

Wesley Hales

HTML5 and JavaScript Web Apps

ISBN: 978-1-449-32051-5

[LSI]

HTML5 and JavaScript Web Apps
by Wesley Hales

Copyright © 2013 Hales Consulting, Inc.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Christopher Hearse
Copyeditor: Linda Laflamme

Proofreader: Linley Dolby
Indexer: Meghan Jones
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

October 2012: First Edition

Revision History for the First Edition:

2012-10-26 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320515 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. HTML5 and JavaScript Web Apps, the image of a cornetfish, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320515

Table of Contents

Preface. vii

1. Client-Side Architecture. 1
Before HTML5 2
More Code on the Client 3
The Browser as a Platform 4
Conclusion 5

2. The Mobile Web. 7
Mobile First 8
Deciding What to Support 8

Mobile Web Browsers 9
Mobile Browser Market Share 13
Browser Grading 14
HTML5 in the Enterprise 15

Graceful Degradation 16
QA and Device Testing 16

3. Building for the Mobile Web. 19
Mobile Web Look and Feel 19

The Look 20
The Feel 21

Interactions and Transitions 23
Sliding 23
Flipping 27
Rotating 29
Debugging Hardware Acceleration 31
Memory Consumption 36

Fetching and Caching 37
Network Type Detection and Handling 43

iii

Frameworks and Approaches 46
Single Page 48
No Page Structure 51
100% JavaScript Driven 52
Mobile Debugging 59

4. The Desktop Web. 63
The Browser as a Platform 64

Client Versus Server HTML Generation 64
Device and Feature Detection 66

Client-Side Feature Detection 67
Client-Side userAgent Detection 69
Server-Side userAgent Detection 71

Compression 72
GZIP Versus DEFLATE 73
Minification 77

JavaScript MVC Frameworks and the Server 83
The Top Five Frameworks 84
Backbone 85
Ember 87
Angular 89
Batman 90
Knockout 92

5. WebSockets. 95
Building the Stack 95

On the Server, Behind the Scenes 96
Programming Models 96

Relaying Events from the Server to the Browser 97
Binary Data Over WebSockets 102
Managing Proxies 103
Frameworks 106

6. Optimizing with Web Storage. 111
The Storage API 112
The StorageEvent API 114

What’s Racy and What’s Not? 114
Using JSON to Encode and Decode 115
Security and Private Browsing 115

Security 116
Private Browsing 116

Who’s Using Web Storage? 117

iv | Table of Contents

Using Web Storage Today 119
Syncing Data from the Client Side 120

Database Syncing with Backbone 121
Using Web Storage in Any Browser 123
Frameworks 125

LawnChair 125
persistence.js 126

7. Geolocation. 129
A Practical Use Case: User Tracking 132
A Practical Use Case: Reverse Geocoding 133
Frameworks 134

geo-location-javascript 134
Webshims lib 135

8. Device Orientation API. 137
A Practical Use Case: Scrolling with Device Movement 140

9. Web Workers. 143
A Practical Use Case: Pooling and Parallelizing Jobs 145

Other Uses 149

Index. 151

Table of Contents | v

Preface

HTML5 and JavaScript Web Apps is about building web applications with HTML5 and
W3C specifications that are widely supported across all devices and browsers. It is in‐
tended for programmers who are facing the challenges of moving more code to the
frontend with JavaScript, CSS, and HTML, while at the same time providing a backend
infrastructure that is loosely coupled and supportive of offline clients.

My goal is to take you through, from beginning to end, each step of research and de‐
velopment for building a web application in today’s new, brave world of mobile-first,
responsive, progressive, and MVwhatever JavaScript-based applications. Each chapter
contains real-world examples and uses of each specification discussed.

A few core W3C specifications are considered the cornerstones of today’s “enterprise”
web apps: Web Storage, Web Workers, Geolocation, Device Orientation, and Web Sock‐
ets. In the chapters that follow, you’ll learn how to use these specifications in both mobile
and desktop environments, as well as how to deal with fragmentation. Along the way,
you’ll also discover the hidden details and intricacies that you must know to create the
most amazing application the universe has ever seen.

Many books describe the drama of what went down between the W3C and the
WHATWG during the making of HTML5, and just as many people will tell you that
“HTML5” is now only a marketing term. I agree to some extent, but that’s only part of
the story. The important things to understand, and the focus of this book, are the game-
changing aspects and challenges of developing web applications with the specifications
that have fallen under the HTML5 umbrella or just received attention with the rise of
HTML5.

vii

Who This Book Is For
The way we write web apps is changing—and it will always change. This book attempts
to capture a snapshot in time of the HTML5 revolution and covers topics from beginner
to advanced. Maybe you’re a novice who’s just starting to learn web application devel‐
opment, or maybe you’re an expert fine-tuning your existing stack. Either way, HTML5
and JavaScript Web Apps will give you a baseline for building advanced client-side web
applications.

If you’re a developer aiming to write lightning-fast, HTML5-driven applications, as well
as to understand how the server interacts with today’s newer client-side concepts and
technologies, then this book is for you.

Who This Book Is Not For
If you’re just starting to learn JavaScript, CSS, or HTML, then this book is not for you.
Consult one of the many books that cover the basics of web application development
before you begin reading HTML5 and JavaScript Web Apps. This book assumes you
understand how to build a web application and have written one before with such li‐
braries as jQuery, Prototype, or plain old DOM APIs.

Also, if you are convinced that server-side generated markup is the way of the future,
then chances are you won’t enjoy this book. The topics covered here are mostly directed
toward developers who think “offline first” and write modern web applications that start
out not worrying about the server. The main idea driving this book is to use the web
browser as a platform.

Finally, this book is geared toward the UI. There are a few examples of server-side code,
mainly in Chapter 5, but everything else is client-side code with JavaScript and CSS.

What You’ll Learn
The world of HTLM5 and mobile is moving at light speed, and we are witnessing a
revolution and shift from traditional server-side concepts to heavier client-side ideas.
In this environment, building a web app purely from HTML5 and related specifications
is complicated and challenging, to say the least. These standards can adapt gracefully
across mobile and desktop browsers, however, and this book will help you shoulder the
challenge.

Chapter 1 and Chapter 2 start with an overview of the Mobile Web and will help you
get a good grasp on which browsers support the standards that this book talks about
and which browsers you should support. Here you’ll learn on how to grade browsers so
that your development team, QA team, and customers will know where you stand on
browser support.

viii | Preface

Chapter 3 jumps straight into developing a mobile web application with HTML5. This
chapter will give you a starting point for building an application with native-like touch
events and transitions. You’ll also learn to add offline support with the AppCache and
dynamically enhance your app based on the type of network the user is on (3G, WiFi,
an so on).

Chapter 4 introduces you to concepts and features that apply to all browsers, both mobile
and desktop. This chapter covers advanced server-side topics, such as compression and
minification, along with frameworks that can help you develop a build process. This
chapter also compares today’s top five JavaScript MVC frameworks and how they in‐
teract with the server. Unlike other books that cover only the basics of JavaScript MVC,
Chapter 4 takes a heavier look at how these frameworks interact with the server.

The remaining chapters go into detail on the five main HTML5 specifications. You’ll
learn about the raw implementation of each specification, as well as how it’s used in real-
world scenarios and use cases. Each chapter ends with a look at the frameworks available
that support each technology.

For example, Chapter 5 takes a broad look at WebSockets and how you can use it on the
client and server. This is the only chapter that goes into detail on server-side code. You’ll
set up a simple WebSocket server and compare frameworks that can be used across
mobile and desktop browsers. The chapter also contains a detailed comparison of Sock‐
et.IO, Vert.x, and Atmosphere.

Chapter 6 goes into detail on Web Storage. You’ll see how today’s top sites like Google,
Yahoo!, Twitter, and Amazon are storing data on the client side and investigate the best
ways to store data along with a breakdown of available frameworks.

Next, Chapter 7 looks at Geolocation and discusses real-world uses of tracking users
with mobile web browsers and other concepts. This chapter outlines how to use the
technology and where you might encounter pitfalls in various implementations.

Chapter 8 covers the Device Orientation API. Although it’s not the most glorious spec‐
ification in existence, it has extremely valuable and valid uses, as you’ll learn. This chap‐
ter ends with an implementation using orientation for page navigation on mobile de‐
vices.

Focused on Web Workers, Chapter 9 goes into practical uses of threading in the browser,
delving into more detail than simply processing prime numbers in a separate thread.
The chapter provides real-world examples of using Web Workers for processing image
data and shows you how to create your own thread pool.

By the end of the book, you should be comfortable with writing your own HTML5 web
app that works across any browsers you wish to support. You will have a true under‐
standing of what you can build with HTML5, its available frameworks, and today’s web
browsers.

Preface | ix

About the Code
The examples in this book are maintained at http://github.com/html5e. The JavaScript
and CSS are self-contained in a simple framework called slidfast.js and slidfast.css. The
JavaScript was purposely created to have no dependencies on any other libraries or
frameworks. It is built specifically to showcase core JavaScript and DOM APIs that are
provided by the browsers covered in each chapter. It’s a learning framework not intended
for public consumption, but by all means, learn from it and use it wherever you feel
necessary.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis‐
sion unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.

x | Preface

http://github.com/html5e

Selling or distributing a CD-ROM of examples from O’Reilly books does require per‐
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “HTML5 and JavaScript Web Apps by Wesley
Hales (O’Reilly). Copyright 2013 Hales Consulting, Inc., 978-1-449-32051-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page here.

Preface | xi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/HTML5-JS-Web-Apps

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book is dedicated to my incredible wife, Kristen, and our beautiful children, Adam
and Stella. I also thank and dedicate this effort to Jesus Christ, who has given me the
talent and ability to write this book.

The book would not have been possible without Meghan Blanchette and Simon St.
Laurent continually pushing me to do better. I’m not a super easy guy to work with and
can be quite lazy at times ☺, so they deserve serious props.

Also, many, many thanks to Douglas Campos, Brian Leroux, Divya Manian, Jason Por‐
ter, Shelley Powers, and Darren Nelsen for taking the time to review this book. I sought
out the best developers, authors, and speakers in the industry to provide feedback, and
they pushed me to places I did not think about. They gave me great perspective on the
different aspects of HTML5 and today’s Web. It was an honor to work with them and
have their input.

Last but not least, the open source community around HTML5 and open web technol‐
ogies is my source of inspiration, ideas, and fuel for this book. I would not be where I
am today without the countless people who give so much back to the community from
which they take. So thanks to you all.

xii | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Client-Side Architecture

Today, client-side development clearly requires more thought and investment in the
architecture of HTML-driven applications. As web applications evolve, we are witness‐
ing a serious shift from traditional server-side frameworks with tightly coupled tem‐
plating logic and heavy backend processing to loosely coupled JavaScript clients that
can go on- and offline at any time.

But is all of this just a repeat of the past? Haven’t we already gone through the fat-client
phases of the ’80s and ’90s, illustrated in Figure 1-1?

Figure 1-1. Fat clients used to be all the rage through the ’80s and ’90s

1

Unlike 20 years ago, browsers—the client-side platforms of today—are much more
powerful, not to mention mobile. Plus, today’s clients can report all kinds of interesting
data, such as your location’s latitude and longitude, through the browser and over a cell
network.

One other small fact that’s pushing the browser as a platform is that multiple companies
—Google, Apple, Mozilla, and Microsoft—are pushing thousands of commits per week
into improving their hybrid, thick-client technology platforms.

In the past, building applications that were heavily tied to the server made perfect sense.
This gave hardcore, backend developers the freedom not to worry about DOM manip‐
ulation and CSS. If you could get a data grid or paging component that tied into your
backend code and generated IE6- through IE8-compatible markup, then you were gold‐
en. (See Figure 1-2.)

Figure 1-2. Output of a JSF data grid component

This autogenerated markup comes at a cost, however, especially in today’s world of fast
moving, fragmented browsers. The need for flexible, controllable markup is at an all-
time high. The Open Web is moving faster than ever, and user interfaces can no longer
allow the server to be the bottleneck between stale ideas of the past and lightning-fast,
scalable, frontend code. Developers have never been more concerned with performance
in the browser. How markup is rendered and asynchronous resources are loaded can
make or break your application. Faster and leaner frontends equal more lead conver‐
sions, better SEO rankings, and lower costs in the data center.

Before HTML5
Before HTML5 and mobile devices, frontend (or UI) developers didn’t care that much
about the architecture behind the user interface. The scene was full of hacks and pro‐

2 | Chapter 1: Client-Side Architecture

prietary plug-ins. Many developers focused on supporting browsers like IE6, Firefox,
Safari, and maybe a few others. They wrote clean, semantic markup and worried about
how valid their XHTML was. They imported the occasional JavaScript library to create
some nice effects, and prototype.js or jQuery was the backbone (no pun intended) of the
application.

Once developers worked around the browser quirks and bugs of a given application,
things pretty much stayed the same. The architecture of advanced web applications was
mostly managed on the server. Applications were dependent on how fast the incoming
HTTP request could be handled and how fast markup could be rendered back to the
user’s web browser. With server-side templating and component frameworks, the server
parsed the template and data was interlaced with regular XHTML or HTML markup.
For Java, you might have used JSP, Velocity, Tiles, GWT, or JSF to achieve this. For Ruby,
it was ERB, HAML, or RedCloth, and the list goes on. Every server-side web framework
had an accompanying UI templating engine to go along with it or to choose from. This
was the way of UI development for the past 10 years or more, and it probably will
continue for a while yet. But it doesn’t have to. The time has come to rethink how we
build our new generation of web applications.

You might ask, “Why do we need to change the way in which our frontend is generated?”
or “Why are we moving all our code to run inside the web browser and not on the
server?” The first answer that comes to mind is that the web browser is becoming a
platform. Our applications now live inside of platforms (or browsers) that are orders of
magnitude more capable than their ancestors. Today’s web applications are just that:
they’re apps. We’re not creating sites anymore; we’re creating robust applications with
HTML5, CSS, and JavaScript at the core, as you can see in the HTML5 badge shown in
Figure 1-3.

Figure 1-3. HTML5 badge

It’s time to take a step back and look at how we’re building our applications and level
the client-side playing field. Developers must understand which frameworks and ap‐
proaches are needed to build a scalable, rock-solid user interface for any given applica‐
tion.

More Code on the Client
The balance is undeniably moving from traditional server-side templating to JavaScript
templating. With so many new JavaScript frameworks out there, we may seem to be

More Code on the Client | 3

going a little overboard, but this is what happens as technology shifts and then finds a
decent balance. The technology that drives our UI is changing as browsers become more
mobile and as they’re given more hardware access through JavaScript APIs. To some
degree, the concept of building a user interface remains the same across both client and
server approaches. They all have data that needs to be presented and data that needs to
be gathered. We’re still adding framework-specific tags or attributes to our code so that
the data knows where to be displayed, but the dependence on the server is gone. We are
now getting objects and data back from intermittent RESTful or WebSocket connections,
which are automatically bound to the UI through a client-side, JavaScript framework.
Our applications now have the ability to occasionally sync data and the power to func‐
tion offline.

To harness this power and to handle the different states of our applications, we must
consider new approaches for managing client-side code. JavaScript libraries like jQuery
and prototype must not define our frontend development models. Cross-browser DOM
manipulation libraries should be taken very seriously, but the complexities of a scalable
client-side architecture deserve much more attention than they have been given in the
past. Organizing code and your application structure with mature techniques gathered
from the classic Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, et al., (Addison-Wesley Professional, 1995), is just the beginning. More than
40 MVC JavaScript frameworks now claim to be MVC, but they should be called MV*.
They all use different techniques for managing models, views, and controllers, and many
seriously depart from the original Smalltalk MVC concepts. And even though JavaScript
frameworks give us a nice way to organize and structure our code, we must deal with
browser APIs that expose hardware-level access, such as Geolocation or Web Workers,
on our own. The architecture of heavy, HTML5-driven user interfaces is still in its in‐
fancy, but fortunately you have this book to help light your path.

The Browser as a Platform
The web browser is becoming, or already is, an additional platform for our application
stacks. It gets just as much, if not more, consideration than the server-side when choos‐
ing what our applications must support. Our frontend code is now packaged in native
apps, extensions, and operating systems that are all driven by HTML5. As we are seeing
with Google’s Chrome OS and Mozilla’s Boot 2 Gecko projects, the Open Web is very
clearly being considered the platform for which web applications should and will be
written.

HTML5, the Open Web, and mobile devices have helped push the browser-as-a-
platform forward, giving browsers the capabilities of storing data and running applica‐
tions in an offline state. But many of the newer standards driving this platform may not
be finalized or implemented consistently across all the web browsers you wish to target.

4 | Chapter 1: Client-Side Architecture

http://en.wikipedia.org/wiki/Design_Patterns

The good thing is that there are workarounds in the majority of cases and browser
vendors such as Microsoft, Opera, Google, Apple, and Mozilla are clearly taking the
stance of providing a platform for developers with their respective browsers (see
Figure 1-4).

Figure 1-4. Potential upcoming browser platforms

Conclusion
Whether you work for a large company or a budding startup, you must hone your skills,
look past shiny home pages, look past top rankings on Hacker News or reddit, and make
decisions that are valuable to your current project. You must set up and maintain work‐
flows for writing, testing, and debugging code and the frameworks you choose. These
workflows may consist of many libraries and processes, from enforcing automatic IDE
inspections with JSHint to testing your code with a minified, concatenated version of
all the JavaScript contained within your application. Overall, it’s incredibly valuable to
understand and embrace the tools that will help you deliver an amazing web application
or enhance an existing one.

The architecture of client-side applications is in its infancy. Tools and processes will get
better over time, and JavaScript will be considered the assembly language of the Web.
Until that day comes, however, we are the pioneers in this new age of frontend devel‐
opment. Now is the time to seize the opportunity: create applications that are perform‐
ant, are scalable, and take advantage of the latest specifications that the Web has to offer.
It is time to move the Web forward and make it better.

Conclusion | 5

CHAPTER 2

The Mobile Web

Consumers are on track to buy one billion HTML5-capable mobile devices in 2013.
Today, half of US adults own smartphones. This comprises 150 million people, and 28%
of those consider mobile their primary way of accessing the Web. The ground swell of
support for HTML5 applications over native ones is here, and today’s developers are
flipping their priorities to put mobile development first.

Even in large enterprise environments, mobile browser statistics are on the rise and
starting to align with their desktop cousins. We are still faced, however, with the fact
that one third of the Internet is using a version of Internet Explorer older than 9. Even
more sobering, in some cases, these early IE users can make up two thirds of the visitors
to our sites. This will get better over time, and desktop users will upgrade to newer
versions and better browsers, but as we push the Web forward and create amazing ap‐
plications across all browsers, we must also create a solid architecture that will account
for all users and give them the best experience possible.

The capabilities of web browsers mean everything to the success of our web projects
and products. Whether for fun, profit, or the overall betterment of mankind, it’s im‐
portant to understand how data should be served up for both desktop and mobile users.
Finding the common ground across all browsers and figuring out which pieces should
be used in the construction of today’s web applications is the goal of this chapter.

The Mobile Web refers to browser-based applications created for mobile devices, such
as smartphones or tablets, which can be connected wirelessly. Since 2008, the Web has
shifted toward focusing on mobile browsers, which are delivering an overall better
quality of life for today’s web developers and users. However, this better quality of life
is sometimes short lived once you start testing your new mobile web app on the myriad
of devices and browsers. You may begin to wonder just what is supported and which
HTML5 features you should use to build your app.

7

Whether you’re an HTML5, W3C standards-loving, Open Web expert or just coming
fresh off HTML 1, this chapter will equip you with the latest code, trends, and market
research to guide you through making the right decision for your next web project. So
what are you waiting for? Level up!

Mobile First
First, let’s get our priorities straight. Prioritizing mobile design and development over
the desktop was once laughable. In just a few years, the idea of “mobile first” has taken
over, giving web developers a breath of fresh air in terms of HTML5-based APIs toward
hardware access on mobile devices.

Apart from the obvious, here are multiple reasons for thinking mobile first:

• Developing sites for constrained devices and resolutions will force you to create
more fluid and flexible content.

• Device features, such as accelerometer and geolocation hardware, present new
business opportunities with technologies like Augmented Reality.

• Overall, mobile first requires you to think in a code-quality mindset. Today, it’s
required for developers to worry about things like battery life when doing hardware-
accelerated animations with CSS. This quality of development not only brings better
performing apps, but it also encourages you to focus on cleaner semantics.

• As you wean yourself off of desktop-focused web development, mobile browsers
give you a glimpse into the future. This allows you to stay on the bleeding edge and
in touch with new specifications and features.

Unfortunately the Mobile Web isn’t write-once-run-anywhere yet. As specifications be‐
come final and features are implemented, interoperability will be achieved. In today’s
world of mobile browsers, however, we don’t have a largely consistent implementation
across all browsers. Even though new tablets and phones are constantly being released
to achieve a consistent level of HTML5 implementation, we all know that we’re stuck
supporting the older, fragmented devices for a set amount of time. So, needless to say,
such devices as the iPhone 3G and any device that hasn’t upgraded past Android 4 will
be the IE6s of this mobile era.

Deciding What to Support
As the mobile landscape exists today, we have multiple platforms and browsers to sup‐
port. When you use HTML5’s core APIs, you’re bound to the features that are supported
by your target device. So it’s critical to understand where the mobile browser scene is
today—and where it’s headed.

8 | Chapter 2: The Mobile Web

Writing mobile web apps that span all platforms and all browsers can be a huge under‐
taking. Previously, web app developers didn’t care if a desktop computer had a camera
or accelerometer attached to it. The web applications of yesterday were not tied to the
operating system and the capabilities of desktop hardware. Now, the Mobile Web adds
another dimension of support to the apps we build, and the fragmentation across
browsers and devices is mind-blowing. We must now create applications to be compat‐
ible across browsers, platforms, and devices. For example, Android’s WebKit-based
browser supported Web Workers in version 2.1, but later disabled support in version
2.2, 3.0, and 4.0. Then, support of Web Workers was fixed and turned back on in 4.1!
Confusing, right? This is what I mean by another dimension of support or fragmenta‐
tion. You’re not only supporting browsers, but the operating system the browser is tied
to as well.

How do you sort it all out? Not to worry, the remainder of the chapter examines the
various mobile browsers, discusses the commonly supported APIs of each device, and
identifies a core set of features from which you can build a solid enterprise mobile web
app.

You can find the latest matrix of HTML5 support across all rendering
engines on the HTML5 engine comparison page on Wikipedia.

Mobile Web Browsers
Take a moment to review the various mobile browsers and their respective communities.
As developers, we must try to embrace all platforms and develop applications that span
all of the following browsers—and more if needed. For example, your users should not
be limited to a WebKit-only mobile application in which your code runs on iOS and
Android only.

WebKit

WebKit is the browser engine behind Mobile Safari, Android, and Chrome, to name a
few. This open source project is constantly pushing the open web envelope, adapting to
the latest W3C specifications as they’re published. The recent explosion of interest in
WebKit can be attributed to the fact that it powers many of the leading mobile platform
browsers.

Figure 2-1 shows the source code revision (vertical) as the function of time (horizontal).
Some icons are there to represent products associated with WebKit; the position ap‐
proximately resembles the era those products were made popular.

Deciding What to Support | 9

http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(HTML5)
http://www.webkit.org

Figure 2-1. WebKit revisions

Mobile Safari (iOS6). Apple’s adoption and implementation of early HTML5 specifica‐
tions has been impressive. The company has been an obvious force in pushing the Web
forward. With standard hardware and multicore technology, iPhones and iPads have
been a great platform for HTML5 development. But, it’s not all ponies and rainbows in
iOS land, as each mobile browser has its share of quirks and bugs. Earlier iOS versions
suffered from a bug with JavaScript’s innerHTML() and forced developers to think of
new ways to insert dynamic content. You’ll see the solution to this problem in the next
chapter—as for now, we’ll focus on the big picture.

Apple’s community process around iOS progression and filing bugs is bound and limited
to the way Apple chooses to do things. You can file bugs with its BugReporter (http://
bugreport.apple.com), but you can search through issues that you submit only. Luckily,
once again, the community has stepped up to give Apple a hand in allowing nonconfi‐
dential data from customers to be openly searched. To see if your bug has already been
filed, you can visit http://openradar.appspot.com/faq.

Android. Even though the Android default browser is based on WebKit, as of this writ‐
ing, its implementation of HTML5 specifications is just starting to beef up in version 4.
As Android evolves, we can rest assured that the coming HTML5 implementations will
evolve with its community (http://source.android.com/community). For now, however,
Android devices are horribly fragmented, and HTML5 support varies on devices and
OS versions.

As for Android’s future, the newer Dolphin browser (http://dolphin-browser.com) prom‐
ises to deliver major advances in browser technology:

• 5 to 10 times faster than the default Android browser
• 100% faster than Chrome (at times)
• Scored over a 450 when tested on the respected test site, http://HTML5test.com,

shown in Figure 2-2

10 | Chapter 2: The Mobile Web

http://bugreport.apple.com
http://bugreport.apple.com
http://openradar.appspot.com/faq
http://source.android.com/community
http://dolphin-browser.com
http://HTML5test.com

Figure 2-2. Performance test results from http://html5test.com/results/mobile.html

Mobile Firefox

Mozilla has been around for a while and is stronger than ever in focusing on community
efforts and pushing the Web forward. As of this writing, Mobile Firefox is in third place
for the best HTML5 implementation (Figure 2-3) and has trumped Mobile Safari (iOS)
in terms of implemented HTML5 features.

Figure 2-3. Best mobile HTML5 implementation with results

Deciding What to Support | 11

http://html5test.com/results/mobile.html
http://html5test.com/results-mobile.html

This swapping of the throne will continue as the Mobile Web moves forward and evolves
—and that’s a good thing. We want competition and standards progression. Mozilla is
no stranger to the evolution of the Mobile Web with its ambitious new project called
WebAPI (https://wiki.mozilla.org/WebAPI). The WebAPI project is a set of APIs for
accessing device functionality usually accessible only for native applications. In sum‐
mary, it’s an OS based on HTML, CSS, and JavaScript for mobile devices. It’s yet another
effort to move the Web forward and enable developers to write web applications once
for all mobile operating systems. Estimated delivery for the WebAPI project is mid-2012
through the Boot to Gecko project (B2G). Figure 2-4 shows a screenshot of B2G’s Gaia
UI.

Figure 2-4. B2G’s Gaia UI

12 | Chapter 2: The Mobile Web

https://wiki.mozilla.org/WebAPI

Opera Mobile

Opera (http://www.opera.com/mobile) has two separate browsers for mobile phones:
Opera Mobile and Opera Mini. In Opera Mini, the Opera Presto browser engine is
located on a server. In Opera Mobile, it is installed on the phone. Currently, Opera Mini
holds a large percentage of market share among other browsers, but for enterprise
HTML5 applications, Opera Mobile supports the core specifications we need, such as
Web Storage, Web Workers, and Geolocation.

Internet Explorer Mobile

Windows Phone 7.5 features a version of Internet Explorer Mobile with a rendering
engine that is based on Internet Explorer 9. So the simplest way of explaining what
Windows Phone supports is to say that it supports what IE9 supports, including Web
Storage and Geo location. The supported specifications for IE9 Mobile can be found at
http://windowsteamblog.com/windows_phone/b/wpdev/archive/2011/09/22/ie9-mobile-
developer-overview.aspx.

On a better note, Windows Phone 8 supports IE10. Internet Explorer 10 includes much
better support for such HTML5 features as WebSockets, Web Workers, Application
Cache, and IndexedDB.

Mobile Browser Market Share
As of the latest worldwide report on browser market share, WebKit-based browsers are
clearly in the lead with over 80% of the market (Figure 2-5). Right now, Android and
iOS dominate, but as new operating systems, such as Mozilla’s HTML5-based mobile
B2G project, emerge we could see another shift of power in the ongoing “browser war.”

Things are moving fast already. During the months that it took me to write this book,
WebKit-based browsers grew from a 75% market share in October 2011 to more than
80% in 2012. Opera Mini shrunk from 18.65% to 12%. IE browsers grew from .16% to .
58%, but Microsoft is just starting up its marketing machine for the Windows Phone
platform in 2012—so expect that IE number to grow.

