   2 2 2 2   two pairs

p r o G r a M M i n G  e x e r C i s e s



programming exercises 127

• p3.9  Write a program that reads a temperature value and the letter C for Celsius or F for 
Fahrenheit. Print whether water is liquid, solid, or gaseous at the given temperature 
at sea level.

• p3.10  The boiling point of water drops by about one degree centigrade for every 300 
meters (or 1,000 feet) of altitude. Improve the program of Exercise P3.9 to allow the 
user to supply the altitude in meters or feet. 

• p3.11  Add error handling to Exercise P3.10. If the user does not enter a number when 
expected, or provides an invalid unit for the altitude, print an error message and end 
the program.

•• p3.12  Write a program that translates a letter grade into a number grade. Letter grades are 
A, B, C, D, and F, possibly followed by + or –. Their numeric values are 4, 3, 2, 1, and 
0. There is no F+ or F–. A + increases the numeric value by 0.3, a – decreases it by 0.3. 
However, an A+ has value 4.0. 

Enter a letter grade: B- 
The numeric value is 2.7.

•• p3.13  Write a program that translates a number between 0 and 4 into the closest letter 
grade. For example, the number 2.8 (which might have been the average of several 
grades) would be converted to B–. Break ties in favor of the better grade; for exam ple 
2.85 should be a B.

•• p3.14  Write a program that takes user input describing a playing card in the following 
shorthand notation:

A  Ace
2 ... 10 Card values 
J  Jack 
Q  Queen 
K  King 
D  Diamonds 
H  Hearts 
S  Spades 
C  Clubs

Your program should print the full description of the card. For example,
Enter the card notation: QS 
Queen of Spades

•• p3.15  Write a program that reads in three floatingpoint numbers and prints the largest of 
the three inputs. For example:

Please enter three numbers: 4 9 2.5
The largest number is 9.

•• p3.16  Write a program that reads in three strings and sorts them lexicographically.
Enter three strings: Charlie Able Baker
Able 
Baker 
Charlie



128 Chapter 3  Decisions

•• p3.17  When two points in time are compared, each given as hours (in military time, rang
ing from 0 and 23) and minutes, the following pseudocode determines which comes 
first.

If hour1 < hour2
 time1 comes first.
Else if hour1 and hour2 are the same
 If minute1 < minute2
  time1 comes first.
 Else if minute1 and minute2 are the same
  time1 and time2 are the same.
 Else
  time2 comes first.
Else
 time2 comes first.

Write a program that prompts the user for two points in time and prints the time that 
comes first, then the other time. 

•• p3.18  The following algorithm yields the season (Spring, Summer, Fall, or Winter) for a 
given month and day.

If month is 1, 2, or 3, season = "Winter" 
Else if month is 4, 5, or 6, season = "Spring"
Else if month is 7, 8, or 9, season = "Summer"
Else if month is 10, 11, or 12, season = "Fall"
If month is divisible by 3 and day >= 21
 If season is "Winter", season = "Spring" 
 Else if season is "Spring", season = "Summer" 
 Else if season is "Summer", season = "Fall" 
 Else season = "Winter" 

Write a program that prompts the user for a month 
and day and then prints the season, as determined 
by this algorithm.

•• p3.19  Write a program that reads in two floatingpoint numbers and tests whether they are 
the same up to two decimal places. Here are two sample runs.

Enter two floating-point numbers: 2.0 1.99998 
They are the same up to two decimal places.
Enter two floating-point numbers: 2.0 1.98999 
They are different.

••• p3.20  Write a program that prompts for the day and month of the user’s birthday and then 
prints a horoscope. Make up fortunes for programmers, like this:

Please enter your birthday (month and day): 6 16
Gemini are experts at figuring out the behavior of complicated programs.
You feel where bugs are coming from and then stay one step ahead. Tonight,
your style wins approval from a tough critic.

Each fortune should contain the name of the astrological sign. (You will find the 
names and date ranges of the signs at a distressingly large number of sites on the 
Internet.)



programming exercises 129

•• p3.21  The original U.S. income tax of 1913 was quite simple. The tax was 

• 1 percent on the first $50,000. 

• 2 percent on the amount over $50,000 up to $75,000.

• 3 percent on the amount over $75,000 up to $100,000.

• 4 percent on the amount over $100,000 up to $250,000.

• 5 percent on the amount over $250,000 up to $500,000.

• 6 percent on the amount over $500,000.

There was no separate schedule for single or married taxpayers. Write a program that 
computes the income tax according to this schedule.

••• p3.22  Write a program that computes taxes for the following schedule. 

if your status is single and
if the taxable income is over but not over the tax is of the amount over

$0 $8,000 10% $0

$8,000 $32,000 $800 + 15% $8,000

$32,000 $4,400 + 25% $32,000

if your status is Married and
if the taxable income is over but not over the tax is of the amount over

$0 $16,000 10% $0

$16,000 $64,000 $1,600 + 15% $16,000

$64,000 $8,800 + 25% $64,000

••• p3.23  The TaxCalculator.java program uses a simplified version of the 2008 U.S. income tax 
schedule. Look up the tax brackets and rates for the current year, for both single and 
married filers, and implement a program that computes the actual income tax. 

••• p3.24  Unit conversion. Write a unit conversion program that asks the users from which 
unit they want to convert (fl. oz, gal, oz, lb, in, ft, mi) and to which unit they want to 
convert (ml, l, g, kg, mm, cm, m, km). Reject incompatible conversions (such as gal 
→ km). Ask for the value to be converted, then display the result:

Convert from? gal 
Convert to? ml 
Value? 2.5 
2.5 gal = 9462.5 ml

• p3.25  Write a program that prompts the user to provide a single character from the alpha
bet. Print Vowel or Consonant, depending on the user input. If the user input is 
not a letter (between a and z or A and Z), or is a string of length > 1, print an error 
message. 



130 Chapter 3  Decisions

••• p3.26  Roman numbers. Write a program that converts a positive integer into the Roman 
number system. The Roman number system has digits

I  1
V  5
X  10 
L  50 
C  100 
D  500 
M  1,000

Numbers are formed according to the following rules:
a. Only numbers up to 3,999 are represented. 
b. As in the decimal system, the thousands, hundreds, tens, and ones are 

expressed separately. 
c. The numbers 1 to 9 are expressed as

I  1 
II  2 
III 3 
IV  4 
V  5 
VI  6 
VII 7 
VIII 8 
IX 9
As you can see, an I preceding a V or X is subtracted from the value, and you 
can never have more than three I’s in a row. 

d. Tens and hundreds are done the same way, except that the letters X, L, C and C, 
D, M are used instead of I, V, X, respectively.

Your program should take an input, such as 1978, and convert it to Roman numer als, 
MCMLXXVIII.

•• p3.27  Write a program that asks the user to enter a month (1 for January, 2 for February, 
and so on) and then prints the number of days in the month. For February, print “28 
or 29 days”.

Enter a month: 5 
30 days

Do not use a separate if/else branch for each month. Use Boolean operators. 

••• p3.28  A year with 366 days is called a leap year. Leap years are necessary to keep the cal
endar synchronized with the sun because the earth revolves around the sun once 
every 365.25 days. Actually, that figure is not entirely precise, and for all dates after 
1582 the Gregorian correction applies. Usually years that are divisible by 4 are leap 
years, for example 1996. However, years that are divisible by 100 (for example, 1900) 
are not leap years, but years that are divisible by 400 are leap years (for exam ple, 



programming exercises 131

2000). Write a program that asks the user for a year and computes whether that year 
is a leap year. Use a single if statement and Boolean operators.

••• p3.29  French country names are feminine when they end with the letter e, masculine other
wise, except for the following which are masculine even though they end with e:

• le Belize
• le Cambodge
• le Mexique
• le Mozambique
• le Zaïre
• le Zimbabwe

Write a program that reads the French name of a country and adds the article: le for 
masculine or la for feminine, such as le Canada or la Belgique. 
However, if the country name starts with a vowel, use l’; for example, l’Afghanistan.
For the following plural country names, use les:

• les EtatsUnis
• les PaysBas

••• business p3.30  Write a program to simulate a bank transaction. There are two bank accounts: check
ing and savings. First, ask for the initial balances of the bank accounts; reject nega
tive balances. Then ask for the transactions; options are deposit, withdrawal, and 
transfer. Then ask for the account; options are checking and savings. Then ask for the 
amount; reject transactions that overdraw an account. At the end, print the balances 
of both accounts.

•• business p3.31  Write a program that reads in the name and salary of an employee. Here the salary 
will denote an hourly wage, such as $9.25. Then ask how many hours the employee 
worked in the past week. Be sure to accept fractional hours. Compute the pay. Any 
overtime work (over 40 hours per week) is paid at 150 percent of the regular wage. 
Print a paycheck for the employee.

•• business p3.32  When you use an automated teller machine (ATM) with your bank card, you need 
to use a personal identification number (PIN) to access your account. If a user fails 
more than three times when entering the PIN, the machine will block the card. 
Assume that the user’s PIN is “1234” and write a program that asks the user for the 
PIN no more than three times, and does the following:

• If the user enters the right number, print a message saying, “Your PIN is 
correct”, and end the program.

• If the user enters a wrong number, print a message saying, “Your PIN is 
incorrect” and, if you have asked for the PIN less than three times, ask for it 
again.

• If the user enters a wrong number three times, print a message saying “Your 
bank card is blocked” and end the program.

• business p3.33  Calculating the tip when you go to a restaurant is not difficult, but your restaurant 
wants to suggest a tip according to the service diners receive. Write a program that 
calculates a tip according to the diner’s satisfaction as follows:

• Ask for the diners’ satisfaction level using these ratings: 1 = Totally satisfied, 
2 = Satisfied, 3 = Dissatisfied.



132 Chapter 3  Decisions

• If the diner is totally satisfied, calculate a 20 percent tip.
• If the diner is satisfied, calculate a 15 percent tip.
• If the diner is dissatisfied, calculate a 10 percent tip.
• Report the satisfaction level and tip in dollars and cents.

• business p3.34  A supermarket awards coupons depending on how much a customer spends on 
groceries. For example, if you spend $50, you will get a coupon worth eight percent 
of that amount. The following table shows the percent used to calculate the coupon 
awarded for different amounts spent. Write a program that calculates and prints the 
value of the coupon a person can receive based on groceries purchased. 
Here is a sample run:

Please enter the cost of your groceries: 14
You win a discount coupon of $ 1.12. (8% of your purchase)

Money spent Coupon percentage

Less than $10 No coupon

From $10 to $60 8%

More than $60 to $150 10%

More than $150 to $210 12%

More than $210 14%

• Science p3.35  Write a program that prompts the user for a wavelength value and prints a descrip
tion of the corresponding part of the electromagnetic spectrum, as given in the fol
lowing table.

electromagnetic spectrum

type Wavelength (m) Frequency (hz)

Radio Waves > 10–1 < 3 × 109

Microwaves 10–3 to 10–1  3 × 109 to 3 × 1011 

Infrared 7 × 10–7 to 10–3 3 × 1011 to 4 × 1014

Visible light 4 × 10–7 to 7 × 10–7 4 × 1014 to 7.5 × 1014

Ultraviolet 10–8 to 4 × 10–7 7.5 × 1014 to 3 × 1016

Xrays 10–11 to 10–8 3 × 1016 to 3 × 1019

Gamma rays < 10–11 > 3 × 1019

• Science p3.36  Repeat Exercise P3.35, modifying the program so that it prompts for the frequency 
instead. 



programming exercises 133

•• Science p3.37  Repeat Exercise P3.35, modifying the program so that it first asks the user whether 
the input will be a wavelength or a frequency.

••• Science p3.38  A minivan has two sliding doors. Each door can be 
opened by either a dashboard switch, its inside handle, 
or its outside handle. However, the inside handles do not 
work if a child lock switch is activated. In order for the 
sliding doors to open, the gear shift must be in park, and 
the master unlock switch must be activated. (This book’s 
author is the longsuffering owner of just such a vehicle.) 
Your task is to simulate a portion of the control software for the vehicle. The input is 
a sequence of values for the switches and the gear shift, in the following order:

• Dashboard switches for left and right sliding door, child lock, and master 
unlock (0 for off or 1 for activated)

• Inside and outside handles on the left and right sliding doors (0 or 1)

• The gear shift setting (one of P N D 1 2 3 R).

A typical input would be 0 0 0 1 0 1 0 0 P.
Print “left door opens” and/or “right door opens” as appropriate. If neither door 
opens, print “both doors stay closed”. 

• Science p3.39  Sound level L in units of decibel (dB) is determined by 

L = 20 log10(p/p0) 

where p is the sound pressure of the sound (in Pascals, abbreviated Pa), and p0 is a 
reference sound pres sure equal to 20 × 10–6 Pa (where L is 0 dB). The following table 
gives descriptions for certain sound lev els.

Threshold of pain 130 dB
Possible hearing damage 120 dB
Jack hammer at 1 m 100 dB
Traffic on a busy roadway at 10 m 90 dB
Normal conversation 60 dB
Calm library 30 dB
Light leaf rustling 0 dB

Write a program that reads a value and a unit, either dB or Pa, and then prints the 
closest description from the list above. 

•• Science p3.40  The electric circuit shown below is designed to measure the temperature of the gas in 
a chamber. 

+
–Vs = 20 V

Rs = 75 Ω

R Vm

+

–

Voltmeter

11.43 V



134 Chapter 3  Decisions

The resistor R represents a temperature sensor enclosed in the chamber. The resis
tance R, in Ω, is related to the temperature T, in °C, by the equation

R R kT= +0

In this device, assume R0 = 100 Ω and k = 0.5. The voltmeter displays the value of the 
voltage, Vm , across the sensor. This voltage Vm indicates the temperature, T, of the 
gas according to the equation

T
R
k

R
k

R
k

V
V V

R
k

s m

s m
= − =

−
−0 0

Suppose the voltmeter voltage is constrained to the range Vmin = 12 volts ≤ Vm ≤ 
Vmax = 18 volts. Write a program that accepts a value of Vm and checks that it’s 
between 12 and 18. The program should return the gas temperature in degrees 
Celsius when Vm is between 12 and 18 and an error message when it isn’t.

••• Science p3.41  Crop damage due to frost is one of the many risks confronting farmers. The figure 
below shows a simple alarm circuit designed to warn of frost. The alarm circuit uses 
a device called a thermistor to sound a buzzer when the temperature drops below 
freezing. Thermistors are semiconductor devices that exhibit a temperature depen
dent resistance described by the equation

R R e T T=
−







0

1 1

0

β

where R is the resistance, in Ω, at the temperature T, in °K, and R0 is the resistance, 
in Ω, at the temperature T0, in°K. β is a constant that depends on the material used to 
make the thermistor. 

–

+

9 V

R3

R4R2

RThermistor

9 V

Comparator

Buzzer

The circuit is designed so that the alarm will sound when

R

R R

R

R R
2

2

4

3 4+
<

+

The thermistor used in the alarm circuit has R0 = 33,192 Ω at T0 = 40 °C, and 
β = 3,310 °K. (Notice that β has units of °K. The temperature in °K is obtained by 
adding 273° to the temperature in °C.) The resistors R2, R3, and R4 have a resistance 
of 156.3 kΩ = 156,300 Ω.
Write a Java program that prompts the user for a temperature in °F and prints a 
message indicating whether or not the alarm will sound at that temperature.



Answers to Self-Check Questions 135

• Science P3.42 A mass m = 2 kilograms is attached to the end of a rope of length r = 3 meters. The 
mass is whirled around at high speed. The rope can withstand a maximum tension 
of T = 60 Newtons. Write a program that accepts a rotation speed v and determines 
whether such a speed will cause the rope to break. Hint: =T m v r2 .

• Science P3.43 A mass m is attached to the end of a rope of length r = 3 meters. The rope can only 
be whirled around at speeds of 1, 10, 20, or 40 meters per second. The rope can 
withstand a maximum tension of T = 60 Newtons. Write a program where the user 
enters the value of the mass m, and the program determines the greatest speed at 
which it can be whirled without breaking the rope. Hint: =T m v r2 .

•• Science P3.44 The average person can jump off the ground 
with a velocity of 7 mph without fear of leaving 
the planet. However, if an astronaut jumps with 
this velocity while standing on Halley’s Comet, 
will the astronaut ever come back down? Create 
a program that allows the user to input a launch 
velocity (in mph) from the surface of Halley’s 
Comet and determine whether a jumper will 
return to the surface. If not, the program should 
calculate how much more massive the comet 
must be in order to return the jumper to the surface. 

Hint: Escape velocity is v
GM

Rescape = 2 , where = × −G N6.67 10 m kg11 2 2  is 

the gravitational constant, = ×M 1.3 10 kg22  is the mass of Halley’s comet, and 

= ×R 1.153 10 m6  is its radius.

A n S w e r S  t o  S e l f - C h e C k  Q u e S t i o n S

1. Change the if statement to
if (floor > 14)
{
   actualFloor = floor - 2;
}

2. 85. 90. 85.
3. The only difference is if originalPrice is 100. 

The statement in Self Check 2 sets discounted-
Price to 90; this one sets it to 80.

4. 95. 100. 95.
5. if (fuelAmount < 0.10 * fuelCapacity) 

{
   System.out.println("red");
}
else
{
   System.out.println("green");
}

6. (a) and (b) are both true, (c) is false.

7. floor <= 13 
8. The values should be compared with ==, not =.
9. input.equals("Y") 

10. str.equals("") or str.length() == 0 
11. if (scoreA > scoreB) 

{ 
   System.out.println("A won"); 
} 
else if (scoreA < scoreB) 
{ 
   System.out.println("B won"); 
}
else 
{ 
   System.out.println("Game tied"); 
}

12. if (x > 0) { s = 1; }
else if (x < 0) { s = -1; }
else { s = 0; }



136 Chapter 3  Decisions

13.  You could first set s to one of the three values:
s = 0;
if (x > 0) { s = 1; }
else if (x < 0) { s = -1; }

14.  The if (price <= 100) can be omitted (leaving 
just else), making it clear that the else branch 
is the sole alternative.

15.  No destruction of buildings.
16.  Add a branch before the final else:

else if (richter < 0) 
{ 
   System.out.println("Error: Negative input"); 
}

17.  3200.
18.  No. Then the computation is 0.10 × 32000 + 

0.25 × (32000 – 32000).
19.  No. Their individual tax is $5,200 each, and if 

they married, they would pay $10,400. Actu
ally, taxpayers in higher tax brackets (which 
our program does not model) may pay higher 
taxes when they marry, a phenomenon known 
as the marriage penalty.

20.  Change else in line 41 to 
else if (maritalStatus.equals("m"))

and add another branch after line 52:
else 
{ 
   System.out.println( 
   "Error: marital status should be s or m."); 
}

21.  The higher tax rate is only applied on the 
income in the higher bracket. Suppose you are 
single and make $31,900. Should you try to 
get a $200 raise? Absolutely: you get to keep 
90 percent of the first $100 and 75 percent of 
the next $100.

22. 

23.  The “True” arrow from the first decision 
points into the “True” branch of the sec ond 
decision, creating spaghetti code.

24.  Here is one solution. In Section 3.7, you will 
see how you can combine the condi tions for a 
more elegant solution. 

25. 

26. 

True

False

temp < 0? Print “Frozen”

Read temp 

True

False

Input < 0? Status = “Error”

True

False

Input > 100?

Status = “OK”

Status = “Error”

True

False

Print Print “Error”

x < 0?

Read x

True

False

temp < 0? Print “Ice”

True

False

temp > 100? Print “Steam” 

Print “Liquid”

Read temp 



answers to self-Check Questions 137

27.  Test  
Case

Expected  
Output

 
Comment

12 12 Below 13th floor
14 13 Above 13th floor
13 ? The specification is not clear— See 

Section 3.8 for a version of this 
program with error handling

29.  A boundary test case is a price of $128. A 16 
percent discount should apply because the 
problem statement states that the larger dis
count applies if the price is at least $128. Thus, 
the expected output is $107.52.

30.  Test  
Case

Expected  
Output

 
Comment

9 Most structures fall
7.5 Many buildings destroyed
6.5 Many buildings ...
5 Damage to poorly...
3 No destruction... 

8.0 Most structures fall Boundary case. In this 
program, boundary cases 
are not as significant 
because the behavior of 
an earthquake changes 
gradually.

-1 The specification is not 
clear—see Self Check 
16 for a version of this 
program with error 
handling.

31.  Test Case Expected Output Comment
(0.5, 0.5) inside  

(4, 2) outside  
(0, 2) on the boundary Exactly on the boundary

(1.414, 1.414) on the boundary Close to the boundary
(0, 1.9) inside Not less than 1 mm 

from the boundary
(0, 2.1) outside Not less than 1 mm 

from the boundary

32.  x == 0 && y == 0 
33.  x == 0 || y == 0 
34.  (x == 0 && y != 0) || (y == 0 && x != 0) 
35.  The same as the value of frozen.
36.  You are guaranteed that there are no other 

values. With strings or integers, you would 
need to check that no values such as "maybe" or 
–1 enter your calculations.

37.  (a) Error: The floor must be between 1 and 20. 
(b) Error: The floor must be between 1 and 20. 
(c) 19  (d) Error: Not an integer. 

38.  floor == 13 || floor <= 0 || floor > 20 
39.  Check for in.hasNextDouble(), to make sure a 

researcher didn’t supply an input such as oh 
my. Check for weight <= 0, because any rat must 
surely have a positive weight. We don’t know 
how giant a rat could be, but the New Guinea 
rats weighed no more than 2 kg. A regular 
house rat (rattus rattus) weighs up to 0.2 kg, so 
we’ll say that any weight > 10 kg was surely an 
input error, perhaps confusing grams and kilo
grams. Thus, the checks are
if (in.hasNextDouble())
{
   double weight = in.nextDouble();
   if (weight < 0)
   {
      System.out.println( 
         "Error: Weight cannot be negative.");
   }
   else if (weight > 10)
   {
      System.out.println( 
         "Error: Weight > 10 kg.");
   }
   else
   {
      Process valid weight.
   }
}
else
}
   System.out.print("Error: Not a number");
}

40.  The second input fails, and the program termi
nates without printing anything.





4C h a p t e r

139

Loops

to implement while, for, and do loops

to hand-trace the execution of a program

to become familiar with common  
loop algorithms

to understand nested loops

to implement programs that read and process data sets

to use a computer for simulations

C h a p t e r  G o a L s

C h a p t e r  C o n t e n t s

4.1  The while loop  140

Syntax 4.1: while statement 141
Common Error 4.1: Don’t think “are We 

there Yet?” 144
Common Error 4.2: Infinite Loops 145
Common Error 4.3: off-by-one errors 145
Random Fact 4.1: the First Bug 146

4.2  problem Solving: 
hand-Tracing  147

4.3  The for loop  150

Syntax 4.2: for statement 152
Programming Tip 4.1: Use for Loops for their 

Intended purpose only 155
Programming Tip 4.2: Choose Loop Bounds that 

Match Your task 155
Programming Tip 4.3: Count Iterations 156

4.4  The do loop  156

Programming Tip 4.4: Flowcharts for Loops 157

4.5  applicaTion: proceSSing 
SenTinel valueS  158

Special Topic 4.1: the Loop-and-a-half problem 
and the break statement 160

Special Topic 4.2: redirection of Input 
and output 161

Video Example 4.1: evaluating a Cell 
phone plan 

4.6  problem Solving: 
SToryboardS  162

4.7  common loop algoriThmS  165

How To 4.1: Writing a Loop 169
Worked Example 4.1: Credit Card processing 

4.8  neSTed loopS  172

Worked Example 4.2:  Manipulating the pixels 
in an Image 

4.9  applicaTion: random numberS  
and SimulaTionS  176

Special Topic 4.3: Drawing Graphical shapes 179
Video Example 4.2: Drawing a spiral 
Random Fact 4.2: software piracy 182



140

In a loop, a part of a program is repeated over and over, 
until a specific goal is reached. Loops are important for 
calculations that require repeated steps and for processing 
input consisting of many data items. In this chapter, you will 
learn about loop statements in Java, as well as techniques 
for writing programs that process input and simulate 
activities in the real world.

4.1 the while Loop
In this section, you will learn about loop statements that 
repeatedly execute instructions until a goal has been 
reached. 

Recall the investment problem from Chapter 1. You 
put $10,000 into a bank account that earns 5 percent inter
est per year. How many years does it take for the account 
balance to be double the original investment?

In Chapter 1 we developed the following algorithm for 
this problem: 

Start with a year value of 0, a column for the interest, and a balance of $10,000.

 year     interest balance
 0     $10,000

Repeat the following steps while the balance is less than $20,000.
 Add 1 to the year value. 
 Compute the interest as balance x 0.05 (i.e., 5 percent interest).
 Add the interest to the balance.
Report the final year value as the answer.

You now know how to declare and update the variables in Java. What you don’t yet 
know is how to carry out “Repeat steps while the balance is less than $20,000”. 

Because the interest 
earned also earns interest, 
a bank balance grows 
exponentially.

In a particle accelerator, subatomic particles 
traverse a loop-shaped tunnel multiple times,  
gaining the speed required for physical experiments.  
Similarly, in computer science, statements in a  
loop are executed while a condition is true.



4.1 the while Loop  141

In Java, the while statement implements such a 
repetition (see Syntax 4.1). It has the form

while (condition)
{
   statements
}

As long as the condition remains true, the statements 
inside the while statement are executed. These state
ments are called the body of the while statement. 

In our case, we want to increment the year coun
ter and add interest while the balance is less than the 
target balance of $20,000:

while (balance < TARGET)
{
   year++;
   double interest = balance * RATE / 100;
   balance = balance + interest;
}

A while statement is an example of a loop. If you draw a flowchart, the flow of execu
tion loops again to the point where the condition is tested (see Figure 1). 

figure 1  Flowchart of a while Loop

False

True

Calculate
interest

Add interest
to balance

Increment
year

balance <
TARGET?

a loop executes 
instructions 
repeatedly while a 
condition is true. 

syntax 4.1 while statement

Lining up braces
is a good idea. 
See page 86.

double balance = 0;
.
.
.
while (balance < TARGET)
{
   double interest = balance * RATE / 100;     

   balance = balance + interest;
}

If the condition 
never becomes false,
an infinite loop occurs.
         See page 145.

These statements 
are executed while 
the condition is true.

Don’t put a semicolon here!
      See page 86.

Beware of “off-by-one” 
errors in the loop condition. 

         See page 145.

Braces are not required if the body contains 
a single statement, but it’s good to always use them.  

      See page 86.

This variable is declared outside the loop 
and updated in the loop.

This variable is created 
in each loop iteration.

while (condition)
{
   statements
}

Syntax



142 Chapter 4  Loops

When you declare a variable inside the loop body, the variable is created for each 
iteration of the loop and removed after the end of each iteration. For example, con
sider the interest variable in this loop:

while (balance < TARGET)
{
   year++;
   double interest = balance * RATE / 100;  
   balance = balance + interest;
} // interest no longer declared here

In contrast, the balance and years variables were declared outside the loop body. That 
way, the same vari able is used for all iterations of the loop. 

A new interest variable 
is created in each iteration.

figure 2   
execution of the  
DoubleInvestment 
Loop

while (balance < TARGET)
{
   year++;
   double interest = balance * RATE / 100;
   balance = balance + interest;
}
System.out.println(year);

while (balance < TARGET)
{
   year++;
   double interest = balance * RATE / 100;
   balance = balance + interest;
}

Check the loop condition1 The condition is true

while (balance < TARGET)
{
   year++;
   double interest = balance * RATE / 100;
   balance = balance + interest;
}

Execute the statements in the loop2

while (balance < TARGET)
{
   year++;
   double interest = balance * RATE / 100;
   balance = balance + interest;
}

Check the loop condition again3 The condition is still true

while (balance < TARGET)
{
   year++;
   double interest = balance * RATE / 100;
   balance = balance + interest;
}

After 15 iterations4 The condition is 
no longer true

Execute the statement following the loop5

.

.

.

year = 0

balance = 10000

year = 1

interest = 500

balance = 10500

year = 1

balance = 10500

year = 15

balance = 20789.28

year = 15

balance = 20789.28



4.1 the while Loop  143

Here is the program that solves the investment problem. Figure 2 illustrates the pro
gram’s execution. 

section_1/doubleinvestment.java

1 /**
2    This program computes the time required to double an investment.
3 */
4 public class DoubleInvestment
5 {
6    public static void main(String[] args)
7    { 
8       final double RATE = 5;
9       final double INITIAL_BALANCE = 10000;

10       final double TARGET = 2 * INITIAL_BALANCE;
11       
12       double balance = INITIAL_BALANCE;
13       int year = 0;
14 
15       // Count the years required for the investment to double
16 
17       while (balance < TARGET)
18       {
19          year++;
20          double interest = balance * RATE / 100;
21          balance = balance + interest;
22       }
23     
24       System.out.println("The investment doubled after "
25          + year + " years.");
26    }
27 }

program run

The investment doubled after 15 years.

1.  How many years does it take for the investment to triple? Modify the program 
and run it.

2.  If the interest rate is 10 percent per year, how many years does it take for the 
investment to double? Modify the program and run it.

3.  Modify the program so that the balance after each year is printed. How did you 
do that?

4.  Suppose we change the program so that the condition of the while loop is 
while (balance <= TARGET)

What is the effect on the program? Why?
5.  What does the following loop print?

int n = 1;
while (n < 100) 
{
   n = 2 * n;
   System.out.print(n + " ");
} 

practice it  Now you can try these exercises at the end of the chapter: R4.1, R4.5, P4.14.

S e l f   c h e c k



144 Chapter 4  Loops

table 1  while Loop examples

Loop output explanation

i = 0; sum = 0; 
while (sum < 10) 
{ 
   i++; sum = sum + i; 
   Print i and sum; 
}

1 1
2 3
3 6
4 10

When sum is 10, the loop condition is 
false, and the loop ends.

i = 0; sum = 0; 
while (sum < 10) 
{ 
   i++; sum = sum - i; 
   Print i and sum; 
}

1 -1
2 -3
3 -6
4 -10
. . .

Because sum never reaches 10, this is an 
“infinite loop” (see Common Error 4.2 
on page 145).

i = 0; sum = 0; 
while (sum < 0) 
{ 
   i++; sum = sum - i; 
   Print i and sum; 
}

(No output) The statement sum < 0 is false when the 
condition is first checked, and the loop 
is never executed.

i = 0; sum = 0; 
while (sum >= 10) 
{ 
   i++; sum = sum + i; 
   Print i and sum; 
}

(No output) The programmer probably thought, 
“Stop when the sum is at least 10.” 
However, the loop condition controls 
when the loop is executed, not when it 
ends (see Common Error 4.1 on 
page 144).

i = 0; sum = 0; 
while (sum < 10) ;
{ 
   i++; sum = sum + i; 
   Print i and sum; 
}

(No output, program 
does not terminate)

Note the semicolon before the {. 
This loop has an empty body. It runs 
forever, checking whether sum < 0 and 
doing nothing in the body.

don’t Think “are we There yet?” 

When doing something repetitive, most of us want to know when 
we are done. For exam ple, you may think, “I want to get at least 
$20,000,” and set the loop condition to

balance >= TARGET

But the while loop thinks the opposite: How long am I allowed to 
keep going? The correct loop condition is

while (balance < TARGET)

In other words: “Keep at it while the balance is less than the target.” 

When writing a loop condition, don’t ask, “Are we there yet?”  
The condition determines how long the loop will keep going.

Common error 4.1 



4.1 the while Loop  145

infinite loops

A very annoying loop error is an infinite loop: a loop that 
runs forever and can be stopped only by killing the program 
or restarting the computer. If there are output statements 
in the program, then reams and reams of output flash by on 
the screen. Otherwise, the program just sits there and hangs, 
seeming to do nothing. On some systems, you can kill a hang
ing program by hitting Ctrl + C. On others, you can close the 
window in which the program runs.

A common reason for infinite loops is forgetting to update 
the variable that controls the loop:

int year = 1;
while (year <= 20)
{
   double interest = balance * RATE / 100;
   balance = balance + interest;
}

Here the programmer forgot to add a year++ command in the loop. As a result, the year always 
stays at 1, and the loop never comes to an end.

Another common reason for an infinite loop is accidentally incrementing a counter that 
should be decremented (or vice versa). Consider this example:

int year = 20;
while (year > 0)
{
   double interest = balance * RATE / 100;
   balance = balance + interest;
   year++;
}

The year variable really should have been decremented, not incremented. This is a common 
error because increment ing counters is so much more common than decrementing that your 
fingers may type the ++ on autopilot. As a con sequence, year is always larger than 0, and the 
loop never ends. (Actually, year may eventually exceed the largest representable positive inte
ger and wrap around to a negative number. Then the loop ends—of course, with a com pletely 
wrong result.)

 

off-by-one errors

Consider our computation of the number of years that are required to double an investment:

int year = 0;
while (balance < TARGET)
{ 
   year++;
   balance = balance * (1 + RATE / 100);
}
System.out.println("The investment doubled after "
   + year + " years.");

Should year start at 0 or at 1? Should you test for balance < TARGET or for balance <= TARGET? It is 
easy to be off by one in these expressions.

Common error 4.2 

Like this hamster who can’t 
stop running in the tread mill, 
an infinite loop never ends.

Common error 4.3 



146 Chapter 4  Loops

Some people try to solve off-by-one errors by randomly inserting +1 or -1 until the pro
gram seems to work—a terrible strategy. It can take a long time to compile and test all the vari
ous possibilities. Expending a small amount of mental effort is a real time saver.

Fortunately, offbyone errors are easy to avoid, simply by 
thinking through a couple of test cases and using the information 
from the test cases to come up with a rationale for your decisions.

Should year start at 0 or at 1? Look at a scenario with simple val
ues: an initial balance of $100 and an interest rate of 50 percent. After 
year 1, the balance is $150, and after year 2 it is $225, or over $200. So 
the investment doubled after 2 years. The loop executed two times, 
incrementing year each time. Hence year must start at 0, not at 1.

 year balance
 0 $100
 1 $150
 2 $225

In other words, the balance variable denotes the balance after the end of the year. At the outset, 
the balance variable contains the balance after year 0 and not after year 1.

Next, should you use a < or <= comparison in the test? This is harder to figure out, because 
it is rare for the balance to be exactly twice the initial balance. There is one case when this 
happens, namely when the interest is 100 percent. The loop executes once. Now year is 1, and 
balance is exactly equal to 2 * INITIAL_BALANCE. Has the investment doubled after one year? It 
has. Therefore, the loop should not execute again. If the test condition is balance < TARGET, the 
loop stops, as it should. If the test condition had been balance <= TARGET, the loop would have 
executed once more.

In other words, you keep adding interest while the balance has not yet doubled.

an off-by-one error is 
a common error 
when programming 
loops. think through 
simple test cases  
to avoid this type  
of error.

according to legend, 
the first bug was 

found in the Mark II, a huge electrome-
chanical computer at harvard Univer-
sity. It really was caused by a bug—a 
moth was trapped in a relay switch.

actually, from the note that the 
operator left in the log book next to 
the moth (see the photo), it appears as 
if the term “bug” had already been in 
active use at the time.

The First Bug

the pioneering computer scientist 
Maurice Wilkes wrote, “somehow, at 
the Moore school and afterwards, one 
had always assumed there would be 
no particular difficulty in getting pro-

grams right. I can remember the exact 
instant in time at which it dawned on 
me that a great part of my future life 
would be spent finding mistakes in my 
own programs.” 

Random Fact 4.1 the First Bug



4.2 problem solving: hand-tracing  147

4.2 problem solving: hand-tracing
In Programming Tip 3.5, you learned about the method of handtracing. When you 
handtrace code or pseudocode, you write the names of the variables on a sheet of 
paper, mentally execute each step of the code and update the variables.

It is best to have the code written or printed on a sheet of paper. Use a marker, 
such as a paper clip, to mark the current line. Whenever a variable changes, cross out 
the old value and write the new value below. When a program produces output, also 
write down the output in another column.

Consider this example. What value is displayed?
int n = 1729;
int sum = 0;
while (n > 0)
{
   int digit = n % 10;
   sum = sum + digit;
   n = n / 10;
}
System.out.println(sum);

There are three variables: n, sum, and digit. 

 n sum digit 

The first two variables are initialized with 1729 and 0 before the loop is entered.
int n = 1729;
int sum = 0;
while (n > 0)
{
   int digit = n % 10;
   sum = sum + digit;
   n = n / 10;
}
System.out.println(sum);

Because n is greater than zero, enter the loop. The variable digit is set to 9 (the remain
der of dividing 1729 by 10). The variable sum is set to 0 + 9 = 9. 

int n = 1729;
int sum = 0;
while (n > 0)
{
   int digit = n % 10;
   sum = sum + digit;
   n = n / 10;
}
System.out.println(sum);

hand-tracing is a 
simulation of code 
execution in which 
you step through 
instructions and 
track the values of 
the variables.

 n sum digit
 1729 0 

 n sum digit
 1729 0 
  9 9



148 Chapter 4  Loops

Finally, n becomes 172. (Recall that the remainder in the division 1729 / 10 is dis
carded because both argu ments are integers.)

Cross out the old values and write the new ones under the old ones.
int n = 1729;
int sum = 0;
while (n > 0)
{
   int digit = n % 10;
   sum = sum + digit;
   n = n / 10;
}
System.out.println(sum);

Now check the loop condition again.
int n = 1729;
int sum = 0;
while (n > 0)
{
   int digit = n % 10;
   sum = sum + digit;
   n = n / 10;
}
System.out.println(sum);

Because n is still greater than zero, repeat 
the loop. Now digit becomes 2, sum is set 
to 9 + 2 = 11, and n is set to 17.

Repeat the loop once again, setting digit 
to 7, sum to 11 + 7 = 18, and n to 1. 

Enter the loop for one last time. Now 
digit is set to 1, sum to 19, and n becomes 
zero. 

 n sum digit
 1729 0 
 172 9 9

 n sum digit
 1729 0 
 172 9 9
 17 11 2

 n sum digit
 1729 0 
 172 9 9
 17 11 2
 1 18 7

 n sum digit
 1729 0 
 172 9 9
 17 11 2
 1 18 7
 0 19 1



4.2 problem solving: hand-tracing  149

int n = 1729;
int sum = 0;
while (n > 0)

Because n equals zero, 
this condition is not true.

{
   int digit = n % 10;
   sum = sum + digit;
   n = n / 10;
}
System.out.println(sum);

The condition n > 0 is now false. Continue with the statement after the loop. 
int n = 1729;
int sum = 0;
while (n > 0)
{
   int digit = n % 10;
   sum = sum + digit;
   n = n / 10;
}
System.out.println(sum);

This statement is an output statement. The value that is output is the value of sum, 
which is 19. 

Of course, you can get the same answer by just running the code. However, hand
tracing can give you an insight that you would not get if you simply ran the code. 
Consider again what happens in each itera tion:

• We extract the last digit of n.
• We add that digit to sum.
• We strip the digit off n.

In other words, the loop forms the sum of the digits in n. You now know what the 
loop does for any value of n, not just the one in the example. (Why would anyone 
want to form the sum of the digits? Operations of this kind are useful for checking 
the validity of credit card numbers and other forms of ID numbers—see Exercise 
P4.32.)

Handtracing does not just help you understand code that works correctly. It is 
a powerful technique for finding errors in your code. When a program behaves in a 
way that you don’t expect, get out a sheet of paper and track the values of the vari
ables as you mentally step through the code.

You don’t need a working program to do handtracing. You can handtrace 
pseudocode. In fact, it is an excellent idea to handtrace your pseudocode before you 
go to the trouble of translating it into actual code, to confirm that it works correctly. 

6.  Handtrace the following code, showing the value of n and the output.
int n = 5;
while (n >= 0)
{
   n--;
   System.out.print(n);
}

 n sum digit output
 1729 0 
 172 9 9
 17 11 2
 1 18 7
 0 19 1 19

A N I M AT I O N
Tracing a Loop

hand-tracing can 
help you understand 
how an unfamiliar 
algorithm works.

hand-tracing can 
show errors in code 
or pseudocode.

S e l f   c h e c k



150 Chapter 4  Loops

7.  Handtrace the following code, showing the value of n and the output. What 
potential error do you notice?
int n = 1;
while (n <= 3)
{
   System.out.print(n + ", ");
   n++;
}

8.  Handtrace the following code, assuming that a is 2 and n is 4. Then explain what 
the code does for arbitrary values of a and n.
int r = 1;
int i = 1;
while (i <= n)
{
   r = r * a;
   i++;
}

9.  Trace the following code. What error do you observe?
int n = 1;
while (n != 50)
{
   System.out.println(n);
   n = n + 10;
}

10.  The following pseudocode is intended to count the number of digits in the 
number n:

count = 1
temp = n
while (temp > 10)
 Increment count.
 Divide temp by 10.0.

Trace the pseudocode for n = 123 and n = 100. What error do you find?

practice it  Now you can try these exercises at the end of the chapter: R4.3, R4.6.

4.3 the for Loop
It often happens that you want to execute a sequence of statements a given number 
of times. You can use a while loop that is controlled by a counter, as in the following 
example: 

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
   System.out.println(counter);
   counter++; // Update the counter 
}

Because this loop type is so common, there is a special form for it, called the for loop 
(see Syntax 4.2). 

the for loop is 
used when a  
value runs from a 
starting point to an 
ending point with a  
constant increment 
or decrement. 



4.3 the for Loop  151

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Some people call this loop count-controlled. In con
trast, the while loop of the preceding section can be 
called an event-controlled loop because it executes 
until an event occurs; namely that the balance 
reaches the target. Another commonly used term 
for a countcontrolled loop is definite. You know 
from the outset that the loop body will be executed 
a definite number of times; ten times in our example. 
In contrast, you do not know how many iterations 
it takes to accumulate a target balance. Such a loop is 
called indefinite.

The for loop neatly groups the initialization, con
dition, and update expressions together. However, it 
is important to realize that these expressions are not 
executed together (see Figure 3). 

• The initialization is executed once, before the loop is entered. 1

• The condition is checked before each iteration. 2  5

• The update is executed after each iteration. 4  

You can visualize the for loop as 
an orderly sequence of steps. 

A N I M AT I O N
The for Loop

figure 3   
execution of a  
for Loop

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2



152 Chapter 4  Loops

syntax 4.2 for statement

for (int i = 5; i <= 10; i++)
{
   sum = sum + i;
}

This loop executes 6 times. 
   See page 156.

This initialization 
happens once 
before the loop starts.

The condition is 
checked before 
each iteration.

This update is 
executed after 
each iteration.

The variable i is 
defined only in this for loop. 

See page 153.

These three 
expressions should be related.

        See page 155.

for (initialization; condition; update)
{
   statements
}

Syntax

A for loop can count down instead of up:
for (int counter = 10; counter >= 0; counter--) . . .

The increment or decrement need not be in steps of 1:
for (int counter = 0; counter <= 10; counter = counter + 2) . . .

See Table 2 for additional variations. 
So far, we have always declared the counter variable in the loop initialization: 
for (int counter = 1; counter <= 10; counter++)
{
   . . .
}
// counter no longer declared here 

table 2  for Loop examples

Loop Values of i Comment

for (i = 0; i <= 5; i++) 0 1 2 3 4 5 Note that the loop is executed 6 times. (See 
Programming Tip 4.3 on page 156.)

for (i = 5; i >= 0; i--) 5 4 3 2 1 0 Use i-- for decreasing values.

for (i = 0; i < 9; i = i + 2) 0 2 4 6 8 Use i = i + 2 for a step size of 2.

for (i = 0; i != 9; i = i + 2) 0 2 4 6 8 10 12 14 … 
(infinite loop)

You can use < or <= instead of != to avoid 
this problem.

for (i = 1; i <= 20; i = i * 2) 1 2 4 8 16 You can specify any rule for modifying i, 
such as doubling it in every step. 

for (i = 0; i < str.length(); i++) 0 1 2 … until the last valid 
index of the string str

In the loop body, use the expression  
str.charAt(i) to get the ith character.



4.3 the for Loop  153

Such a variable is declared for all iterations of the loop, but you cannot use it after the 
loop. If you declare the counter variable before the loop, you can continue to use it 
after the loop:

int counter;
for (counter = 1; counter <= 10; counter++)
{
   . . .
}
// counter still declared here  

Here is a typical use of the for loop. We want to print the balance of our savings 
account over a period of years, as shown in this table:  

Year Balance

1 10500.00

2 11025.00

3 11576.25

4 12155.06

5 12762.82

The for loop pattern applies because the variable 
year starts at 1 and then moves in constant incre
ments until it reaches the target:

for (int year = 1; year <= nyears; year++)
{
   Update balance.
   Print year and balance.
}

Following is the complete program. Figure 4 
shows the corresponding flowchart. 

figure 4  Flowchart of a for Loop

section_3/investmentTable.java

1 import java.util.Scanner;
2 
3 /**
4    This program prints a table showing the growth of an investment.
5 */
6 public class InvestmentTable
7 {
8    public static void main(String[] args)
9    { 

10       final double RATE = 5;
11       final double INITIAL_BALANCE = 10000;

True

False

year++

year ≤ nyears ?

year = 1

Update balance;
Print year and 

balance



154 Chapter 4  Loops

12       double balance = INITIAL_BALANCE;
13 
14       System.out.print("Enter number of years: ");
15       Scanner in = new Scanner(System.in);
16       int nyears = in.nextInt();
17 
18       // Print the table of balances for each year
19       
20       for (int year = 1; year <= nyears; year++)
21       { 
22          double interest = balance * RATE / 100;
23          balance = balance + interest;
24          System.out.printf("%4d %10.2f\n", year, balance);
25       }
26    }
27 }

program run

Enter number of years: 10
   1  10500.00
   2  11025.00
   3  11576.25
   4  12155.06
   5  12762.82
   6  13400.96
   7  14071.00
   8  14774.55
   9  15513.28
  10  16288.95

Another common use of the for loop is to traverse all characters of a string:
for (int i = 0; i < str.length(); i++)
{
   char ch = str.charAt(i);
   Process ch
}

Note that the counter variable i starts at 0, and the loop is terminated when i reaches 
the length of the string. For example, if str has length 5, i takes on the values 0, 1, 2, 3, 
and 4. These are the valid positions in the string.

11.  Write the for loop of the InvestmentTable.java program as a while loop.
12.  How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{
   System.out.println(n);
}

13.  Write a for loop that prints all even numbers between 10 and 20 (inclusive).
14.  Write a for loop that computes the sum of the integers from 1 to n.
15.  How would you modify the for loop of the InvestmentTable.java program to 

print all balances until the investment has doubled? 

practice it  Now you can try these exercises at the end of the chapter: R4.4, R4.10, P4.8, P4.13.

S e l f   c h e c k



4.3 the for Loop  155

use for loops for Their intended purpose only

A for loop is an idiom for a loop of a particular form. A value runs from the start to the end, 
with a constant incre ment or decrement. 

The compiler won’t check whether the initialization, condition, and update expressions are 
related. For example, the following loop is legal: 

// Confusing—unrelated expressions
for (System.out.print("Inputs: "); in.hasNextDouble(); sum = sum + x)
{
   x = in.nextDouble();
}

However, programmers reading such a for loop will be confused because it does not match 
their expectations. Use a while loop for iterations that do not follow the for idiom.

You should also be careful not to update the loop counter in the body of a for loop. Con
sider the following exam ple:

for (int counter = 1; counter <= 100; counter++)
{
   if (counter % 10 == 0) // Skip values that are divisible by 10
   {
      counter++; // Bad style—you should not update the counter in a for loop
   }
   System.out.println(counter);
}

Updating the counter inside a for loop is confusing because the counter is updated again at the 
end of the loop itera tion. In some loop iterations, counter is incremented once, in others twice. 
This goes against the intuition of a pro grammer who sees a for loop.

If you find yourself in this situation, you can either change from a for loop to a while loop, 
or implement the “skipping” behavior in another way. For example:

for (int counter = 1; counter <= 100; counter++)
{
   if (counter % 10 != 0) // Skip values that are divisible by 10
   {
      System.out.println(counter);
   }
}

choose loop bounds That match your Task

Suppose you want to print line numbers that go from 1 to 10. Of course, you will use a loop: 

for (int i = 1; i <= 10; i++)

The values for i are bounded by the relation 1 ≤ i≤ 10. Because there are ≤ on both bounds, the 
bounds are called symmetric.

When traversing the characters in a string, it is more natural to use the bounds

for (int i = 0; i < str.length(); i++)

In this loop, i traverses all valid positions in the string. You can access the ith character as str.
charAt(i). The values for i are bounded by 0 ≤ i < str.length(), with a ≤ to the left and a < to the 
right. That is appropriate, because str.length() is not a valid position. Such bounds are called 
asymmetric.

In this case, it is not a good idea to use symmetric bounds: 

for (int i = 0; i <= str.length() - 1; i++) // Use < instead

The asymmetric form is easier to understand.

programming tip 4.1 

programming tip 4.2 



156 Chapter 4  Loops

count iterations

Finding the correct lower and upper bounds for an iteration can be confusing. Should you 
start at 0 or at 1? Should you use <= b or < b as a termination condition?

Counting the number of iterations is a very useful device for better understanding a loop. 
Counting is easier for loops with asymmetric bounds. The loop

for (int i = a; i < b; i++) 

is executed b - a times. For example, the loop traversing the characters in a string,

for (int i = 0; i < str.length(); i++) 

runs str.length() times. That makes perfect sense, because there are str.length() characters in 
a string.

The loop with symmetric bounds,

for (int i = a; i <= b; i++)

is executed b - a + 1 times. That “+1” is the source of many programming errors. 
For example,

for (int i = 0; i <= 10; i++)

runs 11 times. Maybe that is what you want; if not, start at 1 or use < 10. 
One way to visualize this “+1” error is 

by looking at a fence. Each section has one 
fence post to the left, and there is a final post 
on the right of the last section. Forgetting to 
count the last value is often called a “fence 
post error”.

How many posts do you need for a fence  
with four sections? It is easy to be “off by one”  

with problems such as this one. 

4.4 the do Loop
Sometimes you want to execute the body of a loop at least once and perform the loop 
test after the body is executed. The do loop serves that purpose:

do
{
   statements
}
while (condition);

The body of the do loop is executed first, then the condition is tested. 
Some people call such a loop a post-test loop because the condition is tested after 

completing the loop body. In contrast, while and for loops are pre-test loops. In those 
loop types, the condition is tested before entering the loop body. 

A typical example for a do loop is input validation. Suppose you ask a user to enter 
a value < 100. If the user doesn’t pay attention and enters a larger value, you ask 
again, until the value is correct. Of course, you cannot test the value until the user has 
entered it. This is a perfect fit for the do loop (see Figure 5):

programming tip 4.3 

the do loop is 
appropriate when  
the loop body  
must be executed  
at least once.

o n l i n e  e x a m p l e

a program to 
illustrate the use of 
the do loop for input 
validation.



4.4 the do Loop  157

figure 5   Flowchart of a do Loop

int value;
do
{
   System.out.print("Enter an integer < 100: ");
   value = in.nextInt();
}
while (value >= 100);

16.  Suppose that we want to check for inputs that are 
at least 0 and at most 100. Modify the do loop for 
this check.

17.  Rewrite the input check do loop using a while loop. 
What is the disadvantage of your solution?

18.  Suppose Java didn’t have a do loop. Could you 
rewrite any do loop as a while loop?

19.  Write a do loop that reads integers and computes 
their sum. Stop when reading the value 0.

20.  Write a do loop that reads integers and computes their sum. Stop when reading a 
zero or the same value twice in a row. For example, if the input is 1 2 3 4 4, then 
the sum is 14 and the loop stops.

practice it  Now you can try these exercises at the end of the chapter: R4.9, R4.16, R4.17.

flowcharts for loops

In Section 3.5, you learned how to use flowcharts to visualize the flow of control in a program. 
There are two types of loops that you can include in a flowchart; they correspond to a while 
loop and a do loop in Java. They differ in the placement of the condition—either before or after 
the loop body.

False

True

Loop body

Condition?

          

True

False

Loop body

Condition?

As described in Section 3.5, you want to avoid “spaghetti code” in your flowcharts. For loops, 
that means that you never want to have an arrow that points inside a loop body.

True

False

value ≥ 100?

Prompt user 
to enter 

a value < 100 

Copy the input 
to value 

S e l f   c h e c k

programming tip 4.4 



158 Chapter 4  Loops

4.5 application: processing sentinel Values
In this section, you will learn how to write loops that read and process a sequence of 
input values. 

Whenever you read a sequence of inputs, you 
need to have some method of indicating the end 
of the sequence. Sometimes you are lucky and no 
input value can be zero. Then you can prompt the 
user to keep entering numbers, or 0 to finish the 
sequence. If zero is allowed but negative numbers 
are not, you can use –1 to indicate termination.

Such a value, which is not an actual input, 
but serves as a signal for termination, is called a 
sentinel. 

Let’s put this technique to work in a program 
that computes the average of a set of salary values. 
In our sample program, we will use –1 as a sentinel. 
An employee would surely not work for a negative 
salary, but there may be volunteers who work for 
free. 

Inside the loop, we read an input. If the input is 
not –1, we process it. In order to compute the aver
age, we need the total sum of all salaries, and the 
number of inputs.

salary = in.nextDouble();
if (salary != -1) 
{ 
   sum = sum + salary;
   count++;
}

We stay in the loop while the sentinel value is not detected. 
while (salary != -1)
{
   . . .   
}

There is just one problem: When the loop is entered for the first time, no data value 
has been read. We must make sure to initialize salary with some value other than the 
sentinel:

double salary = 0; 
// Any value other than –1 will do

After the loop has finished, we compute and print the average. Here is the complete 
program:

section_5/Sentineldemo.java

1 import java.util.Scanner;
2 
3 /**
4    This program prints the average of salary values that are terminated with a sentinel.
5 */

In the military, a sentinel guards 
a border or passage. In computer 
science, a sentinel value denotes 
the end of an input sequence or the 
border between input sequences.

a sentinel value 
denotes the end of a 
data set, but it is not 
part of the data.



4.5 application: processing sentinel Values  159

6 public class SentinelDemo
7 {
8    public static void main(String[] args)
9    { 

10       double sum = 0;
11       int count = 0;
12       double salary = 0;
13       System.out.print("Enter salaries, -1 to finish: ");
14       Scanner in = new Scanner(System.in);
15 
16       // Process data until the sentinel is entered 
17 
18       while (salary != -1)
19       { 
20          salary = in.nextDouble();
21          if (salary != -1) 
22          { 
23             sum = sum + salary;
24             count++;
25          }
26       }
27 
28       // Compute and print the average
29 
30       if (count > 0)
31       {
32          double average = sum / count;
33          System.out.println("Average salary: " + average);
34       }
35       else
36       {
37          System.out.println("No data");
38       }
39    }
40 }

program run

Enter salaries, -1 to finish: 10 10 40 -1
Average salary: 20

Some programmers don’t like the “trick” of initializing the input variable with a value 
other than the sen tinel. Another approach is to use a Boolean variable: 

System.out.print("Enter salaries, -1 to finish: ");
boolean done = false;
while (!done)
{
   value = in.nextDouble();
   if (value == -1)
   {
      done = true;
   }
   else
   {
      Process value.
   }
}

Special Topic 4.1 on page 160 shows an alternative mechanism for leaving such a loop. 

You can use a 
Boolean variable to 
control a loop. set 
the variable before 
entering the loop, 
then set it to the 
opposite to leave  
the loop.



160 Chapter 4  Loops

Now consider the case in which any number (positive, negative, or zero) can be 
an acceptable input. In such a situation, you must use a sentinel that is not a number 
(such as the letter Q). As you have seen in Section 3.8, the condition

in.hasNextDouble()

is false if the next input is not a floatingpoint number. Therefore, you can read and 
process a set of inputs with the following loop:

System.out.print("Enter values, Q to quit: ");
while (in.hasNextDouble())
{
   value = in.nextDouble();
   Process value.
}

21.  What does the SentinelDemo.java program print when the user immediately types 
–1 when prompted for a value?

22.  Why does the SentinelDemo.java program have two checks of the form
salary != -1

23.  What would happen if the declaration of the salary variable in SentinelDemo.java 
was changed to
double salary = -1;

24.  In the last example of this section, we prompt the user “Enter values, Q to quit.” 
What happens when the user enters a different letter? 

25.  What is wrong with the following loop for reading a sequence of values?
System.out.print("Enter values, Q to quit: ");
do
{
   double value = in.nextDouble();
   sum = sum + value;
   count++;
}
while (in.hasNextDouble());

practice it  Now you can try these exercises at the end of the chapter: R4.13, P4.27, P4.28.

The loop-and-a-half problem and the break Statement

Consider again this loop for processing inputs until a sentinel value has been reached:

boolean done = false;
while (!done)
{
   double value = in.nextDouble();
   if (value == -1)
   {
      done = true;
   } 
   else
   {
      Process value.
   }
}

S e l f   c h e c k

special topic 4.1 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

4.5 application: processing sentinel Values  161

The actual test for loop termination is in the middle of the loop, not at the top. This is called a 
loop and a half because one must go halfway into the loop before knowing whether one needs 
to terminate.

As an alternative, you can use the break reserved word. 

while (true)
{
   double value = in.nextDouble();
   if (value == -1) { break; }
   Process value.
}

The break statement breaks out of the enclosing loop, independent of the loop condition. 
When the break statement is encountered, the loop is terminated, and the statement following 
the loop is executed.

In the loopandahalf case, break statements can be beneficial. But it is difficult to lay down 
clear rules as to when they are safe and when they should be avoided. We do not use the break 
statement in this book.

redirection of input and output

Consider the SentinelDemo program that computes the average 
value of an input sequence. If you use such a program, then it is 
quite likely that you already have the values in a file, and it seems 
a shame that you have to type them all in again. The command 
line interface of your operating system provides a way to link a 
file to the input of a pro gram, as if all the characters in the file had 
actually been typed by a user. If you type

java SentinelDemo < numbers.txt

the program is executed, but it no longer expects input from the keyboard. All input com
mands get their input from the file numbers.txt. This process is called input redirection.

Input redirection is an excellent tool for testing programs. When you develop a program 
and fix its bugs, it is bor ing to keep entering the same input every time you run the program. 
Spend a few minutes putting the inputs into a file, and use redirection. 

You can also redirect output. In this program, that is not terribly useful. If you run

java SentinelDemo < numbers.txt > output.txt

the file output.txt contains the input prompts and the output, such as 

Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Average salary: 15 

However, redirecting output is obviously useful for programs that produce lots of output. 
You can format or print the file con taining the output.

special topic 4.2 

Use input redirection to 
read input from a file.  
Use output redirection to 
capture program output  
in a file.

VIDeo exaMpLe 4.1 evaluating a cell phone plan

In this Video Example, you will learn how to design a 
program that computes the cost of a cell phone plan 
from actual usage data.



162 Chapter 4  Loops

4.6 problem solving: storyboards
When you design a program that interacts with a user, you need to make a plan for 
that interaction. What information does the user provide, and in which order? What 
information will your program display, and in which format? What should happen 
when there is an error? When does the program quit? 

This planning is similar to the development of a movie or a computer game, where 
storyboards are used to plan action sequences. A storyboard is made up of panels that 
show a sketch of each step. Annota tions explain what is happening and note any spe
cial situations. Storyboards are also used to develop software—see Figure 6. 

Making a storyboard is very helpful when you begin designing a program. You 
need to ask yourself which information you need in order to compute the answers 
that the program user wants. You need to decide how to present those answers. These 
are important considerations that you want to settle before you design an algorithm 
for computing the answers.

Let’s look at a simple example. We want to write a program that helps users with 
questions such as “How many tablespoons are in a pint?” or “How many inches are 
30 centimeters?”

What information does the user provide?

• The quantity and unit to convert from
• The unit to convert to

What if there is more than one quantity? A user may have a whole table of centimeter 
values that should be converted into inches. 

What if the user enters units that our program doesn’t know how to handle, such 
as ångström?

What if the user asks for impossible conversions, such as inches to gallons?

a storyboard consists 
of annotated 
sketches for each 
step in an action 
sequence.

Developing a 
storyboard helps you 
understand the 
inputs and outputs 
that are required for 
a program.

figure 6   
storyboard for the  
Design of a Web  
application



4.6 problem solving: storyboards  163

Let’s get started with a storyboard panel. It is a good idea to write the user inputs in 
a different color. (Underline them if you don’t have a color pen handy.)

What unit do you want to convert from? cm
What unit do you want to convert to? in
Enter values, terminated by zero
30
30 cm = 11.81 in
100
100 cm = 39.37 in
0
What unit do you want to convert from? 

Format makes clear what got converted

Allows conversion of multiple values

Converting a Sequence of Values

The storyboard shows how we deal with a potential confusion. A user who wants to 
know how many inches are 30 centimeters may not read the first prompt carefully 
and specify inches. But then the output is “30 in = 76.2 cm”, alerting the user to the 
problem.

The storyboard also raises an issue. How is the user supposed to know that “cm” 
and “in” are valid units? Would “centimeter” and “inches” also work? What happens 
when the user enters a wrong unit? Let’s make another storyboard to demonstrate 
error handling. 

What unit do you want to convert from? cm
What unit do you want to convert to? inches
Sorry, unknown unit. 
What unit do you want to convert to? inch
Sorry, unknown unit. 
What unit do you want to convert to? grrr 

Handling Unknown Units (needs improvement)

To eliminate frustration, it is better to list the units that the user can supply.

From unit (in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal): cm
To unit: in

 

No need to list the units again

We switched to a shorter prompt to make room for all the unit names. Exercise R4.21 
explores a different alternative.

There is another issue that we haven’t addressed yet. How does the user quit the 
program? The first storyboard suggests that the program will go on forever. 

We can ask the user after seeing the sentinel that terminates an input sequence. 



164 Chapter 4  Loops

From unit (in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal): cm
To unit: in
Enter values, terminated by zero
30
30 cm = 11.81 in
0
More conversions (y, n)? n
(Program exits)

Sentinel triggers the prompt to exit

Exiting the Program 

As you can see from this case study, a storyboard is essential for developing a work
ing program. You need to know the flow of the user interaction in order to structure 
your program.

26.  Provide a storyboard panel for a program that reads a number of test scores and 
prints the average score. The program only needs to process one set of scores. 
Don’t worry about error handling.

27.  Google has a simple interface for converting units. You just type the question, 
and you get the answer. 

Make storyboards for an equivalent interface in a Java program. Show a scenario 
in which all goes well, and show the handling of two kinds of errors. 

28.  Consider a modification of the program in Self Check 26. Suppose we want to 
drop the lowest score before computing the average. Provide a storyboard for 
the situation in which a user only provides one score.

29.  What is the problem with implementing the following storyboard in Java?

Enter scores: 90 80 90 100 80
The average is 88
Enter scores: 100 70 70 100 80
The average is 88
Enter scores: -1
(Program exits)

-1 is used as a sentinel to exit the program

Computing Multiple Averages

30.  Produce a storyboard for a program that compares the growth of a $10,000 
investment for a given number of years under two interest rates.

practice it  Now you can try these exercises at the end of the chapter: R4.21, R4.22, R4.23.

S e l f   c h e c k



4.7 Common Loop algorithms  165

4.7 Common Loop algorithms
In the following sections, we discuss some of the most common algorithms that are 
implemented as loops. You can use them as starting points for your loop designs.

4.7.1 sum and average Value

Computing the sum of a number of inputs is a very common task. Keep a running 
total, a variable to which you add each input value. Of course, the total should be 
initialized with 0. 

double total = 0;
while (in.hasNextDouble())
{
   double input = in.nextDouble();
   total = total + input; 
}

Note that the total variable is declared outside the loop. We want the loop to update 
a single variable. The input variable is declared inside the loop. A separate variable is 
created for each input and removed at the end of each loop iteration. 

To compute an average, count how many values you have, and divide by the count. 
Be sure to check that the count is not zero.

double total = 0;
int count = 0;
while (in.hasNextDouble())
{
   double input = in.nextDouble();
   total = total + input; 
   count++;
}
double average = 0; 
if (count > 0) 
{ 
   average = total / count; 
}

4.7.2 Counting Matches

You often want to know how many values fulfill a particular condition. For example, 
you may want to count how many spaces are in a string. Keep a counter, a variable 
that is initialized with 0 and incremented whenever there is a match. 

int spaces = 0;
for (int i = 0; i < str.length(); i++)
{
   char ch = str.charAt(i);
   if (ch == ' ')
   {
      spaces++;
   }
}

For example, if str is "My Fair Lady", spaces is incremented twice (when i is 2 and 7). 

to compute an 
average, keep a  
total and a count  
of all values.

to count values that 
fulfill a condition, 
check all values and 
increment a counter 
for each match.



166 Chapter 4  Loops

Note that the spaces variable is declared outside the loop. We want the loop to 
update a single variable. The ch variable is declared inside the loop. A separate variable
is created for each iteration and removed at the end of each loop iteration.

This loop can also be used for scanning inputs. The following loop reads text, a 
word at a time, and counts the number of words with at most three letters:

int shortWords = 0;
while (in.hasNext())
{
   String input = in.next();
   if (input.length() <= 3)
   {
      shortWords++;
   }
}

4.7.3 Finding the First Match

When you count the values that fulfill a condition, you need to look at all values. 
However, if your task is to find a match, then you can stop as soon as the condition is 
fulfilled. 

Here is a loop that finds the first space in a string. Because we do not visit all ele
ments in the string, a while loop is a better choice than a for loop:

boolean found = false;
char ch = '?';
int position = 0;
while (!found && position < str.length())
{
   ch = str.charAt(position);
   if (ch == ' ') { found = true; }
   else { position++; }
}

If a match was found, then found is true, ch is 
the first matching character, and position is 
the index of the first match. If the loop did 
not find a match, then found remains false 
after the end of the loop.

Note that the variable ch is declared out-
side the while loop because you may want to 
use the input after the loop has finished. If it 
had been declared inside the loop body, you 
would not be able to use it outside the loop.

In a loop that counts matches,  
a counter is incremented  
whenever a match is found. 

If your goal is to find 
a match, exit the loop 
when the match  
is found.

When searching, you look at items until a 
match is found.



4.7 Common Loop algorithms  167

4.7.4 prompting Until a Match is Found

In the preceding example, we searched a string for a character that matches a condi
tion. You can apply the same process to user input. Suppose you are asking a user to 
enter a positive value < 100. Keep asking until the user provides a correct input:

boolean valid = false;
double input = 0;
while (!valid)
{
   System.out.print("Please enter a positive value < 100: ");
   input = in.nextDouble();
   if (0 < input && input < 100) { valid = true; }
   else { System.out.println("Invalid input."); }
}

Note that the variable input is declared outside the while loop because you will want to 
use the input after the loop has finished. 

4.7.5 Maximum and Minimum

To compute the largest value in a sequence, keep a variable that stores the largest ele
ment that you have encountered, and update it when you find a larger one.

double largest = in.nextDouble();
while (in.hasNextDouble())
{
   double input = in.nextDouble();
   if (input > largest)
   {
      largest = input;
   }
}

This algorithm requires that there is at least one input. 
To compute the smallest value, simply reverse the comparison:
double smallest = in.nextDouble();
while (in.hasNextDouble())
{
   double input = in.nextDouble();
   if (input < smallest)
   {
      smallest = input;
   }

}

to find the largest 
value, update the 
largest value seen so 
far whenever you see 
a larger one.

To find the height of the tallest bus rider,  
remember the largest value so far, and  
update it whenever you see a taller one.



168 Chapter 4  Loops

4.7.6 Comparing adjacent Values

When processing a sequence of values in a loop, you sometimes need to compare a 
value with the value that just preceded it. For example, suppose you want to check 
whether a sequence of inputs contains adjacent duplicates such as 1 7 2 9 9 4 9. 

Now you face a challenge. Consider the typical loop for reading a value:
double input;
while (in.hasNextDouble())
{
   input = in.nextDouble();
   . . .
}

How can you compare the current input 
with the preceding one? At any time, input 
contains the current input, overwriting the 
previous one.

The answer is to store the previous input, 
like this:

double input = 0;
while (in.hasNextDouble())
{
   double previous = input;
   input = in.nextDouble();
   if (input == previous) 
   { 
      System.out.println("Duplicate input"); 
   }
}

One problem remains. When the loop is entered for the first time, input has not yet 
been read. You can solve this problem with an initial input operation outside the loop:

double input = in.nextDouble();
while (in.hasNextDouble())
{
   double previous = input;
   input = in.nextDouble();
   if (input == previous) 
   { 
      System.out.println("Duplicate input"); 
   }
}

31.  What total is computed when no user input is provided in the algorithm in 
Section 4.7.1? 

32.  How do you compute the total of all positive inputs? 
33.  What are the values of position and ch when no match is found in the algorithm 

in Section 4.7.3?
34.  What is wrong with the following loop for finding the position of the first space 

in a string?
boolean found = false;
for (int position = 0; !found && position < str.length(); position++)
{

to compare adjacent 
inputs, store the 
preceding input in  
a variable.

When comparing adjacent values, store 
the previous value in a variable.

o n l i n e  e x a m p l e

a program using 
common loop 
algorithms.

S e l f   c h e c k



4.7 Common Loop algorithms  169

   char ch = str.charAt(position);
   if (ch == ' ') { found = true; }
}

35.  How do you find the position of the last space in a string?
36.  What happens with the algorithm in Section 4.7.5 when no input is provided at 

all? How can you overcome that problem? 

practice it  Now you can try these exercises at the end of the chapter: P4.5, P4.9, P4.10.

Step 1  Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
• Reading another item.
• Updating a value (such as a bank balance or total).
• Incrementing a counter.
If you can’t figure out what needs to go inside the loop, start by writing down the steps that 
you would take if you solved the problem by hand. For example, with the temperature reading 
problem, you might write

Read first value.
Read second value.
If second value is higher than the first, set highest temperature to that value, highest month to 2.
Read next value.
If value is higher than the first and second, set highest temperature to that value, highest month to 3. 
Read next value.
If value is higher than the highest temperature seen so far, set highest temperature to that value,  

highest month to 4. 
.  .  .

Now look at these steps and reduce them to a set of uniform actions that can be placed into the 
loop body. The first action is easy:

Read next value.

The next action is trickier. In our description, we used tests “higher than the first”, “higher 
than the first and sec ond”, “higher than the highest temperature seen so far”. We need to settle 
on one test that works for all iterations. The last formulation is the most general. 

hoW to 4.1 writing a loop

This How To walks you through the process of implementing a 
loop statement. We will illustrate the steps with the following 
example problem: 

Read twelve temperature values (one for each month), and dis
play the number of the month with the highest temperature. For 
example, according to http://worldclimate.com, the average maxi
mum temperatures for Death Valley are (in order by month, in 
degrees Celsius):

18.2 22.6 26.4 31.1 36.6 42.2 45.7 44.5 40.2 33.1 24.2 17.6
In this case, the month with the highest temperature (45.7 degrees 
Celsius) is July, and the program should display 7.



170 Chapter 4  Loops

Similarly, we must find a general way of setting the highest month. We need a variable that 
stores the current month, running from 1 to 12. Then we can formulate the second loop action:

If value is higher than the highest temperature, set highest temperature to that value,  
highest month to current month.

Altogether our loop is

Repeat
 Read next value.
 If value is higher than the highest temperature, 
  set highest temperature to that value,  

 set highest month to current month.
 Increment current month.

Step 2  Specify the loop condition.

What goal do you want to reach in your loop? Typical examples are
• Has a counter reached its final value?
• Have you read the last input value?
• Has a value reached a given threshold?
In our example, we simply want the current month to reach 12. 

Step 3  Determine the loop type.

We distinguish between two major loop types. A count-controlled loop is executed a defi
nite number of times. In an event-controlled loop, the number of iterations is not known in 
advance—the loop is executed until some event happens. 

Countcontrolled loops can be implemented as for statements. For other loops, consider 
the loop condition. Do you need to complete one iteration of the loop body before you can 
tell when to terminate the loop? In that case, choose a do loop. Otherwise, use a while loop. 

Sometimes, the condition for terminating a loop changes in the middle of the loop body. In 
that case, you can use a Boolean variable that specifies when you are ready to leave the loop. 
Follow this pattern:

boolean done = false;
while (!done) 
{
   Do some work.
   If all work has been completed
   {
      done = true; 
   }
   else
   {
      Do more work.
   }
}

Such a variable is called a flag.
In summary, 

• If you know in advance how many times a loop is repeated, use a for loop. 
• If the loop body must be executed at least once, use a do loop.
• Otherwise, use a while loop.
In our example, we read 12 temperature values. Therefore, we choose a for loop.

Step 4  Set up variables for entering the loop for the first time.

List all variables that are used and updated in the loop, and determine how to initialize them. 
Commonly, counters are initialized with 0 or 1, totals with 0. 



4.7 Common Loop algorithms  171

In our example, the variables are

current month
highest value
highest month

We need to be careful how we set up the highest temperature value. We can’t simply set it to 
0. After all, our program needs to work with temperature values from Antarctica, all of which 
may be negative.

A good option is to set the highest temperature value to the first input value. Of course, 
then we need to remember to read in only 11 more values, with the current month starting at 2.

We also need to initialize the highest month with 1. After all, in an Australian city, we may 
never find a month that is warmer than January.

Step 5  Process the result after the loop has finished.

In many cases, the desired result is simply a variable that was updated in the loop body. For 
example, in our temper ature program, the result is the highest month. Sometimes, the loop 
computes values that contribute to the final result. For example, suppose you are asked to 
average the temperatures. Then the loop should compute the sum, not the average. After the 
loop has completed, you are ready to compute the average: divide the sum by the number of 
inputs. 

Here is our complete loop.

Read first value; store as highest value.
highest month = 1
For current month from 2 to 12
 Read next value.
 If value is higher than the highest value
  Set highest value to that value.
  Set highest month to current month.

Step 6  Trace the loop with typical examples.

Hand trace your loop code, as described in Section 4.2. Choose example values that are not too 
complex—execut ing the loop 3–5 times is enough to check for the most common errors. Pay 
special attention when entering the loop for the first and last time. 

Sometimes, you want to make a slight modification to make tracing feasible. For example, 
when handtracing the investment doubling problem, use an interest rate of 20 percent rather 
than 5 percent. When handtracing the tem perature loop, use 4 data values, not 12. 

Let’s say the data are 22.6 36.6 44.5 24.2. Here is the walkthrough:

 current month current value highest month highest value
   1 22.6
 2 36.6 2 36.6
 3 44.5 3 44.5
 4 24.2

The trace demonstrates that highest month and highest value are properly set.

Step 7  Implement the loop in Java.

Here’s the loop for our example. Exercise P4.4 asks you to complete the program.

double highestValue;
highestValue = in.nextDouble();
int highestMonth = 1;



172 Chapter 4  Loops

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

for (int currentMonth = 2; currentMonth <= 12; currentMonth++)
{
   double nextValue = in.nextDouble();
   if (nextValue > highestValue) 
   {
      highestValue = nextValue;
      highestMonth = currentMonth;
   }
}
System.out.println(highestMonth);

4.8 nested Loops
In Section 3.4, you saw how to nest two if statements. Similarly, complex iterations 
sometimes require a nested loop: a loop inside another loop statement. When pro
cessing tables, nested loops occur naturally. An outer loop iterates over all rows of the 
table. An inner loop deals with the columns in the current row. 

In this section you will see how to print a table. For simplicity, we will simply print 
the powers of x, xn, as in the table at right. 

Here is the pseudocode for printing the table:

Print table header.
For x from 1 to 10
 Print table row.
 Print new line.

How do you print a table row? You need to print a 
value for each expo nent. This requires a second loop.

For n from 1 to 4
 Print xn. 

This loop must be placed inside the preceding loop. We say that the inner loop is 
nested inside the outer loop. 

WorkeD exaMpLe 4.1 credit card processing

This Worked Example uses a loop to remove spaces from a 
credit card number.

When the body of a 
loop contains 
another loop, the 
loops are nested. a 
typical use of nested 
loops is printing a 
table with rows  
and columns.

x1 x2 x3 x4

1 1 1 1

2 4 8 16

3 9 27 81

… … … …

10 100 1000 10000

The hour and minute displays in a digital clock are an 
exam ple of nested loops. The hours loop 12 times, and  
for each hour, the minutes loop 60 times.



4.8 nested Loops  173

figure 7   
Flowchart of a nested Loop

True

False x ≤ 10 ?

x = 1

True

False n ≤ 4 ?

n = 1

n++

Print xn

x++

Print new line

This loop is nested 
in the outer loop.

There are 10 rows in the outer loop. For each x, the program prints four columns 
in the inner loop (see Figure 7). Thus, a total of 10 × 4 = 40 values are printed. 

Following is the complete program. Note that we also use loops to print the table 
header. However, those loops are not nested.   

section_8/powerTable.java

1 /**
2    This program prints a table of powers of x.
3 */
4 public class PowerTable
5 {
6    public static void main(String[] args)
7    { 
8       final int NMAX = 4;
9       final double XMAX = 10;

10 
11       // Print table header
12       
13       for (int n = 1; n <= NMAX; n++)
14       {
15          System.out.printf("%10d", n);
16       }
17       System.out.println();



174 Chapter 4  Loops

18       for (int n = 1; n <= NMAX; n++)
19       {
20          System.out.printf("%10s", "x ");
21       }
22       System.out.println();
23 
24       // Print table body
25 
26       for (double x = 1; x <= XMAX; x++)
27       {
28          // Print table row
29          
30          for (int n = 1; n <= NMAX; n++)
31          {
32             System.out.printf("%10.0f", Math.pow(x, n));
33          }
34          System.out.println();
35       }
36    }
37 }

program run

         1         2         3         4
        x         x         x         x 

         1         1         1         1
         2         4         8        16
         3         9        27        81
         4        16        64       256
         5        25       125       625
         6        36       216      1296
         7        49       343      2401
         8        64       512      4096
         9        81       729      6561
        10       100      1000     10000

37.  Why is there a statement System.out.println(); in the outer loop but not in the 
inner loop?

38.  How would you change the program to display all powers from x0 to x5?
39.  If you make the change in Self Check 38, how many values are displayed?
40.  What do the following nested loops display?

for (int i = 0; i < 3; i++)
{
   for (int j = 0; j < 4; j++)
   {
      System.out.print(i + j);
   }
   System.out.println();
}

41.  Write nested loops that make the following pattern of brackets:
[][][][]
[][][][]
[][][][] 

S e l f   c h e c k



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

4.8 nested Loops  175

practice it  Now you can try these exercises at the end of the chapter: R4.27, P4.19, P4.21.

table 3  nested Loop examples

nested Loops output explanation

for (i = 1; i <= 3; i++)
{
   for (j = 1; j <= 4; j++)  { Print "*" }
   System.out.println();
}

****
****
****

Prints 3 rows of 4 
asterisks each.

for (i = 1; i <= 4; i++)
{
   for (j = 1; j <= 3; j++) { Print "*" }
   System.out.println();
}

***
***
***
***

Prints 4 rows of 3 
asterisks each.

for (i = 1; i <= 4; i++)
{
   for (j = 1; j <= i; j++) { Print "*" }
   System.out.println();
}

*
**
***
****

Prints 4 rows of 
lengths 1, 2, 3, and 4.

for (i = 1; i <= 3; i++)
{
   for (j = 1; j <= 5; j++) 
   { 
      if (j % 2 == 0) { Print "*" }
      else { Print "-" }
   }
   System.out.println();
}

-*-*-
-*-*-
-*-*-

Prints asterisks in 
even columns, 
dashes in odd 
columns.

for (i = 1; i <= 3; i++)
{
   for (j = 1; j <= 5; j++) 
   { 
      if (i % 2 == j % 2) { Print "*" }
      else { Print " " }
   }
   System.out.println();
}

* * *
 * * 
* * *

Prints a 
checkerboard 
pattern. 

WorkeD exaMpLe 4.2 manipulating the pixels in an image

This Worked Example shows how to use nested loops for 
manipulating the pix els in an image. The outer loop tra
verses the rows of the image, and the inner loop accesses 
each pixel of a row. 



176 Chapter 4  Loops

4.9 application: random numbers  
and simulations

A simulation program uses the computer to simulate an activity in the real world (or 
an imaginary one). Simulations are commonly used for predicting climate change, 
analyzing traffic, picking stocks, and many other applications in science and busi
ness. In many simulations, one or more loops are used to modify the state of a system 
and observe the changes. You will see examples in the following sections.

4.9.1 Generating random numbers

Many events in the real world are difficult to predict with absolute precision, yet we 
can sometimes know the average behavior quite well. For example, a store may know 
from experience that a customer arrives every five minutes. Of course, that is an aver
age—customers don’t arrive in five minute intervals. To accurately model customer 
traffic, you want to take that random fluctuation into account. Now, how can you 
run such a simulation in the computer? 

The Java library has a random number generator, which produces numbers that 
appear to be completely random. Calling Math.random() yields a random floatingpoint 
number that is ≥ 0 and < 1. Call Math.random() again, and you get a different number. 

The following program calls Math.random() ten times.

section_9_1/randomdemo.java

1 /**
2    This program prints ten random numbers between 0 and 1.
3 */
4 public class RandomDemo
5 {
6    public static void main(String[] args)
7    { 
8       for (int i = 1; i <= 10; i++)
9       { 

10          double r = Math.random();
11          System.out.println(r);
12       }
13    }
14 }

program run

0.6513550469421886
0.920193662882893
0.6904776061289993
0.8862828776788884
0.7730177555323139
0.3020238718668635
0.0028504531690907164
0.9099983981705169
0.1151636530517488
0.1592258808929058

In a simulation, you 
use the computer to 
simulate an activity. 

You can introduce 
randomness by 
calling the random 
number generator.



4.9 application: random numbers and simulations   177

Actually, the numbers are not completely random. They are drawn from sequences 
of numbers that don’t repeat for a long time. These sequences are actually computed 
from fairly simple formulas; they just behave like random numbers (see Exercise 
P4.25). For that reason, they are often called pseudorandom numbers. 

4.9.2 simulating Die tosses

In actual applications, you need to transform the output from 
the random num ber generator into different ranges. For exam
ple, to simulate the throw of a die, you need random integers 
between 1 and 6. 

Here is the general recipe for computing random integers 
between two bounds a and b. As you know from Program
ming Tip 4.3 on page 156, there are b - a + 1 values between a and 
b, including the bounds themselves. First compute 

(int) (Math.random() * (b - a + 1)) 

to obtain a random integer between 0 and b - a, then add a, yielding a random value 
between a and b:

int r = (int) (Math.random() * (b - a + 1)) + a;

Here is a program that simulates the throw of a pair of dice:

section_9_2/dice.java

1 /**
2    This program simulates tosses of a pair of dice.
3 */
4 public class Dice
5 {
6    public static void main(String[] args)
7    { 
8       for (int i = 1; i <= 10; i++)
9       { 

10          // Generate two random numbers between 1 and 6
11 
12          int d1 = (int) (Math.random() * 6) + 1;
13          int d2 = (int) (Math.random() * 6) + 1;
14          System.out.println(d1 + " " + d2);
15       }
16       System.out.println();
17    }
18 }

program run

5 1
2 1
1 2
5 1
1 2
6 4
4 4
6 1
6 3
5 2



178  Chapter 4   Loops

4.9.3  The Monte Carlo Method

The Monte Carlo method is 
an ingenious method for find-
ing approximate solutions to 
problems that cannot be pre-
cisely solved. (The method is 
named after the famous casino in 
Monte Carlo.) Here is a typical 
exam ple. It is difficult to com-
pute the number p, but you can 
approximate it quite well with 
the following simulation.

Simulate shooting a dart into a square surrounding a circle of radius 1. That is easy: 
generate random x and y coordinates between –1 and 1. 

If the generated point lies inside the circle, we count 
it as a hit. That is the case when x2 + y2 ≤ 1. Because our 
shots are entirely random, we expect that the ratio of hits 
/ tries is approximately equal to the ratio of the areas of 
the cir cle and the square, that is, p / 4. Therefore, our 
estimate for p is 4 × hits / tries. This method yields an 
estimate for p, using nothing but simple arithmetic. 

To generate a random floating-point value between –1 
and 1, you compute:

double r = Math.random(); // 0 ≤ r < 1
double x = -1 + 2 * r; // –1 ≤ x < 1

As r ranges from 0 (inclusive) to 1 (exclusive), x ranges from –1 + 2 × 0 = –1 (inclusive) 
to –1 + 2 × 1 = 1 (exclusive). In our application, it does not matter that x never reaches 
1. The points that fulfill the equation x = 1 lie on a line with area 0.

Here is the program that carries out the simulation:

section_9_3/MonteCarlo.java

1 /**
2    This program computes an estimate of pi by simulating dart throws onto a square.
3 */
4 public class MonteCarlo
5 {
6    public static void main(String[] args)
7    { 
8       final int TRIES = 10000;
9 

10       int hits = 0;
11       for (int i = 1; i <= TRIES; i++)
12       { 
13          // Generate two random numbers between -1 and 1
14 
15          double r = Math.random();
16          double x = -1 + 2 * r; // Between -1 and 1
17          r = Math.random();
18          double y = -1 + 2 * r;
19 

x

y

1–1

1

–1



4.9 application: random numbers and simulations   179

20          // Check whether the point lies in the unit circle
21 
22          if (x * x + y * y <= 1) { hits++; }
23       }
24 
25       /*
26          The ratio hits / tries is approximately the same as the ratio 
27          circle area / square area = pi / 4
28       */
29 
30       double piEstimate = 4.0 * hits / TRIES;
31       System.out.println("Estimate for pi: " + piEstimate);
32    }
33 }

program run

Estimate for pi: 3.1504

42.  How do you simulate a coin toss with the Math.random() method?
43.  How do you simulate the picking of a random playing card?
44.  Why does the loop body in Dice.java call Math.random() twice? 
45.  In many games, you throw a pair of dice to get a value between 2 and 12. What is 

wrong with this simulated throw of a pair of dice?
int sum = (int) (Math.random() * 11) + 2;

46.  How do you generate a random floatingpoint number ≥ 0 and < 100?

practice it  Now you can try these exercises at the end of the chapter: R4.28, P4.7, P4.24.

drawing graphical Shapes

In Java, it is easy to produce simple drawings such as the 
one in Figure 8. By writing programs that draw such pat
terns, you can practice programming loops. For now, we 
give you a program outline into which you place your 
drawing code. The program outline also contains the 
necessary code for displaying a window containing your 
drawing. You need not look at that code now. It will be 
discussed in detail in Chapter 10. 

Your drawing instructions go inside the draw method: 

public class TwoRowsOfSquares
{
   public static void draw(Graphics g)
   {  
      Drawing instructions
   }
   . . .
}

When the window is shown, the draw method is called, and your drawing instructions will be 
executed.

S e l f   c h e c k

special topic 4.3 

figure 8  two rows of squares



180 Chapter 4  Loops

The draw method receives an object of type Graphics. The Graphics object has methods for 
drawing shapes. It also remembers the color that is used for drawing operations. You can think 
of the Graphics object as the equivalent of System.out for drawing shapes instead of printing 
values.

Table 4 shows useful methods of the Graphics class.

table 4  Graphics Methods

Method result notes

g.drawRect(x, y, width, height) (x, y) is the top left corner.

g.drawOval(x, y, width, height) (x, y) is the top left corner 
of the box that bounds the 
ellipse. To draw a circle, use 
the same value for width 
and height.

g.fillRect(x, y, width, height) The rectangle is filled in.

g.fillOval(x, y, width, height) The oval is filled in.

g.drawLine(x1, y1, x2, y2) (x1, y1) and (x2, y2) are 
the endpoints.

g.drawString("Message", x, y)

BaselineBasepoint

(x, y) is the basepoint.

g.setColor(color) From now on,  
draw or fill methods  
will use this color.

Use Color.RED, Color.GREEN, 
Color.BLUE, and so on. (See 
Table 10.1 for a complete 
list of predefined colors.)

The program below draws the squares shown in Figure 8. When you want to produce your 
own drawings, make a copy of this program and modify it. Replace the drawing tasks in the 
draw method. Rename the class (for example, Spiral instead of TwoRowsOfSquares).

special_topic_3/TworowsofSquares.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import javax.swing.JFrame;
4 import javax.swing.JComponent;
5 
6 /**
7    This program draws two rows of squares.
8 */
9 public class TwoRowsOfSquares

10 {  



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

4.9 application: random numbers and simulations   181

11    public static void draw(Graphics g)
12    {  
13       final int width = 20;
14       g.setColor(Color.BLUE);
15 
16       // Top row. Note that the top left corner of the drawing has coordinates (0, 0)
17       int x = 0;
18       int y = 0;
19       for (int i = 0; i < 10; i++)
20       {
21          g.fillRect(x, y, width, width);
22          x = x + 2 * width;
23       }
24       // Second row, offset from the first one
25       x = width;
26       y = width;
27       for (int i = 0; i < 10; i++)
28       {
29          g.fillRect(x, y, width, width);
30          x = x + 2 * width;
31       }
32    }
33 
34    public static void main(String[] args)
35    {
36       // Do not look at the code in the main method
37       // Your code will go into the draw method above
38 
39       JFrame frame = new JFrame();
40 
41       final int FRAME_WIDTH = 400;
42       final int FRAME_HEIGHT = 400;
43 
44       frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
45       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
46       
47       JComponent component = new JComponent()
48       {
49          public void paintComponent(Graphics graph)
50          {
51             draw(graph);
52          }
53       };
54 
55       frame.add(component);
56       frame.setVisible(true);
57    }
58 }

VIDeo exaMpLe 4.2 drawing a Spiral

In this Video Example, you will see how to develop a program 
that draws a spiral.



182 Chapter 4  Loops

.

explain the flow of execution in a loop.

• A loop executes instructions repeatedly while a 
condition is true.

• An offbyone error is a common error when  
programming loops. Think through simple test  
cases to avoid this type of error. 

use the technique of hand-tracing to analyze the behavior of a pro gram.

• Handtracing is a simulation of code execution in which you step 
through instructions and track the values of the variables.

• Handtracing can help you understand how an unfamiliar algo
rithm works.

• Handtracing can show errors in code or pseudocode.

as you read this, you 
will have written a few 

computer programs and experienced 
firsthand how much effort it takes to 
write even the hum blest of programs. 
Writing a real soft ware product, such 
as a financial application or a computer 
game, takes a lot of time and money. 
Few people, and fewer companies, are 
going to spend that kind of time and 
money if they don’t have a reasonable 
chance to make more money from their 
effort. (actually, some companies give 
away their software in the hope that 
users will upgrade to more elaborate 
paid versions. other companies give 
away the software that enables users to 
read and use files but sell the software 
needed to create those files. Finally, 
there are individuals who donate their 
time, out of enthusiasm, and produce 
programs that you can copy freely.) 

When selling software, a company 
must rely on the honesty of its cus-
tomers. It is an easy matter for an 
unscrupulous person to make copies 
of computer programs without paying 
for them. In most countries that is ille-
gal. Most governments provide legal 
protection, such as copyright laws and 
patents, to encourage the develop-
ment of new products. Countries that 
tolerate widespread piracy have found 

that they have an ample cheap supply 
of foreign software, but no local man-
ufacturers willing to design good soft-
ware for their own citizens, such as 
word processors in the local script or 
financial programs adapted to the local 
tax laws. 

When a mass market for software 
first appeared, vendors were enraged 
by the money they lost through piracy. 
they tried to fight back by var ious 
schemes to ensure that only the legiti-
mate owner could use the soft ware, 
such as dongles—devices that must 
be attached to a printer port before 
the software will run. Legitimate users 
hated these mea sures. they paid for 
the software, but they had to suffer 
through inconve niences, such as hav-
ing multiple don gles stick out from 
their computer. In the United states, 
market pressures forced most vendors 
to give up on these copy protection 
schemes, but they are still common-
place in other parts of the world. 

Because it is so easy and inexpen-
sive to pirate software, and the chance 
of being found out is minimal, you 
have to make a moral choice for your-
self. If a package that you would really 
like to have is too expensive for your 
budget, do you steal it, or do you stay 

honest and get by with a more afford-
able product? 

of course, piracy 
is not limited to 
software. the same 
issues arise for other 
digital products as 
well. You may have 
had the opportunity 
to obtain copies of 
songs or movies 
with out payment. or you may have 
been frustrated by a copy protec-
tion device on your music player that 
made it diffi cult for you to listen to 
songs that you paid for. admittedly, 
it can be diffi cult to have a lot of sym-
pathy for a musical ensemble whose 
publisher charges a lot of money for 
what seems to have been very little 
effort on their part, at least when 
compared to the effort that goes into 
designing and implementing a soft-
ware package. nevertheless, it seems  
only fair that artists and authors 
receive some compensation for their 
efforts. how to pay artists, authors, 
and programmers fairly, without 
bur dening honest customers, is an 
unsolved problem at the time of this 
writing, and many computer scientists 
are engaged in research in this area.

Random Fact 4.2 software piracy

C h a p t e r  s U M M a r Y



Chapter summary 183

 use for loops for implementing count-controlled loops.

• The for loop is used when a value runs from a starting point to an ending point 
with a constant increment or decrement.

choose between the while loop and the do loop.

• The do loop is appropriate when the loop body must be executed at least once.

implement loops that read sequences of input data.

• A sentinel value denotes the end of a data set, but it is not part of 
the data.

• You can use a Boolean variable to control a loop. Set the variable 
to true before entering the loop, then set it to false to leave the 
loop.

• Use input redirection to read input from a file. Use output 
redirection to capture program output in a file.

use the technique of storyboarding for planning user interactions.

• A storyboard consists of annotated sketches for each step in an action sequence.
• Developing a storyboard helps you understand the inputs and outputs that are 

required for a program.

know the most common loop algorithms.

• To compute an average, keep a total and a count of all values.
• To count values that fulfill a condition, check all values and increment a counter 

for each match.
• If your goal is to find a match, exit the loop when the match is found.
• To find the largest value, update the largest value seen so far whenever you see a 

larger one.
• To compare adjacent inputs, store the preceding input in a variable.

use nested loops to implement multiple levels of iteration.

• When the body of a loop contains another loop, the loops are nested. A typical 
use of nested loops is printing a table with rows and columns. 

apply loops to the implementation of simulations.

• In a simulation, you use the computer to simulate an activity. 
• You can introduce randomness by calling the random number 

generator. 



184 Chapter 4  Loops

• r4.1  Write a while loop that prints
a. All squares less than n. For example, if n is 100, print 0 1 4 9 16 25 36 49 64 81.
b. All positive numbers that are divisible by 10 and less than n. For example, if n is 

100, print 10 20 30 40 50 60 70 80 90
c. All powers of two less than n. For example, if n is 100, print 1 2 4 8 16 32 64.

•• r4.2  Write a loop that computes
a. The sum of all even numbers between 2 and 100 (inclusive).
b. The sum of all squares between 1 and 100 (inclusive).
c. The sum of all odd numbers between a and b (inclusive).
d. The sum of all odd digits of n. (For example, if n is 32677, the sum would 

be 3 + 7 + 7 = 17.)

• r4.3  Provide trace tables for these loops.
a. int i = 0; int j = 10; int n = 0; 

while (i < j) { i++; j--; n++; }

b. int i = 0; int j = 0; int n = 0; 
while (i < 10) { i++; n = n + i + j; j++; }

c. int i = 10; int j = 0; int n = 0; 
while (i > 0) { i--; j++; n = n + i - j; }

d. int i = 0; int j = 10; int n = 0; 
while (i != j) { i = i + 2; j = j - 2; n++; }

• r4.4  What do these loops print?
a. for (int i = 1; i < 10; i++) { System.out.print(i + " "); }
b. for (int i = 1; i < 10; i += 2) { System.out.print(i + " "); }
c. for (int i = 10; i > 1; i--) { System.out.print(i + " "); }
d. for (int i = 0; i < 10; i++) { System.out.print(i + " "); }
e. for (int i = 1; i < 10; i = i * 2) { System.out.print(i + " "); }
f.  for (int i = 1; i < 10; i++) { if (i % 2 == 0) { System.out.print(i + " "); } }

• r4.5  What is an infinite loop? On your computer, how can you terminate a program that 
executes an infinite loop?

• r4.6  Write a program trace for the pseudocode in Exercise P4.6, assuming the input val
ues are 4 7 –2 –5 0. 

java.awt.Color
java.awt.Graphics
   drawLine
   drawOval
   drawRect
   drawString
   setColor

java.lang.Math
   random

s ta n D a r D  L I B r a r Y  I t e M s  I n t r o D U C e D  I n  t h I s  C h a p t e r

r e V I e W  e x e r C I s e s



review exercises 185

•• r4.7  What is an “offbyone” error? Give an example from your own programming 
experience.

• r4.8  What is a sentinel value? Give a simple rule when it is appropriate to use a numeric 
sentinel value.

• r4.9  Which loop statements does Java support? Give simple rules for when to use each 
loop type.

• r4.10  How many iterations do the following loops carry out? Assume that i is not 
changed in the loop body.

a. for (int i = 1; i <= 10; i++) . . .
b. for (int i = 0; i < 10; i++) . . .
c. for (int i = 10; i > 0; i--) . . .
d. for (int i = -10; i <= 10; i++) . . .
e. for (int i = 10; i >= 0; i++) . . .
f.  for (int i = -10; i <= 10; i = i + 2) . . . 
g. for (int i = -10; i <= 10; i = i + 3) . . . 

•• r4.11  Write pseudocode for a program that prints a calendar such as the following:
Su  M  T  W Th  F Sa
          1  2  3  4
 5  6  7  8  9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

• r4.12  Write pseudocode for a program that prints a Celsius/Fahrenheit conversion table 
such as the following:

Celsius | Fahrenheit
--------+-----------
      0 |         32
     10 |         50
     20 |         68
  . . .        . . .
    100 |        212

• r4.13  Write pseudocode for a program that reads a student record, consisting of the stu
dent’s first and last name, followed by a sequence of test scores and a sentinel of –1. 
The program should print the student’s average score. Then provide a trace table for 
this sample input:

Harry Morgan 94 71 86 95 -1

•• r4.14  Write pseudocode for a program that reads a sequence of student records and prints 
the total score for each student. Each record has the student’s first and last name, 
followed by a sequence of test scores and a sentinel of –1. The sequence is termi nated 
by the word END. Here is a sample sequence:

Harry Morgan 94 71 86 95 -1
Sally Lin 99 98 100 95 90 -1
END

Provide a trace table for this sample input. 



186 Chapter 4  Loops

• r4.15  Rewrite the following for loop into a while loop.
int s = 0;
for (int i = 1; i <= 10; i++) 
{
   s = s + i;
}

• r4.16  Rewrite the following do loop into a while loop.
int n = in.nextInt();
double x = 0;
double s;
do
{
   s = 1.0 / (1 + n * n);
   n++;
   x = x + s;
}
while (s > 0.01);

• r4.17  Provide trace tables of the following loops. 
a. int s = 1;  

int n = 1; 
while (s < 10) { s = s + n; } 
n++; 

b. int s = 1;  
for (int n = 1; n < 5; n++) { s = s + n; }

c. int s = 1;  
int n = 1; 
do 
{ 
   s = s + n;  
   n++; 
} 
while (s < 10 * n); 

• r4.18  What do the following loops print? Work out the answer by tracing the code, not by 
using the computer.

a. int s = 1;  
for (int n = 1; n <= 5; n++) 
{ 
   s = s + n; 
   System.out.print(s + " "); 
}

b. int s = 1;  
for (int n = 1; s <= 10; System.out.print(s + " ")) 
{ 
   n = n + 2; 
   s = s + n; 
}

c. int s = 1;  
int n; 
for (n = 1; n <= 5; n++) 
{ 
   s = s + n; 
   n++; 
} 
System.out.print(s + " " + n);



review exercises 187

• r4.19  What do the following program segments print? Find the answers by tracing the 
code, not by using the computer.

a. int n = 1; 
for (int i = 2; i < 5; i++) { n = n + i; } 
System.out.print(n);

b. int i; 
double n = 1 / 2; 
for (i = 2; i <= 5; i++) { n = n + 1.0 / i; } 
System.out.print(i);

c. double x = 1; 
double y = 1; 
int i = 0; 
do 
{ 
   y = y / 2; 
   x = x + y; 
   i++; 
} 
while (x < 1.8); 
System.out.print(i);

d. double x = 1; 
double y = 1; 
int i = 0; 
while (y >= 1.5) 
{ 
   x = x / 2; 
   y = x + y; 
   i++; 
} 
System.out.print(i);

•• r4.20  Give an example of a for loop where symmetric bounds are more natural. Give an 
example of a for loop where asymmetric bounds are more natural.

• r4.21  Add a storyboard panel for the conversion program in Section 4.6 on page 162 that 
shows a sce nario where a user enters incompatible units.

• r4.22  In Section 4.6, we decided to show users a list of all valid units in the prompt. If the 
program supports many more units, this approach is unworkable. Give a story board 
panel that illustrates an alternate approach: If the user enters an unknown unit, a list 
of all known units is shown.

• r4.23  Change the storyboards in Section 4.6 to support a menu that asks users whether 
they want to convert units, see program help, or quit the program. The menu should 
be displayed at the beginning of the program, when a sequence of values has been 
converted, and when an error is displayed.

• r4.24  Draw a flow chart for a program that carries out unit conversions as described in 
Section 4.6.

•• r4.25  In Section 4.7.5, the code for finding the largest and smallest input initializes the 
largest and smallest variables with an input value. Why can’t you initialize them 
with zero? 

• r4.26  What are nested loops? Give an example where a nested loop is typically used.



188 Chapter 4  Loops

•• r4.27  The nested loops 
for (int i = 1; i <= height; i++)
{
   for (int j = 1; j <= width; j++) { System.out.print("*"); }
   System.out.println();
}

display a rectangle of a given width and height, such as
****
****
****

Write a single for loop that displays the same rectangle.

•• r4.28  Suppose you design an educational game to teach children how to read a clock. How 
do you generate random values for the hours and minutes? 

••• r4.29  In a travel simulation, Harry will visit one of his friends that are located in three 
states. He has ten friends in California, three in Nevada, and two in Utah. How do 
you produce a random number between 1 and 3, denoting the destination state, with 
a probability that is proportional to the number of friends in each state?

• p4.1  Write programs with loops that compute
a. The sum of all even numbers between 2 and 100 (inclusive).
b. The sum of all squares between 1 and 100 (inclusive).
c. All powers of 2 from 20 up to 220.
d. The sum of all odd numbers between a and b (inclusive), where a and b are 

inputs.
e. The sum of all odd digits of an input. (For example, if the input is 32677, the 

sum would be 3 + 7 + 7 = 17.)

•• p4.2  Write programs that read a sequence of integer inputs and print
a. The smallest and largest of the inputs.
b. The number of even and odd inputs.
c. Cumulative totals. For example, if the input is 1 7 2 9, the program should print 

1 8 10 19. 
d. All adjacent duplicates. For example, if the input is 1 3 3 4 5 5 6 6 6 2, the 

program should print 3 5 6. 

•• p4.3  Write programs that read a line of input as a string and print
a. Only the uppercase letters in the string.
b. Every second letter of the string.
c. The string, with all vowels replaced by an underscore.
d. The number of vowels in the string.
e. The positions of all vowels in the string.

•• p4.4  Complete the program in How To 4.1 on page 169. Your program should read twelve 
temperature values and print the month with the highest temperature.

p r o G r a M M I n G  e x e r C I s e s



programming exercises 189

•• p4.5  Write a program that reads a set of floatingpoint values. Ask the user to enter the 
values, then print 

• the average of the values.
• the smallest of the values.
• the largest of the values.
• the range, that is the difference between the smallest and largest.

Of course, you may only prompt for the values once. 

• p4.6  Translate the following pseudocode for finding the minimum value from a set of 
inputs into a Java program.

Set a Boolean variable "first" to true.
While another value has been read successfully
 If first is true
  Set the minimum to the value.
  Set first to false.
 Else if the value is less than the minimum
  Set the minimum to the value.
Print the minimum.

••• p4.7  Translate the following pseudocode for randomly permuting the characters in a 
string into a Java program.

Read a word.
Repeat word.length() times
 Pick a random position i in the word, but not the last position.
 Pick a random position j > i in the word.
 Swap the letters at positions j and i.
Print the word.

To swap the letters, construct substrings as follows: 

first middle lasti j

Then replace the string with
first + word.charAt(j) + middle + word.charAt(i) + last

• p4.8  Write a program that reads a word and prints each character of the word on a sepa
rate line. For example, if the user provides the input "Harry", the program prints

H
a
r
r
y

•• p4.9  Write a program that reads a word and prints the word in reverse. For example, if the 
user provides the input "Harry", the program prints

yrraH

• p4.10  Write a program that reads a word and prints the number of vowels in the word. For 
this exercise, assume that a e i o u y are vowels. For example, if the user pro vides the 
input "Harry", the program prints 2 vowels.



190  Chapter 4   Loops

••• P4.11 Write a program that reads a word and prints the number of syllables in the word. 
For this exercise, assume that syllables are determined as follows: Each sequence of 
adjacent vowels a e i o u y, except for the last e in a word, is a syllable. However, if 
that algorithm yields a count of 0, change it to 1. For example,

Word  Syllables
Harry  2
hairy  2
hare  1
the  1

••• P4.12 Write a program that reads a word and prints all substrings, sorted by length. For 
example, if the user provides the input "rum", the program prints

r
u
m
ru
um
rum

• P4.13 Write a program that prints all powers of 2 from 20 up to 220.

•• P4.14 Write a program that reads a number and prints all of its binary digits: Print the 
remainder number % 2, then replace the number with number / 2. Keep going until the 
number is 0. For example, if the user provides the input 13, the output should be

1
0
1
1

•• P4.15 Mean and standard deviation. Write a program that reads a set of floating-point data 
values. Choose an appropriate mechanism for prompting for the end of the data set. 
When all values have been read, print out the count of the values, the aver age, and 
the standard deviation. The average of a data set {x1, . . ., xn} is x x ni= ∑ , where 
∑ = + +x x xi n1 …  is the sum of the input values. The standard deviation is

s
x x

n
i=

−( )
−

∑ 2

1

However, this formula is not suitable for the task. By the time the program has 
computed x , the individ ual xi are long gone. Until you know how to save these 
values, use the numerically less stable formula

s
x x

n
i n i=

− ( )
−

∑∑ 2 1 2

1

You can compute this quantity by keeping track of the count, the sum, and the sum 
of squares as you process the input values.



programming exercises 191

•• p4.16  The Fibonacci numbers are defined by the sequence

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

Reformulate that as
fold1 = 1;
fold2 = 1;
fnew = fold1 + fold2;

After that, discard fold2, which is no longer needed, and set fold2 to fold1 and fold1 to 
fnew. Repeat an appropriate number of times.
Implement a program that prompts the user for an integer n and prints the nth 
Fibonacci number, using the above algorithm.

••• p4.17  Factoring of integers. Write a program that asks the user for an integer and then 
prints out all its factors. For example, when the user enters 150, the program should 
print

2
3
5
5

••• p4.18  Prime numbers. Write a program that prompts the user for an integer and then prints 
out all prime numbers up to that integer. For example, when the user enters 20, the 
program should print

2
3
5
7
11
13
17
19

Recall that a number is a prime number if it is not divisible by any number except 1 
and itself.

• p4.19  Write a program that prints a multiplication table, like this:
    1   2   3   4   5   6   7   8   9  10
    2   4   6   8  10  12  14  16  18  20
    3   6   9  12  15  18  21  24  27  30
    . . .
   10  20  30  40  50  60  70  80  90 100

•• p4.20  Write a program that reads an integer and displays, using asterisks, a filled and hol
low square, placed next to each other. For example if the side length is 5, the pro gram 
should display

***** *****
***** *   *
***** *   *
***** *   *
***** *****

Fibonacci numbers describe the 
growth of a rabbit population.



192 Chapter 4  Loops

•• p4.21  Write a program that reads an integer and displays, using asterisks, a filled diamond 
of the given side length. For example, if the side length is 4, the program should dis
play

    *
   ***
  *****
 *******
  *****
   ***
    *

••• p4.22  The game of Nim. This is a wellknown game with a number of variants. The fol
lowing variant has an interesting winning strategy. Two players alternately take 
marbles from a pile. In each move, a player chooses how many marbles to take. The 
player must take at least one but at most half of the marbles. Then the other player 
takes a turn. The player who takes the last marble loses.
Write a program in which the computer plays against a human opponent. Generate a 
random integer between 10 and 100 to denote the initial size of the pile. Generate a 
random integer between 0 and 1 to decide whether the computer or the human takes 
the first turn. Generate a random integer between 0 and 1 to decide whether the 
computer plays smart or stupid. In stupid mode the computer simply takes a random 
legal value (between 1 and n/2) from the pile whenever it has a turn. In smart mode 
the computer takes off enough marbles to make the size of the pile a power of two 
minus 1—that is, 3, 7, 15, 31, or 63. That is always a legal move, except when the size 
of the pile is currently one less than a power of two. In that case, the computer makes 
a random legal move.
You will note that the computer cannot be beaten in smart mode when it has the first 
move, unless the pile size happens to be 15, 31, or 63. Of course, a human player who 
has the first turn and knows the win ning strategy can win against the computer. 

•• p4.23  The Drunkard’s Walk. A drunkard in a grid of streets randomly picks one of four 
directions and stumbles to the next intersection, then again randomly picks one of 
four directions, and so on. You might think that on average the drunkard doesn’t 
move very far because the choices cancel each other out, but that is actually not the 
case. 
Represent locations as integer pairs (x, y). Implement the drunkard’s walk over 100 
intersections, starting at (0, 0), and print the ending location. 

•• p4.24  The Monty Hall Paradox. Marilyn vos Savant described the following problem 
(loosely based on a game show hosted by Monty Hall) in a popular magazine: “Sup
pose you’re on a game show, and you’re given the choice of three doors: Behind one 
door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who 
knows what’s behind the doors, opens another door, say No. 3, which has a goat. 
He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to 
switch your choice?”
Ms. vos Savant proved that it is to your advantage, but many of her readers, includ
ing some mathematics professors, disagreed, arguing that the probability would not 
change because another door was opened. 
Your task is to simulate this game show. In each iteration, ran domly pick a door 
number between 1 and 3 for placing the car. Randomly have the player pick a door. 
Randomly have the game show host pick a door having a goat (but not the door that 



programming exercises 193

the player picked). Increment a counter for strategy 1 if the player wins by switching 
to the host’s choice, and increment a counter for strategy 2 if the player wins by 
sticking with the orig inal choice. Run 1,000 iterations and print both counters.

• p4.25  A simple random generator is obtained by the formula

r a r b mnew old= ⋅ +( )%
and then setting rold to rnew. If m is chosen as 232, then you can compute

r a r bnew old= ⋅ +

because the truncation of an overflowing result to the int type is equivalent to 
computing the remainder. 
Write a program that asks the user to enter a seed value for rold. (Such a value is often 
called a seed). Then print the first 100 random integers generated by this formula, 
using a = 32310901 and b = 1729. 

•• p4.26  The Buffon Needle Experiment. The follow ing experiment was devised by Comte 
GeorgesLouis Leclerc de Buffon (1707–1788), a French naturalist. A needle of 
length 1 inch is dropped onto paper that is ruled with lines 2 inches apart. If the 
needle drops onto a line, we count it as a hit. (See Figure 9.) Buffon discovered that 
the quotient tries/hits approximates p.

For the Buffon needle experiment, you must generate two random numbers: one to 
describe the starting position and one to describe the angle of the needle with the  
xaxis. Then you need to test whether the needle touches a grid line. 
Generate the lower point of the needle. Its xcoordinate is irrelevant, and you may 
assume its ycoordi nate ylow to be any random number between 0 and 2. The angle a 
between the needle and the xaxis can be any value between 0 degrees and 180 
degrees (p radians). The upper end of the needle has ycoordinate

y yhigh low= + sinα

The needle is a hit if yhigh is at least 2, as shown in Figure 10. Stop after 10,000 tries 
and print the quotient tries/hits. (This program is not suitable for computing the 
value of p. You need p  in the computation of the angle.)

figure 9   
the Buffon needle experiment

figure 10   
a hit in the Buffon needle experiment

2

0

yhigh

ylow α



194 Chapter 4  Loops

•• business p4.27  Currency conversion. Write a program 
that first asks the user to type today’s 
price for one dollar in Japanese yen, 
then reads U.S. dollar values and 
converts each to yen. Use 0 as a sentinel.

•• business p4.28  Write a program that first asks the user 
to type in today’s price of one dollar 
in Jap anese yen, then reads U.S. dollar 
values and converts each to Japanese 
yen. Use 0 as the sentinel value to denote the end of dollar inputs. Then the program 
reads a sequence of yen amounts and converts them to dollars. The second sequence 
is ter minated by another zero value.

•• business p4.29  Your company has shares of stock it would like to sell when their value exceeds a 
certain target price. Write a program that reads the target price and then reads the 
current stock price until it is at least the target price. Your program should use a 
Scanner to read a sequence of double values from standard input. Once the minimum 
is reached, the program should report that the stock price exceeds the target price.

•• business p4.30  Write an application to presell a limited number of cinema tickets. Each buyer can 
buy as many as 4 tickets. No more than 100 tickets can be sold. Implement a pro
gram called TicketSeller that prompts the user for the desired number of tickets and 
then displays the number of remaining tickets. Repeat until all tickets have been 
sold, and then display the total number of buyers.

•• business p4.31  You need to control the number of people who can be in an oyster bar at the same 
time. Groups of people can always leave the bar, but a group cannot enter the bar 
if they would make the number of people in the bar exceed the maximum of 100 
occupants. Write a program that reads the sizes of the groups that arrive or depart. 
Use negative numbers for departures. After each input, display the current number 
of occupants. As soon as the bar holds the maximum number of people, report that 
the bar is full and exit the program.

••• business p4.32  Credit Card Number Check. The last digit of a credit card number is the check 
digit, which protects against transcription errors such as an error in a single digit or 
switching two digits. The following method is used to verify actual credit card num
bers but, for simplicity, we will describe it for numbers with 8 digits instead of 16:

• Starting from the rightmost digit, form the sum of every other digit. For 
example, if the credit card number is 4358 9795, then you form the sum 
5 + 7 + 8 + 3 = 23. 

• Double each of the digits that were not included in the preceding step. Add all 
digits of the resulting numbers. For example, with the number given above, 
doubling the digits, starting with the nexttolast one, yields 18 18 10 8. Adding 
all digits in these values yields 1 + 8 + 1 + 8 + 1 + 0 + 8 = 27. 

• Add the sums of the two preceding steps. If the last digit of the result is 0, the 
number is valid. In our case, 23 + 27 = 50, so the number is valid.

Write a program that implements this algorithm. The user should supply an 8digit 
number, and you should print out whether the number is valid or not. If it is not 
valid, you should print the value of the check digit that would make it valid.



programming exercises 195

•• Science p4.33  In a predatorprey simulation, you compute the populations of predators and prey, 
using the following equations:

prey prey A B pred

pred pred C D
n n n

n n

+

+

= × + − ×( )
= × − + ×

1

1

1

1 ppreyn( )
Here, A is the rate at which prey birth exceeds natural 
death, B is the rate of predation, C is the rate at which 
predator deaths exceed births without food, and D repre
sents predator increase in the presence of food. 
Write a program that prompts users for these rates, the 
initial population sizes, and the number of peri ods. Then 
print the populations for the given number of periods. As 
inputs, try A = 0.1, B = C = 0.01, and D = 0.00002 with 
initial prey and predator populations of 1,000 and 20. 

•• Science p4.34  Projectile flight. Suppose a cannonball is propelled straight into the air with a start ing 
velocity v0. Any calculus book will state that the position of the ball after t sec onds is 
s t gt v t( ) = − +1

2
2

0 , where =g 9.81 m s2 is the gravi tational force of the earth. No 
calculus textbook ever mentions why someone would want to carry out such an 
obviously dangerous experiment, so we will do it in the safety of the computer.
In fact, we will confirm the theorem 
from calculus by a simulation. In our 
simulation, we will consider how the 
ball moves in very short time intervals 
Δt. In a short time interval the velocity v 
is nearly con stant, and we can compute 
the distance the ball moves as Δs = vΔt. 
In our program, we will simply set

const double DELTA_T = 0.01;

and update the position by
s = s + v * DELTA_T;

The velocity changes constantly—in fact, it is reduced by the gravitational force of 
the earth. In a short time interval, Δv = –gΔt, we must keep the velocity updated as

v = v - g * DELTA_T;

In the next iteration the new velocity is used to update the distance.
Now run the simulation until the cannonball falls back to the earth. Get the initial 
velocity as an input (100 m̸s is a good value). Update the position and velocity 100 
times per second, but print out the posi tion only every full second. Also printout the 
values from the exact formula s t gt v t( ) = − +1

2
2

0 for com parison.
Note: You may wonder whether there is a benefit to this simulation when an exact 
formula is available. Well, the formula from the calculus book is not exact. Actually, 
the gravitational force diminishes the farther the cannonball is away from the surface 
of the earth. This complicates the algebra sufficiently that it is not possible to give an 
exact formula for the actual motion, but the computer simulation can simply be 
extended to apply a variable gravitational force. For cannonballs, the calculusbook 
formula is actually good enough, but computers are necessary to compute accurate 
trajectories for higherflying objects such as ballistic mis siles.



196 Chapter 4  Loops

••• Science p4.35  A simple model for the hull of a ship is given by 

 

y
B x

L
z
T

= − 

















− 















2

1
2

1
2 2

where B is the beam, L is the length, and T is the draft. (Note: There are two values of 
y for each x and z because the hull is symmetric from starboard to port.)

The crosssectional area at a point x is called the “section” in nauti
cal parlance. To compute it, let z go from 0 to –T in n increments, 
each of size T n. For each value of z, compute the value for y. 
Then sum the areas of trapezoidal strips. At right are the strips 
where n = 4.
Write a program that reads in values for B, L, T, x, and n and then 
prints out the crosssectional area at x.

• Science p4.36  Radioactive decay of radioactive materials can be mod
eled by the equation A = A0e-t (log 2̸h), where A is the 
amount of the material at time t, A0 is the amount at 
time 0, and h is the halflife. 
Technetium99 is a radioisotope that is used in imaging 
of the brain. It has a halflife of 6 hours. Your program 
should display the relative amount A ̸  A0 in a patient 
body every hour for 24 hours after receiving a dose.

••• Science p4.37  The photo at left shows an electric device called a “transformer”. Transformers are 
often constructed by wrapping coils of wire around a ferrite core. The figure below 
illustrates a situation that occurs in various audio devices such as cell phones and 
music players. In this circuit, a transformer is used to connect a speaker to the output 
of an audio amplifier. 

Vs = 40 V

Speaker

+
–

R0 = 20 Ω

Rs = 8 Ω

TransformerAmplifier

1 : n



programming exercises 197

The symbol used to represent the transformer is intended to suggest two coils of 
wire. The parameter n of the transformer is called the “turns ratio” of the trans
former. (The number of times that a wire is wrapped around the core to form a coil is 
called the number of turns in the coil. The turns ratio is literally the ratio of the 
number of turns in the two coils of wire.)
When designing the circuit, we are concerned primarily with the value of the power 
delivered to the speakers—that power causes the speakers to produce the sounds we 
want to hear. Suppose we were to connect the speakers directly to the amplifier 
without using the transformer. Some fraction of the power available from the 
amplifier would get to the speakers. The rest of the available power would be lost in 
the amplifier itself. The transformer is added to the circuit to increase the fraction of 
the amplifier power that is delivered to the speakers. 
The power, Ps, delivered to the speakers is calculated using the formula

P R
nV

n R Rs s
s

s

=
+









2

0

2

Write a program that models the circuit shown and varies the turns ratio from 0.01 to 
2 in 0.01 increments, then determines the value of the turns ratio that maximizes the 
power delivered to the speakers.

• graphics p4.38  Write a program to plot the following face. 

• graphics p4.39  Write a graphical application that displays a checkerboard with 64 squares, alternat
ing white and black.

••• graphics p4.40  Write a graphical application that draws a spiral, such as the following: 

•• graphics p4.41  It is easy and fun to draw graphs of curves with the Java graphics library. Simply 
draw 100 line segments joining the points (x, f(x)) and (x + d, f(x + d)), where x 
ranges from xmin to xmax and d x x= −( )max min 100. 
Draw the curve f x x x x( ) . .= − + +0 00005 0 03 4 2003 2 , where x ranges from 0 to 
400 in this fashion.

••• graphics p4.42  Draw a picture of the “fourleaved rose” whose equation in polar coordinates is 
r = cos( )2θ . Let q go from 0 to 2p in 100 steps. Each time, compute r and then 
com pute the (x, y) coordinates from the polar coordinates by using the formula

x r y r= ⋅ = ⋅cos( ) sin( )θ θ,



198 Chapter 4  Loops

a n s W e r s  t o  s e L F - C h e C k  Q U e s t I o n s

1.  23 years.
2.  7 years.
3.  Add a statement

System.out.println(balance);

as the last statement in the while loop.
4.  The program prints the same output. This is 

because the balance after 14 years is slightly 
below $20,000, and after 15 years, it is slightly 
above $20,000.

5.  2 4 8 16 32 64 128 
Note that the value 128 is printed even though 
it is larger than 100.

6.   n   output
 5 
 4   4
 3   3
 2   2
 1   1
 0   0
-1  -1

7.   n   output
 1   1, 
 2   1, 2,
 3   1, 2, 3,
 4

There is a comma after the last value. Usually, 
commas are between values only.

8.   a   n   r   i
 2   4   1   1
         2   2
         4   3
         8   4
        16   5

The code computes an.
9.   n    output

 1   1
11   11
21   21
31   31
41   41
51   51
61   61
...

This is an infinite loop. n is never equal to 50.
10.  count   temp

1         123
2         12.3
3         1.23

This yields the correct answer. The number 
123 has 3 digits.

count   temp
1         100
2         10.0

This yields the wrong answer. The number 100 
also has 3 digits. The loop condition should 
have been 

while (temp >= 10)

11.  int year = 1; 
while (year <= nyears)
{ 
   double interest = balance * RATE / 100;
   balance = balance + interest;
   System.out.printf("%4d %10.2f\n",  
      year, balance);
   year++;
}

12.  11 numbers: 10 9 8 7 6 5 4 3 2 1 0
13.  for (int i = 10; i <= 20; i = i + 2) 

{
   System.out.println(i);
}

14.  int sum = 0; 
for (int i = 1; i <= n; i++) 
{ 
   sum = sum + i; 
}

15.  for (int year = 1;  
   balance <= 2 * INITIAL_BALANCE; year++) 
However, it is best not to use a for loop in this 
case because the loop condition does not relate 
to the year variable. A while loop would be a 
better choice.

16.  do 
{
   System.out.print( 
      "Enter a value between 0 and 100: ");
   value = in.nextInt();
}
while (value < 0 || value > 100);

17.  int value = 100; 
while (value >= 100)
{
   System.out.print("Enter a value < 100: ");
   value = in.nextInt();
}



answers to self-Check Questions 199

Here, the variable value had to be initialized 
with an artificial value to ensure that the loop 
is entered at least once. 

18.  Yes. The do loop
do { body } while (condition);

is equivalent to this while loop:
boolean first = true;
while (first || condition) 
{ 
   body; 
   first = false; 
}

19.  int x; 
int sum = 0;
do
{
   x = in.nextInt();
   sum = sum + x;
} 
while (x != 0);

20.  int x = 0; 
int previous;
do
{
   previous = x;
   x = in.nextInt();
   sum = sum + x;
} 
while (x != 0 && previous != x); 

21.  No data 

22.  The first check ends the loop after the sentinel 
has been read. The second check ensures that 
the sentinel is not processed as an input value. 

23.  The while loop would never be entered. The 
user would never be prompted for input. 
Because count stays 0, the program would then 
print "No data".

24.  The nextDouble method also returns false. 
A more accurate prompt would have been: 
“Enter values, a key other than a digit to quit.” 
But that might be more con fusing to the pro
gram user who would need now ponder which 
key to choose.

25.  If the user doesn’t provide any numeric input, 
the first call to in.nextDouble() will fail. 

26.  Computing the aver age

27.  Simple conversion

Unknown unit

Program doesn’t understand question syntax

28.  One score is not enough

29.  It would not be possible to implement this 
interface using the Java features we have cov
ered up to this point. There is no way for the 
program to know when the first set of inputs 
ends. (When you read numbers with value = 
in.nextDouble(), it is your choice whether to put 
them on a single line or multiple lines.)

30.  Comparing two inter est rates

31.  The total is zero.
32.  double total = 0; 

while (in.hasNextDouble())
{
   double input = in.nextDouble();
   if (input > 0) { total = total + input; }
}

33.  position is str.length() and ch is unchanged 
from its initial value, '?'. Note that ch must 

Enter scores, Q to quit: 90 80 90 100 80 Q
The average is 88
(Program exits)

Your conversion question: How many in are 30 cm
30 cm = 11.81 in
(Program exits) Run program again for another question

Only one value can be converted

Your conversion question: How many inches are 30 cm?
Unknown unit: inches
Known units are in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal
(Program exits)

Your conversion question: What is an ångström?
Please formulate your question as “How many (unit) are (value) (unit)?”
(Program exits)

Enter scores, Q to quit: 90 Q
Error: At least two scores are required.
(Program exits)

First interest rate in percent: 5
Second interest rate in percent: 10
Years: 5
Year       5%             10%
 
0 10000.00 10000.00
1 10500.00 11000.00
2 11025.00 12100.00
3 11576.25 13310.00
4 12155.06 14641.00
5 12762.82 16105.10

 

This row clarifies that 1 means 
the end of the first year



200 Chapter 4  Loops

be initialized with some value—otherwise the 
compiler will complain about a possibly unini
tialized variable.

34.  The loop will stop when a match is found, but 
you cannot access the match because neither 
position nor ch are defined outside the loop.

35.  Start the loop at the end of string:
boolean found = false;
int i = str.length() - 1;
while (!found && i >= 0)
{
   char ch = str.charAt(i);
   if (ch == ' ') { found = true; }
   else { i--; }
}

36.  The initial call to in.nextDouble() fails, termi
nating the program. One solution is to do all 
input in the loop and introduce a Boolean vari
able that checks whether the loop is entered for 
the first time.
double input = 0;
boolean first = true;
while (in.hasNextDouble())
{
   double previous = input;
   input = in.nextDouble();
   if (first) { first = false; } 
   else if (input == previous) 
   { 
      System.out.println("Duplicate input"); 
   }
}

37.  All values in the inner loop should be dis
played on the same line.

38.  Change lines 13, 18, and 30 to for (int n = 0; 
n <= NMAX; n++). Change NMAX to 5.

39.  60: The outer loop is executed 10 times, and 
the inner loop 6 times.

40.  0123 
1234
2345

41.  for (int i = 1; i <= 3; i++) 
{
   for (int j = 1; j <= 4; j++)
   {
      System.out.print("[]");
   }
   System.out.println();
}

42.  Compute (int) (Math.random() * 2), and use 0 
for heads, 1 for tails, or the other way around.

43.  Compute (int) (Math.random() * 4) and asso
ciate the numbers 0 . . . 3 with the four suits. 
Then compute (int) (Math.random() * 13) and 
associate the numbers 0 . . . 12 with Jack, Ace, 2 
. . . 10, Queen, and King.

44.  We need to call it once for each die. If we 
printed the same value twice, the die tosses 
would not be independent. 

45.  The call will produce a value between 2 and 
12, but all values have the same proba bility. 
When throwing a pair of dice, the number 7 is 
six times as likely as the num ber 2. The correct 
formula is
int sum = (int) (Math.random() * 6) + (int) 
(Math.random() * 6) + 2;

46.  Math.random() * 100.0 



5C h a p t e r

201

Methods

to be able to implement methods

to become familiar with the concept of  
parameter passing

to develop strategies for decomposing  
complex tasks into simpler ones

to be able to determine the scope of a variable

to learn how to think recursively (optional)

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

5.1  Methods as Black Boxes  202

5.2  IMpleMentIng Methods  204

Syntax 5.1: static Method declaration 205
Programming Tip 5.1: Method Comments 207

5.3  paraMeter passIng  207

Programming Tip 5.2: do not Modify parameter 
Variables 209

Common Error 5.1: trying to Modify 
arguments 209

5.4  return Values  210

Common Error 5.2: Missing return Value 212
How To 5.1: Implementing a Method 212
Worked Example 5.1: Generating random 

passwords 

5.5   Methods WIthout 
return Values   214

5.6  proBleM solVIng: reusaBle 
Methods  215

5.7  proBleM solVIng: stepWIse 
refIneMent  218

Programming Tip 5.3: Keep Methods short 223
Programming Tip 5.4: tracing Methods 223
Programming Tip 5.5: stubs 224
Worked Example 5.2: Calculating a 

Course Grade 

5.8  VarIaBle scope  225

Video Example 5.1: debugging 

5.9  recursIVe Methods 
(optIonal)  228

How To 5.2: thinking recursively 231
Random Fact 5.1: the explosive Growth of 

personal Computers 232
Video Example 5.2: Fully Justified text 



202

a method packages a computation consisting of multiple 
steps into a form that can be easily understood and reused. 
(the person in the image to the left is in the middle of 
executing the method “make espresso”.) 

In this chapter, you will learn how to design and implement 
your own methods. Using the process of stepwise refine
ment, you will be able to break up complex tasks into sets 
of cooperating methods.

5.1 Methods as Black Boxes
A method is a sequence of instructions with a name. You have already encountered 
several methods. For example, the Math.pow method, which was introduced in Chapter 
2, contains instructions to compute a power xy. Moreover, every Java program has a 
method called main. 

You call a method in order to execute its instructions. For example, consider the 
following program fragment:

public static void main(String[] args)
{
   double result = Math.pow(2, 3);
   . . .
}

By using the expression Math.pow(2, 3), main calls the Math.pow method, asking it to 
compute 23. The instructions of the Math.pow method execute and compute the result. 
The Math.pow method returns its result back to main, and the main method resumes exe-
cution (see Figure 1).

a method is a  
named sequence  
of instructions.

figure 1  execution Flow during a Method Call

Pass 2 and 3 to
Math.pow

Use result

main

Pass result 
to caller

Compute 23

Math.pow



5.1 Methods as Black Boxes  203

figure 2   
the Math.pow Method 
as a Black Box

2, 3

8

Math.pow

Arguments

Return value

When another method calls the Math.pow method, it provides “inputs”, such as the 
values 2 and 3 in the call Math.pow(2, 3). These values are called the arguments of the 
method call. Note that they are not necessarily inputs provided by a human user. 
They are simply the values for which we want the method to compute a result. The 
“output” that the Math.pow method computes is called the return value. 

Methods can receive multiple arguments, but they return only one value. It is also 
possible to have methods with no arguments. An example is the Math.random method 
that requires no argument to pro duce a random number.

The return value of a method is returned to the calling method, where it is pro-
cessed according to the statement containing the method call. For example, suppose 
your program contains a statement

double result = Math.pow(2, 3);

When the Math.pow method returns its result, the return value is stored in the 
variable result.

Do not confuse returning a value with producing program output. If you want 
the return value to be printed, you need to add a statement such as  System.out.
print(result). 

At this point, you may wonder how the Math.pow method performs its job. For 
example, how does Math.pow compute that 23 is 8? By multiplying 2 × 2 × 2? With 
logarithms? Fortunately, as a user of the method, you don’t need to know how the 
method is implemented. You just need to know the specification of the method: If you 
provide arguments x and y, the method returns xy. Engineers use the term black box 
for a device with a given specification but unknown implementation. You can think 
of Math.pow as a black box, as shown in Figure 2.  

When you design your own methods, you will want to make them appear as black 
boxes to other pro grammers. Those programmers want to use your methods without 
knowing what goes on inside. Even if you are the only person working on a program, 
making each method into a black box pays off: there are fewer details that you need to 
keep in mind.

arguments are 
supplied when a 
method is called. 

the return value is 
the result that the 
method computes.

Although a thermostat is usually white, you  
can think of it as a “black box”. The input is the  
desired temperature, and the output is a signal  
to the heater or air conditioner.



204 Chapter 5  Methods

1.  Consider the method call Math.pow(3, 2). What are the arguments and return 
values?

2.  What is the return value of the method call Math.pow(Math.pow(2, 2), 2)? 
3.  The Math.ceil method in the Java standard library is described as follows: The 

method receives a sin gle argument a of type double and returns the smallest double 
value ≥ a that is an integer. What is the return value of Math.ceil(2.3)?

4.  It is possible to determine the answer to Self Check 3 without knowing how the 
Math.ceil method is implemented. Use an engineering term to describe this 
aspect of the Math.ceil method.

practice It  Now you can try these exercises at the end of the chapter: R5.3, R5.6.

5.2 Implementing Methods
In this section, you will learn how to implement a 
method from a given specification. We will use a very 
simple example: a method to compute the volume of a 
cube with a given side length. 

The cubeVolume method uses a given side 
length to compute the volume of a cube. 

When writing this method, you need to 

• Pick a name for the method (cubeVolume).
• Declare a variable for each argument (double sideLength). These variables are called 

the parameter variables.
• Specify the type of the return value (double).
• Add the public static modifiers. We will discuss the meanings of these modifiers 

in Chapter 8. For now, you should simply add them to your methods. 

Put all this information together to form the first line of the method’s declaration: 
public static double cubeVolume(double sideLength)

This line is called the header of the method. Next, specify the body of the method. 
The body contains the variable declarations and statements that are executed when 
the method is called. 

The volume of a cube of side length s is s × s × s. However, for greater clarity, our 
parameter variable has been called sideLength, not s, so we need to compute sideLength 
* sideLength * sideLength.

We will store this value in a variable called volume:
double volume = sideLength * sideLength * sideLength;

In order to return the result of the method, use the return statement:
return volume;

s e l f   c h e c k

When declaring a 
method, you provide 
a name for the 
method, a variable 
for each argument, 
and a type for  
the result.



5.2 Implementing Methods  205

The return statement gives the 
method’s result to the caller.

The body of a method is enclosed in braces. Here is the complete method:
public static double cubeVolume(double sideLength)
{
   double volume = sideLength * sideLength * sideLength;
   return volume;
}

Let’s put this method to use. We’ll supply a main method that calls the cubeVolume 
method twice.

public static void main(String[] args)
{
   double result1 = cubeVolume(2);
   double result2 = cubeVolume(10);
   System.out.println("A cube with side length 2 has volume " + result1);
   System.out.println("A cube with side length 10 has volume " + result2);
}

When the method is called with different arguments, the method returns different 
results. Consider the call cubeVolume(2). The argument 2 corresponds to the sideLength 
parameter variable. Therefore, in this call, sideLength is 2. The method computes 

syntax 5.1 static Method declaration

public static double cubeVolume(double sideLength)
{
   double volume = sideLength * sideLength * sideLength;
   return volume;
}

Type of return value

Name of method

Type of parameter variable

Name of parameter variable

return statement 
exits method and 

returns result.

Method body, 
executed when 
method is called.

public static returnType methodName(parameterType parameterName, . . . )
{
   method body
}

Syntax



206 Chapter 5  Methods

sideLength * sideLength * sideLength, or 2 * 2 * 2. When the method is called with a dif-
ferent argument, say 10, then the method computes 10 * 10 * 10. 

Now we combine both methods into a test program. Note that both methods are 
contained in the same class. Also note the comment that describes the behavior of the 
cubeVolume method. (Programming Tip 5.1 describes the format of the comment.)

section_2/cubes.java

1 /**
2    This program computes the volumes of two cubes.
3 */
4 public class Cubes
5 {
6    public static void main(String[] args)
7    {
8       double result1 = cubeVolume(2);
9       double result2 = cubeVolume(10);

10       System.out.println("A cube with side length 2 has volume " + result1);
11       System.out.println("A cube with side length 10 has volume " + result2);
12    }
13 
14    /**
15       Computes the volume of a cube.
16       @param sideLength the side length of the cube
17       @return the volume
18    */
19    public static double cubeVolume(double sideLength)
20    {
21       double volume = sideLength * sideLength * sideLength;
22       return volume;
23    }
24 }

program run

A cube with side length 2 has volume 8
A cube with side length 10 has volume 1000

5.  What is the value of cubeVolume(3)?
6.  What is the value of cubeVolume(cubeVolume(2))?
7.  Provide an alternate implementation of the body of the cubeVolume method by 

calling the Math.pow method.
8.  Declare a method squareArea that computes the area of a square of a given side 

length. 
9.  Consider this method:

public static int mystery(int x, int y) 
{
   double result = (x + y) / (y - x);
   return result;
}

What is the result of the call mystery(2, 3)?

practice It  Now you can try these exercises at the end of the chapter: R5.1, R5.2, P5.5, P5.22.

s e l f   c h e c k



5.3 parameter passing  207

Method comments

Whenever you write a method, you should comment its behavior. Comments are for human 
readers, not compilers. The Java language provides a standard layout for method comments, 
called the javadoc convention, as shown here:

/**
   Computes the volume of a cube.
   @param sideLength the side length of the cube
   @return the volume
*/
public static double cubeVolume(double sideLength)
{
   double volume = sideLength * sideLength * sideLength;
   return volume;
} 

Comments are enclosed in /** and */ delimiters. The first line of the comment describes the 
purpose of the method. Each @param clause describes a parameter variable and the @return 
clause describes the return value.

Note that the method comment does not document the implementation (how the method 
carries out its work) but rather the design (what the method does). The comment allows other 
programmers to use the method as a “black box”.

5.3 parameter passing
In this section, we examine the mechanism of parameter passing more closely. When 
a method is called, variables are created for receiving the method’s arguments. These 
variables are called parameter variables. (Another commonly used term is formal 
parameters.) The values that are supplied to the method when it is called are the 
arguments of the call. (These values are also commonly called the actual param-
eters.) Each parameter variable is initialized with the corresponding argument.

Consider the method call illustrated in Figure 3:
double result1 = cubeVolume(2);  

programming tip 5.1 

Method comments 
explain the purpose 
of the method, the 
meaning of the 
parameter variables 
and return value, as 
well as any special 
requirements.

parameter variables  
hold the arguments  
supplied in the 
method call.

A recipe for a fruit pie may say to use any kind of fruit.  
Here, “fruit” is an example of a parameter variable.  
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)



208 Chapter 5  Methods

• 

figure 3  parameter passing

1 Method call result1 =

sideLength =

2 Initializing method parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After method  call result1 = 8

double result1 = cubeVolume(2);

double volume = sideLength * sideLength * sideLength;
return volume;

double result1 = cubeVolume(2);

double result1 = cubeVolume(2);

The parameter variable sideLength of the cubeVolume method is created when the 
method is called.  1

• The parameter variable is initialized with the value of the argument that was 
passed in the call. In our case, sideLength is set to 2.  2  

• The method computes the expression sideLength * sideLength * sideLength, which 
has the value 8. That value is stored in the variable volume.  3

• The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubeVolume method. The caller 
puts the return value in the result1 variable.  4   

Now consider what happens in a subsequent call, cubeVolume(10). A new parameter 
variable is created. (Recall that the previous parameter variable was removed when 
the first call to cubeVolume returned.) It is initialized with 10, and the process repeats. 
After the second method call is complete, its vari ables are again removed. 

10.  What does this program print? Use a diagram like Figure 3 to find the answer.
public static double mystery(int x, int y) 
{ 
   double z = x + y; 
   z = z / 2.0;
   return z; 
}
public static void main(String[] args) 
{ 
   int a = 5;
   int b = 7;

A N I M AT I O N
Parameter Passing

s e l f   c h e c k



5.3 parameter passing  209

   System.out.println(mystery(a, b)); 
}

11.  What does this program print? Use a diagram like Figure 3 to find the answer.
public static int mystery(int x) 
{ 
   int y = x * x;
   return y; 
}
public static void main(String[] args)
{
   int a = 4;
   System.out.println(mystery(a + 1)); 
}

12.  What does this program print? Use a diagram like Figure 3 to find the answer.
public static int mystery(int n) 
{ 
   n++;
   n++;
   return n;
}
public static void main(String[] args)
{
   int a = 5;
   System.out.println(mystery(a));
}

practice It  Now you can try these exercises at the end of the chapter: R5.5, R5.14, P5.8.

do not Modify parameter Variables

In Java, a parameter variable is just like any other variable. You can modify the values of the 
parameter variables in the body of a method. For example,

public static int totalCents(int dollars, int cents)
{
   cents = dollars * 100 + cents; // Modifies parameter variable
   return cents;
}

However, many programmers find this practice confusing (see Common Error 5.1). To avoid 
the confusion, simply introduce a separate variable:

public static int totalCents(int dollars, int cents)
{
   int result = dollars * 100 + cents; 
   return result;
}

trying to Modify arguments

The following method contains a common error: trying to modify an argument.

public static int addTax(double price, double rate)
{
   double tax = price * rate / 100;
   price = price + tax; // Has no effect outside the method

programming tip 5.2 

Common error 5.1 



210 Chapter 5  Methods

   return tax;
}

Now consider this call:

double total = 10;
addTax(total, 7.5); // Does not modify total

When the addTax method is called, price is set to 10. Then price is changed to 10.75. When the 
method returns, all of its parameter variables are removed. Any values that have been assigned 
to them are simply forgotten. Note that total is not changed. In Java, a method can never 
change the contents of a variable that was passed as an argument. 

5.4 return Values
You use the return statement to specify the result of a method. In the preceding exam-
ples, each return state ment returned a variable. However, the return statement can 
return the value of any expres sion. Instead of saving the return value in a variable and 
returning the variable, it is often possible to eliminate the variable and return a more 
complex expression:

public static double cubeVolume(double sideLength)
{
   return sideLength * sideLength * sideLength;
}

When the return statement is processed, the method exits immediately. Some 
 programmers find this behavior convenient for handling exceptional cases at the 
beginning of the method:

public static double cubeVolume(double sideLength)
{
   if (sideLength < 0) { return 0; }
   // Handle the regular case
   . . .
}

If the method is called with a negative value for sideLength, then the method returns 0 
and the remainder of the method is not executed. (See Figure 4.) 

the return statement 
terminates a method 
call and yields the 
method result.

figure 4   A return statement exits a Method Immediately

sideLength < 0? return 0

return volume

  volume =
sideLength × 
sideLength × 
sideLength

True

False



5.4 return Values  211

Every branch of a method needs to return a value. Consider the following incor-
rect method:

public static double cubeVolume(double sideLength)
{
   if (sideLength >= 0)
   { 
      return sideLength * sideLength * sideLength; 
   } // Error—no return value if sideLength < 0
}

The compiler reports this as an error. A correct implementation is:
public static double cubeVolume(double sideLength)
{
   if (sideLength >= 0)
   {
      return sideLength * sideLength * sideLength; 
   }
   else
   {
      return 0;
   }
} 

Many programmers dislike the use of multiple return statements in a method. You 
can avoid multiple returns by storing the method result in a variable that you return 
in the last statement of the method. For example:

public static double cubeVolume(double sideLength)
{
   double volume;
   if (sideLength >= 0)
   {
      volume = sideLength * sideLength * sideLength;
   }
   else
   {
      volume = 0;
   }
   return volume;
}

13.  Suppose we change the body of the cubeVolume method to 
if (sideLength <= 0) { return 0; }
return sideLength * sideLength * sideLength;

How does this method differ from the one described in this section?
14.  What does this method do?

public static boolean mystery (int n)
{
   if (n % 2 == 0) { return true };
   else { return false; }
} 

15.  Implement the mystery method of Self Check 14 with a single return statement.

practice It  Now you can try these exercises at the end of the chapter: R5.13, P5.20.

o n l I n e  e x a M p l e

a program showing a 
method with multiple 
return statements.

s e l f   c h e c k



212 Chapter 5  Methods

      
Missing return Value 

It is a compile-time error if some branches of a method return a value and others do not. Con-
sider this example:

public static int sign(double number)
{
   if (number < 0) { return -1; }
   if (number > 0) { return 1; }
   // Error: missing return value if number equals 0
}

This method computes the sign of a number: –1 for negative numbers and +1 for positive num-
bers. If the argument is zero, however, no value is returned. The remedy is to add a statement 
return 0; to the end of the method.

step 1  Describe what the method should do.

Provide a simple English description, such as “Compute the volume of a pyramid whose base 
is a square.”

step 2  Determine the method’s “inputs”.

Make a list of all the parameters that can vary. It is common for begin-
ners to implement methods that are overly specific. For example, you 
may know that the great pyramid of Giza, the largest of the Egyptian 
pyramids, has a height of 146 meters and a base length of 230 meters. 
You should not use these numbers in your calculation, even if the original problem only asked 
about the great pyramid. It is just as easy—and far more useful—to write a method that com-
putes the volume of any pyramid.

In our case, the parameters are the pyramid’s height and base length. At this point, we have 
enough information to document the method:

/**
   Computes the volume of a pyramid whose base is a square.
   @param height the height of the pyramid
   @param baseLength the length of one side of the pyramid’s base
   @return the volume of the pyramid
*/

Common error 5.2 

hoW to 5.1 Implementing a Method

A method is a computation that can be used multiple 
times with different arguments, either in the same pro-
gram or in different programs. Whenever a computa-
tion is needed more than once, turn it into a method. 

To illustrate this process, suppose that you are help-
ing archaeologists who research Egyptian pyramids. 
You have taken on the task of writing a method that 
determines the volume of a pyramid, given its height 
and base length.

turn computations 
that can be reused 
into methods.



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

5.4 return Values  213

step 3  Determine the types of the parameter variables and the return value.

The height and base length can both be floating-point numbers. Therefore, we will choose the 
type double for both parameter variables. The computed volume is also a floating-point num-
ber, yielding a return type of double. There fore, the method will be declared as

public static double pyramidVolume(double height, double baseLength)

step 4  Write pseudocode for obtaining the desired result. 

In most cases, a method needs to carry out several steps to find the desired answer. You may 
need to use mathemati cal formulas, branches, or loops. Express your method in pseudocode. 

An Internet search yields the fact that the volume of a pyramid is computed as 

volume = 1/3 x height x base area

Because the base is a square, we have

base area = base length x base length

Using these two equations, we can compute the volume from the arguments.

step 5  Implement the method body.

In our example, the method body is quite simple. Note the use of the return statement to 
return the result.

public static double pyramidVolume(double height, double baseLength)
{
   double baseArea = baseLength * baseLength;
   return height * baseArea / 3;
}

step 6  Test your method.

After implementing a method, you should test it in isolation. Such a test is called a unit test. 
Work out test cases by hand, and make sure that the method produces the correct results. 
For example, for a pyramid with height 9 and base length 10, we expect the area to be 1/3 × 9 × 
100 = 300. If the height is 0, we expect an area of 0. 

public static void main(String[] args)
{
   System.out.println("Volume: " + pyramidVolume(9, 10));
   System.out.println("Expected: 300");
   System.out.println("Volume: " + pyramidVolume(0, 10));
   System.out.println("Expected: 0");
}

The output confirms that the method worked as expected:

Volume: 300
Expected: 300
Volume: 0
Expected: 0

o n l I n e  e x a M p l e

the program for 
calculating a 
pyramid’s volume.

WorKed exaMple 5.1 generating random passwords

This Worked Example creates a method that generates 
passwords of a given length with at least one digit and 
one special character.

Enter your current password:

Enter your new password:

Retype your new password:



214 Chapter 5  Methods

5.5 Methods Without return Values
Sometimes, you need to carry out a 
sequence of instructions that does 
not yield a value. If that instruction 
sequence occurs multiple times, you 
will want to package it into a method. 
In Java, you use the return type void to 
indicate the absence of a return value. 

