

Thank you for taking part in this experiment.

Andy and Dave

http://books.pragprog.com/titles/jsaccess/reorder
http://books.pragprog.com/titles/jsaccess/errata

Design Accessible Web Sites
Thirty-Six Keys to Creating Content for All Audiences and Platforms

Jeremy J. Sydik

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Quotation from “The Hobbit” by J. R. R. Tolkien. Copyright © 1937, 1966 by The J. R.

R. Tolkien Copyright Trust. Reprinted by permission of The J. R. R. Tolkien Copyright

Trust.

Quotation from “Monty Python and the Holy Grail.” Copyright © 1975 by Python (Monty)

Pictures Ltd. Reprinted by permission of Python (Monty) Pictures Ltd.

Web Content Accessibility Guidelines 1.0 (Recommendation) http://www.w3.org/TR/WCAG10/

Copyright © 1999 World Wide Web Consortium (Massachusetts Institute of Technology,

European Research Consortium for Informatics and Mathematics, Keio University). All

Rights Reserved

Web Content Accessibility Guidelines 2.0 (Public Working Draft)

http://www.w3.org/TR/WCAG20/ Copyright © 2007 World Wide Web Consortium (Massachusetts

Institute of Technology, European Research Consortium for Informatics and Mathemat-

ics, Keio University). All Rights Reserved

Cover image courtesy of Katherine A.W. Sydik

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 Jeremy J. Sydik.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-02-6

ISBN-13: 978-1-934356-02-9

http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG20/
http://www.pragmaticprogrammer.com

Contents
Acknowledgments 10

Preface 12

Getting to Know Each Other 13

Finding Your Way Through This Book 14

Principles Before Guidelines . 15

Part I—Laying the Foundation 18

Why Be Accessible? 19

1.1 It’s the Right Thing to Do 19

1.2 Accessibility is Good Business 20

1.3 Accessible Sites are More Usable 21

1.4 It’s the Law . 21

1.5 Building with Accessibility Can Make You More Capable 24

A Brief Introduction to Disabilities 26

2.1 Visual Impairments . 26

2.2 Auditory Impairments 29

2.3 Mobility Impairments 31

2.4 Cognitive Impairments 32

2.5 Multiple Disabilities . 33

An Environment for Access 35

1. Making a Team Effort 37

2. Plan for Access . 46

3. Multiple Access Paths 53

4. Don’t Get WET! . 57

5. Guidelines for Accessibility 61

CONTENTS 7

Testing for Accessibility 64

6. Testing as a Design Decision 65

7. Building a Testing Toolbox 69

8. Getting Your Hands Dirty 76

Part II—Building a Solid Structure 81

The Structured Life 82

9. Say It With Meaning . 83

10. Keeping It Simple is Smart 89

11. Minding Your <p>’s and <q>’s 94

12. Linking It All Together 98

13. Styled To The Nines . 101

14. Welcome To The Future 105

Round Tables 110

15. Setting The Table . 111

16. Ah, <table>, I Hardly Knew Ye! 115

17. Layout And Other Bad Table Manners 122

The Accessible Interface 130

18. It’s Their Web—We’re Just Building In It 131

19. Getting <form>al . 135

20. Tickling The Keys . 142

21. Your Interface Has Some Explaining To Do 145

Part III—Getting the Perfect View 149

A Picture is Worth... 150

22. Stoplights and Poison Apples 151

23. Thinking in Terms of Black and White 157

24. To Put it Another Way 162

25. More Than alt= Can Say 167

26. alt.text.odds-and-ends 174

Video Killed the Something-Something 179

27. It’s Not Polite to Flash the Audience 181

28. Words That Go [Creak] in the Night 185

29. Describe it to Me . 190

30. On the Cutting Room Floor 194

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=7

CONTENTS 8

Part IV—Putting on Some Additions 206

Not All Documents Are Created Equal 207

31. Back at the Office . 209

32. PDF: Trying to Make Portable Accessible 213

Scripted Responses 221

33. Unassuming Scripts . 222

34. Higher Order Scripts . 226

Embedded Applications: Rinse and Repeat 232

35. The Many Faces of Flash 233

36. Java: Is Your Brew Fair-Trade? 239

Part V—Building Codes 243

Web Content Accessibility Guidelines 1.0 244

13.1 Checkpoint Priorities . 245

13.2 Conformance . 246

13.3 The 14 Guidelines of WCAG 1.0 247

Section 508 261

14.1 Software Applications and Operating Systems (§1194.21) 262

14.2 Web-Based Intranet and Internet Information and Applications (§1194.22) 264

14.3 Video and Multimedia Products (§1194.24) 267

Web Content Accessibility Guidelines 2.0 270

15.1 The Basics of WCAG 2.0 271

15.2 Concerns About WCAG 2.0 272

15.3 The WCAG 2.0 Guidelines 273

Meanwhile, In the Rest of the World... 288

16.1 Australia . 289

16.2 Canada . 289

16.3 The European Union . 290

16.4 Japan . 291

16.5 United Kingdom . 292

16.6 United Nations . 292

16.7 More Information . 294

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=8

CONTENTS 9

Final Thoughts 295

17.1 Keep Trying . 295

17.2 Stay Informed . 295

17.3 Have Fun . 296

Bibliography 298

Index 299

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=9

The Journey is the Reward.

Zen Proverb

Acknowledgments
Every journey has a beginning and, in the case of this book, the journey

truly began over ten years ago at the University of Nebraska—Lincoln

Accommodation Resource Center. Dr. Christy Horn first showed me the

importance of accessibility and has continued ever since to shape me

as a professional and as a person. Thank you for your mentorship and

your friendship. I also thank Christy, Roger Bruning, Barbara Robert-

son and everyone else at the Center for Instructional Innovation for

contributing to the supportive environment that makes working on a

project like this possible.

The road to this book would have been impossible to navigate without

help along the way. Mike Hostetler, Peter Krantz, Jason Kunesh, Florian

Ockhuysen, Aza Raskin, Ian Scheitle, and Warren Werner read early

versions of this content, reviewed chapter drafts, and called me to task

when I oversimplified or underexplained. This book is much better for

your help (But I’m still taking credit for all of the mistakes, so there).

Susannah Davidson Pfalzer had the (sometimes extremely) challenging

task of being the development editor for this project. I know I’m not easy

to negotiate with, so thank you for pushing when you knew this book

could be better and for trusting my judgement when I was convinced

that we were on the right path. I’d also like to thank Dave Thomas

for listening to the original concept for this book at RailsConf 2006 and

believing in the idea of a principles-based approach to web accessibility.

Dave, along with Andy Hunt, also answered many of the questions that

came up along the way about production, layout, copyright, and all of

the other things that turn a bunch of words into a book. It has been an

honor to write a Pragmatic Bookshelf title.

To get where you’re going, you need to remember where you came from.

My Mom and Dad are responsible for teaching me to believe in doing

the right thing, helping people who need to be helped, and trying to

be the best person I can be. (The rest is my own fault.) I’d also like to

ACKNOWLEDGMENTS 11

thank Gerry, Susie, Stephen, Jeannine, my grandparents, and the rest

of my family for their faith and prayers for this project and their under-

standing when I sometimes nodded off on a couch at family gatherings.

For every blessing that I have received, for giving me strength along this

path, and for all things, I thank God.

The difference between journeying and being lost is knowing where

home is. I want to thank you Kate. You’ve been my editor, reviewer,

cover designer, and first audience for this project. More importantly,

you are the mother of my son, my girlfriend, my best friend and my

wife. The things I do here and elsewhere are meaningless without that.

Finally, I’d like to thank my son, Aidan. You’re young enough that

you won’t remember much about your dad wandering around late at

night muttering about chapters, edits, markup, and guidelines but my

favorite part about late night writing was sitting with you long after

your mom was asleep and sharing a snack after I was done for the

evening. You remind me every morning why I want a better world and

every evening that, with you in it, I’m already in a better world.

Jeremy J. Sydik

August, 2007

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=11

New information and communications technologies can

improve the quality of life for people with disabilities, but

only if such technologies are designed from the beginning

so that everyone can use them. Given the explosive growth

in the use of the World Wide Web for publishing, electronic

commerce, lifelong learning and the delivery of government

services, it is vital that the Web be accessible to everyone.

William Jefferson Clinton, Statement of Sup-

port for the Web Accessibility Initiative

Preface
It was a dark and stormy night...

Actually, It was a late summer afternoon a little over ten years ago when

I first began to get accessibility. Back then, I was working as a student

web developer and sysadmin and we needed a system for a blind user

to work on a paper. Simple enough—we had some new systems. Just

grab one, install it, add the specialized software and we’re done. I was

fairly happy about the job—it was my first time through this kind of

configuration and I finished with plenty of time so I added on nicer (I

thought) speakers and keyboard.

Our user came in and started to use the system—or at least tried to use

the system. Everything started to fall apart. The keyboard was one of

the newer (at the time) ergonomic keyboards, which the user had never

worked with. The speakers were an even bigger problem. They came out

of the box set to a low volume and I hadn’t thought to set them high so

they could be controlled from software. The user’s began to panic when

the interface to the system was completely disrupted. Two decisions

that wouldn’t have usually been a problem turned the afternoon into a

disaster.

Of course, the real problem was human, not technological. My mis-

take was in my assumption about how people use computers which, of

course, was how I used a computer. I knew that blind users needed to

use special software on their computers, but I didn’t consider the real

difference in user experience. Later that evening, I got curious about

my web sites—seeing how much difference something as simple as a

different keyboard could make, how would my sites behave for users

with screen readers instead of monitors and keyboards but not mice?