You can check the latest browser statistics at http://www.netmarket
share.com/browser-market-share.aspx?qprid=0&qpcustomd=1.

Mobile Browser Market Share | 13

http://www.opera.com/mobile
http://windowsteamblog.com/windows_phone/b/wpdev/archive/2011/09/22/ie9-mobile-developer-overview.aspx
http://windowsteamblog.com/windows_phone/b/wpdev/archive/2011/09/22/ie9-mobile-developer-overview.aspx
http://www.netmarketshare.com/browser-market-share.aspx?qprid=0&qpcustomd=1
http://www.netmarketshare.com/browser-market-share.aspx?qprid=0&qpcustomd=1

Figure 2-5. Worldwide market share by browser; May 2012 data provided by Net Appli‐
cations

Browser Grading
All of this information leads into the important topic of browser grading. Browser grad‐
ing is a must for any mobile web project. It gives developers and QA a way to keep sane
while developing and testing your application. It also sets forth a specific support sched‐
ule for your users and an overall target for your mobile web app’s capabilities. Table 2-1
illustrates a sample browser grading sheet from QuirksMode.

Table 2-1. Browser grading example
Grade Description

A: High Quality A high-quality browser with notable market share. A must-target browser for a mobile web developer.

B: Medium Quality Either a lower quality browser with high market share or a high-quality browser with low market share.
Depending upon your capabilities, you should work to support these browsers, as well.

C: Low Quality Typically an extremely low-quality browser with high market share. Generally not capable of running modern
JavaScript or DOM code. This browser should be targeted, but may have access to limited features only.

F: Failing A barely functioning browser. Pick and choose your support wisely.

14 | Chapter 2: The Mobile Web

http://www.netapplications.com/
http://www.netapplications.com/
http://www.quirksmode.org/blog/archives/2010/08/first_serious_s.html

HTML5 in the Enterprise
With a clearer picture of the mobile device and browser landscape, you next need to
determine which W3C specifications the various browsers support and how you can
use them today. In terms of enterprise development, certain client-side APIs are con‐
sidered the advanced building blocks of today’s mobile web applications: Geolocation,
WebSocket, Web Storage, Device Orientation, and Web Workers. These are the speci‐
fications on last call from the W3C; close to finalized, they are stable (for the most part)
and adopted in today’s mobile browsers. Of course, you can find many other great spec‐
ifications like the Media Capture API, which allows access to the device audio, video,
and images, but this book tries to stay focused on specifications that are widely sup‐
ported across all browsers today.

Table 2-2 details the support of the building-block APIs in the five leading or upcoming
mobile platforms. All of these mobile browsers are considered grade A, B, or C.
Throughout the book and at http://html5e.org, I will refer to this group of specifications
and browsers as HTML5 Enterprise or HTML5e to easily identify and build upon the
same specifications and browsers across mobile and desktop environments.

Table 2-2. HTML5 Enterprise (HTML5e) mobile support
Browser Geolocation WebSocket Web Storage Device Orientation Web Workers

Mobile Safari Yes Yes Yes Yes Yes

Android Yes No Yes Yes No

Mobile IE Yes Yesa Yes No Yesa

Opera Mobile Yes Mixedb Yes Mixedc Yes

Mobile Firefox Yes Mixedb Yes Yes Yes
a Mobile IE from Windows Phone 7.5 does not support these, but Windows 8 and above does.
b Both Mozilla and Opera have temporarily disabled WebSockets due to security issues with the protocol.
c Opera Mobile for Android has experimental support.

As you can see in Table 2-2, Mobile Firefox and Safari are the clear winners in terms of
broad support, with Opera Mobile coming in at a close third. Android still has some
work to do, and version 4 is looking much better. Likewise, Mobile IE has much better
HTML5 support in IE10, but IE9 focused mainly on the “same markup” approach: trying
to get things right in regard to HTML5-related markup and the IE rendering engine.

For the latest browser HTML5 support information, check out http://
caniuse.com and http://mobilehtml5.org.

HTML5 in the Enterprise | 15

http://html5e.org
http://caniuse.com
http://caniuse.com
http://mobilehtml5.org

Graceful Degradation
So you’ve decided which browsers you’re going to support (all of them hopefully), but
now you must polyfill or gracefully degrade, your apps where certain HTML5e specifi‐
cations are not implemented. The premise for graceful degradation is to first build for
the latest and greatest, then add polyfills, or handlers, for less capable devices. How can
you create a development environment that will service your enterprise project needs
and give you an API that works and degrades gracefully across multiple mobile brows‐
ers? At the end of each subsequent chapter, we’ll look at approaches to handling these
issues and identify projects that could possibly provide an open source solution.

You now have a starting point: a decent view of which HTML5 APIs are supported within
mobile device browsers. In terms of the future, W3C, spec-driven, device features are
only guaranteed to get better as new device operating systems are released and the
specifications themselves become final. The following chapters will examine and rate
available frameworks to form a reusable API for your project.

QA and Device Testing
In addition to deciding which browsers you are going to support, you need an easy way
to develop and test across them. Enterprise development and QA cycles can get expen‐
sive depending on the scale of your project. So setting up the proper rapid development
and testing environment is critical to success.

Because the current mobile market is mostly owned by Android and iOS, WebKit-based
testing is fairly easy. You can test things out as you normally do on your desktop browser,
then run them on a targeted mobile device that is backed by a version of WebKit. Just
because you tested your app on the desktop version of Chrome or Safari, however, does
not mean that everything will work properly across all WebKit-based mobile browsers.
Nor does it mean that WebKit is the perfect representation of the Mobile Web. You
should test across as many target platforms as possible based on W3C standards.

The best way to test your mobile HTML5-based application is to use the actual physical
device you are targeting (or an emulator). As a service to developers, Max Firtman, the
author of Programming the Mobile Web (O’Reilly) does a great job of identifying available
emulators and maintains an up-to-date list, which you can find at mobilexweb and
preview in Figure 2-6.

Take a few moments to decide which emulator you may need and get ready for Chap‐
ter 3. There, you’ll review how to debug hardware acceleration issues, investigate all the
available remote debugging techniques, and learn how to work and develop across each
browser.

16 | Chapter 2: The Mobile Web

http://shop.oreilly.com/product/9780596807795.do
http://www.mobilexweb.com/emulators

Figure 2-6. List of emulators, available at mobilexweb

QA and Device Testing | 17

http://www.mobilexweb.com/emulators

CHAPTER 3

Building for the Mobile Web

The success of any mobile web application relies on two factors: design and performance.
For mobile app design, we must have a consistent look and feel across all platforms. For
better performance, we must have offline capabilities, animations on the UI, and back‐
end services that retrieve and send data via RESTful or WebSocket endpoints. To put it
simply, your app is constrained by two ever-changing speeds: the speed of the device
CPU/GPU and the speed of the Internet. The UI is handled by device hardware, such
as the GPU, when doing native-like animations and transitions through CSS, and your
backend services are limited to the current Internet connection speed of the mobile
device.

In this chapter, we’ll discuss how to design, create, and tune your mobile web app to be
better looking and more performant. The chapter starts with a brief explanation of how
apps should look for mobile devices then jumps into a low-level explanation of
hardware-accelerated CSS and how to debug it. From there, you’ll learn what it takes to
build an offline mobile application and how to bring all the code together into one
application to create a native-like mobile web app that is capable of handling intermittent
Internet connections. Lastly, you’ll examine today’s most popular mobile frameworks
to get an understanding of when or if you should add a community-supported frame‐
work to your project.

Mobile Web Look and Feel
The “native versus Mobile Web” debate isn’t about which programming model will win.
It’s about what we can build until HTML5-like technologies catch up. We have three
choices:

• Pure native approaches, which are clearly winning today in terms of overall appli‐
cation responsiveness

19

• Hybrid approaches and frameworks, which try to bridge the gap of HTML5 and
native

• True, bleeding edge, mobile web frameworks, which are trying to conquer the native
feel with markup, JavaScript, and CSS

Couple a fast and responsive mobile web app with your existing enterprise infrastruc‐
ture, and let the games begin. Web standards are quickly closing the gap on missing
native features, and device makers are catching up on implementing them. As of Android
3.1, for example, you can capture photos and videos due to the Media Capture API
specification.

The W3C is a busy place these days, and developers are moving specifications and better
use cases forward. Projects like jQuery are calling on the open source community to
participate in these specifications and to submit their ideas for a better Web.

It only makes sense that mobile developers are leaning in favor of writing once, and
running their app anywhere. Write once, run anywhere, or WORA, received a lot of
fanfare after Sun’s JVM started to emerge in the enterprise. With HTML5, WORA ba‐
sically means you can use standard JavaScript and CSS to access all of the device features
that a native application can (the device GPS, camera, accelerometer, etc.). This ap‐
proach has given new life to browsers and a language (HTML) that was once only used
to serve up documents—not apps.

The Look
To truly achieve that native look and feel, not only does your app need to respond quickly,
but it must also look good. These days, the big secret to getting your native app listed
in an App Store Top 10 list is to have a good-looking design. That’s all it takes. If you
have a killer data-driven application using all the latest device bells and whistles, it will
not make it very far without a good clean design.

Overall, the Web has its own look and feel, and everyone knows that. There isn’t a default
look that will make all your users happy, however, so the burden is on you and your
design team to create an attractive user experience.

iOS definitely has its own Mobile Web look and feel that mimics its native apps, but
what about Android, Windows Mobile, Kindle, and all the other devices? Even if you
could get your web app to respond like a native application, how do you conquer making
it look like one? Because you are most concerned with only the three or four leading
platforms, you could create three native skins for your target platforms and a default
web look and feel for all the others.

Theresa Neil does a great job of explaining UI patterns for native apps in Mobile Design
Pattern Gallery (O’Reilly). Her website, (shown in Figure 3-1), is a great resource for
trending patterns in mobile design.

20 | Chapter 3: Building for the Mobile Web

http://shop.oreilly.com/product/0636920022367.do
http://shop.oreilly.com/product/0636920022367.do
http://www.mobiledesignpatterngallery.com/mobile-patterns.php

Figure 3-1. The Mobile Design Pattern Gallery website

The Feel
Spinning refreshes, choppy page transitions, and periodic delays in tap events are just
a few of the headaches you face when attempting to create a mobile web app that behaves
like a native one. Developers are trying to get as close to native as they possibly can, but
are often derailed by hacks, resets, and rigid frameworks.

Hardware acceleration

Normally, GPUs handle detailed 3D modeling or CAD diagrams, but for mobile web
apps, we want our primitive drawings (divs, backgrounds, text with drop shadows,
images, etc.) to appear smooth and animate smoothly via the GPU. The unfortunate
thing is that most frontend developers are dishing this animation process off to a third-
party framework without being concerned about the semantics, but should these core
CSS3 features be masked? Consider a few reasons why caring about hardware acceler‐
ation is important:

Mobile Web Look and Feel | 21

Memory allocation and computational burden
If you go around compositing every element in the DOM just for the sake of hard‐
ware acceleration, the next person who works on your code may chase you down
and beat you severely.

Power consumption and battery life
Obviously, when hardware kicks in, so does the battery. Developers are forced to
take the wide array of device constraints into consideration while writing mobile
web apps. This will be even more prevalent as browser makers start to enable access
to more and more device hardware. Luckily, we will soon have an API for checking
the status of the device battery.

Conflicts
You will encounter glitchy behavior when applying hardware acceleration to parts
of the page that were already accelerated. So knowing if you have overlapping ac‐
celeration is very important.

To make user interaction smooth and as close to native as possible, you must make the
browser work for you. Ideally, you want the mobile device CPU to set up the initial
animation, and then have the GPU responsible for only compositing different layers
during the animation process. This is what translate3d, scale3d, and translateZ do:
they give the animated elements their own layer, thus allowing the device to render
everything together smoothly.

CSS features can come at a cost on low-end devices. When using CSS gradient, box-
shadow, borders, and background-repeat , you are using the device GPU to paint your
images on the fly. CSS can be very powerful for rendering a nice user interface, but you
should avoid doing this type of work in software when it can be prebaked in images.
This means you should use sprites so the device downloads only a single image and
embed data URIs in your CSS files for smaller images.

A few animations that don’t require repaints are:

• transition-property

• opacity

• transform

CSS selector performance can cripple older mobile browsers. Using selectors like:
div[style*='foo']

will severely reduce performance on iOS devices up to version 4.3.x.

22 | Chapter 3: Building for the Mobile Web

http://www.w3.org/TR/battery-status/

Interactions and Transitions
Take a look at three of the most common user-interaction approaches when developing
a mobile web app: slide, flip, and rotation effects. First, we’ll dissect the slide, flip, and
rotation transitions and how they’re accelerated. Notice how each animation requires
only three or four lines of CSS and JavaScript. The examples don’t use any additional
frameworks, only DOM and vendor prefixed APIs.

You can view this code in action at http://html5e.org/example. The demo
is built for a mobile device, so fire up an emulator, use your phone or
tablet, or reduce the size of your browser window to 1024px or less.

Sliding
The most common of the three approaches, sliding page transitions, mimics the native
feel of mobile applications. The slide transition is invoked to bring a new content area
into the view port.

For the slide effect, first you declare your markup:
<div id="home-page"
class="page">
 <h1>Home Page</h1>
</div>

<div id="products-page" class="page stage-right">
 <h1>Products Page</h1>
</div>

<div id="about-page" class="page stage-left">
 <h1>About Page</h1>
</div>

Notice that the pages are staged left and right. You could place them in any direction,
but this is most common.

We now add animation plus hardware acceleration with just a few lines of CSS. The
actual animation happens when we swap classes on the page div elements.

.page {
 position: absolute;
 width: 100%;
 height: 100%;
 /*activate the GPU for compositing each page */
 -webkit-transform: translate3d(0, 0, 0);
}

Interactions and Transitions | 23

http://html5e.org/example

Although translate3d(0,0,0) is known as the silver bullet approach for WebKit, other
browser engines like fennec (Mobile Firefox) and Opera Mobile do not support, or are
just implementing, translate3d as of this writing. They do support 2D transformations,
which cut out the Z-axis, so to support these browsers, you need to change:

transale3d(X,Y,Z); // or
translateX(X), translateY(Y), translateZ(Z);

to:
translate(X,Y);

The one downside to 2D transforms is that, unlike 3D transforms, they are not GPU
accelerated.

Hardware acceleration tricks do not provide any speed improvement
under Android Froyo 2.2 and beyond. All composition is done within
the software.

When the user clicks a navigation element, we execute the following JavaScript to swap
the classes. We’re not using any third-party frameworks yet, this is straight up JavaScript!

function slideTo(id) {
 //1.) the page we are bringing into focus dictates how
 // the current page will exit. So let's see what classes
 // our incoming page is using.
 //We know it will have stage[right|left|etc...]
 var classes = getElement(id).className.split(' ');

 //2.) decide if the incoming page is assigned to right or left
 // (-1 if no match)
 var stageType = classes.indexOf('stage-left');

 //3.) on initial page load focusPage is null, so we need
 // to set the default page which we're currently seeing.
 if (FOCUS_PAGE == null) {
 // use home page
 FOCUS_PAGE = getElement('home-page');
 }

 //4.) decide how this focused page should exit.
 if (stageType > 0) {
 FOCUS_PAGE.className = 'page transition stage-right';
 } else {
 FOCUS_PAGE.className = 'page transition stage-left';
 }

 //5. refresh/set the global variable
 FOCUS_PAGE = getElement(id);

24 | Chapter 3: Building for the Mobile Web

https://github.com/html5e/slidfast/blob/master/slidfast.js#L319

 //6. Bring in the new page.
 FOCUS_PAGE.className = 'page transition stage-center';
}

stage-left or stage-right becomes stage-center and forces the page to slide into
the center view port. We are completely depending on CSS3 to do the heavy lifting.

.stage-left {
 left: 100%;
}

.stage-right {
 left: 100%;
}

.stage-center {
 top: 0;
 left: 0;
}

By controlling the animations through swapping the stage classes in JavaScript, we are
decoupling the CSS implementations from JavaScript. We could, however, control all
the presentation logic within JavaScript by using:

FOCUS_PAGE.style.transform =
"translate(X,Y)";

Each browser vendor may be using a specific vendor prefix for the transform capabilities.
One quick way of checking to see what your target browser supports is to use:

var getTransformProperty =
function(node) {
 var properties = [
 'transform',
 'WebkitTransform',
 'msTransform',
 'MozTransform',
 'OTransform'
];
 var p;
 while (p = properties.shift()) {
 if (typeof node.style[p] != 'undefined') {
 document.
 querySelector("#log").innerHTML += p + "
";
 }
 }
 return false;
 };

This slide effect has been tested on Mobile Safari, Android, Mobile Firefox (Figure 3-2),
and Opera Mobile (Figure 3-3).You can also see the source code that supports all the
aforementioned browsers.

Interactions and Transitions | 25

http://html5e.org

Figure 3-2. Slide transitions running on Mobile Firefox (Fennec)

26 | Chapter 3: Building for the Mobile Web

Figure 3-3. Slide transitions running on Opera Mobile 12

Flipping
On mobile devices, flipping is characterized by actually swiping the page away. Here
you can use some simple JavaScript to handle the event on iOS and Android (WebKit-
based) devices. Here is an example of flipping in action and the source at github.

Interactions and Transitions | 27

http://html5e.org/example/touch
https://github.com/html5e/slidfast/blob/master/slidfast.js#L411

When dealing with touch events and transitions, the first thing you’ll want is to get a
handle on the current position of the element. Thanks to the CSSMatrix interface, which
is implemented by WebKit only at the time of this writing, you can get an instance of
WebKitCSSMatrix by passing the current transform’s computed style.

function pageMove(event) {
 // get position after transform
 var curTransform =
 new WebKitCSSMatrix(window.getComputedStyle(page).webkitTransform);
 var pagePosition = curTransform.m41;
}

Because we are using a CSS3 ease-out transition for the page flip, the usual element.off
setLeft will not work.

For more information on WebKitCSSMatrix, go to Apple’s developer
page.

Next we want to figure out which direction the user is flipping and set a threshold for
an event (page navigation) to take place.

if (pagePosition >= 0) {
 //moving current page to the right
 //so means we're flipping backwards
 if ((pagePosition > pageFlipThreshold) ||
 (swipeTime < swipeThreshold)) {
 //user wants to go backward
 slideDirection = 'right';
 } else {
 slideDirection = null;
 }
} else {
 //current page is sliding to the left
 if ((swipeTime < swipeThreshold) ||
 (pagePosition < pageFlipThreshold)) {
 //user wants to go forward
 slideDirection = 'left';
 } else {
 slideDirection = null;
 }
}

You’ll also notice that we are measuring the swipeTime in milliseconds as well. This
allows the navigation event to fire if the user quickly swipes the screen to turn a page.

To position the page and make the animations look native while a finger is touching the
screen, we use CSS3 transitions after each event firing.

28 | Chapter 3: Building for the Mobile Web

http://bit.ly/apple-developer-webkitcss-matrix
http://bit.ly/apple-developer-webkitcss-matrix

function positionPage(end) {
 page.style.webkitTransform = 'translate3d('+ currentPos + 'px, 0, 0)';
 if (end) {
 page.style.WebkitTransition = 'all .4s ease-out';
 //page.style.WebkitTransition = 'all .4s cubic-bezier(0,.58,.58,1)'
 } else {
 page.style.WebkitTransition = 'all .2s ease-out';
 }

For this example, ease-out did the trick, but for your own projects, play around with
cubic-bezier to give the best native feel to your transitions.

Finally, to make the navigation happen, we must call the previously defined slide
To() methods used in the last example.

track.ontouchend =
function(event) {
 pageMove(event);
 if (slideDirection == 'left') {
 slideTo('products-page');
 } else if (slideDirection == 'right') {
 slideTo('home-page');
 }
}

Rotating
Next, take a look at the rotate animation being used in this demo. At any time, you can
rotate the page you’re currently viewing 180 degrees to reveal the reverse side by tapping
on the Contact menu option. Again, this only takes a few lines of CSS and some Java‐
Script to assign a transition class onclick.

The rotate transition isn’t rendered correctly on most versions of An‐
droid, because it lacks 3D CSS transform capabilities. Unfortunately,
instead of ignoring the flip, Android makes the page “cartwheel” away
by rotating instead of flipping. I recommend using this transition spar‐
ingly until support improves.

Here’s the full source, but here’s the markup (basic concept of front and back):
<div id="front"
class="normal">
...
</div>
<div id="back" class="flipped">
 <div id="contact-page" class="page">
 <h1>Contact Page</h1>
 </div>
</div>

Interactions and Transitions | 29

https://github.com/html5e/slidfast/blob/master/slidfast.js#L389

The JavaScript you need is:
function flip(id) {
 // get a handle on the flippable region
 var front = getElement('front');
 var back = getElement('back');

 // again, just a simple way to see what the state is
 var classes = front.className.split(' ');
 var flipped = classes.indexOf('flipped');

 if (flipped >= 0) {
 // already flipped, so return to original
 front.className = 'normal';
 back.className = 'flipped';
 FLIPPED = false;
 } else {
 // do the flip
 front.className = 'flipped';
 back.className = 'normal';
 FLIPPED = true;
 }
}

Finally, here is the relevant CSS:
#back,
#front {
 position: absolute;
 width: 100%;
 height: 100%;
 -webkit-backface-visibility: hidden;
 -webkit-transition-duration: .5s;
 -webkit-transform-style: preserve-3d;
 -moz-backface-visibility: hidden;
 -moz-transform-style: preserve-3d;
 -moz-transition-duration: .5s;
}

.normal {
 -webkit-transform: rotateY(0deg);
 -moz-transform: rotateY(0deg);
}

.flipped {
 -webkit-user-select: element;
 -webkit-transform: rotateY(180deg);
 -moz-transform: rotateY(180deg);
}

30 | Chapter 3: Building for the Mobile Web

Debugging Hardware Acceleration
With the code of the basic transitions covered, take a look at the mechanics of how the
transitions run on the device and are composited. Here are a few tips to remember when
using accelerated compositing:

• Reduce the quantity of layers
• Keep layers as small as possible
• Update layers infrequently
• Tailor layer compositing to your purpose
• Use trial and error; testing is important

To begin debugging, fire up a couple of WebKit-based browsers and your IDE of choice.

Using Safari

First, start Safari from the command line to make use of some debugging environment
variables. I use a Mac, so the example commands might differ from those for your OS.
Open the Terminal, and type the following (or just skip Safari and use the Chrome
settings in next section):

$> export CA_COLOR_OPAQUE=1
$> export CA_LOG_MEMORY_USAGE=1
$> /Applications/Safari.app/Contents/MacOS/Safari

These lines start Safari with a couple of debugging helpers. CA_COLOR_OPAQUE shows you
which elements are actually composited or accelerated, while CA_LOG_MEMORY_USAGE
shows you how much memory you are using when sending drawing operations to the
backing store. This tells you exactly how much strain you are putting on the mobile
device and possibly give hints to how your GPU usage might be draining the target
device’s battery.

You may also start Safari after running the following command, which gives you a full
Debug menu with all available options, as shown in Figure 3-4:

defaults write com.apple.Safari
IncludeInternalDebugMenu 1

Interactions and Transitions | 31

Figure 3-4. The Safari Debug menu

32 | Chapter 3: Building for the Mobile Web

Using Chrome

Now fire up Chrome to see some good frames per second (FPS) information and borders
around the composited layers:

1. Open the Google Chrome web browser.
2. In the URL bar, type about:flags.
3. Scroll down a few items, and click Enable for the FPS counter as shown in Figure 3-5.

Figure 3-5. The Chrome about:flags tab

Do not enable the “GPU compositing on all pages” option. The FPS
counter appears in the left corner only if the browser detects compo‐
siting in your markup—and that is what you want in this case.

If you view this page in your souped-up version of Chrome, you will see the red FPS
counter in the top-left corner, as shown in Figure 3-6.

Interactions and Transitions | 33

Figure 3-6. The Chrome FPS meter

This is how you know hardware acceleration is turned on. It also gives you an idea of
how the animation runs and whether you have any leaks (continuous running anima‐
tions that should be stopped).

Another way to visualize the hardware acceleration is to open the same page in Safari
with the environment variables mentioned above. Every accelerated DOM element will
have a red tint to it. This shows you exactly what is being composited by each layer, or
accelerated div element. Notice in Figure 3-7, the white navigation is not red because
it is not accelerated.

Figure 3-7. Debugging acceleration of the demo app

A similar setting for Chrome is also available in the about:flags tab: Click Enable for
“Composited render layer borders.”

Another great way to see an example of composited layers is to view the WebKit falling
leaves demo (http://www.webkit.org/blog-files/leaves/) while CA_COLOR_OPAQUE=1 is ap‐
plied. Figure 3-8 shows the results.

34 | Chapter 3: Building for the Mobile Web

http://www.webkit.org/blog-files/leaves/

Figure 3-8. WebKit’s Falling Leaves demo

Interactions and Transitions | 35

Memory Consumption
Finally, to truly understand the graphics hardware performance of an application, look
at how memory is being consumed. Here you can see that the app is pushing 1.38MB
of drawing instructions to the CoreAnimation buffers on Mac OS. The CoreAnimation
memory buffers are shared between OpenGL ES and the GPU to create the final pixels
you see on the screen (Figure 3-9).

Figure 3-9. CoreAnimation debug session (small screen)

When you simply resize or maximize the browser window, you can see the memory
expand as well (Figure 3-10).

Using the previous debugging techniques gives you an idea of how memory is being
consumed on your mobile device only if you resize the browser to the correct dimen‐
sions. When debugging or testing for iPhone environments, for example, resize to 480
by 320 pixels.

This section illustrated how hardware acceleration works and what it takes to debug
memory issues or other hardware accelerated glitches. It’s one thing to read about it, but
to actually see the GPU memory buffers working visually really brings things into per‐
spective.

36 | Chapter 3: Building for the Mobile Web

Figure 3-10. CoreAnimation debug session (enlarged screen)

Fetching and Caching
Now it’s time to take your page and resource caching to the next level. Much like the
approach that jQuery Mobile and similar frameworks use, you can prefetch and cache
your pages with concurrent AJAX calls. A few core mobile web challenges highlight the
reasons why following this approach makes sense:
Fetching

Prefetching your pages allows users to take the app offline and also eliminates wait‐
ing between navigation actions. Of course, you don’t want to choke the device’s
bandwidth when the device comes online, so you need to use this feature sparingly.

Caching
You want a concurrent or asynchronous approach when fetching and caching pages.
Because it’s well supported among devices, you also need to use localStorage,
which unfortunately isn’t asynchronous.

AJAX and parsing the response
Using innerHTML() to insert the AJAX response into the DOM is dangerous, and
it could be unreliable according to http://martinkou.blogspot.com/2011/05/
alternative-workaround-for-mobile.html. Instead, I recommend a reliable

Fetching and Caching | 37

http://martinkou.blogspot.com/2011/05/alternative-workaround-for-mobile.html
http://martinkou.blogspot.com/2011/05/alternative-workaround-for-mobile.html

mechanism for AJAX response insertion and handling concurrent calls (https://
community.jboss.org/people/wesleyhales/blog/2011/08/28/fixing-ajax-on-mobile-
devices). You also can leverage some new features of HTML5 for parsing the xhr.re
sponseText.

You can build on the code from the slide, flip, and rotate demos by adding some sec‐
ondary pages and linking to them. You can then parse the links and create transitions
on the fly.

<div id="home-page"
class="page">
 <h1>Home Page</h1>

 Find out more about the home page!

</div>

As you can see, this snippet leverages semantic markup with a link to another page. The
child page follows the same node/class structure as its parent. You could take this a step
further and use the data-* attribute for page nodes, and the like.

Here is the detail page (child) located in a separate HTML file (/demo2/home-
detail.html), which will be loaded, cached, and set up for transition on app load.