Here is a typical example: Your task 
is to print a string in a box, like this:

-------
!Hello!
-------

However, different strings can be substituted for Hello. A method for this task can be 
declared as follows:

public static void boxString(String contents) 

Now you develop the body of the method in the usual way, by formulating a general 
method for solving the task.

Print a line that contains the - character n + 2 times, where n is the length of the string.
Print a line containing the contents, surrounded with a ! to the left and right.
Print another line containing the - character n + 2 times.

Here is the method implementation:

/**
   Prints a string in a box.
   @param contents the string to enclose in a box
*/
public static void boxString(String contents)
{
   int n = contents.length();
   for (int i = 0; i < n + 2; i++) { System.out.print("-"); }
   System.out.println();
   System.out.println("!" + contents + "!");
   for (int i = 0; i < n + 2; i++) { System.out.print("-"); }
   System.out.println();
}

Note that this method doesn’t compute any value. It performs some actions and then 
returns to the caller.

Because there is no return value, you cannot use boxString in an expression. You 
can call

boxString("Hello");

but not
result = boxString("Hello"); // Error: boxString doesn’t return a result.

If you want to return from a void method before reaching the end, you use a return 
statement without a value. For example,

public static void boxString(String contents)
{

A void method returns no value, but it can 
produce output.

Use a return type of 
void to indicate that a 
method does not 
return a value.

o n l I n e  e x a M p l e

a complete program 
demonstrating the 
boxString method.



5.6 problem solving: reusable Methods  215

   int n = contents.length();
   if (n == 0) 
   { 
      return; // Return immediately
   }
   . . .
}

16.  How do you generate the following printout, using the boxString method?
-------
!Hello!
-------
-------
!World!
-------

17.  What is wrong with the following statement?
System.out.print(boxString("Hello"));

18.  Implement a method shout that prints a line consisting of a string followed by 
three exclamation marks. For example, shout("Hello") should print Hello!!!. The 
method should not return a value.

19.  How would you modify the boxString method to leave a space around the string 
that is being boxed, like this:
---------
! Hello !
---------

20.  The boxString method contains the code for printing a line of - characters twice. 
Place that code into a separate method printLine, and use that method to simplify 
boxString. What is the code of both meth ods?

practice It  Now you can try these exercises at the end of the chapter: R5.4, P5.25.

5.6 problem solving: reusable Methods
You have used many methods from the standard Java library. These methods have 
been provided as a part of the Java platform so that programmers need not recre-
ate them. Of course, the Java library doesn’t cover every conceivable need. You will 
often be able to save yourself time by designing your own methods that can be used 
for multiple problems.

When you write nearly identical code or pseudocode multiple times, either in the 
same program or in separate programs, consider introducing a method. Here is a typ-
ical example of code replication: 

int hours;
do
{
   System.out.print("Enter a value between 0 and 23: ");
   hours = in.nextInt();
} 
while (hours < 0 || hours > 23);  

s e l f   c h e c k

eliminate replicated 
code or pseudocode 
by defining a method.



216 Chapter 5  Methods

int minutes;
do
{
   System.out.print("Enter a value between 0 and 59: ");
   minutes = in.nextInt(); 
} 
while (minutes < 0 || minutes > 59);

This program segment reads two variables, making sure that each of them is within a 
certain range. It is easy to extract the common behavior into a method:

/**
   Prompts a user to enter a value up to a given maximum until the user
   provides a valid input.
   @param high the largest allowable input
   @return the value provided by the user (between 0 and high, inclusive)
*/
public static int readIntUpTo(int high)
{
   int input;
   Scanner in = new Scanner(System.in);
   do
   {
      System.out.print("Enter a value between 0 and " + high + ": ");
      input = in.nextInt();
   } 
   while (input < 0 || input > high);
   return input;
}

Then use this method twice:
int hours = readIntUpTo(23);
int minutes = readIntUpTo(59);

We have now removed the replication of the loop—it only occurs once, inside the 
method.

Note that the method can be reused in other programs that need to read integer 
values. However, we should consider the possibility that the smallest value need not 
always be zero. 

Here is a better alterna tive:
/**
   Prompts a user to enter a value within a given range until the user
   provides a valid input.
   @param low the smallest allowable input
   @param high the largest allowable input
   @return the value provided by the user (between low and high, inclusive)
*/
public static int readIntBetween(int low, int high)
{
   int input;
   Scanner in = new Scanner(System.in);
   do
   {
      System.out.print("Enter a value between " + low + " and " + high + ": ");
      input = in.nextInt();
   } 
   while (input < low || input > high);
   return input;
}

design your methods 
to be reusable. 
supply parameter 
variables for the 
values that can vary 
when the method  
is reused.



5.6 problem solving: reusable Methods  217

In our program, we call

When carrying out the same task  
multiple times, use a method.

int hours = readIntBetween(0, 23);

Another program can call 
int month = readIntBetween(1, 12);

In general, you will want to provide parameter variables for the values that vary when 
a method is reused.

21.  Consider the following statements:
int totalPennies = (int) Math.round(100 * total) % 100;
int taxPennies = (int) Math.round(100 * (total * taxRate)) % 100;

Introduce a method to reduce code duplication.
22.  Consider this method that prints a page number on the left or right side of a 

page:
if (page % 2 == 0) { System.out.println(page); }
else { System.out.println("                                      " + page); }

Introduce a method with return type boolean to make the condition in the if 
statement easier to under stand.

23.  Consider the following method that computes compound interest for an 
account with an initial bal ance of $10,000 and an interest rate of 5 percent:
public static double balance(int years) { return 10000 * Math.pow(1.05, years); }

How can you make this method more reusable?
24.  The comment explains what the following loop does. Use a method instead.

// Counts the number of spaces
int spaces = 0;
for (int i = 0; i < input.length(); i++)
{
   if (input.charAt(i) == ' ') { spaces++; }
}

25.  In Self Check 24, you were asked to implement a method that counts spaces. 
How can you general ize it so that it can count any character? Why would you 
want to do this?

practice It  Now you can try these exercises at the end of the chapter: R5.7, P5.21.

o n l I n e  e x a M p l e

a complete program 
demonstrating the 
readIntBetween 
method.

s e l f   c h e c k



218 Chapter 5  Methods

5.7 problem solving: stepwise refinement
One of the most powerful strategies for 
problem solving is the process of stepwise 
refinement. To solve a difficult task, break 
it down into simpler tasks. Then keep break-
ing down the simpler tasks into even simpler 
ones, until you are left with tasks that you 
know how to solve.

Now apply this process to a problem of 
everyday life. You get up in the morning and 
simply must get coffee. How do you get cof-
fee? You see whether you can get someone 
else, such as your mother or mate, to bring 
you some. If that fails, you must make coffee. 

A production process is broken down  
into sequences of assembly steps.

Use the process of 
stepwise refinement 
to decompose 
complex tasks into 
simpler ones. 

figure 5   
Flowchart of  
CoffeeMaking  
solution

Yes No

Get
coffee

Ask for
coffee

Can you
ask someone

?

Make
coffee

Yes No

Do you
have instant

coffee?

Brew
coffee

Add coffee
beans to
grinderPut cup

in micro-
wave

Bring to
a boil

Fill cup 
with water

Fill kettle
with water

Heat
3 min.

Grind
60 sec.

Add water
to coffee

maker

Add filter
to coffee

maker

Add coffee
beans to

filter

Grind
coffee
beans

Turn coffee
maker on

Make
instant
coffee

Boil
water

Mix water
and instant

coffee

Do you
have a micro-

wave?

Yes No



5.7 problem solving: stepwise refinement  219

How do you make coffee? If there is instant coffee available, you can make instant coffee. 
How do you make instant coffee? Simply boil water and mix the boiling water with the 
instant coffee. How do you boil water? If there is a microwave, then you fill a cup 
with water, place it in the microwave and heat it for three minutes. Otherwise, you fill 
a kettle with water and heat it on the stove until the water comes to a boil. On the 
other hand, if you don’t have instant coffee, you must brew coffee. How do you brew 
coffee? You add water to the coffee maker, put in a filter, grind coffee, put the coffee in 
the filter, and turn the coffee maker on. How do you grind coffee? You add coffee 
beans to the coffee grinder and push the button for 60 seconds. 

Figure 5 shows a flowchart view of the coffee-making solution. Refinements are 
shown as expanding boxes. In Java, you implement a refinement as a method. For 
example, a method brewCoffee would call grindCoffee, and brewCoffee would be called 
from a method makeCoffee. 

Let us apply the process of stepwise refine-
ment to a pro gramming problem. When print-
ing a check, it is customary to write the check 
amount both as a number (“$274.15”) and as a 
text string (“two hundred seventy four dollars 
and 15 cents”). Doing so reduces the recipient’s 
temptation to add a few digits in front of the 
amount. 

For a human, this isn’t  particularly difficult, 
but how can a computer do this? There is no 
built-in method that turns 274 into "two hundred seventy four". We need to program 
this method. Here is the description of the method we want to write:

/**
   Turns a number into its English name.
   @param number a positive integer < 1,000
   @return the name of number (e.g., “two hundred seventy four”)
*/
public static String intName(int number)

How can this method do its job? Consider a simple case first. If the number is between 
1 and 9, we need to compute "one" … "nine". In fact, we need the same computation 
again for the hundreds (two hundred). Any time you need something more than once, it 
is a good idea to turn that into a method. Rather than writing the entire method, write 
only the comment:

/**
   Turns a digit into its English name.
   @param digit an integer between 1 and 9
   @return the name of digit (“one” . . . “nine”)
*/
public static String digitName(int digit)

Numbers between 10 and 19 are special cases. Let’s have a separate method teenName 
that converts them into strings "eleven", "twelve", "thirteen", and so on:

/**
   Turns a number between 10 and 19 into its English name.
   @param number an integer between 10 and 19
   @return the name of the number (“ten” . . . “nineteen”)
*/
public static String teenName(int number)

When you discover 
that you need a 
method, write a 
description of the 
parameter variables 
and return values.

a method may 
require simpler 
methods to carry  
out its work.



220 Chapter 5  Methods

Next, suppose that the number is between 20 and 99. The name of such a number has 
two parts, such as "seventy four". We need a way of producing the first part, "twenty", 
"thirty", and so on. Again, we will put that computation into a separate method:

/**
   Gives the name of the tens part of a number between 20 and 99.
   @param number an integer between 20 and 99
   @return the name of the tens part of the number (“twenty” . . . “ninety”)
*/
public static String tensName(int number)

Now let us write the pseudocode for the intName method. If the number is between 
100 and 999, then we show a digit and the word "hundred" (such as "two hundred"). 
We then remove the hundreds, for example reducing 274 to 74. Next, suppose the 
remaining part is at least 20 and at most 99. If the number is evenly divisible by 10, 
we use tensName, and we are done. Otherwise, we print the tens with tensName (such as 
"sev enty") and remove the tens, reducing 74 to 4. In a separate branch, we deal with 
numbers that are at between 10 and 19. Finally, we print any remaining single digit 
(such as "four").

part = number (The part that still needs to be converted)
name = "" (The name of the number)

If part >= 100
 name =  name of hundreds in part + " hundred"
 Remove hundreds from part.

If part >= 20
 Append tensName(part) to name.
 Remove tens from part.
Else if part >= 10
 Append teenName(part) to name. 
 part = 0

If (part > 0)
 Append digitName(part) to name.

Translating the pseudocode into Java is straightforward. The result is shown in the 
source listing at the end of this section.

Note how we rely on helper methods to do much of the detail work. Using the 
process of stepwise refinement, we now need to consider these helper methods. 

Let’s start with the digitName method. This method is so simple to implement that 
pseudocode is not really required. Simply use an if statement with nine branches:

public static String digitName(int digit)
{
   if (digit == 1) { return "one" };
   if (digit == 2) { return "two" };
   . . .
}

The teenName and tensName methods are similar. 

A N I M AT I O N
Tracing a Method



5.7 problem solving: stepwise refinement  221

This concludes the process of stepwise refinement. Here is the complete program:

section_7/Integername.java

1 import java.util.Scanner;
2 
3 /**
4    This program turns an integer into its English name.
5 */
6 public class IntegerName
7 {
8    public static void main(String[] args)
9    { 

10       Scanner in = new Scanner(System.in);
11       System.out.print("Please enter a positive integer < 1000: ");
12       int input = in.nextInt();
13       System.out.println(intName(input));
14    }
15 
16    /**
17       Turns a number into its English name.
18       @param number a positive integer < 1,000
19       @return the name of the number (e.g. “two hundred seventy four”)
20    */
21    public static String intName(int number)
22    {
23       int part = number; // The part that still needs to be converted 
24       String name = ""; // The name of the number
25 
26       if (part >= 100)
27       { 
28          name = digitName(part / 100) + " hundred";
29          part = part % 100;
30      }
31 
32       if (part >= 20)
33       { 
34          name = name + " " + tensName(part);
35          part = part % 10;
36       }   
37       else if (part >= 10)
38       { 
39          name = name + " " + teenName(part);
40          part = 0;
41       }
42 
43       if (part > 0)
44       {
45          name = name + " " + digitName(part);
46       }
47 
48       return name;   
49    }
50  
51    /**
52       Turns a digit into its English name.
53       @param digit an integer between 1 and 9
54       @return the name of digit (“one” . . . “nine”)
55    */



222 Chapter 5  Methods

56    public static String digitName(int digit)
57    { 
58       if (digit == 1) { return "one"; }
59       if (digit == 2) { return "two"; }
60       if (digit == 3) { return "three"; }
61       if (digit == 4) { return "four"; }
62       if (digit == 5) { return "five"; }
63       if (digit == 6) { return "six"; }
64       if (digit == 7) { return "seven"; }
65       if (digit == 8) { return "eight"; }
66       if (digit == 9) { return "nine"; }
67       return "";
68    }
69 
70    /**
71       Turns a number between 10 and 19 into its English name.
72       @param number an integer between 10 and 19
73       @return the name of the given number (“ten” . . . “nineteen”)
74    */
75    public static String teenName(int number)
76    { 
77       if (number == 10) { return "ten"; }
78       if (number == 11) { return "eleven"; }
79       if (number == 12) { return "twelve"; }
80       if (number == 13) { return "thirteen"; }
81       if (number == 14) { return "fourteen"; }
82       if (number == 15) { return "fifteen"; }
83       if (number == 16) { return "sixteen"; }
84       if (number == 17) { return "seventeen"; }
85       if (number == 18) { return "eighteen"; }
86       if (number == 19) { return "nineteen"; }
87       return "";
88    }
89 
90    /**
91       Gives the name of the tens part of a number between 20 and 99.
92       @param number an integer between 20 and 99
93       @return the name of the tens part of the number (“twenty” . . . “ninety”)
94    */
95    public static String tensName(int number)
96    {   
97       if (number >= 90) { return "ninety"; }
98       if (number >= 80) { return "eighty"; }
99       if (number >= 70) { return "seventy"; }

100       if (number >= 60) { return "sixty"; }
101       if (number >= 50) { return "fifty"; }
102       if (number >= 40) { return "forty"; }
103       if (number >= 30) { return "thirty"; }
104       if (number >= 20) { return "twenty"; }
105       return "";
106    }
107 }

program run

Please enter a positive integer < 1000: 729
seven hundred twenty nine



5.7 problem solving: stepwise refinement  223

26.  Explain how you can improve the intName method so that it can handle argu-
ments up to 9999. 

27.  Why does line 40 set part = 0? 
28.  What happens when you call intName(0)? How can you change the intName 

method to handle this case correctly? 
29.  Trace the method call intName(72), as described in Programming Tip 5.4.
30.  Use the process of stepwise refinement to break down the task of printing the 

following table into simpler tasks. 
+-----+-----------+
|   i | i * i * i |
+-----+-----------+
|   1 |         1 |
|   2 |         8 |
  . . .       . . .
|  20 |      8000 |
+-----+-----------+

practice It  Now you can try these exercises at the end of the chapter: R5.12, P5.11, P5.24.

keep Methods short 

There is a certain cost for writing a method. You need to design, code, and test the method. 
The method needs to be documented. You need to spend some effort to make the method 
reusable rather than tied to a specific context. To avoid this cost, it is always tempting just to 
stuff more and more code in one place rather than going through the trouble of breaking up 
the code into separate methods. It is quite common to see inexperienced programmers pro-
duce methods that are several hundred lines long. 

As a rule of thumb, a method that is so long that its code will not fit on a single screen in 
your development envi ronment should probably be broken up.

tracing Methods

When you design a complex method, it is a good idea to carry out a manual walkthrough 
before entrusting your pro gram to the computer. 

Take an index card, or some other piece of paper, and write down the method call that you 
want to study. Write the name of the method and the names and values of the parameter vari-
ables, like this:

 intName(number = 416)

Then write the names and initial values of the method variables. Write them in a table, because 
you will update them as you walk through the code.

 intName(number = 416)
 part name 
 416 ""

s e l f   c h e c k

programming tip 5.3 

programming tip 5.4 



224 Chapter 5  Methods

We enter the test part >= 100. part / 100 is 4 and part % 100 is 16. digitName(4) is easily seen to 
be "four". (Had digitName been complicated, you would have started another sheet of paper to 
figure out that method call. It is quite common to accumulate several sheets in this way.)

Now name has changed to name + " " + digitName(part / 100) + " hundred", that is "four hun-
dred", and part has changed to part % 100, or 16. 

 intName(number = 416)
 part name 
 416 ""
 16 "four hundred"

Now you enter the branch part >= 10. teenName(16) is sixteen, so the variables now have the 
values

 intName(number = 416)
 part name 
 416 ""
 16 "four hundred"
 0 "four hundred sixteen"

Now it becomes clear why you need to set part to 0 in line 40. Otherwise, you would enter the 
next branch and the result would be "four hundred sixteen six". Tracing the code is an effective 
way to understand the subtle aspects of a method.

stubs

When writing a larger program, it is not always 
feasible to implement and test all methods at once. 
You often need to test a method that calls another, 
but the other method hasn’t yet been imple-
mented. Then you can temporarily replace the 
missing method with a stub. A stub is a method 
that returns a simple value that is sufficient for 
testing another method. Here are examples of 
stub methods:

/**
   Turns a digit into its English name.
   @param digit an integer between 1 and 9
   @return the name of digit (“one” . . . nine”)
*/
public static String digitName(int digit)
{
   return "mumble";
}

/** 
   Gives the name of the tens part of a number between 20 and 99.
   @param number an integer between 20 and 99
   @return the tens name of the number (“twenty” . . . “ninety”)

programming tip 5.5 

Stubs are incomplete methods that can 
be used for testing.



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

5.8 Variable scope  225

*/
public static String tensName(int number)
{
   return "mumblety";
}

If you combine these stubs with the intName method and test it with an argument of 274, you 
will get a result of "mumble hundred mumblety mumble", which indicates that the basic logic of the 
intName method is working correctly.

5.8 Variable scope
As your programs get larger and contain more variables, you may encounter prob-
lems where you cannot access a variable that is defined in a different part of your pro-
gram, or where two variable definitions con flict with each other. In order to resolve 
these problems, you need to be familiar with the concept of vari able scope.

The scope of a variable is the part of the program in which you can access it. For 
example, the scope of a method’s parameter variable is the entire method. In the fol-
lowing code segment, the scope of the parameter variable sideLength is the entire 
cubeVolume method but not the main method.

public static void main(String[] args)
{
   System.out.println(cubeVolume(10));
}

public static double cubeVolume(double sideLength)
{
   return sideLength * sideLength * sideLength;
}

A variable that is defined within a method is called a local variable. When a local 
variable is declared in a block, its scope ranges from its declaration until the end of 
the block. For example, in the code segment below, the scope of the square variable is 
highlighted.

public static void main(String[] args)
{
   int sum = 0;
   for (int i = 1; i <= 10; i++)
   {
      int square = i * i;
      sum = sum + square;
   }
   System.out.println(sum); 
}

WorKed exaMple 5.2 calculating a course grade

This Worked Example uses stepwise refinement to solve the 
problem of converting a set of letter grades into an average 
grade for a course.

the scope of a 
variable is the part of 
the program in which 
it is visible.



226 Chapter 5  Methods

The scope of a variable that is declared in a for statement extends to the end of the 
statement:

public static void main(String[] args)
{
   int sum = 0;
   for (int i = 1; i <= 10; i++)
   {
      sum = sum + i * i;
   }
   System.out.println(sum); 
 }

Here is an example of a scope problem. The following code will not compile:

public static void main(String[] args)
{
   double sideLength = 10;
   int result = cubeVolume();
   System.out.println(result); 
}

public static double cubeVolume()
{
   return sideLength * sideLength * sideLength; // ERROR
}

Note the scope of the variable sideLength. The cubeVolume method attempts to read 
the variable, but it can not—the scope of sideLength does not extend outside the main 
method. The remedy is to pass it as an argument, as we did in Section 5.2.

It is possible to use the same variable name more than once in a program. Consider 
the result variables in the following example:

public static void main(String[] args)
{
   int result = square(3) + square(4);
   System.out.println(result); 
}

public static int square(int n)
{
   int result = n * n;
   return result;
}

In the same way that there can be a street named “Main Street” in different cities, a Java program 
can have multiple variables with the same name.



5.8 Variable scope  227

Each result variable is declared in a separate method, and their scopes do not overlap. 
You can even have two variables with the same name in the same method, provided 

that their scopes do not overlap:

public static void main(String[] args)
{
   int sum = 0;
   for (int i = 1; i <= 10; i++)
   {
      sum = sum + i;
   }
   
   for (int i = 1; i <= 10; i++)
   {
      sum = sum + i * i;
   }
   System.out.println(sum); 
}

It is not legal to declare two variables with the same name in the same method in such 
a way that their scopes overlap. For example, the following is not legal: 

public static int sumOfSquares(int n)
{
   int sum = 0;
   for (int i = 1; i <= n; i++)
   {
      int n = i * i; // ERROR
      sum = sum + n;
   }
   return sum; 
}

The scope of the local variable n is contained within the scope of the parameter vari-
able n. In this case, you need to rename one of the variables.

Consider this sample program: 
1  public class Sample
2  {
3     public static void main(String[] args)
4     {
5        int x = 4;
6        x = mystery(x + 1);
7        System.out.println(s);
8     }
9 

10     public static int mystery(int x) 
11     {
12        int s = 0;
13        for (int i = 0; i < x; x++)
14        {
15           int x = i + 1; 
16           s = s + x;

two local or 
parameter variables 
can have the same 
name, provided that 
their scopes do  
not overlap.

s e l f   c h e c k



228 Chapter 5  Methods

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

17        }
18        return s;
19     }
20  }

31.  Which lines are in the scope of the variable i declared in line 13? 
32.  Which lines are in the scope of the parameter variable x declared in line 10? 
33.  The program declares two local variables with the same name whose scopes 

don’t overlap. What are they?
34.  There is a scope error in the mystery method. How do you fix it? 
35.  There is a scope error in the main method. What is it, and how do you fix it? 

practice It  Now you can try these exercises at the end of the chapter: R5.9, R5.10.

5.9 recursive Methods (optional)
A recursive method is a method that calls itself. This is not as unusual as it sounds at 
first. Suppose you face the arduous task of cleaning up an entire house. You may well 
say to yourself, “I’ll pick a room and clean it, and then I’ll clean the other rooms.” In 
other words, the cleanup task calls itself, but with a simpler input. Eventually, all the 
rooms will be cleaned. 

VIdeo exaMple 5.1 debugging

In this Video Example, you will learn how to use a debugger to find 
errors in a program.

Cleaning up a house can be solved recursively:  
Clean one room, then clean up the rest.



5.9 recursive Methods (optional)  229

In Java, a recursive method uses the same principle. Here is a typical example. We 
want to print triangle patterns like this:

[]
[][]
[][][]
[][][][]

Specifically, our task is to provide a method 
public static void printTriangle(int sideLength)

The triangle given above is printed by calling printTriangle(4). To see how recursion 
helps, consider how a triangle with side length 4 can be obtained from a triangle with 
side length 3.

[]
[][]
[][][]
[][][][]

Print the triangle with side length 3.
Print a line with four [].

More generally, here are the Java instructions for an arbitrary side length:
public static void printTriangle(int sideLength)
{
   printTriangle(sideLength - 1);
   for (int i = 0; i < sideLength; i++)
   {
      System.out.print("[]");
   }
   System.out.println();
}

There is just one problem with this idea. When the side length is 1, we don’t want to 
call printTriangle(0), printTriangle(-1), and so on. The solution is simply to treat this 
as a special case, and not to print anything when sideLength is less than 1.

public static void printTriangle(int sideLength)
{
   if (sideLength < 1) { return; } 
   printTriangle(sideLength - 1);
   for (int i = 0; i < sideLength; i++)
   {
      System.out.print("[]");
   }
   System.out.println();
}

Look at the printTriangle method one more time and notice how utterly reasonable it 
is. If the side length is 0, nothing needs to be printed. The next part is just as reason-
able. Print the smaller triangle and don’t think about why that works. Then print a 
row of []. Clearly, the result is a triangle of the desired size. 

There are two key requirements to make sure that the recursion is successful:

• Every recursive call must simplify the task in some way.
• There must be special cases to handle the simplest tasks directly.

The printTriangle method calls itself again with smaller and smaller side lengths. 
Eventually the side length must reach 0, and the method stops calling itself. 

a recursive 
computation solves  
a problem by using 
the solution of the 
same problem with 
simpler inputs.

For a recursion to 
terminate, there must 
be special cases for 
the simplest inputs.



230 Chapter 5  Methods

This set of Russian dolls looks similar to the 
call pattern of a recursive method.

Here is what happens when we print a triangle with side length 4:

• The call printTriangle(4) calls printTriangle(3).
• The call printTriangle(3) calls printTriangle(2).

• The call printTriangle(2) calls printTriangle(1).
• The call printTriangle(1) calls printTriangle(0). 

• The call printTriangle(0) returns, doing nothing. 
• The call printTriangle(1) prints [].

• The call printTriangle(2) prints [][].
• The call printTriangle(3) prints [][][].

• The call printTriangle(4) prints [][][][].

The call pattern of a recursive method looks complicated, and the key to the success-
ful design of a recursive method is not to think about it. 

Recursion is not really necessary to print triangle shapes. You can use nested loops, 
like this:

public static void printTriangle(int sideLength)
{
   for (int i = 0; i < sideLength; i++)
   {
      for (int j = 0; j < i; j++)
      {
         System.out.print("[]");
      }
      System.out.println();
   }
}

However, this pair of loops is a bit tricky. Many people find the recursive solution 
simpler to understand. 

36.  Consider this slight modification of the printTriangle method:
public static void printTriangle(int sideLength)
{
   if (sideLength < 1) { return; }
   for (int i = 0; i < sideLength; i++)
   {
      System.out.print("[]");

A N I M AT I O N
Tracing a Recursion

o n l I n e  e x a M p l e

the complete 
TrianglePrinter 
program.

s e l f   c h e c k



5.9 recursive Methods (optional)  231

   }
   System.out.println();
   printTriangle(sideLength - 1);
}

What is the result of printTriangle(4)?
37.  Consider this recursive method:

public static int mystery(int n)
{
   if (n <= 0) { return 0; }
   return n + mystery(n - 1);
}

What is mystery(4)? 
38.  Consider this recursive method:

public static int mystery(int n)
{
   if (n <= 0) { return 0; }
   return mystery(n / 2) + 1;
}

What is mystery(20)?
39.  Write a recursive method for printing n box shapes [] in a row.
40.  The intName method in Section 5.7 accepted arguments < 1,000. Using a recursive 

call, extend its range to 999,999. For example an input of 12,345 should return 
"twelve thousand three hundred forty five".

practice It  Now you can try these exercises at the end of the chapter: R5.16, P5.16, P5.18.

step 1  Break the input into parts that can themselves be inputs to the problem.

In your mind, focus on a particular input or set of inputs for the task 
that you want to solve, and think how you can simplify the inputs. 
Look for simplifications that can be solved by the same task, and 
whose solutions are related to the original task.

In the digit sum problem, consider how we can simplify an 
input such as n = 1729. Would it help to subtract 1? After all, 
digitSum(1729) = digitSum(1728) + 1. But consider n = 1000. There seems to be no obvious rela-
tionship between digitSum(1000) and digitSum(999).

A much more promising idea is to remove the last digit, that is, to compute n / 10 = 172. The 
digit sum of 172 is directly related to the digit sum of 1729.

hoW to 5.2 thinking recursively

To solve a problem recursively requires a different mindset than to solve it by programming 
loops. In fact, it helps if you are, or pretend to be, a bit lazy and let others do most of the work 
for you. If you need to solve a complex prob lem, pretend that “someone else” will do most 
of the heavy lifting and solve the problem for all simpler inputs. Then you only need to figure 
out how you can turn the solutions with simpler inputs into a solution for the whole prob lem.

To illustrate the recursive thinking process, consider the problem of Section 4.2, computing 
the sum of the digits of a number. We want to design a method digitSum that computes the sum 
of the digits of an integer n.

For example, digitSum(1729) = 1 + 7 + 2 + 9 = 19

the key to finding a 
recursive solution is 
reducing the input to 
a simpler input for 
the same problem.



232 Chapter 5  Methods

step 2  Combine solutions with simpler inputs into a solution of the original problem.

In your mind, consider the solutions for the simpler inputs that you have discovered in Step 1. 
Don’t worry how those solutions are obtained. Simply have faith that the solutions are readily 
available. Just say to yourself: These are simpler inputs, so someone else will solve the problem 
for me. 

In the case of the digit sum task, ask yourself how you can obtain 
digitSum(1729) if you know digitSum(172). You simply add the last 
digit (9) and you are done. How do you get the last digit? As the 
remainder n % 10. The value digitSum(n) can therefore be obtained as

   digitSum(n / 10) + n % 10

Don’t worry how digitSum(n / 10) is computed. The input is smaller, 
and therefore it works.

step 3  Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. To make sure that the recursion comes 
to a stop, you must deal with the simplest inputs separately. Come up with special solutions 
for them. That is usually very easy.  

Look at the simplest inputs for the digitSum problem:
• A number with a single digit
• 0

When designing a 
recursive solution, 
do not worry about 
multiple nested calls. 
simply focus on 
reducing a problem 
to a slightly  
simpler one.

In 1971, Marcian e. 
“ted” hoff, an engi neer 
at Intel Corpo ration, 

was working on a chip for a manufac
turer of electronic calculators. he real
ized that it would be a better idea to 
develop a general-purpose chip that 
could be programmed to interface with 
the keys and display of a calculator, 
rather than to do yet another custom 
design. thus, the microprocessor was 
born. at the time, its primary applica
tion was as a con troller for calculators, 
washing machines, and the like. It took 
years for the computer industry to 
notice that a genuine central process
ing unit was now available as a single 
chip. 

hobbyists were the first to catch 
on. In 1974 the first computer kit, the 
altair 8800, was available from MIts 
electronics for about $350. the kit 
consisted of the microprocessor, a cir
cuit board, a very small amount of 
memory, toggle switches, and a row of 
display lights. purchasers had to sol
der and assemble it, then program it in 
machine language through the toggle 
switches. It was not a big hit. 

the first big hit was the apple II. It 
was a real computer with a keyboard, 
a monitor, and a floppy disk drive. 
When it was first released, users had a 
$3,000 machine that could play space 
Invaders, run a primitive bookkeep
ing program, or let users program it 
in BasIC. the original apple II did not 
even support lowercase letters, mak
ing it worthless for word processing. 
the breakthrough came in 1979 with 
a new spreadsheet program, VisiCalc. 
In a spreadsheet, you enter financial 
data and their relationships into a grid 
of rows and columns (see the figure at 
right). then you modify some of the 
data and watch in real time how the 
others change. For example, you can 
see how changing the mix of widgets 
in a manufacturing plant might affect 
estimated costs and profits. Middle 
managers in companies, who under
stood computers and were fed up with 
having to wait for hours or days to get 
their data runs back from the comput
ing center, snapped up VisiCalc and the 
computer that was needed to run it. 
For them, the computer was a spread
sheet machine.

the next big hit was the IBM per
sonal Computer, ever after known as 
the pC. It was the first widely available 
personal computer that used Intel’s 
16bit processor, the 8086, whose 
successors are still being used in per
sonal computers today. the success 
of the pC was based not on any engi
neering breakthroughs but on the fact 
that it was easy to clone. IBM pub lished 
the computer’s specifications in order 
to encourage third parties to develop 
plugin cards. perhaps IBM did not 
foresee that functionally equiva lent 
versions of their computer could be 
recreated by others, but a variety of 
pC clone vendors emerged, and ulti
mately IBM stopped selling per sonal 
computers. 

IBM never produced an operating 
system for its pCs—that is, the soft
ware that organizes the interaction 
between the user and the computer, 
starts application programs, and man
ages disk storage and other resources. 
Instead, IBM offered customers the 
option of three separate operating 
systems. Most customers couldn’t 
care less about the operating system. 

Random Fact 5.1 the explosive Growth of personal Computers



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

5.9 recursive Methods (optional)  233

A number with a single digit is its own digit sum, so you can stop the recursion when n < 10, 
and return n in that case. Or, you can be even lazier. If n has a single digit, then digitSum(n / 10) 
+ n % 10 equals digitSum(0) + n. You can simply terminate the recursion when n is zero.

step 4  Implement the solution by combining the simple cases and the reduction step.

Now you are ready to implement the solution. Make separate cases for the simple inputs that 
you considered in Step 3. If the input isn’t one of the simplest cases, then implement the logic 
you discovered in Step 2.

Here is the complete digitSum method:

public static int digitSum(int n)
{
   if (n == 0) { return 0; } // Special case for terminating the recursion
   return digitSum(n / 10) + n % 10; // General case 
}

o n l I n e  e x a M p l e

a program 
illustrating the 
digitSum method.

VIdeo exaMple 5.2 fully Justified text

In printed books (such as this one), all but the last line of a 
paragraph have the same length. In this Video Example, 
you will see how to achieve this effect.

they chose the system that was able 
to launch most of the few applications 
that existed at the time. It happened 
to be dos (disk operating system) by 

Microsoft. Microsoft licensed the same 
operating system to other hardware 
vendors and encouraged software 
companies to write dos applications. 

a huge number of useful application 
programs for pCcompatible machines 
was the result.

pC applications were certainly use
ful, but they were not easy to learn. 
every vendor developed a different 
user interface: the collection of key
strokes, menu options, and settings 
that a user needed to master to use 
a software package effectively. data 
exchange between applications was 
difficult, because each program used a 
different data format. the apple Mac
intosh changed all that in 1984. the 
designers of the Macintosh had the 
vision to supply an intuitive user inter
face with the computer and to force 
software developers to adhere to it. 
It took Microsoft and pCcompatible 
manufacturers years to catch up.

Most personal computers are used 
for accessing information from online 
sources, entertainment, word process
ing, and home finance. some analysts 
predict that the personal computer will 
merge with the television set and cable 
network into an entertainment and 
information appliance. 

The Visicalc Spreadsheet Running on an Apple II



234 Chapter 5  Methods

understand the concepts of methods, arguments, and return values.

• A method is a named sequence of instructions.
• Arguments are supplied when a method is called. 
• The return value is the result that the method computes.

 Be able to implement methods.

• When declaring a method, you provide a name for the method, a variable for each 
argument, and a type for the result.

• Method comments explain the purpose of the method, the meaning of the param-
eter variables and return value, as well as any special requirements.

describe the process of parameter passing.

• Parameter variables hold the arguments 
supplied in the method call.

describe the process of returning a value from a method.

• The return statement terminates a method call and yields the 
method result. 

• Turn computations that can be reused into methods.

design and implement methods without return values.

• Use a return type of void to indicate that a method does not return a value.

develop methods that can be reused for multiple problems.

• Eliminate replicated code or pseudocode by defining a method.
• Design your methods to be reusable. Supply parameter variables for the values 

that can vary when the method is reused.

apply the design principle of stepwise refinement.

• Use the process of stepwise refinement to decompose complex tasks into 
simpler ones.

• When you discover that you need a method, write a description of the parameter 
variables and return values.

• A method may require simpler methods to carry out its work.

C h a p t e r  s U M M a r y

pie(fruit) pie(fruit)



review exercises 235

determine the scope of variables in a program.

• The scope of a variable is the part of the program in which it is 
visible.

• Two local or parameter variables can have the same name, 
pro vided that their scopes do not overlap.

understand recursive method calls and implement simple recursive methods.

• A recursive computation solves a problem by using the solution of the same 
problem with simpler inputs.

• For a recursion to terminate, there must be special cases for the simplest inputs.
• The key to finding a recursive solution is reducing the input to a simpler input for 

the same problem.
• When designing a recursive solution, do not worry about multiple nested calls. 

Simply focus on reducing a problem to a slightly simpler one.

• r5.1  In which sequence are the lines of the Cubes.java program in Section 5.2 executed, 
starting with the first line of main? 

• r5.2  Write method headers for methods with the following descriptions.
a. Computing the larger of two integers
b. Computing the smallest of three floating-point numbers
c. Checking whether an integer is a prime number, returning true if it is and    

false otherwise
d. Checking whether a string is contained inside another string
e. Computing the balance of an account with a given initial balance, an annual 

interest rate, and a num ber of years of earning interest
f.  Printing the balance of an account with a given initial balance and an annual 

interest rate over a given number of years
g. Printing the calendar for a given month and year
h. Computing the weekday for a given day, month, and year (as a string such  

as "Monday")
i.  Generating a random integer between 1 and n

• r5.3  Give examples of the following methods from the Java library.
a. A method with a double argument and a double return value
b. A method with two double arguments and a double return value
c. A method with a String argument and a double return value
d. A method with no arguments and a double return value

• r5.4  True or false? 
a. A method has exactly one return statement.
b. A method has at least one return statement. 

r e V I e W  e x e r C I s e s



236 Chapter 5  Methods

c. A method has at most one return value. 
d. A method with return value void never has a return statement. 
e. When executing a return statement, the method exits immediately. 
f.  A method with return value void must print a result.
g. A method without parameter variables always returns the same value.

•• r5.5  Consider these methods:
public static double f(double x) { return g(x) + Math.sqrt(h(x)); } 
public static double g(double x) { return 4 * h(x); } 
public static double h(double x) { return x * x + k(x) - 1; } 
public static double k(double x) { return 2 * (x + 1); } 

Without actually compiling and running a program, determine the results of the  
following method calls.

a. double x1 = f(2); 
b. double x2 = g(h(2)); 
c. double x3 = k(g(2) + h(2)); 
d. double x4 = f(0) + f(1) + f(2); 
e. double x5 = f(-1) + g(-1) + h(-1) + k(-1); 

• r5.6  What is the difference between an argument and a return value? How many argu-
ments can a method call have? How many return values? 

•• r5.7  Design a method that prints a floating-point number as a currency value (with a $ 
sign and two decimal digits). 

a. Indicate how the programs ch02/section_3/Volume2.java and ch04/section_3/
InvestmentTable.java should change to use your method. 

b. What change is required if the programs should show a different currency, such 
as euro?

•• Business r5.8  Write pseudocode for a method that translates a telephone number with letters in it 
(such as 1-800-FLOWERS) into the actual phone number. Use the standard letters 
on a phone pad. 

•• r5.9  Describe the scope error in the following program and explain how to fix it.
public class Conversation
{
   public static void main(String[] args)
   {
      Scanner in = new Scanner(System.in);



review exercises 237

      System.out.print("What is your first name? ");
      String input = in.next();
      System.out.println("Hello, " + input);
      System.out.print("How old are you? ");
      int input = in.nextInt();
      input++;
      System.out.println("Next year, you will be " + input);
   }
}

•• r5.10  For each of the variables in the following program, indicate the scope. Then deter-
mine what the program prints, without actually running the program.

1  public class Sample
2  {
3     public static void main(String[] args)
4     {
5        int i = 10;
6        int b = g(i);
7        System.out.println(b + i);
8     }
9 

10     public static int f(int i)
11     {
12        int n = 0;
13        while (n * n <= i) { n++; }      
14        return n - 1;
15     }
16 
17     public static int g(int a)
18     {
19        int b = 0;
20        for (int n = 0; n < a; n++)
21        {
22           int i = f(n);
23           b = b + i;
24        }
25        return b;
26     }
27  }

•• r5.11  Use the process of stepwise refinement to describe the process of making scrambled 
eggs. Discuss what you do if you do not find eggs in the refrigerator. 

• r5.12  Perform a walkthrough of the intName method with the following arguments:
a. 5 
b. 12 
c. 21 
d. 301 
e. 324 
f.  0 
g. -2 

•• r5.13  Consider the following method:
public static int f(int a)
{
   if (a < 0) { return -1; }
   int n = a;



238 Chapter 5  Methods

   while (n > 0)
   {
      if (n % 2 == 0) // n is even
      { 
         n = n / 2;
      }   
      else if (n == 1) { return 1; }
      else { n = 3 * n + 1; }
   }
   return 0;
}

Perform traces of the computations f(-1), f(0), f(1), f(2), f(10), and f(100). 

••• r5.14  Consider the following method that is intended to swap the values of two integers:
public static void falseSwap(int a, int b)
{
   int temp = a;
   a = b;
   b = temp;
}

public static void main(String[] args)
{
   int x = 3;
   int y = 4;
   falseSwap(x, y);
   System.out.println(x + " " + y);
}

Why doesn’t the falseSwap method swap the contents of x and y? 

••• r5.15  Give pseudocode for a recursive method for printing all substrings of a given string. 
For example, the substrings of the string "rum" are "rum" itself, "ru", "um", "r", "u", 
"m", and the empty string. You may assume that all letters of the string are different.

••• r5.16  Give pseudocode for a recursive method that sorts all letters in a string. For exam ple, 
the string "goodbye" would be sorted into "bdegooy". 

• p5.1  Write the following methods and provide a program to test them.
a. double smallest(double x, double y, double z), returning the smallest of the 

arguments
b. double average(double x, double y, double z), returning the average of the 

arguments

•• p5.2  Write the following methods and provide a program to test them.
a. boolean allTheSame(double x, double y, double z), returning true if the arguments 

are all the same
b. boolean allDifferent(double x, double y, double z), returning true if the argu-

ments are all different
c. boolean sorted(double x, double y, double z), returning true if the arguments are 

sorted, with the smallest one coming first

p r o G r a M M I n G  e x e r C I s e s



programming exercises 239

•• p5.3  Write the following methods.
a. int firstDigit(int n), returning the first digit of the argument
b. int lastDigit(int n), returning the last digit of the argument
c. int digits(int n), returning the number of digits of the argument

For example, firstDigit(1729) is 1, lastDigit(1729) is 9, and digits(1729) is 4. Provide a 
program that tests your methods.

• p5.4  Write a method
public static String middle(String str)

that returns a string containing the middle character in str if the length of str is odd, 
or the two middle characters if the length is even. For example, middle("middle") 
returns "dd".

• p5.5  Write a method 
public static String repeat(String str, int n)

that returns the string str repeated n times. For example, repeat("ho", 3) returns 
"hohoho". 

•• p5.6  Write a method
public static int countVowels(String str)

that returns a count of all vowels in the string str. Vowels are the letters a, e, i, o, and 
u, and their upper case variants. 

•• p5.7  Write a method
public static int countWords(String str)

that returns a count of all words in the string str. Words are separated by spaces. For 
example, count Words("Mary had a little lamb") should return 5. 

•• p5.8  It is a well-known phenomenon that most people are easily able to read a text whose 
words have two characters flipped, provided the first and last letter of each word are 
not changed. For example,

I dn’ot gvie a dman for a man taht can olny sepll a wrod one way. (Mrak Taiwn)

Write a method String scramble(String word) that constructs a scrambled version of a 
given word, ran domly flipping two characters other than the first and last one. Then 
write a program that reads words and prints the scrambled words.

• p5.9  Write methods

public static double sphereVolume(double r) 
public static double sphereSurface(double r) 
public static double cylinderVolume(double r, double h) 
public static double cylinderSurface(double r, double h) 
public static double coneVolume(double r, double h) 
public static double coneSurface(double r, double h) 

that compute the volume and surface area of a sphere with radius r, a cylinder with a 
circular base with radius r and height h, and a cone with a circular base with radius r 
and height h. Then write a program that prompts the user for the values of r and h, 
calls the six methods, and prints the results.



240 Chapter 5  Methods

•• p5.10  Write a method
public static double readDouble(String prompt)

that displays the prompt string, followed by a space, reads a floating-point number 
in, and returns it. Here is a typical usage:

salary = readDouble("Please enter your salary:");
percentageRaise = readDouble("What percentage raise would you like?");

•• p5.11  Enhance the intName method so that it works correctly for values < 1,000,000,000. 

•• p5.12  Enhance the intName method so that it works correctly for negative values and zero. 
Caution: Make sure the improved method doesn’t print 20 as "twenty zero".

••• p5.13  For some values (for example, 20), the intName method returns a string with a lead-
ing space (" twenty"). Repair that blemish and ensure that spaces are inserted only 
when necessary. Hint: There are two ways of accomplishing this. Either ensure that 
lead ing spaces are never inserted, or remove leading spaces from the result before 
returning it.

••• p5.14  Write a method String getTimeName(int hours, int minutes) that returns the English 
name for a point in time, such as "ten minutes past two", "half past three", "a quarter to 
four", or "five o'clock". Assume that hours is between 1 and 12. 

•• p5.15  Write a recursive method
public static String reverse(String str)

that computes the reverse of a string. For example, reverse("flow") should return 
"wolf". Hint: Reverse the substring starting at the second character, then add the first 
character at the end. For example, to reverse "flow", first reverse "low" to "wol", then 
add the "f" at the end.

•• p5.16  Write a recursive method 
public static boolean isPalindrome(String str)

that returns true if str is a palindrome, that is, a word that is the same when reversed. 
Examples of palin drome are “deed”, “rotor”, or “aibohphobia”. Hint: A word is a 
palindrome if the first and last letters match and the remainder is also a palindrome. 

•• p5.17  Use recursion to implement a method public static boolean find(String str, String 
match) that tests whether match is contained in str: 

boolean b = find("Mississippi", "sip"); // Sets b to true

Hint: If str starts with match, then you are done. If not, consider the string that you 
obtain by removing the first character. 

• p5.18  Use recursion to determine the number of digits in an integer n. Hint: If n is < 10, it 
has one digit. Otherwise, it has one more digit than n / 10. 

• p5.19  Use recursion to compute an, where n is a positive integer. Hint: If n is 1, then 
an = a. If n is even, then an = (an/2)2. Otherwise, an = a × an–1.

•• p5.20  Leap years. Write a method
public static boolean isLeapYear(int year)

that tests whether a year is a leap year: that is, a year with 366 days. Exercise P3.28 
describes how to test whether a year is a leap year. In this exercise, use multiple if 
statements and return statements to return the result as soon as you know it.



programming exercises 241

•• p5.21  In Exercise P3.26 you were asked to write a program to 
convert a number to its rep resentation in Roman numerals. 
At the time, you did not know how to eliminate duplicate 
code, and as a consequence the resulting program was rather 
long. Rewrite that program by implementing and using the 
following method:

public static String romanDigit(int n, String one, String five, String ten)

That method translates one digit, using the strings specified for the one, five, and ten 
values. You would call the method as follows:

romanOnes = romanDigit(n % 10, “I”, “V”, “X”);
n = n / 10;
romanTens = romanDigit(n % 10, “X”, “L”, “C”);
. . . 

•• Business p5.22  Write a method that computes the balance of a bank account with a given initial 
 balance and interest rate, after a given number of years. Assume interest is com-
pounded yearly. 

•• Business p5.23  Write a program that prints instructions to get coffee, asking the user for input 
whenever a decision needs to be made. Decompose each task into a method, for 
example:

public static void brewCoffee()
{
   System.out.println(“Add water to the coffee maker.”);
   System.out.println(“Put a filter in the coffee maker.”);
   grindCoffee();
   System.out.println(“Put the coffee in the filter.”);
   . . .
}

•• Business p5.24  Write a program that prints a paycheck. Ask the program user for the name of the 
employee, the hourly rate, and the number of hours worked. If the number of hours 
exceeds 40, the employee is paid “time and a half”, that is, 150 percent of the hourly 
rate on the hours exceeding 40. Your check should look similar to that in the fig-
ure below. Use fictitious names for the payer and the bank. Be sure to use stepwi se 
refinement and break your solution into several methods. Use the intName method to 
print the dollar amount of the check. 

AmountDate

CHECK
NUMBER 063331 74-39

311 567390
Publishers, Bank Minnesota 
2000 Prince Blvd
Jonesville, MN 55400

4659484PAY

TWO HUNDRED SEVENTY FOUR AND 15 / 100 ******************************************
TO THE ORDER OF:

John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774

JOHN DOE
1009 Franklin Blvd
Sunnyvale, CA 95014

04/29/13 $*******274.15

•• Business p5.25  Postal bar codes. For faster sorting of letters, the United States Postal Service encour-
ages companies that send large volumes of mail to use a bar code denoting the zip 
code (see Figure 6). 



242  Chapter 5   Methods

Figure 6 A Postal Bar Code

*************** ECRLOT ** CO57

CODE  C671RTS2
JOHN DOE                                                         CO57     
1009 FRANKLIN BLVD
SUNNYVALE          CA  95014 – 5143      

The encoding scheme for a five-digit zip code is shown in Figure 7. There are 
full-height frame bars on each side. The five encoded digits are followed by a check 
digit, which is computed as follows: Add up all digits, and choose the check digit to 
make the sum a multiple of 10. For example, the zip code 95014 has a sum of 19, so 
the check digit is 1 to make the sum equal to 20.

Each digit of the zip code, and the check digit, is encoded according to the table 
below, where 1 denotes a full bar and 0 a half bar: 

Digit
Bar 1 

(weight 7)
Bar 2 

(weight 4)
Bar 3 

(weight 2)
Bar 4 

(weight 1)
Bar 5 

(weight 0)

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 1 0 0 0 1

8 1 0 0 1 0

9 1 0 1 0 0

0 1 1 0 0 0

The digit can be easily computed from the bar code using the column weights 7, 4, 2, 
1, 0. For example, 01100 is 0 × 7 + 1 × 4 + 1 × 2 + 0 × 1 + 0 × 0 = 6. The only exception 
is 0, which would yield 11 according to the weight formula.

Figure 7 Encoding for Five-Digit Bar Codes

Frame bars

Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Check
Digit

 



programming exercises 243

Write a program that asks the user for a zip code and prints the bar code. Use : for 
half bars, | for full bars. For example, 95014 becomes

||:|:::|:|:||::::::||:|::|:::|||

Provide these methods: 
public static void printDigit(int d) 
public static void printBarCode(int zipCode)

••• Business p5.26  Write a program that reads in a bar code (with : denoting half bars and | denoting 
full bars) and prints out the zip code it represents. Print an error message if the bar 
code is not correct. 

•• Business p5.27  Write a program that converts a Roman number such as MCMLXXVIII to its deci-
mal number representation. Hint: First write a method that yields the numeric value 
of each of the letters. Then use the following algorithm: 

total = 0
While the roman number string is not empty
 If value(first character) is at least value(second character), or the string has length 1
  Add value(first character) to total.
  Remove the character.
 Else
  Add the difference value(second character) - value(first character) to total.
  Remove both characters.

•• Business p5.28  A non-governmental organization needs a program to calculate the amount of finan-
cial assistance for needy families. The formula is as follows:

• If the annual household income is between $30,000 and $40,000 and the 
household has at least three children, the amount is $1,000 per child.

• If the annual household income is between $20,000 and $30,000 and the 
household has at least two children, the amount is $1,500 per child.

• If the annual household income is less than $20,000, the amount is $2,000 per 
child.

Implement a method for this computation. Write a program that asks for the house-
hold income and number of children for each applicant, printing the amount 
returned by your method. Use –1 as a sentinel value for the input.

••• Business p5.29  In a social networking service, a user has friends, the 
friends have other friends, and so on. We are interested 
in knowing how many people can be reached from a 
person by following a given number of friendship rela-
tions. This number is called the “degree of separation”: 
one for friends, two for friends of friends, and so on. 
Because we do not have the data from an actual social 
network, we will simply use an average of the number of friends per user.
Write a recursive method

public static double reachablePeople(int degree, double averageFriendsPerUser)

Use that method in a program that prompts the user for the desired degree and 
average, and then prints the number of reachable people. This number should 
include the original user.



244  Chapter 5   Methods

•• Business P5.30 Having a secure password is a very important practice, when much of our informa-
tion is stored online. Write a program that validates a new password, following these 
rules:

• The password must be at least 8 characters long.
• The password must have at least one uppercase and one lowercase letter
• The password must have at least one digit.

Write a program that asks for a password, then asks again to confirm it. If the 
passwords don’t match or the rules are not fulfilled, prompt again. Your program 
should include a method that checks whether a password is valid. 

••• Science P5.31 You are designing an element for a control panel that displays a temperature value 
between 0 and 100. The element’s color should vary continuously from blue (when 
the temperature is 0) to red (when the temperature is 100). Write a method public 
static int colorForValue(double temperature) that returns a color value for the given 
temperature. Colors are encoded as red/green/blue values, each between 0 and 255. 
The three colors are combined into a single integer, using the formula

color = 65536 × red + 256 × green + blue

Each of the intermediate colors should be fully saturated; that is, it should be on the 
outside of the color cube, along the path that goes from blue through cyan, green, 
and yellow to red.

B

G

R

255

255

255

White (255, 255, 255)

Path

You need to know how to interpolate between values. In general, if an output y 
should vary from c to d as an input x varies from a to b, then y is computed as follows:

z = (x – a) / (b – a)

y = d z + c (1 – z)

If the temperature is between 0 and 25 degrees, interpolate between blue and cyan, 
whose (red, green, blue) components are (0, 0, 255) and (0, 255, 255). For temperature 
values between 25 and 50, interpolate between (0, 255, 255) and (0, 255, 0), which rep-
resents the color green. Do the same for the remaining two path segments. 

You need to interpolate each color component separately and then combine the 
interpolated colors to a single integer.

Be sure to use appropriate helper methods to solve your task. 

•• Science P5.32 In a movie theater, the angle q at which a viewer sees the picture on the screen 
depends on the distance x of the viewer from the screen. For a movie theater with the 
dimensions shown in the picture below, write a method that computes the angle for a 
given distance. 



programming exercises 245

24 ft.

6 ft.8°

θ
θ

x

Next, provide a more general method that works for theaters with arbitrary 
dimensions.

•• science p5.33  The effective focal length f of a lens of thickness d 
that has surfaces with radii of curva ture R1 and R2 
is given by

1
1

1 1 1

1 2 1 2f
n

R R
n d
nR R

= −( ) − +
−( )











where n is the refractive index of the lens medium. 
Write a method that computes f in terms of the other 
parameters. 

•• science p5.34  A laboratory container is shaped like the frustum of a cone:

h

R2

R1

Write methods to compute the volume and surface area, using these equations:

V h R R R R= + +( )1
3 1

2
2
2

1 2π

S R R R R h R= +( ) −( ) + +π π1 2 2 1
2 2

1
2

•• science p5.35  Electric wire, like that in the photo, is a cylindrical conductor covered by an insulat-
ing material. The resistance of a piece of wire is given by the formula 

R
L

A
L

d
= =ρ ρ

π
4

2

where ρ is the resistivity of the conductor, and L, A, and d are the length, cross-
sectional area, and diameter of the wire. The resistivity of copper is 1.678 × 10−8 Ω m. 

f



246 Chapter 5  Methods

The wire diameter, d, is commonly specified by the American wire gauge (AWG), 
which is an integer, n. The diameter of an AWG n wire is given by the formula 

d
n

= ×
−

0 127 92
36

39. mm

Write a method
public static double diameter(int wireGauge)

that accepts the wire gauge and returns the corresponding wire diameter. Write 
another method

public static double copperWireResistance(double length, int wireGauge)

that accepts the length and gauge of a piece of copper wire and returns the resistance 
of that wire. The resistivity of aluminum is 2.82 × 10−8 Ω m. Write a third method

public static double aluminumWireResistance(double length, int wireGauge)

that accepts the length and gauge of a piece of aluminum wire and returns the 
resistance of that wire. 
Write a program to test these methods.

•• science p5.36  The drag force on a car is given by

F v ACD D= 1
2

2ρ

where ρ is the density of air (1.23 kg̸m3), v is the velocity in units of m̸s, A is the 
projected area of the car (2.5 m2), and CD is the drag coefficient (0.2). 
The amount of power in watts required to overcome such drag force is P = FDv, and 
the equivalent horsepower required is Hp = P ̸  746. Write a program that accepts a 
car’s velocity and computes the power in watts and in horsepower needed to over-
come the resulting drag force. Note: 1 mph = 0.447 m̸s.

a n s W e r s  t o  s e l F  C h e C K  Q U e s t I o n s

1.  The arguments are 3 and 2. The return value 
is 9.

2.  The inner call to Math.pow returns 22 = 4. There-
fore, the outer call returns 42 = 16.

3.  3.0
4.  Users of the method can treat it as a black box.
5.  27
6.  8 × 8 × 8 = 512
7.  double volume = Math.pow(sideLength, 3); 

return volume;

8.  public static double squareArea(
   double sideLength) 
{
   double area = sideLength * sideLength;
   return area;
}

9.  (2 + 3) / (3 - 2) = 5 
10.  When the mystery method is called, x is set to 

5, y is set to 7, and z becomes 12.0. Then z is 
changed to 6.0, and that value is returned and 
printed.

11.  When the method is called, x is set to 5. Then 
y is set to 25, and that value is returned and 
printed. 

12.  When the method is called, n is set to 5. Then n 
is incremented twice, setting it to 7. That value 
is returned and printed. 

13.  It acts the same way: If sideLength is 0, it returns 
0 directly instead of computing 0 × 0 × 0.

14.  It returns true if n is even; false if n is odd.



Answers to Self-Check Questions 247

15.	 public static boolean mystery(int n) 
{
   return n % 2 == 0;
}

16.	 boxString("Hello"); 
boxString("World");

17.	 The boxString method does not return a value. 
Therefore, you cannot use it in a call to the 
print method.

18.	 public static void shout(String message) 
{
   System.out.println(message ++ "!!!");
}

19.	 public static void boxString(String contents) 
{
   int n = contents.length();
   for (int i = 0; i < n + 4; i++) 
   {
      System.out.print("-");
   }
   System.out.println();
   System.out.println("! " + contents + " !");
   for (int i = 0; i < n + 4; i++)
   {
      System.out.print("-");
   }
   System.out.println()
}

20.	 public static void printLine(int count) 
{
   for (int i = 0; i < count; i++)
   {
      System.out.print("-");
   }
   System.out.println();
}
public static void boxString(String contents)
{
   int n = contents.length();
   printLine(n + 2);
   System.out.println("!" + contents + "!");
   printLine(n + 2);
}

21.	 int totalPennies = getPennies(total); 
int taxPennies = getPennies(total * taxRate);

where the method is defined as
/**
   @param amount an amount in dollars and cents
   @return the number of pennies in the amount
*/
public static int getPennies(double amount)
{
   return (int) Math.round(100 * amount) % 100;
}

22.	 if (isEven(page)) . . . 
where the method is defined as follows:
public static boolean isEven(int n) 
{ 
   return n % 2 == 0; 
}

23.	 Add parameter variables so you can pass the 
initial balance and interest rate to the method:
public static double balance(
   double initialBalance, double rate, 
   int years)
{
   return initialBalance * pow(
      1 + rate / 100, years);
}

24.	 int spaces = countSpaces(input); 
where the method is defined as follows:
/**
   @param str any string
   @return the number of spaces in str
*/
public static int countSpaces(String str)
{
   int count = 0;
   for (int i = 0; i < str.length(); i++)
   {
      if (str.charAt(i) == ' ') 
      { 
         count++; 
      }
   }    
   return count;
}

25.	 It is very easy to replace the space with any 
character. 
/**
   @param str any string
   @param ch a character whose occurrences 
      should be counted
   @return the number of times that ch occurs 
      in str
*/
public static int count(String str, char ch)
{
   int count = 0;
   for (int i = 0; i < str.length(); i++)
   {
      if (str.charAt(i) == ch) { count++; }
   }    
   return count;
}

This is useful if you want to count other char-
acters. For example, count(input, ",") counts 
the commas in the input. 



248 Chapter 5  Methods

26.  Change line 28 to 
name = name + digitName(part / 100) 
   + " hundred";

In line 25, add the statement
if (part >= 1000)
{ 
   name = digitName(part / 1000) + "thousand ";
   part = part % 1000;
}

In line 18, change 1000 to 10000 in the 
comment.

27.  In the case of “teens”, we already have the last 
digit as part of the name.

28.  Nothing is printed. One way of dealing with 
this case is to add the following state ment 
before line 23.
if (number == 0) { return "zero"; }

29.  Here is the approximate trace: 

 intName(number = 72)
 part name 
 72 " seventy"
 2 " seventy two"

Note that the string starts with a blank space. 
Exercise P5.13 asks you to eliminate it. 

30.  Here is one possible solution. Break up the 
task print table into print header and 
print body. The print header task calls print separator, 
prints the header cells, and calls print separator 
again. The print body task repeatedly calls print row 
and then calls print separator.

31.  Lines 14–17.
32.  Lines 11–19.
33.  The variables x defined in lines 5 and 15.
34.  Rename the local variable x that is declared in 

line 15, or rename the parameter vari able x that 
is declared in line 10.

35.  The main method accesses the local variable s 
of the mystery method. Assuming that the main 
method intended to print the last value of s 
before the method returned, it should simply 
print the return value that is stored in its local 
variable x.

36.  [][][][] 
[][][]
[][]
[]

37.  4 + 3 + 2 + 1 + 0 = 10
38.  mystery(10) + 1 = mystery(5) + 2 = mystery(2) + 3 

   = mystery(1) + 4 = mystery(0) + 5 = 5

39.  The idea is to print one [], then print n - 1 of 
them.
public static void printBoxes(int n)
{
   if (n == 0) { return; }
   System.out.print("[]");
   printBoxes(n - 1);
}

40.  Simply add the following to the beginning of 
the method:
if (part >= 1000)
{
   return intName(part / 1000) + " thousand " 
      + intName(part % 1000);
}



6C h a p t e r

249

arrays and 
array L ists 

to collect elements using arrays  
and array lists

to use the enhanced for loop for traversing arrays and array lists

to learn common algorithms for processing arrays and array lists

to work with two-dimensional arrays

C h a p t e r  G o a L s

C h a p t e r  C o n t e n t s

6.1  ArrAys  250

Syntax 6.1: arrays 251
Common Error 6.1: Bounds errors 255
Common Error 6.2: Uninitialized arrays 255
Programming Tip 6.1: Use arrays for sequences 

of related items 256
Random Fact 6.1: an early internet Worm 256

6.2  The enhAnced for Loop  257

Syntax 6.2: the enhanced for Loop 258

6.3  common ArrAy ALgoriThms  258

Common Error 6.3: Underestimating the size 
of a data set 267

Special Topic 6.1: sorting with the Java Library 267
Special Topic 6.2: Binary search 267

6.4  Using ArrAys wiTh meThods  268

Special Topic 6.3: Methods with a Variable 
number of parameters 272

6.5  probLem soLving: AdApTing 
ALgoriThms  272

Programming Tip 6.2: reading exception 
reports 274

How To 6.1: Working with arrays 275
Worked Example 6.1: rolling the dice 

6.6  probLem soLving: discovering 
ALgoriThms by mAnipULATing 
physicAL objecTs  279

Video Example 6.1: removing duplicates from 
an array 

6.7  Two-dimensionAL ArrAys  282

Syntax 6.3: two-dimensional array 
declaration 283

Worked Example 6.2: a World population table 
Special Topic 6.4: two-dimensional arrays with 

Variable row Lengths 288
Special Topic 6.5: Multidimensional arrays 289

6.8  ArrAy LisTs  289

Syntax 6.4: array Lists 290
Common Error 6.4: Length and size 299
Special Topic 6.6: the diamond syntax 

in Java 7 299
Video Example 6.2: Game of Life 



250

in many programs, you need to collect large numbers of 
values. in Java, you use the array and array list constructs 
for this purpose. arrays have a more concise syntax, 
whereas array lists can automatically grow to any desired 
size. in this chapter, you will learn about arrays, array lists, 
and common algorithms for processing them.

6.1 arrays
We start this chapter by introducing the array data type. Arrays are the fundamental 
mechanism in Java for collecting multiple values. In the following sections, you will 
learn how to declare arrays and how to access array elements. 

6.1.1 declaring and Using arrays

Suppose you write a program that reads a sequence of values and prints out the 
sequence, marking the largest value, like this:

32
54
67.5
29
35
80
115 <= largest value 
44.5
100
65

You do not know which value to mark as the largest one until you have seen them all. 
After all, the last value might be the largest one. Therefore, the program must first 
store all values before it can print them. 

Could you simply store each value in a separate variable? If you know that there 
are ten values, then you could store the values in ten variables value1, value2, value3, …, 
value10. However, such a sequence of vari ables is not very practical to use. You would 
have to write quite a bit of code ten times, once for each of the variables. In Java, an 
array is a much better choice for storing a sequence of values of the same type. 

Here we create an array that can hold ten values of type double:
new double[10]

The number of elements (here, 10) is called the length of the array.
The new operator constructs the array. You will want to store the array in a variable 

so that you can access it later. 
The type of an array variable is the type of the element to be stored, followed by []. 

In this example, the type is double[], because the element type is double.
Here is the declaration of an array variable of type double[] (see Figure 1):
double[] values; 1

When you declare an array variable, it is not yet initialized. You need to initialize the 
variable with the array:

double[] values = new double[10]; 2

an array collects a 
sequence of values of 
the same type.



6.1 arrays  251

figure 1  an array of size 10

1

Declare the array variable

values =

2 double[]

0
0

0
0
0
0

0
0
0
0

values =

3 double[]

35
0

0
0
0
0

0
0
0
0

values =
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
Initialize it with an array Access an array element

Now values is initialized with an array of 10 numbers. By default, each number in the 
array is 0. 

When you declare an array, you can specify the initial values. For example,
double[] moreValues = { 32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65 };

When you supply initial values, you don’t use the new operator. The compiler deter-
mines the length of the array by counting the initial values.

To access a value in an array, you specify which “slot” you want to use. That is 
done with the [] operator:

values[4] = 35; 3

Now the number 4 slot of values is filled with 35 (see Figure 1). This “slot number” is 
called an index. Each slot in an array contains an element. 

Because values is an array of double values, each element values[i] can be used like 
any variable of type dou ble. For example, you can display the element with index 4 
with the following command:

System.out.println(values[4]);

individual elements 
in an array are 
accessed by an 
integer index i, using 
the notation 
array[i].

an array element  
can be used like  
any variable.

syntax 6.1 arrays

  double[] values = new double[10];

  double[] moreValues = { 32, 54, 67.5, 29, 35 };

Type of array variable

List of initial values 

Name of array variable

Use brackets to access an element.

values[i] = 0;

The index must be ≥ 0 and < the length of the array.
        See page 255.

Length
Element 
type

To construct an array:  new typeName[length]

To access an element:  arrayReference[index]

Syntax



252 Chapter 6  arrays and array Lists 

Before continuing, we must take care of an 
important detail of Java arrays. If you look 
carefully at Figure 1, you will find that the 
fifth element was filled when we changed 
values[4]. In Java, the elements of arrays 
are numbered starting at 0. That is, the 
legal elements for the values array are

values[0], the first element
values[1], the second element
values[2], the third element
values[3], the fourth element
values[4], the fifth element
. . .
values[9], the tenth element 

In other words, the declaration 
double[] values = new double[10];

creates an array with ten elements. In this array, an index can be any integer ranging 
from 0 to 9.

You have to be careful that the index stays within the valid range. Trying to access 
an element that does not exist in the array is a serious error. For example, if values has 
ten elements, you are not allowed to access values[20]. Attempting to access an ele-
ment whose index is not within the valid index range is called a bounds error. The 
com piler does not catch this type of error. When a bounds error occurs at run time, it 
causes a run-time excep tion. 

Here is a very common bounds error:
double[] values = new double[10];
values[10] = value;

There is no values[10] in an array with ten elements—the index can range from 0 to 9.
To avoid bounds errors, you will want to know how many elements are in an array. 

The expression values.length yields the length of the values array. Note that there are 
no parentheses following length. 

table 1  declaring arrays

int[] numbers = new int[10]; An array of ten integers. All elements are 
initialized with zero.

final int LENGTH = 10;
int[] numbers = new int[LENGTH];

It is a good idea to use a named constant 
instead of a “magic number”.

int length = in.nextInt();
double[] data = new double[length];

The length need not be a constant.

int[] squares = { 0, 1, 4, 9, 16 }; An array of five integers, with initial values.

String[] friends = { "Emily", "Bob", "Cindy" }; An array of three strings.

double[] data = new int[10]; error: You cannot initialize a double[] 
variable with an array of type int[].

Like a mailbox that is identified by a box  
number, an array element is identified by 
an index.

an array index must 
be at least zero and 
less than the size of 
the array.

a bounds error, 
which occurs if you 
supply an invalid 
array index, can 
cause your program 
to terminate.



6.1 arrays  253

The following code ensures that you only access the array when the index variable 
i is within the legal bounds:

if (0 <= i && i < values.length) { values[i] = value; }

Arrays suffer from a significant limitation: their length is fixed. If you start out with 
an array of 10 ele ments and later decide that you need to add additional elements, 
then you need to make a new array and copy all elements of the existing array into the 
new array. We will discuss this process in detail in Section 6.3.9. 

To visit all elements of an array, use a variable for the index. Suppose values has ten 
elements and the inte ger variable i is set to 0, 1, 2, and so on, up to 9. Then the expres-
sion values[i] yields each element in turn. For example, this loop displays all elements 
in the values array.

for (int i = 0; i < 10; i++)
{
   System.out.println(values[i]);
}

Note that in the loop condition the index is less than 10 because there is no element 
corresponding to values[10]. 

6.1.2 array references

If you look closely at Figure 1, you will note that the variable values does not store 
any numbers. Instead, the array is stored elsewhere and the values variable holds a 
reference to the array. (The reference denotes the location of the array in memory.) 
When you access the elements in an array, you need not be concerned about the fact 
that Java uses array references. This only becomes important when copying array 
refer ences. 

When you copy an array variable into another, both variables refer to the same 
array (see Figure 2).

int[] scores = { 10, 9, 7, 4, 5 };
int[] values = scores; // Copying array reference 

You can modify the array through either of the variables:
scores[3] = 10;
System.out.println(values[3]); // Prints 10

Section 6.3.9 shows how you can make a copy of the contents of the array. 

Use the expression 
array.length to find 
the number of 
elements in an array.

an array reference 
specifies the location 
of an array. Copying 
the reference yields a 
second reference to 
the same array.

figure 2   
two array Variables referencing the same array

int[]
scores =

values =
10
9
7
4
5



254 Chapter 6  arrays and array Lists 

6.1.3 partially Filled arrays

An array cannot change size at run time. This is a problem when you don’t know in 
advance how many elements you need. In that situation, you must come up with a 
good guess on the maximum number of elements that you need to store. For exam-
ple, we may decide that we sometimes want to store more than ten elements, but 
never more than 100:

final int LENGTH = 100;
double[] values = new double[LENGTH]; 

In a typical program run, only a part of the array will be occupied by actual elements. 
We call such an array a partially filled array. You must keep a companion variable 
that counts how many elements are actually used. In Figure 3 we call the companion 
variable currentSize. 

The following loop collects inputs and fills up the values array:

int currentSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble())
{
   if (currentSize < values.length)
   {
      values[currentSize] = in.nextDouble();
      currentSize++;
   }
}

At the end of this loop, currentSize contains the actual number of elements in the 
array. Note that you have to stop accepting inputs if the currentSize companion vari-
able reaches the array length. 

To process the gathered array elements, you again use the companion variable, not 
the array length. This loop prints the partially filled array:

for (int i = 0; i < currentSize; i++)
{
   System.out.println(values[i]);

}

With a partially filled 
array, you need to 
remember how many 
elements are filled.

With a partially filled 
array, keep a 
companion variable 
for the current size.

o n L i n e  e x A m p L e

a program 
demonstrating array 
operations.

figure 3  a partially Filled array

double[]values =

29
67.5
54
32

values.length

...Not currently used

currentSize



6.1 arrays  255

1.  Declare an array of integers containing the first five prime numbers.
2.  Assume the array primes has been initialized as described in Self Check 1. What 

does it contain after executing the following loop?
for (int i = 0; i < 2; i++)
{
   primes[4 - i] = primes[i];
}

3.  Assume the array primes has been initialized as described in Self Check 1. What 
does it contain after executing the following loop?
for (int i = 0; i < 5; i++)
{
   primes[i]++;
}

4.  Given the declaration
int[] values = new int[10];

write statements to put the integer 10 into the elements of the array values with 
the lowest and the highest valid index.

5.  Declare an array called words that can hold ten elements of type String.
6.  Declare an array containing two strings, "Yes", and "No". 
7.  Can you produce the output on page 250 without storing the inputs in an array, 

by using an algorithm similar to the algorithm for finding the maximum in 
Section 4.7.5? 

practice it  Now you can try these exercises at the end of the chapter: R6.1, R6.2, R6.6, P6.1.

bounds errors

Perhaps the most common error in using arrays is accessing a nonexistent element.

double[] values = new double[10];
values[10] = 5.4;
   // Error—values has 10 elements, and the index can range from 0 to 9

If your program accesses an array through an out-of-bounds index, there is no compiler error 
message. Instead, the program will generate an exception at run time. 

Uninitialized Arrays

A common error is to allocate an array variable, but not an actual array. 

double[] values;
values[0] = 29.95; // Error—values not initialized 

The Java compiler will catch this error. The remedy is to initialize the variable with an array: 

double[] values = new double[10];

s e L f   c h e c k

Common error 6.1 

Common error 6.2 



256 Chapter 6  arrays and array Lists 

Use Arrays for sequences of related items

Arrays are intended for storing sequences of values with the same meaning. For example, an 
array of test scores makes perfect sense:

int[] scores = new int[NUMBER_OF_SCORES];

But an array 

int[] personalData = new int[3];

that holds a person’s age, bank balance, and shoe size in positions 0, 1, and 2 is bad design. 
It would be tedious for the programmer to remember which of these data values is stored in 
which array location. In this situation, it is far better to use three separate variables. 

   

programming tip 6.1 

in november 1988, 
robert Morris, a stu-

dent at Cornell University, launched a 
so-called virus program that infected 
about 6,000 computers connected to 
the internet across the United states. 
tens of thousands of computer users 
were unable to read their e-mail or oth-
erwise use their computers. all major 
universities and many high-tech com-
panies were affected. (the internet was 
much smaller then than it is now.)

the particular kind of virus used in 
this attack is called a worm. the worm 
program crawled from one computer 
on the internet to the next. the worm 
would attempt to connect to finger, 
a program in the UniX operating sys-
tem for finding information on a user 
who has an account on a particular 
com puter on the network. Like many 
pro grams in UniX, finger was written 
in the C language. in order to store 
the user name, the finger program 
allo cated an array of 512 characters, 
under the assumption that nobody 
would ever provide such a long input. 
Unfortunately, C does not check that 
an array index is less than the length 
of the array. if you write into an array 
using an index that is too large, you 
simply overwrite memory locations 
that belong to some other objects. in 
some versions of the finger program, 
the programmer had been lazy and had 
not checked whether the array holding 
the input characters was large enough 

to hold the input. so the worm pro-
gram purposefully filled the 512-char-
acter array with 536 bytes. the excess 
24 bytes would overwrite a return 
address, which the attacker knew was 
stored just after the array. When that 
method was fin ished, it didn’t return 
to its caller but to code supplied by the 
worm (see the figure, a “Buffer over-
run” attack). that code ran under the 
same super-user privileges as finger, 
allowing the worm to gain entry into 
the remote system. had the program-
mer who wrote finger been more 
conscien tious, this particular attack 
would not be possible. 

in Java, as in C, all programmers 
must be very careful not to overrun 
array boundaries. however, in Java, 
this error causes a run-time exception, 
and it never corrupts memory outside 
the array. this is one of the safety fea-
tures of Java.

one may well speculate what would 
possess the virus author to spend 
many weeks to plan the antiso cial act 
of breaking into thousands of comput-
ers and disabling them. it appears that 
the break-in was fully intended by the 
author, but the dis abling of the com-
puters was a bug, caused by continu-
ous reinfection. Morris was sentenced 
to 3 years pro bation, 400 hours of com-
munity ser vice, and a $10,000 fine. 

in recent years, computer attacks 
have intensified and the motives 
have become more sinister. instead 

of dis abling computers, viruses often 
steal financial data or use the attacked 
computers for sending spam e-mail. 
sadly, many of these attacks continue 
to be possible because of poorly writ-
ten programs that are susceptible to 
buffer overrun errors. 

Return address

Buffer for input
(512 bytes)

1 Before the attack

2 After the attack

Return address

Overrun buffer
(536 bytes)

Malicious 
code

A “Buffer Overrun” Attack

Random Fact 6.1 an early internet Worm



6.2 the enhanced for Loop  257

6.2 the enhanced for Loop
Often, you need to visit all elements of an array. The enhanced for loop makes this 
process particularly easy to program.

Here is how you use the enhanced for loop to total up all elements in an array 
named values:

double[] values = . . .;
double total = 0; 
for (double element : values)
{
   total = total + element;
}

The loop body is executed for each element in the array values. At the beginning of 
each loop iteration, the next element is assigned to the variable element. Then the loop 
body is executed. You should read this loop as “for each element in values”. 

This loop is equivalent to the following for loop and an explicit index variable: 
for (int i = 0; i < values.length; i++)
{ 
   double element = values[i]; 
   total = total + element;
}

Note an important difference between the enhanced for loop and the basic for loop. 
In the enhanced for loop, the element variable is assigned values[0], values[1], and so 
on. In the basic for loop, the index variable i is assigned 0, 1, and so on.  

Keep in mind that the enhanced for loop has a very specific purpose: getting the 
elements of a collection, from the beginning to the end. It is not suitable for all array 
algorithms. In particular, the enhanced for loop does not allow you to modify the 
contents of an array. The following loop does not fill an array with zeroes:

for (double element : values)
{
   element = 0; // ERROR: this assignment does not modify array elements
}   

When the loop is executed, the variable element is set to values[0]. Then element is set to 
0, then to values[1], then to 0, and so on. The values array is not modified. The remedy 
is simple: Use a basic for loop: 

for (int i = 0; i < values.length; i++)
{
   values[i] = 0; // OK
} 

The enhanced for loop is a convenient mechanism for 
traversing all elements in a collection.

you can use the 
enhanced for loop 
to visit all elements 
of an array.

Use the enhanced  
for loop if you do 
not need the index 
values in the  
loop body. 

o n L i n e  e x A m p L e

an program that 
demonstrates the 
enhanced for loop.



258 Chapter 6  arrays and array Lists 

8.  What does this enhanced for loop do? 

syntax 6.2 the enhanced for Loop

for (double element : values)
{
   sum = sum + element;
}

An array

These statements 
are executed for each 

element.

This variable is set in each loop iteration.
It is only defined inside the loop.

The variable 
contains an element, 

not an index.

for (typeName variable : collection)
{
   statements
}

Syntax

int counter = 0;
for (double element : values) 
{
   if (element == 0) { counter++; }
}

9.  Write an enhanced for loop that prints all elements in the array values.
10.  Write an enhanced for loop that multiplies all elements in a double[] array named 

factors, accumulating the result in a variable named product.
11.  Why is the enhanced for loop not an appropriate shortcut for the following basic 

for loop?
for (int i = 0; i < values.length; i++) { values[i] = i * i; }

practice it  Now you can try these exercises at the end of the chapter: R6.7, R6.8, R6.9.

6.3 Common array algorithms
In the following sections, we discuss some of the most common algorithms for work-
ing with arrays. If you use a partially filled array, remember to replace values.length 
with the companion variable that repre sents the current size of the array.

6.3.1 Filling

This loop fills an array with squares (0, 1, 4, 9, 16, ...). Note that the element with 
index 0 contains 02, the element with index 1 contains 12, and so on.

for (int i = 0; i < values.length; i++)
{
   values[i] = i * i;
}

s e L f   c h e c k



6.3 Common array algorithms  259

6.3.2 sum and average Value

You have already encountered this algorithm in Section 4.7.1. When the values are 
located in an array, the code looks much simpler: 

double total = 0;
for (double element : values)
{
   total = total + element;
}

double average = 0;
if (values.length > 0) { average = total / values.length; }

6.3.3 Maximum and Minimum

Use the algorithm from Section 4.7.5 that keeps a variable for the largest element 
already encountered. Here is the implementation of that algorithm for an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
   if (values[i] > largest)
   {
      largest = values[i];
   }
}

Note that the loop starts at 1 because we initialize largest with values[0]. 
To compute the smallest element, reverse the comparison.
These algorithms require that the array contain at least one element. 

6.3.4 element separators

When you display the elements of an array, you usually want to separate them, often 
with commas or vertical lines, like this:

32 | 54 | 67.5 | 29 | 35

Note that there is one fewer separator than there are numbers. Print the separator 
before each element in the sequence except the initial one (with index 0) like this:

for (int i = 0; i < values.length; i++)
{
   if (i > 0) 
   { 
      System.out.print(" | "); 
   }
   System.out.print(values[i]); 
}

If you want comma separators, you can use the Arrays.toString method. The 
 expression 

Arrays.toString(values)

returns a string describing the contents of the array values in the form
[32, 54, 67.5, 29, 35]

When separating 
elements, don’t place 
a separator before 
the first element.

To print five  
elements, you need 
four separators.



260 Chapter 6  arrays and array Lists 

The elements are surrounded by a pair of brackets and separated by commas. This 
method can be convenient for debugging:

System.out.println("values=" + Arrays.toString(values));

6.3.5 Linear search

You often need to search for the position of a specific element in an array so that you 
can replace or remove it. Visit all elements until you have found a match or you have 
come to the end of the array. Here we search for the position of the first element in an 
array that is equal to 100:

int searchedValue = 100;
int pos = 0;
boolean found = false;
while (pos < values.length && !found)
{
   if (values[pos] == searchedValue)
   {
      found = true;
   } 
   else 
   {
      pos++;
   }
}
if (found) { System.out.println("Found at position: " + pos); }
else { System.out.println("Not found"); }

This algorithm is called linear search or sequential search because you inspect the 
elements in sequence. If the array is sorted, you can use the more efficient binary 
search algorithm—see Special Topic 6.2 on page 267. 

6.3.6 removing an element

Suppose you want to remove the element with index pos from the array values. As 
explained in Section 6.1.3, you need a companion variable for tracking the number of 
elements in the array. In this example, we use a companion variable called currentSize.

If the elements in the array are not in any particular order, simply overwrite the 
element to be removed with the last element of the array, then decrement the current-
Size variable. (See Figure 4.)

To search for a  
specific element,  
visit the elements  
and stop when you 
encounter the match.

a linear search 
inspects elements in 
sequence until a 
match is found.

figure 4   
removing an element in an Unordered array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

Decrement after 
moving element

currentSize

32
54

67.5
29

34.5
80
115
44.5
100
65

figure 5   
removing an element in an ordered array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

1
2
3
4
5

Decrement after 
moving elements

32
54

67.5
29
80
115
44.5
100
65
65



6.3 Common array algorithms  261

values[pos] = values[currentSize - 1];
currentSize--;

The situation is more complex if the order of the elements matters. Then you must 
move all elements fol lowing the element to be removed to a lower index, and then 
decrement the variable holding the size of the array. (See Figure 5.) 

for (int i = pos + 1; i < currentSize; i++)
{ 
   values[i - 1] = values[i]; 
}
currentSize--;

6.3.7 inserting an element

In this section, you will see how to insert an element into an array. Note that you 
need a companion vari able for tracking the array size, as explained in Section 6.1.3.

If the order of the elements does not matter, you can simply insert new elements at 
the end, incrementing the variable tracking the size. 

if (currentSize < values.length)
{
   currentSize++;
   values[currentSize - 1] = newElement;
}

It is more work to insert an element at a particular position in the middle of an array. 
First, move all ele ments after the insertion location to a higher index. Then insert the 
new element (see Figure 7). 

Note the order of the movement: When you remove an element, you first move 
the next element to a lower index, then the one after that, until you finally get to the 
end of the array. When you insert an ele ment, you start at the end of the array, move 
that element to a higher index, then move the one before that, and so on until you 
finally get to the insertion location. 

if (currentSize < values.length)
{
   currentSize++;
   for (int i = currentSize - 1; i > pos; i--)
   {
      values[i] = values[i - 1];
   }
   values[pos] = newElement;
}

A N I M AT I O N
Removing from  

an Array

A N I M AT I O N
Inserting into  

an Array

Before inserting an 
element, move 
elements to the end 
of the array starting 
with the last one.

figure 6   
inserting an element in an Unordered array

[0]

[1]

[2]
...

[currentSize - 1]

Incremented before
inserting element

Insert new element here
currentSize

32
54

67.5
29

34.5
80
115
44.5
100

figure 7   
inserting an element in an ordered array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

5
4
3
2
1

Incremented before
moving elements

Insert new element here

32
54

67.5
29

34.5
34.5
80
115
44.5
100



262 Chapter 6  arrays and array Lists 

6.3.8 swapping elements

You often need to swap elements of an array. For example, 
you can sort an array by repeatedly swapping elements 
that are not in order.

Consider the task of swapping the elements at posi-
tions i and j of an array values. We’d like to set values[i] 
to values[j]. But that overwrites the value that is currently 
stored in values[i], so we want to save that first:

double temp = values[i];
values[i] = values[j];

Now we can set values[j] to the saved value.
values[j] = temp;

Figure 8 shows the process.

To swap two elements, you 
need a temporary variable. 

Use a temporary 
variable when 
swapping two 
elements.

figure 8  swapping array elements

[0]

[1]

[2]

[3]

[4]

[i]

[j]

34.5
29

67.5
54
32

1

[i]

 

[j]

34.5
29

67.5
54
32

2

temp = 54

[i]

 

[j]

34.5
29

67.5
29
32

3

temp = 54

[i]

 

[j]

34.5
54

67.5
29
32

4

temp = 54

Values to be swapped
values =

values =

values =

values =



6.3 Common array algorithms  263

6.3.9 Copying arrays

Array variables do not themselves hold array elements. They hold a reference to the 
actual array. If you copy the reference, you get another reference to the same array 
(see Figure 9):

double[] values = new double[6];
. . .  // Fill array
double[] prices = values; 1

If you want to make a true copy of an array, call the Arrays.copyOf method (as shown 
in Figure 9).

double[] prices = Arrays.copyOf(values, values.length); 2

The call Arrays.copyOf(values, n) allocates an array of length n, copies the first n elements 
of values (or the entire values array if n > values.length) into it, and returns the new array. 

In order to use the Arrays class, you need to add the following statement to the top of 
your program: 

import java.util.Arrays;

Another use for Arrays.copyOf is to grow an array that has run out of space. The fol-
lowing statements have the effect of doubling the length of an array (see Figure 10):

double[] newValues = Arrays.copyOf(values, 2 * values.length); 1
values = newValues; 2

The copyOf method was added in Java 6. If you use Java 5, replace
double[] newValues = Arrays.copyOf(values, n)

with

Use the Arrays.
copyOf method to 
copy the elements of 
an array into a  
new array.

figure 9  Copying an array reference versus Copying an array

1 2

double[]
values =

prices =
32
54

67.5
29
35

47.5

double[]values =

double[]prices =

32
54

67.5
29
35

47.5

32
54

67.5
29
35

47.5

After the assignment prices = values After calling Arrays.copyOf



264 Chapter 6  arrays and array Lists 

figure 10  Growing an array

double[] double[]values =

double[]newValues =

values =

double[]newValues =

1 2

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Move elements to a larger array Store the reference to the larger array in values

double[] newValues = new double[n];
for (int i = 0; i < n && i < values.length; i++) 
{ 
   newValues[i] = values[i]; 
}

6.3.10 reading input

If you know how many inputs the user will supply, it is simple to place them into an 
array:

double[] inputs = new double[NUMBER_OF_INPUTS];
for (i = 0; i < inputs.length; i++)
{
   inputs[i] = in.nextDouble();
}

However, this technique does not work if you need to read a sequence of arbitrary 
length. In that case, add the inputs to an array until the end of the input has been 
reached. 

int currentSize = 0;
while (in.hasNextDouble() && currentSize < inputs.length)
{ 
   inputs[currentSize] = in.nextDouble();
   currentSize++;
}



6.3 Common array algorithms  265

Now inputs is a partially filled array, and the companion variable currentSize is set to 
the number of inputs.

However, this loop silently throws away inputs that don’t fit into the array. A bet-
ter approach is to grow the array to hold all inputs. 

double[] inputs = new double[INITIAL_SIZE];
int currentSize = 0;
while (in.hasNextDouble())
{ 
   // Grow the array if it has been completely filled
   if (currentSize >= inputs.length)
   {
      inputs = Arrays.copyOf(inputs, 2 * inputs.length); // Grow the inputs array
   }

   inputs[currentSize] = in.nextDouble();
   currentSize++;
}

When you are done, you can discard any excess (unfilled) elements: 
inputs = Arrays.copyOf(inputs, currentSize);

The following program puts these algorithms to work, solving the task that we set our-
selves at the begin ning of this chapter: to mark the largest value in an input sequence. 

section_3/LargestinArray.java

1 import java.util.Scanner;
2 
3 /**
4    This program reads a sequence of values and prints them, marking the largest value.
5 */
6 public class LargestInArray
7 {
8    public static void main(String[] args)
9    { 

10       final int LENGTH = 100;
11       double[] values = new double[LENGTH];
12       int currentSize = 0;
13 
14       // Read inputs
15 
16       System.out.println("Please enter values, Q to quit:");
17       Scanner in = new Scanner(System.in);
18       while (in.hasNextDouble() && currentSize < values.length)
19       { 
20          values[currentSize] = in.nextDouble();
21          currentSize++;
22       }
23 
24       // Find the largest value
25 
26       double largest = values[0];
27       for (int i = 1; i < currentSize; i++)
28       {
29          if (values[i] > largest)
30          {
31             largest = values[i];
32          }
33       }



266 Chapter 6  arrays and array Lists 

34 
35       // Print all values, marking the largest
36 
37       for (int i = 0; i < currentSize; i++)
38       { 
39          System.out.print(values[i]);
40          if (values[i] == largest) 
41          {
42             System.out.print(" <== largest value");
43          }
44          System.out.println();
45       }
46    }
47 }

program run

Please enter values, Q to quit:
34.5 80 115 44.5 Q
34.5
80
115 <== largest value
44.5

12.  Given these inputs, what is the output of the LargestInArray program?
20 10 20 Q

13.  Write a loop that counts how many elements in an array are equal to zero.
14.  Consider the algorithm to find the largest element in an array. Why don’t we 

initialize largest and i with zero, like this?
double largest = 0;
for (int i = 0; i < values.length; i++)
{
   if (values[i] > largest)
   {
      largest = values[i];
   }
}

15.  When printing separators, we skipped the separator before the initial element. 
Rewrite the loop so that the separator is printed after each element, except for 
the last element.

16.  What is wrong with these statements for printing an array with separators?
System.out.print(values[0]);
for (int i = 1; i < values.length; i++)
{
   System.out.print(", " + values[i]); 
}

17.  When finding the position of a match, we used a while loop, not a for loop. What 
is wrong with using this loop instead?
for (pos = 0; pos < values.length && !found; pos++)
{
   if (values[pos] > 100)
   {
      found = true;
   } 

s e L f   c h e c k



6.3 Common array algorithms  267

}

18.  When inserting an element into an array, we moved the elements with larger 
index values, starting at the end of the array. Why is it wrong to start at the inser-
tion location, like this?
for (int i = pos; i < currentSize - 1; i++)
{ 
   values[i + 1] = values[i]; 
}

practice it  Now you can try these exercises at the end of the chapter: R6.17, R6.20, P6.15.

Underestimating the size of a data set

Programmers commonly underestimate the amount of input data that a user will pour into an 
unsuspecting program. Suppose you write a program to search for text in a file. You store each 
line in a string, and keep an array of strings. How big do you make the array? Surely nobody 
is going to challenge your program with an input that is more than 100 lines. Really? It is very 
easy to feed in the entire text of Alice in Wonderland or War and Peace (which are avail able on 
the Internet). All of a sudden, your program has to deal with tens or hundreds of thousands of 
lines. You either need to allow for large inputs or politely reject the excess input. 

sorting with the java Library

Sorting an array efficiently is not an easy task. You will 
learn in Chapter 14 how to implement efficient sorting 
algorithms. Fortunately, the Java library provides an effi-
cient sort method. 

To sort an array values, call

Arrays.sort(values);

If the array is partially filled, call

Arrays.sort(values, 0, currentSize);

binary search

When an array is sorted, there is a much faster search algorithm than the linear search of Sec-
tion 6.3.5. 

Consider the following sorted array values. 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We would like to see whether the number 15 is in the array. Let’s narrow our search by finding 
whether the number is in the first or second half of the array. The last point in the first half of 
the values array, values[3], is 9, which is smaller than the number we are looking for. Hence, 
we should look in the second half of the array for a match, that is, in the sequence:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

Common error 6.3 

special topic 6.1 

special topic 6.2 



268 Chapter 6  arrays and array Lists 

Now the last element of the first half of this sequence is 17; hence, the number must be located 
in the sequence: 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

The last element of the first half of this very short sequence is 12, which is smaller than the 
number that we are searching, so we must look in the second half: 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We still don’t have a match because 15 ≠ 17, and we cannot divide the subsequence further. If 
we wanted to insert 15 into the sequence, we would need to insert it just before values[5]. 

This search process is called a binary search, because we cut the size of the search in half in 
each step. That cut ting in half works only because we know that the array is sorted. Here is an 
implementation in Java:

boolean found = false;
int low = 0;
int high = values.length - 1;
int pos = 0;
while (low <= high && !found)
{
   pos = (low + high) / 2; // Midpoint of the subsequence
   if (values[pos] == searchedNumber) { found = true; }
   else if (values[pos] < searchedNumber) { low = pos + 1; } // Look in second half
   else { high = pos - 1; } // Look in first half
}
if (found) { System.out.println("Found at position " + pos); }
else { System.out.println("Not found. Insert before position " + pos); }

6.4 Using arrays with Methods
In this section, we will explore how to write methods that process arrays. 

When you define a method with an array argument, you provide a parameter vari-
able for the array. For example, the following method computes the sum of an array 
of floating-point numbers:

public static double sum(double[] values)
{ 
   double total = 0;
   for (double element : values)
   {
      total = total + element;
   }
   return total;
}

This method visits the array elements, but it does not modify them. It is also possible 
to modify the ele ments of an array. The following method multiplies all elements of 
an array by a given factor:

public static void multiply(double[] values, double factor)
{
   for (int i = 0; i < values.length; i++)
   {

arrays can occur as 
method arguments 
and return values. 



6.4 Using arrays with Methods  269

      values[i] = values[i] * factor;
   }
}

Figure 11 traces the method call 
multiply(scores, 10);

Note these steps:

• The parameter variables values and factor are created. 1

• The parameter variables are initialized with the arguments that are passed in the 
call. In our case, values is set to scores and factor is set to 10. Note that values and 
scores are references to the same array. 2   

• The method multiplies all array elements by 10. 3

• The method returns. Its parameter variables are removed. However, scores still 
refers to the array with the modified elements. 4   

figure 11   
trace of Call to  
the multiply Method

scores =2

values =

factor = 10

Initializing method parameter variables

double[]

35
29

67.5
54
32

scores =1

values =

factor =

Method call

double[]

35
29

67.5
54
32

scores =3

values =

factor = 10

About to return to the caller

double[]

350
290
675
540
320

scores =4

After method call

double[]

350
290
675
540
320



270 Chapter 6  arrays and array Lists 

A method can return an array. Simply build up the result in the method and return it. 
In this example, the squares method returns an array of squares from 02 up to (n – 1)2:

public static int[] squares(int n)
{ 
   int[] result = new int[n];
   for (int i = 0; i < n; i++)
   {
      result[i] = i * i;
   }
   return result;
}

The following example program reads values from standard input, multiplies them 
by 10, and prints the result in reverse order. The program uses three methods:

• The readInputs method returns an array, using the algorithm of Section 6.3.10.
• The multiply method has an array argument. It modifies the array elements.
• The printReversed method also has an array argument, but it does not modify the 

array elements.

section_4/reverse.java

1 import java.util.Scanner;
2 
3 /**
4    This program reads, scales, and reverses a sequence of numbers.
5 */
6 public class Reverse
7 {
8     public static void main(String[] args)
9     {

10        double[] numbers = readInputs(5);
11        multiply(numbers, 10);
12        printReversed(numbers);
13     }
14 
15     /**
16        Reads a sequence of floating-point numbers.
17        @param numberOfInputs the number of inputs to read
18        @return an array containing the input values
19     */
20     public static double[] readInputs(int numberOfInputs)
21     {
22       System.out.println("Enter " + numberOfInputs + " numbers: ");
23       Scanner in = new Scanner(System.in);
24       double[] inputs = new double[numberOfInputs];
25       for (int i = 0; i < inputs.length; i++)
26       {
27          inputs[i] = in.nextDouble();
28       }
29       return inputs;
30    }
31 
32     /**
33        Multiplies all elements of an array by a factor.
34        @param values an array
35        @param factor the value with which element is multiplied
36     */



6.4 Using arrays with Methods  271

37     public static void multiply(double[] values, double factor)  
38     {  
39        for (int i = 0; i < values.length; i++)  
40        {
41           values[i] = values[i] * factor;
42        }
43     }
44  
45    /**
46       Prints an array in reverse order.
47       @param values an array of numbers
48       @return an array that contains the elements of values in reverse order
49    */
50     public static void printReversed(double[] values)
51     {
52        // Traverse the array in reverse order, starting with the last element
53        for (int i = values.length - 1; i >= 0; i--)
54        {
55           System.out.print(values[i] + " ");
56        }
57        System.out.println();
58     }
59 }

program run

Enter 5 numbers:
12 25 20 0 10
100.0 0.0 200.0 250.0 120.0

19.  How do you call the squares method to compute the first five squares and store 
the result in an array numbers?

20.  Write a method fill that fills all elements of an array of integers with a given 
value. For example, the call fill(scores, 10) should fill all elements of the array 
scores with the value 10.

21.  Describe the purpose of the following method:
public static int[] mystery(int length, int n)
{
   int[] result = new int[length];
   for (int i = 0; i < result.length; i++) 
   { 
      result[i] = (int) (n * Math.random()); 
   }
   return result;
}

22.  Consider the following method that reverses an array:
public static int[] reverse(int[] values)
{
   int[] result = new int[values.length];
   for (int i = 0; i < values.length; i++)
   {
      result[i] = values[values.length - 1 - i];
   }
   return result;
}

s e L f   c h e c k



272 Chapter 6  arrays and array Lists 

Suppose the reverse method is called with an array scores that contains the 
numbers 1, 4, and 9. What is the contents of scores after the method call? 

23.  Provide a trace diagram of the reverse method when called with an array that 
contains the values 1, 4, and 9. 

practice it  Now you can try these exercises at the end of the chapter: R6.25, P6.6, P6.7.

methods with a variable number of parameters

Starting with Java version 5.0, it is possible to declare methods that receive a variable number 
of parameters. For example, we can write a sum method that can compute the sum of any num-
ber of arguments:

int a = sum(1, 3); // Sets a to 4
int b = sum(1, 7, 2, 9); // Sets b to 19

The modified sum method must be declared as

public static void sum(int... values)

The ... symbol indicates that the method can receive any number of int arguments. The values 
parameter variable is actually an int[] array that contains all arguments that were passed to the 
method. The method implementation traverses the values array and processes the elements:

public void sum(int... values)
{
   int total = 0;
   for (int i = 0; i < values.length; i++) // values is an int[]
   {
      total = total + values[i];
   }
   return total;
}

6.5 problem solving: adapting algorithms
In Section 6.3, you were introduced to a number of fundamental array algorithms. 
These algorithms form the building blocks for many programs that process arrays. 
In general, it is a good problem-solving strat egy to have a repertoire of fundamental 
algorithms that you can combine and adapt.

Consider this example problem: You are given the quiz scores of a student. You are 
to compute the final quiz score, which is the sum of all scores after dropping the low-
est one. For example, if the scores are

8  7  8.5  9.5  7  4  10

then the final score is 50.
We do not have a ready-made algorithm for this situation. Instead, consider which 

algorithms may be related. These include:

• Calculating the sum (Section 6.3.2)
• Finding the minimum value (Section 6.3.3)
• Removing an element (Section 6.3.6)

special topic 6.3 

By combining 
fundamental 
algorithms, you can 
solve complex 
programming tasks.



6.5 problem solving: adapting algorithms  273

We can formulate a plan of attack that combines these algorithms:

Find the minimum.
Remove it from the array.
Calculate the sum.

Let’s try it out with our example. The minimum of

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

is 4. How do we remove it? 
Now we have a problem. The removal algorithm in Section 6.3.6 locates the ele-

ment to be removed by using the position of the element, not the value. 
But we have another algorithm for that:

• Linear search (Section 6.3.5)

We need to fix our plan of attack:

Find the minimum value.
Find its position.
Remove that position from the array.
Calculate the sum.

Will it work? Let’s continue with our example.
We found a minimum value of 4. Linear search tells us that the value 4 occurs at 

position 5. 

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

We remove it:

8

[0]

7

[1]

8.5

[2]

9.5

[3] [4]

7

[5]

10

Finally, we compute the sum: 8 + 7 + 8.5 + 9.5 + 7 + 10 = 50.
This walkthrough demonstrates that our strategy works. 
Can we do better? It seems a bit inefficient to find the minimum and then make 

another pass through the array to obtain its position. 
We can adapt the algorithm for finding the minimum to yield the position of the 

minimum. Here is the original algorithm:
double smallest = values[0];
for (int i = 1; i < values.length; i++)
{
   if (values[i] < smallest)
   {
      smallest = values[i];
   }
}

When we find the smallest value, we also want to update the position:
   if (values[i] < smallest)
   {
      smallest = values[i];
      smallestPosition = i;
   }

you should be 
familiar with the 
implementation of 
fundamental 
algorithms so that 
you can adapt them.



274 Chapter 6  arrays and array Lists 

In fact, then there is no reason to keep track of the smallest value any longer. It is sim-
ply val ues[smallestPosition]. With this insight, we can adapt the algorithm as follows:

int smallestPosition = 0;
for (int i = 1; i < values.length; i++)
{
   if (values[i] < values[smallestPosition])
   {
      smallestPosition = i;
   }
}

With this adaptation, our problem is solved with the following strategy:

Find the position of the minimum.
Remove it from the array.
Calculate the sum.

The next section shows you a technique for discovering a new algorithm when none 
of the fundamen tal algorithms can be adapted to a task.

24.  Section 6.3.6 has two algorithms for removing an element. Which of the two 
should be used to solve the task described in this section?

25.  It isn’t actually necessary to remove the minimum in order to compute the total 
score. Describe an alternative.

26.  How can you print the number of positive and negative values in a given array, 
using one or more of the algorithms in Section 4.7?

27.  How can you print all positive values in an array, separated by commas? 
28.  Consider the following algorithm for collecting all matches in an array:

int matchesSize = 0;
for (int i = 0; i < values.length; i++)
{ 
   if (values[i] fulfills the condition)
   {
      matches[matchesSize] = values[i]; 
      matchesSize++;
   }
}

How can this algorithm help you with Self Check 27?

practice it  Now you can try these exercises at the end of the chapter: R6.26, R6.27.

reading exception reports 

You will sometimes have programs that terminate, reporting an “exception”, such as 

Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException: 10
   at Homework1.processValues(Homework1.java:14)
   at Homework1.main(Homework1.java:36)

Quite a few students give up at that point, saying “it didn’t work”, or “my program died”, 
with out reading the error message. Admittedly, the format of the exception report is not very 
friendly. But, with some practice, it is easy to decipher it. 

o n L i n e  e x A m p L e

a program that 
computes the final 
score using the 
adapted algorithm 
for finding the 
minimum.

s e L f   c h e c k

programming tip 6.2 



6.5 problem solving: adapting algorithms  275

There are two pieces of useful information: 

1.  The name of the exception, such as ArrayIndexOutOfBoundsException 
2.  The stack trace, that is, the method calls that led to the exception, such as 

Homework1.java:14 and Homework1.java:36 in our example.

The name of the exception is always in the first line of the report, and it ends in Exception. 
If you get an ArrayIndex OutOfBoundsException, then there was a problem with an invalid array 
index. That is useful informa tion. 

To determine the line number of the offending code, look at the file names and line num-
bers. The first line of the stack trace is the method that actually generated the exception. The 
last line of the stack trace is a line in main. In our example, the exception was caused by line 14 
of Homework1.java. Open up the file, go to that line, and look at it! Also look at the name of the 
exception. In most cases, these two pieces of information will make it completely obvious 
what went wrong, and you can easily fix your error.

Sometimes, the exception was thrown by a method that is in the standard library. Here is a 
typical example:

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index
      out of range: -4
   at java.lang.String.substring(String.java:1444)
   at Homework2.main(Homework2.java:29)

The exception happened in the substring method of the String class, but the real culprit is the 
first method in a file that you wrote. In this example, that is Homework2.main, and you should 
look at line 29 of Homework2.java. 

step 1  Decompose your task into steps.

You will usually want to break down your task into multiple steps, such as
• Reading the data into an array.
• Processing the data in one or more steps.
• Displaying the results.
When deciding how to process the data, you should be familiar with the array algorithms in 
Section 6.3. Most processing tasks can be solved by using one or more of these algorithms.

hoW to 6.1 working with Arrays

In many data processing situations, you 
need to process a sequence of values. This 
How To walks you through the steps for 
storing input values in an array and carrying 
out computations with the array elements.

Consider again the problem from Sec-
tion 6.5: A final quiz score is computed by 
adding all the scores, except for the lowest 
one. For example, if the scores are

8  7  8.5  9.5  7  5  10

then the final score is 50.



276 Chapter 6  arrays and array Lists 

In our sample problem, we will want to read the data. Then we will remove the minimum 
and compute the total. For example, if the input is 8 7 8.5 9.5 7 5 10, we will remove the mini-
mum of 5, yielding 8 7 8.5 9.5 7 10. The sum of those values is the final score of 50.

Thus, we have identified three steps:

Read inputs.
Remove the minimum.
Calculate the sum.

step 2  Determine which algorithm(s) you need.

Sometimes, a step corresponds to exactly one of the basic array algorithms in Section 6.3. That 
is the case with calcu lating the sum (Section 6.3.2) and reading the inputs (Section 6.3.10). At 
other times, you need to combine several algorithms. To remove the minimum value, you can 
find the minimum value (Section 6.3.3), find its position (Section 6.3.5), and remove the ele-
ment at that position (Section 6.3.6). 

We have now refined our plan as follows:

Read inputs.
Find the minimum.
Find its position.
Remove the minimum.
Calculate the sum.

This plan will work—see Section 6.5. But here is an alternate approach. It is easy to compute 
the sum and subtract the minimum. Then we don’t have to find its position. The revised plan is

Read inputs.
Find the minimum.
Calculate the sum.
Subtract the minimum.

step 3  Use methods to structure the program.

Even though it may be possible to put all steps into the main method, this is rarely a good idea. 
It is better to make each processing step into a separate method. In our example, we will imple-
ment three methods:
• readInputs 
• sum 
• minimum 
The main method simply calls these methods:

double[] scores = readInputs();
double total = sum(scores) - minimum(scores);
System.out.println("Final score: " + total);

step 4  Assemble and test the program.

Place your methods into a class. Review your code and check that you handle both normal 
and exceptional situa tions. What happens with an empty array? One that contains a single ele-
ment? When no match is found? When there are multiple matches? Consider these boundary 
conditions and make sure that your program works correctly. 

In our example, it is impossible to compute the minimum if the array is empty. In that case, 
we should terminate the program with an error message before attempting to call the minimum 
method. 



6.5 problem solving: adapting algorithms  277

What if the minimum value occurs more than once? That means that a student had more 
than one test with the same low score. We subtract only one of the occurrences of that low 
score, and that is the desired behavior.

The following table shows test cases and their expected output:  

test Case expected output Comment

8 7 8.5 9.5 7 5 10 50 See Step 1.

8 7 7 9 24 Only one instance of the low score should be removed.

8 0 After removing the low score, no score remains.

(no inputs) error That is not a legal input.

Here’s the complete program (how_to_1/Scores.java):

import java.util.Arrays;
import java.util.Scanner;

/**
   This program computes a final score for a series of quiz scores: the sum after dropping 
   the lowest score. The program uses arrays.
*/
public class Scores
{
   public static void main(String[] args)
   {
      double[] scores = readInputs();
      if (scores.length == 0)
      {
         System.out.println("At least one score is required.");
      }
      else
      {
         double total = sum(scores) - minimum(scores);
         System.out.println("Final score: " + total);
      }
   }

   /**
      Reads a sequence of floating-point numbers.
      @return an array containing the numbers
   */
   public static double[] readInputs()
   {
      // Read the input values into an array

      final int INITIAL_SIZE = 10;
      double[] inputs = new double[INITIAL_SIZE];
      System.out.println("Please enter values, Q to quit:");
      Scanner in = new Scanner(System.in);
      int currentSize = 0;
      while (in.hasNextDouble())
      { 
         // Grow the array if it has been completely filled



278 Chapter 6  arrays and array Lists 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

         if (currentSize >= inputs.length)
         {
            inputs = Arrays.copyOf(inputs, 2 * inputs.length);
         }
         inputs[currentSize] = in.nextDouble();
         currentSize++;
      }

      return Arrays.copyOf(inputs, currentSize);
   }
   
   /**
      Computes the sum of the values in an array.
      @param values an array
      @return the sum of the values in values
   */
   public static double sum(double[] values)
   {
      double total = 0;
      for (double element : values)
      {
         total = total + element;
      }
      return total;
   }
      
   /**
      Gets the minimum value from an array.
      @param values an array of size >= 1
      @return the smallest element of values
   */
   public static double minimum(double[] values)
   {
      double smallest = values[0];
      for (int i = 1; i < values.length; i++)
      {
         if (values[i] < smallest)
         {
            smallest = values[i];
         }
      }
      return smallest;
   }
}

Worked eXaMpLe 6.1 rolling the dice

This Worked Example shows how to analyze a set of die 
tosses to see whether the die is “fair”.



6.6 problem solving: discovering algorithms by Manipulating physical objects  279

6.6 problem solving: discovering algorithms by 
Manipulating physical objects

In Section 6.5, you saw how to solve a problem by combining and adapting 
known algorithms. But what do you do when none of the standard algorithms 
is sufficient for your task? In this section, you will learn a technique for dis-
covering algorithms by manipulating physical objects.

Consider the following task: You are given an array whose size is an even 
number, and you are to switch the first and the second half. For example, if the 
array contains the eight numbers

9 13 21 4 11 7 1 3

then you should change it to

9 13 21 411 7 1 3

Many students find it quite challenging to come up with an algorithm. They may 
know that a loop is required, and they may realize that elements should be inserted 
(Section 6.3.7) or swapped (Section 6.3.8), but they do not have sufficient intuition to 
draw diagrams, describe an algorithm, or write down pseudocode.

One useful technique for discovering an algorithm is to manipulate physical 
objects. Start by lining up some objects to denote an array. Coins, playing cards, or 
small toys are good choices.

Here we arrange eight coins:

Now let’s step back and see what we can do to change the order of the coins.
We can remove a coin (Section 6.3.6): 

We can insert a coin (Section 6.3.7): 

Manipulating physical objects  
can give you ideas for  
discovering algorithms.

Use a sequence of 
coins, playing cards, 
or toys to visualize 
an array of values.

Visualizing the  
removal of an  
array element 

Visualizing the  
insertion of an  
array element



280 Chapter 6  arrays and array Lists 

Or we can swap two coins (Section 6.3.8). 

Go ahead—line up some coins and try out these three operations right now so that 
you get a feel for them.

Now how does that help us with our problem, switching the first and the second 
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as 
Java programmers, we will say that we swap the coins in positions 0 and 4: 

Next, we swap the coins in positions 1 and 5: 

 

Two more swaps, and we are done: 

 

Visualizing the  
swapping of  
two coins



6.6 problem solving: discovering algorithms by Manipulating physical objects  281

Now an algorithm is becoming apparent:

i = 0
j = ... (we’ll think about that in a minute)
While (don’t know yet)
 Swap elements at positions i and j
 i++
 j++

Where does the variable j start? When we have eight coins, the coin at position zero is 
moved to position 4. In general, it is moved to the middle of the array, or to position 
size / 2.

And how many iterations do we make? We need to swap all coins in the first half. 
That is, we need to swap size / 2 coins. The pseudocode is

i = 0
j = size / 2
While (i < size / 2)
 Swap elements at positions i and j
 i++
 j++

It is a good idea to make a walkthrough of the pseudocode (see Section 4.2). You can 
use paper clips to denote the positions of the variables i and j. If the walkthrough is 
suc cessful, then we know that there was no “off-by-one” error in the pseudocode. 
Self Check 29 asks you to carry out the walkthrough, and Exercise P6.8 asks you to 
translate the pseudocode to Java. Exercise R6.28 suggests a different algorithm for 
switching the two halves of an array, by repeatedly removing and inserting coins.

Many people find that the manipulation of physical objects is less intimidating 
than drawing diagrams or mentally envisioning algorithms. Give it a try when you 
need to design a new algorithm!

29.  Walk through the algorithm that we developed in this section, using two paper 
clips to indicate the positions for i and j. Explain why there are no bounds errors 
in the pseudocode.

30.  Take out some coins and simulate the following pseudocode, using two paper 
clips to indicate the positions for i and j.

i = 0
j = size - 1
While (i < j)
 Swap elements at positions i and j
 i++
 j--

What does the algorithm do?
31.  Consider the task of rearranging all elements in an array so that the even num-

bers come first. Other wise, the order doesn’t matter. For example, the array
1 4 14 2 1 3 5 6 23 

could be rearranged to
4 2 14 6 1 5 3 23 1

o n L i n e  e x A m p L e

a program that 
implements the 
algorithm that 
switches the first 
and second halves 
of an array.

you can use paper 
clips as position 
markers or counters.

s e L f   c h e c k



282 Chapter 6  arrays and array Lists 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Using coins and paperclips, discover an algorithm that solves this task by 
swapping elements, then describe it in pseudocode.

32.  Discover an algorithm for the task of Self Check 31 that uses removal and 
insertion of elements instead of swapping.

33.  Consider the algorithm in Section 4.7.4 that finds the 
largest element in a sequence of inputs—not the largest 
element in an array. Why is this algorithm better visual-
ized by picking playing cards from a deck rather than 
arranging toy soldiers in a sequence? 

practice it  Now you can try these exercises at the end of the chapter: R6.28, R6.29, P6.8.

6.7 two-dimensional arrays
It often happens that you want to store 
collections of values that have a two-
dimensional layout. Such data sets com-
monly occur in financial and scientific 
applications. An arrangement consisting 
of rows and columns of values is called a 
two-dimensional array, or a matrix.

Let’s explore how to store the example 
data shown in Figure 12: the medal counts 
of the figure skating competitions at the 
2010 Winter Olympics.

Gold silver Bronze

Canada 1 0 1
China 1 1 0
Germany 0 0 1
Korea 1 0 0
Japan 0 1 1
Russia 0 1 1
United States 1 1 0

figure 12  Figure skating Medal Counts

Video eXaMpLe 6.1 removing duplicates from an Array

In this Video Example, we will discover an algorithm for removing duplicates from an array.



6.7 two-dimensional arrays  283

6.7.1 declaring two-dimensional arrays

In Java, you obtain a two-dimensional array by supplying the number of rows and 
columns. For exam ple, new int[7][3] is an array with seven rows and three columns. 
You store a reference to such an array in a variable of type int[][]. Here is a complete 
declaration of a two-dimensional array, suitable for holding our medal count data: 

final int COUNTRIES = 7;
final int MEDALS = 3;
int[][] counts = new int[COUNTRIES][MEDALS];

Alternatively, you can declare and initialize the array by grouping each row: 
int[][] counts = 
   { 
      { 1, 0, 1 },
      { 1, 1, 0 }, 
      { 0, 0, 1 }, 
      { 1, 0, 0 }, 
      { 0, 1, 1 }, 
      { 0, 1, 1 },
      { 1, 1, 0 }
   }; 

As with one-dimensional arrays, you cannot change the size of a two-dimensional 
array once it has been declared. 

6.7.2 

syntax 6.3 two-dimensional array declaration

int[][] data = { 
                 { 16, 3, 2, 13 },
                 { 5, 10, 11, 8 },
                 { 9, 6, 7, 12 },
                 { 4, 15, 14, 1 },
               };

Name
List of initial values 

double[][] tableEntries = new double[7][3];

Name Element type
Number of rows

Numberof columns

All values are initialized with 0.

accessing elements

To access a particular element in the two-dimensional array, you need to specify two 
index values in sep arate brackets to select the row and column, respectively (see Fig-
ure 13):

int medalCount = counts[3][1];

Use a two-
dimensional array to 
store tabular data.

individual elements 
in a two-dimensional 
array are accessed by 
using two index 
values, array[i][j].



284 Chapter 6  arrays and array Lists 

To access all elements in a two-dimensional array, you use two nested loops. For 
example, the following loop prints all elements of counts:

for (int i = 0; i < COUNTRIES; i++)
{
   // Process the ith row
   for (int j = 0; j < MEDALS; j++)
   {
      // Process the jth column in the ith row
      System.out.printf("%8d", counts[i][j]);
   }
   System.out.println(); // Start a new line at the end of the row
} 

6.7.3 Locating neighboring elements

Some programs that work with two-dimensional arrays need to locate the elements 
that are adjacent to an element. This task is particularly common in games. Figure 14 
shows how to compute the index values of the neighbors of an element. 

For example, the neighbors of counts[3][1] to the left and right are counts[3][0] and 
counts[3][2]. The neighbors to the top and bottom are counts[2][1] and counts[4][1].

You need to be careful about computing neighbors at the boundary of the array. 
For example, counts[0][1] has no neighbor to the top. Consider the task of computing 
the sum of the neighbors to the top and bottom of the element count[i][j]. You need 
to check whether the element is located at the top or bottom of the array:

int total = 0;
if (i > 0) { total = total + counts[i - 1][j]; }
if (i < ROWS - 1) { total = total + counts[i + 1][j]; }

figure 13   
accessing an element in a  
two-dimensional array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0][1][2]

counts[3][1]

Column index

R
ow

 in
de

x

figure 14   
neighboring Locations in a  
two-dimensional array

[i - 1][j - 1] [i - 1][j] [i - 1][j + 1]

[i][j - 1] [i][j] [i][j + 1]

[i + 1][j - 1] [i + 1][j] [i + 1][j + 1]



6.7 two-dimensional arrays  285

6.7.4 Computing row and Column totals

A common task is to compute row or column totals. In our example, the row totals 
give us the total num ber of medals won by a particular country.

Finding the right index values is a bit tricky, and it is a good idea to make a quick 
sketch. To compute the total of row i, we need to visit the following elements:

[i][0] [i][1] [i][2]row i

0 MEDALS - 1

As you can see, we need to compute the sum of counts[i][j], where j ranges from 0 to 
MEDALS - 1. The fol lowing loop computes the total:

int total = 0;
for (int j = 0; j < MEDALS; j++)
{
   total = total + counts[i][j];
} 

Computing column totals is similar. Form the sum of counts[i][j], where i ranges 
from 0 to COUNTRIES - 1. 

int total = 0;
for (int i = 0; i < COUNTRIES; i++)
{
   total = total + counts[i][j];

}

[0][j]

[1][j]

[2][j]

[3][j]

[4][j]

[5][j]

[6][j]

column j

COUNTRIES - 1

0

A N I M AT I O N
Tracing a Nested  

Loop in a 2D Array



286 Chapter 6  arrays and array Lists 

6.7.5 two-dimensional array parameters

When you pass a two-dimensional array to a method, you will want to recover the 
dimensions of the array. If values is a two-dimensional array, then

• values.length is the number of rows.
• values[0].length is the number of columns. (See Special Topic 6.4 for an explana-

tion of this expression.)

For example, the following method computes the sum of all elements in a two-
dimensional array:

public static int sum(int[][] values)
{
   int total = 0;
   for (int i = 0; i < values.length; i++)   
   {
      for (int j = 0; j < values[0].length; j++)
      {
         total = total + values[i][j];
      }
   }
   return total;
}

Working with two-dimensional arrays is illustrated in the following program. The 
program prints out the medal counts and the row totals. 

section_7/medals.java

1 /**
2    This program prints a table of medal winner counts with row totals.
3 */
4 public class Medals
5 {
6    public static void main(String[] args)
7    {
8       final int COUNTRIES = 7;
9       final int MEDALS = 3;

10 
11       String[] countries = 
12          { 
13             "Canada",
14             "China",
15             "Germany",
16             "Korea",
17             "Japan",
18             "Russia",
19             "United States" 
20          };
21       
22       int[][] counts = 
23          { 
24             { 1, 0, 1 },
25             { 1, 1, 0 }, 
26             { 0, 0, 1 }, 
27             { 1, 0, 0 }, 
28             { 0, 1, 1 }, 
29             { 0, 1, 1 },
30             { 1, 1, 0 }



6.7 two-dimensional arrays  287

31          }; 
32       
33       System.out.println("        Country    Gold  Silver  Bronze   Total");
34 
35       // Print countries, counts, and row totals
36       for (int i = 0; i < COUNTRIES; i++)
37       {
38          // Process the ith row
39          System.out.printf("%15s", countries[i]);
40 
41          int total = 0; 
42 
43          // Print each row element and update the row total
44          for (int j = 0; j < MEDALS; j++)
45          {
46             System.out.printf("%8d", counts[i][j]);
47             total = total + counts[i][j];
48          }
49          
50          // Display the row total and print a new line
51          System.out.printf("%8d\n", total);
52       }
53    }
54 }

program run

      Country    Gold  Silver  Bronze   Total
       Canada       1       0       1       2
        China       1       1       0       2
      Germany       0       0       1       1
        Korea       1       0       0       1
        Japan       0       1       1       2
       Russia       0       1       1       2
United States       1       1       0       2

34.  What results do you get if you total the columns in our sample data?
35.  Consider an 8 × 8 array for a board game:

int[][] board = new int[8][8];

Using two nested loops, initialize the board so that zeroes and ones alternate, as 
on a checkerboard:
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
. . .
1 0 1 0 1 0 1 0

Hint: Check whether i + j is even.
36.  Declare a two-dimensional array for representing a tic-tac-toe board. The board 

has three rows and columns and contains strings "x", "o", and " ".
37.  Write an assignment statement to place an "x" in the upper-right corner of the 

tic-tac-toe board in Self Check 36.
38.  Which elements are on the diagonal joining the upper-left and the lower-right 

corners of the tic-tac-toe board in Self Check 36?

s e L f   c h e c k



288 Chapter 6  arrays and array Lists 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

practice it  Now you can try these exercises at the end of the chapter: R6.30, P6.18, P6.19.

Two-dimensional Arrays with variable row Lengths

When you declare a two-dimensional array with the command 

int[][] a = new int[3][3];

then you get a 3 × 3 matrix that can store 9 elements: 

a[0][0] a[0][1] a[0][2]
a[1][0] a[1][1] a[1][2]
a[2][0] a[2][1] a[2][2]

In this matrix, all rows have the same length. 
In Java it is possible to declare arrays in which the row length varies. For example, you can 

store an array that has a triangular shape, such as: 

b[0][0]
b[1][0] b[1][1]
b[2][0] b[2][1] b[2][2]

To allocate such an array, you must work harder. First, you allocate space to hold three rows. 
Indicate that you will manually set each row by leaving the second array index empty: 

double[][] b = new double[3][];

Then allocate each row separately (see Figure 15):

for (int i = 0; i < b.length; i++)
{
   b[i] = new double[i + 1];
}

You can access each array element as b[i][j]. The expression b[i] selects the ith row, and the 
[j] operator selects the jth element in that row. 

Worked eXaMpLe 6.2 A world population Table

This Worked Example shows how to print world population data in a table with row and col-
umn headers, and with totals for each of the data columns.

special topic 6.4 

figure 15  a triangular array

double[]b =

[0]

[1]

[2]

[3]

double[] [0]

double[] [0] [1]

double[] [0] [1] [2]

double[] [0] [1] [2] [3]



6.8 array Lists  289

Note that the number of rows is b.length, and the length of the ith row is b[i].length. For 
example, the following pair of loops prints a ragged array:

for (int i = 0; i < b.length; i++)
{
   for (int j = 0; j < b[i].length; j++)
   {
      System.out.print(b[i][j]);
   }
   System.out.println();
}

Alternatively, you can use two enhanced for loops:

for (double[] row : b)
{
   for (double element : row)
   {
      System.out.print(element);
   }
   System.out.println();
}

Naturally, such “ragged” arrays are not very common. 
Java implements plain two-dimensional arrays in exactly the same way as ragged arrays: 

as arrays of one-dimen sional arrays. The expression new int[3][3] automatically allocates an 
array of three rows, and three arrays for the rows’ contents. 

multidimensional Arrays

You can declare arrays with more than two dimensions. For example, here is a three-dimen-
sional array:

int[][][] rubiksCube = new int[3][3][3];

Each array element is specified by three index values:

rubiksCube[i][j][k]

6.8 array Lists
When you write a program that collects inputs, you 
don’t always know how many inputs you will have. 
In such a situation, an array list offers two significant 
advantages:

• Array lists can grow and shrink as needed.
• The ArrayList class supplies methods for common 

tasks, such as inserting and removing elements.

In the following sections, you will learn how to work 
with array lists.

An array list expands to hold as many elements as needed.

special topic 6.5 

an array list stores  
a sequence of  
values whose  
size can change.



290 Chapter 6  arrays and array Lists 

6.8.1 

syntax 6.4 array Lists

ArrayList<String> friends = new ArrayList<String>();

The index must be ≥ 0 and < friends.size().

An array list object of size 0

Use the 
get and set methods 
to access an element.

friends.add("Cindy");
String name = friends.get(i);
friends.set(i, "Harry");

Variable type Variable name

The add method 
appends an element to the array list, 

increasing its size.

To construct an array list:  new ArrayList<typeName>()

To access an element:  arraylistReference.get(index)
 arraylistReference.set(index, value)

Syntax

declaring and Using array Lists

The following statement declares an array list of strings:
ArrayList<String> names = new ArrayList<String>();

The ArrayList class is contained in the java.util package. In order to use array lists in 
your program, you need to use the statement import java.util.ArrayList. 

The type ArrayList<String> denotes an array list of String elements. The angle 
brackets around the String type tell you that String is a type parameter. You can 
replace String with any other class and get a differ ent array list type. For that reason, 
ArrayList is called a generic class. However, you cannot use primitive types as type 
parameters—there is no ArrayList<int> or ArrayList<double>. Section 6.8.5 shows how 
you can collect numbers in an array list.  

It is a common error to forget the initialization:
ArrayList<String> names;
names.add("Harry"); // Error—names not initialized 

Here is the proper initialization: 
ArrayList<String> names = new ArrayList<String>();

Note the () after new ArrayList<String> on the right-hand side of the initialization. It 
indicates that the con structor of the ArrayList<String> class is being called. We will 
discuss constructors in Chapter 8. 

the ArrayList class 
is a generic class: 
ArrayList<Type> 
collects elements of 
the specified type.

figure 16  adding an element with add

1 Before add 2 After add

2

ArrayList<String>

names =

"Bob"
"Emily"

3

Size increased

New element 
added at end

ArrayList<String>

names =

"Cindy"
"Bob"

"Emily"



6.8 array Lists  291

When the ArrayList<String> is first constructed, it has size 0. You use the add method 
to add an element to the end of the array list. 

names.add("Emily"); // Now names has size 1 and element "Emily"
names.add("Bob"); // Now names has size 2 and elements "Emily", "Bob"
names.add("Cindy"); // names has size 3 and elements "Emily", "Bob", and "Cindy"

The size increases after each call to add (see Figure 16). The size method yields the 
current size of the array list. 

To obtain an array list element, use the get method, not the [] operator. As with 
arrays, index values start at 0. For example, names.get(2) retrieves the name with index 
2, the third element in the array list:

String name = names.get(2); 

As with arrays, it is an error to access a nonexistent element. A very common bounds 
error is to use the following: 

int i = names.size();
name = names.get(i);  // Error 

The last valid index is names.size() - 1.
To set an array list element to a new value, use the set method. 
names.set(2, "Carolyn");

This call sets position 2 of the names array list to "Carolyn", overwriting whatever value 
was there before. 

The set method overwrites existing values. It is different from the add method, 
which adds a new ele ment to the array list.

You can insert an element in the middle of an array list. For example, the call names.
add(1, "Ann") adds a new element at position 1 and moves all elements with index 1 or 
larger by one position. After each call to the add method, the size of the array list 
increases by 1 (see Figure 17).

Use the size method 
to obtain the current 
size of an array list.

Use the get and set 
methods to access an 
array list element at a 
given index.

An array list has 
methods for adding 
and removing ele
ments in the middle.

figure 17   
adding and  
removing  
elements in the  
Middle of an  
array List

1 Before add
ArrayList<String>names =

"Carolyn"
"Bob"

"Emily"

2 After names.add(1, "Ann")
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily"
"Ann" Moved from index 1 to 2

New element 
added at index 1

Moved from index 2 to 3

3 After names.remove(1)
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily" Moved from index 2 to 1

Moved from index 3 to 2



292 Chapter 6  arrays and array Lists 

 Conversely, the remove method removes the element at a given position, moves all 
elements after the removed element down by one position, and reduces the size of the 
array list by 1. Part 3 of Figure 17 illustrates the result of names.remove(1). 

With an array list, it is very easy to get a quick printout. Simply pass the array list 
to the println method:

System.out.println(names); // Prints [Emily, Bob, Carolyn] 

6.8.2 Using the enhanced for Loop with array Lists

You can use the enhanced for loop to visit all elements of an array list. For example, 
the following loop prints all names: 

ArrayList<String> names = . . . ;
for (String name : names)
{
   System.out.println(name);
}

This loop is equivalent to the following basic for loop: 
for (int i = 0; i < names.size(); i++)
{
   String name = names.get(i);
   System.out.println(name);
}

table 2  Working with array Lists

ArrayList<String> names = new ArrayList<String>(); Constructs an empty array list that can 
hold strings.

names.add("Ann");
names.add("Cindy");

Adds elements to the end. 

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1.  
names is now [Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0.  
names is now [Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value. 
names is now [Bill, Cindy].

String name = names.get(i); Gets an element. 

String last = names.get(names.size() - 1); Gets the last element.

ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 0; i < 10; i++)
{
   squares.add(i * i);
}

Constructs an array list holding the first 
ten squares.

Use the add and 
remove methods to 
add and remove 
array list elements.



6.8 array Lists  293

6.8.3 Copying array Lists

As with arrays, you need to remember that array list variables hold references. Copy-
ing the reference yields two references to the same array list (see Figure 18). 

ArrayList<String> friends = names;
friends.add("Harry");

Now both names and friends reference the same array list to which the string "Harry" 
was added.

If you want to make a copy of an array list, construct the copy and pass the original 
list into the con structor:

ArrayList<String> newNames = new ArrayList<String>(names);

6.8.4 array Lists and Methods

Like arrays, array lists can be method arguments and return values. Here is an exam-
ple: a method that receives a list of strings and returns the reversed list.

public static ArrayList<String> reverse(ArrayList<String> names)
{
   // Allocate a list to hold the method result
   ArrayList<String> result = new ArrayList<String>();

   // Traverse the names list in reverse order, starting with the last element
   for (int i = names.size() - 1; i >= 0; i--)
   {
      // Add each name to the result
      result.add(names.get(i));
   }
   return result;
}

If this method is called with an array list containing the names Emily, Bob, Cindy, it 
returns a new array list with the names Cindy, Bob, Emily.

6.8.5  Wrappers and auto-boxing

In Java, you cannot directly insert primitive type values—numbers, characters, or 
boolean values—into array lists. For example, you cannot form an ArrayList<double>. 
Instead, you must use one of the wrapper classes shown in the following table.  

figure 18  Copying an array List reference

ArrayList<String>

"Emily"
"Bob"

"Carolyn"
"Harry"

names =

friends =

to collect numbers in 
array lists, you must 
use wrapper classes.



294 Chapter 6  arrays and array Lists 

primitive type Wrapper Class

byte Byte 

boolean Boolean 

char Character 

double Double 

float Float 

int Integer 

long Long 

short Short 

For example, to collect double values in an array list, you use an ArrayList<Double>. 
Note that the wrapper class names start with uppercase letters, and that two of them 
differ from the names of the corresponding primitive type: Integer and Character. 

Conversion between primitive types and the corresponding wrapper classes is 
automatic. This process is called auto-boxing (even though auto-wrapping would 
have been more consistent).

For example, if you assign a double value to a Double variable, the number is auto-
matically “put into a box” (see Figure 19).

 Double wrapper = 29.95; 

Conversely, wrapper values are automatically “unboxed” to primitive types. 
double x = wrapper;

Because boxing and unboxing is automatic, you don’t need to think about it. Simply 
remember to use the wrapper type when you declare array lists of numbers. From 
then on, use the primitive type and rely on auto-boxing.

ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95);
double x = values.get(0); 

Like truffles that must be in a wrapper to be sold, 
a number must be placed in a wrapper to be stored in an array list.

figure 19  a Wrapper Class Variable

wrapper =

value =

Double

29.95



6.8 array Lists  295

6.8.6  Using array algorithms with array Lists

The array algorithms in Section 6.3 can be converted to array lists simply by using the 
array list methods instead of the array syntax (see Table 3 on page 297). For example, this 
code snippet finds the largest element in an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
   if (values[i] > largest)
   {
      largest = values[i];
   }
}

Here is the same algorithm, now using an array list:
double largest = values.get(0);
for (int i = 1; i < values.size(); i++)
{
   if (values.get(i) > largest)
   {
      largest = values.get(i);
   }
}

6.8.7  storing input Values in an array List

When you collect an unknown number of inputs, array lists are much easier to use 
than arrays. Simply read inputs and add them to an array list:

ArrayList<Double> inputs = new ArrayList<Double>();
while (in.hasNextDouble())
{
   inputs.add(in.nextDouble());

}

6.8.8 removing Matches

It is easy to remove elements from an array list, by calling the remove method. A com-
mon processing task is to remove all elements that match a particular condition. Sup-
pose, for example, that we want to remove all strings of length < 4 from an array list.

Of course, you traverse the array list and look for matching elements:
ArrayList<String> words = ...;
for (int i = 0; i < words.size(); i++)
{
   String word = words.get(i);
   if (word.length() < 4)
   {
      Remove the element at index i.
   }
}

But there is a subtle problem. After you remove the element, the for loop increments 
i, skipping past the next element. 



296 Chapter 6  arrays and array Lists 

 Consider this concrete example, where words contains the strings "Welcome", "to", 
"the", "island!". When i is 1, we remove the word "to" at index 1. Then i is incre-
mented to 2, and the word "the", which is now at position 1, is never examined.

 i words 
 0 "Welcome", "to", "the", "island"
 1 "Welcome", "the", "island"
 2 

We should not increment the index when removing a word. The appropriate pseudo-
code is

If the element at index i matches the condition
 Remove the element.
Else
 Increment i.

Because we don’t always increment the index, a for loop is not appropriate for this 
algorithm. Instead, use a while loop:

int i = 0;
while (i < words.size())
{
   String word = words.get(i);
   if (word.length() < 4)
   {
      words.remove(i);
   }
   else
   {
      i++;
   }
}

6.8.9 Choosing Between array Lists and arrays

For most programming tasks, array lists are easier to use than arrays. Array lists can 
grow and shrink. On the other hand, arrays have a nicer syntax for element access and 
initialization. 

Which of the two should you choose? Here are some recommendations.

• If the size of a collection never changes, use an array.

• If you collect a long sequence of primitive type values and you are concerned 
about efficiency, use an array.

• Otherwise, use an array list.

The following program shows how to mark the largest value in a sequence of values. 
This program uses an array list. Note how the program is an improvement over the 
array version on page 265. This program can process input sequences of arbitrary length.

o n L i n e  e x A m p L e

a version of the 
Scores program 
using an array list.



6.8 array Lists  297

table 3  Comparing array and array List operations

operation arrays array Lists

Get an element. x = values[4]; x = values.get(4)

Replace an element. values[4] = 35; values.set(4, 35);

Number of elements. values.length values.size()

Number of filled elements. currentSize 
(companion variable, see 
Section 6.1.3)

values.size()

Remove an element. See Section 6.3.6 values.remove(4);

Add an element, growing 
the collection.

See Section 6.3.7 values.add(35);

Initializing a collection. int[] values = { 1, 4, 9 }; No initializer list syntax; 
call add three times.

section_8/LargestinArrayList.java

1 import java.util.ArrayList;
2 import java.util.Scanner;
3 
4 /**
5    This program reads a sequence of values and prints them, marking the largest value.
6 */
7 public class LargestInArrayList
8 {
9    public static void main(String[] args)

10    { 
11       ArrayList<Double> values = new ArrayList<Double>();
12 
13       // Read inputs
14 
15       System.out.println("Please enter values, Q to quit:");
16       Scanner in = new Scanner(System.in);
17       while (in.hasNextDouble())
18       { 
19          values.add(in.nextDouble());
20       }
21 
22       // Find the largest value
23 
24       double largest = values.get(0);
25       for (int i = 1; i < values.size(); i++)
26       {
27          if (values.get(i) > largest)
28          {
29             largest = values.get(i);
30          }
31       }
32 
33       // Print all values, marking the largest
34 



298 Chapter 6  arrays and array Lists 

35       for (double element : values)
36       { 
37          System.out.print(element);
38          if (element == largest) 
39          {
40             System.out.print(" <== largest value");
41          }
42          System.out.println();
43       }
44    }
45 }

program run

Please enter values, Q to quit:
35 80 115 44.5 Q
35
80
115 <== largest value
44.5

39.  Declare an array list primes of integers that contains the first five prime numbers 
(2, 3, 5, 7, and 11).

40.  Given the array list primes declared in Self Check 39, write a loop to print its ele-
ments in reverse order, starting with the last element.

41.  What does the array list names contain after the following statements?
ArrayList<String> names = new ArrayList<String>;
names.add("Bob");
names.add(0, "Ann");
names.remove(1);
names.add("Cal");

42.  What is wrong with this code snippet?
ArrayList<String> names;
names.add(Bob);

43.  Consider this method that appends the elements of one array list to another. 
public static void append(ArrayList<String> target, ArrayList<String> source)
{
   for (int i = 0; i < source.size(); i++) 
   { 
      target.add(source.get(i)); 
   }
}

What are the contents of names1 and names2 after these statements?
ArrayList<String> names1 = new ArrayList<String>();
names1.add("Emily");
names1.add("Bob");
names1.add("Cindy");
ArrayList<String> names2 = new ArrayList<String>();
names2.add("Dave");
append(names1, names2);

44.  Suppose you want to store the names of the weekdays. Should you use an array 
list or an array of seven strings?

s e L f   c h e c k



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

6.8 array Lists  299

45.  The section_8 directory of your source code contains an alternate implementa-
tion of the problem solution in How To 6.1 on page 275. Compare the array and 
array list implementations. What is the primary advantage of the latter?

practice it  Now you can try these exercises at the end of the chapter: R6.10, R6.34, P6.21, 
P6.23.

Length and size

Unfortunately, the Java syntax for determining the number of elements in an array, an array 
list, and a string is not at all consistent. 

data type number of elements

Array a.length 

Array list a.size() 

String a.length() 

It is a common error to confuse these. You just have to remember the correct syntax for every 
data type.  

The diamond syntax in java 7

Java 7 introduces a convenient syntax enhancement for declaring array lists and other generic 
classes. In a statement that declares and constructs an array list, you need not repeat the type 
parameter in the constructor. That is, you can write

ArrayList<String> names = new ArrayList<>();

instead of

ArrayList<String> names = new ArrayList<String>();

This shortcut is called the “diamond syntax” because the empty brackets <> look like a dia-
mond shape. 

Common error 6.4 

special topic 6.6 

Video eXaMpLe 6.2 game of Life

Conway’s Game of Life simulates the growth of a population, 
using only two simple rules. This Video Example shows you how 
to implement this famous “game”.



300 Chapter 6  arrays and array Lists 

Use arrays for collecting values.

• An array collects a sequence of values of the same type.
• Individual elements in an array are accessed by an integer index i, using the 

notation array[i].
• An array element can be used like any variable.
• An array index must be at least zero and less than the size of the array.
• A bounds error, which occurs if you supply an invalid array index, can cause your 

program to terminate.
• Use the expression array.length to find the number of elements in an 

array.
• An array reference specifies the location of an array. Copying the 

reference yields a second reference to the same array.
• With a partially filled array, keep a companion variable for the 

current size.

know when to use the enhanced for loop.

• You can use the enhanced for loop to visit all elements of an array.
• Use the enhanced for loop if you do not need the index values in the loop body.

know and use common array algorithms.

•  When separating elements, don’t place a separator before the first element. 
• A linear search inspects elements in sequence until a match is found.
• Before inserting an element, move elements to the end of the array starting with 

the last one.

• Use a temporary variable when swapping two elements.
• Use the Arrays.copyOf method to copy the elements of an array into a new array.

implement methods that process arrays.

• Arrays can occur as method arguments and return values.

combine and adapt algorithms for solving a programming problem.

• By combining fundamental algorithms, you can solve complex programming 
tasks.

• You should be familiar with the implementation of fundamental algorithms so 
that you can adapt them.

discover algorithms by manipulating physical objects.

• Use a sequence of coins, playing cards, or toys to visualize an array of values.
• You can use paper clips as position markers or counters.

C h a p t e r  s U M M a r y



review exercises 301

Use two-dimensional arrays for data that is arranged in rows and columns.

• Use a two-dimensional array to store tabular data.
• Individual elements in a two-dimensional array are 

accessed by using two index values, array[i][j].

Use array lists for managing collections whose size can change.

• An array list stores a sequence of values whose size can change.
• The ArrayList class is a generic class: ArrayList<Type> collects elements of the 

specified type.
• Use the size method to obtain the current size of an array list.
• Use the get and set methods to access an array list element 

at a given index.
• Use the add and remove methods to add and remove array 

list elements.
• To collect numbers in array lists, you must use wrapper 

classes.

•• r6.1  Write code that fills an array values with each set of numbers below.
a. 1 2 3 4 5 6 7 8 9 10
b. 0 2 4 6 8 10 12 14 16 18 20
c. 1 4 9 16 25 36 49 64 81 100
d. 0 0 0 0 0 0 0 0 0 0
e. 1 4 9 16 9 7 4 9 11 
f.  0 1 0  1  0  1  0  1  0  1
g. 0  1  2  3  4  0  1  2  3  4

java.lang.Boolean
java.lang.Double
java.lang.Integer
java.util.Arrays
   copyOf
   toString

java.util.ArrayList<E>
   add
   get
   remove
   set
   size

s ta n d a r d  L i B r a r y  i t e M s  i n t r o d U C e d  i n  t h i s  C h a p t e r

r e V i e W  e X e r C i s e s



302 Chapter 6  arrays and array Lists 

•• r6.2  Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What is the value of total after the following loops complete?
a. int total = 0;  

for (int i = 0; i < 10; i++) { total = total + a[i]; }

b. int total = 0;  
for (int i = 0; i < 10; i = i + 2) { total = total + a[i]; }

c. int total = 0;  
for (int i = 1; i < 10; i = i + 2) { total = total + a[i]; }

d. int total = 0;  
for (int i = 2; i <= 10; i++) { total = total + a[i]; }

e. int total = 0;  
for (int i = 1; i < 10; i = 2 * i) { total = total + a[i]; }

f.  int total = 0;  
for (int i = 9; i >= 0; i--) { total = total + a[i]; }

g. int total = 0;  
for (int i = 9; i >= 0; i = i - 2) { total = total + a[i]; }

h. int total = 0;  
for (int i = 0; i < 10; i++) { total = a[i] - total; }

•• r6.3  Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What are the contents of the array a after the following loops complete?
a. for (int i = 1; i < 10; i++) { a[i] = a[i - 1]; } 
b. for (int i = 9; i > 0; i--) { a[i] = a[i - 1]; } 
c. for (int i = 0; i < 9; i++) { a[i] = a[i + 1]; } 
d. for (int i = 8; i >= 0; i--) { a[i] = a[i + 1]; } 
e. for (int i = 1; i < 10; i++) { a[i] = a[i] + a[i - 1]; } 
f.  for (int i = 1; i < 10; i = i + 2) { a[i] = 0; } 
g. for (int i = 0; i < 5; i++) { a[i + 5] = a[i]; } 
h. for (int i = 1; i < 5; i++) { a[i] = a[9 - i]; } 

••• r6.4  Write a loop that fills an array values with ten random numbers between 1 and 100. 
Write code for two nested loops that fill values with ten different random numbers 
between 1 and 100.

•• r6.5  Write Java code for a loop that simultaneously computes both the maximum and 
minimum of an array.

• r6.6  What is wrong with each of the following code segments?
a. int[] values = new int[10]; 

for (int i = 1; i <= 10; i++)  
{ 
   values[i] = i * i;  
}

b. int[] values; 
for (int i = 0; i < values.length; i++) 
{ 
   values[i] = i * i; 
}



review exercises 303

•• r6.7  Write enhanced for loops for the following tasks.
a. Printing all elements of an array in a single row, separated by spaces.
b. Computing the product of all elements in an array.
c. Counting how many elements in an array are negative.

•• r6.8  Rewrite the following loops without using the enhanced for loop construct. Here, 
values is an array of floating-point numbers.

a. for (double x : values) { total = total + x; }
b. for (double x : values) { if (x == target) { return true; } }
c. int i = 0; 

for (double x : values) { values[i] = 2 * x; i++; }

•• r6.9  Rewrite the following loops, using the enhanced for loop construct. Here, values is 
an array of floating-point numbers.

a. for (int i = 0; i < values.length; i++) { total = total + values[i]; }
b. for (int i = 1; i < values.length; i++) { total = total + values[i]; }
c. for (int i = 0; i < values.length; i++) 

{ 
   if (values[i] == target) { return i; } 
}

• r6.10  What is wrong with each of the following code segments?
a. ArrayList<int> values = new ArrayList<int>();
b. ArrayList<Integer> values = new ArrayList();
c. ArrayList<Integer> values = new ArrayList<Integer>;
d. ArrayList<Integer> values = new ArrayList<Integer>(); 

for (int i = 1; i <= 10; i++) 
{ 
   values.set(i - 1, i * i); 
}

e. ArrayList<Integer> values; 
for (int i = 1; i <= 10; i++) 
{ 
   values.add(i * i);  
}

• r6.11  What is an index of an array? What are the legal index values? What is a bounds 
error?

• r6.12  Write a program that contains a bounds error. Run the program. What happens on 
your computer?

• r6.13  Write a loop that reads ten numbers and a second loop that displays them in the 
opposite order from which they were entered.

• r6.14  Trace the flow of the linear search loop in Section 6.3.5, where values contains the 
elements 80 90 100 120 110. Show two columns, for pos and found. Repeat the trace 
when values contains 80 90 100 70.

• r6.15  Trace both mechanisms for removing an element described in Section 6.3.6. Use an 
array values with elements 110 90 100 120 80, and remove the element at index 2. 