It wasn’t pretty. I knew that I needed to design my sites differently, but

what exactly did I need to do? It turns out that accessibility isn’t really

that much about what you do—it’s a matter of how you do it. What

GETTING TO KNOW EACH OTHER 13

I really needed was information on what being accessible means and

how to think from the perspectives of many kinds of users.

Accessibility for the web is about designing content to be reachable by

the largest number of users possible. There are a lot of ways to be acces-

sible. Content can be accessible from a variety of hardware platforms

or browsers. Accessibility can also be in terms of which technologies

are assumed to be available to the user—less is more. Finally—and

most importantly for us since it will be the primary focus of this book—

content can be made accessible to users with disabilities. This kind of

accessibility means tailoring our content to be useful for people with

a wide range of physical, mental, and sensory abilities. As far as the

other kinds of accessibility, we’ll get the best of both worlds. Content

that is made accessible for users with disabilities is usually well on the

way to being ready for multiple platforms and browsers as well.

Getting to Know Each Other

This book is about learning to apply accessibility principles to your

web development practices. In other words, if you have anything to

do with building web sites, there’s something here for you. You could

be a project manager, a designer, a developer, an author, or an artist

(Take a look at Making a Team Effort, on page 37 to see how different

people fit into the accessibility process). I’ve written information that

will be useful for anyone who wants to produce accessible web sites.

You might want to do this because you believe it’s the right thing to

do, because you know it’ll make your sites more portable to different

platforms, or because you are concerned about the consequences of

accessibility laws. These are all valid reasons and, for each of them,

you’ll find plenty of useful principles and techniques here.

I’m also going to assume, however, that you understand the basics of

web development. We’ll be covering accessibility as it relates to HTML,

CSS, images, video, and sound. We’ll also make brief excursions into

accessibility for external document formats, JavaScript, Flash, and Java.

We’re not going to be covering how to use these technologies beyond

what we need for using them accessibly but I’ll do my best to point you

toward plenty of good resources to check out if you feel like you need

help getting up to speed. I think it’s important to mention, however,

that I’m not a member of any of the committees you’ll read about in

this book or the developer of any of the tools. When I give a recommen-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=13

FINDING YOUR WAY THROUGH THIS BOOK 14

dation, it’s because I find the tool/book/website/whatever useful when

I write pages.

There are three things that I won’t be doing in this book, however.

I won’t be spending a lot of time explaining (over and over and over)

that accessibility is a good thing. I’m assuming that you’re already

partly convinced if you’re reading this so we’ll take look a quick look

at why accessibility is a good thing in Chapter 1, Why Be Accessible?,

on page 19. After that, it’s down to business. I also won’t be ripping

apart good visual design. Great visual design is an important element

of the web and I welcome every designer who wants to add accessibility

to their toolbox to come along—there’s plenty of information here for

you as well. Finally, I’m not going to focus primarily on accessibility

guidelines. I don’t think this is a useful route for understanding the

principles that underlie web accessibility, so we’re going to take a prin-

ciples first approach. We’ll get to the guidelines after we have a better

understanding of what they mean.

Finding Your Way Through This Book

Web content is often referred to in terms of places like sites, home

pages, stores, and so on. That works fine—if we’re building places, we

can look at our users as visitors or, better yet, as guests. With that

in mind, we’ll look at the concepts in this book in terms of building

these places. I’ve laid out the concepts in this book in order from basic

concepts to extra details:

• Part I—Laying the Foundation: All good buildings start with a strong

foundation. Here, we’ll get you started with a basic look at acces-

sibility, why it’s important and how to get started with accessible

development.

• Part II—Building a Solid Structure: Like the framing of a building,

markup gives our site a defined form. In this part, we’ll look at

web semantics and understanding how to use markup and styles

in an accessible way.

• Part III—Getting the Perfect View: When a building is well designed,

the views from it are remarkable, when it isn’t, the views are lack-

ing. When we add accessibility features to our images, videos, and

sounds, we provide the best view possible for our entire audience.

In this part, we’ll learn how to add alternative information for

accessibility.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=14

PRINCIPLES BEFORE GUIDELINES 15

• Part IV—Putting on Some Additions: We might want to put some

extra features into our buildings. There are also extra things like

external documents, scripts, and plug-in technologies that we can

use in our sites that are at the edges of the web itself. In this part,

we’ll look at applying accessibility principles to these as well.

• Part V—Building Codes: Before a building is complete, it’s inspected.

Web sites should also be checked for correctness and, in this part,

we’ll wrap up by looking at the standards and how they connect

to the things we’ve learned in the rest of the book.

It’s not strictly necessary to follow the entire book in order, however. You

should start with Chapter 1, Why Be Accessible?, on page 19 and Chap-

ter 2, A Brief Introduction to Disabilities, on page 26 first but, after that,

you should feel free to move in the order you find most useful. If you’re

managing site development, you should probably continue into Chap-

ter 3, An Environment for Access, on page 35 but, if you’re a graphic

designer, you might find it more useful to jump ahead to Chapter 8, A

Picture is Worth..., on page 150.

Chapters three through twelve are comprised of a series of thirty-six

tips. These tips are meant to stand on their own—you should be able

to spend a short time with each tip, get the information you need and

walk away to apply it to your own projects. The Act on It! sections are

there to give you some ways to get started. Don’t just read these—give

them a try!

After you’ve been through the tips, go ahead and read through the dis-

cussion of guidelines and laws in Part V. They’ll make a lot more sense

once you’ve been through the rest of the book but, if they’re still confus-

ing, my commentary will point you back to the part of the book where

the underlying principle is covered.

Principles Before Guidelines

This book is going to take a principles before guidelines approach to

accessibility. Staying focused on compliance issues is a common approach

to accessibility, so it may seem surprising that I’m going to push the

guidelines out of the way for now. Guidelines are useful for sorting out

details and testing for compliance but they’re not written as instruc-

tional documents. Our goal is helping as many of our users as possible

get the information they want—not learning to be “rules lawyers” When

we add video to our sites, we don’t want to be thinking:

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=15

PRINCIPLES BEFORE GUIDELINES 16

“Section 508, §1194.24(c) says: All training and informational video and

multimedia productions which support the agency’s mission, regardless

of format, that contain speech or other audio information necessary for

the comprehension of the content, shall be open or closed captioned”

This places our priority on compliance instead of on our users. We really

want think about it like this:

“Ok, we’re using video. Which of our users does this affect? Well, for

users who can’t see the video, we should add audio descriptions and

we’ll add captions for people with hearing disabilities. Hmmm—Some of

our users might not have the video player we’re asking for. We should

also add a transcript of the video. Is there anyone else we might be miss-

ing?”

This approach is user focused and, at the end of the day, that’s what

accessibility is all about. We’re going to follow ten rules when we design

accessible sites:

Ten Principles for Web Accessibility

1. Avoid making assumptions about the the physical, mental, and

sensory abilities of your users whenever possible.

2. Your users’ technologies are capable of sending and receiving text.

That’s about all you’ll ever be able to assume.

3. Users’ time and technology belong to them, not to us. You should

never take control of either without a really good reason.

4. Provide good text alternatives for any non-text content.

5. Use widely available technologies to reach your audience.

6. Use clear language to communicate your message.

7. Make your sites usable, searchable, and navigable.

8. Design your content for semantic meaning and maintain separa-

tion between content and presentation.

9. Progressively enhance your basic content by adding extra fea-

tures. Allow it to degrade gracefully for users who can’t or don’t

wish to use them.

10. As you encounter new web technologies, apply these same princi-

ples when making them accessible.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=16

PRINCIPLES BEFORE GUIDELINES 17

These principles apply to just about everything you’ll need to do to

design accessible sites. Of course, you’ll need to understand how to

apply them. That’s good, because we’re just getting started.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=17

Part I

Laying the Foundation

Injustice anywhere is a threat to justice everywhere.

Martin Luther King Jr., Letter from Birming-

ham Jail, 1963.4.16

Chapter 1

Why Be Accessible?
We’re going to spend a few hundred pages learning about web acces-

sibility and how to apply the ten principles introduced in the preface.

In this chapter, we’ll look at reasons why you should want to do this.

There are plenty of good reasons to build accessible content. Some, like

legal requirements, aren’t terribly pleasant to think about. Others, like

opening your sites to new markets and increasing your skill set are

more exciting to pursue. By the end of this chapter, you will be able

to understand what your reasons for developing accessible web con-

tent are. With that in mind, lets look at some benefits of understanding

accessible web development.

1.1 It’s the Right Thing to Do

While the web was originally designed for scientific communication, it

was rapidly adopted as a new form of publishing with the promise to

be wide-reaching and open to everyone. As web developers, we haven’t

always lived up to this promise, however. As web technologies grew

in complexity, many features appeared that threatened the openness of

the web. In some cases, certain browsers were restricted from accessing

content, in others multimedia was provided without alternative means

of access. These changes have made the web less accessible over time.

Shutting out users this way is entirely against the nature and intent

of web communication. We should also keep in mind that accessibility

to information and services is an issue of civil rights. The Universal

Declaration of Human Rights1 states it best: “Everyone has the right

1. Article 27.1 (http://www.un.org/Overview/rights.html)

http://www.un.org/Overview/rights.html

ACCESSIBILITY IS GOOD BUSINESS 20

freely to participate in the cultural life of the community, to enjoy the

arts and to share in scientific advancement and its benefits.” When we

create accessible content, we help to realize this promise for our users.