<div id="home-page-detail"
class="page">
 <h1>Home Page Details</h1>
 <p>Here are the details.</p>
</div>

Now take a look at the JavaScript. For simplicity’s sake, I’m leaving any helpers or op‐
timizations out of the code. The code is looping through a specified array of DOM nodes
to dig out links to fetch and cache. For the complete source, see https://github.com/
html5e/slidfast/blob/master/slidfast.js#L264.

var fetchAndCache = function()
{
 // iterate through all nodes in this DOM to
 //find all mobile pages we care about
 var pages = document.getElementsByClassName('page');

 for (var i = 0; i < pages.length; i++) {
 // find all links
 var pageLinks = pages[i].getElementsByTagName('a');

 for (var j = 0; j < pageLinks.length; j++) {
 var link = pageLinks[j];

 if (link.hasAttribute('href') &&
 //'#' in the href tells us that this page is
 //already loaded in the DOM - and
 // that it links to a mobile transition/page

38 | Chapter 3: Building for the Mobile Web

https://community.jboss.org/people/wesleyhales/blog/2011/08/28/fixing-ajax-on-mobile-devices
https://community.jboss.org/people/wesleyhales/blog/2011/08/28/fixing-ajax-on-mobile-devices
https://community.jboss.org/people/wesleyhales/blog/2011/08/28/fixing-ajax-on-mobile-devices
https://github.com/html5e/slidfast/blob/master/slidfast.js#L264
https://github.com/html5e/slidfast/blob/master/slidfast.js#L264

 !(/[\#]/g).test(link.href) &&
 //check for an explicit class name setting to fetch this link
 (link.className.indexOf('fetch') >= 0)) {
 //fetch each url concurrently
 var ai = new ajax(link,function(text,url){
 //insert the new mobile page into the DOM
 insertPages(text,url);
 });
 ai.doGet();
 }
 }
 }
};

The use of the AJAX object ensures proper asynchronous post-processing. In this ex‐
ample, you see the basic use of caching on each request and of providing the cached
objects when the server returns anything but a successful (200) response.

function processRequest () {
 if (req.readyState == 4) {
 if (req.status == 200) {
 if (supports_local_storage()) {
 localStorage[url] = req.responseText;
 }
 if (callback) callback(req.responseText,url);
 } else {
 // There is an error of some kind, use our
 //cached copy (if available).
 if (!!localStorage[url]) {
 // We have some data cached, return that to the callback.
 callback(localStorage[url],url);
 return;
 }
 }
 }
}

Unfortunately, because localStorage uses UTF-16 for character encoding, each single
byte is stored as 2 bytes, bringing our storage limit from 5MB to 2.6MB total. Fetching
and caching these pages/markup outside of the application cache scope allows you to
take advantage of all the storage space provided by the device.

With the recent advances in the iframe element with HTML5, you now have a simple
and effective way to parse the responseText you get back from an AJAX call. There are
plenty of 3,000-line JavaScript parsers and regular expressions that remove script tags
and so on. But why not let the browser do what it does best? The next example writes
the responseText into a temporary hidden iframe. This uses the HTML5 sandbox
attribute, which disables scripts and offers many security features. (See complete
source.)

Fetching and Caching | 39

https://github.com/html5e/slidfast/blob/master/slidfast.js#L191
https://github.com/html5e/slidfast/blob/master/slidfast.js#L191

To quote the HTML5 spec: “The sandbox attribute, when specified, en‐
ables a set of extra restrictions on any content hosted by the iframe. Its
value must be an unordered set of unique space-separated tokens that
are ASCII case-insensitive. The allowed values are allow-forms, allow-
same-origin, allow-scripts, and allow-top-navigation. When the
attribute is set, the content is treated as being from a unique origin,
forms and scripts are disabled, links are prevented from targeting other
browsing contexts, and plug-ins are disabled. To limit the damage that
can be caused by hostile HTML content, it should be served using the
text/html-sandboxed MIME type.”

var getFrame = function() {
 var frame = document.getElementById("temp-frame");

 if (!frame) {
 // create frame
 frame = document.createElement("iframe");
 frame.setAttribute("id", "temp-frame");
 frame.setAttribute("name", "temp-frame");
 frame.setAttribute("seamless", "");
 frame.setAttribute("sandbox", "allow-same-origin");
 frame.style.display = 'none';
 document.documentElement.appendChild(frame);
 }
 // load a page
 return frame.contentDocument;
};

var insertPages = function(text, originalLink) {
 var frame = getFrame();
 //write the ajax response text to the frame and let
 //the browser do the work
 frame.write(text);

 //now we have a DOM to work with
 var incomingPages = frame.getElementsByClassName('page');

 var pageCount = incomingPages.length;
 for (var i = 0; i < pageCount; i++) {
 //the new page will always be at index 0 because
 //the last one just got popped off the stack with
 //appendChild (below)
 var newPage = incomingPages[0];

 //stage the new pages to the left by default
 newPage.className = 'page stage-left';

 //find out where to insert
 var location = newPage.parentNode.id ==
 'back' ? 'back' : 'front';

40 | Chapter 3: Building for the Mobile Web

 try {
 // mobile safari will not allow nodes to be transferred from one
 // DOM to another so we must use adoptNode()
 document.getElementById(location).
 appendChild(document.adoptNode(newPage));
 } catch(e) {
 // todo graceful degradation?
 }
 }
};

The target browser (Mobile Safari) correctly refuses to implicitly move a node from one
document to another. An error is raised if the new child node was created in a different
document. So this example uses adoptNode, and all is well.

So why iframe? Why not just use innerHTML? Even though innerHTML is now part of
the HTML5 spec, it is a dangerous practice to insert the response from a server (evil or
good) into an unchecked area. innerHTML has also been noted to fail intermittently on
iOS (just do a Google search on “ios innerhtml” to see the latest results) so it’s best to
have a good workaround when the time comes.

Figure 3-11 shows the latest performance test from http://jsperf.com/ajax-response-
handling-innerhtml-vs-sandboxed-iframe. It shows that this sandboxed iframe approach
is just as fast, if not faster than innerHTML on many of today’s top mobile browsers. Keep
in mind the measurement is operations per second, so higher scores are better.

Fetching and Caching | 41

http://jsperf.com/ajax-response-handling-innerhtml-vs-sandboxed-iframe
http://jsperf.com/ajax-response-handling-innerhtml-vs-sandboxed-iframe

Figure 3-11. HTML5 iframe versus innerHTML() performance

42 | Chapter 3: Building for the Mobile Web

Network Type Detection and Handling
Now that we have the ability to buffer (or predictive cache) the example web app, we
must provide the proper connection detection features to make the app smarter. This
is where mobile app development gets extremely sensitive to online/offline modes and
connection speed. Enter the Network Information API. With it, you can set up an ex‐
tremely smart mobile web app.

When would this be useful? Suppose someone on a high-speed train is using your app
to interact with the Web. As the train rushes along, the network may very well go away
at various moments, and various locales may support different transmission speeds
(HSPA or 3G might be available in some urban areas, while remote areas might support
much slower 2G technologies only). Not only does the following code address connec‐
tion scenarios like this, it also:

• Provides offline access through applicationCache
• Detects if bookmarked and offline
• Detects when switching from offline to online and vice versa
• Detects slow connections and fetches content based on network type

Again, all of these features require very little code. The first step is detect the events and
loading scenarios (see https://github.com/html5e/slidfast/blob/master/slidfast.js#L536):

window.addEventListener('load', function(e) {
 if (navigator.onLine) {
 // new page load
 processOnline();
 } else {
 // the app is probably already cached and (maybe) bookmarked...
 processOffline();
 }
}, false);

window.addEventListener("offline", function(e) {
 // we just lost our connection and entered offline mode,
 // disable external link
 processOffline(e.type);
}, false);

window.addEventListener("online", function(e) {
 // just came back online, enable links
 processOnline(e.type);
}, false);

In the EventListener statements above, we must tell the code if it is being called from
an event or an actual page request or refresh. The main reason is because the body
onload event won’t be fired when switching between the online and offline modes.

Network Type Detection and Handling | 43

https://github.com/html5e/slidfast/blob/master/slidfast.js#L536

The simple check for an online or onload event below resets disabled links when
switching from offline to online. For a more sophisticated app, you could also insert
logic that would resume fetching content or handle the UX for intermittent connections.

function
processOnline(eventType) {

 setupApp();
 checkAppCache();

 // reset our once disabled offline links
 if (eventType) {
 for (var i = 0; i < disabledLinks.length; i++) {
 disabledLinks[i].onclick = null;
 }
 }
}

For the processOffline() function, you could manipulate your app for offline mode
and try to recover any transactions that were going on behind the scenes. The code
below crawls the DOM for all of the external links and disables them, trapping users in
our offline app—forever!

function processOffline() {
 setupApp();

 // disable external links until we come back
 // setting the bounds of app
 disabledLinks = getUnconvertedLinks(document);

 // helper for onlcick below
 var onclickHelper = function(e) {
 return function(f) {
 alert('This app is currently offline and cannot access the hotness');
 return false;
 }
 };

 for (var i = 0; i < disabledLinks.length; i++) {
 if (disabledLinks[i].onclick == null) {
 //alert user we're not online
 disabledLinks[i].onclick = onclickHelper(disabledLinks[i].href);

 }
 }
}

Okay, suppress your evil genius laugh, and let’s get on to the good stuff. Now that the
app knows what connected state it’s in, we can also check the type of connection when
it’s online and adjust accordingly with the code below. In the comments, I listed typical
North American providers’ download and latencies for each connection.

44 | Chapter 3: Building for the Mobile Web

function setupApp(){
 // create a custom object if navigator.connection isn't available
 var connection = navigator.connection || {'type':'0'};
 if (connection.type == 2 || connection.type == 1) {
 //wifi/ethernet
 //Coffee Wifi latency: ~75ms-200ms
 //Home Wifi latency: ~25-35ms
 //Coffee Wifi DL speed: ~550kbps-650kbps
 //Home Wifi DL speed: ~1000kbps-2000kbps
 fetchAndCache(true);
 } else if (connection.type == 3) {
 //edge
 //ATT Edge latency: ~400-600ms
 //ATT Edge DL speed: ~2-10kbps
 fetchAndCache(false);
 } else if (connection.type == 2) {
 //3g
 //ATT 3G latency: ~400ms
 //Verizon 3G latency: ~150-250ms
 //ATT 3G DL speed: ~60-100kbps
 //Verizon 3G DL speed: ~20-70kbps
 fetchAndCache(false);
 } else {
 //unknown
 fetchAndCache(true);
 }
}

There are numerous adjustments you could make to the fetchAndCache process, but
the example code simply tells it to fetch the resources asynchronous (true) or synchro‐
nous (false) for a given connection. To see how this works in practice, consider the edge
(synchronous) request timeline shown in Figure 3-12 and the WiFi (asynchronous) re‐
quest timeline shown in Figure 3-13.

Figure 3-12. Synchronous page loading timeline

Network Type Detection and Handling | 45

Figure 3-13. Asynchronous page loading timeline

The example code allows for at least some method of user experience adjustment based
on slow or fast connections, but it is by no means an end-all-be-all solution. Another
improvement would be to throw up a loading modal when a link is clicked (on slow
connections) while the app still may be fetching that link’s page in the background. Your
overall goal is to cut down on latencies while leveraging the full capabilities of the user’s
connection with the latest and greatest HTML5 has to offer. You can view the network
detection demo at http://html5e.org/example.

Frameworks and Approaches
It seems like there’s a new JavaScript-based mobile framework popping up every day.
You can literally spend days (or months) comparing frameworks and whipping up mul‐
tiple proofs-of-concept (POCs), only to find out that you may not want or need a
framework at all.

In the majority of situations, whether converting an existing app or starting from scratch,
you’re better off writing your own CSS and DOM interactions. The harder you lean on
a framework, the harder your app will fall when problems arise. Knowing the basics and
how to fix those problems under the hood are essential. The DOM is the underlying
infrastructure and API for all web apps. No matter how much you like or dislike the
API, if you desire a mobile web app that screams at blazing fast speeds and gets “close
to the metal,” you must understand how to work with it.

One commonly used programming model for the Mobile Web is called single page. This
means you put your entire markup into a single HTML page, often enclosed by a <div>
or some other sensible block element, as in this sample single-page web app structure:

<!DOCTYPE html>
<html lang="en" dir="ltr">
 <body>

 <div id="home-page">
 ...page content
 </div>

 <div id="contact-page">
 ...page content

46 | Chapter 3: Building for the Mobile Web

http://html5e.org/example

 </div>

 </body>
</html>

Why put everything in one page? Primarily, it buys you native-like transitions and fewer
initial HTTP requests. You must use AJAX and CSS3 transitions to emulate the feel of
a native application and load data dynamically. This single-page approach also promotes
including all your resources, such as JavaScript and CSS, within the file. Again, this
reduces additional HTTP requests to get the best performance possible from your mo‐
bile application.

With an understanding of the basics, consider a few mobile-focused JavaScript frame‐
works that try to take care of the heavy lifting on the UI. Most of today’s JavaScript
frameworks have a specific browser or platform they’re targeting. Some are WebKit-
only and others try to span all device browsers. There may be features you need, and
ones you don’t. So it’s up to you to decide when to bring any framework into your current
or existing project.

Some mobile frameworks extend or build on older, bloated, desktop-
browser frameworks. Be careful that whichever framework you choose
does not check for older IE6 bugs or platforms that you aren’t targeting.
This bloat may seem minimal to some, but as you will see in the next
chapter, every byte you can shave off the initial load time will greatly
enhance the user experience.

When evaluating mobile JavaScript frameworks, look for:

• Optimization for touch screen devices; make sure the framework uses CSS3 tran‐
sitions to handle animations

• Cross-platform consistency across all the major platform (Grade A and B) browsers
• Use (or wrapping) of the latest HTML5 and CSS3 standards
• Strong open source community behind the framework

Finally, investigate the programming model uses and ask yourself: does my project re‐
quire a dynamically generated UI through JavaScript, or do I want to declare my markup
beforehand in the single-page approach?

The framework smackdown in the following sections provides an overview of the three
main approaches to mobile web apps development: single page, no page structure, and
100% JavaScript-driven.

Frameworks and Approaches | 47

Single Page
As previously mentioned, the single-page approach forces you to put as much markup
and resources as possible into a single HTML file. In the end, this limits HTTP requests
for a better performing app. The leaders here are jQuery Mobile and jQTouch.

jQuery Mobile

jQuery Mobile (http://jquerymobile.com; demo at http://jquerymobile.com/test) is strict‐
ly tied to the release schedule of the core jQuery library. Known for its AJAX-based
navigation system and themeable ThemeRoller designs, the framework is produced by
the core jQuery project. It also has an attractive set of widgets, but unfortunately, they’re
all decorated with CSS background gradients, text shadows, rounded corners, and drop
shadows. As you’ll see in the coming chapters, heavy use of CSS decorations in mobile
web apps can slow the browser to a crawl.

jQuery Mobile is the most popular mobile web framework out there today. Taking into
account its over 10,000 followers on Twitter and more than 6,000 watchers on github
(Figure 3-14), you can easily see the power piggy-backing on an existing project’s success
(in this case, core jQuery) to catapult a project into the mainstream. The real power and
strength of this project comes from its community. Table 3-1 gives a high-level snapshot
of the jQuery Mobile project.

Figure 3-14. jQuery Mobile github stats, June 2012

Table 3-1. jQuery Mobile
Platform support Android, bada, BlackBerry, iOS, MeeGo, Symbian, webOS, and Windows Phone (others are

graded at different levels of 49 support)

License Dual license MIT or GPL 2

Programming model CSS and JavaScript: declarative on the DOM itself; markup with CSS and data-* attributes

Wrapped or polyfilled HTML5
APIs

None

To set up the page, use the code:
<!DOCTYPE html>
<html>
 <head>
 <title>My Page</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="/jquery.mobile-1.0.min.css" />
 <script type="text/javascript" src="/jquery-1.6.4.min.js"></script>
 <script type="text/javascript" src=" /jquery.mobile-1.0.min.js"></script>

48 | Chapter 3: Building for the Mobile Web

http://jquerymobile.com
http://jquerymobile.com/test

</head>
<body>

<div data-role="page">

 <div data-role="header">
 <h1>My Title</h1>
 </div><!-- /header -->

 <div data-role="content">
 <p>Hello world</p>
 </div><!-- /content -->

</div><!-- /page -->

</body>
</html>

To set up a component such as the one shown in Figure 3-15, use:
<ul data-role="listview"
data-inset="true" data-filter="true">
 Acura
 Audi
 BMW
 Cadillac
 Ferrari

Figure 3-15. jQuery Mobile List View component

jQTouch

jQTouch is a Zepto/jQuery plug-in and a good, simple framework to get started with
quickly. It offers a basic set of widgets and animations but lacks support for multiple
platforms. The framework also suffers from slow, flickering animations and delayed tap

Frameworks and Approaches | 49

http://jqtouch.com

events. Supporting only iOS and Android, jQTouch is the second most popular frame‐
work on the interwebs with more than 9,000 Twitter followers and a nice following on
github (Figure 3-16). However, the commit history in github looks a little sparse, with
six-month gaps at times. Table 3-2 outlines its features. (Check out the jQTouch demo.)

Figure 3-16. jQTouch github stats, June 2012

Table 3-2. jQTouch
Platform support Android and iOS only

License MIT

Programming model Heavy CSS, light JavaScript; uses CSS classes for detecting the appropriate animations and
interactions; extensions supported

Wrapped or polyfilled HTML5 APIs None

To set up the page, use the code:
<html>
 <head>
 <Title>My App</title>
 </head>
 <body>
 <div id="home">
 <div class="toolbar">
 <H1>Hello World</h1>
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Item 1

 </div>
 </body>
</html>

To set up the component shown in Figure 3-17, use:
<ul class="edgetoedge">
 <li class="arrow">Today
 <li class="arrow"><a id="1"
href="#date">Yesterday
 <li class="arrow">2 Days
Ago
 <li class="arrow">3 Days
Ago
 <li class="arrow">4 Days

50 | Chapter 3: Building for the Mobile Web

http://www.jqtouch.com/preview/demos/main

Ago
 <li class="arrow">5 Days
Ago

Figure 3-17. jQTouch List View component

No Page Structure
In the no-page-structure approach, the markup is flexible and lightweight. Unlike the
single-page approach, markup here is not tied to a specific DOM structure. Your best
option for using this method is xui.

xui

Born from the PhoneGap framework, xui (http://xuijs.com) does not try and dictate a
page structure or widget paradigm. Instead, xui handles events, animations, transforms,
and AJAX. It prides itself in being lightweight with the ability to add plug-ins for needed
features.

xui is specifically tailored for DOM manipulation in a mobile environment. This is an
important factor when dealing with existing desktop browser based frameworks like
jQuery. With xui, you get a 10kb JavaScript file that gives you a very useful programming
model. Brian Leroux is the author of xui and is well known within the HTML5/Open
Web community. One notable thing about this project is the all-star list of contributors

Frameworks and Approaches | 51

http://xuijs.com

to the code: Rebecca Murphey, Remy Sharp, Fil Maj, Alex Sexton, Joe McCann, and
many others. So, point being, sometimes it helps to judge a project’s value by who the
contributors and founders are opposed to how many followers it has (Figure 3-18).
Table 3-3 outlines its stats.

Figure 3-18. xui github stats, June 2012

Table 3-3. xui
Platform support WebKit, IE Mobile, BlackBerry

License MIT

Programming model Clean, familiar (jQuery-like), chaining syntax; plug-ins support

Wrapped or polyfilled HTML5 APIs None

100% JavaScript Driven
If you prefer to create your user interface programmatically, without touching much
markup, then the 100% JavaScript-driven approach may be your best option. Out of this
approach, Sencha Touch, Wink Toolkit, and The-M-Project are three of the top projects.

Sencha Touch

An HTML/CSS3/JavaScript framework, Sencha Touch offers a variety of native-style
widgets, flexible theming via SASS/Compass, data-feature-like models, stores, and
proxies. Enhanced touch events and a strong data model give this framework a bit of an
enterprise edge without a ton of coverage across devices (see Table 3-4). Although not
in a github repository, Sencha Touch currently has around 800 followers on Twitter. (See
the Sencha Touch demo.)

If you choose Sencha Touch, be aware it is a specific way of life for mobile developers.
Much like GWT or JSF, you are tied to a specific development model for creating user
interfaces. In jQTouch or jQuery Mobile, you write specially structured HTML. When
it loads, the library reconfigures the page and turns your regular links into AJAX-based
animated ones. With Sencha, you basically don’t write HTML at all, but instead, you
build your UI and app with JavaScript, so be prepared for a learning curve.

Table 3-4. Sencha Touch
Platform support Android, iOS, and BlackBerry (from Sencha 1.1)

License GPLv3, Limited Touch Commercial License

Programming model Very little HTML; relies on writing, subclassing, and instantiating JavaScript objects

Wrapped or polyfilled HTML5 APIs Geolocation, Web Storage

52 | Chapter 3: Building for the Mobile Web

http://www.sencha.com/products/touch
http://dev.sencha.com/deploy/touch/examples/production/kitchensink

For your page setup, use the code:
<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
maximum-scale=1.0; minimum-scale=1.0; user-scalable=0;" />
 <link rel="stylesheet" href="/sencha-touch.css" type="text/css">
 <title>List</title>
 <script type="text/javascript" src="/sencha-touch.js"></script>
</head>
<body></body>
</html>

JavaScript handles setup of your component, as well as the entire app (Figure 3-19):
Ext.setup({
 tabletStartupScreen: 'tablet_startup.png',
 phoneStartupScreen: 'phone_startup.png',
 icon: 'icon.png',
 glossOnIcon: false,
 onReady : function() {
 Ext.regModel('Contact', {
 fields: ['firstName', 'lastName']
 });

 var groupingBase = {
 itemTpl: '<div class="contact2">{firstName}
{lastName}</div>',
 selModel: {
 mode: 'SINGLE',
 allowDeselect: true
 },
 grouped: true,
 indexBar: false,

 onItemDisclosure: {
 scope: 'test',
 handler: function(record, btn, index) {
 alert('Disclose more info for ' +
 record.get('firstName'));
 }
 },

 store: new Ext.data.Store({
 model: 'Contact',
 sorters: 'firstName',

 getGroupString : function(record) {
 return record.get('firstName')[0];
 },

Frameworks and Approaches | 53

 data: [
 {firstName: 'Hello', lastName: 'World'},
]
 })
 };

 if (!Ext.is.Phone) {
 new Ext.List(Ext.apply(groupingBase, {
 floating: true,
 width: 350,
 height: 370,
 centered: true,
 modal: true,
 hideOnMaskTap: false
 })).show();
 }
 else {
 new Ext.List(Ext.apply(groupingBase, {
 fullscreen: true
 }));
 }
 }
})

Figure 3-19. Sencha Touch List component

Wink Toolkit

The Wink Toolkit project started in early 2009 at Orange Labs (France Telecom R&D).
Since June 2010, Wink has been a project of the Dojo foundation. Wink’s core offers all
the basic functionalities a mobile developer would need from touch event handling to
DOM manipulation objects and CSS transforms utilities (Table 3-5). Additionally, it
offers a wide range of UI components. Currently, its online following is low, as evidenced
in Figure 3-20. (See their demo).

Figure 3-20. Wink github stats, June 2012

54 | Chapter 3: Building for the Mobile Web

http://www.winktoolkit.org
http://www.winktoolkit.org/wink

The coolest thing about Wink is their vast set of 2D and 3D components, and the ability
to manipulate components with gestures. For example, with Wink’s Cover Flow com‐
ponent, the user can use two fingers to alter the perspective (Figure 3-21).

Figure 3-21. Wink Cover Flow 3D component

Table 3-5. Wink Toolkit
Platform support iOS, Android, BlackBerry, and Bada

License Simplified BSD License

Programming model JavaScript helpers to add standard mobile browser support; UI is created inside of JavaScript
snippets

Wrapped or polyfilled HTML5 APIs Accelerometer, Geolocation, Web Storage

The HTML for page setup is:
<html>
 <head>
 <link rel="stylesheet" href="wink.css" type="text/css" >
 <link rel="stylesheet" href="wink.default.css" type="text/css" >
 ...
 <script type="text/javascript" src="wink.min.js"></script>
 ...
 </head>
 <body onload="init()">
 <div class="w_box w_header w_bg_dark">

Frameworks and Approaches | 55

 accordion
 <input type="button" value="home"
 class="w_button w_radius w_bg_light w_right"
 onclick="window.location='..?theme='+theme"/>
 </div>

 <div class="w_bloc">
 click on the accordion section below to display the content.
 </div>

 <div id="output" style="width: 95%; margin: auto">
 </div>
</body>
</html>

To set up the component shown in Figure 3-22, use:
var accordion, section1,
section2, section3;

init = function()
{
 accordion = new wink.ui.layout.Accordion();

 section1 = accordion.addSection('Section1', 'Hello World');
 section2 = accordion.addSection('section2', '...');
 section3 = accordion.addSection('section3', '...');

 $('output').appendChild(accordion.getDomNode());
}

deleteSection = function()
{
 accordion.deleteSection(section2);

Figure 3-22. Wink Accordion component

56 | Chapter 3: Building for the Mobile Web

The-M-Project

The-M-Project (their demo) is built on top of jQuery and jQuery Mobile. It uses con‐
cepts and parts from SproutCore and bases its persistence handling on persistence.js.
Figure 3-23 gives a snapshot of its community following.

Figure 3-23. The-M-Project github stats; June 2012

Because The-M-Project UI looks exactly like jQuery Mobile, it’s hard to tell at first glance
what the big difference is. The project, however, is much more than a shiny UI frame‐
work. It has four core development concepts: MVC, Content Binding, Dynamic Value
Computing, and Event Handling. So unlike the UI-focused Wink Toolkit, The-M-
Project puts most of its focus on the programming model, as you can see in Table 3-6.

Table 3-6. The-M-Project
Platform support iOS, Android, WebOS, BlackBerry, Windows Phone

License GPLv2 and MIT

Programming model Relies heavily on MVC pattern; creates view components through JavaScript and addresses
data binding

Wrapped or polyfilled HTML5 APIs Web Storage (DataProvider for local and remote storage persistence)

A bit of JavaScript handles page setup:
PageSwitchDemo.Page1 =
M.PageView.design({
 childViews: 'header content',
 header: M.ToolbarView.design({
 value: 'Page 1'
 }),
 content: M.ScrollView.design({
 childViews: 'button',
 button: M.ButtonView.design({
 value: 'Goto Page 2',
 events: {
 tap: {
 target: PageSwitchDemo.ApplicationController,
 action: 'gotoPage2'
 }
 }
 })
 })

});

To create the component shown in Figure 3-24, use:

Frameworks and Approaches | 57

http://the-m-project.net
http://www.the-m-project.org/apps/kitchensink

M.SelectionListView.design({

 childViews: 'item1 item2 item3 item4',
 /* renders a selection view like radio buttons */
 selectionMode: M.SINGLE_SELECTION,

 item1: M.SelectionListItemView.design({
 value: 'item1',
 label: 'Item 1',
 isSelected: YES
 }),
 item2: M.SelectionListItemView.design({
 value: 'item2',
 label: 'Item 2'
 }),
 item3: M.SelectionListItemView.design({
 value: 'item3',
 label: 'Item 3'
 }),
 item4: M.SelectionListItemView.design
 value: 'item4',
 label: 'Item 4'
 })
});

Figure 3-24. The-M-Project List component

Of course, many other frameworks—SproutCore, Jo, Zepto, LungoJS,
the list goes on—are available. All of these frameworks contain useful
features and building blocks for everyday programming of mobile web
apps. Some even try to create a wrapper or proxy for spec-driven fea‐
tures like Web Storage. But, it seems they all have a gaping hole in terms
of the needs of enterprise developers and a consistent architecture across
device browsers.

58 | Chapter 3: Building for the Mobile Web

Mobile Debugging
In the world of desktop-based web development, we have many tools at our disposal for
debugging. Firebug and Chrome’s developer tools are a few that help us get the job done
faster. For mobile, the situation is much different, and we must remotely debug through
third-party tools. Luckily, projects like weinre, Adobe Shadow, and Opera’s Remote
Debugging tools try to give developers the same debugging experience as desktop en‐
vironments.

weinre

Like FireBug for FireFox and Web Inspector for WebKit-based browsers, weinre (http://
people.apache.org/~pmuellr/weinre) is a debugger for web pages. Its difference is that it
is designed to work remotely and, in particular, to allow you debug web pages on a
mobile device, such as a phone. If you’ve used Safari’s Web Inspector or Chrome’s De‐
veloper Tools, weinre will be very familiar (Figure 3-25).