304 Chapter 6  arrays and array Lists 

•• r6.16  For the operations on partially filled arrays below, provide the header of a method. 
Do not implement the methods.

a. Sort the elements in decreasing order.
b. Print all elements, separated by a given string.
c. Count how many elements are less than a given value.
d. Remove all elements that are less than a given value.
e. Place all elements that are less than a given value in another array.

• r6.17  Trace the flow of the loop in Section 6.3.4 with the given example. Show two col-
umns, one with the value of i and one with the output. 

• r6.18  Consider the following loop for collecting all elements that match a condition; in 
this case, that the element is larger than 100.

ArrayList<Double> matches = new ArrayList<Double>();
for (double element : values)
{
   if (element > 100)
   {
      matches.add(element);
   }
}

Trace the flow of the loop, where values contains the elements 110 90 100 120 80. 
Show two columns, for element and matches. 

• r6.19  Trace the flow of the loop in Section 6.3.5, where values contains the elements 80 
90 100 120 110. Show two columns, for pos and found. Repeat the trace when values 
contains the elements 80 90 120 70.

•• r6.20  Trace the algorithm for removing an element described in Section 6.3.6. Use an array 
values with elements 110 90 100 120 80, and remove the element at index 2. 

•• r6.21  Give pseudocode for an algorithm that rotates the elements of an array by one posi-
tion, moving the initial element to the end of the array, like this:

3 5 7 11 13 2

2 3 5 7 11 13

•• r6.22  Give pseudocode for an algorithm that removes all negative values from an array, 
preserving the order of the remaining elements.

•• r6.23  Suppose values is a sorted array of integers. Give pseudocode that describes how 
a new value can be inserted in its proper position so that the resulting array stays 
sorted.

••• r6.24  A run is a sequence of adjacent repeated values. Give pseudocode for computing the 
length of the longest run in an array. For example, the longest run in the array with 
elements

1 2 5 5 3 1 2 4 3 2 2 2 2 3 6 5 5 6 3 1

has length 4.



review exercises 305

••• r6.25  What is wrong with the following method that aims to fill an array with random 
numbers?

public static void fillWithRandomNumbers(double[] values)
{
   double[] numbers = new double[values.length];
   for (int i = 0; i < numbers.length; i++) 
   { 
      numbers[i] = Math.random(); 
   }
   values = numbers;
}

•• r6.26  You are given two arrays denoting x- and y-coordinates of a set of 
points in the plane. For plotting the point set, we need to know the 
x- and y-coordinates of the smallest rectangle containing the 
points.
How can you obtain these values from the fundamental algorithms 
in Section 6.3?

• r6.27  Solve the problem described in Section 6.5 by sorting the array first. How do you 
need to modify the algorithm for computing the total?

•• r6.28  Solve the task described in Section 6.6 using an algorithm that removes and inserts 
elements instead of switching them. Write the pseudocode for the algorithm, assum-
ing that methods for removal and insertion exist. Act out the algorithm with a 
sequence of coins and explain why it is less efficient than the swapping algorithm 
developed in Section 6.6.

•• r6.29  Develop an algorithm for finding the most frequently occurring value in an array of 
numbers. Use a sequence of coins. Place paper clips below each coin that count how 
many other coins of the same value are in the sequence. Give the pseudocode for an 
algorithm that yields the correct answer, and describe how using the coins and paper 
clips helped you find the algorithm.

•• r6.30  Write Java statements for performing the following tasks with an array declared as 

int[][] values = new int[ROWS][COLUMNS];

• Fill all entries with 0.
• Fill elements alternately with 0s and 1s in a checkerboard pattern.
• Fill only the elements at the top and bottom row with zeroes.
• Compute the sum of all elements.
• Print the array in tabular form.

•• r6.31  Write pseudocode for an algorithm that fills the first and last column as well as the 
first and last row of a two-dimensional array of integers with –1.

• r6.32  Section 6.8.8 shows that you must be careful about updating the index value when 
you remove elements from an array list. Show how you can avoid this problem by 
traversing the array list backwards.

y

x



306 Chapter 6  arrays and array Lists 

•• r6.33  True or false?
a. All elements of an array are of the same type.
b. Arrays cannot contain strings as elements.
c. Two-dimensional arrays always have the same number of rows and columns.
d. Elements of different columns in a two-dimensional array can have  

different types.
e. A method cannot return a two-dimensional array.
f.  A method cannot change the length of an array argument.
g. A method cannot change the number of columns of an argument that is a 

two-dimensional array.

•• r6.34  How do you perform the following tasks with array lists in Java?
a. Test that two array lists contain the same elements in the same order.
b. Copy one array list to another. 
c. Fill an array list with zeroes, overwriting all elements in it.
d. Remove all elements from an array list. 

• r6.35  True or false?
a. All elements of an array list are of the same type.
b. Array list index values must be integers.
c. Array lists cannot contain strings as elements.
d. Array lists can change their size, getting larger or smaller.
e. A method cannot return an array list.
f.  A method cannot change the size of an array list argument.

•• p6.1  Write a program that initializes an array with ten random integers and then prints 
four lines of output, containing

• Every element at an even index.
• Every even element.
• All elements in reverse order.
• Only the first and last element.

•• p6.2  Write array methods that carry out the following tasks for an array of integers. For 
each method, provide a test program. 

a. Swap the first and last elements in the array.
b. Shift all elements by one to the right and move the last element into the first  

position. For example, 1 4 9 16 25 would be transformed into 25 1 4 9 16.
c. Replace all even elements with 0.
d. Replace each element except the first and last by the larger of its two neighbors.

p r o G r a M M i n G  e X e r C i s e s



programming exercises 307

e. Remove the middle element if the array length is odd, or the middle two 
elements if the length is even.

f.  Move all even elements to the front, otherwise preserving the order of the 
elements.

g. Return the second-largest element in the array.
h. Return true if the array is currently sorted in increasing order.
i.  Return true if the array contains two adjacent duplicate elements.
j.  Return true if the array contains duplicate elements (which need not be 

adjacent).

• p6.3  Modify the LargestInArray.java program in Section 6.3 to mark both the smallest and 
the largest elements.

•• p6.4  Write a method sumWithoutSmallest that computes the sum of an array of values, 
except for the smallest one, in a single loop. In the loop, update the sum and the 
smallest value. After the loop, return the difference.

• p6.5  Write a method public static void removeMin that removes the minimum value from a 
partially filled array without calling other methods. 

•• p6.6  Compute the alternating sum of all elements in an array. For example, if your pro-
gram reads the input

1 4 9 16 9 7 4 9 11
then it computes

1 – 4 + 9 – 16 + 9 – 7 + 4 – 9 + 11 = –2

• p6.7  Write a method that reverses the sequence of elements in an array. For example, if 
you call the method with the array 

1 4 9 16 9 7 4 9 11
then the array is changed to

11 9 4 7 9 16 9 4 1

• p6.8  Write a method that implements the algorithm developed in Section 6.6.

•• p6.9  Write a method
public static boolean equals(int[] a, int[] b)

that checks whether two arrays have the same elements in the same order.

•• p6.10  Write a method
public static boolean sameSet(int[] a, int[] b)

that checks whether two arrays have the same elements in some order, ignoring 
duplicates. For example, the two arrays

1 4 9 16 9 7 4 9 11
and

11 11 7 9 16 4 1
would be considered identical. You will probably need one or more helper methods.



308 Chapter 6  arrays and array Lists 

••• p6.11  Write a method
public static boolean sameElements(int[] a, int[] b)

that checks whether two arrays have the same elements in some order, with the same 
multiplicities. For example,

1 4 9 16 9 7 4 9 11
and

11 1 4 9 16 9 7 4 9
would be considered identical, but

1 4 9 16 9 7 4 9 11
and

11 11 7 9 16 4 1 4 9

would not. You will probably need one or more helper methods.

•• p6.12  A run is a sequence of adjacent repeated values. Write a program that generates a 
sequence of 20 random die tosses in an array and that prints the die values, marking 
the runs by including them in parentheses, like this: 

1 2 (5 5) 3 1 2 4 3 (2 2 2 2) 3 6 (5 5) 6 3 1

Use the following pseudocode:

Set a boolean variable inRun to false.
For each valid index i in the array
 If inRun
  If values[i] is different from the preceding value
   Print ).
   inRun = false.
 If not inRun
  If values[i] is the same as the following value
   Print (.
   inRun = true.
 Print values[i].
If inRun, print ).

•• p6.13  Write a program that generates a sequence of 20 random die tosses in an array and 
that prints the die values, marking only the longest run, like this:

1 2 5 5 3 1 2 4 3 (2 2 2 2) 3 6 5 5 6 3 1

If there is more than one run of maximum length, mark the first one.

•• p6.14  Write a program that generates a sequence of 20 random values between 0 and 99 in 
an array, prints the sequence, sorts it, and prints the sorted sequence. Use the sort 
method from the standard Java library.

••• p6.15  Write a program that produces ten random permutations of the numbers 1 to 10. To 
generate a random permutation, you need to fill an array with the numbers 1 to 10 
so that no two entries of the array have the same contents. You could do it by brute 
force, by generating random values until you have a value that is not yet in the array. 
But that is inefficient. Instead, follow this algorithm.



programming exercises 309

Make a second array and fill it with the numbers 1 to 10. 
Repeat 10 times
 Pick a random element from the second array.
 Remove it and append it to the permutation array.

•• p6.16  It is a well-researched fact that men in a restroom generally prefer to maximize 
their distance from already occupied stalls, by occupying the middle of the longest 
sequence of unoccupied places. 
For example, consider the situation where ten stalls are empty.

_ _ _ _ _ _ _ _ _ _

The first visitor will occupy a middle position: 

_ _ _ _ _ X _ _ _ _

The next visitor will be in the middle of the empty area at the left. 

_ _ X _ _ X _ _ _ _

Write a program that reads the number of stalls and then prints out diagrams in the 
format given above when the stalls become filled, one at a time. Hint: Use an array of 
boolean values to indicate whether a stall is occupied.

••• p6.17  In this assignment, you will model the game of Bulgarian Solitaire. The game starts 
with 45 cards. (They need not be playing cards. Unmarked index cards work just as 
well.) Randomly divide them into some number of piles of random size. For exam-
ple, you might start with piles of size 20, 5, 1, 9, and 10. In each round, you take one 
card from each pile, forming a new pile with these cards. For example, the sample 
starting configuration would be transformed into piles of size 19, 4, 8, 9, and 5. The 
solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9, in some order. (It 
can be shown that you always end up with such a configuration.)
In your program, produce a random starting configuration and print it. Then keep 
applying the soli taire step and print the result. Stop when the solitaire final configu-
ration is reached. 

••• p6.18  Magic squares. An n × n matrix that is filled with the numbers 1, 2, 3, . . ., n2 is a 
magic square if the sum of the elements in each row, in each column, and in the two 
diagonals is the same value. 

4 15 14 1

9 6 7 12

5 10 11 8

16 3 2 13

Write a program that reads in 16 values from the keyboard and tests whether they 
form a magic square when put into a 4 × 4 array. You need to test two features:

1. Does each of the numbers 1, 2, ..., 16 occur in the user input?

2. When the numbers are put into a square, are the sums of the rows, columns, 
and diagonals equal to each other?



310 Chapter 6  arrays and array Lists 

••• p6.19  Implement the following algorithm to construct magic n × n squares; it works only if 
n is odd. 

Set row = n - 1, column = n / 2. 
For k = 1 ... n * n
 Place k at [row][column].
 Increment row and column.
 If the row or column is n, replace it with 0.
 If the element at [row][column] has already been filled 
  Set row and column to their previous values.
  Decrement row.

Here is the 5 × 5 square that you get if you follow this method:

17 24 1 8

23 5 7 14

4 6 13 20

10 12 19 21

15

16

22

3

11 18 25 2 9

Write a program whose input is the number n and whose output is the magic square 
of order n if n is odd.

•• p6.20  Write a method that computes the average of the neighbors of a two-dimensional 
array element in the eight directions shown in Figure 14.

public static double neighborAverage(int[][] values, int row, int column)

However, if the element is located at the boundary of the array, only include the 
neighbors that are in the array. For example, if row and column are both 0, there are 
only three neighbors.

•• p6.21  Write a program that reads a sequence of input values and displays a bar chart of the 
values, using asterisks, like this:

**********************
****************************************
****************************
**************************
**************

You may assume that all values are positive. First figure out the maximum value. 
That value’s bar should be drawn with 40 asterisks. Shorter bars should use propor-
tionally fewer asterisks. 

••• p6.22  Improve the program of Exercise P6.21 to work correctly when the data set contains 
nega tive values.

•• p6.23  Improve the program of Exercise P6.21 by adding captions for each bar. Prompt the 
user for the captions and data values. The output should look like this:

      Egypt **********************
     France ****************************************
      Japan ****************************
    Uruguay **************************
Switzerland **************



programming exercises 311

•• p6.24  A theater seating chart is implemented as a two-dimensional array of ticket prices, 
like this: 

10 10 10 10 10 10 10 10 10 10 
10 10 10 10 10 10 10 10 10 10 
10 10 10 10 10 10 10 10 10 10 
10 10 20 20 20 20 20 20 10 10 
10 10 20 20 20 20 20 20 10 10 
10 10 20 20 20 20 20 20 10 10 
20 20 30 30 40 40 30 30 20 20 
20 30 30 40 50 50 40 30 30 20
30 40 50 50 50 50 50 50 40 30

Write a program that prompts users to 
pick either a seat or a price. Mark sold 
seats by changing the price to 0. When 
a user specifies a seat, make sure it is 
available. When a user specifies a price, 
find any seat with that price. 

••• p6.25  Write a program that plays tic-tac-toe. The tic-tac-toe 
game is played on a 3 × 3 grid as in the photo at right. The 
game is played by two players, who take turns. The first 
player marks moves with a circle, the second with a cross. 
The player who has formed a horizontal, vertical, or diag-
onal sequence of three marks wins. Your program should 
draw the game board, ask the user for the coordinates of 
the next mark, change the players after every successful 
move, and pronounce the winner.

• p6.26  Write a method
public static ArrayList<Integer> append(ArrayList<Integer> a, ArrayList<Integer> b)

that appends one array list after another. For example, if a is

1 4 9 16
and b is

9 7 4 9 11
then append returns the array list

1 4 9 16 9 7 4 9 11

•• p6.27  Write a method
public static ArrayList<Integer> merge(ArrayList<Integer> a, ArrayList<Integer> b)

that merges two array lists, alternating elements from both array lists. If one array 
list is shorter than the other, then alternate as long as you can and then append the 
remaining elements from the longer array list. For example, if a is

1 4 9 16
and b is

9 7 4 9 11
then merge returns the array list

1 9 4 7 9 4 16 9 11



312 Chapter 6  arrays and array Lists 

•• p6.28  Write a method
public static ArrayList<Integer> mergeSorted(ArrayList<Integer> a,  
   ArrayList<Integer> b)

that merges two sorted array lists, producing a new sorted array list. Keep an index 
into each array list, indicating how much of it has been processed already. Each time, 
append the smallest unprocessed element from either array list, then advance the 
index. For example, if a is

1 4 9 16
and b is

4 7 9 9 11

then mergeSorted returns the array list

1 4 4 7 9 9 9 11 16

•• business p6.29  A pet shop wants to give a discount to its 
clients if they buy one or more pets and 
at least five other items. The discount is 
equal to 20 percent of the cost of the other 
items, but not the pets.
Implement a method

public static void discount(double[] prices, boolean[] isPet, int nItems)

The method receives information about a particular sale. For the ith item, prices[i] is 
the price before any discount, and isPet[i] is true if the item is a pet.
Write a program that prompts a cashier to enter each price and then a Y for a pet or N 
for another item. Use a price of –1 as a sentinel. Save the inputs in an array. Call the 
method that you implemented, and display the discount.

•• business p6.30  A supermarket wants to reward its best customer of each day, showing the custom-
er’s name on a screen in the supermarket. For that purpose, the customer’s purchase 
amount is stored in an ArrayList<Double> and the customer’s name is stored in a cor-
responding ArrayList<String>.
Implement a method

public static String nameOfBestCustomer(ArrayList<Double> sales, 
      ArrayList<String> customers)

that returns the name of the customer with the largest sale.
Write a program that prompts the cashier to enter all prices and names, adds them to 
two array lists, calls the method that you implemented, and displays the result. Use a 
price of 0 as a sentinel.

••• business p6.31  Improve the program of Exercise P6.30 so that it displays the top customers, that 
is, the topN customers with the largest sales, where topN is a value that the user of the 
program supplies.
Implement a method

public static ArrayList<String> nameOfBestCustomers(ArrayList<Double> sales, 
   ArrayList<String> customers, int topN)

If there were fewer than topN customers, include all of them.



Programming Exercises 313

•• Science P6.32 Sounds can be represented by an array of “sample 
val ues” that describe the intensity of the sound at a 
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a 
method process for processing the sample values, and 
saves the sound file. Your task is to implement the 
process method by introducing an echo. For each 
sound value, add the value from 0.2 seconds ago. 
Scale the result so that no value is larger than 32767. 

••• Science P6.33 You are given a two-dimensional array of values that give the height of a terrain at 
different points in a square. Write a method

public static void floodMap(double[][] heights, double waterLevel)

that prints out a flood map, showing which of the points in the terrain would be 
flooded if the water level was the given value. In the flood map, print a * for each 
flooded point and a space for each point that is not flooded.
Here is a sample map:

* * * *         * *
* * * * *     * * *
* * * *         * *
* * *         * * *
* * * *    *  * * *
* * * * * * * * * *
* *     * * *  
*       * * * *   *
                * *
              * * *

Then write a program that reads one hundred terrain height values and shows how 
the terrain gets flooded when the water level increases in ten steps from the lowest 
point in the terrain to the highest.

•• Science P6.34 Sample values from an experiment often need to be smoothed out. One simple 
approach is to replace each value in an array with the average of the value and its 
two neighboring values (or one neighboring value if it is at either end of the array). 
Implement a method

public static void smooth(double[] values, int size)

that carries out this operation. You should not create another array in your solution.

•• Science P6.35 Modify the ch06/animation/BlockAnimation.java program to show an animated sine 
wave. In the ith frame, shift the sine wave by i degrees. 

••• Science P6.36 Write a program that models the movement of an object 
with mass m that is attached to an oscillating spring. 
When a spring is displaced from its equilibrium posi-
tion by an amount x, Hooke’s law states that the restor-
ing force is

F = –kx
where k is a constant that depends on the spring. (Use 
10 N̸m for this simulation.)
Start with a given displacement x (say, 0.5 meter). Set 
the initial velocity v to 0. Compute the acceleration a 

x

F

Unstretched 
spring



314 Chapter 6  arrays and array Lists 

from Newton’s law (F = ma) and Hooke’s law, using a mass of 1 kg. Use a small time 
interval Δt = 0.01 second. Update the velocity––it changes by aΔt. Update the 
displacement––it changes by vΔt. 
Every ten iterations, plot the spring displacement as a bar, where 1 pixel represents 
1 cm. Use the technique in Special Topic 4.3 for creating an image.

•• graphics p6.37  Using the technique of Special Topic 4.3, generate the image of a checkerboard. 

• graphics p6.38  Using the technique of Special Topic 4.3, generate the image of a sine wave. Draw a 
line of pixels for every five degrees.

a n s W e r s  t o  s e L F - C h e C k  Q U e s t i o n s

1.  int[] primes = { 2, 3, 5, 7, 11 }; 
2.  2, 3, 5, 3, 2 
3.  3, 4, 6, 8, 12 
4.  values[0] = 10; 

values[9] = 10;    

or better:    values[values.length - 1] = 10; 

5.  String[] words = new String[10]; 
6.  String[] words = { "Yes", "No" }; 
7.  No. Because you don’t store the values, you 

need to print them when you read them. But 

you don’t know where to add the <= until you 
have seen all values.

8.  It counts how many elements of values are 
zero.

9.  for (double x : values) 
{ 
   System.out.println(x); 
} 

10.  double product = 1; 
for (double f : factors) 
{ 
   product = product * f; 



answers to self-Check Questions 315

}

11.  The loop writes a value into values[i]. The 
enhanced for loop does not have the index 
variable i.

12.  20 <== largest value 
10
20 <== largest value

13.  int count = 0; 
for (double x : values)
{
   if (x == 0) { count++; }
}

14.  If all elements of values are negative, then the 
result is incorrectly computed as 0.

15.  for (int i = 0; i < values.length; i++) 
{
   System.out.print(values[i]);
   if (i < values.length - 1) 
   {
      System.out.print(" | "); 
   } 
}

Now you know why we set up the loop the 
other way.

16.  If the array has no elements, then the program 
terminates with an exception. 

17.  If there is a match, then pos is incremented 
before the loop exits.

18.  This loop sets all elements to values[pos].
19.  int[] numbers = squares(5); 
20.  public static void fill(int[] values, int value) 

{
   for (int i = 0; i < values.length; i++) 
   {
      values[i] = value; }
   }

21.  The method returns an array whose length is 
given in the first argument. The array is filled 
with random integers between 0 and n - 1.

22.  The contents of scores is unchanged. The 
reverse method returns a new array with the 
reversed numbers.

23. 

24.  Use the first algorithm. The order of elements 
does not matter when computing the sum.

25.  Find the minimum value.
Calculate the sum.
Subtract the minimum value.

26.  Use the algorithm for counting matches 
(Section 4.7.2) twice, once for counting the 
positive values and once for counting the 
negative values.

27.  You need to modify the algorithm in 
Section 6.3.4.
boolean first = true;
for (int i = 0; i < values.length; i++)
{ 
   if (values[i] > 0))
   {
      if (first) { first = false; } 
      else { System.out.print(", "); }
   }
   System.out.print(values[i]);
}

Note that you can no longer use i > 0 as the 
criterion for printing a separator.

28.  Use the algorithm to collect all positive ele-
ments in an array, then use the algorithm in 
Section 6.3.4 to print the array of matches.

29.  The paperclip for i assumes positions 0, 1, 2, 
3. When i is incremented to 4, the con dition 
i < size / 2 becomes false, and the loop ends. 
Similarly, the paperclip for j assumes positions 
4, 5, 6, 7, which are the valid positions for the 
second half of the array. 

30.  It reverses the elements in the array.
31.  Here is one solution. The basic idea is to move 

all odd elements to the end. Put one paper clip 
at the beginning of the array and one at the 
end. If the element at the first paper clip is odd, 
swap it with the one at the other paper clip and 
move that paper clip to the left. Otherwise, 
move the first paper clip to the right. Stop 
when the two paper clips meet. Here is the 
pseudocode:

i = 0
j = size - 1

 values result i
 [1, 4, 9] [0, 0, 0] 0
  [9, 0, 0] 1
  [9, 4, 0] 2
  [9, 4, 1] 



316 Chapter 6  arrays and array Lists 

While (i < j)
 If (a[i] is odd)
  Swap elements at positions i and j.
  j--
 Else
  i++

32.  Here is one solution. The idea is to remove 
all odd elements and move them to the end. 
The trick is to know when to stop. Nothing is 
gained by moving odd elements into the area 
that already contains moved elements, so we 
want to mark that area with another paper clip. 

i = 0
moved = size
While (i < moved)
 If (a[i] is odd) 
  Remove the element at position i and add it  

  at the end.
  moved--

33.  When you read inputs, you get to see values 
one at a time, and you can’t peek ahead. Pick-
ing cards one at a time from a deck of cards 
simulates this process better than looking at a 
sequence of items, all of which are revealed. 

34.  You get the total number of gold, silver, and 
bronze medals in the competition. In our 
example, there are four of each.

35.  for (int i = 0; i < 8; i++) 
{
   for (int j = 0; j < 8; j++)
   {
      board[i][j] = (i + j) % 2;
   }
}

36.  String[][] board = new String[3][3]; 
37.  board[0][2] = "x"; 
38.  board[0][0], board[1][1], board[2][2] 
39.  ArrayList<Integer> primes = 

   new ArrayList<Integer>(); 
primes.add(2);
primes.add(3);
primes.add(5);
primes.add(7);
primes.add(11);

40.  for (int i = primes.size() - 1; i >= 0; i--) 
{
   System.out.println(primes.get(i));
}

41.  "Ann", "Cal" 
42.  The names variable has not been initialized. 
43.  names1 contains “Emily”, “Bob”, “Cindy”, 

“Dave”; names2 contains “Dave”
44.  Because the number of weekdays doesn’t 

change, there is no disadvantage to using an 
array, and it is easier to initialize:
String[] weekdayNames = { "Monday", "Tuesday", 
   "Wednesday", "Thursday", “Friday”,  
   "Saturday", "Sunday" };

45.  Reading inputs into an array list is much easier.



7C h a p t e r

317

to read and write text files

to process command line arguments

to throw and catch exceptions

to implement programs that propagate checked exceptions

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

7.1  Reading and WRiting text 
Files  318

Common Error 7.1: Backslashes in 
File names 321

Common Error 7.2: Constructing a scanner 
with a string 321

Special Topic 7.1: reading Web pages 321
Special Topic 7.2: File Dialog Boxes 321
Special Topic 7.3: reading and Writing 

Binary Data 322

7.2  text input and Output  323

Special Topic 7.4: regular expressions 330
Video Example 7.1: Computing a Document’s 

readability 

7.3  COmmand line aRguments  330

How To 7.1: processing text Files 333
Random Fact 7.1: encryption algorithms 336
Worked Example 7.1: analyzing Baby names 

7.4  exCeptiOn Handling  337

Syntax 7.1: throwing an exception 338
Syntax 7.2: Catching exceptions 341
Syntax 7.3: the throws Clause 343
Syntax 7.4: the finally Clause 344
Programming Tip 7.1: throw early, 

Catch late 345
Programming Tip 7.2: Do not squelch 

exceptions 345
Programming Tip 7.3: Do not Use catch and 

finally in the same try statement 346
Special Topic 7.5: automatic resource 

Management in Java 7 346
Random Fact 7.2: the ariane rocket Incident 347

7.5  appliCatiOn: Handling 
input eRRORs  347

Video Example 7.2: Detecting 
accounting Fraud 

InpUt/oUtpUt 
anD exCeptIon 
hanDlInG



318

In this chapter, you will learn how to read and write 
files—a very useful skill for processing real world data. as 
an application, you will learn how to encrypt data. (the 
enigma machine shown at left is an encryption device used 
by Germany in World War II. pioneering British computer 
scientists broke the code and were able to intercept 
encoded messages, which was a significant help in winning 
the war.) the remainder of this chapter tells you how your 
programs can report and recover from problems, such as 
missing files or malformed content, using the exception-
handling mechanism of the Java language.

7.1 reading and Writing text Files
We begin this chapter by discussing the common task of reading and writing files that 
contain text. Exam ples of text files include not only files that are created with a simple 
text editor, such as Windows Note pad, but also Java source code and HTML files. 

In Java, the most convenient mechanism for reading text is to use the Scanner class. 
You already know how to use a Scanner for reading console input. To read input from 
a disk file, the Scanner class relies on another class, File, which describes disk files and 
directories. (The File class has many methods that we do not discuss in this book; for 
example, methods that delete or rename a file.)

To begin, construct a File object with the name of the input file: 

File inputFile = new File("input.txt");

Then use the File object to construct a Scanner object:

Scanner in = new Scanner(inputFile);

This Scanner object reads text from the file input.txt. You can use the Scanner methods 
(such as nextInt, next Double, and next) to read data from the input file.

For example, you can use the following loop to process numbers in the input file:

while (in.hasNextDouble())
{
   double value = in.nextDouble();
   Process value.
}

To write output to a file, you construct a PrintWriter object with the desired file name, 
for example

PrintWriter out = new PrintWriter("output.txt");

If the output file already exists, it is emptied before the new data are written into it. If 
the file doesn’t exist, an empty file is created. 

The PrintWriter class is an enhancement of the PrintStream class that you already 
know—System.out is a PrintStream object. You can use the familiar print, println, and 
printf methods with any PrintWriter object:

out.println("Hello, World!");
out.printf("Total: %8.2f\n", total);

Use the Scanner class 
for reading text files.

When writing text 
files, use the 
PrintWriter class 
and the print/
println/printf 
methods.



7.1 reading and Writing text Files  319

When you are done processing a file, be sure to close the Scanner or PrintWriter:

in.close();
out.close();

If your program exits without closing the PrintWriter, some of the output may not be 
written to the disk file.

The following program puts these concepts to work. It reads a file containing 
numbers, and writes the numbers to another file, lined up in a column and followed 
by their total.

For example, if the input file has the contents

32 54 67.5 29 35 80
115 44.5 100 65

then the output file is

          32.00
          54.00
          67.50
          29.00
          35.00
          80.00
         115.00
          44.50
         100.00
          65.00
Total:   622.00

There is one additional issue that we need to tackle. If the input or output file for a 
Scanner doesn’t exist, a FileNotFoundException occurs when the Scanner object is con-
structed. The compiler insists that we specify what the program should do when that 
happens. Similarly, the PrintWriter constructor generates this exception if it cannot 
open the file for writing. (This can happen if the name is illegal or the user does not 
have the authority to create a file in the given location.) In our sample program, we 
want to terminate the main method if the exception occurs. To achieve this, we label 
the main method with a throws declara tion: 

public static void main(String[] args) throws FileNotFoundException

You will see in Section 7.4 how to deal with exceptions in a more professional way.
The File, PrintWriter, and FileNotFoundException classes are contained in the java.io 

package.

section_1/total.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.PrintWriter;
4 import java.util.Scanner;
5 
6 /**
7    This program reads a file with numbers, and writes the numbers to another
8    file, lined up in a column and followed by their total. 
9 */

10 public class Total
11 {
12    public static void main(String[] args) throws FileNotFoundException
13    {

Close all files when 
you are done 
processing them.



320 Chapter 7  Input/output and exception handling

14       // Prompt for the input and output file names
15 
16       Scanner console = new Scanner(System.in);
17       System.out.print("Input file: ");
18       String inputFileName = console.next();
19       System.out.print("Output file: ");
20       String outputFileName = console.next();
21 
22       // Construct the Scanner and PrintWriter objects for reading and writing
23 
24       File inputFile = new File(inputFileName);
25       Scanner in = new Scanner(inputFile);
26       PrintWriter out = new PrintWriter(outputFileName);
27 
28       // Read the input and write the output
29 
30       double total = 0;
31       
32       while (in.hasNextDouble())
33       {
34          double value = in.nextDouble();
35          out.printf("%15.2f\n", value);
36          total = total + value;
37       }
38 
39       out.printf("Total: %8.2f\n", total);
40 
41       in.close();
42       out.close();
43    }
44 }

1.  What happens when you supply the same name for the input and output files to 
the Total pro gram? Try it out if you are not sure.

2.  What happens when you supply the name of a nonexistent input file to the Total 
program? Try it out if you are not sure.

3.  Suppose you wanted to add the total to an existing file instead of writing a new 
file. Self Check 1 indicates that you cannot simply do this by specifying the same 
file for input and output. How can you achieve this task? Provide the pseudo-
code for the solution.

4.  How do you modify the program so that it shows the average, not the total, of 
the inputs? 

5.  How can you modify the Total program so that it writes the values in two 
columns, like this:
    32.00   54.00
    67.50   29.00
    35.00   80.00
   115.00   44.50
   100.00   65.00
Total:     622.00

practice it  Now you can try these exercises at the end of the chapter: R7.1, R7.2, P7.1.

s e l F   C H e C k



7.1 reading and Writing text Files  321

Backslashes in File names

When you specify a file name as a string literal, and the name contains backslash characters (as 
in a Windows file name), you must supply each backslash twice: 

File inputFile = new File("c:\\homework\\input.dat");

A single backslash inside a quoted string is an escape character that is combined with the 
following character to form a special meaning, such as \n for a newline character. The \\ com-
bination denotes a single backslash. 

When a user supplies a file name to a program, however, the user should not type the back-
slash twice. 

Constructing a Scanner with a String

When you construct a PrintWriter with a string, it writes to a file:

PrintWriter out = new PrintWriter("output.txt");

However, this does not work for a Scanner. The statement

Scanner in = new Scanner("input.txt"); // Error?

does not open a file. Instead, it simply reads through the string: in.next() returns the string 
"input.txt". (This is occasionally useful—see Section 7.2.4.)

You must simply remember to use File objects in the Scanner constructor:

Scanner in = new Scanner(new File("input.txt")); // OK

Reading Web pages

You can read the contents of a web page with this sequence of commands:

String address = "http://horstmann.com/index.html";
URL pageLocation = new URL(address);
Scanner in = new Scanner(pageLocation.openStream());

Now simply read the contents of the web page with the Scanner 
in the usual way. The URL constructor and the open Stream method 
can throw an IOException, so you need to tag the main method with 
throws IOException. (See Section 7.4.3 for more information on the 
throws clause.)

The URL class is contained in the java.net package.

File dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the 
one shown in the fig ure below) whenever the users of your program need to pick a file. The 
JFileChooser class implements a file dialog box for the Swing user-interface toolkit. 

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its 
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog 
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call. 

Common error 7.1 

Common error 7.2 

special topic 7.1 

O n l i n e   e x a m p l e

a program that reads 
data from a web page.

special topic 7.2 



322 Chapter 7  Input/output and exception handling

For better placement of the dialog box on the screen, you can specify the user-interface 
component over which to pop up the dialog box. If you don’t care where the dialog box pops 
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either 
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the 
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to 
obtain a File object that describes the file. Here is a complete example: 

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{ 
   File selectedFile = chooser.getSelectedFile();
   in = new Scanner(selectedFile);
   . . .
}

Reading and Writing Binary data

You use the Scanner and PrintWriter classes to read and write text files. Text files contain 
sequences of characters. Other files, such as images, are not made up of characters but of bytes. 
A byte is a fundamental storage unit in a com puter—a number consisting of eight binary dig-
its. (A byte can represent unsigned integers between 0 and 255 or signed integers between –128 
and 127.) The Java library has a different set of classes, called streams, for working with binary 
files. While modifying binary files is quite challenging and beyond the scope of this book, we 
give you a simple example of copying binary data from a web site to a file. 

You use an InputStream to read binary data. For example,

URL imageLocation = new URL("http://horstmann.com/java4everyone/duke.gif");
InputStream in = imageLocation.openStream();

To write binary data to a file, use a FileOutputStream:

FileOutputStream out = new FileOutputStream("duke.gif");

O n l i n e  e x a m p l e

a program that 
demonstrates how to 
use a file chooser.

A JFileChooser Dialog Box

Call with 
showOpenDialog 

method

Button is “Save” when 
showSaveDialog method 

is called

special topic 7.3 



7.2 text Input and output  323

The read method of an input stream reads a single byte and returns –1 when no further input is 
available. The write method of an output stream writes a single byte. 

The following loop copies all bytes from an input stream to an output stream:

boolean done = false;
while (!done)
{
   int input = in.read(); // -1 or a byte between 0 and 255
   if (input == -1) { done = true; }
   else { out.write(input); }
}

7.2 text Input and output
In the following sections, you will learn how to process text with complex contents, 
and you will learn how to cope with challenges that often occur with real data. 

7.2.1 reading Words

The next method of the Scanner class reads the next string. Consider the loop
while (in.hasNext())
{
   String input = in.next();
   System.out.println(input);
}

If the user provides the input:
Mary had a little lamb

this loop prints each word on a separate line:
Mary 
had 
a 
little 
lamb

However, the words can contain punctuation marks and other symbols. The next 
method returns any sequence of characters that is not white space. White space 
includes spaces, tab characters, and the new line characters that separate lines. For 
example, the following strings are considered “words” by the next method:

snow.
1729
C++

(Note the period after snow—it is considered a part of the word because it is not white 
space.) 

Here is precisely what happens when the next method is executed. Input characters 
that are white space are consumed—that is, removed from the input. However, they 
do not become part of the word. The first character that is not white space becomes 
the first character of the word. More characters are added until either another white 
space character occurs, or the end of the input file has been reached. However, if the 
end of the input file is reached before any character was added to the word, a “no such 
element exception” occurs.

the next method 
reads a string that  
is delimited by  
white space.



324 Chapter 7  Input/output and exception handling

 Sometimes, you want to read just the words and discard anything that isn’t a letter. 
You achieve this task by calling the useDelimiter method on your Scanner object:

Scanner in = new Scanner(. . .);
in.useDelimiter("[^A-Za-z]+"); 

Here, we set the character pattern that separates words to “any sequence of charac-
ters other than letters”. (See Special Topic 7.4.) With this setting, punctuation and 
numbers are not included in the words returned by the next method. 

7.2.2 reading Characters

Sometimes, you want to read a file one character at a time. You will see an example in 
Section 7.3 where we encrypt the characters of a file. You achieve this task by calling 
the useDelimiter method on your Scan ner object with an empty string:

Scanner in = new Scanner(. . .);
in.useDelimiter(""); 

Now each call to next returns a string consisting of a single character. Here is how you 
can process the characters:

while (in.hasNext())
{
   char ch = in.next().charAt(0);
   Process ch.
}

7.2.3 Classifying Characters

When you read a character, or when you analyze the characters in a word or line, 
you often want to know what kind of character it is. The Character class declares sev-
eral useful methods for this purpose. Each of them has an argument of type char and 
returns a boolean value (see Table 1 ). 

For example, the call
Character.isDigit(ch)

returns true if ch is a digit ('0' . . . '9' or a digit in another writing system—see Ran dom 
Fact 2.2), false otherwise.  

table 1  Character testing Methods

Method
examples of 

 accepted Characters

isDigit 0, 1, 2

isLetter A, B, C, a, b, c

isUpperCase A, B, C

isLowerCase a, b, c

isWhiteSpace space, newline, tab

the Character class 
has methods for 
classifying 
characters.



7.2 text Input and output  325

7.2.4 reading lines

When each line of a file is a data record, it is often best to read entire lines with the 
nextLine method:

String line = in.nextLine();

The next input line (without the newline character) is placed into the string line. You 
can then take the line apart for further processing.

The hasNextLine method returns true if there is at least one more line in the input, 
false when all lines have been read. To ensure that there is another line to process, call 
the hasNextLine method before calling nextLine. 

Here is a typical example of processing lines in a file. A file with population data 
from the CIA Fact Book site (https://www.cia.gov/library/publications/the-world-
factbook/index.html) contains lines such as the follow ing:

China  1330044605
India  1147995898
United States 303824646
. . .

Because some country names have more than one word, it would be tedious to read 
this file using the next method. For example, after reading United, how would your pro-
gram know that it needs to read another word before reading the population count?

Instead, read each input line into a string: 
while (in.hasNextLine())
{
   String line = nextLine();
   Process line.
}

Use the isDigit and isWhiteSpace methods introduced to find out where the name ends 
and the number starts. 

Locate the first digit: 
int i = 0; 
while (!Character.isDigit(line.charAt(i))) { i++; }

Then extract the country name and population:
String countryName = line.substring(0, i);
String population = line.substring(i);

However, the country name contains one or more spaces at the end. Use the trim 
method to remove them:

countryName = countryName.trim();

setatSdetinU 3 0 3 8 2 4 6 4 6

i starts here i ends here
Use trim to 

remove this space.

countryName

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

population

The trim method returns the string with all white space at the beginning and end 
removed.

the nextLine method 
reads an entire line.



326 Chapter 7  Input/output and exception handling

There is one additional problem. The population is stored in a string, not a num-
ber. In Section 7.2.6, you will see how to convert the string to a number. 

7.2.5 scanning a string

In the preceding section, you saw how to break a string into parts by looking at 
individual characters. Another approach is occasionally easier. You can use a Scanner 
object to read the characters from a string:

Scanner lineScanner = new Scanner(line);

Then you can use lineScanner like any other Scanner object, reading words and 
numbers:

String countryName = lineScanner.next(); // Read first word
// Add more words to countryName until number encountered
while (!lineScanner.hasNextInt()) 
{
   countryName = countryName + " " + lineScanner.next(); 
}
int populationValue = lineScanner.nextInt();

7.2.6 Converting strings to numbers

Sometimes you have a string that contains a number, such as the population string 
in Section 7.2.4. For example, suppose that the string is the character sequence 
"303824646". To get the integer value 303824646, you use the Integer.parseInt method: 

int populationValue = Integer.parseInt(population); 
   // populationValue is the integer 303824646

To convert a string containing floating-point digits to its floating-point value, use the 
Double.parseDouble method. For example, suppose input is the string "3.95".

double price = Double.parseDouble(input); 
   // price is the floating-point number 3.95 

You need to be careful when calling the Integer.parseInt and Double.parseDouble meth-
ods. The argument must be a string contain ing the digits of an integer, without any 
additional characters. Not even spaces are allowed! In our situa tion, we happen to 
know that there won’t be any spaces at the beginning of the string, but there might be 
some at the end. Therefore, we use the trim method:

int populationValue = Integer.parseInt(population.trim());

How To 7.1 on page 333 continues this example.

7.2.7 avoiding errors When reading numbers

You have used the nextInt and nextDouble methods of the Scanner class many times, but 
here we will have a look at what happens in “abnormal” situations. Suppose you call 

int value = in.nextInt();

The nextInt method recognizes numbers such as 3 or -21. However, if the input is not 
a properly formatted number, an “input mismatch exception” occurs. For example, 
consider an input containing the characters

If a string contains 
the digits of a 
number, you use the 
Integer.parseInt or 
Double.parseDouble 
method to obtain the 
number value.



7.2 text Input and output  327

2 1 s t c e n t u r y

White space is consumed and the word 21st is read. However, this word is not a prop-
erly formatted num ber, causing an input mismatch exception in the nextInt method. 

If there is no input at all when you call nextInt or nextDouble, a “no such element 
exception” occurs. To avoid exceptions, use the hasNextInt method to screen the input 
when reading an integer. For example,

if (in.hasNextInt())
{
   int value = in.nextInt();
   . . .
}

Similarly, you should call the hasNextDouble method before calling nextDouble.

7.2.8 Mixing number, Word, and line Input

The nextInt, nextDouble, and next methods do not consume the white space that follows 
the number or word. This can be a problem if you alternate between calling next Int/
nextDouble/next and nextLine. Suppose a file con tains country names and population 
values in this format:

China  
1330044605
India
1147995898
United States
303824646

Now suppose you read the file with these instructions:
while (in.hasNextLine())
{
   String countryName = in.nextLine();
   int population = in.nextInt();
   Process the country name and population.
}

Initially, the input contains

400331\nanihC 4 6 0 \n5 I n d i a \n

After the first call to the nextLine method, the input contains

400331 4 6 0 \n5 I n d i a \n

After the call to nextInt, the input contains

\n I n d i a \n

Note that the nextInt call did not consume the newline character. Therefore, the sec-
ond call to nextLine reads an empty string! 

The remedy is to add a call to nextLine after reading the population value:
String countryName = in.nextLine();
int population = in.nextInt();
in.nextLine(); // Consume the newline

The call to nextLine consumes any remaining white space and the newline character.



328  Chapter 7   Input/Output and Exception Handling

7.2.9  Formatting Output

When you write numbers or strings, you often want to control how they appear. For 
exam ple, dollar amounts are usually formatted with two significant digits, such as

Cookies:       3.20

You know from Section 2.3.2 how to achieve this output with the printf method. In 
this section, we discuss additional options of the printf method. 

Suppose you need to print a table of items and prices, each stored in an array, such 
as this one:

Cookies:        3.20
Linguine:       2.95
Clams:         17.29

Note that the item strings line up to the left, whereas the numbers line up to the right. 
By default, the printf method lines up values to the right. To specify left alignment, 
you add a hyphen (-) before the field width:

System.out.printf("%-10s%10.2f", items[i] + ":", prices[i]);

Here, we have two format specifiers. 

• %-10s formats a left-justified string. The string items[i] + ":" is padded with spaces 
so it becomes ten charac ters wide. The - indicates that the string is placed on the 
left, followed by sufficient spaces to reach a width of 10. 

• %10.2f formats a floating-point number, also in a field that is ten characters wide. 
However, the spaces appear to the left and the value to the right. 

C l a m s : 1 7 . 2 9

Two digits after 
the decimal point

A left-justified 
string width 10 width 10

A construct such as %-10s or %10.2f is called a format specifier: it describes how a value 
should be formatted. 

Table 2  Format Flags

Flag Meaning Example

- Left alignment 1.23 followed by spaces

0 Show leading zeroes 001.23

+ Show a plus sign for positive numbers +1.23

( Enclose negative numbers in parentheses (1.23)

, Show decimal separators 12,300

^ Convert letters to uppercase 1.23E+1



7.2 text Input and output  329

table 3  Format types

Code type example

d Decimal integer 123

f Fixed floating-point 12.30

e Exponential floating-point 1.23e+1

g General floating-point 
(exponential notation is used for 
very large or very small values)

12.3

s String Tax:

A format specifier has the following structure:

• The first character is a %
• Next, there are optional “flags” that modify the format, such as - to indicate left 

alignment. See Table 2 for the most common format flags. 
• Next is the field width, the total number of characters in the field (including the 

spaces used for padding), followed by an optional precision for floating-point 
numbers.

• The format specifier ends with the format type, such as f for floating-point values 
or s for strings. There are quite a few format types—Table 3 shows the most 
important ones. 

6.  Suppose the input contains the characters Hello, World!. What are the values of 
word and input after this code fragment? 
String word = in.next();
String input = in.nextLine();

7.  Suppose the input contains the characters 995.0 Fred. What are the values of 
number and input after this code fragment? 
int number = 0;
if (in.hasNextInt()) { number = in.nextInt(); }
String input = in.next();

8.  Suppose the input contains the characters 6E6 6,995.00. What are the values of x1 
and x2 after this code fragment? 
double x1 = in.nextDouble();
double x2 = in.nextDouble();

9.  Your input file contains a sequence of numbers, but sometimes a value is not 
available and is marked as N/A. How can you read the numbers and skip over the 
markers? 

10.  How can you remove spaces from the country name in Section 7.2.4 without 
using the trim method?

practice it  Now you can try these exercises at the end of the chapter: P7.2, P7.4, P7.5.

O n l i n e  e x a m p l e

a program that 
processes a file 
containing a mixture 
of text and numbers.

s e l F   C H e C k



330 Chapter 7  Input/output and exception handling

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Regular expressions

Regular expressions describe character patterns. For example, numbers have a simple form. 
They contain one or more digits. The regular expression describing numbers is [0-9]+. The set 
[0-9] denotes any digit between 0 and 9, and the + means “one or more”. 

The search commands of professional programming editors understand regular expres-
sions. Moreover, several utility programs use regular expressions to locate matching text. A 
commonly used program that uses regular expres sions is grep (which stands for “global regu-
lar expression print”). You can run grep from a command line or from inside some compila-
tion environments. Grep is part of the UNIX operating system, and versions are available for 
Windows. It needs a regular expression and one or more files to search. When grep runs, it 
displays a set of lines that match the regular expression. 

Suppose you want to find all magic numbers (see Programming Tip 2.2) in a file.

grep [0-9]+ Homework.java

lists all lines in the file Homework.java that contain sequences of digits. That isn’t terribly useful; 
lines with variable names x1 will be listed. OK, you want sequences of digits that do not imme-
diately follow letters: 

grep [^A-Za-z][0-9]+ Homework.java

The set [^A-Za-z] denotes any characters that are not in the ranges A to Z and a to z. This works 
much better, and it shows only lines that contain actual numbers.

The useDelimiter method of the Scanner class accepts a regular expression to describe delim-
iters—the blocks of text that separate words. As already mentioned, if you set the delimiter 
pattern to [^A-Za-z]+, a delimiter is a sequence of one or more characters that are not letters.

For more information on regular expressions, consult one of the many tutorials on the 
Internet by pointing your search engine to “regular expression tutorial”.

7.3 Command line arguments
Depending on the operating system and Java development environment used, there 
are different methods of starting a program—for example, by selecting “Run” in 
the compilation environment, by clicking on an icon, or by typing the name of the 
program at the prompt in a command shell window. The latter method is called 
“invoking the program from the command line”. When you use this method, you 
must of course type the name of the program, but you can also type in additional 
information that the program can use. These additional strings are called command 
line arguments. For example, if you start a pro gram with the command line

java ProgramClass -v input.dat

then the program receives two command line arguments: the strings "-v" and "input.
dat". It is entirely up to the program what to do with these strings. It is customary to 
interpret strings starting with a hyphen (-) as program options.

special topic 7.4 

VIDeo exaMple 7.1 Computing a document’s Readability

In this Video Example, we develop a program that computes the Flesch 
Readability Index for a document.



7.3 Command line arguments  331

Should you support command line arguments for your programs, or should you 
prompt users, per haps with a graphical user interface? For a casual and infrequent 
user, an interactive user interface is much better. The user interface guides the user 
along and makes it possible to navigate the application without much knowledge. But 
for a frequent user, a command line interface has a major advantage: it is easy to auto-
mate. If you need to process hundreds of files every day, you could spend all your 
time typing file names into file chooser dialog boxes. However, by using batch files or 
shell scripts (a feature of your computer’s operating system), you can automatically 
call a program many times with different command line arguments. 

Your program receives its command line arguments in the args parameter of the 
main method:

public static void main(String[] args)

In our example, args is an array of length 2, containing the strings
args[0]:   "-v"
args[1]:   "input.dat"

Let us write a program that encrypts a file—that is, 
scrambles it so that it is unreadable except to those who 
know the decryption method. Ignoring 2,000 years of 
progress in the field of encryption, we will use a method 
familiar to Julius Caesar, replacing A with a D, B with 
an E, and so on (see Figure 1). 

The program takes the following command line 
arguments:

• An optional -d flag to indicate decryption instead of 
encryption

• The input file name
• The output file name

For example,
java CaesarCipher input.txt encrypt.txt

encrypts the file input.txt and places the result into 
encrypt.txt.

java CaesarCipher -d encrypt.txt output.txt

decrypts the file encrypt.txt and places the result into output.txt.

section_3/CaesarCipher.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.PrintWriter;
4 import java.util.Scanner;

programs that start 
from the command 
line receive the 
command line 
arguments in the 
main method.

The emperor Julius Caesar 
used a simple scheme to 
encrypt messages.

Figure 1  Caesar Cipher

M e e t m e a t t h e

P h h w p h d w w k h

Plain text

Encrypted text     



332 Chapter 7  Input/output and exception handling

5 
6 /**
7    This program encrypts a file using the Caesar cipher.
8 */
9 public class CaesarCipher

10 { 
11    public static void main(String[] args) throws FileNotFoundException
12    {
13       final int DEFAULT_KEY = 3;
14       int key = DEFAULT_KEY;
15       String inFile = "";
16       String outFile = "";
17       int files = 0; // Number of command line arguments that are files
18 
19       for (int i = 0; i < args.length; i++)
20       { 
21          String arg = args[i];
22          if (arg.charAt(0) == '-')
23          { 
24             // It is a command line option
25 
26             char option = arg.charAt(1);
27             if (option == 'd') { key = -key; }
28             else { usage(); return; }
29          }
30          else
31          { 
32             // It is a file name
33 
34             files++;
35             if (files == 1) { inFile = arg; }
36             else if (files == 2) { outFile = arg; }
37          }
38       }
39       if (files != 2) { usage(); return; }
40 
41       Scanner in = new Scanner(new File(inFile));
42       in.useDelimiter(""); // Process individual characters
43       PrintWriter out = new PrintWriter(outFile);
44 
45       while (in.hasNext())  
46       {
47          char from = in.next().charAt(0);
48          char to = encrypt(from, key);
49          out.print(to);
50       }
51       in.close();
52       out.close();
53    }   
54 
55    /**
56       Encrypts upper- and lowercase characters by shifting them
57       according to a key.
58       @param ch the letter to be encrypted
59       @param key the encryption key
60       @return the encrypted letter      
61    */
62    public static char encrypt(char ch, int key)
63    {
64       int base = 0;



7.3 Command line arguments  333

65       if ('A' <= ch && ch <= 'Z') { base = 'A'; }
66       else if ('a' <= ch && ch <= 'z') { base = 'a'; }
67       else { return ch; } // Not a letter
68       int offset = ch - base + key;
69       final int LETTERS = 26; // Number of letters in the Roman alphabet
70       if (offset > LETTERS) { offset = offset - LETTERS; }
71       else if (offset < 0) { offset = offset + LETTERS; }
72       return (char) (base + offset);
73    }
74 
75    /**
76       Prints a message describing proper usage.
77    */
78    public static void usage()
79    { 
80       System.out.println("Usage: java CaesarCipher [-d] infile outfile");
81    }
82 }

11.  If the program is invoked with java CaesarCipher -d file1.txt, what are the 
elements of args?

12.  Trace the program when it is invoked as in Self Check 11.
13.  Will the program run correctly if the program is invoked with java CaesarCipher 

file1.txt file2.txt -d? If so, why? If not, why not?
14.  Encrypt CAESAR using the Caesar cipher.
15.  How can you modify the program so that the user can specify an encryption key 

other than 3 with a -k option, for example
java CaesarCipher -k15 input.txt output.txt

practice it  Now you can try these exercises at the end of the chapter: R7.4, P7.8, P7.9.

s e l F   C H e C k

hoW to 7.1 processing text Files

Processing text files that contain real data can be 
surprisingly challenging. This How To gives you step-
by-step guid ance. 

As an example, we will consider this task: Read 
two country data files, worldpop.txt and worldarea.txt 
(supplied with the book’s companion code). Both files 
contain the same countries in the same order. Write a 
file world_pop_density.txt that contains country names 
and population densi ties (people per square km), with 
the country names aligned left and the numbers aligned 
right:

Afghanistan  50.56    
Akrotiri  127.64
Albania  125.91
Algeria  14.18
American Samoa  288.92
. . .

Singapore is one of the most densely 
populated countries in the world.



334 Chapter 7  Input/output and exception handling

step 1  Understand the processing task.

As always, you need to have a clear understand ing of the task before designing a solution. Can 
you carry out the task by hand (perhaps with smaller input files)? If not, get more information 
about the problem.

One important aspect that you need to consider is whether you can process the data as it 
becomes available, or whether you need to store it first. For example, if you are asked to write 
out sorted data, you first need to collect all input, perhaps by placing it in an array list. How-
ever, it is often possible to process the data “on the go”, without storing it.

In our example, we can read each file a line at a time and compute the density for each line 
because our input files store the population and area data in the same order. 

The following pseudocode describes our processing task.

While there are more lines to be read
 Read a line from each file.
 Extract the country name.
 population = number following the country name in the line from the first file
 area = number following the country name in the line from the second file
 If area != 0
  density = population / area
 Print country name and density.

step 2  Determine which files you need to read and write.

This should be clear from the problem. In our example, there are two input files, the popula-
tion data and the area data, and one output file. 

step 3  Choose a mechanism for obtaining the file names.

There are three options:
• Hard-coding the file names (such as "worldpop.txt").
• Asking the user:

Scanner in = new Scanner(System.in);
System.out.print("Enter filename: ");
String inFile = in.nextLine();

• Using command-line arguments for the file names.
In our example, we use hard-coded file names for simplicity.

step 4  Choose between line, word, and character-based input.

As a rule of thumb, read lines if the input data is grouped by lines. That is the case with tabular 
data, such as in our example, or when you need to report line numbers.

When gathering data that can be distributed over several lines, then it makes more sense to 
read words. Keep in mind that you lose all white space when you read words. 

Reading characters is mostly useful for tasks that require access to individual characters. 
Examples include ana lyzing character frequencies, changing tabs to spaces, or encryption.

step 5  With line-oriented input, extract the required data.

It is simple to read a line of input with the nextLine method. Then you need to get the data out 
of that line. You can extract substrings, as described in Section 7.2.4. 

Typically, you will use methods such as Character.isWhitespace and Character.isDigit to 
find the boundaries of substrings. 

If you need any of the substrings as numbers, you must convert them, using Integer.parseInt 
or Double.parseDou ble. 



7.3 Command line arguments  335

step 6  Use methods to factor out common tasks.

Processing input files usually has repetitive tasks, such as skipping over white space or extract-
ing numbers from strings. It really pays off to develop a set of methods to handle these tedious 
operations. 

In our example, we have two common tasks that call for helper methods: extracting the 
country name and the value that follows. We will implement methods

public static String extractCountry(String line)
public static double extractValue(String line)

These methods are implemented as described in Section 7.2.4. 
Here is the complete source code (how_to_1/PopulationDensity.java). 

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;

/**
   This program reads data files of country populations and areas and prints the
   population density for each country.
*/
public class PopulationDensity
{
   public static void main(String[] args) throws FileNotFoundException
   {
      // Construct Scanner objects for input files

      Scanner in1 = new Scanner(new File("worldpop.txt")); 
      Scanner in2 = new Scanner(new File("worldarea.txt"));

      // Construct PrintWriter for the output file

      PrintWriter out = new PrintWriter("world_pop_density.txt"); 

      // Read lines from each file

      while (in1.hasNextLine() && in2.hasNextLine())
      {
         String line1 = in1.nextLine();
         String line2 = in2.nextLine();

         // Extract country and associated value
         String country = extractCountry(line1);         
         double population = extractValue(line1);
         double area = extractValue(line2);

         // Compute and print the population density
         double density = 0;
         if (area != 0) // Protect against division by zero
         {
            density = population / area;
         }
         out.printf("%-40s%15.2f\n", country, density);
      }

      in1.close();
      in2.close();
      out.close();
   }



336 Chapter 7  Input/output and exception handling

   /**
      Extracts the country from an input line.
      @param line a line containing a country name, followed by a number
      @return the country name
   */
   public static String extractCountry(String line)
   {   
      int i = 0; // Locate the start of the first digit
      while (!Character.isDigit(line.charAt(i))) { i++; }
      return line.substring(0, i).trim(); // Extract the country name
   }

   /**
      Extracts the value from an input line.
      @param line a line containing a country name, followed by a value
      @return the value associated with the country
   */
   public static double extractValue(String line)
   {   
      int i = 0; // Locate the start of the first digit
      while (!Character.isDigit(line.charAt(i))) { i++; }
      // Extract and convert the value
      return Double.parseDouble(line.substring(i).trim()); 
   }
}

the exercises at the 
end of this chapter 

give a few algorithms for encrypting 
text. Don’t actually use any of those 
meth ods to send secret messages 
to your lover. any skilled cryptogra-
pher can break these schemes in a 
very short time—that is, reconstruct 
the original text without knowing the 
secret key word.

In 1978, ron rivest, adi shamir, 
and leonard adleman introduced an 
encryption method that is much more 
powerful. the method is called RSA 
encryption, after the last names of its 
inventors. the exact scheme is too 
complicated to present here, but it is 
not actually difficult to follow. You can 
find the details in http://the ory.lcs.
mit.edu/~rivest/rsapaper.pdf.

rsa is a remarkable encryption 
method. there are two keys: a pub-
lic key and a private key. (see the fig-
ure.) You can print the public key on 
your business card (or in your e-mail 
signature block) and give it to any-

one. then anyone can send you mes-
sages that only you can decrypt. even 
though everyone else knows the pub lic 
key, and even if they intercept all the 
messages coming to you, they cannot 
break the scheme and actually read 
the messages. In 1994, hundreds of 
researchers, collaborating over the 
Internet, cracked an rsa message 
encrypted with a 129-digit key. Mes-
sages encrypted with a key of 230 dig-
its or more are expected to be secure. 

the inventors of the algorithm 
obtained a patent for it. a patent is a 
deal that society makes with an inven-
tor. For a period of 20 years, the inven-
tor has an exclusive right for its com-
mercialization, may collect royal ties 
from others wishing to manufac ture 
the invention, and may even stop com-
petitors from using it altogether. In 
return, the inventor must publish the 
invention, so that others may learn 
from it, and must relinquish all claim 
to it after the monopoly period ends. 
the presumption is that in the absence 

of patent law, inventors would be 
reluctant to go through the trouble of 
inventing, or they would try to cloak 
their techniques to prevent others 
from copying their devices. 

there has been some controversy 
about the rsa patent. had there not 
been patent protection, would the 
inventors have published the method 
anyway, thereby giving the benefit to 
society without the cost of the 20-year 
monopoly? In this case, the answer is 
probably yes. the inventors were aca-
demic researchers, who live on sala-
ries rather than sales receipts and are 
usually rewarded for their discover-
ies by a boost in their reputation and 
careers. Would their followers have 
been as active in discovering (and pat-
enting) improvements? there is no 
way of knowing, of course. Is an algo-
rithm even patentable, or is it a math-
ematical fact that belongs to nobody? 
the patent office did take the latter 
attitude for a long time. the rsa inven-
tors and many others described their

Random Fact 7.1 encryption algorithms



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

7.4 exception handling  337

   /**
      Extracts the country from an input line.
      @param line a line containing a country name, followed by a number
      @return the country name
   */
   public static String extractCountry(String line)
   {   
      int i = 0; // Locate the start of the first digit
      while (!Character.isDigit(line.charAt(i))) { i++; }
      return line.substring(0, i).trim(); // Extract the country name
   }

   /**
      Extracts the value from an input line.
      @param line a line containing a country name, followed by a value
      @return the value associated with the country
   */
   public static double extractValue(String line)
   {   
      int i = 0; // Locate the start of the first digit
      while (!Character.isDigit(line.charAt(i))) { i++; }
      // Extract and convert the value
      return Double.parseDouble(line.substring(i).trim()); 
   }
}

the exercises at the 
end of this chapter 

give a few algorithms for encrypting 
text. Don’t actually use any of those 
meth ods to send secret messages 
to your lover. any skilled cryptogra-
pher can break these schemes in a 
very short time—that is, reconstruct 
the original text without knowing the 
secret key word.

In 1978, ron rivest, adi shamir, 
and leonard adleman introduced an 
encryption method that is much more 
powerful. the method is called RSA 
encryption, after the last names of its 
inventors. the exact scheme is too 
complicated to present here, but it is 
not actually difficult to follow. You can 
find the details in http://the ory.lcs.
mit.edu/~rivest/rsapaper.pdf.

rsa is a remarkable encryption 
method. there are two keys: a pub-
lic key and a private key. (see the fig-
ure.) You can print the public key on 
your business card (or in your e-mail 
signature block) and give it to any-

one. then anyone can send you mes-
sages that only you can decrypt. even 
though everyone else knows the pub lic 
key, and even if they intercept all the 
messages coming to you, they cannot 
break the scheme and actually read 
the messages. In 1994, hundreds of 
researchers, collaborating over the 
Internet, cracked an rsa message 
encrypted with a 129-digit key. Mes-
sages encrypted with a key of 230 dig-
its or more are expected to be secure. 

the inventors of the algorithm 
obtained a patent for it. a patent is a 
deal that society makes with an inven-
tor. For a period of 20 years, the inven-
tor has an exclusive right for its com-
mercialization, may collect royal ties 
from others wishing to manufac ture 
the invention, and may even stop com-
petitors from using it altogether. In 
return, the inventor must publish the 
invention, so that others may learn 
from it, and must relinquish all claim 
to it after the monopoly period ends. 
the presumption is that in the absence 

of patent law, inventors would be 
reluctant to go through the trouble of 
inventing, or they would try to cloak 
their techniques to prevent others 
from copying their devices. 

there has been some controversy 
about the rsa patent. had there not 
been patent protection, would the 
inventors have published the method 
anyway, thereby giving the benefit to 
society without the cost of the 20-year 
monopoly? In this case, the answer is 
probably yes. the inventors were aca-
demic researchers, who live on sala-
ries rather than sales receipts and are 
usually rewarded for their discover-
ies by a boost in their reputation and 
careers. Would their followers have 
been as active in discovering (and pat-
enting) improvements? there is no 
way of knowing, of course. Is an algo-
rithm even patentable, or is it a math-
ematical fact that belongs to nobody? 
the patent office did take the latter 
attitude for a long time. the rsa inven-
tors and many others described their

Random Fact 7.1 encryption algorithms

7.4 exception handling
There are two aspects to dealing with program errors: detection and handling. For 
example, the Scanner constructor can detect an attempt to read from a non-existent 
file. However, it cannot handle that error. A satisfactory way of handling the error 
might be to terminate the program, or to ask the user for another file name. The Scan-
ner class cannot choose between these alternatives. It needs to report the error to 
another part of the program. 

In Java, exception handling provides a flexible mechanism for passing control from 
the point of error detection to a handler that can deal with the error. In the following 
sections, we will look into the details of this mechanism. 

WorkeD exaMple 7.1 analyzing Baby names

In this Worked Example, you will use data from the 
Social Security Administration to analyze the most 
popular baby names.

inventions in terms of imaginary elec-
tronic devices, rather than algo rithms, 
to circumvent that restriction. nowa-
days, the patent office will award soft-
ware patents.

there is another interesting aspect 
to the rsa story. a programmer, phil 
Zimmermann, developed a program 
called pGp (for Pretty Good Privacy) 
that is based on rsa. anyone can use 
the program to encrypt messages, and 
decryption is not feasible even with 
the most powerful computers. You can 
get a copy of a free pGp implementa-
tion from the GnU project (http://www.
gnupg.org). the existence of strong 
encryption methods bothers the 
United states government to no end. 
Criminals and foreign agents can send 
communications that the police and 
intelligence agencies cannot deci pher. 
the government considered charging 
Zimmermann with breaching a law 
that forbids the unauthorized export of 
munitions, arguing that he should have 
known that his program would appear 

on the Internet. there have been seri-
ous proposals to make it illegal for pri-
vate citizens to use these encryption 

methods, or to keep the keys secret 
from law enforcement.

Public-Key Encryption

Meet 
me at 
the 
toga
party

Meet 
me at 
the 
toga
party

Xwya
Txu%
*(Wt
&93ya
=9

Alice The message 
is encrypted with 
Bob’s public key

Bob

Decrypted
text

Plain 
text Encrypted

text
The message is 

decypted with Bob’s 
matching private key



338  Chapter 7   Input/Output and Exception Handling

7.4.1  Throwing Exceptions

When you detect an error condition, your job is really easy. You just throw an appro-
priate exception object, and you are done. For exam ple, suppose someone tries to 
withdraw too much money from a bank account.

if (amount > balance)
{
   // Now what? 
}

First look for an appropriate exception class. The Java library pro vides many classes 
to signal all sorts of exceptional conditions. Figure 2 shows the most useful ones. 
(The classes are arranged as a tree-shaped hierarchy, with more specialized classes at 
the bottom of the tree. We will discuss such hierarchies in more detail in Chapter 9.) 

Look around for an exception type that might describe your situa tion. How about 
the ArithmeticException? Is it an arithmetic error to have a negative balance? No—Java 
can deal with negative numbers. Is the amount to be withdrawn illegal? Indeed it is. It 
is just too large. Therefore, let’s throw an IllegalArgument Exception. 

if (amount > balance)
{
   throw new IllegalArgumentException("Amount exceeds balance");
}   

When you throw an exception, execution does not 
continue with the next statement but with an excep
tion handler. That is the topic of the next section.

When you throw an exception, the normal control flow 
is terminated. This is similar to a circuit breaker that  

cuts off the flow of electricity in a dangerous situation.

To signal an 
exceptional 
condition, use the 
throw statement 
to throw an 
exception object. 

When you throw 
an exception, 
processing  
continues in an 
exception handler.

Syntax 7.1  Throwing an Exception

A new 
exception object 
is constructed, 
then thrown.

if (amount > balance)
{
   throw new IllegalArgumentException("Amount exceeds balance");
}
balance = balance - amount;

Most exception objects 
can be constructed with 
an error message.

This line is not executed when 
the exception is thrown.

throw exceptionObject;Syntax



7.4 exception handling  339

7.4.2 

Figure 2  a part of the hierarchy of exception Classes

ClassNot
Found

Exception

IndexOut
OfBounds
Exception

Illegal
Argument
Exception

ClassCast
Exception

Arithmetic
Exception

Runtime
Exception

Exception

IOException

FileNotFound
Exception

MalformedURL
Exception

UnknownHost
Exception

NumberFormat
Exception

NullPointer
Exception

NoSuch
Element
Exception

Throwable

Error

InputMismatch
Exception

Import from 
java.io 

Import from 
java.util

Catching exceptions

Every exception should be handled somewhere in your program. If an exception has 
no handler, an error message is printed, and your program terminates. Of course, 
such an unhandled exception is confusing to program users. 

You handle exceptions with the try/catch statement. Place the statement into a 
location of your pro gram that knows how to handle a particular exception. The try 
block contains one or more statements that may cause an exception of the kind that 

place the statements 
that can cause an 
exception inside a 
try block, and the 
handler inside a 
catch clause.



340 Chapter 7  Input/output and exception handling

you are willing to handle. Each catch clause contains the han dler for an exception 
type. Here is an example:

try 
{ 
   String filename = . . .;
   Scanner in = new Scanner(new File(filename));
   String input = in.next();
   int value = Integer.parseInt(input);
   . . .
} 
catch (IOException exception) 
{ 
   exception.printStackTrace();
} 
catch (NumberFormatException exception) 
{ 
   System.out.println(exception.getMessage());
} 

Three exceptions may be thrown in this try block: 

• The Scanner constructor can throw a FileNotFoundException.
• Scanner.next can throw a NoSuchElementException.
• Integer.parseInt can throw a NumberFormatException. 

If any of these exceptions is actually thrown, then the rest of the instructions in the 
try block are skipped. Here is what happens for the various exception types:

• If a FileNotFoundException is thrown, then the catch clause for the IOException is 
executed. (If you look at Figure 2, you will note that FileNotFoundException is a 
descendant of IOException.) If you want to show the user a different message for a 
FileNotFoundException, you must place the catch clause before the clause for an 
IOException.

• If a NumberFormatException occurs, then the second catch clause is executed. 
• A NoSuchElementException is not caught by any of the catch clauses. The exception 

remains thrown until it is caught by another try block.

Each catch clause contains a handler. When the catch (IOException exception) block is 
executed, then some method in the try block has failed with an IOException (or one of 
its descendants).
In this handler, we pro duce a printout of the chain of method calls that led to the 
exception, by calling

exception.printStackTrace() 

A N I M AT I O N
Exception Handling

You should only catch those exceptions 
that you can handle.



7.4 exception handling  341

syntax 7.2 Catching exceptions

try
{
   statement
   statement
   . . .
}
catch (ExceptionClass exceptionObject)
{
   statement
   statement
   . . .
}

Syntax

This constructor can throw a 
FileNotFoundException.

try
{
   Scanner in = new Scanner(new File("input.txt"));
   String input = in.next();
   process(input);
}
catch (IOException exception)
{
   System.out.println("Could not open input file");
}
catch (Exception except)
{
   System.out.println(except.getMessage);
}

This is the exception that was thrown.

A FileNotFoundException 
is a special case of an IOException.

When an IOException is thrown, 
execution resumes here.

Additional catch clauses 
can appear here. Place 
more specific exceptions 
before more general ones.

In the second exception handler, we call exception.getMessage() to retrieve the message 
associated with the exception. When the parseInt method throws a NumberFormatExcep-
tion, the message contains the string that it was unable to format. When you throw an 
exception, you can provide your own message string. For example, when you call 

throw new IllegalArgumentException("Amount exceeds balance");

the message of the exception is the string provided in the constructor.
In these sample catch clauses, we merely inform the user of the source of the prob-

lem. Often, it is better to give the user another chance to provide a correct input—see 
Section 7.5 for a solution.

7.4.3 Checked exceptions

In Java, the exceptions that you can throw and catch fall into three categories. 

• Internal errors are reported by descendants of the type Error. One example is the 
OutOfMemoryError, which is thrown when all available computer memory has been 
used up. These are fatal errors that happen rarely, and we will not consider them 
in this book.

• Descendants of RuntimeException, such as as IndexOutOfBoundsException or Illegal-
ArgumentException indicate errors in your code. They are called unchecked 
exceptions. 



342 Chapter 7  Input/output and exception handling

• All other exceptions are checked exceptions. These exceptions indicate that 
something has gone wrong for some external reason beyond your control. In 
Figure 2, the checked exceptions are shaded in a darker color. 

Why have two kinds of exceptions? A checked exception describes a problem that 
can occur, no matter how careful you are. For example, an IOException can be caused 
by forces beyond your control, such as a disk error or a broken network connection. 
The compiler takes checked exceptions very seriously and ensures that they are han-
dled. Your program will not compile if you don’t indicate how to deal with a checked 
exception.

The unchecked exceptions, on the other hand, are your fault. The compiler does 
not check whether you handle an unchecked exception, such as an IndexOutOfBounds-
Exception. After all, you should check your index values rather than install a handler 
for that exception. 

If you have a handler for a checked exception in the same method that may throw 
it, then the compiler is satisfied. For example,

try
{
   File inFile = new File(filename);
   Scanner in = new Scanner(inFile); // Throws FileNotFoundException
   . . .
}
catch (FileNotFoundException exception) // Exception caught here
{
   . . .
}

However, it commonly happens that the current method cannot handle the excep-
tion. In that case, you need to tell the compiler that you are aware of this exception 
and that you want your method to be termi nated when it occurs. You supply a 
method with a throws clause.

public static String readData(String filename) throws FileNotFoundException 
{ 
   File inFile = new File(filename);
   Scanner in = new Scanner(inFile);
   . . .
}

The throws clause signals the caller of your method that it may encounter a 
FileNotFoundException. Then the caller needs to make the same decision—han-
dle the exception, or declare that the exception may be thrown. 

It sounds somehow irresponsible not to handle an exception when you 
know that it happened. Actually, the opposite is true. Java provides an 
excep tion handling facility so that an exception can be sent to the appropri-
ate han dler. Some methods detect errors, some methods handle them, and 
some methods just pass them along. The throws clause simply ensures that no 
exceptions get lost along the way. 

Just as trucks with large or hazardous loads carry warning signs,  
the throws clause warns the caller that an exception may occur.

Checked exceptions 
are due to external 
circumstances that 
the programmer 
cannot prevent.  
the compiler  
checks that your 
program handles 
these exceptions.

add a throws clause 
to a method that can 
throw a checked 
exception.



7.4 exception handling  343

7.4.4 

syntax 7.3 the throws Clause

You may also list unchecked exceptions.You must specify all checked exceptions 
that this method may throw.

public static String readData(String filename)
      throws FileNotFoundException, NumberFormatException

modifiers returnType methodName(parameterType parameterName, . . .)
      throws ExceptionClass, ExceptionClass, . . .

Syntax

the finally Clause

Occasionally, you need to take some action whether or not an exception is thrown. 
The finally construct is used to handle this situation. Here is a typical situation. 

It is important to close a PrintWriter to ensure that all output is written to the file. 
In the following code segment, we open a stream, call one or more methods, and then 
close the stream: 

PrintWriter out = new PrintWriter(filename);
writeData(out); 
out.close(); // May never get here 

Now suppose that one of the methods before the last line throws an exception. Then 
the call to close is never executed! You solve this problem by placing the call to close 
inside a finally clause: 

PrintWriter out = new PrintWriter(filename);
try
{ 
   writeData(out); 
}
finally 
{ 
   out.close();
} 

In a normal case, there will be no problem. When the 
try block is completed, the finally clause is executed, 
and the writer is closed. However, if an exception 
occurs, the finally clause is also executed before the 
exception is passed to its handler. 

Use the finally clause whenever you need to do 
some clean up, such as closing a file, to ensure that 
the clean up happens no matter how the method 
exits. 

All visitors to a foreign country have to go through  
passport control, no matter what happened on their  
trip. Similarly, the code in a finally clause is always 

executed, even when an exception has occurred.

once a try block 
is entered, the 
statements in a 
finally clause are 
guaranteed to be 
executed, whether  
or not an exception  
is thrown.

O n l i n e  e x a m p l e

a program that 
demonstrates 
throwing and 
catching exceptions.



344 Chapter 7  Input/output and exception handling

16. 

syntax 7.4 the finally Clause

try
{
   statement
   statement
   . . .
}
finally
{
   statement
   statement
   . . .
}

Syntax

PrintWriter out = new PrintWriter(filename);
try
{
   writeData(out);
}
finally
{
   out.close();
}

This variable must be declared outside the try block 
so that the finally clause can access it.

This code is 
always executed, 
even if an exception occurs.

This code may 
throw exceptions.

Suppose balance is 100 and amount is 200. What is the value of bal ance after these 
statements?
if (amount > balance)
{
   throw new IllegalArgumentException("Amount exceeds balance");
}
balance = balance - amount;

17.  When depositing an amount into a bank account, we don’t have to worry about 
overdrafts—except when the amount is negative. Write a statement that throws 
an appropriate exception in that case.

18.  Consider the method
public static void main(String[] args)
{
   try
   {
      Scanner in = new Scanner(new File("input.txt"));
      int value = in.nextInt();
      System.out.println(value);
   }
   catch (IOException exception)
   {
      System.out.println("Error opening file.");
   }
}

s e l F   C H e C k



7.4 exception handling  345

Suppose the file with the given file name exists and has no contents. Trace the 
flow of execution. 

19.  Why is an ArrayIndexOutOfBoundsException not a checked exception?
20.  Is there a difference between catching checked and unchecked exceptions?
21.  What is wrong with the following code, and how can you fix it?

public static void writeAll(String[] lines, String filename)
{
   PrintWriter out = new PrintWriter(filename);
   for (String line : lines) 
   { 
      out.println(line.toUpperCase()); 
   }
   out.close();
}

practice it  Now you can try these exercises at the end of the chapter: R7.7, R7.8, R7.9.

throw early, Catch late

When a method detects a problem that it cannot solve, it is better 
to throw an exception rather than try to come up with an imperfect 
fix. For example, suppose a method expects to read a number from a 
file, and the file doesn’t contain a number. Simply using a zero value 
would be a poor choice because it hides the actual problem and per-
haps causes a different problem elsewhere.

Conversely, a method should only catch an exception if it can 
really remedy the situa tion. Otherwise, the best remedy is simply to have the exception propa-
gate to its caller, allowing it to be caught by a competent handler. 

These principles can be summarized with the slogan “throw early, catch late”.

 

do not squelch exceptions

When you call a method that throws a checked exception and you haven’t specified a handler, 
the compiler com plains. In your eagerness to continue your work, it is an understandable 
impulse to shut the compiler up by squelch ing the exception: 

try
{ 
   Scanner in = new Scanner(new File(filename)); 
   // Compiler complained about FileNotFoundException
   . . .
} 
catch (FileNotFoundException e) {} // So there! 

The do-nothing exception handler fools the compiler into thinking that the exception has 
been handled. In the long run, this is clearly a bad idea. Exceptions were designed to transmit 
problem reports to a competent handler. Install ing an incompetent handler simply hides an 
error condition that could be serious.

programming tip 7.1 

throw an exception 
as soon as a  
problem is detected. 
Catch it only  
when the problem 
can be handled. 

programming tip 7.2 



346 Chapter 7  Input/output and exception handling

do not use catch and finally in the same try statement 

It is possible to have a finally clause following one or more catch clauses. Then the code in the 
finally clause is exe cuted whenever the try block is exited in any of three ways: 

1.  After completing the last statement of the try block
2.  After completing the last statement of a catch clause, if this try block caught an 

exception
3.  When an exception was thrown in the try block and not caught

It is tempting to combine catch and finally clauses, but the resulting code can be hard to 
understand, and it is often incorrect. Instead, use two statements:
• a try/finally statement to close resources 
• a separate try/catch statement to handle errors 
For example,

try
{
   PrintWriter out = new PrintWriter(filename);
   try
   {
      Write output.
   } 
   finally
   {
      out.close();
   }
}
catch (IOException exception)
{
   Handle exception.
}

Note that the nested statements work correctly if the PrintWriter constructor throws an excep-
tion, too.

automatic Resource management in Java 7

In Java 7, you can use a new form of the try block that automatically closes a PrintWriter or 
Scanner object. Here is the syntax:

try (PrintWriter out = new PrintWriter(filename))
{
   Write output to out.
}

The close method is automatically invoked on the out object when the try block ends, whether 
or not an exception has occurred. A finally statement is not required.

programming tip 7.3 

special topic 7.5 



7.5 application: handling Input errors  347

7.5 application: handling Input errors
This section walks through an example program that includes exception handling. 
The program, DataAna lyzer.java, asks the user for the name of a file. The file is expected 
to contain data values. The first line of the file should contain the total number of val-
ues, and the remaining lines contain the data. A typical input file looks like this:

3
1.45
-2.1
0.05

the european space 
agency (esa), europe’s 

counterpart to nasa, had developed a 
rocket model called ariane that it had 
successfully used several times to 
launch satellites and scientific experi-
ments into space. however, when a new 
version, the ariane 5, was launched on 
June 4, 1996, from esa’s launch site 
in kourou, French Guiana, the rocket 
veered off course about 40 seconds 
after liftoff. Flying at an angle of more 
than 20 degrees, rather than straight 
up, exerted such an aerodynamic force 
that the boosters separated, which trig-
gered the automatic self-destruction 
mechanism. the rocket blew itself up.

the ultimate cause of this accident 
was an unhandled exception! the 
rocket contained two identical devices 
(called inertial reference systems) that 
processed flight data from  measuring 
devices and turned the data into infor-
mation about the rocket position. 

the onboard computer used the posi-
tion information for controlling the 
boosters. the same inertial reference 
systems and computer software had 
worked fine on the ariane 4.

however, due to design changes 
to the rocket, one of the sensors mea-
sured a larger acceleration force than 
had been encountered in the ariane 4. 
that value, expressed as a floating-
point value, was stored in a 16-bit 
integer (like a short variable in Java). 
Unlike Java, the ada language, used 
for the device software, generates an 
exception if a float ing-point number is 
too large to be converted to an integer. 
Unfortunately, the programmers of the 
device had decided that this situation 
would never happen and didn’t provide 
an exception handler.

When the overflow did happen, the 
exception was triggered and, because 
there was no handler, the device shut 
itself off. the onboard computer sensed 

the failure and switched over to the 
backup device. however, that device 
had shut itself off for exactly the same 
reason, something that the designers 
of the rocket had not expected. they 
fig ured that the devices might fail for 
mechanical reasons, and the chance of 
two devices having the same mechani-
cal failure was considered remote. at 
that point, the rocket was without reli-
able position information and went off 
course.

perhaps it would have been better if 
the software hadn’t been so thorough? 
If it had ignored the overflow, the 
device wouldn’t have been shut off. It 
would have computed bad data. But 
then the device would have reported 
wrong position data, which could have 
been just as fatal. Instead, a correct 
implementation should have caught 
over flow exceptions and come up with 
some strategy to recompute the flight 
data. Clearly, giving up was not a 
reason able option in this context. 

the advantage of 
the exception-handling 
mechanism is that it 
makes these issues 
explicit to program-
mers—some thing to 
think about when you 
curse the Java compiler 
for complaining about 
uncaught exceptions.

The Explosion of the Ariane Rocket

Random Fact 7.2 the ariane rocket Incident



348 Chapter 7  Input/output and exception handling

What can go wrong? There are two principal risks.

• The file might not exist.
• The file might have data in the wrong format.

Who can detect these faults? The Scanner constructor will throw an exception when 
the file does not exist. The methods that process the input values need to throw an 
exception when they find an error in the data format.

What exceptions can be thrown? The Scanner constructor throws a FileNot-
FoundException when the file does not exist, which is appropriate in our situation. 
When there are fewer data items than expected, or when the file doesn’t start with the 
count of values, the program will throw an NoSuchElementException. Finally, when there 
are more inputs than expected, an IOException should be thrown. 

Who can remedy the faults that the exceptions report? Only the main method of 
the DataAnalyzer pro gram interacts with the user, so it catches the exceptions, prints 
appropriate error messages, and gives the user another chance to enter a correct file: 

// Keep trying until there are no more exceptions
boolean done = false;
while (!done) 
{
   try 
   {
      Prompt user for file name.
      
      double[] data = readFile(filename);
      
      Process data.

      done = true;
   }
   catch (FileNotFoundException exception)
   {
      System.out.println("File not found.");
   }
   catch (NoSuchElementException exception)
   {
      System.out.println("File contents invalid.");
   }
   catch (IOException exception)
   {
      exception.printStackTrace();
   }
}

The first two catch clauses in the main method give a human-readable error report if 
bad data was encoun tered or the file was not found. However, if another IOException 
occurs, then it prints a stack trace so that a programmer can diagnose the problem. 

The following readFile method constructs the Scanner object and calls the readData 
method. It does not handle any exceptions. If there is a problem with the input file, it 
simply passes the exception to its caller. 

public static double[] readFile(String filename) throws IOException
{
   File inFile = new File(filename);
   Scanner in = new Scanner(inFile);
   try 
   {

When designing a 
program, ask your-
self what kinds of 
exceptions can occur.

For each exception, 
you need to decide 
which part of  
your program  
can competently 
handle it.



7.5 application: handling Input errors  349

      return readData(in);
   }
   finally
   {
      in.close();
   }
}

Note how the finally clause ensures that the file is closed even when an exception 
occurs. 

Also note that the throws clause of the readFile method need not include the File-
NotFoundException class because it is a special case of an IOException.

The readData method reads the number of values, constructs an array, and fills it 
with the data values. 

public static double[] readData(Scanner in) throws IOException
{      
   int numberOfValues = in.nextInt(); // May throw NoSuchElementException
   double[] data = new double[numberOfValues];

   for (int i = 0; i < numberOfValues; i++)
   {
      data[i] = in.nextDouble(); // May throw NoSuchElementException
   }

   if (in.hasNext()) 
   {
      throw new IOException("End of file expected");
   }
   return data;
}

As discussed in Section 7.2.7, the calls to the nextInt and nextDouble methods can throw 
a NoSuchElementEx ception when there is no input at all or an InputMismatchException if the 
input is not a number. As you can see from Figure 2 on page 340, an InputMismatch-
Exception is a special case of a NoSuchElementException.

You need not declare the NoSuchElementException in the throws clause because it is not 
a checked excep tion, but you can include it for greater clarity.

There are three potential errors: 

• The file might not start with an integer.
• There might not be a sufficient number of data values.
• There might be additional input after reading all data values.

In the first two cases, the Scanner throws a NoSuchElementException. Note again that this 
is not a checked exception—we could have avoided it by calling hasNextInt/hasNext-
Double first. However, this method does not know what to do in this case, so it allows 
the exception to be sent to a handler elsewhere.

When we find that there is additional unexpected input, we throw an IOException.
To see the exception handling at work, look at a specific error scenario.

1. main calls readFile.
2. readFile calls readData.
3. readData calls Scanner.nextInt.
4. There is no integer in the input, and Scanner.nextInt throws a NoSuchElement-

Exception.



350 Chapter 7  Input/output and exception handling

5. readData has no catch clause. It terminates immediately.

6. readFile has no catch clause. It terminates immediately after executing the 
finally clause and closing the file.

7. The first catch clause in main is for a FileNotFoundException. The exception that is 
currently being thrown is a NoSuchElementException, and this handler doesn’t 
apply.

8. The next catch clause is for a NoSuchElementException, and execution resumes 
here. That handler prints a message to the user. Afterward, the user is given 
another chance to enter a file name. Note that the statements for processing the 
data have been skipped.

This example shows the separation between error detection (in the readData method) 
and error handling (in the main method). In between the two is the readFile method, 
which simply passes the exceptions along. 

section_5/dataanalyzer.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.IOException;
4 import java.util.Scanner;
5 import java.util.NoSuchElementException;
6 
7 /**
8    This program processes a file containing a count followed by data values.
9    If the file doesn’t exist or the format is incorrect, you can specify another file.

10 */
11 public class DataAnalyzer
12 {
13    public static void main(String[] args)
14    {
15       Scanner in = new Scanner(System.in);
16 
17       // Keep trying until there are no more exceptions
18 
19       boolean done = false;
20       while (!done) 
21       {
22          try 
23          {
24             System.out.print("Please enter the file name: ");
25             String filename = in.next();
26             
27             double[] data = readFile(filename);
28 
29             // As an example for processing the data, we compute the sum
30 
31             double sum = 0;
32             for (double d : data) { sum = sum + d; }
33             System.out.println("The sum is " + sum);
34 
35             done = true;
36          }
37          catch (FileNotFoundException exception)
38          {  
39             System.out.println("File not found.");



7.5 application: handling Input errors  351

40          }
41          catch (NoSuchElementException exception)
42          {
43             System.out.println("File contents invalid.");
44          }
45          catch (IOException exception)
46          {
47             exception.printStackTrace();
48          }
49       }
50    }
51     
52    /**
53       Opens a file and reads a data set.
54       @param filename the name of the file holding the data
55       @return the data in the file
56    */
57    public static double[] readFile(String filename) throws IOException
58    {
59       File inFile = new File(filename);
60       Scanner in = new Scanner(inFile);
61       try 
62       {
63          return readData(in);
64       }
65       finally
66       {
67          in.close();
68       }
69    }
70 
71    /**
72       Reads a data set.
73       @param in the scanner that scans the data
74        @return the data set
75    */
76    public static double[] readData(Scanner in) throws IOException
77    {      
78       int numberOfValues = in.nextInt(); // May throw NoSuchElementException
79       double[] data = new double[numberOfValues];
80 
81       for (int i = 0; i < numberOfValues; i++)
82       {
83          data[i] = in.nextDouble(); // May throw NoSuchElementException
84       }
85 
86       if (in.hasNext()) 
87       {
88          throw new IOException("End of file expected");
89       }
90       return data;
91    }
92 }

22.  Why doesn’t the readFile method catch any exceptions?
23.  Consider the try/finally statement in the readFile method. Why was the in vari-

able declared outside the try block?

s e l F   C H e C k



352 Chapter 7  Input/output and exception handling

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

24.  Suppose the user specifies a file that exists and is empty. Trace the flow of execu-
tion in the DataAna lyzer program.

25.  Why didn’t the readData method call hasNextInt/hasNextDouble to ensure that the 
NoSuchElementException is not thrown?

practice it  Now you can try these exercises at the end of the chapter: R7.15, R7.16, P7.13.

develop programs that read and write files.

• Use the Scanner class for reading text files.
• When writing text files, use the PrintWriter class and the print/println/printf 

methods.
• Close all files when you are done processing them.

Be able to process text in files.

• The next method reads a string that is delimited by white space.
• The Character class has methods for classifying characters.
• The nextLine method reads an entire line.
• If a string contains the digits of a number, you use the Integer.parseInt or 

Double.parseDouble method to obtain the number value.

process the command line arguments of a program.

• Programs that start from the command line receive the com-
mand line arguments in the main method.

use exception handling to transfer control from an error location to an error handler.

• To signal an exceptional condition, use the throw statement to throw an exception
object.

• When you throw an exception, processing continues in an exception handler.
• Place the statements that can cause an exception inside a try 

block, and the handler inside a catch clause.

VIDeo exaMple 7.2 detecting accounting Fraud

In this Video Example, you will see how to detect accounting fraud 
by analyzing digit distributions. You will learn how to read data 
from the Internet and handle exceptional situations.

C h a p t e r  s U M M a r Y



review exercises 353

• Checked exceptions are due to external circumstances that the programmer 
cannot prevent. The compiler checks that your program handles these exceptions.

• Add a throws clause to a method that can throw a checked exception.
• Once a try block is entered, the statements in a finally clause are 

guaranteed to be executed, whether or not an exception is 
thrown.

• Throw an exception as soon as a problem is detected. Catch it 
only when the problem can be handled.

use exception handling in a program that processes input.

• When designing a program, ask yourself what kinds of exceptions can occur.
• For each exception, you need to decide which part of your program can compe-

tently handle it.

•• R7.1  What happens if you try to open a file for reading that doesn’t exist? What happens if 
you try to open a file for writing that doesn’t exist? 

•• R7.2  What happens if you try to open a file for writing, but the file or device is write-
protected (sometimes called read-only)? Try it out with a short test program. 

• R7.3  How do you open a file whose name contains a backslash, like c:temp\output.dat? 

• R7.4  If a program Woozle is started with the command 

java Woozle -Dname=piglet -I\eeyore -v heff.txt a.txt lump.txt 

what are the values of args[0], args[1], and so on? 

• R7.5  What is the difference between throwing an exception and catching an exception? 

java.io.File
java.io.FileNotFoundException
java.io.IOException
java.io.PrintWriter
   close
java.lang.Character
   isDigit
   isLetter
   isLowerCase
   isUpperCase
   isWhiteSpace
java.lang.Double
   parseDouble
java.lang.Error
java.lang.Integer
   parseInt
java.lang.IllegalArgumentException
java.lang.NullPointerException

java.lang.NumberFormatException
java.lang.RuntimeException
java.lang.Throwable
   getMessage
   printStackTrace
java.net.URL
   openStream
java.util.InputMismatchException
java.util.NoSuchElementException
java.util.Scanner
   close
   hasNextLine
   nextLine
   useDelimiter
javax.swing.JFileChooser
   getSelectedFile
   showOpenDialog
   showSaveDialog

s ta n D a r D  l I B r a r Y  I t e M s  I n t r o D U C e D  I n  t h I s  C h a p t e r

r e V I e W  e x e r C I s e s



354 Chapter 7  Input/output and exception handling

• R7.6  What is a checked exception? What is an unchecked exception? Give an example for 
each. Which exceptions do you need to declare with the throws reserved word? 

•• R7.7  Why don’t you need to declare that your method might throw an IndexOutOfBounds -
Exception?

•• R7.8  When your program executes a throw statement, which statement is executed next? 

•• R7.9  What happens if an exception does not have a matching catch clause? 

•• R7.10  What can your program do with the exception object that a catch clause receives? 

•• R7.11  Is the type of the exception object always the same as the type declared in the catch 
clause that catches it? If not, why not?

• R7.12  What is the purpose of the finally clause? Give an example of how it can be used. 

•• R7.13  What happens when an exception is thrown, the code of a finally clause executes, 
and that code throws an exception of a different kind than the original one? Which 
one is caught by a surrounding catch clause? Write a sample program to try it out.

•• R7.14  Which exceptions can the next and nextInt methods of the Scanner class throw? Are 
they checked exceptions or unchecked exceptions? 

•• R7.15  Suppose the program in Section 7.5 reads a file containing the following values:
1
2
3
4

What is the outcome? How could the program be improved to give a more accurate 
error report?

•• R7.16  Can the readFile method in Section 7.5 throw a NullPointer Exception? If so, how?

• p7.1  Write a program that carries out the following tasks:

Open a file with the name hello.txt.
Store the message “Hello, World!” in the file.
Close the file.
Open the same file again.
Read the message into a string variable and print it.

• p7.2  Write a program that reads a file containing text. Read each line and send it to the 
output file, preceded by line numbers. If the input file is

Mary had a little lamb 
Whose fleece was white as snow. 
And everywhere that Mary went, 
The lamb was sure to go! 

then the program produces the output file
/* 1 */ Mary had a little lamb 
/* 2 */ Whose fleece was white as snow. 
/* 3 */ And everywhere that Mary went, 
/* 4 */ The lamb was sure to go! 

p r o G r a M M I n G  e x e r C I s e s



programming exercises 355

The line numbers are enclosed in /* */ delimiters so that the program can be used for 
numbering Java source files.

Prompt the user for the input and output file names.

• p7.3  Repeat Exercise P7.2, but allow the user to specify the file name on the command-
line. If the user doesn’t specify any file name, then prompt the user for the name.

• p7.4  Write a program that reads a file containing two columns of floating-point  numbers. 
Prompt the user for the file name. Print the average of each column.

•• p7.5  Write a program that asks the user for a file name and prints the number of charac-
ters, words, and lines in that file.

•• p7.6  Write a program Find that searches all files specified on the command line and prints 
out all lines containing a specified word. For example, if you call 

java Find ring report.txt address.txt Homework.java

then the program might print 
report.txt: has broken up an international ring of DVD bootleggers that
address.txt: Kris Kringle, North Pole
address.txt: Homer Simpson, Springfield
Homework.java: String filename;

The specified word is always the first command line argument. 

•• p7.7  Write a program that checks the spelling of all words in a file. It should read each 
word of a file and check whether it is contained in a word list. A word list is avail-
able on most Linux systems in the file /usr/share/dict/words. (If you don’t have access 
to a Linux system, your instructor should be able to get you a copy.) The program 
should print out all words that it cannot find in the word list.

•• p7.8  Write a program that replaces each line of a file with its reverse. For example, if you 
run 

java Reverse HelloPrinter.java

then the contents of HelloPrinter.java are changed to 
retnirPolleH ssalc cilbup
{
)sgra ][gnirtS(niam diov citats cilbup
{
wodniw elosnoc eht ni gniteerg a yalpsiD //

;)"!dlroW ,olleH"(nltnirp.tuo.metsyS
}
}

Of course, if you run Reverse twice on the same file, you get back the original file. 

•• p7.9  Write a program that reads each line in a file, reverses its lines, and writes them to 
another file. For example, if the file input.txt contains the lines

Mary had a little lamb
Its fleece was white as snow
And everywhere that Mary went
The lamb was sure to go.

and you run
reverse input.txt output.txt

then output.txt contains



356 Chapter 7  Input/output and exception handling

The lamb was sure to go.
And everywhere that Mary went
Its fleece was white as snow
Mary had a little lamb

•• p7.10  Get the data for names in prior decades from the Social Security Administration. 
Paste the table data in files named babynames80s.txt, etc. Modify the worked_example_1/
BabyNames.java program so that it prompts the user for a file name. The numbers in 
the files have comma separators, so modify the program to handle them. Can you 
spot a trend in the frequencies? 

•• p7.11  Write a program that reads in worked_example_1/babynames.txt and produces two files, 
boynames.txt and girlnames.txt, separating the data for the boys and girls.

••• p7.12  Write a program that reads a file in the same format as worked_example_1/babynames.txt 
and prints all names that are both boy and girl names (such as Alexis or Morgan). 

•• p7.13  Write a program that asks the user to input a set of floating-point values. When the 
user enters a value that is not a number, give the user a second chance to enter the 
value. After two chances, quit reading input. Add all correctly specified values and 
print the sum when the user is done entering data. Use exception handling to detect 
improper inputs.

•• p7.14  Using the mechanism described in Special Topic 7.1, write a program that reads all 
data from a web page and writes them to a file. Prompt the user for the web page 
URL and the file. 

•• p7.15  Using the mechanism described in Special Topic 7.1, write a program that reads all 
data from a web page and prints all hyperlinks of the form 

<a href="link">link text</a>

Extra credit if your program can follow the links that it finds and find links in those 
web pages as well. (This is the method that search engines such as Google use to find 
web sites.)

•• Business p7.16  A hotel salesperson enters sales in a text file. Each line contains the following, 
separated by semicolons: The name of the client, the service sold (such as Dinner, 
Conference, Lodging, and so on), the amount of the sale, and the date of that event. 
Write a program that reads such a file and displays the total amount for each service 
category. Display an error if the file does not exist or the format is incorrect.

•• Business p7.17  Write a program that reads a text file as described in Exercise P7.16, and that writes a 
separate file for each service category, containing the entries for that category. Name 
the output files Dinner.txt, Conference.txt, and so on.

•• Business p7.18  A store owner keeps a record of daily cash transactions in a text file. Each line 
contains three items: The invoice number, the cash amount, and the letter P if the 
amount was paid or R if it was received. Items are separated by spaces. Write a pro-
gram that prompts the store owner for the amount of cash at the beginning and end 
of the day, and the name of the file. Your program should check whether the actual 
amount of cash at the end of the day equals the expected value.



programming exercises 357

••• science p7.19  After the switch in the figure below closes, the voltage (in volts) across the capacitor 
is represented by the equation 

v t B e t RC( ) = −( )−1 ( )

+

–

v (t)+
– C

t = 0
R

B

Suppose the parameters of the electric circuit are B = 12 volts, R = 500 Ω, and 
C = 0.25 μF. Consequently

v t e t( ) = − −( )12 1 0 008.

where t has units of μs. Read a file params.txt containing the values for B, R, C, and 
the starting and ending values for t. Write a file rc.txt of values for the time t and the 
corresponding capacitor voltage v(t), where t goes from the given starting value to 
the given ending value in 100 steps. In our example, if t goes from 0 to 1,000 μs, the 
twelfth entry in the output file would be:

110  7.02261

••• science p7.20  The figure below shows a plot of the capacitor voltage from the circuit shown in 
Exercise P7.19. The capacitor voltage increases from 0 volts to B volts. The “rise 
time” is defined as the time required for the capacitor voltage to change from  
v1 = 0.05 × B to v2 = 0.95 × B. 

0 t (µs)
0

B

The file rc.txt contains a list of values of time t and the corresponding capacitor 
voltage v(t). A time in μs and the corresponding voltage in volts are printed on the 
same line. For example, the line 

110  7.02261

indicates that the capacitor voltage is 7.02261 volts when the time is 110 μs. The time 
is increasing in the data file.
Write a program that reads the file rc.txt and uses the data to calculate the rise time. 
Approximate B by the voltage in the last line of the file, and find the data points that 
are closest to 0.05 × B and 0.95 × B.



358 Chapter 7  Input/output and exception handling

•• science p7.21  Suppose a file contains bond energies and bond lengths for covalent bonds in the 
following format: 

single, double,  
or triple bond

Bond energy 
(kJ/mol)

Bond length 
(nm)

C|C 370 0.154

C||C 680 0.13

C|||C 890 0.12

C|H 435 0.11

C|N 305 0.15

C|O 360 0.14

C|F 450 0.14

C|Cl 340 0.18

O|H 500 0.10

O|O 220 0.15

O|Si 375 0.16

N|H 430 0.10

N|O 250 0.12

F|F 160 0.14

H|H 435 0.074

Write a program that accepts data from one column and returns the corresponding 
data from the other columns in the stored file. If input data matches different rows, 
then return all matching row data. For example, a bond length input of 0.12 should 
return triple bond C|||C and bond energy 890 kJ̸mol and single bond N|O and bond 
energy 250 kJ̸mol.



answers to self-Check Questions 359

1.  When the PrintWriter object is created, the out-
put file is emptied. Sadly, that is the same file as 
the input file. The input file is now empty and 
the while loop exits immediately.

2.  The program throws a FileNotFoundException 
and terminates.

3.  Open a scanner for the file.
For each number in the scanner
 Add the number to an array.
Close the scanner.
Set total to 0.
Open a print writer for the file.
For each number in the array
 Write the number to the print writer.
 Add the number to total.
Write total to the print writer.
Close the print writer.

4.  Add a variable count that is incremented when-
ever a number is read. In the end, print the 
average, not the total, as 
out.printf("Average: %8.2f\n", total / count);

Because the string "Average" is three characters 
longer than "Total", change the other output to 
out.printf("%18.2f\n", value).

5.  Add a variable count that is incremented when-
ever a number is read. Only write a new line 
when it is even.
count++;
out.printf("%8.2f", value);
if (count % 2 == 0) { out.println(); }

At the end of the loop, write a new line if count 
is odd, then write the total:
if (count % 2 == 1) { out.println(); }
out.printf("Total: %10.2f\n", total); 

6.  word is "Hello," and input is "World!" 
7.  Because 995.0 is not an integer, the call 

in.hasNextInt() returns false, and the call 
in.nextInt() is skipped. The value of number 
stays 0, and input is set to the string "995.0".

8.  x1 is set to 6000000. Because a comma is not 
considered a part of a floating-point number 
in Java, the second call to nextDouble causes an 
input mismatch exception and x2 is not set.

9.  Read them as strings, and convert those strings 
to numbers that are not equal to N/A:
String input = in.next();
if (!input.equals("N/A"))
{
   double value = Double.parseDouble(input);
   Process value.
}

10.  Locate the last character of the country name:
int j = i - 1;
while (!Character.isWhiteSpace(line.charAt(j))) 
{ 
   j--; 
}

Then extract the country name: 
String countryName = line.substring(0, j + 1);

11.  args[0] is "-d" and args[1] is "file1.txt"
12. 

Then the program prints a message
Usage: java CaesarCi pher [-d] infile out file

13.  The program will run correctly. The loop that 
parses the options does not depend on the 
positions in which the options appear.

14.  FDHVDU
15.  Add the lines

else if (option == 'k')
{
   key = Integer.parseInt(
      args[i].substring(2));
}

after line 27 and update the usage information.
16.  It is still 100. The last statement was not 

executed because the exception was thrown.
17.  if (amount < 0) 

{ 
   throw new IllegalArgumentException(
      "Negative amount"); 
} 

 key inFile outFile i arg
 3 null null 0 -d
 -3 file1.txt  1 file1.txt
    2 

a n s W e r s  t o  s e l F - C h e C k  Q U e s t I o n s



360 Chapter 7  Input/output and exception handling

18.  The Scanner constructor succeeds because 
the file exists. The nextInt method throws 
a NoSuchElementException. This is not an 
IO Exception. Therefore, the error is not caught. 
Because there is no other handler, an error 
message is printed and the program terminates.

19.  Because programmers should simply check 
that their array index values are valid instead 
of trying to handle an ArrayIndexOutOfBounds-
Exception.

20.  No. You can catch both exception types in the 
same way, as you can see in the code example 
on page 339.

21.  There are two mistakes. The PrintWriter con-
structor can throw a FileNotFoundExcep tion. You 
should supply a throws clause. And if one of the 
array elements is null, a NullPointerException is 
thrown. In that case, the out.close() statement 
is never exe cuted. You should use a try/finally 
statement.

22.  The exceptions are better handled in the main 
method.

23.  If it had been declared inside the try block, its 
scope would only have extended until the end 
of the try block, and it would not have been 
accessible in the finally clause.

24.  main calls readFile, which calls readData. The call 
in.nextInt() throws a NoSuchElement Exception. 
The readFile method doesn’t catch it, so it 
propagates back to main, where it is caught. 
An error message is printed, and the user can 
specify another file.

25.  We want to throw that exception, so that 
someone else can handle the problem of a bad 
data file.



8C h a p t e r

361

ObjeCts and 
Classes

to understand the concepts of classes, 
objects, and encapsulation

to implement instance variables, methods, and constructors

to be able to design, implement, and test your own classes

to understand the behavior of object references, static variables, and static methods

C h a p t e r  G O a l s

C h a p t e r  C O n t e n t s

8.1  Object-Oriented 
PrOgramming  362

8.2  imPlementing a SimPle claSS  364

Syntax 8.1: Instance Variable declaration 365

8.3  SPecifying the Public interface 
Of a claSS  367

Special Topic 8.1: the javadoc Utility 370

8.4  deSigning the data 
rePreSentatiOn  371

8.5  imPlementing inStance 
methOdS  372

Syntax 8.2: Instance Methods 373
Programming Tip 8.1: all Instance Variables 

should be private; Most Methods should 
be public 374

8.6  cOnStructOrS  375

Syntax 8.3: Constructors 376
Common Error 8.1: Forgetting to Initialize Object 

references in a Constructor 378
Common Error 8.2: trying to Call 

a Constructor 379
Common Error 8.3: declaring a Constructor 

as void 379

Special Topic 8.2: Overloading 380

8.7  teSting a claSS  380

How To 8.1: Implementing a Class 382
Worked Example 8.1: Implementing a bank 

account Class 
Video Example 8.1: paying Off a loan 

8.8  PrOblem SOlving: 
tracing ObjectS  386

8.9  PrOblem SOlving: PatternS 
fOr Object data  388

Video Example 8.2: Modeling a robot escaping 
from a Maze 

Random Fact 8.1: electronic Voting Machines 394

8.10  Object referenceS  395

Special Topic 8.3: Calling One Constructor 
from another 399

8.11  Static variableS and 
methOdS  400

Random Fact 8.2: Open source and 
Free software 402



362

this chapter introduces you to object-oriented program-
ming, an important technique for writing complex pro-
grams. In an object-oriented program, you don’t simply 
manipulate numbers and strings, but you work with objects 
that are meaningful for your application. Objects with 
the same behavior (such as the windmills to the left) are 
grouped into classes. a programmer provides the desired 
behavior by specifying and implementing methods for 
these classes. In this chapter, you will learn how to discover, 
specify, and implement your own classes, and how to use 
them in your programs.

8.1 Object-Oriented programming
You have learned how to structure your programs by decomposing tasks into meth-
ods. This is an excel lent practice, but experience shows that it does not go far enough. 
It is difficult to understand and update a program that consists of a large collection of 
methods. 

To overcome this problem, computer scientists invented object-oriented pro-
gramming, a program ming style in which tasks are solved by collaborating objects. 
Each object has its own set of data, together with a set of methods that act upon the 
data. 

You have already experienced this programming style when you used strings, the 
System.out object, or a Scanner object. Each of these objects has a set of methods. For 
example, you can use the length and substring methods to work with String objects. 

When you develop an object-oriented program, you create your own objects that 
describe what is important in your application. For example, in a student database 
you might work with Student and Course objects. Of course, then you must supply 
methods for these objects.

In Java, a programmer doesn’t implement a single object. Instead, the program-
mer provides a class. A class describes a set of objects with the same behavior. For 
example, the String class describes the behavior of all strings. The class specifies how 

A Car class describes passenger vehicles that can 
carry 4–5 people and a small amount of luggage.

a class describes a 
set of objects with 
the same behavior.



8.1 Object-Oriented programming  363

a string stores its characters, which methods can be used with strings, and how the 
methods are implemented. 

In contrast, the PrintStream class describes the behavior of objects that can be used 
to produce output. One such object is System.out, and you have seen in Chapter 7 how 
to create PrintStream objects that send output to a file.

Each class defines a specific set of methods that you can use with its objects. For 
example, when you have a String object, you can invoke the length method:

"Hello,World".length()

We say that the length method is a method of the String class. The PrintStream class has 
a different set of methods. For example, the call

System.out.length()

would be illegal––the PrintStream class has no length method. However, PrintStream 
has a println method, and the call 

out.println("Hello,World!")

is legal. 
The set of all methods provided by a class, together with a description of their 

behavior, is called the public interface of the class. 
When you work with an object of a class, you do not know how the object stores 

its data, or how the methods are implemented. You need not know how a String orga-
nizes a character sequence, or how a PrintWriter object sends data to a file. All you 
need to know is the public interface––which methods you can apply, and what these 
methods do. The process of pro viding a public interface, while hiding the implemen-
tation details, is called encapsulation. 

When you design your own classes, you will use encapsulation. That is, you will 
specify a set of public methods and hide the implementation details. Other program-
mers on your team can then use your classes without having to know their imple-
mentations, just as you are able to make use of the String and PrintStream classes. 

If you work on a program that is being developed over a long period of time, it is 
common for imple mentation details to change, usually to make objects more efficient 
or more capable. When the implemen tation is hidden, the improvements do not affect 
the programmers that use the objects.

every class has a 
public interface: a 
collection of methods 
through which the 
objects of the class 
can be manipulated.

encapsulation is  
the act of providing  
a public interface and 
hiding the imple men-
tation details.

encapsulation 
enables changes in 
the implementation 
without affecting 
users of a class.

You can drive a car by operating the  
steering wheel and pedals, without  
know ing how the engine works.  
Similarly, you use an object through its  
methods. The implementation is hidden.



364 Chapter 8  Objects and Classes

1. 

A driver of an electric car doesn’t 
have to learn new controls even 
though the car engine is very 
different. Neither does the program-
mer who uses an object with an 
improved implemen tation—as long 
as the same methods are used. 

Is the method call "Hello,World".println() legal? Why or why not?
2.  When using a String object, you do not know how it stores its characters. How 

can you access them?
3.  Describe a way in which a String object might store its characters. 
4.  Suppose the providers of your Java compiler decide to change the way that a 

String object stores its characters, and they update the String method implemen-
tations accordingly. Which parts of your code do you need to change when you 
get the new compiler? 

Practice it  Now you can try these exercises at the end of the chapter: R8.1, R8.4.

8.2 Implementing a simple Class
In this section, we look at the implementation of 
a very simple class. You will see how objects store 
their data, and how methods access the data of an 
object. Knowing how a very simple class operates 
will help you design and implement more com-
plex classes later in this chapter.

Our first example is a class that models a tally 
counter, a mechanical device that is used to count 
peo ple—for example, to find out how many peo-
ple attend a concert or board a bus (see Figure 1). 

Whenever the operator pushes a button, the 
counter value advances by one. We model this 
operation with a count method. A physical coun-
ter has a display to show the current value. In our 
simulation, we use a getValue method instead. 

S e l f   c h e c k

figure 1  a tally Counter



8.2 Implementing a simple Class  365

Here is an example of using the Counter class. First, we construct an object of the 
class:

Countertally=newCounter();

In Java, you use the new operator to construct objects. We will discuss object con-
struction in more detail in Section 8.6. 

Next, we invoke methods on our object. First, we invoke the count method twice, 
simulating two button pushes. Then we invoke the getValue method to check how 
many times the button was pushed.

tally.count();
tally.count();

intresult=tally.getValue();//Sets result to 2

We can invoke the methods again, and the result will be different.
tally.count();
tally.count();

result=tally.getValue();//Sets result to 4

As you can see, the tally object remembers the effect of prior method calls. 
When implementing the Counter class, we need to specify how each counter object 

stores its data. In this simple example, that is very straightforward. Each counter 
needs a variable that keeps track of how many times the counter has been advanced. 

An object stores its data in instance variables. An instance of a class is an object of 
the class. Thus, an instance variable is a storage location that is present in each object 
of the class. 

You specify instance variables in the class declaration:
publicclassCounter
{
privateintvalue;
...
}

An instance variable declaration consists of the following parts: 

• An modifier (private) 
• The type of the instance variable (such as int) 
• The name of the instance variable (such as value) 

an object’s instance 
variables store  
the data required  
for executing  
its methods.

syntax 8.1 Instance Variable declaration

public class ClassName
{   
   private typeName variableName;
   . . . 
}

Syntax

public class Counter
{
   private int value;
   . . .
}

Each object of this class 
has a separate copy of 
this instance variable.

Instance variables should 
always be private.

Type of the variable 



366 Chapter 8  Objects and Classes

Each object of a class has its own set of instance variables. For example, if concert-
Counter and boardingCounter are two objects of the Counter class, then each object has its 
own value variable (see Figure 2). 

As you will see in Section 8.6, the instance variable value is set to 0 when a Counter 
object is constructed.

Next, let us have a quick look at the implementation of the methods of the Counter 
class. The count method advances the counter value by 1. 

publicvoidcount()
{
value=value+1;
}

We will cover the syntax of the method header in Section 8.3. For now, focus on the 
body of the method inside the braces. 

Note how the count method increments the instance variable value. Which instance 
variable? The one belong ing to the object on which the method is invoked. For exam-
ple, consider the call

concertCounter.count();

This call advances the value variable of the concertCounter object. 
The methods that you invoke on an object are called instance meth ods to distin-

guish them from the static methods of Chapter 5. 
Finally, look at the other instance method of the Counter class. The getValue method 

returns the current value:
publicintgetValue()
{
returnvalue;
}

This method is required so that users of the Counter class can find out how often a 
particular counter has been clicked. A user cannot simply access the value instance 
variable. That variable has been declared with the access specifier private. 

The private specifier restricts access to the methods of the same class. For example, 
the value variable can be accessed by the count and getValue methods of the Counter 
class but not a method of another class. Those other methods need to use the getValue 
method if they want to find out the counter’s value, or the count method if they want 
to change it. 

each object of a class 
has its own set of 
instance variables.

an instance method 
can access the 
instance variables  
of the object on  
which it acts.

a private instance 
variable can only  
be accessed by the 
methods of its  
own class.

O n l i n e  e x a m P l e

the complete 
Counter class and a 
CounterTester 
program.

figure 2  Instance Variables

concertCounter =

value =

Counter

value =

CounterboardingCounter =

Instance
variables



8.3 specifying the public Interface of a Class  367

These clocks have common behavior, but each of them has a different state. Similarly, objects of  
a class can have their instance variables set to different values.

Private instance variables are an essential part of encapsulation. They allow a pro-
grammer to hide the implementation of a class from a class user. 

5.  Supply the body of a method publicvoidreset() that resets the counter back to 
zero.

6.  Consider a change to the implementation of the counter. Instead of using an 
integer counter, we use a string of | characters to keep track of the clicks, just like 
a human might do.
publicclassCounter
{
privateStringstrokes="";
publicvoidcount()
{
strokes=strokes+"|";
}
...
}

How do you implement the getValue method with this data representation?
7.  Suppose another programmer has used the original Counter class. What changes 

does that programmer have to make in order to use the modified class? 
8.  Suppose you use a class Clock with private instance variables hours and minutes. 

How can you access these variables in your program?

Practice it  Now you can try these exercises at the end of the chapter: P8.1, P8.2.

8.3 specifying the public Interface of a Class
When designing a class, you start by specifying its public interface. The public inter-
face of a class consists of all methods that a user of the class may want to apply to its 
objects. 

Let’s consider a simple example. We want to use objects that simulate cash registers. 
A cashier who rings up a sale presses a key to start the sale, then rings up each item. A 
display shows the amount owed as well as the total number of items  purchased.

S e l f   c h e c k



368 Chapter 8  Objects and Classes

In our simulation, we want to call the following methods on a cash register object:

• Add the price of an item.
• Get the total amount owed, and the count of 

items purchased. 
• Clear the cash register to start a new sale.

Here is an outline of the CashRegister class. We sup-
ply comments for all of the methods to document 
their purpose. 

/**
A simulated cash register that tracks the item 
count and the total amount due.
*/
publicclassCashRegister
{
private data—see Section 8.4

/**
Adds an item to this cash register.
@parampricethe price of this item
*/
publicvoidaddItem(doubleprice)
{
implementation—see Section 8.5
}

/**
Gets the price of all items in the current sale.
@returnthe total price
*/
publicdoublegetTotal()
{
implementation—see Section 8.5
}

/**
Gets the number of items in the current sale.
@returnthe item count
*/
publicintgetCount()
{
implementation—see Section 8.5
}

/**
Clears the item count and the total.
*/
publicvoidclear()
{
implementation—see Section 8.5
}
}

The method declarations and comments make up the public interface of the class. The 
data and the method bodies make up the private implementation of the class. 

Note that the methods of the CashRegister class are instance methods. They are not 
declared as static. You invoke them on objects (or instances) of the CashRegister class. 

You can use method 
headers and method 
comments to specify 
the public interface 
of a class.

O n l i n e  e x a m P l e

the documentation 
of the public 
interface of the 
CashRegister class.



8.3 specifying the public Interface of a Class  369

figure 3   
an Object reference 
and an Object

register1 = CashRegister

To see an instance method in action, we first need to construct an object:
CashRegisterregister1=newCashRegister();
//Constructs a CashRegister object

This statement initializes the register1 variable with a reference to a new CashRegister 
object—see Figure 3. (We discuss the process of object construction in Section 8.6 
and object references in Section 8.10.)

Once the object has been constructed, we are ready to invoke a method:
register1.addItem(1.95);//Invokes a method

When you look at the public interface of a class, it is useful to classify its methods as 
mutators and acces sors. A mutator method modifies the object on which it operates. 
The CashRegister class has two mutators: addItem and clear. After you call either of 
these methods, the object has changed. You can observe that change by calling the 
getTotal or getCount method. 

An accessor method queries the object for some information without changing 
it. The CashRegister class has two accessors: getTotal and getCount. Applying either of 
these methods to a CashRegister object simply returns a value and does not modify the 
object. For example, the following statement prints the current total and count:

System.out.println(register1.getTotal())+""+register1.getCount());

Now we know what a CashRegister object can do, but not how it does it. Of course, to 
use CashRegister objects in our programs, we don’t need to know. 

In the next sections, you will see how the CashRegister class is implemented.

9.  What does the following code segment print?
CashRegisterreg=newCashRegister();
reg.clear();
reg.addItem(0.95);
reg.addItem(0.95);
System.out.println(reg.getCount()+""+reg.getTotal());

10.  What is wrong with the following code segment?
CashRegisterreg=newCashRegister();
reg.clear();
reg.addItem(0.95);
System.out.println(reg.getAmountDue());

11.  Declare a method getDollars of the CashRegister class that yields the amount of 
the total sale as a dollar value without the cents. 

12.  Name two accessor methods of the String class.
13.  Is the nextInt method of the Scanner class an accessor or a mutator? 
14.  Provide documentation comments for the Counter class of Section 8.2.

Practice it  Now you can try these exercises at the end of the chapter: R8.2, R8.8.

a mutator method 
changes the object 
on which it operates.

an accessor method 
does not change  
the object on which  
it operates.

S e l f   c h e c k



370 Chapter 8  Objects and Classes

the javadoc utility

The javadoc utility formats documentation comments into a neat set of documents that you 
can view in a web browser. It makes good use of the seemingly repetitive phrases. The first 
sentence of each method comment is used for a summary table of all methods of your class 
(see Figure 4). The @param and @return comments are neatly formatted in the detail description 
of each method (see Figure 5). If you omit any of the comments, then javadoc generates docu-
ments that look strangely empty.  

This documentation format may look familiar. It is the same format that is used in the offi-
cial Java documentation. The programmers who implement the Java library use javadoc them-
selves. They too document every class, every method, every parameter, and every return value, 
and then use javadoc to extract the documentation.

Many integrated programming environments can execute javadoc for you. Alternatively, 
you can invoke the javadoc utility from a shell window, by issuing the command 

javadocMyClass.java

special topic 8.1 

figure 4  a Method summary Generated by javadoc

figure 5  Method detail Generated by javadoc



8.4 designing the data representation  371

The javadoc utility produces files such as MyClass.html in HTML format, which you can inspect 
in a browser. You can use hyperlinks to navigate to other classes and methods.

You can run javadoc before implementing any methods. Just leave all the method bodies 
empty. Don’t run the compiler—it would complain about missing return values. Simply run 
javadoc on your file to generate the documen tation for the public interface that you are about 
to implement.

The javadoc tool is wonderful because it does one thing right: It allows you to put the docu-
mentation together with your code. That way, when you update your programs, you can see 
right away which documentation needs to be updated. Hopefully, you will update it right then 
and there. Afterward, run javadoc again and get updated infor mation that is timely and nicely 
formatted.

8.4 designing the data representation
An object stores its data in instance variables. These are variables that are declared 
inside the class (see Syntax 8.1). 

When implementing a class, you have to determine which data each object needs to 
store. The object needs to have all the information necessary to carry out any method 
call.

Go through all methods and consider their data requirements. It is a good idea to 
start with the acces sor methods. For example, a CashRegister object must be able to 
return the correct value for the getTotal method. That means, it must either store all 
entered prices and compute the total in the method call, or it must store the total. 

Now apply the same reasoning to the getCount method. If the cash register stores all 
entered prices, it can count them in the getCount method. Otherwise, you need to have 
a variable for the count. 

The addItem method receives a price as an 
argument, and it must record the price. If the 
CashRegister object stores an array of entered 
prices, then the addItem method appends the 
price. On the other hand, if we decide to store 
just the item total and count, then the addItem 
method updates these two variables. 

Finally, the clear method must prepare the 
cash register for the next sale, either by emp-
tying the array of prices or by setting the total 
and count to zero. 

We have now discovered two different 
ways of representing the data that the object 
needs. Either of them will work, and we have 
to make a choice. We will choose the simpler 
one: variables for the total price and the item 
count. (Other options are explored in Exer-
cises P8.16 and P8.17.) 

intitemCount;
doubletotalPrice;

For each accessor 
method, an object 
must either store or 
compute the result.

Like a wilderness explorer who needs to 
carry all items that may be needed, an 
object needs to store the data required 
for any method calls.

Commonly, there is 
more than one way of 
representing the data 
of an object, and you 
must make a choice.



372 Chapter 8  Objects and Classes

The instance variables are declared in the class, but outside any methods, with the 
private modifier: 

publicclassCashRegister
{
privateintitemCount;
privatedoubletotalPrice;
...
}

Note that method calls can come in any order. For example, consider the CashRegister 
class. After calling 

register1.getTotal()

a program can make another call to
register1.addItem(1.95)

You should not assume that you can clear the sum in a call to getTotal. Your data rep-
resentation should allow for method calls that come in arbitrary order, in the same 
way that occupants of a car can push the various buttons and levers in any order they 
choose.

15.  What is wrong with this code segment?
CashRegisterregister2=newCashRegister();
register2.clear();
register2.addItem(0.95);
System.out.println(register2.totalPrice);

16.  Consider a class Time that represents a point in time, such as 9 a.m. or 3:30 p.m. 
Give two sets of instance variables that can be used for implementing the Time 
class. (Hint for the second set: Military time.)

17.  Suppose the implementor of the Time class changes from one implementation 
strategy to another, keeping the public interface unchanged. What do the pro-
grammers who use the Time class need to do? 

18.  Consider a class Grade that represents a letter grade, such as A+ or B. Give two dif-
ferent sets of instance variables that can be used for implementing the Grade class.

Practice it  Now you can try these exercises at the end of the chapter: R8.6, R8.16. 

8.5 Implementing Instance Methods
When implementing a class, you need to provide the bodies for all methods. Imple-
menting an instance method is very similar to implementing a static method, with one 
essential difference: You can access the instance variables of the class in the method 
body. 

For example, here is the implementation of the addItem method of the CashRegister 
class. (You can find the remaining methods at the end of the next section.)

publicvoidaddItem(doubleprice)
{
itemCount++;
totalPrice=totalPrice+price;

}

be sure that your 
data representation 
supports method 
calls in any order.

O n l i n e  e x a m P l e

the CashRegister 
class with instance 
variables.

S e l f   c h e c k



8.5 Implementing Instance Methods  373

syntax 8.2 Instance Methods

public class CashRegister
{
   . . .
   public void addItem(double price)
   {
      itemCount++;
      totalPrice = totalPrice + price;
   }
   . . .
}

Explicit parameter

Instance variables of 
the implicit parameter

modifiers returnType methodName(parameterType parameterName, . . . )
{
   method body
}

Syntax

Whenever you use an instance variable, such as itemCount or totalPrice, in a method, it 
denotes that instance variable of the object on which the method was invoked. For 
example, consider the call

register1.addItem(1.95);

The first statement in the addItem method is 
itemCount++;

Which itemCount is incremented? In this call, it is the itemCount of the register1 object. 
(See Figure 6.)

the object on which  
a method is applied  
is the implicit 
parameter. 

figure 6   
Implicit and explicit  
parameters

2 After the method call register1.addItem(1.95).

1 Before the method call.

itemCount =

CashRegister

totalPrice =

1

1.95

itemCount =

CashRegister

totalPrice =

0

0

register1 =

register1 =

The implicit parameter 
references this object.

The explicit parameter 
is set to this argument.



374 Chapter 8  Objects and Classes

When an item is added, it affects the  
instance variables of the cash register  
object on which the method is invoked.

The object on which a method is invoked is called the implicit parameter of the 
method. In Java, you do not actually write the implicit parameter in the method dec-
laration. For that reason, the parameter is called “implicit”. 

In contrast, parameters that are explicitly mentioned in the method declaration, 
such as the totalPrice parameter variable, are called explicit parameters. Every 
method has exactly one implicit parameter and zero or more explicit parameters. 

19.  What are the values of register1.itemCount, register1.totalPrice, register2.
itemCount, and register2.totalPrice after these statements?
CashRegisterregister1=newCashRegister();
register1.addItem(0.90);
register1.addItem(0.95);
CashRegisterregister2=newCashRegister();
register2.addItem(1.90);

20.  Implement a method getDollars of the CashRegister class that yields the amount of 
the total sale as a dollar value without the cents.

21.  Consider the substring method of the String class that is described in Section 
2.5.6. How many param eters does it have, and what are their types? 

22.  Consider the length method of the String class. How many parameters does it 
have, and what are their types? 

Practice it  Now you can try these exercises at the end of the chapter: R8.10, P8.16, P8.17, P8.18.

all instance variables Should be Private; most methods 
Should be Public

It is possible to declare instance variables as public, but you should not do that in your own 
code. Always use encap sulation, with private instance variables that are manipulated with 
methods.

Typically, methods are public. However, sometimes you have a method that is used only 
as a helper method by other methods. In that case, you can make the helper method private. 
Simply use the private reserved word when declaring the method.

explicit parameters 
of a method are listed 
in the method 
declaration.

O n l i n e  e x a m P l e

the CashRegister 
class with method 
implementations.

S e l f   c h e c k

programming tip 8.1 



8.6 Constructors  375

8.6 Constructors
A constructor initializes the instance variables of an object. The constructor is 
automat ically called whenever an object is created with the new operator. 

You have seen the new operator in Chapter 2. It is used whenever a new object is 
required. For example, the expression newScanner(System.in) in the statement

Scannerin=newScanner(System.in);

constructs a new object of the Scanner class. Specifically, a constructor of the Scan-
ner class is called with the argument System.in. That constructor initializes the Scanner 
object.

The name of a constructor is identical to the name of its class. For example:
publicclassCashRegister
{
...

/**
Constructs a cash register with cleared item count and total.
*/
publicCashRegister()//A constructor
{
itemCount=0;
totalPrice=0;
}
}

Constructors never return values, but you do not use the void reserved word when 
declaring them. 

Many classes have more than one constructor. This allows you to declare objects 
in different ways. Consider for example a BankAccount class that has two constructors:

publicclassBankAccount
{
...

/**
Constructs a bank account with a zero balance.
*/
publicBankAccount(){...}

/**
Constructs a bank account with a given balance.
@paraminitialBalance the initial balance
*/
publicBankAccount(doubleinitialBalance){...}
}

Both constructors have the same name as the class, BankAccount. The first constructor 
has no parameter variables, whereas the second constructor has a parameter variable 
of type double. 

When you construct an object, the compiler chooses the constructor that matches 
the arguments that you supply. For example,

BankAccountjoesAccount=newBankAccount();
//Uses BankAccount() constructor
BankAccountlisasAccount=newBankAccount(499.95);
//Uses BankAccount(double) constructor

a constructor 
initializes the 
instance variables  
of an object.

a constructor is 
invoked when an 
object is created with 
the new operator.

the name of a 
constructor is  
the same as the  
class name.

a class can have 
multiple 
constructors.

the compiler picks 
the constructor  
that matches the 
construction 
arguments.



376 Chapter 8  Objects and Classes

syntax 8.3 Constructors

public class BankAccount
{
   private double balance;

   public BankAccount() 
   { 
      balance = 0; 
   }

   public BankAccount(double initialBalance) 
   { 
      balance = initialBalance;
   }
   . . .
}

A constructor 
has no return type, 
not even void.

A constructor has the 
same name as the class.

This constructor is 
picked for the expression 

new BankAccount(499.95).

These constructors 
initialize the balance 

instance variable.

If you do not initialize an instance variable in a constructor, it is automatically set to a 
default value:

• Numbers are set to zero.
• Boolean variables are initialized as false.
• Object and array references are set to the special value null that indicates that no 

object is associated with the variable (see Section 8.10). This is usually not desir-
able, and you should initialize object refer ences in your constructors (see Com-
mon Error 8.1 on page 378).

In this regard, instance variables differ from local variables declared inside methods. 
The computer reports an error if you use a local variable that has not been explicitly 
initialized. 

If you do not supply any constructor for a class, the compiler automatically gener-
ates a constructor. That constructor has no arguments, and it initializes all instance 
variables with their default values. Therefore, every class has at least one constructor.

You have now encountered all concepts that are necessary to implement the 
CashRegister class.

by default, numbers 
are initialized as 0, 
booleans as false, 
and object references 
as null.

If you do not provide 
a constructor, a 
constructor with  
no arguments  
is generated.

A constructor is like a set of  
assembly instructions for an object. 



8.6 Constructors  377

The complete code for the class is given here. In the next section, you will see how 
to test the class.

section_6/cashregister.java

1 /**
2 A simulated cash register that tracks the item count and
3 the total amount due.
4 */
5 publicclassCashRegister
6 {
7 privateintitemCount;
8 privatedoubletotalPrice;
9

10 /**
11 Constructs a cash register with cleared item count and total.
12 */
13 publicCashRegister()
14 {
15 itemCount=0;
16 totalPrice=0;
17 }
18
19 /**
20 Adds an item to this cash register.
21 @parampricethe price of this item
22 */
23 publicvoidaddItem(doubleprice)
24 {
25 itemCount++;
26 totalPrice=totalPrice+price;
27 }
28
29 /**
30 Gets the price of all items in the current sale.
31 @returnthe total amount
32 */
33 publicdoublegetTotal()
34 {
35 returntotalPrice;
36 }
37 
38 /**
39 Gets the number of items in the current sale.
40 @returnthe item count
41 */
42 publicintgetCount()
43 { 
44 returnitemCount;
45 }
46
47 /**
48 Clears the item count and the total.
49 */
50 publicvoidclear()
51 {
52 itemCount=0;
53 totalPrice=0;
54 }
55 }



378 Chapter 8  Objects and Classes

23.  Consider this class:
publicclassPerson
{
privateStringname;

publicPerson(StringfirstName,StringlastName)
{
name=lastName+","+firstName;
}
...
}

If an object is constructed as
Personharry=newPerson("Harry","Morgan");

what is its name instance variable? 
24.  Provide an implementation for a Person constructor so that after the call

Personp=newPerson();

the name instance variable of p is "unknown". 
25.  What happens if you supply no constructor for the CashRegister class? 
26.  Consider the following class:

publicclassItem
{
privateStringdescription;
privatedoubleprice;

publicItem(){...}
//Additional methods omitted
}

Provide an implementation for the constructor. Be sure that no instance variable 
is set to null. 

27.  Which constructors should be supplied in the Item class so that each of the fol-
lowing declarations compiles?
a.  Itemitem2=newItem("Cornflakes"); 
b. Itemitem3=newItem(3.95); 
c.  Itemitem4=newItem("Cornflakes",3.95); 
d. Itemitem1=newItem(); 
e.  Itemitem5; 

Practice it  Now you can try these exercises at the end of the chapter: R8.12, P8.4, P8.5.

forgetting to initialize Object references in a constructor

Just as it is a common error to forget to initialize a local variable, it is easy to forget about 
instance variables. Every constructor needs to ensure that all instance variables are set to 
appropriate values. 

If you do not initialize an instance variable, the Java compiler will initialize it for you. 
Numbers are initialized with 0, but object references—such as string variables—are set to the 
null reference.

S e l f   c h e c k

Common error 8.1 



8.6 Constructors  379

Of course, 0 is often a convenient default for numbers. However, null is hardly ever a con-
venient default for objects. Consider this “lazy” constructor for a modified version of the 
BankAccount class: 

publicclassBankAccount
{
privatedoublebalance;
privateStringowner;
...
publicBankAccount(doubleinitialBalance)
{
balance=initialBalance;
}
}

In this case,balance is initialized, but the owner variable is set to a null reference. This can be a 
problem—it is illegal to call methods on the null reference. 

To avoid this problem, it is a good idea to initialize every instance variable:

publicBankAccount(doubleinitialBalance)
{
balance=initialBalance;
owner="None";
}

trying to call a constructor

A constructor is not a method. You must use it in combination with the new reserved word:

CashRegisterregister1=newCashRegister();

After an object has been constructed, you cannot invoke the constructor on that object again. 
For example, you can not call the constructor to clear an object:

...
register1.CashRegister();//Error

It is true that the constructor can set a new CashRegister object to the cleared state, but you 
cannot invoke a construc tor on an existing object. However, you can replace the object with a 
new one:

register1=newCashRegister();//OK

declaring a constructor as void

Do not use the void reserved word when you declare a constructor:

publicvoidBankAccount()//Error—don’t use void!

This would declare a method with return type void and not a constructor. Unfortunately, the 
Java compiler does not consider this a syntax error.

Common error 8.2 

Common error 8.3 



380 Chapter 8  Objects and Classes

Overloading

When the same method name is used for more than one method, then the name is overloaded. 
In Java you can over load method names provided that the parameter types are different. For 
example, you can declare two methods, both called print:

publicvoidprint(CashRegisterregister)
publicvoidprint(BankAccountaccount)

When the print method is called,

print(x);

the compiler looks at the type of x. If x is a CashRegister object, the first method is called. If x is an 
BankAccount object, the second method is called. If x is neither, the compiler generates an error.

We have not used the overloading feature in this book. Instead, we gave each method a 
unique name, such as printRegister or printAccount. However, we have no choice with con-
structors. Java demands that the name of a con structor equal the name of the class. If a class has 
more than one constructor, then that name must be overloaded.

8.7 testing a Class
In the preceding section, we completed the implementation of the CashRegister class. 
What can you do with it? Of course, you can compile the file CashRegister.java. How-
ever, you can’t execute the CashRegister class. It doesn’t contain a main method. That is 
normal—most classes don’t contain a main method. They are meant to be combined 
with a class that has a main method.

In the long run, your class may become a part 
of a larger program that interacts with users, stores 
data in files, and so on. However, before integrat-
ing a class into a program, it is always a good idea 
to test it in isolation. Testing in isolation, outside a 
complete program, is called unit testing.

To test your class, you have two choices. Some 
interactive development environments, such as 
BlueJ (http://bluej.org) and Dr. Java (http://drjava.
org), have commands for constructing objects and 
invoking methods. Then you can test a class sim-
ply by constructing an object, calling methods, and 
verifying that you get the expected return values. 
Figure 7 shows the result of calling the getTotal 
method on a CashRegister object in BlueJ.

Alternatively, you can write a tester class. A 
tester class is a class with a main method that contains state ments to run methods of 
another class. A tester class typically carries out the following steps:

1. Construct one or more objects of the class that is being tested.
2. Invoke one or more methods.
3. Print out one or more results.
4. Print the expected results. 

special topic 8.2 

An engineer tests a part in isolation.  
This is an example of unit testing.

a unit test verifies 
that a class works 
correctly in isolation, 
outside a complete 
program.

to test a class, use  
an environment for 
interactive testing,  
or write a tester  
class to execute  
test instructions.



8.7 testing a Class  381

figure 7  the return Value of the getTotal Method in bluej

Here is a class to run methods of the CashRegister class. The main method constructs 
an object of type CashRegister, invokes the addItem method three times, and then dis-
plays the result of the getCount and getTotal methods.

section_7/cashregistertester.java

1 /**
2 This program tests the CashRegister class.
3 */
4 publicclassCashRegisterTester
5 {
6 publicstaticvoidmain(String[]args)
7 {
8 CashRegisterregister1=newCashRegister();
9 register1.addItem(1.95);

10 register1.addItem(0.95);
11 register1.addItem(2.50);
12 System.out.println(register1.getCount());
13 System.out.println("Expected:3");
14 System.out.printf("%.2f\n",register1.getTotal());
15 System.out.println("Expected:5.40");
16 }
17 }

Program run

3
Expected:3
5.40
Expected:5.40

In our sample program, we add three items totaling $5.40. When displaying the 
method results, we also display messages that describe the values we expect to see. 



382 Chapter 8  Objects and Classes

This is a very important step. You want to spend some time thinking about what 
the expected result is before you run a test program. This thought process will help 
you understand how your program should behave, and it can help you track down 
errors at an early stage.

To produce a program, you need to combine the CashRegister and CashRegisterTester 
classes. The details for building the program depend on your compiler and develop-
ment environment. In most envi ronments, you need to carry out these steps:

1. Make a new subfolder for your program. 
2. Make two files, one for each class. 
3. Compile both files. 
4. Run the test program. 

Many students are surprised that such a simple program contains two classes. How-
ever, this is normal. The two classes have entirely different purposes. The CashRegister 
class describes objects that model cash registers. The CashRegisterTester class runs a 
test that puts a CashRegister object through its paces. 

28.  How would you enhance the tester class to test the clear method?
29.  When you run theCashRegisterTester program, how many objects of class 

CashRegister are con structed? How many objects of type CashRegisterTester? 
30.  Why is the CashRegisterTester class unnecessary in development environments 

that allow interactive testing, such as BlueJ?

Practice it  Now you can try these exercises at the end of the chapter: P8.10, P8.11, P8.21.

Step 1  Get an informal list of the responsibilities of your objects.

Be careful that you restrict yourself to features that are actually required in the problem. With 
real-world items, such as cash registers or bank accounts, there are potentially dozens of fea-
tures that might be worth implementing. But your job is not to faithfully model the real world. 
You need to determine only those responsibilities that you need for solving your specific 
problem.

In the case of the menu, you need to

Display the menu.
Get user input.

determining the 
expected result  
in advance is an 
important part  
of testing. 

S e l f   c h e c k

hOw tO 8.1 implementing a class

A very common task is to implement a class whose objects can carry out a set of specified 
actions. This How To walks you through the necessary steps.

As an example, consider a class Menu. An object of this 
class can display a menu such as 

1)Opennewaccount
2)Logintoexistingaccount
3)Help
4)Quit

Then the menu waits for the user to supply a value. If the 
user does not supply a valid value, the menu is redisplayed, 
and the user can try again.



8.7 testing a Class  383

Now look for hidden responsibilities that aren’t part of the problem description. How do 
objects get created? Which mundane activities need to happen, such as clearing the cash regis-
ter at the beginning of each sale?

In the menu example, consider how a menu is produced. The programmer creates an empty 
menu object and then adds options “Open new account”, “Help”, and so on. That is another 
responsibility:

Add an option.

Step 2  Specify the public interface.

Turn the list in Step 1 into a set of methods, with specific types for the parameter variables and 
the return values. Many pro grammers find this step simpler if they write out method calls that 
are applied to a sample object, like this: 

MenumainMenu=newMenu();
mainMenu.addOption(“Opennewaccount”);
//Add more options
intinput=mainMenu.getInput();

Now we have a specific list of methods.
• voidaddOption(Stringoption)

• intgetInput()

What about displaying the menu? There is no sense in displaying the menu without also ask-
ing the user for input. However, getInput may need to display the menu more than once if the 
user provides a bad input. Thus, display is a good candidate for a private method.

To complete the public interface, you need to specify the constructors. Ask yourself what 
information you need in order to construct an object of your class. Sometimes you will want 
two constructors: one that sets all instance variables to a default and one that sets them to user-
supplied values.

In the case of the menu example, we can get by with a single constructor that creates an 
empty menu.

Here is the public interface:

publicclassMenu
{
publicMenu(){...}
publicvoidaddOption(Stringoption){...}
publicintgetInput(){...}
}

Step 3  Document the public interface.

Supply a documentation comment for the class, then comment each method.

/**
A menu that is displayed on a console.
*/
publicclassMenu
{
/**
Constructs a menu with no options.
*/
publicMenu(){...}

/**
Adds an option to the end of this menu.
@paramoptionthe option to add
*/
publicvoidaddOption(Stringoption){...}




384 Chapter 8  Objects and Classes

/**
Displays the menu, with options numbered starting with 1,
and prompts the user for input. Repeats until a valid input
is supplied.
@returnthe number that the user supplied
*/
publicintgetInput(){...}
}

Step 4  Determine instance variables.

Ask yourself what information an object needs to store to do its job. The object needs to be 
able to process every method using just its instance variables and the method arguments. 

Go through each method, perhaps starting with a simple one or an interesting one, and ask 
yourself what the object needs to carry out the method’s task. Which data items are required in 
addition to the method arguments? Make instance variables for those data items.

In our example, let’s start with the addOption method. We clearly need to store the added 
menu option so that the menu can be displayed later. How should we store the options? As an 
array list of strings? As one long string? Both approaches can be made to work. We will use an 
array list here. Exercise P8.3 asks you to implement the other approach. 

publicclassMenu
{
privateArrayList<String>options;
...
}

Now consider the getInput method. It shows the stored options and reads an integer. When 
checking that the input is valid, we need to know the number of menu items. Because we store 
them in an array list, the number of menu items is simply obtained as the size of the array list. 
If you stored the menu items in one long string, you might want to keep another instance vari-
able that stores the item count.

We will also need a scanner to read the user input, which we will add as another instance 
variable:

privateScannerin;

Step 5  Implement constructors and methods.

Implement the constructors and methods in your class, one at a time, starting with the easiest 
ones. For example, here is the implementation of the addOption method:

publicvoidaddOption(Stringoption)
{
options.add(option);
}

Here is the getInput method. This method is a bit more sophisticated. It loops until a valid 
input has been obtained, displaying the menu options before reading the input. 

publicintgetInput()
{
intinput;
do
{
for(inti=0;i<options.size();i++)
{
intchoice=i+1;
System.out.println(choice+")"+options.get(i));
}
input=in.nextInt();
}
while(input<1||input>options.size());



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

8.7 testing a Class  385

returninput;
}

Finally, we need to supply a constructor to initialize the instance variables: 

publicMenu()
{
options=newArrayList<String>();
in=newScanner(System.in);
}

If you find that you have trouble with the implementation of some of your methods, you may 
need to rethink your choice of instance variables. It is common for a beginner to start out with 
a set of instance variables that cannot accu rately describe the state of an object. Don’t hesitate 
to go back and rethink your implementation strategy.

Once you have completed the implementation, compile your class and fix any compiler 
errors. 

Step 6  Test your class.

Write a short tester program and execute it. The tester program should carry out the method 
calls that you found in Step 2.

publicclassMenuTester
{
publicstaticvoidmain(String[]args)
{
MenumainMenu=newMenu();
mainMenu.addOption("Opennewaccount");
mainMenu.addOption("Logintoexistingaccount");
mainMenu.addOption("Help");
mainMenu.addOption("Quit");
intinput=mainMenu.getInput();
System.out.println("Input:"+input);
}

}

Program run

1)Opennewaccount
2)Logintoexistingaccount
3)Help
4)Quit
5
1)Opennewaccount
2)Logintoexistingaccount
3)Help
4)Quit
3
Input:3

O n l i n e  e x a m P l e

the complete Menu 
and MenuTester 
classes.

wOrked exaMple 8.1  implementing a bank account class

This Worked Example shows how to develop a class that simulates a bank account.



386 Chapter 8  Objects and Classes

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

8.8 problem solving: tracing Objects
You have seen how the technique of hand-tracing is useful for understanding how a 
program works. When your program contains objects, it is useful to adapt the tech-
nique so that you gain a better under standing about object data and encapsulation.

Use an index card or a sticky note for each object. On the front, write the methods 
that the object can execute. On the back, make a table for the values of the instance 
variables. 

Here is a card for a CashRegister object: 

CashRegister reg1
clear
addItem(price)
getTotal
getCount

itemCount totalPrice

front back

In a small way, this gives you a feel for encapsulation. An object is manipulated 
through its public inter face (on the front of the card), and the instance variables are 
hidden in the back.

When an object is constructed, fill in the initial values of the instance variables:

itemCount totalPrice

0 0

Whenever a mutator method is executed, cross out the old values and write the new 
ones below. Here is what happens after a call to the addItem method:

itemCount totalPrice

0 0
1 19.95

VIdeO exaMple 8.1 Paying Off a loan

When you take out a loan, the bank tells you how much you need 
to pay and for how long. Where do these numbers come from? 
This Video Example uses a Loan object to demonstrate how a loan 
is paid off.

write the methods 
on the front of a  
card, and the 
instance variables  
on the back.

Update the values of 
the instance 
variables when a 
mutator method  
is called.



8.8 problem solving: tracing Objects  387

If you have more than one object in your program, you will have multiple cards, one 
for each object:

itemCount totalPrice

0 0
1 19.95
2 34.95

itemCount totalPrice

0 0
1 19.95

These diagrams are also useful when you design a class. Suppose you are asked to 
enhance the CashRegister class to compute the sales tax. Add a method getSalesTax to 
the front of the card. Now turn the card over, look over the instance variables, and 
ask yourself whether the object has sufficient information to com pute the answer. 
Remember that each object is an autonomous unit. Any data value that can be used in 
a computation must be

• An instance variable.
• A method argument.
• A static variable (uncommon; see Section 8.11).

To compute the sales tax, we need to know the tax rate and the total of the taxable 
items. (Food items are usually not subject to sales tax.) We don’t have that informa-
tion available. Let us introduce additional instance variables for the tax rate and the 
taxable total. The tax rate can be set in the constructor (assuming it stays fixed for the 
lifetime of the object). When adding an item, we need to be told whether the item is 
taxable. If so, we add its price to the taxable total.