1.2 Accessibility is Good Business

The biggest advantage of developing content for the web is gaining

access to an audience that was once beyond the wildest dreams of the

largest publishers. If you create inaccessible content, you ignore part

of this audience. Some developers write off this audience because they

think the population in need of accessible web content is too small to

consider. Just how small of a potential market are we talking about?

Not so small at all, actually. Lets take a closer look.

The Market of Users with Severe Disabilities

In 2000, the United States census found that nearly one in eight people

have a severe disability. Because accessible web content can be read

with assistive technologies and is available from the home, people with

disabilities can find information and make purchases with less hassle

and inconvenience than by traveling to another location and seeking the

assistance of others. This is really the same reason most of us use the

web but, for persons with sensory or mobility disabilities that make it

difficult to travel or communicate it is even more appealing. The bottom

line is that 10 million people with severe disabilities represent a 46

billion dollar market that wants access to web based services.

The Aging Population

The reality of an aging population is beginning to make a huge dif-

ference in the way we approach web development. Over the next two

decades we will reach a point where one in five United States citizens

will reach the age that vision, hearing, and mobility problems become

more common. The baby boomer generation is used to having control

over their consumer environment, and there is no reason to expect this

to change as they reach retirement age. They will be expecting our sites

to cater to their needs and they represent a large enough market that

it would be unwise to disappoint them.

The market for accessible web content and services is out there and

growing. These are our potential readers and customers to the tune of

100 billion dollars a year—Why would we choose to ignore them?

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=20

ACCESSIBLE SITES ARE MORE USABLE 21

1.3 Accessible Sites are More Usable

When we look at usability, we typically pay attention to things like hard-

ware devices, browsers, and operating system support of plug-in tech-

nologies. The capabilities of our users in the ways that they use the web

are even more variable.

Our sites need to have good usability characteristics. Usability expert

Jakob Nielsen finds that increasing the overall usability of a website can

improve visitor traffic and productivity.2 This is compelling—increased

visitor traffic translates to higher purchase and click-through rates,

and productivity is a solid selling point for web services. Unfortunately,

that isn’t the end of the story. Another study by Nielsen, shows that

users with visual impairments experience reduced usability in conven-

tionally designed (inaccessible) web sites.3

People with visual impairments aren’t the only ones who have prob-

lems with usability. When a site doesn’t give multiple descriptions for

its content or provide easy to use navigation, it also causes less obvi-

ous usability problems for users without disabilities. Accessible design

serves the needs of people with disabilities, but it’s more than that: it

makes your sites more usable for everyone. The advantages of accessi-

bility increase usability for all users, however. Think about curb cuts

in sidewalks. Originally these were meant to assist people with mobil-

ity impairments but the concept was so useful that most people would

object to their absence. Similarly, by providing full access to informa-

tion and functionality for visitors with disabilities, we increase usability

for all users.

1.4 It’s the Law

Legal requirements are a major reason to be concerned about web

accessibility. Unfortunately, when it comes to accessibility, the law

seems to be all that anyone wants to talk about. This isn’t to say that

the laws are bad or unimportant, just that there are more inspiring rea-

sons to create accessible content than fear that the “accessibility police”

are going to come in and ruin your day. Still, we can’t escape the fact

that we’re required to comply with laws governing accessibility. In Part

2. http://www.useit.com/alertbox/20030107.html

3. http://www.useit.com/alertbox/20011111.html

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=21

IT’S THE LAW 22

A Word About Universal Design

Occasionally, you’ll find developers who claim that they don’t
need to worry about accessibility practices because they prac-
tice “Universal Design”. Universal design is a general method
of designing interfaces that are usable by everyone. The ideas
behind universal design are good ones but they don’t neces-
sarily do enough to make our sites accessible. Sometimes pro-
ponents of universal design over-focus on the parts of acces-
sible design that benefit everyone and overlook the fact that
some disabilities require specific adjustments that aren’t neces-
sarily useful for every user. The result is that some developers are
misled into believing that their “universal” sites are accessible
when they’re not. For this reason, I advocate caution regard-
ing the idea of universal design unless it is mentioned alongside
specific discussions of accessible design principles.

V, I’ll guide you through specific guidelines and legal requirements, but

here are a few starting points.

If your company or a client has a presence in the United States, your

web site falls under the jurisdiction of the Americans with Disabili-

ties Act (ADA). The ADA, signed into law in 1990, is a comprehensive

piece of civil rights legislation for citizens with disabilities. It guaran-

tees access to employment, public services, public accommodations,

and telecommunications. Because the ADA was written in an open-

ended manner, there is a lot of discussion and debate (and litigation)

to determine how the ADA applies to the web. The general rule at this

point is that web sites are held to the same standards that a physical

location would be.

Some will tell you that the ADA doesn’t have much impact because

many suits have been settled out of court. This is pure nonsense. Even

assuming that a settlement could be reached, you need to ask yourself

three questions about the real costs of settlement:

• Do I want to pay legal fees for the coming months or years to get

to the point of settlement?

• Can I afford the cost of settling the case privately? (remember,

closed settlements still have a price tag attached).

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=22

IT’S THE LAW 23

Equivalent Access

Many people misunderstand what is meant by “equivalent
access”. When we make claims of equivalency, we are ensur-
ing that the alternatives we create are providing the same
quality of experience to the user, not simply the same informa-
tion. This can be a really difficult task, particularly when alterna-
tives use different communication mediums. For example, you
might consider adding toll-free phone and TDD (Telecommuni-
cations Device for the Deaf) service for a web store. You need
to ensure that this service is available whenever your site is (likely
24 hours a day / 7 days a week) and ensure that the quality of
interaction available through the service is at the same stan-
dard as the site. In many cases, this approach is impractical or
outright impossible. If your service relies on live interaction, as
with an auction, you need to have enough people on hand
to handle as much traffic as you would ever expect to have.
Sometimes, providing personal assistance undermines the pur-
pose of a site. If you promote to your visitors the ability to seek
information or make purchases in an environment of privacy,
a live operator is clearly an unacceptable solution. For these
reasons, this kind of substitute equivalency is one that I don’t
recommend.

• Is the potential public relations and branding damage from an

accessibility lawsuit something I want for my business? See the

sidebar on page 182 for an example of what can go wrong.

In general, unless you really enjoy fielding lawsuits and recovering your

reputation, it is far better to build accessibly in the first place.

Work in the public sector has more specific legal constraints. If you

contract with the federal government, compliance with Section 508 of

the US Rehabilitation Act is mandated. The laws in many states have

also adopted the terms of Section 508, and the notion of “contracting”

in this case has been interpreted very broadly. More about Section 508

is in Chapter 14, Section 508, on page 261.

Clearly the legal issues of accessibility will be of concern to us as we

move forward. As creative people, we don’t like doing things because we

have to. Fortunately, we have other good reasons to develop accessible

sites which feel much less like a hammer waiting to come down on us.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=23

BUILDING WITH ACCESSIBILITY CAN MAKE YOU MORE CAPABLE 24

Accessibility Doesn’t Have to be Boring

There is a perception that accessibility means creating sites
with the appeal of boiled mush. Much of this perception is
based on accessible development in the era before cascading
style sheet (CSS) support was widely available in web browsers.
Sadly, some accessibility experts are still fixated on this style
of design and perpetuate the myth. When we discuss acces-
sibility, we are never throwing out visual design that is use-
ful for sighted users. What we are doing is ensuring that the
visual design doesn’t express vital information that isn’t avail-
able in any other form and building designs that step out of
the way of users that can’t use them. To see the creative
visual power provided by CSS, take a look at css Zen Garden
(http://www.csszengarden.com).

1.5 Building with Accessibility Can Make You More Capable

We spend a lot of our time as web developers responding to new changes

and challenges. In the last twelve years, I have adapted to seven or eight

generations of web browsers; four major versions of HTML (with a fifth

on the way); the rise of static and streamed multimedia content; the

rise, fall, and return of push type technologies; and countless web plug-

ins and frameworks. I am assuming that, for most of you, accessibility

feels like just another one of these changes to cope with.

I’m not going to tell you that designing accessible web pages won’t

change the way you need to develop, but I can promise that the changes

you’ll need to make come with benefits. Something that has always

been true for me in the process of change is that, by striving for acces-

sible content, I’ve had a framework that I can use to understand and

successfully leverage new technologies.

One thing that I know from experience is that, if your background is

in the graphic arts, you are worried that I’m going to tell you that you

have to give up your creativity in exchange for accessibility. This is

absolutely not the case! What I will do, however, is ask you to think

about the visual arts in an expanded sense that reflects working with

dynamic media and diverse audiences.

As creative professionals, we also like to be challenged, and these chal-

lenges are what make us more capable. Web accessibility provides the

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=24

BUILDING WITH ACCESSIBILITY CAN MAKE YOU MORE CAPABLE 25

kinds of challenges that make us rethink the ways that we “have always”

done things. Some challenges to think about:

• What do our layouts look like for someone who can’t see color?

What about someone who sees color differently?

• How do we explain and present complex visual concepts without

using imagery?

• How can we maximize the experience of a song to someone who

cannot hear it?

These are interesting questions to ask, and they are important ones

to ask if you really want to understand the ten principles from the

preface. These questions have interesting answers that we’ll be looking

at in later chapters but, before we get to these questions, we need to

ask an even more important one: “Who is our audience and what are

their needs?”. In the next chapter, we’ll take a closer look at answering

this question.