Figure 3-25. A demo of weinre in action

For debug clients, weinre supports:

• weinre Mac application (Mac OS X 10.6 64-bit)
• Google Chrome 8.x
• Apple Safari 5.x

Frameworks and Approaches | 59

http://people.apache.org/~pmuellr/weinre
http://people.apache.org/~pmuellr/weinre

For debug targets, weinre supports:

• Android 2.2 Browser application
• Android 2.2 with PhoneGap 0.9.2
• iOS 4.2.x Mobile Safari application
• BlackBerry v6.x simulator
• webOS 2.x (unspecified version)

Adobe Shadow

Shown in Figure 3-26, Adobe Shadow is an inspection and preview tool that streamlines
the preview process for Android and iOS mobile devices. After installing Shadow on
your computer, you’ll be able to wirelessly pair your devices, have them browse in sync
with your computer, and perform remote inspection and debugging so you can see
HTML/CSS/JavaScript changes instantly on your device. Some of Shadow’s features
include the ability to:

• Wirelessly pair your iOS devices to your computer
• Synchronously browse with your computer
• Target a device for debugging and select an element in the DOM
• Make changes to your HTML markup
• Tweak your CSS rules
• See changes instantly on your device

60 | Chapter 3: Building for the Mobile Web

http://labs.adobe.com/technologies/shadow

Figure 3-26. The autodiscovery and passcode connection screen for Adobe Shadow

Opera Remote Debugging

Using the remote debugging functionality of Opera Dragonfly, you can analyze and
debug pages running in the Opera Mobile Emulator (see Figure 3-27). With Dragonfly,
you can debug in separate instances of the Opera browser, as well as other Opera Presto-
powered user agents. It doesn’t matter if these are located on the same machine or on
another device such as a mobile phone or television. When put into Remote Debugging
mode, Opera Dragonfly will listen for a connection to the IP address and port specified.
The separate instance of the Opera browser can connect over a network and pass de‐
bugging information across the connection. Opera Dragonfly can then interact with the
web pages and applications on the remote instance, just as if it were running locally.

Frameworks and Approaches | 61

http://www.opera.com/dragonfly/documentation/remote

Figure 3-27. Debugging with Opera Dragonfly and Opera Mobile Emulator

62 | Chapter 3: Building for the Mobile Web

CHAPTER 4

The Desktop Web

The rest of this book covers support and features for all browsers, both desktop and
mobile. In the first three chapters, we talked about mobile browsers and what it takes
to build a mobile web app. For the desktop, things are getting better in terms of sup‐
porting HTML5 and what this book defines as HTML5e. Comparing Table 4-1 to
Table 2-2 in Chapter 2, you can see that support for the five core frameworks is exactly
the same, if not better, in desktop browsers. Because of this, we can feel comfortable
bringing HTML5 into our production applications today.

Table 4-1. HTML5 Enterprise (HTML5e)
Browser Geolocation WebSocket Web Storage Device Orientation Web Workers

Safari 5+ Yes Yes Yes Unknown Yes

Chrome 19+ Yes Yes Yes Yes Yes

IE 10+ Yes Yes Yes Unknown Yes

Opera 12+ Yes Yes Yes No Yes

Firefox 12+ Yes Yes Yes Yes Yes

Of course, you will notice some differences in support. For example, Device Orientation
may not make a lot of sense for desktop browsers, but it is supported in Chrome and
Firefox browsers.

Although Geolocation does not fall under HTML5, I am including it
under HTML5e because of its value to modern web apps and its wide
support in most browsers.

63

The Browser as a Platform
To some, server-side UI frameworks, which automatically generate JavaScript, CSS, and
HTML, are the saviors of enterprise development. To others, those UI frameworks create
a massive bottleneck and tie you to stale ideas and structures.

Today, developers are forced to look at web application architecture from a different
perspective where the browser and JavaScript are taking just as much spotlight as server-
side code (or in some cases, JavaScript is the server-side code).

Client Versus Server HTML Generation
Somewhere between 2008 and 2009, the server-heavy culture of generating HTML and
other resources on the backend broke down. This was mostly due to the progressive
enhancement of web pages with AJAX and other performance optimizations. This way
of thinking forced developers to create better APIs and more efficient ways of delivering
data to web applications through JSON and XML.

Generating HTML on the client reduces server load and can deliver a better overall user
experience. JSON and XML use less bandwidth than presentation-ready HTML, and
there is less string concatenation and HTML escaping to perform. The client browser
must download the first payload of JavaScript and markup, but after that, it’s much easier
to control how resources are delivered and how the application is enhanced. This also
gives you the flexibility of using CDN bandwidth for such popular libraries as jQuery.
When using a CDN for resource delivery, you are betting that the user has already
downloaded this library through another website using the same CDN. This spares users
the bulk and expense of downloading a 33K (gzipped) library like jQuery yet again.

When everything runs on the client, however, performance is reduced. Parsing JSON
or XML and generating HTML uses more memory and processing time than just print‐
ing some server-rendered HTML.

Whether you are generating HTML on the client or the server, there are pros and cons
to each approach.

The client-side approach offers these benefits:

• Better user experience
• Network bandwidth reduction (decreases cost)
• Portability (offline capable)

The most notable client-side con is security. When you create an offline-capable appli‐
cation that is distributed across many different browsers, WebStorage (localStorage)
is the only viable means for storing data on the client—and it offers no security.

64 | Chapter 4: The Desktop Web

The pluses to using the server-side approach are:

• Better security
• Reduces processing expense on client (battery life on mobile, and so on)
• Expandability (adding more servers can increase load capability)

Server-side rendering has its advantages, and if you are creating a web application that
must be connected to the Internet at all times, then you might consider a framework
that falls into this realm. When choosing a server-side framework, however, be sure that
all markup is easily changeable and editable. You don’t want to be stuck with a prebuilt
component that is automatically generated and does not allow you to pass through newer
HTML5 attributes and tags.

Overall, the main goal between generating markup on the server or the client should be
to avoid ending up with a huge mess. Most of the time, you’ll end up with a hybrid
application that does some processing on the server and much more on the client. So
you want to be sure that the code is properly distributed and organized. Dealing with
two separate code bases that interact with each other takes special care. Using a client
side MV* framework (like Backbone or Knockout) forces a clean separation of concerns
when querying server APIs for data. (You’ll learn more about this topic later in the
chapter.)

In regard to recent applications that have taken the step toward more client-side pro‐
cessing, LinkedIn launched its new HTML5-based mobile web app in late 2011
(Figure 4-1). The company’s mobile development lead gave the following statement in
an interview (http://venturebeat.com/2011/08/16/linkedin-node):

The app is 2 to 10 times faster on the client side than its predecessor, and on the server
side, it’s using a fraction of the resources, thanks to a switch from Ruby on Rails to
Node.js, a server-side JavaScript development technology that’s barely a year old but al‐
ready rapidly gaining traction.

With heavily used applications like LinkedIn’s mobile HTML5 web app turning to newer
technologies such as Node.js and JavaScript-heavy client-side code, we can see the world
of web application development evolving and changing. This world is ever-changing
and will continue to change as years go by, but how do we build a performant client-
side solution in today’s new world of client- and server-side technologies? Your answer
is at hand. This chapter reviews everything it takes to set up the appropriate HTML5
infrastructure for your web app. Certain APIs, such as WebSockets and Web Storage,
will be given more emphasis and examples in subsequent chapters. Think of this chapter
as a setup script for the rest of the book.

The Browser as a Platform | 65

http://venturebeat.com/2011/08/16/linkedin-node

Figure 4-1. LinkedIn Mobile Web

Device and Feature Detection
The first step in delivering new HTML5-based features to your user base is actually
detecting what the browser supports. You need to communicate with the browser to see
what it supports before the page is even rendered. In the past, you were forced to detect
and parse the—sometimes unreliable—browser userAgent (UA) string and then assume
you had the correct device. Today, such frameworks as Modernizr.js or just simple Java‐
Script, help you detect client-side capabilities at a much more finely grained level.

Which detection method is best? The feature-detection approach is new, but growing,
while the approach of parsing the userAgent string is flawed and should be handled
with caution. Even at the time of this writing, browser vendors are still getting it wrong.
The userAgent string for the latest phone-based Firefox on Android, for example, re‐
ports itself as a tablet not a phone. Mozilla uses the exact same userAgent string for
both phones and tablets, and that string has the word “Android” in both. The key to
success is understanding how you can use each approach most effectively, either by itself
or to complement the other.

66 | Chapter 4: The Desktop Web

Client-Side Feature Detection
JavaScript-based feature detection is often implemented by creating a DOM element to
see if it exists or behaves as expected, for example:

detectCanvas() ? showGraph() :
showTable();

function detectCanvas() {
 var canvas = document.createElement("canvas");
 return canvas.getContext ? true : false;
}

This snippet creates a canvas element and checks to see if it supports the getContext
property. Checking a property of the created element is a must, because browsers will
allow you to create any element in the DOM, whether it’s supported or not.

This approach is one of many, and today we have open source, community-backed
frameworks that do the heavy lifting for us. Here’s the same code as above, implemented
with the Modernizr framework:

Modernizr.canvas ? showGraph()
: showTable();

Feature-detection frameworks may come at a cost, however. Suppose you are running
a series of tests on the browser window before the page is rendered. This can get ex‐
pensive: running the full suite of Modernizr detections, for example, can take more than
30 milliseconds to run per page load. You must consider the costs of computing values
before DOM render and then modifying the DOM based on the framework’s findings.
When you’re ready to take your app to production, make sure you’re not using the
development version of your chosen feature detection library.

On the plus side, frameworks like Modernizr provide a build tool that enables you to
pick and choose the features your app must have (Figure 4-2). You can select exactly
which features you want to detect, and thereby reduce the overall detection footprint in
a production environment.

Feature-detection performance also depends on the devices and browsers you are tar‐
geting. For example, running a feature-detection framework on a first-generation
smartphone or old BlackBerry could crash the browser and cause your app to fail com‐
pletely. Take the time to tweak feature detection to gain top performance on your target
browsers.

Device and Feature Detection | 67

Figure 4-2. Modernizr production configuration choices

Sometimes, as well, you may need to go a step further and detect the actual form factor
of the device. FormFactor.js can help you with this. It helps you customize your web app
for different form factors (a mobile version, a TV version, and the like). For example:

if(formfactor.is("tv")) {
 alert("Look ma, Im on tv!");
}

if(formfactor.isnt("tv")) {
 alert("The revolution will not be televised");
}

Because FormFactor.js is a framework to manage conceptually distinct user interfaces,
it doesn’t eliminate the need for feature detection. It does, however, help you to use
feature detection in the context of a particular form factor’s interface.

Although the community has gone a bit inactive lately, you can find more examples at
https://github.com/PaulKinlan/formfactor.

68 | Chapter 4: The Desktop Web

https://github.com/PaulKinlan/formfactor

Client-Side userAgent Detection
There are times when you must detect the userAgent and parse it accordingly. Typically,
you can determine the browser by inspecting JavaScript’s window.navigator object or
by using the userAgent request header on the server side. This approach may work for
most browsers, but it’s not dependable, as noted in a recent bug report for the MobileESP
project:

Issue Summary: When using the Firefox browser on an Android mobile phone, the Mo‐
bileESP code library erroneously reports the device as an Android tablet. An Android
tablet is correctly identified as an Android tablet. This issue only affects mobile phones
and similar small-screen Android devices like MP3 players (such as the Samsung Galaxy
Player).

Root Cause: Mozilla uses the exact same userAgent string for both phones and tablets.
The string has the word ‘Android’ in both. According to Google guidelines, Mozilla should
include the word ‘mobile’ in the userAgent string for mobile phones. Unfortunately,
Mozilla is not compliant with Google’s guidelines. The omission of the word ‘mobile’ is
the reason why phones are erroneously identified as tablets.

So if userAgent detection isn’t always dependable, when is it a good choice to use?

• When you know, ahead of time, which platforms you are supporting and their UA
strings report correctly. For example, if you care about only the environment (not
its features) your application is running in, such as iOS, you could deliver a custom
UI for that environment only.

• When you use it in combination with feature-detection JavaScript that calls only
the minimum functions needed to check the device. For example, you may not care
about the discrepancy in the reported string, because it’s unneeded information.
You might only care that it reports TV, and everything else is irrelevant. This also
allows for “light” feature detection via JavaScript.

• When you don’t want all JavaScript-based feature tests to be downloaded to every
browser and executed when optimizations based on userAgent-sniffing are avail‐
able.

Yahoo! has its own reasons for using userAgent detection:

At Yahoo we have a database full of around 10,000 mobile devices. Because user
Agent strings vary even on one device (because of locale, vendor, versioning, etc.), this
has resulted in well over a half a million user agents. It’s become pretty crazy to maintain,
but is necessary because there’s really no alternative for all these feature phones, which
can’t even run JavaScript.

Device and Feature Detection | 69

On the other hand, Google and other companies opt for a JavaScript-based (also ported
to node.js) userAgent parser internally. It’s a wrapper for an approximately 7Kb JSON
file, which can be used in other languages. You can find more information at https://
github.com/Tobie/Ua-parser, but here is a snippet:

var uaParser =
require('ua-parser');
var ua = uaParser.parse(navigator.userAgent);

console.log(ua.tostring());
// -> "Safari 5.0.1"

console.log(ua.toVersionString());
// -> "5.0.1"

console.log(ua.toFullString());
// -> "Safari 5.0.1/Mac OS X"

console.log(ua.family);
// -> "Safari"

console.log(ua.major);
// -> 5

console.log(ua.minor);
// -> 0

console.log(ua.patch);
// -> 1

console.log(ua.os);
// -> Mac OS X

Another platform detection library written in JavaScript is Platform.js. It’s used by
jsperf.com for userAgent detection. Platform.js has been tested in at least Adobe AIR
2.6, Chrome 5–15, Firefox 1.5–8, IE 6–10, Opera 9.25–11.52, Safari 2–5.1.1, Node.js
0.4.8–0.6.1, Narwhal 0.3.2, RingoJS 0.7–0.8, and Rhino 1.7RC3. (For more information,
see https://github.com/Bestiejs/Platform.js.)

The following example shows the results returned from various browsers when using
Platform.js:

// on IE10 x86 platform
preview running in IE7 compatibility mode on
// Windows 7 64 bit edition
platform.name; // 'IE'
platform.version; // '10.0'
platform.layout; // 'Trident'
platform.os; // 'Windows Server 2008 R2 / 7 x64'
platform.description; // 'IE 10.0 x86 (platform preview; running in IE 7 mode) on Windows
Server 2008 R2 / 7 x64'

70 | Chapter 4: The Desktop Web

https://github.com/Tobie/Ua-parser
https://github.com/Tobie/Ua-parser
http://jsperf.com
https://github.com/Bestiejs/Platform.js

// or on an iPad
platform.name; // 'Safari'
platform.version; // '5.1'
platform.product; // 'iPad'
platform.manufacturer; // 'Apple'
platform.layout; // 'WebKit'
platform.os; // 'iOS 5.0'
platform.description; // 'Safari 5.1 on Apple iPad (iOS 5.0)'

// or parsing a given UA string
var info = platform.parse('Mozilla/5.0 (Macintosh;
 Intel Mac OS X 10.7.2; en; rv:2.0)
Gecko/20100101 Firefox/4.0 Opera 11.52');
info.name; // 'Opera'
info.version; // '11.52'
info.layout; // 'Presto'
info.os; // 'Mac OS X 10.7.2'
info.description; // 'Opera 11.52 (identifying as Firefox 4.0) on Mac OS X
10.7.2'

Server-Side userAgent Detection
On the server side, MobileESP is an open source framework, which detects the user
Agent header. This gives you the ability to direct the user to the appropriate page and
allows other developers to code to supported device features.

MobileESP is available in six languages:

• PHP
• Java (server side)
• ASP.NET (C#)
• JavaScript
• Ruby
• Classic ASP (VBscript)

In Java, you would use:
userAgentStr =
request.getHeader("user-agent");
httpAccept = request.getHeader("Accept");
uAgentTest = new UAgentInfo(userAgentStr, httpAccept);

If(uAgentTest.detectTierIphone()){
...//Perform redirect
}

Device and Feature Detection | 71

http://blog.mobileesp.com

In PHP, the code would be:
<?php

 //Load the Mobile Detection library
 include("code/mdetect.php");

 //In this simple example, we'll store the alternate home page
 // file names.
 $iphoneTierHomePage = 'index-tier-iphone.htm';

 //Instantiate the object to do our testing with.
 $uagent_obj = new uagent_info();

 //In this simple example, we simply re-route depending on
 // which type of device it is.
 //Before we can call the function, we have to define it.
 function AutoRedirectToProperHomePage()
 {
 global $uagent_obj, $iphoneTierHomePage,
 $genericMobileDeviceHomePage, $desktopHomePage;

 if ($uagent_obj->isTierIphone == $uagent_obj->true)
 //Perform redirect
 }

So there you have it, userAgent detection is unreliable and should be used with caution
or for specific cases only. Even in the scenario descripted by the Android/Firefox bug
report, for example, you could still implement userAgent detection and then use feature
detection to find the maximum screen size for Android-based mobile phones using CSS
Media Queries. There’s always a workaround, and problems such as these should not
deter you from using the userAgent string.

Compression
Compression of resources is mandatory in today’s mobile-first priority. If you aren’t
concerned with the size of your HTML, JavaScript, and CSS files, you should be. HTTP
compression is used to achieve a minimal transfer of bytes over a given web-based
connection. This reduces response times by reducing the size of the HTTP response.
The two commonly used HTTP compression schemes on the Web today are DEFLATE
and GZIP (more on these coming up).

When you gain performance on the client side, however, it’s easy to forget about in‐
creased overhead on your server resources. If you have complex SQL queries that in‐
crease the CPU load to present certain pages, you should analyze the effects of using
HTTP compression when these scenarios occur. Compressing a huge page that sur‐

72 | Chapter 4: The Desktop Web

passes 20 to 30K may have a negative effect on your application’s performance. In this
case, the expense of compressing the data will be completely dwarfed by the expense of
the SQL work on the server side. A few other considerations to take into account before
flipping the compression switch on every request are:

• Ensure you are compressing only compressible content and not wasting resources
trying to compress uncompressible content

• Select the correct compression scheme for your visitors
• Configure the web server properly so compressed content is sent to capable clients

So, what should be compressed? Along with the obvious resources such as HTML, Java‐
Script, and CSS, several common text resource types should be served with HTTP
compression:

• XML.
• JSON.
• News feeds (both RSS and Atom feeds are XML documents).
• HTML Components (HTC). HTC files are a proprietary Internet Explorer feature

that package markup, style, and code information used for CSS behaviors. HTC
files are often used by polyfills, such as Pie or iepngfix.htc, to fix various problems
with IE or to back port modern functionality.

• Plain text files can come in many forms, from README and LICENSE files, to
Markdown files. All should be compressed.

• A text file used to tell search engines what parts of the website to crawl, Robots.txt
often forgotten, because it is not usually accessed by humans. Because robots.txt is
repeatedly accessed by search engine crawlers and can be quite large, it can consume
large amounts of bandwidth without your knowledge.

• Anything that isn’t natively compressed should be allowed through HTTP com‐
pression. HTTP compression isn’t just for text resources and should be applied to
all nonnatively compressed file formats. For example, Favicons (ICO), SVG, and
BMP image files are not natively compressed. ICO files are served up as an icon for
your site in the URL bar or tab of most browsers, so be sure these filed receive HTTP
compression.

GZIP Versus DEFLATE
The top two HTTP compression schemes are by far GZIP and DEFLATE. GZIP was
developed by the GNU project and standardized by RFC 1952. GZIP is the most popular

Compression | 73

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
http://css3pie.com/
http://www.twinhelix.com/css/iepngfix/
http://en.wikipedia.org/wiki/Markdown
http://www.ietf.org/rfc/rfc1952.txt

compression method currently available and generally reduces the response size by
about 70%. DEFLATE is a patent-free compression algorithm for lossless data com‐
pression. There are numerous open source implementations of the algorithm. Apache’s
mod_deflate module is one implementation that many developers are familiar with.

To learn more about the differences between GZIP and DEFLATE
compression, see Billy Hoffman’s excellent article at http://zoompf.com/
2012/02/lose-the-wait-http-compression.

Approximately 90% of today’s Internet traffic travels through browsers that claim to
support GZIP. All browsers supporting DEFLATE also support GZIP, but all browsers
that support GZIP do not support DEFLATE. Some browsers, such as Android, don’t
include DEFLATE in their Accept-Encoding request header. Because you are going to
have to configure your web server to use GZIP anyway, you might as well avoid the
whole mess with Content-Encoding: deflate.

The Apache module that handles all HTTP compression is mod_deflate. Despite its
name, mod_deflate doesn’t support DEFLATE at all. It’s impossible to get a stock version
of Apache 2 to send either raw DEFLATE or zlib-wrapped DEFLATE. Nginx, like
Apache, does not support DEFLATE at all and sends only GZIP-compressed responses.
Sending an Accept-Encoding: deflate request header will result in an uncompressed
response.

If you use Apache, the module configuring GZIP depends on your version: Apache 1.3
uses mod_gzip, while Apache 2.x uses mod_deflate. Again, despite the naming con‐
vention, both use GZIP under the hood.

The following is a simple example of how to match certain file types to include in HTTP
compression. You would place it in the .htaccess file in Apache 2.4:

AddOutputFilterByType DEFLATE text/html text/plain
text/xml

Here’s a more complex example that deals with browser inconsistencies can be set as
follows to compress everything except images:

<Location
/>
Insert filter
SetOutputFilter DEFLATE

Netscape 4.x has some problems...
BrowserMatch ^Mozilla/4 gzip-only-text/html

Netscape 4.06-4.08 have some more problems
BrowserMatch ^Mozilla/4\.0[678] no-gzip

74 | Chapter 4: The Desktop Web

http://zoompf.com/2012/02/lose-the-wait-http-compression
http://zoompf.com/2012/02/lose-the-wait-http-compression
http://nginx.org/
http://sourceforge.net/projects/mod-gzip/
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

MSIE masquerades as Netscape, but it is fine
BrowserMatch \bMSIE !no-gzip
!gzip-only-text/html

Don't compress images
SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip
dont-vary

Make sure proxies don't deliver the wrong content
Header append Vary User-Agent env=!dont-vary
</Location>

The community project HTML5Boilerplate.com contains an excellent example of an
optimized .htaccess file. It’s specifically crafted for web performance optimizations. It
provides a great starting point for implementing HTTP compression properly. It also
serves as a nice guide to compare to an existing web server configuration to verify you
are following best practices (https://github.com/h5bp/html5-boilerplate/blob/
master/.htaccess).

You can view most other major server configurations for HTTP compression in the
github repository for HTML5Boilerplate (https://github.com/h5bp/server-configs), as
well as Figure 4-3. Some of the configurations included are:

• Node.js
• IIS
• Nginx
• lighttpd
• Google App Engine

After you think you have properly configured your web server from a compression and
optimization point of view, you must validate it. Web Sniffer is an excellent, free, web-
based tool that enables you make individual HTTP requests and see the responses. As
you can see in Figure 4-4, Web Sniffer gives you some control over the userAgent and
Accept-Encoding headers to ensure that compressed content is delivered properly.

Compression | 75

http://html5boilerplate.com
https://github.com/h5bp/html5-boilerplate/blob/master/.htaccess
https://github.com/h5bp/html5-boilerplate/blob/master/.htaccess
https://github.com/h5bp/server-configs
http://web-sniffer.net/

Figure 4-3. H5BP github examples

Figure 4-4. Customize HTTP request and response headers with Web Sniffer

76 | Chapter 4: The Desktop Web

Minification
The need for JavaScript and CSS compression to keep bandwidth and page load times
as small as possible is becoming more important to ensuring faster load times and more
enjoyable user experiences. Minification is the process of removing all unnecessary
characters from source code, without changing its functionality.

JavaScript and CSS resources may be minified, preserving their behavior while consid‐
erably reducing their file size. Some libraries also merge multiple script files into a single
file for client download. This fosters a modular approach to development and limits
HTTP requests.

Google has released its Closure Compiler tool, which provides minification as well as
the ability to introduce more aggressive renaming. It also can remove dead code and
provide function inlining. In addition, certain online tools, such as Microsoft Ajax
Minifier, the Yahoo! YUI Compressor, and Pretty Diff, can compress CSS files. Some of
your choices are:
JSMin

JSMin is a conservative compressor, written several years ago by Douglas Crockford.
It is a filter that removes comments and unnecessary whitespace from JavaScript
files. It typically reduces file size by half, resulting in faster downloads. It also en‐
courages a more expressive programming style, because it eliminates the download
cost of clean, literate self-documentation. It’s recommended you use JSLint before
minimizing your JavaScript with JSMin.

Packer
Packer, by Dean Edwards, is also a very popular JavaScript compressor, which can
go beyond regular compression and also add advanced on-the-fly decompression
with a JavaScript runtime piece. For example, Packer can optionally base64 com‐
press the given source code in a manner that can be decompressed by regular web
browsers, as well as shrink variable names that are typically 5 to 10 characters to
single letters, which reduces the file size of the script and, therefore, makes it down‐
load faster.

Dojo ShrinkSafe
Dojo ShrinkSafe is a very popular Java-based JavaScript compressor that parses the
JavaScript using the Rhino library and crunches local variable names.

YUI Compressor
The YUI Compressor is a newer compressor written by Julien Lecomte that aims
to combine the safety of JSMin with the higher compression levels achieved by Dojo
ShrinkSafe. Like Dojo ShrinkSafe, it is written in Java and based on the Rhino library.

Compression | 77

http://www.crockford.com/javascript/jsmin.html
http://dean.edwards.name/packer
http://dojotoolkit.org/docs/shrinksafe
http://www.mozilla.org/rhino/
http://developer.yahoo.com/yui/compressor/
http://www.mozilla.org/rhino/

How do you choose a minifier? CompressorRater (http://compressorrater.thruhere.net/)
can help. CompressorRater is a tool to rate and evaluate all of the aforementioned min‐
ification tools at one time (Figure 4-5).

Figure 4-5. CompressorRater

Bringing it all together

As you’ve seen, there are many tools and options to choose from when minifying and
concatenating your code. Fortunately, there has been a recent community effort to bring
all of these projects together into one common build tool: it’s called grunt.

More than a simple minifier, grunt (https://github.com/cowboy/grunt) is a task-based
command-line build tool for frontend projects. With it, you can concatenate files, vali‐
date files with JSHint, and minify with UglifyJS. In addition, grunt enables your project
to run headless QUnit tests with a PhantomJS instance.

grunt is available as an npm (node-packaged module), which is the nodejs way of man‐
aging installable packages (http://npmjs.org). If you install grunt globally with:

npm install -g grunt

it will be available for use in all of your projects. Once grunt has been installed, you can
type grunt --help at the command line for more information. Then, your available
tasks are:
concat

Concatenate files

init

Generate project scaffolding from a predefined template

lint

Validate files with JSHint

78 | Chapter 4: The Desktop Web

http://compressorrater.thruhere.net/
https://github.com/cowboy/grunt
http://npmjs.org

min

Minify files with UglifyJS

qunit

Run QUnit unit tests in a headless PhantomJS instance

server

Start a static web server

test

Run unit tests with nodeunit)

watch

Run predefined tasks whenever watched files change

The following code is an example of a very basic sample grunt.js file that handles project
configuration, loading a grunt plug-in, and a default task:

module.exports =
function(grunt) {
 // Project configuration.
 grunt.initConfig({
 lint: {
 all: ['grunt.js', 'lib/**/*.js''test/**/*.js']
 },
 jshint: {
 options: {
 browser: true
 }
 }
 });

 // Load tasks from "grunt-sample" grunt plugin installed via Npm.
 grunt.loadNpmTasks('grunt-sample');

 // Default task.
 grunt.registerTask('default', 'lint sample');

};

You can easily set up a new grunt project by using the grunt init command. There are
a few different templates for various types of projects including CommonJS, jQuery, and
Node.js.

As an example, try running grunt on the slidfast.js library used in the previous chapters.
From the root of the project, in the terminal, run:

grunt init:gruntfile

This customizable template (Figure 4-6) creates a single grunt.js file based on your an‐
swers to a few questions. Grunt also tries to determine source, unit test, and other system
paths using it’s own environment detection.