For example, consider the following statements.
CashRegisterreg2(7.5);//7.5 percent sales tax
reg2.addItem(3.95,false);//Not taxable
reg2.addItem(19.95,true);//Taxable

When you record the effect on a card, it looks like this:

taxableTotal taxRate

0 7.5

19.95

itemCount totalPrice

0 0
1 3.95
2 23.90

With this information, it becomes easy to compute the tax. It is taxableTotal x taxRate / 100. 
Tracing the object helped us understand the need for additional instance variables.

31.  Consider a Car class that simulates fuel consumption in a car. We will assume a 
fixed efficiency (in miles per gallon) that is supplied in the constructor. There are 
methods for adding gas, driv ing a given distance, and checking the amount of gas 

O n l i n e  e x a m P l e

an enhanced 
CashRegister class 
that computes the 
sales tax.

S e l f   c h e c k



388 Chapter 8  Objects and Classes

left in the tank. Make a card for a Car object, choosing suitable instance variables 
and showing their values after the object was constructed. 

32.  Trace the following method calls:
CarmyCar(25);
myCar.addGas(20);
myCar.drive(100);
myCar.drive(200);
myCar.addGas(5);

33.  Suppose you are asked to simulate the odometer of 
the car, by adding a method getMilesDriven. Add an 
instance variable to the object’s card that is suitable 
for computing this method.

34.  Trace the methods of Self Check 32, updating the 
instance variable that you added in Self Check 33.

Practice it  Now you can try these exercises at the end of the chapter: R8.13, R8.14, R8.15.

8.9 problem solving: patterns for Object data
When you design a class, you first consider the needs of the programmers who use 
the class. You provide the methods that the users of your class will call when they 
manipulate objects. When you implement the class, you need to come up with the 
instance variables for the class. It is not always obvious how to do this. Fortunately, 
there is a small set of recurring patterns that you can adapt when you design your 
own classes. We introduce these patterns in the following sections.

8.9.1 keeping a total

Many classes need to keep track of a quantity that can go up or down as certain meth-
ods are called. Examples:

• A bank account has a balance that is increased by a deposit, decreased by a 
withdrawal.

• A cash register has a total that is increased when an item is added to the sale, 
cleared after the end of the sale.

• A car has gas in the tank, which is increased when fuel is added and decreased 
when the car drives.

In all of these cases, the implementation strategy is similar. Keep an instance variable 
that represents the current total. For example, for the cash register:

privatedoubletotalPrice;

Locate the methods that affect the total. There is usually a method to increase it by a 
given amount.

publicvoidaddItem(doubleprice)
{
totalPrice=totalPrice+price;
}

an instance variable 
for the total is 
updated in methods 
that increase or 
decrease the total 
amount.



8.9 problem solving: patterns for Object data  389

Depending on the nature of the class, there may be a method that reduces or clears the 
total. In the case of the cash register, there is a clear method:

publicvoidclear()
{
total=0;
}

There is usually a method that yields the current total. It is easy to implement:
publicdoublegetTotal()
{
returntotalPrice;
}

All classes that manage a total follow the same basic pattern. Find the methods that 
affect the total and provide the appropriate code for increasing or decreasing it. Find 
the methods that report or use the total, and have those methods read the current total. 

8.9.2 Counting events

You often need to count how often certain events occur in the life of an object. For 
example:

• In a cash register, you want to know how many items have been added in a sale. 
• A bank account charges a fee for each transaction; you need to count them. 

Keep a counter, such as
privateintitemCount;

Increment the counter in those methods that correspond to the events that you want 
to count. 

publicvoidaddItem(doubleprice)
{
totalPrice=totalPrice+price;
itemCount++;
}

You may need to clear the counter, for example at the end of a sale or a statement 
period. 

publicvoidclear()
{
total=0;
itemCount=0;
}

There may or may not be a method that reports the count to the class user. The count 
may only be used to compute a fee or an average. Find out which methods in your 
class make use of the count, and read the current value in those methods. 

8.9.3 Collecting Values

Some objects collect numbers, strings, or other objects. For example, each multiple-
choice question has a number of choices. A cash register may need to store all prices 
of the current sale. 

a counter that  
counts events is 
incremented in 
methods that 
correspond to  
the events.



390 Chapter 8  Objects and Classes

Use an array list or an array to store the values. 
(An array list is usually simpler because you won’t 
need to track the number of values.) For example,

publicclassQuestion
{
privateArrayList<String>choices;
...
}

In the constructor, initialize the instance variable to 
an empty collection:

publicQuestion()
{
choices=newArrayList<String>();
}

You need to supply some mechanism for adding values. It is common to provide a 
method for appending a value to the collection:

publicvoidadd(Stringquestion)
{
choices.add(question);
}

The user of a Question object can call this method multiple times to add the various 
choices.

8.9.4 Managing properties of an Object

A property is a value of an object that an object user can set and retrieve. For example, 
a Student object may have a name and an ID. 

Provide an instance variable to store the property’s value and methods to get and 
set it. 

publicclassStudent
{
privateStringname;
...
publicStringgetName(){returnname;}
publicvoidsetName(StringnewName){name=newName;}
...
}

It is common to add error checking to the setter method. For example, we may want 
to reject a blank name:

publicvoidsetName(StringnewName)
{
if(newName.length()>0){name=newName;}
}

Some properties should not change after they have been set in the constructor. For 
example, a student’s ID may be fixed (unlike the student’s name, which may change). 
In that case, don’t supply a setter method.

publicclassStudent
{

an object can collect 
other objects in an 
array or array list.

A shopping cart object needs to  
manage a collection of items.

an object property 
can be accessed
with a getter method 
and changed with
a setter method.



8.9 problem solving: patterns for Object data  391

privateintid;
...
publicStudent(intanId){id=anId;}
publicStringgetId(){returnid;}
//NosetIdmethod
...
}

8.9.5 Modeling Objects with distinct states

Some objects have behavior that varies depending on what has happened in the past. 
For example, a Fish object may look for food when it is hungry and ignore food after 
it has eaten. Such an object would need to remember whether it has recently eaten.

Supply an instance variable that models the state, together with some constants for 
the state values:

publicclassFish
{
privateinthungry;

publicstaticfinalintNOT_HUNGRY=0;
publicstaticfinalintSOMEWHAT_HUNGRY=1;
publicstaticfinalintVERY_HUNGRY=2;
...
}

(Alternatively, you can use an enumeration––see Special Topic 3.4.)
Determine which methods change the state. In this example, a fish that has just 

eaten food, won’t be hungry. But as the fish moves, it will get hungrier.

publicvoideat()
{
hungry=NOT_HUNGRY;
...
}

publicvoidmove()
{
...
if(hungry<VERY_HUNGRY){hungry++;}
}

If your object can 
have one of several 
states that affect the 
behavior, supply an 
instance variable
for the current state.

If a fish is in a hungry state,  
its behavior changes.



392 Chapter 8  Objects and Classes

Finally, determine where the state affects behavior. A fish that is very hungry will 
want to look for food first.

publicvoidmove()
{
if(hungry==VERY_HUNGRY)
{
Look for food.
}
...
}

8.9.6 describing the position of an Object

Some objects move around during their lifetime, and they remember their current 
position. For example,

• A train drives along a track and keeps track of the distance from the terminus.
• A simulated bug living on a grid crawls from one grid location to the next, or 

makes 90 degree turns to the left or right. 
• A cannonball is shot into the air, then descends as it is pulled by the gravitational 

force.

Such objects need to store their position. Depending on the nature of their move-
ment, they may also need to store their orientation or velocity. 

If the object moves along a line, you can represent the position as a distance from 
a fixed point. 

privatedoubledistanceFromTerminus;

If the object moves in a grid, remember its current location and direction in the grid:
privateintrow;
privateintcolumn;
privateintdirection;//0=North,1=East,2=South,3=West

When you model a physical object such as a cannonball, you need to track both the 
position and the velocity, possibly in two or three dimensions. Here we model a can-
nonball that is shot upward into the air:

privatedoublezPosition;
privatedoublezVelocity;

There will be methods that update the position. In the simplest case, you may be told 
by how much the object moves:

publicvoidmove(doubledistanceMoved)
{
distanceFromTerminus=distanceFromTerminus+distanceMoved;
}

to model a moving 
object, you need to
store and update  
its position.

A bug in a grid needs to store its row, 
column, and direction. 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

8.9 problem solving: patterns for Object data  393

If the movement happens in a grid, you need to update the row or column, depending 
on the current orientation.

publicvoidmoveOneUnit()
{
if(direction==NORTH){row--;}
elseif(direction==EAST){column++;}
...
}

Exercise P8.25 shows you how to update the position of a physical object with known 
velocity.

Whenever you have a moving object, keep in mind that your program will simu-
late the actual movement in some way. Find out the rules of that simulation, such as 
movement along a line or in a grid with integer coordinates. Those rules determine 
how to represent the current position. Then locate the methods that move the object, 
and update the positions according to the rules of the simulation.

35.  Suppose we want to count the number of transactions in a bank account in a 
statement period, and we add a counter to the BankAccount class:
publicclassBankAccount
{
privateinttransactionCount;
...
}

In which methods does this counter need to be updated?
36.  In the example in Section 8.9.3, why is the add method required? That is, why 

can’t the user of a Question object just call the add method of the ArrayList<String>
class? 

37.  Suppose we want to enhance the CashRegister class in Section 8.6 to track the 
prices of all purchased items for printing a receipt. Which instance variable 
should you provide? Which methods should you modify?

38.  Consider an Employee class with properties for tax ID number and salary. Which 
of these properties should have only a getter method, and which should have 
getter and setter methods?

39.  Look at the direction instance variable in the bug example in Section 8.9.6. This 
is an example of which pattern? 

Practice it  Now you can try these exercises at the end of the chapter: P8.6, P8.7, P8.12.

S e l f   c h e c k

VIdeO exaMple 8.2 modeling a robot escaping from a maze

In this Video Example, we will program classes that model a robot 
escaping from a maze.



394 Chapter 8  Objects and Classes

In the 2000 presiden-
tial elections in the 

United states, votes were tallied by a 
variety of machines. some machines 
processed cardboard ballots into 
which voters punched holes to indi cate 
their choices (see below). when voters 
were not careful, remains of paper—
the now infamous “chads”—were par-
tially stuck in the punch cards, caus-
ing votes to be mis counted. a manual 
recount was neces sary, but it was not 
carried out everywhere due to time 
constraints and procedural wrangling. 
the elec tion was very close, and there 
remain doubts in the minds of many 
people whether the election outcome 
would have been different if the voting 
machines had accurately counted the 
intent of the voters. 

Punch Card Ballot

subsequently, voting machine man-
ufacturers have argued that electronic 
voting machines would avoid the prob-
lems caused by punch cards or opti-
cally scanned forms. In an elec tronic 
voting machine, voters indicate their 
preferences by pressing buttons or 
touching icons on a computer screen. 
typically, each voter is pre sented with 
a summary screen for review before 
casting the ballot. the process is very 
similar to using a bank's automated 
teller machine. 

It seems plausible that these 
machines make it more likely that a 
vote is counted in the same way that 
the voter intends. however, there 
has been significant controversy 
surrounding some types of electronic 
voting machines. If a machine simply 

records the votes and prints out the 
totals after the election has been com-
pleted, then how do you know that the 
machine worked correctly? Inside the 
machine is a computer that executes a 
program, and, as you may know from 
your own experience, programs can 
have bugs.

In fact, some electronic voting 
machines do have bugs. there have 
been isolated cases where machines 
reported tallies that were impossible. 
when a machine reports far more or far 
fewer votes than voters, then it is clear 
that it malfunctioned. Unfortu nately, it 
is then impossible to find out the 
actual votes. Over time, one would 
expect these bugs to be fixed in the 
software. More insidiously, if the 
results are plausible, nobody may ever 
investigate.

Many computer scientists have spo-
ken out on this issue and con firmed 
that it is impossible, with today’s tech-
nology, to tell that soft ware is error 
free and has not been tampered with. 
Many of them recom mend that elec-
tronic voting machines should employ 
a voter verifiable audit trail. (a good 
source of information is http://veri-
fiedvoting.org.) typically, a voter-
verifiable machine prints out a ballot. 
each voter has a chance to review the 
printout, and then deposits it in an 
old-fashioned ballot box. If there is 

a problem with the electronic equip-
ment, the printouts can be scanned or 
counted by hand.

as this book is written, this con-
cept is strongly resisted both by 
man ufacturers of electronic voting 
machines and by their customers, 
the cities and counties that run elec-
tions. Manufacturers are reluctant 
to increase the cost of the machines 
because they may not be able to pass 
the cost increase on to their custom-
ers, who tend to have tight budgets. 
election officials fear problems with 
malfunctioning printers, and some of 
them have publicly stated that they 
actually prefer equipment that elimi-
nates bothersome recounts. 

what do you think? You probably 
use an automated bank teller machine 
to get cash from your bank account. 
do you review the paper record that 
the machine issues? do you check your 
bank statement? even if you don’t, do 
you put your faith in other people who 
double-check their bal ances, so that 
the bank won’t get away with wide-
spread cheating? 

Is the integrity of banking equip-
ment more important or less impor-
tant than that of voting machines? 
won’t every voting process have some 
room for error and fraud anyway? Is 
the added cost for equip ment, paper, 
and staff time reasonable to combat 

a potentially slight 
risk of malfunction 
and fraud? Computer 
sci entists cannot 
answer these ques-
tions—an informed 
society must make 
these tradeoffs. but, 
like all profes sionals, 
they have an obliga-
tion to speak out 
and give accurate 
testimony about the 
capabilities and limi-
tations of computing 
equipment.

Touch Screen Voting Machine

Random Fact 8.1 electronic Voting Machines



8.10 Object references  395

8.10 Object references
In Java, a variable whose type is a class does not actually hold an object. It merely 
holds the memory loca tion of an object. The object itself is stored elsewhere—see 
Figure 8.  

We use the technical term object reference to denote the memory location of an 
object. When a vari able contains the memory location of an object, we say that it 
refers to an object. For example, after the statement

CashRegisterreg1=newCashRegister();

the variable reg1 refers to the CashRegister object that the new operator constructed. 
Technically speaking, the new operator returned a reference to the new object, and that 
reference is stored in the reg1 variable.

8.10.1 shared references

You can have two (or more) object variables that store references to the same object, 
for example by assigning one to the other.

CashRegisterreg2=reg1;

Now you can access the same CashRegister object both as reg1 and as reg2, as shown in 
Figure 9.

In this regard, object variables differ from variables for primitive types (numbers, 
characters, and boolean values). When you declare

intnum1=0;

then the num1 variable holds the number 0, not a reference to the number (see 
Figure 10). 

an object reference 
specifies the location 
of an object.

figure 8   
an Object Variable Containing  
an Object reference

reg1 =

itemCount =

CashRegister

totalPrice =

0

0.0

Multiple object 
variables can contain 
references to the 
same object.

figure 9   
two Object Variables  
referring to the same Object

reg1 =

reg2 =
itemCount =

CashRegister

totalPrice =

0

0.0

primitive type 
variables store 
values. Object 
variables store 
references.

figure 10  a Variable of type int stores a number

num1 = 0



396 Chapter 8  Objects and Classes

You can see the difference between primitive type variables and object variables when 
you make a copy of a variable. When you copy a number, the original and the copy of 
the number are independent values. But when you copy an object reference, both the 
original and the copy are references to the same object. 

Consider the following code, which copies a 
number and then changes the copy (see Figure 11): 

intnum1=0; 1
intnum2=num1; 2
num2++; 3

Now the variable num1 contains the value 0, and 
num2 contains 1. 

Now consider the seemingly analogous code 
with CashRegister objects (see Figure 12):

CashRegisterreg1=newCashRegister(); 1 

CashRegisterreg2=reg1; 2
reg2.addItem(2.95); 3

Because reg1 and reg2 refer to the same cash regis-
ter after step  2 , both variables now refer to a cash 
regis ter with item count 1 and total price 2.95. 

A N I M AT I O N
Object References

figure 11  Copying numbers

num1 = 0

num2 = 0

num1 = 01

2

num1 = 0

num2 = 1

3

when copying an 
object reference, you 
have two references 
to the same object.

figure 12  Copying Object references

1

2

3 reg1 =

reg2 =
itemCount =

CashRegister

totalPrice =

1

2.95

reg1 =

reg2 =
itemCount =

CashRegister

totalPrice =

0

0.0

reg1 =

itemCount =

CashRegister

totalPrice =

0

0.0



8.10 Object references  397

There is a reason for the difference between numbers and objects. In the computer, 
each number requires a small amount of memory. But objects can be very large. It is 
far more efficient to manipulate only the memory location. 

8.10.2 the null reference

An object reference can have the special value null if it refers to no object at all. It is 
common to use the null value to indicate that a value has never been set. For  example,

StringmiddleInitial=null;//No middle initial

You use the == operator (and not equals) to test whether an object reference is a null 
reference: 

if(middleInitial==null)
{
System.out.println(firstName+""+lastName);
}
else
{
System.out.println(firstName+""+middleInitial+"."+lastName);
}

Note that the null reference is not the same as the empty string "". The empty string 
is a valid string of length 0, whereas a null indicates that a String variable refers to no 
string at all. 

It is an error to invoke a method on a null reference. For example,
CashRegisterreg=null;
System.out.println(reg.getTotal());//Error—cannot invoke a method on null

This code causes a “null pointer exception” at run time.
The null reference is the default value for an object reference that is contained 

inside another object or an array of objects. In order to avoid run-time errors, you 
need to replace these nullreferences with references to actual objects.

For example, suppose you construct an array of bank accounts:
BankAccount[]accounts=newBankAccount[NACCOUNTS];

You now have an array filled with null references. If you want an array of actual bank 
accounts, you need to construct them:

for(inti=0;i<accounts.length;i++)
{
accounts[i]=newBankAccount();
}

8.10.3 the this reference

Every instance method receives the implicit parameter in a variable called this. 
For example, consider the method call
reg1.addItem(2.95);

When the method is called, the parameter variable this refers to the same object as 
reg1 (see Figure 13). 

the null reference 
refers to no object.

In a method, the  
this reference
refers to the  
implicit parameter.



398 Chapter 8  Objects and Classes

figure 13  the Implicit parameter of a Method Call

reg1 =

this =

price = 2.95

itemCount =

CashRegister

totalPrice =

1

2.95

You don’t usually need to use the this reference, but you can. For example, you 
can write the addItem method like this:

voidaddItem(doubleprice)
{
this.itemCount++;
this.totalPrice=this.totalPrice+price;
}

Some programmers like to use the this reference to make it clear that itemCount and 
totalPrice are instance variables and not local variables. You may want to try it out 
and see if you like that style. 

There is another situation where the this reference can make your programs eas-
ier to read. Consider a constructor or instance method that calls another instance 
method on the same object. For example, the CashRegister con structor can call the 
clear method instead of duplicating its code:

publicCashRegister()
{
clear();
}

This call is easier to understand when you use the this reference:
publicCashRegister()
{
this.clear();
}

It is now more obvious that the method is invoked on the object that is being 
constructed.

Finally, some people like to use the this reference in constructors. Here is a typical 
example:

publicclassStudent
{
privateintid;
privateStringname;

publicStudent(intid,Stringname)
{
this.id=id;
this.name=name;
}
}



8.10 Object references  399

The expression id refers to the parameter variable, and this.id to the instance variable. 
In general, if both a local variable and an instance variable have the same name, you can 
access the local variable by its name, and the instance variable with the this reference.

You can implement the constructor without using the this reference. Simply 
choose other names for the parameter variables:

publicStudent(intanId,StringaName)
{
id=anId;
name=aName;
}

40.  Suppose we have a variable
Stringgreeting="Hello";

What is the effect of this statement?
Stringgreeting2=greeting;

41.  After calling Stringgreeting3=greeting2.toUpperCase(), what are the contents of 
greeting and greeting2? 

42.  What is the value of s.length() if s is
a.  the empty string ""?
b. null?

43.  What is the type of this in the call greeting.substring(1,4)? 
44.  Supply a method addItems(intquantity,doubleprice) in the CashRegister class to 

add multiple instances of the same item. Your implementation should repeatedly 
call the addItem method. Use the this reference. 

Practice it  Now you can try these exercises at the end of the chapter: R8.19, R8.20.

calling One constructor from another

Consider the BankAccount class outlined in Section 8.6. It has two constructors: a construc-
tor without arguments to initialize the balance with zero, and another constructor to supply 
an initial balance. Rather than explicitly setting the balance to zero, one constructor can call 
another constructor of the same class instead. There is a shorthand notation to achieve this 
result: 

publicclassBankAccount
{
publicBankAccount(doubleinitialBalance)
{
balance=initialBalance;
}

publicBankAccount()
{
this(0);
}
...
}

The command this(0); means “Call another constructor of this class and supply the value 0”. 
Such a call to another constructor can occur only as the first line in a constructor. 

S e l f   c h e c k

special topic 8.3 



400 Chapter 8  Objects and Classes

This syntax is a minor convenience. We will not use it in this book. Actually, the use of 
the reserved word this is a little confusing. Normally, this denotes a reference to the implicit 
parameter, but if this is followed by parentheses, it denotes a call to another constructor of this 
class. 

8.11 static Variables and Methods
Sometimes, a value properly belongs to a class, not 
to any object of the class. You use a static variable 
for this purpose. Here is a typical example: We want 
to assign bank account numbers sequentially. That 
is, we want the bank account constructor to con-
struct the first account with number 1001, the next 
with num ber 1002, and so on. To solve this prob-
lem, we need to have a single value of lastAssigned-
Number that is a property of the class, not any object 
of the class. Such a variable is called a static variable, 
because you declare it using the static reserved 
word.

publicclassBankAccount
{
privatedoublebalance;
privateintaccountNumber;
privatestaticintlastAssignedNumber=1000;

publicBankAccount()
{
lastAssignedNumber++;
accountNumber=lastAssignedNumber;
}
...
}

Every BankAccount object has its own balance and accountNumber instance variables, but 
there is only a single copy of the lastAssignedNumber variable (see Figure 14). That vari-
able is stored in a separate location, out side any BankAccount objects. 

Like instance variables, static variables should always be declared as private to 
ensure that methods of other classes do not change their values. However, static con-
stants may be either private or public. For example, the BankAccount class can define a 
public constant value, such as

publicclassBankAccount
{
publicstaticfinaldoubleOVERDRAFT_FEE=29.95;
...
}

Methods from any class can refer to such a constant as BankAccount.OVERDRAFT_FEE. 
Sometimes a class defines methods that are not invoked on an object. Such a 

method is called a static method. A typical example of a static method is the sqrt 
method in the Math class. Because numbers aren’t objects, you can’t invoke methods 
on them. For example, if x is a number, then the call x.sqrt() is not legal in Java. 

The reserved word static is a 
holdover from the C++ language.  
Its use in Java has no relationship  
to the normal use of the term.

a static variable 
belongs to the class, 
not to any object of 
the class.

a static method is 
not invoked on  
an object.



8.11 static Variables and Methods  401

figure 14  a static Variable and Instance Variables

collegeFund =

balance =

accountNumber =

BankAccount

10000
1001

momsSavings =

balance =

accountNumber =

BankAccount

8000
1002

harrysChecking =

balance =

accountNumber =

BankAccount

0
1003

Each
BankAccount

object has its own
accountNumber
instance variable.

BankAccount.lastAssignedNumber = 1003

There is a single
lastAssignedNumber

static variable for the
BankAccount

class.

Therefore, the Math class provides a static method that is invoked as Math.sqrt(x). No 
object of the Math class is constructed. The Math qualifier simply tells the compiler 
where to find the sqrt method.

You can define your own static methods for use in other classes. Here is an example:
publicclassFinancial
{
/**
Computes a percentage of an amount.
@parampercentagethe percentage to apply
@paramamountthe amount to which the percentage is applied
@returnthe requested percentage of the amount
*/
publicstaticdoublepercentOf(doublepercentage,doubleamount)
{
return(percentage/100)*amount;
}
}

When calling this method, supply the name of the class containing it: 
doubletax=Financial.percentOf(taxRate,total);

You had to use static methods in Chapter 5 before you knew how to implement your 
own objects. How ever, in object-oriented programming, static methods are not very 
common.

O n l i n e  e x a m P l e

a program with static 
methods and 
variables.



402  Chapter 8   Objects and Classes

Nevertheless, the main method is always static. When the program starts, there 
aren’t any objects. Therefore, the first method of a program must be a static method. 

45.	 Name two static variables of the System class. 
46.	 Name a static constant of the Math class.
47.	 The following method computes the average of an array of numbers: 

public static double average(double[] values)

Why should it not be defined as an instance method?
48.	 Harry tells you that he has found a great way to avoid those pesky objects: Put 

all code into a single class and declare all methods and variables static. Then main 
can call the other static methods, and all of them can access the static variables. 
Will Harry’s plan work? Is it a good idea? 

Practice	It	 Now you can try these exercises at the end of the chapter: P8.14, P8.15.

S e l f 	 C h e C k

Most  companies  that 
produce  software 

regard  the  source  code  as  a  trade 
secret. After all,  if customers or com
petitors had access to the source code, 
they could study  it and create similar 
programs without paying  the original 
vendor. For the same reason, custom
ers dislike secret source code. If a com
pany goes out of business or decides 
to discontinue support for a computer 
program,  its  users  are  left  stranded. 
They are unable  to fix bugs or  adapt 
the  program  to  a  new  operat ing  sys
tem. Nowadays,  some software pack
ages are distributed with “open source” 
or  “free  software”  licenses.  Here,  the 
term  “free” doesn’t  refer  to price, but 
to the freedom to inspect and modify 
the  source  code.  Richard  Stallman,  a 
famous  computer  scientist  and  win
ner of a MacArthur “genius” grant, pio
neered  the  concept  of  free  software. 
He  is  the  inventor  of  the  Emacs  text 
editor  and  the  originator  of  the  GNU 
project that aims to create an entirely 
free version of a UNIX compat ible oper
ating system. All programs of the GNU 
project are licensed under the General 
Public License or GPL. The GPL allows 
you  to  make  as  many  copies  as  you 
wish,  make  any  modifications  to  the 
source,  and  redistribute  the  origi nal 
and modified programs, charging noth
ing at all or whatever the market will 
bear.  In  return,  you  must  agree  that 

your modifications also fall under the 
GPL. You must give out the source code 
to  any  changes  that  you  distrib ute, 
and  anyone  else  can  distribute  them 
under  the  same  conditions.  The  GPL, 
and similar open source licenses, form 
a social contract. Users of the software 
enjoy the  freedom to use and modify 
the  software,  and  in  return  they  are 
obligated  to  share  any  improvements 
that they make. Many programs, such 
as  the  Linux  operating  system  and 
the GNU C++ compiler, are distributed 
under the GPL. 

Some commercial software ven dors 
have  attacked  the  GPL  as  “viral”  and 
“undermining the commercial software 
sector”. Other companies have a more 
nuanced  strategy,  pro ducing  propri
etary software while also contributing 
to open source projects.

Frankly, open source is not a pana
cea  and  there  is  plenty  of  room  for 
the commercial software sector. Open 
source software often lacks the polish 
of commercial software because many 
of  the  programmers  are  volunteers 
who  are  interested  in  solving  their 
own problems, not  in making a prod
uct that is easy to use by others. Some 
product categories are not available at 
all  as  open  source  software  because 
the development work  is unattractive 
when  there  is  little  promise  of  com
mercial gain. Open source software has 
been most successful in areas that are 

of  interest  to  programmers,  such  as 
the Linux operating system, Web serv
ers, and programming tools. 

On the positive side, the open soft
ware community can be very competi
tive and creative.  It  is quite  common 
to see several competing projects that 
take  ideas  from  each  other,  all  rap
idly  becoming  more  capable.  Having 
many programmers involved, all read
ing the source code, often means that 
bugs  tend  to  get  squashed  quickly. 
Eric  Ray mond  describes  open  source 
develop ment in his famous article “The 
Cathedral  and  the  Bazaar”  (http://
catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/index.html). 
He writes  “Given enough eyeballs, all 
bugs are shallow”.

Richard Stallman, a pioneer of the  
free source movement. 

Random Fact 8.2 Open Source and Free Software



Chapter summary 403

understand the concepts of classes, objects, and encapsulation.

• A class describes a set of objects with the same behavior.
• Every class has a public interface: a collection of methods 

through which the objects of the class can be manipulated.
• Encapsulation is the act of providing a public interface and 

hiding the imple men tation details.
• Encapsulation enables changes in the implementation 

 without affecting users of a class.

understand instance variables and method implementations of a simple class.

• An object’s instance variables store the data required for 
executing its methods.

• Each object of a class has its own set of instance variables.
• An instance method can access the instance variables of 

the object on which it acts.
• A private instance variable can only be accessed by the methods of its own class.

Write method headers that describe the public interface of a class.

• You can use method headers and method comments to specify the public interface 
of a class.

• A mutator method changes the object on which it operates.
• An accessor method does not change the object on which it operates.

choose an appropriate data representation for a class.

• For each accessor method, an object must either store or compute the result.
• Commonly, there is more than one way of representing the data of an object, and 

you must make a choice.
• Be sure that your data representation supports method calls in any order.

Provide the implementation of instance methods for a class.

• The object on which a method is applied is the implicit parameter.
• Explicit parameters of a method are listed in the method 

declaration.

design and implement constructors.

• A constructor initializes the instance variables of an object. 
• A constructor is invoked when an object is created with the new operator.
• The name of a constructor is the same as the class name.
• A class can have multiple constructors.
• The compiler picks the constructor that matches the construction arguments.

C h a p t e r  s U M M a r Y



404 Chapter 8  Objects and Classes

• By default, numbers are initialized as 0, Booleans as false, and object references 
as null.

• If you do not provide a constructor, a constructor with no arguments is generated.

Write tests that verify that a class works correctly.

• A unit test verifies that a class works correctly in isolation, outside a complete 
program.

• To test a class, use an environment for interactive testing, or write a tester class to 
execute test instructions.

• Determining the expected result in advance is an important part of testing.

use the technique of object tracing for visualizing object behavior.

• Write the methods on the front of a card, and the instance variables on the back.
• Update the values of the instance variables when a mutator method is called.

use patterns to design the data representation of a class. 

• An instance variable for the total is updated in methods that increase or decrease 
the total amount.

• A counter that counts events is incremented in methods that correspond to the 
events.

• An object can collect other objects in an array or array list.
• An object property can be accessed with a getter method and changed with a 

setter method.
• If your object can have one of several states that affect the 

behavior, supply an instance variable for the current state.
• To model a moving object, you need to store and update its 

position.

describe the behavior of object references.

• An object reference specifies the location of an object.
• Multiple object variables can contain references to the same object.
• Primitive type variables store values. Object variables store references.
• When copying an object reference, you have two references to the same object.
• The null reference refers to no object.
• In a method, the this reference refers to the implicit parameter.

understand the behavior of static variables and methods.

• A static variable belongs to the class, not to any object of the class.
• A static method is not invoked on an object.



review exercises 405

• r8.1  What is encapsulation? Why is it useful?

• r8.2  What values are returned by the calls reg1.getCount(), reg1.getTotal(), reg2.getCount(), 
and reg2.getTotal() after these statements?

CashRegisterreg1=newCashRegister();
reg1.addItem(3.25);
reg1.addItem(1.95);
CashRegisterreg2=newCashRegister();
reg2.addItem(3.25);
reg2.clear();

• r8.3  Consider the Menu class in How To 8.1 on page 382. What is displayed when the fol-
lowing calls are executed?

MenusimpleMenu=newMenu();
simpleMenu.addOption("Ok");
simpleMenu.addOption("Cancel");
intresponse=simpleMenu.getInput();

• r8.4  What is the public interface of a class? How does it differ from the implementation of 
a class?

•• r8.5  Consider the data representation of a cash register that keeps track of sales tax in 
Section 8.8. Instead of tracking the taxable total, track the total sales tax. Redo the 
walkthrough with this change. 

••• r8.6  Suppose the CashRegister needs to support a method voidundo() that undoes the 
addition of the preceding item. This enables a cashier to quickly undo a mistake. 
What instance variables should you add to the CashRegister class to support this 
modification? 

• r8.7  What is an instance method, and how does it differ from a static method?

• r8.8  What is a mutator method? What is an accessor method?

• r8.9  What is an implicit parameter? How does it differ from an explicit parameter?

• r8.10  How many implicit parameters can an instance method have? How many implicit 
parameters can a static method have? How many explicit parameters can an instance 
method have?

• r8.11  What is a constructor?

• r8.12  How many constructors can a class have? Can you have a class with no construc-
tors? If a class has more than one constructor, which of them gets called?

• r8.13  Using the object tracing technique described in Section 8.8, trace the program at the 
end of Section 8.7.

•• r8.14  Using the object tracing technique described in Section 8.8, trace the program in 
Worked Example 8.1.

••• r8.15  Design a modification of the BankAccount class in Worked Example 8.1 in which the 
first five transactions per month are free and a $1 fee is charged for every additional 
transaction. Provide a method that deducts the fee at the end of a month. What addi-
tional instance variables do you need? Using the object tracing technique described 

r e V I e w  e x e r C I s e s



406 Chapter 8  Objects and Classes

in Section 8.8, trace a scenario that shows how the fees are computed over two 
months. 

••• r8.16  Instance variables are “hidden” by declaring them as private, but they aren’t hidden 
very well at all. Anyone can read the class declaration. Explain to what extent the 
private reserved word hides the private implementation of a class.

••• r8.17  You can read the itemCount instance variable of the CashRegister class with the getCount 
accessor method. Should there be a setCount mutator method to change it? Explain 
why or why not.

••• r8.18  In a static method, it is easy to differentiate between calls to instance methods and 
calls to static methods. How do you tell them apart? Why is it not as easy for meth-
ods that are called from an instance method?

•• r8.19  What is the this reference? Why would you use it?

•• r8.20  What is the difference between the number zero, the null reference, the value false, 
and the empty string?

• P8.1  We want to add a button to the tally counter in Section 8.2 that allows an operator to 
undo an accidental button click. Provide a method

publicvoidundo()

that simulates such a button. As an added precaution, make sure that the operator 
cannot click the undo button more often than the count button.

• P8.2  Simulate a tally counter that can be used to admit a limited number of people. First, 
the limit is set with a call

publicvoidsetLimit(intmaximum)

If the count button was clicked more often than the limit, simulate an alarm by 
printing out a message “Limit exceeded”.

••• P8.3  Reimplement the Menu class so that it stores all menu items in one long string. 
Hint: Keep a separate counter for the number of options. When a new option is 
added, append the option count, the option, and a newline character.

•• P8.4  Implement a class Address. An address has a house number, a street, an optional 
apartment number, a city, a state, and a postal code. Supply two constructors: one 
with an apartment number and one without. Supply a print method that prints the 
address with the street on one line and the city, state, and zip code on the next line. 
Supply a method publicbooleancomesBefore(Addressother) that tests whether this 
address comes before another when the addresses are compared by postal code.

• P8.5  Implement a class SodaCan with methods getSurfaceArea() and get-
Volume(). In the constructor, supply the height and radius of the can. 

•• P8.6  Implement a class Car with the following properties. A car has a cer tain 
fuel efficiency (measured in miles/gallon) and a certain amount of fuel 
in the gas tank. The efficiency is specified in the constructor, and the 
initial fuel level is 0. Supply a method drive that simulates driving the 

p r O G r a M M I n G  e x e r C I s e s



programming exercises 407

car for a certain distance, reducing the fuel level in the gas tank, and methods getGas-
Level, to return the current fuel level, and addGas, to tank up. Sample usage: 

CarmyHybrid=newCar(50);//50 miles per gallon
myHybrid.addGas(20);//Tank 20 gallons
myHybrid.drive(100);//Drive 100 miles
System.out.println(myHybrid.getGasLevel());//Print fuel remaining

•• P8.7  Implement a class Student. For the purpose of this exercise, a student has a name 
and a total quiz score. Supply an appropriate constructor and methods getName(), 
addQuiz(intscore), getTotalScore(), and getAverageScore(). To compute the latter, you 
also need to store the number of quizzes that the student took. 

•• P8.8  Modify the Student class of Exercise P8.7 to compute grade point averages. Meth ods 
are needed to add a grade and get the current GPA. Specify grades as elements of a 
class Grade. Supply a constructor that constructs a grade from a string, such as "B+". 
You will also need a method that translates grades into their numeric values (for 
example, "B+" becomes 3.3). 

••• P8.9  Declare a class ComboLock that works like the combination lock 
in a gym locker, as shown here. The lock is constructed with a 
combina tion—three numbers between 0 and 39. The reset method 
resets the dial so that it points to 0. The turnLeft and turnRight 
methods turn the dial by a given number of ticks to the left or 
right. The open method attempts to open the lock. The lock opens 
if the user first turned it right to the first number in the combina-
tion, then left to the second, and then right to the third. 

publicclassComboLock
{
...
publicComboLock(intsecret1,intsecret2,intsecret3){...}
publicvoidreset(){...}
publicvoidturnLeft(intticks){...}
publicvoidturnRight(intticks){...}
publicbooleanopen(){...}
}

•• P8.10  Implement a VotingMachine class that can be used for a simple election. Have meth ods 
to clear the machine state, to vote for a Democrat, to vote for a Republican, and to 
get the tallies for both parties. 

•• P8.11  Provide a class for authoring a simple letter. In the constructor, supply the names of 
the sender and the recipient:

publicLetter(Stringfrom,Stringto)

Supply a method
publicvoidaddLine(Stringline)

to add a line of text to the body of the letter. Supply a method
publicStringgetText()

that returns the entire text of the letter. The text has the form:
Dearrecipient name:
blank line
first line of the body
second line of the body
. . .



408 Chapter 8  Objects and Classes

last line of the body
blank line
Sincerely,
blank line
sender name

Also supply a main method that prints this letter.
DearJohn:

Iamsorrywemustpart.
Iwishyouallthebest.

Sincerely,

Mary

Construct an object of the Letter class and call addLine twice.

•• P8.12  Write a class Bug that models a bug moving along a horizontal line. The bug moves 
either to the right or left. Initially, the bug moves to the right, but it can turn to 
change its direction. In each move, its position changes by one unit in the current 
direction. Provide a constructor 

publicBug(intinitialPosition)

and methods
• publicvoidturn()

• publicvoidmove()

• publicintgetPosition()

Sample usage:
Bugbugsy=newBug(10);
bugsy.move();//Now the position is 11
bugsy.turn();
bugsy.move();//Now the position is 10

Your main method should construct a bug, make it move and turn a few times, and 
print the actual and expected positions. 

•• P8.13  Implement a class Moth that models a moth flying in a straight line. The moth has a 
position, the distance from a fixed origin. When the moth moves toward a point of 
light, its new position is halfway between its old position and the position of the 
light source. Supply a constructor

publicMoth(doubleinitialPosition)

and methods
• publicvoidmoveToLight(doublelightPosition)

• publicvoidgetPosition()

Your main method should construct a moth, move it toward a couple of light sources, 
and check that the moth’s position is as expected. 

••• P8.14  Write static methods 
• publicstaticdoublesphereVolume(doubler)

• publicstaticdoublesphereSurface(doubler)

• publicstaticdoublecylinderVolume(doubler,doubleh)

• publicstaticdoublecylinderSurface(doubler,doubleh)



programming exercises 409

• publicstaticdoubleconeVolume(doubler,doubleh)

• publicstaticdoubleconeSurface(doubler,doubleh)

that compute the volume and surface area of a sphere with a radius r, a cylinder with 
a circular base with radius r and height h, and a cone with a circular base with radius r 
and height h. Place them into a class Geometry. Then write a program that prompts the 
user for the values of r and h, calls the six methods, and prints the results. 

•• P8.15  Solve Exercise P8.14 by implementing classes Sphere, Cylinder, and Cone. Which 
approach is more object-oriented?

•• business P8.16  Reimplement the CashRegister class so that it keeps track of the price of each added 
item in an ArrayList<Double>. Remove the itemCount and totalPrice instance variables. 
Reimplement the clear, addItem, getTotal, and getCount methods. Add a method 
displayAll that displays the prices of all items in the current sale. 

•• business P8.17  Reimplement the CashRegister class so that it keeps track of the total price as an 
inte ger: the total cents of the price. For example, instead of storing 17.29, store the 
inte ger 1729. Such an implementation is commonly used because it avoids the accu-
mulation of roundoff errors. Do not change the public interface of the class. 

•• business P8.18  After closing time, the store manager would like to know how much business was 
transacted during the day. Modify the CashRegister class to enable this functionality. 
Supply methods getSalesTotal and getSalesCount to get the total amount of all sales 
and the number of sales. Supply a method resetSales that resets any counters and 
totals so that the next day’s sales start from zero. 

•• business P8.19  Implement a class Portfolio. This class has two objects, checking and savings, of the 
type BankAccount that was developed in Worked Example 8.1 (ch08/worked_example_1/
BankAccount.java in your code files). Implement four methods:

• publicvoiddeposit(doubleamount,Stringaccount)

• publicvoidwithdraw(doubleamount,Stringaccount)

• publicvoidtransfer(doubleamount,Stringaccount)

• publicdoublegetBalance(Stringaccount)

Here the account string is "S" or"C". For the deposit or withdrawal, it indicates which 
account is affected. For a transfer, it indicates the account from which the money is 
taken; the money is automatically trans ferred to the other account.

•• business P8.20  Design and implement a class Country that stores the name of the country, its popula-
tion, and its area. Then write a program that reads in a set of countries and prints

• The country with the largest area.
• The country with the largest population.
• The country with the largest population density (people per square  

kilometer (or mile)).

•• business P8.21  Design a class Message that models an e-mail message. A message has a recipient, a 
sender, and a message text. Support the following methods:

• A constructor that takes the sender and recipient
• A method append that appends a line of text to the message body
• A method toString that makes the message into one long string like this: "From:

HarryMorgan\nTo:RudolfReindeer\n..."

Write a program that uses this class to make a message and print it.



410 Chapter 8  Objects and Classes

•• business P8.22  Design a class Mailbox that stores e-mail messages, using the Message class of Exercise 
P8.21. Implement the following methods:

• publicvoidaddMessage(Messagem)

• publicMessagegetMessage(inti)

• publicvoidremoveMessage(inti)

•• business P8.23  Design a Customer class to handle a customer loyalty marketing campaign. After 
accumulating $100 in purchases, the customer receives a $10 discount on the next 
purchase. Provide methods

• voidmakePurchase(doubleamount)

• booleandiscountReached()

Provide a test program and test a scenario in which a customer has earned a discount 
and then made over $90, but less than $100 in purchases. This should not result in a 
second discount. Then add another purchase that results in the second discount.

••• business P8.24  The Downtown Marketing Association wants 
to promote downtown shopping with a loyalty 
program similar to the one in Exercise P8.23. 
Shops are identified by a number between 
1 and 20. Add a new parameter variable to the 
makePurchase method that indicates the shop. 
The discount is awarded if a customer makes 
purchases in at least three different shops, 
spending a total of $100 or more.

•••   Science P8.25  Design a class Cannonball to model a cannonball that is fired into the air. A ball has
• An x- and a y-position.
• An x- and a y-velocity.

Supply the following methods:
• A constructor with an x-position (the y-position is initially 0)
• A method move(doublesec) that moves the ball to the next position (First 

compute the distance trav eled in sec seconds, using the current velocities, then 
update the x- and y-positions; then update the y-velocity by taking into 
account the gravitational acceleration of –9.81 m/s2; the x-velocity is 
unchanged.)

• Methods getX and getY that get the current location of the cannonball
• A method shoot whose arguments are the angle a and initial velocity v (Com-

pute the x-velocity as v cos a and the y-velocity as v sin a; then keep calling 
move with a time interval of 0.1 seconds until the y-position is 0; call getX and 
getY after every move and display the position.)

Use this class in a program that prompts the user for the starting angle and the initial 
velocity. Then call shoot. 

•• Science P8.26  The colored bands on the top-most resistor shown in the photo below indicate a 
resistance of 6.2 kΩ ±5 percent. The resistor tolerance of ±5 percent indicates the 
acceptable variation in the resistance. A 6.2 kΩ ±5 percent resistor could have a 
resistance as small as 5.89 kΩ or as large as 6.51 kΩ. We say that 6.2 kΩ is the nominal 
value of the resistance and that the actual value of the resistance can be any value 
between 5.89 kΩ and 6.51 kΩ.



programming exercises 411

Write a program that represents a 
resistor as a class. Provide a single 
constructor that accepts values for the 
nominal resistance and tolerance and 
then determines the actual value ran-
domly. The class should provide public 
methods to get the nominal resistance, 
tolerance, and the actual resistance. 
Write a main method for the program that demonstrates that the class works properly 
by displaying actual resistances for ten 330 Ω ±10 percent resistors.

•• Science P8.27  In the Resistor class from Exercise P8.26, supply a 
method that returns a description of the “color bands” 
for the resistance and tolerance. A resistor has four color 
bands: 

• The first band is the first significant digit of the 
resistance value.

• The second band is the second significant digit of the resistance value.
• The third band is the decimal multiplier.
• The fourth band indicates the tolerance.

Color dIgit Multiplier tolerance

Black 0 ×100 —

Brown 1 ×101 ±1%

Red 2 ×102 ±2%

Orange 3 ×103 —

Yellow 4 ×104 —

Green 5 ×105 ±0.5%

Blue 6 ×106 ±0.25%

Violet 7 ×107 ±0.1%

Gray 8 ×108 ±0.05%

White 9 ×109 —

Gold — ×10–1 ±5% 

Silver — ×10–2 ±10%

None — — ±20%

For example (using the values from the table as a key), a resistor with red, violet, 
green, and gold bands (left to right) will have 2 as the first digit, 7 as the second digit, 
a multiplier of 105, and a tolerance of ±5 percent, for a resistance of 2,700 kΩ, plus or 
minus 5 percent.

First band

Second band Multiplier

Tolerance



412 Chapter 8  Objects and Classes

••• Science P8.28  The figure below shows a frequently used electric circuit called a “voltage divider”. 
The input to the circuit is the voltage vi. The output is the voltage vo. The output of 
a voltage divider is proportional to the input, and the constant of proportionality is 
called the “gain” of the circuit. The voltage divider is represented by the equation

 
G

v
v

R
R R

o

i
= =

+
2

1 2

where G is the gain and R1 and R2 are the resistances of the two resistors that com-
prise the voltage divider. 

+
–

vi

R1

vo

+

–

R2

Manufacturing variations cause the actual resistance values to deviate from the 
nominal values, as described in Exercise P8.26. In turn, variations in the resistance 
values cause variations in the values of the gain of the voltage divider. We calculate 
the nominal value of the gain using the nominal resistance values and the actual 
value of the gain using actual resistance values.
Write a program that contains two classes, VoltageDivider and Resistor. The Resistor 
class is described in Exercise P8.26. The VoltageDivider class should have two instance 
variables that are objects of the Resistor class. Provide a single constructor that 
accepts two Resistor objects, nominal values for their resistances, and the resistor 
tolerance. The class should provide public methods to get the nominal and actual 
values of the voltage divider’s gain. 
Write a main method for the program that demonstrates that the class works properly 
by displaying nominal and actual gain for ten voltage dividers each consisting of 5% 
resistors having nominal values R1 = 250 Ω and R2 = 750 Ω.

a n s w e r s  t O  s e l F - C h e C k  Q U e s t I O n s

1.  No––the object "Hello,World"belongs to the 
String class, and the String class has no println 
method.

2.  Through the substring and charAtmethods.
3.  As an ArrayList<Character>. As a char array.
4.  None. The methods will have the same effect, 

and your code could not have manip ulated 
String objects in any other way.

5.  publicvoidreset()
{
value=0;
}

6.  publicintgetValue()
{

returnstrokes.length();
}

7.  None––the public interface has not changed.
8.  You cannot access the instance variables 

directly. You must use the methods provided 
by the Clock class.

9.  21.90 
10.  There is no method named getAmountDue.
11.  publicintgetDollars(); 
12.  length, substring. In fact, all methods of the 

String class are accessors.
13.  A mutator. Getting the next number removes 

it from the input, thereby modifying it. Not 



answers to self-Check Questions 413

convinced? Consider what happens if you call 
the nextInt method twice. You will usually 
get two different numbers. But if you call an 
accessor twice on an object (without a muta-
tion between the two calls), you are sure to get 
the same result. 

14.  /** 
This class models a tally counter.
*/
publicclassCounter
{
privateintvalue;

/**
Gets the current value of this counter.
@returnthe current value
*/
publicintgetValue()
{
returnvalue;
}

/**
Advances the value of this counter by 1.
*/
publicvoidcount()
{
value=value+1;

}

15.  The code tries to access a private instance 
variable.

16.  (1) inthours;//Between 1 and 12
intminutes;//Between 0 and 59
booleanpm;//True for p.m., false for a.m.

(2) inthours;//Military time, between 0 and 23
intminutes;// Between 0 and 59

(3) inttotalMinutes//Between 0 and 60*24-1

17.  They need not change their programs at all 
because the public interface has not changed. 
They need to recompile with the new version 
of the Time class.

18.  (1) StringletterGrade;//"A+","B"
(2) doublenumberGrade;//4.3,3.0

19.  21.8511.90 
20.  publicintgetDollars()

{
intdollars=(int)totalPrice;
//Truncates cents
returndollars;
}

21.  Three parameters: two explicit parameters of 
type int, and one implicit parameter of type 
String.

22.  One parameter: the implicit parameter of type 
String. The method has no explicit parameters.

23.  "Morgan,Harry"

24.  publicPerson(){name="unknown";}

25.  A constructor is generated that has the same 
effect as the constructor provided in this sec-
tion. It sets both instance variables to zero.

26.  publicItem()
{
price=0;
description="";
}

Theprice instance variable need not be initial-
ized because it is set to zero by default, but it is 
clearer to initialize it explicitly.

27.  (a) Item(String) (b) Item(double) 
(c) Item(String,double) (d) Item() 
(e) No constructor has been called.

28.  Add these lines:
register1.clear();
System.out.println(register1.getCount());
System.out.println("Expected:0");
System.out.printf("%.2f\n",
register1.getTotal());
System.out.println("Expected:0.00");

29.  1, 0
30.  These environments allow you to call methods 

on an object without creating a main method.

31. 
Car myCar

Car(mpg)
addGas(amount)
drive(distance)
getGasLeft

front

gasLeft milesPerGallon

0 25

back



414 Chapter 8  Objects and Classes

32. 
gasLeft milesPerGallon

0
20
16
8
13

25

33. 
gasLeft milesPerGallon

0 25

totalMiles

0

34. 

0
20
16
8
13

25 0

100
300

gasLeft milesPerGallon totalMiles

35.  It needs to be incremented in the deposit and 
withdraw methods. There also needs to be some 
method to reset it after the end of a statement 
period.

36.  The ArrayList<String> instance variable is pri-
vate, and the class users cannot acccess it.

37.  Add an ArrayList<Double>prices. In the addItem 
method, add the current price. In the reset 
method, replace the array list with an empty 
one. Also supply a method printReceipt that 
prints the prices.

38.  The tax ID of an employee does not change, 
and no setter method should be supplied. The 
salary of an employee can change, and both 
getter and setter methods should be supplied.

39.  It is an example of the “state pattern” 
described in Section 8.9.5. The direction is a 
state that changes when the bug turns, and it 
affects how the bug moves.

40.  Both greetingandgreeting2 refer to the same 
string "Hello".

41.  They both still refer to the string "Hello". 
The toUpperCase method computes the string 
"HELLO", but it is not a mutator—the original 
string is unchanged.

42.  (a) 0 
(b) A null pointer exception is thrown.

43.  It is a reference of type String.
44.  publicvoidaddItems(intquantity,doubleprice)

{
for(inti=1;i<=quantity;i++)
{
this.addItem(price);
}
}

45.  System.in and System.out
46.  Math.PI

47.  The method needs no data of any object. The 
only required input is the values argument.

48.  Yes, it works. Static methods can call each 
other and access static variables—any method 
can. But it is a terrible idea. A program that 
consists of a single class with many methods is 
hard to understand.



9C h a p t e r

415

InherItanCe 
and 
InterfaCes

to learn about inheritance

to implement subclasses that inherit and override superclass methods 

to understand the concept of polymorphism

to be familiar with the common superclass Object and its methods

to work with interface types

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

9.1  InherItance hIerarchIes  416

Programming Tip 9.1: Use a single Class for 
Variation in Values, Inheritance for Variation 
in Behavior 420

9.2  ImplementIng subclasses  420

Syntax 9.1: subclass declaration 422
Common Error 9.1: replicating Instance Variables 

from the superclass 423
Common Error 9.2: Confusing super- and 

subclasses 424

9.3  OverrIdIng methOds  424

Common Error 9.3: accidental overloading 428
Common Error 9.4: forgetting to Use super 

When Invoking a superclass Method 429
Special Topic 9.1: Calling the superclass 

Constructor 429
Syntax 9.2: Constructor with 

superclass Initializer 430

9.4  pOlymOrphIsm  430

Special Topic 9.2: dynamic Method lookup and 
the Implicit parameter 433

Special Topic 9.3: abstract Classes 434
Special Topic 9.4: final Methods and Classes 435

Special Topic 9.5: protected access 436
How To 9.1: developing an Inheritance 

hierarchy 436
Worked Example 9.1: Implementing an employee 

hierarchy for payroll processing 
Video Example 9.1: Building a 

discussion Board 

9.5  Object: the cOsmIc 
superclass  441

Syntax 9.3: the instanceof operator 445
Common Error 9.5: don’t Use type tests 446
Special Topic 9.6: Inheritance and the 

tostring Method 446
Special Topic 9.7: Inheritance and the 

equals Method 447

9.6  Interface types  448

Syntax 9.4: Interface types 449
Common Error 9.6: forgetting to declare 

Implementing Methods as public 453
Special Topic 9.8: Constants in Interfaces 453
Special Topic 9.9: function objects 454
Video Example 9.2: drawing 

Geometric shapes 



416

objects from related classes usually share common 
behavior. for example, shovels, rakes, and clippers all 
perform gardening tasks. In this chapter, you will learn 
how the notion of inheritance expresses the relationship 
between specialized and general classes. By using 
inheritance, you will be able to share code between classes 
and provide services that can be used by multiple classes. 

9.1 Inheritance hierarchies
In object-oriented design, inheritance is a relationship between a more general class 
(called the superclass) and a more specialized class (called the subclass). The subclass 
inherits data and behavior from the superclass. For example, consider the relation-
ships between different kinds of vehicles depicted in Figure 1. 

Every car is a vehicle. Cars share the common traits of all vehicles, such as the abil-
ity to transport peo ple from one place to another. We say that the class Car inherits 
from the class Vehicle. In this relationship, the Vehicle class is the superclass and the 
Car class is the subclass. In Figure 2, the superclass and subclass are joined with an 
arrow that points to the superclass. 

Suppose we have an algorithm that manipulates a Vehicle object. Because a car is a 
special kind of vehi cle, we can use a Car object in such an algorithm, and it will work 
correctly. The substitutionprinciple states that you can always use a subclass object 
when a superclass object is expected. For example, con sider a method that takes an 
argument of type Vehicle: 

void processVehicle(Vehicle v)

a subclass inherits 
data and behavior 
from a superclass.

You can always use  
a subclass object  
in place of a 
superclass object.

figure 1  an Inheritance hierarchy of Vehicle Classes

Vehicle

Motorcycle Car Truck

Sedan SUV



9.1 Inheritance hierarchies  417

figure 2   
an Inheritance diagram

Vehicle

Car

Because Car is a subclass of Vehicle, you can call that method with a Car object:
Car myCar = new Car(. . .);
processVehicle(myCar);

Why provide a method that processes Vehicle objects instead of Car objects? That 
method is more useful because it can handle any kind of vehicle (including Truck and 
Motorcycle objects). In general, when we group classes into an inheritance hierarchy, 
we can share common code among the classes. 

In this chapter, we will consider a simple hierar-
chy of classes. Most likely, you have taken computer-
graded quizzes. A quiz consists of ques tions, and there 
are different kinds of questions: 

• Fill-in-the-blank
• Choice (single or multiple)
• Numeric (where an approximate answer is ok;  

e.g., 1.33 when the actual answer is 4/3)
• Free response

Figure 3 shows an inheritance hierarchy for these 
question types. 

We will develop a simple but 
flexible quiz-taking program 
to illustrate inheritance.

figure 3   
Inheritance hierarchy  
of Question types

Choice
Question

FillIn
Question

Numeric
Question

FreeResponse
Question

MultiChoice
Question

Question



418 Chapter 9  Inheritance and Interfaces

At the root of this hierarchy is the Question type. A question can display its text, 
and it can check whether a given response is a correct answer.

section_1/Question.java

1 /**
2    A question with a text and an answer.
3 */
4 public class Question
5 {
6    private String text;
7    private String answer;
8 
9    /**

10       Constructs a question with empty question and answer.
11    */
12    public Question() 
13    {
14       text = "";
15       answer = "";
16    }
17 
18    /**
19       Sets the question text.
20       @param questionText the text of this question
21    */
22    public void setText(String questionText)   
23    {
24       text = questionText;
25    }
26 
27    /**
28       Sets the answer for this question.
29       @param correctResponse the answer
30    */
31    public void setAnswer(String correctResponse)
32    {
33       answer = correctResponse;
34    }
35 
36    /**
37       Checks a given response for correctness.
38       @param response the response to check
39       @return true if the response was correct, false otherwise
40    */
41    public boolean checkAnswer(String response)
42    {
43       return response.equals(answer);  
44    }
45 
46    /**
47       Displays this question.
48    */
49    public void display()
50    {
51       System.out.println(text);
52    }
53 }



9.1 Inheritance hierarchies  419

This question class is very basic. It does not handle multiple-choice questions, 
numeric questions, and so on. In the following sections, you will see how to form 
subclasses of the Question class. 

Here is a simple test program for the Question class:

section_1/Questiondemo1.java

1 import java.util.ArrayList;
2 import java.util.Scanner;
3 
4 /**
5    This program shows a simple quiz with one question.
6 */
7 public class QuestionDemo1
8 {
9    public static void main(String[] args)

10    {
11       Scanner in = new Scanner(System.in);
12 
13       Question q = new Question();
14       q.setText("Who was the inventor of Java?");
15       q.setAnswer("James Gosling");      
16 
17       q.display();
18       System.out.print("Your answer: ");
19       String response = in.nextLine();
20       System.out.println(q.checkAnswer(response));
21    }
22 }

program run

Who was the inventor of Java?
Your answer: James Gosling
true

1.  Consider classes Manager and Employee. Which should be the superclass and which 
should be the sub class?

2.  What are the inheritance relationships between classes BankAccount, Checking
Account, and SavingsAccount? 

3.  Figure 7.2 shows an inheritance diagram of exception classes in Java. List all 
superclasses of the class RuntimeException. 

4.  Consider the method doSomething(Car c). List all vehicle classes from Figure 1 
whose objects cannot be passed to this method.

5.  Should a class Quiz inherit from the class Question? Why or why not? 

practice It  Now you can try these exercises at the end of the chapter: R9.1, R9.7, R9.9.

s e l f   c h e c k



420 Chapter 9  Inheritance and Interfaces

use a single class for variation in values, Inheritance for 
variation in behavior

The purpose of inheritance is to model objects with different behavior. When students first 
learn about inheritance, they have a tendency to overuse it, by creating multiple classes even 
though the variation could be expressed with a simple instance variable. 

Consider a program that tracks the fuel efficiency of a fleet of cars by logging the distance 
traveled and the refuel ing amounts. Some cars in the fleet are hybrids. Should you create a sub-
class HybridCar? Not in this application. Hybrids don’t behave any differently than other cars 
when it comes to driving and refueling. They just have a better fuel efficiency. A single Car class 
with an instance variable 

double milesPerGallon;

is entirely sufficient. 
However, if you write a program that shows how to repair different kinds of vehicles, then 

it makes sense to have a separate class HybridCar. When it comes to repairs, hybrid cars behave 
differently from other cars.

9.2 Implementing subclasses
In this section, you will see how to form a subclass and how a subclass automatically 
inherits functional ity from its superclass. 

Suppose you want to write a program that handles questions such as the following:
In which country was the inventor of Java born?
1. Australia
2. Canada
3. Denmark
4. United States

You could write a ChoiceQuestion class from scratch, with methods to set up the ques-
tion, display it, and check the answer. But you don’t have to. Instead, use inheritance 
and implement ChoiceQuestion as a subclass of the Question class (see Figure 4).

In Java, you form a subclass by specifying what makes the subclass different from 
its superclass. 

Subclass objects automatically have the instance variables that are declared in the 
superclass. You only declare instance variables that are not part of the superclass 
objects. 

programming tip 9.1 

a subclass inherits all 
methods that it does 
not override.

figure 4   
the ChoiceQuestion Class is a 
subclass of the Question Class

Question

Choice
Question



9.2 Implementing subclasses  421

Like the manufacturer of a  
stretch limo, who starts with a  
regular car and modifies it, a  
programmer makes a subclass  
by modifying another class.

The subclass inherits all public methods from the superclass. You declare any 
methods that are new to the subclass, and change the implementation of inherited 
methods if the inherited behavior is not appro priate. When you supply a new imple-
mentation for an inherited method, you override the method. 

A ChoiceQuestion object differs from a Question object in three ways:

• Its objects store the various choices for the answer.
• There is a method for adding answer choices.
• The display method of the ChoiceQuestion class shows these choices so that the 

respondent can choose one of them. 

When the ChoiceQuestion class inherits from the Question class, it needs to spell out 
these three differences:

public class ChoiceQuestion extends Question
{
   // This instance variable is added to the subclass
   private ArrayList<String> choices;

   // This method is added to the subclass
   public void addChoice(String choice, boolean correct) { . . . }

   // This method overrides a method from the superclass
   public void display() { . . . }
}

The reserved word extends denotes inheritance.
Figure 5 shows the layout of a ChoiceQuestion object. It has the text and answer 

instance variables that are declared in the Question superclass, and it adds an additional 
instance variable, choices. 

The addChoice method is specific to the ChoiceQuestion class. You can only apply it to 
ChoiceQuestion objects, not general Question objects. 

In contrast, the display method is a method that already exists in the superclass. 
The subclass overrides this method, so that the choices can be properly displayed. 

a subclass can 
override a  
superclass method  
by providing a new 
implementation.

the extends reserved 
word indicates that a 
class inherits from a 
superclass.

figure 5  data layout of subclass object

text =

ChoiceQuestion

answer =

choices =

Question portion



422 Chapter 9  Inheritance and Interfaces

syntax 9.1 subclass declaration

public class SubclassName extends SuperclassName
{
   instance variables
   methods
}

Syntax

public class ChoiceQuestion extends Question
{
   private ArrayList<String> choices

   public void addChoice(String choice, boolean correct) { . . . }
   
   public void display() { . . . }
}

Subclass Superclass

The reserved word extends
denotes inheritance.

Declare methods that are 
added to the subclass.

Declare instance variables
that are added to 
the subclass.

Declare methods that 
the subclass overrides.

All other methods of the Question class are automatically inherited by the Choice
Question class. 

You can call the inherited methods on a subclass object:
choiceQuestion.setAnswer("2"); 

However, the private instance variables of the superclass are inaccessible. Because 
these variables are private data of the superclass, only the superclass has access to 
them. The subclass has no more access rights than any other class. 

In particular, the ChoiceQuestion methods cannot directly access the instance vari-
able answer. These methods must use the public interface of the Question class to access 
its private data, just like every other method.

To illustrate this point, let’s implement the addChoice method. The method has two 
arguments: the choice to be added (which is appended to the list of choices), and a 
Boolean value to indicate whether this choice is correct. For example,

question.addChoice("Canada", true);

The first argument is added to the choices variable. If the second argument is true, then 
the answer instance variable becomes the number of the current choice. For example, if 
choices.size() is 2, then answer is set to the string "2".

public void addChoice(String choice, boolean correct)
{
   choices.add(choice);
   if (correct) 
   {
      // Convert choices.size() to string
      String choiceString = "" + choices.size();
      setAnswer(choiceString);
   }
} 

You can’t just access the answer variable in the superclass. Fortunately, the Ques
tion class has a setAnswer method. You can call that method. On which object? The 



9.2 Implementing subclasses  423

question that you are currently modifying—that is, the implicit parameter of the 
ChoiceQuestion.addChoice method. As you saw in Chapter 8, if you invoke a method on 
the implicit parameter, you don’t have to specify the implicit parameter and can write 
just the method name:

setAnswer(choiceString);

If you prefer, you can make it clear that the method is executed on the implicit 
parameter:

this.setAnswer(choiceString);

6.  Suppose q is an object of the class Question and cq an object of the class Choice
Question. Which of the following calls are legal?
a.  q.setAnswer(response) 
b. cq.setAnswer(response) 

c.  q.addChoice(choice, true) 

d. cq.addChoice(choice, true) 
7.  Suppose the class Employee is declared as follows:

public class Employee
{
   private String name;
   private double baseSalary;

   public void setName(String newName) { . . . }
   public void setBaseSalary(double newSalary) { . . . }
   public String getName() { . . . }
   public double getSalary() { . . . }
}

Declare a class Manager that inherits from the class Employee and adds an instance 
variable bonus for stor ing a salary bonus. Omit constructors and methods.

8.  Which instance variables does the Manager class from Self Check 7 have?
9.  In the Manager class, provide the method header (but not the implementation) for 

a method that over rides the getSalary method from the class Employee.
10.  Which methods does the Manager class from Self Check 9 inherit?

practice It  Now you can try these exercises at the end of the chapter: R9.3, P9.6, P9.10.

replicating Instance variables from the superclass 

A subclass has no access to the private instance variables of the superclass. 

public ChoiceQuestion(String questionText)
{
   text = questionText; // Error—tries to access private superclass variable
}

When faced with a compiler error, beginners commonly “solve” this issue by adding another 
instance variable with the same name to the subclass:

public class ChoiceQuestion extends Question
{

O n l I n e  e x a m p l e

a program that 
shows a simple Car 
class extending a 
Vehicle class.

s e l f   c h e c k

Common error 9.1 



424 Chapter 9  Inheritance and Interfaces

   private ArrayList<String> choices;
   private String text; // Don’t!
   . . .
}

Sure, now the constructor compiles, but it doesn’t set the correct text! Such a ChoiceQuestion 
object has two instance variables, both named text. The constructor sets one of them, and the 
display method displays the other. 

confusing super- and subclasses

If you compare an object of type ChoiceQuestion with an object of type Question, you find that 
• The reserved word extends suggests that the ChoiceQuestion object is an extended version of 

a Question.
• The ChoiceQuestion object is larger; it has an added instance variable, choices.
• The ChoiceQuestion object is more capable; it has an addChoice method.
It seems a superior object in every way. So why is ChoiceQuestion called the subclass and 
Question the superclass?

The super/sub terminology comes from set theory. Look at the set of all questions. Not all 
of them are ChoiceQues tion objects; some of them are other kinds of questions. Therefore, the 
set of ChoiceQuestion objects is a subset of the set of all Question objects, and the set of Question 
objects is a superset of the set of ChoiceQuestion objects. The more specialized objects in the 
subset have a richer state and more capabilities.

9.3 overriding Methods
The subclass inherits the methods from the superclass. If you are not satisfied with 
the behavior of an inherited method, you override it by specifying a new implemen-
tation in the subclass. 

Consider the display method of the ChoiceQuestion class. It overrides the superclass 
display method in order to show the choices for the answer. This method extends the 
functionality of the superclass version. This means that the subclass method carries 
out the action of the superclass method (in our case, displaying the question text), and 
it also does some additional work (in our case, displaying the choices). In other cases, 
a subclass method replaces the functionality of a superclass method, implementing an 
entirely different behavior. 

Let us turn to the implementation of the display method of the ChoiceQuestion class. 
The method needs to

• Display the question text. 
• Display the answer choices.

text =

ChoiceQuestion

answer =

choices =

text =

Question portion

Common error 9.2 

an overriding 
method can extend 
or replace the 
functionality of the 
superclass method.



9.3 overriding Methods  425

The second part is easy because the answer choices are an instance variable of the 
subclass. 

public class ChoiceQuestion
{
   . . .
   public void display()
   {
      // Display the question text
      . . .
      // Display the answer choices
      for (int i = 0; i < choices.size(); i++)
      {
         int choiceNumber = i + 1;
         System.out.println(choiceNumber + ": " + choices.get(i));     
      }
   }
}

But how do you get the question text? You can’t access the text variable of the super-
class directly because it is private. 

Instead, you can call the display method of the superclass, by using the reserved 
word super:

public void display() 
{
   // Display the question text
   super.display(); // OK
   // Display the answer choices
   . . .
}

If you omit the reserved word super, then the method will not work as intended.
public void display()
{
   // Display the question text
   display(); // Error—invokes this.display() 
   . . .
}

Because the implicit parameter this is of type ChoiceQuestion, and there is a method 
named display in the ChoiceQuestion class, that method will be called—but that is just 
the method you are currently writing! The method would call itself over and over.

Here is the complete program that lets you take a quiz consisting of two Choice
Question objects. We construct both objects and pass them to a method present Question. 
That method displays the question to the user and checks whether the user response 
is correct. 

section_3/Questiondemo2.java

1 import java.util.Scanner;
2 
3 /**
4    This program shows a simple quiz with two choice questions.
5 */
6 public class QuestionDemo2
7 {
8    public static void main(String[] args)
9    {

Use the reserved 
word super to call a 
superclass method.

A N I M AT I O N
Inheritance



426 Chapter 9  Inheritance and Interfaces

10       ChoiceQuestion first = new ChoiceQuestion();
11       first.setText("What was the original name of the Java language?");
12       first.addChoice("*7", false);
13       first.addChoice("Duke", false);
14       first.addChoice("Oak", true);
15       first.addChoice("Gosling", false);
16 
17       ChoiceQuestion second = new ChoiceQuestion();
18       second.setText("In which country was the inventor of Java born?");
19       second.addChoice("Australia", false);
20       second.addChoice("Canada", true);
21       second.addChoice("Denmark", false);
22       second.addChoice("United States", false);
23 
24       presentQuestion(first);
25       presentQuestion(second);
26    }
27 
28    /**
29       Presents a question to the user and checks the response.
30       @param q the question
31     */
32    public static void presentQuestion(ChoiceQuestion q)
33    {
34       q.display();
35       System.out.print("Your answer: ");
36       Scanner in = new Scanner(System.in);
37       String response = in.nextLine();
38       System.out.println(q.checkAnswer(response));
39    }
40 }

section_3/choiceQuestion.java

1 import java.util.ArrayList;
2 
3 /**
4    A question with multiple choices.
5 */
6 public class ChoiceQuestion extends Question
7 {
8    private ArrayList<String> choices;
9 

10    /**
11       Constructs a choice question with no choices.
12    */
13    public ChoiceQuestion()
14    {
15       choices = new ArrayList<String>();
16    }
17 
18    /**
19       Adds an answer choice to this question.
20       @param choice the choice to add
21       @param correct true if this is the correct choice, false otherwise
22    */
23    public void addChoice(String choice, boolean correct)
24    {



9.3 overriding Methods  427

25       choices.add(choice);
26       if (correct) 
27       {
28          // Convert choices.size() to string
29          String choiceString = "" + choices.size();
30          setAnswer(choiceString);
31       }
32    }
33    
34    public void display()
35    {
36       // Display the question text
37       super.display();
38       // Display the answer choices
39       for (int i = 0; i < choices.size(); i++)
40       {
41          int choiceNumber = i + 1;
42          System.out.println(choiceNumber + ": " + choices.get(i));     
43       }  
44    }
45 }

program run

What was the original name of the Java language?
1: *7
2: Duke
3: Oak
4: Gosling
Your answer: *7
false
In which country was the inventor of Java born?
1: Australia
2: Canada
3: Denmark
4: United States
Your answer: 2
true

11.  What is wrong with the following implementation of the display method?
public class ChoiceQuestion
{
   . . .
   public void display()
   {
      System.out.println(text); 
      for (int i = 0; i < choices.size(); i++)
      {
         int choiceNumber = i + 1;
         System.out.println(choiceNumber + ": " + choices.get(i));     
      }
   }
}

12.  What is wrong with the following implementation of the display method?
public class ChoiceQuestion
{

s e l f   c h e c k



428 Chapter 9  Inheritance and Interfaces

   . . .
   public void display()
   {
      this.display(); 
      for (int i = 0; i < choices.size(); i++)
      {
         int choiceNumber = i + 1;
         System.out.println(choiceNumber + ": " + choices.get(i));     
      }
   }
}

13.  Look again at the implementation of the addChoice method that calls the setAnswer 
method of the superclass. Why don’t you need to call super.    setAnswer?

14.  In the Manager class of Self Check 7, override the getName method so that managers 
have a * before their name (such as *Lin, Sally).

15.  In the Manager class of Self Check 9, override the getSalary method so that it re-
turns the sum of the sal ary and the bonus.

practice It  Now you can try these exercises at the end of the chapter: P9.1, P9.2, P9.11.

accidental Overloading

In Java, two methods can have the same name, provided they differ in their parameter types. 
For example, the PrintStream class has methods called println with headers 

void println(int x)

and

void println(String x)

These are different methods, each with its own implementation. The Java compiler considers 
them to be completely unrelated. We say that the println name is overloaded. This is different 
from overriding, where a subclass method provides an implementation of a method whose 
parameter variables have the same types.

If you mean to override a method but use a parameter variable with a different type, then 
you accidentally introduce an over loaded method. For example,

public class ChoiceQuestion extends Question
{
   . . .
   public void display(PrintStream out) 
   // Does not override void display()
   {
      . . . 
   }
}

The compiler will not complain. It thinks that you want to provide a method just for Print
Stream arguments, while inheriting another method void display().

When overriding a method, be sure to check that the types of the parameter variables match 
exactly.

Common error 9.3 



9.3 overriding Methods  429

forgetting to use super When Invoking a superclass method

A common error in extending the functionality of a superclass method is to forget the reserved 
word super. For example, to compute the salary of a manager, get the salary of the underlying 
Employee object and add a bonus:

public class Manager
{
   . . .
   public double getSalary()
   {
      double baseSalary = getSalary(); 
         // Error: should be super.getSalary()
      return baseSalary + bonus;
   }
}

Here getSalary() refers to the getSalary method applied to the implicit parameter of the 
method. The implicit param eter is of type Manager, and there is a getSalary method in the Man
ager class. Calling that method is a recursive call, which will never stop. Instead, you must tell 
the compiler to invoke the superclass method. 

Whenever you call a superclass method from a subclass method with the same name, be 
sure to use the reserved word super.

calling the superclass constructor

Consider the process of constructing a subclass object. A subclass 
constructor can only ini tialize the instance variables of the sub-
class. But the superclass instance variables also need to be initial-
ized. Unless you specify otherwise, the superclass instance variables 
are initial ized with the constructor of the superclass that has no 
arguments.

In order to specify another constructor, you use the super reserved 
word, together with the arguments of the superclass constructor, as 
the first statement of the subclass construc tor. 

For example, suppose the Question superclass had a construc-
tor for setting the question text. Here is how a subclass constructor 
could call that superclass constructor:

public ChoiceQuestion(String questionText)
{
   super(questionText);
   choices = new ArrayList<String>();
} 

In our example program, we used the superclass constructor with no 
arguments. However, if all superclass constructors have arguments, 
you must use the super syntax and provide the arguments for a super-
class constructor.

When the reserved word super is followed by a parenthesis, it 
indicates a call to the superclass constructor. When used in this way, 
the constructor call must be the first state ment of the subclass 
constructor. If super is followed by a period and a method name, on the other hand, it indicates 
a call to a superclass method, as you saw in the preceding sec tion. Such a call can be made any-
where in any subclass method. 

Common error 9.4 

special topic 9.1 

Unless specified 
otherwise, the 
subclass constructor 
calls the superclass 
constructor with no 
arguments.

to call a superclass 
constructor, use the 
super reserved word 
in the first statement 
of the subclass 
constructor.

the constructor of  
a subclass can pass 
arguments to a 
super class construc-
tor, using the 
reserved word super. 



430 Chapter 9  Inheritance and Interfaces

syntax 9.2 Constructor with superclass Initializer

public ClassName(parameterType parameterName, . . .)
{  
   super(arguments);
   . . .
}

Syntax

public ChoiceQuestion(String questionText)
{
   super(questionText);
   choices = new ArrayList<String>;
}

The superclass 
constructor 
is called first. If you omit the superclass 

constructor call, the superclass
constructor with no arguments 

is invoked.
The constructor 
body can contain 
additional statements.

9.4 polymorphism
In this section, you will learn how to use inheritance for processing objects of differ-
ent types in the same program. 

Consider our first sample program. It presented two Question objects to the user. 
The second sample program presented two ChoiceQuestion objects. Can we write a 
program that shows a mixture of both question types? 

With inheritance, this goal is very easy to realize. In order to present a question to 
the user, we need not know the exact type of the question. We just display the ques-
tion and check whether the user supplied the correct answer. The Question superclass 
has methods for this purpose. Therefore, we can simply declare the parameter vari-
able of the presentQues tion method to have the type Question: 

public static void presentQuestion(Question q)
{
   q.display();
   System.out.print("Your answer: ");
   Scanner in = new Scanner(System.in);
   String response = in.nextLine();
   System.out.println(q.checkAnswer(response));
}

As discussed in Section 9.1, we can substitute a subclass object whenever a superclass 
object is expected:

ChoiceQuestion second = new ChoiceQuestion();
. . .
presentQuestion(second); // OK to pass a ChoiceQuestion

When the presentQuestion method executes, the object references stored in second and 
q refer to the same object of type ChoiceQuestion (see Figure 6). 

However, the variable q knows less than the full story about the object to which it 
refers (see Figure 7).

Because q is a variable of type Question, you can call the display and checkAnswer 
methods. You cannot call the addChoice method, though—it is not a method of the 
Question superclass. 

a subclass reference 
can be used when a 
superclass reference 
is expected.



9.4 polymorphism  431

figure 6  Variables of different types referring to the same object

text =

ChoiceQuestion

answer =

choices =

Variable of type 
ChoiceQuestion

second =

q =

Variable of type 
Question

This is as it should be. After all, it happens that in this method call, q refers to a 
ChoiceQuestion. In another method call, q might refer to a plain Question or an entirely 
different subclass of Question. 

Now let’s have a closer look inside the presentQuestion method. It starts with the 
call

q.display(); // Does it call Question.display or ChoiceQuestion.display?

Which display method is called? If you look at the program output on page 433, you will 
see that the method called depends on the contents of the parameter variable q. In the 
first case, q refers to a Question object, so the Question.display method is called. But in 
the second case, q refers to a ChoiceQuestion, so the ChoiceQues tion.display method is 
called, showing the list of choices.

In Java, method calls are always determined by the type of the actual object, not the 
type of the variable containing the object reference. This is called dynamicmethod
lookup. 

Dynamic method lookup allows us to treat objects of different classes in a uniform 
way. This feature is called polymorphism. We ask multiple objects to carry out a task, 
and each object does so in its own way.

Polymorphism makes programs easily extensible. Suppose we want to have a new 
kind of question for calculations, where we are willing to accept an approximate 
answer. All we need to do is to declare a new class NumericQuestion that extends Ques
tion, with its own check Answer method. Then we can call the presentQuestion method 
with a mixture of plain questions, choice questions, and numeric questions. The 
presentQuestion method need not be changed at all! Thanks to dynamic method 
lookup, method calls to the display and checkAnswer methods automatically select the 
correct method of the newly declared classes.

A N I M AT I O N
Polymorphism

polymorphism 
(“having multiple 
shapes”) allows us to 
manipulate objects 
that share a set of 
tasks, even though 
the tasks are 
executed in  
different ways. 

figure 7  a Question reference Can refer to an object of any subclass of Question

text =

?

answer =

q =

Variable of type 
Question



432 Chapter 9  Inheritance and Interfaces

section_4/

In the same way that vehicles can differ in their method of locomo tion, 
polymorphic objects carry out tasks in different ways.

Questiondemo3.java

1 import java.util.Scanner;
2 
3 /**
4    This program shows a simple quiz with two question types.
5 */
6 public class QuestionDemo3
7 {
8    public static void main(String[] args)
9    {

10       Question first = new Question();
11       first.setText("Who was the inventor of Java?");
12       first.setAnswer("James Gosling");
13 
14       ChoiceQuestion second = new ChoiceQuestion();
15       second.setText("In which country was the inventor of Java born?");
16       second.addChoice("Australia", false);
17       second.addChoice("Canada", true);
18       second.addChoice("Denmark", false);
19       second.addChoice("United States", false);
20 
21       presentQuestion(first);
22       presentQuestion(second);
23    }
24 
25    /**
26       Presents a question to the user and checks the response.
27       @param q the question
28     */
29    public static void presentQuestion(Question q)
30    {
31       q.display();
32       System.out.print("Your answer: ");
33       Scanner in = new Scanner(System.in);
34       String response = in.nextLine();
35       System.out.println(q.checkAnswer(response));
36    }
37 }



9.4 polymorphism  433

program run

Who was the inventor of Java?
Your answer: Bjarne Stroustrup
false
In which country was the inventor of Java born?
1: Australia
2: Canada
3: Denmark
4: United States
Your answer: 2
true

16.  Assuming SavingsAccount is a subclass of BankAccount, which of the following code 
fragments are valid in Java?
a.  BankAccount account = new SavingsAccount(); 
b. SavingsAccount account2 = new BankAccount(); 
c.  BankAccount account = null; 
d. SavingsAccount account2 = account; 

17.  If account is a variable of type BankAccount that holds a non-null reference, what 
do you know about the object to which account refers? 

18.  Declare an array quiz that can hold a mixture of Question and ChoiceQuestion 
objects.

19.  Consider the code fragment
ChoiceQuestion cq = . . .; // A non-null value
cq.display();

Which actual method is being called?
20.  Is the method call Math.sqrt(2) resolved through dynamic method lookup?

practice It  Now you can try these exercises at the end of the chapter: R9.6, P9.4, P9.20.

dynamic method lookup and the Implicit parameter

Suppose we add the presentQuestion method to the Question class itself:

void presentQuestion() 
{
   display();
   System.out.print("Your answer: ");
   Scanner in = new Scanner(System.in);
   String response = in.nextLine();
   System.out.println(checkAnswer(response));
}

Now consider the call

ChoiceQuestion cq = new ChoiceQuestion();
cq.setText("In which country was the inventor of Java born?");
. . .
cq.presentQuestion();

s e l f   c h e c k

special topic 9.2 



434 Chapter 9  Inheritance and Interfaces

Which display and checkAnswer method will the presentQuestion method call? If you look inside 
the code of the pre sentQuestion method, you can see that these methods are executed on the 
implicit parameter.

public class Question
{
   public void presentQuestion()
   {
      this.display();
      System.out.print("Your answer: ");
      Scanner in = new Scanner(System.in);
      String response = in.nextLine();
      System.out.println(this.checkAnswer(response));
   }
}

The implicit parameter this in our call is a reference to an object of type ChoiceQuestion. 
Because of dynamic method lookup, the ChoiceQuestion versions of the display and check Answer 
methods are called automatically. This happens even though the presentQuestion method is 
declared in the Question class, which has no knowledge of the ChoiceQues tion class.

As you can see, polymorphism is a very powerful mechanism. The Question class supplies 
a presentQuestion method that specifies the common nature of presenting a question, namely 
to display it and check the response. How the displaying and checking are carried out is left to 
the subclasses.

abstract classes

When you extend an existing class, you have the choice whether or not to override the meth-
ods of the superclass. Sometimes, it is desirable to force programmers to override a method. 
That happens when there is no good default for the superclass, and only the subclass program-
mer can know how to implement the method properly. 

Here is an example: Suppose the First National Bank of Java decides that every account 
type must have some monthly fees. Therefore, a deductFees method should be added to the 
Account class: 

public class Account
{ 
   public void deductFees() { . . . }
   . . .
}

But what should this method do? Of course, we could have the method do nothing. But then 
a programmer imple menting a new subclass might simply forget to implement the deductFees 
method, and the new account would inherit the do-nothing method of the superclass. There is 
a better way—declare the deductFees method as an abstractmethod: 

public abstract void deductFees();

An abstract method has no implementation. This forces the imple-
mentors of subclasses to specify concrete implementations of this 
method. (Of course, some subclasses might decide to implement a 
do-nothing method, but then that is their choice—not a silently 
inherited default.)

You cannot construct objects of classes with abstract methods. 
For example, once the Account class has an abstract method, the com-
piler will flag an attempt to create a new Account() as an error. 

special topic 9.3 

an abstract method 
is a method whose 
implemen tation is 
not specified.

an abstract class is a 
class that cannot be 
instantiated.



9.4 polymorphism  435

A class for which you cannot create objects is called an abstractclass. A class for which you 
can create objects is sometimes called a concreteclass. In Java, you must declare all abstract 
classes with the reserved word abstract: 

public abstract class Account
{ 
   public abstract void deductFees();
   . . .
}

public class SavingsAccount extends Account // Not abstract
{
   . . .
   public void deductFees() // Provides an implementation
   {
      . . .
   }
}

Note that you cannot construct an object of an abstract class, but you can still have an object 
reference whose type is an abstract class. Of course, the actual object to which it refers must be 
an instance of a concrete subclass: 

Account anAccount; // OK 
anAccount = new Account(); // Error—Account is abstract 
anAccount = new SavingsAccount(); // OK 
anAccount = null; // OK 

The reason for using abstract classes is to force programmers to create subclasses. By speci-
fying certain methods as abstract, you avoid the trouble of coming up with useless default 
methods that others might inherit by accident. 

final methods and classes

In Special Topic 9.3 you saw how you can force other programmers to create subclasses of 
abstract classes and override abstract methods. Occasionally, you may want to do the opposite 
and prevent other programmers from creating subclasses or from overriding certain methods. 
In these situations, you use the final reserved word. For example, the String class in the stan-
dard Java library has been declared as 

public final class String { . . . }

That means that nobody can extend the String class. When you have a reference of type String, 
it must contain a String object, never an object of a subclass.

You can also declare individual methods as final: 

public class SecureAccount extends BankAccount
{ 
   . . .
   public final boolean checkPassword(String password)
   { 
      . . .
   }
}

This way, nobody can override the checkPassword method with another method that simply 
returns true. 

special topic 9.4 



436 Chapter 9  Inheritance and Interfaces

protected access

We ran into a hurdle when trying to implement the display method of the ChoiceQuestion class. 
That method wanted to access the instance variable text of the superclass. Our remedy was to 
use the appropriate method of the superclass to display the text. 

Java offers another solution to this problem. The superclass can declare an instance variable 
as protected: 

public class Question
{ 
   protected String text;
   . . .
}

Protected data in an object can be accessed by the methods of the object’s class and all its 
subclasses. For example, ChoiceQuestion inherits from Question, so its methods can access the 
protected instance variables of the Question superclass. 

Some programmers like the protected access feature because it seems to strike a balance 
between absolute protection (making instance variables private) and no protection at all (mak-
ing instance variables public). However, experience has shown that protected instance vari-
ables are subject to the same kinds of problems as public instance variables. The designer of 
the superclass has no control over the authors of subclasses. Any of the subclass methods can 
corrupt the superclass data. Furthermore, classes with protected variables are hard to modify. 
Even if the author of the superclass would like to change the data implementation, the pro-
tected variables cannot be changed, because someone somewhere out there might have writ ten 
a subclass whose code depends on them. 

In Java, protected variables have another drawback—they are accessible not just by sub-
classes, but also by other classes in the same package (see Section 12.4 for information about 
packages).

It is best to leave all data private. If you want to grant access to the data to subclass methods 
only, consider mak ing the accessor method protected. 

special topic 9.5 

hoW to 9.1 developing an Inheritance hierarchy

When you work with a set of classes, some of which are more general and others more spe-
cialized, you want to organize them into an inheritance hierarchy. This enables you to pro cess 
objects of different classes in a uniform way. 

As an example, we will consider a bank that offers customers the following account types:
• A savings account that earns interest. The interest compounds monthly and is computed on the min imum 

monthly balance. 
• A checking account that has no interest, gives you three free withdrawals per month, and charges a $1 

transaction fee for each additional withdrawal.

The program will manage a set of accounts of both types, and it should be structured so that 
other account types can be added without affecting the main processing loop. Supply a menu

D)eposit  W)ithdraw  M)onth end  Q)uit

For deposits and withdrawals, query the account number and amount. Print the balance of the 
account after each transaction.

In the “Month end” command, accumulate interest or clear the transaction counter, 
depending on the type of the bank account. Then print the balance of all accounts.



9.4 polymorphism  437

step 1  List the classes that are part of the hierarchy.

In our case, the problem description yields two classes: SavingsAccount and Checking Account. 
Of course, you could implement each of them separately. But that would not be a good idea 
because the classes would have to repeat com mon functionality, such as updating an account 
balance. We need another class that can be responsible for that com mon functionality. The 
problem statement does not explicitly mention such a class. Therefore, we need to discover 
it. Of course, in this case, the solution is simple. Savings accounts and checking accounts are 
special cases of a bank account. Therefore, we will introduce a common superclass BankAccount.

step 2  Organize the classes into an inheritance hierarchy.

Draw an inheritance diagram that shows super- and subclasses. Here is one for our example:

Savings
Account

Checking
Account

BankAccount

step 3  Determine the common responsibilities.

In Step 2, you will have identified a class at the base of the hierarchy. That class needs to have 
sufficient responsibili ties to carry out the tasks at hand. To find out what those tasks are, write 
pseudocode for processing the objects. 

For each user command
 If it is a deposit or withdrawal
  Deposit or withdraw the amount from the specified account.
  Print the balance.
 If it is month end processing
  For each account
   Call month end processing.
   Print the balance.

From the pseudocode, we obtain the following list of common responsibilities that every bank 
account must carry out:

Deposit money.
Withdraw money.
Get the balance.
Carry out month end processing.

step 4  Decide which methods are overridden in subclasses.

For each subclass and each of the common responsibilities, decide whether the behavior can be 
inherited or whether it needs to be overridden. Be sure to declare any methods that are inher-
ited or overridden in the root of the hierar chy.

public class BankAccount
{
   . . .



438 Chapter 9  Inheritance and Interfaces

   /**
      Makes a deposit into this account.
      @param amount the amount of the deposit
   */
   public void deposit(double amount) { . . . }

   /**
      Makes a withdrawal from this account, or charges a penalty if
      sufficient funds are not available.
      @param amount the amount of the withdrawal
   */
   public void withdraw(double amount) { . . . }

   /**
      Carries out the end of month processing that is appropriate
      for this account.
   */
   public void monthEnd() { . . . }
   
   /**
      Gets the current balance of this bank account.
      @return the current balance
   */
   public double getBalance() { . . . }
}

The SavingsAccount and CheckingAccount classes both override the monthEnd method. The 
Savings Account class must also override the withdraw method to track the minimum balance. 
The Checking Account class must update a transaction count in the withdraw method.

step 5  Declare the public interface of each subclass.

Typically, subclasses have responsibilities other than those of the superclass. List those, as well 
as the methods that need to be overridden. You also need to specify how the objects of the 
subclasses should be constructed. 

In this example, we need a way of setting the interest rate for the savings account. In addi-
tion, we need to specify constructors and overridden methods. 

public class SavingsAccount extends BankAccount
{
   . . . 
   /**
      Constructs a savings account with a zero balance.
   */
   public SavingsAccount() { . . . }

   /**
      Sets the interest rate for this account.
      @param rate the monthly interest rate in percent
   */
   public void setInterestRate(double rate) { . . . }

   // These methods override superclass methods
   public void withdraw(double amount) { . . . }
   public void monthEnd() { . . . }
}

public class CheckingAccount extends BankAccount
{
   . . .
   /**



9.4 polymorphism  439

      Constructs a checking account with a zero balance.
   */
   public CheckingAccount() { . . . }

   // These methods override superclass methods
   public void withdraw(double amount) { . . . }
   public void monthEnd() { . . . }
}

step 6  Identify instance variables.

List the instance variables for each class. If you find an instance variable that is common to all 
classes, be sure to place it in the base of the hierarchy. 

All accounts have a balance. We store that value in the BankAccount superclass:

public class BankAccount
{
   private double balance;
   . . .
}

The SavingsAccount class needs to store the interest rate. It also needs to store the minimum 
monthly balance, which must be updated by all withdrawals. 

public class SavingsAccount extends BankAccount
{
   private double interestRate;
   private double minBalance;
   . . .
}

The CheckingAccount class needs to count the withdrawals, so that the charge can be applied 
after the free withdrawal limit is reached.

public class CheckingAccount extends BankAccount
{
   private int withdrawals;
   . . .
}

step 7  Implement constructors and methods.

The methods of the BankAccount class update or return the balance.

public void deposit(double amount)
{
   balance = balance + amount;
}

public void withdraw(double amount)
{
   balance = balance  amount;
}

public double getBalance()
{
   return balance;
}   

At the level of the BankAccount superclass, we can say nothing about end of month processing. 
We choose to make that method do nothing: 

public void monthEnd() 
{
}



440 Chapter 9  Inheritance and Interfaces

In the withdraw method of the SavingsAccount class, the minimum balance is updated. Note the 
call to the superclass method:

public void withdraw(double amount)
{
   super.withdraw(amount);
   double balance = getBalance();
   if (balance < minBalance)
   {
      minBalance = balance;
   }
}

In the monthEnd method of the SavingsAccount class, the interest is deposited into the account. 
We must call the deposit method because we have no direct access to the balance instance vari-
able. The minimum balance is reset for the next month.

public void monthEnd() 
{
   double interest = minBalance * interestRate / 100;
   deposit(interest);
   minBalance = getBalance();
}

The withdraw method of the CheckingAccount class needs to check the withdrawal count. If there 
have been too many withdrawals, a charge is applied. Again, note how the method invokes the 
superclass method:

public void withdraw(double amount)
{
   final int FREE_WITHDRAWALS = 3;
   final int WITHDRAWAL_FEE = 1;

   super.withdraw(amount); 
   withdrawals++;
   if (withdrawals > FREE_WITHDRAWALS)
   {
      super.withdraw(WITHDRAWAL_FEE); 
   }
}

End of month processing for a checking account simply resets the withdrawal count.

public void monthEnd()
{
   withdrawals = 0;
}

step 8  Construct objects of different subclasses and process them.

In our sample program, we allocate 5 checking accounts and 5 savings accounts and store their 
addresses in an array of bank accounts. Then we accept user commands and execute deposits, 
withdrawals, and monthly processing.

BankAccount[] accounts = . . .; 
. . .
Scanner in = new Scanner(System.in);
boolean done = false;
while (!done)
{
   System.out.print("D)eposit  W)ithdraw  M)onth end  Q)uit: "); 
   String input = in.next();
   if (input.equals("D") || input.equals("W")) // Deposit or withdrawal
   {



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

9.5 object: the Cosmic superclass  441

      System.out.print("Enter account number and amount: ");
      int num = in.nextInt();
      double amount = in.nextDouble();

      if (input.equals("D")) { accounts[num].deposit(amount); }
      else { accounts[num].withdraw(amount); }

      System.out.println("Balance: " + accounts[num].getBalance());
   }
   else if (input.equals("M")) // Month end processing
   {
      for (int n = 0; n < accounts.length; n++)
      {
         accounts[n].monthEnd();
         System.out.println(n + " " + accounts[n].getBalance());
      }
   }
   else if (input == "Q")
   {
      done = true;
   }
}

9.5 Object: the Cosmic superclass
In Java, every class that is declared without an explicit extends clause automatically 
extends the class Object. That is, the class Object is the direct or indirect superclass of 
every class in Java (see Figure 8). The Object class defines several very general meth-
ods, including

• toString, which yields a string describing the object (Section 9.5.1).
• equals, which compares objects with each other (Section 9.5.2).
• hashCode, which yields a numerical code for storing the object in a set (see Special 

Topic 15.1).

O n l I n e  e x a m p l e

the complete 
program with 
BankAccount, 
SavingsAccount, and 
CheckingAccount 
classes.

Worked exaMple 9.1 Implementing an employee 
hierarchy for payroll processing

This Worked Example shows how to implement payroll 
processing that works for different kinds of employees.

VIdeo exaMple 9.1 building a discussion board

In this Video Example, we will build a discussion 
board for students and instructors.



442 Chapter 9  Inheritance and Interfaces

9.5.1 

figure 8  the Object Class Is the superclass of every Java Class

Object

Question

ChoiceQuestion NumericQuestion

RectangleString Scanner

overriding the toString Method 

The toString method returns a string representation for each object. It is often used 
for debugging. For example, consider the Rectangle class in the standard Java library. 
Its toString method shows the state of a rectangle:

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
   // Sets s to "java.awt.Rectangle[x=5,y=10,width=20,height=30]"

The toString method is called automatically whenever you concatenate a string with 
an object. Here is an example:

"box=" + box;

On one side of the + concatenation operator is a string, but on the other side is an 
object reference. The Java compiler automatically invokes the toString method to 
turn the object into a string. Then both strings are concatenated. In this case, the 
result is the string 

"box=java.awt.Rectangle[x=5,y=10,width=20,height=30]"

The compiler can invoke the toString method, because it knows that every object has 
a toString method: Every class extends the Object class, and that class declares toString.

As you know, numbers are also converted to strings when they are concatenated 
with other strings. For example, 

int age = 18;
String s = "Harry's age is " + age;
   // Sets s to "Harry's age is 18"

In this case, the toString method is not involved. Numbers are not objects, and there is 
no toString method for them. Fortunately, there is only a small set of primitive types, 
and the compiler knows how to convert them to strings. 



9.5 object: the Cosmic superclass  443

Let’s try the toString method for the BankAccount class: 
BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString(); // Sets s to something like "BankAccount@d24606bf"

That’s disappointing—all that’s printed is the name of the class, followed by the hash
code, a seemingly random code. The hash code can be used to tell objects apart—dif-
ferent objects are likely to have differ ent hash codes. (See Special Topic 15.1 for the 
details.)

We don’t care about the hash code. We want to know what is inside the object. 
But, of course, the toString method of the Object class does not know what is inside 
the BankAccount class. Therefore, we have to override the method and supply our own 
version in the BankAccount class. We’ll follow the same format that the toString method 
of the Rectangle class uses: first print the name of the class, and then the values of the 
instance variables inside brackets. 

public class BankAccount
{ 
   . . .
   public String toString()
   { 
      return "BankAccount[balance=" + balance + "]";
   }
}

This works better: 
BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString(); // Sets s to "BankAccount[balance=5000]"

9.5.2 the equals Method

In addition to the toString method, the Object class also provides an equals method, 
whose purpose is to check whether two objects have the same contents: 

if (stamp1.equals(stamp2)) . . .    // Contents are the same—see Figure 9 

This is different from the test with the == operator, which tests whether two refer-
ences are identical, referring to the same object: 

if (stamp1 == stamp2) . . .    // Objects are the same—see Figure 10 

override the 
toString method to 
yield a string that 
describes the  
object’s state.

the equals method 
checks whether two 
objects have the 
same contents.

figure 9  two references to equal objects

stamp1 =

color =

Stamp

value = 7

olive

stamp2 =

color =

Stamp

value = 20

fuchsia

figure 10  two references to the same object

stamp1 =

color =

Stamp

value = 7

olive
stamp2 =



444 Chapter 9  Inheritance and Interfaces

Let’s implement the equals method for a Stamp class. 
You need to override the equals method of the 
Object class: 

public class Stamp
{ 
   private String color;
   private int value;
   . . .
   public boolean equals(Object otherObject)
   { 
      . . .
   }
   . . .
}

Now you have a slight problem. The Object class knows nothing about stamps, so 
it declares the other Object parameter variable of the equals method to have the type 
Object. When overriding the method, you are not allowed to change the type of the 
parameter variable. Cast the parameter variable to the class Stamp: 

Stamp other = (Stamp) otherObject;

Then you can compare the two stamps:
public boolean equals(Object otherObject)
{ 
   Stamp other = (Stamp) otherObject;
   return color.equals(other.color) 
         && value == other.value; 
}

Note that this equals method can access the instance variables of any Stamp object: the 
access other.color is perfectly legal.

9.5.3 the instanceof operator

 As you have seen, it is legal to store a subclass reference in a superclass variable:
ChoiceQuestion cq = new ChoiceQuestion();
Question q = cq; // OK
Object obj = cq; // OK

Very occasionally, you need to carry out the opposite conversion, from a superclass 
reference to a sub class reference. 

For example, you may have a variable of type Object, and you happen to know that 
it actually holds a Question reference. In that case, you can use a cast to convert the 
type:

Question q = (Question) obj;

However, this cast is somewhat dangerous. If you are wrong, and obj actually refers 
to an object of an unrelated type, then a “class cast” exception is thrown. 

To protect against bad casts, you can use the instanceof operator. It tests whether 
an object belongs to a particular type. For example, 

obj instanceof Question 

returns true if the type of obj is convertible to Question. This happens if obj refers to an 
actual Question or to a subclass such as ChoiceQuestion. 

The equals method checks whether 
two objects have the same contents.

If you know that an 
object belongs to  
a given class, use  
a cast to convert  
the type.

the instanceof 
operator tests 
whether an object 
belongs to a 
particular type.



9.5 object: the Cosmic superclass  445

syntax 9.3 the instanceof operator

if (anObject instanceof Question)
{
   Question q = (Question) anObject;
   . . .
}

If anObject is null, 
instanceof returns false.

Returns true if anObject 
can be cast to a Question.

Two references 
to the same object.

You can invoke Question
methods on this variable.

The object may belong to a 
subclass of Question.

object instanceof TypeNameSyntax

Using the instanceof operator, a safe cast can be programmed as follows: 
if (obj instanceof Question)
{
   Question q = (Question) obj;
}

Note that instanceof is not a method. It is an operator, just like + or <. However, it does 
not operate on numbers. To the left is an object, and to the right a type name. 

Do not use the instanceof operator to bypass polymorphism: 
if (q instanceof ChoiceQuestion) // Don’t do this—see Common Error 9.5 on page 446
{
   // Do the task the ChoiceQuestion way
}
else if (q instanceof Question)
{
   // Do the task the Question way
}

In this case, you should implement a method doTheTask in the Question class, override it 
in ChoiceQuestion, and call

q.doTheTask(); 

21.  Why does the call
System.out.println(System.out);

produce a result such as java.io.PrintStream@7a84e4?
22.  Will the following code fragment compile? Will it run? If not, what error is 

reported?
Object obj = "Hello";
System.out.println(obj.length());

O n l I n e  e x a m p l e

a program that 
demonstrates the 
toString method and 
the instanceof 
operator.

s e l f   c h e c k



446 Chapter 9  Inheritance and Interfaces

23.  Will the following code fragment compile? Will it run? If not, what error is 
reported?
Object obj = "Who was the inventor of Java?";
Question q = (Question) obj;
q.display();

24.  Why don’t we simply store all objects in variables of type Object? 
25.  Assuming that x is an object reference, what is the value of x instanceof Object? 

practice It  Now you can try these exercises at the end of the chapter: P9.7, P9.8, P9.12.

don’t use type tests

Some programmers use specific type tests in order to implement behavior that varies with each 
class:

if (q instanceof ChoiceQuestion) // Don’t do this
{
   // Do the task the ChoiceQuestion way
}
else if (q instanceof Question)
{
   // Do the task the Question way
}

This is a poor strategy. If a new class such as NumericQuestion is added, then you need to revise 
all parts of your pro gram that make a type test, adding another case:

else if (q instanceof NumericQuestion)
{
   // Do the task the NumericQuestion way
}

In contrast, consider the addition of a class NumericQuestion to our quiz program. Nothing 
needs to change in that program because it uses polymorphism, not type tests. 

Whenever you find yourself trying to use type tests in a hierarchy of classes, reconsider 
and use polymorphism instead. Declare a method doTheTask in the superclass, override it in the 
subclasses, and call

q.doTheTask();

Inheritance and the toString method

You just saw how to write a toString method: Form a string consisting of the class name and 
the names and values of the instance variables. However, if you want your toString method to 
be usable by subclasses of your class, you need to work a bit harder. Instead of hardcoding the 
class name, call the getClass method (which every class inherits from the Object class) to obtain 
an object that describes a class and its properties. Then invoke the getName method to get the 
name of the class:

public String toString()
{ 
   return getClass().getName() + "[balance=" + balance + "]";
}

Then the toString method prints the correct class name when you apply it to a subclass, say a 
SavingsAccount. 

Common error 9.5 

special topic 9.6 



9.5 object: the Cosmic superclass  447

SavingsAccount momsSavings = . . . ;
System.out.println(momsSavings);
// Prints "SavingsAccount[balance=10000]"

Of course, in the subclass, you should override toString and add the values of the subclass 
instance variables. Note that you must call super.toString to get the instance variables of the 
superclass—the subclass can’t access them directly. 

public class SavingsAccount extends BankAccount
{
   . . .
   public String toString()
   { 
      return super.toString() + "[interestRate=" + interestRate + "]";
   }
}

Now a savings account is converted to a string such as SavingsAccount[balance= 10000][interest
Rate=5]. The brackets show which variables belong to the superclass.

Inheritance and the equals method

You just saw how to write an equals method: Cast the otherObject parameter variable to the 
type of your class, and then compare the instance variables of the implicit parameter and the 
explicit parameter.

But what if someone called stamp1.equals(x) where x wasn’t a Stamp object? Then the bad 
cast would generate an exception. It is a good idea to test whether otherObject really is an 
instance of the Stamp class. The easiest test would be with the instanceof operator. However, 
that test is not specific enough. It would be possible for otherObject to belong to some subclass 
of Stamp. To rule out that possibility, you should test whether the two objects belong to the 
same class. If not, return false.

if (getClass() != otherObject.getClass()) { return false; }

Moreover, the Java language specification demands that the equals method return false when 
otherObject is null.

Here is an improved version of the equals method that takes these two points into account:

public boolean equals(Object otherObject)
{
   if (otherObject == null) { return false; }
   if (getClass() != otherObject.getClass()) { return false; }
   Stamp other = (Stamp) otherObject;
   return color.equals(other.color) && value == other.value;
}

When you implement equals in a subclass, you should first call equals in the superclass to 
check whether the superclass instance variables match. Here is an example:

public CollectibleStamp extends Stamp
{
   private int year;
   . . .
   public boolean equals(Object otherObject)
   {
      if (!super.equals(otherObject)) { return false; }
      CollectibleStamp other = (CollectibleStamp) otherObject;
      return year == other.year;
   }
}

special topic 9.7 



448 Chapter 9  Inheritance and Interfaces

9.6 Interface types
It is often possible to design a general and reusable mechanism for processing objects 
by focus ing on the essential operations that an algorithm needs. You use interface 
types to express these operations.

9.6.1 defining an Interface

Consider the following method that computes the average balance in an array of 
BankAccount objects:

public static double average(BankAccount[] objects)
{
   if (objects.length == 0) { return 0; }
   double sum = 0;
   for (BankAccount obj : objects)
   {
      sum = sum + obj.getBalance();
   }
   return sum / objects.length;
}

Now suppose you have an array of Country objects and want to determine the average 
of the areas: 

public static double average(Country[] objects)
{
   if (objects.length == 0) { return 0; }
   double sum = 0;
   for (Country obj : objects)
   {
      sum = sum + obj.getArea();
   }
   return sum / objects.length;
}

Clearly, the algorithm for computing the result is the same in both cases, but the 
details of measurement differ. How can we write a single method that computes the 
averages of both bank accounts and countries?

This standmixer provides the “rotation”  
service to any attachment that  
conforms to a common interface.  
Similarly, the average method at the 
end of this section works with any class  
that implements a common interface.



9.6 Interface types  449

syntax 9.4 Interface types

public interface Measurable
{
   double getMeasure();
}

public class BankAccount implements Measurable
{
   . . .

   public double getMeasure()
   {
      return balance;
   }
}

Other 
BankAccount 

methods.

Interface methods 
are always public.

A class can implement one 
or more interface types.

Interface methods 
have no implementation.

Implementation for the method that 
was declared in the interface type.

Declaring:      public interface InterfaceName 
                {  
                   method declarations
                }

Implementing:  public class ClassName implements InterfaceName, InterfaceName, . . .
                {  
                   instance variables
                   methods 
                }

Syntax

Suppose that the classes agree on a single method getMeasure that obtains the mea-
sure to be used in the data analysis. For bank accounts, getMeasure returns the balance. 
For countries, getMeasure returns the area. Other classes can participate too, provided 
that their getMeasure method returns an appropriate value. 

Then we can implement a single method that computes
sum = sum + obj.getMeasure();

What is the type of the variable obj? Any class that has a getMeasure method. 
In Java, an interfacetype is used to specify required operations. We will declare an 

interface type that we call Measurable: 
public interface Measurable
{
   double getMeasure();
}

The interface declaration lists all methods that the interface type requires. The Mea
surable interface type requires a single method, but in general, an interface type can 
require multiple methods. (Note that the Measurable type is not a type in the standard 
library—it is a type that was created specifically for this book.)

An interface type is similar to a class, but there are several important differences: 

• All methods in an interface type are abstract; that is, they have a name, parameter 
variables, and a return type, but they don’t have an implementation. 

• All methods in an interface type are automatically public.
• An interface type cannot have instance variables.
• An interface type cannot have static methods.

a Java interface type 
contains the return 
types, names, and 
parameter variables 
of a set of methods.

Unlike a class, an 
interface type 
provides no 
implementation.



450 Chapter 9  Inheritance and Interfaces

We can use the interface type Measurable to implement a “universal” method for com-
puting averages:

public static double average(Measurable[] objects)
{
   if (objects.length == 0) { return 0; }
   double sum = 0;
   for (Measurable obj : objects)
   {
      sum = sum + obj.getMeasure();
   }
   return sum / objects.length;
}

9.6.2 Implementing an Interface

The average method is usable for objects of any class that implements the Measurable 
interface. A class implements an interface type if it declares the interface in an imple
ments clause, and if it implements the method or methods that the interface requires. 
Let’s modify the BankAccount class to implement the Measur able interface. 

public class BankAccount implements Measurable 
{ 
   public double getMeasure()
   {
      return balance;
   }
   . . .
}

Note that the class must declare the method as public, whereas the interface type need 
not—all methods in an interface type are public. 

Similarly, it is an easy matter to implement a Country class that implements the 
Measurable interface.

public class Country implements Measurable 
{ 
   public double getMeasure()
   {
      return area;
   }
   . . .
}

By using an interface 
type for a parameter 
variable, a method 
can accept objects 
from many classes.

the implements 
reserved word 
indicates which 
interfaces a class 
implements.

figure 11   
Classes that Implement  
the Measurable Interface

BankAccount Country

‹‹interface››
Measurable

The average method 
accepts any Measurable objects.



9.6 Interface types  451

A reference to a BankAccount or Country can be converted to a Measurable reference. The 
sample program at the end of this section shows how the same average method can 
compute the average of a collection of bank accounts or countries.

In summary, the Measurable interface expresses what all measurable objects have in 
common. This com monality makes it possible to write methods such as average that 
are usable for many classes. 

Figure 11 shows a diagram of the classes and interfaces in this program. A dotted 
arrow with a triangu lar tip denotes the “implements” relationship.

section_6/measurabledemo.java

1 /**
2    This program demonstrates the measurable BankAccount and Country classes.
3 */
4 public class MeasurableDemo
5 {
6    public static void main(String[] args)
7    {
8       Measurable[] accounts = new Measurable[3];
9       accounts[0] = new BankAccount(0);

10       accounts[1] = new BankAccount(10000);
11       accounts[2] = new BankAccount(2000);
12 
13       System.out.println("Average balance: " 
14          + average(accounts));
15 
16       Measurable[] countries = new Measurable[3];
17       countries[0] = new Country("Uruguay", 176220);
18       countries[1] = new Country("Thailand", 514000);
19       countries[2] = new Country("Belgium", 30510);
20 
21       System.out.println("Average area: " 
22          + average(countries));
23    }
24 
25    /**
26       Computes the average of the measures of the given objects.
27       @param objects an array of Measurable objects
28       @return the average of the measures
29    */
30    public static double average(Measurable[] objects)
31    {
32       if (objects.length == 0) { return 0; }
33       double sum = 0;
34       for (Measurable obj : objects)
35       {
36          sum = sum + obj.getMeasure();
37       }
38       return sum / objects.length;
39    }
40 }

program run

Average balance: 4000.0
Average area: 240243.33333333334



452  Chapter 9   Inheritance and Interfaces

9.6.3  The Comparable Interface

In the preceding sections, we defined the Measurable interface and provided an average 
method that works with any classes implementing that interface. In this section, you 
will learn about the Comparable interface of the standard Java library.

The Measurable interface is used for measuring a single object. The Comparable inter-
face is more complex because comparisons involve two objects. The interface declares 
a compareTo method. The call 

a.compareTo(b) 

must return a negative number if a should come before b, zero if a and b are the same, 
and a positive num ber otherwise.

The Comparable interface has a single method:
public interface Comparable
{
   int compareTo(Object otherObject);
}

For example, the BankAccount class can implement Comparable like this:
public class BankAccount implements Comparable
{
   . . .
   public int compareTo(Object otherObject)
   {
      BankAccount other = (BankAccount) otherObject;
      if (balance < other.balance) { return -1; }
      if (balance > other.balance) { return 1; }
      return 0;
   }
   . . .
}

This compareTo method compares bank accounts by their balance. Note that the 
compareTo method has a parameter variable of type Object. To turn it into a BankAccount 
reference, we use a cast:

BankAccount other = (BankAccount) otherObject;

Once the BankAccount class implements the Comparable interface, you can sort an array 
of bank accounts with the Arrays.sort method:

BankAccount[] accounts = new BankAccount[3];
accounts[0] = new BankAccount(10000);
accounts[1] = new BankAccount(0);
accounts[2] = new BankAccount(2000);
Arrays.sort(accounts);

The compareTo method checks whether 
another object is larger or smaller.

Implement the 
Comparable interface 
so that objects of 
your class can be 
compared, for 
example, in a sort 
method.



9.6  Interface Types   453

The accounts array is now sorted by increasing balance.

26.	 Suppose you want to use the average method to find the average salary of Employee 
objects. What con dition must the Employee class fulfill?

27.	 Why can’t the average method have a parameter variable of type Object[]? 
28.	 Why can’t you use the average method to find the average length of String 

objects? 
29.	 What is wrong with this code?

Measurable meas = new Measurable();
System.out.println(meas.getMeasure());

30.	 How can you sort an array of Country objects by increasing area?
31.	 Can you use the Arrays.sort method to sort an array of String objects? Check the 

API documentation for the String class.

Practice	It	 Now you can try these exercises at the end of the chapter: R9.14, P9.15, P9.16.

Forgetting	to	Declare	Implementing	Methods	as	Public

The methods in an interface are not declared as public, because they are public by default. 
However, the methods in a class are not public by default. It is a common error to forget the 
public reserved word when declaring a method from an interface:

public class BankAccount implements Measurable 
{ 
   double getMeasure() // Oops—should be public 
   {
      return balance;
   }
   . . .
}

Then the compiler complains that the method has a weaker access level, namely package access 
instead of public access (see Section 12.4). The remedy is to declare the method as public.

Constants	in	Interfaces

Interfaces cannot have instance variables, but it is legal to specify constants. 
When declaring a constant in an interface, you can (and should) omit the reserved words 

public static final, because all variables in an interface are automatically public static final. 
For example, 

public interface Measurable
{ 
   double OUNCES_PER_LITER = 33.814;
   . . .
}

To use this constant in your programs, add the interface name: 

Measurable.OUNCES_PER_LITER

S e l F 	 C h e C k

Common Error 9.6 

Special Topic 9.8 



454 Chapter 9  Inheritance and Interfaces

function Objects

In the preceding section, you saw how the Measurable interface type makes it possible to pro-
vide services that work for many classes—provided they are willing to implement the interface 
type. But what can you do if a class does not do so? For example, we might want to compute 
the average length of a collection of strings, but String does not implement Measurable.

Let’s rethink our approach. The average method needs to measure each object. When the 
objects are required to be of type Measurable, the responsibility for measuring lies with the 
objects themselves, which is the cause of the limita tion that we noted. It would be better if 
another object could carry out the measurement. Let’s move the measure ment method into a 
different interface:

public interface Measurer
{
   double measure(Object anObject);
}

The measure method measures an object and returns its measurement. We use a parameter vari-
able of type Object, the “lowest common denominator” of all classes in Java, because we do not 
want to restrict which classes can be measured. 

We add a parameter variable of type Measurer to the average method:

public static double average(Object[] objects, Measurer meas)
{
   if (objects.length == 0) { return 0; }
   double sum = 0;
   for (Object obj : objects)
   {
      sum = sum + meas.measure(obj);
   }
   return sum / objects.length;
}

When calling the method, you need to supply a Measurer object. That is, you need to imple-
ment a class with a measure method, and then create an object of that class. Let’s do that for 
measuring strings:

public class StringMeasurer implements Measurer
{
   public double measure(Object obj)
   {
      String str = (String) obj; // Cast obj to String type
      return str.length();
   }
}

Note that the measure method must accept an argument of type Object, even though this partic-
ular measurer just wants to measure strings. The parameter variable must have the same type 
as in the Measurer interface. Therefore, the Object parameter variable is cast to the String type.

Finally, we are ready to compute the average length of an array of strings:

String[] words = { "Mary", "had", "a", "little", "lamb" };
Measurer lengthMeasurer = new StringMeasurer();
double result = average(words, lengthMeasurer); // result is set to 3.6

An object such as lengthMeasurer is called a function object. The sole purpose of the object is to 
execute a single method, in our case measure. (In mathematics, as well as many other program-
ming languages, the term “function” is used where Java uses “method”.) 

The Comparator interface, discussed in Special Topic 14.5, is another example of an interface 
for function objects.

special topic 9.9 

O n l I n e  e x a m p l e

a complete program 
that demonstrates 
the string measurer.



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter summary 455

explain the notions of inheritance, superclass, and subclass.

• A subclass inherits data and behavior from a 
superclass.

• You can always use a subclass object in place 
of a superclass object.

Implement subclasses in java.

• A subclass inherits all methods that it does not override.
• A subclass can override a superclass method by 

providing a new imple mentation.
• The extends reserved word indicates that a class 

inherits from a superclass.

Implement methods that override methods from a superclass. 

• An overriding method can extend or replace the functionality of the superclass 
method.

• Use the reserved word super to call a superclass method.
• Unless specified otherwise, the subclass constructor calls the superclass con-

structor with no arguments.
• To call a superclass constructor, use the super reserved word in the first statement 

of the subclass constructor.
• The constructor of a subclass can pass arguments to a superclass constructor, 

using the reserved word super.

use polymorphism for processing objects of related types.

• A subclass reference can be used when a superclass reference is expected.
• Polymorphism (“having multiple shapes”) allows us to manipulate objects 

that share a set of tasks, even though the tasks are executed in different ways.
• An abstract method is a method whose implemen tation is not specified.
• An abstract class is a class that cannot be instantiated.

use the toString method and instanceof operator with objects.

• Override the toString method to yield a string that describes the object’s state.
• The equals method checks whether two objects have the same contents.

VIdeo exaMple 9.2 drawing geometric shapes

In this Video Example, you will see how to use inheritance to 
describe and draw different geometric shapes.

C h a p t e r  s U M M a r Y

Vehicle

Motorcycle Car Truck



456 Chapter 9  Inheritance and Interfaces

• If you know that an object belongs to a given class, use a cast to convert the type.
• The instanceof operator tests whether an object belongs to a particular type.

use interface types for algorithms that process objects of different classes.

• A Java interface type contains the return types, names, and parameter variables of 
a set of methods.

• Unlike a class, an interface type provides no implementation.
• By using an interface type for a parameter variable, a method can accept objects 

from many classes.
• The implements reserved word indicates which interfaces a class implements.
• Implement the Comparable interface so that objects of your class can be compared, 

for example, in a sort method. 

• r9.1  Identify the superclass and subclass in each of the following pairs of classes.
a. Employee, Manager
b. GraduateStudent, Student
c. Person, Student
d. Employee, Professor
e. BankAccount, CheckingAccount
f.  Vehicle, Car
g. Vehicle, Minivan
h. Car, Minivan
i.  Truck, Vehicle

• r9.2  Consider a program for managing inventory in a small appliance store. Why isn’t it 
useful to have a superclass SmallAppliance and subclasses Toaster, CarVacuum, Travel  Iron, 
and so on?

• r9.3  Which methods does the ChoiceQuestion class inherit from its superclass? Which 
methods does it override? Which methods does it add?

• r9.4  Which methods does the SavingsAccount class in How To 9.1 inherit from its super-
class? Which methods does it override? Which methods does it add?

• r9.5  List the instance variables of a CheckingAccount object from How To 9.1.

•• r9.6  Suppose the class Sub extends the class Sandwich. Which of the following assignments 
are legal? 

Sandwich x = new Sandwich();
Sub y = new Sub();

a. x = y;
b. y = x;
c. y = new Sandwich();
d. x = new Sub();

r e V I e W  e x e r C I s e s



review exercises 457

• r9.7  Draw an inheritance diagram that shows the inheritance relationships between these 
classes.

• Person 
• Employee 
• Student 
• Instructor 
• Classroom 
• Object 

• r9.8  In an object-oriented traffic simulation system, we have the classes listed below. 
Draw an inheritance diagram that shows the relationships between these classes. 

• Vehicle 
• Car 
• Truck 
• Sedan 
• Coupe 
• PickupTruck 

• SportUtilityVehicle 
• Minivan 
• Bicycle 
• Motorcycle

• r9.9  What inheritance relationships would you establish among the following classes? 
• Student 
• Professor 
• TeachingAssistant 
• Employee 
• Secretary 
• DepartmentChair 
• Janitor 

• SeminarSpeaker 
• Person 
• Course 
• Seminar 
• Lecture 
• ComputerLab 

•• r9.10  How does a cast such as (BankAccount) x differ from a cast of number values such as 
(int) x? 

••• r9.11  Which of these conditions returns true? Check the Java documentation for the 
inheritance patterns. Recall that System.out is an object of the PrintStream class.

a. System.out instanceof PrintStream
b. System.out instanceof OutputStream
c. System.out instanceof LogStream
d. System.out instanceof Object
e. System.out instanceof Closeable
f.  System.out instanceof Writer

•• r9.12  Suppose C is a class that implements the interfaces I and J. Which of the following 
assignments require a cast?

C c = . . .;
I i = . . .;
J j = . . .;

a. c = i; 
b. j = c; 
c. i = j; 

•• r9.13  Suppose C is a class that implements the interfaces I and J, and i is declared as

I i = new C();



458 Chapter 9  Inheritance and Interfaces

Which of the following statements will throw an exception?
a. C c = (C) i; 
b. J j = (J) i; 
c. i = (I) null; 

•• r9.14  Suppose the class Sandwich implements the Edible interface, and you are given the 
variable declarations

Sandwich sub = new Sandwich();
Rectangle cerealBox = new Rectangle(5, 10, 20, 30);
Edible e = null;

Which of the following assignment statements are legal? 
a. e = sub; 
b. sub = e; 
c. sub = (Sandwich) e;
d. sub = (Sandwich) cerealBox; 
e. e = cerealBox; 
f.  e = (Edible) cerealBox; 
g. e = (Rectangle) cerealBox; 
h. e = (Rectangle) null; 

•• p9.1  Add a class NumericQuestion to the question hierarchy of Section 9.1. If the response 
and the expected answer differ by no more than 0.01, then accept the response as 
correct.

•• p9.2  Add a class FillInQuestion to the question hierarchy of Section 9.1. Such a question is 
constructed with a string that contains the answer, surrounded by _ _, for exam ple, 
"The inventor of Java was _James Gosling_". The question should be displayed as

The inventor of Java was _____

• p9.3  Modify the checkAnswer method of the Question class so that it does not take into 
account different spaces or upper/lowercase characters. For example, the response 
"JAMES gosling" should match an answer of "James Gosling".

•• p9.4  Add a class AnyCorrectChoiceQuestion to the question hierarchy of Section 9.1 that 
allows multiple correct choices. The respondent should provide any one of the cor-
rect choices. The answer string should contain all of the correct choices, separated by 
spaces. Provide instructions in the question text.

•• p9.5  Add a class MultiChoiceQuestion to the question hierarchy of Section 9.1 that allows 
multiple correct choices. The respondent should provide all correct choices, sepa-
rated by spaces. Provide instructions in the question text.

•• p9.6  Add a method addText to the Question superclass and provide a different implementa-
tion of ChoiceQuestion that calls addText rather than storing an array list of choices. 

• p9.7  Provide toString methods for the Question and ChoiceQuestion classes.

p r o G r a M M I n G  e x e r C I s e s



programming exercises 459

•• p9.8  Implement a superclass Person. Make two classes, Student and Instructor, that inherit 
from Person. A person has a name and a year of birth. A student has a major, and 
an instructor has a salary. Write the class declarations, the constructors, and the 
methods toString for all classes. Supply a test program that tests these classes and 
methods. 

•• p9.9  Make a class Employee with a name and salary. Make a class Manager inherit from 
Employee. Add an instance variable, named department, of type String. Supply a method 
toString that prints the manager’s name, department, and salary. Make a class Execu
tive inherit from Manager. Supply appropriate toString methods for all classes. Supply 
a test program that tests these classes and methods. 

•• p9.10  The Rectangle class of the standard Java library does not supply a method to com-
pute the area or the perimeter of a rectangle. Provide a subclass BetterRectangle of the 
Rectangle class that has getPerimeter and getArea methods. Do not add any instance 
variables. In the constructor, call the setLocation and setSize methods of the Rectangle 
class. Provide a program that tests the methods that you supplied.

••• p9.11  Repeat Exercise P9.10, but in the BetterRectangle constructor, invoke the superclass 
constructor.

•• p9.12  A labeled point has x- and y-coordinates and a string label. Provide a class Labeled
Point with a constructor LabeledPoint(int x, int y, String label) and a toString 
method that displays x, y, and the label.

•• p9.13  Reimplement the LabeledPoint class of Exercise P9.12 by storing the location in a 
java.awt.Point object. Your toString method should invoke the toString method of 
the Point class.

•• p9.14  Modify the SodaCan class of Exercise P8.5 to implement the Measurable interface. The 
measure of a soda can should be its surface area. Write a program that computes the 
average surface area of an array of soda cans.

•• p9.15  A person has a name and a height in centimeters. Use the average method in Section 
9.6 to process a collection of Person objects. 

••• p9.16  Write a method 
public static Measurable maximum(Measurable[] objects)

that returns the object with the largest measure. Use that method to determine the 
country with the larg est area from an array of countries.

••• p9.17  Declare an interface Filter as follows: 
public interface Filter
{
   boolean accept(Object x);
}

Write a method 
public static ArrayList<Object> collectAll(ArrayList<Object> objects, Filter f)

that returns all objects in the objects array that are accepted by the given filter.
Provide a class ShortWordFilter whose filter method accepts all strings of length < 5. 
Then write a program that reads all words from System.in, puts them into an Array
List<Object>, calls collec tAll, and prints a list of the short words.



460 Chapter 9  Inheritance and Interfaces

••• p9.18  The System.out.printf method has predefined formats for printing integers, floating-
point numbers, and other data types. But it is also extensible. If you use the S for mat, 
you can print any class that implements the Formattable interface. That interface has a 
single method:

void formatTo(Formatter formatter, int flags, int width, int precision)

In this exercise, you should make the BankAccount class implement the Formattable 
interface. Ignore the flags and precision and simply format the bank balance, using 
the given width. In order to achieve this task, you need to get an Appendable reference 
like this:

Appendable a = formatter.out();

Appendable is another interface with a method 
void append(CharSequence sequence)

CharSequence is yet another interface that is implemented by (among others) the String 
class. Construct a string by first converting the bank balance into a string and then 
padding it with spaces so that it has the desired width. Pass that string to the append 
method. 

••• p9.19  Enhance the formatTo method of Exercise P9.18 by taking into account the precision. 

•• business p9.20  Change the CheckingAccount class in How To 9.1 so that a $1 fee is levied for deposits 
or withdrawals in excess of three free monthly transactions. Place the code for 
com puting the fee into a separate method that you call from the deposit and withdraw 
methods.

•• business p9.21  Implement a superclass Appointment and subclasses 
Onetime, Daily, and Monthly. An appointment has a 
description (for example, “see the dentist”) and a 
date. Write a method occursOn(int year, int month, 
int day) that checks whether the appointment 
occurs on that date. For example, for a monthly 
appointment, you must check whether the day of 
the month matches. Then fill an array of Appoint
ment objects with a mixture of appointments. 
Have the user enter a date and print out all appointments that occur on that date.

•• business p9.22  Improve the appointment book program of Exercise P9.21. Give the user the option 
to add new appointments. The user must specify the type of the appointment, the 
description, and the date.

••• business p9.23  Improve the appointment book program of Exercises P9.21 and P9.22 by letting the 
user save the appointment data to a file and reload the data from a file. The saving 
part is straightforward: Make a method save. Save the type, description, and date to 
a file. The loading part is not so easy. First determine the type of the appointment to 
be loaded, create an object of that type, and then call a load method to load the data.

••• science p9.24  In this problem, you will model a circuit consisting of an arbitrary configuration of 
resistors. Provide a superclass Circuit with a instance method getResistance. Pro-
vide a subclass Resistor representing a single resistor. Provide subclasses Serial and 
Parallel, each of which contains an ArrayList<Circuit>. A Serial circuit mod els a 
series of circuits, each of which can be a single resistor or another circuit. Simi larly, a 



programming exercises 461

Parallel circuit models a set of circuits in parallel. For example, the following circuit 
is a Parallel circuit containing a single resistor and one Serial cir cuit:

A Serial circuit

Use Ohm’s law to compute the combined resistance. 

•• science p9.25  Part (a) of the figure below shows a symbolic representation of an electric circuit 
called an amplifier. The input to the amplifier is the voltage vi and the output is the 
voltage vo. The output of an amplifier is proportional to the input. The constant of 
proportionality is called the “gain” of the amplifier. 
Parts (b), (c), and (d) show schematics of three specific types of amplifier: the 
inverting amplifier, noninverting amplifier, and voltage divider amplifier. Each of 
these three amplifiers consists of two resistors and an op amp. The value of the gain 
of each amplifier depends on the values of its resistances. In particular, the gain, g, of 

the inverting amplifier is given by g
R
R

= − 2

1
. Similarly the gains of the noninverting 

amplifier and voltage divider amplifier are given by g
R
R

= +1 2

1
 and g

R
R R

=
+

2

1 2
, 

respectively.

–

+

–

+

–

+

R2

R1

R1

vi R2

R1 R2

vo

vovi

vi
vo

vovi

(a) Amplifier (b) Inverting amplifier

(c) Noninverting amplifier (d) Voltage divider amplifier

Write a Java program that represents the amplifier as a superclass and represents 
the inverting, noninverting, and voltage divider amplifiers as subclasses. Give the 
subclass two methods, getGain and a getDescription method that returns a string 
identifying the amplifier. Each subclass should have a constructor with two argu-
ments, the resistances of the amplifier. 



462 Chapter 9  Inheritance and Interfaces

The subclasses need to override the getGain and getDescription methods of the 
superclass.
Supply a class that demonstrates that the subclasses all work properly for sample val-
ues of the resistances.

•• science p9.26  Resonant circuits are used to select a signal (e.g., a radio station or TV channel)  
from among other competing signals. Resonant circuits are characterized by the 
frequency response shown in the figure below. The resonant frequency response 
is completely described by three parameters: the resonant frequency, ωo, the band-
width, B, and the gain at the resonant frequency, k.

Frequency (rad/s, log scale)

k

ωo

B0.707k

Two simple resonant circuits are shown in the figure below. The circuit in (a) is 
called a parallel resonant circuit. The circuit in (b) is called a series resonant circuit. 
Both resonant circuits consist of a resistor having resistance R, a capacitor having 
capacitance C, and an inductor having inductance L. 

R L C C

L

R

(a) Parallel resonant circuit (b) Series resonant circuit

These circuits are designed by determining values of R, C, and L that cause the 
resonant frequency response to be described by specified values of ωo, B, and k. The 
design equations for the parallel resonant circuit are:

R k C
BR

L
C

= = =, , and
o

1 1
2ω

Similarly, the design equations for the series resonant circuit are:

R
k

L
R
B

C
L

= = =1 1
2

, , and
oω

Write a Java program that represents ResonantCircuit as a superclass and represents 
the SeriesResonantCircuit and ParallelResonantCircuit as subclasses. Give the super-
class three private instance variables representing the parameters ωo, B, and k of the 
resonant frequency response. The superclass should provide public instance 



answers to self-Check Questions 463

methods to get and set each of these variables. The superclass should also provide a 
display method that prints a description of the resonant frequency response.
Each subclass should provide a method that designs the corresponding resonant 
circuit. The subclasses should also override the display method of the superclass to 
print descriptions of both the frequency response (the values of ωo, B, and k) and the 
circuit (the values of R, C, and L). 
All classes should provide appropriate constructors. 
Supply a class that demonstrates that the subclasses all work properly.

a n s W e r s  t o  s e l f - C h e C k  Q U e s t I o n s

1.  Because every manager is an employee but not 
the other way around, the Manager class is more 
specialized. It is the subclass, and Employee is 
the superclass.

2.  CheckingAccount and SavingsAccount both inherit 
from the more general class Bank Account.

3.  Exception, Throwable 
4.  Vehicle, truck, motorcycle
5.  It shouldn’t. A quiz isn’t a question; it has 

questions.
6.  a, b, d
7.  public class Manager extends Employee 

{
   private double bonus;
   // Constructors and methods omitted
}

8.  name, baseSalary, and bonus 
9.  public class Manager extends Employee 

{
   . . .
   public double getSalary() { . . . }
}

10.  getName, setName, setBaseSalary 
11.  The method is not allowed to access the 

instance variable text from the superclass.
12.  The type of the this reference is ChoiceQuestion. 

Therefore, the display method of ChoiceQuestion 
is selected, and the method calls itself. 

13.  Because there is no ambiguity. The subclass 
doesn’t have a setAnswer method.

14.  public String getName() 
{
   return "*" + super.getName();
}

15.  public double getSalary() 
{
   return super.getSalary() + bonus;
}

16.  a only.
17.  It belongs to the class BankAccount or one of its 

subclasses.
18.  Question[] quiz = new Question[SIZE]; 
19.  You cannot tell from the fragment—cq may 

be initialized with an object of a sub class of 
ChoiceQuestion. The display method of whatever 
object cq references is invoked.

20.  No. This is a static method of the Math class. 
There is no implicit parameter object that 
could be used to dynamically look up a 
method.

21.  Because the implementor of the PrintStream 
class did not supply a toString method.

22.  The second line will not compile. The class 
Object does not have a method length.

23.  The code will compile, but the second line will 
throw a class cast exception because Question is 
not a subclass of String.

24.  There are only a few methods that can be 
invoked on variables of type Object.

25.  The value is false if x is null and true otherwise.
26.  It must implement the Measurable interface 

and provide a getMeasure method return ing the 
salary.

27.  The Object class doesn’t have a getMeasure 
method.

28.  You cannot modify the String class to imple-
ment Measurable—it is a library class. 
See Special Topic 9.9 for a solution.



464 Chapter 9  Inheritance and Interfaces

29.  Measurable is not a class. You cannot construct 
objects of type Measurable.

30.  Have the Country class implement the Comparable 
interface, as shown below, and call Arrays.sort.
public class Country implements Comparable
{
   . . .
   public int compareTo(Object otherObject)
   {
      Country other = (Country) otherObject;
      if (area < other.area) return 1;
      if (area > other.area) return 1;
      return 0;
   }
}

31.  Yes, you can, because String implements the 
Comparable interface type.



10C h a p t e r

465

GraphiCal 
User 
interfaCes

to implement simple graphical user interfaces

to add buttons, text fields, and other components to a frame window

to handle events that are generated by buttons

to write programs that display simple drawings

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

10.1  Frame WindoWs  466

Special Topic 10.1: adding the main Method to 
the frame Class 470

10.2  events and event Handling  470

Common Error 10.1: Modifying parameter types 
in the implementing Method 478

Common Error 10.2: forgetting to attach 
a listener 478

Programming Tip 10.1: Don’t Use a frame as 
a listener 478

Special Topic 10.2: local inner Classes 479
Special Topic 10.3: anonymous inner Classes 480

10.3  Processing text inPut  481

10.4  creating draWings  487

Common Error 10.3: forgetting to repaint 496
Common Error 10.4: By Default, Components 

have Zero Width and height 497
How To 10.1: Drawing Graphical shapes 497
Worked Example 10.1: Coding a Bar 

Chart Creator 
Video Example 10.1: solving 

Crossword puzzles 



466

in this chapter, you will learn how to write graphical 
user-interface applications that contain buttons, text 
components, and graphical components such as charts. 
You will be able to process the events that are generated 
by button clicks, process the user input, and update the 
textual and graphical output.

10.1 frame Windows
A graphical application shows information inside a frame: a 
window with a title bar, as shown in Figure 1. In the follow-
ing sections, you will learn how to display a frame and how to 
place user-interface components inside it.

10.1.1 Displaying a frame

To show a frame, carry out the following steps:

1. Construct an object of the JFrame class:
JFrame frame = new JFrame(); 

2. Set the size of the frame:
final int FRAME_WIDTH = 300;
final int FRAME_HEIGHT = 400; 
frame.setSize(FRAME_WIDTH, FRAME_HEIGHT); 

This frame will be 300 pixels wide and 400 pixels tall. If you omit this step the 
frame will be 0 by 0 pixels, and you won’t be able to see it. (Pixels are the tiny 
dots from which digital images are com posed.)

A graphical user 
interface is displayed 
inside a frame.

to show a frame, 
construct a JFrame 
object, set its size, 
and make it visible.

Figure 1  a frame Window

Title bar Close button



10.1 frame Windows  467

3. If you’d like, set the title of the frame:
frame.setTitle("An empty frame"); 

If you omit this step, the title bar is simply left blank. 
4. Set the “default close operation”:

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

When the user closes the frame, the program automatically exits. Don’t omit 
this step. If you do, the program keeps running even after the frame is closed.

5. Make the frame visible:
frame.setVisible(true); 

The simple program below shows all of these steps. It produces the empty frame 
shown in Figure 1. 

The JFrame class is a part of the javax.swing package. Swing is the nickname for the 
graphical user-inter face library in Java. The “x” in javax denotes the fact that Swing 
started out as a Java extension before it was added to the standard library.

section_1_1/emptyFrameviewer.java

1 import javax.swing.JFrame;
2 
3 /**
4    This program displays an empty frame.
5 */
6 public class EmptyFrameViewer
7 {
8    public static void main(String[] args)
9    {

10       JFrame frame = new JFrame();
11 
12       final int FRAME_WIDTH = 300;
13       final int FRAME_HEIGHT = 400;
14       frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
15       frame.setTitle("An empty frame");
16       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17 
18       frame.setVisible(true);
19    }
20 }

10.1.2 adding User-interface Components to a frame

An empty frame is not very interesting. You will want to 
add some user-interface components, such as buttons and 
text labels. However, if you add components directly to the 
frame, they get placed on top of each other.

When building a graphical user interface,  
you add components to a frame.



468 Chapter 10  Graphical User interfaces

If you have more than one component, put them into a panel (a container for other 
user-interface components), and then add the panel to the frame:

JPanel panel = new JPanel();
panel.add(button);
panel.add(label);
frame.add(panel);

You first construct the components, providing the text that should appear on them: 
JButton button = new JButton("Click me!");
JLabel label = new JLabel("Hello, World!");

Then you add the components to the frame, as shown above. Figure 2 shows the 
result. When you run the program, you can click the button, but nothing will happen. 
You will see in Section 10.2 how to attach an action to a button.

section_1_2/FilledFrameviewer.java

1 import javax.swing.JButton;
2 import javax.swing.JFrame;
3 import javax.swing.JLabel;
4 import javax.swing.JPanel;
5 
6 /**
7    This program shows a frame that is filled with two components.
8 */
9 public class FilledFrameViewer

10 {
11    public static void main(String[] args)
12    {
13       JFrame frame = new JFrame();
14       
15       JButton button = new JButton("Click me!");
16       JLabel label = new JLabel("Hello, World!");
17 
18       JPanel panel = new JPanel();
19       panel.add(button);
20       panel.add(label);
21       frame.add(panel);
22 
23       final int FRAME_WIDTH = 300;
24       final int FRAME_HEIGHT = 100;
25       frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
26       frame.setTitle("A frame with two components");
27       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28 
29       frame.setVisible(true);
30    }
31 }

Use a JPanel to 
group multiple 
user-interface 
components together.

Figure 2  a frame with a Button and a label



10.1 frame Windows  469

10.1.3 Using inheritance to Customize frames

As you add more user-interface components to a 
frame, the frame can get quite complex. Your pro-
grams will become easier to understand when you 
use inheritance for complex frames. 

To do so, design a subclass of JFrame. Store the 
components as instance variables. Initialize them 
in the constructor of your subclass. This approach 
makes it easy to add helper methods for organiz-
ing your code. 

It is also a good idea to set the frame size in the 
frame constructor. The frame usually has a better 
idea of the preferred size than the program dis-
playing it.

For example,
public class FilledFrame extends JFrame
{
   // Use instance variables for components 
   private JButton button;
   private JLabel label;

   private static final int FRAME_WIDTH = 300;
   private static final int FRAME_HEIGHT = 100;

   public FilledFrame()
   { 
      // Now we can use a helper method 
      createComponents();

      // It is a good idea to set the size in the frame constructor 
      setSize(FRAME_WIDTH, FRAME_HEIGHT);
   }

   private void createComponents()
   {
      button = new JButton("Click me!");
      label = new JLabel("Hello, World!");
      JPanel panel = new JPanel();
      panel.add(button);
      panel.add(label);      
      add(panel);
   }
}

Of course, we still need a class with a main method:
public class FilledFrameViewer2
{ 
   public static void main(String[] args)
   { 
      JFrame frame = new FilledFrame();
      frame.setTitle("A frame with two components");
      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
      frame.setVisible(true);      
   }
}

In Java, you can use inheritance to 
customize a frame.

Declare a JFrame 
subclass for a 
complex frame.

o n l i n e  e x a m P l e

the complete 
FilledFrame 
program.



470 Chapter 10  Graphical User interfaces

1.  How do you display a square frame with a title bar that reads “Hello, World!”?
2.  How can a program display two frames at once?
3.  How can a program show a frame with two buttons labeled Yes and No?
4.  Why does the FilledFrameViewer2 class declare the frame variable to have class 

JFrame, not FilledFrame?
5.  How many Java source files are required by the application in Section 10.1.3 

when we use inherit ance to declare the frame class?
6.  Why does the createComponents method of FilledFrame call add(panel), whereas the 

main method of FilledFrameViewer calls frame.add(panel)?

Practice it  Now you can try these exercises at the end of the chapter: R10.1, R10.4, P10.1.

adding the main method to the Frame class

Have another look at the FilledFrame and FilledFrameViewer2 classes. Some programmers prefer 
to combine these two classes, by adding the main method to the frame class: 

public class FilledFrame extends JFrame
{ 
   . . . 
   public static void main(String[] args)
   {
      JFrame frame = new FilledFrame();
      frame.setTitle("A frame with two components");
      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
      frame.setVisible(true);
   }

   public FilledFrame()
   {
       createComponents();
       setSize(FRAME_WIDTH, FRAME_HEIGHT); 
   }
   . . .
}

This is a convenient shortcut that you will find in many programs, but it does not separate the 
responsibilities between the frame class and the program. 

10.2 events and event handling
In an application that interacts with the user through a console window, user input 
is under control of the program. The program asks the user for input in a specific 
order. For example, a program might ask the user to supply first a name, then a dol-
lar amount. But the programs that you use every day on your com puter don’t work 
like that. In a program with a modern graphical user interface, the user is in control. 
The user can use both the mouse and the keyboard and can manipulate many parts of 
the user interface in any desired order. For example, the user can enter information 
into text fields, pull down menus, click buttons, and drag scroll bars in any order. The 

s e l F   c H e c ks e l F   c H e c k

special topic 10.1 



10.2 events and event handling  471

program must react to the user commands in whatever order they arrive. Having to 
deal with many possible inputs in random order is quite a bit harder than simply forc-
ing the user to supply input in a fixed order. 

In the following sections, you will learn how to write Java programs that can react 
to user-interface events. 

10.2.1 listening to events

Whenever the user of a graphical program types 
characters or uses the mouse anywhere inside one of 
the windows of the program, the program receives 
a notification that an event has occurred. For exam-
ple, whenever the mouse moves a tiny interval over a 
window, a “mouse move” event is generated. Click-
ing a button or selecting a menu item generates an 
“action” event. 

Most programs don’t want to be flooded by irrel-
evant events. For example, when a button is clicked 
with the mouse, the mouse moves over the button, 
then the mouse button is pressed, and finally the but-
ton is released. Rather than receiving all these mouse 
events, a program can indicate that it only cares 
about button clicks, not about the underlying mouse 
events. On the other hand, if the mouse input is used 
for drawing shapes on a virtual canvas, a program needs to closely track mouse events.

Every program must indicate which events it needs to receive. It does that by 
installing event listener objects. These objects are instances of classes that you must 
provide. The methods of your event listener classes contain the instructions that you 
want to have executed when the events occur. 

To install a listener, you need to know the event source. The event source is the 
user-interface compo nent, such as a button, that generates a particular event. You add 
an event listener object to the appropriate event sources. Whenever the event occurs, 
the event source calls the appropriate methods of all attached event listeners.

This sounds somewhat abstract, so let’s run through an extremely simple program 
that prints a mes sage whenever a button is clicked. Button listeners must belong to a 
class that implements the ActionLis tener interface:

public interface ActionListener
{
   void actionPerformed(ActionEvent event);
}

This particular interface has a single method, actionPerformed. It is your job to supply a 
class whose action Performed method contains the instructions that you want executed 
whenever the button is clicked. Here is a very simple example of such a listener class:

section_2_1/clicklistener.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 

User-interface events 
include key presses, 
mouse moves, 
button clicks, menu 
selections, and so on.

In an event-driven user interface, 
the program receives an event 
whenever the user manipulates 
an input component.

an event listener 
belongs to a class 
created by the 
application 
programmer. its 
methods describe  
the actions to be 
taken when an  
event occurs.

event sources report 
on events. When an 
event occurs, the 
event source notifies 
all event listeners.



472 Chapter 10  Graphical User interfaces

4 /**
5    An action listener that prints a message. 
6 */
7 public class ClickListener implements ActionListener
8 {
9    public void actionPerformed(ActionEvent event)

10    {
11       System.out.println("I was clicked.");
12    }
13 }

We ignore the event parameter variable of the actionPerformed method—it contains 
additional details about the event, such as the time at which it occurred. Note that the 
event handling classes are defined in the java.awt.event package. (AWT is the Abstract 
Window Toolkit, the Java library for dealing with windows and events.)

Once the listener class has been declared, we need to construct an object of the 
class and add it to the button:

ActionListener listener = new ClickListener();
button.addActionListener(listener);

Whenever the button is clicked, the Java event handling library calls
listener.actionPerformed(event);

As a result, the message is printed. 
You can test this program out by opening a console window, starting the Button

Viewer1 program from that console window, clicking the button, and watching the 
messages in the console window (see Figure 3).

section_2_1/ButtonFrame1.java

1 import java.awt.event.ActionListener;
2 import javax.swing.JButton;
3 import javax.swing.JFrame;
4 import javax.swing.JPanel;
5 
6 /**
7    This frame demonstrates how to install an action listener.
8 */
9 public class ButtonFrame1 extends JFrame

10 {     
11    private static final int FRAME_WIDTH = 100;
12    private static final int FRAME_HEIGHT = 60;
13 

attach an 
ActionListener to 
each button so that
your program can
react to button clicks.