Act on it!

1. How many customers do you have? If you could reach out to even a minis-

cule percentage of people with disabilities, how much could you expand?

2. Is usability a current goal within your organization? Is accessibility being

treated as a part of this?

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=25

Equality isn’t when everyone gets the same thing, rather it

is when everyone gets what they need.

Unknown

Chapter 2

A Brief Introduction to Disabilities
In the last chapter, we looked at reasons why we should develop acces-

sible content for users with disabilities. To do this, we need to learn

a little about the types of disabilities and the needs of users with dis-

abilities. In this chapter, I’ll describe some common disabilities and the

technologies frequently used to accommodate them.

In the most general sense, a disability is any unchangeable condition

where some aspect of everyday life is limited without the use of an

assistive technology or alternate means. Disabilities fall into four major

categories: visual, auditory, mobility, and cognitive. One chapter is cer-

tainly not enough time to develop deep expertise on disability, but I’ll

show you some of the types of disability in each category, as well as

the assistive technologies that people with disabilities use. Within each

category, we’ll also look at the implications that the disabilities and

assistive technologies have on web development.

2.1 Visual Impairments

Visual impairments are a major focus for us as web developers. I don’t

mean to disregard the needs of those with other disabilities, but creat-

ing access for the visually impaired touches on almost every aspect of

web development. The first thing we need to understand is that blind-

ness isn’t the only kind of visual impairment. There are vision deficien-

cies other than complete loss of sight and each of them require us to

look at different aspects of our content.

Blindness and Low Vision

Blindness is used to talk about two similar but distinct disabilities.Total

Blindness is when someone has absolutely no light perception.Legal

VISUAL IMPAIRMENTS 27

Visual Acuity?

Visual acuity (VA) is the measurement for clearness of vision.
This is written as a ratio of two numbers where 20/20 is consid-
ered normal vision (6/6 if you’re seeing it in the metric parts of
the world). The first number is always the same and the sec-
ond is the individual’s eye measurement. The meaning of this
is fairly straightforward. Someone with 20/20 vision sees at 20
feet what a person with normal eyesight could see at 20 feet,
while someone who is legally blind (we’ll say 20/200) sees at 20
feet what someone with normal eyesight could see at 200 feet.
These measurements can be made for corrected or uncor-
rected vision. Usually the number you will see mentioned by a
particular person is their best level of vision with correction.

Blindness is when someone has a visual acuity of 20/200 or less. Both

types of blindness are an inability to make visual distinctions.

To access the web, many blind users use screen readers such as JAWS,1

Hal,2 VoiceOver,3, or Orca.4 Screen readers use text-to-speech (TTS)

technology to speak out screen text and text representations of graph-

ical elements. Another option for accessing the text of web pages is a

device that combines a braille keyboard with a refreshable braille dis-

play. These are less common than screen readers, however. See the

sidebar on the following page for one reason why.

Low vision is when someone’s visual acuity is less than 20/70. Low

vision can be genetic or develop later in life due to things like injury

or macular degeneration. The degree of low vision may vary widely—

some people can use magnification while others might only be able to

perceive motion or changes in the level of light.

Many low vision users rely on screen magnification solutions, some-

times one included with an operating system but, more commonly, one

available from a third party. Third party magnifiers, like ZoomText5

provide higher levels of magnification and reduce pixelation of magni-

1. http://www.freedomscientific.com/

2. http://www.yourdolphin.com/

3. http://www.apple.com/macosx/features/voiceover/

4. http://live.gnome.org/Orca

5. http://www.aisquared.com

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=27

VISUAL IMPAIRMENTS 28

Not All Blind People Use Braille!

You might hear the word blindness and immediately think
about generating braille-ready content. While many blind per-
sons can read braille text, even optimistic estimates put the
number at less than half of the total blind population. This
partly because cases of blindness caused by another disor-
der, such as diabetes, where sense of touch is too weak to
use braille. Other people simply can’t pick up the Braille lan-
guage. Because screen reader use is much more common
among users with visual impairments and creating high qual-
ity braille is a specialized art needing considerable training, this
book focuses on creating text alternatives rather than braille-
ready translations.

fied images. As visual acuity moves toward the edge of legal blindness,

magnification isn’t always enough and users with low vision might use

the same assistive technologies as blind users.

Color and Contrast Deficiencies

Some users can see with normal acuity, but can’t see in color. Some

see color, but can’t distinguish green from red, blue from yellow, or

even dark shades of red from black. Still others cannot differentiate

closely matched colors. On average, one in twelve of our users will have

a hard time resolving color or contrast we need to be careful about our

color choices.

Users with color blindness or contrast differentiation problems often

change their monitor settings to use palettes that are clearer for them.

They may also use alternative browser stylesheets that override style

settings for pages that are poorly designed. We’ll discuss nuances of

developing useful content for color blind users in Stoplights and Poison

Apples, on page 151.

Photosensitive Seizures

Some people suffer from photosensitive seizures when exposed to par-

ticular patterns that repeat or flash. These seizures are difficult to pre-

dict because the cause can be hard to identify—the trigger can come

from sources ranging from video games to sunlight flickering through

the leaves of a tree. We’ll look closer at the kind of flickering that’s a

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=28

AUDITORY IMPAIRMENTS 29

potential threat to users with photosensitivity in It’s Not Polite to Flash

the Audience, on page 181.

Because of photosensitivity’s unique nature, some accessibility experts

consider it a fifth distinct type of disability. In terms of web accessibil-

ity, however, I look at photosensitivity as a kind of visual impairment

because it’s triggered by visual stimuli. That is not to say that I mini-

mize the importance of eliminating flicker from web pages. While acces-

sibility in all forms is important, this is an area where we risk directly

causing harm to our users if we don’t take action.

What Visual Impairments Mean For Web Development

As I said earlier, visual impairments affect most aspects of web content

development. All assistive technologies for the blind rely on text so we

need to add appropriate alternative text representations for all visual

elements that have informational content. Alternative text is a big topic

and we’ll look closely at it in To Put it Another Way, on page 162 and

More Than alt= Can Say, on page 167 as well as in small pieces through-

out the book.

Video requires two approaches for accessibility. While visually impaired

users may be able to hear the soundtrack, they might miss important

silent events on screen. In Describe it to Me, on page 190, we’ll look at

adding auditory descriptions to fill in the missing information.

Interface design is also impacted. Timed effects need to be adjusted or

eliminated because it often takes longer to move through a page with

a screen reader or braille display. Visually impaired users, particularly

those who are blind, may not have an equivalent to a mouse interface,

so we also need to ensure that our sites are navigable by keyboard.

2.2 Auditory Impairments

Auditory impairment includes more than just deafness much like blind-

ness isn’t the only kind of visual impairment. Compared to visual impair-

ments, auditory impairments give fewer things to consider when we cre-

ate accessible content. In fact, if your site doesn’t rely on audio based

multimedia or sound cues, you may already be accessible with respect

to auditory impairments.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=29

AUDITORY IMPAIRMENTS 30

Deafness

Deafness is the absence of all sensitivity to sound. If someone’s sound

sensitivity low enough, however, they may for all practical purposes be

considered deaf. Unlike the notion of legal blindness, there is no official

classification of “legal deafness” for persons with extremely low sound

sensitivity.

Deaf users rely on captioning and transcription of audio content. Tran-

scription is a textual representation of audio, and captioning is the

same for the audio portion of video and multimedia content. Captions

are synchronized to the media and appear either as closed captions

that the viewer can turn on or off as needed or as open captions that

are always visible. While all captions look like subtitles on the screen,

not all subtitles are captions. Subtitles represent spoken content only

while captions also present other important sounds.

Speech to text converters automatically transform dialogue into text.

General purpose speech recognition is an evolving technology, however,

and existing software isn’t good enough yet to replace captioning and

transcription as a primary assistive technology.

Hardness of Hearing

Mild to moderate loss of sensitivity to sound is referred to as being hard

of hearing. Sometimes this can be corrected but, even with correction,

sound may be difficult to understand. Some people also refer to them-

selves as being hard of hearing if they have tinnitus (buzzing or ringing

in their hearing) or loss of tonal ranges. The hard of hearing usually use

an amplification system with noise reduction to boost audio volume to

an understandable level.

What Auditory Impairments Mean for Web Development

When the content we’re creating makes no use of audio or sound cues,

then there is nothing to do. If we are creating audible content, it should

be produced clearly with minimal noise and the user needs to be given

control over the playback and volume. As usual, for any important non-

text content, we need to create a text alternative. Plain audio files need

accompanying transcripts and video and multimedia with audio need

synchronized captions.

Creating good transcripts is one of the topics we’ll discuss in Describe

it to Me, on page 190. Synchronized captioning is a big topic that sits

somewhere between fine art and deep magic. I won’t be able to make

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=30

MOBILITY IMPAIRMENTS 31

you a master in this topic, but in Words That Go [Creak] in the Night,

on page 185 we’ll discuss the basics of captioning. On the Cutting Room

Floor, on page 194 will show you how to merge captions, audio descrip-

tions, and video into a single product for the web.

2.3 Mobility Impairments

A mobility impairment is any condition where there is a limitation or

loss to the range of motion in one or more limbs. The area of mobility

impairment represents a wide range of disabilities ranging from rela-

tively mild, such as minor arthritis or minimal repetitive stress injuries

to severe, such as missing limbs or paralysis. The type of mobility

impairment that a user has doesn’t affect the way that we create con-

tent as much as the technologies used to accommodate them do.