Compression | 79

Figure 4-6. Running grunt init:gruntfile from Terminal

Each time grunt runs, it looks in the current directory for a file named grunt.js. If this
file is not found, grunt continues looking in parent directories until that file is found.
This file is typically placed in the root of your project repository, and is a valid JavaScript
file composed of three parts:

• Project configuration
• Loading grunt plug-ins or tasks folders
• Tasks and helpers

This is what the grunt.js looks like for the slidfast.js JavaScript project (which only in‐
cludes HTML, CSS, and JavaScript files):

/*global module:false*/
module.exports = function(grunt) {

 // Project configuration.
 grunt.initConfig({
 meta: {
 version: '0.1.0',
 banner: '/*! PROJECT_NAME - v<%= meta.version %> - ' +
 '<%= grunt.template.today("yyyy-mm-dd") %>\n' +
 '* http://PROJECT_WEBSITE/\n' +
 '* Copyright (c) <%= grunt.template.today("yyyy") %> ' +
 'YOUR_NAME; Licensed MIT */'
 },
 lint: {
 files: ['grunt.js', 'slidfast.js']
 },
// qunit: {

80 | Chapter 4: The Desktop Web

https://github.com/html5e/slidfast

// files: ['example/**/*.html']
// },
 concat: {
 dist: {
 src: ['<banner:meta.banner>', '<file_strip_banner:slidfast.js>'],
 dest: 'dist/slidfast.js'
 }
 },
 min: {
 dist: {
 src: ['<banner:meta.banner>', '<config:concat.dist.dest>'],
 dest: 'dist/slidfast.min.js'
 }
 },
 watch: {
 files: '<config:lint.files>',
 tasks: 'lint qunit'
 },
 jshint: {
 options: {
 curly: true,
 eqeqeq: true,
 immed: true,
 latedef: true,
 newcap: true,
 noarg: true,
 sub: true,
 undef: true,
 boss: true,
 eqnull: true,
 browser: true
 },
 globals: {}
 },
 uglify: {}
 });

 // Default task.
 grunt.registerTask('default', 'lint concat min');

};

Because no QUnit tests are currently defined for this project, I com‐
mented out the default values and removed it from the last line in the
file.

Compression | 81

Now, if you run grunt within your project by simply typing grunt at the command line,
grunt returns a log like the one in Figure 4-7. As you can see in the example log, grunt
lists where the JavaScript lint fails. In addition, because this example bypassed the lint
process by using grunt -force, grunt was able to continue minifying the files and
display the before and after size of the files.

Figure 4-7. Running grunt from the command line

Two more multipurpose tools useful for minifying are Jawr and Ziproxy.

Jawr is a tunable packaging solution for JavaScript and CSS that allows for rapid devel‐
opment of resources in separate module files. You can work with a large set of split
JavaScript files in development mode, then Jawr bundles them all together into one or
several files in a configurable way. By using a tag library, Jawr enables you to use the
same, unchanged pages for development and production. Jawr also minifies and com‐
presses the files, resulting in reduced page load times. You can configure Jawr using a
simple .properties descriptor. Besides standard Java web applications, it can also be
used with Facelets and Grails applications.

Ziproxy (http://ziproxy.sourceforge.net) is a forwarding, noncaching, compressing
HTTP proxy targeted for traffic optimization. It minifies and optimizes HTML, CSS,
and JavaScript resources, plus recompresses pictures. Basically, it squeezes images by
converting them to lower quality JPEGs or JPEG 2000 and compresses (via GZIP) HTML
and other text-like data. In addition, it provides such features as preemptive hostname
resolution, transparent proxying, IP ToS marking (QoS), Ad-Blocker, detailed logging,
and more. Ziproxy does not require client software and provides acceleration for any
web browser on any OS.

82 | Chapter 4: The Desktop Web

http://jawr.java.net
http://ziproxy.sourceforge.net

JavaScript MVC Frameworks and the Server
With the myriad of JavaScript MV* (aka MVC) frameworks popping up over the past
few years, it’s important to get a high-level view of what frameworks are available today
and how they support some form of server-side interaction.

In theory, JavaScript frameworks offer developers an easy path to organizing code. After
a few years of attempting to manually organize AJAX/jQuery callbacks, the development
community recognized the need to create frameworks around frontend code. Devel‐
opers realized that complex client-side applications do not scale with spaghetti code and
that keeping up with manually bound, AJAX-returned data using innerHTML() can get
quite messy. So the solution was to use variations of a pattern known as MVC (Model-
View-Controller). MVC separates the concerns in an application down into three parts:

• Models
• Views
• Controllers

Although JavaScript MVC frameworks help us structure our code, they don’t always
strictly follow the classic pattern shown in Figure 4-8. Some frameworks will include
the responsibility of the controller in the view such as Backbone.js, while others add their
own opinionated components into the mix, as they feel this is more effective.

Figure 4-8. The MVC process

For this reason, I refer to such frameworks as following the MV* pattern; that is, you’re
likely to have a view and a model, but more likely to have something else also included.
If your goal is to learn the basics of each MV* framework on the market today, TodoMVC
(Figure 4-9) provides implementations of a to-do app in more frameworks than anyone
has time to learn. Currently there are around 40 JavaScript MV* frameworks in exis‐
tence. Choosing the right framework for a given project is the start of your journey.

JavaScript MVC Frameworks and the Server | 83

http://backbonejs.org/

Figure 4-9. TodoMVC is a collection of to-do demos built for most JavaScript MV*
frameworks

The Top Five Frameworks
Before you can decide which framework is best for your project, you need to know how
they perform. The following sections focus on how each of the five leading frameworks
handles server-side collections of objects rendered to the DOM. Data interaction is
important for two main reasons:

• Binding objects to the UI must be declarative, and the view layer should autoupdate
as changes to the model occur.

• It’s easy to create JavaScript-heavy applications that end up as a tangled mess of
jQuery, RESTful endpoints, and callbacks. A structured MVC approach makes code
more maintainable and reusable.

For each framework, I’ll evaluate persistence strategies, identify JavaScript frameworks
that are server agnostic, and use transports such as HTTP (for RESTful endpoints) and
other protocols such as WebSockets. This section assumes you already have a basic idea

84 | Chapter 4: The Desktop Web

of what a JavaScript MV* framework is and does. I will not go into details on how well
each framework implements the original Smalltalk MVC pattern, rather the discussions
focus on how each framework synchronizes data from the server to the client and vice
versa.

Choosing the right framework and using it well comes down to knowing
what you need. Beyond the five frameworks I review in this section,
there are many others you can use in your application. Weigh out the
pros and cons of each one, and find the right development model for
your targeted application.

Backbone
Backbone.js is today’s framework of choice, and for good reason; an impressive list of
brands, such as Foursquare, Posterous, Groupon (Figure 4-10), and many others have
built JavaScript applications with Backbone.

Figure 4-10. Groupon uses Backbone

Backbone uses Underscore.js heavily and gives developers the options of using jQuery
or Zepto for the core DOM framework. It also boasts a healthy community and strong
word of mouth (Figure 4-11).

JavaScript MVC Frameworks and the Server | 85

Figure 4-11. Backbone github stats, June 2012

With Backbone, you represent your data as models, which can be created, validated,
destroyed, and saved to the server. Whenever a UI action causes an attribute of a model
to change, the model triggers a change event; all the views that display the model’s state
can be notified of the change so that they are able to respond accordingly, rerendering
themselves with the new information. In a finished Backbone app, you don’t have to
write the glue code that looks into the DOM to find an element with a specific ID and
update the HTML manually. When the model changes, the views simply update them‐
selves.

In the end, Backbone is better suited for larger frameworks and applications. If you are
writing a simple application that needs the structure of MVC, you will end up writing
a lot of code to present a simple interface.

Each framework discussion gives a demo hosted in this book’s github
repository. For Backbone, you can find the following RESTful demo
written in Java at https://github.com/html5e/backbone-jax-cellar.

Backbone server synchronization

If your backend data is exposed through a pure RESTful API, retrieving (GET), creating
(POST), updating (PUT), and deleting (DELETE) models is incredibly easy using the Back‐
bone.js simple Model API. For example:

// Models
window.Book = Backbone.Model.extend({
 urlRoot:"/api/books",
 defaults:{
 "id":null,
 "name":"HTML5 Architecture",
 }
});

window.BookCollection = Backbone.Collection.extend({
 model:Book,
 url:"/api/books"
});

86 | Chapter 4: The Desktop Web

https://github.com/html5e/backbone-jax-cellar

In the above code, the urlRoot for window.Book is the RESTful service endpoint to
retrieve or persist model data. Note that this attribute is needed only when retrieving
or persisting models that are not part of a collection. If the Model is part of a collec‐
tion, the url attribute defined in the collection is enough for Backbone to know how to
retrieve, update, or delete data using your RESTful API.

In window.BookCollection, url provides the endpoint for the RESTFul API. This is all
that’s needed to retrieve, create, update, and delete with Backbone’s simple Model API.

If your persistence layer is not available through RESTful services, or if you would like
to use a different transport mechanism such as WebSockets, you can override Back
bone.sync.

Backbone.sync is the function that Backbone calls every time it attempts to read or save
a model to the server. By default, it uses jQuery or Zepto to make a RESTful JSON request.
You can override it to use a different persistence strategy, such as WebSockets, XML
transport, or localStorage. With the default implementation, when Backbone.sync
sends up a request to save a model, its attributes will be passed, serialized as JSON, and
sent in the HTTP body with content-type application/json. The default sync han‐
dler maps CRUD to REST like so:

create -> POST /collection
read -> GET /collection[/id]
update -> PUT /collection/id
delete -> DELETE /collection/id

Backbone and legacy servers

If you must work with a legacy web server that doesn’t support Backbones’s default
REST/HTTP approach, you may choose to turn on Backbone.emulateHTTP. Setting this
option will fake PUT and DELETE requests with a HTTP POST, setting the X-HTTP-Method-
Override header with the true method. If emulateJSON is also on, the true method will
be passed as an additional _method parameter. For example:

Backbone.emulateHTTP = true;
model.save(); // POST to "/collection/id", with "_method=PUT" + header.

If you’re working with a web server that can’t handle requests encoded as application/
JSON, setting Backbone.emulateJSON = true; will cause the JSON to be serialized
under a model parameter, and the request to be made with a application/x-www-form-
urlencoded mime type, as if from an HTML form.

Ember
Ember.js (formerly Amber.js and SproutCore 2.0) is one of the newest contenders. It is
an attempt to extricate the core features from SproutCore 2.0 into a more compact
modular framework suited for the Web. It’s also well known for gracefully handling
DOM updates and has a respectable following on github (Figure 4-12).

JavaScript MVC Frameworks and the Server | 87

Figure 4-12. Ember github stats, June 2012

Ember is what happened when SproutCore decided to be less Apple Cocoa and more
jQuery. The result is a web framework that retains important high-level concepts, such
as observers, bindings, and state charts, while delivering a concise API. SproutCore
started its life as the development framework behind an early client-side email appli‐
cation. Then, Apple used it to build MobileMe (and then iCloud), both of which include
email clients. Needless to say, Apple has figured out that collections that update from
the server are very important.

Unlike Backbone, Ember requires less wiring of things together; for example, point a
view at an array, and it will automatically be rerendered as the array is manipulated.
Ember’s binding system and tight integration with the Handlebars.js templating lan‐
guage makes this possible.

For a RESTful demo, written in Ruby, to demonstrate Ember’s server
synchronization, view this repository: https://github.com/html5e/
ember_data_example.

Ember server synchronization

Ember Data is a library for loading models from a persistence layer (such as a JSON
API), updating those models, and then saving the changes. It provides many of the
facilities you find in such server-side ORMs as ActiveRecord, but it is designed specif‐
ically for the unique environment of JavaScript in the browser. Here is a brief example
of storing data with Ember:

// our model
App.Person = Ember.Object.extend();

App.people = Ember.ArrayController.create({
 content: [],
 save: function () {
 // assuming you are using jQuery, but could be other AJAX/DOM framework
 $.post({
 url: "/people",
 data: JSON.stringify(this.toArray()),
 success: function (data) {
 // your data should already be rendered with latest changes
 // however, you might want to change status from something to "saved" etc.

88 | Chapter 4: The Desktop Web

http://handlebarsjs.com/
https://github.com/html5e/ember_data_example
https://github.com/html5e/ember_data_example

 }
 });
 }
});

The next step in your code would be a call to App.people.save() to persist the data.

Angular
A nice framework developed by Googlers Angular.js, has some very interesting design
choices, most namely Dependency Injection (or IOC) for JavaScript. Dependency In‐
jection makes your code easier to test and pushes object creation and wiring as high up
in the application as possible, which gives you one central location for the flow of logic.

Angular is well thought out with respect to template scoping and controller design. It
supports a rich UI-binding syntax to make operations like filtering and transforming
values easy. On github, Angular is a heavily watched project and has a healthy commu‐
nity contributing to it (Figure 4-13).

Figure 4-13. Angular github stats, June 2012

For a RESTful demo written with Node.js to demonstrate Angular’s
server synchronization capabilities, see https://github.com/html5e/
angular-phonecat-mongodb-rest.

Angular server synchronization. The Angular model is referenced from properties on
Angular scope objects. The data in your model could be JavaScript objects, arrays, or
primitives; it doesn’t matter. What matters is that these are all referenced by the scope
object. Angular employs scopes to keep your data model and your UI in sync. Whenever
something occurs to change the state of the model, Angular immediately reflects that
change in the UI and vice versa.

When building web applications, your design needs to consider security
threats from JSON vulnerability and XSRF. Both the server and client
must cooperate to eliminate these threats. Angular comes preconfig‐
ured with strategies that address these issues, but for this to work, back‐
end server cooperation is required.

JavaScript MVC Frameworks and the Server | 89

https://github.com/html5e/angular-phonecat-mongodb-rest
https://github.com/html5e/angular-phonecat-mongodb-rest

This simple example illustrates how to retrieve and save data with Angular’s default
CRUD methods (.get, .save, .delete, and .query):

// Define CreditCard class
var CreditCard = $resource('/user/:userId/card/:cardId',
 {userId:123, cardId:'@id'}, {
 charge: {method:'POST', params:{charge:true}}
 });

// We can retrieve a collection from the server
var cards = CreditCard.query();
// GET: /user/123/card
// server returns: [{id:456, number:'1234', name:'Smith'}];

var card = cards[0];
// each item is an instance of CreditCard
expect(card instanceof CreditCard).toEqual(true);
card.name = "J. Smith";
// non GET methods are mapped onto the instances
card.$save();
// POST: /user/123/card/456 {id:456, number:'1234', name:'J. Smith'}
// server returns: {id:456, number:'1234', name: 'J. Smith'};

For more details see:

• http://docs.angularjs.org/#!/api/angular.service.$xhr
• http://docs.angularjs.org/#!/api/angular.service.$resource

Batman
Created by Shopify, Batman.js is another framework similar to Knockout and Angular.
It has a nice UI binding system based on HTML attributes and is the only framework
written in coffeescript. Batman.js is also tightly integrated with Node.js and even goes
to the extent of having its own (optional) Node.js server. At this time, its following is still
relatively small on github in comparison to the others (Figure 4-14).

Figure 4-14. Batman github stats, June 2012

For a RESTful application that demonstrates Batman’s server synchro‐
nization, see the HTML5e Batman repository.

90 | Chapter 4: The Desktop Web

http://docs.angularjs.org/#!/api/angular.service.$xhr
http://docs.angularjs.org/#!/api/angular.service.$resource
https://github.com/html5e/batmanjs-address-book

Batman server synchronization. A Batman.js model object may have arbitrary properties
set on it, just like any JS object. Only some of those properties are serialized and persisted
to its storage backends. Models have the ability to:

• Persist to various storage backends
• Only serialize a defined subset of their properties as JSON
• Use a state machine to expose life cycle events
• Validate with synchronous or asynchronous operations

You define persisted attributes on a model with the encode macro:
class Article extends
Batman.Model
 @encode 'body_html', 'title', 'author', 'summary_html', 'blog_id', 'id', 'user_id'
 @encode 'created_at', 'updated_at', 'published_at', Batman.Encoders.railsDate
 @encode 'tags',
 encode: (tagSet) -> tagSet.toArray().join(', ')
 decode: (tagString) -> new Batman.Set(tagString.split(', ')...)

Given one or more strings as arguments, @encode will register these properties as per‐
sisted attributes of the model, to be serialized in the model’s toJSON() output and ex‐
tracted in its fromJSON(). Properties that aren’t specified with @encode will be ignored
for both serialization and deserialization. If an optional coder object is provided as the
last argument, its encode and decode functions will be used by the Model for serializa‐
tion and deserialization, respectively.

By default, a model’s primary key (the unchanging property that uniquely indexes its
instances) is its id property. If you want your model to have a different primary key,
specify the name of the key on the primaryKey class property:

class User extends
Batman.Model
 @primaryKey: 'handle'
 @encode 'handle', 'email'

To specify a storage adapter for persisting a model, use the @persist macro in its class
definition:

class Product extends
Batman.Model
 @persist Batman.LocalStorage

Now when you call save() or load() on a product, it will use the browser window’s
localStorage to retrieve or store the serialized data.

If you have a REST backend you want to connect to, Batman.RestStorage is a simple
storage adapter that you can subclass and extend to suit your needs. By default, it assumes

JavaScript MVC Frameworks and the Server | 91

http://batmanjs.org/documentation.html#models

your camelcased-singular product model is accessible at the underscored-
pluralized /products path, with instances of the resource accessible at /products/:id. You
can override these path defaults by assigning either a string or a function-returning a-
string to the url property of your model class (for the collection path) or to the prototype
(for the member path). For example:

class Product extends
Batman.Model
 @persist Batman.RestStorage
 @url = "/admin/products"
 url: -> "/admin/products/#{@id}"

Knockout
Knockout.js is built around three core features:

• Observables and dependency tracking
• Declarative bindings
• Templating

Knockout is designed to allow the use of arbitrary JavaScript objects as viewModels. As
long as some of your viewModel’s properties are observables, you can use Knockout to
bind them to your UI, and the UI will be updated automatically whenever the observable
properties change. Figure 4-15 shows Knockout to have a good following of users and
commit logs are active.

Figure 4-15. Knockout github stats, June 2012

For a full demo on how to use Knockout’s server synchronization, view
this tutorial.

Knockout server synchronization. Observables are declared on model properties. They
allow automatic updates to the UI when the model changes:

var viewModel = {
 serverTime: ko.observable(),
 numUsers: ko.observable()
}

92 | Chapter 4: The Desktop Web

http://learn.knockoutjs.com/#/?tutorial=loadingsaving
http://learn.knockoutjs.com/#/?tutorial=loadingsaving

Because the server doesn’t have any concept of observables, it will just supply a plain
JavaScript object (usually serialized as JSON).

You could manually bind this viewModel to some HTML elements as follows:
The time on the server is:
and user(s) are
connected.

Because the viewModel properties are observable, Knockout will automatically update
the HTML elements whenever those properties change.

Next, you want to fetch the latest data from the server. For demo purposes, you might
issue an AJAX request every five seconds (perhaps using jQuery’s $.getJSON or $.ajax
functions):

var data = getDataUsingAjax();
 // Gets the data from the server

The server might return JSON data similar to the following:
{
 serverTime: '2010-01-07',
 numUsers: 3
}

Finally, to update your viewModel using this data, you would write:
// Every time data is received
from the server:
viewModel.serverTime(data.serverTime);
viewModel.numUsers(data.numUsers);

You would have to do this for every variable you want to display on your page. If your
data structures become more complex and contain children or arrays, this becomes very
cumbersome to handle manually. However, Knockout provides facilities to easily pop‐
ulate a viewModel with an incoming JSON payload.

Alternately, you could use the Knockout.js mapping plug-in. This plug-in allows you to
create a mapping from the regular JavaScript object (or JSON structure) to an observable
viewModel. The mapping plug-in gives you a straightforward way to map that plain
JavaScript object into a viewModel with the appropriate observables. This is an alter‐
native to manually writing your own JavaScript code that constructs a viewModel based
on some data you’ve fetched from the server.

To create a viewModel via the mapping plug-in, replace the creation of viewModel in the
code above with the ko.mapping.fromJS function:

var viewModel =
ko.mapping.fromJS(data);

JavaScript MVC Frameworks and the Server | 93

http://knockoutjs.com/documentation/plugins-mapping.html

This automatically creates observable properties for each of the properties on data.
Then, every time you receive new data from the server, you can update all the properties
on viewModel in one step by calling the ko.mapping.fromJS function again:

// Every time data is received
from the server:
ko.mapping.fromJS(data, viewModel);

All properties of an object are converted into an observable. If an update would change
the value, it will update the observable.

Arrays are converted into observable arrays. If an update would change the number of
items, it will perform the appropriate add or remove actions. It will also try to keep the
order the same as the original JavaScript array.

94 | Chapter 4: The Desktop Web

CHAPTER 5

WebSockets

Every HTTP request sent from the browser includes headers, whether you want them
or not. Nor are they small headers. Uncompressed request and response headers can
vary in size from 200 bytes to over 2K. Although, typical size is somewhere between 700
and 900 bytes, those numbers will grow as userAgents expand features.

WebSockets give you minimal overhead and a much more efficient way of delivering
data to the client and server with full duplex communication through a single socket.
The WebSocket connection is made after a small HTTP handshake occurs between the
client and the server, over the same underlying TCP/IP connection. This gives you an
open connection between the client and the server, and both parties can start sending
data at any time.

A few of WebSockets’ many advantages are:

• No HTTP headers
• No lag due to keep-alive issues
• Low latency, better throughput and responsiveness
• Easier on mobile device batteries

Building the Stack
To effectively develop any application with WebSockets, you must accept the idea of the
“real-time Web” in which the client-side code of your web application communicates
continuously with a corresponding real-time server during every user connection. To

95

accomplish this, you can use a capable protocol such as WebSockets or SPDY to build
the stack yourself. Or you can choose a service or project to manage the connections
and graceful degradation for you. In this chapter, you’ll learn how to implement a raw
WebSocket server and the best practices surrounding the details of setting one up.

If you opt to leave the management to someone else, you have choices. Freemium serv‐
ices, such as Pusher (http://pusher.com), are starting to emerge to do this, and companies
like Kaazing, which offers the Kaazing Gateway, have been providing adapters for
STOMP and Apache ActiveMQ for years. In addition, you can find plenty of wrapper
frameworks around WebSockets to provide graceful degradation—from Socket.IO to
CometD to whatever’s hot right now. Graceful degradation is the process of falling back
to use older technologies, such as Flash or long polling, within the browser if the Web‐
Socket protocol is not supported. Comet, push technology, and long-polling in web apps
are slow, inefficient, inelegant and have a higher potential magnitude for unreliability.
For this book, I am only covering the core WebSocket specification to avoid confusion
and to keep things simple.

As of August 2012, the WebSocket specification was in Working Draft
status. Implementers and editors were working to bring the spec into
Candidate Release status. Until that status is declared, be aware that
things could change in regard to the underlying protocol.

On the Server, Behind the Scenes
Keeping a large number of connections open at the same time requires an architecture
that permits other processing to continue before the transmission has finished. Such
architectures are usually designed around threading or asynchronous nonblocking IO
(NIO). As for the debates between NIO and threading, some might say that NIO does
not actually perform better than threading, but only allows you to write single-threaded
event loops for multiple clients as with select on Unix. Others argue that choosing NIO
or threading depends on your expected workloads. If you have lots of long-term idle
connections, NIO wins due to not having thousands of threads “blocking on a read”
operation. Again, there are many debates over whether threads are faster or easier to
write than event loops (or the opposite) so it all depends on the type of use case you are
trying to handle. Don’t worry, I’ll show examples of both event loops and threads in this
chapter.

Programming Models
As mentioned earlier, WebSockets present a new development model for server- and
client-side applications: the “real-time” Web. During every user connection under this
model, your web application’s client side needs to communicate continuously with the

96 | Chapter 5: WebSockets

http://pusher.com

corresponding real-time server. Although most server-side frameworks provide event‐
ing mechanisms, few extend the events all the way through to the web browser to support
this real-time model. As a result, you are faced with retrofitting your current solutions
and architectures into this real-time model.

For example, suppose your server-side framework is capable of sending an event and
you have observers of this event in your code. WebSockets gives you the ability to extend
that event so that it carries all the way from the server side into the connected client’s
browser. A good example would be to notify all WebSocket connections that a user has
registered on your site.

The first step towards implementing such a solution is to wire up the three main listeners
associated with WebSockets: onopen, onmessage, and onclose. Basically, the following
events will be fired automatically when a WebSocket connection opens successfully. For
example:

objWebSocket.onopen = function(evt)
{
 alert("WebSocket connection opened successfully");
};
objWebSocket.onmessage = function(evt)
{
 alert("Message : " + evt.data);
};
objWebSocket .onclose = function(evt)
{
 alert("WebSocket connection closed");
};

After the WebSocket connection opens, the onmessage event fires whenever the server
sends data to the client. If the client wants to send data to the server, it can do so as
follows:

objWebSocket.send("Hello World");

Sending messages in the form of strings over raw WebSockets isn’t very appealing,
however, when you want to develop enterprise-style web applications. Because current
WebSocket implementations deal mostly with strings, you can use JSON to transfer data
to and from the server.

But how do you propagate the server-side events that are fired on the server and then
bubble them up on the client? One approach is to relay the events. When a specific
server-side event is fired, use a listener or observer to translate the data to JSON and
send it to all connected clients.

Relaying Events from the Server to the Browser
Before you can successfully communicate with a server, you need to know what you’re
talking to and how. For the chapter’s examples, I’m using the JBoss AS7 application

Programming Models | 97

http://www.jboss.org/jbossas/downloads

server and embedding Jetty within the web application. The main reasoning behind this
approach is to take advantage of a lightweight Java EE 6.0 [Full Profile] application
server. There are a few other Java options out there, such as GlassFish or running Jetty
standalone, but this solution offers contexts and dependency injection (CDI), distribut‐
ed transactions, scalable JMS messaging, and data grid support out of the box. Such
support is extremely valuable in cutting-edge enterprise initiatives and private cloud
architectures.

Because this approach embeds one server (Jetty) with another server (JBoss), we can
use it with any app server, even one that may not support WebSockets, and enable
existing, older applications to take advantage of real-time connections.

The full deployable source code for this example is on the “embedded-jetty branch”. A
few things are worth noting here:
Security

Because the WebSocket server is running on a different port (8081) than the JBoss
AS7 server (8080), we must account for not having authentication cookies, and so
on. A reverse proxy can handle this problem, however, as you’ll see in the last section
of this chapter.

Proxies
As if existing proxy servers weren’t already a huge problem for running WebSockets
and HTTP over the same port, in this example, we are now running them separately.

Threading
Because we’re observing and listening for CDI events, we must perform some same
thread operations and connection sharing.