Figure 3  implementing an action listener



10.2 events and event handling  473

14    public ButtonFrame1()
15    {  
16       createComponents();
17       setSize(FRAME_WIDTH, FRAME_HEIGHT);
18    }
19 
20    private void createComponents()
21    {
22       JButton button = new JButton("Click me!");
23       JPanel panel = new JPanel();
24       panel.add(button);
25       add(panel);
26      
27       ActionListener listener = new ClickListener();
28       button.addActionListener(listener);
29    }
30 }

section_2_1/Buttonviewer1.java

1 import javax.swing.JFrame;
2 
3 /**
4    This program demonstrates how to install an action listener. 
5 */
6 public class ButtonViewer1
7 { 
8    public static void main(String[] args)
9    { 

10       JFrame frame = new ButtonFrame1();
11       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12       frame.setVisible(true);
13    }
14 }

10.2.2 Using inner Classes for listeners

In the preceding section, you saw how to specify button actions. The code for the 
button action is placed into a listener class. It is common to implement listener classes 
as inner classes like this:

public class ButtonFrame2 extends JFrame
{
   . . .
   // This inner class is declared inside the frame class
   class ClickListener implements ActionListener 
   {
      . . .
   }

   private void createComponents()
   {
      button = new JButton("Click me!");
      ActionListener listener = new ClickListener();
      button.addActionListener(listener);
      . . .
   }
}

An inner class is a 
class that is declared 
inside another class.



474 Chapter 10  Graphical User interfaces

An inner class is simply a class that is declared inside another class.
There are two advantages to making a listener class into an inner class. First, lis-

tener classes tend to be very short. You can put the inner class close to where it is 
needed, without cluttering up the remainder of the project. Moreover, inner classes 
have a very attractive feature: Their methods can access instance variables and meth-
ods of the surrounding class. 

This feature is particularly useful when implementing event handlers. It allows 
the inner class to access variables with out having to receive them as constructor or 
method arguments. 

Let’s look at an example. Instead of printing the message “I was clicked”, we want 
to show it in a label. If we make the action listener into an inner class of the frame 
class, its actionPerformed method can access the label instance variable and call the set
Text method, which changes the label text.

public class ButtonFrame2 extends JFrame
{
   private JButton button;
   private JLabel label;
   . . . 
   class ClickListener implements ActionListener 
   {
      public void actionPerformed(ActionEvent event)
      {
         // Accesses label variable from surrounding class
         label.setText("I was clicked"); 
      }
   }
   . . .
}

Having the listener as a regular class is unattractive––the listener would need to be 
constructed with a reference to the label field (see Exercise P10.5).

section_2_2/ButtonFrame2.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 
8 public class ButtonFrame2 extends JFrame
9 {

10    private JButton button;
11    private JLabel label;
12 
13    private static final int FRAME_WIDTH = 300;
14    private static final int FRAME_HEIGHT = 100;
15 
16    public ButtonFrame2()
17    {
18       createComponents();
19       setSize(FRAME_WIDTH, FRAME_HEIGHT);
20    }
21    

Methods of an inner 
class can access 
variables from the 
surrounding class.



10.2 events and event handling  475

22    /**
23       An action listener that changes the label text.
24    */
25    class ClickListener implements ActionListener
26    {
27       public void actionPerformed(ActionEvent event)
28       {
29          label.setText("I was clicked.");
30       }            
31    }
32 
33    private void createComponents()
34    {
35       button = new JButton("Click me!");
36       ActionListener listener = new ClickListener();
37       button.addActionListener(listener);
38 
39       label = new JLabel("Hello, World!");
40 
41       JPanel panel = new JPanel();
42       panel.add(button);
43       panel.add(label);
44       add(panel);
45    }
46 }

10.2.3 application: showing Growth of an investment

In this section, we will build a practical application with a graphical user interface. A 
frame displays the amount of money in a bank account. Whenever the user clicks a 
button, 5 percent interest is added, and the new balance is displayed (see Figure 4).

We need a button and a label for the user interface. We also need to store the cur-
rent balance:

public class InvestmentFrame extends JFrame
{
   private JButton button;
   private JLabel resultLabel;
   private double balance;

   private static final double INTEREST_RATE = 5;
   private static final double INITIAL_BALANCE = 1000;
   . . . 
}

We initialize the balance when the frame is constructed. Then we add the button and 
label to a panel, and the panel to the frame:

public InvestmentFrame()
{

Figure 4   
Clicking the Button  
Grows the investment



476 Chapter 10  Graphical User interfaces

   balance = INITIAL_BALANCE;

   createComponents();
   setSize(FRAME_WIDTH, FRAME_HEIGHT);
}

Now we are ready for the hard part—the event listener that handles button clicks. As 
in the preceding section, it is necessary to declare a class that implements the Action
Listener interface, and to place the but ton action into the actionPerformed method. Our 
listener class adds interest and displays the new balance: 

class AddInterestListener implements ActionListener
{
   public void actionPerformed(ActionEvent event)
   {
      double interest = balance * INTEREST_RATE / 100;
      balance = balance + interest;
      resultLabel.setText("Balance: " + balance);
   }
}

We make this class an inner class so that it can access the balance and resultLabel 
instance variables. 

Finally, we need to add an instance of the listener class to the button:
private void createComponents()
{
   button = new JButton("Add Interest");
   ActionListener listener = new AddInterestListener();
   button.addActionListener(listener);
   . . .
}

Here is the complete program. It demonstrates how to add multiple components to a 
frame, by using a panel, and how to implement listeners as inner classes.

section_2_3/investmentFrame.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 
8 public class InvestmentFrame extends JFrame
9 {

10    private JButton button;
11    private JLabel resultLabel;
12    private double balance;
13 
14    private static final int FRAME_WIDTH = 300;
15    private static final int FRAME_HEIGHT = 100;
16 
17    private static final double INTEREST_RATE = 5;
18    private static final double INITIAL_BALANCE = 1000;   
19 
20    public InvestmentFrame()
21    {
22       balance = INITIAL_BALANCE;



10.2 events and event handling  477

23 
24       createComponents();
25       setSize(FRAME_WIDTH, FRAME_HEIGHT);
26    }
27    
28    /**
29       Adds interest to the balance and updates the display.
30    */
31    class AddInterestListener implements ActionListener
32    {
33       public void actionPerformed(ActionEvent event)
34       {
35          double interest = balance * INTEREST_RATE / 100;
36           balance = balance + interest;
37          resultLabel.setText("Balance: " + balance);
38       }            
39    }
40 
41    private void createComponents()
42    {
43       button = new JButton("Add Interest");
44       ActionListener listener = new AddInterestListener();
45       button.addActionListener(listener);
46 
47       resultLabel = new JLabel("Balance: " + balance);
48 
49       JPanel panel = new JPanel();
50       panel.add(button);
51       panel.add(resultLabel);
52       add(panel);
53    }
54 }

section_2_3/investmentviewer.java

1 import javax.swing.JFrame;
2 
3 /**
4    This program shows the growth of an investment.
5 */
6 public class InvestmentViewer
7 {  
8    public static void main(String[] args)
9    {  

10       JFrame frame = new InvestmentFrame();
11       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12       frame.setVisible(true);
13    }
14 }

7.  Which objects are the event source and the event listener in the ButtonViewer 
program?

8.  Why is it legal to assign a ClickListener object to a variable of type ActionListener?
9.  When do you call the actionPerformed method?

10.  Why would an inner class method want to access a variable from a surrounding 
scope? 

s e l F   c H e c k



478 Chapter 10  Graphical User interfaces

11.  How do you place the "Balance: . . ." message to the left of the "Add
Interest" button?

Practice it  Now you can try these exercises at the end of the chapter: R10.7, P10.2, P10.5.

modifying Parameter types in the implementing method

When you implement an interface, you must declare each method exactly as it is specified in 
the interface. Acciden tally making small changes to the parameter variable types is a common 
error. Here is the classic example,

class MyListener implements ActionListener
{
   public void actionPerformed() 
   // Oops . . . forgot ActionEvent parameter variable
   {
      . . .
   }
}

As far as the compiler is concerned, this class fails to provide the method

public void actionPerformed(ActionEvent event)

You have to read the error message carefully and pay attention to the parameter variable and 
return types to find your error.

Forgetting to attach a listener

If you run your program and find that your buttons seem to be dead, double-check that you 
attached the button lis tener. The same holds for other user-interface components. It is a sur-
prisingly common error to program the listener class and the event handler action without 
actually attaching the listener to the event source. 

don’t use a Frame as a listener

In this book, we use inner classes for event listeners. That approach works for many different 
event types. Once you master the technique, you don’t have to think about it anymore. Many 
development environments automatically generate code with inner classes, so it is a good idea 
to be familiar with them. 

However, some programmers bypass the event listener classes and turn a frame into a lis-
tener, like this: 

public class InvestmentFrame extends JFrame
      implements ActionListener  // This approach is not recommended 
{ 
   . . .
   public InvestmentFrame()
   {
      button = new JButton("Add Interest");
      button.addActionListener(this);
      . . .

Common error 10.1 

Common error 10.2 

programming tip 10.1 



10.2 events and event handling  479

   }

   public void actionPerformed(ActionEvent event)
   {
   }
   . . .
}

Now the actionPerformed method is a part of the InvestmentFrame class rather than part of a 
separate listener class. The listener is installed as this. 

We don’t recommend this technique. If the viewer class contains two buttons that each gen-
erate action events, then the actionPerformed method must investigate the event source, which 
leads to code that is tedious and error-prone. 

local inner classes

An inner class can be declared completely inside a method. For example,

public static void main(String[] args)
{
   . . . 
   class ClickListener implements ActionListener 
   {
      public void actionPerformed(ActionEvent event)
      {
         . . .
      }
   }
   
   JButton button = new JButton("Click me");
   button.addActionListener(new ClickListener());
   . . .
}

This places the inner class exactly where you need it, next to the button. 
The methods of a class that is defined inside a method can access the variables of the enclos-

ing method, provided they are declared as final. For example, 

public static void main(String[] args)
{
   final JLabel label = new JLabel("Hello, World!");
   . . . 
   class ClickListener implements ActionListener 
   {
      public void actionPerformed(ActionEvent event)
      {
         label.setText("I was clicked"); 
         // Accesses label variable from enclosing method
      }
   }
   . . . 
   button.addActionListener(new ClickListener());
}

That sounds quite restrictive, but it is usually not an issue if the variable is an object refer-
ence. Keep in mind that an object variable is final when the variable always refers to the same 
object. The state of the object can change, but the variable can’t refer to a different object. For 
example, in our program, we never intended to have the label variable refer to multiple labels, 
so there was no harm in declaring it as final.

special topic 10.2 



480 Chapter 10  Graphical User interfaces

However, you can’t change a numeric or Boolean local variable from an inner class. For 
example, the following would not work:

public static void main(String[] args)
{
   final double balance = INITIAL_BALANCE;
   . . . 
   class AddInterestListener implements ActionListener 
   {
      public void actionPerformed(ActionEvent event)
      {
         double interest = balance * (1 + INTEREST_RATE);
         balance = balance + interest;
            // Error: Can’t modify a final numeric variable
      }
   }
   . . . 
}

The remedy is to use an object instead:

public static void main(String[] args)
{
   final BankAccount account = new BankAccount();
   account.deposit(INITIAL_BALANCE);
   . . . 
   class AddInterestListener implements ActionListener 
   {
      public void actionPerformed(ActionEvent event)
      {
         double interest = balance * (1 + INTEREST_RATE);
         account.deposit(interest);
            // Ok––we don’t change the reference, just the object’s state
      }
   }
   . . .
}

anonymous inner classes

An entity is anonymous if it does not have a name. In a program, something that is only used 
once doesn’t usually need a name. For example, you can replace

String buttonLabel = "Add Interest";
JButton button = new JButton(buttonLabel);

with

JButton button = new JButton("Add Interest");

The string "Add Interest" is an anonymous object. Programmers like anonymous objects, 
because they don’t have to go through the trouble of coming up with a name. If you have 
struggled with the decision whether to call a label l, label, or buttonLabel, you’ll understand 
this sentiment.

Event listeners often give rise to a similar situation. You construct a single object of an 
event listener class. Afterward, the class is never used again. In Java, it is possible to declare an 
anonymous class if all you ever need is a single object of the class. 

special topic 10.3 



10.3 processing text input  481

Here is an example:

button = new JButton("Add Interest");
button.addActionListener(new ActionListener()
   {
      public void actionPerformed(ActionEvent event)
      {
         double interest = balance * (1 + INTEREST_RATE);
         account.deposit(interest);
      }
   });

This means: Define a class that implements the ActionListener interface with the given action
Performed method. Construct an object of that class and pass it to the addAction Listener method.

Many programmers like this style because it is so compact. Moreover, GUI builders in inte-
grated development environments often generate code of this form.

10.3 processing text input
We continue our discussion with graphical user interfaces that accept text input. Of 
course, a graphical application can receive text input by calling the show Input Dialog 
method of the JOptionPane class, but popping up a separate dialog box for each input 
is not a natural user interface. Most graphical programs collect text input through 
text components (see Figures 5 and 7). In the following two sections, you will learn 
how to add text components to a graphical application, and how to read what the user 
types into them. 

10.3.1 text fields

The JTextField class provides a text field for reading a single line of text. When you 
construct a text field, you need to supply the width—the approximate number of 
characters that you expect the user to type.

final int FIELD_WIDTH = 10;
rateField = new JTextField(FIELD_WIDTH);

Users can type additional characters, but then a part of the contents of the field 
becomes invisible.

You will want to label each text field so that the user knows what to type into it. 
Construct a JLabel object for each label:

JLabel rateLabel = new JLabel("Interest Rate: ");

You want to give the user an opportunity to enter all information into the text fields 
before processing it. Therefore, you should supply a button that the user can press to 
indicate that the input is ready for pro cessing. 

Use a JTextField 
component for 
reading a single line 
of input. place a 
JLabel next to each 
text field.

Figure 5   
an application  
with a text field



482 Chapter 10  Graphical User interfaces

When that button is clicked, its actionPerformed method should read the user input 
from each text field, using the getText method of the JTextField class. The getText 
method returns a String object. In our sample pro gram, we turn the string into a num-
ber, using the Double.parseDouble method. After updating the account, we show the 
balance in another label.

class AddInterestListener implements ActionListener
{
   public void actionPerformed(ActionEvent event)
   {
      double rate = Double.parseDouble(rateField.getText());
      double interest = balance * rate / 100;
      balance = balance + interest;
      resultLabel.setText("Balance: " + balance);
   }
}

The following application is a useful prototype for a graphical user-interface front 
end for arbitrary calcu lations. You can easily modify it for your own needs. Place 
input components into the frame. In the actionPerformed method, carry out the needed 
calculations. Display the result in a label. 

section_3_1/investmentFrame2.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JTextField;
8 
9 /**

10    A frame that shows the growth of an investment with variable interest.
11 */
12 public class InvestmentFrame2 extends JFrame
13 {
14    private static final int FRAME_WIDTH = 450;
15    private static final int FRAME_HEIGHT = 100;
16 
17    private static final double DEFAULT_RATE = 5;
18    private static final double INITIAL_BALANCE = 1000;   
19 
20    private JLabel rateLabel;
21    private JTextField rateField;
22    private JButton button;
23    private JLabel resultLabel;
24    private double balance;
25  
26    public InvestmentFrame2()
27    { 
28       balance = INITIAL_BALANCE;
29 
30       resultLabel = new JLabel("Balance: " + balance);
31 
32       createTextField();
33       createButton();
34       createPanel();
35 



10.3 processing text input  483

36       setSize(FRAME_WIDTH, FRAME_HEIGHT);
37    }
38 
39    private void createTextField()
40    {
41       rateLabel = new JLabel("Interest Rate: ");
42 
43       final int FIELD_WIDTH = 10;
44       rateField = new JTextField(FIELD_WIDTH);
45       rateField.setText("" + DEFAULT_RATE);
46    }
47    
48    /**
49       Adds interest to the balance and updates the display.
50    */
51    class AddInterestListener implements ActionListener
52    {
53       public void actionPerformed(ActionEvent event)
54       {
55          double rate = Double.parseDouble(rateField.getText());
56          double interest = balance * rate / 100;
57          balance = balance + interest;
58          resultLabel.setText("Balance: " + balance);
59       }            
60    }
61 
62    private void createButton()
63    {
64       button = new JButton("Add Interest");
65       
66       ActionListener listener = new AddInterestListener();
67       button.addActionListener(listener);
68    }
69 
70    private void createPanel()
71    {
72       panel = new JPanel();
73       panel.add(rateLabel);
74       panel.add(rateField);
75       panel.add(button);
76       panel.add(resultLabel);      
77       add(panel);
78    } 
79 }

10.3.2 text areas

In the preceding section, you saw how to construct 
text fields. A text field holds a single line of text. To 
display multiple lines of text, use the JTextArea class. 

You can use a text area for reading  
or displaying multi-line text.

Use a JTextArea to 
show multiple lines 
of text.



484 Chapter 10  Graphical User interfaces

When constructing a text area, you can specify the number of rows and columns: 
final int ROWS = 10; // Lines of text
final int COLUMNS = 30; // Characters in each row
JTextArea textArea = new JTextArea(ROWS, COLUMNS);

Use the setText method to set the text of a text field or text area. The append method 
adds text to the end of a text area. Use newline characters to separate lines, like this:

textArea.append(balance + "\n");

If you want to use a text field or text area for display purposes only, call the set
Editable method like this 

textArea.setEditable(false);

Now the user can no longer edit the contents of the field, but your program can still 
call setText and append to change it. 

As shown in Figure 6, the JTextField and JTextArea classes are subclasses of the 
class JTextComponent. The methods setText and setEditable are declared in the JText
Component class and inherited by JTextField and JTextArea. However, the append method 
is declared in the JTextArea class.

To add scroll bars to a text area, use a JScrollPane, like this: 
JTextArea textArea = new JTextArea(ROWS, COLUMNS);
JScrollPane scrollPane = new JScrollPane(textArea);

Then add the scroll pane to the panel. Figure 7 shows the result.

You can add scroll 
bars to any 
component with a 
JScrollPane.

Figure 6  a part of the hierarchy of swing User-interface Components

JComponent

JPanel

JTextField JTextArea

JCheckBox JRadioButton

JToggleButton JButton

JTextComponent JLabel AbstractButton



10.3 processing text input  485

Figure 7  the investment application with a text area inside scroll Bars

The following sample program puts these concepts together. A user can enter 
numbers into the interest rate text field and then click on the “Add Interest” button. 
The interest rate is applied, and the updated balance is appended to the text area. The 
text area has scroll bars and is not editable. 

This program is similar to the previous investment viewer program, but it keeps 
track of all the bank balances, not just the last one. 

section_3_2/investmentFrame3.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JScrollPane;
8 import javax.swing.JTextArea;
9 import javax.swing.JTextField;

10 
11 /**
12    A frame that shows the growth of an investment with variable interest,
13    using a text area.
14 */
15 public class InvestmentFrame3 extends JFrame
16 {
17    private static final int FRAME_WIDTH = 400;
18    private static final int FRAME_HEIGHT = 250;
19    
20    private static final int AREA_ROWS = 10;
21    private static final int AREA_COLUMNS = 30;
22 
23    private static final double DEFAULT_RATE = 5;
24    private static final double INITIAL_BALANCE = 1000;   
25       
26    private JLabel rateLabel;
27    private JTextField rateField;
28    private JButton button;
29    private JTextArea resultArea;
30    private double balance;
31 
32    public InvestmentFrame3()
33    { 
34       balance = INITIAL_BALANCE;
35       resultArea = new JTextArea(AREA_ROWS, AREA_COLUMNS);



486 Chapter 10  Graphical User interfaces

36       resultArea.setText(balance + "\n");
37       resultArea.setEditable(false);
38 
39       createTextField();
40       createButton();
41       createPanel();
42 
43       setSize(FRAME_WIDTH, FRAME_HEIGHT);
44    }
45 
46    private void createTextField()
47    {
48       rateLabel = new JLabel("Interest Rate: ");
49 
50       final int FIELD_WIDTH = 10;
51       rateField = new JTextField(FIELD_WIDTH);
52       rateField.setText("" + DEFAULT_RATE);
53    }
54    
55    class AddInterestListener implements ActionListener
56    {
57       public void actionPerformed(ActionEvent event)
58       {
59          double rate = Double.parseDouble(rateField.getText());
60          double interest = balance * rate / 100;
61          balance = balance + interest;
62          resultArea.append(balance + "\n");
63       }
64    }
65 
66    private void createButton()
67    {
68       button = new JButton("Add Interest");
69       
70       ActionListener listener = new AddInterestListener();
71       button.addActionListener(listener);
72    }
73 
74    private void createPanel()
75    {
76       JPanel = new JPanel();
77       panel.add(rateLabel);
78       panel.add(rateField);
79       panel.add(button);
80       JScrollPane scrollPane = new JScrollPane(resultArea);
81       panel.add(scrollPane);
82       add(panel);
83    }
84  }

12.  What happens if you omit the first JLabel object in the program of 
Section 10.3.1?

13.  If a text field holds an integer, what expression do you use to read its contents?
14.  What is the difference between a text field and a text area?
15.  Why did the InvestmentFrame3 program call resultArea.setEditable(false)? 

s e l F   c H e c ks e l F   c H e c k



10.4 Creating Drawings  487

16.  How would you modify the InvestmentFrame3 program if you didn’t want to use 
scroll bars? 

Practice it  Now you can try these exercises at the end of the chapter: R10.13, P10.9, P10.10.

10.4 Creating Drawings
You often want to include simple drawings such as graphs or 
charts in your programs. The Java library does not have any 
standard components for this purpose, but it is fairly easy to 
make your own drawings. The following sections show how.

10.4.1 Drawing on a Component

We start out with a simple bar chart (see Figure 8) that is com-
posed of three rectangles.

You cannot draw directly onto a frame. Instead, you add a 
component to the frame and draw on the component. To do 
so, extend the JComponent class and override its paintComponent 
method.

public class ChartComponent extends JComponent
{
   public void paintComponent(Graphics g)
   { 
      Drawing instructions
   }
}

When the component is shown for the first time, its paintComponent method is called 
automatically. The method is also called when the window is resized, or when it is 
shown again after it was hidden. 

The paintComponent method receives an object of type Graphics. The Graphics object 
stores the graphics state—the current color, font, and so on, that are used for drawing 
operations. The Graphics class has methods for drawing geometric shapes. The call

g.fillRect(x, y, width, height)

draws a solid rectangle with upper-left corner (x, y) and the given width and height.

You can make simple 
drawings out of lines, 
rectangles, and circles.

in order to display a 
drawing, provide a 
class that extends 
the JComponent class.

place drawing 
instructions inside 
the paintComponent 
method. that 
method is called 
whenever the 
component needs to 
be repainted.

Figure 8  Drawing a Bar Chart



488 Chapter 10  Graphical User interfaces

Here we draw three rectangles. They line up on the left because they all have x = 0. 
They also all have the same height.

public class ChartComponent extends JComponent
{ 
   public void paintComponent(Graphics g)
   { 
      g.fillRect(0, 10, 200, 10);
      g.fillRect(0, 30, 300, 10);
      g.fillRect(0, 50, 100, 10);
   }
}

Note that the coordinate system is different from the one used in mathematics. The 
origin (0, 0) is at the upper-left corner of the component, and the y-coordinate grows 
downward.

(0, 0)

(20, 10)

(10, 20)

 x

y

Here is the source code for the ChartComponent class. As you can see from the import 
statements, the Graphics class is part of the java.awt package.

section_4_1/chartcomponent.java

1 import java.awt.Graphics;
2 import javax.swing.JComponent;
3 
4 /**
5    A component that draws a bar chart. 
6 */
7 public class ChartComponent extends JComponent
8 { 
9    public void paintComponent(Graphics g)

10    { 
11       g.fillRect(0, 10, 200, 10);
12       g.fillRect(0, 30, 300, 10);
13       g.fillRect(0, 50, 100, 10);
14    }
15 }

Now we need to add the component to a frame, and show the frame. Because the 
frame is so simple, we don’t make a frame subclass. Here is the viewer class: 

section_4_1/chartviewer.java

1 import javax.swing.JComponent;
2 import javax.swing.JFrame;

the Graphics class 
has methods to draw 
rectangles and other 
shapes.



10.4 Creating Drawings  489

3 
4 public class ChartViewer
5 {
6    public static void main(String[] args)
7    {
8       JFrame frame = new JFrame();
9 

10       frame.setSize(400, 200);
11       frame.setTitle("A bar chart");
12       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 
14       JComponent component = new ChartComponent();
15       frame.add(component);
16 
17       frame.setVisible(true);
18    }
19 }

10.4.2 ovals, lines, text, and Color

In the preceding section, you learned how to write a program that draws rectangles. 
Now we turn to additional graphical elements that allow you to draw quite a few 
interesting pictures.

To draw an oval, you specify its bounding box (see Figure 9) in the same way that 
you would specify a rectangle, namely by the x- and y-coordinates of the top-left 
corner and the width and height of the box. Then the call

g.drawOval(x, y, width, height);   

draws the outline of an oval. To draw a circle, simply set the width and height to the 
same values: 

g.drawOval(x, y, diameter, diameter);

Notice that (x, y) is the top-left corner of the bounding box, not the center of the 
circle.

If you want to fill the inside of an oval, use the fillOval method instead. Con-
versely, if you want only the outline of a rectangle, with no filling, use the drawRect 
method.

Use drawRect, 
drawOval, and 
drawLine to draw 
geometric shapes.

Figure 9  an oval and its Bounding Box

(x, y)

H
ei

gh
t

Width



490 Chapter 10  Graphical User interfaces

Figure 10   
Basepoint and Baseline

Baseline

Basepoint

To draw a line, call the drawLine method with the x- and y-coordinates of both end 
points: 

g.drawLine(x1, y1, x2, y2);

You often want to put text inside a drawing, for example, to label some of the parts. 
Use the drawString method of the Graphics class to draw a string anywhere in a win-
dow. You must specify the string and the x- and y-coordinates of the basepoint of the 
first character in the string (see Figure 10). For example, 

g.drawString("Message", 50, 100);

When you first start drawing, all shapes and strings are drawn with a black pen. To 
change the color, you need to supply an object of type Color. Java uses the RGB color 
model. That is, you specify a color by the amounts of the primary colors—red, green, 
and blue—that make up the color. The amounts are given as integers between 0 (pri-
mary color not present) and 255 (maximum amount present). For example,

Color magenta = new Color(255, 0, 255);

constructs a Color object with maximum red, no green, and maximum blue, yielding a 
bright purple color called magenta. 

table 1  predefined Colors

Color rGB Values

Color.BLACK 0, 0, 0

Color.BLUE 0, 0, 255

Color.CYAN 0, 255, 255

Color.GRAY 128, 128, 128

Color.DARKGRAY 64, 64, 64

Color.LIGHTGRAY 192, 192, 192

Color.GREEN 0, 255, 0

Color.MAGENTA 255, 0, 255

Color.ORANGE 255, 200, 0

Color.PINK 255, 175, 175

Color.RED 255, 0, 0

Color.WHITE 255, 255, 255

Color.YELLOW 255, 255, 0

the drawString 
method draws a 
string, starting at  
its basepoint.



10.4 Creating Drawings  491

For your convenience, a variety of colors have been predefined in the Color class. 
Table 1 shows those predefined colors and their RGB values. For example, Color.PINK 
has been predefined to be the same color as new Color(255, 175, 175). 

To draw a shape in a different color, first set the color of the Graphics object, then 
call the drawing method:

g.setColor(Color.YELLOW);
g.fillOval(350, 25, 35, 20); // Fills the oval in yellow

The following program puts all these shapes to work, creating a simple chart (see 
Figure 11. 

section_4_2/chartcomponent2.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import javax.swing.JComponent;
4 
5 /**
6    A component that draws a demo chart.
7 */
8 public class ChartComponent2 extends JComponent
9 {  

10    public void paintComponent(Graphics g)
11    {  
12       // Draw the bars
13       g.fillRect(0, 10, 200, 10);
14       g.fillRect(0, 30, 300, 10);
15       g.fillRect(0, 50, 100, 10);
16       
17       // Draw the arrow
18       g.drawLine(350, 35, 305, 35);
19       g.drawLine(305, 35, 310, 30);
20       g.drawLine(305, 35, 310, 40);
21 
22       // Draw the highlight and the text
23       g.setColor(Color.YELLOW);     
24       g.fillOval(350, 25, 35, 20);
25       g.setColor(Color.BLACK);
26       g.drawString("Best", 355, 40);
27    }
28 }

When you set a new 
color in the graphics 
context, it is used for 
subsequent drawing 
operations.

Figure 11  a Bar Chart with a label



492 Chapter 10  Graphical User interfaces

section_4_2/chartviewer2.java

1 import javax.swing.JComponent;
2 import javax.swing.JFrame;
3 
4 public class ChartViewer2
5 {
6    public static void main(String[] args)
7    {
8       JFrame frame = new JFrame();
9 

10       frame.setSize(400, 200);
11       frame.setTitle("A bar chart");
12       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 
14       JComponent component = new ChartComponent2();
15       frame.add(component);
16 
17       frame.setVisible(true);
18    }
19 }

10.4.3 application: Visualizing the Growth of 
an investment

In this section, we will add a bar chart to the investment program of Section 10.3. 
Whenever the user clicks on the "Add Interest" button, another bar is added to the bar 
chart (see Figure 12).

The chart class of the preceding section produced a fixed bar chart. We will develop 
an improved version that can draw a chart with any values. The chart keeps an array 
list of the values:

public class ChartComponent extends JComponent
{
   private ArrayList<Double> values;
   private double maxValue; 
   . . .
}

When drawing the bars, we need to scale the values to fit into the chart. For example, 
if the investment program adds a value such as 10050 to the chart, we don’t want to 
draw a bar that is 10,050 pixels long. In order to scale the values, we need to know 
the largest value that should still fit inside the chart. We will ask the user of the chart 
component to provide that maximum in the constructor:

public ChartComponent(double max)
{
   values = new ArrayList<Double>();
   maxValue = max;
}

We compute the width of a bar as
int barWidth = (int) (getWidth() * value / maxValue);

The getWidth method returns the width of the component in pixels. If the value to be 
drawn equals maxValue, the bar stretches across the entire component width. 



10.4 Creating Drawings  493

Figure 12  Clicking on the “add interest” Button  
adds a Bar to the Chart

Here is the complete paintComponent method. We stack the bars horizontally and 
leave small gaps between them:

public void paintComponent(Graphics g)
{  
   final int GAP = 5;
   final int BAR_HEIGHT = 10;

   int y = GAP;
   for (double value : values)
   {
      int barWidth = (int) (getWidth() * value / maxValue);
      g.fillRect(0, y, barWidth, BAR_HEIGHT);
      y = y + BAR_HEIGHT + GAP;
   }
}

Whenever the user clicks the “Add Interest” button, a value is added to the array list. 
Afterward, it is essential to call the repaint method:

public void append(double value)
{
   values.add(value);
   repaint();
}

The call to repaint forces a call to the paintComponent method. The paintComponent 
method redraws the component. Then the graph is drawn again, now showing the 
appended value. 

Why not call paintComponent directly? The simple answer is that you can’t—you 
don’t have a Graphics object that you can pass as an argument. Instead, you need to ask 
the Swing library to make the call to paintComponent at its earliest convenience. That is 
what the repaint method does.

Call the repaint 
method whenever 
the state of a painted 
component changes.



494 Chapter 10  Graphical User interfaces

We need to address another issue with painted components. If you place a painted 
component into a panel, you need to specify its preferred size. Otherwise, the panel 
will assume that the preferred size is 0 by 0 pixels, and you won’t be able to see the 
component. Specifying the preferred size of a painted component is conceptually 
similar to specifying the number of rows and columns in a text area.

Call the setPreferredSize method with a Dimension object as argument. A Dimension 
argument wraps a width and a height into a single object. The call has the form

chart.setPreferredSize(new Dimension(CHART_WIDTH, CHART_HEIGHT));

That’s all that is required to add a diagram to an application. Here is the code for the 
chart and frame classes; the viewer class is with the book’s companion code.

section_4_3/chartcomponent.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import java.util.ArrayList;
4 import javax.swing.JComponent;
5 
6 /**
7    A component that draws a chart.
8 */
9 public class ChartComponent extends JComponent

10 {
11    private ArrayList<Double> values;
12    private double maxValue;
13 
14    public ChartComponent(double max)
15    {
16       values = new ArrayList<Double>();
17       maxValue = max;
18    }
19 
20    public void append(double value)
21    {
22       values.add(value);
23       repaint();
24    }
25 
26    public void paintComponent(Graphics g)
27    {  
28       final int GAP = 5;
29       final int BAR_HEIGHT = 10;
30 
31       int y = GAP;
32       for (double value : values)
33       {
34          int barWidth = (int) (getWidth() * value / maxValue);
35          g.fillRect(0, y, barWidth, BAR_HEIGHT);
36          y = y + BAR_HEIGHT + GAP;
37       }
38    }
39 }

section_4_3/investmentFrame4.java

1 import java.awt.Dimension;
2 import java.awt.event.ActionEvent;

When placing a 
painted component 
into a panel, you 
need to specify its 
preferred size.



10.4 Creating Drawings  495

3 import java.awt.event.ActionListener;
4 import javax.swing.JButton;
5 import javax.swing.JFrame;
6 import javax.swing.JLabel;
7 import javax.swing.JPanel;
8 import javax.swing.JTextField;
9 

10 /**
11    A frame that shows the growth of an investment with variable interest, 
12    using a bar chart.
13 */
14 public class InvestmentFrame4 extends JFrame
15 {
16    private static final int FRAME_WIDTH = 400;
17    private static final int FRAME_HEIGHT = 400;
18    
19    private static final int CHART_WIDTH = 300;
20    private static final int CHART_HEIGHT = 300;
21 
22    private static final double DEFAULT_RATE = 5;
23    private static final double INITIAL_BALANCE = 1000;   
24      
25    private JLabel rateLabel;
26    private JTextField rateField;
27    private JButton button;
28    private ChartComponent chart;
29    private double balance;
30  
31    public InvestmentFrame4()
32    {  
33       balance = INITIAL_BALANCE;
34       chart = new ChartComponent(3 * INITIAL_BALANCE);
35       chart.setPreferredSize(new Dimension(CHART_WIDTH, CHART_HEIGHT));
36       chart.append(INITIAL_BALANCE);
37             
38       createTextField();
39       createButton();
40       createPanel();
41 
42       setSize(FRAME_WIDTH, FRAME_HEIGHT);
43    }
44 
45    private void createTextField()
46    {
47       rateLabel = new JLabel("Interest Rate: ");
48 
49       final int FIELD_WIDTH = 10;
50       rateField = new JTextField(FIELD_WIDTH);
51       rateField.setText("" + DEFAULT_RATE);
52    }
53    
54    class AddInterestListener implements ActionListener
55    {
56       public void actionPerformed(ActionEvent event)
57       {
58          double rate = Double.parseDouble(rateField.getText());
59          double interest = balance * rate / 100;
60          balance = balance + interest;
61          chart.append(balance);
62       }            



496 Chapter 10  Graphical User interfaces

63    }
64 
65    private void createButton()
66    {
67       button = new JButton("Add Interest");      
68       
69       ActionListener listener = new AddInterestListener();
70       button.addActionListener(listener);
71    }
72 
73    private void createPanel()
74    {
75       JPanel panel = new JPanel();
76       panel.add(rateLabel);
77       panel.add(rateField);
78       panel.add(button);
79       panel.add(chart);      
80       add(panel);
81    }
82 }

17.  How do you modify the program in Section 10.4.1 to draw two squares? 
18.  What happens if you call fillOval instead fillRect in the program of 

Section 10.4.1?
19.  Give instructions to draw a circle with center (100, 100) and radius 25.
20.  Give instructions to draw a letter “V” by drawing two line segments.
21.  Give instructions to draw a string consisting of the letter “V”.
22.  What are the RGB color values of Color.BLUE?
23.  How do you draw a yellow square on a red background?
24.  What would happen in the investment viewer program if we simply painted each 

bar as 
g.fillRect(0, y, value, BAR_HEIGHT);

in the paintComponent method of the ChartComponent class?
25.  What would happen if you omitted the call to repaint in the append method of the 

ChartComponent class?
26.  What would happen if you omitted the call to chart.setPreferredSize in the 

InvestmentFrame4 constructor?

Practice it  Now you can do: R10.18, P10.17, P10.18.

Forgetting to repaint

When you change the data in a painted component, the component is not automatically 
painted with the new data. You must call the repaint method of the component. Your com-
ponent’s paintComponent method will then be invoked. Note that you should not call the paint
Component method directly. 

s e l F   c H e c k

Common error 10.3 



10.4 Creating Drawings  497

The best place to call repaint is in the method of your component that modifies the data 
values:

void changeData(. . .)
{
   Update data values
   repaint();
}

This is a concern only for your own painted components. When you make a change to a stan-
dard Swing compo nent such as a JLabel, the component is automatically repainted.

By default, components Have Zero Width and Height

You must be careful when you add a painted component, such as a component displaying a 
chart, to a panel. The default size for a JComponent is 0 by 0 pixels, and the component will not 
be visible. The remedy is to call the setPreferredSize method: 

chart.setPreferredSize(new Dimension(CHART_WIDTH, CHART_HEIGHT));

This is an issue only for painted components. Buttons, labels, and so on, know how to com-
pute their preferred size.

step 1  Determine the shapes that you need for the drawing.

You can use the following shapes:
• Squares and rectangles
• Circles and ellipses
• Lines 
The outlines of these shapes can be drawn in any color, and you can fill the insides of these 
shapes with any color. You can also use text to label parts of your drawing. 

Some national flag designs consist of three equally wide sections of dif ferent colors, side by 
side, as in the Italian flag shown below. 

Common error 10.4 

hoW to 10.1 drawing graphical shapes

Suppose you want to write a program that displays graphical shapes such as cars, aliens, charts, 
or any other images that can be obtained from rectangles, lines, and ellipses. These instructions 
give you a step-by-step procedure for decomposing a drawing into parts and implementing a 
program that produces the drawing.

In this How To we will create a program to draw a national flag.



498 Chapter 10  Graphical User interfaces

You could draw such a flag using three rectangles. But if the middle rect angle is white, as it 
is, for example, in the flag of Italy (green, white, red), it is easier and looks better to draw a line 
on the top and bottom of the middle portion: 

Two rectangles

Two lines

step 2  Find the coordinates for the shapes.

You now need to find the exact positions for the geometric shapes. 
• For rectangles, you need the x- and y-position of the top-left corner, the width, and the 

height.
• For ellipses, you need the top-left corner, width, and height of the bounding rectangle.
• For lines, you need the x- and y-positions of the starting point and the end point.
• For text, you need the x- and y-position of the basepoint.
A commonly-used size for a window is 300 by 300 pixels. You may not want the flag crammed 
all the way to the top, so perhaps the upper-left corner of the flag should be at point (100, 100). 

Many flags, such as the flag of Italy, have a width : height ratio of 3 : 2. (You can often find 
exact proportions for a particular flag by doing a bit of Internet research on one of several 
Flags of the World sites.) For example, if you make the flag 90 pixels wide, then it should be 60 
pixels tall. (Why not make it 100 pixels wide? Then the height would be 100 · 2 / 3 ≈ 67, which 
seems more awkward.)

Now you can compute the coordinates of all the important points of the shape: 

(100, 100) (130, 100) (160, 100) (190, 100)

(100, 160) (130, 160) (160, 160) (190, 160)

step 3  Write Java statements to draw the shapes.

In our example, there are two rectangles and two lines:

g.setColor(Color.GREEN); 
g.fillRect(100, 100, 30, 60);

g.setColor(Color.RED);
g.fillRect(160, 100, 30, 60);



10.4 Creating Drawings  499

g.setColor(Color.BLACK);
g.drawLine(130, 100, 160, 100);
g.drawLine(130, 160, 160, 160);

If you are more ambitious, then you can express the coordinates in terms of a few variables. 
In the case of the flag, we have arbitrarily chosen the top-left corner and the width. All other 
coordinates follow from those choices. If you decide to follow the ambitious approach, then 
the rectangles and lines are determined as follows:

g.fillRect(xLeft, yTop, width / 3, width * 2 / 3);
. . . 
g.fillRect(xLeft + 2 * width / 3, yTop, width / 3, width * 2 / 3);
. . .
g.drawLine(xLeft + width / 3, yTop, xLeft + width * 2 / 3, yTop);
g.drawLine(xLeft + width / 3, yTop + width * 2 / 3, 
   xLeft + width * 2 / 3, yTop + width * 2 / 3);

step 4  Consider using methods or classes for repetitive steps.

Do you need to draw more than one flag? Perhaps with different sizes? Then it is a good idea 
to design a method or class, so you won’t have to repeat the same drawing instructions.

For example, you can write a method

void drawItalianFlag(Graphics g, int xLeft, int yTop, int width)
{
   Draw a flag at the given location and size
}

Place the instructions from the preceding step into this method. Then you can call

drawItalianFlag(g, 10, 10, 100);
drawItalianFlag(g, 10, 125, 150);

in the paintComponent method to draw two flags. 

step 5  Place the drawing instructions in the paintComponent method. 

public class ItalianFlagComponent extends JComponent
{
   public void paintComponent(Graphics g)
   {
      Drawing instructions 
   }
}

If your drawing is simple, simply place all drawing statements here. Otherwise, call the meth-
ods you created in Step 4.

step 6  Write the viewer class.

Provide a viewer class, with a main method in which you construct a frame, add your compo-
nent, and make your frame visible. The viewer class is completely routine; you only need to 
change a single line to show a different com ponent.

public class ItalianFlagViewer
{
   public static void main(String[] args)
   {
      JFrame frame = new JFrame();

      frame.setSize(300, 400);
      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

      JComponent component = new ItalianFlagComponent();
      frame.add(component);



500 Chapter 10  Graphical User interfaces

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

      frame.setVisible(true);
   }
}

display frames and add components inside frames.

• To show a frame, construct a JFrame object, set its size, and make 
it visible.

• Use a JPanel to group multiple user-interface components together.
• Declare a JFrame subclass for a complex frame.

explain the event concept and handle button events.

• User-interface events include key presses, mouse moves, button clicks, menu 
selections, and so on.

• An event listener belongs to a class created by the application programmer. Its 
methods describe the actions to be taken when an event occurs.

• Event sources report on events. When an event occurs, the event source notifies 
all event listeners.

• Attach an ActionListener to each button so that your program 
can react to button clicks.

• Methods of an inner class can access variables from the 
surrounding class.

use text components for reading text input.

• Use a JTextField component for reading a single line of input. Place a JLabel next to 
each text field. 

• Use a JTextArea to show multiple lines of text.
• You can add scroll bars to any component with a JScrollPane.

o n l i n e  e x a m P l e

the complete flag 
drawing program.

WorkeD exaMple 10.1 coding a Bar chart creator

In this Worked Example, we will develop a simple program for creating bar charts. The user 
enters labels and values for the bars, and the program displays the chart.

ViDeo exaMple 10.1 solving crossword Puzzles

In this Video Example, we develop a program that finds words for 
solving a crossword puzzle.

C h a p t e r  s U M M a r Y



review exercises 501

create simple drawings with rectangles, ovals, lines, and text.

• In order to display a drawing, provide a class that extends the JComponent class.
• Place drawing instructions inside the paintComponent method. That method is called 

whenever the component needs to be repainted.
• The Graphics class has methods to draw rectangles and other shapes.
• Use drawRect, drawOval, and drawLine to draw geometric shapes.
• The drawString method draws a string, starting at its basepoint.
• When you set a new color in the graphics context, it is used for subsequent 

drawing operations.
• Call the repaint method whenever the state of a painted component changes.
• When placing a painted component into a panel, you need to specify its 

preferred size.

• r10.1  What is the difference between a frame and a panel? 

• r10.2  From a programmer’s perspective, what is the most important difference between 
the user interface of a console application and a graphical application? 

• r10.3  Why are separate viewer and frame classes used for graphical programs?

• r10.4  What happens if you add a button and a label directly to a JFrame without using a 
JPanel? What happens if you add the label first? Try it out, by modifying the pro-
gram in Section 10.1.2, and report your observations.

• r10.5  What is an event object? An event source? An event listener? 

• r10.6  Who calls the actionPerformed method of an event listener? When does the call to the 
actionPerformed method occur? 

java.awt.Color
java.awt.Component
   addMouseListener
   getHeight
   getWidth
   repaint
   setPreferredSize
   setSize
   setVisible
java.awt.Container
   add
java.awt.Dimension
java.awt.Frame
   setTitle

java.awt.Graphics
   setColor
   drawLine
   drawOval
   drawRect
   drawString
   fillOval
   fillRect
java.awt.event.ActionEvent
java.awt.event.ActionListener
   actionPerformed
javax.swing.AbstractButton
   addActionListener
javax.swing.JComponent
   paintComponent

javax.swing.JFrame
   setDefaultCloseOperation
javax.swing.JButton
javax.swing.JLabel
javax.swing.JPanel
javax.swing.JScrollPane
javax.swing.JTextArea
   append
javax.swing.JTextField
javax.swing.text.JTextComponent
   getText
   isEditable
   setEditable
   setText

s ta n D a r D  l i B r a r Y  i t e M s  i n t r o D U C e D  i n  t h i s  C h a p t e r

r e V i e W  e x e r C i s e s



502 Chapter 10  Graphical User interfaces

•• r10.7  You can exit a graphical program by calling System.exit(0). Describe how to provide 
an Exit button that functions in the same way as closing the window. Should you 
still call setDefaultCloseOperation on the frame?

• r10.8  How would you add a counter to the program in Section 10.2.1 that prints how 
often the button has been clicked? Where is the counter updated?

•• r10.9  How would you add a counter to the program in Section 10.2.2 that shows how 
often the button has been clicked? Where is the counter updated? Where is it 
displayed?

••• r10.10  How would you reorganize the InvestmentViewer program in Section 10.2.3 if you 
needed to make AddInterestListener into a top-level class (that is, not an inner class)?

••• r10.11  Why are we using inner classes for event listeners? If Java did not have inner classes, 
could we still implement event listeners? How? 

••• r10.12  Is it a requirement to use inheritance for frames, as described in Section 10.1.3? 
(Hint: Consider Special Topic 10.1.)

• r10.13  What is the difference between a label, a text field, and a text area?

•• r10.14  Name a method that is declared in JTextArea, a method that JTextArea inherits from 
JTextComponent, and a method that JTextArea inherits from JComponent. 

•• r10.15  Why did the program in Section 10.3.2 use a text area and not a label to show how 
the interest accumulates? How could you have achieved a similar effect with an array 
of labels?

•• r10.16  Who calls the paintComponent method of a component? When does the call to the 
paintComponent method occur? 

• r10.17  In the program of Section 10.4.2, why was the oval drawn before the string? 

•• r10.18  How would you modify the chart component in Section 10.4.3 to draw a vertical bar 
chart? (Careful: The y-values grow downward.)

•• r10.19  How do you specify a text color? 

•• r10.20  What is the difference between the paintComponent and repaint methods? 

•• r10.21  Explain why the call to the getWidth method in the ChartComponent class has no explicit 
parameter.

• r10.22  How would you modify the drawItalianFlag method in How To 10.1 to draw any 
flag with a white vertical stripe in the middle and two arbitrary colors to the left and 
right? 

• P10.1  Write a program that shows a square frame filled with 100 buttons labeled 1 to 100. 
Nothing needs to happen when you press any of the buttons.

• P10.2  Enhance the ButtonViewer1 program in Section 10.2.1 so that it prints a message 
“I was clicked n times!” whenever the button is clicked. The value n should be incre-
mented with each click.

p r o G r a M M i n G  e x e r C i s e s



programming exercises 503

•• P10.3  Enhance the ButtonViewer1 program in Section 10.2.1 so that it has two buttons, each 
of which prints a message “I was clicked n times!” whenever the button is clicked. 
Each button should have a separate click count.

•• P10.4  Enhance the ButtonViewer1 program in Section 10.2.1 so that it has two buttons 
labeled A and B, each of which prints a message “Button x was clicked!”, where x is 
A or B.

•• P10.5  Implement a ButtonViewer1 program as in Exercise P10.3 using only a single listener 
class. Hint: Pass the button label to the constructor of the listener.

• P10.6  Enhance the ButtonViewer1 program so that it prints the date and time at which the 
button was clicked. Hint: System.out.println(new java.util.Date()) prints the current 
date and time.

••• P10.7  Implement the ClickListener in the ButtonViewer2 program of Section 10.2.2 as a 
regular class (that is, not an inner class). Hint: Store a reference to the label. Add a 
con structor to the listener class that sets the reference.

•• P10.8  Add error handling to the program in Section 10.3.2. If the interest rate is not a 
floating-point number, or if it less than 0, display an error message, using a JOption
Pane (see Special Topic 2.5).

• P10.9  Write a graphical application simulating a bank account. Supply text fields and but-
tons for depositing and withdrawing money, and for displaying the current balance 
in a label.

• P10.10  Write a graphical application describing an earthquake, as in Section 3.3. Supply a 
text field and button for entering the strength of the earthquake. Display the earth-
quake description in a label.

• P10.11  Write a graphical application for computing statistics of a data set. Supply a text 
field and but ton for adding floating-point values, and display the current minimum, 
maximum, and average in a label.

• P10.12  Write an application with three labeled text fields, one each for the initial amount of 
a savings account, the annual interest rate, and the number of years. Add a button 
“Calculate” and a read-only text area to display the balance of the savings account 
after the end of each year. 

•• P10.13  In the application from Exercise P10.12, replace the text area with a bar chart that 
shows the balance after the end of each year. 

• P10.14  Write a graphics program that draws your name in red, contained inside a blue rect-
angle. Provide a class NameViewer and a class NameComponent.

•• P10.15  Write a graphics program that draws 12 strings, one each for the 12 standard colors, 
besides Color.WHITE, each in its own color. Provide a class ColorNameViewer and a class 
ColorNameComponent.

•• P10.16  Write a program that draws two solid squares: one in pink and one in purple. Use 
a standard color for one of them and a custom color for the other. Provide a class 
TwoSquareViewer and a class TwoSquareComponent.



504 Chapter 10  Graphical User interfaces

•• P10.17  Write a program to plot the following face. Provide a class FaceViewer and a class Face
Component.

•• P10.18  Draw a “bull’s eye”—a set of concentric rings in alternating black and white colors. 
Hint: Fill a black circle, then fill a smaller white circle on top, and so on. Your pro-
gram should be composed of classes BullsEyeComponent and Bulls EyeViewer. 

•• P10.19  Write a program that draws a picture of a house. It could be as simple as the accom-
panying figure, or if you like, make it more elaborate (3-D, skyscraper, marble col-
umns in the entryway, whatever). 

•• P10.20  Extend Exercise P10.19 by supplying a drawHouse method in which you can specify 
the position and size. Then populate your frame with a few houses of different sizes.

•• P10.21  Extend Exercise P10.20 so that you can make the houses appear in different colors. 
The color should be passed as an argument to the drawHouse method. Populate your 
frame with houses of different colors. 

•• P10.22  Improve the output quality of the investment application in Section 10.3.2. Format 
the numbers with two decimal digits, using the String.format method. Set the font of 
the text area to a fixed width font, using the call

textArea.setFont(new Font(Font.MONOSPACED, Font.PLAIN, 12));

•• P10.23  Write a program that draws a 3D view of a cylinder.

•• P10.24  Write a program to plot the string “HELLO”, using only lines and circles. Do 
not call drawString, and do not use System.out. Make classes LetterH, LetterE, LetterL, 
and LetterO.

•• P10.25  Modify the drawItalianFlag method in How To 10.1 to draw any flag with three hori-
zontal colored stripes. Write a program that displays the German and Hungarian 
flags.



programming exercises 505

•• P10.26  Write a program that displays the Olympic rings. Color the rings in the Olympic 
colors. Provide a method drawRing that draws a ring of a given position and color.

••• P10.27  Write a program that prompts the user to enter an integer in a text field. When a 
Draw button is clicked, draw as many rectangles at random positions in a compo-
nent as the user requested. 

•• P10.28  Write a program that asks the user to enter an integer n into a text field. When a 
Draw button is clicked, draw an n-by-n grid in a component.

•• P10.29  Write a program that has a Draw button and a component in which a random mix-
ture of rectangles, ellipses, and lines, with random positions, is displayed each time 
the Draw button is clicked. 

•• P10.30  Make a bar chart to plot the following data set. Label each bar. Provide a class 
BarChartViewer and a class BarChartComponent. 

Bridge name longest span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

Mackinac 3,800

••• P10.31  Write a program that draws a clock face with a time that the user enters in two text 
fields (one for the hours, one for the minutes). 
Hint: You need to determine the angles of the hour hand and the minute hand. The 
angle of the minute hand is easy; the minute hand travels 360 degrees in 60 minutes. 
The angle of the hour hand is harder; it travels 360 degrees in 12 × 60 minutes. 

••• P10.32  Write a program that fills the window with a large ellipse, with a black outline and 
filled with your favorite color. The ellipse should touch the window boundaries, 
even if the window is resized. 

•• Business P10.33  Implement a graphical application that simulates a cash register. Provide a text field 
for the item price and two buttons for adding the item to the sale, one for taxable 
items and one for nontaxable items. In a text area, display the register tape that lists 
all items (labeling the taxable items with a *), followed by the amount due. Provide 
another button for starting a new sale.

•• Business P10.34  Write a graphical application to implement a currency converter between euros and 
U.S. dollars, and vice versa. Provide two text fields for the euro and dollar amounts. 
Between them, place two buttons labeled > and < for updating the field on the right 
or left. For this exercise, use a conversion rate of 1 euro = 1.42 U.S. dollars.



506 Chapter 10  Graphical User interfaces

1.  Modify the EmptyFrameViewer program as 
follows:
final int FRAME_WIDTH = 300;
final int FRAME_HEIGHT = 300; 
. . .
frame.setTitle("Hello, World!");

2.  Construct two JFrame objects, set each of their 
sizes, and call setVisible(true) on each of them.

3.  Add the following panel to the frame:
JButton button1 = new JButton("Yes");
JButton button2 = new JButton("No");
JPanel panel = new JPanel();
panel.add(button1);
panel.add(button2);

4.  There was no need to invoke any methods that 
are specific to FilledFrame. It is always a good 
idea to use the most general type when declar-
ing a variable. 

5.  Two: FilledFrameViewer2, FilledFrame.
6.  It’s an instance method of FilledFrame, so the 

frame is the implicit parameter.
7.  The button object is the event source. The 

listener object is the event listener.
8.  The ClickListener class implements the Action

Listener interface.
9.  You don’t. The Swing library calls the method 

when the button is clicked.
10.  Direct access is simpler than the alternative— 

passing the variable as an argument to a con-
structor or method.

11.  First add label to the panel, then add button.
12.  Then the text field is not labeled, and the user 

will not know its purpose.

13.  Integer.parseInt(textField.getText()) 
14.  A text field holds a single line of text; a text 

area holds multiple lines.
15.  The text area is intended to display the pro-

gram output. It does not collect user input.
16.  Don’t construct a JScrollPane but add the 

resultArea object directly to the panel.
17.  Here is one possible solution:

g.fillRect(0, 0, 50, 50);
g.fillRect(0, 100, 50, 50);

18.  The program shows three very elongated 
ellipses instead of the rectangles.

19.  g.drawOval(75, 75, 50, 50); 
20.  g.drawline(0, 0, 10, 30); 

g.drawline(10, 30, 20, 0);

21.  g.drawString("V", 0, 30); 
22.  0, 0, 255 
23.  First fill a big red square, then fill a small 

yellow square inside:
g.setColor(Color.RED);
g.fillRect(0, 0, 200, 200);
g.setColor(Color.YELLOW);
g.fillRect(50, 50, 100, 100);

24.  All the bars would stretch all the way to the 
right of the component since they would be 
much longer than the component’s width.

25.  The chart would not be repainted when the 
user hits the “Add Interest” button.

26.  The chart would be shown at size 0 by 0; that 
is, it would be invisible.

•• Business P10.35  Write a graphical application that produces a restaurant bill. 
Provide buttons for ten popular dishes or drink items. (You 
decide on the items and their prices.) Provide text fields for 
entering less popular items and prices. In a text area, show the 
bill, including tax and a suggested tip.

a n s W e r s  t o  s e l f - C h e C k  Q U e s t i o n s



11C h a p t e r

W507

advanCed  
User  
InterfaCes

to use layout managers to arrange  
user‑interface components in a container

to become familiar with common user‑interface components, such as  
radio buttons, check boxes, and menus 

to build programs that handle events generated by user‑interface components

to browse the Java documentation effectively

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

11.1  Layout ManageMent  W508

11.2  ChoiCes  W510

How To 11.1:  laying out a User Interface W518
Programming Tip 11.1:  Use a GUI Builder W520
Worked Example 11.1: programming a 

Working Calculator 

11.3  Menus  W521

11.4  expLoring the sWing 
DoCuMentation  W528

11.5  using tiMer events for 
aniMations  W533

11.6  Mouse events  W536

Special Topic 11.1: Keyboard events W539
Special Topic 11.2: event adapters W540
Worked Example 11.2: adding Mouse and 

Keyboard support to the Bar Chart Creator 
Video Example 11.1: designing a Baby 

naming program 



W508

the graphical applications with which you are familiar 
have many visual gadgets for information entry: buttons, 
scroll bars, menus, and so on. In this chapter, you will learn 
how to use the most common user‑interface components 
in the Java swing toolkit, and how to search the Java 
documentation for information about other components. 
You will also learn more about event handling, so you can 
use timer events in animations and process mouse events 
in interactive graphical programs. 

11.1 layout Management
Up to now, you have had limited control over 
the layout of user-interface components. You 
learned how to add components to a panel, and 
the panel arranged the components from left to 
right. However, in many applications, you need 
more sophisticated arrangements. 

In Java, you build up user interfaces by add-
ing components into containers such as panels. 
Each con tainer has its own layout manager, 
which determines how components are laid out.

By default, a JPanel uses a flow layout. 
A flow layout simply arranges its components from left to right and starts a new row 
when there is no more room in the current row. 

Another commonly used layout manager is the border layout. The border layout 
groups components into five areas: center, north, south, west, and east (see Figure 1). 
Each area can hold a single component, or it can be empty.

The border layout is the default layout manager for a frame (or, more technically, 
the frame’s content pane). But you can also use the border layout in a panel:

panel.setLayout(new BorderLayout());

Now the panel is controlled by a border layout, not the flow layout. When adding a 
component, you specify the position, like this:

panel.add(component, BorderLayout.NORTH); 

A layout manager arranges user- 
interface components.

User‑interface 
components are 
arranged by  
placing them  
inside containers. 
Containers can be 
placed inside larger 
containers.

each container has a 
layout manager that 
directs the 
arrangement of its 
components.

three useful layout 
managers are the 
border layout,  
flow layout, and  
grid layout.

When adding a 
component to a 
container with the 
border layout, 
specify the NORTH, 
SOUTH, WEST, EAST, or 
CENTER position.

figure 1   
Components expand to fill  
space in the Border layout

North

West Center East

South



11.1 layout Management  W509

figure 2  the Grid layout

The grid layout manager arranges components in a grid with a fixed number of rows 
and columns. All components are resized so that they all have the same width and 
height. Like the border layout, it also expands each component to fill the entire allot-
ted area. (If that is not desirable, you need to place each component inside a panel.) 
Figure 2 shows a number pad panel that uses a grid layout. To create a grid layout, 
you supply the number of rows and columns in the constructor, then add the compo-
nents, row by row, left to right: 

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
buttonPanel.add(button9);
buttonPanel.add(button4);
. . .     

Sometimes you want to have a tabular arrangement of the components where col-
umns have different sizes or one component spans multiple columns. A more com-
plex layout manager called the grid bag lay out can handle these situations. The grid 
bag layout is quite complex to use, however, and we do not cover it in this book; 
see, for example, Cay S. Horstmann and Gary Cornell, Core Java 2 Volume 1: Fun
damentals, 8th edition (Prentice Hall, 2008), for more information. Java 6 introduced 
a group layout that is designed for use by interactive tools—see Programming Tip 
11.1 on page W520. 

Fortunately, you can create acceptable-looking layouts in nearly all situations by 
nesting panels. You give each panel an appropriate layout manager. Panels don’t have 
visible borders, so you can use as many panels as you need to organize your compo-
nents. Figure 3 shows an example. The keypad buttons are contained in a panel with 
grid layout. That panel is itself contained in a larger panel with border layout. The 
text field is in the northern position of the larger panel. 

the content pane of a 
frame has a border 
layout by default. a 
panel has a flow 
layout by default.

figure 3  nesting panels

JTextField
in NORTH position

JPanel
with GridLayout 
in CENTER position



W510 Chapter 11  advanced User Interfaces  

The following code produces the arrange ment in Figure 3:
JPanel keypadPanel = new JPanel();
keypadPanel.setLayout(new BorderLayout());
buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
// . . .
keypadPanel.add(buttonPanel, BorderLayout.CENTER);
JTextField display = new JTextField();
keypadPanel.add(display, BorderLayout.NORTH);

1.  What happens if you place two buttons in the northern position of a border 
layout? Try it out with a small program.

2.  How do you add two buttons to the northern position of a frame so that they 
are shown next to each other? 

3.  How can you stack three buttons one above the other?
4.  What happens when you place one button in the northern position of a border 

layout and another in the center position? Try it out with a small program if you 
aren’t sure.

5.  Some calculators have a double-wide 0 button, as shown below. How can you 
achieve that?

practice it  Now you can try these exercises at the end of the chapter: R11.1, R11.3, P11.1.

11.2 Choices
In the following sections, you will see how to present a finite set of choices to the 
user. Which Swing component you use depends on whether the choices are mutually 
exclusive or not, and on the amount of space you have for displaying the choices.

11.2.1 radio Buttons

If the choices are mutually exclusive, use a set of 
radio buttons. In a radio button set, only one 
button can be selected at a time. When the user 
selects another button in the same set, the pre-
viously selected button is automatically turned 
off. (These buttons are called radio buttons 
because they work like the sta tion selector but-
tons on a car radio: If you select a new station, 

o n L i n e  e x a M p L e

the code for a  
calculator’s user 
interface.

s e L f   C h e C k

In an old fashioned radio, pushing down 
one station button released the others.

for a small set of 
mutually exclusive 
choices, use a group 
of radio buttons or a 
combo box.



11.2 Choices  W511

the old station is automatically dese lected.) For example, in Figure 4, the font sizes are 
mutually exclusive. You can select small, medium, or large, but not a combination of 
them. 

To create a set of radio buttons, first create each button individually, and then add 
all buttons in the set to a ButtonGroup object: 

JRadioButton smallButton = new JRadioButton("Small");
JRadioButton mediumButton = new JRadioButton("Medium");
JRadioButton largeButton = new JRadioButton("Large");

ButtonGroup group = new ButtonGroup();
group.add(smallButton);
group.add(mediumButton);
group.add(largeButton);   

Note that the button group does not place the buttons close to each other in the con-
tainer. The purpose of the button group is simply to find out which buttons to turn 
off when one of them is turned on. It is still your job to arrange the buttons on the 
screen. 

The isSelected method is called to find out whether a button is currently selected 
or not. For example, 

if (largeButton.isSelected()) { size = LARGE_SIZE; }

Unfortunately, there is no convenient way of finding out which button in a group 
is currently selected. You have to call isSelected on each button. Because users will 
expect one radio button in a radio button group to be selected, call setSelected(true) 
on the default radio button before making the enclosing frame visible. 

If you have multiple button groups, it is a good idea to group them together visu-
ally. It is a good idea to use a panel for each set of radio buttons, but the panels them-
selves are invisible. You can add a border to a panel to make it visible. In Figure 4, for 
example, the panels containing the Size radio buttons and Style check boxes have 
borders. 

add radio buttons to 
a ButtonGroup so that 
only one button in 
the group is selected 
at any time.

You can place a 
border around a 
panel to group its 
contents visually.

figure 4  a Combo Box, Check 
Boxes, and radio Buttons



W512 Chapter 11  advanced User Interfaces  

There are a large number of border types. We will show only a couple of variations 
and leave it to the border enthusiasts to look up the others in the Swing documenta-
tion. The EtchedBorder class yields a bor der with a three-dimensional, etched effect. 
You can add a border to any component, but most commonly you apply it to a panel: 

JPanel panel = new JPanel();
panel.setBorder(new EtchedBorder());

If you want to add a title to the border (as in Figure 4), you need to construct a Titled-
Border. You make a titled border by supplying a basic border and then the title you 
want. Here is a typical example: 

panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));

11.2.2 Check Boxes

A check box is a user-interface component with two states: checked and unchecked. 
You use a group of check boxes when one selection does not exclude another. For 
example, the choices for “Bold” and “Italic” in Figure 4 are not exclusive. You can 
choose either, both, or neither. Therefore, they are imple mented as a set of separate 
check boxes. Radio buttons and check boxes have different visual appearances. Radio 
buttons are round and have a black dot when selected. Check boxes are square and 
have a check mark when selected. 

You construct a check box by providing the name in the constructor: 

JCheckBox italicCheckBox = new JCheckBox("Italic");

Because check box settings do not exclude each other, you do not place a set of check 
boxes inside a but ton group. 

As with radio buttons, you use the isSelected method to find out whether a check 
box is currently checked or not.

11.2.3 Combo Boxes

If you have a large number of choices, you don’t want to make a set of radio buttons, 
because that would take up a lot of space. Instead, you can use a combo box. This 
component is called a combo box because it is a combination of a list and a text field. 
The text field displays the name of the current selection. When you click on the arrow 
to the right of the text field of a combo box, a list of selections drops down, and you 
can choose one of the items in the list (see Figure 5). 

for a binary choice, 
use a check box. 

for a large set of 
choices, use a  
combo box.

figure 5  an open Combo Box



11.2 Choices  W513

figure 6  the Components of the FontFrame

JLabel
in CENTER position

JPanel
with GridLayout 
in SOUTH position

If the combo box is editable, you can also type in your own selection. To make a 
combo box editable, call the setEditable method. 

You add strings to a combo box with the addItem method. 
JComboBox facenameCombo = new JComboBox();
facenameCombo.addItem("Serif");
facenameCombo.addItem("SansSerif");
. . .

You get the item that the user has selected by calling the getSelectedItem method. 
However, because combo boxes can store other objects in addition to strings, the get-
SelectedItem method has return type Object. Hence, in our example, you must cast the 
returned value back to String:

String selectedString = (String) facenameCombo.getSelectedItem();  

You can select an item for the user with the setSelectedItem method.
Radio buttons, check boxes, and combo boxes generate an ActionEvent whenever 

the user selects an item. In the following program, we don’t care which component 
was clicked—all components notify the same listener object. Whenever the user 
clicks on any one of them, we simply ask each component for its current content, 
using the isSelected and getSelectedItem methods. We then redraw the label with the 
new font.

Figure 6 shows how the components are arranged in the frame.

section_2/fontviewer.java

1 import javax.swing.JFrame;
2 
3 /**
4    This program allows the user to view font effects.
5 */
6 public class FontViewer
7 { 

radio buttons, check 
boxes, and combo 
boxes generate 
action events, just 
as buttons do.



W514 Chapter 11  advanced User Interfaces  

8    public static void main(String[] args)
9    { 

10       JFrame frame = new FontFrame();
11       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12       frame.setTitle("FontViewer");
13       frame.setVisible(true);      
14    }
15 }

section_2/fontframe.java

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.GridLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import javax.swing.ButtonGroup;
7 import javax.swing.JButton;
8 import javax.swing.JCheckBox;
9 import javax.swing.JComboBox;

10 import javax.swing.JFrame;
11 import javax.swing.JLabel;
12 import javax.swing.JPanel;
13 import javax.swing.JRadioButton;
14 import javax.swing.border.EtchedBorder;
15 import javax.swing.border.TitledBorder;
16 
17 /**
18    This frame contains a text sample and a control panel
19    to change the font of the text.
20 */
21 public class FontFrame extends JFrame
22 {
23    private static final int FRAME_WIDTH = 300;
24    private static final int FRAME_HEIGHT = 400;
25 
26    private JLabel label;
27    private JCheckBox italicCheckBox;
28    private JCheckBox boldCheckBox;
29    private JRadioButton smallButton;
30    private JRadioButton mediumButton;
31    private JRadioButton largeButton;
32    private JComboBox facenameCombo;
33    private ActionListener listener;
34 
35    /**
36       Constructs the frame.
37    */
38    public FontFrame()
39    { 
40       // Construct text sample
41       label = new JLabel("Big Java");
42       add(label, BorderLayout.CENTER);
43 
44       // This listener is shared among all components
45       listener = new ChoiceListener();
46 
47       createControlPanel();
48       setLabelFont();



11.2 Choices  W515

49       setSize(FRAME_WIDTH, FRAME_HEIGHT);
50    }
51 
52    class ChoiceListener implements ActionListener
53    { 
54       public void actionPerformed(ActionEvent event)
55       { 
56          setLabelFont();
57       }
58    }
59    
60    /**
61       Creates the control panel to change the font.
62    */
63    public void createControlPanel()
64    {
65       JPanel facenamePanel = createComboBox();
66       JPanel sizeGroupPanel = createCheckBoxes();
67       JPanel styleGroupPanel = createRadioButtons();
68 
69       // Line up component panels
70 
71       JPanel controlPanel = new JPanel();
72       controlPanel.setLayout(new GridLayout(3, 1));
73       controlPanel.add(facenamePanel);
74       controlPanel.add(sizeGroupPanel);
75       controlPanel.add(styleGroupPanel);
76 
77       // Add panels to content pane
78 
79       add(controlPanel, BorderLayout.SOUTH);
80    }
81 
82    /**
83       Creates the combo box with the font style choices.
84       @return the panel containing the combo box
85    */
86    public JPanel createComboBox()
87    {
88       facenameCombo = new JComboBox();
89       facenameCombo.addItem("Serif");
90       facenameCombo.addItem("SansSerif");
91       facenameCombo.addItem("Monospaced");
92       facenameCombo.setEditable(true);
93       facenameCombo.addActionListener(listener);
94 
95       JPanel panel = new JPanel();
96       panel.add(facenameCombo);
97       return panel;
98    }
99 

100     /**
101       Creates the check boxes for selecting bold and italic styles.
102       @return the panel containing the check boxes
103    */
104    public JPanel createCheckBoxes()
105    {
106       italicCheckBox = new JCheckBox("Italic");
107       italicCheckBox.addActionListener(listener);
108 



W516 Chapter 11  advanced User Interfaces  

109       boldCheckBox = new JCheckBox("Bold");
110       boldCheckBox.addActionListener(listener);
111 
112       JPanel panel = new JPanel();
113       panel.add(italicCheckBox);
114       panel.add(boldCheckBox);
115       panel.setBorder(new TitledBorder(new EtchedBorder(), "Style"));
116 
117       return panel;
118    }
119 
120    /**
121       Creates the radio buttons to select the font size.
122       @return the panel containing the radio buttons
123    */
124    public JPanel createRadioButtons()
125    {
126       smallButton = new JRadioButton("Small");
127       smallButton.addActionListener(listener);
128 
129       mediumButton = new JRadioButton("Medium");
130       mediumButton.addActionListener(listener);
131 
132       largeButton = new JRadioButton("Large");
133       largeButton.addActionListener(listener);
134       largeButton.setSelected(true);
135 
136       // Add radio buttons to button group
137 
138       ButtonGroup group = new ButtonGroup();
139       group.add(smallButton);
140       group.add(mediumButton);
141       group.add(largeButton);
142 
143       JPanel panel = new JPanel();
144       panel.add(smallButton);
145       panel.add(mediumButton);
146       panel.add(largeButton);
147       panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
148 
149       return panel;
150    }
151 
152    /**
153       Gets user choice for font name, style, and size
154       and sets the font of the text sample.
155    */
156    public void setLabelFont()
157    { 
158       // Get font name
159       String facename = (String) facenameCombo.getSelectedItem();
160 
161       // Get font style
162       
163       int style = 0;
164       if (italicCheckBox.isSelected()) 
165       { 
166          style = style + Font.ITALIC; 
167       }



11.2 Choices  W517

168       if (boldCheckBox.isSelected())
169       { 
170          style = style + Font.BOLD; 
171       }
172 
173       // Get font size   
174 
175       int size = 0;
176 
177       final int SMALL_SIZE = 24;
178       final int MEDIUM_SIZE = 36;
179       final int LARGE_SIZE = 48;
180 
181       if (smallButton.isSelected()) { size = SMALL_SIZE; }
182       else if (mediumButton.isSelected()) { size = MEDIUM_SIZE; }
183       else if (largeButton.isSelected()) { size = LARGE_SIZE; }
184 
185       // Set font of text field
186       
187       label.setFont(new Font(facename, style, size));      
188       label.repaint();
189    }
190 }

6.  What is the advantage of a JComboBox over a set of radio buttons? What is the 
disadvantage?

7.  What happens when you put two check boxes into a button group? Try it out if 
you are not sure.

8.  How can you nest two etched borders, like this?

9.  Why do all user-interface components in the FontFrame class share the same 
listener?

10.  Why was the combo box placed inside a panel? What would have happened if it 
had been added directly to the control panel?

11.  How could the following user interface be improved?

practice it  Now you can try these exercises at the end of the chapter: R11.11, P11.3, P11.4.

s e L f   C h e C k



W518 Chapter 11  advanced User Interfaces  

step 1  Make a sketch of your desired component layout.

Draw all the buttons, labels, text fields, and borders on a sheet of paper. Graph paper works 
best.

Here is an example—a user interface for ordering 
pizza. The user interface contains

• Three radio buttons
• Two check boxes
• A label: “Your Price:”
• A text field
• A border

step 2  Find groupings of adjacent components with the same layout.

Usually, the component arrangement is complex enough that you need to use several panels, 
each with its own lay out manager. Start by looking at adjacent components that are arranged 
top to bottom or left to right. If several com ponents are surrounded by a border, they should 
be grouped together. 

Here are the groupings from the pizza user interface:

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

�

�

step 3  Identify layouts for each group.

When components are arranged horizontally, choose a flow layout. When components are 
arranged vertically, use a grid layout with one column.

In the pizza user interface example, you would choose
• A (3, 1) grid layout for the radio buttons
• A (2, 1) grid layout for the check boxes
• A flow layout for the label and text field

step 4  Group the groups together.

Look at each group as one blob, and group the blobs together into larger groups, just as you 
grouped the compo nents in the preceding step. If you note one large blob surrounded by 
smaller blobs, you can group them together in a border layout.

hoW to 11.1 Laying out a user interface

A graphical user interface is made up of components such as buttons and text fields. The Swing 
library uses contain ers and layout managers to arrange these components. This How To 
explains how to group components into con tainers and how to pick the right layout managers.

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

�

�



11.2 Choices  W519

You may have to repeat the grouping again if you have a very complex user interface. You 
are done if you have arranged all groups in a single container.

For example, the three component groups of the pizza user interface can be arranged as:
• A group containing the first two component groups, placed in the center of a container 

with a border layout.
• The third component group, in the southern area of that container.

in CENTER position

in SOUTH position

In this step, you may run into a couple of complications. The group “blobs” tend to vary in 
size more than the indi vidual components. If you place them inside a grid layout, the grid lay-
out forces them all to be the same size. Also, you occasionally would like a component from 
one group to line up with a component from another group, but there is no way for you to 
communicate that intent to the layout managers.

These problems can be overcome by using more sophisticated layout managers or imple-
menting a custom layout manager. However, those techniques are beyond the scope of this 
book. Sometimes, you may want to start over with Step 1, using a component layout that is 
easier to manage. Or you can decide to live with minor imperfections of the layout. Don’t 
worry about achieving the perfect layout—after all, you are learning programming, not user- 
interface design.

step 5  Write the code to generate the layout.

This step is straightforward but potentially tedious, especially if you have a large number of 
components.

Start by constructing the components. Then construct a panel for each component group 
and set its layout man ager if it is not a flow layout (the default for panels). Add a border to the 
panel if required. Finally, add the compo nents to their panels. Continue in this fashion until 
you reach the outermost containers, which you add to the frame. 

Here is an outline of the code required for the pizza user interface:

JPanel radioButtonPanel = new JPanel();
radioButtonPanel.setLayout(new GridLayout(3, 1));
radioButtonPanel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
radioButtonPanel.add(smallButton);
radioButtonPanel.add(mediumButton);
radioButtonPanel.add(largeButton);

JPanel checkBoxPanel = new JPanel();
checkBoxPanel.setLayout(new GridLayout(2, 1));
checkBoxPanel.add(pepperoniButton());
checkBoxPanel.add(anchoviesButton());

JPanel pricePanel = new JPanel(); // Uses FlowLayout by default
pricePanel.add(new JLabel("Your Price: "));
pricePanel.add(priceTextField);



W520 Chapter 11  advanced User Interfaces  

JPanel centerPanel = new JPanel(); // Uses FlowLayout
centerPanel.add(radioButtonPanel);
centerPanel.add(checkBoxPanel);

// Frame uses BorderLayout by default 
add(centerPanel, BorderLayout.CENTER);
add(pricePanel, BorderLayout.SOUTH);

use a gui Builder

As you have seen, implementing even a simple graphical user interface in Java is quite tedious. 
You have to write a lot of code for constructing components, using layout managers, and pro-
viding event handlers. Most of the code is repetitive. 

A GUI builder takes away much of the tedium. Most GUI builders help you in three ways:
• You drag and drop components onto a panel. The GUI builder writes the layout manage-

ment code for you. 
• You customize components with a dialog box, setting properties such as fonts, colors, text, 

and so on. The GUI builder writes the customization code for you. 
• You provide event handlers by picking the event to process and providing just the code 

snippet for the listener method. The GUI builder writes the boilerplate code for attaching 
a listener object. 

Java 6 introduced GroupLayout, a powerful layout manager that was specifically designed to be 
used by GUI builders. The free NetBeans development environment, available from http://
netbeans.org, makes use of this layout man ager—see Figure 7.

programming tip 11.1 

figure 7  a GUI Builder

The GroupLayout 
manages the components 

on this form

Use this dialog box 
to edit component 

properties

Click here to
view generated

source code

Drag components 
from this palette 

onto the form



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

11.3 Menus  W521

If you need to build a complex user interface, you will find that learning to use a GUI 
builder is a very worth while investment. You will spend less time writing boring code, and 
you will have more fun designing your user interface and focusing on the functionality of your 
program.

11.3 Menus
Anyone who has ever used a graphical user interface is familiar with pull-down 
menus (see Figure 8). At the top of the frame is a menu bar that contains the top-level 
menus. Each menu is a collection of menu items and submenus. 

The sample program for this section builds up a small but typical menu and traps 
the action events from the menu items. The program allows the user to specify the 
font for a label by selecting a face name, font size, and font style. In Java it is easy to 
create these menus. 

You add the menu bar to the frame:
public class MyFrame extends JFrame
{
   public MyFrame()
   {
      JMenuBar menuBar = new JMenuBar();
      setJMenuBar(menuBar);
      . . .
   }
   . . .
}

WorKed exaMple 11.1 programming a Working Calculator

In this Worked Example, we implement arithmetic and scientific operations for a calculator. 
The sample program in Section 11.1 showed how to lay out the buttons for a simple calculator, 
and we use that program as a starting point.

a frame contains a 
menu bar. the menu 
bar contains menus. 
a menu contains 
submenus and  
menu items.

figure 8   
pull‑down Menus

Menu bar

Submenu

Menu item

Menu



W522 Chapter 11  advanced User Interfaces  

A menu provides a list of available choices. 

Menus are then added to the menu bar:
JMenu fileMenu = new JMenu("File");
JMenu fontMenu = new JMenu("Font");
menuBar.add(fileMenu);
menuBar.add(fontMenu);

You add menu items and submenus with the add method: 
JMenuItem exitItem = new JMenuItem("Exit");
fileMenu.add(exitItem);

JMenu styleMenu = new JMenu("Style");
fontMenu.add(styleMenu); // A submenu

A menu item has no further submenus. When the user selects a menu item, the menu 
item sends an action event. Therefore, you want to add a listener to each menu item: 

ActionListener listener = new ExitItemListener();
exitItem.addActionListener(listener);

You add action listeners only to menu items, not to menus or the menu bar. When the 
user clicks on a menu name and a submenu opens, no action event is sent. 

To keep the program readable, it is a good idea to use a separate method for each 
menu or set of related menus. For example,

public JMenu createFaceMenu()
{
   JMenu menu = new JMenu("Face");
   menu.add(createFaceItem("Serif"));
   menu.add(createFaceItem("SansSerif"));
   menu.add(createFaceItem("Monospaced"));
   return menu;
}  

Now consider the createFaceItem method. It has a string parameter variable for the 
name of the font face. When the item is selected, its action listener needs to 

1. Set the current face name to the menu item text.
2. Make a new font from the current face, size, and style, and apply it to the label.

We have three menu items, one for each supported face name. Each of them needs to 
set a different name in the first step. Of course, we can make three listener classes Ser-
ifListener, SansSerifListener, and MonospacedListener, but that is not very elegant. After 
all, the actions only vary by a single string. We can store that string inside the listener 
class and then make three objects of the same listener class:

class FaceItemListener implements ActionListener
{
   private String name;
   
   public FaceItemListener(String newName) { name = newName; }

Menu items generate 
action events.



11.3 Menus  W523

   public void actionPerformed(ActionEvent event)
   {
      faceName = name; // Sets an instance variable of the frame class
      setLabelFont(); 
   }
}

Now we can install a listener object with the appropriate name:
public JMenuItem createFaceItem(String name)
{
   JMenuItem item = new JMenuItem(name);      
   ActionListener listener = new FaceItemListener(name);
   item.addActionListener(listener);
   return item;
}

This approach is still a bit tedious. We can do better by using a local inner class (see 
Special Topic 10.2). When we move the declaration of the inner class inside the cre-
ateFaceItem method, the actionPerformed method can access the name parameter variable 
directly. However, we need to observe a technical rule. Because name is a local variable, 
it must be declared as final to be accessible from an inner class method. 

public JMenuItem createFaceItem(final String name) 
// Final variables can be accessed from an inner class method
{
   class FaceItemListener implements ActionListener // A local inner class
   {
      public void actionPerformed(ActionEvent event)
      {
         facename = name; // Accesses the local variable name
         setLabelFont();
      }
   }      

   JMenuItem item = new JMenuItem(name);      
   ActionListener listener = new FaceItemListener();
   item.addActionListener(listener);
   return item;
}

The same strategy is used for the createSizeItem and createStyleItem methods.

section_3/fontviewer2.java

1 import javax.swing.JFrame;
2 
3 /**
4    This program uses a menu to display font effects.
5 */
6 public class FontViewer2
7 { 
8    public static void main(String[] args)
9    { 

10       JFrame frame = new FontFrame2();
11       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12       frame.setTitle("FontViewer");
13       frame.setVisible(true);      
14    }
15 }



W524 Chapter 11  advanced User Interfaces  

section_3/fontframe2.java

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5 import javax.swing.JFrame;
6 import javax.swing.JLabel;
7 import javax.swing.JMenu;
8 import javax.swing.JMenuBar;
9 import javax.swing.JMenuItem;

10 
11 /**
12    This frame has a menu with commands to change the font 
13    of a text sample.
14 */
15 public class FontFrame2 extends JFrame
16 {
17    private static final int FRAME_WIDTH = 300;
18    private static final int FRAME_HEIGHT = 400;
19 
20    private JLabel label;
21    private String facename;
22    private int fontstyle;
23    private int fontsize;
24 
25    /**
26       Constructs the frame.
27    */
28    public FontFrame2()
29    { 
30       // Construct text sample     
31       label = new JLabel("Big Java");
32       add(label, BorderLayout.CENTER);
33 
34       // Construct menu
35       JMenuBar menuBar = new JMenuBar();     
36       setJMenuBar(menuBar);
37       menuBar.add(createFileMenu());
38       menuBar.add(createFontMenu());
39 
40       facename = "Serif";
41       fontsize = 24;
42       fontstyle = Font.PLAIN;
43 
44       setLabelFont();
45       setSize(FRAME_WIDTH, FRAME_HEIGHT);
46    }
47 
48    class ExitItemListener implements ActionListener
49    {
50       public void actionPerformed(ActionEvent event)
51       {
52          System.exit(0);
53       }
54    }      
55 
56    /**
57       Creates the File menu.



11.3 Menus  W525

58       @return the menu
59    */
60    public JMenu createFileMenu()
61    {
62       JMenu menu = new JMenu("File");
63       JMenuItem exitItem = new JMenuItem("Exit");    
64       ActionListener listener = new ExitItemListener();
65       exitItem.addActionListener(listener);
66       menu.add(exitItem);
67       return menu;
68    }
69 
70    /**
71       Creates the Font submenu.
72       @return the menu
73    */
74    public JMenu createFontMenu()
75    {
76       JMenu menu = new JMenu("Font");
77       menu.add(createFaceMenu());
78       menu.add(createSizeMenu());
79       menu.add(createStyleMenu());
80       return menu;
81    } 
82 
83    /**
84       Creates the Face submenu.
85       @return the menu
86    */
87    public JMenu createFaceMenu()
88    {
89       JMenu menu = new JMenu("Face");
90       menu.add(createFaceItem("Serif"));
91       menu.add(createFaceItem("SansSerif"));
92       menu.add(createFaceItem("Monospaced"));
93       return menu;
94    } 
95 
96     /**
97       Creates the Size submenu.
98       @return the menu
99    */

100    public JMenu createSizeMenu()
101    {
102       JMenu menu = new JMenu("Size");
103       menu.add(createSizeItem("Smaller", -1));
104       menu.add(createSizeItem("Larger", 1));
105       return menu;
106    } 
107 
108    /**
109       Creates the Style submenu.
110       @return the menu
111    */
112    public JMenu createStyleMenu()
113    {
114       JMenu menu = new JMenu("Style");
115       menu.add(createStyleItem("Plain", Font.PLAIN));
116       menu.add(createStyleItem("Bold", Font.BOLD));



W526 Chapter 11  advanced User Interfaces  

117       menu.add(createStyleItem("Italic", Font.ITALIC));
118       menu.add(createStyleItem("Bold Italic", Font.BOLD 
119              + Font.ITALIC));
120       return menu;
121    } 
122 
123    /**
124       Creates a menu item to change the font face and set its action listener.
125       @param name the name of the font face
126       @return the menu item
127    */
128    public JMenuItem createFaceItem(final String name)
129    {
130       class FaceItemListener implements ActionListener
131       {
132          public void actionPerformed(ActionEvent event)
133          {
134             facename = name;
135             setLabelFont();
136          }
137       }      
138 
139       JMenuItem item = new JMenuItem(name);      
140       ActionListener listener = new FaceItemListener();
141       item.addActionListener(listener);
142       return item;
143    }
144 
145    /**
146       Creates a menu item to change the font size
147       and set its action listener.
148       @param name the name of the menu item
149       @param increment the amount by which to change the size
150       @return the menu item
151    */
152    public JMenuItem createSizeItem(String name, final int increment)
153    {
154       class SizeItemListener implements ActionListener
155       {
156          public void actionPerformed(ActionEvent event)
157          {
158             fontsize = fontsize + increment;
159             setLabelFont();
160          }
161       }      
162 
163       JMenuItem item = new JMenuItem(name);      
164       ActionListener listener = new SizeItemListener();
165       item.addActionListener(listener);
166       return item;
167    }
168 
169    /**
170       Creates a menu item to change the font style
171       and set its action listener.
172       @param name the name of the menu item
173       @param style the new font style
174       @return the menu item
175    */



11.3 Menus  W527

176    public JMenuItem createStyleItem(String name, final int style)
177    {
178       class StyleItemListener implements ActionListener
179       {
180          public void actionPerformed(ActionEvent event)
181          {
182             fontstyle = style;
183             setLabelFont();
184          }
185       }      
186 
187       JMenuItem item = new JMenuItem(name);      
188       ActionListener listener = new StyleItemListener();
189       item.addActionListener(listener);
190       return item;
191    }
192 
193    /**
194       Sets the font of the text sample.
195    */
196    public void setLabelFont()
197    { 
198       Font f = new Font(facename, fontstyle, fontsize);
199       label.setFont(f);
200    }
201 }

12.  Why do JMenu objects not generate action events?
13.  Can you add a menu item directly to the menu bar? Try it out. What happens?
14.  Why is the increment parameter variable in the createSizeItem method declared 

as final?
15.  Why can’t the createFaceItem method simply set the faceName instance variable, 

like this:
class FaceItemListener implements ActionListener
{  
   public void actionPerformed(ActionEvent event)
   {  
      setLabelFont();
   }
}

public JMenuItem createFaceItem(String name)
{
   JMenuItem item = new JMenuItem(name);      
   faceName = name;
   ActionListener listener = new FaceItemListener();
   item.addActionListener(listener);
   return item;
}

16.  In this program, the font specification (name, size, and style) is stored in instance 
variables. Why was this not necessary in the program of the previous section?

practice it  Now you can try these exercises at the end of the chapter: R11.12, P11.6, P11.7.

s e L f   C h e C k



W528 Chapter 11  advanced User Interfaces  

11.4 exploring the swing documentation
In the preceding sections, you saw the 
basic properties of the most common user-
interface components. We purposefully 
omitted many options and variations to 
simplify the discussion. You can go a long 
way by using only the simplest properties 
of these components. If you want to imple-
ment a more sophisti cated effect, you can 
look inside the Swing documentation. You 
may find the documentation intimidating 
at first glance, though. The purpose of this 
section is to show you how you can use the 
documentation to your advantage without 
being overwhelmed. 

As an example, consider a program for mixing colors by specifying the red, green, 
and blue values. How can you specify the colors? Of course, you could supply three 
text fields, but sliders would be more convenient for users of your program (see 
Figure 9).

The Swing user-interface toolkit has a large set of user-interface components. How 
do you know if there is a slider? You can buy a book that illustrates all Swing compo-
nents. Or you can run the sample application included in the Java Development Kit 
that shows off all Swing components (see Figure 10). Or you can look at the names 
of all of the classes that start with J and decide that JSlider may be a good candidate.   

Next, you need to ask yourself a few questions: 

• How do I construct a JSlider?
• How can I get notified when the user has moved it?
• How can I tell to which value the user has set it?

In order to use the Swing library effectively, 
you need to study the API documentation.

You should learn to 
navigate the apI 
documentation to 
find out more about 
user‑interface 
components.

figure 9  a Color viewer with sliders



11.4 exploring the swing documentation  W529

figure 10   
the swingset demo

When you look at the documentation of the JSlider class, you will probably not be 
happy. There are over 50 methods in the JSlider class and over 250 inherited methods, 
and some of the method descriptions look downright scary, such as the one in 
Figure 11. Apparently some folks out there are concerned about the valueIs Adjusting 
property, whatever that may be, and the designers of this class felt it necessary to 

figure 11  a Mysterious Method description from the apI documentation



W530 Chapter 11  advanced User Interfaces  

sup ply a method to tweak that property. Until you too feel that need, your best bet is 
to ignore this method. As the author of an introductory book, it pains me to tell you 
to ignore certain facts. But the truth of the matter is that the Java library is so large 
and complex that nobody understands it in its entirety, not even the designers of Java 
themselves. You need to develop the ability to separate fundamental concepts from 
ephemeral minutiae. For example, it is important that you understand the concept of 
event handling. Once you understand the concept, you can ask the question, “What 
event does the slider send when the user moves it?” But it is not important that you 
memorize how to set tick marks or that you know how to implement a slider with a 
custom look and feel. 

Let’s go back to our fundamental questions. In Java 6, there are six constructors for 
the JSlider class. You want to learn about one or two of them. You must strike a bal-
ance somewhere between the trivial and the bizarre. Consider 

public JSlider()
    Creates a horizontal slider with the range 0 to 100 and an initial value of 50.

Maybe that is good enough for now, but what if you want another range or initial 
value? It seems too lim ited. 

On the other side of the spectrum, there is 
public JSlider(BoundedRangeModel brm)
     Creates a horizontal slider using the specified BoundedRangeModel.

Whoa! What is that? You can click on the BoundedRangeModel link to get a long explana-
tion of this class. This appears to be some internal mechanism for the Swing imple-
mentors. Let’s try to avoid this construc tor if we can. Looking further, we find

public JSlider(int min, int max, int value)
     Creates a horizontal slider using the specified min, max, and value.

This sounds general enough to be useful and simple enough to be usable. You might 
want to stash away the fact that you can have vertical sliders as well. 

Next, you want to know what events a slider generates. There is no addAction-
Listener method. That makes sense. Adjusting a slider seems different from clicking a 
button, and Swing uses a different event type for these events. There is a method

public void addChangeListener(ChangeListener l) 

Click on the ChangeListener link to find out more about this interface. It has a single 
method

void stateChanged(ChangeEvent e)

Apparently, that method is called whenever the user moves the slider. What is a Change-
Event? Once again, click on the link, to find out that this event class has no methods of 
its own, but it inherits the getSource method from its superclass Event Object. The get-
Source method tells us which component generated this event, but we don’t need that 
information—we know that the event came from the slider.

Now let’s make a plan: Add a change event listener to each slider. When the slider 
is changed, the stat eChanged method is called. Find out the new value of the slider. 
Recompute the color value and repaint the color panel. That way, the color panel is 
continually repainted as the user moves one of the sliders.

To compute the color value, you will still need to get the current value of the slider. 
Look at all the methods that start with get. Sure enough, you find 

public int getValue()
     Returns the slider’s value.   



11.4 exploring the swing documentation  W531

figure 12  the Components of the Color viewer frame

JPanel
in CENTER position

JPanel
with GridLayout 
in SOUTH position

Now you know everything you need to write the program. The program uses one 
new Swing component and one event listener of a new type. After having mastered 
the basics, you may want to explore the capa bilities of the component further, for 
example by adding tick marks—see Exercise P11.9. 

Figure 12 shows how the components are arranged in the frame. 

section_4/Colorviewer.java

1 import javax.swing.JFrame;
2 
3 public class ColorViewer
4 { 
5    public static void main(String[] args)
6    { 
7       JFrame frame = new ColorFrame();
8       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9       frame.setVisible(true);

10    }
11 }

section_4/Colorframe.java

1 import java.awt.BorderLayout;
2 import java.awt.Color;
3 import java.awt.GridLayout;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JSlider;
8 import javax.swing.event.ChangeListener;
9 import javax.swing.event.ChangeEvent;

10 
11 public class ColorFrame extends JFrame
12 { 
13    private static final int FRAME_WIDTH = 300;
14    private static final int FRAME_HEIGHT = 400;



W532 Chapter 11  advanced User Interfaces  

15 
16    private JPanel colorPanel;
17    private JSlider redSlider;
18    private JSlider greenSlider;
19    private JSlider blueSlider;
20 
21    public ColorFrame()
22    { 
23       colorPanel = new JPanel();
24       
25       add(colorPanel, BorderLayout.CENTER);
26       createControlPanel();
27       setSampleColor();
28       setSize(FRAME_WIDTH, FRAME_HEIGHT);
29    }
30 
31    class ColorListener implements ChangeListener
32    { 
33       public void stateChanged(ChangeEvent event)
34       { 
35          setSampleColor();
36       }
37    }   
38 
39    public void createControlPanel()
40    {
41       ChangeListener listener = new ColorListener();
42 
43       redSlider = new JSlider(0, 255, 255);
44       redSlider.addChangeListener(listener);
45 
46       greenSlider = new JSlider(0, 255, 175);
47       greenSlider.addChangeListener(listener);
48 
49       blueSlider = new JSlider(0, 255, 175);
50       blueSlider.addChangeListener(listener);
51       
52       JPanel controlPanel = new JPanel();
53       controlPanel.setLayout(new GridLayout(3, 2));
54 
55       controlPanel.add(new JLabel("Red"));
56       controlPanel.add(redSlider);
57 
58       controlPanel.add(new JLabel("Green"));
59       controlPanel.add(greenSlider);
60 
61       controlPanel.add(new JLabel("Blue"));
62       controlPanel.add(blueSlider);
63 
64       add(controlPanel, BorderLayout.SOUTH);      
65    }
66    
67    /**
68       Reads the slider values and sets the panel to
69       the selected color.
70    */
71    public void setSampleColor()
72    {
73       // Read slider values
74    



11.5 Using timer events for animations  W533

75       int red = redSlider.getValue();
76       int green = greenSlider.getValue();
77       int blue = blueSlider.getValue();
78 
79       // Set panel background to selected color
80       
81       colorPanel.setBackground(new Color(red, green, blue));
82       colorPanel.repaint();
83    }
84 }

17.  Suppose you want to allow users to pick a color from a color dialog box. Which 
class would you use? Look in the API documentation.

18.  Why does a slider emit change events and not action events?

practice it  Now you can try these exercises at the end of the chapter: R11.14, P11.2, P11.9.

11.5 Using timer events for animations
In this section we introduce timer events and show how you can use them to imple-
ment simple animations. 

The Timer class in the javax.swing package generates a sequence of action events, 
spaced at even time intervals. (You can think of a timer as an invisible button that is 
automatically clicked.) This is useful whenever you want to send continuous updates 
to a component. For example, in an animation, you may want to update a scene ten 
times per second and redisplay the image to give the illusion of movement. 

When you use a timer, you specify the frequency of the events and an object of a 
class that implements the ActionListener interface. Place whatever action you want to 
occur inside the action Performed method. Finally, start the timer.

class MyListener implements ActionListener
{
   public void actionPerformed(ActionEvent event)
   {
      Action that is executed at each timer event 
   }
}

MyListener listener = new MyListener();
Timer t = new Timer(interval, listener);
t.start();

Then the timer calls the actionPerformed method of the 
listener object every interval milliseconds. 

A Swing timer notifies a listener with each “tick”.

s e L f   C h e C k

a timer generates 
action events at  
fixed intervals.



W534 Chapter 11  advanced User Interfaces  

Our sample program will display a moving rectangle. We first supply a Rectangle-
Component class with a moveRectangleBy method that moves the rectangle by a given 
amount. 

section_5/rectangleComponent.java

1 import java.awt.Graphics;
2 import javax.swing.JComponent;
3 
4 /**
5    This component displays a rectangle that can be moved. 
6 */
7 public class RectangleComponent extends JComponent
8 { 
9    private static final int RECTANGLE_WIDTH = 20;

10    private static final int RECTANGLE_HEIGHT = 30;
11 
12    private int xLeft;
13    private int yTop;
14 
15    public RectangleComponent()
16    {
17       xLeft = 0;
18       yTop = 0;
19    }
20 
21    public void paintComponent(Graphics g)
22    {  
23       g.fillRect(xLeft, yTop, RECTANGLE_WIDTH, RECTANGLE_HEIGHT);
24    }
25 
26    /**
27       Moves the rectangle by a given amount. 
28       @param dx the amount to move in the x-direction 
29       @param dy the amount to move in the y-direction
30    */
31    public void moveRectangleBy(int dx, int dy)
32    {
33       xLeft = xLeft + dx;
34       yTop = yTop + dy;
35       repaint();      
36    }
37 }

Note the call to repaint in the moveRectangleBy method. This call is necessary to ensure 
that the component is repainted after the position of the rectangle has been changed. 
The call to repaint forces a call to the paintComponent method. The paint Component 
method redraws the component, causing the rectangle to appear at the updated 
location. 

The actionPerformed method of the timer listener moves the rectangle one pixel 
down and to the right:

scene.moveRectangleBy(1, 1); 

Because the action Performed method is called many times per second, the rectangle 
appears to move smoothly across the frame. 

to make an 
animation, the timer 
listener should 
update and repaint a 
component several 
times per second. 



11.5 Using timer events for animations  W535

section_5/rectangleframe.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JFrame;
4 import javax.swing.Timer;
5 
6 /**  
7    This frame contains a moving rectangle.
8 */
9 public class RectangleFrame extends JFrame

10 {
11    private static final int FRAME_WIDTH = 300;
12    private static final int FRAME_HEIGHT = 400;
13 
14    private RectangleComponent scene;
15 
16    class TimerListener implements ActionListener
17    {
18       public void actionPerformed(ActionEvent event)
19       {
20          scene.moveRectangleBy(1, 1);
21       }
22    }
23 
24    public RectangleFrame()
25    {
26       scene = new RectangleComponent();
27       add(scene);
28 
29       setSize(FRAME_WIDTH, FRAME_HEIGHT);
30       
31       ActionListener listener = new TimerListener();
32 
33       final int DELAY = 100; // Milliseconds between timer ticks
34       Timer t = new Timer(DELAY, listener);
35       t.start();      
36    }
37 }  

19.  Why does a timer require a listener object? 
20.  How can you make the rectangle move backwards?
21.  Describe two ways of modifying the program so that the rectangle moves twice 

as fast. 
22.  How can you make a car move instead of a rectangle?
23.  How can you make two rectangles move in parallel in the scene?
24.  What would happen if you omitted the call to repaint in the moveRectangleBy 

method?

practice it  Now you can try these exercises at the end of the chapter: P11.12, P11.13, P11.14.

s e L f   C h e C k



W536 Chapter 11  advanced User Interfaces  

11.6 Mouse events
If you write programs that show drawings, and 
you want users to manipulate the drawings 
with a mouse, then you need to listen to mouse 
events. Mouse listeners are more complex than 
action listeners, the listeners that process button 
clicks and timer ticks.

A mouse listener must implement the Mouse-
Listener interface, which contains the following 
five meth ods: 

public interface MouseListener
{ 
   void mousePressed(MouseEvent event);
       // Called when a mouse button has been pressed on a component 
   void mouseReleased(MouseEvent event);
       // Called when a mouse button has been released on a component 
   void mouseClicked(MouseEvent event);
       // Called when the mouse has been clicked on a component 
   void mouseEntered(MouseEvent event);
       // Called when the mouse enters a component 
   void mouseExited(MouseEvent event);
       // Called when the mouse exits a component 
}

The mousePressed and mouseReleased methods are called whenever a mouse button is 
pressed or released. If a button is pressed and released in quick succession, and the 
mouse has not moved, then the mouseClicked method is called as well. The mouseEntered 
and mouseExited methods can be used to highlight a user-interface component when-
ever the mouse is pointing inside it. 

The most commonly used method is mousePressed. Users generally expect that their 
actions are pro cessed as soon as the mouse button is pressed. 

You add a mouse listener to a component by calling the addMouseListener method:
public class MyMouseListener implements MouseListener
{
   public void mousePressed(MouseEvent event)
   { 
      int x = event.getX();
      int y = event.getY();
      Process mouse event at (x, y)
   }

   // Do-nothing methods
   public void mouseReleased(MouseEvent event) {}
   public void mouseClicked(MouseEvent event) {}
   public void mouseEntered(MouseEvent event) {}
   public void mouseExited(MouseEvent event) {}
}

MouseListener listener = new MyMouseListener();
component.addMouseListener(listener);

In our sample program, a user clicks on a component containing a rectangle. When-
ever the mouse button is pressed, the rectangle is moved to the mouse location. We 

In Swing, a mouse event isn’t a gather-
ing of rodents; it’s notification of a 
mouse click by the program user.

You use a mouse 
listener to capture 
mouse events.



11.6 Mouse events  W537

first enhance the RectangleComponent class and add a moveRectangleTo method to move 
the rectangle to a new position. 

section_6/rectangleComponent2.java

1 import java.awt.Graphics;
2 import java.awt.Rectangle;
3 import javax.swing.JComponent;
4 
5 /**
6    This component displays a rectangle that can be moved. 
7 */
8 public class RectangleComponent2 extends JComponent
9 { 

10    private static final int RECTANGLE_WIDTH = 20;
11    private static final int RECTANGLE_HEIGHT = 30;
12 
13    private int xLeft;
14    private int yTop;
15 
16    public RectangleComponent2()
17    {
18       xLeft = 0;
19       yTop = 0;
20    }
21 
22    public void paintComponent(Graphics g)
23    {  
24       g.fillRect(xLeft, yTop, RECTANGLE_WIDTH, RECTANGLE_HEIGHT);
25    }
26 
27    /**
28       Moves the rectangle to the given location. 
29       @param x the x-position of the new location 
30       @param y the y-position of the new location
31    */
32    public void moveRectangleTo(int x, int y)
33    {
34       xLeft = x;
35       yTop = y;
36       repaint();      
37    }
38 }

Note the call to repaint in the moveRectangleTo method. As you saw before, this call 
causes the component to repaint itself and show the rectangle in the new position. 

Now, add a mouse listener to the component. Whenever the mouse is pressed, the 
listener moves the rectangle to the mouse location. 

class MousePressListener implements MouseListener
{ 
   public void mousePressed(MouseEvent event)
   { 
      int x = event.getX();
      int y = event.getY();
      scene.moveRectangleTo(x, y);
   }
   . . .
}



W538 Chapter 11  advanced User Interfaces  

figure 13  Clicking the Mouse Moves the rectangle

It often happens that a particular listener specifies actions only for one or two of the 
listener methods. Nevertheless, all five methods of the interface must be imple-
mented. The unused methods are simply implemented as do-nothing methods. 

Go ahead and run the RectangleViewer2 program. Whenever you click the mouse 
inside the frame, the top-left corner of the rectangle moves to the mouse pointer (see 
Figure 13). 

section_6/rectangleviewer2.java 

1 import javax.swing.JFrame;
2 
3 /**
4    This program displays a rectangle that can be moved with the mouse.
5 */
6 public class RectangleViewer2
7 {  
8    public static void main(String[] args)
9    {        

10       JFrame frame = new RectangleFrame2();
11       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12       frame.setVisible(true);
13    }
14 }

section_6/rectangleframe2.java 

1 import java.awt.event.MouseListener;
2 import java.awt.event.MouseEvent;
3 import javax.swing.JFrame;
4 
5 /**  
6    This frame contains a moving rectangle.
7 */
8 public class RectangleFrame2 extends JFrame
9 {



11.6 Mouse events  W539

10    private static final int FRAME_WIDTH = 300;
11    private static final int FRAME_HEIGHT = 400;
12 
13    private RectangleComponent2 scene;
14 
15    class MousePressListener implements MouseListener
16    {  
17       public void mousePressed(MouseEvent event)
18       {  
19          int x = event.getX();
20          int y = event.getY();
21          scene.moveRectangleTo(x, y);
22       }
23 
24       // Do-nothing methods
25       public void mouseReleased(MouseEvent event) {}
26       public void mouseClicked(MouseEvent event) {}
27       public void mouseEntered(MouseEvent event) {}
28       public void mouseExited(MouseEvent event) {}
29    }
30          
31    public RectangleFrame2()
32    {
33       scene = new RectangleComponent2();
34       add(scene);
35 
36       MouseListener listener = new MousePressListener();
37       scene.addMouseListener(listener);
38 
39       setSize(FRAME_WIDTH, FRAME_HEIGHT);
40    }
41 } 

25.  Why was the moveRectangleBy method in RectangleComponent2 replaced with a 
moveRectangleTo method? 

26.  Why must the MousePressListener class supply five methods?
27.  How could you change the behavior of the program so that a new rectangle is 

added whenever the mouse is clicked?

practice it  Now you can try these exercises at the end of the chapter: R11.21, P11.22, P11.23.

keyboard events

If you program a game, you may want to process keystrokes, such as the arrow keys. Add a 
key listener to the component on which you draw the game scene. The KeyListener interface 
has three methods. As with a mouse listener, you are most interested in key press events, and 
you can leave the other two methods empty. Your key listener class should look like this:

class MyKeyListener implements KeyListener
{ 
   public void keyPressed(KeyEvent event)
   { 
      String key = KeyStroke.getKeyStrokeForEvent(event).toString();
      key = key.replace("pressed ", ""); 
      Process key.

s e L f   C h e C k

special topic 11.1 



W540 Chapter 11  advanced User Interfaces  

   }

   // Do-nothing methods
   public void keyReleased(KeyEvent event) {}
   public void keyTyped(KeyEvent event) {}
}

The call KeyStroke.getKeyStrokeForEvent(event).toString() 
turns the event object into a text description of the key, 
such as "pressed LEFT". In the next line, we eliminate the 
"pressed " prefix. The remainder is a string such as "LEFT" 
or "A" that describes the key that was pressed. You can 
find a list of all key names in the API documentation of the KeyStroke class.

As always, remember to attach the listener to the event source:

KeyListener listener = new MyKeyListener();
scene.addKeyListener(listener);

In order to receive key events, your component must call 

scene.setFocusable(true);

event adapters

In the preceding section you saw how to install a mouse listener in a mouse event source and 
how the listener methods are called when an event occurs. Usually, a program is not interested 
in all listener notifications. For exam ple, a program may only be interested in mouse clicks and 
may not care that these mouse clicks are composed of “mouse pressed” and “mouse released” 
events. Of course, the program could supply a listener that declares all those methods in which 
it has no interest as “do-nothing” methods, for example: 

class MouseClickListener implements MouseListener
{ 
   public void mouseClicked(MouseEvent event) 
   { 
      Mouse click action
   }

   // Four do-nothing methods 
   public void mouseEntered(MouseEvent event) {}
   public void mouseExited(MouseEvent event) {}
   public void mousePressed(MouseEvent event) {}
   public void mouseReleased(MouseEvent event) {}
}

To avoid this labor, some friendly soul has created a MouseAdapter class that implements the 
MouseListener interface such that all methods do nothing. You can extend that class, inheriting 
the do-nothing methods and over riding the methods that you care about, like this:

class MouseClickListener extends MouseAdapter
{ 
   public void mouseClicked(MouseEvent event)
   { 
      Mouse click action
   }
}

There is also a KeyAdapter that implements the KeyListener interface (see Special Topic 11.1), 
providing three do-nothing methods.

Whenever the program user presses 
a key, a key event is generated.

o n L i n e  e x a M p L e

a complete program 
that uses the arrow 
keys to move a 
rectangle.

special topic 11.2 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter summary W541

Learn how to arrange multiple components in a container.

• User-interface components are arranged by placing them inside containers. 
Containers can be placed inside larger containers.

• Each container has a layout manager that directs the arrangement of its 
components.

• Three useful layout managers are the border layout, flow layout, and grid layout.
• When adding a component to a container with the border layout, specify the 

NORTH, SOUTH, WEST, EAST, or CENTER position.
• The content pane of a frame has a border layout by default. A panel has a flow 

layout by default.

select among the swing components for presenting choices to the user.

• For a small set of mutually exclusive choices, use a group of radio buttons or a 
combo box.

• Add radio buttons to a ButtonGroup so that only one button in the group is selected 
at any time.

• You can place a border around a panel to group its contents visually.
• For a binary choice, use a check box.
• For a large set of choices, use a combo box.
• Radio buttons, check boxes, and combo boxes generate action events, just as 

buttons do.

implement menus in a swing program.

• A frame contains a menu bar. The menu bar contains menus. 
A menu contains submenus and menu items.

• Menu items generate action events.

WorKed exaMple 11.2 adding Mouse and keyboard support to the 
Bar Chart Creator

In this Worked Example, we will enhance the bar chart creator of Worked Example 10.1 and 
add support for mouse and keyboard operations.

vIdeo exaMple 11.1 Designing a Baby naming program

In this Video Example, you will see how to design a user interface for 
a program that suggests baby names.

C h a p t e r  s U M M a r Y



W542 Chapter 11  advanced User Interfaces  

use the swing documentation.

• You should learn to navigate the API documentation to find out more about 
user-interface components.

use timer events to implement animations.

• A timer generates action events at fixed intervals.
• To make an animation, the timer listener should update and 

repaint a component several times per second.

Write programs that process mouse events.

• You use a mouse listener to capture mouse events.

s ta n d a r d  l I B r a r Y  I t e M s  I n t r o d U C e d  I n  t h I s  C h a p t e r

java.awt.BorderLayout
   CENTER
   EAST
   NORTH
   SOUTH
   WEST
java.awt.Component
   addKeyListener
   addMouseListener
   setFocusable
java.awt.Container
   setLayout
java.awt.FlowLayout
java.awt.Font
   BOLD
   ITALIC
java.awt.GridLayout
java.awt.event.KeyEvent
java.awt.event.KeyListener
   keyPressed
   keyReleased
   keyTyped
java.awt.event.MouseEvent
   getX
   getY
java.awt.event.MouseListener
   mouseClicked
   mouseEntered
   mouseExited
   mousePressed
   mouseReleased
javax.swing.AbstractButton
   isSelected
   setSelected

javax.swing.ButtonGroup
   add
javax.swing.JCheckBox
javax.swing.JComboBox
   addItem
   getSelectedItem
   isEditable
   setEditable
   setSelectedItem
javax.swing.JComponent
   setBorder
   setFocusable
   setFont
javax.swing.JFrame
   setJMenuBar
javax.swing.JMenu
   add
javax.swing.JMenuBar
   add
javax.swing.JMenuItem
javax.swing.JRadioButton
javax.swing.JSlider
   addChangeListener
   getValue
javax.swing.KeyStroke
   getKeyStrokeForEvent
javax.swing.Timer
   start
   stop
javax.swing.border.EtchedBorder
javax.swing.border.TitledBorder
javax.swing.event.ChangeEvent
javax.swing.event.ChangeListener
   stateChanged



review exercises W543

• r11.1  Can you use a flow layout for the components in a frame? If yes, how? 

• r11.2  What is the advantage of a layout manager over telling the container “place this com-
ponent at position (x, y)”? 

•• r11.3  What happens when you place a single button into the CENTER area of a container that 
uses a border layout? Try it out by writing a small sample program if you aren’t sure 
of the answer.

•• r11.4  What happens if you place multiple buttons directly into the SOUTH area, without 
using a panel? Try it out by writing a small sample program if you aren’t sure of the 
answer. 

•• r11.5  What happens when you add a button to a container that uses a border layout and 
omit the position? Try it out and explain. 

•• r11.6  What happens when you try to add a button to another button? Try it out and 
explain. 

•• r11.7  The control panel in Section 11.4 uses a grid layout manager. Explain a drawback of 
the grid that is apparent in Figure 12. What could you do to overcome this drawback?

••• r11.8  What is the difference between the grid layout and the grid bag layout? 

••• r11.9  Can you add icons to check boxes, radio buttons, and combo boxes? Browse the 
Java documentation to find out. Then write a small test program to verify your 
findings.

• r11.10  What is the difference between radio buttons and check boxes? 

• r11.11  Why do you need a button group for radio buttons but not for check boxes?

• r11.12  What is the difference between a menu bar, a menu, and a menu item? 

• r11.13  When browsing through the Java documentation for more information about slid-
ers, we ignored the JSlider constructor with no arguments. Why? Would it have 
worked in our sample program? 

• r11.14  How do you construct a vertical slider? Consult the Swing documentation for an 
answer. 

•• r11.15  Why doesn’t a JComboBox send out change events? 

••• r11.16  What component would you use to show a set of choices, as in a combo box, but so 
that several items are visible at the same time? Run the Swing demo applica tion or 
look at a book with Swing example programs to find the answer. 

•• r11.17  How many Swing user-interface components are there? Look at the Java documen-
tation to get an approximate answer. 

•• r11.18  How many methods does the JProgressBar component have? Be sure to count inher-
ited methods. Look at the Java documentation. 

• r11.19  What is the difference between an ActionEvent and a MouseEvent? 

•• r11.20  What information does an action event object carry? What additional information 
does a mouse event object carry? Hint: Check the API documentation.

r e v I e W  e x e r C I s e s



W544 Chapter 11  advanced User Interfaces  

•• r11.21  Why does the ActionListener interface have only one method, whereas the Mouse -
Listener has five methods? 

• p11.1  Write an application with three buttons labeled “Red”, “Green”, and “Blue” that 
changes the background color of a panel in the center of the frame to red, green, 
or blue. 

•• p11.2  Add icons to the buttons of Exercise P11.1. Use a JButton constructor with an Icon 
argument and supply an ImageIcon.

• p11.3  Write an application with three radio buttons labeled “Red”, “Green”, and “Blue” 
that changes the background color of a panel in the center of the frame to red, green, 
or blue. 

• p11.4  Write an application with three check boxes labeled “Red”, “Green”, and “Blue” 
that adds a red, green, or blue component to the background color of a panel in the 
center of the frame. This application can display a total of eight color combinations.

• p11.5  Write an application with a combo box containing three items labeled “Red”, 
“Green”, and “Blue” that change the background color of a panel in the center of the 
frame to red, green, or blue. 

• p11.6  Write an application with a Color menu and menu items labeled “Red”, “Green”, 
and “Blue” that change the background color of a panel in the center of the frame to 
red, green, or blue. 

• p11.7  Write a program that displays a number of rectangles at random positions. Supply 
menu items “Fewer” and “More” that generate fewer or more random rectangles. 
Each time the user selects “Fewer”, the count should be halved. Each time the user 
clicks on “More”, the count should be doubled. 

•• p11.8  Modify the program of Exercise P11.7 to replace the buttons with a slider to gener-
ate more or fewer random rectangles. 

•• p11.9  Modify the slider program in Section 11.4 to add a set of tick marks to each slider 
that show the exact slider position. 

••• p11.10  Enhance the font viewer program to allow the user to select different font faces. 
Research the API documentation to find out how to find the available fonts on the 
user’s system.

••• p11.11  Write a program that lets users design charts such as the following: 

Golden Gate

Brooklyn

Delaware Memorial

Mackinac

Use appropriate components to ask for the length, label, and color, then apply them 
when the user clicks an “Add Item” button.

p r o G r a M M I n G  e x e r C I s e s



programming exercises W545

• p11.12  Write a program that uses a timer to print the current time once a second. Hint: The 
following code prints the current time:

Date now = new Date();
System.out.println(now);

The Date class is in the java.util package. 

••• p11.13  Change the RectangleComponent for the animation in Section 11.5 so that the rectangle 
bounces off the edges of the component rather than simply moving outside. 

•• p11.14  Change the rectangle animation in Section 11.5 so that it shows two rectangles 
moving in opposite directions.

•• p11.15  Write a program that animates a car so that it moves across a frame.

••• p11.16  Write a program that animates two cars moving across a frame in opposite direc tions 
(but at different heights so that they don’t collide.)

••• p11.17  Write a program that displays a scrolling message in a panel. Use a timer for the 
scrolling effect. In the timer’s action listener, move the starting position of the mes-
sage and repaint. When the message has left the window, reset the starting position 
to the other corner. Provide a user interface to customize the message text, font, 
foreground and background colors, and the scrolling speed and direction.

• p11.18  Change the RectangleComponent for the mouse listener program in Section 11.6 so that 
a new rectangle is added to the component whenever the mouse is clicked. Hint: 
Store all points on which the user clicked, and draw all rectangles in the paint-
Component method.

• p11.19  Write a program that prompts the user to enter the x- and y-positions of a center 
point and a radius, using text fields.When the user clicks a “Draw” button, draw a 
circle with that center and radius in a component. 

•• p11.20  Write a program that allows the user to specify a circle by typing the radius in a text 
field and then clicking on the center. Note that you don’t need a “Draw” button.

• p11.21  Write a program that allows the user to specify a circle with two mouse presses, 
the first one on the center and the second on a point on the periphery. Hint: In the 
mouse press handler, you must keep track of whether you already received the 
 center point in a previous mouse press. 

••• p11.22  Write a program that allows the user to specify a triangle with three mouse presses. 
After the first mouse press, draw a small dot. After the second mouse press, draw a 
line joining the first two points. After the third mouse press, draw the entire triangle. 
The fourth mouse press erases the old triangle and starts a new one.

••• p11.23  Implement a program that allows two players to play 
tic-tac-toe. Draw the game grid and an indication of 
whose turn it is (X or O). Upon the next click, check 
that the mouse click falls into an empty location, fill 
the location with the mark of the current player, and 
give the other player a turn. If the game is won, indi-
cate the winner. Also supply a button for starting over. 



W546 Chapter 11  advanced User Interfaces  

••• p11.24  Write a program that lets users design bar charts with a mouse. When the user clicks 
inside a bar, the next mouse click extends the length of the bar to the x-coordinate of 
the mouse click. (If it is at or near 0, the bar is removed.) When the user clicks below 
the last bar, a new bar is added whose length is the x-coordinate of the mouse click.

•• Business p11.25  Write a program with a graphical interface that allows the user to convert an amount 
of money between U.S. dollars (USD), euros (EUR), and British pounds (GBP). The 
user interface should have the following elements: a text box to enter the amount to 
be converted, two combo boxes to allow the user to select the currencies, a button 
to make the conversion, and a label to show the result. Display a warning if the user 
does not choose different currencies. Use the following conversion rates:

1 EUR is equal to 1.42 USD. 
1 GBP is equal to 1.64 USD. 
1 GBP is equal to 1.13 EUR.

•• Business p11.26  Write a program with a graphical interface that implements a login window with text 
fields for the user name and password. When the login is successful, hide the login 
window and open a new window with a welcome message. Follow these rules for 
validating the password:

1. The user name is not case sensitive.
2. The password is case sensitive.
3. The user has three opportunities to enter valid credentials. 

Otherwise, display an error message and terminate the program. When the program 
starts, read the file users.txt. Each line in that file contains a username and password, 
separated by a space. You should make a users.txt file for testing your program.

•• Business p11.27  In Exercise P11.26, the password is shown as it is typed. Browse the Swing docu-
mentation to find an appropriate component for entering a password. Improve the 
solution of Exercise P11.26 by using this component instead of a text field. Each 
time the user types a letter, show a ■ character.

a n s W e r s  t o  s e l f ‑ C h e C K  Q U e s t I o n s

1.  Only the second one is displayed.
2.  First add them to a panel, then add the panel to 

the north end of a frame.
3.  Place them inside a panel with a GridLayout that 

has three rows and one column. 
4.  The button in the north stretches horizontally 

to fill the width of the frame. The height of the 
northern area is the normal height.

5.  To get the double-wide button, put it in the 
south of a panel with border layout whose 
center has a 3 × 2 grid layout with the keys 7, 8, 
4, 5, 1, 2. Put that panel in the west of another 
border layout panel whose eastern area has a 
4 × 1 grid layout with the remaining keys.

6.  If you have many options, a set of radio but-
tons takes up a large area. A combo box can 
show many options without using up much 
space. But the user cannot see the options as 
easily.

7.  If one of them is checked, the other one is 
unchecked. You should use radio buttons if 
that is the behavior you want.

8.  You can’t nest borders, but you can nest panels 
with borders:
JPanel p1 = new JPanel();
p1.setBorder(new EtchedBorder());
JPanel p2 = new JPanel();
p2.setBorder(new EtchedBorder());
p1.add(p2);



answers to self‑Check Questions W547

9.  When any of the component settings is 
changed, the program simply queries all of 
them and updates the label.

10.  To keep it from growing too large. It would 
have grown to the same width and height as 
the two panels below it.

11.  Instead of using radio buttons with two 
choices, use a checkbox.

12.  When you open a menu, you have not yet 
made a selection. Only JMenuItem objects cor-
respond to selections.

13.  Yes, you can—JMenuItem is a subclass of JMenu. 
The item shows up on the menu bar.When you 
click on it, its listener is called. But the behav-
ior feels unnatural for a menu bar and is likely 
to confuse users.

14.  The parameter variable is accessed in a method 
of an inner class.

15.  Then the faceName variable is set when the menu 
item is added to the menu, not when the user 
selects the menu.

16.  In the previous program, the user-interface 
components effectively served as storage for 
the font specification. Their current settings 
were used to construct the font. But a menu 
doesn’t save settings; it just generates an action.

17.  JColorChooser. 
18.  Action events describe one-time changes, such 

as button clicks. Change events describe con-
tinuous changes.

19.  The timer needs to call some method whenever 
the time interval expires. It calls the action-
Performed method of the listener object.

20.  Call scene.moveRectangleBy(-1, -1) in the action-
Performed method.

21.  You can cut the timer delay in half (to 50 mil-
liseconds between ticks), or you can double 
the distance by which the rectangle moves, by 
calling scene.moveRectangleBy(2, 2). 

22.  The component class would need to draw a car 
at positon (x, y) instead of a rectangle. 

23.  There are two entirely different ways:
a. Add a second RectangleComponent to the 

frame, using a grid layout. Change the 
actionPerformed method of the TimerListener 
to call moveRectangleBy on both components.

b. Draw a second rectangle in the paint-
Component method of RectangleComponent.

24.  The moved rectangles won’t be painted, and 
the rectangle will appear to be stationary until 
the frame is repainted for an external reason.

25.  Because you know the current mouse posi-
tion, not the amount by which the mouse has 
moved.

26.  It implements the MouseListener interface, 
which has five methods.

27.  The RectangleComponent2 class needs to keep 
track of the locations of multiple rectangles. It 
can do that with an array list of Point or Rect-
angle objects. The paintComponent method needs 
to draw them all. Replace the moveRectangleTo 
method with an add RectangleAt method that 
adds a rectangle at a given (x, y) position.





12C h a p t e r

W549

ObjeCt- 
Oriented  
design

to learn how to discover new classes  
and methods

to use CrC cards for class discovery

to understand the concepts of cohesion and coupling

to identify inheritance, aggregation, and  
dependency relationships between classes

to describe class relationships using UML class diagrams

to apply object-oriented design techniques to building  
complex programs

to use packages to organize programs 

C h a p t e r  g O a L s

C h a p t e r  C O n t e n t s

12.1  Classes and Their 
responsibiliTies  W550

12.2  relaTionships beTWeen 
Classes  W554

How To 12.1: Using CrC Cards and UML diagrams 
in program design W558

Special Topic 12.1: attributes and Methods in 
UML diagrams W559

Special Topic 12.2: Multiplicities W560
Special Topic 12.3: aggregation, association, 

and Composition W560

Programming Tip 12.1: Make parallel arrays 
into arrays of Objects W561

Programming Tip 12.2: Consistency W562

12.3  appliCaTion: prinTing 
an invoiCe  W562

Worked Example 12.1: simulating an automatic 
teller Machine 

12.4  paCkages  W574



W550

successfully implementing a software system—as simple as 
your next homework project or as complex as the next air 
traffic monitoring system—requires a great deal of planning 
and design. in fact, for larger projects, the amount of time 
spent on planning and design is much greater than the 
amount of time spent on programming and testing.

do you find that most of your homework time is spent in 
front of the computer, keying in code and fixing bugs? if 
so, you can probably save time by focusing on a better 
design before you start coding. this chapter tells you how 
to approach the design of an object-oriented program in a 
systematic manner. 

12.1 Classes and their responsibilities
When you design a program, you work from a requirements specification, a descrip-
tion of what your program should do. The designer’s task is to discover structures 
that make it possible to implement the requirements in a computer program. In the 
following sections, we will examine the steps of the design process.

12.1.1 discovering Classes

When you solve a problem using objects and classes, you need to determine the 
classes required for the implementation. You may be able to reuse existing classes, or 
you may need to implement new ones. 

One simple approach for discovering classes and methods is to look for the nouns 
and verbs in the requirements specification. Often, nouns correspond to classes, and 
verbs correspond to methods.

For example, suppose your job is to print an invoice such as the one in Figure 1. 
Obvious classes that come to mind are Invoice, LineItem, and Customer. It is a good idea 
to keep a list of can didate classes on a whiteboard or a sheet of paper. As you brain-
storm, simply put all ideas for classes onto the list. You can always cross out the ones 
that weren’t useful after all.

In general, concepts from the problem domain, be it science, business, or a game, 
often make good classes. Exam ples are 

• Cannonball 
• CashRegister 
• Monster

The name for such a class should be a noun that describes the concept. 
Not all classes can be discovered from the program requirements. Most complex 

programs need classes for tactical purposes, such as file or database access, user inter-
faces, control mechanisms, and so on.

Some of the classes that you need may already exist, either in the standard library 
or in a program that you developed previously. You also may be able to use inheri-
tance to extend existing classes into classes that match your needs.

to discover classes,  
look for nouns in the 
problem description.

Concepts from the 
problem domain  
are good candidates  
for classes.



12.1 Classes and their responsibilities  W551

Figure 1  an invoice

I N V O I C E

Sam’s Small Appliances
100 Main Street
Anytown, CA 98765

Item Qty Price Total

Toaster 3 $29.95 $89.85

Hair Dryer 1 $24.95 $24.95

Car Vacuum 2 $19.99 $39.98

AMOUNT DUE: $154.78

What might not be a good class? If you can’t tell from the class name what an 
object of the class is sup posed to do, then you are probably not on the right track. For 
example, your homework assignment might be to write a program that prints pay-
checks. Suppose you start by trying to design a class PaycheckProgram. What would an 
object of this class do? An object of this class would have to do everything that the 
homework needs to do. That doesn’t simplify anything. A better class would be Pay-
check. Then your program can manipulate one or more Paycheck objects.

Another common mistake, often made by students who are used to writing pro-
grams that consist of static methods, is to turn an action into a class. For example, if 
your homework assignment is to compute a paycheck, you may consider writing a 
class ComputePaycheck. But can you visualize a “ComputePaycheck” object? The fact 
that “ComputePaycheck” isn’t a noun tips you off that you are on the wrong track. 
On the other hand, a Paycheck class makes intuitive sense. The word “paycheck” is a 
noun. You can visualize a paycheck object. You can then think about useful methods 
of the Paycheck class, such as computeTaxes, that help you solve the assignment. 

In a class scheduling system, potential  
classes from the problem domain include  
Class, LectureHall, Instructor, and Student.



W552 Chapter 12  Object-Oriented design  

Finally, a common error is to overdo the class discovery process. For example, 
should an address be an object of an Address class, or should it simply be a string? 
There is no perfect answer—it depends on the task that you want to solve. If your 
software needs to analyze addresses (for example, to determine shipping costs), then 
an Address class is an appropriate design. However, if your software will never need 
such a capability, you should not waste time on an overly complex design. It is your 
job to find a balanced design; one that is neither too limiting nor excessively general.

12.1.2 the CrC Card Method

Once you have identified a set of classes, you define the behavior for each class. Find 
out what methods you need to provide for each class in order to solve the program-
ming problem. A simple rule for finding these methods is to look for verbs in the 
task description, then match the verbs to the appropriate objects. For example, in 
the invoice program, a class needs to compute the amount due. Now you need to fig-
ure out which class is responsible for this method. Do customers compute what they 
owe? Do invoices total up the amount due? Do the items total themselves up? The 
best choice is to make “compute amount due” the responsibility of the Invoice class.

An excellent way to carry out this task is the “CRC card method.” CRC stands 
for “classes”, “respon sibilities”, “collaborators”, and in its simplest form, the method 
works as follows: Use an index card for each class (see Figure 2). As you think about 
verbs in the task description that indicate methods, you pick the card of the class that 
you think should be responsible, and write that responsibility on the card.

For each responsibility, you record which other classes are needed to fulfill it. 
Those classes are the col laborators. 

For example, suppose you decide that an invoice should compute the amount due. 
Then you write “compute amount due” on the left-hand side of an index card with 
the title Invoice. 

If a class can carry out that responsibility by itself, do nothing further. But if the 
class needs the help of other classes, write the names of these collaborators on the 
right-hand side of the card. 

To compute the total, the invoice needs to ask each line item about its total price. 
Therefore, the LineItem class is a collaborator.

a CrC card  
describes a class,  
its responsibilities, 
and its collaborating 
classes.

Figure 2  a CrC Card

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators



12.1 Classes and their responsibilities  W553

This is a good time to look up the index card for the LineItem class. Does it have a 
“get total price” method? If not, add one.

How do you know that you are on the right track? For each responsibility, ask 
yourself how it can actually be done, using the responsibilities written on the various 
cards. Many people find it helpful to group the cards on a table so that the collabora-
tors are close to each other, and to simulate tasks by mov ing a token (such as a coin) 
from one card to the next to indicate which object is currently active. 

Keep in mind that the responsibilities that you list on the CRC card are on a high 
level. Sometimes a single responsibility may need two or more Java methods for car-
rying it out. Some researchers say that a CRC card should have no more than three 
distinct responsibilities. 

The CRC card method is informal on purpose, so that you can be creative and 
discover classes and their properties. Once you find that you have settled on a good 
set of classes, you will want to know how they are related to each other. Can you find 
classes with common properties, so that some responsibilities can be taken care of by 
a common superclass? Can you organize classes into clusters that are independent of 
each other? Finding class relationships and documenting them with diagrams is the 
topic of Section 12.2. 

12.1.3 Cohesion

A class should represent a single concept. The public methods and constants that the 
public interface exposes should be cohesive. That is, all interface features should be 
closely related to the single concept that the class represents. 

If you find that the public interface of a class refers to multiple concepts, then that 
is a good sign that it may be time to use separate classes instead. Consider, for exam-
ple, the public interface of a CashRegister class:

publicclassCashRegister
{
publicstaticfinaldoubleNICKEL_VALUE=0.05;
publicstaticfinaldoubleDIME_VALUE=0.1;
publicstaticfinaldoubleQUARTER_VALUE=0.25;
...
publicvoidenterPayment(intdollars,intquarters,
intdimes,intnickels,intpennies){...}
...
}

There are really two concepts here: a cash register that holds coins and computes 
their total, and the val ues of individual coins. (For simplicity, we assume that the cash 
register only holds coins, not bills. Exercise P12.2 discusses a more general solution.)

It makes sense to have a separate Coin class and have coins responsible for knowing 
their values. 

publicclassCoin
{
...
publicCoin(doubleaValue,StringaName){...}
publicdoublegetValue(){...}
...
}

the public interface 
of a class is cohesive 
if all of its features 
are related to the 
concept that the 
class represents.



W554 Chapter 12  Object-Oriented design  

Then the CashRegister class can be simplified:
publicclassCashRegister
{
...
publicvoidenterPayment(intcoinCount,CoincoinType){...}
...
}

Now the CashRegister class no longer needs to know anything about coin values. The 
same class can equally well handle euros or zorkmids!

This is clearly a better solution, because it separates the responsibilities of the cash 
register and the coins. 

1.  What is the rule of thumb for finding classes? 
2.  Your job is to write a program that plays chess. Might ChessBoard be an appropri-

ate class? How about MovePiece? 
3.  Suppose the invoice is to be saved to a file. Name a likely collaborator.
4.  Looking at the invoice in Figure 1, what is a likely responsibility of the Customer 

class?
5.  What do you do if a CRC card has ten responsibilities?

practice it  Now you can try these exercises at the end of the chapter: R12.4, R12.5, R12.12.

12.2  relationships between Classes
When designing a program, it is useful to document the relationships between classes. 
This helps you in a number of ways. For example, if you find classes with common 
behavior, you can save effort by placing the common behavior into a superclass. If 
you know that some classes are not related to each other, you can assign different 
programmers to implement each of them, without worrying that one of them has to 
wait for the other.

In the following sections, we will describe the most common types of relationships.

12.2.1 dependency

Many classes need other classes in order to do their jobs. For example, in Section 
12.1.3, we described a design of a CashRegister class that depends on the Coin class to 
determine the value of the payment. 

The dependency relationship is sometimes nicknamed the “knows about” rela-
tionship. The cash register in Section 12.1.3 knows that there are coin objects. In con-
trast, the Coin class does not depend on the CashRegister class. Coins have no idea that 
they are being collected in cash registers, and they can carry out their work without 
ever calling any method in the CashRegister class.

To visualize relationships, such as dependency between classes, programmers 
draw class diagrams. In this book, we use the UML (“Unified Modeling Language”) 
notation for objects and classes. UML is a notation for object-oriented analysis and 

o n l i n e  e x a m p l e

a sample program 
using the Coinand 
CashRegister classes.

s e l F   C h e C k

a class depends on 
another class if it 
uses objects of  
that class.



12.2  relationships between Classes  W555

design invented by Grady Booch, Ivar Jacobson, and James Rumbaugh, three 

Figure 3   
dependency relationship  
between the CashRegister 
and Coin Classes

CashRegister

Coin

leading 
researchers in object-oriented software development. The UML notation dis-
tinguishes between object diagrams and class diagrams. An object diagram shows 
individual objects, their attributes, and the relationships between them. Chapter 8 
has several object diagrams. A class diagram shows classes and the relationships 
between them. In Chapter 9, you saw class diagrams that show inheritance relation-
ships. In the UML notation, we underline the names of classes in object diagrams but 
not in class diagrams.

In a class diagram, you denote dependency by a dashed line with a -shaped open 
arrow tip. The arrow tip points to the class on which the other class depends. Figure 3 
shows a class diagram indicating that the CashRegister class depends on the Coin class.

If many classes of a program depend on each other, then we say that the coupling 
between classes is high. Conversely, if there are few dependencies between classes, 
then we say that the coupling is low (see Figure 4). 

Why does coupling matter? If the Coin class changes in the next release of the pro-
gram, all the classes that depend on it may be affected. If the change is drastic, the 
coupled classes must all be updated. Fur thermore, if we would like to use a class in 
another program, we have to take with it all the classes on which it depends. Thus, we 
want to remove unnecessary coupling between classes. 

it is a good practice 
to minimize the 
coupling (i.e., 
dependency) 
between classes.

Figure 4  high and Low Coupling between Classes

Low couplingHigh coupling



W556 Chapter 12  Object-Oriented design  

12.2.2 aggregation

Another fundamental relationship between classes is the “aggregation” relationship 
(which is informally known as the “has-a” relationship). 

The aggregation relationship states that objects of one class contain objects of 
another class. Consider a quiz that is made up of questions. Because each quiz has one 
or more questions, we say that the class Quiz aggregates the class Question. In the UML 
notation, aggregation is denoted by a line with a diamond-shaped symbol attached to 
the aggregating class (see Figure 5).

Finding out about aggregation is very helpful for deciding how to implement classes. 
For example, when you implement the Quiz class, you will want to store the questions 
of a quiz as an instance variable. 

Because a quiz can have any number of questions, an array or array list is a good 
choice for collecting them:

publicclassQuiz
{
privateArrayList<Question>questions;
...
}

Aggregation is a stronger form of dependency. If a class has objects of another class, it 
certainly knows about the other class. However, the converse is not true. For exam-
ple, a class may use the Scanner class without ever declaring an instance variable of class 
Scanner. The class may simply construct a local variable of type Scanner, or its meth-
ods may receive Scanner objects as arguments. This use is not aggregation because the 
objects of the class don’t contain Scanner objects—they just create or receive them for 
the duration of a single method.

Generally, you need aggregation when an object needs to remember another object 
between method calls. 

a class aggregates 
another if its objects 
contain objects of the 
other class.

Figure 5   
Class diagram  
showing aggregation

Quiz Question

o n l i n e  e x a m p l e

the complete Quiz 
and Question classes.

A car has a motor and tires.  
In object-oriented design,  
this “has-a” relationship  
is called aggregation.



12.2  relationships between Classes  W557

12.2.3 inheritance

Inheritance is a relationship between a more general class (the superclass) and a more 
specialized class (the subclass). This relationship is often described as the “is-a” rela-
tionship. Every truck is a vehicle. Every savings account is a bank account. 

Inheritance is sometimes abused. For example, consider a Tire class that describes 
a car tire. Should the class Tire be a subclass of a class Circle? It sounds convenient. 
There are quite a few useful methods in the Circle class—for example, the Tire class 
may inherit methods that compute the radius, perimeter, and center point, which 
should come in handy when drawing tire shapes. Though it may be convenient for 
the programmer, this arrangement makes no sense conceptually. It isn’t true that 
every tire is a circle. Tires are car parts, whereas circles are geometric objects. There 
is a relationship between tires and circles, though. A tire has a circle as its boundary. 
Use aggregation: 

publicclassTire
{
privateStringrating;
privateCircleboundary;
...
}

Here is another example: Every car is a vehicle. Every car has a tire (in fact, it typi-
cally has four or, if you count the spare, five). Thus, you would use inheritance from 
Vehicle and use aggregation of Tire objects: 

publicclassCarextendsVehicle
{
privateTire[]tires;
...
}

See Figure 6 for the UML diagram. 

inheritance (the 
is-a relationship) is 
some times inappro-
priately used when 
the has-a relation-
ship would be more 
appropriate.

aggregation (the 
has-a relationship) 
denotes that objects 
of one class contain 
references to objects 
of another class. 

Figure 6   
UML notation for  
inheritance and aggregation

Vehicle

Car

Tire



W558 Chapter 12  Object-Oriented design  

The arrows in the UML notation can get confusing. Table 1 shows a summary of 
the four UML rela tionship symbols that we use in this book.

table 1  UML relationship symbols

relationship symbol Line style arrow tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

6.  Consider the CashRegisterTester class of Chapter 8. On which classes does it 
depend?

7.  Consider the Question and ChoiceQuestion objects of Chapter 9. How are 
they related?

8.  Consider the Quiz class described in Section 12.2.2. Suppose a quiz contains a 
mixture of Question and ChoiceQuestion objects. Which classes does the Quiz class 
depend on?

9.  Why should coupling be minimized between classes?
10.  In an e-mail system, messages are stored in a mailbox. Draw a UML diagram 

that shows the appro priate aggregation relationship.
11.  You are implementing a system to manage a library, keeping track of which 

books are checked out by whom. Should the Book class aggregate Patron or the 
other way around?

12.  In a library management system, what would be the relationship between classes 
Patron and Author?

practice it  Now you can try these exercises at the end of the chapter: R12.8, R12.9, R12.13.

step 1  Discover classes. 

Highlight the nouns in the problem description. Make a list of the nouns. Cross out those that 
don’t seem to be rea sonable candidates for classes. 

You need to be able 
to distinguish the 
UML notation for 
inheritance, interface 
implementation, 
aggregation, and 
dependency.

s e l F   C h e C k

hOW tO 12.1 Using CrC Cards and Uml diagrams in program design

Before writing code for a complex problem, you need to design a solution. The methodology 
introduced in this chapter suggests that you follow a design process that is composed of the 
following tasks:
• Discover classes.
• Determine the responsibilities of each class.
• Describe the relationships between the classes.
CRC cards and UML diagrams help you discover and record this information. 



12.2  relationships between Classes  W559

step 2  Discover responsibilities. 

Make a list of the major tasks that your system needs to fulfill. From those tasks, pick one 
that is not trivial and that is intuitive to you. Find a class that is responsible for carrying out 
that task. Make an index card and write the name and the task on it. Now ask yourself how 
an object of the class can carry out the task. It probably needs help from other objects. Then 
make CRC cards for the classes to which those objects belong and write the responsibilities 
on them.

Don’t be afraid to cross out, move, split, or merge responsibilities. Rip up cards if they 
become too messy. This is an informal process.

You are done when you have walked through all major tasks and are satisfied that they can 
all be solved with the classes and responsibilities that you discovered. 

step 3  Describe relationships. 

Make a class diagram that shows the relationships between all the classes that you discovered.
Start with inheritance—the is-a relationship between classes. Is any class a specialization of 

another? If so, draw inheritance arrows. Keep in mind that many designs, especially for simple 
programs, don’t use inheritance exten sively. 

The “collaborators” column of the CRC card tells you which classes are used by that class. 
Draw dependency arrows for the col laborators on the CRC cards.

Some dependency relationships give rise to aggregations. For each of the dependency rela-
tionships, ask yourself: How does the object locate its collaborator? Does it navigate to it 
directly because it stores a reference? In that case, draw an aggregation arrow. Or is the collab-
orator a method parameter variable or return value? Then simply draw a depen dency arrow. 

attributes and methods in Uml diagrams

Sometimes it is useful to indicate class attributes and methods in a class diagram. An attribute 
is an externally observable property that objects of a class have. For example, name and price 
would be attributes of the Product class. Usually, attributes correspond to instance variables. 
But they don’t have to—a class may have a different way of organizing its data. For example, 
a GregorianCalendar object from the Java library has attributes day, month, and year, and it would 
be appropriate to draw a UML diagram that shows these attributes. However, the class doesn’t 
actually have instance variables that store these quantities. Instead, it internally represents all 
dates by counting the millisec onds from January 1, 1970—an implementation detail that a 
class user certainly doesn’t need to know about.

You can indicate attributes and methods in a class diagram by dividing a class rectangle into 
three compartments, with the class name in the top, attributes in the middle, and methods in 
the bottom (see the figure below). You need not list all attributes and methods in a particular 
diagram. Just list the ones that are helpful for understanding whatever point you are making 
with a particular diagram. 

Also, don’t list as an attribute what you also draw as an aggregation. If you denote by 
aggregation the fact that a Car has Tire objects, don’t add an attribute tires. 

Attributes and Methods  
in a Class Diagram

Attributes

balance

deposit()
withdraw()

BankAccount

Methods

special topic 12.1 



W560 Chapter 12  Object-Oriented design  

multiplicities

Some designers like to write multiplicities at the end(s) of an aggregation relationship to denote 
how many objects are aggregated. The notations for the most common multiplicities are:

• any number (zero or more):*
• one or more:1..*
• zero or one:0..1
• exactly one:1

The figure below shows that a customer has one or more bank accounts. 

An Aggregation Relationship with Multiplicities

Customer BankAccount
1..*

aggregation, association, and Composition

Some designers find the aggregation or has-a terminology unsatisfactory. For example, con-
sider customers of a bank. Does the bank “have” customers? Do the customers “have” bank 
accounts, or does the bank “have” them? Which of these “has” relationships should be mod-
eled by aggregation? This line of thinking can lead us to premature imple mentation decisions. 

Early in the design phase, it makes sense to use a more general relationship between classes 
called association. A class is associated with another if you can navigate from objects of one 
class to objects of the other class. For exam ple, given a Bank object, you can navigate to Customer 
objects, perhaps by accessing an instance variable, or by making a database lookup. 

The UML notation for an association relationship is a solid line, with optional arrows that 
show in which direc tions you can navigate the relationship. You can also add words to the line 
ends to further explain the nature of the relationship. The figure below shows that you can 
navigate from Bank objects to Customer objects, but you cannot navigate the other way around. 
That is, in this particular design, the Customer class has no mechanism to determine in which 
banks it keeps its money.

An Association Relationship

Bank Customer
serves

The UML standard also recognizes a stronger form of the aggregation relationship called com-
position, where the aggregated objects do not have an existence independent of the containing 
object. For example, composition models the relationship between a bank and its accounts. 
If a bank closes, the account objects cease to exist as well. In the UML notation, composition 
looks like aggregation with a filled-in diamond. 

special topic 12.2 

special topic 12.3 



12.2  relationships between Classes  W561

A Composition Relationship

Bank BankAccount

Frankly, the differences between aggregation, association, and composition can be confusing, 
even to experienced designers. If you find the distinction helpful, by all means use the rela-
tionship that you find most appropriate. But don’t spend time pondering subtle differences 
between these concepts. From the practical point of view of a Java programmer, it is useful to 
know when objects of one class have references to objects of another class. The aggregation or 
has-a relationship accurately describes this phenomenon.

make parallel arrays into arrays of objects

Sometimes, you find yourself using arrays or array lists of the same length, each of which 
stores a part of what con ceptually should be an object. In that situation, it is a good idea to 
reorganize your program and use a single array or array list whose elements are objects. 

For example, suppose an invoice contains a series of item descriptions and prices. One 
solution is to keep two arrays:

String[]descriptions;
double[]prices;

Each of the arrays will have the same length, and the ith slice, consisting of descriptions[i] 
and prices[i], contains data that need to be processed together. These arrays are called parallel 
arrays (see Figure 7).

Parallel arrays become a headache in larger programs. The programmer must ensure that 
the arrays always have the same length and that each slice is filled with values that actually 
belong together. Moreover, any method that operates on a slice must get all values of the slice 
as arguments, which is tedious to program.