Mobility impaired users may use alternative keyboard or pointing devices.

Some of these are tuned for ergonomics while others are completely

reworked devices that use foot pedals, joysticks, or eye gaze systems to

harness available mobility. Because these devices are designed to use

conventional keyboard and mouse interfaces, they appear as such to

software applications.

Some people with mobility impairments choose to use speech recogni-

tion software such as Dragon Naturally Speaking,6 MacSpeech,7 or IBM

ViaVoice.8 Unlike the general purpose speech to text systems mentioned

previously, the user can tune these systems to the unique characteris-

tics of their voice which helps speech to text reliability.

What Mobility Impairments Mean for Web Development

The needs of users with mobility impairments don’t usually have much

of an effect on the types of media we use. Our interfaces are another

story, however. The assistive technologies used by mobility impaired

users are designed to mimic the input of a keyboard or mouse. The

most critical issue posed by alternative devices and speech recognition

is that they are often slower than conventional keyboard and mouse

input. This means we have to eliminate unnecessary timing effects in

our content. I’ll say more about this in It’s Their Web—We’re Just Build-

ing In It, on page 131. Some users also have difficulty with fine motor

6. http://www.nuance.com/naturallyspeaking/

7. http://www.macspeech.com/

8. http://www.nuance.com/viavoice/

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=31

COGNITIVE IMPAIRMENTS 32

control, so we’ll want to avoid creating small icons or tightly spaced nav-

igation that these users will have trouble navigating. Because it takes

more effort to navigate with these technologies, we should also keep our

interfaces as simple as we can. In Your Interface Has Some Explaining

To Do, on page 145, we’ll look at ways to do this.

2.4 Cognitive Impairments

A cognitive impairment is any deficit or irregularity in the way a per-

son’s brain handles information. Because this definition is so broad,

dozens of specific disorders fall under the umbrella of cognitive dis-

ability, including the group referred to as learning disabilities. The

broadness of definition also means that this is the largest and most

abstract category of disability. We can classify most cognitive disabili-

ties as impacting perception or processing.

Perceptual Disorders

A perceptual disorder is an inability to clearly or correctly understand

sensory information. This might appear as an inability to distinguish

spatial relationships or to separate foreground from background. There

can also be gaps in sensory perception where there is no loss in vision

or hearing but there is an incomplete recognition or understanding of

visual or auditory information.

Processing Disorders

Processing disorders are an inability to encode or decode information.

One processing disorder is dyslexia, a general term used to refer to

reading disorders. One well known form of dyslexia is character trans-

position, a sequential processing disorder. Dyslexics may also experi-

ence difficulty connecting words to sounds or distinguishing spatial

properties of letters, such as b, d, p, and q, which only differ in orien-

tation.

Aphasia is another family of impairments in language processing capac-

ity. Aphasia is an inability to produce or comprehend language and may

manifest in many ways, including difficulty in forming or understand-

ing spoken or written communication.

Some people can’t process figures of speech or other idiomatic cues.

This includes nonverbal cues such as gestures or facial expressions as

well as figures of speech or slang. Someone with a perceptual disorder

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=32

MULTIPLE DISABILITIES 33

might find these expressions confusing or take them as literal state-

ments.

In all cases, someone with a perceptual disorder might use alternate

presentations of information that don’t rely on sensory or processing

paths affected by their disability. For example, someone with a visual

perceptual impairment or a processing disorder that precludes reading

text would use a screen reader. Likewise, someone with an auditory

perception or speech processing disorder would rely on transcripts or

captions.

Users with cognitive disabilities may also use other tools to prevent

overload of their mental resources. Auto-summarization software gen-

erates an abstract of a longer narrative that can be used to understand

main ideas and evaluate whether the content is worth further effort.

Highlighting systems shade a majority of the user’s screen to prevent

visual drift and focus attention on relevant information.

What Cognitive Impairments Mean for Web Development

Clearly written content with straightforward language is the key to pro-

viding basic accessibility for cognitive disabilities. We’ll look at con-

ventions for creating understandable text and the impact of idiomatic

expressions in Keeping It Simple is Smart, on page 89. To make content

accessible for the audience with cognitive impairments, we also need to

include more than one way to access information. We’ll see more about

this in Multiple Access Paths, on page 53. The other aspects we need

to keep in mind, like eliminating time limits and providing alternative

text to make the content accessible to screen readers are already things

that need to be done with respect to the other categories of disability.

2.5 Multiple Disabilities

It is easy to fall into the trap of considering each of these classes of dis-

ability as being separate from one another. Some people have more than

one disability, however. There are blind people with mobility impair-

ments as well as deaf people with learning disabilities. This means that

we need to provide balanced accessibility solutions usable by people

with multiple disabilities.

With some basic information about disabilities in hand, we’re ready to

keep our users with disabilities in mind and develop for them in a well

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=33

MULTIPLE DISABILITIES 34

reasoned way. Keeping the needs of our audience in mind, we’ll move

on to keeping the needs of our project team in mind.

Act on it!

1. Try to get access to a few of the assistive technologies mentioned in this

chapter—some of the URLs referenced have demo versions of the software

technologies. Get a basic feel for what these technologies do.

2. Politely ask a friend or coworker who uses assistive technology how it works

and what kinds of things are irritating to them about web pages.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=34

What’s the use of a fine house if you haven’t got a tolerable

planet to put it on?

Henry David Thoreau

Chapter 3

An Environment for Access
We want to build content that is accessible but, if possible, we would

also like the process to be as straightforward and painless as possible. If

I could just wave a magic wand and make this happen...I would patent

the process and sell it to you for a reasonable licensing fee. Unfortu-

nately, I can’t do that, but I can give some advice about how you can

create a project environment where accessibility is an essential compo-

nent of the project—one no more imposing than any other part of the

development process.

In this chapter, we’ll look at what we need to do to build this sort

of environment. Most of the time, we aren’t doing this on our own1

and, in Making a Team Effort, we’ll take a look at which people need

to be at the table when we make our content design decisions and

what they each need to have from and contribute to the team in terms

of accessible design. The first thing that this team will need to do is

Plan for Access. During planning, we have our best opportunity to tune

a project’s requirements to include accessible design. One of these

requirements will be to ensure that Multiple Access Paths to the con-

tent are created for users with a wide variety of sensory abilities. We

will do this by understanding attributes of media and how we can use

them in a way that doesn’t overload our users.

Creating multiple ways to access information has its dangers, however.

It is possible to end up succumbing to the “WET Dilemma”, where we

Write Everything Twice. In Don’t Get WET, we’ll learn how to avoid get-

ting WET by staying DRY as well as how to avoid one-off design deci-

1. Although, sometimes we are. I have often worked alone on projects and worn many of

the content development hats at once. I still recommend looking at Making a Team Effort

and watching to make sure that you’re wearing the right hat at the right time.

CHAPTER 3. AN ENVIRONMENT FOR ACCESS 36

sions that can lead us astray. Finally, we’ll close the chapter with an

introduction to some Guidelines for Accessibility. While the guidelines

will not be our primary focus as we work toward accessibility, we don’t

always have a choice in the matter, and it is important to be knowledge-

able enough about them to use them as tools and to field questions that

may be posed to us about them.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=36

MAKING A TEAM EFFORT 37

1 Making a Team Effort
Let every man be respected as an individual and no man

idolized.

Albert Einstein, The World As I See It

Producing high quality online content requires a wide variety exper-

tise in several domains working together. During project planning, it

is important to tap this expertise from the beginning of the process.

It looks like we’ll need to assemble a team. The team should include

representatives from each of the following groups:

• Project Stakeholders

• Content Creators

• User Interface Designers

• Visual Identity Designers

• Software Developers

There might be some overlap in responsibilities here (especially if you’re

part of a small team), and it will be important for these members to be

aware of which role’s perspective they are taking at a given time. I’m a

big fan of keeping teams lightweight, so I would advise that this plan-

ning team preferably be small with no more than two delegates from

each group unless specialized skills become needed. As these delegates

should be a representative of their specialization and act as the line of

communication between the planning team and the other members of

their group, one primary and one backup would be even better. Backup

members are important—for this team to work, each group needs to

be represented and be able to provide input to the process. Lets take a

closer look at each of these groups and find out what they need to bring

to (and take from) the table.

Project Stakeholders

These are the people who are behind the project vision. They have devel-

oped an idea that is going to be made real through the activities of this

team, and as such will need to take responsibility for leading the plan-

ning team.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=37

MAKING A TEAM EFFORT 38

Accessibility Requirements

The Project Stakeholders have the most abstract requirement for acces-

sibility. They need to have a commitment to accessible design in their

project vision and be ready to lead the other members of their team in

making the same commitment. This means becoming informed about

the higher level concepts of accessible design and understanding which

needs are and aren’t being fulfilled by the team’s content design pro-

cess. More than anything else, the primaries need to know where the

other teams are having difficulties in designing accessibly in order to

help find solutions to those difficulties.

Accessibility Responsibilities

To create an accessible final product, the project primary needs to lis-

ten to the needs of the other members and do what is necessary to

make sure that those needs are met. If the content creators need a new

tagging model implemented, the primary will need to verify that the soft-

ware team makes the changes in a timely manner. If a dispute crops

up between the interface design and visual identity teams, the primary

will need to make sure that negotiations are made and step in to push

for agreement if necessary. It will also be necessary to make sure that

the other members are on track for meeting the project’s goals, as well

as noticing when the wrong goals are being promoted (See the sidebar

on the next page for more on this.)