The code below first sets up the WebSocket server using Jetty’s WebSocketHandler and
embeds it inside a ServletContextListener. Although the app shares a synchronized
set of WebSocket connections across threads, we ensure that only a single thread can
execute a method or block at one time by using the synchronized keyword. To relay
the CDI event to the browser, we must store all the WebSocket connections in a Concur
rentHashSet and write new connections to it as they come online. At any time, the
ConcurrentHashSet will be read on a different thread so we know where to relay the
CDI events. The ChatWebSocketHandler contains a global set of WebSocket connections
and adds each new connection within the Jetty server.

public class ChatWebSocketHandler extends WebSocketHandler {

private static Set<ChatWebSocket> websockets =
 new ConcurrentHashSet<ChatWebSocket>();

 public WebSocket doWebSocketConnect(HttpServletRequest request,
 String protocol) {
 return new ChatWebSocket();
 }

98 | Chapter 5: WebSockets

http://www.jboss.org/jbossas/downloads
https://github.com/html5e/HTML5-Mobile-WebSocket/tree/embedded-jetty

 public class ChatWebSocket implements WebSocket.OnTextMessage {

 private Connection connection;

 public void onOpen(Connection connection) {
 // Client (Browser) WebSockets has opened a connection.
 // 1) Store the opened connection
 this.connection = connection;
 // 2) Add ChatWebSocket in the global list of ChatWebSocket
 // instances
 // instance.
 getWebsockets().add(this);
 }

 public void onMessage(String data) {
 // Loop for each instance of ChatWebSocket to send message
 // server to each client WebSockets.
 try {
 for (ChatWebSocket webSocket : getWebsockets()) {
 // send a message to the current client WebSocket.
 webSocket.connection.sendMessage(data);
 }
 } catch (IOException x) {
 // Error was detected, close the ChatWebSocket client side
 this.connection.disconnect();
 }

 }

 public void onClose(int closeCode, String message) {
 // Remove ChatWebSocket in the global list of ChatWebSocket
 // instance.
 getWebsockets().remove(this);
 }
 }

 public static synchronized Set<ChatWebSocket> getWebsockets() {
 return websockets;
 }

}

Next, we embed the Jetty WebSocket-capable server within the web application:
private Server server = null;
 /**
 * Start Embedding Jetty server when WEB Application is started.
 *
 */
 public void contextInitialized(ServletContextEvent event) {
 try {
 // 1) Create a Jetty server with the 8081 port.
 InetAddress addr = InetAddress.getLocalHost();

Programming Models | 99

 this.server = new Server();
 Connector connector = new SelectChannelConnector();
 connector.setPort(8081);
 connector.setHost(addr.getHostAddress());

 server.addConnector(connector);

 // 2) Register ChatWebSocketHandler in the
 //Jetty server instance.
 ChatWebSocketHandler chatWebSocketHandler =
 new ChatWebSocketHandler();
 chatWebSocketHandler.setHandler(new DefaultHandler());

 server.setHandler(chatWebSocketHandler);

 // 2) Start the Jetty server.
 server.start();
 } catch (Throwable e) {
 e.printStackTrace();
 }
 }

....
}

Now we’ll create a method to observe CDI events and send the fired Member events to
all active connections. This relays a very simple cdievent JavaScript object, which will
be pushed to all connected clients and then evaluated on the browser through a Java‐
Script interpreter.

public void observeItemEvent(@Observes Member member) {
 try {
 for (ChatWebSocket webSocket : websockets) {

webSocket.connection.sendMessage("{\"cdievent\":{\"fire\":function(){" +
 "eventObj.initEvent(\'memberEvent\', true, true);" +
 "eventObj.name = '" + member.getName() + "';\n" +
 "document.dispatchEvent(eventObj);" +
 "}}}");
 }
 } catch (IOException x) {
 //...
 }
 }

The above code observes the following event when a new Member is registered through
the web interface. As you can see below, memberEventSrc.fire(member) is fired when
a user registers through the provided RESTful URL.

@POST
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
@Produces(MediaType.APPLICATION_JSON)
public Response createMember(@FormParam("name") String name,

100 | Chapter 5: WebSockets

 @FormParam("email") String email,
 @FormParam("phoneNumber") String phone) {
 ...

 //Create a new member class from fields
 Member member = new Member();
 member.setName(name);
 member.setEmail(email);
 member.setPhoneNumber(phone);

 try {

 //Fire the CDI event
 memberEventSrc.fire(member);

Finally, we set up the WebSocket JavaScript client and safely avoid using the eval()
method to execute the received JavaScript.

 ...
 var location = "ws://192.168.1.101:8081/"
 this._ws = new WebSocket(location);

 _onmessage : function(m) {
 if (m.data) {
 //check to see if this message is a CDI event
 if(m.data.indexOf('cdievent') > 0){
 try{
 //$('log').innerHTML = m.data;
 //avoid use of eval...
 var event = (m.data);
 event = (new Function("return " + event))();
 event.cdievent.fire();
 }catch(e){
 alert(e);
 }
 }else{
 //... append data in the DOM
 }
 }
 },

Here is the JavaScript code that listens for the CDI event and executes the necessary
client-side code:

window.addEventListener('memberEvent', function(e) {
 alert(e.name + ' just registered!');
}, false);

As you can see, this is a very prototyped approach to achieve a running WebSocket
server, but it’s a step forward in adding a usable programming layer on top of the Web‐
Socket protocol.

Programming Models | 101

Using the new and shiny

As of this writing, JBoss has just begun to implement WebSockets natively on JBoss AS7.
The same example from above has been converted for native WebSocket support
(without embedding Jetty) on JBoss AS 7.1.2 and beyond. This gives you the benefit of
having both HTTP and WS traffic over the same port without needing to worry about
managing data across threads. To see a chat room example that uses native WebSocket,
check out https://github.com/html5e/HTML5-Mobile-WebSocket. You can find the JBoss
WebSocket source at https://github.com/mikebrock/jboss-websockets.

Binary Data Over WebSockets
Another cool use of WebSockets is the ability to use binary data instead of just JSON
strings. For example:

objWebSocket.onopen = function(evt)
{
 var array = new Float32Array(5);
 for (var i = 0; i < array.length; ++i) array[i] = i / 2;
 ws.send(array, {binary: true});
};

Why send binary data? This allows you to stream audio to connected clients using the
Web Audio API. Or you could give users the ability to collaborate with a real-time screen
sharing application using canvas and avoid the need to base64-encode the images. The
possibilities are limitless!

The following code sets up a Node.js server to demo an example of sending audio over
a WebSocket connection. See https://github.com/einaros/ws-audio-example for the full
example.

var express = require('express');
var WebSocketServer = require('ws').Server;
var app = express.createServer();

function getSoundBuffer(samples) {
 var header = new Buffer([
 0x52,0x49,0x46,0x46, // "RIFF"
 0, 0, 0, 0, // put total size here
 0x57,0x41,0x56,0x45, // "WAVE"
 0x66,0x6d,0x74,0x20, // "fmt "
 16,0,0,0, // size of the following
 1, 0, // PCM format
 1, 0, // Mono: 1 channel
 0x44,0xAC,0,0, // 44,100 samples per second
 0x88,0x58,0x01,0, // byte rate: two bytes per sample
 2, 0, // aligned on every two bytes
 16, 0, // 16 bits per sample
 0x64,0x61,0x74,0x61, // "data"
 0, 0, 0, 0 // put number of samples here
]);

102 | Chapter 5: WebSockets

https://github.com/html5e/HTML5-Mobile-WebSocket
https://github.com/mikebrock/jboss-websockets
https://github.com/einaros/ws-audio-example

 header.writeUInt32LE(36 + samples.length, 4, true);
 header.writeUInt32LE(samples.length, 40, true);
 var data = new Buffer(header.length + samples.length);
 header.copy(data);
 samples.copy(data, header.length);
 return data;
}

function makeSamples(frequency, duration) {
 var samplespercycle = 44100 / frequency;
 var samples = new Uint16Array(44100 * duration);
 var da = 2 * Math.PI / samplespercycle;
 for (var i = 0, a = 0; i < samples.length; i++, a += da) {
 samples[i] = Math.floor(Math.sin(a / 300000) * 32768);
 }
 return
getSoundBuffer(new Buffer(Array.prototype.slice.call(samples, 0)));
}

app.use(express.static(__dirname + '/public'));
app.listen(8080);
var wss = new WebSocketServer({server: app, path: '/data'});

var samples = makeSamples(20000, 10);

wss.on('connection', function(ws) {
 ws.on('message', function(message) {
 ws.send('pong');
 });
 ws.send(samples, {binary: true});
});

Managing Proxies
With new technology comes a new set of problems. In the case of WebSockets, the
challenges relate to compatibility with the proxy servers that mediate HTTP connections
in most company networks. A firewall, proxy server, or switch always is the lynchpin of
an enterprise, and these devices and servers limit the kind of traffic you’re allowed to
send to and from the server.

The WebSocket protocol uses the HTTP upgrade system (which is normally used for
HTTPS/SSL) to “upgrade” an HTTP connection to a WebSocket connection. Some
proxy servers are not able to handle this handshake and will drop the connection. So,
even if a given client uses the WebSocket protocol, it may not be possible to establish a
connection.

Programming Models | 103

When you use WebSocket Secure (wss://), wire traffic is encrypted and
intermediate transparent proxy servers may simply allow the encrypted
traffic through, so there is a much better chance that the WebSocket
connection will succeed. Using encryption is not free of resource costs,
but often provides the highest success rate.

Some proxy servers are harmless and work fine with WebSockets. Others will prevent
WebSockets from working correctly, causing the connection to fail. In some cases, ad‐
ditional proxy server configuration may be required, and certain proxy servers may
need to be upgraded to support WebSocket connections.

If unencrypted WebSocket traffic flows through an explicit or a transparent proxy server
on its way to the WebSocket server, then, whether or not the proxy server behaves as it
should, the connection is almost certainly bound to fail. Therefore, unencrypted Web‐
Socket connections should be used only in the simplest topologies. As WebSockets be‐
come more mainstream, proxy servers will become WebSocket aware.

If you use an encrypted WebSocket connection, then use Transport Layer Security (TLS)
in the WebSocket Secure connection to ensure that an HTTP CONNECT command is issued
when the browser is configured to use an explicit proxy server. This sets up a tunnel,
which provides low-level end-to-end TCP communication through the HTTP proxy,
between the WebSocket Secure client and the WebSocket server. In the case of trans‐
parent proxy servers, the browser is unaware of the proxy server, so no HTTP CONNECT
is sent. Because the wire traffic is encrypted, however, intermediate transparent proxy
servers may simply allow the encrypted traffic through, so there is a much better chance
that the WebSocket connection will succeed if you use WebSocket Secure. Using en‐
cryption is not free of resource cost, but often provides the highest success rate.

A mid-2010 draft (version hixie-76) broke compatibility with reverse
proxies and gateways by including 8 bytes of key data after the headers,
but not advertising that data in a Content-Length: 8 header. This data
was not forwarded by all intermediates, which could lead to protocol
failure. More recent drafts (such as hybi-09) put the key data in a Sec-
WebSocket-Key header, solving this problem.

Building your own

Things have changed since the days of fronting our servers with Apache for tasks like
static resource serving. Apache configuration changes result in killing hundreds of active
connections, which in turn, kills service availability.

With today’s private cloud architectures, there is a high demand for throughput and
availability. If we want our services like Apache or Tomcat to come up or go down at

104 | Chapter 5: WebSockets

any time, then we simply have to put something in front of those services that can handle
routing the traffic correctly, based on the cloud topology at the moment. One way to
take down servers and bring up new ones without affecting service availability is to use
a proxy. In most cases, HAProxy is the go to-choice for high throughput and availability.

HAProxy is a lightweight proxy server that advertises obscenely high throughput. Such
companies as github, Fedora, Stack Overflow, and Twitter all use HAProxy for load
balancing and scaling their infrastructure. Not only can HAProxy handle HTTP traffic,
but it’s also a general-purpose TCP/IP proxy. Best of all, it’s dead simple to use.

The code that follows adds HAProxy to the previous example. The result is a reverse
proxy on the WebSocket port (8081), which allows all traffic (HTTP and WS) to be sent
across a common port (8080, in this case). Here is a simple reverse proxy from the
example WebSocket server:

global
 maxconn 4096 # Total Max Connections. This is dependent on ulimit
 nbproc 1

defaults
 mode http

frontend all 0.0.0.0:8080
 timeout client 86400000
 default_backend www_backend
 acl is_websocket hdr(Upgrade) -i WebSocket
 acl is_websocket hdr_beg(Host) -i ws

 use_backend socket_backend if is_websocket

backend www_backend
 balance roundrobin
 option forwardfor # This sets X-Forwarded-For
 timeout server 30000
 timeout connect 4000
 server apiserver 192.168.1.101:8080 weight 1 maxconn 4096 check

backend socket_backend
 balance roundrobin
 option forwardfor # This sets X-Forwarded-For
 timeout queue 5000
 timeout server 86400000
 timeout connect 86400000
 server apiserver 192.168.1.101:8081 weight 1 maxconn 4096 check

This approach is universal to any HTTP server that embeds a separate WebSocket server
on a different port.

Programming Models | 105

Frameworks
There are just about as many Comet, AJAX push-based, WebSocket frameworks and
servers as there are mobile web frameworks. So sorting out which ones are built for
lightweight mobile environments and which ones may be suitable only for desktop
browsers is essential. Keep in mind that graceful degradation comes at a cost. If you
choose a WebSocket framework that degrades in 10 different ways, you do not want
your mobile clients to be penalized with a heavy framework download. To provide real-
time connectivity to every browser, you need a framework that will detect the most
capable transport at runtime.

You may already be familiar with projects such as Node.js, Ruby EventMachine, or
Python Twisted. These projects use an event-based API to allow you to create network-
aware applications in just a few lines of code. But what about enterprise-grade perfor‐
mance and concurrency? Take a look at how a few of your options stack up.

Vert.x

A fully asynchronous, general-purpose application container for JVM languages,
Vert.x) takes inspiration from such event-driven frameworks as Node.js, then combines
it with a distributed event bus and sticks it all on the JVM. The result is a runtime with
real concurrency and unrivalled performance. Vert.x then exposes the API in Ruby,
JavaScript, Groovy, and Java. Vert.x supports TCP, HTTP, WebSockets, and many more
modules. You can think of it as Node.js for JVM languages.

Vert.x recommends SockJS to provide a WebSocket-like object on the client. Under the
hood, SockJS tries to use native WebSockets first. If that fails, it can use a variety of
browser-specific transport protocols and presents them through WebSocket-like ab‐
stractions. SockJS is intended to work for all modern browsers and in environments that
don’t support WebSocket protcol, such as behind restrictive corporate proxies.

Vert.x requires JDK 1.7.0. It uses such open source projects as Netty, JRuby, Mozilla
Rhino, and Hazelcast, and is under MIT and Apache 2.0 license.

The code for SockJS page set-up is:
<!DOCTYPE html>
<html>
<head>
 <title>my app</title>
</head>
<body>
 <script src="http://cdn.sockjs.org/sockjs-0.1.min.js"></script>
</body>
</html>

To use SockJS:

106 | Chapter 5: WebSockets

https://github.com/vert-x/vert.x

var sock = new SockJS('http://mydomain.com/my_prefix');
 sock.onopen = function() {
 console.log('open');
 };
 sock.onmessage = function(e) {
 console.log('message', e.data);
 };
 sock.onclose = function() {
 console.log('close');
 };

Socket.IO

Specifically built for use with a Node.js server, Socket.IO (http://socket.io) has the capa‐
bility to be used with any backend after you set fallback capabilities via Flash. Socket.IO
aims to make real-time apps possible in every browser and mobile device, blurring the
differences between the different transport mechanisms. Specifically, Socket.IO sup‐
ports iOS, Android, WebOs, and WebKit License, and is under MIT license.

The page setup for Socket.IO is simple:
<!DOCTYPE html>
<html>
<head>
 <title>my app</title>
</head>
<body>
 <script src="http://cdn.socket.io/stable/socket.io.js"></script>
</body>
</html>

To set up a server, use:
var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.emit('news', { hello: 'world' });
 socket.on('my other event', function (data) {
 console.log(data);
 });
});

Finally, set up your client with:
var socket = io.connect('http://localhost');
 socket.on('news', function (data) {
 console.log(data);
 socket.emit('my other event', { my: 'data' });
 });

Programming Models | 107

http://socket.io

Atmosphere

Atmosphere is the only portable WebSocket/Comet framework supporting Scala, Groo‐
vy, and Java. Atmosphere (https://github.com/Atmosphere) can run on any Java-based
web server, including Tomcat, Jetty, GlassFish, Weblogic, Grizzly, JBoss, Resin, and
more. The Atmosphere framework has both client (JavaScript, iQuery, GWT) and server
components. You can find many examples of how to use Atmosphere in your project at
https://github.com/Atmosphere/atmosphere/tree/master/samples (Figure 5-1).

The main concern when using WebSockets is graceful degradation, be‐
cause most mobile browsers and servers have mixed support. All the
frameworks mentioned (plus many more) support some kind of fallback
when WebSockets is not available within the browser. All of these fall‐
backs, however, share the same problem: they carry the overhead of
HTTP, which doesn’t make them well suited for low-latency mobile
applications. Until all mobile browsers support WebSockets, this is a
problem users and developers are forced to deal with.

108 | Chapter 5: WebSockets

https://github.com/Atmosphere
https://github.com/Atmosphere/atmosphere/tree/master/samples

Figure 5-1. A few of many examples listed in Atmosphere’s github repo

Programming Models | 109

CHAPTER 6

Optimizing with Web Storage

Today, you have two widespread and well-supported mechanisms for storing data on
the client: cookies and Web Storage. Many say that Web Storage is the evolution of
cookies, but in reality, cookies may stick around a lot longer than people think. Mainly
because they are much different than Web Storage and implicitly send data back to the
server upon each request through HTTP headers. Cookies are always available on the
server and can be read and written to freely, which is great for user session management
and similar situations. The downside is that you only get 4kb of storage per cookie.

Web Storage is different from cookies in that the stored data is not shared with the server.
You can currently store 5MB of data on the client device with Web Storage, and some
browsers allow up to 10MB of storage with user approval. However, these limits can be
a little misleading. If you try to store 5MB of pure HTML in local storage within WebKit-
based browsers, such as Mobile Safari, you will see that it allows for a maximum of 2.6MB
only. For this, you can thank section 7.4 of the first W3C Working Draft of the Web
Storage specification, which states:

In general, it is recommended that userAgents not support features that control how
databases are stored on disk. For example, there is little reason to allow Web authors to
control the character encoding used in the disk representation of the data, as all data in
JavaScript is implicitly UTF-16.

Although section 7.4 was removed in following drafts, most WebKit browser vendors
have stuck to the UTF-16 implementation of data encoding. Two exceptions, Firefox
and IE, give you the actual 5MB of storage space.

Web Storage offers two storage objects—localStorage and sessionStorage—both of
which are widely supported from IE8 upward and in all modern browsers, including
mobile devices. (For browsers that don’t support Web Storage natively, it includes several
polyfills.) Both storage objects use exactly the same APIs, which means that anything

111

you can do with localStorage, you can also do with sessionStorage and vice versa.
With sessionStorage, however, your data is stored only while that particular browser
window (or tab) is open. After the user closes the window, the data is purged. With
localStorage, your data will stay on the client across browser sessions, device restart,
and more. Any data stored is tied to the document origin, in that it’s tied to the specific
protocol like HTTP or HTTPS, the top-level domain (for example html5e.org), and the
port, usually port 80. One more caveat regarding sessionStorage: if the browser sup‐
ports resuming sessions after restart, then your sessionStorage object may be persisted
unknowingly. This can be an issue if your use case expects the sessionStorage data to
be destroyed upon closing of the browser.

Web Storage defines two APIs, Storage and StorageEvent, which either local or session
storage can use. This means you have two ways of working with and managing local
data. Whichever API you choose, remember with Web Storage, operations are syn‐
chronous: When you store or retrieve data, you are blocking the main UI thread, and
the rest of the page won’t render until your data operations are finished.

The Storage API
As this usage example illustrates, the Storage API offers multiple ways of working with
your data in a storage object:

localStorage.bookName = 'HTML5 Architecture';
//or
localStorage['bookName'] = 'HTML5 Architecture';
//or
localStorage.setItem('bookName') = 'HTML5 Architecture';

You can treat your data like any other JavaScript object and add the key directly as a
localStorage property, which calls setItem() behind the scenes. Your available func‐
tions are:

.length //returns the number of key/value pairs

.key(n) //returns the name of the nth key in the list

.getItem(key) //returns the current value associated with the key

.setItem(key, value) //creates new or adds to existing key

.removeItem(key) //you can probably guess what this does :)

.clear() //removes everything from storage associated with this domain

You might think that all of the methods for storing data have the same performance,
but that would be crazy talk in web browser land, right? Figure 6-1 and Figure 6-2 provide
a more realistic view and a performance analysis (http://jsperf.com/localstorage-getitem-
setitem-vs-getter-setter/4) on which storage approach works the best.

112 | Chapter 6: Optimizing with Web Storage

http://html5e.org/
http://jsperf.com/localstorage-getitem-setitem-vs-getter-setter/4
http://jsperf.com/localstorage-getitem-setitem-vs-getter-setter/4

Figure 6-1. Chrome performance test

Figure 6-2. Firefox performance test

The Storage API | 113

Instead of using localStorage.setItem() and calling the object setter property di‐
rectly, with localStorage.small or localStorage['small'], you can give your data
storage a 50% speed boost in Chrome (Figure 6-1). The same performance test in the
latest Firefox and Safari web browsers, however, reveals that localStorage.setI
tem() performs better than the others for small values (Figure 6-2).

As for most applications, you want your web app to perform at top speed across all
browsers. Usually, a real-world application will store a larger JSON object, base64 image
string, or HTML snippet in localStorage. As you can see with the largeValue tests in
the figures, all Storage API options perform roughly the same.

The StorageEvent API
Although Web Storage is considered to be “racy” (more on this in a moment), you can
avoid most race conditions by using the StorageEvent API. If the user has the same site
open in different tabs, this event can be used to synchronize the data. Here’s a sample
usage:

window.addEventListener('storage', function(evt){alert(evt.key)}, false);

.key //returns the value of the key being changed. It's null upon creation.

.oldValue //represents the old value of the key being changed

.newValue //represents the new value of the key being changed

.url //the address of the document whose key changed

.storageArea //the Storage object which was affected. Either localStorage or sessionStorage

The storage event is fired only when the new value is not the same as the old value. The
storage event contains the key, oldValue, and newValue properties of data that has
changed, which you can access in code. This example creates the appropriate event
listener, which logs the oldValue and newValue across all open browser sessions:

window.addEventListener('storage', function(event) {
 console.log('The value for ' + event.key + ' was changed from' + event.oldValue
 + ' to ' + event.newValue);
 }, false);

The storage event fires on the other windows only. It won’t fire on the
window that did the storing.

What’s Racy and What’s Not?
Ultimately, a downside of Web Storage is the lack of transactions. For example, a user
might have your app open in two tabs. Tab 1 starts writing several things to the database,
then tab 2 starts reading it, getting the data when it has only partially been updated.

114 | Chapter 6: Optimizing with Web Storage

Thus, Web Storage is racy, meaning it’s susceptible to race conditions. As a result, you
need to take precautions to ensure the integrity of your data and the accuracy of any
queries. As mentioned earlier, the only mechanism to prevent race conditions is the
StorageEvent.

Race conditions can occur with multithreaded browsers, as well, because threads can
cause problems when saving data. Here’s a good example:

var myarray = [a,b];
var first = myarray.splice(0,1);
localStorage.first = first;

You would expect the following:
localStorage.first == a; //true

When a race condition occurs, we could find that this happens:
localStorage.first == b; //true

As one thread splices myarray and is de-scheduled, another thread runs the same code
segment and effectively reads myarray as only having one element, b, and as such, assigns
it to first.

Bottom line, the exact same problem exists with cookies, which doesn’t seem to have
bothered people much. If race conditions are a problem (or you think they’re going to
be a problem), you need a more advanced storage mechanism than Web Storage, such
as IndexedDB or a solution that can support transactions and write-locks.

Using JSON to Encode and Decode
To store a JavaScript object (or an array perhaps) in your localStorage or session
Storage, you need to use JSON to encode and decode your data, as in:

var mydata = {
 "Book" : "HTML5 Architecture",
 "Author" : "Wesley Hales",
};

Next, store the JavaScript object as a string:
localStorage.setItem("mydata", JSON.stringify(mydata));

When you’re ready to retrieve the data, use:
JSON.parse(localStorage.getItem("mydata"));

Security and Private Browsing
All this communication between client and server raises security issues. They come in
two flavors: keeping your app secure and private browsing by users.

Using JSON to Encode and Decode | 115

Because of the potential for DNS spoofing attacks, you cannot guarantee that a host
claiming to be in a certain domain really is from that domain. To mitigate this and keep
your app secure, you can use TLS (Transport Layer Security) for your pages. TLS and its
predecessor, Secure Sockets Layer (SSL), are cryptographic protocols that provide com‐
munication security over the Internet. Pages using TLS can be sure that only the user,
software working on behalf of the user, and other pages using TLS that have certificates
identifying them as being from the same domain, can access their storage areas.

Security
Web Storage, both localStorage and sessionStorage, is not secure and is stored in
plain text with no way to encrypt. If you’re worried about data security, don’t use local
Storage. There are solutions like JCryption (http://www.jcryption.org) for those un‐
willing to buy SSL certificates or with hosting providers who do not support SSL. It’s no
replacement for SSL, because there is no authentication, but the jCryption plug-in offers
a base level of security while being very easy and quick to install.

Be aware that any form of JavaScript encryption is intrinsically vulner‐
able to man-in-the-middle (MITM) attacks, so it is not a recommended
practice for storing sensitive data.

Private Browsing
Within certain browsers, while the user is running in private or incognito browsing
modes, your application will get an exception when trying to store anything in Web
Storage. Every app that uses localStorage should check window['localStorage'].se
tItem for a rising QUOTA_EXCEEDED_ERR exception before using it. For example, the
problem in Figure 6-3 is that the window object still exposes localStorage in the global
namespace, but when you call setItem, this exception is thrown. Any calls to .remov
eItem are ignored.

Figure 6-3. Error when accessing localStorage

Safari returns null for any item that is set within the localStorage or sessionStor
age objects. So even if you set something before the user goes into private browsing
mode, you won’t be able to retrieve until they come out of the private session.

116 | Chapter 6: Optimizing with Web Storage

http://www.jcryption.org

Chrome and Opera will allow you to retrieve items set before going into incognito mode,
but once private browsing commences, localStorage is treated like sessionStorage
(only items set on the localStorage by that session will be returned).

Firefox, like Chrome, will not retrieve items set on localStorage prior to a private
session starting, but in private browsing treats localStorage like sessionStorage.

To be safe, always do a series of checks before using localStorage or sessionStorage:
function isLocalStorageSupported() {
 try {
 var supported = ('localStorage' in window &&
 window['localStorage'] !== null);
 if (supported) {
 localStorage.setItem("storage", "");
 localStorage.removeItem("storage");
 }
 return supported;
 } catch(err) { return false; }
}

Who’s Using Web Storage?
Take a look at Table 6-1, an overview of the five most visited sites on the Internet, to get
an idea of which sites are (or aren’t) using Web Storage to optimize.

Table 6-1. Web Storage Survey
Website Desktop Mobile

Google Search Yes, 87K Yes, 160K

Yahoo! No No

Wikipedia No No

Twitter Yes, less than 1K Yes, 46K

Amazon Yes, less than 1K No

For mobile, Google’s basic search page is making the most use of localStorage by
storing base64 images and other CSS. For each subsequent page request, it uses Java‐
Script to insert <style> blocks just after the page title in the document head with the
CSS values from localStorage (Figure 6-4).

Figure 6-4. Google’s use of localStorage on mobile

Who’s Using Web Storage? | 117

For a basic Google search on the desktop, data is stored differently than on mobile. First,
sessionStorage is used, so you know this will be temporary data. Looking at the raw
JSON data stored by a simple Google search in Figure 6-5, you can see mostly CSS and
HTML is stored along with some namespaced tracking data.

Figure 6-5. Google’s use of sessionStorage on desktop

Twitter also makes heavy use of localStorage on mobile devices. Looking at the JSON
saved on the device in Figure 6-6, you can see that Twitter stores all of the data required
to present the user interface. The data isn’t a straight dump of HTML to localStor
age, however, it’s organized in a JSON object structure with proper escaping and Java‐
Script templating variables.

Figure 6-6. Twitter’s use of localStorage on mobile

Amazon’s use of sessionStorage is minimal tracking information related to “product
likes.” But overall, it’s a bit surprising to see that the top sites on the Internet are still not
leveraging Web Storage to speed up their site and reduce HTTP requests.

Efficient requests and zippier interfaces may not be a huge problem for desktop sites,
but there’s no reason we shouldn’t have these storage enhancements on both mobile and
desktop. Some of the reasons we’re seeing heavy Web Storage usage only on mobile are:

• Data URIs (base64 encoding background images) used in CSS work with modern
browsers only. There are limits and annoyances with this technique all the way up
through IE9.

• Mobile latencies are much higher (as you saw in Chapter 3), so caching on mobile
devices can make the UI much faster.

118 | Chapter 6: Optimizing with Web Storage

When using base64-encoded data URIs, be aware that the encoded data
is one third larger in size than its binary equivalent. (However, this
overhead is reduced to 2 to 3% if the HTTP server compresses the re‐
sponse using GZIP.)