The remedy is simple. Look at the slice and find the concept that 
it represents. Then make the concept into a class. In this example, 
each slice contains the description and price of an item; turn this into 
a class:

publicclassItem
{
privateStringdescription;
privatedoubleprice;
...
}

programming tip 12.1 

avoid parallel arrays 
by changing them 
into arrays of objects.

Figure 7   
parallel arrays

[i]

descriptions = 

[i]

prices = 

A slice



W562 Chapter 12  Object-Oriented design  

You can now eliminate the parallel arrays and replace them with a single array:

Item[]items;

Each slot in the resulting array corresponds to a slice in the set of parallel arrays (see Figure 8). 

Consistency

In this chapter you learned of two criteria for improving the quality of the public interface of 
a class. You should max imize cohesion and remove unnecessary coupling. There is another 
criterion that we would like you to pay attention to—consistency. When you have a set of 
methods, follow a consistent scheme for their names and parameter variables. This is simply a 
sign of good craftsmanship. 

Sadly, you can find any number of inconsistencies in the standard Java library. Here is an 
example. To show an input dialog box, you call 

JOptionPane.showInputDialog(promptString)

To show a message dialog box, you call 

JOptionPane.showMessageDialog(null,messageString)

What’s the null argument? It turns out that the showMessageDialog method needs an argument 
to specify the parent window, or null if no parent window is required. But the showInputDialog 
method requires no parent window. Why the inconsistency? There is no reason. It would have 
been an easy matter to supply a showMessageDialog method that exactly mirrors the showInput-
Dialog method. 

Inconsistencies such as these are not fatal flaws, but they are an annoyance, particularly 
because they can be so easily avoided.

12.3 application: printing an invoice
In this book, we discuss a five-part program development process that is particularly 
well suited for beginning programmers: 

1. Gather requirements.
2. Use CRC cards to find classes, responsibilities, and collaborators.
3. Use UML diagrams to record class relationships.
4. Use javadoc to document method behavior.
5. Implement your program.

Figure 8   
eliminating  
parallel arrays Parallel arrays An array of objects

programming tip 12.2 



12.3 application: printing an invoice  W563

There isn’t a lot of notation to learn. The class diagrams are simple to draw. The deliv-
erables of the design phase are obviously useful for the implementation phase—you 
simply take the source files and start add ing the method code. Of course, as your 
projects get more complex, you will want to learn more about formal design meth-
ods. There are many techniques to describe object scenarios, call sequencing, the 
large-scale structure of programs, and so on, that are very beneficial even for rel-
atively simple projects. The Unified Modeling Language User Guide gives a good 
overview of these techniques.

In this section, we will walk through the object-oriented design technique with 
a very simple example. In this case, the methodology may feel overblown, but it is a 
good introduction to the mechanics of each step. You will then be better prepared for 
the more complex programs that you will encounter in the future. 

12.3.1 requirements

Before you begin designing a solution, you should gather all 
requirements for your program in plain English. Write down 
what your program should do. It is helpful to include typical 
scenarios in addition to a general description.

The task of our sample program is to print out an invoice. 
An invoice describes the charges for a set of products in cer-
tain quantities. (We omit complexities such as dates, taxes, and 
invoice and customer num bers.) The program simply prints 
the billing address, all line items, and the amount due. Each 
line item contains the description and unit price of a product, 
the quantity ordered, and the total price.

INVOICE

Sam'sSmallAppliances
100MainStreet
Anytown,CA98765

DescriptionPriceQtyTotal
Toaster29.95389.85
Hairdryer24.95124.95
Carvacuum19.99239.98

AMOUNTDUE:$154.78

Also, in the interest of simplicity, we do not provide a user interface. We just supply a 
test program that adds line items to the invoice and then prints it. 

12.3.2 CrC Cards

When designing an object-oriented program, you need to discover classes. Classes 
correspond to nouns in the requirements specification. In this problem, it is pretty 
obvious what the nouns are: 

InvoiceAddressLineItem
ProductDescriptionPrice
QuantityTotalAmountdue

An invoice lists the 
charges for each item 
and the amount due.

start the develop-
ment process by 
gathering and 
documenting 
program  
requirements.

Use CrC cards to  
find classes, 
responsibilities,  
and collaborators.



W564 Chapter 12  Object-Oriented design  

(Of course, Toaster doesn’t count—it is the description of a LineItem object and there-
fore a data value, not the name of a class.) 

Description and price are attributes of the Product class. What about the quantity? 
The quantity is not an attribute of a Product. Just as in the printed invoice, let’s have a 
class LineItem that records the product and the quantity (such as “3 toasters”). 

The total and amount due are computed—not stored anywhere. Thus, they don’t 
lead to classes.

After this process of elimination, we are left with four candidates for classes: 
Invoice
Address
LineItem
Product

Each of them represents a useful concept, so let’s make them all into classes. 
The purpose of the program is to print an invoice. However, the Invoice class won’t 

necessarily know whether to display the output in System.out, in a text area, or in a file. 
Therefore, let’s relax the task slightly and make the invoice responsible for formatting 
the invoice. The result is a string (containing multiple lines) that can be printed out or 
displayed. Record that responsibility on a CRC card: 

format the invoice

Invoice

How does an invoice format itself? It must format the billing address, format all 
line items, and then add the amount due. How can the invoice format an address? It 
can’t—that really is the responsibility of the Address class. This leads to a second CRC 
card:

format the address

Address

Similarly, formatting of a line item is the responsibility of the LineItem class.



12.3 application: printing an invoice  W565

The format method of the Invoice class calls the format methods of the Address and 
LineItem classes. Whenever a method uses another class, you list that other class as a 
collaborator. In other words, Address and LineItem are collaborators of Invoice: 

format the invoice Address

LineItem

Invoice

When formatting the invoice, the invoice also needs to compute the total amount due. 
To obtain that amount, it must ask each line item about the total price of the item. 

How does a line item obtain that total? It must ask the product for the unit price, 
and then multiply it by the quantity. That is, the Product class must reveal the unit 
price, and it is a collaborator of the LineItem class.

get description
get unit price

Product

format the item Product

get total price

LineItem

Finally, the invoice must be populated with products and quantities, so that it makes 
sense to format the result. That too is a responsibility of the Invoice class.



W566 Chapter 12  Object-Oriented design  

format the invoice Address

LineItemadd a product and quantity
Product

Invoice

We now have a set of CRC cards that completes the CRC card process. 

12.3.3 UML diagrams

After you have discovered classes and their relationships with CRC cards, you should 
record your find ings in a UML diagram. The dependency relationships come from 
the collaboration column on the CRC cards. Each class depends on the classes with 
which it collaborates. In our example, the Invoice class col laborates with the Address, 
LineItem, and Product classes. The LineItem class collaborates with the Product class.

Now ask yourself which of these dependencies are actually aggregations. How 
does an invoice know about the address, line item, and product objects with which it 
collaborates? An invoice object must hold references to the address and the line items 
when it formats the invoice. But an invoice object need not hold a reference to a prod-
uct object when adding a product. The product is turned into a line item, and then it is 
the item’s responsibility to hold a reference to it. 

Therefore, the Invoice class aggregates the Address and LineItem classes. The LineItem 
class aggregates the Product class. However, there is no has-a relationship between an 
invoice and a product. An invoice doesn’t store products directly—they are stored in 
the LineItem objects.

There is no inheritance in this example. 
Figure 9 shows the class relationships that we discovered. 

Use UML diagrams to 
record class 
relationships.

Figure 9  the relationships between the invoice Classes

Invoice Address

Product LineItem



12.3 application: printing an invoice  W567

12.3.4 Method documentation

The final step of the design phase is to write the documentation of the discovered 
classes and methods. Simply write a Java source file for each class, write the method 
comments for those methods that you have discovered, and leave the bodies of the 
methods blank. 

/**
Describes an invoice for a set of purchased products.
*/
publicclassInvoice
{
/**
Adds a charge for a product to this invoice.
@paramaProductthe product that the customer ordered
@paramquantitythe quantity of the product
*/
publicvoidadd(ProductaProduct,intquantity)
{
}

/**
Formats the invoice.
@returnthe formatted invoice
*/
publicStringformat()
{
}
}

/**
Describes a quantity of an article to purchase.
*/
publicclassLineItem
{
/**
Computes the total cost of this line item.
@returnthe total price
*/
publicdoublegetTotalPrice()
{
}

/**
Formats this item.
@returna formatted string of this item
*/
publicStringformat()
{
}
}

/**
Describes a product with a description and a price.
*/
publicclassProduct
{

Use javadoc 
comments (with the 
method bodies left 
blank) to record the 
behavior of classes.



W568 Chapter 12  Object-Oriented design  

/**
Gets the product description.
@returnthe description
*/
publicStringgetDescription()
{
}

/**
Gets the product price.
@returnthe unit price
*/
publicdoublegetPrice()
{
}
}

/**
Describes a mailing address.
*/
publicclassAddress
{
/**
Formats the address.
@returnthe address as a string with three lines
*/
publicStringformat()
{
}
}

Figure 10   
Class documentation  
in htML Format



12.3 application: printing an invoice  W569

Then run the javadoc program to obtain a neatly formatted version of your documen-
tation in HTML format (see Figure 10). 

This approach for documenting your classes has a number of advantages. You can 
share the HTML documentation with others if you work in a team. You use a format 
that is immediately useful—Java source files that you can carry into the implementa-
tion phase. And, most importantly, you supply the comments for the key methods—
a task that less prepared programmers leave for later, and often neglect for lack of time.

12.3.5 implementation

After you have completed the object-oriented design, you are ready to implement the 
classes. 

You already have the method parameter variables and comments from the previ-
ous step. Now look at the UML diagram to add instance variables. Aggregated classes 
yield instance variables. Start with the Invoice class. An invoice aggregates Address and 
LineItem. Every invoice has one billing address, but it can have many line items. To 
store multiple LineItem objects, you can use an array list. Now you have the instance 
variables of the Invoice class: 

publicclassInvoice
{
privateAddressbillingAddress;
privateArrayList<LineItem>items;
...
}

A line item needs to store a Product object and the product quantity. That leads to the 
following instance variables: 

publicclassLineItem
{
privateintquantity;
privateProducttheProduct;
...
}

The methods themselves are now easy to implement. Here is a typical example. You 
already know what the getTotalPrice method of the LineItem class needs to do—get the 
unit price of the product and multiply it with the quantity. 

/**
Computes the total cost of this line item.
@returnthe total price
*/
publicdoublegetTotalPrice()
{
returntheProduct.getPrice()*quantity;
}

We will not discuss the other methods in detail—they are equally straightforward. 
Finally, you need to supply constructors, another routine task. 
The entire program is shown below. It is a good practice to go through it in detail 

and match up the classes and methods against the CRC cards and UML diagram. 
In this chapter, you learned a systematic approach for building a relatively com-

plex program. However, object-oriented design is definitely not a spectator sport. 
To really learn how to design and implement programs, you have to gain experience 
by repeating this process with your own projects. It is quite possi ble that you don’t 

after completing the 
design, implement 
your classes.



W570 Chapter 12  Object-Oriented design  

immediately home in on a good solution and that you need to go back and reorganize 
your classes and responsibilities. That is normal and only to be expected. The purpose 
of the object-ori ented design process is to spot these problems in the design phase, 
when they are still easy to rectify, instead of in the implementation phase, when mas-
sive reorganization is more difficult and time consum ing.

section_3/invoiceprinter.java

1 /**
2 This program demonstrates the invoice classes by
3 printing a sample invoice.
4 */
5 publicclassInvoicePrinter
6 {
7 publicstaticvoidmain(String[]args)
8 {
9 AddresssamsAddress

10 =newAddress("Sam’sSmallAppliances",
11 "100MainStreet","Anytown","CA","98765");
12
13 InvoicesamsInvoice=newInvoice(samsAddress);
14 samsInvoice.add(newProduct("Toaster",29.95),3);
15 samsInvoice.add(newProduct("Hairdryer",24.95),1);
16 samsInvoice.add(newProduct("Carvacuum",19.99),2);
17
18 System.out.println(samsInvoice.format());
19 }
20 }

section_3/invoice.java

1 importjava.util.ArrayList;
2
3 /**
4 Describes an invoice for a set of purchased products.
5 */
6 publicclassInvoice
7 {
8 privateAddressbillingAddress;
9 privateArrayList<LineItem>items;

10
11 /**
12 Constructs an invoice.
13 @paramanAddressthe billing address
14 */
15 publicInvoice(AddressanAddress)
16 {
17 items=newArrayList<LineItem>();
18 billingAddress=anAddress;
19 }
20
21 /**
22 Adds a charge for a product to this invoice.
23 @paramaProductthe product that the customer ordered
24 @paramquantitythe quantity of the product
25 */
26 publicvoidadd(ProductaProduct,intquantity)
27 {
28 LineItemanItem=newLineItem(aProduct,quantity);



12.3 application: printing an invoice  W571

29 items.add(anItem);
30 }
31
32 /**
33 Formats the invoice.
34 @returnthe formatted invoice
35 */
36 publicStringformat()
37 {
38 Stringr="INVOICE\n\n"
39 +billingAddress.format()
40 +String.format("\n\n%-30s%8s%5s%8s\n",
41 "Description","Price","Qty","Total");
42
43 for(LineItemitem:items)
44 {
45 r=r+item.format()+"\n";
46 }
47
48 r=r+String.format("\nAMOUNTDUE:$%8.2f",getAmountDue());
49
50 returnr;
51 }
52
53 /**
54 Computes the total amount due.
55 @returnthe amount due
56 */
57 privatedoublegetAmountDue()
58 {
59 doubleamountDue=0;
60 for(LineItemitem:items)
61 {
62 amountDue=amountDue+item.getTotalPrice();
63 }
64 returnamountDue;
65 }
66 }

section_3/lineitem.java

1 /**
2 Describes a quantity of an article to purchase.
3 */
4 publicclassLineItem
5 {
6 privateintquantity;
7 privateProducttheProduct;
8
9 /**

10 Constructs an item from the product and quantity.
11 @paramaProductthe product
12 @paramaQuantitythe item quantity
13 */
14 publicLineItem(ProductaProduct,intaQuantity)
15 {
16 theProduct=aProduct;
17 quantity=aQuantity;
18 }
19 



W572 Chapter 12  Object-Oriented design  

20 /**
21 Computes the total cost of this line item.
22 @returnthe total price
23 */
24 publicdoublegetTotalPrice()
25 {
26 returntheProduct.getPrice()*quantity;
27 }
28 
29 /**
30 Formats this item.
31 @returna formatted string of this line item
32 */
33 publicStringformat()
34 {
35 returnString.format("%-30s%8.2f%5d%8.2f",
36 theProduct.getDescription(),theProduct.getPrice(),
37 quantity,getTotalPrice());
38 }
39 }

section_3/product.java

1 /**
2 Describes a product with a description and a price.
3 */
4 publicclassProduct
5 {
6 privateStringdescription;
7 privatedoubleprice;
8
9 /**

10 Constructs a product from a description and a price.
11 @paramaDescriptionthe product description
12 @paramaPricethe product price
13 */
14 publicProduct(StringaDescription,doubleaPrice)
15 {
16 description=aDescription;
17 price=aPrice;
18 }
19 
20 /**
21 Gets the product description.
22 @returnthe description
23 */
24 publicStringgetDescription()
25 {
26 returndescription;
27 }
28
29 /**
30 Gets the product price.
31 @returnthe unit price
32 */
33 publicdoublegetPrice()
34 {
35 returnprice;
36 }
37 }



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

12.3 application: printing an invoice  W573

section_3/address.java

1 /**
2 Describes a mailing address.
3 */
4 publicclassAddress
5 {
6 privateStringname;
7 privateStringstreet;
8 privateStringcity;
9 privateStringstate;

10 privateStringzip;
11
12 /**
13 Constructs a mailing address.
14 @paramaNamethe recipient name
15 @paramaStreetthe street
16 @paramaCitythe city
17 @paramaStatethe two-letter state code
18 @paramaZipthe ZIP postal code
19 */
20 publicAddress(StringaName,StringaStreet,
21 StringaCity,StringaState,StringaZip)
22 {
23 name=aName;
24 street=aStreet;
25 city=aCity;
26 state=aState;
27 zip=aZip;
28 }
29
30 /**
31 Formats the address.
32 @returnthe address as a string with three lines
33 */
34 publicStringformat()
35 {
36 returnname+"\n"+street+"\n"
37 +city+","+state+""+zip;
38 }
39 }

13.  Which class is responsible for computing the amount due? What are its collabo-
rators for this task?

14.  Why do the format methods return String objects instead of directly printing to 
System.out?

practice it  Now you can try these exercises at the end of the chapter: R12.18, P12.6, P12.7.

s e l F   C h e C k

WOrked exaMpLe 12.1 simulating an automatic Teller machine

This Worked Example applies the object-oriented design method-
ology to the simulation of an automatic teller machine that works 
with both a console-based and graphical user interface.



W574 Chapter 12  Object-Oriented design  

12.4 packages
A Java program consists of a collection of classes. So far, most of your programs have 
consisted of a small number of classes. As programs get larger, however, simply dis-
tributing the classes over multiple files isn’t enough. An additional structuring mech-
anism is needed.

In Java, packages provide this structuring mechanism. A Java package is a set of 
related classes. For example, the Java library consists of dozens of packages, some 
of which are listed in Table 2. The follow ing sections show how you can make use of 
packages in your programs. 

table 2  important packages in the java Library

package purpose sample Class

java.lang Language support Math

java.util Utilities Scanner

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.net Networking Socket

java.sql Database access through Structured Query Language ResultSet

javax.swing Swing user interface JButton

org.w3c.dom Document Object Model for XML documents Document

12.4.1 Organizing related Classes into pack ages

To put a class in a package, you must place 
packagepackageName;

as the first statement in its source file. A package name consists of one or more identi-
fiers separated by periods. (See Section 12.4.3 for tips on constructing package names.)

For example, let’s put a BankAccount class into a package named com.horstmann. The 
BankAccount.java file must start as follows: 

packagecom.horstmann;

publicclassBankAccount
{
...
}

In addition to the named packages (such as java.util or com.horstmann), there is a spe-
cial package, called the default package, which has no name. If you did not include 
any package statement at the top of your source file, the class is placed in the default 
package. 

a package is a set of 
related classes.



12.4 packages  W575

12.4.2 

In Java, related classes  
are grouped into packages.

importing packages

If you want to use a class from a package, you can refer to it by its full name (package 
name plus class name). For example, java.util.Scanner refers to the Scanner class in the 
java.util package: 

java.util.Scannerin=newjava.util.Scanner(System.in);

Naturally, that is somewhat inconvenient. You can instead import a name with an 
import statement: 

importjava.util.Scanner;

Then you can refer to the class as Scanner without the package prefix.
You can import all classes of a package with an import statement that ends in .*. For 

example, you can use the statement 
importjava.util.*;

to import all classes from the java.util package. That statement lets you refer to 
classes like Scanner or ArrayList without a java.util prefix. 

However, you never need to import the classes in the java.lang package explicitly. 
That is the package containing the most basic Java classes, such as Math and Object. 
These classes are always available to you. In effect, an automatic importjava.lang.*; 
statement has been placed into every source file. 

Finally, you don’t need to import other classes in the same package. For example, 
in the source code of the class problem1.Tester, you don’t need to import the class 
problem1.BankAccount. The compiler will find the BankAccount class without an import 
statement because it is located in the same package, problem1.

12.4.3 package names

Placing related classes into a package is clearly a convenient way to organize classes. 
However, there is a more important reason for packages: to avoid name clashes. In 
a large project, it is inevitable that two people will come up with the same name for 
the same concept. This even happens in the stan dard Java class library (which has 
now grown to thousands of classes). There is a class Timer in the java.util package and 
another class called Timer in the javax.swing package. You can still tell the Java com-
piler exactly which Timer class you need by referring to them as java.util.Timer and 
javax.swing.Timer. 

the import directive 
lets you refer to a 
class from a package 
by its class name, 
without the  
package prefix.



W576 Chapter 12  Object-Oriented design  

Of course, for the package-naming convention to work, there must be some way 
to ensure that pack age names are unique. It wouldn’t be good if the car maker BMW 
placed all its Java code into the package bmw, and some other programmer (perhaps 
Britney M. Walters) had the same bright idea. To avoid this problem, the inventors of 
Java recommend that you use a package-naming scheme that takes advantage of the 
uniqueness of Internet domain names. 

For example, I have a domain name horstmann.com, and there is nobody else on the 
planet with the same domain name. (I was lucky that the domain name horstmann.com 
had not been taken by anyone else when I applied. If your name is Walters, you will 
sadly find that someone else beat you to walters.com.) To get a package name, turn the 
domain name around to produce a package name prefix, such as com.horstmann.

If you don’t have your own domain name, you can still create a package name that 
has a high probabil ity of being unique by writing your e-mail address backwards. For 
example, if Britney Walters has an e-mail address walters@cs.sjsu.edu, then she can use 
a package name edu.sjsu.cs.walters for her own classes. 

Some instructors will want you to place each of your assignments into a separate 
package, such as problem1, problem2, and so on. The reason is again to avoid name col-
lision. You can have two classes, problem1.BankAccount and problem2.BankAccount, with 
slightly different properties.

12.4.4 how Classes are Located

A package is located in a subdirectory that matches the package name. For example, a 
package homework1 is located in a directory homework1. If the package name has multiple 
parts, such as com.horstmann.javabook, then you use a subdirectory for each part: com/
horstmann/javabook. 

For example, if you do your homework assignment in a base directory /home/brit-
ney/assignments, then you can place the class files for the problem1 package into the 
directory /home/britney/assignments/problem1, as shown in Figure 11. (Here, we are 
using UNIX-style file names. Under Windows, you would use a directory such as c:\
Users\Britney\assignments\problem1.) 

15.  Which of the following are packages? 
a.  java 
b. java.lang 
c.  java.util 
d. java.lang.Math 

16.  Is a Java program without import statements limited to using the default and 
java.lang packages?

Use a domain name 
in reverse to 
construct an 
unambiguous 
package name.

the path of a class 
file must match its 
package name.

o n l i n e  e x a m p l e

the complete 
BankAccount and 
BankAccountTester 
classes, with the 
proper directory 
structure.

Figure 11   
base directories  
and subdirectories  
for packages

Directory matches
package name

Base directory

Source file starts with 
package problem1;

s e l F   C h e C k



Chapter summary W577

17.  Suppose your homework assignments are located in the directory /home/me/
cs101 (c:\Users\me\cs101 on Windows). Your instructor tells you to place your 
homework into packages. In which directory do you place the class hw1.problem1.
TicTacToeTester?

practice it  Now you can try these exercises at the end of the chapter: R12.19, P12.15, P12.16.

recognize how to discover classes and their responsibilities.

• To discover classes, look for nouns in the problem description.
• Concepts from the problem domain are good candidates for classes.
• A CRC card describes a class, its responsibilities, and its collaborating classes.
• The public interface of a class is cohesive if all of its features are related to the 

concept that the class represents.

Categorize class relationships and produce Uml diagrams that describe them.

• A class depends on another class if it uses objects of that class.
• It is a good practice to minimize the coupling (i.e., dependency) between classes.
• A class aggregates another if its objects contain objects of the other class.
• Inheritance (the is-a relationship) is sometimes inappropriately used when the 

has-a relationship would be more appropriate.
• Aggregation (the has-a relationship) denotes that objects of one class contain 

references to objects of another class.
• You need to be able to distinguish the UML notation for inheritance, interface 

implementation, aggregation, and dependency.
• Avoid parallel arrays by changing them into arrays of objects.

apply an object-oriented development process to designing a program.

• Start the development process by gathering and documenting program 
requirements.

• Use CRC cards to find classes, responsibilities, and collaborators.
• Use UML diagrams to record class relationships.
• Use javadoc comments (with the method bodies left blank) to record the 

behavior of classes.
• After completing the design, implement your classes.

Use packages to structure the classes in your program.

• A package is a set of related classes.
• The import directive lets you refer to a class from a package by its class name, 

without the package prefix.
• Use a domain name in reverse to construct an unambiguous package name.
• The path of a class file must match its package name.

C h a p t e r  s U M M a r Y



W578 Chapter 12  Object-Oriented design  

•• r12.1  List the steps in the process of object-oriented design that this chapter recommends 
for student use. 

• r12.2  Give a rule of thumb for how to find classes when designing a program. 

• r12.3  Give a rule of thumb for how to find methods when designing a program.

•• r12.4  After discovering a method, why is it important to identify the object that is respon-
sible for carrying out the action? 

•• r12.5  Look at the public interface of the java.lang.System class and discuss whether or not it 
is cohesive.

•• r12.6  On which classes does the class Integer in the Java standard library depend?

•• r12.7  On which classes does the class java.awt.Rectangle in the standard library depend?

• r12.8  What relationship is appropriate between the following classes: aggregation, inher-
itance, or neither? 

a. University—Student
b. Student—TeachingAssistant
c. Student—Freshman
d. Student—Professor
e. Car—Door
f.  Truck—Vehicle
g. Traffic—TrafficSign
h. TrafficSign—Color

•• r12.9  Every BMW is a vehicle. Should a class BMW inherit from the class Vehicle? BMW is a 
vehicle manufacturer. Does that mean that the class BMW should inherit from the class 
VehicleManufacturer? 

•• r12.10  Some books on object-oriented programming recommend using inheritance so that 
the class Circle extends the class java.awt.Point. Then the Circle class inherits the 
setLocation method from the Point superclass. Explain why the setLocation method 
need not be overridden in the subclass. Why is it nevertheless not a good idea to have 
Circle inherit from Point? Conversely, would inheriting Point from Circle fulfill the 
is-a rule? Would it be a good idea?

• r12.11  Write CRC cards for the Coin and CashRegister classes described in Section 12.1.3. 

• r12.12  Write CRC cards for the Quiz and Question classes in Section 12.2.2. 

•• r12.13  Draw a UML diagram for the Quiz, Question, and ChoiceQuestion classes. The Quiz class 
is described in Section 12.2.2. 

••• r12.14  A file contains a set of records describing countries. Each record consists of the name 
of the country, its population, and its area. Suppose your task is to write a program 
that reads in such a file and prints 

• The country with the largest area
• The country with the largest population
• The country with the largest population density (people per square kilometer)

r e v i e W  e x e r C i s e s



programming exercises W579

Think through the problems that you need to solve. What classes and methods 
will you need? Produce a set of CRC cards, a UML diagram, and a set of javadoc 
comments. 

••• r12.15  Discover classes and methods for generating a student report card that lists all 
classes, grades, and the grade point average for a semester. Produce a set of CRC 
cards, a UML diagram, and a set of javadoc comments. 

•• r12.16  Consider the following problem description: 

Users place coins in a vending machine and select a product by pushing a button. If the inserted coins 
are sufficient to cover the purchase price of the product, the product is dispensed and change is given. 
Otherwise, the inserted coins are returned to the user.

What classes should you use to implement a solution?

•• r12.17  Consider the following problem description: 

Employees receive their biweekly paychecks. They are paid their hourly rates for each hour worked; 
however, if they worked more than 40 hours per week, they are paid overtime at 150 percent of 
their regular wage.

What classes should you use to implement a solution?

•• r12.18  Consider the following problem description:

Customers order products from a store. Invoices are generated to list the items and quantities ordered, 
payments received, and amounts still due. Products are shipped to the shipping address of the cus-
tomer, and invoices are sent to the billing address.

Draw a UML diagram showing the aggregation relationships between the classes 
Invoice, Address, Customer, and Product.

•• r12.19  Every Java program can be rewritten to avoid import statements. Explain how, and 
rewrite BabyNames.java from Worked Example 7.1 to avoid import statements.

• r12.20  What is the default package? Have you used it before this chapter in your 
 programming?

•• p12.1  Modify the giveChange method of the CashRegister class in the sample code for Section 
12.1 so that it returns the number of coins of a particular type to return:

intgiveChange(CoincoinType)

The caller needs to invoke this method for each coin type, in decreasing value. 

• p12.2  Real cash registers can handle both bills and coins. Design a single class that 
expresses the commonality of these concepts. Redesign the CashRegister class and 
provide a method for entering payments that are described by your class. Your 
pri mary challenge is to come up with a good name for this class. 

• p12.3  Enhance the invoice-printing program by providing for two kinds of line items: One 
kind describes products that are purchased in certain numerical quantities (such as 
“3 toasters”), another describes a fixed charge (such as “shipping: $5.00”). Hint: Use 
inheritance. Produce a UML diagram of your modified implementation.

p r O g r a M M i n g  e x e r C i s e s



W580 Chapter 12  Object-Oriented design  

•• p12.4  The invoice-printing program is somewhat unrealistic because the formatting of the 
LineItem objects won’t lead to good visual results when the prices and quantities have 
varying numbers of digits. Enhance the format method in two ways: Accept an int[] 
array of column widths as an argument. Use the NumberFormat class to format the cur-
rency values. 

•• p12.5  The invoice-printing program has an unfortunate flaw—it mixes “application logic” 
(the computation of total charges) and “presentation” (the visual appearance of the 
invoice). To appreciate this flaw, imagine the changes that would be necessary to 
draw the invoice in HTML for presentation on the Web. Reimplement the pro gram, 
using a separate InvoiceFormatter class to format the invoice. That is, the Invoice and 
LineItem methods are no longer responsible for formatting. However, they will 
acquire other responsibilities, because the InvoiceFormatter class needs to query them 
for the values that it requires.

••• p12.6  Write a program that teaches arithmetic to a young child. The program tests addition 
and subtraction. In level 1, it tests only addition of numbers less than 10 whose sum 
is less than 10. In level 2, it tests addition of arbitrary one-digit numbers. In level 3, it 
tests subtraction of one-digit numbers with a nonnegative difference. 
Generate random problems and get the player’s input. The player gets up to two 
tries per problem. Advance from one level to the next when the player has achieved a 
score of five points.

••• p12.7  Implement a simple e-mail messaging system. A message has a recipient, a sender, 
and a message text. A mailbox can store messages. Supply a number of mailboxes for 
different users and a user interface for users to log in, send messages to other users, 
read their own messages, and log out. Follow the design process that was described 
in this chapter. 

•• p12.8  Write a program that simulates a vending machine. Products can be purchased by 
inserting coins with a value at least equal to the cost of the product. A user selects a 
product from a list of available products, adds coins, and either gets the product or 
gets the coins returned. The coins are returned if insufficient money was supplied 
or if the product is sold out. The machine does not give change if too much money 
was added. Products can be restocked and money removed by an operator. Follow 
the design process that was described in this chapter. Your solution should include a 
class VendingMachine that is not coupled with the Scanner or PrintStream classes.

••• p12.9  Write a program to design an appointment calendar. An appointment includes the 
date, starting time, ending time, and a description; for example, 

Dentist2012/10/117:3018:30
CS1class2012/10/208:3010:00

Supply a user interface to add appointments, remove canceled appointments, and 
print out a list of appointments for a particular day. Follow the design process that 
was described in this chapter. Your solution should include a class Appointment-
Calendar that is not coupled with the Scanner or PrintStream classes. 

•• p12.10  Modify the implementation of the classes in the ATM simulation in Worked Exam-
ple 12.1 so that the bank manages a collection of bank accounts and a separate collec-
tion of customers. Allow joint accounts in which some accounts can have more than 
one customer. 



programming exercises W581

••• p12.11  Write a program that administers and grades quizzes. A quiz consists of questions. 
There are four types of questions: text questions, number questions, choice ques-
tions with a single answer, and choice questions with multiple answers. When grad-
ing a text question, ignore leading or trailing spaces and letter case. When grading a 
numeric question, accept a response that is approximately the same as the answer. 
A quiz is specified in a text file. Each question starts with a letter indicating the 
question type (T, N, S, M), followed by a line containing the question text. The next 
line of a non-choice question contains the answer. Choice questions have a list of 
choices that is terminated by a blank line. Each choice starts with + (correct) or  
- (incorrect). Here is a sample file:

T
WhichJavareservedwordisusedtodeclareasubclass?
extends
S
WhatistheoriginalnameoftheJavalanguage?
-*7
-C--
+Oak
-Gosling

M
WhichofthefollowingtypesaresupertypesofRectangle?
-PrintStream
+Shape
+RectangularShape
+Object
-String

N
Whatisthesquarerootof2?
1.41421356

Your program should read in a quiz file, prompt the user for responses to all ques-
tions, and grade the responses. Follow the design process that was described in this 
chapter.

•• p12.12  Produce a requirements document for a program that allows a company to send out 
personalized mailings, either by e-mail or through the postal service. Template files 
contain the message text, together with variable fields (such as Dear [Title] [Last 
Name] . . .). A database (stored as a text file) contains the field values for each recip-
ient. Use HTML as the output file format. Then design and implement the pro gram.

••• p12.13  Write a tic-tac-toe game that allows a human player to play against the computer. 
Your program will play many turns against a human opponent, and it will learn. 
When it is the computer’s turn, the computer randomly selects an empty field, 
except that it won’t ever choose a losing combination. For that purpose, your pro-
gram must keep an array of losing combinations. Whenever the human wins, the 
immediately preceding combination is stored as losing. For example, suppose that 
X = computer and O = human. Suppose the current combination is 

X

O

XO



W582 Chapter 12  Object-Oriented design  

Now it is the human’s turn, who will of course choose

X

O

XO

O

The computer should then remember the preceding combination 

X

O

XO

as a losing combination. As a result, the computer will never again choose that 
combination from 

X

O

O

or

O

XO

Discover classes and supply a UML diagram before you begin to program. 

• p12.14  Place the CashRegister and Coin classes of the sample program in Section 12.1 into the 
package com.horstmann. Keep the CashRegisterTester class in the default package.

• p12.15  Place all classes of the sample program in Section 12.3 into the package com.horstmann. 
How do you start the program in your programming environment?

• p12.16  Place the classes from Worked Example 12.1 in a package whose name is derived 
from your e-mail address, as described in Section 12.4.3.

••• business p12.17  Implement a program that prints paychecks for a group of student assistants. Deduct 
federal income and Social Security taxes. (You may want to use the tax computation 
used in Chapter 3. Find out about Social Security taxes on the Internet.) Your pro-
gram should prompt for the name, hourly wage, and hours worked for each student. 

••• business p12.18  Airline seating. Write a program that assigns seats on an airplane. Assume the 
airplane has 20 seats in first class (5 rows of 4 seats each, separated by an aisle) and 
90 seats in economy class (15 rows of 6 seats each, separated by an aisle). Your pro-
gram should take three commands: add passengers, show seating, and quit. When 
passengers are added, ask for the class (first or economy), the number of passengers 
traveling together (1 or 2 in first class; 1 to 3 in economy), and the seating prefer-
ence (aisle or window in first class; aisle, center, or window in economy). Then try 
to find a match and assign the seats. If no match exists, print a message. Your solu-
tion should include a class Airplane that is not coupled with the Scanner or PrintStream 
classes. Follow the design process that was described in this chapter. 



answers to self-Check Questions W583

••• business p12.19  In an airplane, each passenger has a touch screen for ordering a drink and a snack. 
Some items are free and some are not. The system prepares two reports for speeding 
up service:

1. A list of all seats, ordered by row, showing the charges that must be collected.
2. A list of how many drinks and snacks of each type must be prepared for the 

front and the rear of the plane.
Follow the design process that was described in this chapter to identify classes, and 
implement a program that simulates the system.

••• graphics p12.20  Implement a program to teach a young child to read the clock. In the game, present 
an analog clock, such as the one shown at left. Generate random times and display 
the clock. Accept guesses from the player. Reward the player for correct guesses. 
After two incorrect guesses, display the correct answer and make a new random 
time. Implement several levels of play. In level 1, only show full hours. In level 2, 
show quarter hours. In level 3, show five-minute multiples, and in level 4, show any 
number of minutes. After a player has achieved five correct guesses at one level, 
advance to the next level.

••• graphics p12.21  Write a program that can be used to design a suburban scene, with houses, streets, 
and cars. Users can add houses and cars of various colors to a street. Write more spe-
cific requirements that include a detailed description of the user interface. Then, dis-
cover classes and methods, provide UML diagrams, and implement your pro gram.

••• graphics p12.22  Write a simple graphics editor that allows users to add a mixture of shapes (ellipses, 
rectangles, and lines in different colors) to a panel. Supply commands to load and 
save the picture. Discover classes, supply a UML diagram, and implement your 
program. 

An Analog Clock

a n s W e r s  t O  s e L F - C h e C k  Q U e s t i O n s

1.  Look for nouns in the problem description.
2.  Yes (ChessBoard) and no (MovePiece).
3.  PrintStream

4.  To produce the shipping address of the 
customer.

5.  Reword the responsibilities so that they are at 
a higher level, or come up with more classes to 
handle the responsibilities.

6.  The CashRegisterTester class depends on the 
CashRegister and System classes.

7.  The ChoiceQuestion class inherits from the 
Question class.

8.  The Quiz class depends on the Question class 
but probably not ChoiceQuestion, if we assume 
that the methods of the Quiz class manipu-
late generic Question objects, as they did in 
Chapter 9.

9.  If a class doesn’t depend on another, it is not 
affected by interface changes in the other class.

10. 

11.  Typically, a library system wants to track 
which books a patron has checked out, so it 
makes more sense to have Patron aggregate Book. 
However, there is not always one true answer 
in design. If you feel strongly that it is impor-
tant to identify the patron who checked out a 
particular book (perhaps to notify the patron 
to return it because it was requested by some-
one else), then you can argue that the aggrega-
tion should go the other way around.

12.  There would be no relationship.

Mailbox Message



W584 Chapter 12  Object-Oriented design  

13.  The Invoice class is responsible for comput-
ing the amount due. It collaborates with the 
LineItem class.

14.  This design decision reduces coupling. It 
enables us to reuse the classes when we want 
to show the invoice in a dialog box or on a 
web page.

15.  (a) No; (b) Yes; (c) Yes; (d) No 
16.  No—you simply use fully qualified names for 

all other classes, such as java.util.Random and 
java.awt.Rectangle.

17.  /home/me/cs101/hw1/problem1 or, on Windows, 
c:\Users\me\cs101\hw1\problem1.



13C h a p t e r

W585

reCursion

to learn to “think recursively”

to be able to use recursive  
helper methods

to understand the relationship between recursion and iteration

to understand when the use of recursion affects the efficiency of an algorithm

to analyze problems that are much easier to solve by recursion than by iteration

to process data with recursive structures using mutual recursion

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

13.1  Triangle numbers revisiTed  W586

Common Error 13.1: infinite recursion W590

13.2  Problem solving: 
Thinking recursively  W590

Worked Example 13.1: Finding Files 

13.3  recursive helPer meThods  W594

13.4  The efficiency of recursion  W596

13.5  PermuTaTions  W601

Random Fact 13.1: the limits of 
Computation W604

13.6  muTual recursion  W606

13.7  backTracking  W612

Worked Example 13.2: towers of hanoi 



W586

the method of recursion is a powerful technique for 
breaking up complex computational problems into simpler, 
often smaller, ones. the term “recursion” refers to the fact 
that the same computation recurs, or occurs repeatedly, 
as the problem is solved. recursion is often the most 
natural way of thinking about a problem, and there are 
some computations that are very difficult to perform 
without recursion. this chapter shows you both simple and 
complex examples of recursion and teaches you how to 
“think recursively”.

13.1 triangle numbers revisited
Chapter 5 contains a simple introduction to 
writing recursive methods—methods that call 
themselves with simpler inputs. In that chapter, 
you saw how to print triangle patterns such as 
this one:

[]
[][]
[][][]
[][][][]

The key observation is that you can print a trian-
gle pattern of a given side length, provided you 
know how to print the smaller triangle pattern 
that is shown in blue.

In this section, we will modify the example slightly and use recursion to compute 
the area of a triangle shape of side length n, assuming that each [] square has area 1. 
This value is sometimes called the nth triangle number. For example, as you can tell 
from looking at the above triangle, the third triangle number is 6 and the fourth tri-
angle number is 10.

We will develop an object-oriented solution that gives another perspective on 
recursive problem solving. Instead of calling a method with simpler values, we will 
construct a simpler object.

Here is the outline of the class that we will develop:
public class Triangle
{
   private int width; 

   public Triangle(int aWidth)
   {
      width = aWidth;
   }

   public int getArea()
   {
      . . .
   }
} 

Using the same method as the one 
described in this section, you can com-
pute the volume of a Mayan pyramid.



13.1 triangle numbers revisited  W587

If the width of the triangle is 1, then the triangle consists of a single square, and its area 
is 1. Let’s take care of this case first:

public int getArea()
{
   if (width == 1) { return 1; }
   . . .
}

To deal with the general case, consider this picture:
[] 
[][] 
[][][] 
[][][][]

Suppose we knew the area of the smaller, colored triangle. Then we could easily com-
pute the area of the larger triangle as

smallerArea + width

How can we get the smaller area? Let’s make a smaller triangle and ask it!
Triangle smallerTriangle = new Triangle(width - 1);
int smallerArea = smallerTriangle.getArea();

Now we can complete the getArea method:
public int getArea()
{
   if (width == 1) { return 1; }
   else
   {
      Triangle smallerTriangle = new Triangle(width - 1);
      int smallerArea = smallerTriangle.getArea();
      return smallerArea + width;
   }
}

Here is an illustration of what happens when we compute the area of a triangle of 
width 4.

• The getArea method makes a smaller triangle of width 3.
• It calls getArea on that triangle.

• That method makes a smaller triangle of width 2.
• It calls getArea on that triangle.

• That method makes a smaller triangle of width 1.
• It calls getArea on that triangle.

• That method returns 1.
• The method returns smallerArea + width = 1 + 2 = 3.

• The method returns smallerArea + width = 3 + 3 = 6.
• The method returns smallerArea + width = 6 + 4 = 10.

This solution has one remarkable aspect. To solve the area problem for a triangle of 
a given width, we use the fact that we can solve the same problem for a lesser width. 
This is called a recursive solution.

The call pattern of a recursive method looks complicated, and the key to the 
successful design of a recursive method is not to think about it. Instead, look at the 

a recursive 
computation solves  
a problem by using 
the solution to the 
same problem with 
simpler inputs.



W588 Chapter 13  recursion

getArea method one more time and notice how utterly reasonable it is. If the width is 
1, then, of course, the area is 1. The next part is just as reason able. Compute the area 
of the smaller triangle and don’t think about why that works. Then the area of the 
larger triangle is clearly the sum of the smaller area and the width.

There are two key requirements to make sure that the recursion is successful:

• Every recursive call must simplify the computation in some way.
• There must be special cases to handle the simplest computations directly.

The getArea method calls itself again with smaller and smaller width values. Eventu-
ally the width must reach 1, and there is a special case for computing the area of a 
triangle with width 1. Thus, the getArea method always succeeds.

Actually, you have to be careful. What happens when you call the area of a triangle 
with width –1? It computes the area of a triangle with width –2, which computes the 
area of a triangle with width –3, and so on. To avoid this, the getArea method should 
return 0 if the width is ≤ 0.

Recursion is not really necessary to compute the triangle numbers. The area of a 
triangle equals the sum

1 + 2 + 3 + . . . + width

Of course, we can program a simple loop:
double area = 0;
for (int i = 1; i <= width; i++)
{
   area = area + i;
}

Many simple recursions can be computed as loops. However, loop equivalents for 
more complex recur sions—such as the one in our next example—can be complex. 

Actually, in this case, you don’t even need a loop to compute the answer. The sum 
of the first n integers can be computed as

1 2 1 2+ + + = × +� n n n( )
Thus, the area equals 

width * (width + 1) / 2

Therefore, neither recursion nor a loop is required to solve this problem. The recur-
sive solution is intended as a “warm-up” to introduce you to the concept of recursion.

section_1/Triangle.java 

1 /**
2    A triangular shape composed of stacked unit squares like this: 
3    [] 
4    [][] 
5    [][][] 
6    . . . 
7 */
8 public class Triangle
9 {

10    private int width;
11 
12    /**
13       Constructs a triangular shape. 
14       @param aWidth the width (and height) of the triangle 
15    */

For a recursion to 
terminate, there must 
be special cases for 
the simplest values.

A N I M AT I O N
Tracing a Recursion



13.1 triangle numbers revisited  W589

16    public Triangle(int aWidth)
17    {
18       width = aWidth;
19    }
20 
21    /**
22       Computes the area of the triangle. 
23       @return the area 
24    */
25    public int getArea()
26    {
27       if (width <= 0) { return 0; }
28       else if (width == 1) { return 1; }
29       else
30       {
31          Triangle smallerTriangle = new Triangle(width - 1);
32          int smallerArea = smallerTriangle.getArea();
33          return smallerArea + width;
34       }
35    }
36 }

section_1/TriangleTester.java 

1 public class TriangleTester
2 {
3    public static void main(String[] args)
4    {
5       Triangle t = new Triangle(10);
6       int area = t.getArea();
7       System.out.println("Area: " + area);
8       System.out.println("Expected: 55");
9    }

10 }

Program run

Area: 55
Expected: 55

1.  Why is the statement else if (width == 1) { return 1; } in the final version of the 
getArea method unnecessary?

2.  How would you modify the program to recursively compute the area of a 
square?

3.  In some cultures, numbers containing the digit 8 are lucky numbers. What is 
wrong with the follow ing method that tries to test whether a number is lucky?
public static boolean isLucky(int number)
{
   int lastDigit = number % 10;
   if (lastDigit == 8) { return true; }
   else 
   { 
      return isLucky(number / 10); // Test the number without the last digit
   }
}

s e l f   c h e c k



W590 Chapter 13  recursion

4.  In order to compute a power of two, you can take the next-lower power and 
double it. For example, if you want to compute 211 and you know that 210 = 
1024, then 211 = 2 × 1024 = 2048. Write a recursive method public static int 
pow2(int n) that is based on this observation.

5.  Consider the following recursive method: 
public static int mystery(int n)
{
   if (n <= 0) { return 0; }
   else
   {
      int smaller = n - 1;
      return mystery(smaller) + n * n;
   }
}

What is mystery(4)?

Practice it  Now you can try these exercises at the end of the chapter: P13.1, P13.2, P13.10.

infinite recursion

A common programming error is an infinite recursion: a method calling itself over and over 
with no end in sight. The computer needs some amount of memory for bookkeeping for each 
call. After some number of calls, all mem ory that is available for this purpose is exhausted. 
Your program shuts down and reports a “stack overflow”.

Infinite recursion happens either because the arguments don’t get simpler or because a 
special terminating case is missing. For example, suppose the getArea method was allowed to 
compute the area of a triangle with width 0. If it weren’t for the special test, the method would 
construct triangles with width –1, –2, –3, and so on.

13.2 problem solving: thinking recursively
How To 5.2 in Chapter 5 tells you how to solve a 
problem recursively by pretending that “someone 
else” will solve the problem for simpler inputs and by 
focusing on how to turn the simpler solutions into a 
solution for the whole problem.

In this section, we walk through these steps with 
a more complex problem: testing whether a sentence 
is a palindrome—a string that is equal to itself when 
you reverse all characters. Typical examples are

• A man, a plan, a canal—Panama!
• Go hang a salami, I’m a lasagna hog
and, of course, the oldest palindrome of all:
• Madam, I’m Adam

When testing for a palindrome, we match upper- and lowercase letters, and ignore all 
spaces and punctuation marks.

Common error 13.1 

Thinking recursively is easy if 
you can recognize a subtask that 
is similar to the original task.



13.2 problem solving: thinking recursively  W591

We want to implement the following isPalindrome method:
/**
   Tests whether a text is a palindrome. 
   @param text a string that is being checked
   @return true if text is a palindrome, false otherwise
*/
public static boolean isPalindrome(String Text)
{
   . . .
}

step 1  Consider various ways to simplify inputs.

In your mind, focus on a particular input or set of inputs for the problem that you 
want to solve. Think how you can simplify the inputs in such a way that the same 
problem can be applied to the simpler input. 

When you consider simpler inputs, you may want to remove just a little bit from 
the original input—maybe remove one or two characters from a string, or remove a 
small portion of a geometric shape. But sometimes it is more useful to cut the input in 
half and then see what it means to solve the problem for both halves. 

In the palindrome test problem, the input is the string that we need to test. How 
can you simplify the input? Here are several possibilities: 

• Remove the first character.
• Remove the last character.
• Remove both the first and last characters.
• Remove a character from the middle.
• Cut the string into two halves.

These simpler inputs are all potential inputs for the palindrome test.

step 2  Combine solutions with simpler inputs into a solution of the original problem.

In your mind, consider the solutions for the simpler inputs that you discovered in 
Step 1. Don’t worry how those solutions are obtained. Simply have faith that the 
solutions are readily available. Just say to your self: These are simpler inputs, so some-
one else will solve the problem for me. 

Now think how you can turn the solution for the simpler inputs into a solution 
for the input that you are cur rently thinking about. Maybe you need to add a small 
quantity, perhaps related to the quantity that you lopped off to arrive at the simpler 
input. Maybe you cut the original input in half and have solutions for each half. Then 
you may need to add both solutions to arrive at a solution for the whole. 

Consider the methods for simplifying the inputs for the palindrome test. Cutting 
the string in half doesn’t seem like a good idea. If you cut 

"Madam, I'm Adam"

in half, you get two strings:
"Madam, I"

and
"'m Adam"

The first string isn’t a palindrome. Cutting the input in half and testing whether the 
halves are palindromes seems a dead end.



W592 Chapter 13  recursion

The most promising simplification is to remove the first and last characters. 
Removing the M at the front and the m at the back yields

"adam, I'm Ada"

Suppose you can verify that the shorter string is a palindrome. Then of course the 
original string is a palindrome—we put the same letter in the front and the back. 
That’s extremely promising. A word is a palindrome if

• The first and last letters match (ignoring letter case).
and
• The word obtained by removing the first and last letters is a palindrome.

Again, don’t worry how the test works for the shorter string. It just works.
There is one other case to consider. What if the first or last letter of the word is not 

a letter? For example, the string
"A man, a plan, a canal, Panama!"

ends in a ! character, which does not match the A in the front. But we should ignore 
non-letters when testing for pal indromes. Thus, when the last character is not a letter 
but the first character is a letter, it doesn’t make sense to remove both the first and the 
last characters. That’s not a problem. Remove only the last character. If the shorter 
string is a palindrome, then it stays a palindrome when you attach a nonletter.

The same argument applies if the first character is not a letter. Now we have a com-
plete set of cases. 

• If the first and last characters are both letters, then check whether they match. If 
so, remove both and test the shorter string. 

• Otherwise, if the last character isn’t a letter, remove it and test the shorter string.
• Otherwise, the first character isn’t a letter. Remove it and test the shorter string.

In all three cases, you can use the solution to the simpler problem to arrive at a solu-
tion to your problem.

step 3  Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. Eventually it arrives at very 
simple inputs. To make sure that the recursion comes to a stop, you must deal with 
the simplest inputs separately. Come up with special solutions for them, which is 
usually very easy. 

However, sometimes you get into philosophical questions dealing with degener-
ate inputs: empty strings, shapes with no area, and so on. Then you may want to 
investigate a slightly larger input that gets reduced to such a trivial input and see what 
value you should attach to the degenerate inputs so that the simpler value, when used 
according to the rules you discovered in Step 2, yields the correct answer. 

Let’s look at the simplest strings for the palindrome test:

• Strings with two characters
• Strings with a single character
• The empty string

We don’t have to come up with a special solution for strings with two characters. Step 
2 still applies to those strings—either or both of the characters are removed. But we 



13.2 problem solving: thinking recursively  W593

do need to worry about strings of length 0 and 1. In those cases, Step 2 can’t apply. 
There aren’t two characters to remove.

The empty string is a palindrome—it’s the same string when you read it back-
wards. If you find that too artificial, consider a string "mm". According to the rule 
discovered in Step 2, this string is a palindrome if the first and last char acters of that 
string match and the remainder—that is, the empty string—is also a palindrome. 
Therefore, it makes sense to consider the empty string a palindrome.

A string with a single letter, such as "I", is a palindrome. How about the case in 
which the character is not a letter, such as "!"? Removing the ! yields the empty 
string, which is a palindrome. Thus, we conclude that all strings of length 0 or 1 are 
palindromes.

step 4  Implement the solution by combining the simple cases and the reduction step.

Now you are ready to implement the solution. Make separate cases for the simple 
inputs that you considered in Step 3. If the input isn’t one of the simplest cases, then 
implement the logic you discovered in Step 2.

Here is the isPalindrome method:
public static boolean isPalindrome(String text)
{
   int length = text.length();

   // Separate case for shortest strings. 
   if (length <= 1) { return true; }
   else
   {
      // Get first and last characters, converted to lowercase. 
      char first = Character.toLowerCase(text.charAt(0));
      char last = Character.toLowerCase(text.charAt(length - 1));

      if (Character.isLetter(first) && Character.isLetter(last))
      {
         // Both are letters. 
         if (first == last)
         {
            // Remove both first and last character. 
            String shorter = text.substring(1, length - 1);
            return isPalindrome(shorter);
         }
         else
         {
            return false;
         }
      }
      else if (!Character.isLetter(last))
      {
         // Remove last character. 
         String shorter = text.substring(0, length - 1); 
         return isPalindrome(shorter);
      }
      else
      {
         // Remove first character. 
         String shorter = text.substring(1); 
         return isPalindrome(shorter);
      }
   }
}

o n l i n e  e x a m P l e

the Palindromes 
class.



W594 Chapter 13  recursion

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

6.  Consider the task of removing all punctuation marks from a string. How can we 
break the string into smaller strings that can be processed recursively? 

7.  In a recursive method that removes all punctuation marks from a string, we 
decide to remove the last character, then recursively process the remainder. How 
do you combine the results?

8.  How do you find solutions for the simplest inputs when removing punctuation 
marks from a string?

9.  Provide pseudocode for a recursive method that removes punctuation marks 
from a string, using the answers to Self Checks 6–8.

Practice it  Now you can try these exercises at the end of the chapter: R13.3, P13.3, P13.6.

13.3 recursive helper Methods
Sometimes it is easier to find a recursive 
solution if you change the original problem 
slightly. Then the original problem can be 
solved by calling a recursive helper method. 

Here is a typical example: Consider the 
palindrome test of Section 13.2. It is a bit 
inefficient to con struct new string objects 
in every step. Now consider the following 
change in the problem. Rather than test-
ing whether the entire sentence is a palin-
drome, let’s check whether a substring is a 
palindrome:

/** 
   Tests whether a substring is a palindrome. 
   @param text a string that is being checked
   @param start the index of the first character of the substring 
   @param end the index of the last character of the substring 
   @return true if the substring is a palindrome 
*/
public static boolean isPalindrome(String text, int start, int end)

This method turns out to be even easier to implement than the original test. In the 
recursive calls, simply adjust the start and end parameter variables to skip over match-
ing letter pairs and characters that are not letters. There is no need to construct new 
String objects to represent the shorter strings.

public static boolean isPalindrome(String text, int start, int end)
{

s e l f   c h e c k

Worked exaMple 13.1 finding files

In this Worked Example, we find all files with a given extension 
in a directory tree.

Sometimes, a task can be solved by handing 
it off to a recursive helper method.

sometimes it is easier 
to find a recursive 
solution if you make 
a slight change to the 
original problem.



13.3 recursive helper Methods  W595

   // Separate case for substrings of length 0 and 1. 
   if (start >= end) { return true; }
   else
   {
      // Get first and last characters, converted to lowercase. 
      char first = Character.toLowerCase(text.charAt(start));
      char last = Character.toLowerCase(text.charAt(end));

      if (Character.isLetter(first) && Character.isLetter(last))
      {
         if (first == last)
         {
            // Test substring that doesn’t contain the matching letters. 
            return isPalindrome(text, start + 1, end - 1);
         }
         else
         {
            return false;
         }
      }
      else if (!Character.isLetter(last))
      {
         // Test substring that doesn’t contain the last character. 
         return isPalindrome(text, start, end - 1);
      }
      else
      {
         // Test substring that doesn’t contain the first character. 
         return isPalindrome(text, start + 1, end);
      }
   }
}

You should still supply a method to solve the whole problem—the user of your 
method shouldn’t have to know about the trick with the substring positions. Simply 
call the helper method with positions that test the entire string:

public static boolean isPalindrome(String text)
{
   return isPalindrome(text, 0, text.length() - 1);
}

Note that this call is not a recursive method call. The isPalindrome(String) method 
calls the helper method isPalindrome(String, int, int). In this example, we use over-
loading to declare two methods with the same name. The isPalindrome method with 
just a String parameter variable is the method that we expect the public to use. The 
second method, with one String and two int parameter variables, is the recursive 
helper method. If you prefer, you can avoid overloaded methods by choosing a dif-
ferent name for the helper method, such as substringIsPalindrome. 

Use the technique of recursive helper methods whenever it is easier to solve a 
recursive problem that is equivalent to the original problem—but more amenable to 
a recursive solution. 

10.  Do we have to give the same name to both isPalindrome methods?
11.  When does the recursive isPalindrome method stop calling itself?
12.  To compute the sum of the values in an array, add the first value to the sum of the 

remaining values, computing recursively. Of course, it would be inefficient to set 

o n l i n e  e x a m P l e

the Palindromes 
class with a helper 
method.

s e l f   c h e c k



W596 Chapter 13  recursion

up an actual array of the remaining values. Which recursive helper method can 
solve the problem?

13.  How can you write a recursive method public static void sum(int[] a) without 
needing a helper function?

Practice it  Now you can try these exercises at the end of the chapter: P13.4, P13.7, 13.11.

13.4 the efficiency of recursion
As you have seen in this chapter, recursion can be a 
powerful tool to implement complex algorithms. On 
the other hand, recursion can lead to algorithms that 
perform poorly. In this section, we will analyze the 
question of when recursion is beneficial and when it is 
inefficient.

Consider the Fibonacci sequence: a sequence of 
numbers defined by the equation 

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

That is, each value of the sequence is the sum of the two preceding values. The first 
ten terms of the sequence are 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

It is easy to extend this sequence indefinitely. Just keep appending the sum of the last 
two values of the sequence. For example, the next entry is 34 + 55 = 89. 

We would like to write a method that computes fn for any value of n. Here we 
translate the definition directly into a recursive method: 

section_4/recursivefib.java 

1 import java.util.Scanner;
2 
3 /**
4    This program computes Fibonacci numbers using a recursive method.
5 */ 
6 public class RecursiveFib
7 { 
8    public static void main(String[] args)
9    { 

10       Scanner in = new Scanner(System.in);
11       System.out.print("Enter n: ");
12       int n = in.nextInt();
13 
14       for (int i = 1; i <= n; i++)
15       {
16          long f = fib(i);
17          System.out.println("fib(" + i + ") = " + f);
18       }

In most cases, iterative and 
recursive approaches have 
comparable efficiency.



13.4 the efficiency of recursion  W597

19    }
20 
21    /**
22       Computes a Fibonacci number.
23       @param n an integer
24       @return the nth Fibonacci number
25    */
26    public static long fib(int n)
27    { 
28       if (n <= 2) { return 1; }
29       else { return fib(n - 1) + fib(n - 2); }
30    }
31 }

Program run

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

That is certainly simple, and the method will work correctly. But watch the output 
closely as you run the test program. The first few calls to the fib method are fast. For 
larger values, though, the program pauses an amazingly long time between outputs. 

That makes no sense. Armed with pencil, paper, and a pocket calculator you could 
calculate these numbers pretty quickly, so it shouldn’t take the computer anywhere 
near that long.

To find out the problem, let us insert trace messages into the method: 

section_4/recursivefibTracer.java 

1 import java.util.Scanner;
2 
3 /**
4    This program prints trace messages that show how often the
5    recursive method for computing Fibonacci numbers calls itself.
6 */ 
7 public class RecursiveFibTracer
8 {
9    public static void main(String[] args)

10    { 
11       Scanner in = new Scanner(System.in);
12       System.out.print("Enter n: ");
13       int n = in.nextInt();
14 
15       long f = fib(n);
16 
17       System.out.println("fib(" + n + ") = " + f);   
18    }
19 
20    /**



W598 Chapter 13  recursion

21       Computes a Fibonacci number.
22       @param n an integer
23       @return the nth Fibonacci number
24    */
25    public static long fib(int n)
26    {
27       System.out.println("Entering fib: n = " + n);
28       long f;
29       if (n <= 2) { f = 1; }
30       else { f = fib(n - 1) + fib(n - 2); }
31       System.out.println("Exiting fib: n = " + n
32             + " return value = " + f);
33       return f;
34    }
35 }

Program run

Enter n: 6
Entering fib: n = 6
Entering fib: n = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Exiting fib: n = 5 return value = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Exiting fib: n = 6 return value = 8
fib(6) = 8

Figure 1 shows the pattern of recursive calls for computing fib(6). Now it is becom-
ing apparent why the method takes so long. It is computing the same values over and 
over. For example, the computation of fib(6) calls fib(4) twice and fib(3) three times. 
That is very different from the computation we would do with pencil and paper. 
There we would just write down the values as they were computed and add up the 
last two to get the next one until we reached the desired entry; no sequence value 
would ever be computed twice.



13.4 the efficiency of recursion  W599

figure 1  Call pattern of the recursive fib Method

fib(6)

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1)

fib(2) fib(1)

If we imitate the pencil-and-paper process, then we get the following program:

section_4/loopfib.java 

1 import java.util.Scanner;
2 
3 /**
4    This program computes Fibonacci numbers using an iterative method.
5 */ 
6 public class LoopFib
7 { 
8    public static void main(String[] args)
9    { 

10       Scanner in = new Scanner(System.in);
11       System.out.print("Enter n: ");
12       int n = in.nextInt();
13 
14       for (int i = 1; i <= n; i++)
15       {
16          long f = fib(i);
17          System.out.println("fib(" + i + ") = " + f);
18       }
19    }
20 
21    /**
22       Computes a Fibonacci number.
23       @param n an integer
24       @return the nth Fibonacci number
25    */
26    public static long fib(int n)
27    { 
28       if (n <= 2) { return 1; }
29       else
30       {
31          long olderValue = 1;
32          long oldValue = 1;
33          long newValue = 1;
34          for (int i = 3; i <= n; i++)
35          { 
36             newValue = oldValue + olderValue;
37             olderValue = oldValue;
38             oldValue = newValue;



W600 Chapter 13  recursion

39          }
40          return newValue;
41       }
42    }
43 }

Program run

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

This method runs much faster than the recursive version. 
In this example of the fib method, the recursive solution was easy to program 

because it exactly fol lowed the mathematical definition, but it ran far more slowly 
than the iterative solution, because it com puted many intermediate results multiple 
times. 

Can you always speed up a recursive solution by changing it into a loop? Fre-
quently, the iterative and recursive solution have essentially the same performance. 
For example, here is an iterative solution for the palindrome test:

public static boolean isPalindrome(String text)
{
   int start = 0;
   int end = text.length() - 1;
   while (start < end)
   {
      char first = Character.toLowerCase(text.charAt(start));
      char last = Character.toLowerCase(text.charAt(end));

      if (Character.isLetter(first) && Character.isLetter(last))
      {
         // Both are letters. 
         if (first == last)
         {
            start++;
            end--;
         }
         else
         {
            return false;
         }
      }
      if (!Character.isLetter(last)) { end--; }
      if (!Character.isLetter(first)) { start++; }
   }
   return true;
}

This solution keeps two index variables: start and end. The first index starts at the 
beginning of the string and is advanced whenever a letter has been matched or a 

occasionally, a 
recursive solution 
runs much slower 
than its iterative 
counterpart. however, 
in most cases, the 
recursive solution is 
only slightly slower.

o n l i n e  e x a m P l e

the LoopPalindromes 
class.



13.5 permutations  W601

nonletter has been ignored. The second index starts at the end of the string and moves 
toward the beginning. When the two index variables meet, the iteration stops.

Both the iteration and the recursion run at about the same speed. If a palindrome 
has n characters, the iteration executes the loop between n/2 and n times, depending 
on how many of the characters are letters, because one or both index variables are 
moved in each step. Similarly, the recursive solution calls itself between n/2 and n 
times, because one or two characters are removed in each step. 

In such a situation, the iterative solution tends to be a bit faster, because each recur-
sive method call takes a certain amount of processor time. In principle, it is possible 
for a smart compiler to avoid recur sive method calls if they follow simple patterns, 
but most Java compilers don’t do that. From that point of view, an iterative solution 
is preferable. 

However, many problems have recursive solutions that are easier to understand 
and implement cor rectly than their iterative counterparts. Sometimes there is no 
obvious iterative solution at all—see the example in the next section. There is a cer-
tain elegance and economy of thought to recursive solutions that makes them more 
appealing. As the computer scientist (and creator of the GhostScript interpreter for 
the PostScript graphics description language) L. Peter Deutsch put it: “To iterate is 
human, to recurse divine.” 

14.  Is it faster to compute the triangle numbers recursively, as shown in Section 13.1, 
or is it faster to use a loop that computes 1 + 2 + 3 + . . . + width?

15.  You can compute the factorial function either with a loop, using the defini-
tion that n! = 1 × 2 × . . . × n, or recursively, using the definition that 0! = 1 and 
n! = (n – 1)! × n. Is the recur sive approach inefficient in this case?

16.  To compute the sum of the values in an array, you can split the array in the 
middle, recursively com pute the sums of the halves, and add the results. Com-
pare the performance of this algorithm with that of a loop that adds the values.

Practice it  Now you can try these exercises at the end of the chapter: R13.7, R13.9. P13.5, 
P13.25.

13.5 permutations
In this section, we will study a more complex example of recur-
sion that would be difficult to program with a simple loop. (As 
Exercise P13.11 shows, it is possible to avoid the recursion, but 
the resulting solu tion is quite complex, and no faster).

We will design a method that lists all permutations of a string. 
A permutation is simply a rearrangement of the letters in the 
string. For example, the string "eat" has six permutations (includ-
ing the original string itself):

"eat"
"eta"
"aet"
"ate"
"tea"
"tae"

in many cases, a 
recursive solution is 
easier to understand 
and implement 
correctly than an 
iterative solution.

s e l f   c h e c k

Using recursion, 
you can find all 
arrangements of  
a set of objects.

the permutations  
of a string can be 
obtained more 
naturally through 
recursion than  
with a loop.



W602 Chapter 13  recursion

Now we need a way to generate the permutations recursively. Consider the string 
"eat". Let’s simplify the problem. First, we’ll generate all permutations that start 
with the letter 'e', then those that start with 'a', and finally those that start with 
't'. How do we generate the permutations that start with 'e'? We need to know 
the permutations of the substring "at". But that’s the same problem—to generate all 
permu tations—with a simpler input, namely the shorter string "at". Thus, we can use 
recursion. Generate the permutations of the substring "at". They are

"at"
"ta"

For each permutation of that substring, prepend the letter 'e' to get the permutations 
of "eat" that start with 'e', namely

"eat"
"eta"

Now let’s turn our attention to the permutations of "eat" that start with 'a'. We need 
to produce the per mutations of the remaining letters, "et". They are:

"et"
"te"

We add the letter 'a' to the front of the strings and obtain
"aet"
"ate"

We generate the permutations that start with 't' in the same way.
That’s the idea. The implementation is fairly straightforward. In the permutations 

method, we loop through all positions in the word to be permuted. For each of them, 
we compute the shorter word that is obtained by removing the ith letter:

String shorter = word.substring(0, i) + word.substring(i + 1);

We compute the permutations of the shorter word:
ArrayList<String> shorterPermutations = permutations(shorter);

Finally, we add the removed letter to the front of all permutations of the shorter word.
for (String s : shorterPermutations)
{
   result.add(word.charAt(i) + s);
}

As always, we have to provide a special case for the simplest strings. The simplest 
possible string is the empty string, which has a single permutation—itself.

Here is the complete Permutations class:

section_5/Permutations.java 

1 import java.util.ArrayList;
2 
3 /**
4    This class computes permutations of a string. 
5 */
6 public class Permutations
7 {
8    public static void main(String[] args)
9    {

10       for (String s : permutations(“eat”))
11       {



13.5 permutations  W603

12          System.out.println(s);
13       }
14    }
15 
16    /**
17       Gets all permutations of a given word. 
18       @param word the string to permute
19       @return a list of all permutations
20    */
21    public static ArrayList<String> permutations(String word)
22    {
23       ArrayList<String> result = new ArrayList<String>();
24 
25       // The empty string has a single permutation: itself
26       if (word.length() == 0) 
27       { 
28          result.add(word); 
29          return result; 
30       }
31       else
32       {
33          // Loop through all character positions
34          for (int i = 0; i < word.length(); i++)
35          {
36             // Form a shorter word by removing the ith character 
37             String shorter = word.substring(0, i) + word.substring(i + 1);
38 
39             // Generate all permutations of the simpler word 
40             ArrayList<String> shorterPermutations = permutations(shorter)
41 
42             // Add the removed character to the front of 
43             // each permutation of the simpler word 
44             for (String s : shorterPermutations)
45             {
46                result.add(word.charAt(i) + s);
47             }
48          }
49          // Return all permutations
50          return result;
51       }
52    }
53 }

Program run

eat
eta
aet
ate
tea
tae

Compare the Permutations and Triangle classes. Both of them work on the same princi-
ple. When they work on a more complex input, they first solve the problem for a sim-
pler input. Then they combine the result for the simpler input with additional work 
to deliver the results for the more complex input. There really is no particular com-
plexity behind that process as long as you think about the solution on that level only. 



W604 Chapter 13  recursion

However, behind the scenes, the simpler input creates even simpler input, which cre-
ates yet another simplification, and so on, until one input is so simple that the result 
can be obtained without further help. It is interesting to think about this process, but 
it can also be confusing. What’s important is that you can focus on the one level that 
matters—putting a solution together from the slightly simpler problem, ignoring the 
fact that the simpler problem also uses recursion to get its results.

have you ever won-
dered how your 
instructor or grader 

makes sure your programming home-
work is correct? in all likelihood, they 
look at your solution and perhaps run it 
with some test inputs. But usually they 
have a correct solu tion available. that 
suggests that there might be an easier 
way. perhaps they could feed your pro-
gram and their cor rect program into 
a “program comparator”, a computer 
program that analyzes both programs 
and determines whether they both 
compute the same results. of course, 
your solution and the program that is 
known to be correct need not be identi-
cal—what matters is that they produce 
the same output when given the same 
input.

how could such a program com-
parator work? Well, the Java compiler 
knows how to read a program and 
make sense of the classes, methods, 
and statements. so it seems plausible 
that someone could, with some effort, 
write a program that reads two Java 
programs, analyzes what they do, and 
determines whether they solve the 
same task. of course, such a program 
would be very attractive to instructors, 
because it could automate the grad-
ing process. thus, even though no 
such program exists today, it might be 
tempting to try to develop one and sell 
it to universities around the world. 

however, before you start raising 
venture capital for such an effort, you 
should know that theoretical computer 
scientists have proven that it is impos-
sible to develop such a program, no 
matter how hard you try. 

there are quite a few of these 
unsolvable problems. the first one, 

called the halting problem, was dis-
covered by the British researcher alan 
turing in 1936. Because his research 
occurred before the first actual com-
puter was con structed, turing had to 
devise a theoretical device, the Tur-
ing machine, to explain how comput-
ers could work. the turing machine 
consists of a long magnetic tape, a 
read/write head, and a program that 
has numbered instructions of the form: 
“if the current symbol under the head 
is x, then replace it with y, move the 
head one unit left or right, and con-
tinue with instruction n” (see figure 
below). interestingly enough, with 
only these instructions, you can pro-
gram just as much as with Java, even 
though it is incredibly tedious to do so. 
theoretical computer scientists like 
turing machines because they can be 
described using nothing more than the 
laws of mathematics.   

expressed in terms of Java, the halt-
ing problem states: “it is impossible 
to write a program with two inputs, 
namely the source code of an arbi-
trary Java program P and a string I, 
that decides whether the program P, 
when executed with the input I, will 
halt—that is, the program will not get 
into an infinite loop with the given 
input”. of course, for some kinds of 
programs and inputs, it is possible to 
decide whether the program halts with 
the given input. the halting problem 
asserts that it is impossible to come 
up with a single decision-making algo-
rithm that works with all programs and 
inputs. note that you can’t simply run 
the program P on the input I to settle 
this ques tion. if the program runs for 
1,000 days, you don’t know that the 
program is in an infinite loop. Maybe 

you just have to wait another day for 
it to stop.

such a “halt checker”, if it could be 
written, might also be useful for grad-
ing homework. an instructor could use 
it to screen student submissions to see 
if they get into an infinite loop with a 
particular input, and then stop check-
ing them. however, as turing dem-
onstrated, such a program cannot be 
written. his argument is ingenious and 
quite simple. 

suppose a “halt checker” program 
existed. let’s call it H. From H, we will 
develop another program, the “killer” 
program K. K does the following com-
putation. its input is a string contain-
ing the source code for a program R. 
it then applies the halt checker on the 
input program R and the input string R. 
that is, it checks whether the program 
R halts if its input is its own source 
code. it sounds bizarre to feed a pro-
gram to itself, but it isn’t impossible.

Alan Turing

Random Fact 13.1 the limits of Computation



13.5 permutations  W605

17.  What are all permutations of the four-letter word beat?
18.  Our recursion for the permutation generator stops at the empty string. What 

simple modification would make the recursion stop at strings of length 0 or 1?
19.  Why isn’t it easy to develop an iterative solution for the permutation generator?

Practice it  Now you can try these exercises at the end of the chapter: P13.11, P13.12, P13.13.

s e l f   c h e c k

For exam ple, the Java compiler is writ-
ten in Java, and you can use it to com-
pile itself. or, as a simpler example, a 
word counting program can count the 
words in its own source code.

When K gets the answer from H 
that R halts when applied to itself, it is 
programmed to enter an infinite loop. 
otherwise K exits. in Java, the program 
might look like this:

public class Killer
{
   public static void main(
      String[] args)
   {
      String r = read program input;
      HaltChecker checker = 
         new HaltChecker();
      if (checker.check(r, r))
      {
         while (true) 
         { // Infinite loop
         } 
      }
      else 
      { 
         return;
      }
   }
} 

now ask yourself: What does the halt 
checker answer when asked whether 
K halts when given K as the input? 
Maybe it finds out that K gets into an 
infinite loop with such an input. But 
wait, that can’t be right. that would 
mean that checker.check(r, r) returns 
false when r is the program code of K. 
as you can plainly see, in that case, the 
killer method returns, so k didn’t get 
into an infinite loop. that shows that 
K must halt when analyzing itself, so 

checker.check(r, r) should return true. 
But then the killer method doesn’t ter-
minate—it goes into an infinite loop. 
that shows that it is logically impos-
sible to implement a program that can 
check whether every program halts on 
a particular input.

it is sobering to know that there are 
limits to computing. there are prob-
lems that no computer program, no 
mat ter how ingenious, can answer. 

theoretical computer scientists are 
working on other research involving 
the nature of computation. one impor-
tant question that remains unsettled 

to this day deals with problems that 
in practice are very time-consuming to 
solve. it may be that these problems 
are intrinsically hard, in which case it 
would be pointless to try to look for 
bet ter algorithms. such theoretical 
research can have important practical 
applications. For example, right now, 
nobody knows whether the most com-
mon encryption schemes used today 
could be broken by discovering a new 
algorithm. knowing that no fast algo-
rithms exist for breaking a particular 
code could make us feel more comfort-
able about the security of encryption. 

Instruction
number

If tape 
symbol is

Replace
with

Then move
head

Then go to
instruction

1

2

3

4

0
1
0
1
2
0
1
2
1
2

2
1
0
1
0
0
1
2
1
0

right
left

right
right
left
left
left

right
right
left

2
4
2
2
3
3
3
1
5
4

Program

Control unit

Read/write head

Tape

The Turing Machine



W606 Chapter 13  recursion

13.6 Mutual recursion
In the preceding examples, a method called itself to solve a simpler problem. Some-
times, a set of cooper ating methods calls each other in a recursive fashion. In this sec-
tion, we will explore such a mutual recursion. This technique is significantly more 
advanced than the simple recursion that we discussed in the preceding sections. 

We will develop a program that can compute the values of arithmetic expressions 
such as

3+4*5
(3+4)*5
1-(2-(3-(4-5)))

Computing such an expression is complicated by the fact that * and / bind more 
strongly than + and -, and that parentheses can be used to group subexpressions.

Figure 2 shows a set of syntax diagrams that describes the syntax of these expres-
sions. To see how the syntax diagrams work, consider the expression 3+4*5:

• Enter the expression syntax diagram. The arrow points directly to term, giving 
you no alternative.

• Enter the term syntax diagram. The arrow points to factor, again giving you no 
choice.

• Enter the factor diagram. You have two choices: to follow the top branch or the 
bottom branch. Because the first input token is the number 3 and not a (, follow 
the bottom branch.

• Accept the input token because it matches the number. The unprocessed input is 
now +4*5.

• Follow the arrow out of number to the end of factor. As in a method call, you 
now back up, returning to the end of the factor element of the term diagram.

in a mutual recursion, 
a set of cooperating 
methods calls each 
other repeatedly.

figure 2  syntax diagrams for evaluating an expression

termexpression

+

–

factorterm

*

/

expression

number

factor

( )



13.6 Mutual recursion  W607

• Now you have another choice—to loop back in the term diagram, or to exit. The 
next input token is a +, and it matches neither the * or the / that would be required 
to loop back. So you exit, returning to expression.

• Again, you have a choice, to loop back or to exit. Now the + matches one of the 
choices in the loop. Accept the + in the input and move back to the term element. 
The remaining input is 4*5. 

In this fashion, an expression is broken down into a sequence of terms, separated by + 
or -, each term is broken down into a sequence of factors, each separated by * or /, and 
each factor is either a parenthesized expression or a number. You can draw this break-
down as a tree. Figure 3 shows how the expressions 3+4*5 and (3+4)*5 are derived from 
the syntax diagram.  

Why do the syntax diagrams help us compute the value of the tree? If you look at 
the syntax trees, you will see that they accurately represent which operations should 
be carried out first. In the first tree, 4 and 5 should be multiplied, and then the result 
should be added to 3. In the second tree, 3 and 4 should be added, and the result 
should be multiplied by 5. 

At the end of this section, you will find the implementation of the Evaluator 
class, which evaluates these expressions. The Evaluator makes use of an Expression-   
Tokenizer class, which breaks up an input string into tokens—numbers, operators, 
and parentheses. (For simplicity, we only accept positive integers as numbers, and we 
don’t allow spaces in the input.) 

When you call nextToken, the next input token is returned as a string. We also sup-
ply another method, peekToken, which allows you to see the next token without con-
suming it. To see why the peekToken method is necessary, consider the syntax diagram 
of the term type. If the next token is a "*" or "/", you want to continue adding and 
subtracting terms. But if the next token is another character, such as a "+" or "-", you 
want to stop without actually consuming it, so that the token can be considered later. 

To compute the value of an expression, we implement three methods: 
getExpressionValue, getTerm Value, and getFactorValue. The getExpressionValue method 
first calls getTermValue to get the value of the first term of the expression. Then it 

figure 3  syntax trees for two expressions

Expression

Term Term

Factor

Number

3 + * *

Factor

Number

4

Factor

Number

5 5

Expression

Factor

Term

Factor

Number

3( +

Expression

Term

Term

Factor

Number

4 )

Factor

Number



W608 Chapter 13  recursion

checks whether the next input token is one of + or -. If so, it calls get Term  Value again 
and adds or subtracts it. 

public int getExpressionValue()
{
   int value = getTermValue();
   boolean done = false;
   while (!done)
   {
      String next = tokenizer.peekToken();
      if ("+".equals(next) || "-".equals(next))
      {
         tokenizer.nextToken(); // Discard "+" or "-"
         int value2 = getTermValue();
         if ("+".equals(next)) { value = value + value2; }
         else { value = value - value2; }
      }
      else 
      {
         done = true;
      }
   }
   return value;
}

The getTermValue method calls getFactorValue in the same way, multiplying or dividing 
the factor values.

Finally, the getFactorValue method checks whether the next input is a number, or 
whether it begins with a ( token. In the first case, the value is simply the value of the 
number. However, in the second case, the getFactorValue method makes a recursive 
call to getExpressionValue. Thus, the three methods are mutually recursive. 

public int getFactorValue()
{
   int value;
   String next = tokenizer.peekToken();
   if ("(".equals(next))
   {
      tokenizer.nextToken(); // Discard "("
      value = getExpressionValue();
      tokenizer.nextToken(); // Discard ")"
   }
   else
   {
      value = Integer.parseInt(tokenizer.nextToken());
   }
   return value;
}

To see the mutual recursion clearly, trace through the expression (3+4)*5:

• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue

• getFactorValue consumes the ( input
• getFactorValue calls getExpressionValue

• getExpressionValue returns eventually with the value of 7, 
having consumed 3 + 4. This is the recursive call.

• getFactorValue consumes the ) input



13.6 Mutual recursion  W609

• getFactorValue returns 7
• getTermValue consumes the inputs * and 5 and returns 35

• getExpressionValue returns 35

As always with a recursive solution, you need to ensure that the recursion termi-
nates. In this situation, that is easy to see when you consider the situation in which 
get ExpressionValue calls itself. The second call works on a shorter subexpression than 
the original expression. At each recursive call, at least some of the tokens of the input 
string are consumed, so eventually the recursion must come to an end.

section_6/evaluator.java 

1 /**
2    A class that can compute the value of an arithmetic expression. 
3 */
4 public class Evaluator
5 {
6     private ExpressionTokenizer tokenizer;
7 
8    /**
9       Constructs an evaluator. 

10       @param anExpression a string containing the expression 
11       to be evaluated 
12    */
13    public Evaluator(String anExpression)
14    {
15       tokenizer = new ExpressionTokenizer(anExpression);
16    }
17 
18    /**
19       Evaluates the expression. 
20       @return the value of the expression 
21    */
22    public int getExpressionValue()
23    {
24       int value = getTermValue();
25       boolean done = false;
26       while (!done)
27       {
28          String next = tokenizer.peekToken();
29          if ("+".equals(next) || "-".equals(next))
30          {
31             tokenizer.nextToken(); // Discard "+" or "-"
32             int value2 = getTermValue();
33             if ("+".equals(next)) { value = value + value2; }
34             else { value = value - value2; }
35          }
36          else 
37          {
38             done = true;
39          }
40       }
41       return value;
42    }
43    
44    /**
45       Evaluates the next term found in the expression. 
46       @return the value of the term 
47    */



W610 Chapter 13  recursion

48    public int getTermValue()
49    {
50       int value = getFactorValue();
51       boolean done = false;
52       while (!done)
53       {
54          String next = tokenizer.peekToken();
55          if ("*".equals(next) || "/".equals(next))
56          {
57             tokenizer.nextToken();
58             int value2 = getFactorValue();
59             if ("*".equals(next)) { value = value * value2; }
60             else { value = value / value2; }
61          }
62          else 
63          {
64             done = true;
65          }
66       }
67       return value;
68    }
69 
70    /**
71       Evaluates the next factor found in the expression. 
72       @return the value of the factor 
73    */
74    public int getFactorValue()
75    {
76       int value;
77       String next = tokenizer.peekToken();
78       if ("(".equals(next))
79       {
80          tokenizer.nextToken(); // Discard "("
81          value = getExpressionValue();
82          tokenizer.nextToken(); // Discard ")" 
83       }
84       else
85       {
86          value = Integer.parseInt(tokenizer.nextToken());
87       }
88       return value;
89    }
90 }

section_6/expressionTokenizer.java 

1 /**
2    This class breaks up a string describing an expression 
3    into tokens: numbers, parentheses, and operators. 
4 */
5 public class ExpressionTokenizer
6 {
7    private String input;
8    private int start; //  The start of the current token
9    private int end; // The position after the end of the current token

10 
11    /**
12       Constructs a tokenizer. 
13       @param anInput the string to tokenize 
14    */



13.6 Mutual recursion  W611

15    public ExpressionTokenizer(String anInput)
16    {
17       input = anInput;
18       start = 0;
19       end = 0;
20       nextToken(); //  Find the first token
21    }
22 
23    /**
24       Peeks at the next token without consuming it. 
25       @return the next token or null if there are no more tokens 
26    */
27    public String peekToken()
28    {
29       if (start >= input.length()) { return null; }
30       else { return input.substring(start, end); }     
31    }
32 
33    /**
34       Gets the next token and moves the tokenizer to the following token. 
35       @return the next token or null if there are no more tokens 
36    */
37    public String nextToken()
38    {
39       String r = peekToken();
40       start = end;
41       if (start >= input.length()) { return r; }
42       if (Character.isDigit(input.charAt(start)))
43       {
44          end = start + 1;
45          while (end < input.length() 
46                && Character.isDigit(input.charAt(end)))
47          {
48             end++;
49          }
50       }
51       else
52       {
53          end = start + 1;
54       }
55       return r;      
56    }
57 }

section_6/expressioncalculator.java 

1 import java.util.Scanner;
2 
3 /**
4    This program calculates the value of an expression 
5    consisting of numbers, arithmetic operators, and parentheses.
6 */
7 public class ExpressionCalculator
8 {
9    public static void main(String[] args)

10    {
11       Scanner in = new Scanner(System.in);
12       System.out.print("Enter an expression: ");
13       String input = in.nextLine();
14       Evaluator e = new Evaluator(input);



W612 Chapter 13  recursion

15       int value = e.getExpressionValue();
16       System.out.println(input + "=" + value);
17    }
18 }

Program run

Enter an expression: 3+4*5
3+4*5=23

20.  What is the difference between a term and a factor? Why do we need both 
concepts? 

21.  Why does the expression evaluator use mutual recursion? 
22.  What happens if you try to evaluate the illegal expression 3+4*)5? Specifically, 

which method throws an exception? 

Practice it  Now you can try these exercises at the end of the chapter: R13.11, P13.16.

13.7 Backtracking
Backtracking is a problem solving technique that builds up partial solutions that get 
increasingly closer to the goal. If a partial solution cannot be completed, one aban-
dons it and returns to examining the other candidates. 

Backtracking can be used to solve crossword puzzles, escape from mazes, or find 
solutions to systems that are constrained by rules. In order to employ backtracking 
for a particular problem, we need two characteristic properties:

1. A procedure to examine a partial solution and determine whether to
• Accept it as an actual solution.
• Abandon it (either because it violates some rules or because it is clear that it 

can never lead to a valid solution).
• Continue extending it.

2. A procedure to extend a partial solution, generating one or more solutions that 
come closer to the goal.

s e l f   c h e c k

Backtracking 
examines partial 
solutions,  
abandoning 
unsuitable ones and 
returning to consider 
other candidates.

In a backtracking algorithm, one  
explores all paths towards a solution.  
When one path is a dead end, one needs  
to backtrack and try another choice.



13.7 Backtracking  W613

figure 4   
a solution to the  
eight Queens problem

a b c d e f g h

a b c d e f g h

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

Backtracking can then be expressed with the following recursive algorithm:

Solve(partialSolution)
 Examine(partialSolution).
 If accepted
  Add partialSolution to the list of solutions.
 Else if not abandoned
  For each p in extend(partialSolution)
   Solve(p).

Of course, the processes of examining and extending a partial solution depend on the 
nature of the problem.

As an example, we will develop a program that finds all solutions to the eight 
queens problem: the task of positioning eight queens on a chess board so that none of 
them attacks another according to the rules of chess. In other words, there are no two 
queens on the same row, column, or diagonal. Figure 4 shows a solution. 

In this problem, it is easy to examine a partial solution. If two queens attack 
another, reject it. Otherwise, if it has eight queens, accept it. Otherwise, continue.

It is also easy to extend a partial solution. Simply add another queen on an empty 
square.

However, in the interest of efficiency, we will be a bit more systematic about the 
extension process. We will place the first queen in row 1, the next queen in row 2, and 
so on.

We provide a class PartialSolution that collects the queens in a partial solution, and 
that has methods to examine and extend the solution:

public class PartialSolution
{
   private Queen[] queens;
   
   public int examine() { . . . }
   public PartialSolution[] extend() { . . . }
}

The examine method simply checks whether two queens attack each other:
public int examine()
{



W614 Chapter 13  recursion

   for (int i = 0; i < queens.length; i++)
   {
      for (int j = i + 1; j < queens.length; j++)
      {
         if (queens[i].attacks(queens[j])) { return ABANDON; }
      }
   }
   if (queens.length == NQUEENS) { return ACCEPT; }
   else { return CONTINUE; }
}

The extend method takes a given solution and makes eight copies of it. Each copy gets 
a new queen in a different column.

public PartialSolution[] extend()
{
   // Generate a new solution for each column
   PartialSolution[] result = new PartialSolution[NQUEENS];
   for (int i = 0; i < result.length; i++)
   {
      int size = queens.length;

      // The new solution has one more row than this one
      result[i] = new PartialSolution(size + 1);

      // Copy this solution into the new one
      for (int j = 0; j < size; j++)
      {
         result[i].queens[j] = queens[j];
      }

      // Append the new queen into the ith column
      result[i].queens[size] = new Queen(size, i);
   }
   return result;
}

You will find the Queen class at the end of the section. The only challenge is to deter-
mine when two queens attack each other diagonally. Here is an easy way of checking 
that. Compute the slope and check whether it is ±1. This condition can be simplified 
as follows:

row row column column 1

row row column column

row row column column

2 1 2 1

2 1 2 1

2 1 2 1

) )
)

( (
(

− − = ±

− = ± −

− = −

Have a close look at the solve method in the EightQueens class on page W617. The method 
is a straightforward translation of the pseudocode for backtracking. Note how there 
is nothing specific about the eight queens problem in this method—it works for any 
partial solution with an examine and extend method (see Exercise P13.19).

Figure 5 shows the solve method in action for a four queens problem. Starting 
from a blank board, there are four partial solutions with a queen in row 1 1 . When 
the queen is in column 1, there are four partial solutions with a queen in row 2 2 . 
Two of them are immediately abandoned immediately. The other two lead to partial 
solutions with three queens 3  and 4 , all but one of which are abandoned. One par-
tial solution is extended to four queens, but all of those are abandoned as well 5 . 



13.7 Backtracking  W615

figure 5  Backtracking in the Four Queens problem

1

2

3 4

5

Then the algorithm backtracks, giving up on a queen in position a1, instead extending 
the solution with the queen in position b1 (not shown).

When you run the program, it lists 92 solutions, including the one in Figure 4. 
Exercise P13.21 asks you to remove those that are rotations or reflections of another.

section_7/Partialsolution.java

1 /**
2    A partial solution to the eight queens puzzle.
3 */
4 public class PartialSolution
5 {
6    private Queen[] queens;
7    private static final int NQUEENS = 8;
8 
9    public static final int ACCEPT = 1;

10    public static final int ABANDON = 2;
11    public static final int CONTINUE = 3;
12    
13    /**
14       Constructs a partial solution of a given size.
15       @param size the size
16    */
17    public PartialSolution(int size)
18    {
19       queens = new Queen[size];
20    }
21 
22    /**
23       Examines a partial solution.
24       @return one of ACCEPT, ABANDON, CONTINUE
25    */
26    public int examine()
27    {



W616 Chapter 13  recursion

28       for (int i = 0; i < queens.length; i++)
29       {
30          for (int j = i + 1; j < queens.length; j++)
31          {
32             if (queens[i].attacks(queens[j])) { return ABANDON; }
33          }
34       }
35       if (queens.length == NQUEENS) { return ACCEPT; }
36       else { return CONTINUE; }
37    }
38 
39    /**
40       Yields all extensions of this partial solution.
41       @return an array of partial solutions that extend this solution.
42    */
43    public PartialSolution[] extend()
44    {
45       // Generate a new solution for each column
46       PartialSolution[] result = new PartialSolution[NQUEENS];
47       for (int i = 0; i < result.length; i++)
48       {
49          int size = queens.length;
50 
51          // The new solution has one more row than this one
52          result[i] = new PartialSolution(size + 1);
53 
54          // Copy this solution into the new one
55          for (int j = 0; j < size; j++)
56          {
57             result[i].queens[j] = queens[j];
58          }
59 
60          // Append the new queen into the ith column
61          result[i].queens[size] = new Queen(size, i);
62       }
63       return result;
64    }
65 
66    public String toString() { return Arrays.toString(queens); }
67 }

section_7/Queen.java

1 /**
2    A queen in the eight queens problem.
3 */
4 public class Queen
5 {
6    private int row;
7    private int column;
8 
9    /**

10       Constructs a queen at a given position.
11       @param r the row 
12       @param c the column
13    */
14    public Queen(int r, int c)
15    {



13.7 Backtracking  W617

16       row = r;
17       column = c;
18    }
19 
20    /**
21       Checks whether this queen attacks another.
22       @param other the other queen
23       @return true if this and the other queen are in the same
24       row, column, or diagonal
25    */
26    public boolean attacks(Queen other)
27    {
28       return row == other.row
29          || column == other.column
30          || Math.abs(row - other.row) == Math.abs(column - other.column);
31    }
32 
33    public String toString() 
34    { 
35       return "" + "abcdefgh".charAt(column) + (row + 1) ; 
36    }
37 }

section_7/eightQueens.java

1 import java.util.Arrays;
2 
3 /**
4    This class solves the eight queens problem using backtracking.
5 */
6 public class EightQueens
7 {
8    public static void main(String[] args)
9    {

10       solve(new PartialSolution(0));
11    }
12 
13    /**
14       Prints all solutions to the problem that can be extended from 
15       a given partial solution.
16       @param sol the partial solution
17    */
18    public static void solve(PartialSolution sol)
19    {
20       int exam = sol.examine();
21       if (exam == PartialSolution.ACCEPT) 
22       { 
23          System.out.println(sol); 
24       }
25       else if (exam != PartialSolution.ABANDON)
26       {
27          for (PartialSolution p : sol.extend())
28          {
29             solve(p);
30          }
31       }
32    }
33 }



W618 Chapter 13  recursion

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Program run

[a1, e2, h3, f4, c5, g6, b7, d8]
[a1, f2, h3, c4, g5, d6, b7, e8]
[a1, g2, d3, f4, h5, b6, e7, c8]
 . . .
[f1, a2, e3, b4, h5, c6, g7, d8]
 . . .
[h1, c2, a3, f4, b5, e6, g7, d8]
[h1, d2, a3, c4, f5, b6, g7, e8]

(92 solutions)

23.  Why does j begin at i + 1 in the examine method?
24.  Continue tracing the four queens problem as shown in Figure 5. How many 

solutions are there with the first queen in position a2?
25.  How many solutions are there altogether for the four queens problem?

Practice it  Now you can try these exercises at the end of the chapter: P13.19, P13.23, P13.24.

understand the control flow in a recursive computation.

• A recursive computation solves a problem by using the solution to the same 
problem with simpler inputs.

• For a recursion to terminate, there must be special cases for the simplest values.

design a recursive solution to a problem.

identify recursive helper methods for solving a problem.

• Sometimes it is easier to find a recursive solution if you 
make a slight change to the original problem.

s e l f   c h e c k

Worked exaMple 13.2 Towers of hanoi

No discussion of recursion would be 
com plete without the “Towers of Hanoi”. 
In this Worked Example, we solve the classic 
puzzle with an elegant recursive solution.

C h a p t e r  s u M M a r y



review exercises W619

contrast the efficiency of recursive and non-recursive algorithms.

• Occasionally, a recursive solution runs much slower than its iterative counterpart. 
However, in most cases, the recursive solution is only slightly slower.

• In many cases, a recursive solution is easier to understand and implement cor-
rectly than an iterative solution.

review a complex recursion example that cannot be solved with a simple loop.

• The permutations of a string can be obtained more naturally through 
recursion than with a loop.

recognize the phenomenon of mutual recursion in an expression evaluator.

• In a mutual recursion, a set of cooperating methods calls each other repeatedly.

use backtracking to solve problems that require trying out multiple paths.

• Backtracking examines partial solutions, abandoning unsuitable ones and return-
ing to consider other candidates.

• r13.1  Define the terms 
a. Recursion
b. Iteration
c. Infinite recursion
d. Recursive helper method

•• r13.2  Outline, but do not implement, a recursive solution for finding the smallest value in 
an array.

•• r13.3  Outline, but do not implement, a recursive solution for sorting an array of num bers. 
Hint: First find the smallest value in the array.

•• r13.4  Outline, but do not implement, a recursive solution for generating all subsets of the 
set {1, 2, . . . , n}.

••• r13.5  Exercise P13.15 shows an iterative way of generating all permutations of the 
sequence (0, 1, . . . , n – 1). Explain why the algorithm produces the correct result.

• r13.6  Write a recursive definition of xn, where n ≥ 0, similar to the recursive definition of 
the Fibonacci numbers. Hint: How do you compute xn from xn – 1? How does the 
recursion terminate?

•• r13.7  Improve upon Exercise R13.6 by computing xn as (xn/2)2 if n is even. Why is this 
approach significantly faster? Hint: Compute x1023 and x1024 both ways.

r e v i e W  e x e r C i s e s



W620 Chapter 13  recursion

• r13.8  Write a recursive definition of n! = 1 × 2 × . . . × n, similar to the recursive definition 
of the Fibonacci numbers.

•• r13.9  Find out how often the recursive version of fib calls itself. Keep a static variable 
fibCount and increment it once in every call to fib. What is the relationship between 
fib(n) and fibCount? 

••• r13.10  Let moves(n) be the number of moves required to solve the Towers of Hanoi prob-
lem (see Worked Example 13.2). Find a formula that expresses moves(n) in terms of 
moves(n – 1). Then show that moves(n) = 2n – 1. 

•• r13.11  Trace the expression evaluator program from Section 13.6 with inputs 3 – 4 + 5, 
3 – (4 + 5), (3 – 4) * 5, and 3 * 4 + 5 * 6.

• P13.1  Given a class Rectangle with instance variables width and height, provide a recursive 
getArea method. Construct a rectangle whose width is one less than the original and 
call its getArea method.

•• P13.2  Given a class Square with instance variable width, provide a recursive getArea method. 
Construct a square whose width is one less than the original and call its getArea 
method.

• P13.3  Write a recursive method String reverse(String text) that reverses a string. For 
example, reverse("Hello!") returns the string "!olleH". Implement a recursive solution 
by removing the first character, reversing the remaining text, and combining the two.

•• P13.4  Redo Exercise P13.3 with a recursive helper method that reverses a substring of the 
message text.

• P13.5  Implement the reverse method of Exercise P13.3 as an iteration.

•• P13.6  Use recursion to implement a method 
public static boolean find(String text, String str) 

that tests whether a given text contains a string. For example, find("Mississippi", 
"sip") returns true.
Hint: If the text starts with the string you want to match, then you are done. If not, 
consider the text that you obtain by removing the first character.

•• P13.7  Use recursion to implement a method 
public static int indexOf(String text, String str) 

that returns the starting position of the first substring of the text that matches str. 
Return –1 if str is not a substring of the text. 
For example, s.indexOf("Mississippi", "sip") returns 6.
Hint: This is a bit trickier than Exercise P13.6, because you must keep track of how 
far the match is from the beginning of the text. Make that value a parameter variable 
of a helper method.

• P13.8  Using recursion, find the largest element in an array. 
Hint: Find the largest element in the subset containing all but the last element. Then 
compare that maxi mum to the value of the last element. 

p r o G r a M M i n G  e x e r C i s e s



programming exercises W621

• P13.9  Using recursion, compute the sum of all values in an array. 

•• P13.10  Using recursion, compute the area of a polygon. Cut off a 
triangle and use the fact that a triangle with corners (x1, y1), 
(x2, y2), (x3, y3) has area

x y x y x y y x y x y x1 2 2 3 3 1 1 2 2 3 3 1

2

+ + − − −

•• P13.11  The following method was known to the ancient Greeks for computing square 
roots. Given a value x > 0 and a guess g for the square root, a better guess is 
(x + g/x) / 2. Write a recursive helper method public static squareRootGuess(double x, 
double g). If g2 is approximately equal to x, return g, otherwise, return squareRootGuess 
with the better guess. Then write a method public static squareRoot(double x) that 
uses the helper method.

••• P13.12  Implement a SubstringGenerator that generates all substrings of a string. For example, 
the substrings of the string "rum" are the seven strings

"r", "ru", "rum", "u", "um", "m", ""

Hint: First enumerate all substrings that start with the first character. There are n of 
them if the string has length n. Then enumerate the substrings of the string that you 
obtain by removing the first character.

••• P13.13  Implement a SubsetGenerator that generates all subsets of the characters of a string. 
For example, the subsets of the characters of the string "rum" are the eight strings

"rum", "ru", "rm", "r", "um", "u", "m", ""

Note that the subsets don’t have to be substrings—for example, "rm" isn’t a substring 
of "rum".

••• P13.14  In this exercise, you will change the permutations method of Section 13.4 (which 
computed all permutations at once) to a PermutationIterator (which computes them 
one at a time).

public class PermutationIterator
{
   public PermutationIterator(String s) { . . . }
   public String nextPermutation() { . . . }
   public boolean hasMorePermutations() { . . . }
}

Here is how you would print out all permutations of the string "eat":
PermutationIterator iter = new PermutationIterator("eat");
while (iter.hasMorePermutations())
{
   System.out.println(iter.nextPermutation());
}

Now we need a way to iterate through the permutations recursively. Consider the 
string "eat". As before, we’ll generate all permutations that start with the letter 'e', 
then those that start with 'a', and finally those that start with 't'. How do we gener-
ate the permutations that start with 'e'? Make another PermutationIterator object 
(called tailIterator) that iterates through the permutations of the substring "at". In 
the nextPermutation method, simply ask tailIterator what its next permutation is, 
and then add the 'e' at the front. However, there is one special case. When the tail 



W622 Chapter 13  recursion

generator runs out of permutations, all permutations that start with the current letter 
have been enumerated. Then 

• Increment the current position.
• Compute the tail string that contains all letters except for the current one.
• Make a new permutation iterator for the tail string.

You are done when the current position has reached the end of the string. 

••• P13.15  The following class generates all permutations of the numbers 0, 1, 2, . . ., n – 1, 
without using recursion.

public class NumberPermutationIterator
{
   private int[] a;

   public NumberPermutationIterator(int n)
   {
      a = new int[n];
      done = false;
      for (int i = 0; i < n; i++) { a[i] = i; }
   }

   public int[] nextPermutation()
   {
      if (a.length <= 1) { return a; }

      for (int i = a.length - 1; i > 0; i--)
      {
         if (a[i - 1] < a[i]) 
         {
            int j = a.length - 1;
            while (a[i - 1] > a[j]) { j--; }
            swap(i - 1, j);
            reverse(i, a.length - 1);
            return a;
         } 
      }
      return a;
   }

   public boolean hasMorePermutations()
   {
      if (a.length <= 1) { return false; }
      for (int i = a.length - 1; i > 0; i--)
      {
         if (a[i - 1] < a[i]) { return true; }
      }
      return false;
   }

   public void swap(int i, int j)
   {
      int temp = a[i];
      a[i] = a[j];
      a[j] = temp;
   }

   public void reverse(int i, int j)
   {
      while (i < j) { swap(i, j); i++; j--; }



programming exercises W623

   }
}

The algorithm uses the fact that the set to be permuted consists of distinct numbers. 
Thus, you cannot use the same algorithm to compute the permutations of the char-
acters in a string. You can, however, use this class to get all permutations of the char-
acter positions and then compute a string whose ith character is word.charAt(a[i]). 
Use this approach to reimplement the PermutationIterator of Exercise P13.14 without 
recursion.

•• P13.16  Extend the expression evaluator in Section 13.6 so that it can handle the % operator 
as well as a “raise to a power” operator ̂ . For example, 2 ̂  3 should evaluate to 8. As 
in mathematics, raising to a power should bind more strongly than multiplication: 
5 * 2 ̂  3 is 40.

••• P13.17  Implement an iterator that produces the moves for the Towers of Hanoi puzzle 
described in Worked Example 13.2. Provide methods hasMoreMoves and nextMove. The 
nextMove method should yield a string describing the next move. For example, the 
following code prints all moves needed to move five disks from peg 1 to peg 3:

DiskMover mover = new DiskMover(5, 1, 3);
while (mover.hasMoreMoves())
{
   System.out.println(mover.nextMove());
}

Hint: A disk mover that moves a single disk from one peg to another simply has a 
nextMove method that returns a string

Move disk from peg source to target

A disk mover with more than one disk to move must work harder. It needs another 
DiskMover to help it move the first d – 1 disks. The nextMove asks that disk mover for its 
next move until it is done. Then the nextMove method issues a command to move the 
dth disk. Finally, it constructs another disk mover that generates the remaining 
moves.
It helps to keep track of the state of the disk mover:

• BEFORE_LARGEST: A helper mover moves the smaller pile to the other peg.
• LARGEST: Move the largest disk from the source to the destination.
• AFTER_LARGEST: The helper mover moves the smaller pile from the other peg to 

the target.
• DONE: All moves are done.

••• P13.18  Escaping a Maze. You are currently located inside a maze. The walls of the maze are 
indicated by asterisks (*). 

* *******
*     * *
* ***** *
* * *   *
* * *** *
*   *   *
*** * * *
*     * *
******* *

Use the following recursive approach to check whether you can escape from the 
maze: If you are at an exit, return true. Recursively check whether you can escape 



W624 Chapter 13  recursion

from one of the empty neighboring locations without visiting the current location. 
This method merely tests whether there is a path out of the maze. Extra credit if you 
can print out a path that leads to an exit.

•• P13.19  The backtracking algorithm will work for any problem whose partial solutions can 
be examined and extended. Provide a PartialSolution interface type with methods 
examine and extend, a solve method that works with this interface type, and a class 
EightQueensPartialSolution that implements the interface.

•• P13.20  Using the PartialSolution interface and solve method from Exercise P13.19, provide a 
class MazePartialSolution for solving the maze escape problem of Exercise P13.18.

••• P13.21  Refine the program for solving the eight queens problem so that rotations and reflec-
tions of previously displayed solutions are not shown. Your program should display 
twelve unique solutions.

••• P13.22  Refine the program for solving the eight queens problem so that the solutions are 
written to an HTML file, using tables with black and white background for the 
board and the Unicode character ♕ '\u2655' for the white queen.

•• P13.23  Generalize the program for solving the eight queens problem to the n queens prob-
lem. Your program should prompt for the value of n and display the solutions.

•• P13.24  Using backtracking, write a program that solves summation puzzles in which each 
letter should be replaced by a digit, such as

send + more = money

Other examples are base + ball = games and kyoto + osaka = tokyo.

•• P13.25  The recursive computation of Fibonacci numbers can be speeded up significantly 
by keeping track of the values that have already been computed. Provide an imple-
mentation of the fib method that uses this strategy. Whenever you return a new 
value, also store it in an auxiliary array. However, before embarking on a computa-
tion, consult the array to find whether the result has already been computed. Com-
pare the running time of your improved implementation with that of the original 
recursive implementation and the loop implementation.

••• graphics P13.26  The Koch Snowflake. A snowflake-like shape is recursively defined as follows. Start 
with an equilateral triangle:

Next, increase the size by a factor of three and replace each straight line with four 
line segments:

Repeat the process:



answers to self-Check Questions W625

1.  Suppose we omit the statement. When com-
puting the area of a triangle with width 1, we 
compute the area of the triangle with width 
0 as 0, and then add 1, to arrive at the correct 
area.

2.  You would compute the smaller area recur-
sively, then return 
smallerArea + width + width - 1.

[][][][]
[][][][]
[][][][]
[][][][]

Of course, it would be simpler to compute the 
area simply as width * width. The results are 
identical because

n n
n n n n

n

1 0 2 1 3 2 1
( 1)

2
( 1)

2
2

�+ + + + + + + + − =
+

+
−

=

3.  There is no provision for stopping the 
recursion. When a number < 10 isn’t 8, then 
the method should return false and stop.

4.  public static int pow2(int n) 
{
   if (n <= 0) { return 1; } // 20 is 1
   else { return 2 * pow2(n - 1); }
}

5.  mystery(4) calls mystery(3)
   mystery(3) calls mystery(2)
      mystery(2) calls mystery(1)
         mystery(1) calls mystery(0)
            mystery(0) returns 0.
         mystery(1) returns 0 + 1 * 1 = 1
      mystery(2) returns 1 + 2 * 2 = 5
   mystery(3) returns 5 + 3 * 3 = 14
mystery(4) returns 14 + 4 * 4 = 30

6.  In this problem, any decomposition will work 
fine. We can remove the first or last character 
and then remove punctuation marks from the 
remainder. Or we can break the string in two 

substrings, and remove punctuation marks 
from each.

7.  If the last character is a punctuation mark, 
then you simply return the shorter string with 
punctuation marks removed. Otherwise, you 
reattach the last character to that result and 
return it.

8.  The simplest input is the empty string. It 
contains no punctuation marks, so you simply 
return it.

9.  If str is empty, return str.
last = last letter in str
simplerResult = removePunctuation(
  str with last letter removed)
If (last is a punctuation mark)
 Return simplerResult.
Else
 Return simplerResult + last.

10.  No—the second one could be given a differ-
ent name such as substringIsPalindrome.

11.  When start >= end, that is, when the investi-
gated string is either empty or has length 1.

12.  A sumHelper(int[] a, int start, int size). The 
method calls sumHelper(a, start + 1, size).

13.  Call sum(a, size - 1) and add the last element, 
a[size - 1].

14.  The loop is slightly faster. It is even faster to 
simply compute width * (width + 1) / 2.

15.  No, the recursive solution is about as efficient 
as the iterative approach. Both require n – 1 
multiplications to compute n!.

16.  The recursive algorithm performs about as 
well as the loop. Unlike the recursive Fibo-
nacci algorithm, this algorithm doesn’t call 
itself again on the same input. For example, 
the sum of the array 1 4 9 16 25 36 49 64 is 
computed as the sum of 1 4 9 16 and 25 36 49 
64, then as the sums of 1 4, 9 16, 25 36, and 49 
64, which can be com puted directly. 

17.  They are b followed by the six permutations 
of eat, e followed by the six permuta tions of 

Write a program that draws the iterations of the snowflake shape. Supply a button 
that, when clicked, produces the next iteration. 

a n s W e r s  t o  s e l F - C h e C k  Q u e s t i o n s



W626 Chapter 13  recursion

bat, a followed by the six permutations of bet, 
and t followed by the six per mutations of bea.

18.  Simply change if (word.length() == 0) to 
if (word.length() <= 1), because a word with a 
single letter is also its sole permutation.

19.  An iterative solution would have a loop whose 
body computes the next permuta tion from the 
previous ones. But there is no obvious mecha-
nism for getting the next permutation. For 
example, if you already found permutations 
eat, eta, and aet, it is not clear how you use 
that information to get the next permutation. 
Actually, there is an ingenious mechanism for 
doing just that, but it is far from obvious—see 
Exercise P13.15.

20.  Factors are combined by multiplicative opera-
tors (* and /); terms are combined by additive 
operators (+, -). We need both so that multipli-
cation can bind more strongly than addition.

21.  To handle parenthesized expressions, such as 
2+3*(4+5). The subexpression 4+5 is handled by 
a recursive call to getExpressionValue.

22.  The Integer.parseInt call in getFactorValue 
throws an exception when it is given the 
string ")".

23.  We want to check whether any queen[i] 
attacks any queen[j], but attacking is sym-
metric. That is, we can choose to compare 
only those for which i < j (or, alternatively, 
those for which i > j). We don’t want to call 
the attacks method when i equals j; it would 
return true. 

24.  One solution:

25.  Two solutions: The one from Self Check 24, 
and its mirror image.



14C h a p t e r

W627

Sorting and  
SearChing

to study several sorting and  
searching algorithms

to appreciate that algorithms for the same  
task can differ widely in performance

to understand the big-oh notation

to estimate and compare the performance of algorithms

to write code to measure the running time of a program

C h a p t e r  g o a l S

C h a p t e r  C o n t e n t S

14.1  Selection Sort  W628

14.2  Profiling the Selection Sort 
Algorithm  W631

14.3  AnAlyzing the PerformAnce  
of the Selection Sort 
Algorithm  W634

Special Topic 14.1: oh, omega, and theta W636
Special Topic 14.2: insertion Sort W637

14.4  merge Sort  W639

14.5  AnAlyzing the merge Sort 
Algorithm  W642

Special Topic 14.3: the Quicksort algorithm W644

14.6  SeArching  W646

Random Fact 14.1: the First programmer W650

14.7  Problem Solving: 
eStimAting the running time 
of An Algorithm  W651

14.8  Sorting And SeArching in 
the JAvA librAry  W656

Common Error 14.1: the compareto Method Can 
return any integer, not Just –1, 0, and 1 W658

Special Topic 14.4: the parameterized 
Comparable interface W658

Special Topic 14.5: the Comparator 
interface W659

Worked Example 14.1: enhancing the insertion 
Sort algorithm 



W628

one of the most common tasks in data processing is sorting. 
For example, an array of employees often needs to be 
displayed in alphabetical order or sorted by salary. in this 
chapter, you will learn several sorting methods as well as  
techniques for comparing their performance. these tech-
niques are useful not just for sorting algorithms, but also 
for analyzing other algorithms.

once an array of elements is sorted, one can rapidly locate 
individual elements. You will study the binary search 
algorithm that carries out this fast lookup. 

14.1 Selection Sort
In this section, we show you the first of several sorting algorithms. A sorting algo-
rithm rearranges the ele ments of a collection so that they are stored in sorted order. 
To keep the examples simple, we will discuss how to sort an array of integers before 
going on to sorting strings or more complex data. Consider the following array a: 

11 9 17 5 12

[0] [1] [2] [3] [4]

An obvious first step is to find the smallest element. In this case the smallest element 
is 5, stored in a[3]. We should move the 5 to the beginning of the array. Of course, 
there is already an element stored in a[0], namely 11. Therefore we cannot simply 
move a[3] into a[0] without moving the 11 somewhere else. We don’t yet know where 
the 11 should end up, but we know for certain that it should not be in a[0]. We simply 
get it out of the way by swapping it with a[3]:

5 9 17 11 12

[0] [1] [2] [3] [4]

Now the first element is in the correct place. The darker color in the figure indicates 
the por tion of the array that is already sorted.

the selection sort 
algorithm sorts an 
array by repeatedly 
finding the smallest 
element of the 
unsorted tail region 
and moving it to  
the front.

In selection sort, pick  
the smallest element  
and swap it with the  
first one. Pick the  
smallest element of  
the remaining ones  
and swap it with the  
next one, and so on.



14.1 Selection Sort  W629

Next we take the minimum of the remaining entries a[1] . . . a[4]. That minimum 
value, 9, is already in the correct place. We don’t need to do anything in this case and 
can simply extend the sorted area by one to the right: 

5 9 17 11 12

[0] [1] [2] [3] [4]

Repeat the process. The minimum value of the unsorted region is 11, which needs to 
be swapped with the first value of the unsorted region, 17: 

5 9 11 17 12

[0] [1] [2] [3] [4]

Now the unsorted region is only two elements long, but we keep to the same success-
ful strategy. The minimum value is 12, and we swap it with the first value, 17:

5 9 11 12 17

[0] [1] [2] [3] [4]

That leaves us with an unprocessed region of length 1, but of course a region of length 
1 is always sorted. We are done. 

Let’s program this algorithm. For this program, as well as the other programs in 
this chapter, we will use a utility method to generate an array with random entries. 
We place it into a class ArrayUtil so that we don’t have to repeat the code in every 
example. To show the array, we call the static toString method of the Arrays class in the 
Java library and print the resulting string (see Section 6.3.4). We also add a method for 
swapping elements to the ArrayUtil class. (See Section 6.3.8 for details about swapping 
array elements.) 

This algorithm will sort any array of integers. If speed were not an issue, or if there 
simply were no better sorting method available, we could stop the discussion of sort-
ing right here. As the next section shows, however, this algorithm, while entirely cor-
rect, shows disappointing performance when run on a large data set. 

Special Topic 14.2 discusses insertion sort, another simple sorting algorithm.

section_1/SelectionSorter.java

1  /**
2     The sort method of this class sorts an array, using the selection 
3     sort algorithm.
4  */
5  public class SelectionSorter
6  {
7     /**
8        Sorts an array, using selection sort.
9        @param a the array to sort

10     */
11     public static void sort(int[] a)
12     { 
13        for (int i = 0; i < a.length - 1; i++)
14        { 
15           int minPos = minimumPosition(a, i);
16           ArrayUtil.swap(a, minPos, i);
17        }
18     }



W630 Chapter 14  Sorting and Searching 

19 
20     /**
21        Finds the smallest element in a tail range of the array.
22        @param a the array to sort
23        @param from the first position in a to compare
24        @return the position of the smallest element in the
25        range a[from] . . . a[a.length - 1]
26     */
27     private static int minimumPosition(int[] a, int from)
28     { 
29        int minPos = from;
30        for (int i = from + 1; i < a.length; i++)
31        {
32           if (a[i] < a[minPos]) { minPos = i; }
33        }
34        return minPos;
35     }
36  }

section_1/SelectionSortdemo.java

1  import java.util.Arrays;
2 
3  /**
4     This program demonstrates the selection sort algorithm by
5     sorting an array that is filled with random numbers.
6  */
7  public class SelectionSortDemo
8  { 
9     public static void main(String[] args)

10     { 
11        int[] a = ArrayUtil.randomIntArray(20, 100);
12        System.out.println(Arrays.toString(a));
13 
14        SelectionSorter.sort(a);
15 
16        System.out.println(Arrays.toString(a));
17     }
18  }

section_1/Arrayutil.java

1  import java.util.Random;
2 
3  /**
4     This class contains utility methods for array manipulation.
5  */  
6  public class ArrayUtil
7  { 
8     private static Random generator = new Random();
9 

10     /**
11        Creates an array filled with random values.
12        @param length the length of the array
13        @param n the number of possible random values
14        @return an array filled with length numbers between
15        0 and n - 1
16     */
17     public static int[] randomIntArray(int length, int n)
18     { 



14.2 profiling the Selection Sort algorithm  W631

19        int[] a = new int[length];
20        for (int i = 0; i < a.length; i++)
21        {
22           a[i] = generator.nextInt(n);
23        }
24 
25        return a;
26     }
27 
28     /**
29        Swaps two entries of an array.
30        @param a the array
31        @param i the first position to swap
32        @param j the second position to swap
33     */
34     public static void swap(int[] a, int i, int j)
35     {
36        int temp = a[i];
37        a[i] = a[j];
38        a[j] = temp;
39     }
40  }

Program run

[65, 46, 14, 52, 38, 2, 96, 39, 14, 33, 13, 4, 24, 99, 89, 77, 73, 87, 36, 81]
[2, 4, 13, 14, 14, 24, 33, 36, 38, 39, 46, 52, 65, 73, 77, 81, 87, 89, 96, 99]

1.  Why do we need the temp variable in the swap method? What would happen if 
you simply assigned a[i] to a[j] and a[j] to a[i]?

2.  What steps does the selection sort algorithm go through to sort the sequence  
6 5 4 3 2 1?

3.  How can you change the selection sort algorithm so that it sorts the elements in 
descending order (that is, with the largest element at the beginning of the array)?

4.  Suppose we modified the selection sort algorithm to start at the end of the array, 
working toward the beginning. In each step, the current position is swapped 
with the minimum. What is the result of this modification?

Practice it  Now you can try these exercises at the end of the chapter: R14.2, R14.10, P14.1, P14.2.

14.2 profiling the Selection Sort algorithm
To measure the performance of a program, you could simply run it and use a stop-
watch to measure how long it takes. However, most of our programs run very 
quickly, and it is not easy to time them accurately in this way. Furthermore, when a 
program takes a noticeable time to run, a certain amount of that time may simply be 
used for loading the program from disk into memory and displaying the result (for 
which we should not penalize it). 

In order to measure the running time of an algorithm more accurately, we will 
create a StopWatch class. This class works like a real stopwatch. You can start it, stop 

S e l f   c h e c k



W632 Chapter 14  Sorting and Searching 

it, and read out the elapsed time. The class uses the System.currentTimeMillis method, 
which returns the milliseconds that have elapsed since midnight at the start of Janu-
ary 1, 1970. Of course, you don’t care about the absolute number of seconds since 
this historical moment, but the difference of two such counts gives us the number of 
milliseconds in a given time interval. 

Here is the code for the StopWatch class: 

section_2/StopWatch.java

1  /**
2     A stopwatch accumulates time when it is running. You can 
3     repeatedly start and stop the stopwatch. You can use a 
4     stopwatch to measure the running time of a program. 
5  */
6  public class StopWatch
7  { 
8     private long elapsedTime;
9     private long startTime;

10     private boolean isRunning;
11 
12     /**
13        Constructs a stopwatch that is in the stopped state 
14        and has no time accumulated. 
15     */
16     public StopWatch()
17     { 
18        reset();
19     }
20 
21     /**
22        Starts the stopwatch. Time starts accumulating now. 
23     */
24     public void start()
25     { 
26        if (isRunning) { return; }
27        isRunning = true;
28        startTime = System.currentTimeMillis();
29     }
30     
31     /**
32        Stops the stopwatch. Time stops accumulating and is 
33        is added to the elapsed time. 
34     */
35     public void stop()
36     { 
37        if (!isRunning) { return; }
38        isRunning = false;
39        long endTime = System.currentTimeMillis();
40        elapsedTime = elapsedTime + endTime - startTime;
41     }
42     
43     /**
44        Returns the total elapsed time. 
45        @return the total elapsed time 
46     */
47     public long getElapsedTime()
48     { 
49        if (isRunning) 
50        { 



14.2 profiling the Selection Sort algorithm  W633

51           long endTime = System.currentTimeMillis();
52           return elapsedTime + endTime - startTime;
53        }
54        else
55        {
56           return elapsedTime;
57        }
58     }
59     
60     /**
61        Stops the watch and resets the elapsed time to 0. 
62     */
63     public void reset()
64     { 
65        elapsedTime = 0;
66        isRunning = false;
67     }
68  }

Here is how to use the stopwatch to measure the sorting algorithm’s performance:

section_2/SelectionSorttimer.java

1  import java.util.Scanner;
2 
3  /**
4     This program measures how long it takes to sort an 
5     array of a user-specified size with the selection 
6     sort algorithm. 
7  */
8  public class SelectionSortTimer
9  { 

10     public static void main(String[] args)
11     { 
12        Scanner in = new Scanner(System.in);
13        System.out.print("Enter array size: ");
14        int n = in.nextInt();
15 
16        // Construct random array 
17     
18        int[] a = ArrayUtil.randomIntArray(n, 100);
19        
20        // Use stopwatch to time selection sort 
21        
22        StopWatch timer = new StopWatch();
23        
24        timer.start();
25        SelectionSorter.sort(a);
26        timer.stop();
27        
28        System.out.println("Elapsed time: " 
29              + timer.getElapsedTime() + " milliseconds");
30     }
31  }

Program run

Enter array size: 50000
Elapsed time: 13321 milliseconds



W634 Chapter 14  Sorting and Searching 

figure 1  time taken by Selection Sort

5

10

15

20

T
im

e 
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

n Milliseconds

10,000 786

20,000 2,148

30,000 4,796

40,000 9,192

50,000 13,321

60,000 19,299

By starting to measure the time just before sorting, and stopping the stopwatch just 
after, you get the time required for the sorting process, without counting the time for 
input and output. 

The table in Figure 1 shows the results of some sample runs. These measurements 
were obtained with an Intel processor with a clock speed of 2 GHz, running Java 6 on 
the Linux operating system. On another computer the actual numbers will look dif-
ferent, but the relationship between the numbers will be the same.

The graph in Figure 1 shows a plot of the measurements. As you can see, when you 
double the size of the data set, it takes about four times as long to sort it. 

5.  Approximately how many seconds would it take to sort a data set of 80,000 
values?

6.  Look at the graph in Figure 1. What mathematical shape does it resemble?

Practice it  Now you can try these exercises at the end of the chapter: P14.3, P14.6.

14.3 analyzing the performance  
of the Selection Sort algorithm

Let us count the number of operations that the program must carry out to sort an 
array with the selection sort algorithm. We don’t actually know how many machine 
operations are generated for each Java instruction, or which of those instructions are 
more time-consuming than others, but we can make a sim plification. We will sim-
ply count how often an array element is visited. Each visit requires about the same 
amount of work by other operations, such as incrementing subscripts and comparing 
values.

Let n be the size of the array. First, we must find the smallest of n numbers. To 
achieve that, we must visit n array elements. Then we swap the elements, which takes 

to measure the 
running time of a 
method, get the 
current time 
immediately before 
and after the  
method call.

S e l f   c h e c k



14.3 analyzing the performance of the Selection Sort algorithm   W635

two visits. (You may argue that there is a certain probability that we don’t need to 
swap the values. That is true, and one can refine the computation to reflect that obser-
vation. As we will soon see, doing so would not affect the overall conclusion.) In the 
next step, we need to visit only n - 1 elements to find the minimum. In the following 
step, n - 2 elements are visited to find the minimum. The last step visits two elements 
to find the minimum. Each step requires two visits to swap the elements. Therefore, 
the total number of visits is

n n n n n+ + − + + + + = + − + + + − ⋅
= +

2 1 2 2 2 1 2 1 2

2

( ) ( ) ( )� �
� ++ − + + − ⋅

= + − + − ⋅

( ) ( )

( )
( )

n n n
n n

n

1 1 2

1
2

1 1 2

because 

1 2 1
1

2
+ + + − + = +

� ( )
( )

n n
n n

After multiplying out and collecting terms of n, we find that the number of visits is 

1
2

2 5
2

3n n+ −

We obtain a quadratic equation in n. That explains why the graph of Figure 1 looks 
approximately like a parabola. 

Now simplify the analysis further. When you plug in a large value for n (for exam-
ple, 1,000 or 2,000), then 1

2
2n  is 500,000 or 2,000,000. The lower term, 5

2
3n − , doesn’t 

contribute much at all; it is only 2,497 or 4,997, a drop in the bucket compared to 
the hundreds of thousands or even millions of comparisons specified by the 1

2
2n  

term. We will just ignore these lower-level terms. Next, we will ignore the constant 
factor 1

2 . We are not interested in the actual count of visits for a single n. We want to 
compare the ratios of counts for different values of n. For example, we can say that 
sorting an array of 2,000 numbers requires four times as many visits as sorting an 
array of 1,000 numbers: 

1
2

2

1
2

2

2000

1000
4

⋅( )
⋅( ) =

The factor 1
2  cancels out in comparisons of this kind. We will simply say, “The num-

ber of visits is of order n2”. That way, we can easily see that the number of compari-
sons increases fourfold when the size of the array doubles: (2n)2 = 4n2. 

To indicate that the number of visits is of order n2, computer scientists often use 
big-Oh notation: The number of visits is O(n2). This is a convenient shorthand. (See 
Special Topic 14.1 for a formal definition.)

To turn a polynomial expression such as 

1
2

2 5
2

3n n+ −

into big-Oh notation, simply locate the fastest-growing term, n2, and ignore its con-
stant coefficient, no matter how large or small it may be.

We observed before that the actual number of machine operations, and the actual 
amount of time that the computer spends on them, is approximately proportional 
to the number of element visits. Maybe there are about 10 machine operations 

Computer scientists 
use the big-oh 
notation to
describe the growth 
rate of a function.



W636 Chapter 14  Sorting and Searching 

(increments, comparisons, memory loads, and stores) for every element visit. The 
number of machine operations is then approximately 10 1

2
2× n . As before, we aren’t 

interested in the coefficient, so we can say that the number of machine operations, 
and hence the time spent on the sorting, is of the order n2 or O(n2). 

The sad fact remains that doubling the size of the array causes a fourfold increase 
in the time required for sorting it with selection sort. When the size of the array 
increases by a factor of 100, the sorting time increases by a factor of 10,000. To sort an 
array of a million entries (for example, to create a telephone directory), takes 10,000 
times as long as sorting 10,000 entries. If 10,000 entries can be sorted in about 3/4 of 
a second (as in our example), then sorting one million entries requires well over two 
hours. We will see in the next section how one can dramatically improve the perfor-
mance of the sorting process by choosing a more sophisticated algorithm.

7.  If you increase the size of a data set tenfold, how much longer does it take to sort 
it with the selection sort algorithm?

8.  How large does n need to be so that 1
2

2n  is bigger than 5
2

3n − ?
9.  Section 6.3.6 has two algorithms for removing an element from an array of 

length n. How many array visits does each algorithm require on average?
10.  Describe the number of array visits in Self Check 9 using the big-Oh notation.
11.  What is the big-Oh running time of checking whether an array is already sorted?
12.  Consider this algorithm for sorting an array. Set k to the length of the array. Find 

the maximum of the first k elements. Remove it, using the second algorithm of 
Section 6.3.6. Decrement k and place the removed element into the kth position. 
Stop if k is 1. What is the algorithm’s running time in big-Oh notation? 

Practice it  Now you can try these exercises at the end of the chapter: R14.4, R14.6, R14.8.

oh, omega, and theta

We have used the big-Oh notation somewhat casually in this chapter to describe the growth 
behavior of a function. Here is the formal definition of the big-Oh notation: Suppose we have 
a function T(n). Usually, it represents the processing time of an algorithm for a given input 
of size n. But it could be any function. Also, suppose that we have another function f(n). It is 
usually chosen to be a simple function, such as f(n) = nk or f(n) = log(n), but it too can be any 
function. We write

T(n) = O(f(n))

if T(n) grows at a rate that is bounded by f(n). More formally, we require that for all n larger 
than some threshold, the ratio ( ) ( )T n f n C≤  for some constant value C.

If T(n) is a polynomial of degree k in n, then one can show that T(n) = O(nk). Later in this 
chapter, we will encounter functions that are O(log(n)) or O(n log(n)). Some algorithms take 
much more time. For example, one way of sorting a sequence is to compute all of its permuta-
tions, until you find one that is in increasing order. Such an algorithm takes O(n!) time, which 
is very bad indeed.

Table 1 shows common big-Oh expressions, sorted by increasing growth.
Strictly speaking, T(n) = O(f(n)) means that T grows no faster than f. But it is permissible 

for T to grow much more slowly. Thus, it is technically correct to state that T(n) = n2 + 5n - 3 
is O(n3) or even O(n10). 

Selection sort is an 
O(n2) algorithm. 
doubling the  
data set means a  
fourfold increase in 
processing time.

S e l f   c h e c k

Special topic 14.1 



14.3 analyzing the performance of the Selection Sort algorithm   W637

table 1  Common Big-oh growth rates

Big-oh expression name

O(1) Constant

O(log(n)) Logarithmic

O(n) Linear

O(n log(n)) Log-linear

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial

Computer scientists have invented additional notation to describe the growth behavior of 
functions more accu rately. The expression

T(n) = W(f(n))
means that T grows at least as fast as f, or, formally, that for all n larger than some threshold, 
the ratio ( ) ( )T n f n C≥  for some constant value C. (The W symbol is the capital Greek letter 
omega.) For example, T(n) = n2 + 5n - 3 is W(n2) or even W(n). 

The expression
T(n) = Q(f(n))

means that T and f grow at the same rate—that is, both T(n) = O(f(n)) and T(n) = W(f(n)) hold. 
(The Q symbol is the capital Greek letter theta.)

The Q notation gives the most precise description of growth behavior. For example, T(n) = 
n2 + 5n - 3 is Q(n2) but not Q(n) or Q(n3). 

The notations are very important for the precise analysis of algorithms. However, in casual 
conversation it is common to stick with big-Oh, while still giving an estimate as good as one 
can make. 

insertion Sort

Insertion sort is another simple sorting algorithm. In this algorithm, we assume that the initial 
sequence 

a[0] a[1] . . . a[k]

of an array is already sorted. (When the algorithm starts, we set k to 0.) We enlarge the initial 
sequence by inserting the next array element, a[k + 1], at the proper location. When we reach 
the end of the array, the sorting process is complete.

For example, suppose we start with the array

11 9 16 5 7

Of course, the initial sequence of length 1 is already sorted. We now add a[1], which has the 
value 9. The element needs to be inserted before the element 11. The result is

9 11 16 5 7

Special topic 14.2 



W638 Chapter 14  Sorting and Searching 

Next, we add a[2], which has the value 16. This element does not have to be moved.

9 11 16 5 7

We repeat the process, inserting a[3] or 5 at the very beginning of the initial sequence.

5 9 11 16 7

Finally, a[4] or 7 is inserted in its correct position, and the sorting is completed.
The following class implements the insertion sort algorithm:

public class InsertionSorter
{
   /**
      Sorts an array, using insertion sort.
      @param a the array to sort
   */
   public static void sort(int[] a)
   {
      for (int i = 1; i < a.length; i++)
      {
         int next = a[i];
         // Move all larger elements up
         int j = i;
         while (j > 0 && a[j - 1] > next)
         {
            a[j] = a[j - 1];
            j--;
         }
         // Insert the element
         a[j] = next;
      }
   }
}

How efficient is this algorithm? Let n denote the size of the array. We carry out n - 1 iterations. 
In the kth iteration, we have a sequence of k elements that is already sorted, and we need to 
insert a new element into the sequence. For each insertion, we need to visit the elements of the 
initial sequence until we have found the location in which the new element can be inserted. 
Then we need to move up the remaining elements of the sequence. Thus, k + 1 array ele ments 
are visited. Therefore, the total number of visits is

2 3 1
2

1+ + + = + −� n n n( )

We conclude that insertion sort is an O(n2) algorithm, on the same 
order of efficiency as selection sort. 

Insertion sort has a desirable property: Its performance is O(n) 
if the array is already sorted—see Exercise R14.17. This is a useful 
property in practical applications, in which data sets are often partially sorted. 

Insertion sort is the method that many people  
use to sort playing cards. Pick up one card at  
a time and insert it so that the cards stay sorted.

insertion sort is an 
O(n2) algorithm.

o n l i n e  e x A m P l e

a program to 
illustrate sorting with 
insertion sort.



14.4 Merge Sort  W639

14.4 Merge Sort
In this section, you will learn about the merge sort algorithm, a much more efficient 
algorithm than selec tion sort. The basic idea behind merge sort is very simple.

Suppose we have an array of 10 integers. Let us engage in a bit of wishful thinking 
and hope that the first half of the array is already perfectly sorted, and the second half 
is too, like this: 

5 9 10 12 17 1 8 11 20 32

Now it is simple to merge the two sorted arrays into one sorted array, by taking a new 
element from either the first or the second subarray, and choosing the smaller of the 
elements each time: 

5 9 10 12 17 1 8 11 20 32 1

5 9 10 12 17 1 8 11 20 32 1 5

5 9 10 12 17 1 8 11 20 32 1 5 8

5 9 10 12 17 1 8 11 20 32 1 5 8 9

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20 32

In fact, you may have performed this merging before if you and a friend had to sort a 
pile of papers. You and the friend split the pile in half, each of you sorted your half, 
and then you merged the results together. 

That is all well and good, but it doesn’t seem to solve the 
problem for the computer. It still must sort the first and sec-
ond halves of the array, because it can’t very well ask a few 
buddies to pitch in. As it turns out, though, if the computer 
keeps dividing the array into smaller and smaller subarrays, 
sorting each half and merging them back together, it carries 
out dramatically fewer steps than the selection sort requires.

Let’s write a MergeSorter class that implements this idea. 
When the MergeSorter sorts an array, it makes two arrays, each 
half the size of the original, and sorts them recursively. Then 
it merges the two sorted arrays together:

public static void sort(int[] a)
{  
   if (a.length <= 1) { return; }
   int[] first = new int[a.length / 2];
   int[] second = new int[a.length - first.length];
   // Copy the first half of a into first, the second half into second
   . . .
   sort(first);
   sort(second);
   merge(first, second, a);
}

In merge sort, one sorts 
each half, then merges 
the sorted halves.

the merge sort 
algorithm sorts an 
array by cutting the 
array in half, 
recursively sorting 
each half, and  
then merging the 
sorted halves.



W640 Chapter 14  Sorting and Searching 

The merge method is tedious but quite straightforward. You will find it in the code 
that follows.

section_4/mergeSorter.java

1  /**
2     The sort method of this class sorts an array, using the merge
3     sort algorithm.
4  */
5  public class MergeSorter
6  {
7     /**
8        Sorts an array, using merge sort.
9        @param a the array to sort

10     */
11     public static void sort(int[] a)
12     {  
13        if (a.length <= 1) { return; }
14        int[] first = new int[a.length / 2];
15        int[] second = new int[a.length - first.length];
16        // Copy the first half of a into first, the second half into second
17        for (int i = 0; i < first.length; i++) 
18        { 
19           first[i] = a[i]; 
20        }
21        for (int i = 0; i < second.length; i++) 
22        { 
23           second[i] = a[first.length + i]; 
24        }
25        sort(first);
26         sort(second);
27        merge(first, second, a);
28     }
29 
30     /**
31        Merges two sorted arrays into an array.
32        @param first the first sorted array
33        @param second the second sorted array
34        @param a the array into which to merge first and second
35     */
36     private static void merge(int[] first, int[] second, int[] a)
37     { 
38        int iFirst = 0;  // Next element to consider in the first array
39        int iSecond = 0;  // Next element to consider in the second array
40        int j = 0;  // Next open position in a
41 
42        // As long as neither iFirst nor iSecond past the end, move
43        // the smaller element into a
44        while (iFirst < first.length && iSecond < second.length)
45        { 
46           if (first[iFirst] < second[iSecond])
47           { 
48              a[j] = first[iFirst];
49              iFirst++;
50           }
51           else
52           { 
53              a[j] = second[iSecond];
54              iSecond++;



14.4 Merge Sort  W641

55           }
56           j++;
57        }
58 
59        // Note that only one of the two loops below copies entries
60        // Copy any remaining entries of the first array
61        while (iFirst < first.length) 
62        { 
63           a[j] = first[iFirst]; 
64           iFirst++; j++;
65        }
66        // Copy any remaining entries of the second half
67        while (iSecond < second.length) 
68        { 
69           a[j] = second[iSecond]; 
70           iSecond++; j++;
71        }
72     }
73  }

section_4/mergeSortdemo.java

1  import java.util.Arrays;
2 
3  /**
4     This program demonstrates the merge sort algorithm by
5     sorting an array that is filled with random numbers.
6  */
7  public class MergeSortDemo
8  { 
9     public static void main(String[] args)

10     { 
11        int[] a = ArrayUtil.randomIntArray(20, 100);
12        System.out.println(Arrays.toString(a));
13 
14        MergeSorter.sort(a);
15   
16        System.out.println(Arrays.toString(a));
17     }
18  }

Program run

[8, 81, 48, 53, 46, 70, 98, 42, 27, 76, 33, 24, 2, 76, 62, 89, 90, 5, 13, 21]
[2, 5, 8, 13, 21, 24, 27, 33, 42, 46, 48, 53, 62, 70, 76, 76, 81, 89, 90, 98]

13.  Why does only one of the two while loops at the end of the merge method do any 
work?

14.  Manually run the merge sort algorithm on the array 8 7 6 5 4 3 2 1.
15.  The merge sort algorithm processes an array by recursively processing two 

halves. Describe a simi lar recursive algorithm for computing the sum of all 
elements in an array. 

Practice it  Now you can try these exercises at the end of the chapter: R14.11, P14.4, P14.16.

S e l f   c h e c k



W642 Chapter 14  Sorting and Searching 

14.5 analyzing the Merge Sort algorithm
The merge sort algorithm looks a lot more complicated than the selection sort algo-
rithm, and it appears that it may well take much longer to carry out these repeated 
subdivisions. However, the timing results for merge sort look much better than those 
for selection sort. 

Figure 2 shows a table and a graph comparing both sets of perfor0mance data. As 
you can see, merge sort is a tremendous improvement. To understand why, let us 
estimate the number of array element visits that are required to sort an array with the 
merge sort algorithm. First, let us tackle the merge process that happens after the first 
and second halves have been sorted.

Each step in the merge process adds one more element to a. That element may 
come from first or sec ond, and in most cases the elements from the two halves must 
be compared to see which one to take. We’ll count that as 3 visits (one for a and one 
each for first and second) per element, or 3n visits total, where n denotes the length 
of a. Moreover, at the beginning, we had to copy from a to first and second, yielding 
another 2n visits, for a total of 5n.

If we let T (n) denote the number of visits required to sort a range of n elements 
through the merge sort process, then we obtain

T n T n T n n( ) =








 +









 +

2 2
5

because sorting each half takes T n( )2 visits. Actually, if n is not even, then we have 
one subarray of size ( )n − 1 2 and one of size ( )n + 1 2. Although it turns out that this 
detail does not affect the outcome of the computation, we will nevertheless assume 
for now that n is a power of 2, say n = 2m. That way, all subarrays can be evenly 
divided into two parts. 

Unfortunately, the formula 

T n T n n( ) =








 +2

2
5

figure 2  time taken by Selection Sort

 
n

Merge Sort
(milliseconds)

Selection Sort
(milliseconds)

10,000 40 786

20,000 73 2,148

30,000 134 4,796

40,000 170 9,192

50,000 192 13,321

60,000 205 19,299

5

10

15

20

T
im

e 
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

Merge sort

Selection sort



14.5 analyzing the Merge Sort algorithm  W643

does not clearly tell us the relationship between n and T(n). To understand the rela-
tionship, let us evaluate T n( )2 , using the same formula: 

T n T n n
2

2
4

5
2









 =









 +

Therefore 

T n T n n n( ) = ×








 + +2 2

4
5 5

Let us do that again: 

T n T n n
4

2
8

5
4









 =









 +

hence 

T n T n n n n( ) = × ×








 + + +2 2 2

8
5 5 5

This generalizes from 2, 4, 8, to arbitrary powers of 2: 

T n T n nkk
k

( ) =








 +2

2
5

Recall that we assume that n = 2m; hence, for k = m, 

T n T n nm

nT nm
n n n

m
m

( )

( )

log ( )

=








 +

= +
= +

2
2

5

1 5

5 2

Because n = 2m, we have m = log2(n). 
To establish the growth order, we drop the lower-order term n and are left with 

5n log2(n). We drop the constant factor 5. It is also customary to drop the base of the 
logarithm, because all logarithms are related by a constant factor. For example, 

log ( ) log ( ) log ( ) log ( ) .2 10 10 102 3 32193x x x= ≈ ×

Hence we say that merge sort is an O(n log(n)) algorithm. 
Is the O(n log(n)) merge sort algorithm better than the O(n2) selection sort algo-

rithm? You bet it is. Recall that it took 1002 = 10,000 times as long to sort a mil-
lion records as it took to sort 10,000 records with the O(n2) algorithm. With the 
O(n log(n)) algorithm, the ratio is 

1 000 000 1 000 000
10 000 10 000

10
, , log , ,

, log ,
( )
( ) = 00 6

4
150









 =

Suppose for the moment that merge sort takes the same time as selection sort to sort 
an array of 10,000 integers, that is, 3/4 of a second on the test machine. (Actually, it 
is much faster than that.) Then it would take about 0.75 × 150 seconds, or under two 
minutes, to sort a million integers. Contrast that with selection sort, which would 
take over two hours for the same task. As you can see, even if it takes you several 
hours to learn about a better algorithm, that can be time well spent.

Merge sort is an  
O(n log(n)) algorithm. 
the n log(n) function 
grows much more 
slowly than n 2.



W644 Chapter 14  Sorting and Searching 

In this chapter we have barely begun to scratch the surface of this interesting topic. 
There are many sorting algorithms, some with even better performance than merge 
sort, and the analysis of these algo rithms can be quite challenging. These important 
issues are often revisited in later computer science courses.

16.  Given the timing data for the merge sort algorithm in the table at the beginning 
of this section, how long would it take to sort an array of 100,000 values?

17.  If you double the size of an array, how much longer will the merge sort algo-
rithm take to sort the new array?

Practice it  Now you can try these exercises at the end of the chapter: R14.7, R14.14, R14.16.

the Quicksort Algorithm

Quicksort is a commonly used algorithm that has the advantage over merge sort that no tem-
porary arrays are required to sort and merge the partial results.

The quicksort algorithm, like merge sort, is based on the strategy of divide and conquer. To 
sort a range a[from] . . . a[to] of the array a, first rearrange the elements in the range so that no 
element in the range a[from] . . . a[p] is larger than any element in the range a[p + 1] . . . a[to]. 
This step is called partitioning the range. 

For example, suppose we start with a range

5 3 2 6 4 1 3 7

Here is a partitioning of the range. Note that the partitions aren’t yet sorted. 

3 3 2 1 4 6 5 7

You’ll see later how to obtain such a partition. In the next step, sort each partition, by recur-
sively applying the same algorithm on the two partitions. That sorts the entire range, because 
the largest element in the first partition is at most as large as the smallest element in the second 
partition. 

1 2 3 3 4 5 6 7

Quicksort is implemented recursively as follows:

public static void sort(int[] a, int from, int to)
{
   if (from >= to) { return; }
   int p = partition(a, from, to);
   sort(a, from, p);
   sort(a, p + 1, to);
}

Let us return to the problem of partitioning a range. Pick an element from the range and call 
it the pivot. There are several variations of the quicksort algorithm. In the simplest one, we’ll 
pick the first element of the range, a[from], as the pivot.

Now form two regions a[from]  .  .  .  a[i], consisting of values at most as large as the 
pivot and a[j]  .  .  .  a[to], consisting of values at least as large as the pivot. The region 
a[i + 1] . . . a[j - 1] consists of values that haven’t been analyzed yet. (See the figure below.) 
At the beginning, both the left and right areas are empty; that is, i = from - 1 and j = to + 1.

o n l i n e  e x A m P l e

a program for  
timing the merge  
sort algorithm.

S e l f   c h e c k

Special topic 14.3 



14.5 analyzing the Merge Sort algorithm  W645

Partitioning a Range

 ≤ pivot ≥ pivotNot yet analyzed

[from] [i] [j] [to]

Then keep incrementing i while a[i] < pivot and keep decrementing j while a[j] > pivot. The 
figure below shows i and j when that process stops.

Now swap the values in positions i and j, increasing both areas once more. Keep going while 
i < j. Here is the code for the partition method: 

private static int partition(int[] a, int from, int to)
{
   int pivot = a[from];
   int i = from - 1;
   int j = to + 1;
   while (i < j)
   {
      i++; while (a[i] < pivot) { i++; }
      j--; while (a[j] > pivot) { j--; }
      if (i < j) { ArrayUtil.swap(a, i, j); }
   }
   return j;
}

On average, the quicksort algorithm is an O(n log(n)) algorithm. There is just one unfortunate 
aspect to the quicksort algorithm. Its worst-case run-time behavior is O(n2). Moreover, if the 
pivot element is chosen as the first element of the region, that worst-case behavior occurs 
when the input set is already sorted—a common situation in practice. By selecting the pivot 
element more cleverly, we can make it extremely unlikely for the worst-case behavior to occur. 
Such “tuned” quicksort algorithms are com monly used, because their performance is gener-
ally excellent. For example, the sort method in the Arrays class uses a quicksort algorithm.

Another improvement that is commonly made in practice is to switch to insertion sort 
when the array is short, because the total number of operations using insertion sort is lower 
for short arrays. The Java library makes that switch if the array length is less than seven.

In quicksort, one partitions the elements into  
two groups, holding the smaller and larger  
elements. Then one sorts each group.

Extending the Partitions

 ≤ pivot ≥ pivot

[from] [i] [j] [to]

> pivot< pivot

 ≤ pivot≥ pivot

o n l i n e  e x A m P l e

a program to 
demonstrate the 
quicksort algorithm.



W646 Chapter 14  Sorting and Searching 

14.6 Searching
Searching for an element in an array is an extremely common task. As with sorting, 
the right choice of algorithms can make a big difference.