Content Creators

The content creators will be responsible for creating the content assets

necessary to meet the goals of the project. These assets may take the

form of text, illustration, or other media that is meant to be essential

content of the site. This contrasts with the interface and visual identity

folks, who will be generating similar assets for navigational or presen-

tational purposes.

Accessibility Requirements

The content creators will need for the interface designers to generate

one or more interfaces to their content that ensure a clear and accessi-

ble path for the audience. The graphic designers will need to provide a

complimentary set of formats for the content tag set that enhance the

user experience without violating the separation of content and layout.

In both cases, there will need to be a common determination of media

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=38

MAKING A TEAM EFFORT 39

Beware the Resume Builder

I think that some of my favorite needs assessments for web con-
tent look something like this:

• XML/XSL

• AJAX/Web 2.0

• Flash/Breeze

• LAMP

• JSP/Velocity/Struts

• Buzzword Compliance

• Fuzzy Pink Bunnies

I’d like to say I haven’t seen any of these in a project content
plan before, but sadly I’ve seen all of them but the bunnies
(which is unfortunate—the bunnies at least have the potential
to add some humor to the content). Note that I’m not arguing
for or against any of the technologies above, but when I see
technologies floating freely without connection to a content
need, I get a little tense. The first thing that I suspect is that a
Resume Builder has reared his ugly ladder-climbing head. These
are the people who always seem to find a way to justify that the
current project is “just the right fit” for whichever technology
happened to most recently give the most hits on their favorite
career search sites. As much as I’d like to recommend a not-so-
friendly burying of the hatchet, this is the time to take the high
road and drive planning focus back toward delivering a prin-
cipled content plan. Once we have that, it will help to clearly
determine what the real technology needs of the project are. If
the Resume Builder continues to refuse to focus on the project
goals, it may be time to find someone else for your planning
team that is better able to represent the needs and capabili-
ties of their specialty to the project.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=39

MAKING A TEAM EFFORT 40

standards that all three of these groups will adhere to. The infrastruc-

ture developers will need to respond to tagging designs in a timely man-

ner as well as provide appropriate interfaces for content acquisition.

Accessibility Responsibilities

The content creators will need to make the nature of their content

clearly understood such that formal tagging and media standards can

be designed and implemented to fit their needs. If these needs change,

they will need to provide suggestions about how to meet these new

requirements. With respect to media assets, the content experts need

to provide proper descriptions for these assets that will be used to gen-

erate alternative representations through the use of alt and longdesc

attributes, captions, or transcripts.

User Interface Designers

The user interface designers create the content layouts necessary to

ensure a consistent and reliable way for the end-user to interact with

the content. For accessible designs, this may involve a number of alter-

native interfaces, targeted toward different populations, that provide

multiple access paths while retaining a common navigational feel.

Accessibility Requirements

The interface designers will need to work closely with the subject matter

experts and the graphic designers to set media standards that properly

convey the nature of the content without causing damage to the user

interface. Infrastructure developers will be called upon to provide the

back end hooks and scripts necessary to make the user interface work

and ensure that it can be modified to meet specific user needs. Interface

and graphic designers will need to work closely in the development of

alternate interfaces to retain a consistent user experience. To accom-

plish this, the interface designers will need consistently standardized

stylesheets from the graphic designers that take into account the con-

tent tagging structure that is designed in collaboration with the subject

matter experts.

Accessibility Responsibilities

The interface designer will need to be deeply aware of user interface

and accessibility best practices in order to ensure positive results in

the final design. This can be achieved through alternate interfaces, but

the default interface must be accessible. In creating these interfaces,

the designer needs to keep in mind the vision as it is presented by the

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=40

MAKING A TEAM EFFORT 41

project primary and subject matter experts and ensure that end-users

are presented the content in a way that is true to that vision in each

interface developed.

Visual Identity Designers

Sometimes, in the world of accessibility, graphic designers get a bum

rap. While it’s true that layout graphics hinder some users with visual

or cognitive impairments, many non-disabled users also benefit from

well designed visual formatting. Great graphic designers understand

that not everyone can make use of visual styling and rise to the chal-

lenge of working within the freedoms and constraints of the online envi-

ronment. By mastering this balance, designers are able to produce flex-

ible visual layouts that enhance content for a wide variety of users but

politely step aside for users that cannot or do not wish to use them.

Accessibility Requirements

The graphic designers will need documentation about the interface

design to help them to understand what the limitations of a given inter-

face are and how that might impact their design or create the need

for an alternate design. Along with the subject matter experts and the

interface designers, the graphic designers will make contributions to

and follow the project media standards, such that they can design

according to them. Infrastructure developers will need to provide the

means by which graphic designers can store stylesheet templates and

media along with any appropriate metadata.

Accessibility Responsibilities

The graphic designers are usually the ones informed about any exist-

ing visual identity standards that need to be addressed and will need

to make sure to meet those in an accessible manner. If the existing

standards conflict with accessibility principles, the graphic designers,

possibly with the project leads, will need to work with those responsible

for the organization’s visual identity in order to find an alternate pre-

sentation that ensures accessibility compliance.2 The graphic designer

will need to create appropriate styles for the project’s content tagging

2. This isn’t necessarily as bad as it sounds. Often the central visual identity people

know that there is a need for accessibility and may already have a working group to

discuss this issue with. If the project team has come up with a good solution to a problem

on the overall identity front, that group may be very receptive to incorporating the update

into the identity standards or at least in suggesting further revisions toward that end.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=41

MAKING A TEAM EFFORT 42

and document them in a shared stylesheet. Any ancillary formatting

assets will need to come with all of the information needed to create

appropriate alt attributes (in many cases, if a design element requires

longdesc, something has gone wrong. It may be that the item is actually

carrying information that needs to be conveyed by the subject matter

experts in the primary content).

Infrastructure Developers

Here we find the database administrators, programmers, and business

analysts that build the tools and frameworks necessary to get the con-

tent, design and interface to the audience and make the connection

between them and the realized vision of the Project Stakeholders. With-

out the developers, the content couldn’t get into the world (the devel-

opers should always remember, however, that without everyone else,

there is nothing to send out there in the first place). The developers

also provide the tools to help everyone else get things done.

Accessibility Requirements

The content designers need to let the developers know what they want

in a manner that allows for changes to be made consistently and appro-

priately to the databases, templates, and frameworks that they are

responsible for. If workflow tools are requested from developers, they

need feedback about how well the tools work, where they could work

better, and how changes could be made for greater functionality. The

other groups will need to provide information about their expectations

of the final product such that the developers can build appropriate

tests.

Accessibility Responsibilities

The infrastructure developer will need to meet the needs of other groups

in a timely fashion. In part, this involves helping the rest of the group

understand what solutions are available to them and what it will take

to implement them. The infrastructure should follow good development

practices and be well tested. If an appropriate content management

environment is being used, access to tools for creating and storing con-

tent and metadata should be provided. If alternative textual output for

media is being stored, developers will need to make sure that tools exist

to extract this information. Results of any output testing systems being

used should be made available to the content and design teams.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=42

MAKING A TEAM EFFORT 43

Your Friendly Neighborhood Accessibility Coordinator

On more than one occasion, it has come to my attention that I need pro-

fessional help. When the issue at hand is accessibility, the person to sit

down with is your organization’s accessibility coordinator or compli-

ance officer. This person is your best bet for finding the right advice for

difficult questions. If you’re not sure who to ask, try checking with your

organization’s human resources department for a pointer in the right

direction. I am fortunate enough to have Dr. Christy Horn, an extremely

knowledgeable and experienced accessibility coordinator just down the

hall, and I’d like to ask her a few questions:

Jeremy: What is the role of the accessibility coordinator?

Christy: It is the role of an accessibility coordinator, who is more often

than not referred to as an ADA coordinator, to ensure that all aspects of

the environment whether they be physical, programmatic, or virtual are

usable by people with disabilities.

Jeremy: What do you find to be the most common misperception about

web accessibility?

Christy: I think that the knee jerk reaction when I am talking about

web accessibility is that it will require completely starting over. I always

focus on what is the purpose of the webpage. For instance, if you have

your employment application online, as many companies do now, can a

person who cannot use a mouse apply for a job. You may have aspects

of the HR webpage that are not accessible but focus needs to be on the

information one would need from the site and whether they can interact

with the website.

Jeremy: What mistakes do web teams commonly make in terms of

accessibility?

Christy: Web development teams commonly make more work for them-

selves by making accessibility something they do as an afterthought

rather than making it a design feature. it is much easier to design an

accessible website than it is to redesign a site to make it accessible.

Jeremy: When should a web developer consider consulting with the

accessibility coordinator?

Christy: The consultation should occur in the planning process. What

often happens is that we are asked to review a completed site. The con-

versation should take place during the design process particularly as

many of the basic issues can be taken care of easily at that point.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=43

MAKING A TEAM EFFORT 44

Jeremy: Are there any other thoughts of pieces of advice that you would

like to share?

Christy: It has been my experience that many of the design issues that

one needs to address to ensure accessibility also make the technology

more usable by the regular population. The facts is that all people have

different levels of visual, perceptual, auditory, and navigational skills.

Accessibility requirements tend to make web developers attend to these

issues in the design of web pages making them more usable by everyone.

Dr. Christy Horn is the ADA/504 Compliance Officer for the University

of Nebraska and Co-Director of the Center for Instructional Innovation.