Using Web Storage Today
As you have seen, there are a million different ways to use Web Storage within your
application. It really comes down to answering a few questions:

• How can I make the user experience better?
• How can I reduce HTTP requests on mobile?
• How can I efficiently reduce load on the server?

Of course, after seeing that Web Storage blocks the main JavaScript UI thread when
accessing data, you must be considerate of how your page loads and use best practices
for storing and retrieving data.

The best place to start with localStorage is using it where your app requires user input.
For example, if you have a comments input box within a form, you could use local
Storage to save a draft on the user input in case the session times out or the form is
submitted improperly. The commenting service Disqus follows this practice and saves
your draft comments in localStorage.

Enable automatic sign-in

Another good use of localStorage is for automatic sign-in. Here is a recommendation
from section 3.3.2 in the W3C Mobile Web Application Best Practices:

3.3.2.1 What it means
If an application requires user identity it is usual to prompt for user credentials (username
and password) and provide the option to sign-in automatically on next usage session.
This is especially important on a mobile device where data input is more difficult than
on a desktop.
Note that if automatic sign-in is enabled, a sign-out link should also be provided.
3.3.2.2 How to do it
User credentials can be stored in a cookie or in local storage. However, it is important not
to store unencrypted password information since this is insecure. Typically, a securely
hashed token which, if necessary, can be revoked on the server, is stored locally in order
to enable automatic sign-in.

Who’s Using Web Storage? | 119

Caching with a timestamp

Most web services allow you to hit their service a limited number of times per day. By
using localStorage with a timestamp, you can cache results of web services locally and
access them only after a specified time to refresh the data.

A simple library that allows for this memcache-like behavior is lscache (https://
github.com/pamelafox/lscache). lscache emulates memcache functions using HTML5
localStorage, so that you can cache data on the client and associate an expiration time
with each piece of data. If the localStorage limit (about 5MB) is exceeded, it tries to
create space by removing the items that are closest to expiring anyway. If localStor
age is not available at all in the browser, the library degrades by simply not caching, and
all cache requests return null.

Syncing Data from the Client Side
All of the ways for Web Storage to speed up your web application discussed so far, are
forms of one-way communication for which syncing, or transmitting modified JSON
objects, back to the server is not required. Instead, you simply push data to the browser
and use it as a cache.

Today, companies are just starting to leverage Web Storage to store and sync the object
model back to the server-side database. Such functionality is useful to:

• Allow a web app to function offline, then sync new client data to server
• Allow a web app to function offline, then refresh client data on reconnect
• Allow an offline web app and online server data to be changed, and then sync both

datasets while handling conflicts

Some of these data management and versioning situations can get fairly complex. For
example, LinkedIn recently posted its solution to managing RESTful JSON data with
localStorage. The company’s main reasoning for bringing localStorage into the pic‐
ture was to reduce latency and unneeded network requests on its latest iPad app. Ac‐
cording to LinkedIn engineer Akhilesh Gupta:

LinkedIn just released a brand new iPad app built using HTML5, backbone.js, and under
score.js. The app includes a rich stream of information, which is a combination of network
updates, group posts, and news articles. The user can also switch to specific streams like
Co-Worker updates or news articles from a specific category.

For the full article, see http://engineering.linkedin.com/mobile/linkedin-ipad-using-local-
storage-snappy-mobile-apps.

At its core, this particular application uses Backbone to manage client-side data models.
The developers then wrote the necessary code to override the basic sync functionality

120 | Chapter 6: Optimizing with Web Storage

https://github.com/pamelafox/lscache
https://github.com/pamelafox/lscache
http://engineering.linkedin.com/mobile/linkedin-ipad-using-local-storage-snappy-mobile-apps
http://engineering.linkedin.com/mobile/linkedin-ipad-using-local-storage-snappy-mobile-apps

to allow models and collections to be stored in localStorage. Again, this is clearly a
performance move and doesn’t really address syncing data back to the server. But, it is
a more complex use case that manages versioning and migration of the data to newer
versions of the app. In the end, the iPad application gained the following performance
improvements:

• A more responsive application thanks to temporarily storing recently fetched data;
users no longer have to wait for network requests to finish before moving around
the application

• Seamless sharing of fetched data among multiple web views in the native application
• Independence from memory constraints in mobile devices; localStorage can store

and populate temporary objects in memory when necessary
• Decreased memory footprint and rendering time while scrolling because compli‐

cated HTML document fragments are stored in localStorage

Database Syncing with Backbone
A few frameworks allow for data to be synced from localStorage back to the server.
For example, Backbone.js comes with methods for fetching and saving data models to
and from the server. Out of the box, however, it does not provide the advanced func‐
tionality required by an application that needs to work offline and synchronize with the
server when online. To address this, Neil Bevis of the Dev Camp blog posted an excellent
solution that I’ll summarize here. (For the complete blog post, see http://occdev
camp.wordpress.com/2011/10/15/backbone-local-storage-and-server-synchronization.)

Backbone-localstorage.js provides communication with localStorage by simply adding
the JavaScript file to the project. By adding this file, however, you then cannot commu‐
nicate between Backbone and the server with Backbone.sync. The first thing you must
do is create a copy of the Backbone.sync method before it’s replaced by the inclusion of
the backbone-localstorage.js JavaScript file:

<script src="backbone.js"></script>
<script>Backbone.serverSync = Backbone.sync;</script>
<script src="backbone-localstorage.js"></script>

Now, you’ll be able to save data to the server using:
Backbone.serverSync('update', model, options);

This gives the standard model.fetch() and model.save() functions the ability to use
localStorage. Next, you must provide a synchronized flag with a Boolean value de‐
scribing its client-side status. When the client is ready to push local changes to the server
from a given collection, it sends model objects with synchronized=false on a model-
by-model basis using:

Syncing Data from the Client Side | 121

http://occdevcamp.wordpress.com/2011/10/15/backbone-local-storage-and-server-synchronization
http://occdevcamp.wordpress.com/2011/10/15/backbone-local-storage-and-server-synchronization

 Backbone.serverSync('update', model, { success: 'foo', error: 'bar'}).

If the server responds with a different ID than what is stored on the client, then that
means you have a new object. If the IDs remain the same, however, then you simply
have an update. When a new object comes from the server, the following code deletes
the existing ID in localStorage and adds the new version:

for (var i = 0; i < models.length; i++) {
 var model = models[i];
 if (model.get('synchronized')) { continue; }
 model.change();
 Backbone.serverSync('update', model, {
 success: function (data) {
 var model = collection.get(data.ClientId);
 //if new server will return a different Id
 if (data.ServerId != data.ClientId) {
 //delete from localStorage with current Id
 Backbone.sync("delete", model,
 { success: function () { },
 error: function () { } });

 //save model back into localStorage
 model.save({ Id: data.ServerId })
 }
 model.save({ synchronized: true });
 collection.localCacheActive = false;
 },
 error: function (jqTHX, textStatus, errorThrown) {
 console.log('Model upload failure:' + textStatus);
 collection.localCacheActive = false;
 }
 });
 }

When asked to pull server-side changes to a collection from the server, the client first
uses model.save() to save any unpushed client-side changes into localStorage. It next
requests the entire collection from the server via the standard Backbone fetch method:

tempCollection.sync = Backbone.serverSync;
tempCollection.fetch({ success: blah, error: blah });

In practice, you could reduce the associated data download to only items that require
updating. As it receives each model back from the server, the success function checks
each one against its own list. If the model is new, success adds it to the collection that
is updating and also uses model.save() to record it into local storage:

collection.add(tempModel);
tempModel.change();
tempModel.save({ synchronized: true });

Finally, the success function updates the model with revised data after the model has
been synchronized:

122 | Chapter 6: Optimizing with Web Storage

model.set(tempModel.toJSON());
model.set({ synchronized: true });
model.save();

The big issue with this approach is if the model already exists and the user has made
localStorage-based modifications to it. In this code, those models are not updated
during the pull of server-side changes. Those objects are pushed to the server to be
updated in the database.

This is not an end-all solution, and there are many frameworks currently trying to
address this problem. Many of the solutions are just as mature as the one reviewed here.
So your use of localStorage and syncing to a server-side database will be dictated by
the complexity of your use case.

Using Web Storage in Any Browser
Although you can use localStorage safely within most modern web browsers, if your
application must accommodate browsers without localStorage, you can use some
easy-to-follow, lightweight polyfills. For example, the following example polyfill ac‐
commodates IE 6 and 7, as well as Firefox 2 and 3. With the exact same API as defined
in the Web Storage spec, you can start using it today with roughly 90 lines of JavaScript
included in your application. (For the full source, see https://raw.github.com/wojodesign/
local-storage-js/master/storage.js.)

(function(){
 var window = this;
 // check to see if we have localStorage or not
 if(!window.localStorage){

 // globalStorage
 // non-standard: Firefox 2+
 // https://developer.mozilla.org/en/dom/storage#globalStorage
 if (window.globalStorage) {
 // try/catch for file protocol in Firefox
 try {
 window.localStorage = window.globalStorage;
 } catch(e) {}
 return;
 }

 // userData
 // non-standard: IE 5+
 // http://msdn.microsoft.com/en-us/library/ms531424(v=vs.85).aspx
 var div = document.createElement("div"),
 attrKey = "localStorage";
 div.style.display = "none";
 document.getElementsByTagName("head")[0].appendChild(div);
 if (div.addBehavior) {
 div.addBehavior("#default#userdata");

Using Web Storage in Any Browser | 123

https://raw.github.com/wojodesign/local-storage-js/master/storage.js
https://raw.github.com/wojodesign/local-storage-js/master/storage.js

 var localStorage = window["localStorage"] = {
 "length":0,
 "setItem":function(key , value){
 div.load(attrKey);
 key = cleanKey(key);

 if(!div.getAttribute(key)){
 this.length++;
 }
 div.setAttribute(key , value);

 div.save(attrKey);
 },
 "getItem":function(key){
 div.load(attrKey);
 key = cleanKey(key);
 return div.getAttribute(key);

 },
 "removeItem":function(key){
 div.load(attrKey);
 key = cleanKey(key);
 div.removeAttribute(key);

 div.save(attrKey);
 this.length--;
 if(this.length < 0){
 this.length=0;
 }
 },

 "clear":function(){
 div.load(attrKey);
 var i = 0;
 while (attr =
 div.XMLDocument.documentElement.attributes[i++]) {
 div.removeAttribute(attr.name);
 }
 div.save(attrKey);
 this.length=0;
 },

 "key":function(key){
 div.load(attrKey);
 return
 div.XMLDocument.documentElement.attributes[key];
 }

 },

 // convert invalid characters to dashes

124 | Chapter 6: Optimizing with Web Storage

 // http://www.w3.org/TR/REC-xml/#NT-Name
 // simplified to assume the starting character is valid
 cleanKey = function(key){
 return key.replace(/[^-._0-9A-Za-z\xb7\xc0-\xd6\xd8-\xf6\xf8-\u037d\u37f-\
 u1fff\u200c-\u200d\u203f\u2040\u2070-\u218f]/g, "-");
 };

 div.load(attrKey);
 localStorage["length"] =
 div.XMLDocument.documentElement.attributes.length;
 }
 }
})();

Frameworks
A few JavaScript frameworks address Web Storage needs on mobile devices. When
evaluating Web Storage frameworks, look for a nice consistent storage API that works
across all devices. Of course, this is what the spec itself does through a simple JavaScript
API, but until all devices support this specification, you need a helper framework.

LawnChair
LawnChair (http://westcoastlogic.com/lawnchair) is designed with mobile in mind. Sup‐
porting all major mobile browsers, it’s adaptive to the mobile and desktop environments
described in this book and gives you a consistent API for accessing some form of lo
calStorage. LawnChair allows you to store and query data on browsers without wor‐
rying about the underlying API. It’s also agnostic to any server-side implementations,
enabling you to get started quickly with a simple, lightweight framework.

The page setup is:
<!DOCTYPE html>
<html>
<head>
 <title>my app</theitle>
</head>
<body>
 <script src="lawnchair.js"></script>
</body>
</html>

To persist data, use:
Lawnchair(function(){
 this.save({msg:'hooray!'})
})

Frameworks | 125

http://westcoastlogic.com/lawnchair

persistence.js
Supporting all major mobile browser platforms, persistence.js (http://persistencejs.org)
is an asynchronous JavaScript object-relational mapper. It integrates with Node.js and
server-side MySQL databases and is recommended for server-side use, because using
in-memory data storage seems to slow down filtering and sorting. The download size
is much heavier than that of LawnChair.

For page setup, use:
<!DOCTYPE html>
<html>
<head>
 <title>my app</title>
</head>
<body>
 <script src="persistence.js" type="application/javascript"></script>
<script src="persistence.store.sql.js" type="application/javascript"></script>
<script src="persistence.store.websql.js" type="application/javascript"></script>
</body>
</html>

if (window.openDatabase) {
 persistence.store.websql.config(persistence, "jquerymobile", 'database',
 5 * 1024 * 1024);
} else {
 persistence.store.memory.config(persistence);
}

 persistence.define('Order', {
 shipping: "TEXT"
 });

 persistence.schemaSync();

Similar to Hibernate (JBoss’s persistence framework), persistence.js uses a tracking
mechanism to determine which objects changes have to be persisted to the database.
All objects retrieved from the database are automatically tracked for changes. New en‐
tities can be tracked and persisted using the persistence.add function:

var c = new Category({name: "Main category"});
persistence.add(c);

All changes made to tracked objects can be flushed to the database by using persis
tence.flush, which takes a transaction object and callback function as arguments. You
can start a new transaction using persistence.transaction:

persistence.transaction(function(tx) {
 persistence.flush(tx, function() {
 alert('Done flushing!');
 });
});

126 | Chapter 6: Optimizing with Web Storage

http://persistencejs.org

Frameworks | 127

CHAPTER 7

Geolocation

The Geolocation API provides scripted access to geographical location information
associated with the hosting device. This gives your applications the ability to locate users
and track their latitude and longitude as they move about. This functionality could be
used for many interesting use cases such as:
Geofencing

Give your app the ability to schedule a task to alert users the moment they enter or
leave a location. You could also target ads for users within a certain city or state.

Geocoding
Combine your app with a service like the Google Maps API (Figure 7-1), and you
can translate latitude and longitude coordinates into actual postal addresses.

General tracking
Track distances driven, walked, or ran.

The API itself is device agnostic; it doesn’t care how the browser determines location.
The underlying mechanism to obtain the user’s actual location may be through WiFi,
GPS, or by the user actually entering a zip code into the device. The API is designed to
gather both “one-shot” position requests and repeated position updates. Of course, Ge‐
olocation is no different than any of the other HTML5e APIs in regard to bugs, work‐
arounds, and differences in implementations across browsers. After a review of the ba‐
sics, we’ll dive into the cross-browser nuances.

129

Figure 7-1. Using the Google Maps API with Geolocation

To access a user’s location, run the following JavaScript:
navigator.geolocation.getCurrentPosition(function(){//show a map});

The web browser asks the user for permission to reveal his location, as shown in
Figure 7-2.

Figure 7-2. User alert when accessing Geolocation

After receiving permission, the browser returns a position object with a coords at‐
tribute. This allows you to call the following properties, from which you can learn the
user’s latitude, longitude, and many other data points:

position.coords.latitude //geographic coordinate in decimal degrees
position.coords.longitude //geographic coordinate in decimal degrees
position.coords.altitude //the height of the position (meters above the ellipsoid)

130 | Chapter 7: Geolocation

position.coords.accuracy //accuracy level of latitude and longitude coordinates
position.coords.altitudeAccuracy //specified in meters
position.coords.heading // direction of travel of the hosting device in degrees
position.coords.speed //the device's current velocity (meters per second)

Only the latitude, longitude, and accuracy properties are guaranteed to be available.
The rest might come back null, depending on the capabilities of the user’s device and
the backend positioning server that it talks to.

The getCurrentPosition() function has an optional third argument, a PositionOp
tions object:

navigator.geolocation.getCurrentPosition(successCallback,errorCallback,
 { enableHighAccuracy: true, timeout: 10000, maximumAge: 6000 });

The enableHighAccuracy attribute provides a hint that the application would like to
receive the best possible results. If this attribute is true, the device can support it, and
the user consents, then the device will try to provide an exact location. Using this at‐
tribute may result in slower response times or increased power consumption. The user
might also deny this capability, or the device might have more accurate results to provide.
The intended purpose of this attribute is to allow applications to inform the implemen‐
tation that they do not require high accuracy Geolocation fixes and, therefore, the im‐
plementation can avoid using Geolocation providers that consume a significant amount
of power (think GPS).

The timeout property is the number of milliseconds your web application is willing to
wait for a position. This timer doesn’t start counting down until after the user gives
permission to share position data. You’re not timing the user; you’re timing the network.

The maximumAge attribute indicates that the application is willing to accept a cached
position whose age is no greater than the specified time in milliseconds. This gives you
a window of time to pull a cached location from the user device. By defining this at‐
tribute, you are saying that you’re fine with where this device was located at x millisec‐
onds in the past.

Your web app will dictate exactly the specificity of your Geolocation needs. So keep in
mind battery life and latencies on the user device when you use the above properties. If
you need to track the location of the user continuously, the spec defines the watchPosi
tion() function. It has the same structure as getCurrentPosition() and will call the
successCallback whenever the device position changes:

navigator.geolocation.watchPosition(successCallback,errorCallback,
 { enableHighAccuracy: true, timeout: 10000, maximumAge: 6000 });

Use watchPosition() with care in Mobile Safari running on iOS5. As of this writing,
there is a known issue: the page will run for roughly four minutes, after which the user
will receive a “JavaScript execution exceeded timeout” error. To work around the watch
Position() issue on iOS5, you can implement the following code using getCurrentPo
sition() with setInterval():

Geolocation | 131

var geolocationID;
(function getLocation() {
 var count = 0;
 geolocationID = window.setInterval(
 function () {
 count++;
 if (count > 3) { //when count reaches a number, reset interval
 window.clearInterval(geolocationID);
 getLocation();
 } else {
 navigator.
 geolocation.getCurrentPosition(successCallback, errorCallback,
 { enableHighAccuracy: true, timeout: 10000 });
 }
 },
 600000); //end setInterval;
})();

Another issue with the specific WebKit Geolocation implementation, is that accessing
geolocation activates the Geolocation service, which currently blocks page caching
(https://bugs.webkit.org/show_bug.cgi?id=43956). If you simply check the geolocation
property, you can avoid this issue:

 function supports_geolocation() {
 try {
 return 'geolocation' in navigator &&
 navigator['geolocation'] !== null;
 } catch (e) {
 return false;
 }
 }

You can view a live demo with all implemented workarounds at http://html5e.org/exam
ple/geo.

A Practical Use Case: User Tracking
To track a user over a set of latitude and longitude coordinates, you can use the Haversine
formula. With it, your application can calculate the shortest distance over the Earth’s
surface and provide an as-the-crow-flies distance between the points. The code you need
is:

function calculateDistance(lat1, lon1, lat2, lon2) {
 var R = 6371; // km
 var dLat = (lat2 - lat1).toRad();
 var dLon = (lon2 - lon1).toRad();
 var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
 Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) *
 Math.sin(dLon / 2) * Math.sin(dLon / 2);
 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
 var d = R * c;

132 | Chapter 7: Geolocation

https://bugs.webkit.org/show_bug.cgi?id=43956
http://html5e.org/example/geo
http://html5e.org/example/geo

 return d;
}
Number.prototype.toRad = function() {
 return this * Math.PI / 180;
}

This distance calculation, along with many others, is available at http://www.movable-
type.co.uk/scripts/latlong.html under the Creative Commons Attribution 3.0 License.

A Practical Use Case: Reverse Geocoding
The term “geocoding” generally refers to translating a human-readable address into a
location on a map. The process of doing the converse, translating a location on the map
into a human-readable address, is known as reverse geocoding. The following code is a
simple example of how to reverse geocode coordinates returned from the Geolocation
API with the Google Maps API:

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="initial-scale=1.0, user-scalable=no">
 <meta charset="utf-8">
 <title>
Google Maps JavaScript API v3 Example: Reverse Geocoding
</title>
 <link
href="https://google-developers.appspot.com/maps/documentation/
 javascript/examples/default.css"
rel="stylesheet">
 <script
src="https://maps.googleapis.com/maps/api/js?sensor=false">
</script>
 <script>
 var geocoder;
 var map;
 var infowindow = new google.maps.InfoWindow();
 var marker;
 function initialize() {
 geocoder = new google.maps.Geocoder();
 var latlng = new google.maps.LatLng(40.730885,-73.997383);
 var mapOptions = {
 zoom: 8,
 center: latlng,
 mapTypeId: 'roadmap'
 }
 map = new google.
 maps.Map(document.getElementById('map_canvas'), mapOptions);
 }

 function codeLatLng() {
 var input = document.getElementById('latlng').value;

A Practical Use Case: Reverse Geocoding | 133

http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html

 var latlngStr = input.split(',', 2);
 var lat = parseFloat(latlngStr[0]);
 var lng = parseFloat(latlngStr[1]);
 var latlng = new google.maps.LatLng(lat, lng);
 geocoder.geocode({'latLng': latlng}, function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 if (results[1]) {
 map.setZoom(11);
 marker = new google.maps.Marker({
 position: latlng,
 map: map
 });
 infowindow.setContent(results[1].formatted_address);
 infowindow.open(map, marker);
 } else {
 alert('No results found');
 }
 } else {
 alert('Geocoder failed due to: ' + status);
 }
 });
 }
 </script>
 </head>
 <body onload="initialize()">
 <div>
 <input id="latlng" type="textbox" value="40.714224,-73.961452">
 </div>
 <div>
 <input type="button" value="Reverse Geocode" onclick="codeLatLng()">
 </div>
 <div id="map_canvas"
 style="height: 90%; top:60px; border: 1px solid black;"></div>
 </body>
</html>

Frameworks
When working with the Geolocation API, you should detect and wrap available Geo‐
location mechanisms that are available across different mobile devices. For example,
you could detect Google Gears, BlackBerry, and the default Geolocation API within one
JavaScript init() method. But why try to code all this yourself, when you could just
use a framework? The Geolocation JavaScript frameworks are relatively small in both
size and selection.

geo-location-javascript
A mobile centric framework using nonstandard BlackBerry and WebOD tricks, geo-
location-javascript (http://code.google.com/p/geo-location-javascript) wraps the under‐

134 | Chapter 7: Geolocation

http://code.google.com/p/geo-location-javascript

lying platform-specific implementation through a simple JavaScript API that is aligned
to the W3C Geolocation API specification. Under an MIT license,
geo-location-javascript supports a range of platforms, including iOS, Android, Black‐
Berry OS, browsers with Google Gears support (Android, Windows Mobile), Nokia Web
Run-Time (Nokia N97), webOS Application Platform (Palm Pre), Torch Mobile Iris
Browser, and Mozilla Geode.

To setup and use the API, the code you need is:
<html>
<head>
 <title>Javascript geo sample</title>
 <script src="http://code.google.com/apis/gears/gears_init.js"
 type="text/javascript" charset="utf-8"></script>
 <script
 src="js/geo.js" type="text/javascript"
 charset="utf-8"></script>
</head>
<body>
 Javascript geo sample
 <script>
 if(geo_position_js.init()){
 geo_position_js.getCurrentPosition(success_callback,
 error_callback,
{enableHighAccuracy:true});
 }
 else{
 alert("Functionality not available");
 }

 function success_callback(p)
 {
 alert('lat='+p.coords.latitude.toFixed(2)+';
 lon='+p.coords.longitude.toFixed(2));
 }

 function error_callback(p)
 {
 alert('error='+p.message);
 }
 </script>
 </body>
</html>

Webshims lib
Supporting all jQuery’s A-graded browsers and the latest Opera, the Webshims (http://
afarkas.github.com/webshim/demos) framework is based on jQuery and Modernizr and
falls under an MIT license. It tries to handle many different polyfills and shims, including
Gelocation.

Frameworks | 135

http://afarkas.github.com/webshim/demos
http://afarkas.github.com/webshim/demos

The set-up and usage code looks like this:
<!DOCTYPE html>
<html lang="en">
<head>
 <script
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js">
 </script>
 <script src="../js-webshim/minified/extras/modernizr-custom.js"></script>
 <script src="../js-webshim/minified/polyfiller.js"></script>
 <script>
 $.webshims.setOptions('geolocation', {
 confirmText: '{location} wants to know your position. It is Ok.'
 });
 //load all polyfill features
 //or load only a specific feature with $.webshims.polyfill('feature-name');
 $.webshims.polyfill();
 </script>

A few other scripts try to handle this polyfill, including:

• Geolocation API crossbrowser support (http://bit.ly/Geolocation-API-Polyfill)
• HTML5 Geolocation with fallback (http://gist.github.com/366184)

Currently, one of the greatest drawbacks to using the Geolocation API within a mobile
web browser is not having the ability to run in the background after the browser has
closed. For example, it gets extremely difficult to track the user in the background and
allow the person to switch to another app outside of the mobile browser. At this point,
your browser must remain open as a background process for your Geolocation-based
app to work properly.

136 | Chapter 7: Geolocation

http://bit.ly/Geolocation-API-Polyfill
http://gist.github.com/366184

CHAPTER 8

Device Orientation API

Accelerometers, gyroscopes, and compasses are now commonplace in mobile devices
and laptops. With the Device Orientation API, you can capture movements at an ex‐
tremely fine-grained level, receiving exact details on the motion and acceleration of the
device.

Conceptually, an accelerometer behaves as a damped mass on a spring. When the ac‐
celerometer experiences an acceleration, the mass is displaced to the point that the
spring is able to accelerate the mass at the same rate as the casing. The displacement is
then measured to give the acceleration.

With applications ranging from military-based inertial guidance systems to tracking
animals to measuring earthquakes and aftershocks, orientation hardware has been in
use for quite some time. Now you have the opportunity to add this functionality to your
applications to enhance how devices are tracked and interact with your user interface.
It’s time to move beyond using the Device Orientation API only for games and simple
Geolocation.

To begin, you need to understand the basics of the API and handling the measurements
in JavaScript. The first DOM event provided by the specification, deviceorientation,
supplies the physical orientation of the device, expressed as a series of rotations from a
local coordinate frame. Here’s a simple check to see if this browser supports the Devi
ceOrientationEvent object:

supports_orientation : function() {
 try {
 return 'DeviceOrientationEvent' in
 window && window['DeviceOrientationEvent'] !== null
 } catch (e) {
 return false;
 }
}

137

Next, you must add an event listener to listen for changes in the device orientation:
if (window.DeviceOrientationEvent) {
 window.addEventListener("deviceorientation", function(event) {
 //alpha: rotation around z-axis
 var rotateDegrees = event.alpha;
 //gamma: left to right
 var leftToRight = event.gamma;
 //beta: front back motion
 var frontToBack = event.beta;

 handleOrientationEvent(frontToBack, leftToRight, rotateDegrees);
 }, false);
}

var handleOrientationEvent =
 function(frontToBack, leftToRight, rotateDegrees){
 //do something with the event
};

Now that you have the data, what do the variables mean and how do you put them to
use? When you tilt the device from side to side, this is referred to as beta (Figure 8-1).
Tilting from front to back is gamma (Figure 8-2), and rotating the phone while facing
up (on the Z axis) is known as alpha (Figure 8-3).

Figure 8-1. Beta positioning for the Device Orientation API

138 | Chapter 8: Device Orientation API

Figure 8-2. Gamma positioning for the Device Orientation API

Figure 8-3. Alpha positioning Device Orientation API

One browser-related caveat to remember: older versions of Firefox (3.6, 4, and 5) sup‐
ported mozOrientation versus the standard DeviceOrientation event. You must nor‐
malize the data to radians if you want to match what is currently provided by the newer
specification. Here’s how:

if (!evt.gamma && !evt.beta) {
 //If this is Firefox 3.6, 4, or 5, convert
 // the degree data to radians
 evt.gamma = -(evt.x * (180 / Math.PI));
 evt.beta = -(evt.y * (180 / Math.PI));
}

Device Orientation API | 139

A Practical Use Case: Scrolling with Device Movement
The typical business use for the Device Orientation API is to couple orientation hard‐
ware with Geolocation to enhance the user’s actual position and direction on a given
map. But, what if you could tilt your device left or right to navigate through pages? A
flick of the wrist gets you to the next page. Or, you could deliver a continuous scrolling
slideshow based on left or right movement. I think you get the point, now let’s code it.