14.6.1 linear Search

Suppose you need to find your friend’s telephone number. You look up the friend’s 
name in the telephone book, and naturally you can find it quickly, because the tele-
phone book is sorted alphabetically. Now suppose you have a telephone number and 
you must know to what party it belongs. You could of course call that number, but 
suppose nobody picks up on the other end. You could look through the telephone 
book, a number at a time, until you find the number. That would obviously be a tre-
mendous amount of work, and you would have to be desperate to attempt it. 

This thought experiment shows the difference between a search through an 
unsorted data set and a search through a sorted data set. The following two sections 
will analyze the difference formally. 

If you want to find a number in a sequence of values that occur in arbitrary order, 
there is nothing you can do to speed up the search. You must simply look through 
all elements until you have found a match or until you reach the end. This is called a 
linear or sequential search. 

How long does a linear search take? If we assume that the element v is present in 
the array a, then the average search visits n/2 elements, where n is the length of the 
array. If it is not present, then all n elements must be inspected to verify the absence. 
Either way, a linear search is an O(n) algorithm. 

Here is a class that performs linear searches through an array a of integers. When 
searching for a value, the search method returns the first index of the match, or -1 if 
the value does not occur in a.

section_6_1/linearSearcher.java

1  /**
2     A class for executing linear searches in an array.
3  */
4  public class LinearSearcher
5  { 
6     /**
7        Finds a value in an array, using the linear search 
8        algorithm.
9        @param a the array to search

10        @param value the value to find
11        @return the index at which the value occurs, or -1
12        if it does not occur in the array
13     */
14     public static int search(int[] a, int value)
15     { 
16        for (int i = 0; i < a.length; i++)
17        { 
18           if (a[i] == value) { return i; }
19        }
20        return -1;

a linear search 
examines all values 
in an array until it 
finds a match or 
reaches the end.

a linear search 
locates a value in an 
array in O(n) steps.



14.6 Searching  W647

21     }
22  }

section_6_1/linearSearchdemo.java

1  import java.util.Arrays;
2  import java.util.Scanner;
3 
4  /**
5     This program demonstrates the linear search algorithm.
6  */
7  public class LinearSearchDemo
8  { 
9     public static void main(String[] args)

10     { 
11        int[] a = ArrayUtil.randomIntArray(20, 100);
12        System.out.println(Arrays.toString(a));
13        Scanner in = new Scanner(System.in);
14 
15        boolean done = false;
16        while (!done)
17        {
18           System.out.print("Enter number to search for, -1 to quit: ");
19           int n = in.nextInt();
20           if (n == -1)
21           {
22              done = true;
23           }
24           else
25           {
26              int pos = LinearSearcher.search(a, n);
27              System.out.println("Found in position " + pos);
28           }
29        }
30     }
31  }

Program run

[46, 99, 45, 57, 64, 95, 81, 69, 11, 97, 6, 85, 61, 88, 29, 65, 83, 88, 45, 88]
Enter number to search for, -1 to quit: 12
Found in position -1
Enter number to search for, -1 to quit: -1

14.6.2 Binary Search

Now let us search for an item in a data sequence that has been previously sorted. Of 
course, we could still do a linear search, but it turns out we can do much better than 
that. 

Consider the following sorted array a. The data set is: 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We would like to see whether the value 15 is in the data set. Let’s narrow our search 
by finding whether the value is in the first or second half of the array. The last value 



W648 Chapter 14  Sorting and Searching 

in the first half of the data set, a[3], is 9, which is smaller than the value we are looking 
for. Hence, we should look in the second half of the array for a match, that is, in the 
sequence:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

Now the last value of the first half of this sequence is 17; hence, the value must be 
located in the sequence: 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

The last value of the first half of this very short sequence is 12, which is smaller than 
the value that we are searching, so we must look in the second half: 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

It is trivial to see that we don’t have a match, because 15 ≠ 17. If we wanted to insert 15 
into the sequence, we would need to insert it just before a[5]. 

This search process is called a binary search, because we cut the size of the search in 
half in each step. That cutting in half works only because we know that the sequence 
of values is sorted. 

The following class implements binary searches in a sorted array of integers. The 
search method returns the position of the match if the search succeeds, or –1 if the 
value is not found in a. Here, we show a recursive version of the binary search algo-
rithm. See Special Topic 6.2 for an iterative version.

section_6_2/binarySearcher.java

1  /**
2     A class for executing binary searches in an array.
3  */
4  public class BinarySearcher
5  { 
6     /**
7        Finds a value in a range of a sorted array, using the binary
8        search algorithm.
9        @param a the array in which to search

10        @param low the low index of the range
11        @param high the high index of the range
12        @param value the value to find
13        @return the index at which the value occurs, or -1
14        if it does not occur in the array
15     */
16     public int search(int[] a, int low, int high, int value)
17     { 
18        if (low <= high)
19        {
20           int mid = (low + high) / 2;
21 
22           if (a[mid] == value) 
23           {
24              return mid;
25           }
26           else if (a[mid] < value )
27           {

a binary search 
locates a value in a 
sorted array by 
determining whether 
the value occurs in 
the first or second 
half, then repeating 
the search in one of 
the halves.



14.6 Searching  W649

28              return search(a, mid + 1, high, value);
29           }
30           else
31           {
32              return search(a, low, mid - 1, value);
33           }         
34        }
35        else 
36        {
37           return -1;
38        }
39     }
40  }

Now let’s determine the number of visits to array elements required to carry out a 
binary search. We can use the same technique as in the analysis of merge sort. Because 
we look at the middle element, which counts as one visit, and then search either the 
left or the right subarray, we have 

T n T n( ) =








 +

2
1

Using the same equation, 

T n T n
2 4

1








 =









 +

By plugging this result into the original equation, we get 

T n T n( ) =








 +

4
2

That generalizes to 

T n T n k
k

( ) =








 +

2

As in the analysis of merge sort, we make the simplifying assumption that n is a power 
of 2, n = 2m, where m = log2(n). Then we obtain 

T n n( ) log ( )= +1 2

Therefore, binary search is an O(log(n)) algorithm. 
That result makes intuitive sense. Suppose that n is 100. Then after each search, the 

size of the search range is cut in half, to 50, 25, 12, 6, 3, and 1. After seven comparisons 
we are done. This agrees with our formula, because log2(100) ≈ 6.64386, and indeed 
the next larger power of 2 is 27 = 128.

Because a binary search is so much faster than a linear search, is it worthwhile to 
sort an array first and then use a binary search? It depends. If you search the array only 
once, then it is more efficient to pay for an O(n) linear search than for an O(n log(n)) 
sort and an O(log(n)) binary search. But if you will be mak ing many searches in the 
same array, then sorting it is definitely worthwhile. 

a binary search 
locates a value in a 
sorted array in 
O (log(n)) steps.



W650 Chapter 14  Sorting and Searching 

18.  Suppose you need to look through 1,000,000 records to find a telephone num-
ber. How many records do you expect to search before finding the number?

19.  Why can’t you use a “for each” loop for (int element : a) in the search method?
20.  Suppose you need to look through a sorted array with 1,000,000 elements to find 

a value. Using the binary search algorithm, how many records do you expect to 
search before finding the value?

Practice it  Now you can try these exercises at the end of the chapter: R14.12, P14.15, P14.18.

S e l f   c h e c k

Before pocket calcu-
lators and personal 

computers existed, navigators and 
engineers used mechanical adding 
machines, slide rules, and tables of log-
arithms and trigonometric functions to 
speed up computations. Unfortunately, 
the tables—for which values had to be 
computed by hand—were notoriously 
inaccurate. the mathematician Charles 
Babbage (1791–1871) had the insight 
that if a machine could be constructed 
that produced printed tables automati-
cally, both calculation and typeset-
ting errors could be avoided. Babbage 
set out to develop a machine for this 
purpose, which he called a Dif erence 

Engine because it used succes sive 
differences to compute polynomials. 
For example, consider the function 
f (x)  =  x3. Write down the values for 
f (1), f (2), f (3), and so on. then take the 
diferences between successive values:

1
    7
8
    19
27
    37
64
    61
125
    91
216

repeat the process, taking the differ-
ence of successive values in the sec ond 
column, and then repeat once again: 

1
    7
8       12
    19       6
27      18
    37       6
64      24
    61       6
125     30
    91
216

now the differences are all the same. 
You can retrieve the function values by 
a pattern of additions—you need to 
know the values at the fringe of the 
pattern and the constant difference. 
You can try it out yourself: Write the 
highlighted numbers on a sheet of 
paper and fill in the others by adding 
the numbers that are in the north and 
northwest positions. Replica of Babbage’s Diference Engine

this method was very attractive, 
because mechanical addition machines 
had been known for some time. they 
consisted of cog wheels, with 10 cogs 
per wheel, to represent digits, and 
mechanisms to handle the carry from 
one digit to the next. Mechanical mul-
tiplication machines, on the other 
hand, were fragile and unreliable. 
Bab bage built a successful prototype 
of the difference engine and, with his 
own money and government grants, 
proceeded to build the table-printing 
machine. however, because of funding 
problems and the difficulty of building 
the machine to the required precision, 
it was never completed. 

While working on the difference 
engine, Babbage conceived of a much 
grander vision that he called the Ana
lytical Engine. the difference engine 
was designed to carry out a limited set 
of computations—it was no smarter 
than a pocket calculator is today. But 
Babbage realized that such a machine 
could be made programmable by stor-
ing programs as well as data. the inter-
nal storage of the analytical engine 
was to consist of 1,000 regis ters of 50 
decimal digits each. pro grams and con-
stants were to be stored on punched 
cards—a technique that was, at that 
time, commonly used on looms for 
weaving patterned fabrics. 

ada augusta, Countess of lovelace 
(1815–1852), the only child of lord 
Byron, was a friend and sponsor of 
Charles Babbage. ada lovelace was 
one of the first people to realize the 
potential of such a machine, not just 
for computing mathematical tables but 
for processing data that were not num-
bers. She is considered by many to be 
the world’s first programmer.

Random Fact 14.1 the First programmer



14.7 problem Solving: estimating the running time of an algorithm  W651

14.7 problem Solving: estimating the running 
time of an algorithm

In this chapter, you have learned how to estimate the running time of sorting algo-
rithms. As you have seen, being able to differentiate between O(n log(n)) and O(n2) 
running times has great practical implications. Being able to estimate the running 
times of other algorithms is an important skill. In this section, we will practice esti-
mating the running time of array algorithms. 

14.7.1 linear time

Let us start with a simple example, an algorithm that counts how many elements have 
a particular value:

int count = 0;
for (int i = 0; i < a.length; i++)
{
   if (a[i] == value) { count++; }
}

What is the running time in terms of n, the length of the array?
Start with looking at the pattern of array element visits. Here, we visit each ele-

ment once. It helps to visualize this pattern. Imagine the array as a sequence of light 
bulbs. As the ith element gets visited, imagine the ith bulb lighting up.

3

4

5

2

1

Now look at the work per visit. Does each visit involve a fixed number of actions, 
independent of n? In this case, it does. There are just a few actions—read the element, 
compare it, maybe increment a counter.

Therefore, the running time is n times a constant, or O(n).
What if we don’t always run to the end of the array? For example, suppose we 

want to check whether the value occurs in the array, without counting it:
boolean found = false;
for (int i = 0; !found && i < a.length; i++)
{
   if (a[i] == value) { found = true; }
}

a loop with n 
iterations has O(n) 
running time if  
each step consists  
of a fixed number  
of actions.



W652 Chapter 14  Sorting and Searching 

Then the loop can stop in the middle:

3

2

1

Found the value

Is this still O(n)? It is, because in some cases the match may be at the very end of the 
array. Also, if there is no match, one must traverse the entire array.

14.7.2 Quadratic time

Now let’s turn to a more interesting case. What if we do a lot of work with each visit? 
Here is an example. We want to find the most frequent element in an array.

Suppose the array is

8 7 5 7 7 5 4

It’s obvious by looking at the values that 7 is the most frequent one. But now imagine 
an array with a few thousand values.

8 7 5 7 7 5 4 1 2 3 3 4 9 12 3 2 5 11 9 2 3 7 8...

We can count how often the value 8 occurs, then move on to count how often 7 
occurs, and so on. For example, in the first array, 8 occurs once, and 7 occurs three 
times. Where do we put the counts? Let’s put them into a second array of the same 
length.

8 7 5 7 7 5 4

1 3 2 3 3 2 1

a:

counts:

Then we take the maximum of the counts. It is 3. We look up where the 3 occurs in the 
counts, and find the corresponding value. Thus, the most common value is 7.

Let us first estimate how long it takes to compute the counts.
for (int i = 0; i < a.length; i++)
{
   counts[i] = Count how often a[i] occurs in a
}

We still visit each array element once, but now the work per visit is much larger. As 
you have seen in the previous section, each counting action is O(n). When we do O(n) 
work in each step, the total running time is O(n2).

This algorithm has three phases:

1. Compute all counts.
2. Compute the maximum.
3. Find the maximum in the counts.

a loop with n 
iterations has O(n2) 
running time if each 
step takes O(n) time.



14.7 problem Solving: estimating the running time of an algorithm  W653

We have just seen that the first phase is O(n2). Computing the maximum is O(n)—
look at the algorithm in Section 6.3.3 and note that each steps involves a fixed amount 
of work. Finally, we just saw that finding a value is O(n).

How can we estimate the total running time from the estimates of each phase? Of 
course, the total time is the sum of the individual times, but for big-Oh estimates, we 
take the maximum of the estimates. To see why, imagine that we had actual equations 
for each of the times:

T1(n) = an2 + bn + c

T2(n) = dn + e

T3(n) = fn + g
Then the sum is

T(n) = T1(n) + T2(n) + T3(n) = an2 + (b + d + f )n + c + e + g

But only the largest term matters, so T(n) is O(n2).
Thus, we have found that our algorithm for finding the most frequent element is 

O(n2).

14.7.3 the triangle pattern

Let us see if we can speed up the algorithm from the preceding section. It seems 
wasteful to count elements again if we have already counted them.

Can we save time by eliminating repeated counting of the same element? That is, 
before counting a[i], should we first check that it didn’t occur in a[0] ... a[i - 1]?

Let us estimate the cost of these additional checks. In the ith step, the amount of 
work is proportional to i. That’s not quite the same as in the preceding section, where 
you saw that a loop with n iterations, each of which takes O(n) time, is O(n2). Now 
each step just takes O(i) time.

To get an intuitive feel for this situation, look at the light bulbs again. In the second 
iteration, we visit a[0] again. In the third iteration, we visit a[0] and a[1] again, and so 
on. The light bulb pattern is

3

4

5

2

1

If there are n light bulbs, about half of the square above, or n2/2 of them, light up. 
That’s unfortunately still O(n2).

the big-oh running 
time for doing 
several steps in a row 
is the largest of the 
big-oh times for  
each step.

a loop with n 
iterations has  
O(n2) running time 
if the ith step takes 
O(i ) time.



W654 Chapter 14  Sorting and Searching 

Here is another idea for time saving. When we count a[i], there is no need to do 
the counting in a[0] ... a[i - 1]. If a[i] never occurred before, we get an accurate 
count by just looking at a[i] ... a[n - 1]. And if it did, we already have an accurate 
count. Does that help us? Not really—it’s the triangle pattern again, but this time in 
the other direction.

3

4

5

2

1

That doesn’t mean that these improvements aren’t worthwhile. If an O(n2) algorithm 
is the best one can do for a particular problem, you still want to make it as fast as pos-
sible. However, we will not pursue this plan further because it turns out that we can 
do much better.

14.7.4 logarithmic time

Logarithmic time estimates arise from algorithms that cut work in half in each step. 
You have seen this in the algorithms for binary search and merge sort, and you will 
see it again in Chapter 17.

In particular, when you use sorting or binary search in a phase of an algorithm, you 
will encounter logarithmic time in the big-Oh estimates.

Consider this idea for improving our algorithm for finding the most frequent ele-
ment. Suppose we first sort the array:

8 7 5 7 7 5 4 4 5 5 7 7 7 8

That cost us O(n log(n)) time. If we can complete the algorithm in O(n) time, we will 
have found a better algorithm than the O(n2) algorithm of the preceding sections.

To see why this is possible, imagine traversing the sorted array. As long as you find 
a value that was equal to its predecessor, you increment a counter. When you find a 
different value, save the counter and start counting anew:

4 5 5 7 7 7 8

1 1 2 1 2 3 1

a:

counts:

Or in code,
int count = 0;
for (int i = 0; i < a.length; i++)
{

an algorithm that 
cuts the size of work 
in half in each step 
runs in O(log(n)) time.



14.7 problem Solving: estimating the running time of an algorithm  W655

   count++;
   if (i == a.length - 1 || a[i] != a[i + 1])
   {
      counts[i] = count;
      count = 0;
   }
}

That’s a constant amount of work per iteration, even though it visits two elements:

3

4

5

2

1

2n is still O(n). Thus, we can compute the counts in O(n) time from a sorted array. 
The entire algorithm is now O(n log(n)).

Note that we don’t actually need to keep all counts, only the highest one that we 
encountered so far (see Exercise P14.8). That is a worthwhile improvement, but it 
does not change the big-Oh estimate of the running time.

21.  What is the “light bulb pattern” of visits in the following algorithm to check 
whether an array is a palindrome?
for (int i = 0; i < a.length / 2; i++)
{
   if (a[i] != a[a.length - 1 - i]) { return false; }
}
return true;

22.  What is the big-Oh running time of the following algorithm to check whether 
the first element is duplicated in an array?
for (int i = 1; i < a.length; i++)
{
   if (a[0] == a[i]) { return true; }
}
return false;

23.  What is the big-Oh running time of the following algorithm to check whether an 
array has a duplicate value?
for (int i = 0; i < a.length; i++)
{
   for (j = i + 1; j < a.length; j++)
   {
      if (a[i] == a[j]) { return true; }

o n l i n e  e x A m P l e

a program for 
comparing the speed 
of algorithms that 
find the most 
frequent element.

S e l f   c h e c k



W656 Chapter 14  Sorting and Searching 

   }
}
return false;

24.  Describe an O(n log(n)) algorithm for checking whether an array has duplicates.
25.  What is the big-Oh running time of the following algorithm to find an element 

in an n × n array?
for (int i = 0; i < n; i++)
{
   for (j = 0; j < n; j++)
   {
      if (a[i][j] == value) { return true; }
   }
}
return false;

26.  If you apply the algorithm of Section 14.7.4 to an n × n array, what is the big-Oh 
efficiency of finding the most frequent element in terms of n?

Practice it  Now you can try these exercises at the end of the chapter: R14.9, R14.13, R14.19, 
P14.8.

14.8 Sorting and Searching in the Java library
When you write Java programs, you don’t have to implement your own sorting algo-
rithms. The Arrays and Collections classes provide sorting and searching methods that 
we will introduce in the following sections.

14.8.1 Sorting

The Arrays class contains static sort methods to sort arrays of integers and floating-
point numbers. For example, you can sort an array of integers simply as

int[] a = . . .;
Arrays.sort(a);

That sort method uses the quicksort algorithm—see Special Topic 14.3 for more 
information about that algorithm.

If your data are contained in an ArrayList, use the Collections.sort method instead; 
it uses the merge sort algorithm:

ArrayList<String> names = . . .;
Collections.sort(names);

14.8.2 Binary Search

The Arrays and Collections classes contain static binarySearch methods that implement 
the binary search algorithm, but with a useful enhancement. If a value is not found in 
the array, then the returned value is not –1, but –k – 1, where k is the position before 
which the element should be inserted. For example,

the Arrays class 
implements a sorting 
method that you 
should use for your 
Java programs.

the Collections 
class contains a  
sort method that can 
sort array lists.



14.8 Sorting and Searching in the Java library  W657

int[] a = { 1, 4, 9 };
int v = 7;
int pos = Arrays.binarySearch(a, v);
// Returns –3; v should be inserted before position 2

14.8.3 Comparing objects

In application programs, you often need to sort or search through collections of 
objects. Therefore, the Arrays and Collections classes also supply sort and binarySearch 
methods for objects. However, these methods cannot know how to compare arbi-
trary objects. Suppose, for example, that you have an array of Country objects. It is not 
obvious how the countries should be sorted. Should they be sorted by their names or 
by their areas? The sort and binarySearch methods cannot make that decision for you. 
Instead, they require that the objects belong to classes that implement the Comparable 
interface type that was introduced in Section 9.6.3. That interface has a single method:

public interface Comparable
{
   int compareTo(Object otherObject);
}

The call
a.compareTo(b)

must return a negative number if a should come before b, 0 if a and b are the same, and 
a positive number otherwise.

Several classes in the standard Java library, such as the String and Date classes, 
implement the Comparable interface.

You can implement the Comparable interface for your own classes as well. For exam-
ple, to sort a collection of countries, the Country class would need to implement this 
interface and provide a compareTo method:

public class Country implements Comparable
{
   public int compareTo(Object otherObject)
   {
      Country other = (Country) otherObject;
      if (area < other.area) { return -1; }
      else if (area == other.area) { return 0; }
      else { return 1; }
   }
}

This method compares countries by their area. Now you can pass an array of coun-
tries to the Arrays.sort method:

Country[] countries = new Country[n];
// Add countries
Arrays.sort(countries); // Sorts by increasing area

Whenever you need to carry out sorting or searching, use the methods in the Arrays 
and Collections classes and not those that you write yourself. The library algorithms 
have been fully debugged and optimized. Thus, the primary purpose of this chapter 
was not to teach you how to implement practical sorting and searching algorithms. 
Instead, you have learned something more important, namely that different algo-
rithms can vary widely in performance, and that it is worthwhile to learn more about 
the design and analysis of algorithms.

the sort method of 
the Arrays class sorts 
objects of classes 
that implement the 
Comparable interface.

o n l i n e  e x A m P l e

a program to 
demonstrate the  
Java library methods 
for sorting and 
searching.



W658 Chapter 14  Sorting and Searching 

27.  Why can’t the Arrays.sort method sort an array of Rectangle objects?
28.  What steps would you need to take to sort an array of BankAccount objects by 

increasing balance?
29.  Why is it useful that the Arrays.binarySearch method indicates the position where 

a missing element should be inserted?
30.  Why does Arrays.binarySearch return -k - 1 and not -k to indicate that a value is 

not present and should be inserted before position k? 

Practice it  Now you can try these exercises at the end of the chapter: P14.14, P14.19, P14.20.

the compareTo method can return Any integer, not Just –1, 0, and 1

The call a.compareTo(b) is allowed to return any negative integer to denote that a should come 
before b, not necessar ily the value -1. That is, the test

if (a.compareTo(b) == -1) // ERROR!

is generally wrong. Instead, you should test

if (a.compareTo(b) < 0) // OK

Why would a compareTo method ever want to return a number other than -1, 0, or 1? Some-
times, it is convenient to just return the difference of two integers. For example, the compareTo 
method of the String class compares characters in matching positions:

char c1 = charAt(i);
char c2 = other.charAt(i);

If the characters are different, then the method simply returns their difference:

if (c1 != c2) { return c1 - c2; }

This difference is a negative number if c1 is less than c2, but it is not necessarily the number -1. 

the Parameterized Comparable interface

As of Java version 5, the Comparable interface is a parameterized type, similar to the ArrayList 
type:

public interface Comparable<T>
{
   int compareTo(T other)
}

The type parameter specifies the type of the objects that this class is willing to accept for com-
parison. Usually, this type is the same as the class type itself. For example, the Country class 
would implement Comparable<Country>, like this:

public class Country implements Comparable<Country>
{
   . . .
   public int compareTo(Country other)
   {
      if (area < other.area) { return -1; }
      else if (area == other.area) { return 0; }
      else { return 1; }
   }

S e l f   c h e c k

Common error 14.1 

Special topic 14.4 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

14.8 Sorting and Searching in the Java library  W659

   . . .
}

The type parameter has a significant advantage: You need not use a cast to convert an Object 
parameter variable into the desired type. 

the Comparator interface

Sometimes you want to sort an array or array list of objects, but the objects don’t belong to a 
class that implements the Comparable interface. Or, perhaps, you want to sort the array in a dif-
ferent order. For example, you may want to sort countries by name rather than by value. 

You wouldn’t want to change the implementation of a class simply to call Arrays.sort. For-
tunately, there is an alternative. One version of the Arrays.sort method does not require that 
the objects belong to classes that imple ment the Comparable interface. Instead, you can supply 
arbitrary objects. However, you must also provide a compara tor object whose job is to com-
pare objects. The comparator object must belong to a class that implements the Comparator 
interface. That interface has a single method, compare, which compares two objects.

As of Java version 5, the Comparator interface is a parameterized type. The type parameter 
specifies the type of the compare parameter variables. For example, Comparator<Country> looks 
like this:

public interface Comparator<Country>
{
   int compare(Country a, Country b);
}

The call 

comp.compare(a, b) 

must return a negative number if a should come before b, 0 if a and b are the same, and a posi-
tive number otherwise. (Here, comp is an object of a class that implements Comparator<Country>.)

For example, here is a Comparator class for country:

public class CountryComparator implements Comparator<Country>
{
   public int compare(Country a, Country b)
   {
      if (a.area < b.area) { return -1; }
      else if (a.area == b.area) { return 0; }
      else { return 1; }
   }
}

To sort an array of countries by area, call

Arrays.sort(countries, new CountryComparator());

Special topic 14.5 

Worked exaMple 14.1 enhancing the insertion Sort Algorithm

In this Worked Example, we will implement an improvement of the insertion sort algorithm 
shown in Special Topic 14.2, which is called Shell sort after its inventor, Donald Shell.



W660 Chapter 14  Sorting and Searching 

describe the selection sort algorithm.

• The selection sort algorithm sorts an array by repeatedly finding the smallest 
element of the unsorted tail region and moving it to the front.

measure the running time of a method.

• To measure the running time of a method, get the current time immediately before 
and after the method call.

use the big-oh notation to describe the running time of an algorithm.

• Computer scientists use the big-Oh notation to describe the 
growth rate of a function.

• Selection sort is an O(n2) algorithm. Doubling the data set means a 
fourfold increase in processing time.

• Insertion sort is an O(n2) algorithm.

describe the merge sort algorithm.

• The merge sort algorithm sorts an array by cutting the array in half, recursively 
sorting each half, and then merging the sorted halves.

contrast the running times of the merge sort and selection sort algorithms.

• Merge sort is an O(n log(n)) algorithm. The n log(n) function grows much more 
slowly than n2.

describe the running times of the linear search algorithm and the binary search algorithm.

• A linear search examines all values in an array until it finds a match or reaches 
the end.

• A linear search locates a value in an array in O(n) steps.
• A binary search locates a value in a sorted array by determining whether the value 

occurs in the first or second half, then repeating the search in one of the halves.
• A binary search locates a value in a sorted array in O(log(n)) steps.

Practice developing big-oh estimates of algorithms.

• A loop with n iterations has O(n) running time if each 
step consists of a fixed number of actions.

• A loop with n iterations has O(n2) running time if each 
step takes O(n) time.

• The big-Oh running time for doing several steps in a row 
is the largest of the big-Oh times for each step.

C h a p t e r  S U M M a r Y

3

2

1

Found the value



review exercises W661

• A loop with n iterations has O(n2) running time if the ith step takes O(i) time.
• An algorithm that cuts the size of work in half in each step runs in O(log(n)) time.

use the Java library methods for sorting and searching data.

• The Arrays class implements a sorting method that you should use for your Java 
programs.

• The Collections class contains a sort method that can sort array lists.
• The sort method of the Arrays class sorts objects of classes that implement the 

Comparable interface.

• r14.1  What is the difference between searching and sorting? 

•• r14.2  Checking against off-by-one errors. When writing the selection sort algorithm of 
Section 14.1, a programmer must make the usual choices of < versus <=, a.length ver-
sus a.length - 1, and from versus from + 1. This is fertile ground for off-by-one errors. 
Conduct code walkthroughs of the algorithm with arrays of length 0, 1, 2, and 3 and 
check carefully that all index values are correct. 

•• r14.3  For the following expressions, what is the order of the growth of each? 
a. n2 + 2n + 1

b. n10 + 9n9 + 20n8 + 145n7

c. (n + 1)4

d. (n2 + n)2

e. n + 0.001n3

f.  n3 - 1000n2 + 109

g. n + log(n)

h. n2 + n log(n)

i.  2n + n2

j.  n n

n

3

2
2

0 75

+
+ .

java.lang.Comparable<T>
   compareTo
java.lang.System
   currentTimeMillis
java.util.Arrays
   binarySearch
   sort

java.util.Collections
   binarySearch
   sort
java.util.Comparator<T>
   compare

S ta n d a r d  l i B r a r Y  i t e M S  i n t r o d U C e d  i n  t h i S  C h a p t e r

r e v i e W  e x e r C i S e S



W662 Chapter 14  Sorting and Searching 

• r14.4  We determined that the actual number of visits in the selection sort algorithm is 

T n n n( ) = + −1
2

2 5
2

3

We characterized this method as having O(n2) growth. Compute the actual ratios 

T T

T T

T T

2 000 1 000

4 000 1 000

10 000 1

, ,

, ,

,

( ) ( )
( ) ( )
( ) ,,000( )

and compare them with 

f f

f f

f f

2 000 1 000

4 000 1 000

10 000 1

, ,

, ,

,

( ) ( )
( ) ( )
( ) ,,000( )

where f (n) = n2. 

• r14.5  Suppose algorithm A takes five seconds to handle a data set of 1,000 records. If the 
algorithm A is an O(n) algorithm, approximately how long will it take to handle a 
data set of 2,000 records? Of 10,000 records? 

•• r14.6  Suppose an algorithm takes five seconds to handle a data set of 1,000 records. Fill 
in the following table, which shows the approximate growth of the execution times 
depending on the complexity of the algorithm. 

 O (n) O (n2) O (n3) O (n log(n)) O (2n)

1,000 5 5 5 5 5

2,000

3,000 45

10,000

For example, because 3 000 1 000 92 2, , = , the algorithm would take nine times as 
long, or 45 seconds, to handle a data set of 3,000 records. 

•• r14.7  Sort the following growth rates from slowest to fastest growth. 

O n O n n

O n O

O n O n

O n O

n

n

( ) ( log( ))

( ) ( )

( ) ( )

(log( ))

3 2

(( )

( log( )) ( )log( )

n n

O n n O n n2

• r14.8  What is the growth rate of the standard algorithm to find the minimum value of an 
array? Of finding both the minimum and the maximum? 



review exercises W663

• r14.9  What is the big-Oh time estimate of the following method in terms of n, the length 
of a? Use the “light bulb pattern” method of Section 14.7 to visualize your result.

public static void swap(int[] a)
{
   int i = 0;
   int j = a.length - 1;
   while (i < j)
   {
      int temp = a[i];
      a[i] = a[j];
      a[j] = temp;
      i++;
      j--;
   }
}

• r14.10  Trace a walkthrough of selection sort with these sets:
a.  4 7 11 4 9 5 11 7 3 5
b.  –7 6 8 7 5 9 0 11 10 5 8

• r14.11  Trace a walkthrough of merge sort with these sets:
a.  5 11 7 3 5 4 7 11 4 9
b.  9 0 11 10 5 8 –7 6 8 7 5

• r14.12  Trace a walkthrough of:
a. Linear search for 7 in  –7 1 3 3 4 7 11 13
b. Binary search for 8 in  –7 2 2 3 4 7 8 11 13
c. Binary search for 8 in  –7 1 2 3 5 7 10 13

•• r14.13  Your task is to remove all duplicates from an array. For example, if the array has the 
values 

4  7  11  4  9  5  11  7  3  5
then the array should be changed to 

4  7  11  9  5  3
Here is a simple algorithm. Look at a[i]. Count how many times it occurs in a. If the 
count is larger than 1, remove it. What is the growth rate of the time required for this 
algorithm?

••• r14.14  Modify the merge sort algorithm to remove duplicates in the merging step to obtain 
an algorithm that removes duplicates from an array. Note that the resulting array 
does not have the same ordering as the original one. What is the efficiency of this 
algorithm?

•• r14.15  Consider the following algorithm to remove all duplicates from an array. Sort the 
array. For each element in the array, look at its next neighbor to decide whether it 
is present more than once. If so, remove it. Is this a faster algorithm than the one in 
Exercise R14.13?

••• r14.16  Develop an O(n log(n)) algorithm for removing duplicates from an array if the 
resulting array must have the same ordering as the original array. When a value 
occurs multiple times, all but its first occurrence should be removed.



W664 Chapter 14  Sorting and Searching 

••• r14.17  Why does insertion sort perform significantly better than selection sort if an array is 
already sorted? 

••• r14.18  Consider the following speedup of the insertion sort algorithm of Special Topic 14.2. 
For each element, use the enhanced binary search algorithm that yields the insertion 
position for missing elements. Does this speedup have a significant impact on the 
efficiency of the algorithm? 

•• r14.19  Consider the following algorithm known as bubble sort:
While the array is not sorted
 For each adjacent pair of elements
  If the pair is not sorted
   Swap its elements.

What is the big-Oh efficiency of this algorithm?

•• r14.20  The radix sort algorithm sorts an array of n integers with d digits, using ten auxiliary 
arrays. First place each value v into the auxiliary array whose index corresponds to 
the last digit of v. Then move all values back into the original array, preserving their 
order. Repeat the process, now using the next-to-last (tens) digit, then the hundreds 
digit, and so on. What is the big-Oh time of this algorithm in terms of n and d? When 
is this algorithm preferable to merge sort?

•• r14.21  A stable sort does not change the order of elements with the same value. This is a 
desirable feature in many applications. Consider a sequence of e-mail messages. If 
you sort by date and then by sender, you’d like the second sort to preserve the rela-
tive order of the first, so that you can see all messages from the same sender in date 
order. Is selection sort stable? Insertion sort? Why or why not?

•• r14.22  Give an O(n) algorithm to sort an array of n bytes (numbers between –128 and 127). 
Hint: Use an array of counters.

•• r14.23  You are given a sequence of arrays of words, representing the pages of a book. Your 
task is to build an index (a sorted array of words), each element of which has an array 
of sorted numbers representing the pages on which the word appears. Describe an 
algorithm for building the index and give its big-Oh running time in terms of the 
total number of words.

•• r14.24  Given two arrays of n integers each, describe an O(n log(n)) algorithm for determin-
ing whether they have an element in common.

••• r14.25  Given an array of n integers and a value v, describe an O(n log(n)) algorithm to find 
whether there are two values x and y in the array with sum v.

•• r14.26  Given two arrays of n integers each, describe an O(n log(n)) algorithm for finding all 
elements that they have in common.

•• r14.27  Suppose we modify the quicksort algorithm from Special Topic 14.3, selecting the 
middle element instead of the first one as pivot. What is the running time on an array 
that is already sorted?

•• r14.28  Suppose we modify the quicksort algorithm from Special Topic 14.3, selecting the 
middle element instead of the first one as pivot. Find a sequence of values for which 
this algorithm has an O(n2) running time.



programming exercises W665

• P14.1  Modify the selection sort algorithm to sort an array of integers in descending order. 

• P14.2  Modify the selection sort algorithm to sort an array of coins by their value. 

•• P14.3  Write a program that automatically generates the table of sample run times for the 
selection sort algorithm. The program should ask for the smallest and largest value 
of n and the number of measurements and then make all sample runs. 

• P14.4  Modify the merge sort algorithm to sort an array of strings in lexicographic order. 

••• P14.5  Write a telephone lookup program. Read a data set of 1,000 names and telephone 
numbers from a file that contains the numbers in random order. Handle lookups 
by name and also reverse lookups by phone number. Use a binary search for both 
lookups. 

•• P14.6  Implement a program that measures the performance of the insertion sort algorithm 
described in Special Topic 14.2.

• P14.7  Implement the bubble sort algorithm described in Exercise R14.19.

•• P14.8  Implement the algorithm described in Section 14.7.4, but only remember the value 
with the highest frequency so far:

int mostFrequent = 0;
int highestFrequency = -1;
for (int i = 0; i < a.length; i++)
   Count how often a[i] occurs in a[i + 1]...a[n - 1]
   If it occurs more often than highestFrequency
      highestFrequency = that count
      mostFrequent = a[i]

•• P14.9  Implement the following modification of the quicksort algorithm, due to Bentley 
and McIlroy. Instead of using the first element as the pivot, use an approximation of 
the median. (Partitioning at the actual median would yield an O(n log(n)) algorithm, 
but we don’t know how to compute it quickly enough.)
If n ≤ 7, use the middle element. If n ≤ 40, use the median of the first, middle, 
and last element. Otherwise compute the “pseudomedian” of the nine elements 
a[i * (n - 1) / 8], where i ranges from 0 to 8. The pseudomedian of nine values is 
med(med(v0, v1, v2), med(v3, v4, v5), med(v6, v7, v8)).
Compare the running time of this modification with that of the original algorithm 
on sequences that are nearly sorted or reverse sorted, and on sequences with many 
identical elements. What do you observe?

••• P14.10  Bentley and McIlroy suggest the following modification to the quicksort algorithm 
when dealing with data sets that contain many repeated elements.
Instead of partitioning as

 ≤ ≥ 

(where ≤ denotes the elements that are ≤ the pivot), it is better to partition as

 < = >

p r o g r a M M i n g  e x e r C i S e S



W666 Chapter 14  Sorting and Searching 

However, that is tedious to achieve directly. They recommend to partition as

 = < > =

and then swap the two = regions into the middle. Implement this modification and 
check whether it improves performance on data sets with many repeated elements.

• P14.11  Implement the radix sort algorithm described in Exercise R14.20 to sort arrays of 
numbers between 0 and 999.

• P14.12  Implement the radix sort algorithm described in Exercise R14.20 to sort arrays of 
numbers between 0 and 999. However, use a single auxiliary array, not ten.

•• P14.13  Implement the radix sort algorithm described in Exercise R14.20 to sort arbitrary int 
values (positive or negative).

••• P14.14  Write a program that sorts an ArrayList<Country> in decreasing order so that the most 
largest country is at the beginning of the array. Use a Comparator.

•• P14.15  Consider the binary search algorithm in Section 14.8. If no match is found, the search 
method returns -1. Modify the method so that if a is not found, the method returns 
-k - 1, where k is the position before which the element should be inserted. (This is 
the same behavior as Arrays.binarySearch.)

•• P14.16  Implement the sort method of the merge sort algorithm without recursion, where 
the length of the array is a power of 2. First merge adjacent regions of size 1, then 
adjacent regions of size 2, then adjacent regions of size 4, and so on. 

••• P14.17  Implement the sort method of the merge sort algorithm without recursion, where 
the length of the array is an arbitrary number. Keep merging adjacent regions whose 
size is a power of 2, and pay special attention to the last area whose size is less.

••• P14.18  Use insertion sort and the binary search from Exercise P14.15 to sort an array 
as described in Exercise R14.18. Implement this algorithm and measure its 
performance. 

• P14.19  Supply a class Person that implements the Comparable interface. Compare persons by 
their names. Ask the user to input ten names and generate ten Person objects. Using 
the compareTo method, determine and the first and last person among them and print 
them. 

•• P14.20  Sort an array list of strings by increasing length. Hint: Supply a Comparator. 

••• P14.21  Sort an array list of strings by increasing length, and so that strings of the same 
length are sorted lexicographically. Hint: Supply a Comparator. 



answers to Self-Check Questions W667

1.  Dropping the temp variable would not work. 
Then a[i] and a[j] would end up being the 
same value.

2.  1 | 5 4 3 2 6
1 2 | 4 3 5 6
1 2 3 4 5 6

3.  In each step, find the maximum of the remain-
ing elements and swap it with the cur rent ele-
ment (or see Self Check 4).

4.  The modified algorithm sorts the array in 
descending order.

5.  Four times as long as 40,000 values, or about 
37 seconds.

6.  A parabola.
7.  It takes about 100 times longer.
8.  If n is 4, then 1

2
2n  is 8 and 5

2
3n − is 7.

9.  The first algorithm requires one visit, to 
store the new element. The second algo rithm 
requires T(p) = 2 × (n – p – 1) visits, where p is 
the location at which the ele ment is removed. 
We don’t know where that element is, but if 
elements are removed at random locations, on 
average, half of the removals will be above the 
middle and half below, so we can assume an 
average p of n / 2 and T(n) = 2 × (n – n / 2 – 1) = 
n – 2.

10.  The first algorithm is O(1), the second O(n).
11.  We need to check that a[0] ≤ a[1], a[1] ≤ a[2], 

and so on, visiting 2n – 2 elements. Therefore, 
the running time is O(n).

12.  Let n be the length of the array. In the kth 
step, we need k visits to find the mini mum. To 
remove it, we need an average of k – 2 visits 
(see Self Check 9). One additional visit is 
required to add it to the end. Thus, the kth step 
requires 2k – 1 vis its. Because k goes from n to 
2, the total number of visits is 

2n – 1 + 2(n – 1) – 1 + ... + 2 · 3 – 1 + 2 · 2 – 1 = 
2(n + (n – 1) + ... + 3 + 2 + 1 – 1) – (n – 1) = 

n(n + 1) – 2 – n + 1 = n2 – 3 
(because 1 + 2 + 3 + ... + (n – 1) + n = n(n + 1)/2)
Therefore, the total number of visits is O(n2).

13.  When the preceding while loop ends, 
the loop condition must be false, that is, 
iFirst >= first.length or iSecond >= second.
length (De Morgan’s Law). 

14.  First sort 8 7 6 5. Recursively, first sort 8 7. 
Recursively, first sort 8. It’s sorted. Sort 7. It’s 
sorted. Merge them: 7 8. Do the same with 6 5 
to get 5 6. Merge them to 5 6 7 8. Do the same 
with 4 3 2 1: Sort 4 3 by sorting 4 and 3 and 
merging them to 3 4. Sort 2 1 by sorting 2 and 
1 and merging them to 1 2. Merge 3 4 and 1 2 to 
1 2 3 4. Finally, merge 5 6 7 8 and 1 2 3 4 to 1 2 3 
4 5 6 7 8.

15.  If the array size is 1, return its only element 
as the sum. Otherwise, recursively compute 
the sum of the first and second subarray and 
return the sum of these two values.

16.  Approximately (100,000 · log(100,000)) / 
(50,000 · log(50,000)) = 2 · 5 / 4.7 = 2.13 times 
the time required for 50,000 values. That’s 
2.13 · 192 milliseconds or approximately 
409 milliseconds.

17. 
n n
n n n

2 log(2 )
log( )

2
(1 log(2))

log( )
=

+
. 

For n > 2, that is a value < 3.
18.  On average, you’d make 500,000 comparisons.
19.  The search method returns the index at which 

the match occurs, not the data stored at that 
location.

20.  You would search about 20. (The binary log of 
1,024 is 10.)

21. 

22.  It is an O(n) algorithm.
23.  It is an O(n2) algorithm—the number of visits 

follows a triangle pattern.
24.  Sort the array, then make a linear scan to check 

for adjacent duplicates.
25.  It is an O(n2) algorithm—the outer and inner 

loop each have n iterations.

3

2

1

a n S W e r S  t o  S e l F - C h e C k  Q U e S t i o n S



W668 Chapter 14  Sorting and Searching 

26.  Because an n × n array has m = n2 elements, 
and the algorithm in Section 14.7.4, when 
applied to an array with m elements, is 
O(m log(m)), we have an O(n2log(n)) algo-
rithm. Recall that log(n2) = 2 log(n), and the 
factor of 2 is irrelevant in the big-Oh notation.

27.  The Rectangle class does not implement the 
Comparable interface. 

28.  The BankAccount class would need to implement 
the Comparable interface. Its compareTo method 
must compare the bank balances.

29.  Then you know where to insert it so that the 
array stays sorted, and you can keep using 
binary search.

30.  Otherwise, you would not know whether a 
value is present when the method returns 0.



15C h a p t e r

W669

the Java 
ColleCtions 
Framework

to learn how to use the collection  
classes supplied in the Java library

to use iterators to traverse collections

to choose appropriate collections for solving programming problems

to study applications of stacks and queues

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

15.1  An OvervieW Of the COlleCtiOns 
frAmeWOrk  w670

15.2  linked lists  w672

Random Fact 15.1: standardization w678

15.3  sets  w679

Programming Tip 15.1: Use interface references 
to manipulate Data structures w683

15.4  mAps  w684

How To 15.1: Choosing a Collection w686
Worked Example 15.1: word Frequency 
Special Topic 15.1: hash Functions w688

15.5  stACks, Queues, And 
priOrity Queues  w690

15.6  stACk And Queue 
AppliCAtiOns  w693

Worked Example 15.2: simulating a Queue of 
waiting Customers 

Random Fact 15.2: reverse polish notation w701
Video Example 15.1: Building a table 

of Contents 



W670

if you want to write a program that collects objects (such 
as the stamps to the left), you have a number of choices. of 
course, you can use an array list, but computer scientists 
have invented other mechanisms that may be better suited 
for the task. in this chapter, we introduce the collection 
classes and interfaces that the Java library offers. You will 
learn how to use the Java collection classes, and how to 
choose the most appropriate collection type for a problem.

15.1 an overview of the Collections Framework
When you need to organize multiple objects in your program, you can place them 
into a collection. The ArrayList class that was introduced in Chapter 6 is one of many 
collection classes that the standard Java library supplies. In this chapter, you will 
learn about the Java collections framework, a hierarchy of inter face types and classes 
for collecting objects. Each interface type is implemented by one or more classes (see 
Figure 1).

At the root of the hierarchy is the Collection interface. That interface has methods 
for adding and removing elements, and so on. Table 1 on page W672 shows all the meth-
ods. Because all collections implement this interface, its methods are available for all 
collection classes. For example, the size method reports the number of elements in 
any collection.

The List interface describes an important category of collections. In Java, a list is a 
collection that remembers the order of its elements (see Figure 2). The ArrayList class 
implements the List interface. The Java library supplies another class, LinkedList, that 
also implements the List interface. Unlike an array list, a linked list allows speedy 
insertion and removal of elements in the middle of the list. We will discuss that class 
in the next section. 

 You use a list whenever you want to retain the order that you established. For 
example, on your book shelf, you may order books by topic. A list is an appropriate 
data structure for such a collection because the ordering matters to you. 

a collection groups 
together elements 
and allows them to 
be retrieved later.

a list is a collection 
that remembers the 
order of its elements.

figure 1  interfaces and Classes in the Java Collections Framework

‹‹interface››
Map

HashMap TreeMap

‹‹interface››
Collection

HashSet TreeSetStack LinkedList

‹‹interface››
List

‹‹interface››
Queue

‹‹interface››
Set

ArrayList PriorityQueue



15.1 an overview of the Collections Framework  W671

  

However, in many applications, you don’t really care about the order of the ele-
ments in a collection. Consider a mail-order dealer of books. Without customers 
browsing the shelves, there is no need to order books by topic. Such a collection 
without an intrinsic order is called a set—see Figure 3. 

Because a set does not track the order of the elements, it can arrange them in a 
way that speeds up the operations of finding, adding, and removing elements. Com-
puter scientists have invented mechanisms for this purpose. The Java library provides 
classes that are based on two such mechanisms (called hash tables and binary search 
trees). You will learn in this chapter how to choose between them. 

Another way of gaining efficiency in a collection is to reduce the number of opera-
tions. A stack remembers the order of its elements, but it does not allow you to insert 
elements in every position. You can add and remove elements only at the top—see 
Figure 4.

In a queue, you add items to one end (the tail) and remove them from the other end 
(the head). For example, you could keep a queue of books, adding required reading at 
the tail and taking a book from the head whenever you have time to read another one. 
We will discuss stacks and queues in Section 15.5. 

Finally, a map manages associations between keys and values. Every key in the 
map has an associated value. The map stores the keys, values, and the associations 
between them. For an example, consider a library that puts a bar code on each book. 

The program used to check books in and out needs to look up the book associated 
with each bar code. A map associating bar codes with books can solve this problem—
see Figure 5. We will discuss maps in Section 15.4.

figure 2  a list of Books figure 3  a set of Books figure 4  a stack of Books

a set is an unordered 
collection of unique 
elements. 

a map keeps 
associations  
between key and 
value objects.

figure 5  a map from Bar Codes to Books

ISBN 978-0-470-10555-9

9 7 8 0 4 7 0 1 0 5 5 5 9

9 0 0 0 0

Values

Keys
ISBN 978-0-470-10554-2

9 7 8 0 4 7 0 1 0 5 5 4 2

9 0 0 0 0
ISBN 978-0-470-50948-1

9 7 8 0 4 7 0 5 0 9 4 8 1

9 0 0 0 0

ISBN 978-0-470-38329-2

9 7 8 0 4 7 0 3 8 3 2 9 2

9 0 0 0 0
ISBN 978-0-471-79191-1

9 7 8 0 4 7 1 7 9 1 9 1 1

9 0 0 0 0



W672 Chapter 15  the Java Collections Framework

table 1  the methods of the Collection interface

Collection<String> coll =  
   new ArrayList<String>();

The ArrayList class implements the Collection 
interface.

coll = new TreeSet<String>(); The TreeSet class (Section 15.3) also 
implements the Collection interface.

int n = coll.size(); Gets the size of the collection. n is now 0.

coll.add("Harry");
coll.add("Sally");

Adds elements to the collection. 

String s = coll.toString(); Returns a string with all elements in the 
collection. s is now "[Harry, Sally]"

System.out.println(coll); Invokes the toString method and prints 
[Harry, Sally].

coll.remove("Harry");
boolean b = coll.remove("Tom");

Removes an element from the collection, 
returning false if the element is not present. 
b is false.

b = coll.contains("Sally"); Checks whether this collection contains a 
given element. b is now true.

for (String s : coll) 
{
   System.out.println(s);
}

You can use the “for each” loop with any 
collection. This loop prints the elements on 
separate lines. 

Iterator<String> iter = coll.iterator() You use an iterator for visiting the elements in 
the collection (see Section 15.2.3).

1.  A gradebook application stores a collection of quizzes. Should it use a list or 
a set? 

2.  A student information system stores a collection of student records for a 
university. Should it use a list or a set? 

3.  Why is a queue of books a better choice than a stack for organizing your 
required reading?

4.  As you can see from Figure 1, the Java collections framework does not consider 
a map a collection. Give a reason for this decision. 

practice it  Now you can try these exercises at the end of the chapter: R15.1, R15.2, R15.3.

15.2 linked lists
A linked list is a data structure used for collecting a sequence of objects that allows 
efficient addition and removal of elements in the middle of the sequence. In the fol-
lowing sections, you will learn how a linked list manages its elements and how you 
can use linked lists in your programs.

O n l i n e  e x A m p l e

a sample program 
that demonstrates 
several collection 
classes.

s e l f   C h e C k



15.2 linked lists  W673

15.2.1 the structure of linked lists

To understand the inefficiency of arrays 
and the need for a more efficient data 
structure, imagine a program that main-
tains a sequence of employee names. If an 
employee leaves the company, the name 
must be removed. In an array, the hole 
in the sequence needs to be closed up by 
moving all objects that come after it. Con-
versely, suppose an employee is added in 
the middle of the sequence. Then all names 
following the new hire must be moved 
toward the end. Moving a large number of 
elements can involve a substantial amount 
of processing time. A linked list structure 
avoids this movement. 

A linked list uses a sequence of nodes. A node is an object that stores an element 
and references to the neighboring nodes in the sequence (see Figure 6). 

When you insert a new node into a linked list, only the neighboring node references 
need to be updated (see Figure 7). 

The same is true when you remove a node (see Figure 8). What’s the catch? Linked 
lists allow speedy insertion and removal, but element access can be slow. 

Each node in a linked list is connected to the 
neighboring nodes.

a linked list consists 
of a number of 
nodes, each of which 
has a reference to  
the next node.

figure 6   
a linked list

Tom Diana Harry

figure 7   
inserting a  
node into a  
linked list

Tom Diana Harry

Romeo

figure 8   
removing a  
node from a  
linked list

Tom Diana Harry



W674 Chapter 15  the Java Collections Framework

For example, suppose you want to locate the fifth element. You must first traverse 
the first four. This is a problem if you need to access the elements in arbitrary order. 
The term “random access” is used in com puter science to describe an access pattern in 
which elements are accessed in arbitrary (not necessarily random) order. In contrast, 
sequential access visits the elements in sequence. 

Of course, if you mostly visit all elements in sequence (for example, to display 
or print the elements), the inefficiency of random access is not a problem. You use 
linked lists when you are concerned about the efficiency of inserting or removing ele-
ments and you rarely need element access in random order. 

15.2.2 the LinkedList Class of the Java Collections 
Framework

The Java library provides a LinkedList class in the java.util package. It is a generic 
class, just like the ArrayList class. That is, you specify the type of the list elements in 
angle brackets, such as LinkedList<String> or LinkedList<Employee>. 

Table 2 shows important methods of the LinkedList class. (Remember that the 
LinkedList class also inherits the methods of the Collection interface shown in Table 1.)

As you can see from Table 2, there are methods for accessing the beginning and the 
end of the list directly. However, to visit the other elements, you need a list iterator. 
We discuss iterators next. 

table 2  working with linked lists

LinkedList<String> list = new LinkedList<String>(); An empty list.

list.addLast("Harry"); Adds an element to the end of the list. 
Same as add.

list.addFirst("Sally"); Adds an element to the beginning of 
the list. list is now [Sally, Harry].

list.getFirst(); Gets the element stored at the 
beginning of the list; here "Sally".

list.getLast(); Gets the element stored at the end of 
the list; here "Harry".

String removed = list.removeFirst(); Removes the first element of the list 
and returns it. removed is "Sally" and 
list is [Harry]. Use removeLast to 
remove the last element.

ListIterator<String> iter = list.listIterator() Provides an iterator for visiting all list 
elements (see Table 3 on page W676).

15.2.3 list iterators

An iterator encapsulates a position anywhere inside the linked list. Conceptually, 
you should think of the iterator as pointing between two elements, just as the cursor 

adding and removing 
elements at a given 
location in a linked 
list is efficient.

visiting the elements 
of a linked list in 
sequential order is 
efficient, but random 
access is not.



15.2 linked lists  W675

in a word processor points between two characters (see Figure 9). In the conceptual 
view, think of each ele ment as being like a letter in a word processor, and think of the 
iterator as being like the blinking cursor between letters. 

You obtain a list iterator with the listIterator method of the LinkedList class: 

LinkedList<String> employeeNames = . . .;
ListIterator<String> iterator = employeeNames.listIterator();

Note that the iterator class is also a generic type. A ListIterator<String> iterates 
through a list of strings; a ListIterator<Book> visits the elements in a LinkedList<Book>. 

Initially, the iterator points before the first element. You can move the iterator 
position with the next method: 

iterator.next();

The next method throws a NoSuchElementException if you are already past the end of 
the list. You should always call the iterator’s hasNext method before calling next—it 
returns true if there is a next element. 

if (iterator.hasNext())
{
   iterator.next(); 
}

The next method returns the element that the iterator is passing. When you use a 
ListIterator<String>, the return type of the next method is String. In general, the return 
type of the next method matches the list iterator’s type parameter (which reflects the 
type of the elements in the list). 

You traverse all elements in a linked list of strings with the following loop: 

while (iterator.hasNext())
{ 
   String name = iterator.next();
   Do something with name
}

As a shorthand, if your loop simply visits all elements of the linked list, you can use 
the “for each” loop:

for (String name : employeeNames)
{ 
   Do something with name
}

Then you don’t have to worry about iterators at all. Behind the scenes, the for loop 
uses an iterator to visit all list elements.

You use a list iterator 
to access elements 
inside a linked list.

A N I M AT I O N
List Iterators

figure 9  a Conceptual view of the list iterator

D H R T

D H R T

D J R TH R T

Initial ListIterator position

After calling next

After inserting J

next returns D



W676 Chapter 15  the Java Collections Framework

The nodes of the LinkedList class store two links: one to the next element and one 
to the previous one. Such a list is called a doubly-linked list. You can use the previ-
ous and hasPrevious methods of the ListIter ator interface to move the iterator position 
backward. 

The add method adds an object after the iterator, then moves the iterator position 
past the new element. 

iterator.add("Juliet");

You can visualize insertion to be like typing text in a word processor. Each character 
is inserted after the cursor, then the cursor moves past the inserted character (see Fig-
ure 9). Most people never pay much attention to this—you may want to try it out and 
watch carefully how your word processor inserts characters. 

The remove method removes the object that was returned by the last call to next or 
previous. For exam ple, this loop removes all names that fulfill a certain condition: 

while (iterator.hasNext())
{ 
   String name = iterator.next();
   if (condition is fulfilled for name)
   {
      iterator.remove();
   }
}

You have to be careful when calling remove. It can be called only once after calling 
next or previous, and you cannot call it immediately after a call to add. If you call the 
method improperly, it throws an IllegalState Exception. 

Table 3 summarizes the methods of the ListIterator interface. The ListIterator 
interface extends a more general Iterator interface that is suitable for arbitrary col-
lections, not just lists. The table indicates which methods are specific to list iterators.

Following is a sample program that inserts strings into a list and then iterates 
through the list, adding and removing elements. Finally, the entire list is printed. The 
comments indicate the iterator position. 

table 3  methods of the Iterator and ListIterator interfaces

String s = iter.next(); Assume that iter points to the beginning of the list [Sally] before 
calling next. After the call, s is "Sally" and the iterator points to the end. 

iter.previous();
iter.set("Juliet");

The set method updates the last element returned by next or previous. 
The list is now [Juliet].

iter.hasNext() Returns false because the iterator is at the end of the collection. 

if (iter.hasPrevious())
{
   s = iter.previous();
}

hasPrevious returns true because the iterator is not at the beginning of 
the list. previous and hasPrevious are ListIterator methods.

iter.add("Diana"); Adds an element before the iterator position (ListIterator only). The 
list is now [Diana, Juliet]. 

iter.next();
iter.remove();

remove removes the last element returned by next or previous. The list is 
now [Diana].



15.2 linked lists  W677

section_2/listdemo.java

1 import java.util.LinkedList;
2 import java.util.ListIterator;
3 
4 /**
5    This program demonstrates the LinkedList class. 
6 */
7 public class ListDemo
8 { 
9    public static void main(String[] args)

10    { 
11       LinkedList<String> staff = new LinkedList<String>();
12       staff.addLast("Diana");
13       staff.addLast("Harry");
14       staff.addLast("Romeo");
15       staff.addLast("Tom");
16 
17       // | in the comments indicates the iterator position 
18 
19       ListIterator<String> iterator = staff.listIterator(); // |DHRT 
20       iterator.next(); // D|HRT 
21       iterator.next(); // DH|RT 
22 
23       // Add more elements after second element 
24       
25       iterator.add("Juliet"); // DHJ|RT 
26       iterator.add("Nina"); // DHJN|RT 
27 
28       iterator.next(); // DHJNR|T 
29 
30       // Remove last traversed element 
31 
32       iterator.remove(); // DHJN|T 
33      
34       // Print all elements 
35 
36       System.out.println(staff);
37       System.out.println("Expected: [Diana, Harry, Juliet, Nina, Tom]");
38    }
39 }

program run

[Diana, Harry, Juliet, Nina, Tom]
Expected: [Diana, Harry, Juliet, Nina, Tom]

5.  Do linked lists take more storage space than arrays of the same size?
6.  Why don’t we need iterators with arrays? 
7.  Suppose the list lst contains elements "A", "B", "C", and "D". Draw the contents of 

the list and the itera tor position for the following operations: 
ListIterator<String> iter = letters.iterator();
iter.next();
iter.next();
iter.remove();
iter.next();
iter.add("E");

s e l f   C h e C k



W678 Chapter 15  the Java Collections Framework

iter.next();
iter.add("F");

8.  Write a loop that removes all strings with length less than four from a linked list 
of strings called words.

9.  Write a loop that prints every second element of a linked list of strings called 
words.

practice it  Now you can try these exercises at the end of the chapter: R15.4, R15.7, P15.1.

You encounter the 
benefits of standard

ization every day. when you buy a 
light bulb, you can be assured that it 
fits the socket without having to mea
sure the socket at home and the light 
bulb in the store. in fact, you may have 
experienced how painful the lack of 
standards can be if you have ever pur
chased a flashlight with nonstand ard 
bulbs. replacement bulbs for such a 
flashlight can be difficult and expen
sive to obtain. 

programmers have a similar desire 
for standardization. Consider the impor
tant goal of platform indepen dence 
for Java programs. after you compile a 
Java program into class files, you can 
execute the class files on any computer 
that has a Java vir tual machine. For this 
to work, the behavior of the virtual 
machine has to be strictly defined. if all 
virtual machines don’t behave exactly 
the same way, then the slogan of “write 
once, run anywhere” turns into “write 
once, debug everywhere”. in order for 
multiple implementors to create com
patible virtual machines, the virtual 
machine needed to be standardized. 
that is, someone needed to create a 
definition of the virtual machine and its 
expected behavior.

who creates standards? some of the 
most successful standards have been 
created by volunteer groups such as 
the internet engineering task Force 
(ietF) and the world wide web Con
sortium (w3C). the ietF standard izes 
protocols used in the internet, such 
as the protocol for exchanging email 
messages. the w3C standardizes the 
hypertext markup language (html), 
the format for web pages. these stan
dards have been instru mental in the 
creation of the world wide web as an 
open platform that is not controlled by 
any one company.

many programming languages, 
such as C++ and scheme, have been 
standardized by independent stan
dards organizations, such as the 
american national standards institute 
(ansi) and the international organiza
tion for standardization—called iso 
for short (not an acronym; see http://
www.iso.org/iso/about/discover-
iso_isos-name.htm). ansi and iso are 
associations of industry profession
als who develop standards for every
thing from car tires to credit card 
shapes to programming languages. 

when a company invents a new 
technology, it has an interest in its 
invention becoming a standard, so that 
other vendors produce tools that work 
with the invention and thus increase 
its likelihood of success. on the other 
hand, by handing over the invention 
to a standards committee, especially 
one that insists on a fair process, the 
company may lose con trol over the 
standard. For that reason, sun micro
systems, the inventor of Java, never 
agreed to have a thirdparty organiza
tion standardize the Java language. 
they put in place their own standard

ization process, involv ing other com
panies but refusing to relinquish con
trol. another unfortu nate but common 
tactic is to create a weak standard. 
For example, netscape and microsoft 
chose the european Computer manu
facturers association (eCma) to stan
dardize the Javascript language. eCma 
was willing to settle for something less 
than truly useful, standardizing the 
behavior of the core language and just 
a few of its libraries. 

of course, many important pieces 
of technology aren’t standardized at 
all. Consider the windows operating 
system. although windows is often 
called a defacto standard, it really is 
no standard at all. nobody has ever 
attempted to define formally what the 
windows operating system should do. 
the behavior changes at the whim of 
its vendor. that suits microsoft just 
fine, because it makes it impossible for 
a third party to create its own ver sion 
of windows.

as a computer professional, there 
will be many times in your career when 
you need to make a decision whether 
to support a particular stan dard. Con
sider a simple example. in this chapter, 
you learn about the col lection classes 
from the standard Java library. how
ever, many computer sci entists dislike 
these classes because of their numer
ous design issues. should you use the 
Java collections in your own code, or 
should you imple ment a better set of 
collections? if you do the former, you 
have to deal with a design that is less 
than optimal. if you do the latter, other 
programmers may have a hard time 
understanding your code because they 
aren’t familiar with your classes.

Random Fact 15.1 standardization



15.3 sets  W679

15.3 sets
As you learned in Section 15.1, a set organizes its values in an order that is optimized 
for efficiency, which may not be the order in which you add elements. Inserting and 
removing elements is faster with a set than with a list. 

In the following sections, you will learn how to choose a set implementation and 
how to work with sets. 

15.3.1 Choosing a set implementation

The Set interface in the standard Java library has the same methods as the Collection 
interface, shown in Table 1. However, there is an essential difference between arbi-
trary collections and sets. A set does not admit duplicates. If you add an element to a 
set that is already present, the insertion is ignored.

The HashSet and TreeSet classes implement the Set interface. These two classes pro-
vide set implementations based on two different mechanisms, called hash tables and 
binary search trees. Both implementations arrange the set elements so that finding, 
adding, and removing elements is fast, but they use different strategies. 

The basic idea of a hash table is simple. Set elements are grouped into smaller col-
lections of elements that share the same characteristic. You can imagine a hash set of 
books as having a group for each color, so that books of the same color are in the same 
group. To find whether a book is already present, you just need to check it against 
the books in the same color group. Actually, hash tables don’t use colors, but integer 
values (called hash codes) that can be computed from the elements. 

In order to use a hash table, the elements must have a method to compute those 
integer values. This method is called hashCode. The elements must also belong to a class 
with a properly defined equals method (see Special Topic 9.7). 

Many classes in the standard library implement these methods, for example String, 
Integer, Double, Point, Rectangle, Color, and all the collection classes. Therefore, you can 
form a HashSet<String>, HashSet<Rectangle>, or even a Hash Set<HashSet<Integer>>. 

Suppose you want to form a set of elements belonging to a class that you declared, 
such as a HashSet<Book>. Then you need to provide hashCode and equals methods for the 
class Book. There is one exception to this rule. If all elements are distinct (for example, 
if your program never has two Book objects with the same author and title), then you 
can simply inherit the hashCode and equals methods of the Object class. 

On this shelf, books of the same color are grouped  
together. Similarly, in a hash table, objects with the  

same hash code are placed in the same group.

the HashSet and 
TreeSet classes both 
implement the  
Set interface.

set implementations 
arrange the elements 
so that they can 
locate them quickly.

You can form hash 
sets holding objects 
of type String, 
Integer, Double, 
Point, Rectangle, 
or Color.



W680 Chapter 15  the Java Collections Framework

A tree set keeps its elements in sorted order. 

The TreeSet class uses a different strategy for 
arranging its ele ments. Elements are kept in 
sorted order. For example, a set of books might 
be arranged by height, or alphabetically by 
author and title. The elements are not stored in an array—that would make adding 
and removing elements too slow. Instead, they are stored in nodes, as in a linked list. 
However, the nodes are not arranged in a linear sequence but in a tree shape. 

In order to use a TreeSet, it must be possible to compare the ele ments and determine 
which one is “larger”. You can use a TreeSet for classes such as String and Integer that 
implement the Comparable interface, which we discussed in Section 9.6.3. (That section 
also shows you how you can implement com parison methods for your own classes.) 

As a rule of thumb, you should choose a TreeSet if you want to visit the set’s ele-
ments in sorted order. Otherwise choose a HashSet––as long as the hash function is 
well chosen, it is a bit more efficient.

When you construct a HashSet or TreeSet, store the reference in a Set<String> vari-
able, either as

Set<String> names = new HashSet<String>();

or
Set<String> names = new TreeSet<String>();

After you construct the collection object, the implementation no longer matters; 
only the interface is important. 

15.3.2 working with sets

Adding and removing set elements are accomplished with the add and remove methods:
names.add("Romeo");
names.remove("Juliet");

As in mathematics, a set collection in Java rejects duplicates. Adding an element has 
no effect if the ele ment is already in the set. Similarly, attempting to remove an ele-
ment that isn’t in the set is ignored.

The contains method tests whether an element is contained in the set:
if (names.contains("Juliet")) . . .

Finally, to list all elements in the set, get an iterator. As with list iterators, you use the 
next and hasNext methods to step through the set.

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
   String name = iter.next();
   Do something with name
}

You can form tree 
sets for any class that 
implements the 
Comparable interface, 
such as String or 
Integer.

sets don’t have 
duplicates. adding a 
duplicate of an 
element that is 
already present 
is ignored.



15.3 sets  W681

You can also use the “for each” loop instead of explicitly using an iterator:
for (String name : names)
{
   Do something with name
}

A set iterator visits the elements in the order in which the set implementation keeps 
them. This is not nec essarily the order in which you inserted them. The order of ele-
ments in a hash set seems quite random because the hash code spreads the elements 
into different groups. When you visit elements of a tree set, they always appear in 
sorted order, even if you inserted them in a different order. 

There is an important difference between the Iterator that you obtain from a set 
and the ListIterator that a list yields. The ListIterator has an add method to add an ele-
ment at the list iterator position. The Iterator interface has no such method. It makes 
no sense to add an element at a particular position in a set, because the set can order 
the elements any way it likes. Thus, you always add elements directly to a set, never 
to an iterator of the set. 

However, you can remove a set element at an iterator position, just as you do with 
list iterators. 

Also, the Iterator interface has no previous method to go backward through the 
elements. Because the elements are not ordered, it is not meaningful to distinguish 
between “going forward” and “going back ward”. 

table 4  working with sets

Set<String> names; Use the interface type for variable declarations.

names = new HashSet<String>(); Use a TreeSet if you need to visit the elements 
in sorted order.

names.add("Romeo"); Now names.size() is 1.

names.add("Fred"); Now names.size() is 2.

names.add("Romeo"); names.size() is still 2. You can’t add duplicates.

if (names.contains("Fred")) The contains method checks whether a value is 
contained in the set. In this case, the method 
returns true.

System.out.println(names); Prints the set in the format [Fred, Romeo]. The 
elements need not be shown in the order in 
which they were inserted.

for (String name : names)
{
   . . .
}

Use this loop to visit all elements of a set.

names.remove("Romeo"); Now names.size() is 1.

names.remove("Juliet"); It is not an error to remove an element that is 
not present. The method call has no effect.

a set iterator visits 
the elements in the 
order in which the set 
implementation 
keeps them.

You cannot add an 
element to a set at  
an iterator position.



W682 Chapter 15  the Java Collections Framework

The following program shows a practical application of sets. It reads in all words 
from a dictio nary file that contains correctly spelled words and places them in a set. 
It then reads all words from a document—here, the book Alice in Wonderland—into 
a second set. Finally, it prints all words from that set that are not in the dictionary 
set. These are the potential misspellings. (As you can see from the out put, we used an 
American dictionary, and words with British spelling, such as clamour, are flagged as 
potential errors.)

section_3/spellCheck.java

1 import java.util.HashSet;
2 import java.util.Scanner;
3 import java.util.Set;
4 import java.io.File;
5 import java.io.FileNotFoundException;
6 
7 /**
8    This program checks which words in a file are not present in a dictionary.
9 */

10 public class SpellCheck
11 {
12    public static void main(String[] args) 
13       throws FileNotFoundException
14    {
15       // Read the dictionary and the document
16 
17       Set<String> dictionaryWords = readWords("words");
18       Set<String> documentWords = readWords("alice30.txt");
19 
20       // Print all words that are in the document but not the dictionary
21 
22       for (String word : documentWords)
23       {
24          if (!dictionaryWords.contains(word))
25          {
26             System.out.println(word);
27          }
28       }
29    }
30 
31    /**
32       Reads all words from a file.
33       @param filename the name of the file
34       @return a set with all lowercased words in the file. Here, a 
35       word is a sequence of upper- and lowercase letters.
36    */
37    public static Set<String> readWords(String filename)
38       throws FileNotFoundException
39    {
40       Set<String> words = new HashSet<String>();
41       Scanner in = new Scanner(new File(filename));
42       // Use any characters other than a-z or A-Z as delimiters
43       in.useDelimiter("[^a-zA-Z]+");
44       while (in.hasNext())
45       {
46          words.add(in.next().toLowerCase());        
47       }



15.3 sets  W683

48       return words;
49    }
50 } 

program run

neighbouring
croqueted
pennyworth
dutchess
comfits
xii
dinn
clamour
...

10.  Arrays and lists remember the order in which you added elements; sets do not. 
Why would you want to use a set instead of an array or list?

11.  Why are set iterators different from list iterators?
12.  What is wrong with the following test to check whether the Set<String> s con-

tains the elements "Tom", "Diana", and "Harry"? 
if (s.toString().equals("[Tom, Diana, Harry]")) . . .

13.  How can you correctly implement the test of Self Check 12?
14.  Write a loop that prints all elements that are in both Set<String> s and 

Set<String> t.
15.  Suppose you changed line 40 of the SpellCheck program to use a TreeSet instead of 

a HashSet. How would the output change?

practice it  Now you can try these exercises at the end of the chapter: P15.7, P15.8, P15.13.

use interface references to manipulate data structures

It is considered good style to store a reference to a HashSet or TreeSet in a variable of type Set:

Set<String> words = new HashSet<String>();

This way, you have to change only one line if you decide to use a TreeSet instead.
If a method can operate on arbitrary collections, use the Collection interface type for the 

parameter variable:

public static void removeLongWords(Collection<String> words)

In theory, we should make the same recommendation for the List interface, namely to save 
ArrayList and LinkedList references in variables of type List. However, the List interface has 
get and set methods for random access, even though these methods are very inefficient for 
linked lists. You can’t write efficient code if you don’t know whether the methods that you are 
calling are efficient or not. This is plainly a serious design error in the standard library, and it 
makes the List interface somewhat unattractive. 

s e l f   C h e C k

programming tip 15.1 



W684 Chapter 15  the Java Collections Framework

15.4 maps
A map allows you to associate elements from a key set with elements from a value 
collection. You use a map when you want to look up objects by using a key. For exam-
ple, Figure 10 shows a map from the names of people to their favorite colors.

Just as there are two kinds of set implementations, the Java library has two imple-
mentations for the Map interface: HashMap and TreeMap. 

After constructing a HashMap or TreeMap, you can store the reference to the map 
object in a Map reference:

Map<String, Color> favoriteColors = new HashMap<String, Color>(); 

Use the put method to add an association:
favoriteColors.put("Juliet", Color.RED);

You can change the value of an existing association, simply by calling put again:
favoriteColors.put("Juliet", Color.BLUE);

The get method returns the value associated with a key. 
Color julietsFavoriteColor = favoriteColors.get("Juliet");

If you ask for a key that isn’t associated with any values, then the get method returns 
null.

To remove an association, call the remove method with the key:
favoriteColors.remove("Juliet");   

table 5  working with maps

Map<String, Integer> scores; Keys are strings, values are Integer 
wrappers. Use the interface type for 
variable declarations.

scores = new TreeMap<String, Integer>(); Use a HashMap if you don’t need to visit the 
keys in sorted order. 

scores.put("Harry", 90);
scores.put("Sally", 95);

Adds keys and values to the map.

scores.put("Sally", 100); Modifies the value of an existing key.

int n = scores.get("Sally");
Integer n2 = scores.get("Diana");

Gets the value associated with a key, or null 
if the key is not present. n is 100, n2 is null.

System.out.println(scores); Prints scores.toString(), a string of the 
form {Harry=90, Sally=100}

for (String key : scores.keySet())
{
   Integer value = scores.get(key);
   . . .
}

Iterates through all map keys and values.

scores.remove("Sally"); Removes the key and value.

the HashMap and 
TreeMap classes 
both implement  
the Map interface.

A N I M AT I O N
Using a Map



15.4 maps  W685

figure 10  a map

Romeo

Adam

Eve

Juliet

ValuesKeys

Sometimes you want to enumerate all keys in a map. The keySet method yields the set 
of keys. You can then ask the key set for an iterator and get all keys. From each key, 
you can find the associated value with the get method. Thus, the following instruc-
tions print all key/value pairs in a map m:

Set<String> keySet = m.keySet();
for (String key : keySet)
{
   Color value = m.get(key);
   System.out.println(key + "->" + value);
}

This sample program shows a map in action:

section_4/mapdemo.java

1 import java.awt.Color;
2 import java.util.HashMap;
3 import java.util.Map;
4 import java.util.Set;
5 
6 /**
7    This program demonstrates a map that maps names to colors.
8 */
9 public class MapDemo

10 {
11    public static void main(String[] args)
12    {
13       Map<String, Color> favoriteColors = new HashMap<String, Color>();
14       favoriteColors.put("Juliet", Color.BLUE);
15       favoriteColors.put("Romeo", Color.GREEN);
16       favoriteColors.put("Adam", Color.RED);
17       favoriteColors.put("Eve", Color.BLUE);
18 
19       // Print all keys and values in the map
20 
21       Set<String> keySet = favoriteColors.keySet();

to find all keys  
and values in a  
map, iterate through 
the key set and find 
the values that 
correspond to  
the keys.



W686 Chapter 15  the Java Collections Framework

22       for (String key : keySet)
23       {
24          Color value = favoriteColors.get(key);
25          System.out.println(key + " : " + value);
26       }
27    }
28 }

program run

Juliet : java.awt.Color[r=0,g=0,b=255]
Adam : java.awt.Color[r=255,g=0,b=0]
Eve : java.awt.Color[r=0,g=0,b=255]
Romeo : java.awt.Color[r=0,g=255,b=0]

16.  What is the difference between a set and a map?
17.  Why is the collection of the keys of a map a set and not a list?
18.  Why is the collection of the values of a map not a set?
19.  Suppose you want to track how many times each word occurs in a document. 

Declare a suitable map variable. 
20.  What is a Map<String, HashSet<String>>? Give a possible use for such a structure.

practice it  Now you can try these exercises at the end of the chapter: R15.17, P15.9, P15.14.

step 1  Determine how you access the values.

You store values in a collection so that you can later retrieve them. How do you want to access 
individual values? You have several choices:
• Values are accessed by an integer position. Use an ArrayList.
• Values are accessed by a key that is not a part of the object. Use a map.
• Values are accessed only at one of the ends. Use a queue (for first-in, first-out access) or a 

stack (for last-in, first-out access).
• You don’t need to access individual values by position. Refine your choice in Steps 3 and 4. 

step 2  Determine the element types or key/value types.

For a list or set, determine the type of the elements that you want to store. For example, if you 
collect a set of books, then the element type is Book. 

s e l f   C h e C k

how to 15.1 Choosing a Collection

Suppose you need to store objects in a collection. You have 
now seen a number of different data structures. This How 
To reviews how to pick an appropriate col lection for your 
application. 



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

15.4 maps  W687

Similarly, for a map, determine the types of the keys and the associated values. If you want 
to look up books by ID, you can use a Map<Integer, Book> or Map<String, Book>, depending on 
your ID type.

step 3  Determine whether element or key order matters.

When you visit elements from a collection or keys from a map, do you care about the order in 
which they are vis ited? You have several choices:
• Elements or keys must be sorted. Use a TreeSet or TreeMap. Go to Step 6.
• Elements must be in the same order in which they were inserted. Your choice is now 

narrowed down to a LinkedList or an ArrayList.
• It doesn’t matter. As long as you get to visit all elements, you don’t care in which order. If 

you chose a map in Step 1, use a HashMap and go to Step 5.

step 4  For a collection, determine which operations must be fast.

You have several choices:
• Finding elements must be fast. Use a HashSet.
• It must be fast to add or remove elements at the beginning, or, provided that you are 

already inspecting an element there, another position. Use a LinkedList.
• You only insert or remove at the end, or you collect so few elements that you aren’t 

concerned about speed. Use an ArrayL ist.

step 5  For hash sets and maps, decide whether you need to implement the hashCode and equals 
methods.

• If your elements or keys belong to a class that someone else implemented, check whether 
the class has its own hashCode and equals methods. If so, you are all set. This is the case for 
most classes in the standard Java library, such as String, Integer, Rectangle, and so on.

• If not, decide whether you can compare the elements by identity. This is the case if you 
never construct two distinct elements with the same contents. In that case, you need not 
do anything—the hashCode and equals methods of the Object class are appropriate.

• Otherwise, you need to implement your own equals and hashCode methods––see Special 
Topics 9.7 and Special Topic 15.1. 

step 6  If you use a tree, decide whether to supply a comparator.

Look at the class of the set elements or map keys. Does that class implement the Comparable 
interface? If so, is the sort order given by the compareTo method the one you want? If yes, then 
you don’t need to do anything further. This is the case for many classes in the standard library, 
in particular for String and Integer.

If not, then your element class must implement the Comparable interface (Section 9.6.3), or 
you must declare a class that implements the Comparator interface (see Special Topic 14.5). 

workeD example 15.1 Word frequency

In this Worked Example, we read a text file and print a list of all words in the file in alphabeti-
cal order, together with a count that indicates how often each word occurred in the file. 



W688 Chapter 15  the Java Collections Framework

hash functions

If you use a hash set or hash map with your own 
classes, you may need to implement a hash func-
tion. A hash function is a function that computes 
an integer value, the hash code, from an object in 
such a way that different objects are likely to yield 
different hash codes. Because hashing is so impor-
tant, the Object class has a hashCode method. The 
call

int h = x.hashCode();

computes the hash code of any object x. If you 
want to put objects of a given class into a HashSet 
or use the objects as keys in a HashMap, the class 
should override this method. The method should 
be implemented so that different objects are likely 
to have different hash codes. 

For example, the String class declares a hash function for 
strings that does a good job of producing different integer values 
for dif ferent strings. Table 6 shows some examples of strings and 
their hash codes.

It is possible for two or more distinct objects to have the same 
hash code; this is called a collision. For example, the strings "Ugh" 
and "VII" happen to have the same hash code, but these collisions 
are very rare for strings (see Exercise P15.15). 

The hashCode method of the String class combines the charac-
ters of a string into a numerical code. The code isn’t simply the sum of the character values—
that would not scramble the character values enough. Strings that are permutations of another 
(such as "eat" and "tea") would all have the same hash code.

Here is the method the standard library uses to compute the hash code for a string:

final int HASH_MULTIPLIER = 31;
int h = 0;
for (int i = 0; i < s.length(); i++)
{
   h = HASH_MULTIPLIER * h + s.charAt(i);
}

For example, the hash code of "eat" is 

31 * (31 * 'e' + 'a') + 't' = 100184

table 6  sample strings and their hash Codes

string hash Code

"eat" 100184

"tea" 114704

"Juliet" –2065036585

"Ugh" 84982

"VII" 84982

special topic 15.1 

A good hash function produces different 
hash values for each object so that they 
are scattered about in a hash table.

a hash function 
computes an integer 
value from an object.

a good hash function 
minimizes collisions—
identical hash codes for 
different objects.



15.4 maps  W689

The hash code of "tea" is quite different, namely

31 * (31 * 't' + 'e') + 'a' = 114704

(Use the Unicode table from Appendix A to look up the character values: 'a' is 97, 'e' is 101, 
and 't' is 116.)

For your own classes, you should make up a hash code that 
combines the hash codes of the instance variables in a similar way. 
For example, let us declare a hashCode method for the Country class 
from Section 9.6.

There are two instance variables: the country name and the 
area. First, compute their hash codes. You know how to compute 
the hash code of a string. To compute the hash code of a floating-point number, first wrap the 
floating-point number into a Double object, and then compute its hash code.

public class Country
{
   public int hashCode()
   {
      int h1 = name.hashCode();
      int h2 = new Double(area).hashCode();
      . . .
   }
}

Then combine the two hash codes:

final int HASH_MULTIPLIER = 29;
int h = HASH_MULTIPLIER * h1 + h2;
return h;

Use a prime number as the hash multiplier—it scrambles the values well. 
If you have more than two instance variables, then combine their hash codes as follows:

int h = HASH_MULTIPLIER * h1 + h2;
h = HASH_MULTIPLIER * h + h3;
h = HASH_MULTIPLIER * h + h4;
. . .
return h;

If one of the instance variables is an integer, just use the value as its hash code.
When you supply your own hashCode method for a class, you must also provide a compati-

ble equals method. The equals method is used to differentiate between two objects that happen 
to have the same hash code.

The equals and hashCode methods must be compatible with 
each other. Two objects that are equal must yield the same hash 
code.

You get into trouble if your class declares an equals method but 
not a hashCode method. Suppose the Country class declares an equals 
method (checking that the name and area are the same), but no hashCode method. Then the 
hashCode method is inherited from the Object superclass. That method computes a hash code 
from the memory location of the object. Then it is very likely that two objects with the same 
contents will have different hash codes, in which case a hash set will store them as two distinct 
objects.

However, if you declare neither equals nor hashCode, then there is no problem. The equals 
method of the Object class considers two objects equal only if their memory location is the 
same. That is, the Object class has compatible equals and hashCode methods. Of course, then the 
notion of equality is very restricted: Only identical objects are considered equal. That can be a 
perfectly valid notion of equality, depending on your application.

override hashCode 
methods in your own 
classes by combining 
the hash codes for the 
instance variables.

a class’s hashCode 
method must be 
compatible with its 
equals method.O n l i n e  e x A m p l e

a program that 
demonstrates a hash 
set with objects of 
the Country class.



W690 Chapter 15  the Java Collections Framework

15.5 stacks, Queues, and priority Queues
In the following sections, we cover stacks, queues, and priority queues. These data 
structures each have a different policy for data removal. Removing an element yields 
the most recently added element, the least recently added, or the element with the 
highest priority.

15.5.1 stacks

A stack lets you insert and remove elements only 
at one end, traditionally called the top of the stack. 
New items can be added to the top of the stack. 
Items are removed from the top of the stack as well. 
Therefore, they are removed in the order that is 
opposite from the order in which they have been 
added, called last-in, first-out or LIFO order. For 
example, if you add items A, B, and C and then remove 
them, you obtain C, B, and A. With stacks, the addi-
tion and removal operations are called push and pop.

Stack<String> s = new Stack<String>();
s.push("A"); s.push("B"); s.push("C");
while (s.size() > 0) 
{ 
   System.out.print(s.pop() + " "); // Prints C B A
}  

There are many applications for stacks in computer science. Consider the undo fea-
ture of a word processor. It keeps the issued commands in a stack. When you select 
“Undo”, the last command is undone, then the next-to-last, and so on.

Another important example is the run-time stack that a processor or virtual 
machine keeps to store the values of variables in nested methods. Whenever a new 
method is called, its parameter variables and local variables are pushed onto a stack. 
When the method exits, they are popped off again.

You will see other applications in Section 15.6. 
The Java library provides a simple Stack class with methods push, pop, and peek—the 

latter gets the top element of the stack but does not remove it (see Table 7). 

table 7  working with stacks

Stack<Integer> s = new Stack<Integer>(); Constructs an empty stack.

s.push(1); 
s.push(2); 
s.push(3);

Adds to the top of the stack; s is now [1, 2, 
3]. (Following the toString method of the 
Stack class, we show the top of the stack at 
the end.)

int top = s.pop(); Removes the top of the stack; top is set to 3 
and s is now [1, 2].

head = s.peek(); Gets the top of the stack without removing 
it; head is set to 2.

The last pancake that has been  
added to this stack will be the  
first one that is consumed. 

a stack is a collection 
of elements with 
“lastin, firstout” 
retrieval.

The Undo key pops 
commands off a 
stack, so that the last 
command is the first 
to be undone.



15.5 stacks, Queues, and priority Queues  W691

15.5.2 Queues

A queue lets you add items to one end of 
the queue (the tail) and remove them from 
the other end of the queue (the head). 
Queues yield items in a first-in, first-out 
or FIFO fashion. Items are removed in 
the same order in which they were added. 

A typical application is a print queue. 
A printer may be accessed by several 
applications, perhaps running on differ-
ent computers. If each of the applications 
tried to access the printer at the same time, 
the printout would be garbled. Instead, 
each application places its print data into a file and adds that file to the print queue. 
When the printer is done printing one file, it retrieves the next one from the queue. 
Therefore, print jobs are printed using the “first-in, first-out” rule, which is a fair 
arrangement for users of the shared printer.

The Queue interface in the standard Java library has methods add to add an element 
to the tail of the queue, remove to remove the head of the queue, and peek to get the 
head element of the queue without removing it (see Table 8). 

The LinkedList class implements the Queue interface. Whenever you need a queue, 
simply initialize a Queue variable with a LinkedList object:

Queue<String> q = new LinkedList<String>();
q.add("A"); q.add("B"); q.add("C");
while (q.size() > 0) { System.out.print(q.remove() + " "); } // Prints A B C

The standard library provides several queue classes that we do not discuss in this 
book. Those classes are intended for work sharing when multiple activities (called 
threads) run in parallel. 

table 8  working with Queues

Queue<Integer> q = new LinkedList<Integer>(); The LinkedList class implements the Queue interface.

q.add(1); 
q.add(2); 
q.add(3);

Adds to the tail of the queue; q is now [1, 2, 3].

int head = q.remove(); Removes the head of the queue; head is set to 1 and q is [2, 3].

head = q.peek(); Gets the head of the queue without removing it; head is set to 2.

15.5.3 priority Queues

A priority queue collects elements, each of which has a priority. A typical example 
of a priority queue is a collection of work requests, some of which may be more 
urgent than others. Unlike a regular queue, the priority queue does not maintain a 
first-in, first-out discipline. Instead, ele ments are retrieved according to their prior-
ity. In other words, new items can be inserted in any order. But whenever an item is 
removed, it is the item with the most urgent priority.

To visualize a queue, think of people lining up.

a queue is a 
collection of 
elements with 
“firstin, firstout” 
retrieval.

when removing an 
element from a 
priority queue, the 
element with the 
most urgent priority 
is retrieved.



W692 Chapter 15  the Java Collections Framework

It is customary to give low values to urgent priorities, with priority 1 
denoting the most urgent priority. Thus, each removal operation extracts the 
minimum element from the queue. 

For example, consider this code in which we add objects of a class Work-
Order into a priority queue. Each work order has a priority and a description. 

PriorityQueue<WorkOrder> q = new PriorityQueue<WorkOrder>();
q.add(new WorkOrder(3, "Shampoo carpets"));
q.add(new WorkOrder(1, "Fix broken sink"));
q.add(new WorkOrder(2, "Order cleaning supplies"));

When calling q.remove() for the first time, the work order with priority 1 is 
removed. The next call to q.remove() removes the work order whose priority 
is highest among those remaining in the queue—in our example, the work 
order with priority 2. If there happen to be two elements with the same pri-
ority, the priority queue will break ties arbitrarily.

Because the priority queue needs to be able to tell which element is the smallest, 
the added elements should belong to a class that implements the Comparable interface. 
(See Section 9.6.3 for a description of that interface type.) 

Table 9 shows the methods of the PriorityQueue class in the standard Java library.

table 9  working with priority Queues

PriorityQueue<Integer> q =  
   new PriorityQueue<Integer>();

This priority queue holds Integer objects. In 
practice, you would use objects that describe tasks.

q.add(3); q.add(1); q.add(2); Adds values to the priority queue. 

int first = q.remove();
int second = q.remove();

Each call to remove removes the lowest priority item: 
first is set to 1, second to 2.

int next = q.peek(); Gets the smallest value in the priority queue without 
removing it. 

21.  Why would you want to declare a variable as 
Queue<String> q = new LinkedList<String>()

instead of simply declaring it as a linked list?
22.  Why wouldn’t you want to use an array list for implementing a queue?
23.  What does this code print?

Queue<String> q = new LinkedList<String>();
q.add("A");
q.add("B");
q.add("C");
while (q.size() > 0) { System.out.print(q.remove() + " "); }

24.  Why wouldn’t you want to use a stack to manage print jobs?
25.  In the sample code for a priority queue, we used a WorkOrder class. Could we have 

used strings instead? 
PriorityQueue<String> q = new PriorityQueue<String>();
q.add("3 - Shampoo carpets");
q.add("1 - Fix broken sink");
q.add("2 - Order cleaning supplies");

When you retrieve an item from 
a priority queue, you always 
get the most urgent one.

O n l i n e  e x A m p l e

programs that 
demonstrate stacks, 
queues, and priority 
queues.

s e l f   C h e C k



15.6 stack and Queue applications  W693

practice it  Now you can try these exercises at the end of the chapter: R15.12, P15.3, P15.4.

15.6 stack and Queue applications
Stacks and queues are, despite their simplicity, very versatile data structures. In the 
following sections, you will see some of their most useful applications. 

15.6.1 Balancing parentheses

In Common Error 2.5, you saw a simple trick for detecting unbalanced parentheses 
in an expression such as

-(b * b - (4 * a * c ) ) / (2 * a)
 1        2          1 0   1     0

Increment a counter when you see a ( and decrement it when you see a ). The counter 
should never be negative, and it should be zero at the end of the expression. 

That works for expressions in Java, but in mathematical notation, one can have 
more than one kind of parentheses, such as

–{ [b ⋅ b - (4 ⋅ a ⋅ c ) ] / (2 ⋅ a) }

To see whether such an expression is correctly formed, place the parentheses on a 
stack:

When you see an opening parenthesis, push it on the stack.
When you see a closing parenthesis, pop the stack. 
If the opening and closing parentheses don’t match
 The parentheses are unbalanced. Exit.
If at the end the stack is empty
 The parentheses are balanced.
Else
 The parentheses are not balanced.

Here is a walkthrough of the sample expression:

Stack Unread expression Comments
Empty -{ [b * b - (4 * a * c ) ] / (2 * a) }
{ [b * b - (4 * a * c ) ] / (2 * a) }
{ [ b * b - (4 * a * c ) ] / (2 * a) }
{ [ ( 4 * a * c ) ] / (2 * a) }
{ [ ] / (2 * a) } ( matches )
{ / (2 * a) } [ matches ]
{ ( 2 * a) } 
{ } ( matches )
Empty No more input { matches }
  The parentheses are balanced

a stack can be used 
to check whether 
parentheses in an 
expression are 
balanced.

O n l i n e  e x A m p l e

a program for 
checking balanced 
parentheses.



W694 Chapter 15  the Java Collections Framework

15.6.2 evaluating reverse polish expressions

Consider how you write arithmetic expressions, such as (3 + 4) × 5. The parentheses 
are needed so that 3 and 4 are added before multiplying the result by 5. 

However, you can eliminate the parentheses if you write the operators after the 
numbers, like this: 3 4 + 5 × (see Random Fact 15.2 on page W701). To evaluate this expres-
sion, apply + to 3 and 4, yielding 7, and then simplify 7 5 × to 35. It gets trickier for 
complex expressions. For example, 3 4 5 + × means to compute 4 5 + (that is, 9), and 
then evaluate 3 9 ×. If we evaluate this expression left-to-right, we need to leave the 3 
somewhere while we work on 4 5 +. Where? We put it on a stack. The algorithm for 
evaluating reverse Polish expressions is simple:

If you read a number
 Push it on the stack.
Else if you read an operand
 Pop two values off the stack.
 Combine the values with the operand.
 Push the result back onto the stack.
Else if there is no more input
 Pop and display the result.

Here is a walkthrough of evaluating the expression 3 4 5 + ×:

Stack Unread expression Comments
Empty 3 4 5 + x
3 4 5 + x Numbers are pushed on the stack
3 4 5 + x
3 4 5 + x
3 9 x Pop 4 and 5, push 4 5 +
27 No more input Pop 3 and 9, push 3 9 x
Empty  Pop and display the result, 27

The following program simulates a reverse Polish calculator:

section_6_2/Calculator.java

1 import java.util.Scanner;
2 import java.util.Stack;
3 
4 /**
5    This calculator uses the reverse Polish notation.
6 */
7 public class Calculator
8 {
9    public static void main(String[] args)

10    {
11       Scanner in = new Scanner(System.in);
12       Stack<Integer> results = new Stack<Integer>();
13       System.out.println("Enter one number or operator per line, Q to quit. ");
14       boolean done = false;

Use a stack to 
evaluate expressions 
in reverse polish 
notation.



15.6 stack and Queue applications  W695

15       while (!done)
16       {         
17          String input = in.nextLine();
18 
19          // If the command is an operator, pop the arguments and push the result
20 
21          if (input.equals("+"))
22          {
23             results.push(results.pop() + results.pop());
24          }
25          else if (input.equals("-"))
26          {
27             Integer arg2 = results.pop();
28             results.push(results.pop() - arg2);
29          }
30          else if (input.equals("*") || input.equals("x"))
31          {
32             results.push(results.pop() * results.pop());
33          }
34          else if (input.equals("/"))
35          {
36             Integer arg2 = results.pop();
37             results.push(results.pop() / arg2);
38          }
39          else if (input.equals("Q") || input.equals("q"))
40          {
41             done = true;
42          }
43          else 
44          {
45             // Not an operator--push the input value
46             
47             results.push(Integer.parseInt(input));
48          }
49          System.out.println(results);
50       }
51    }
52 }

15.6.3 evaluating algebraic expressions

In the preceding section, you saw how to evaluate expressions in reverse Polish nota-
tion, using a single stack. If you haven’t found that notation attractive, you will be 
glad to know that one can evaluate an expression in the standard algebraic notation 
using two stacks—one for numbers and one for operators.

Use two stacks to evaluate algebraic expressions.

Using two stacks, 
you can evaluate 
expressions in 
standard algebraic 
notation.



W696 Chapter 15  the Java Collections Framework

First, consider a simple example, the expression 3 + 4. We push the numbers on the 
number stack and the operators on the operator stack. Then we pop both numbers 
and the operator, combine the numbers with the operator, and push the result.

1 3

3 +2

4
3 +

3

74

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 + 4

+ 4

4

No more input

Comments

Evaluate the top.

The result is 7.

This operation is fundamental to the algorithm. We call it “evaluating the top”.
In algebraic notation, each operator has a precedence. The + and - operators have 

the lowest precedence, * and / have a higher (and equal) precedence. 
Consider the expression 3 × 4 + 5. Here are the first processing steps:

1 3

3 ×2

4
3 ×

3

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 × 4 + 5

× 4 + 5

4 + 5

+ 5

Comments

Evaluate × before +.

Because × has a higher precedence than +, we are ready to evaluate the top: 

4 12

5
12

+

+5

176

Number stack Operator stack

5

No more input

Comments

Evaluate the top.

That is the result.

With the expression, 3 + 4 × 5, we add × to the operator stack because we must first 
read the next number; then we can evaluate × and then the +: 

1 3

3 +2

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 + 4 × 5

+ 4 × 5

4 + 5

Comments



15.6 stack and Queue applications  W697

4
3 +

3

4
3 +

×4

Don’t evaluate + yet.× 5

5

In other words, we keep operators on the stack until they are ready to be evaluated. 
Here is the remainder of the computation:

4
5

3 +
×

5

Number stack Operator stack

No more input

Comments

Evaluate the top.

Evaluate top again.

That is the result.

3
20

+
6

237

To see how parentheses are handled, consider the expression 3 × (4 + 5). A ( is pushed 
on the operator stack. The + is pushed as well. When we encounter the ), we know 
that we are ready to evaluate the top until the matching ( reappears:

1 3

3 ×2

3 ×
(3

4
3 ×

(4

4
3 ×

(
+5

4
5

3 ×
(
+6

9
3 ×

(7

9
3 ×

8

279

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 × (4 + 5)

× (4 + 5)

(4 + 5)

4 + 5)

+ 5)

5)

)

No more input

Comments

Don’t evaluate × yet.

Evaluate the top.

Pop (.

Evaluate top again.

That is the result.



W698 Chapter 15  the Java Collections Framework

Here is the algorithm: 

If you read a number
 Push it on the number stack.
Else if you read a (
 Push it on the operator stack.
Else if you read an operator op
 While the top of the stack has a higher precedence than op
  Evaluate the top.
 Push op on the oper ator stack.
Else if you read a )
 While the top of the stack is not a (
  Evaluate the top.
 Pop the (. 
Else if there is no more input
 While the operator stack is not empty
  Evaluate the top.

At the end, the remaining value on the number stack is the value of the expression. 
The algorithm makes use of this helper method that evaluates the topmost opera-

tor with the topmost numbers:

Evaluate the top:
Pop two numbers off the number stack.
Pop an operator off the operator stack.
Combine the numbers with that operator.
Push the result on the number stack.

15.6.4 Backtracking

Suppose you are inside a maze. You need to find the exit. 
What should you do when you come to an intersection? 
You can continue exploring one of the paths, but you 
will want to remember the other ones. If your chosen 
path didn’t work, you can go back to one of the other 
choices and try again. 

Of course, as you go along one path, you may reach 
further intersections, and you need to remember your 
choice again. Simply use a stack to remember the paths 
that still need to be tried. The process of returning to a 
choice point and trying another choice is called backtracking. By using a stack, you 
return to your more recent choices before you explore the earlier ones. 

Figure 11 shows an example. We start at a point in the maze, at position (3, 4). 
There are four possible paths. We push them all on a stack 1 . We pop off the topmost 
one, traveling north from (3, 4). Following this path leads to position (1, 4). We now 
push two choices on the stack, going west or east 2 . Both of them lead to dead ends 
3  4 .

Now we pop off the path from (3,4) going east. That too is a dead end 5 . Next is 
the path from (3, 4) going south. At (5, 4), it comes to an intersection. Both choices 
are pushed on the stack 6 . They both lead to dead ends 7  8 . 

Finally, the path from (3, 4) going west leads to an exit 9 .

O n l i n e  e x A m p l e

the complete code 
for the expression 
calculator.

A stack can be used to track  
positions in a maze.

Use a stack to 
remember choices 
you haven’t yet made 
so that you can 
backtrack to them.



15.6 stack and Queue applications  W699

figure 11  Backtracking through a maze

1

2
1 4 →
1 4 ←
3 4 →
3 4 ↓
3 4 ←

3
1 4 ←
3 4 →
3 4 ↓
3 4 ←

4
3 4 →
3 4 ↓
3 4 ←

5
3 4 ↓
3 4 ←

6
5 4 ↓
5 4 ← 
3 4 ←

7

8
3 4 ←

9

5 4 ← 
3 4 ←

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 
0
1
2
3
4
5
6
7

3 4 →
3 4 ↑

3 4 ↓
3 4 ←

Using a stack, we have found a path out of the maze. Here is the pseudocode for 
our maze-finding algorithm:

Push all paths from the point on which you are standing on a stack.
While the stack is not empty
 Pop a path from the stack.
 Follow the path until you reach an exit, intersection, or dead end.
 If you found an exit
  Congratulations!
 Else if you found an intersection
  Push all paths meeting at the intersection, except the current one, onto the stack.

This algorithm will find an exit from the maze, provided that the maze has no cycles. 
If it is possible that you can make a circle and return to a previously visited intersec-
tion along a different sequence of paths, then you need to work harder––see Exercise 
P15.25. 



W700 Chapter 15  the Java Collections Framework

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

How you implement this algorithm depends on the description of the maze. In 
the example code, we use a two-dimensional array of characters, with spaces for cor-
ridors and asterisks for walls, like this:

* * * * * * * *
*       *
* * * *  * * *
       *
* * * *  * * *
*     * * *
* * * *  * * *
* * * * * * * *

In the example code, a Path object is constructed with a starting position and a direc-
tion (North, East, South, or West). The Maze class has a method that extends a path 
until it reaches an intersection or exit, or until it is blocked by a wall, and a method 
that computes all paths from an intersection point.

Note that you can use a queue instead of a stack in this algorithm. Then you 
explore the earlier alternatives before the later ones. This can work just as well for 
finding an answer, but it isn’t very intuitive in the context of exploring a maze—you 
would have to imagine being teleported back to the initial intersections rather than 
just walking back to the last one. 

26.  What is the value of the reverse Polish notation expression 2 3 4 + 5 × ×?
27.  Why does the branch for the subtraction operator in the Calculator program not 

simply execute
results.push(results.pop() - results.pop());

28.  In the evaluation of the expression 3 – 4 + 5 with the algorithm of Section 15.6.3, 
which operator gets evaluated first?

29.  In the algorithm of Section 15.6.3, are the operators on the operator stack always 
in increasing precedence? 

30.  Consider the following simple maze. Assuming that we start at the marked point 
and push paths in the order West, South, East, North, in which order are the let-
tered points visited, using the algorithm of Section 15.6.4?

A B C D

E F G

H I
L M

N

KJ

practice it  Now you can try these exercises at the end of the chapter: R15.21, P15.21, P15.22, 
P15.25, P15.26.

O n l i n e  e x A m p l e

a complete program 
demonstrating 
backtracking.

s e l f   C h e C k

workeD example 15.2 simulating a Queue of Waiting Customers

This Worked Example shows how to use a queue to simulate an 
actual queue of waiting customers.



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter summary W701

understand the architecture of the Java collections framework.

• A collection groups together elements and allows them to be retrieved later.
• A list is a collection that remembers the order of its elements.
• A set is an unordered collection of unique elements.
• A map keeps associations between key and value objects.

understand and use linked lists.

• A linked list consists of a number of nodes, each of which has a reference to the 
next node.

• Adding and removing elements at a given position in a linked list is efficient.

in the 1920s, the pol
ish mathematician Jan 

Łukasiewicz realized that it is possible 
to dispense with parentheses in arith
metic expressions, provided that you 
write the operators before their argu
ments, for example, + 3 4 instead of 3 
+ 4. thirty years later, australian com
puter scientist Charles hamblin noted 
that an even better scheme would be

standard  
notation

reverse 
polish 

notation

3 + 4 3 4 +

3 + 4 × 5 3 4 5 × +

3 × (4  +  5) 3 4 5 + ×

(3 + 4) × (5 + 6) 3 4 + 5 6 + ×

3 + 4 + 5 3 4 + 5 +

to have the operators follow the oper
ands. this was termed reverse polish 
notation or rpn. 

reverse polish notation might look 
strange to you, but that is just an acci
dent of history. had earlier mathemati
cians realized its advantages, today’s 
schoolchildren might be using it and 
not worrying about precedence rules 
and parentheses.

in 1972, hewlettpackard intro
duced the hp 35 calculator that used 
reverse polish notation. the calculator 
had no keys labeled with parentheses 
or an equals symbol. there is just a 
key labeled enter to push a number 
onto a stack. For that reason, hewlett
packard’s marketing department used 
to refer to their product as “the calcula
tors that have no equal”. 

over time, calculator vendors have 
adapted to the standard algebraic nota
tion rather than forcing its users to 
learn a new notation. however, those 
users who have made the effort to 

learn reverse polish notation tend to 
be fanatic pro ponents, and to this day, 
some hewlettpackard calculator mod
els still support it.

The Calculator with No Equal

Random Fact 15.2 reverse polish notation

viDeo example 15.1 Building a table of Contents

In this Video Example, you will see how to build a table of 
contents for a book. 

C h a p t e r  s U m m a r Y



W702 Chapter 15  the Java Collections Framework

• Visiting the elements of a linked list in sequential order is efficient, but random 
access is not.

• You use a list iterator to access elements inside a linked list.

Choose a set implementation and use it to manage sets of values.

• The HashSet and TreeSet classes both implement the Set interface.
• Set implementations arrange the elements so that they can locate them quickly.
• You can form hash sets holding objects of type String, 

Integer, Double, Point, Rectangle, or Color.
• You can form tree sets for any class that implements the 

Comparable interface, such as String or Integer.
• Sets don’t have duplicates. Adding a duplicate of an element 

that is already present is ignored.
• A set iterator visits the elements in the order in which the set 

implementation keeps them. 
• You cannot add an element to a set at an iterator position.

use maps to model associations between keys and values.

• The HashMap and TreeMap classes both implement the Map interface.
• To find all keys and values in a map, iterate through the key set and find the  values 

that correspond to the keys.
• A hash function computes an integer value from an object.
• A good hash function minimizes collisions—identical hash codes 

for different objects.
• Override hashCode methods in your own classes by combining the 

hash codes for the instance variables.
• A class’s hashCode method must be compatible with its equals 

method.

use the Java classes for stacks, queues, and priority queues.

• A stack is a collection of elements with “last-in, first-out” retrieval.
• A queue is a collection of elements with “first-in, first-out” 

retrieval.
• When removing an element from a priority queue, the 

element with the most urgent priority is retrieved.

solve programming problems using stacks and queues.

• A stack can be used to check whether parentheses in an expression are balanced.
• Use a stack to evaluate expressions in reverse Polish notation.
• Using two stacks, you can evaluate expressions in standard algebraic notation.
• Use a stack to remember choices you haven’t yet made so that you can backtrack 

to them.

ISBN 978-0-470-10555-9

9 7 8 0 4 7 0 1 0 5 5 5 9

9 0 0 0 0

Values

Keys
ISBN 978-0-470-10554-2

9 7 8 0 4 7 0 1 0 5 5 4 2

9 0 0 0 0
ISBN 978-0-470-50948-1

9 7 8 0 4 7 0 5 0 9 4 8 1

9 0 0 0 0

ISBN 978-0-470-38329-2

9 7 8 0 4 7 0 3 8 3 2 9 2

9 0 0 0 0
ISBN 978-0-471-79191-1

9 7 8 0 4 7 1 7 9 1 9 1 1

9 0 0 0 0



review exercises W703

•• r15.1  An invoice contains a collection of purchased items. Should that collection be imple-
mented as a list or set? Explain your answer.

•• r15.2  Consider a program that manages an appointment calendar. Should it place the 
appointments into a list, stack, queue, or priority queue? Explain your answer.

••• r15.3  One way of implementing a calendar is as a map from date objects to event objects. 
However, that only works if there is a single event for a given date. How can you use 
another collection type to allow for multiple events on a given date?

• r15.4  Explain what the following code prints. Draw a picture of the linked list after each 
step. 

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());

• r15.5  Explain what the following code prints. Draw a picture of the linked list after each 
step. 

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

java.util.Collection<E>
   add
   contains
   iterator
   remove
   size
java.util.HashMap<K, V>
java.util.HashSet<K, V>
java.util.Iterator<E>
   hasNext
   next
   remove
java.util.LinkedList<E>
   addFirst
   addLast

   getFirst
   getLast
   removeFirst
   removeLast
java.util.List<E>
   listIterator
java.util.ListIterator<E>
   add
   hasPrevious
   previous
   set
java.util.Map<K, V>
   get
   keySet
   put
   remove

java.util.Queue<E>
   peek
java.util.PriorityQueue<E>
   remove
java.util.Set<E>
java.util.Stack<E>
   peek
   pop
   push
java.util.TreeMap<K, V>
java.util.TreeSet<K, V>

s ta n D a r D  l i B r a r Y  i t e m s  i n t r o D U C e D  i n  t h i s  C h a p t e r

r e v i e w  e x e r C i s e s



W704 Chapter 15  the Java Collections Framework

• r15.6  Explain what the following code prints. Draw a picture of the linked list after each 
step. 

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addLast("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

• r15.7  Explain what the following code prints. Draw a picture of the linked list and the 
iterator position after each step. 

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
if (iterator.next().equals("Tom")) { iterator.remove(); }
while (iterator.hasNext())  { System.out.println(iterator.next()); }

• r15.8  Explain what the following code prints. Draw a picture of the linked list and the 
iterator position after each step. 

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
iterator.next();
iterator.next();
iterator.add("Romeo");
iterator.next();
iterator.add("Juliet");
iterator = staff.listIterator();
iterator.next();
iterator.remove();
while (iterator.hasNext()) { System.out.println(iterator.next()); }

•• r15.9  What advantages do linked lists have over arrays? What disadvantages do they have? 

•• r15.10  Suppose you need to organize a collection of telephone numbers for a company 
division. There are currently about 6,000 employees, and you know that the phone 
switch can handle at most 10,000 phone numbers. You expect several hundred look-
ups against the collection every day. Would you use an array list or a linked list to 
store the information?

•• r15.11  Suppose you need to keep a collection of appointments. Would you use a linked list 
or an array list of Appointment objects? 

• r15.12  Suppose you write a program that models a card deck. Cards are taken from the 
top of the deck and given out to players. As cards are returned to the deck, they are 
placed on the bottom of the deck. Would you store the cards in a stack or a queue?

• r15.13  Suppose the strings "A" . . . "Z" are pushed onto a stack. Then they are popped off the 
stack and pushed onto a second stack. Finally, they are all popped off the second 
stack and printed. In which order are the strings printed?



programming exercises W705

• r15.14  What is the difference between a set and a map? 

•• r15.15  The union of two sets A and B is the set of all elements that are contained in A, B, or 
both. The intersection is the set of all elements that are contained in A and B. How 
can you compute the union and intersection of two sets, using the add and contains 
methods, together with an iterator? 

•• r15.16  How can you compute the union and intersection of two sets, using some of the 
methods that the java.util.Set interface provides, but without using an iterator? 
(Look up the interface in the API documentation.)

• r15.17  Can a map have two keys with the same value? Two values with the same key?

•• r15.18  A map can be implemented as a set of (key, value) pairs. Explain. 

••• r15.19  Verify the hash code of the string "Juliet" in Table 6.

••• r15.20  Verify that the strings "VII" and "Ugh" have the same hash code.

• r15.21  Consider the algorithm for traversing a maze from Section 15.6.4 Assume that we 
start at position A and push in the order West, South, East, and North. In which 
order will the lettered locations of the sample maze be visited?

O P

L N

I

Q R

J
H

A
E
B C

G
F
D

K

M

• r15.22  Repeat Exercise R15.21, using a queue instead of a stack.

•• p15.1  Write a method 
public static void downsize(LinkedList<String> employeeNames, int n)

that removes every nth employee from a linked list. 

•• p15.2  Write a method 
public static void reverse(LinkedList<String> strings)

that reverses the entries in a linked list. 

•• p15.3  Use a stack to reverse the words of a sentence. Keep reading words until you have a 
word that ends in a period, adding them onto a stack. When you have a word with a 
period, pop the words off and print them. Stop when there are no more words in the 
input. For example, you should turn the input

Mary had a little lamb. Its fleece was white as snow.

into
Lamb little a had mary. Snow as white was fleece its.

Pay attention to capitalization and the placement of the period.

p r o G r a m m i n G  e x e r C i s e s



W706 Chapter 15  the Java Collections Framework

• p15.4  Your task is to break a number into its individual digits, for example, to turn 1729 
into 1, 7, 2, and 9. It is easy to get the last digit of a number n as n % 10. But that gets 
the numbers in reverse order. Solve this problem with a stack. Your program should 
ask the user for an integer, then print its digits separated by spaces.

•• p15.5  A homeowner rents out parking spaces in a driveway during special events. The 
driveway is a “last-in, first-out” stack. Of course, when a car owner retrieves a 
vehicle that wasn’t the last one in, the cars blocking it must temporarily move to 
the street so that the requested vehicle can leave. Write a program that models this 
behavior, using one stack for the driveway and one stack for the street. Use integers 
as license plate numbers. Positive numbers add a car, negative numbers remove a car, 
zero stops the simulation. Print out the stack after each operation is complete.

• p15.6  Implement a to do list. Tasks have a priority between 1 and 9, and a description. 
When the user enters the command add priority description, the program adds a new 
task. When the user enters next, the program removes and prints the most urgent 
task. The quit command quits the program. Use a priority queue in your solution.

• p15.7  Write a program that reads text from a file and breaks it up into individual words. 
Insert the words into a tree set. At the end of the input file, print all words, fol lowed 
by the size of the resulting set. This program determines how many unique words a 
text file has.

•• p15.8  Implement the sieve of Eratosthenes: a method for computing 
prime numbers, known to the ancient Greeks. This method 
will compute all prime numbers up to n. Choose an n. 
First insert all numbers from 2 to n into a set. Then erase all 
multiples of 2 (except 2); that is, 4, 6, 8, 10, 12, . . . . Erase 
all multiples of 3; that is, 6, 9, 12, 15, . . . . Go up to n . Then 
print the set. 

•• p15.9  Write a program that keeps a map in which both keys and 
values are strings—the names of students and their course 
grades. Prompt the user of the program to add or remove students, to modify grades, 
or to print all grades. The printout should be sorted by name and formatted like this:

Carl: B+
Joe: C
Sarah: A

••• p15.10  Reimplement Exercise P15.9 so that the keys of the map are objects of class Student. 
A student should have a first name, a last name, and a unique integer ID. For grade 
changes and removals, lookup should be by ID. The printout should be sorted 
by last name. If two students have the same last name, then use the first name as a 
tie breaker. If the first names are also identical, then use the integer ID. Hint: Use 
two maps.

••• p15.11  Write a class Polynomial that stores a polynomial such as

p x x x x( ) = + − −5 9 1010 7

as a linked list of terms. A term contains the coefficient and the power of x. For 
example, you would store p(x) as

5 10 9 7 1 1 10 0, , , , , , ,( ) ( ) −( ) −( )



programming exercises W707

Supply methods to add, multiply, and print polynomials. Supply a constructor that 
makes a polynomial from a single term. For example, the polynomial p can be 
constructed as

Polynomial p = new Polynomial(new Term(-10, 0));
p.add(new Polynomial(new Term(-1, 1)));
p.add(new Polynomial(new Term(9, 7)));
p.add(new Polynomial(new Term(5, 10)));

Then compute p x p x( ) ( )× .
Polynomial q = p.multiply(p);
q.print();

••• p15.12  Repeat Exercise P15.11, but use a Map<Integer, Double> for the coefficients. 

• p15.13  Insert all words from a large file (such as the novel “War and Peace”, which is avail-
able on the Internet) into a hash set and a tree set. Time the results. Which data 
structure is faster?

••• p15.14  Write a program that reads a Java source file and produces an index of all identifiers 
in the file. For each identifier, print all lines in which it occurs. For simplicity, we 
will consider each string consisting only of letters, numbers, and underscores 
an identifer. Declare a Scanner in for reading from the source file and call 
in.useDelimiter("[^A-Za-z0-9_]+"). Then each call to next returns an identifier. 

•• p15.15  Try to find two words with the same hash code in a large file. Keep a Map<Integer, 
HashSet<String>>. When you read in a word, compute its hash code h and put the 
word in the set whose key is h. Then iterate through all keys and print the sets whose 
size is > 1. 

•• p15.16  Supply compatible hashCode and equals methods to the Student class described in 
Exercise P15.10. Test the hash code by adding Student objects to a hash set.

• p15.17  Supply compatible hashCode and equals methods to the BankAccount class of Chapter 8. 
Test the hashCode method by printing out hash codes and by adding Bank Account 
objects to a hash set.

•• p15.18  A labeled point has x- and y-coordinates and a string label. Provide a class Labeled-
Point with a constructor LabeledPoint(int x, int y, String label) and hashCode and 
equals methods. Two labeled points are considered the same when they have the 
same location and label.

•• p15.19  Reimplement the LabeledPoint class of the preceding exercise by storing the location 
in a java.awt.Point object. Your hashCode and equals methods should call the hashCode 
and equals methods of the Point class.

•• p15.20  Modify the LabeledPoint class of Exercise P15.18 so that it implements the Compa-
rable interface. Sort points first by their x-coordinates. If two points have the same 
x-coordinate, sort them by their y-coordinates. If two points have the same x- and 
y-coordinates, sort them by their label. Write a tester program that checks all cases 
by inserting points into a TreeSet.

• p15.21  Write a program that checks whether a sequence of HTML tags is properly nested. 
For each opening tag, such as <p>, there must be a closing tag </p>. A tag such as <p> 
may have other tags inside, for example 

<p> <ul> <li> </li> </ul> <a> </a> </p>



W708 Chapter 15  the Java Collections Framework

The inner tags must be closed before the outer ones. Your program should process a 
file containing tags. For simplicity, assume that the tags are separated by spaces, and 
that there is no text inside the tags.

• p15.22  Add a % (remainder) operator to the expression calculator of Section 15.6.3.

•• p15.23  Add a ̂  (power) operator to the expression calculator of Section 15.6.3. For example, 
2 ̂  3 evaluates to 8. As in mathematics, your power operator should be evaluated 
from the right. That is, 2 ̂  3 ̂  2 is 2 ̂  (3 ̂  2), not (2 ̂  3) ̂  2. (That’s more useful 
because you could get the latter as 2 ̂  (3 × 2).) 

••• p15.24  Modify the expression calculator of Section 15.6.3 to convert an expression into 
reverse Polish notation. Hint: Instead of evaluating the top and pushing the result, 
append the instructions to a string.

••• p15.25  Modify the maze solver program of Section 15.6.4 to handle mazes with cycles. Keep 
a set of visited intersections. When you have previously seen an intersection, treat it 
as a dead end and do not add paths to the stack.

••• p15.26  In a paint program, a “flood fill” fills all empty pixels of a drawing with a given color, 
stopping when it reaches occupied pixels. In this exercise, you will implement a 
simple variation of this algorithm, flood-filling a 10 × 10 array of integers that are 
initially 0. 

Prompt for the starting row and column. 
Push the (row, column) pair onto a stack. 

You will need to provide a simple Pair class.
Repeat the following operations until the stack is empty.

Pop off the (row, column) pair from the top of the stack.
If it has not yet been filled, fill the corresponding array location with a number 1, 2, 3, and so on 

(to show the order in which the square is filled).
Push the coordinates of any unfilled neighbors in the north, east, south, or west direction on the stack.

When you are done, print the entire array.

• p15.27  Repeat Exercise P15.26, but use a queue instead.

•• p15.28  Use a stack to enumerate all permutations of a string. Suppose you want to find all 
permutations of the string meat. 

Push the string +meat on the stack. 
While the stack is not empty
 Pop off the top of the stack.
 If that string ends in a + (such as tame+)
  Remove the + and add the string to the list of permutations.
 Else
  Remove each letter in turn from the right of the +.
  Insert it just before the +.
  Push the resulting string on the stack. 

For example, after popping e+mta, you push em+ta, et+ma, and ea+mt. 

•• p15.29  Repeat Exercise P15.28, but use a queue instead.



programming exercises W709

•• Business p15.30  An airport has only one runway. When it is busy, planes wishing to take off or land 
have to wait. Implement a simulation, using two queues, one each for the planes 
waiting to take off and land. Landing planes get priority. The user enters commands 
takeoff flightSymbol, land flightSymbol, next, and quit. The first two commands place 
the flight in the appropriate queue. The next command finishes the current takeoff or 
landing and enables the next one, printing the action (takeoff or land) and the flight 
symbol.

•• Business p15.31  Suppose you buy 100 shares of a stock at $12 per share, then another 100 at $10 per 
share, and then sell 150 shares at $15. You have to pay taxes on the gain, but exactly 
what is the gain? In the United States, the FIFO rule holds: You first sell all shares 
of the first batch for a profit of $300, then 50 of the shares from the second batch, for 
a profit of $250, yielding a total profit of $550. Write a program that can make these 
calculations for arbitrary purchases and sales of shares in a single company. The 
user enters commands buy quantity price, sell quantity (which causes the gain to be 
displayed), and quit. Hint: Keep a queue of objects of a class Block that contains the 
quantity and price of a block of shares.

••• Business p15.32  Extend Exercise P15.31 to a program that can handle shares of multiple compa-
nies. The user enters commands buy symbol quantity price and sell symbol quantity. 
Hint: Keep a Map<String, Queue<Block>> that manages a separate queue for each stock 
symbol.

••• Business p15.33  Consider the problem of finding the least expensive routes to all cities in a network 
from a given starting point.

Pierre
Pendleton

Pittsburgh

Phoenix

Pensacola

PrincetonPeoria
Pueblo

3

2

3
8

4 3

4

10

5

5 2

4
5

For example, in this network, the least expensive route from Pendleton to Peoria has 
cost 8 (going through Pierre and Pueblo).
The following helper class expresses the distance to another city:

public class DistanceTo implements Comparable<DistanceTo>
{
   private String target;
   private int distance;



W710 Chapter 15  the Java Collections Framework

   public DistanceTo(String city, int dist) { target = city; distance = dist; }
   public String getTarget() { return target; }
   public int getDistance() { return distance; }
   public int compareTo(DistanceTo other) { return distance - other.distance; }
}

All direct connections between cities are stored in a Map<String, TreeSet<DistanceTo>>. 
The algorithm now proceeds as follows:

Let from be the starting point. 
Add DistanceTo(from, 0) to a priority queue.
Construct a map shortestKnownDistance from city names to distances. 
While the priority queue is not empty
 Get its smallest element.
 If its target is not a key in shortestKnownDistance
  Let d be the distance to that target.
  Put (target, d) into shortestKnownDistance.
  For all cities c that have a direct connection from target
   Add DistanceTo(c, d + distance from target to c) to the priority queue.

When the algorithm has finished, shortestKnownDistance contains the shortest distance 
from the starting point to all reachable targets. 
Your task is to write a program that implements this algorithm. Your program 
should read in lines of the form city1 city2 distance. The starting point is the first city 
in the first line. Print the shortest distances to all other cities. 

a n s w e r s  t o  s e l F  C h e C k  Q U e s t i o n s

1.  A list is a better choice because the application 
will want to retain the order in which the quiz-
zes were given.

2.  A set is a better choice. There is no intrinsically 
useful ordering for the students. For example, 
the registrar’s office has little use for a list of all 
students by their GPA. By storing them in a 
set, adding, removing, and finding students can 
be fast.

3.  With a stack, you would always read the latest 
required reading, and you might never get to 
the oldest readings.

4.  A collection stores elements, but a map stores 
associations between elements.

5.  Yes, for two reasons. A linked list needs to 
store the neighboring node references, which 
are not needed in an array, Moreover, there 
is some overhead for storing an object. In a 
linked list, each node is a separate object that 
incurs this overhead, whereas an array is a 
single object. 

6.  We can simply access each array element with 
an integer index.

7.  |ABCD 

A|BCD 

AB|CD 

A|CD 

AC|D 

ACE|D 

ACED| 

ACEDF| 
8.  ListIterator<String> iter = words.iterator(); 

while (iter.hasNext())
{
   String str = iter.next();
   if (str.length() < 4) { iter.remove(); }
}

9.  ListIterator<String> iter = words.iterator(); 
while (iter.hasNext())
{
   System.out.println(iter.next());
   if (iter.hasNext()) 
   {
      iter.next(); // Skip the next element
   } 
}



answers to selfCheck Questions W711

10.  Adding and removing elements as well as test-
ing for membership is faster with sets.

11.  Sets do not have an ordering, so it doesn’t 
make sense to add an element at a partic ular 
iterator position, or to traverse a set backward.

12.  You do not know in which order the set keeps 
the elements. 

13.  Here is one possibility:
if (s.size() == 3 && s.contains("Tom") 
      && s.contains("Diana") 
      && s.contains("Harry"))
   . . .

14.  for (String str : s) 
{
   if (t.contains(str)) 
   {
      System.out.println(str); 
   }
}

15.  The words would be listed in sorted order.
16.  A set stores elements. A map stores associa-

tions between keys and values.
17.  The ordering does not matter, and you cannot 

have duplicates.
18.  Because it might have duplicates.
19.  Map<String, Integer> wordFrequency; 

Note that you cannot use a Map<String, int> 
because you cannot use primitive types as type 
parameters in Java.

20.  It associates strings with sets of strings. One 
application would be a thesaurus that lists 
synonyms for a given word. For example, the 
key "improve" might have as its value the set 
["ameliorate", "better", "enhance", "enrich", 

"perfect", "refine"].

21.  This way, we can ensure that only queue 
operations can be invoked on the q object.

22.  Depending on whether you consider the 0 
position the head or the tail of the queue, you 
would either add or remove elements at that 
position. Both are expensive oper ations.

23.  A B C 
24.  Stacks use a “last-in, first-out” discipline. If 

you are the first one to submit a print job and 
lots of people add print jobs before the printer 
has a chance to deal with your job, they get 
their printouts first, and you have to wait until 
all other jobs are completed.

25.  Yes––the smallest string (in lexicographic 
ordering) is removed first. In the example, 
that is the string starting with 1, then the 
string starting with 2, and so on. However, the 
scheme breaks down if a priority value exceeds 
9. For example, a string "10 - Line up braces" 
comes before "2 - Order cleaning supplies" in 
lexicographic order.

26.  70.
27.  It would then subtract the first argument from 

the second. Consider the input 5 3 –. The stack 
contains 5 and 3, with the 3 on the top. Then 
results.pop() - results.pop() computes 3 – 5.

28.  The – gets executed first because + doesn’t 
have a higher precedence.

29.  No, because there may be parentheses on 
the stack. The parentheses separate groups 
of operators, each of which is in increasing 
precedence.

30.  A B E F G D C K J N





 AA P P E N D I X

507

ThE BAsIc LATIN AND LATIN-1 
suBsETs of uNIcoDE 

This appendix lists the Unicode characters that are most commonly used for process-
ing Western European languages. A complete listing of Unicode characters can be 
found at http://unicode.org.

Table 1  selected control characters

character code Decimal Escape sequence

Tab '\u0009' 9 '\t'

Newline '\u000A' 10 '\n'

Return '\u000D' 13 '\r'

Space '\u0020' 32



508 Appendix A  The Basic Latin and Latin-1 subsets of unicode 

Table 2  The Basic Latin (AscII) subset of unicode

char. code Dec. char. code Dec. char. code Dec.

@ '\u0040' 64 ` '\u0060' 96

! '\u0021' 33 A '\u0041' 65 a '\u0061' 97

" '\u0022' 34 B '\u0042' 66 b '\u0062' 98

# '\u0023' 35 C '\u0043' 67 c '\u0063' 99

$ '\u0024' 36 D '\u0044' 68 d '\u0064' 100

% '\u0025' 37 E '\u0045' 69 e '\u0065' 101

& '\u0026' 38 F '\u0046' 70 f '\u0066' 102

' '\u0027' 39 G '\u0047' 71 g '\u0067' 103

( '\u0028' 40 H '\u0048' 72 h '\u0068' 104

) '\u0029' 41 I '\u0049' 73 i '\u0069' 105

* '\u002A' 42 J '\u004A' 74 j '\u006A' 106

+ '\u002B' 43 K '\u004B' 75 k '\u006B' 107

, '\u002C' 44 L '\u004C' 76 l '\u006C' 108

- '\u002D' 45 M '\u004D' 77 m '\u006D' 109

. '\u002E' 46 N '\u004E' 78 n '\u006E' 110

/ '\u002F' 47 O '\u004F' 79 o '\u006F' 111

0 '\u0030' 48 P '\u0050' 80 p '\u0070' 112

1 '\u0031' 49 Q '\u0051' 81 q '\u0071' 113

2 '\u0032' 50 R '\u0052' 82 r '\u0072' 114

3 '\u0033' 51 S '\u0053' 83 s '\u0073' 115

4 '\u0034' 52 T '\u0054' 84 t '\u0074' 116

5 '\u0035' 53 U '\u0055' 85 u '\u0075' 117

6 '\u0036' 54 V '\u0056' 86 v '\u0076' 118

7 '\u0037' 55 W '\u0057' 87 w '\u0077' 119

8 '\u0038' 56 X '\u0058' 88 x '\u0078' 120

9 '\u0039' 57 Y '\u0059' 89 y '\u0079' 121

: '\u003A' 58 Z '\u005A' 90 z '\u007A' 122

; '\u003B' 59 [ '\u005B' 91 { '\u007B' 123

< '\u003C' 60 \' '\u005C' 92 | '\u007C' 124

= '\u003D' 61 ] '\u005D' 93 } '\u007D' 125

> '\u003E' 62 ˆ '\u005E' 94 ~ '\u007E' 126

? '\u003F' 63 _ '\u005F' 95



Appendix A  The Basic Latin and Latin-1 subsets of unicode  509

Table 3  The Latin-1 subset of unicode

char. code Dec. char. code Dec. char. code Dec.

À '\u00C0' 192 à '\u00E0' 224

¡ '\u00A1' 161 Á '\u00C1' 193 á '\u00E1' 225

¢ '\u00A2' 162 Â '\u00C2' 194 â '\u00E2' 226

£ '\u00A3' 163 Ã '\u00C3' 195 ã '\u00E3' 227

¤ '\u00A4' 164 Ä '\u00C4' 196 ä '\u00E4' 228

¥ '\u00A5' 165 Å '\u00C5' 197 å '\u00E5' 229

¦ '\u00A6' 166 Æ '\u00C6' 198 æ '\u00E6' 230

§ '\u00A7' 167 Ç '\u00C7' 199 ç '\u00E7' 231

¨ '\u00A8' 168 È '\u00C8' 200 è '\u00E8' 232

© '\u00A9' 169 É '\u00C9' 201 é '\u00E9' 233

ª '\u00AA' 170 Ê '\u00CA' 202 ê '\u00EA' 234

« '\u00AB' 171 Ë '\u00CB' 203 ë '\u00EB' 235

¬ '\u00AC' 172 Ì '\u00CC' 204 ì '\u00EC' 236

- '\u00AD' 173 Í '\u00CD' 205 í '\u00ED' 237

® '\u00AE' 174 Î '\u00CE' 206 î '\u00EE' 238

¯ '\u00AF' 175 Ï '\u00CF' 207 ï '\u00EF' 239

° '\u00B0' 176 Ð '\u00D0' 208 ð '\u00F0' 240

± '\u00B1' 177 Ñ '\u00D1' 209 ñ '\u00F1' 241
2 '\u00B2' 178 Ò '\u00D2' 210 ò '\u00F2' 242
3 '\u00B3' 179 Ó '\u00D3' 211 ó '\u00F3' 243

´ '\u00B4' 180 Ô '\u00D4' 212 ô '\u00F4' 244

µ '\u00B5' 181 Õ '\u00D5' 213 õ '\u00F5' 245

¶ '\u00B6' 182 Ö '\u00D6' 214 ö '\u00F6' 246

· '\u00B7' 183 × '\u00D7' 215 ÷ '\u00F7' 247

¸ '\u00B8' 184 Ø '\u00D8' 216 ø '\u00F8' 248
1 '\u00B9' 185 Ù '\u00D9' 217 ù '\u00F9' 249

º '\u00BA' 186 Ú '\u00DA' 218 ú '\u00FA' 250

» '\u00BB' 187 Û '\u00DB' 219 û '\u00FB' 251

¼ '\u00BC' 188 Ü '\u00DC' 220 ü '\u00FC' 252

½ '\u00BD' 189 Ý '\u00DD' 221 ý '\u00FD' 253

¾ '\u00BE' 190 Þ '\u00DE' 222 þ '\u00FE' 254

¿ '\u00BF' 191 ß '\u00DF' 223 ÿ '\u00FF' 255





 BA P P E N D I X

511

JAvA OPErAtOr  
SummAry 

The Java operators are listed in groups of decreasing precedence in the table below. 
The horizontal lines in the table indicate a change in operator precedence. Opera-
tors with higher precedence bind more strongly than those with lower precedence. 
For example, x + y * z means x + (y * z) because the * operator has higher precedence 
than the + operator. Looking at the table below, you can tell that x && y || z means 
(x && y) || z because the || operator has lower precedence.

The associativity of an operator indicates whether it groups left to right, or right 
to left. For example, the - operator binds left to right. Therefore, x - y - z means 
(x - y) - z. But the = operator binds right to left, and x = y = z means x = (y = z).

Operator Description Associativity

. Access class feature

Left to right[ ] Array subscript

() Function call

++ Increment

Right to left

-- Decrement

! Boolean not

~ Bitwise not

+ (unary) (Has no effect)

- (unary) Negative

(TypeName) Cast

new Object allocation

* Multiplication

Left to right/ Division or integer division

% Integer remainder

+ Addition, string concatenation
Left to right

- Subtraction

<< Shift left

Left to right>> Right shift with sign extension

>>> Right shift with zero extension



512 Appendix B  Java Operator Summary  

Operator Description Associativity

< Less than

Left to right

<= Less than or equal

> Greater than

>= Greater than or equal

instanceof Tests whether an object’s type is a  
given type or a subtype thereof

== Equal
Left to right

!= Not equal

& Bitwise and Left to right

^ Bitwise exclusive or Left to right

| Bitwise or Left to right

&& Boolean “short circuit” and Left to right

|| Boolean “short circuit” or Left to right

? : Conditional Right to left

= Assignment

Right to leftop= Assignment with binary operator (op is 
one of +, -, *, /, &, |, ̂ , <<, >>, >>>)



 CA P P E N D I X

513

JAvA REsERvED  
WoRD summARy

Reserved Word Description

abstract An abstract class or method

assert An assertion that a condition is fulfilled

boolean The Boolean type

break Breaks out of the current loop or labeled statement

byte The 8-bit signed integer type

case A label in a switch statement

catch The handler for an exception in a try block

char The 16-bit Unicode character type

class Defines a class

const Not used

continue Skip the remainder of a loop body

default The default label in a switch statement

do A loop whose body is executed at least once

double The 64-bit double-precision floating-point type

else The alternative clause in an if statement

enum An enumeration type

extends Indicates that a class is a subclass of another class

final A value that cannot be changed after it has been initialized, a method that 
cannot be overridden, or a class that cannot be extended

finally A clause of a try block that is always executed

float The 32-bit single-precision floating-point type

for A loop with initialization, condition, and update expressions

goto Not used

if A conditional branch statement

implements Indicates that a class realizes an interface



514 Appendix C  Java Reserved Word summary 

Reserved Word Description

import Allows the use of class names without the package name

instanceof Tests whether an object’s type is a given type or a subtype thereof

int The 32-bit integer type

interface An abstract type with only abstract methods and constants

long The 64-bit integer type

native A method implemented in non-Java code

new Allocates an object

package A collection of related classes

private A feature that is accessible only by methods of the same class

protected A feature that is accessible only by methods of the same class, a subclass,  
or another class in the same package

public A feature that is accessible by all methods

return Returns from a method

short The 16-bit integer type

static A feature that is defined for a class, not for individual instances

strictfp Use strict rules for floating-point computations

super Invoke the superclass constructor or a superclass method

switch A selection statement

synchronized A block of code that is accessible to only one thread at a time

this The implicit parameter of a method; or invocation of another constructor 
of the same class

throw Throws an exception

throws The exceptions that a method may throw

transient Instance variables that should not be serialized

try A block of code with exception handlers or a finally handler

void Tags a method that doesn’t return a value

volatile A variable that may be accessed by multiple threads without 
synchronization

while A loop statement



 DA P P E N D I X

515

ThE JAvA L IbrAry

This appendix lists all classes and methods from the standard Java library that are 
used in this book.

In the following inheritance hierarchy, superclasses that are not used in this book are 
shown in gray type. Some classes implement interfaces not covered in this book; they 
are omitted. Classes are sorted first by package, then alphabetically within a package.

java.lang.Object
   java.awt.BorderLayout
   java.awt.Color
   java.awt.Component
      java.awt.Container
         javax.swing.JComponent
            javax.swing.AbstractButton
               javax.swing.JButton
               javax.swing.JMenuItem
                  javax.swing.JMenu
               javax.swing.JToggleButton
                  javax.swing.JCheckBox
                  javax.swing.JRadioButton
            javax.swing.JComboBox
            javax.swing.JFileChooser
            javax.swing.JLabel
            javax.swing.JMenuBar
            javax.swing.JPanel
            javax.swing.JOptionPane
            javax.swing.JScrollPane
            javax.swing.JSlider
            javax.swing.text.JTextComponent
               javax.swing.JTextArea
               javax.swing.JTextField
      java.awt.Window
         java.awt.Frame
            javax.swing.JFrame
   java.awt.Dimension2D
      java.awt.Dimension
   java.awt.FlowLayout
   java.awt.Font
   java.awt.Graphics
   java.awt.GridLayout
   java.awt.event.MouseAdapter implements MouseListener
   java.io.File implements Comparable<File>
   java.io.InputStream
      java.io.FileInputStream
   java.io.OutputStream
      java.io.FileOutputStream
      java.io.FilterOutputStream
         java.io.PrintStream
   java.io.Writer
      java.io.PrintWriter



516 Appendix D  The Java Library

   java.lang.Boolean implements Comparable<Boolean>
   java.lang.Character implements Comparable<Character>
   java.lang.Class 
   java.lang.Math
   java.lang.Number
      java.math.BigDecimal implements Comparable<BigDecimal>
      java.math.BigInteger implements Comparable<BigInteger>
      java.lang.Double implements Comparable<Double>
      java.lang.Integer implements Comparable<Integer>
   java.lang.String implements Comparable<String>
   java.lang.System
   java.lang.Throwable
      java.lang.Error
      java.lang.Exception
         java.lang.InterruptedException
         java.io.IOException
            java.io.EOFException
            java.io.FileNotFoundException
         java.lang.RuntimeException
            java.lang.IllegalArgumentException
               java.lang.NumberFormatException
            java.lang.IllegalStateException 
            java.util.NoSuchElementException
               java.util.InputMismatchException
            java.lang.NullPointerException
   java.text.Format
      java.text.DateFormat
   java.util.AbstractCollection<E>
      java.util.AbstractList<E>
         java.util.AbstractSequentialList<E>
            java.util.LinkedList<E> implements List<E>, Queue<E>
         java.util.ArrayList<E> implements List<E>
      java.util.AbstractQueue<E>
         java.util.PriorityQueue<E>
      java.util.AbstractSet<E>
         java.util.HashSet<E> implements Set<E>
         java.util.TreeSet<E>implements SortedSet<E>
   java.util.AbstractMap<K, V>
      java.util.HashMap<K, V> implements Map<K, V>
      java.util.TreeMap<K, V>, Map<K, V>
   java.util.Arrays
   java.util.Collections
   java.util.Calendar
      java.util.GregorianCalendar
   java.util.Dictionary<K, V>
      java.util.Hashtable<K, V>
         java.util.Properties
   java.util.EventObject
      java.awt.AWTEvent
         java.awt.event.ActionEvent
         java.awt.event.ComponentEvent
            java.awt.event.InputEvent
               java.awt.event.KeyEvent
               java.awt.event.MouseEvent
      javax.swing.event.ChangeEvent
   java.util.Random
   java.util.Scanner
   java.util.logging.Level



Appendix D  The Java Library 517

   java.util.logging.Logger
   javax.swing.ButtonGroup
   javax.swing.ImageIcon
   javax.swing.Keystroke
   javax.swing.Timer
   javax.swing.border.AbstractBorder
      javax.swing.border.EtchedBorder
      javax.swing.border.TitledBorder
java.lang.Comparable<T> 
java.util.Collection<E>
   java.util.List<E>
   java.util.Set<E>
      java.util.SortedSet<E>
java.util.Comparator<T>
java.util.EventListener
   java.awt.event.ActionListener
   java.awt.event.KeyListener
   java.awt.event.MouseListener
   javax.swing.event.ChangeListener
java.util.Iterator<E>
   java.util.ListIterator<E>
java.util.Map<K, V>
java.util.Queue<E> extends Collection<E>

In the following descriptions, the phrase “this object” (“this component”, “this con-
tainer”, and so forth) means the object (component, container, and so forth) on which 
the method is invoked (the implicit parameter, this).

Package java.awt

Class java.awt.BorderLayout
• BorderLayout()

This constructs a border layout. A border layout has five regions for adding com-
ponents, called "NORTH", "EAST", "SOuTH", "WEST", and "CENTER".

• static final int CENTER

This value identifies the center position of a border layout.
• static final int EAST

This value identifies the east position of a border layout.
• static final int NORTH 

This value identifies the north position of a border layout.
• static final int SOuTH 

This value identifies the south position of a border layout.
• static final int WEST 

This value identifies the west position of a border layout.

P
a
ck

a
g

e
 ja

v
a
.a

w
t



518 Appendix D  The Java Library

Class java.awt.Color
• Color(int red, int green, int blue)

This creates a color with the specified red, green, and blue values between 0 
and 255.
Parameters: red The red component

green The green component
blue The blue component

Class java.awt.Component
• void addKeyListener(KeyListener listener)

This method adds a key listener to the component.
Parameters: listener The key listener to be added 

• void addMouseListener(MouseListener listener)

This method adds a mouse listener to the component.
Parameters: listener The mouse listener to be added 

• int getHeight()

This method gets the height of this component.
Returns:	 The height in pixels

• int getWidth()

This method gets the width of this component.
Returns:	 The width in pixels

• void repaint()

This method repaints this component by scheduling a call to the paint method.
• void setFocusable(boolean focusable) 

This method controls whether or not the component can receive input focus. 
Parameters: focusable true to have focus, or false to lose focus 

• void setPreferredSize(Dimension preferredSize)

This method sets the preferred size of this component.
• void setSize(int width, int height) 

This method sets the size of this component. 
Parameters: width the component width 

height the component height
• void setVisible(boolean visible) 

This method shows or hides the component. 
Parameters: visible true to show the component, or false to hide it 

Class java.awt.Container
• void add(Component c)

• void add(Component c, Object position)

These methods add a component to the end of this container. If a position is given, 
the layout manager is called to position the component.
Parameters: c The component to be added

position An object expressing position information for the 
layout manager

P
a
ck

a
g

e
 j
a
v
a
.a

w
t



Appendix D  The Java Library 519

• void setLayout(LayoutManager manager)

This method sets the layout manager for this container.
Parameters: manager A layout manager

Class java.awt.Dimension
• Dimension(int width, int height)

This constructs a Dimension object with the given width and height.
Parameters: width The width

height The height

Class java.awt.FlowLayout
• FlowLayout()

This constructs a new flow layout. A flow layout places as many components 
as possible in a row, without chang ing their size, and starts new rows when 
necessary.

Class java.awt.Font
• Font(String name, int style, int size)

This constructs a font object from the specified name, style, and point size.
Parameters: name The font name, either a font face name or a logical font 

name, which must be one of "Dialog", "DialogInput", "Monospaced", 
"Serif", or "SansSerif"
style One of Font.PLAIN, Font.ITALIC, Font.BOLD, or 

Font.ITALIC+Font.BOLD

size The point size of the font

Class java.awt.Frame
• void setTitle(String title)

This method sets the frame title.
Parameters: title The title to be displayed in the border of the frame

Class java.awt.Graphics
• void drawLine(int x1, int y1, int x2, int y2)

Draws a line between two points
Parameters: x1, y1 The starting point 

x2, y2 The endpoint
• void drawOval(int x, int y, int width, int height)

• void fillOval(int x, int y, int width, int height)

Parameters:  x1, y1 The top-left corner of the bounding rectangle
width, height The width and height of the bounding rectangle

• void drawRect(int x, int y, int width, int height)

• void fillRect(int x, int y, int width, int height)

Parameters:  x1, y1 The top-left corner of the rectangle
width, height The width and height of the rectangle

P
a
ck

a
g

e
 ja

v
a
.a

w
t



520 Appendix D  The Java Library

• void drawString(String s, int x, int y)

This method draws a string in the current font and color.
Parameters: s The string to draw

x, y The basepoint of the first character in the string
• void setColor(Color c)

This method sets the current color. After the method call, all graphics operations 
use this color.
Parameters: c The new drawing color

Class java.awt.GridLayout
• GridLayout(int rows, int cols)

This constructor creates a grid layout with the specified number of rows and col-
umns. The components in a grid layout are arranged in a grid with equal widths 
and heights. One, but not both, of rows and cols can be zero, in which case any 
number of objects can be placed in a row or in a column, respectively.
Parameters: rows The number of rows in the grid

cols The number of columns in the grid

Class java.awt.Rectangle
• Rectangle()

This constructs a rectangle with a top-left corner at (0, 0) and width and height set 
to 0.

• Rectangle(int x, int y, int width, int height)

This constructs a rectangle with given top-left corner and size.
Parameters: x, y The top-left corner

width The width
height The height

• double getHeight()

• double getWidth()

These methods get the height and width of the rectangle.
• double getX()

• double getY()

These methods get the x- and y-coordinates of the top-left corner of the rectangle.
• void grow(int dw, int dh)

This method adjusts the width and height of this rectangle.
Parameters: dw The amount to add to the width (can be negative)

dh The amount to add to the height (can be negative)
• Rectangle intersection(Rectangle other)

This method computes the intersection of this rectangle with the specified 
rectangle.
Parameters: other A rectangle
Returns:	 The largest rectangle contained in both this and other

• void setLocation(int x, int y)

This method moves this rectangle to a new location.
Parameters: x, y The new top-left corner

P
a
ck

a
g

e
 j
a
v
a
.a

w
t



Appendix D  The Java Library 521

• void setSize(int width, int height)

This method sets the width and height of this rectangle to new values.
Parameters: width The new width

height The new height
• void translate(int dx, int dy)

This method moves this rectangle.
Parameters: dx The distance to move along the x-axis

dy The distance to move along the y-axis
• Rectangle union(Rectangle other)

This method computes the union of this rectangle with the specified rectangle. 
This is not the set-theoretic union but the smallest rectangle that contains both 
this and other.
Parameters: other A rectangle
Returns:	 The smallest rectangle containing both this and other

Package java.awt.event

Interface java.awt.event.ActionListener
• void actionPerformed(ActionEvent e)

The event source calls this method when an action occurs.

Class java.awt.event.KeyEvent
This event is passed to the KeyListener methods. Use the KeyStroke class to obtain 
the key information from the key event.