Christy has over 25 years of experience designing accommodation and

accessibility solutions including the first computer lab for students with

disabilities in higher education.

Keeping the Team Together

You’ve got a team together and are working on making this content a

reality. Now you need to make sure that this team stays together (I’m

looking at you, project leaders). Some suggestions:

• Meet Regularly There will certainly be plenty of sit-down planning

meetings, particularly early on in the project. Most of the time,

however, I would encourage frequent stand-up meetings to pass

along information and updates. Making these meetings stand-up

encourages that people keep things short and to the point reduc-

ing the need for a meeting to discover why nothing is getting done.

In a team that represents diverse expertise, make sure that every-

one is available for the meetings or has a backup who will keep

the entire team in the loop.

• Keep a Project Wiki With a team that brings together different

expertise, it is important to be able to know what kinds of things

the team is working on and share information. A wiki is an easy

way to provide a central point to share this information.3

• Have an “off-site” Try to gather the team for periodic non-working

lunches where everyone can get to know one another. This goes a

long way toward creating a respectful collaboration.

3. If your organization uses a tool like Lotus Notes that allows the creation of a shared

project database and everyone feels comfortable using it, feel free to use that instead. The

idea is to have a shared space, not be buzzword compliant.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=44

MAKING A TEAM EFFORT 45

Selling Accessibility to the Team

It is possible that you might be the only accessibility advocate on your

team. How do you convince others that accessibility should be a core

objective if you’re not the project lead? Try to be positive in the way

you present accessibility—using the danger of a lawsuit is only going to

put the team on edge and inspire defensiveness. Consider some of the

reasons for accessibility mentioned in Chapter 1, Why Be Accessible?,

on page 19. If these ideas are already complimentary to the core objec-

tives of your team, present them as such. If that isn’t clear, make an

argument for increasing the served audience or doing the right thing. If

it comes down to it, point out the legal requirements—just try not to be

accusatory about it.

Designing accessible web sites is a multidisciplinary effort. By bring-

ing together expertise in as many of these areas as possible to pursue

accessible development principles, the odds of success are increased.

Every team needs a plan, however, and that’s what we’ll look at next.

Act on it!

1. Think about your current projects. What communication barriers may be

keeping your project from producing accessible content? How could they

be eliminated?

2. Learn more about keeping your team healthy. Behind Closed Doors [RD05]

and Manage It! [?][[Author: Production: We still need this in the bibliography]]

provide excellent views on working with and managing teams that get

things done.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=45

PLAN FOR ACCESS 46

2 Plan for Access
It will not do to leave a live dragon out of your plans if you

live near one.

J. R. R. Tolkien, The Hobbit

One of the most common objections that I’ve heard about implement-

ing accessibility is the cost is too high and, in many projects, there’s

some truth to this. If accessibility is delayed until the last stages before

deployment, costs for retooling user interface and visual layout to sepa-

rate content from presentation and meet accessibility requirements can

be substantial. In truth, the high cost that gets assigned to accessibility

is actually the cost of correcting a bad content design.4 By planning for

accessibility from the beginning, we can reduce this cost by eliminating

one reason to rebuild. We’ll also plan for a revision process that will

provide a way to account for new content structures in a well-ordered

manner.

Your Friend, The Style Guide

Whether it be a collection of pages on a project wiki or a more formal

document produced by a planning team, a project style guide can be

one of the most valuable products of the planning process. This guide

sets forth the tagging and styling decisions made along with content

production and media acquisition standards that reflect all of the pro-

duction targets.

Tagging With Structure

The first step in producing accessible content is to abandon any ideas

that might linger about combining content and presentation. It was a

bad idea from the early days of the web that only became worse. For-

tunately, the World Wide Web Consortium (W3C) has worked to elimi-

nate the vestiges of HTML that served only to provide visual formatting

information and moved this functionality into the CSS standards.5 This

means that your style guide will need to determine which markup is

4. This cost has become high enough that some educators are placing accessibility con-

siderations early in their web design curriculum. See Brian Rosmaita’s work on Accessi-

bility First at http://academics.hamilton.edu/computer_science/brosmait/talks/ for an example

5. Unfortunately, with respect to standards compliance, the browser wars never really

ended. The Web Standards Project (www.webstandards.org) can help you find your way

through these and many other content related issues.

http://academics.hamilton.edu/computer_science/brosmait/talks/
www.webstandards.org
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=46

PLAN FOR ACCESS 47

appropriate for the content at hand and handle the styling separately.

We’ll talk more about tagging for meaning in Say It With Meaning, on

page 83. If you really want to emphasize the structure of your content,

you could look at constructing a DTD (Document Type Definition) for

your project. See the sidebar on the following page for more details. One

of the advantages of using a DTD is that you can abstract the tagging

and layout decisions necessary for accessibility away from the content

authors who can then focus on their primary goal—writing good con-

tent.

Documented Output Formatting

As output styles are generated, the style choices need to be consistently

documented. I find it useful to base this document on the source tag-

ging to ensure that everything is documented and that every element

that needs to be styled has been. If you are working from a project lan-

guage with a DTD, there should be a documented format for every out-

put. For example, you might be targeting XHTML+CSS, WML, and PDF.

In this case, there should be three documented styles (more, if you have

multiple styles for XHTML+CSS). When documentation is generated for

content authors, however, it is probably best to include only styles that

should appear in their content (as opposed to styles intended for use in

the site layout and navigation).

Content Style

To reduce the load on your audience, your content should be clearly

written in a consistent manner. To help in achieving this, it helps to use

the other kind of style guide. If your content is targeted toward a spe-

cific professional audience, there may already be a style guide available.

The American Psychological Association (APA), Modern Language Asso-

ciation (MLA), and the American Mathematical Society (AMS) among

others have created well known and widely used styles. Your profes-

sional audience might have their own recognized style and, if so, your

audience would benefit from its use. For more general audiences, the

Associated Press (AP) style might be useful as might the Chicago Man-

ual of Style. Whichever content style is chosen, document it in your

project style guide and mandate that content writers use it consistently.

Media Acquisition Standards

When creating or acquiring multimedia assets, we need to ensure that

they can be suitably represented across our chosen output formats.

The standards that we create either need to represent a best average of

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=47

PLAN FOR ACCESS 48

Tagging From a DTD

There is an option above and beyond XHTML tags with class

attributes. If you already know that you have plans for multiple
output formats, you could define a tagging language by creat-
ing or extending a DTD (Document Type Definition). Ultimately,
unless you have very simple needs, you are probably better
off adopting an existing DTD like DocBook (www.docbook.org)
and extending it. Not only has much of your DTD testing
already been done, but tools and documentation are prob-
ably already available as well. Using a custom DTD allows your
content authors to write things like:

<article>
<title>My Fine Article</title>
<author>I. M. Writing</author>
<body>...</body>

</article>

rather than

<div class='article'>
<div class='article-title'>My Fine Article</div>
<div class='article-author'>I. M. Writing</div>
<div class='article-body'><p>...</p></div>

</div>

The content can then be transformed using XSLT into any format
that you need to produce, including the second one shown
above. This provides several advantages:

• Your authors work in a semantic format that doesn’t bur-
den them with implementation details.

• The author can’t drop in one-off inline styles unless you
allow for it. Don’t allow for it.

• The format isn’t encumbered with extra layers of tagging
(the world of nested div tags with classes in XHTML)

• Revisions to styling have less widespread impact. When
class=article-author becomes class=article-byline, changes
only exist in the XHTML output filter and related stylesheets
rather than in every existing article.

Even if you use a DTD, there still needs to be a project standard
for the output formats. While it can be advantageous to pre-
vent exposure of these decisions to the content authors, they
will still need to be understood among those who need to main-
tain the output filters. Additionally, you’ll need to provide docu-
mentation of the DTD for the content authors.

www.docbook.org
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=48

PLAN FOR ACCESS 49

the formats or be in a form that can be converted (preferably automat-

ically) for each target. We will also need to provide appropriate data for

alternative access.

By way of example, let’s consider image assets. We might want to think

about the following:

• Maximum image height and width

• Color depth

• Image file size

• Content meaning of the image and how it will be stored.

For our example project, we would like to be able to print articles and

send them to handheld users as well as providing them online so, ide-

ally, we would be able to provide 300dpi output that is still meaningful

when scaled to 200 pixels wide. Additionally, where possible, we would

like to be able to represent images in 16 level grayscale. Images will

also need to be compressed in order to minimize bandwidth usage on

the portable devices. In this case, we would also like the person respon-

sible for acquiring the image to create alternate text for it (odds are,

they have the best idea of how the image should be described). Because

we’re considering image assets, we won’t need to consider subtitling or

transcripts but keep this in mind for video and audio assets. Once we’ve

determined our standard, it might be useful to create a media specifi-

cation sheet. The sheet should contain a simple and clear breakdown of

the needs that have been determined for the media type, including the

extra metadata that need to be provided and necessary alternatives.