If you combine the transition code for sliding from one page to another in Chapter 3
with the Device Orientation API, you can create a slideshow of pages that navigate based
on which direction the device is tilted. You can find a demo of this in action at http://
html5e.org/example/orientation.

First, set up your CSS transforms for left and right movement:
var handleOrientationEvent = function (frontToBack, leftToRight, rotateDegrees) {
 //on each movement, we're controlling how the current focusPage moves
 var curTransform =
 new window.WebKitCSSMatrix(window.
 getComputedStyle(focusPage).webkitTransform);
 focusPage.innerHTML = leftToRight;
 focusPage.style.webkitTransform =
 'translate3d(' + leftToRight * 5 + 'px, 0, 0)';
 focusPage.style.WebkitTransition = 'all .5s ease-out';
 navigate(leftToRight);
};

Next, perform the navigation on all the defined pages in the DOM with the single page
model from Chapter 3:

var keepgoing = true, pagehistory = [];

var pagestate = function(pages, className) {
 var that = {};
 that.count = 0;
 that.pages = pages;
 that.pageCount = pages.length;
 that.className = className;
 return that;
};

var allpages = listToArray(document.querySelectorAll('.page'));

var leftPageState = new pagestate(allpages, 'page stage-left');
var rightPageState = new pagestate(allpages.slice(), 'page stage-right');

function detecttilt(leftToRight) {
 if (keepgoing) {
 if (leftToRight > 30) {
 donav(leftPageState, rightPageState);
 } else if (leftToRight < −30) {

140 | Chapter 8: Device Orientation API

http://html5e.org/example/orientation
http://html5e.org/example/orientation

 donav(rightPageState, leftPageState);
 }
 }
}

function donav(ps, ops) {
 var page;
 if (ps.count <= (ps.pageCount + 1)) {
 //reset
 if (ps.count === 0) {
 if (pagehistory.length > 0) {
 ps.pages = pagehistory;
 pagehistory = [];
 }
 ps.count++;
 } else {
 page = ps.pages.pop();
 if (page !== undefined) {
 page.className = ps.className;
 pagehistory.push(page);
 ps.count++;
 console.log(ps.count);
 slideQueue(page);
 } else {
 ops.count = 0;
 }
 }
 }
}

function slideQueue(page) {
 keepgoing = false;
 // A simple way to put a block on the calling code, because
 // the orientation is a constant change
 slidfast.ui.slideTo(page, function () {
 keepgoing = true;
 });
}

This demo has been tested on WebKit-based devices such as Safari, Android, and
Chrome. Even better, because you are using the same CSS transitions from Chapter 3,
it should work on Firefox and Opera Mobile browsers as well.

A Practical Use Case: Scrolling with Device Movement | 141

CHAPTER 9

Web Workers

When your web application requires heavy lifting or background processing on the
JavaScript side, the Web Workers API is your answer.

The Web Workers interface spawns real OS-level threads, allowing for data to be passed
back and forth between any given threads (or worker). Furthermore, because commu‐
nication points between threads are carefully controlled, concurrency problems are rare.
You cannot access components unsafe to threads or the DOM, and you have to pass
specific data in and out of a thread through serialized objects. So you have to work
extremely hard to cause problems in your code. Regardless of how you plan to use Web
Workers in your application, the main idea behind processing any behind-the-scenes
data lies in the idea of creating multiple workers (or threads) in the browser.

As of this writing, Safari, Safari for iOS5, Chrome, Opera, and Mozilla Firefox support
the Web Workers API, but Internet Explorer does not. (Internet Explorer 10 did add
support for Web Workers in Platform Preview 2.) Web Workers in Android versions 2.0
and 2.1 support Web Workers, as well, but later versions of Android do not. The only
shim currently available for Web Workers makes use of Google Gears. If the core Web
Workers API is not supported on a device or browser, you can detect if Google Gears is
installed. For more details, see http://html5-shims.googlecode.com/svn/trunk/demo/work
ers.html.

With Web Workers and its multithreaded approach, you do not have access to the DOM
(which is not thread safe), the window, document, or parent objects. You do, however,
have access to the quite a few other features and objects, starting with the navigator
object:

appCodeName //the code name of the browser
appName //the name of the browser

143

http://html5-shims.googlecode.com/svn/trunk/demo/workers.html
http://html5-shims.googlecode.com/svn/trunk/demo/workers.html

appVersion //the version information of the browser
cookieEnabled //Determines whether cookies are enabled in the browser
platform //Returns for which platform the browser is compiled
userAgent //the user-agent header sent by the browser to the server

Although you can access the location object, it is read only:
hash //the anchor portion of a URL
host //the hostname and port of a URL
hostname //the hostname of a URL
href //the entire URL
pathname //the path name of a URL
port //the port number the server uses for a URL
protocol //the protocol of a URL
search //the query portion of a URL

You can use XMLHttpRequest to make AJAX calls within a worker, as well as import
external scripts using the importScripts() method, as long as they’re in the same do‐
main. To cut down wait times, you can set and clear timeouts and intervals with setTi
meout(), clearTimeout(), setInterval(), and clearInterval(), respectively. Finally,
you can access the Application cache and spawn other workers. Creating a worker is
quite easy; you need only a JavaScript file’s URL. The Worker() constructor is invoked
with the URL to that file as its only argument:

var worker = new Worker('worker.js');

Worker scripts must be external files with the same scheme as their
calling page. Thus, you cannot load a script from a data URL and an
HTTPS page cannot start worker scripts that begin with HTTP URLs.

The worker is not actually started until you call postMessage(), such as by sending some
object data to the worker:

worker.postMessage({'haz':'foo'}); // Start the worker.

Next, add an EventListener to listen for data the worker returns:
worker.addEventListener('message', function(e) {
 console.log('returned data from worker', e.data);
}, false);

In the actual worker.js file, you could have something simple like:
self.addEventListener('message', function(e) {
 var data = e.data;
 //Manipulate data and send back to parent
 self.postMessage(data.haz); //posts 'foo' to parent DOM
}, false);

The previous example simply relays serialized JSON from the parent DOM to the
spawned worker instance, and back again.

144 | Chapter 9: Web Workers

In newer browsers (like Chrome), you can take your data types a step further and pass
binary data between workers. With transferable objects, data is transferred from one
context to another. It is zero-copy, which vastly improves the performance of sending
data to a worker.

When you transfer an ArrayBuffer from your main app to a worker, the original Ar
rayBuffer is cleared and is made no longer usable by the browser. Its contents are
transferred to the worker context.

Chrome version 8 and above also includes a new version of postMessage() that supports
transferable objects:

var uInt8Array = new Uint8Array(new ArrayBuffer(10));
for (var i = 0; i < uInt8Array.length; ++i) {
 uInt8Array[i] = i * 2; // [0, 2, 4, 6, 8,...]
}

worker.webkitPostMessage(uInt8View.buffer, [uInt8View.buffer]);

Figure 9-1 shows how much faster data can travel between threads using transferable
objects. For example, 32MB of data makes a round trip from the worker back to the
parent in 2ms. Using previous methods, such as structured cloning, took upward of
300ms to copy the data between threads. To try this test for yourself, visit http://html5-
demos.appspot.com/static/workers/transferables/index.html.

Figure 9-1. Using Web Workers with transferable objects

A Practical Use Case: Pooling and Parallelizing Jobs
The following example, originally inspired by Jos Dirksen’s thread pool example, gives
you a way to specify the number of concurrent workers (or threads). With this method,
browsers like Chrome can use multiple CPU cores when processing data concurrently,
and you can significantly increase your rendering time by up to 300%. You can view the
full demo here at http://html5e.org/example/workers, but the basic worker1.js file con‐
tains:

self.onmessage = function(event) {

 var myobj = event.data;

A Practical Use Case: Pooling and Parallelizing Jobs | 145

http://html5-demos.appspot.com/static/workers/transferables/index.html
http://html5-demos.appspot.com/static/workers/transferables/index.html
http://html5e.org/example/workers

 search: while (myobj.foo < 200) {
 myobj.foo += 1;
 for (var i = 2; i <= Math.sqrt(myobj.foo); i += 1)
 if (myobj.foo % i == 0)
 continue search;
 // found a prime!
 self.postMessage(myobj);
 }

 // close this worker
 self.close();
};

The above code simply spits out prime numbers and ends at 200. You could set the while
loop to while(true) for endless output of prime numbers, but this is a simple example
to demonstrate how you can process data in chunks and parallelize the code to reach a
common goal with multiple worker threads.

From your main index.html (the place you want all the data to be displayed), initialize
your thread pool and give the workers a callback:

slidfast({
 workers: {script:'worker1.js', threads:9, mycallback:workerCallback}
});

To view a live demo of this technique, visit https://github.com/html5e/
slidfast/blob/master/example/workers/index.html.

When the workers parameter initializes, the following code creates the thread pool and
begins each task concurrently:

function Pool(size) {
 var _this = this;

 // set some defaults
 this.taskQueue = [];
 this.workerQueue = [];
 this.poolSize = size;

 this.addWorkerTask = function (workerTask) {
 if (_this.workerQueue.length > 0) {
 // get the worker from the front of the queue
 var workerThread = _this.workerQueue.shift();
 //get an index for tracking
 slidfast.worker.obj().index = _this.workerQueue.length;
 workerThread.run(workerTask);
 } else {
 // no free workers,
 _this.taskQueue.push(workerTask);

146 | Chapter 9: Web Workers

https://github.com/html5e/slidfast/blob/master/example/workers/index.html
https://github.com/html5e/slidfast/blob/master/example/workers/index.html

 }
 };

 this.init = function () {
 // create 'size' number of worker threads
 for (var i = 0; i < size; i++) {
 _this.workerQueue.push(new WorkerThread(_this));
 }
 };

 this.freeWorkerThread = function (workerThread) {
 if (_this.taskQueue.length > 0) {
 // don't put back in queue, but execute next task
 var workerTask = _this.taskQueue.shift();
 workerThread.run(workerTask);
 } else {
 _this.taskQueue.push(workerThread);
 }
 };
}

// runner work tasks in the pool
function WorkerThread(parentPool) {

 var _this = this;

 this.parentPool = parentPool;
 this.workerTask = {};

 this.run = function (workerTask) {
 this.workerTask = workerTask;
 // create a new web worker
 if (this.workerTask.script !== null) {
 var worker = new Worker(workerTask.script);
 worker.addEventListener('message', function (event) {
 mycallback(event);
 _this.parentPool.freeWorkerThread(_this);
 }, false);
 worker.postMessage(slidfast.worker.obj());
 }
 };

}

function WorkerTask(script, callback, msg) {
 this.script = script;
 this.callback = callback;
 console.log(msg);
 this.obj = msg;
}

var pool = new Pool(workers.threads);

A Practical Use Case: Pooling and Parallelizing Jobs | 147

pool.init();
var workerTask = new WorkerTask(workers.script,
 mycallback,
 slidfast.worker.obj());

After initializing the worker threads, add the actual workerTasks to process the data:
 pool.addWorkerTask(workerTask);
 slidfast.worker.obj().foo = 10;
 pool.addWorkerTask(workerTask);
 slidfast.worker.obj().foo = 20;
 pool.addWorkerTask(workerTask);
 slidfast.worker.obj().foo = 30;
 pool.addWorkerTask(workerTask);

As you can see in Figure 9-2, each thread brings data back to the main page and renders
it with the supplied callback. The thread order varies on each refresh and there is no
guarantee on how the browser will process the data. To see a demo, visit http://
html5e.org/example/workers. Use the latest version of Chrome or another browser that
supports actual CPU core usage per web worker.

Figure 9-2. Data being returned by multiple Web Worker threads in parallel

148 | Chapter 9: Web Workers

http://html5e.org/example/workers
http://html5e.org/example/workers

Other Uses
Crunching prime numbers may not be the best real-world example of using thread
pooling, but you can use the same technique for processing image data. For more in‐
formation, see http://www.smartjava.org/examples/webworkers2 and Figure 9-3.

Figure 9-3. Example of Web Worker threads processing image data

Web Workers could be put into action within your app for additional scenarios as well.
For example, you could parse wiki text as the user types, and then generate the HTML.
You can find an example of this at http://www.cach.me/blog/2011/01/javascript-web-
workers-tutorial-parse-wiki-text-in-real-time. Or, you could use it for visualizations and
business graphs. For a visualization framework, see https://github.com/samizdatco/
arbor.

A Practical Use Case: Pooling and Parallelizing Jobs | 149

http://www.smartjava.org/examples/webworkers2
http://www.cach.me/blog/2011/01/javascript-web-workers-tutorial-parse-wiki-text-in-real-time
http://www.cach.me/blog/2011/01/javascript-web-workers-tutorial-parse-wiki-text-in-real-time
https://github.com/samizdatco/arbor
https://github.com/samizdatco/arbor

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
100% JavaScript Driven approach, 52–58

Sencha Touch, 52–54
Wink Toolkit, 54–56

A
accelerometers, 137
Adobe Shadow (mobile debugger), 60
adoptNode, 41
AJAX calls

security concerns with, 39
Ajax Minifier online CSS compressor (Micro‐

soft), 77
Amber.js, 87
Android

rendering rotating transition, 29
Android default browser, 10

Dolphin browserr, 10
Angular framework

Google, 89
security features with, 89
server synchronization, 89

Apache ActiveMQ, 96
Apache, HTTP compression support in, 74
Apple, 2

and Ember framework, 88
approaches

100% JavaScript Driven, 52–58

no-page-structure approach, 51
single page, 48–50

apps, 19 (see web apps)
asynchronous nonblocking IO (NIO), 96
Atmosphere (WebSocket framework), 108
automatic sign-in, implementing, 119

B
Backbone (client side MV* framework), 65
Backbone framework, 85–87, 121

and legacy servers, 87
server synchronization, 86

background-repeat CSS, 22
Batman framework (Shopify), 90

server synchronization, 91
body onload event, 43
Boot 2 Gecko project (Mozilla), 4
Boot to Gecko project (B2G), 12
borders CSS, 22
box-shadow CSS, 22

C
caching, 37–41

defined, 37
and storage limitations, 39
time stamps, adding, 120

Chrome, 114
debugging web apps, as tool for, 33

151

private browsing, 117
Chrome OS (Google), 4
client-side architecture

fragmentation, 8
and hardware access, 4
movement towards, 1–5
security concerns with data storage, 64
server side HTML generation vs., 64–65
and storage limitations, 39
web browser as platform, 4
web browsers as platforms for, 64–65
Web Storage, 111–127
WebSockets, 96

Closure Compiler minification tool (Google),
77

coffeescript, 90
Comet, 96
CometD, 96
compasses, 137
compression (CSS and JavaScript)

minification, 77–82
compression (HTTP), 72–82

DEFLATE, 73–75
file-types for, 73
GZIP, 73–75
HTML5Boilerplate.com, 75
performance considerations for, 72
validating, 75

CompressorRater, 78
contexts and dependency injection (CDI), 98
Crockford, Douglas, 77
cubic-bezier, 29

D
database syncing, 120–123

Backbone framework, 121
debugging

Chrome, as tool for, 33
hardware acceleration, 31–34
memory consumption, measuring, 36
Safari, as tool for, 31

debugging, mobile, 59
Adobe Shadow, 60
Opera Remote Debugging, 61
weinre, 59

DEFLATE compression, 73–75
interoperability problems with, 74

Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma, et al), 4

desktop web, 63–94
browser as platform, 64–65
feature detection, 66–72
HTTP compression, 72–82

device orientation, 137–141
Firefox, older versions of, 139
scrolling with device movement, 140

Device Orientation API, 15
deviceorientation, 137
DeviceOrientationEvent object, 137
Disqus, 119
Dojo foundation, 54
Dojo shrinksafe (minification tool), 77
Dolphin browser, 10

E
Edwards, Dean, 77
Ember framework, 87–89

and Apple, 88
server synchronization, 88

enableHighAccuracy attribute (Geolocation
API), 131

EventListener statement, 43

F
feature detection, 66–72

client side, 67
FormFactor.js, 68
MobileESP framework, 71
Modernizr.js, 66
userAgent string, unreliability of, 66
userAgent, client side, 69–71
userAgent, server side, 71

fetching, 37–41
defined, 37

Firefox (Mozilla), 11
performance test, 114
userAgent string, unreliability of on Android

phones, 66
Firtman, Max, 16
Flash, 96
flipping transition, 27–29
FormFactor.js framework, 68

G
Gaia UI (B2G), 12
geo-location-javascript, 134

152 | Index

geolocation, 129–136
accessing through JavaScript, 130
drawbacks, 136
frameworks, 134
reverse geocoding, 133
user tracking, 132

Geolocation API, 15
geolocation API, 129–132
geolocation frameworks, 134

geo-location-javascript, 134
Webshims lib, 135

getCurrentPosition() (Geolocation API), 131
GlassFish application server, 98
Google, 2

Web Storage, use of, 117
Google Gears, 135
Google Maps API, 133
gradient CSS, 22
grunt (minification tool), 78–82
Gupta, Akhilesh, 120
gyroscopes, 137
GZIP compression, 73–75

H
Hacker News, 5
HAProxy, 104
hardware acceleration, 21

Android Froyo and, 24
debugging, 31–34
memory allocation/computational burden

concerns, 22
memory consumption, 36
overlapping acceleration concerns, 22
power consumption/battery life concerns, 22
transforms, 2D vs. 3D, 24

hardware APIs, 15
Haversine formula, 132
HTML5

enterprise development, 15
and movement away from server-side archi‐

tecture, 2
vs. JSON/XML, 64

HTML5 Enterprise (HTML5e) browsers, 15
HTML5Boilerplate.com, 75
HTTP compression (see compression (HTTP))

I
iframe

vs. innerHTML(), 41
innerHTML()

AJAX responses and, 37
vs. iframe, 41

interactions/transitions, 23–36
flipping, 27–29
rotating, 29–30
sliding, 23–25

Internet Explorer, 7
Internet Explorer Mobile, 13
interoperability

and polyfills, 16
translate3d(0,0,0), non-universal support for,

24
vendor prefix, 25
and Web Storage, 123

J
Java, 3
Java EE 6.0 [Full Profile] application server, 98
JavaScript APIs

and hardware access, 4
JavaScript frameworks, 46–58

dangers of relying on, 46
evaluating, 47
Smalltalk MVC vs., 4

JavaScript MVC frameworks
Angular (Google), 89
Backbone, 85–87
Batman (Shopify), 90
Ember, 87–89
Knockout, 92
server-side architecture and, 83–94

JAWR (minification tool), 82
JBoss AS7 application server, 97
Jetty, 98
jQTouch, 49
jQuery Mobile, 48–49
JSMin (minification tool), 77

K
Kaazing Gateway, 96
Knockout (client side MV* framework), 65
Knockout framework, 92

server synchronization, 92

Index | 153

L
Lecomte, Julien, 77
Leroux, Brian, 51
LinkedIn, 65, 120
localStorage, 111
long polling, 96
lscache, 120

M
maximumAge attribute (Geolocation API), 131
Media Capture API, 15
Microsoft, 2
minification, 77–82

CompressorRater, 78
grunt, 78–82
JAWR, 82
Ziproxy, 82

Mobile Design Pattern Gallery (Neil), 20
Mobile Safari (iOS6), 10

BugReporter, limitations on, 10
innerHTML() bug, 10

mobile web, 7–16
browser interoperability, 7
browsers, 9–14
browsers, grading, 14
building applications for, 19–61
client-side APIs and, 15
defined, 7
device emulators, 16
fragmentation, 8
mobile first development, 8, 8
native vs. Mobile Web models, 19–22
testing, 16

mobile web browsers, 9–14
Firefox (Mozilla), 11
graceful degradation, 16
grading, 14
Internet Explorer Mobile, 13
market shares, 13
Opera Mobile, 13
WebKit, 9

MobileESP framework, 71
MobileESP project, 69
Modernizr.js framework, 66
mod_deflate module (Apache), 74
Mozilla, 2

Boot to Gecko project (B2G), 12
WebAPI OS, 12

MVC patterns(Model-View-Controller), 83–94

N
Neil, Theresa, 20
Network Information API, 43–46
no-page-structure approach, 51

xui, 51
node.js (WebSocket framework), 106

O
onclose (WebSocket listener), 97
100% JavaScript Driven approach

The-M-Project, 57
onload event, 44
onmessage (WebSocket listener), 97
ononline event, 44
onopen (WebSocket listener), 97
opacity animation, 22
Open Web, 2
Opera

private browsing, 117
Opera Dragonfly

debugging web apps with, 61
Opera Mobile, 13
Orange Labs (France Telecom R&D), 54

P
Packer (minification tool), 77
performance

CSS, issues with, 22
and HTTP compression, 72

persistence.js framework, 126
PhoneGap framework, 51
Platform.js library, 70
polyfills, 16
Pretty Diff online CSS compressor, 77
processOffline() function, 44
Programming the Mobile Web (Firtman), 16
push technology, 96
Pusher, 96
Python Twisted (WebSocket framework), 106

R
racy behavior, 114
reddit, 5
rotating transition, 29–30

on Android devices, 29

154 | Index

Ruby EventMachine (WebSocket framework),
106

S
Safari, 114

debugging web apps, as tool for, 31
private browsing, 116

sandbox attribute, allowed values of, 40
scale3d, 22
Sencha Touch, 52–54
server-side architecture

JavaScript MVC frameworks for, 83–94
WebSockets, 96

server-side templating/frameworks
JavaScript templating vs., 3
movement away from, 2
Ruby, 3

sessionStorage, 111
single page approach, 48–50

jQTouch, 49
jQuery Mobile, 48–49

slideTo() methods, 29
sliding transition, 23–25
Socket.IO, 96

WebSocket framework, 106–108
SockJS, 106
SPDY, 96
SproutCore 2.0, 87
STOMP, 96
Storage API, 112
StorageEvent API, 114

racy behavior, 114

T
The-M-Project, 57
threading, 96
timeout property (Geolocation API), 131
transform animation, 22
transition-property animation, 22
translate3d, 22
translateZ, 22
Transport Layer Security (TLS), 104
Twitter, 118

U
UI (user interaction)

feel considerations, 21

web apps, designing to mimic native, 20
userAgent, 95
userAgent string

client side detection of, 69–71
internal parsers for, 70
Platform.js library, 70
server side detection, 71
unreliability of, 66

UX (user experience)
and network type/detection, 43

V
vendor prefix, 25
Vert.x (WebSocket framework), 106

W
W3C Geolocation API Specification, 135
watchPosition() (Geolocation API), 131
web apps, 19–61

CSS, performance issues with, 22
debugging, 31–34, 59
hardware acceleration, 21
interactions/transitions, 23–36
mimicking look of native apps, 20
native apps, mimicking feel of, 21
Network Information API, 43–46

web browser(s)
as platform, 4
standard conformity, or lack of, 5

Web Sniffer, 75
Web Storage, 111–127

Amazon, use of, 118
frameworks, 125–127
interoperability, 123
JSON, encoding/decoding with, 115
performance optimizations, 112
private browsing, 116
security, 115
Storage API, 112
storage size limits, 111
StorageEvent API, 114
syncing databases with, 120–123
usage, desktop vs. mobile, 117–120
uses for, 119

Web Storage API, 15
Web Storage frameworks, 125–127

LawnChair, 125
persistence.js, 126

Index | 155

Web Storage specification (W3C Working
Draft), 111

Web Workers API, 15, 143–149
interoperability, 143
pooling/parallelizing jobs, 145–149

WebAPI OS (Mozilla), 12
WebKit browser engine, 9

Android default browser, 10
Mobile Safari (iOS6), 10

WebKitCSSMatrix, 28, 29
Webshims lib, 135
WebSocket

HAProxy, 104
proxy servers and, 103–105

WebSocket API, 15
WebSocket frameworks

Atmosphere, 108
Socket.IO, 107
Vert.x, 106

WebSocketHandler (Jetty), 98
WebSockets, 95–108

audio data over, 102
binary data over, 102–103
client-side architecture and, 96
frameworks, 106–108

graceful degradation, 96
interoperability concerns with, 98
proxies, 98
security, 98
server-side architecture, 96
server-side architecture and, 96
server/browser, communication between,

97–102
stack, building, 95
threading, 98
WebSocket Secure, 103

weinre (mobile debugger), 59
window.navigator object, 69
Wink Toolkit, 54–56

X
xui, 51

Y
YUI Compressor (minification tool), 77

Z
Ziproxy (minification tool), 82

156 | Index

About the Author
Wesley Hales is a User Interface architect from Atlanta, GA. He has been involved in UI
and User Experience roles for over a decade in both startup and enterprise environments.
Wesley co-founded several enterprise frameworks during his 4.5 years at JBoss by Red
Hat (including the JBoss Portlet Bridge and AeroGear projects) and also served as a co-
founder of the recently acquired startup, InstaOps. Overall, Wesley enjoys creating
world-class user interfaces and experiences that people fall in love with. You can see him
speak at the occasional conference, read his posts on wesleyhales.com, or follow him on
Twitter @wesleyhales.

Colophon
The animal on the cover of HTML5 and JavaScript Web Apps is the cornetfish of the
genus Fistularia. Because of its long and thin shape, it is also called the flutemouth,
tabacco pipe fish, and the rifle fish. There are four species of cornetfish, which can be
found in the Atlantic, western Pacific, and Indian oceans. They thrive in coral reefs,
coastal waters, sea grasses, and sand flats.

The cornetfish is a thin fish with a long snout and small mouth. They can grow up to
200 centimeters in length. It has a distinct filament near the end of the backbone that
also contributes to its length. They feed on other fish, small crustaceans, and inverte‐
brates.

The cover image is from Wood’s Animate Creations. The cover font is Adobe ITC Ga‐
ramond. The text font is Minion Pro by Robert Slimbach; the heading font is Myriad
Pro by Robert Slimbach and Carol Twombly; and the code font is UbuntuMono by
Dalton Maag.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What You’ll Learn
	About the Code
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Client-Side Architecture
	Before HTML5
	More Code on the Client
	The Browser as a Platform
	Conclusion

	Chapter 2. The Mobile Web
	Mobile First
	Deciding What to Support
	Mobile Web Browsers

	Mobile Browser Market Share
	Browser Grading
	HTML5 in the Enterprise
	Graceful Degradation

	QA and Device Testing

	Chapter 3. Building for the Mobile Web
	Mobile Web Look and Feel
	The Look
	The Feel

	Interactions and Transitions
	Sliding
	Flipping
	Rotating
	Debugging Hardware Acceleration
	Memory Consumption

	Fetching and Caching
	Network Type Detection and Handling
	Frameworks and Approaches
	Single Page
	No Page Structure
	100% JavaScript Driven
	Mobile Debugging

	Chapter 4. The Desktop Web
	The Browser as a Platform
	Client Versus Server HTML Generation

	Device and Feature Detection
	Client-Side Feature Detection
	Client-Side userAgent Detection
	Server-Side userAgent Detection

	Compression
	GZIP Versus DEFLATE
	Minification

	JavaScript MVC Frameworks and the Server
	The Top Five Frameworks
	Backbone
	Ember
	Angular
	Batman
	Knockout

	Chapter 5. WebSockets
	Building the Stack
	On the Server, Behind the Scenes

	Programming Models
	Relaying Events from the Server to the Browser
	Binary Data Over WebSockets
	Managing Proxies
	Frameworks

	Chapter 6. Optimizing with Web Storage
	The Storage API
	The StorageEvent API
	What’s Racy and What’s Not?

	Using JSON to Encode and Decode
	Security and Private Browsing
	Security
	Private Browsing

	Who’s Using Web Storage?
	Using Web Storage Today

	Syncing Data from the Client Side
	Database Syncing with Backbone

	Using Web Storage in Any Browser
	Frameworks
	LawnChair
	persistence.js

	Chapter 7. Geolocation
	A Practical Use Case: User Tracking
	A Practical Use Case: Reverse Geocoding
	Frameworks
	geo-location-javascript
	Webshims lib

	Chapter 8. Device Orientation API
	A Practical Use Case: Scrolling with Device Movement

	Chapter 9. Web Workers
	A Practical Use Case: Pooling and Parallelizing Jobs
	Other Uses

	Index
	About the Author