Interface java.awt.event.KeyListener
• void keyPressed(KeyEvent e)

• void keyReleased(KeyEvent e)

These methods are called when a key has been pressed or released.
• void keyTyped(KeyEvent e)

This method is called when a keystroke has been composed by pressing and 
releasing one or more keys.

Class java.awt.event.MouseEvent
• int getX()

This method returns the horizontal position of the mouse as of the time the event 
occurred.
Returns:	 The x-position of the mouse

• int getY()

This method returns the vertical position of the mouse as of the time the event 
occurred.
Returns:	 The y-position of the mouse

P
a
ck

a
g

e
 ja

v
a
.a

w
t.e

v
e
n

t
P
a
ck

a
g

e
 ja

v
a
.a

w
t



522 Appendix D  The Java Library

Interface java.awt.event.MouseListener
• void mouseClicked(MouseEvent e)

This method is called when the mouse has been clicked (that is, pressed and 
released in quick succession).

• void mouseEntered(MouseEvent e)

This method is called when the mouse has entered the component to which this 
listener was added.

• void mouseExited(MouseEvent e)

This method is called when the mouse has exited the component to which this 
listener was added.

• void mousePressed(MouseEvent e)

This method is called when a mouse button has been pressed.
• void mouseReleased(MouseEvent e)

This method is called when a mouse button has been released.

Package java.io

Class java.io.EOFException
• EOFException(String message)

This constructs an “end of file” exception object.
Parameters: message The detail message

Class java.io.File
• File(String name)

This constructs a File object that describes a file (which may or may not exist) 
with the given name.
Parameters: name The name of the file

• static final String pathSeparator

The sytem-dependent separator between path names. A colon (:) in Linux or Mac 
OS X; a semicolon (;) in Win dows.

Class java.io.FileInputStream
• FileInputStream(File f)

This constructs a file input stream and opens the chosen file. If the file cannot be 
opened for reading, a FileNot FoundException is thrown.
Parameters: f The file to be opened for reading

• FileInputStream(String name)

This constructs a file input stream and opens the named file. If the file cannot be 
opened for reading, a FileNot FoundException is thrown.
Parameters: name The name of the file to be opened for reading

P
a
ck

a
g

e
 j
a
v
a
.a

w
t.

e
v
e
n

t
P
a
ck

a
g

e
 j
a
v
a
.i

o



Appendix D  The Java Library 523

Class java.io.FileNotFoundException
This exception is thrown when a file could not be opened.

Class java.io.FileOutputStream
• FileOutputStream(File f)

This constructs a file output stream and opens the chosen file. If the file cannot be 
opened for writing, a FileNot FoundException is thrown.
Parameters: f The file to be opened for writing

• FileOutputStream(String name)

This constructs a file output stream and opens the named file. If the file cannot be 
opened for writing, a FileNot FoundException is thrown.
Parameters: name The name of the file to be opened for writing

Class java.io.InputStream
• void close()

This method closes this input stream (such as a FileInputStream) and releases any 
system resources associated with the stream.

• int read()

This method reads the next byte of data from this input stream.
Returns:	 The next byte of data, or –1 if the end of the stream is reached

Class java.io.InputStreamReader
• InputStreamReader(InputStream in)

This constructs a reader from a specified input stream.
Parameters: in The stream to read from

Class java.io.IOException
This type of exception is thrown when an input /output error is encountered.

Class java.io.OutputStream
• void close()

This method closes this output stream (such as a FileOutputStream) and releases any 
system resources associated with this stream. A closed stream cannot perform 
output operations and cannot be reopened.

• void write(int b)

This method writes the lowest byte of b to this output stream.
Parameters: b The integer whose lowest byte is written

Class java.io.PrintStream / Class java.io.PrintWriter
• PrintStream(String name)

• PrintWriter(String name)

This constructs a PrintStream or PrintWriter and opens the named file. If the file 
cannot be opened for writing, a FileNotFoundException is thrown.
Parameters: name The name of the file to be opened for writing

P
a
ck

a
g

e
 ja

v
a
.io



524  Appendix D   The Java Library

•	 void close()

This	method	closes	this	stream	or	writer	and	releases	any	associated	system	
resources.

•	 void print(int x)

•	 void print(double x)

•	 void print(Object x)

•	 void print(String x)

•	 void println()

•	 void println(int x)

•	 void println(double x)

•	 void println(Object x)

•	 void println(String x)

These	methods	print	a	value	to	this	PrintStream	or	PrintWriter.	The	println	methods	
print	a	newline	after	the	value.	Objects	are	printed	by	converting	them	to	strings	
with	their	toString	methods.
Parameters:	 x The	value	to	be	printed

•	 PrintStream printf(String format, Object... values)

•	 Printwriter printf(String format, Object... values)

These	methods	print	the	format	string	to	this	PrintStream	or	PrintWriter,	substitut-
ing	the	given	values	for	place	holders	that	start	with	%.
Parameters:	 format The	format	string

values The	values	to	be	printed.	You	can	supply	any	number	of	
values

Returns:	 The	implicit	parameter

Package java.lang

Class java.lang.Boolean
•	 Boolean(boolean value)

This	constructs	a	wrapper	object	for	a	boolean	value.
Parameters:	 value The	value	to	store	in	this	object

•	 boolean booleanValue()

This	method	returns	the	value	stored	in	this	boolean	object.
Returns:	 The	Boolean	value	of	this	object

Class java.lang.Character
•	 static boolean isDigit(ch)

This	method	tests	whether	a	given	character	is	a	Unicode	digit.
Parameters:	 ch The	character	to	test
Returns:	 true	if	the	character	is	a	digit

•	 static boolean isLetter(ch)

This	method	tests	whether	a	given	character	is	a	Unicode	letter.
Parameters:	 ch The	character	to	test
Returns:	 true	if	the	character	is	a	letter

P
a
ck

a
g

e
 j
a
v
a
.i

o
P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g



Appendix D  The Java Library 525

• static boolean isLowerCase(ch)

This method tests whether a given character is a lowercase Unicode letter.
Parameters: ch The character to test
Returns:	 true if the character is a lowercase letter

• static boolean isUpperCase(ch)

This method tests whether a given character is an uppercase Unicode letter.
Parameters: ch The character to test
Returns:	 true if the character is an uppercase letter

Class java.lang.Class
• static Class forName(String className)

This method loads a class with a given name. Loading a class initializes its static 
fields.
Parameters: className The name of the class to load 
Returns:	 The type descriptor of the class

Interface java.lang.Comparable<T>
• int compareTo(T other)

This method compares this object with the other object.
Parameters: other The object to be compared
Returns:	 A negative integer if this object is less than the other, zero if they 

are equal, or a positive integer other wise

Class java.lang.Double
• Double(double value)

This constructs a wrapper object for a double-precision floating-point number.
Parameters: value The value to store in this object

• double doubleValue()

This method returns the floating-point value stored in this Double wrapper object.
Returns:	 The value stored in the object

• static double parseDouble(String s)

This method returns the floating-point number that the string represents. If the 
string cannot be interpreted as a number, a NumberFormatException is thrown.
Parameters: s The string to be parsed
Returns:	 The value represented by the string argument

Class java.lang.Error
This is the superclass for all unchecked system errors.

Class java.lang.IllegalArgumentException
• IllegalArgumentException()

This constructs an IllegalArgumentException with no detail message.

P
a
ck

a
g

e
 ja

v
a
.la

n
g



526 Appendix D  The Java Library

Class java.lang.IllegalStateException
This exception is thrown if the state of an object indicates that a method cannot 
currently be applied.

Class java.lang.Integer
• Integer(int value)

This constructs a wrapper object for an integer.
Parameters: value The value to store in this object

• int intValue()

This method returns the integer value stored in this wrapper object.
Returns:	 The value stored in the object

• static int parseInt(String s)

This method returns the integer that the string represents. If the string cannot be 
interpreted as an integer, a Num berFormatException is thrown.
Parameters: s The string to be parsed
Returns:	 The value represented by the string argument

• static Integer parseInt(String s, int base)

This method returns the integer value that the string represents in a given number 
system. If the string cannot be interpreted as an integer, a NumberFormatException is 
thrown.
Parameters: s The string to be parsed

base The base of the number system (such as 2 or 16)
Returns:	 The value represented by the string argument

• static String toString(int i)

• static String toString(int i, int base)

This method creates a string representation of an integer in a given number sys-
tem. If no base is given, a decimal representation is created.
Parameters: i An integer number

base The base of the number system (such as 2 or 16)
Returns:	 A string representation of the argument in the specified number 

system
• static final int MAX_VALuE

This constant is the largest value of type int.
• static final int MIN_VALuE

This constant is the smallest (negative) value of type int.

Class java.lang.InterruptedException
This exception is thrown to interrupt a thread, usually with the intention of 
terminating it.

Class java.lang.Math
• static double abs(double x)

This method returns the absolute value | x |.
Parameters: x A floating-point value
Returns:	 The absolute value of the argument

P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g



Appendix D  The Java Library 527

• static double acos(double x)

This method returns the angle with the given cosine, cos–1 x ∈ [0, π].
Parameters: x A floating-point value between -1 and 1
Returns:	 The arc cosine of the argument, in radians

• static double asin(double x)

This method returns the angle with the given sine, sin–1 x ∈ [-π/2, π/2].
Parameters: x A floating-point value between -1 and 1
Returns:	 The arc sine of the argument, in radians

• static double atan(double x)

This method returns the angle with the given tangent, tan–1 x (-π/2, π/2).
Parameters: x A floating-point value
Returns:	 The arc tangent of the argument, in radians

• static double atan2(double y, double x)

This method returns the arc tangent, tan–1 (y/x) ∈ (-π, π). If x can equal zero, or if 
it is necessary to distinguish “northwest” from “southeast” and “northeast” from 
“southwest”, use this method instead of atan(y/x).
Parameters: y, x Two floating-point values
Returns:	 The angle, in radians, between the points (0,0) and (x,y)

• static double ceil(double x)

This method returns the smallest integer ≥ x (as a double).
Parameters: x A floating-point value
Returns:	 The smallest integer greater than or equal to the argument

• static double cos(double radians)

This method returns the cosine of an angle given in radians.
Parameters: radians An angle, in radians
Returns:	 The cosine of the argument

• static double exp(double x)

This method returns the value ex, where e is the base of the natural logarithms.
Parameters: x A floating-point value
Returns:	  ex

• static double floor(double x)

This method returns the largest integer ≤ x (as a double).
Parameters: x A floating-point value
Returns:	 The largest integer less than or equal to the argument

• static double log(double x)

• static double log10(double x)

This method returns the natural (base e) or decimal (base 10) logarithm of x, ln x.
Parameters: x A number greater than 0.0
Returns:	 The natural logarithm of the argument

• static int max(int x, int y)

• static double max(double x, double y)

These methods return the larger of the given arguments.
Parameters: x, y Two integers or floating-point values
Returns:	 The maximum of the arguments

P
a
ck

a
g

e
 ja

v
a
.la

n
g



528  Appendix D   The Java Library

•	 static int min(int x, int y)

•	 static double min(double x, double y)

These	methods	return	the	smaller	of	the	given	arguments.
Parameters:	 x,	y Two	integers	or	floating-point	values
Returns:	 The	minimum	of	the	arguments

•	 static double pow(double x, double y)

This	method	returns	the	value	xy	(x	>	0,	or	x	=	0	and	y	>	0,	or	x	<	0	and	y	is	an	
integer).
Parameters:	 x,	y Two	floating-point	values
Returns:	 The	value	of	the	first	argument	raised	to	the	power	of	the	second	

argument
•	 static long round(double x)

This	method	returns	the	closest	long	integer	to	the	argument.
Parameters:	 x A	floating-point	value
Returns:	 The	argument	rounded	to	the	nearest	long value

•	 static double sin(double radians)

This	method	returns	the	sine	of	an	angle	given	in	radians.
Parameters:	 radians An	angle,	in	radians
Returns:	 The	sine	of	the	argument

•	 static double sqrt(double x)

This	method	returns	the	square	root	of	x,	 x .
Parameters:	 x A	nonnegative	floating-point	value
Returns:	 The	square	root	of	the	argument

•	 static double tan(double radians)

This	method	returns	the	tangent	of	an	angle	given	in	radians.
Parameters:	 radians An	angle,	in	radians
Returns:	 The	tangent	of	the	argument

•	 static double toDegrees(double radians)

This	method	converts	radians	to	degrees.
Parameters:	 radians An	angle,	in	radians
Returns:	 The	angle	in	degrees

•	 static double toRadians(double degrees)

This	methods	converts	degrees	to	radians.
Parameters:	 degrees An	angle,	in	degrees
Returns:	 The	angle	in	radians

• static final double E

This	constant	is	the	value	of	e,	the	base	of	the	natural	logarithms.
• static final double PI

This	constant	is	the	value	of	π.	

Class java.lang.NullPointerException
This	exception	is	thrown	when	a	program	tries	to	use	an	object	through	a	null	
reference.

P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g



Appendix D  The Java Library 529

Class java.lang.NumberFormatException
This exception is thrown when a program tries to parse the numerical value of a 
string that is not a number.

Class java.lang.Object
• boolean equals(Object other)

This method tests whether this and the other object are equal. This method tests 
only whether the object refer ences are to the same object. Subclasses should rede-
fine this method to compare the instance variables.
Parameters: other The object with which to compare
Returns:	 true if the objects are equal, false otherwise

• String toString()

This method returns a string representation of this object. This method produces 
only the class name and loca tions of the objects. Subclasses should redefine this 
method to print the instance variables.
Returns:	 A string describing this object

Class java.lang.RuntimeException
This is the superclass for all unchecked exceptions.

Class java.lang.String
• int compareTo(String other)

This method compares this string and the other string lexicographically.
Parameters: other The other string to be compared
Returns:	 A value less than 0 if this string is lexicographically less than 

the other, 0 if the strings are equal, and a value greater than 0 
otherwise

• boolean equals(String other)

• boolean equalsIgnoreCase(String other)

These methods test whether two strings are equal, or whether they are equal when 
letter case is ignored.
Parameters: other The other string to be compared
Returns:	 true if the strings are equal

• static String format(String format, Object... values)

This method formats the given string by substituting placeholders beginning with 
% with the given values.
Parameters: format The string with the placeholders

values The values to be substituted for the placeholders
Returns:	 The formatted string, with the placeholders replaced by the given 

values
• int length()

This method returns the length of this string.
Returns:	 The count of characters in this string

P
a
ck

a
g

e
 ja

v
a
.la

n
g



530 Appendix D  The Java Library

• String replace(String match, String replacement)

This method replaces matching substrings with a given replacement.
Parameters: match The string whose matches are to be replaced

replacement The string with which matching substrings are 
replaced

Returns:	 A string that is identical to this string, with all matching sub-
strings replaced by the given replacement

• String substring(int begin)

• String substring(int begin, int pastEnd)

These methods return a new string that is a substring of this string, made up of 
all characters starting at position begin and up to either position pastEnd - 1, if it is 
given, or the end of the string.
Parameters: begin The beginning index, inclusive

pastEnd The ending index, exclusive
Returns:	 The specified substring

• String toLowerCase()

This method returns a new string that consists of all characters in this string con-
verted to lowercase.
Returns:	 A string with all characters in this string converted to lowercase

• String toUpperCase()

This method returns a new string that consists of all characters in this string con-
verted to uppercase.
Returns:	 A string with all characters in this string converted to uppercase

Class java.lang.System
• static long currentTimeMillis()

This method returns the difference, measured in milliseconds, between the cur-
rent time and midnight, Universal Time, January 1, 1970.
Returns:	 The current time in milliseconds since January 1, 1970.

• static void exit(int status)

This method terminates the program.
Parameters: status Exit status. A nonzero status code indicates abnormal 

termination
• static final InputStream in

This object is the “standard input” stream. Reading from this stream typically 
reads keyboard input.

• static final PrintStream out

This object is the “standard output” stream. Printing to this stream typically 
sends output to the console window.

Class java.lang.Throwable
This is the superclass of exceptions and errors.

• Throwable()

This constructs a Throwable with no detail message.

P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g



Appendix D  The Java Library 531

• String getMessage()

This method gets the message that describes the exception or error.
Returns:	 The message

• void printStackTrace()

This method prints a stack trace to the “standard error” stream. The stack trace 
contains a printout of this object and of all calls that were pending at the time it 
was created.

Package java.math

Class java.math.BigDecimal
• BigDecimal(String value)

This constructs an arbitrary-precision floating-point number from the digits in 
the given string.
Parameters: value A string representing the floating-point number

• BigDecimal add(BigDecimal other)

• BigDecimal multiply(BigDecimal other)

• BigDecimal subtract(BigDecimal other)

These methods return a BigDecimal whose value is the sum, difference, product, or 
quotient of this number and the other.
Parameters: other The other number
Returns:	 The result of the arithmetic operation

Class java.math.BigInteger
• BigInteger(String value)

This constructs an arbitrary-precision integer from the digits in the given string.
Parameters: value A string representing an arbitrary-precision integer

• BigInteger add(BigInteger other)

• BigInteger divide(BigInteger other)

• BigInteger mod(BigInteger other)

• BigInteger multiply(BigInteger other)

• BigInteger subtract(BigInteger other)

These methods return a BigInteger whose value is the sum, quotient, remainder, 
product, or difference of this number and the other.
Parameters: other The other number
Returns:	 The result of the arithmetic operation

P
a
ck

a
g

e
 ja

v
a
.la

n
g

P
a
ck

a
g

e
 ja

v
a
.m

a
th



532 Appendix D  The Java Library

Package java.text

Class java.text.DateFormat
• String format(Date aDate) 

This method formats a date. 
Parameters: aDate The date to format 
Returns:	 A string containing the formatted date

• static DateFormat getTimeInstance() 

This method returns a formatter that formats only the time portion of a date. 
Returns:	 The formatter object

• void setTimeZone(TimeZone zone) 

This method sets the time zone to be used when formatting dates. 
Parameters: zone The time zone to use 

Package java.util

Class java.util.ArrayList<E>
• ArrayList() 

This constructs an empty array list.
• boolean add(E element) 

This method appends an element to the end of this array list. 
Parameters: element The element to add 
Returns:	 true (This method returns a value because it overrides a method 

in the List interface.)
• void add(int index, E element) 

This method inserts an element into this array list at the given position. 
Parameters: index Insert position 

element The element to insert
• E get(int index) 

This method gets the element at the specified position in this array list. 
Parameters: index Position of the element to return 
Returns:	 The requested element

• E remove(int index) 

This method removes the element at the specified position in this array list and 
returns it. 
Parameters: index Position of the element to remove 
Returns:	 The removed element

• E set(int index, E element) 

This method replaces the element at a specified position in this array list. 
Parameters: index Position of element to replace 

element Element to be stored at the specified position 
Returns:	 The element previously at the specified position

P
a
ck

a
g

e
 j
a
v
a
.t

e
xt

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l



Appendix D  The Java Library 533

• int size() 

This method returns the number of elements in this array list. 
Returns:	 The number of elements in this array list

Class java.util.Arrays
• static int binarySearch(Object[] a, Object key)

This method searches the specified array for the specified object using the binary 
search algorithm. The array ele ments must implement the Comparable interface. 
The array must be sorted in ascending order.
Parameters: a The array to be searched

key The value to be searched for
Returns:	 The position of the search key, if it is contained in the array; 

otherwise, -index - 1, where index is the position where the 
element may be inserted

• static T[] copyOf(T[] a, int newLength)

This method copies the elements of the array a, or the first newLength elements if 
a.length > newLength, into an array of length newLength and returns that array. T can 
be a primitive type, class, or interface type.
Parameters: a The array to be copied

key The value to be searched for
Returns:	 The position of the search key, if it is contained in the array; 

otherwise, -index - 1, where index is the position where the 
element may be inserted

• static void sort(Object[] a)

This method sorts the specified array of objects into ascending order. Its elements 
must implement the Comparable interface.
Parameters: a The array to be sorted

• static String toString(T[] a)

This method creates and returns a string containing the array elements. T can be a 
primitive type, class, or inter face type.
Parameters: a An array
Returns:	 A string containing a comma-separated list of string representa-

tions of the array elements, surrounded by brackets.

Class java.util.Calendar
• int get(int field) 

This method returns the value of the given field. 
Parameters: field One of Calendar.YEAR, Calendar.MONTH, 

Calendar.DAY_OF_MONTH, Calendar.HOuR, Calendar.MINuTE, 
Calendar.SECOND, or Calendar.MILLISECOND  

Interface java.util.Collection<E>
• boolean add(E element) 

This method adds an element to this collection. 
Parameters: element The element to add 
Returns:	 true if adding the element changes the collection

P
a
ck

a
g

e
 ja

v
a
.u

til



534 Appendix D  The Java Library

• boolean contains(E element) 

This method tests whether an element is present in this collection. 
Parameters: element The element to find 
Returns:	 true if the element is contained in the collection

• Iterator iterator() 

This method returns an iterator that can be used to traverse the elements of this 
collection. 
Returns:	 An object of a class implementing the Iterator interface

• boolean remove(E element) 

This method removes an element from this collection.
Parameters: element The element to remove 
Returns:	 true if removing the element changes the collection

• int size() 

This method returns the number of elements in this collection. 
Returns:	 The number of elements in this collection

Class java.util.Collections
• static <T> int binarySearch(List<T> a, T key)

This method searches the specified list for the specified object using the binary 
search algorithm. The list elements must implement the Comparable interface. The 
list must be sorted in ascending order.
Parameters: a The list to be searched

key The value to be searched for
Returns:	 The position of the search key, if it is contained in the list; 

otherwise, -index - 1, where index is the position where the 
element may be inserted

• static <T> void sort(List<T> a)

This method sorts the specified list of objects into ascending order. Its elements 
must implement the Comparable interface.
Parameters: a The list to be sorted

Interface java.util.Comparator<T>
• int compare(T first, T second)

This method compares the given objects.
Parameters: first, second The objects to be compared 
Returns:	 A negative integer if the first object is less than the second, zero if 

they are equal, or a positive integer otherwise

Class java.util.EventObject
• Object getSource()

This method returns a reference to the object on which this event initially 
occurred.
Returns:	 The source of this event

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l



Appendix D  The Java Library 535

Class java.util.GregorianCalendar
•	 GregorianCalendar() 

This	constructs	a	calendar	object	that	represents	the	current	date	and	time.
•	 GregorianCalendar(int year, int month, int day) 

This	constructs	a	calendar	object	that	represents	the	start	of	the	given	date.
Parameters:	 year,	month,	day The	given	date	

Class java.util.HashMap<K, V>
•	 HashMap<K, V>() 

This	constructs	an	empty	hash	map.

Class java.util.HashSet<E>
•	 HashSet<E>() 

This	constructs	an	empty	hash	set.

Class java.util.InputMismatchException
This	exception	is	thrown	if	the	next	available	input	item	does	not	match	the	type	
of	the	requested	item.

Interface java.util.Iterator<E>
•	 boolean hasNext()

This	method	checks	whether	the	iterator	is	past	the	end	of	the	list.
Returns:	 true	if	the	iterator	is	not	yet	past	the	end	of	the	list

•	 E next()

This	method	moves	the	iterator	over	the	next	element	in	the	linked	list.	This	
method	throws	an	exception	if	the	iterator	is	past	the	end	of	the	list.
Returns:	 The	object	that	was	just	skipped	over

•	 void remove()

This	method	removes	the	element	that	was	returned	by	the	last	call	to	next	or	
previous.	This	method	throws	an	exception	if	there	was	an	add	or	remove	operation	
after	the	last	call	to	next	or	previous.

Interface java.util.LinkedList<E>
•	 void addFirst(E element)

•	 void addLast(E element)

These	methods	add	an	element	before	the	first	or	after	the	last	element	in	this	list.
Parameters:	 element The	element	to	be	added

•	 E getFirst()

•	 E getLast()

These	methods	return	a	reference	to	the	specified	element	from	this	list.
Returns:	 The	first	or	last	element

P
a
ck

a
g

e
 ja

v
a
.u

til



536 Appendix D  The Java Library

•	 E removeFirst()

•	 E removeLast()

These	methods	remove	the	specified	element	from	this	list.
Returns:	 A	reference	to	the	removed	element

Class java.util.List<E>
•	 ListIterator<E> listIterator()

This	method	gets	an	iterator	to	visit	the	elements	in	this	list.
Returns:	 An	iterator	that	points	before	the	first	element	in	this	list

Interface java.util.ListIterator<E>
Objects	implementing	this	interface	are	created	by	the	listIterator	methods	of	list	
classes.

•	 void add(E element)

This	method	adds	an	element	after	the	iterator	position	and	moves	the	iterator	
after	the	new	element.
Parameters:	 element The	element	to	be	added

•	 boolean hasPrevious()

This	method	checks	whether	the	iterator	is	before	the	first	element	of	the	list.
Returns:	 true	if	the	iterator	is	not	before	the	first	element	of	the	list

•	 E previous()

This	method	moves	the	iterator	over	the	previous	element	in	the	linked	list.	This	
method	throws	an	exception	if	the	iterator	is	before	the	first	element	of	the	list.
Returns:	 The	object	that	was	just	skipped	over

•	 void set(E element)

This	method	replaces	the	element	that	was	returned	by	the	last	call	to	next	or	
previous.	This	method	throws	an	exception	if	there	was	an	add	or	remove	operation	
after	the	last	call	to	next	or	previous.
Parameters:	 element The	element	that	replaces	the	old	list	element

Interface java.util.Map<K, V>
•	 V get(K key) 

Gets	the	value	associated	with	a	key	in	this	map.	
Parameters:	 key The	key	for	which	to	find	the	associated	value	
Returns:	 The	value	associated	with	the	key,	or	null	if	the	key	is	not	present	

in	the	map	
•	 Set<K> keySet() 

This	method	returns	all	keys	this	map.	
Returns:	 	A	set	of	all	keys	in	this	map

•	 V put(K key, V value) 

This	method	associates	a	value	with	a	key	in	this	map.	
Parameters:	 key The	lookup	key	

value The	value	to	associate	with	the	key	
Returns:	 The	value	previously	associated	with	the	key,	or	null	if	the	key	

was	not	present	in	the	map

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l



Appendix D  The Java Library 537

• V remove(K key) 

This method removes a key and its associated value from this map.
Parameters: key The lookup key 
Returns:	 The value previously associated with the key, or null if the key 

was not present in the map

Class java.util.NoSuchElementException
This exception is thrown if an attempt is made to retrieve a value that does not 
exist.

Class java.util.PriorityQueue<E>
• PriorityQueue<E>()

This constructs an empty priority queue. The element type E must implement the 
Comparable interface.

• E remove()

This method removes the smallest element in the priority queue.
Returns:	 The removed value

Class java.util.Properties
• String getProperty(String key) 

This method gets the value associated with a key in this properties map. 
Parameters: key The key for which to find the associated value 
Returns:	 The value, or null if the key is not present in the map

• void load(InputStream in) 

This method loads a set of key/value pairs into this properties map from a stream. 
Parameters: in The stream from which to read the key/value pairs (it must be 

a sequence of lines of the form key=value)

Interface java.util.Queue<E>
• E peek()

Gets the element at the head of the queue without removing it.
Returns:	 The head element or null if the queue is empty

Class java.util.Random
• Random()

This constructs a new random number generator.
• double nextDouble()

This method returns the next pseudorandom, uniformly distributed floating-
point number between 0.0 (inclusive) and 1.0 (exclusive) from this random num-
ber generator’s sequence.
Returns:	 The next pseudorandom floating-point number

P
a
ck

a
g

e
 ja

v
a
.u

til



538 Appendix D  The Java Library

• int nextInt(int n)

This method returns the next pseudorandom, uniformly distributed integer 
between 0 (inclusive) and the speci fied value (exclusive) drawn from this random 
number generator’s sequence.
Parameters: n Number of values to draw from
Returns:	 The next pseudorandom integer

Class java.util.Scanner
• Scanner(File in)

• Scanner(InputStream in)

• Scanner(Reader in)

These construct a scanner that reads from the given file, input stream, or reader.
Parameters: in The file, input stream, or reader from which to read

• void close()

This method closes this scanner and releases any associated system resources.
• boolean hasNext()

• boolean hasNextDouble()

• boolean hasNextInt()

• boolean hasNextLine()

These methods test whether it is possible to read any non-empty string, a 
floating-point value, an integer, or a line, as the next item.
Returns:	 true if it is possible to read an item of the requested type, false 

otherwise (either because the end of the file has been reached, 
or because a number type was tested and the next item is not a 
number)

• String next()

• double nextDouble()

• int nextInt()

• String nextLine()

These methods read the next whitespace-delimited string, floating-point value, 
integer, or line.
Returns:	 The value that was read

• Scanner useDelimiter(String pattern)

Sets the pattern for the delimiters between input tokens.
Parameters: pattern A regular expression for the delimiter pattern
Returns:	 This scanner

Interface java.util.Set<E>
This interface describes a collection that contains no duplicate elements.

Class java.util.TreeMap<K, V>
• TreeMap<K, V>() 

This constructs an empty tree map. The iterator of a TreeMap visits the entries in 
sorted order.

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l



Appendix D  The Java Library 539

Class java.util.TreeSet<E>
• TreeSet<E>() 

This constructs an empty tree set. 

Package java.util.logging

Class java.util.logging.Level
• static final int INFO 

This value indicates informational logging.
• static final int OFF 

This value indicates logging of no messages.

Class java.util.logging.Logger
• static Logger getGlobal() 

This method gets the global logger. For Java 5 and 6, use getLogger(“global”) 
instead.
Returns:	 The global logger that, by default, displays messages with level 

INFO or a higher severity on the con sole.
• void info(String message) 

This method logs an informational message.
Parameters: message The message to log 

• void setLevel(Level aLevel) 

This method sets the logging level. Logging messages with a lesser severity than 
the current level are ignored. 
Parameters: aLevel The minimum level for logging messages

Package javax.swing

Class javax.swing.AbstractButton
• void addActionListener(ActionListener listener)

This method adds an action listener to the button.
Parameters: listener The action listener to be added

• boolean isSelected()

This method returns the selection state of the button.
Returns:	 true if the button is selected

• void setSelected(boolean state)

This method sets the selection state of the button. This method updates the but-
ton but does not trigger an action event.
Parameters: state true to select, false to deselect

ja
v
a
.u

til
P
a
ck

a
g

e
 ja

v
a
.u

til.lo
g

g
in

g
P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g



540 Appendix D  The Java Library

Class javax.swing.ButtonGroup
• void add(AbstractButton button)

This method adds the button to the group.
Parameters: button The button to add

Class javax.swing.ImageIcon
• ImageIcon(String filename)

This constructs an image icon from the specified graphics file.
Parameters: filename A string specifying a file name

Class javax.swing.JButton
• JButton(String label)

This constructs a button with the given label.
Parameters: label The button label

Class javax.swing.JCheckBox
• JCheckBox(String text)

This constructs a check box with the given text, which is initially deselected. 
(Use the set Selected method to make the box selected; see the javax.swing.
Abstract Button class.)
Parameters: text The text displayed next to the check box

Class javax.swing.JComboBox
• JComboBox()

This constructs a combo box with no items.
• void addItem(Object item)

This method adds an item to the item list of this combo box.
Parameters: item The item to add

• Object getSelectedItem()

This method gets the currently selected item of this combo box.
Returns:	 The currently selected item

• boolean isEditable()

This method checks whether the combo box is editable. An editable combo box 
allows the user to type into the text field of the combo box.
Returns:	 true if the combo box is editable

• void setEditable(boolean state)

This method is used to make the combo box editable or not.
Parameters: state true to make editable, false to disable editing

• void setSelectedItem(Object item)

This method sets the item that is shown in the display area of the combo box as 
selected.
Parameters: item The item to be displayed as selected

P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g



Appendix D  The Java Library 541

Class javax.swing.JComponent
• protected void paintComponent(Graphics g)

Override this method to paint the surface of a component. Your method needs to 
call super.paintComponent(g).
Parameters: g The graphics context used for drawing

• void setBorder(Border b)

This method sets the border of this component.
Parameters: b The border to surround this component

• void setFont(Font f)

Sets the font used for the text in this component.
Parameters: f A font

Class javax.swing.JFileChooser
• JFileChooser()

This constructs a file chooser.
• File getSelectedFile()

This method gets the selected file from this file chooser.
Returns:	 The selected file

• int showOpenDialog(Component parent)

This method displays an “Open File” file chooser dialog box.
Parameters: parent The parent component or null
Returns:	 The return state of this file chooser after it has been closed by 

the user: either APPROVE_OPTION or CANCEL_OPTION. If APPROVE_OPTION is 
returned, call get Selected File() on this file chooser to get the file

• int showSaveDialog(Component parent)

This method displays a “Save File” file chooser dialog box.
Parameters: parent The parent component or null
Returns:	 The return state of the file chooser after it has been closed by the 

user: either APPROVE_OPTION or CANCEL_OPTION

Class javax.swing.JFrame
• void setDefaultCloseOperation(int operation) 

This method sets the default action for closing the frame. 
Parameters: operation The desired close operation. Choose among 

DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE (the default), DISPOSE_ON_CLOSE, 
or EXIT_ON_CLOSE 

• void setJMenuBar(JMenuBar mb)

This method sets the menu bar for this frame.
Parameters: mb The menu bar. If mb is null, then the current menu bar is 

removed
• static final int EXIT_ON_CLOSE 

This value indicates that when the user closes this frame, the application is to exit. 

P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g



542 Appendix D  The Java Library

Class javax.swing.JLabel
• JLabel(String text)

• JLabel(String text, int alignment)

These containers create a JLabel instance with the specified text and horizontal 
alignment.
Parameters: text The label text to be displayed by the label

alignment One of SwingConstants.LEFT, SwingConstants.CENTER, or 
SwingConstants.RIGHT

Class javax.swing.JMenu
• JMenu()

This constructs a menu with no items.
• JMenuItem add(JMenuItem menuItem)

This method appends a menu item to the end of this menu.
Parameters: menuItem The menu item to be added
Returns:	 The menu item that was added

Class javax.swing.JMenuBar
• JMenuBar()

This constructs a menu bar with no menus.
• JMenu add(JMenu menu)

This method appends a menu to the end of this menu bar.
Parameters: menu The menu to be added
Returns:	 The menu that was added

Class javax.swing.JMenuItem
• JMenuItem(String text)

This constructs a menu item.
Parameters: text The text to appear in the menu item

Class javax.swing.JOptionPane
• static String showInputDialog(Object prompt)

This method brings up a modal input dialog box, which displays a prompt and 
waits for the user to enter an input in a text field, preventing the user from doing 
anything else in this program.
Parameters: prompt The prompt to display
Returns:	 The string that the user typed

• static void showMessageDialog(Component parent, Object message)

This method brings up a confirmation dialog box that displays a message and 
waits for the user to confirm it.
Parameters: parent The parent component or null

message The message to display

P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g



Appendix D  The Java Library 543

Class javax.swing.JPanel
This class is a component without decorations. It can be used as an invisible con-
tainer for other components.

Class javax.swing.JRadioButton
• JRadioButton(String text)

This constructs a radio button having the given text that is initially deselected. 
(Use the setSelected method to select it; see the javax.swing.AbstractButton class.)
Parameters: text The string displayed next to the radio button

Class javax.swing.JScrollPane
• JScrollPane(Component c)

This constructs a scroll pane around the given component.
Parameters: c The component that is decorated with scroll bars

Class javax.swing.JSlider
• JSlider(int min, int max, int value)

This constructor creates a horizontal slider using the specified minimum, maxi-
mum, and value.
Parameters: min The smallest possible slider value

max The largest possible slider value
value The initial value of the slider

• void addChangeListener(ChangeListener listener)

This method adds a change listener to the slider.
Parameters: listener The change listener to add

• int getValue()

This method returns the slider’s value.
Returns:	 The current value of the slider

Class javax.swing.JTextArea
• JTextArea()

This constructs an empty text area.
• JTextArea(int rows, int columns)

This constructs an empty text area with the specified number of rows and 
columns.
Parameters: rows The number of rows

columns The number of columns
• void append(String text)

This method appends text to this text area.
Parameters: text The text to append

P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g



544 Appendix D  The Java Library

Class javax.swing.JTextField
• JTextField()

This constructs an empty text field.
• JTextField(int columns)

This constructs an empty text field with the specified number of columns.
Parameters: columns The number of columns

Class javax.swing.KeyStroke
• static KeyStroke getKeyStrokeForEvent(KeyEvent event)

Gets a KeyStroke object describing the key stroke that caused the event.
Parameters: event The key event to be analyzed
Returns:	 A KeyStroke object. Call toString on this object to get a string 

representation such as "pressed LEFT"

Class javax.swing.Timer
• Timer(int millis, ActionListener listener) 

This constructs a timer that notifies an action listener whenever a time interval has 
elapsed. 
Parameters: millis The number of milliseconds between timer notifications 

listener The object to be notified when the time interval has 
elapsed 

• void start() 

This method starts the timer. Once the timer has started, it begins notifying its 
listener. 

• void stop() 

This method stops the timer. Once the timer has stopped, it no longer notifies its 
listener. 

Package javax.swing.border

Class javax.swing.border.EtchedBorder
• EtchedBorder()

This constructor creates a lowered etched border.

Class javax.swing.border.TitledBorder
• TitledBorder(Border b, String title)

This constructor creates a titled border that adds a title to a given border.
Parameters: b The border to which the title is added

title The title the border should display

P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g

P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g

.b
o
rd

e
r



Appendix D  The Java Library 545

Package javax.swing.event

Class javax.swing.event.ChangeEvent
Components such as sliders emit change events when they are manipulated by 
the user.

Interface javax.swing.event.ChangeListener
• void stateChanged(ChangeEvent e)

This event is called when the event source has changed its state.
Parameters: e A change event

Package javax.swing.text

Class javax.swing.text.JTextComponent
• String getText()

This method returns the text contained in this text component.
Returns:	 The text

• boolean isEditable()

This method checks whether this text component is editable.
Returns:	 true if the component is editable

• void setEditable(boolean state)

This method is used to make this text component editable or not.
Parameters: state true to make editable, false to disable editing

• void setText(String text)

This method sets the text of this text component to the specified text. If the 
argument is the empty string, the old text is deleted.
Parameters: text The new text to be set

P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g
.e

v
e
n

t
P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g
.te

xt





547

Glossary

Abstract class  A class that cannot be instantiated.

Abstract method  A method with a name, parameter variable types, and return type but 
without an implementation.

Accessor method  A method that accesses an object but does not change it.

Aggregation  The has-a relationship between classes.

Algorithm  An unambiguous, executable, and terminating specification of a way to solve a 
problem.

Anonymous class  A class that does not have a name.

Anonymous object  An object that is not stored in a named variable.

API (Application Programming Interface)  A code library for building programs.

API Documentation  Information about each class in the Java library.

Applet  A graphical Java program that executes inside a web browser or applet viewer.

Argument  A value supplied in a method call, or one of the values combined by an operator.

Array  A collection of values of the same type stored in contiguous memory locations, each 
of which can be accessed by an integer index.

Array list  A Java class that implements a dynamically-growable array of objects.

Assignment  Placing a new value into a variable.

Association  A relationship between classes in which one can navigate from objects of one 
class to objects of the other class, usually by following object references. 

Asymmetric bounds  Bounds that include the starting index but not the ending index.

Attribute  A named property that an object is responsible for maintaining.

Auto-boxing  Automatically converting a primitive type value into a wrapper type object.

Balanced tree  A tree in which each subtree has the property that the number of descen-
dants to the left is approx imately the same as the number of descendants to the right.

Big-Oh notation  The notation g (n) = O( f(n)), which denotes that the function g grows 
at a rate that is bounded by the growth rate of the function f with respect to n. For example, 
10n2 + 100n - 1000 = O(n2).

Binary file  A file in which values are stored in their binary representation and cannot be 
read as text.

Binary operator  An operator that takes two arguments, for example + in x + y.

Binary search  A fast algorithm for finding a value in a sorted array. It narrows the search 
down to half of the array in every step.

Binary search tree  A binary tree in which each subtree has the property that all left descen-
dants are smaller than the value stored in the root, and all right descendants are larger.

Bit  Binary digit; the smallest unit of information, having two possible values: 0 and 1. A data 
element consisting of n bits has 2n possible values.

Black-box testing  Testing a method without knowing its implementation.



548   Glossary

Block  A group of statements bracketed by {}.

Boolean operator An operator that can be applied to Boolean values. Java has three Bool-
ean operators: &&, ||, and !.

Boolean type  A type with two possible values: true and false.

Border layout  A layout management scheme in which components are placed into the cen-
ter or one of the four borders of their container. 

Boundary test case  A test case involving values that are at the outer boundary of the set of 
legal values. For example, if a method is expected to work for all nonnegative integers, then 0 
is a boundary test case.

Bounds error  Trying to access an array element that is outside the legal range.

break statement  A statement that terminates a loop or switch statement.

Bug  A programming error.

Byte  A number made up of eight bits. Essentially all currently manufactured computers use 
a byte as the smallest unit of storage in memory.

Bytecode  Instructions for the Java virtual machine.

Call stack  The ordered set of all methods that currently have been called but not yet termi-
nated, starting with the current method and ending with main. 

Case sensitive  Distinguishing upper- and lowercase characters.

Cast  Explicitly converting a value from one type to a different type. For example, the cast 
from a floating-point number x to an integer is expressed in Java by the cast notation (int) x.

catch clause  A part of a try block that is executed when a matching exception is thrown by 
any statement in the try block.

Central processing unit (CPU)  The part of a computer that executes the machine instruc-
tions.

Character  A single letter, digit, or symbol.

Check box  A user-interface component that can be used for a binary selection.

Checked exception  An exception that the compiler checks. All checked exceptions must 
be declared or caught.

Class  A programmer-defined data type.

Collection  A data structure that provides a mechanism for adding, removing, and locating 
elements.

Collaborator  A class on which another class depends.

Combo box  A user-interface component that combines a text field with a drop-down list of 
selections.

Command line  The line the user types to start a program in DOS or UNIX or a command 
window in Windows. It consists of the program name followed by any necessary arguments.

Comment  An explanation to help the human reader understand a section of a program; 
ignored by the compiler.

Compiler  A program that translates code in a high-level language (such as Java) to machine 
instructions (such as bytecode for the Java virtual machine).

Compile-time error  An error that is detected when a program is compiled.



 Glossary  549

Component See User-interface component

Composition  An aggregation  relationship where  the aggregated objects do not have an 
existence independent of the containing object.

Computer program  A sequence of instructions that is executed by a computer.

Concatenation  Placing one string after another to form a new string.

Concrete class  A class that can be instantiated.

Console program  A Java program that does not have a graphical window. A console pro-
gram reads input from the keyboard and writes output to the terminal screen.

Constant  A value that cannot be changed by a program. In Java, constants are defined with 
the reserved word final.

Constructor  A sequence of statements for initializing a newly instantiated object.

Container  A user-interface component that can hold other components and present them 
together to the user. Also, a data structure, such as a list, that can hold a collection of objects 
and present them individually to a program.

Content pane  The part of a Swing frame that holds the user-interface components of the 
frame.

Coupling  The degree to which classes are related to each other by dependency.

CRC card  An index card representing a class that lists its responsibilities and collaborating 
classes.

De Morgan’s Law  A law about logical operations that describes how to negate expressions 
formed with and and or operations.

Debugger  A program that lets a user run another program one or a few steps at a time, stop 
execution, and inspect the variables in order to analyze it for bugs.

Dependency  The uses relationship between classes, in which one class needs services pro-
vided by another class.

Directory  A structure on a disk that can hold files or other directories; also called a folder.

Dot notation  The notation object.method(arguments) or object.variable used to invoke a 
method or access a vari able.

Doubly-linked list  A linked list in which each link has a reference to both its predecessor 
and successor links.

Dynamic method lookup  Selecting a method to be invoked at run time. In Java, dynamic 
method lookup consid ers the class of the implicit parameter object to select the appropriate 
method.

Editor  A program for writing and modifying text files.

Encapsulation  The hiding of implementation details.

Enumeration type  A type with a finite number of values, each of which has its own sym-
bolic name.

Escape character  A character in text that is not taken literally but has a special meaning 
when combined with the character or characters that follow it. The \ character is an escape 
character in Java strings.

Escape sequence  A sequence of characters that starts with an escape character, such as \n 
or \".



550   Glossary

Event  See User-interface event

Event class  A class that contains information about an event, such as its source.

Event adapter  A class that implements an event listener interface by defining all methods 
to do nothing.

Event handler  A method that is executed when an event occurs.

Event listener  An object that is notified by an event source when an event occurs.

Event source  An object that can notify other classes of events.

Exception  A class that signals a condition that prevents the program from continuing nor-
mally. When such a con dition occurs, an object of the exception class is thrown.

Exception handler  A sequence of statements that is given control when an exception of a 
particular type has been thrown and caught.

Explicit parameter  A parameter of a method other than the object on which the method is 
invoked.

Expression  A syntactical construct that is made up of constants, variables, method calls, 
and the operators combining them.

Extension  The last part of a file name, which specifies the file type. For example, the exten-
sion .java denotes a Java file.

Fibonacci numbers  The sequence of numbers 1, 1, 2, 3, 5, 8, 13, . . . , in which every term is 
the sum of its two predecessors.

File  A sequence of bytes that is stored on disk.

finally clause  A part of a try block that is executed no matter how the try block is exited.

Flag See Boolean type

Floating-point number  A number that can have a fractional part.

Flow layout  A layout management scheme in which components are laid out left to right.

Folder See Directory

Font  A set of character shapes in a particular style and size.

Frame  A window with a border and a title bar.

Garbage collection  Automatic reclamation of memory occupied by objects that are no 
longer referenced.

Generic class  A class with one or more type parameters.

Generic programming  Providing program components that can be reused in a wide vari-
ety of situations.

Graphics context  A class through which a programmer can cause shapes to appear on a 
window or off-screen bit map.

grep  The “global regular expression print” search program, useful  for finding all strings 
matching a pattern in a set of files.

Grid layout  A layout management scheme in which components are placed into a two-
dimensional grid. 

GUI (Graphical User Interface)  A user interface in which the user supplies inputs through 
graphical components such as buttons, menus, and text fields.

Hard disk  A device that stores information on rotating platters with magnetic coating.



 Glossary  551

Hardware  The physical equipment for a computer or another device.

Hash code  A value that is computed by a hash function.

Hash collision  Two different objects for which a hash function computes identical values.

Hash function  A function that computes an integer value from an object in such a way that 
different objects are likely to yield different values.

Hash table  A data structure in which elements are mapped to array positions according to 
their hash function val ues.

Hashing  Applying a hash function to a set of objects.

Heapsort algorithm  A sorting algorithm that inserts the values to be sorted into a heap.

High-level programming language  A programming language that provides an abstract 
view of a computer and allows programmers to focus on their problem domain.

HTML (Hypertext Markup Language)  The language in which web pages are described. 

HTTP (Hypertext Transfer Protocol)  The protocol that defines communication between 
web browsers and web servers. 

IDE (Integrated Development Environment)  A  programming  environment  that 
includes an editor, compiler, and debugger. 

Implementing an interface Implementing a class that defines all methods specified in the 
interface.

Implicit parameter  The object on which a method is  invoked. For example,  in the call 
x.f(y), the object x is the implicit parameter of the method f.

Importing a class or package  Indicating the intention of referring to a class, or all classes 
in a package, by the simple name rather than the qualified name.

Inheritance  The is-a relationship between a more general superclass and a more specialized 
subclass.

Initialization  Setting a variable to a well-defined value when it is created.

Inner class  A class that is defined inside another class.

Instance method  A method with an implicit parameter; that is, a method that is invoked 
on an instance of a class.

Instance of a class  An object whose type is that class.

Instance variable  A variable defined in a class for which every object of the class has its 
own value.

Instantiation of a class  Construction of an object of that class.

Integer  A number that cannot have a fractional part.

Integer division  Taking the quotient of two integers and discarding the remainder. In Java 
the / symbol denotes integer division if both arguments are integers. For example, 11/4 is 2, not 
2.75.

Interface  A type with no instance variables, only abstract methods and constants.

Internet  A worldwide collection of networks, routing equipment, and computers using a 
common set of proto cols that define how participants interact with each other.

Iterator  An object that can inspect all elements in a container such as a linked list.



552   Glossary

javadoc  The documentation generator in the Java SDK. It extracts documentation com-
ments from Java source files and produces a set of linked HTML files.

JDK  The Java software development kit that contains the Java compiler and related develop-
ment tools.

JVM  The Java Virtual Machine.

Layout manager  A class that arranges user-interface components inside a container.

Lazy evaluation  Deferring the computation of a value until it is needed, thereby avoiding 
the computation if the value is never needed.

Lexicographic ordering  Ordering strings in the same order as in a dictionary, by skipping 
all matching charac ters and comparing the first non-matching characters of both strings. For 
example, “orbit” comes before “orchid” in lexicographic ordering. Note that in Java, unlike a 
dictionary, the ordering is case sensitive: Z comes before a.

Library  A set of precompiled classes that can be included in programs.

Linear search  Searching a container (such as an array or list) for an object by inspecting 
each element in turn.

Linked list  A data structure that can hold an arbitrary number of objects, each of which is 
stored in a link object, which contains a pointer to the next link.

Literal  A constant value in a program that is explicitly written as a number, such as –2 or 
6.02214115E23 or as a character sequence, such as "Harry".

Local variable  A variable whose scope is a block.

Logging  Sending messages that trace the progress of a program to a file or window.

Logical operator  See Boolean operator.

Logic error  An error in a syntactically correct program that causes it to act differently from 
its specification. (A form of run-time error.)

Loop  A sequence of instructions that is executed repeatedly.

Loop and a half  A loop whose termination decision is neither at the beginning nor at the 
end.

Machine code  Instructions that can be executed directly by the CPU.

Magic number  A number that appears in a program without explanation.

main method  The method that is first called when a Java application executes.

Map  A data structure that keeps associations between key and value objects.

Memory location  A value that specifies the location of data in computer memory.

Merge sort  A sorting algorithm that  first  sorts  two halves of a data  structure and  then 
merges the sorted subarrays together.

Method  A sequence of statements that has a name, may have parameter variables, and may 
return a value. A method can be invoked any number of times, with different values for its 
parameter variables.

Modifier  A reserved word that indicates the accessibility of a feature, such as  private or 
public.

Modulus  The % operator that computes the remainder of an integer division.

Mutator method  A method that changes the state of an object.



 Glossary  553

Mutual recursion  Cooperating methods that call each other.

Name clash  Accidentally using the same name to denote two program features in a way 
that cannot be resolved by the compiler.

Nested loop  A loop that is contained in another loop.

Networks  An interconnected system of computers and other devices.

new operator  An operator that allocates new objects.

Newline  The '\n' character, which indicates the end of a line.

Null reference  A reference that does not refer to any object.

Number literal  A constant value in a program this is explicitly written as a number, such as 
–2 or 6.02214115E23.

Object  A value of a class type.

Object-oriented programming  Designing a program by discovering objects, their prop-
erties, and their relationships.

Object reference  A value that denotes the location of an object in memory. In Java, a vari-
able whose type is a class contains a reference to an object of that class.

Off-by-one error  A common programming error in which a value is one larger or smaller 
than it should be.

Operating system  The software that launches application programs and provides services 
(such as a file system) for those programs.

Operator  A symbol denoting a mathematical or logical operation, such as + or &&.

Operator associativity  The rule that governs in which order operators of the same prece-
dence are executed. For example, in Java the - operator is left-associative because a - b - c is 
interpreted as (a - b) - c, and = is right-asso ciative because a = b = c is interpreted as a = (b = c).

Operator precedence  The rule that governs which operator is evaluated first. For exam-
ple, in Java the && opera tor has a higher precedence than the || operator. Hence a || b && c is 
interpreted as a || (b && c). (See Appendix B.)

Overloading  Giving more than one meaning to a method name.

Overriding  Redefining a method in a subclass.

Package  A collection of related classes. The import statement is used to access one or more 
classes in a package.

Panel  A user-interface component with no visual appearance. It can be used to group other 
components.

Parallel arrays  Arrays of the same length, in which corresponding elements are logically 
related.

Parameter  An item of information that is specified to a method when the method is called. 
For example, in the call System.out.println(“Hello, World!”), the parameters are the implicit 
parameter System.out and the explicit param eter “Hello, World!”.

Parameter passing  Specifying expressions to be arguments for a method when it is called.

Parameter variable  A variable of a method that is initialized with a value when the method 
is called.

Partially filled array  An array that is not filled to capacity, together with a companion 
variable that indicates the number of elements actually stored.



554   Glossary

Permutation  A rearrangement of a set of values.

Polymorphism  Selecting a method among several methods that have the same name on the 
basis of the actual types of the implicit parameters.

Postfix operator  A unary operator that is written after its argument.

Prefix operator  A unary operator that is written before its argument.

Primitive type  In Java, a number type or boolean.

Priority queue  An abstract data type that enables efficient insertion of elements and effi-
cient removal of the smallest element. 

Programming  The act of designing and implementing computer programs.

Project  A collection of source files and their dependencies.

Prompt  A string that tells the user to provide input.

Pseudocode A high-level description of the actions of a program or algorithm, using a mix-
ture of English and informal programming language syntax.

Pseudorandom number  A number that appears to be random but is generated by a math-
ematical formula.

Public interface  The  features  (methods,  variables,  and  nested  types)  of  a  class  that  are 
accessible to all clients.

Queue  A collection of items with “first-in, first-out” retrieval. 

Quicksort  A generally fast sorting algorithm that picks an element, called the pivot, parti-
tions the sequence into the elements smaller than the pivot and those larger than the pivot, and 
then recursively sorts the subsequences. 

Radio button  A user-interface component  that  can be used  for  selecting one of  several 
options.

RAM (random-access memory)  Electronic circuits in a computer that can store code and 
data of running pro grams.

Random access  The ability to access any value directly without having to read the values 
preceding it.

Recursion  A method for computing a result by decomposing the inputs into simpler values 
and applying the same method to them.

Recursive method  A method that can call itself with simpler values. It must handle the 
simplest values without calling itself.

Redirection  Linking the input or output of a program to a file instead of the keyboard or 
display.

Reference See Object reference

Regular expression  A string that defines a set of matching strings according to their con-
tent. Each part of a reg ular expression can be a specific required character; one of a set of per-
mitted characters such as [abc], which can be a range such as [a-z]; any character not in a set 
of forbidden characters, such as [^0-9]; a repetition of one or more matches, such as [0-9]+, or 
zero or more, such as [ACGT]; one of a set of alternatives, such as and|et|und; or various other 
possibilities. For example, “[A-Za-z][0-9]+” matches “Cloud9” or “007” but not “Jack”.

Relational operator  An operator that compares two values, yielding a Boolean result.

Reserved word  A word that has a special meaning in a programming language and there-
fore cannot be used as a name by the programmer.



 Glossary  555

Return value  The value returned by a method through a return statement.

Reverse Polish notation  A style of writing expressions in which the operators are written 
following the oper ands, such as 2 3 4 * + for 2 + 3 * 4.

Roundoff error  An error introduced by the fact that the computer can store only a finite 
number of digits of a floating-point number.

Run-time error An error in a syntactically correct program that causes it to act differently 
from its specification.

Run-time stack  The data structure that stores the local variables of all called methods as a 
program runs.

Scope  The part of a program in which a variable is defined.

Secondary storage  Storage that persists without electricity, e.g., a hard disk.

Selection sort  A sorting algorithm in which the smallest element is repeatedly found and 
removed until no ele ments remain.

Sentinel  A value in input that is not to be used as an actual input value but to signal the end 
of input.

Sequential access  Accessing values one after another without skipping over any of them.

Sequential search See Linear search

Set  An unordered collection  that allows efficient addition,  location, and removal of ele-
ments. 

Shadowing  Hiding a variable by defining another one with the same name.

Shell script  A file that contains commands for running programs and manipulating files. 
Typing the name of the shell script file on the command line causes those commands to be 
executed.

Shell window  A window for interacting with an operating system through textual com-
mands.

Short-circuit evaluation  Evaluating only a part of an expression if the remainder cannot 
change the result.

Sign bit  The bit of a binary number that indicates whether the number is positive or nega-
tive.

Software  The intangible instructions and data that are necessary for operating a computer 
or another device.

Source code  Instructions in a programming language that need to be translated before exe-
cution on a computer.

Source file  A file containing instructions in a programming language such as Java.

Stack  A  data  structure  with  “last-in,  first-out”  retrieval.  Elements  can  be  added  and 
removed only at one position, called the top of the stack.

Stack trace  A printout of the call stack, listing all currently pending method calls.

State  The current value of an object, which is determined by the cumulative action of all 
methods that were invoked on it.

State diagram  A diagram that depicts state transitions and their causes.

Statement  A syntactical unit in a program. In Java a statement is either a simple statement, 
a compound statement, or a block.



556   Glossary

Static method  A method with no implicit parameter. 

Static variable  A variable defined in a class that has only one value for the whole class, and 
which can be accessed and changed by any method of that class.

Stepwise refinement  The process of solving a problem that starts out with a subdivision 
into steps, then continues by further subdividing those steps.

String  A sequence of characters.

Stub  A method with no or minimal functionality.

Subclass  A class that inherits variables and methods from a superclass but adds instance 
variables, adds methods, or redefines methods.

Substitution principle  The principle that a subclass object can be used in place of any 
superclass object.

Superclass  A general class from which a more specialized class (a subclass) inherits.

Swing  A Java toolkit for implementing graphical user interfaces.

Symmetric bounds  Bounds that include the starting index and the ending index.

Syntax  Rules that define how to form instructions in a particular programming language.

Syntax diagram  A graphical representation of grammar rules.

Syntax error  An instruction that does not follow the programming language rules and is 
rejected by the compiler. (A form of compile-time error.)

Tab character  The '\t' character, which advances the next character on the line to the next 
one of a set of fixed positions known as tab stops.

Ternary operator  An  operator  with  three  arguments.  Java  has  one  ternary  operator, 
a ? b : c.

Text field  A user-interface component that allows a user to provide text input.

Text file  A file in which values are stored in their text representation.

Throwing an exception  Indicating an abnormal condition by terminating the normal con-
trol flow of a program and transferring control to a matching catch clause.

throws specifier  Indicates the types of the checked exceptions that a method may throw.

Token  A sequence of consecutive characters from an input source that belongs together for 
the purpose of analyz ing the input. For example, a token can be a sequence of characters other 
than white space. 

Trace message  A message that is printed during a program run for debugging purposes.

Tree  A data structure consisting of nodes, each of which has a list of child nodes, and one of 
which is distinguished as the root node.

try block  A block of statements that contains exception processing clauses. A try block 
contains at least one catch or finally clause.

Turing machine  A very simple model of computation that is used in theoretical computer 
science to explore computability of problems.

Two-dimensional array  A tabular arrangement of elements in which an element is speci-
fied by a row and a col umn index.

Type  A named set of values and the operations that can be carried out with them.



 Glossary  557

Type parameter  A parameter in a generic class or method that can be replaced with an 
actual type.

Unary operator  An operator with one argument.

Unchecked exception  An exception that the compiler doesn’t check.

Unicode  A standard code that assigns code values consisting of two bytes to characters used 
in scripts around the world. Java stores all characters as their Unicode values.

Unified Modeling Language (UML)  A notation for specifying, visualizing, constructing, 
and documenting the artifacts of software systems.

Uninitialized variable  A variable that has not been set to a particular value. In Java, using 
an uninitialized local variable is a syntax error.

Unit test  A test of a method by itself, isolated from the remainder of the program.

URL (uniform resource locator)  A pointer to an information resource (such as a web 
page or an image) on the World Wide Web. 

User-interface component  A building block for a graphical user interface, such as a but-
ton or a text field. User-interface components are used to present information to the user and 
allow the user to enter information to the pro gram.

User-interface event  A notification to a program that a user action such as a key press, 
mouse move, or menu selection has occurred.

Variable  A symbol in a program that identifies a storage location that can hold different 
values.

Virtual machine  A program that simulates a CPU that can be implemented efficiently on 
a variety of actual machines. A given program in Java bytecode can be executed by any Java 
virtual machine, regardless of which CPU is used to run the virtual machine itself.

void  A reserved word indicating no type or an unknown type.

Walkthrough  A step-by-step manual simulation of a computer program.

White space  Any sequence of only space, tab, and newline characters.

Wrapper class  A class that contains a primitive type value, such as Integer.





559

Index

Symbols
( ) (parentheses)

enclosing arguments, 13
in expressions, unbalanced, 46–47

\ (backslash)
escape character, 60, 321
in string literals, 321

= (equal sign)
assignment statement, 34
vs. equal signs (==), 89

== (equal signs)
comparing strings, 90, 92
equal operator, 88–89
vs. equal sign (=), 89

% (percent sign)
in format specifiers, 329
modulus operator, description, 42
modulus operator, online example, 45

, (comma)
separating arguments, 13
show decimal separators, 328

: (colon), path separator, 522
{ } (braces)

layout, 86
matching, 86
readability, 86

&& (ampersands), and operator
definition, 111
flowchart, 112
negating, 115–116
vs. or operator, 114
short-circuit evaluation, 114–115

* (asterisk), multiplication operator, 41
^ (caret), convert letters to uppercase, 328t
$ (dollar sign), in variable names, 33
" (double quote), String character 

delimiter, 61
! (exclamation point), not operator, 112
!= (exclamation point, equal), not equal 

operator, 88–89
> (greater than), comparison operator, 88–89
>= (greater than, equal), comparison 

operator, 88–89
( (left paren), enclose negative numbers in 

parentheses, 328
< (less than), comparison operator, 88–89
<= (less than, equal), comparison 

operator, 88–89

? (question mark), conditional operator, 87. 
See also if statements

' (single quote), character literal 
delimiter, 61

_ (underscore), in variable names, 33
|| (vertical lines), or operator

definition, 111
flowchart, 112
negating, 115–116
vs. and operator, 114
short-circuit evaluation, 114–115

/ (slash), division operator, 41, 42
/**...*/ (slash asterisks...)

explanatory comment delimiter, 36
method comment delimiter, 207

/*...*/ (slash asterisk...), long comment 
delimiter, 36

// (slashes), short comment delimiter, 35–36
+ (plus sign)

addition operator, 41
concatenation operator, 59–60
for positive numbers, 328

++ (plus signs), increment operator, 41
- (hyphen), indicating program options, 330
- (minus sign)

left alignment, 328
subtraction operator, 41

-- (minus signs), decrement operator, 41
; (semicolon)

after an if condition, 86–87
ending Java statements, 12–13
omitting, 14
path separator, 522

2D arrays. See arrays, two-dimensional

A
abs method, Math class, 44t, 526
absolute values, computing, 44t, 526
abstract classes, 434–435
AbstractButton class, 539
accessor methods

data representation, 371–372
definition, 369

accounting fraud detection,  
video example, 352

acos method, Math class, 527
ActionListener class, 521



560   Index

actionPerformed method, ActionListener 
class, 471–475, 521

actual parameters. See arguments
add method

ArrayList<E> class, 291, 532
with big number objects, 40
BigDecimal class, 531
BigInteger class, 531
ButtonGroup class, 540
Collection<E> class, 533
Container class, 518
JMenu class, 542
JMenuBar class, 542
ListIterator<E> class, 536

addActionListener method, AbstractButton 
class, 481, 539

addChangeListener method, JSlider class, 543
addFirst method, LinkedList<E> class, 535
addItem method, JComboBox class, 540
addKeyListener method, Component class, 518
addLast method, LinkedList<E> class, 535
addMouseListener method, Component 

class, 518
Adleman, Leonard, 336
algorithms

for array lists, 295. See also arrays, 
common algorithms

for arrays. See arrays, common 
algorithms

definition, 19
encryption, 336
for loops. See loops, common algorithms

algorithms, designing
executable steps, 19
overview, 16–18
pseudocode, 18, 20–21
terminating steps, 19
unambiguous steps, 19

algorithms, examples
comparison shopping for cars, 20–21
dividing household expenses (video 

example), 21
investment problem, 17–18

aligning text with
format specifiers, 328
tabs, 87

alphabets, international, 66
Altair 8800 computer kit, 232
ampersands (&&), and operator

definition, 111
flowchart, 112
negating, 115–116
vs. or operator, 114
short-circuit evaluation, 114–115

anonymous inner classes, 480–481
API (application programming interface), 

definition, 53
API documentation, 53
append method, JTextArea class, 484, 543
appending

array list elements, 532
text to text areas, 484, 543

Apple II computer, 232
Apple Macintosh computer, 233
applets. See programs
application programmers, 53
application programming interface (API), 

definition, 53
applications. See programs
Arabic characters, 66
arc cosine, computing, 527
arc sine, computing, 527
arc tangent, computing, 527
args parameter, 331
arguments, methods

definition, 203
modifying, 209–210

arguments, passing to methods
from the command line, 330–333
overview, 207–209
syntax, 13

Ariane rocket incident, 347
arithmetic. See also numbers

combining with assignment  
statements, 47

expressions. See expressions
arithmetic operations

* (asterisk), multiplication operator, 41
-- (minus signs), decrement operator, 4 

(percent sign), modulus, 42
++ (plus signs), increment operator, 41
/ (slash), division operator, 41, 42
abs method, Math class, 44t
cos method, Math class, 43t
exp method, Math class, 43t
log method, Math class, 43t
log10 method, Math class, 44t
max method, Math class, 44t
min method, Math class, 44t
PI constant, Math class, 45t
pow method, Math class, 43t
round method, Math class, 44t
sin method, Math class, 43t
sqrt method, Math class, 43t
tan method, Math class, 43t
toDegrees method, Math class, 43t
toRadians method, Math class, 43t



 Index  561

array lists. See also arrays; collections
algorithms, 295. See also arrays, common 

algorithms
vs. arrays, 296–297
auto-boxing, 294
constructors, 290–291
copying, 293
creating, 290–292, 532
definition, 289
diamond syntax, 299
inserting primitive type values, 293–294
maximum value, finding, 295
as method arguments and return  

values, 293
overview, 290–292
storing input values, 295
syntax, 290
type parameter, repeating, 299
wrapper classes, 293–294

array lists, elements
appending, 532
counting, 299, 533
getting, 532
inserting, 532
removing, 295–296, 532
replacing, 532

array references
copying, 253, 263–264
definition, 253

ArrayIndexOutOfBoundsException class, 275
ArrayList<E> class, 290–292, 532–533
arrays. See also array lists; collections

vs. array lists, 296–297
averaging values, 259
common algorithms, 258–266
companion variables, 254–255
converting to strings, 533
copying, 263–264, 533
declaring, 250–253
elements of, 251
filling, 257–258
maximum/minimum value, finding, 259
multidimensional, 289. See also arrays, 

two-dimensional
online example, 254
overview, 250–253
partially filled, 254–255
reading input, 264–267
slot numbers. See indexes
summing values, 259
syntax, 251
traversing, 257–258
uses for, 256

arrays, common algorithms. See also array 
lists, algorithms

adapting to new purposes, 272–274
animation, 261
averaging values, 259
copying array references, 263–264
copying arrays, 263–264
element separators, 259–260
increasing size of, 263–264
inserting elements, 261, 279
linear search, 260
maximum/minimum value, finding, 259
online example, 281
reading input, 264–267
removing elements, 260–261, 279
simulating with physical objects, 

279–282
sorting by swapping elements, 262
summing values, 259
swapping elements, 262, 279–281

arrays, elements
accessing, 251, 253
animation, 261
counting, 299
definition, 251
inserting, 261, 279
multiplying by a given factor, 268–271
removing, 260–261, 279
removing duplicates (video example), 282
reversing, 270–271
separators, 259–260
swapping, 262, 279–281

arrays, examples
counting medal winners, 286–287
quiz scores, 275–278
rolling dice, 278

arrays, indexes
bounds errors, 252–253, 255, 275
definition, 251
starting number, 252

arrays, initializing
default values, 250–251
uninitialized arrays, 255
with zeros, 257–258

arrays, length
definition, 250
increasing, 263–264
size requirements, estimating, 267

arrays, searching
binary search, 267–268, 533
linear search, 260

arrays, sorting
with the Arrays.sort method, 267, 533
by swapping elements, 262



562   Index

arrays, two-dimensional. See also 
multidimensional arrays

accessing elements, 283–284
animation, 285
declaring, 283
definition, 282
locating neighboring elements, 284
passing as argument to a  

method, 286–287
syntax, 283
totaling rows and columns, 285
tracing a nested loop (animation), 285

arrays, with methods
passing as arguments to methods, 

268–269, 286–287
returning values from methods, 270
sample program, 270–271

Arrays class, 533
artificial intelligence, 119
asin method, Math class, 527
assignment statements

assigning values to variables, 34
combining with arithmetic, 47
sample program, 36

asterisk (*), multiplication operator, 41
asymmetric bounds, 155
atan method, Math class, 527
atan2 method, Math class, 527
average method, 450–451
averages, calculating, 259, 449–454

B
baby names analysis

worked example, 337
backing up files, 11
bank account worked example, 385
bar charts, drawing on user-interface  

components, 487–489, 492–496, 500
BigDecimal class, 40, 531
BigInteger class, 40, 531
binary data, reading, 322–323
binary search, 267–268
binarySearch method

Arrays class, 533
Collections class, 534

black boxes, methods as, 202–203
Boole, George, 111
Boolean class, 294, 524
Boolean variables and operators

controlling loops, 159–160
De Morgan’s Law, 115–116
inverting conditions, 112, 115–116
online example, 112

overview, 111–116. See also specific 
variables and operators

truth tables, 111
booleanValue method, Boolean class, 524
BorderLayout class, 517
borders, user-interface components, 517, 

541, 544
boundary conditions, testing, 108
bounding boxes, drawing on user-interface 

components, 489
bounds errors, 252–253, 255, 275
bounds for loops, choosing, 155
boxString method

online example, 214
printing a string in a box, 214–215

braces ({ })
layout, 86
matching, 86
readability, 86

branching, if statements
animation, 96, 100
code duplication, 88
multiple alternatives, 96–99
nesting branches, 100–102, 104

branching, switch statements, 99
break statements

in loops, 160–161
in switch statements, 99

buffer overrun attack, 256
bugs, first actual case, 146. See also 

debugging
button groups, 468, 540
button labels, 468, 540
ButtonFrame1.java class, 472–473
ButtonFrame2.java class, 474–475
ButtonGroup class, 540
buttons, 468, 539
buttons, detecting. See events
ButtonViewer1.java class, 473
by-hand computations. See tracing code
Byte class, 294
byte type, 40t
bytes, definition, 322

C
CaesarCipher.java class, 331–333
Caesar’s cipher, 331–333
Calendar class, 533. See also GregorianCalendar 

class
calendars, 533, 535
calling methods. See methods, calling
camel case, 33
capital letters. See case sensitivity
car shopping, example, 20–21



 Index  563

caret (^), convert letters to uppercase, 328t
cars, self-driving, 119
case sensitivity

definition, 9
Java programming language, 9
misspelling words, 16
variables, 33

cash register simulation, 367–369
CashRegister.java class

online examples, 372, 387
sample program, 368–369, 377–378

CashRegisterTester.java class, 381–382
cast operator

converting double to int, 44–45
syntax, 44

casting data types, 444–446
catch clause, 339–341, 346
catching exceptions, 339–344, 345
“The Cathedral and the Bazaar,” 402
ceil method, Math class, 527
ceiling value, computing, 527
cell phone plans, evaluating (video  

example), 161
central processing unit (CPU), 3
ChangeEvent class, 545
ChangeListener class, 545
char type

characters, 59
description, 40t

Character class, 294, 324, 524–525
character literals, delimiting, 61
characters. See also strings

Arabic, 66
char type, 59
Chinese, 66
classifying, 324
definition, 59
Egyptian hieroglyphics, 66
German, 66
Greek, 66
Hebrew, 66
international alphabets, 66
Korean, 66
reading from a string, 326
reading text files, 324
returning from strings, 61. See also 

substrings
Russian, 66
sorting, 93
Thai, 66
Unicode, 66

charAt method, 61
ChartComponent2.java class, 491–492
ChartComponent.java class, 488, 494

ChartViewer2.java class, 492
ChartViewer.java class, 488–489
check boxes, 540
checked exceptions, 341–343
Chinese characters, 66
ChoiceQuestion.java class, 426–427
Class class, 525
class files, definition, 9
classes. See also specific classes

abstract, 434–435
API documentation, 53
bank account worked example, 385
concrete, 435
declaring, 12
definition, 12, 362
final, 435
generic, 290
implementing, How To, 382–385
importing from packages, 49
vs. interface types, 449
listener, 473–475
loading, 525
main methods, 380
naming conventions, 33
private implementation, 367–369
public. See public classes
tester, 380–382
testing, 380–382
unit testing, 380–382

classes, inner
anonymous, 480–481
declaring inside a method, 479–480
definition, 474
as event listeners, 473–475
local, 479–480

classes, public interface
definition, 363
hiding implementation details. See 

encapsulation
implementing, 364–367
specifying, 367–369

ClickListener.java class, 471–472
close method

automatic invocation, 346
closing a file, 319, 523
InputStream class, 523
OutputStream class, 523
PrintStream class, 524
PrintWriter class, 524
Scanner class, 538

code duplication
branching if statements, 88
eliminating, 215–217

collecting values, instance variables for, 
389–390



564   Index

Collection<E> class, 533–534
collections. See also array lists; arrays

duplicate elements, 538
searching, 534
sorting, 534

collections, elements
adding, 533
counting, 534
no duplicates, 538
removing, 534
testing for, 534
traversing, 534

Collections class, 534
colon (:), path separator, 522
color

predefined palette, 490
user-interface components, 489–492,  

518, 520
Color class, 491–492, 518
combo boxes, 540
comma (,)

separating arguments, 13
show decimal separators, 328

command line arguments, 330–333
comments

/*...*/ (slash asterisk...), long comment 
delimiter, 36

/**...*/ (slash asterisks...), explanatory 
comment delimiter, 36

// (slashes), short comment delimiter, 
35–36

definition, 35
generating documentation from. See 

javadoc utility
methods, 207
purpose of, 35–37

companion variables, 254–255
Comparable<T> class, 452, 525
Comparator<T> class, 534
compare method, Comparator<T> class, 534
compareTo method

Comparable<T> class, 525
lexicographic ordering of strings, 92–93
String class, 529

comparison shopping for cars,  
example, 20–21

comparisons
floating-point numbers, 91–92
lexicographic (dictionary) order of 

strings, 92–93, 529
numbers, 88–92
objects, 452, 525, 529, 534
online example, 90
precedence, 90

strings, 88–92, 529
syntax, 89
testing if results are close enough, 91–92

comparisons, relational operators
combining, 113–114
overview, 88
summary of, 89t. See also specific 

operators
compile-time errors, 15
compiling programs

animation, 10
compilation process (animation), 10
identifying text strings, 13
in an integrated development 

environment, 9
source code, 9
video example, 11

Component class, 518
computations, by hand. See tracing code
computer programs. See programs
computers

Altair 8800 kit, 232
Apple II, 232
Apple Macintosh, 233
ENIAC (electronic numerical integrator 

and computer), 5
human beings as, 5
IBM Personal Computer, 232–233
Macintosh, 233
personal computers, history of, 232–233

computers, components of
CPU (central processing unit), 3
hard disks, 3
input, 4
networks, 4
output, 4
primary storage, 3
secondary storage, 3
storage, 3
storage devices. See specific devices
transistors, 3

concatenating strings, 59–60
concrete classes, 435
conditional operator, (?), 87
confirmation dialog boxes, 542
console window

in an integrated development 
environment, 8

writing to, 530
constants. See also variables

declaring, 35
definition, 35
distinguishing from variables, 35
interface types, 453



 Index  565

magic numbers, 39
named, 35
sample program, 36

constructors
array lists, 290–291
clearing objects, 379
default values, 376
definition, 375
multiple per class, 375
naming, 375
new reserved word, 379
returning values, 375
with superclass initializer, 430
syntax, 376
uninitialized, 376
void reserved word, 379

constructors, calling
to clear objects, 379
with new reserved word, 375
one from another, 399–400
for superclasses, 429–430

consuming white space, 323–324, 327
Container class, 518–519
containers

adding user-interface components, 518
layout manager, setting, 519

contains method, Collection<E> class, 534
converting number types. See cast operator
copy protection schemes, 182
copying

array lists, 293
array references, 263–264
arrays, 263–264
object references, 396

copyOf method, Arrays class, 263–264, 533
cos method, Math class, 43t, 527
cosine, computing, 43t, 527
cost of stamps, example, 56
count-controlled loops. See for loops
Counter.java class

example, 365–367
online example, 366
syntax, 365

counters
hardware, example, 364–367
software, in loops. See loops, counters

CounterTester program, online example, 366
counting

array list elements, 299, 533
collection elements, 534
events, instance variables for, 389
medal winners, example, 286–287

course grade calculation example, 225
coverage, testing, 108

CPU (central processing unit), 3
credit card processing, example, 172
crossword puzzles (video example), 500
Cubes.java class, 206
current time, in milliseconds, 530
currentTimeMillis method, System class, 530
CYC project, 119

D
dangling else problem, 104
DARPA urban challenge, 119
data sets, estimating size, 267–268
data types

numbers, summary of, 40t. See also 
specific types

primitive, 64
testing, 444–446

DataAnalyzer.java class, 347–351
date and time

calendars, 533, 535
current time, in milliseconds, 530
formatting, 532
Gregorian calendar, 535
time zone, setting, 532

DateFormat class, 532
De Morgan’s Law, 115–116
debugging

bugs, first actual case, 146
overriding toString method, 442–443
separating array elements, 260
string representation of objects, 442–443
video example, 228

decisions. See Boolean variables and 
operators; comparisons; conditional 
operator; if statements

declaring
array lists, 290–292
arrays, 250–253
classes, 12
constants, 35
loop counters, 152–153
main method, 12
two-dimensional arrays, 283
variables, 30–32

decrementing/incrementing loop  
counters, 152

definite loops. See for loops
degrees, converting to radians, 528
Denver airport luggage handling system, 95
dialog boxes

choosing file names from a list, 321–322
confirmation, 542
input, 542
for input/output, 65



566   Index

dialog boxes (continued)
online example, 65, 322
Open File, 541
Save File, 541

diamond syntax, 299
Dice.java class, 177
dictionary (lexicographic) order of strings, 

92–93, 529
die tosses, simulating, 177
digits, testing for, 324t
digitSum method

online example, 233
summing the digits of an integer, 231–233

Dimension class, 494, 519
directories, definition, 10. See also folders
discount price calculation

online example, 95
sample program, 93–95

discussion board, video example, 441
distance computations, video example, 65
divide method, BigInteger class, 531
dividing household expenses, video 

example, 21
division, floating-point numbers, 46

division, intege (percent sign),  
modulus, 42

/ (slash), division operator, 41, 42
accidental, 46
remainders, 42
video example, 47

do loops. See also loops
input validation, 156–157
online example, 156
overview, 156–157

documentation
generating from code comments. See 

javadoc utility
online example, 368

dollar sign ($), in variable names, 33
dongles, 182
DOS (disk operating system), 233
dot notation, 64
Double class, 294, 525
double quote ("), String character 

delimiter, 61
double type. See also floating-point numbers

assigning to an integer, 44
converting to int, 44–45
description, 40t

DoubleInvestment.java class, 143
doubleValue method, Double class, 525
draw method, 179
drawing

bar charts, 487–489, 492–496, 500

bounding boxes, 489
color, 489–492
default width and height, 497
geometric shapes (video example), 455
graphical shapes, How To, 497–500
lines, 489–492, 519
online example, 500
ovals, 489–492, 519
overview, 179–180
rectangles, 519, 520
repainting changes, 493–496
sample program, 180–181
spirals (video example), 181
squares, 180–181 
strings, 520
text, 489–492

drawLine method, Graphics class, 180, 
489–492, 519

drawOval method, Graphics class, 180, 
489–492, 519

drawRect method, Graphics class, 180, 
489–492, 519

drawString method, Graphics class, 180, 
490–492, 520

duplicate variable names, 226–227
dynamic method lookup, 431, 433–434

E
E constant, 528
earthquakes

Loma Prieta, 96
online example, 98
printing descriptions of, sample 

program, 96–98
Eckert, J. Presper, 5
editors, in an integrated development 

environment, 8
Egyptian hieroglyphics, 66
electronic voting machines, 394
elevator simulator, 84–85, 116–118
ElevatorSimulation2.java class, 117–118
ElevatorSimulation.java class, 84–85
else statements, dangling else problem, 104
empty strings, 59
EmptyFrameViewer.java class, 467
encapsulation, definition, 363
encryption

algorithms, 336
Caesar’s cipher, 331–333
Enigma machine, 318
PGP (Pretty Good Privacy), 337
private keys, 336
public keys, 336
RSA encryption, 336



 Index  567

sample program, 331–333
end-of-file exception, 522
enhanced for loops, 257–258
ENIAC (electronic numerical integrator 

and computer), 5
Enigma encryption machine, 318
enumeration types, 105
EOFException class, 522
equal sign (=)

assignment statement, 34
vs. equal signs (==), 89

equal signs (==)
comparing strings, 90, 92
equal operator, 88–89
vs. equal sign (=), 89

equals method
Object class, 443–444, 447, 529. See also 

instanceof operator
String class, 529
testing strings for equality, 90

equalsIgnoreCase method, String class, 529
Error class, 341, 525
errors. See also exceptions

compile-time, 15
detecting, 337
handling. See exception handling
misspelled words, 16
run-time, 15
stack trace printout, 531

escape sequences, 60–61
EtchedBorder class, 544
event handling, 472. See also events
event listeners

action listeners, 471–472, 521, 539
frames as, 478–479
for horizontal sliders, 543, 545
inner classes as, 473–475
keystrokes, 518, 521
mouse actions, 518, 521–522
mouse position, 521
omitting, 478
overview, 471–473

event sources, 471–473
event-controlled loops. See while loops
EventObject class, 534
events. See also event handling; java.awt.

event package
listening to, 471–473
source object, getting, 534
user-interface, 470–471

exception handlers, 338–341
exception handling. See also specific 

exceptions
animation, 340

catch clause, 339–341, 346
catching exceptions, 339–344, 345
checked exceptions, 341–343
definition, 337
end of file, 522
finally clause, 343–344, 346
flowchart, 339
input errors, sample program, 347–351
online example, 343
squelching exceptions, 345
superclass. See Error class
syntax, 338, 341
throwing exceptions, 338–339, 345
throws clause, 342–343
unchecked exceptions, 341–343

exception reports
error messages, 275
reading and interpreting, 274–275

exceptions. See also errors
array index out of bounds, 275
definition, 15
end of file, 522
file not found, 319–320, 340, 523
illegal argument, 338, 525
illegal state, 526
input mismatch, 349, 535
input/output, 321
interrupting a thread, 526
no such element, 340, 537
null pointer, 528
number format, 340, 529
runtime, 341, 529
throwing, 338–339, 345, 530–531

exclamation point, equal (!=), not equal 
operator, 88–89

exclamation point (!), not operator, 112
executable steps, 19
exit method, System class, 530
exp method, Math class, 43t, 527
expert systems, 119
explicit parameters, 374
exponential floating-point, formatting, 329
exponentiation, 43t, 527–528
expressions

definition, 41
order of operations, 41
spaces in, 47
unbalanced parentheses, 46–47

F
federal tax rate schedule, 100t
Fifth-Generation Project, 119
file chooser, 321–322, 541
File class, 318, 522



568   Index

file names
backslashes, as string literals, 321
choosing from a list, 321

FileInputStream class, 522
FileNotFoundException class, 319–320, 

340, 523
FileOutputStream class, 322–323
files. See also folders

definition, 10
making backup copies, 11

FilledFrame program, online example, 469
FilledFrameViewer.java class, 468
filling arrays, 254–255, 257–258
filling graphic images

ovals, 180, 489–492, 519
rectangles, 180, 519

fillOval method, Graphics class, 180, 
489–492, 519

fillRect method, Graphics class, 180, 519
final classes, 435
final reserved word, omitting, 453
final variables, 35
finally clause, 343–344, 346
fixed floating-point, formatting, 329
flags. See Boolean variables and operators
Float class, 294
float type

description, 40t
vs. double, 39

floating-point bug, Pentium computers, 48
floating-point numbers. See also double type

assigning to an integer, 44
comparing, roundoff errors, 91
comparisons, 91–92
converting to integer, 44–45. See also cast 

operator
definition, 32
division, 46
float type, 39
formatting, 329
mixing with integers, 41
reading, 50
rounding, 45

floor method, Math class, 527
floor value, computing, 527
flowcharts. See also storyboards

elements of, 105–106
overview, 106–108
spaghetti code, 106

FlowLayout class, 519
folders. See also files

definition, 10
hierarchical organization, 10

Font class, 519

font objects, constructing, 519
fonts, user-interface components, 541
for each loops, 257–258
for loops. See also loops

animation, 151
overview, 150–151
sample program, 153–154
syntax, 152

for loops, enhanced
traversing array lists, 292
traversing arrays, 257–258

formal parameters. See parameter variables
format flags, 328–329
format method

DateFormat class, 532
String class, 529

format specifiers, 328–329
formatting date and time, 532
formatting output

, (comma), show decimal separators, 328
^ (caret), convert letters to uppercase, 328
( (left paren), enclose negative numbers 

in parentheses, 328
- (minus sign), left alignment, 328
+ (plus sign), for positive numbers, 328
decimal integers, 329
exponential floating-point, 329
fixed floating-point, 329
format types, 329
general floating-point, 329
online example, 329
show leading zeros, 328
string, 329
writing text files, 328–329

forName method, Class class, 525
Frame class, 519
frames

closing, default action, 467, 541
customizing with inheritance, 469–470
displaying, 466–467
as event listeners, 478–479
extending with main method, 470
grouping components, 468
menu bar, 541
panels, 468
size, setting, 469
titling, 519
user-interface components, 467–468, 541

fraud detection, video example, 352
free software, 402
function objects, 454

G
Game of Life (video example), 299



 Index  569

general floating-point, formatting, 329
General Public License (GPL), 402
genetic code (video example), 118
geometric shapes, drawing. See drawing
German characters, 66
get method

ArrayList<E> class, 291, 532
Calendar class, 533
Map<K, V> class, 536

getFirst method, LinkedList<E> class, 535
getHeight method

Component class, 518
Rectangle class, 520

getLast method, LinkedList<E> class, 535
getMessage method, Throwable class, 341, 531
getProperty method, Properties class, 537
getSelectedFile method, JFileChooser 

class, 322, 541
getSelectedItem method, JComboBox class, 540
getSource method, EventObject class, 534
getter methods, instance variables  

for, 390–391
getText method, JTextComponent class, 

482–483, 545
getTimeInstance method, DateFormat 

class, 532
getValue method, JSlider class, 543
getWidth method, 492–496

Component class, 518
Rectangle class, 520

getX method
MouseEvent class, 521
Rectangle class, 520

getY method
MouseEvent class, 521
Rectangle class, 520

Gosling, James, 5–6
GPL (General Public License), 402
graphical shapes, drawing. See drawing
graphical user interface. See also drawing; 

user interface
reaction to user actions, 470–471. See also 

event handling; events
text processing. See text input

Graphics class, 180, 519–520
Graphics objects, drawing on user-interface 

components, 487–489
greater than, equal (>=), comparison 

operator, 88–89
greater than (>), comparison operator, 88–89
Greek characters, 66
Gregorian calendar, 535
GregorianCalendar class, 535. See also Calendar 

class

grep command, 330
grid layout, user-interface components, 520
GridLayout class, 520
grouping frame components, 468
grow method, Rectangle class, 520

H
hand-tracing. See also tracing code

animation, 149
loops, 147–150
overview, 103–104

hard disks, illustration, 3
hardware, definition, 2
hash maps, creating, 535
hash sets, creating, 535
HashMap<K, V> class, 535
HashSet<E> class, 535
hasNext method

Iterator<E> class, 535
Scanner class, 538

hasNextDouble method, Scanner class, 
116–118, 538

hasNextInt method, Scanner class, 
116–118, 538

hasNextLine method, Scanner class, 
325–326, 538

hasPrevious method, ListIterator<E> 
class, 536

Hebrew characters, 66
“Hello, World!” sample program, 8–9, 

12–14
high-level programming languages, 5. See 

also Java programming language
Hoff, Marcian E., 232
horizontal sliders, 543, 545
household expense division, video  

example, 21
hyphen (-), indicating program options, 330

I
IBM Personal Computer, 232–233
if statements. See also switch statements

? (question mark), conditional 
operator, 87

combining. See nesting, if statements
dangling else problem, 104
flowchart, 83
implementing, How To, 93–95
input validation, 116–118
nesting, 96–102, 104
overview, 82
sample program, 84–85
syntax, 84



570   Index

if statements, branching
animation, 96, 100
code duplication, 88
multiple alternatives, 96–99
nesting branches, 100–102, 104

IllegalArgumentException class, 338, 525
IllegalStateException class, 526
image icons, 540
image pixel manipulation, example, 175
ImageIcon class, 540
immutable variables, 35
implements reserved word, 450–451
implicit parameters

dynamic method lookup, 433–434
overview, 373–374
this references, 397–399

importing classes from packages, 49
income tax

calculating, sample program, 100–102
federal tax rate schedule, 100t

incrementing/decrementing loop  
counters, 152

indenting nested statements with tabs, 87
indexes, arrays

bounds errors, 252–253, 255, 275
definition, 251
starting number, 252

infinite loops, 145
inheritance. See also subclasses; superclasses

animation, 425
customizing frames, 469–470
equals method, 447
hierarchies, 416, 484
overview, 416–417
purpose of, 420
sample programs, 418–419
substitution principle, 416
toString method, 446–447

inheritance hierarchies, developing
How To, 436–441
payroll processing example, 441

initializing
instance variables. See constructors
variables, 31, 34

initializing, arrays
default values, 250–251
uninitialized arrays, 255
with zeros, 257–258

Initials.java class, 62–63
inner classes

anonymous, 480–481
declaring inside a method, 479–480
definition, 474
as event listeners, 473–475

local, 479–480
input. See also java.io package; text input

definition, 4
reading from arrays, 264–267
redirecting, 161

input, reading. See also Scanner class
closing a file, 319, 523
from dialog boxes, 65, 321
end of file, 522
file not found, 348, 350, 523
floating-point numbers, 50
input error, 523
integers, 49–50
from the keyboard, 49, 530
opening a file, 318, 522
prompts, 49
read operation, 523
readers, constructing, 523
strings, from the console, 50. See also next 

method
input dialog boxes, 65, 542
input errors, sample program, 347–351
input mismatch exception, 326, 535
input statements, syntax, 49
input validation

with do loops, 156–157
with if statements, 116–118

InputMismatchException class, 349, 535
InputStream class, 322–323, 523
InputStream in object, 530
InputStreamReader class, 523
inserting

array elements, 261, 279
array list elements, 290–291, 532
primitive type values in array lists, 

293–294
instance methods, 64
instance variables. See also variables

modifiers, 365
accidental changes, 475
declaring, 365
definition, 365
initializing. See constructors
name, 365
online example, 372
overview, 365–367
private, 366
public vs. private, 374
syntax, 365
type, 365
uninitialized, 378–379

instance variables, common patterns
collecting values, 389–390
counting events, 389



 Index  571

describing object position, 392–393
getter methods, 390–391
managing object properties, 390–391
modeling objects with distinct states, 

391–392
running totals, 388–389
setter methods, 390–391

instance variables, in superclasses
protecting, 436
replicating, 423–424

instanceof operator, Object class, 444–445. 
See also equals method

int type. See also integers
converting from double, 44–45
definition, 31–32
description, 40t
maximum value, 38
overflow, 38

Integer class, 294, 526
IntegerName.java class, 221–223
integers. See also int type

assigning floating-point numbers to, 44
converting from floating-point, 44–45. 

See also cast operator
converting from strings, 526
definition, 31
formatting, 329
mixing with floating-point, 41
reading, 49–50
summing the digits of, 231–233

integers, division
% (percent sign), modulus, 42
/ (slash), division operator, 41, 42
accidental, 46
remainders, 42
video example, 47

integrated development environment, 8
interface types

vs. classes, 449
Comparable interface, 452
comparing two objects, 452
constants, 453
defining an interface, 448–450
definition, 449
final reserved word, omitting, 453
function objects, 454
implementing an interface, 450–451
online example, 454
public reserved word, omitting, 453
static reserved word, omitting, 453
syntax, 449

international alphabets, 66
InterruptedException class, 526

intersection method, Rectangle class, 520
intersections of rectangles, computing, 520
intValue method, Integer class, 526
inverting conditions, 112, 115–116
investment problems, examples

designing an algorithm for, 17–18
doubling your investment, 140–143
printing annual balances, 153–154
showing growth, 475–477, 482–483, 

485–486, 492–496
InvestmentFrame.java class, 476–477
InvestmentFrame2.java class, 482–483
InvestmentFrame3.java class, 485–486
InvestmentFrame4.java class, 494–496
InvestmentTable.java class, 153–154
InvestmentViewer.java class, 477
IOException class, 321
isDigit method, Character class, 

324t–325, 524
isEditable method

JComboBox class, 540
JTextComponent class, 545

isLetter method, Character class, 324t, 524
isLowerCase method, Character class, 

324t, 525
isSelected method, AbstractButton class, 539
isUpperCase method, Character class, 

324t, 525
isWhiteSpace method, 324t–325
iteration

end of list, testing for, 535
removing elements, 535
traversing a list, 535

iterator method, Collection<E> class, 534
Iterator<E> class, 535

J
Java library. See also specific packages

description, 6
inheritance hierarchy, 515–517
packages, 7

Java programming environment
class files, 9
compilation process (animation), 10
console window, 8
directories, 10
editors, 8
files, 10
folders, 10
integrated development environment, 8
organizing your work, 10
overview, 8–10
source code, 9



572   Index

Java programming language. See also 
programming languages

case sensitivity, 9
creators of, 5–6
“Hello, World!” sample program, 8–9, 

12–14
portability, 6
safety features, 6
versions, 7t

Java virtual machine (JVM), 6–7
java.awt package. See also user interface 

components
BorderLayout class, 517
Color class, 490, 518
Component class, 518
Container class, 518–519
Dimension class, 519
FlowLayout class, 519
Font class, 519
Frame class, 519
Graphics class, 519–520
GridLayout class, 520
Rectangle class, 520–521

java.awt.event package. See also events
ActionListener class, 472, 521
KeyEvent class, 521
KeyListener class, 521
MouseEvent class, 521
MouseListener class, 522

javadoc utility, 370–371
java.io package. See also input; output

EOFException class, 522
File class, 522
FileInputStream class, 522
FileNotFoundException class, 523
InputStream class, 523
InputStreamReader class, 523
OutputStream class, 523
PrintStream class, 523–524
PrintWriter class, 524

java.lang package
Boolean class, 524
Character class, 524–525
Class class, 525
Comparable<T> class, 525
Double class, 525
Error class, 525
IllegalArgumentException class, 525
IllegalStateException class, 526
Integer class, 526
InterruptedException class, 526
Math class, 526–528
NullPointerException class, 528
NumberFormatException class, 529

Object class, 529
RuntimeException class, 529
String class, 529–530
System class, 530
Throwable class, 530–531

java.math package
BigDecimal class, 531
BigInteger class, 531

java.text package, DateFormat class, 532
java.util package

ArrayList<E> class, 532–533
Arrays class, 533
Calendar class, 533
Collection<E> class, 533–534
Collections class, 534
Comparator<T> class, 534
EventObject class, 534
GregorianCalendar class, 535
HashMap<K, V> class, 535
HashSet<E> class, 535
InputMismatchException class, 535
Iterator<E> class, 535
LinkedList<E> class, 535–536
List<E> class, 536
ListIterator<E> class, 536
Map<K, V> class, 536–537
NoSuchElementException class, 537
PriorityQueue<E> class, 537
Properties class, 537
Queue<E> class, 537
Random class, 537–538
Scanner class, 538
Set<E> class, 538
TreeMap<K, V> class, 538
TreeSet<E> class, 539

java.util.logging package, Level class, 539
javax.swing package. See also user-interface 

components
AbstractButton class, 539
ButtonGroup class, 540
ImageIcon class, 540
JButton class, 540
JCheckBox class, 540
JComboBox class, 540
JComponent class, 541
JFileChooser class, 541
JFrame class, 541
JLabel class, 542
JMenu class, 542
JMenuBar class, 542
JMenuItem class, 542
JOptionPane class, 542
JPanel class, 543
JRadioButton class, 543



 Index  573

JScrollPane class, 543
JSlider class, 543
JTextArea class, 543
JTextComponent class, 545
JTextField class, 544
KeyStroke class, 544
Timer class, 544

javax.swing.border package
EtchedBorder class, 544
TitledBorder class, 544

javax.swing.event package
ChangeEvent class, 545
ChangeListener class, 545

JButton class, 468, 540
JCheckBox class, 540
JComboBox class, 540
JComponent class, 487, 541
JFileChooser class, 321–322, 541
JFrame class, 466–467, 541
JLabel class, 481–483, 542
JMenu class, 542
JMenuBar class, 542
JMenuItem class, 542
JOptionPane class, 65, 542
JPanel class, 468, 543
JRadioButton class, 543
JScrollPane class, 543
JSlider class, 543
JTextArea class, 483–486, 543
JTextComponent class, 545
JTextField class, 481–483, 544
justifying text (video example), 233
JVM (Java virtual machine), 6–7

K
key words. See reserved words
keyboard, reading from, 49, 530
KeyEvent class, 521
KeyListener class, 521
keyPressed method, KeyListener class, 521
keyReleased method, KeyListener class, 521
keySet method, Map<K, V> class, 536
KeyStroke class, 544
keystrokes

detecting. See events
event listeners, 518, 521

keyTyped method, KeyListener class, 521
killing a hanging program, 145
Korean characters, 66

L
labels

text fields, 481–483
user-interface components, 542

languages, translating, 119
largest value, computing, 527. See also 

maximum/minimum value, finding
LargestInArray.java class, 265–266, 297–298
Latin/Latin-1 subsets of Unicode 

characters, 507–509
leading zeros, showing, 328
left paren ((), enclose negative numbers in 

parentheses, 328
Lenat, Douglas, 119
length method, String class, 59, 529
less than, equal (<=), comparison 

operator, 88–89
less than (<), comparison operator, 88–89
letters. See also characters; strings

case. See lowercase; uppercase
testing for, 324t

Level class, 539
lexicographic (dictionary) order of strings, 

92–93, 529
line breaks, strings, 60–61
linear search, arrays, 260
lines, drawing, 489–492, 519
lines of text, reading text files, 325–327
linked lists, elements

adding, 535–536
first, testing for, 536
getting first/last, 535
removing, 536
replacing, 536
traversing, 536

LinkedList<E> class, 535–536
List<E> class, 536
listIterator method, List<E> class, 536
ListIterator<E> class, 536
lists, elements

adding, 535–536
first, testing for, 536
getting first/last, 535
removing, 536
replacing, 536
traversing, 536

literals
backslashes in file names, 321
character, delimiting, 61
numbers, 32–33
reserved characters, 60–61
string, 59–61

load method, Properties class, 537
loan, paying off (video example), 386
local inner classes, 479–480
local variables, 225
log method, Math class, 43t, 527
log10 method, Math class, 44t, 527



574   Index

logarithms, 43t, 44t, 527
Logger class, 110
logging messages, 110, 539
logic errors. See run-time errors
Loma Prieta earthquake

online example, 98
photograph, 96
printing descriptions of, sample 

program, 96–98
Long class, 294
long type, 40t
loop-and-a-half problem, 160–161
loops. See also specific loops

asymmetric bounds, 155
bounds, choosing, 155
break statement, 160–161
controlling with Boolean variables, 

159–160
counting iterations, 156
definition, 140
do loop, 156–157
enhanced for loop, 257–258, 292
flowcharts, 157
for loop, 150–152
hand-tracing, 147–150
How To write, 169–172
indefinite. See while loops
infinite, 145
loop-and-a-half problem, 160–161
nesting, 172–175
off-by-one errors, 145–146
post-test. See do loops
pre-test. See for loops; while loops
processing a sequence of values, 158–161
sentinel values, 158–161
symmetric bounds, 155
terminating with a target value, 144
traversing characters in a string, 154
while loop, 140–143

loops, common algorithms
averages, 165
comparing adjacent values, 168–169
counting matches, 165–166
finding first match, 166
maximum/minimum computations, 167
online example, 168
powers of x, calculating, 172–175
printing a table, 172–175
prompting for a match, 167
running totals, 165
summing numbers, 165

loops, counters
counting loop iterations, 156

counting matches, 165–166
declaring, 152–153
incrementing/decrementing, 152
infinite loops, 145
off-by-one errors, 145–146
updating inside a for loop, 155
using outside the loop, 153

loops, terminating
count-controlled. See for loops
definite. See for loops
event-controlled. See while loops
with sentinel values, 158–161

lowercase letters, testing for, 324t. See also 
case sensitivity

lowercase strings, sorting, 93
luggage handling, Denver airport, 95

M
Macintosh computer, 233
magic numbers, 39
main method

in classes, 380
declaring, 12
definition, 12
extending frame classes, 470
statements, 12

map keys, 536–537
Map<K, V> class, 536–537
math. See arithmetic; java.math package; Math 

class; numbers; specific operations
Math class, 526–528
matrices. See arrays, two-dimensional
Mauchly, John, 5
max method, Math class, 44t, 527
maximum/minimum value, finding

algorithm for, 259
in arrays, 295
max method, Math class, 44t, 527
MAX_VALUE constant, 526
min method, Math class, 44t, 528
MIN_VALUE constant, 526

MAX_VALUE constant, 526
MeasurableDemo.java class, 451
medal winners, example, 286–287
Medals.java class, 286–287
menu bars

frames, 541
user-interface components, 542

Menu class, online example, 385
menu items, 542
menus, 542
MenuTester class, online example, 385
messages, logging, 110



 Index  575

methods. See also specific methods
abstract, 434–435
API documentation, 53
as black boxes, 202–203
brevity, 223
comments, 207
definition, 202
dot notation, 64
duplicate names. See overloading 

methods
execution flowchart, 202
final, 435
implementing, How To, 212–213
inputs, 203
instance, 64
main. See main method
mutator, 369
outputs, 203
overriding. See overriding methods
passing values to. See methods, 

arguments; methods, parameter 
variables

public vs. private, 374
recursive, 228–232
reusing, 215–217
sample program, 206
static, 64–65, 205, 400–402
stepwise refinement, 218–219
stubs, 224–225
syntax, 205
temporary placeholders for, 224–225

methods, accessor
data representation, 371–372
definition, 369

methods, arguments. See also methods, 
parameter variables

array lists as, 293
definition, 203
modifying, 209–210
passing, 207–209

methods, calling
instance methods vs. static, 64–65
on numbers, 64
on objects, 64
other methods, 13, 202
recursively, 228–232

methods, instance
description, 372
example, 372–373
explicit parameters, 374
implicit parameters, 373–374
syntax, 372

methods, parameter variables. See also 
methods, arguments; methods, 
variables

animation, 208
modifying, 209
passing, 207–209
passing with two-dimensional arrays, 

286–287
variable number of, 272

methods, return values
array lists as, 293
definition, 203
missing, 212
multiple, 211
omitting, 214–215
online example, 211
specifying, 210–211

methods, tracing
animation, 220
example, 223–224

methods, variables. See also methods, 
parameter variables

duplicate names, 226–227
local, 225
scope, 225–228

microprocessors, history of, 232
min method, Math class, 44t, 528
minimum/maximum value, finding

algorithm for, 259
in arrays, 295
max method, Math class, 44t, 527
MAX_VALUE constant, 526
min method, Math class, 44t, 528
MIN_VALUE constant, 526

minus sign (-)
left alignment, 328
subtraction operator, 41

minus signs (--), decrement operator, 41
MIN_VALUE constant, 526
misspelling words, 16
mod method, BigInteger class, 531
modifiers, instance variables, 365
Monte Carlo method, 178–179
MonteCarlo.java class, 178–179
Morris, Robert, 256
mouse

actions, event listeners, 518, 521–522
clicks, detecting. See events
position, event listeners, 521

mouseClicked method, MouseListener 
class, 522

mouseEntered method, MouseListener 
class, 522



576   Index

MouseEvent class, 521
mouseExited method, MouseListener class, 522
MouseListener class, 522
mousePressed method, MouseListener 

class, 522
mouseReleased method, EOFException 

class, 522
mouseReleased method, MouseListener 

class, 522
multidimensional arrays, 289. See also 

arrays, two-dimensional
multiply method

BigDecimal class, 40, 531
BigInteger class, 40, 531

mutator methods, 369

N
\n (backslash n), newline character, 60–61
named constants, 35
naming

classes, 33
constants, 35
constructors, 375
instance variables, 365
public classes, 12
variables, 33, 38

Naughton, Patrick, 5
negating conditions, 112, 115–116
nested loops, tracing (animation), 285
nested statements, indenting, 87
nesting

if statement branches, 100–102, 104
if statements, 96–102, 104
loops, 172–175

networks, definition, 4
next method

consuming white space, 327
Iterator<E> class, 535
reading strings from the console, 60
Scanner class, 538

nextDouble method
consuming white space, 327
Random class, 537
reading floating-point numbers, 50
Scanner class, 538

nextInt method
consuming white space, 327
Random class, 538
reading integers, 49–50, 116–118
Scanner class, 538

nextLine method, 325–326
Nicely, Thomas, 48
NoSuchElementException class, 340, 537
null pointer exception, 528

null reference
default for objects, 379
definition, 397
testing for, 397
uninitialized instance variables, 378–379

NullPointerException class, 528
number format exception, 529
number types, summary of, 40. See also 

specific types
NumberFormatException class, 340, 529
numbers. See also arithmetic

comparisons, 88–92
converting from strings, 326
converting to words, 219–223
as literals, 32–33
overflow, 38
range errors, 38
reading text files, 327
sorting, 93
very large, 40
whole, no fractions. See integers
whole, with fractions. See floating-point 

numbers

O
Object class. See also superclasses

available online, 441
data type, testing, 444–446
definition, 441
description, 529
object equality, testing for, 443–444, 447
online example, 445
string representation of objects,  

442–443, 446
object references

animation, 396
copying, 396
definition, 395
null, 397
shared, 395–397
this, 397–399

objects
belonging to same class, testing for, 447
changing. See mutator methods
clearing with constructors, 379
comparisons, 525, 529, 534
describing position, instance variables 

for, 392–393
equality, testing for, 443–444
examples of, 64
managing properties, instance variables 

for, 390–391
memory location. See object references



 Index  577

modeling with distinct states, instance 
variables for, 391–392

querying. See accessor methods
storing data. See instance variables

off-by-one errors, 145–146
OOP (object-oriented programming), 362. 

See also classes; methods; objects
Open File dialog boxes, 541
open source software, 402
operators. See also specific operators

associativity, 511
precedence, 511
summary of, 511–512

output. See also java.io package
definition, 4
redirecting, 161

output, formatting. See also printf method
currency, 50
format specifiers, 50

output, writing
closing a file, 319, 523
closing the stream, 523
to the console window, 530
to dialog boxes, 65
opening a file, 318, 523
output error, 523
write operation, 523

OutputStream class, 523
ovals

drawing, 180, 489–492, 519
filling, 180, 489–492, 519

overloading methods
accidentally, 428
overview, 380

overriding methods
abstract methods, 434–435
accidental overloading, 428
forcing, 434–435
overview, 424–428
preventing, 435

P
packages. See also specific packages

importing classes from, 49
Java library, 7

paintComponent method, JComponent class, 
487–489, 493–496, 541

painting user-interface components
paintComponent method, 487–489, 

493–496, 541
repaint method, 493–496, 518

panels. See also frames
definition, 468
grouping frame components, 468

user-interface components, 543
parameter variables, methods. See also 

variables
animation, 208
explicit, 374
implicit, 373–374
modifying, 209
passing, 207–209

parentheses (())
enclosing arguments, 13
in expressions, unbalanced, 46–47

parseDouble method, Double class, 326, 525
parseInt method, Integer class, 326, 526
partially filled arrays, 254–255
passing arguments to methods

with arrays, 268–269, 286–287
from the command line, 330–333
syntax, 13

passing parameters to methods
overview, 207–209
parameter variables to methods, 207–209
parameters to methods, 286–287

passwords, generating randomly, 213
patents, definition, 336
pathSeparator method, File class, 522
paying off a loan (video example), 386
payroll processing example, 441
PCs. See personal computers
peek method, Queue<E> class, 537
peeking at queues, 537
Pentium floating-point bug, 48
percent sign (%)

in format specifiers, 329
modulus operator, description, 42
modulus operator, online example, 45

personal computers, history of, 232–233
PGP (Pretty Good Privacy), 337
PI constant, 45t, 528
pictures, drawing. See drawing
piracy, software, 182
pixel manipulation, example, 175
plural words, counting (video example), 105
plus sign (+)

addition operator, 41
concatenation operator, 59–60
for positive numbers, 328

plus signs (++), increment operator, 41
polymorphism

animation, 431
dynamic method lookup, 431, 433–434
overview, 430–431
sample program, 432–433

portability, Java programming language, 6
post-test loops. See do loops



578   Index

pow method, Math class, 43t, 528
PowerTable.java class, 173
pre-test loops. See for loops; while loops
previous method, ListIterator<E> class, 536
primary storage, 3
primitive data types, 64
print commands demonstration program 

(online example), 14
printf method

formatting output, 50–51
newline character, 61
overview, 318–320
printing multiple values, 51
PrintStream class, 524
PrintWriter class, 318, 524

printing
numerical values, 13–14
print method, 318–320
printStack method, 531
PrintStream class, 523–524
PrintStream out object, 530
with/without line breaks, 14

printing, printf method
formatting output, 50–51
newline character, 61
overview, 318–320
printing multiple values, 51
PrintStream class, 524
PrintWriter class, 524

printing, println method
overview, 318–320
printing with line breaks, 51–52

printing, PrintWriter class
closing automatically, 346
description, 523–524
writing text files, 318–320

printStackTrace method, 340
PrintStream out object, 530
printTriangle method, online example, 230
priority queues, 537
PriorityQueue<E> class, 537
private class implementation, 367–369
private instance variables, 366, 374
private keys, 336
programmers

application, 53
system, 53

programming environment. See Java 
programming environment

programming languages. See also Java 
programming language

compilers, 5
high-level, 5

programs
basic syntax, 13
compiling. See compiling programs
definition, 2
“Hello, World!” sample program, 8–9, 

12–14
running. See running programs
terminating, 530

prompts, reading from, 49
properties, getting, 537
Properties class, 537
pseudocode

algorithm design, 18, 20–21
writing, How To exercise, 54–56

public classes, 12
public instance variables, 374
public keys, 336
public reserved word, omitting, 453
put method, Map<K, V> class, 536
pyramid volume calculation example, 

212–213

Q
question mark (?), conditional operator, 87. 

See also if statements
QuestionDemo1.java class, 419
QuestionDemo2.java class, 425–426
QuestionDemo3.java class, 432–433
Question.java class, 418–419
Queue<E> class, 537
queues

peeking at first element, 537
priority, 537

quiz scores, example, 275–278
quiz-taking program, 417–419, 424–427, 

432–433

R
radians, converting to degrees, 528
radio buttons, 543
Random class, 537–538
random number generators

definition, 176
finding approximate solutions, 178–179
generating random numbers, 176–177, 

537–538
generating random passwords, 213, 

249–253
Monte Carlo method, 178–179
sample program, 176
simulating die tosses, 177

Raymond, Eric, 402
read method, InputStream class, 523



 Index  579

readability, computing (video example), 330
readInBetween method, 216–217
reading

binary data, 322–323
web pages, online example, 321

reading, text files. See also Scanner class
abnormal input, 326–327
characters, 324
consuming white space, 323–324, 327
converting strings to numbers, 326
How To, 333–336
input mismatch exceptions, 326–327
lines, 325–327
mixing numbers, words, and lines, 327
no such element exceptions, 327
numbers, 327
overview, 318–320
words, 323–324, 327

Rectangle class, 520–521
rectangles

drawing, 519, 520
filling, 180, 519
height/width, getting, 520
intersections, computing, 520
moving, 520, 521
size, adjusting, 520, 521
union, computing, 521
x - y coordinates, getting, 520

recursive methods, 228–232
regular expressions, 330
relational operators

combining, 113–114
overview, 88
summary of, 89t. See also specific 

operators
remainders, 42
remove method

ArrayList<E> class, 292, 295–296, 532
Collection<E> class, 534
Iterator<E> class, 535
Map<K, V> class, 537
PriorityQueue<E> class, 537

removeFirst method, LinkedList<E> class, 536
removeLast method, LinkedList<E> class, 536
removing

array list elements, 292, 295–296, 532
collection elements, 534
elements from linked lists, 536
elements from priority queues, 537
keys from maps, 537

repaint method, Component class, 
493–496, 518

repainting user-interface components, 
493–496, 518

replace method, String class, 530
reserved characters, in string literals, 60–61
reserved words. See also specific words

summary of, 513–514
in variables, 33

return statement, 210–211
return values, constructors, 375
return values, methods

definition, 203
missing, 212
multiple, 211
omitting, 214–215
online example, 211
specifying, 210–211

reusing methods, 215–217
Reverse.java class, 270–271
Richter scale, 96t
Rivest, Ron, 336
robot escaping from a maze (video 

example), 393
robot travel time computation, example, 58
rocket explosion, 347
rolling dice, example, 278
round method, Math class, 44t, 528
rounding

floating-point numbers, 45
online example, 45
Pentium floating-point bug, 48
round method, 44t, 528

roundoff errors
comparing floating-point numbers, 91
overview, 38–39

RSA encryption, 336
running programs

in an integrated development 
environment, 8

video example, 11
running totals, instance variables for, 

388–389
run-time errors, definition, 15
run-time exception, 529
RuntimeException class, 341, 529
Russian characters, 66

S
safety features, Java programming language, 

6
sales tax computation, example, 387
Save File dialog boxes, 541
Scanner class. See also reading, text files

closing automatically, 346
constructing with a string, 321
description, 538
reading characters from a string, 326



580   Index

Scanner class (continued)
reading numeric values, 49–50
reading text files, 318–320
sample program, 51–52

scope, variables in methods, 225–228
Scores.java class

with array lists (online example), 296
with arrays, 277–278
sample code, 277–278

scroll panes, 543
scrollbars, adding to text areas, 484–485
searching

arrays, 260, 267–268, 533
binary search, 267–268, 533
binarySearch method, Arrays class, 533
binarySearch method, Collections 

class, 534
collections, 534
linear search, 260

secondary storage, 3
security

buffer overrun attacks, 256
worms, 256

semicolon (;)
after an if condition, 86–87
ending Java statements, 12–13
omitting, 14
path separator, 522

sentinel values, 158–161
SentinelDemo.java class, 158–160
set method

ArrayList<E> class, 291, 532
ListIterator<E> class, 536

setBorder method, JComponent class, 541
setColor method, Graphics class, 180, 520
setDefaultCloseOperation method, JFrame 

class, 467, 541
Set<E> class, 538
setEditable method

editing text fields, 484
JComboBox class, 540
JTextComponent class, 545

setFocusable method, Component class, 518
setFont method, JComponent class, 541
setJMenuBar method, JFrame class, 541
setLayout method, Container class, 519
setLocation method, Rectangle class, 520
setPreferredSize method, Component 

class, 494, 518
setSelected method, AbstractButton 

class, 539
setSelectedItem method, JComboBox class, 540

setSize method
Component class, 518
Rectangle class, 521

setter methods, instance variables  
for, 390–391

setText method, JTextComponent class, 545
setTimeZone method, DateFormat class, 532
setTitle method, Frame class, 519
setVisible method, Component class, 518
Shamir, Adi, 336
shapes, drawing. See drawing
shared object references, 395–397
shipping cost computations

online example, 108
sample flowchart, 106–108

shopping for cars, example, 20–21
Short class, 294
short type, 40t
short-circuit evaluation, 114–115
showInputDialog method, JOptionPane 

class, 65, 542
showMessageDialog method, JOptionPane 

class, 542
showOpenDialog method, JFileChooser 

class, 322, 541
showSaveDialog method, JFileChooser 

class, 322, 541
simulation programs, 176
sin method, Math class, 43t, 528
sine, computing, 43t, 528
single quote ('), character literal 

delimiter, 61
size, arrays

getting, 291
increasing, 263–264
requirements, estimating, 267

size method
ArrayList<E> class, 291, 533
Collection<E> class, 534

slash (/), division operator, 41, 42
slash asterisk... (/*...*/), long comment 

delimiter, 36
slash asterisks... (/**...*/)

explanatory comment delimiter, 36
method comment delimiter, 207

slashes (//), short comment delimiter, 35–36
smallest value, computing, 527, 528. See also 

minimum/maximum value, finding
software. See also programs

definition, 2
development schedules, 109–110
piracy, 182



 Index  581

sort method
Arrays class, 533
Collections class, 534

sorting
collections, 534
lexicographic (dictionary) order of 

strings, 92–93
numbers and letters, 93
space characters, 93
uppercase vs. lowercase strings, 93

sorting, arrays
with the Java library, 267
by swapping elements, 262

source code
compiling programs, 9
definition, 9

space characters, sorting, 93
spaces. See also white space

after method names, 47
around operators, 47
in expressions, 47
vs. tabs, 87
in variable names, 33

spaghetti code, 106
spirals, drawing (video example), 181
spreadsheets, VisiCalc, 232–233
sqrt method, Math class, 43t, 528
square roots, 43t, 528
squares, drawing, 180–181
squelching exceptions, 345
Stallman, Richard, 402
stamp cost computation, example, 56
start method, Timer class, 544
stateChanged event, 545
static methods, 64–65, 205, 400–402
static reserved word, 400–402, 453
static variables, 400–402
stealing software, 182
stepwise refinement, 218–223
stop method, Timer class, 544
storage, primary vs. secondary, 3
storage devices. See specific devices
storyboards, 162–164. See also flowcharts
String class, 529–530
string literals

definition, 59
escape sequences, 60–61
including reserved characters, 60–61

string variables, definition, 59
strings. See also characters

case conversion, 530
comparisons, 88–92, 529
concatenating, 59–60

converting from arrays, 533
converting to, 442–443. See also toString 

method
converting to numbers, 326, 526
definition, 13, 59
drawing, 520
empty, 59
enclosing in quotation marks ("..."), 13
formatting, 329, 529
length, computing, 59, 529
line breaks, 60–61
positions, counting, 61
printing in a box, 214–215
reading from the console, 50
replacing, 530
returning characters from, 61. See also 

substrings
traversing with loops, 154

stubs, 224–225
subclasses. See also inheritance

accessing private instance variables, 
423–424

definition, 416
implementing, 420–424
online example, 423
substitution principle, 416
vs. superclasses, 424
syntax, 422

substitution principle, 416
substring method, String class, 61–62, 530
substrings. See also strings

extracting from strings, 61–62, 95, 530
length, computing, 62
sample program, 62–63

subtract method
BigDecimal class, 40, 531
BigInteger class, 40, 531

summing array values, 259
super reserved word

calling a superclass method, 425
calling the superclass constructor, 429
omitting, 429

superclasses. See also inheritance; 
Object class

constructors, calling, 429–430
definition, 416
vs. subclasses, 424
substitution principle, 416

superclasses, instance variables
protecting, 436
replicating, 423–424

swapping array elements, 262, 279–281



582   Index

switch statements. See also if statements
branch on floating-point values, 99
break instructions, 99
overview, 99
terminating, 99

symmetric bounds, 155
syntax errors. See compile-time errors
System class, 530
system programmers, 53
System.out.print method, 14
System.out.println method, 14

T
tabs

aligning text, 87
indenting nested statements, 87
vs. spaces, 87

tally counter, example, 364–367
tan method, Math class, 43t, 528
tangent, computing, 43t, 528
TaxCalculator.java class, 101–102
taxes. See income tax
terminating steps, 19
test cases

boundary conditions, 108
coverage, 108
overview, 108–109

tester classes, 380–382
testing

classes, 380–382
collection elements, 534
data types, 444–446
digits, 324t
letters, 324t
lowercase letters, 324t
null reference, 397
strings for equality, 90
unit testing, 380–382
uppercase letters, 324t
white space, 324t

text
aligning with tabs, 87
drawing on user-interface components, 

489–492
justifying (video example), 233

text areas
appending text to, 543
creating, 483–486, 543
definition, 483–486
scrollbars, 484–485
setting to read-only, 484

text fields
creating, 481–483, 544
definition, 481

labeling, 481–483
text files, reading. See reading, text files
text input

multiple lines, 483–486
single lines, 481–483
text areas, 483–486
text fields, 481–483

text strings, identifying to the compiler, 13
Thai characters, 66
this references, 397–399
threads, interrupting with exceptions, 526
throw statement, 338
Throwable class, 530–531
throwing exceptions, 338–339, 345, 530–531
throws clause, 342–343
Thrun, Sebastian, 119
tile layout, 57–58
time. See date and time
time zone, setting, 532
Timer class, 544
timers, 544
TitledBorder class, 544
titles, frames, 519
toDegrees method, Math class, 43t, 528
toLowerCase method, String class, 530
toRadians method, Math class, 43t, 528
toString method

Arrays class, 259, 533
Integer class, 526
Object class, 442–443, 446–447, 529

toString method, Object class, 442–443
Total.java class, 319–320
toUpperCase method, String class, 530
tracing code. See also hand-tracing

instance variables, 386–388
logging messages, 110
nested loops (animation), 285
recursions (animation), 230
tile layout, 57–58

tracing code, methods
animation, 220
examples, 223–224, 386–388

transistors, in computers, 3
translate method, Rectangle class, 521
translating languages, 119
travel time computation, example, 58
traversing

array lists, 292
arrays, 257–258
collection elements, 534
linked lists, 536
lists, 535–536

tree maps, 538
tree sets, 539



 Index  583

TreeMap<K, V> class, 538
TreeSet<E> class, 539
triangle, printing, 229–232
TrianglePrinter program, 

online example, 230
truth tables, 111
two-dimensional arrays. See arrays, two-

dimensional
TwoRowsOfSquares.java class, 181

U
unambiguous steps, 19
unchecked exceptions, 341–343
undeclared variables, 36–37
underscore (_), in variable names, 33
Unicode characters

Latin/Latin-1 subsets, 507–509
overview, 66
testing for, 524–525

uninitialized
constructors, 376
instance variables, 378–379
variables, 36–37

union method, Rectangle class, 521
union of rectangles, computing, 521
uppercase letters. See also case sensitivity

camel case, 33
constant names, 35
in the middle of words, 33
testing for, 324t

uppercase strings, sorting, 93
useDelimiter method, Scanner class, 

324, 330, 538
user events. See events
user interface, definition, 233. See also 

graphical user interface
user-interface components. See also java.awt 

package; javax.swing package
adding to containers, 518
borders, 517, 541, 544
button groups, 540
button labels, 540
buttons, 467, 539
check boxes, 540
coloring, 490, 518, 520
combo boxes, 540
confirmation dialog boxes, 542
detecting user actions. See event listeners
file chooser, 541
fonts, 541
in frames, 467–468, 541
grid layout, 520
grouping, 468
height, getting, 518

horizontal sliders, 543
image icons, 540
input dialog boxes, 65, 542
labels, 542
menu bars, 542
menu items, 542
menus, 542
painting, 541
panels, 543
preferred size, setting, 518
radio buttons, 543
receiving input focus, 518
repainting, 518
scroll panes, 543
showing/hiding, 518
size, setting, 518
width, getting, 518

user-interface components, text
editable, 545
returning, 545
setting, 545
text areas, 543
text fields, 544

V
variable types

numbers, 32–33. See also floating-point 
numbers; integers

specifying, 31
variables. See also Boolean variables 

and operators; constants; instance 
variables; parameter variables

assignment statements, 34
case sensitivity, 33
declaring, 30–32
definition, 30
distinguishing from constants, 35
final, 35
immutable, 35
initializing, 31, 34
limiting to a set of values. See 

enumeration types
naming conventions, 33, 38
reserved words, 33
sample program, 36
static, 400–402
syntax, 31
undeclared, 36–37
uninitialized, 36–37

variables, methods
duplicate names, 226–227
local, 225
scope, 225–228

vending machine example, 54–56



584   Index

VendingMachine.java class, 56
versions, Java programming language, 7t
vertical lines (||), or operator

definition, 111
flowchart, 112
negating, 115–116
vs. and operator, 114
short-circuit evaluation, 114–115

VisiCalc program, 232–233
void reserved word

in methods without return values, 214
in constructors, 379

Volume1.java class, 36
voting machines, 394

W
web pages, reading (online example), 321
while loops. See also loops

body of, 141
overview, 140–141
sample program, 142–143
syntax, 141

white space. See also spaces
consuming, 323–324, 327
testing for, 324t

Wilkes, Maurice, 146
words, reading text files, 323–324, 327
wrapper classes

array lists, 293–294
Boolean, 294

Byte, 294
Character, 294, 524–525
Double, 294, 525
Float, 294
Integer, 294, 526
Long, 294
overview, 293–294. See also specific classes
Short, 294

write method, OutputStream class, 523
writing. See also output

binary data, 322–323
programs. See software, development 

schedules
writing, text files

format flags, 328–329
format specifiers, 328–329
formatting output, 328–329
How To, 333–336
overview, 318–320

X
x - y coordinates for rectangles, getting, 520

Z
zeroes, leading, 328t



585

Preface
Page vii: © Terraxplorer/iStockphoto.

Chapter 1
Page 1, 2: © JanPietruszka/iStockphoto.
Page 3, 22 (left): © Amorphis/iStockphoto.
Page 3 (right): PhotoDisc, Inc./Getty 

Images.
Page 5 (top): © UPPA/Photoshot.
Page 5 (bottom): James Sullivan/Getty 

Images.
Page 11, 22: © Tatiana Popova/iStockphoto.
Page 12, 22: © Amanda Rohde/iStockphoto
Page 15, 23: © CarlssonInc/iStockphoto.
Page 17: © mammamaart/iStockphoto.
Page 19, 23: © Claudiad/iStockphoto.
Page 20: © dlewis33/iStockphoto.
Page 21 (top): © rban/iStockphoto.
Page 21 (bottom): © YinYang/iStockphoto.

Chapter 2
Page 29, 30: © Eyeidea/iStockphoto.
Page 30 (middle): © blackred/iStockphoto; 

© travis manley/iStockphoto.
Page 30 (bottom), 66: Javier Larrea/Age 

Fotostock.
Page 31, 66: © Ingenui/iStockphoto.
Page 33, 66: © GlobalP/iStockphoto.
Page 37, 67: © jgroup/iStockphoto.
Page 39: © FinnBrandt/iStockphoto.
Page 41: © arakonyunus/iStockphoto.
Page 42, 67: © Michael Flippo/iStockphoto.
Page 46: © Croko/iStockphoto.
Page 47: © Maxfocus/iStockphoto.
Page 48: Courtesy of Larry Hoyle, Institute 

for Policy & Social Research, University 
of Kansas.

Page 49, 67: © Media Bakery.
Page 51, 67: © Koele/iStockphoto.
Page 55: Photos.com/Jupiter Images.
Page 58: Courtesy NASA/JPL-Caltech.
Page 59, 67: © essxboy/iStockphoto.
Page 61, 67: © slpix/iStockphoto.
Page 62, 67: © Rich Legg/iStockphoto.
Page 65: © janrysavy/iStockphoto.

Page 66 (left): © pvachier/iStockphoto.
Page 66 (center): © jcarillet/iStockphoto.
Page 66 (right): © Saipg/iStockphoto.
Page 70: © Media Bakery.
Page 72: © asiseeit/iStockphoto.
Page 74: © José Luis Gutiérrez/

iStockphoto.
Page 75: © Captainflash/iStockphoto.
Page 77: © TebNad/iStockphoto.

Chapter 3
Page 81, 82: © zennie/iStockphoto.
Page 82: © DrGrounds/iStockphoto.
Page 83, 120: © Media Bakery.
Page 86: © TACrafts/iStockphoto.
Page 87: Photo by Vincent LaRussa/John 

Wiley & Sons, Inc.
Page 88, 120: © arturbo/iStockphoto.
Page 91: © caracterdesign/iStockphoto.
Page 92, 120: Corbis Digital Stock.
Page 93: © MikePanic/iStockphoto.
Page 95: Bob Daemmrich/Getty Images.
Page 96, 120: © kevinruss/iStockphoto.
Page 99: © travelpixpro/iStockphoto.
Page 100, 120: © ericsphotography/

iStockphoto.
Page 103: © thomasd007/iStockphoto.
Page 105: © mikie11/iStockphoto.
Page 108: © Ekspansio/iStockphoto.
Page 110: Bananastock/Media Bakery.
Page 111, 121: Cusp/SuperStock.
Page 112: © toos/iStockphoto.
Page 115: © YouraPechkin/iStockphoto.
Page 116, 121: Tetra Images/Media Bakery.
Page 118 (top): © jeanma85/iStockphoto.
Page 118 (bottom): © benjaminalbiach/

iStockphoto.
Page 119: Vaughn Youtz/Zuma Press.
Page 128 (top): © rotofrank/iStockphoto.
Page 1298 (bottom): © lillisphotography/

iStockphoto.
Page 130: © Straitshooter/iStockphoto.
Page 131: © Mark Evans/iStockphoto.
Page 132: © drxy/iStockphoto.
Page 133 (top): © nano/iStockphoto

IllustratIon CredIts



586  Illustration Credits

Page 133 (bottom): © Photobuff/
iStockphoto.

Page 134: © rotofrank/iStockphoto.
Page 135: Courtesy NASA/JPL-Caltech.

Chapter 4
Page 139, 140 (top): © photo75/

iStockphoto.
Page 140 (middle): © AlterYourReality/

iStockphoto.
Page 140 (bottom), 182: © mmac72/

iStockphoto.
Page 144: © MsSponge/iStockphoto.
Page 145: © ohiophoto/iStockphoto.
Page 146: Courtesy of the Naval Surface 

Warfare Center, Dahlgren, VA., 1988. 
NHHC Collection.

Pages 147–149 (paperclip): © Yvan Dubé/
iStockphoto.

Page 151, 183: © Enrico Fianchini/
iStockphoto.

Page 156: © akaplummer/iStockphoto.
Page 158, 183: © Rhoberazzi/iStockphoto.
Page 161: © Michal_edo/iStockphoto.
Page 162: Courtesy of Martin Hardee.
Page 166 (top): © Hiob/iStockphoto.
Page 166 (bottom): © drflet/iStockphoto.
Page 167: © CEFutcher/iStockphoto.
Page 168: © tingberg/iStockphoto.
Page 169: © Stevegeer/iStockphoto.
Page 172 (top): © MorePixels/iStockphoto.
Page 172 (bottom), 183: © davejkahn/

iStockphoto.
Page 175: Cay Horstmann.
Page 177, 183: © ktsimage/iStockphoto.
Page 178: © timstarkey/iStockphoto.
Page 181: © Rpsycho/iStockphoto.
Page 182 (top): © RapidEye/iStockphoto.
Page 182 (bottom): © thomasd007/

iStockphoto.
Page 189: © Anthony Rosenberg/

iStockphoto.
Page 191: © GlobalP/iStockphoto.
Page 194: © hatman12/iStockphoto.
Page 195 (top): © Charles Gibson/

iStockphoto.
Page 195 (bottom): © MOF/iStockphoto.
Page 196 (top): Introduction to Engineering 

Programming: Solving Problems with 
Algorithms, James P. Holloway (John 

Wiley & Sons, Inc., 2004) Reprinted with 
permission of John Wiley & Sons, Inc.

Page 196 (middle): © Snowleopard1/
iStockphoto.

Page 196 (bottom): © zig4photo/
iStockphoto.

Chapter 5
Page 201, 202: © attator/iStockphoto.
Page 203, 234: © yenwen/iStockphoto.
Page 204: © studioaraminta/iStockphoto.
Page 205, 234: © princessdlaf/iStockphoto.
Page 207 (collage), 234: © christine 

balderas/iStockphoto (cherry pie); 
© inhauscreative/iStockphoto (apple 
pie); © RedHelga/iStockphoto (cherries); 
© ZoneCreative/iStockphoto (apples).

Page 210, 234: © Tashka/iStockphoto.
Page 212: © holgs/iStockphoto.
Page 214, 234: © jgroup/iStockphoto.
Page 217: © Lawrence Sawyer/iStockphoto.
Page 218, 234: © AdShooter/iStockphoto.
Page 219: © YinYang/iStockphoto.
Page 224: © lillisphotography/iStockphoto.
Page 225: © pkline/iStockphoto.
Page 226 (collage): © jchamp/iStockphoto 

(Railway and Main) (also 235);  
© StevenCarrieJohnson/iStockphoto 
(Main and N. Putnam); © jsmith/
iStockphoto (Main and South St.).

Page 228: © Janice Richard/iStockphoto.
Page 230, 235: © nicodemos/iStockphoto.
Page 233 (top): © Kenneth C. Zirkel/

iStockphoto.
Page 233 (bottom): Reprint Courtesy of 

International Business Machine  
Corporation, copyright © International 
Business Machines Corporation.

Page 236: © stacey_newman/iStockphoto.
Page 240: © mbbirdy/iStockphoto.
Page 241: © Straitshooter/iStockphoto.
Page 243: © MichaelJay/iStockphoto.
Page 245: © alacatr/iStockphoto.

Chapter 6
Page 249, 250: © traveler1116/iStockphoto.
Page 252, 300: © Luckie8/iStockphoto.
Page 254, 300: © AlterYourReality/

iStockphoto.
Page 257: © nullplus/iStockphoto.
Page 259 (top): © CEFutcher/iStockphoto.



 Illustration Credits 587

Page 259 (bottom): © trutenka/iStockphoto.
Page 260, 300: © yekorzh/iStockphoto.
Page 267: © ProstoVova/iStockphoto.
Page 275 : Thierry Dosogne/The Image 

Bank/Getty Images, Inc.
Page 278: © ktsimage/iStockphoto.
Page 279 (top), 300: © JenCon/iStockphoto.
Page 279–280 (coins), 315: © jamesbenet/

iStockphoto; JordiDelgado/iStockphoto.
Page 282 (top): © claudio.arnese/

iStockphoto.
Page 282 (middle), 301: © Trub/

iStockphoto.
Page 282 (bottom): © technotr/iStockphoto.
Page 289, 301: © digital94086/iStockphoto.
Page 291, 301: © Danijelm/iStockphoto.
Page 294, 301: © sandoclr/iStockphoto.
Page 299: © Henrik5000/iStockphoto.
Page 311 (top): © lepas2004/iStockphoto.
Page 311 (bottom): © KathyMuller/

iStockphoto.
Page 312: © joshblake/iStockphoto.
Page 313 (top): © GordonHeeley/

iStockphoto.
Page 313 (bottom): © nicolamargaret/

iStockphoto.
 Worked Example 6.1 (top): © ktsimage/
iStockphoto.

 Worked Example 6.1 (bottom): © 
hallopino/iStockphoto.

Chapter 7
Page 317, 318 (top): James King-Holmes/

Bletchley ParkTrust/Photo Researchers, 
Inc.

Page 330: © Ozgur Donmaz/iStockphoto.
Page 331, 352: © xyno/iStockphoto.
Page 333: © Oksana Perkins/iStockphoto.
Page 337 (top): © Nancy Ross/iStockphoto.
Page 337 (bottom): © Anna Khomulo/

iStockphoto.
Page 338, 352: © Lisa F. Young/

iStockphoto.
Page 340, 352: © Andraz Cerar/

iStockphoto.
Page 342, 353: © tillsonburg/iStockphoto.
Page 343, 353: © archives/iStockphoto.
Page 347: © AP/Wide World Photos.
Page 352: © Norebbo/iStockphoto.
Page 354: © Chris Price/iStockphoto.
Page 358: © Chris Dascher/iStockphoto.

Chapter 8
Page 361, 362 (top): © Stephanie Strathdee/

iStockphoto.
Page 362 (bottom), 403: Media Bakery.
Page 363, 403: © Damir Cudic/iStockphoto.
Page 364 (top): © Christian Waadt/

iStockphoto.
Page 364 (bottom): © Jasmin Awad/

iStockphoto.
Page 367, 403: © Mark Evans/iStockphoto.
Page 368, 403: Glow Images.
Page 371, 403: © migin/iStockphoto.
Page 374, 403: © James Richey/iStockphoto.
Page 376, 403: © Ann Marie Kurtz/

iStockphoto.
Page 380, 404: © Chris Fertnig/iStockphoto.
Page 382: © Mark Evans/iStockphoto.
Page 386: © Pavel Mitrofanov/iStockphoto.
Page 388: © Hunteerwagstaff/

Dreamstime.com.
Page 390, 404: © paul prescott/iStockphoto.
Page 391, 404: © John Alexander/

iStockphoto.
Page 393: © Llya Terentyev/iStockphoto.
Page 394 (left): © Peter Nguyen/

iStockphoto.
Page 394 (center): © Lisa F. Young/

iStockphoto.
Page 395, 404: © Jacob Wackerhausen/

iStockphoto.
Page 400, 404: © Diane Diederich/

iStockphoto.
Page 402: Courtesy of Richard Stallman.
Page 406: © Miklos Voros/iStockphoto.
Page 407: © pixhook/iStockphoto.
Page 410: © ThreeJays/iStockphoto.
Page 411: © Maria Toutoudaki/iStockphoto.

Chapter 9
Page 415, 416: © Lisa Thornberg/

iStockphoto.
Page 416, 455: © Richard Stouffer/

iStockphoto (vehicles); © Ed Hidden/
iStockphoto (motorcycle); © YinYang/
iStockphoto (car); © Robert Pernell/
iStockphoto (truck); © nicholas 
belton/iStockphoto (sedan); Cezary 
Wojtkowski/Age Fotostock America 
(SUV).

Page 417: © paul kline/iStockphoto.
Page 421, 455: Media Bakery.



588  Illustration Credits

Page 432, 455: © Alpophoto/iStockphoto.
Page 441 (top): © Sean Locke/iStockphoto.
Page 441 (bottom): © vm/iStockphoto.
Page 444: © granata1111/Shutterstock.
Page 448, 455: © gregory horler/

iStockphoto.
Page 452: © Janis Dreosti/iStockphoto.
Page 455: Courtesy of John Reid.
Page 460: © Pali Rao/iStockphoto.

Chapter 10
Page 465, 466: © Trout55/iStockphoto. 
Page 466: © Mark Goddard/iStockphoto.
Page 467, 500: © Eduardo Jose Bernardino/

iStockphoto.
Page 469: © TommL/iStockphoto.
Page 471, 500: © Seriy Tryapitsyn/

iStockphoto.
Page 473, 500: © maureenpr/iStockphoto.
Page 483, 500: © Kyoungil Jeon/

iStockphoto.
Page 487, 501: © Alexey Avdeev/

iStockphoto.
Page 497: Punchstock.
Page 500 (Video Example): © paul jantz/

iStockphoto.
Page 506: © Juanmonino/iStockphoto.

Chapter 11
Page 507, 508: © Carlos Santa Maria/

iStockphoto.
Page 508, 541: © Felix Mockel/iStockphoto.
Page 510, 541: © Michele Cornelius/

iStockphoto.
Page 522, 541: © lillisphotography/

iStockphoto.
Page 528: © René Mansi/iStockphoto.
Page 533, 542: © jeff giniewicz/iStockphoto.
Page 536, 542: © james Brey/iStockphoto.
Page 540: © Dmitry Shironosov/

iStockphoto.
Page 541: © Nancy Ross/iStockphoto.
Page 545: © Kathy Muller/iStockphoto.

Icons
Common Error icon: © Scott Harms/

iStockphoto.
How To icon: © Steve Simzer/iStockphoto.
Paperclip: © Yvan Dubé/iStockphoto.

Programming Tip icon: Macdaddy/
Dreamstime.com.

Random Fact icon: Mishella/
Dreamstime.com.

Self Check icon: © Nicholas Homrich/
iStockphoto.

Special Topic icon: © nathan winter/
iStockphoto.

Worked Example icon: © Tom Horyn/
iStockphoto.

Chapters Available on the Web

Chapter 12  
Page 549, 550: © Petrea Alexandru/

iStockphoto.
Page 551, 577: © Oleg Prikhodko/

iStockphoto.
Page 556, 577: © bojan fatur/iStockphoto.
Page 563: © Scott Cramer/iStockphoto.
Page 573: © Mark Evans/iStockphoto.
Page 575, 577: © Don Wilkie/iStockphoto.

Chapter 13  
Page 585, 586: © Nicolae Popovici/

iStockphoto.
Page 586, 618: © Davis Mantel/iStockphoto.
Page 590, 618: © Nikada/iStockphoto.
Page 594, 618: © gerenme/iStockphoto.
Page 596, 619: © Christina Richards/

iStockphoto.
Page 601, 619: © Jeanine Groenwald/

iStockphoto.
Page 604: Science Photo Library/Photo 

Researchers, Inc.
Page 612, 619: © Lanica Klein/iStockphoto.

Chapter 14  
Page 627, 628: © Volkan Ersoy/

iStockphoto.
Page 628, 660: © Zone Creative/

iStockphoto.
Page 638: © Kirby Hamilton/iStockphoto.
Page 639, 660: © Rich Legg/iStockphoto.
Page 645: © Christopher Futcher/

iStockphoto.
Page 650: Topham/The Image Works.
Page 651–655 (on/off lightbulb): © Kraska/

Shutterstock.



 Illustration Credits 589

Chapter 15  
Page 669, 670: © nicholas belton/

iStockphoto.
Page 671 (top left): © Filip Fuxa/

iStockphoto.
Page 671 (top center): © parema/

iStockphoto.
Page 671 (top right): © Vladimir Trenin/

iStockphoto.
Page 671 (bottom), 702: © david franklin/

iStockphoto.
Page 673, 701: © andrea laurita/

iStockphoto.
Page 678: © Denis Vorob’yev/iStockphoto.
Page 679, 702: © Alfredo Ragazzoni/

iStockphoto.
Page 680, 702: © Volkan Ersoy/

iStockphoto.

Page 686, 701: © Tom Hahn/iStockphoto.
Page 688, 702: © one clear vision/

iStockphoto.
Page 690 (top), 702: © John Madden/

iStockphoto.
Page 690 (bottom): © budgetstockphoto/

iStockphoto.
Page 691, 700, 702: Photodisc/Punchstock.
Page 692: © paul kline/iStockphoto.
Page 695, 702: © Jorge Delgado/

iStockphoto.
Page 698: © Skip ODonnell/iStockphoto.
Page 701 (top): Courtesy of Nigel Tout.
Page 701: © Ermin Gutenberger/

iStockphoto.
Page 706: © martin mcelligott/iStockphoto.
Page 708: © Luis Carlos Torres/

iStockphoto.


	Copyright
	Preface
	A Walkthrough of the Learning Aids
	Acknowledgments
	Contents
	Special Features
	Chapter 1: Introduction
	1.1 Computer Programs
	1.7 Problem Solving: Algorithm Design
	1.2 The Anatomy of a Computer
	1.3 The Java Programming Language
	1.4 Becoming Familiar with Your Programming Environment
	1.5 Analyzing Your First Program
	1.6 Errors

	Chapter 2: Fundamental Data Types
	2.1 Variables
	2.2 Arithmetic
	2.3 Input and Output
	2.4 Problem Solving: First Do It By Hand
	2.5 Strings

	Chapter 3: Decisions
	3.1 The if Statement
	3.2 Comparing Numbers and Strings
	3.3 Multiple Alternatives
	3.4 Nested Branches
	3.5 Problem Solving: Flowcharts
	3.6 Problem Solving: Test Cases
	3.7 Boolean Variables and Operators
	3.8 Application: Input Validation

	Chapter 4: Loops
	4.1 The while Loop
	4.2 Problem Solving: Hand-Tracing
	4.3 The for Loop
	4.4 The do Loop
	4.5 Application: Processing Sentinel Values
	4.6 Problem Solving: Storyboards
	4.7 Common Loop Algorithms
	4.8 Nested Loops
	4.9 Application: Random Numbers and Simulations

	Chapter 5: Methods
	5.1 Methods as Black Boxes
	5.2 Implementing Methods
	5.3 Parameter Passing
	5.4 Return Values
	5.5 Methods Without Return Values
	5.6 Problem Solving: Reusable Methods
	5.7 Problem Solving: Stepwise Refinement
	5.8 Variable Scope
	5.9 Recursive Methods (Optional)

	Chapter 6: Arrays and Array Lists
	6.1 Arrays
	6.2 The Enhanced for Loop
	6.3 Common Array Algorithms
	6.4 Using Arrays with Methods
	6.5 Problem Solving: Adapting Algorithms
	6.6 Problem Solving: Discovering Algorithms by Manipulating Physical Objects
	6.7 Two-Dimensional Arrays
	6.8 Array Lists

	Chapter 7: Input/Output and Exception Handling
	7.1 Reading and Writing Text Files
	7.2 Text Input and Output
	7.3 Command Line Arguments
	7.4 Exception Handling
	7.5 Application: Handling Input Errors

	Chapter 8: Objects and Classes
	8.1 Object-Oriented Programming
	8.2 Implementing a Simple Class
	8.3 Specifying the Public Interface of a Class
	8.4 Designing the Data Representation
	8.5 Implementing Instance Methods
	8.6 Constructors
	8.7 Testing a Class
	8.8 Problem Solving: Tracing Objects
	8.9 Problem Solving: Patterns for Object Data
	8.10 Object References
	8.11 Static Variables and Methods

	Chapter 9: Inheritance and Interfaces
	9.1 Inheritance Hierarchies
	9.2 Implementing Subclasses
	9.3 Overriding Methods
	9.4 Polymorphism
	9.5 Object: The Cosmic Superclass
	9.6 Interface Types

	Chapter 10: Graphical User Interfaces
	10.1 Frame Windows
	10.2 Events and Event Handling
	10.3 Processing Text Input
	10.4 Creating Drawings

	Chapter 11: Advanced User Interfaces
	11.1 Layout Management
	11.2 Choices
	11.3 Menus
	11.4 Exploring the Swing Documentation
	11.5 Using Timer Events for Animations
	11.6 Mouse Events

	Chapter 12: Object-Oriented Design
	12.1 Classes and Their Responsibilities
	12.2 Relationships Between Classes
	12.3 Application: Printing an Invoice
	12.4 Packages

	Chapter 13: Recursion
	13.1 Triangle Numbers Revisited
	13.2 Problem Solving: Thinking Recursively
	13.3 Recursive Helper Methods
	13.4 The Efficiency of Recursion
	13.5 Permutations
	13.6 Mutual Recursion
	13.7 Backtracking

	Chapter 14: Sorting and Searching
	14.1 Selection Sort
	14.2 Profiling the Selection Sort Algorithm
	14.3 Analyzing the Performance of the Selection Sort Algorithm
	14.4 Merge Sort
	14.5 Analyzing the Merge Sort Algorithm
	14.6 Searching
	14.7 Problem Solving: Estimating the Running Time of an Algorithm
	14.8 Sorting and Searching in the Java Library

	Chapter 15: The Java Collections Framework
	15.1 An Overview of the Collections Framework
	15.2 Linked Lists
	15.3 Sets
	15.4 Maps
	15.5 Stacks, Queues, and Priority Queues
	15.6 Stack and Queue Applications

	Appendix A: The Basic Latin and Latin-1 Subsets of Unicode
	Appendix B: Java Operator Summary
	Appendix C: Java Reserved Word Summary
	Appendix D: The Java Library
	Glossary
	Index
	Illustration Credits