Revising the plan

You’ll need to revise your style guide from time to time and it makes

more sense to plan for it at the beginning. Once the initial brainstorm-

ing work has settled, you might even find it useful to introduce a formal

revision process into your original style guide development. Each revi-

sion should go through four steps:

Add the Proposed Revision to a Master Revision List:

Your project’s master revision list should be the entry point for all sug-

gested changes. The merit of a given change shouldn’t be a considera-

tion for inclusion on the list. That will be decided later when the impact

of the revision is analyzed. An example change request might be: “Add

tagging to represent cookbook recipes”

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=49

PLAN FOR ACCESS 50

Consider the Impact of the Revision:

Either as an online process or during content team meetings, the mas-

ter list should be reviewed frequently. You should ask “Does this change

fit with our content identity?”, “Have we already defined an acceptable

alternative to this?”, and (of course) “What will it take to ensure that

this change is made without breaking accessibility?” For our example,

assume that you’re developing a lifestyle news site and your readers

have a growing interest in cooking. The recipes would make an inter-

esting addition to your regular content. It might be possible to create

this content in the context of a normal article, but your team comes

to the consensus that this is likely to be a growing feature and new

tagging will be added for the recipe features. In terms of accessibility,

the only issue that comes up is making sure that measurements and

ordering of directions are expressed in a way that is screen readable.

The proposal makes it to the next stage and should be marked as such.

If the proposal is rejected, don’t delete it. Instead, go ahead and mark

it for reference and add comments. If the same idea shows up again, it

is useful to know why it was rejected the first time and consider what,

if anything, has changed.

Find Specific Actions That Need to be Taken:

Here, you’ll want to think about what the needs of this change are and

document the needs as formal subtasks:

• Will new content need to be acquired for this revision?

• Will new tagging forms be necessary?

• Will the current navigation and search systems suffice or will we

need something new?

• Do we need a new layout for this content?

• Does this change require the use of multimedia elements that will

require captions or transcripts to be generated?

• What information about using this new tagging needs to be added

to the style guide?

• Will the new content require additional infrastructure support like

new database tables or interface layers?

For the recipe proposal, it is determined that content will be generated

internally, but new tagging for recipe content will need to be designed.

The recipes will be included with the rest of the articles, so navigation

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=50

PLAN FOR ACCESS 51

and infrastructure shouldn’t be impacted, but the graphic designers

will need to ensure that the new markup is nicely styled. The content

authors will also need to be informed of the changes to the style guide

including specific usages like making sure to mark abbreviated mea-

surements with expansions for screen readers to use.

Assign Tasks to the Appropriate Parties and Determine a Revision Dead-

line:

The task assignment might be to a team leader or an individual depend-

ing on the size of task. If the team has the representatives recom-

mended in Making a Team Effort, on page 37, this is probably a matter

for that representative or their team to decide. The deadline could be a

specific date or a milestone in the style guide that implies a date. Your

content team decides that the recipe features should start to go online

for the Fall/Winter holidays. To make sure that the content writers

have sufficient lead time, the tagging and styling changes are marked

for v3.4 which has a late July release schedule.

If you have a project wiki, it might be useful to add a space to document

the stages of this process and the changes that result. Better yet, if you

have access to a ticket tracking system that supports subtasks (ask

your software developers if you’re not sure), it might be better to use

that instead. It’s already been designed for this kind of work.

With a plan for accessibility in mind, it’s time to consider how to pro-

ceed with creating accessible content. One of the underlying principles

of accessible design is to give the user more than one way to access

information. Next we’ll look at the idea of multiple access paths

Act on it!

1. Consider a markup format suitable for your current project.

2. Take a look at css Zen Garden (www.csszengarden.com).

• Examine the sample HTML source file. What are the advantages of not

combining style information into the source? How would you design

this differently?

• Construct a stylesheet for the sample HTML and document it with

comments. Does the tagging provide you with everything you needed

to create a style?

• Attempt to construct an alternate markup that would represent the

same content as the sample file. If you’re looking for an extra chal-

lenge, write a DTD for it.

www.csszengarden.com
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=51

PLAN FOR ACCESS 52

3. Look at a relevant style guide for your current project. Are you creating

content that conforms with that style? If not, consider whether the content

across pages is consistent and clear to the reader.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=52

MULTIPLE ACCESS PATHS 53

3 Multiple Access Paths
The sweetest path of life leads through the avenues of

learning, and whoever can open up the way for another,

ought, so far, to be esteemed a benefactor to mankind.

David Hume

There’s more than one way to convey a message and the right way to

do it is dependent on the user viewing your web site. A user who is

deaf or simply has a visual learning preference will benefit from con-

tent based on captioned video or illustration, while other users who are

blind will need text narratives or audio to get to the essentials of the

content they want to interact with. In all cases, being able to choose a

representation that works best is of value to our users. Ultimately, of

course, we want to be valuable to your users, so we need to give them

these choices about how they wish to interact with our content. This

doesn’t mean that we should build virtual towers of babel by providing

so many overlapping options that our content ends up becoming con-

fusing (read: useless) for everyone, however. What we need are multiple

access paths.

Multiple Access Paths

The concept of multiple access paths is a simple one. Where we have a

given piece of content that relies on a particular media representation,

we provide at least one alternate version that uses another representa-

tion. Ultimately, we would like to use as few paths as we can to cover

as many use cases as possible. Planning for multiple access paths isn’t

simply a matter of putting several versions of something on the same

page. What we really want to look at is what we’re trying to convey to

the end-user with a piece of content. For example, we may be creating

a screencast for a piece of software that our users might be interested

in learning about. The purpose here would be to demonstrate a piece of

software, explaining how it works and why it might be a good thing to

take a closer look at. Let’s consider cases where the screencast might

not be the best choice for some users and how we might reach them as

well.

For hard of hearing users, the voiceover component of the screencast

will be difficult or impossible to use. This is easy to solve, however,

because screencasts are ultimately video. If we add a subtitle track

for these users that captures the voiceover content, the screencast

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=53

MULTIPLE ACCESS PATHS 54

becomes fully usable for these users. It doesn’t take much more effort

to accommodate vision impaired users. If the commands used during

the screencast are captured in a transcript, it is possible for these users

to follow along with the steps in the voiceover. It would be better yet to

interleave the commands with a transcript of the voiceover—the vision

impaired users would have a completely parallel access path to the

content.

In some cases, it isn’t sensible to create these kinds of alternate paths

because removing one aspect or another misses the point. For exam-

ple, a text representation of a Photoshop demo isn’t generally a real-

istic idea. When this happens, it is generally sufficient to provide text

describing what the demonstration is of. This serves two purposes—it

makes sure that we don’t create a “black hole” in our content where

users with disabilities become lost and it allows these users to do for-

ward research for others who do have the sensory abilities needed to

use the content. What we want to keep in mind, however, is that we

need to build an interface to sensibly access the alternate paths rather

than just heaping all of the options in one place which might overload

the users.

Avoiding Overload

When we provide multiple access paths, we need to be mindful of cog-

nitive load theory. The idea behind cognitive load theory is that we have

a limited amount of mental resources to devote to a task. Some load

is caused by the nature of information. We can’t do anything about

this because the only way to reduce it is for the user to gain experi-

ence. Some load is generated by the environment, however. The things

the user has to do and the presentation of information adds extrane-

ous cognitive load. We can do something about this. Some information

is made more understandable when complementary text and imagery

are presented in parallel. This means that the subtitles made available

for some users may be beneficial to others that we hadn’t specifically

planned for.

Non-complementary information, on the other hand, can create inter-

ference and makes our content harder to understand. This means that

our multiple paths need to be designed in a way that they don’t stomp

upon one another. If, for instance you provide a subtitled video, the

subtitles need to maintain synchronization such that, if a user hears

the audio, it matches up to what they see in the subtitles. If that match

isn’t there, their level of understanding is likely to be diminished.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=54

MULTIPLE ACCESS PATHS 55

Another form of extraneous load comes from inconsistency in presen-

tation. When presentation varies across pages, the user spends mental

resources on understanding navigation and interface—resources that

we would prefer be used on understanding our message. This is taken

care of by developing uniform interfaces. We’ve all used applications

and web sites that make us stop and think before we know what to do.

If we’re on a site that shows us video and gives a link to a transcript,

we wouldn’t expect to see a transcript on some pages with links to the

video.

Keeping Media Attributes in Mind

I hate the phrase “All other things being equal...” All other things are

never equal. If they were, text would provide the same experience as

video and television wouldn’t have killed radio. Some things are clear

in a video that aren’t in a verbatim transcript of its dialogue. If you

listen to the SAP (Second Audio Program) on broadcasts that make

it available, you hear audio descriptions of the things happening that

aren’t indicated by the dialogue. Similarly, subtitles often put musical

notes on screen during significant background music or around lyrics

to indicate to deaf users that actors are singing the dialogue. It is clear

that we need to consider the attributes of the media that we choose

and provide extra information to compensate for attributes missing in

alternative medias.

I’ve already given a brief example of how, by adding auditory descrip-

tion, we can mitigate some of the deficits of audio relative to video. Simi-

larly, text descriptors of audio like the musical note, [yelling], and [whis-

pering] compensate for an inability to use audio. Both of these issues

will be discussed much more in Chapter 9, Video Killed the Something-

Something, on page 179.

What about interactive elements? This is a much more difficult issue.

The first step is to understand whether the interactivity is a central part

of the experience. If not, you may be able to get by with building a path

around it. If it is essential, however, there’s a lot of work to be done.

Alternate control and response needs to be designed to allow interac-

tivity without mandating sensory-specific capabilities. Some time ago,

I worked with a group that based hiring requirements on a web site

that used a drag and drop concept map. The concepts weren’t visually

oriented, but the interface was—at this point the accessibility problem

clearly becomes a discrimination problem. This can be solved, how-

ever, by constructing a conventional text-accessible form alternate. This

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=55

MULTIPLE ACCESS PATHS 56

allows the same information to be gathered in a way that doesn’t exclude

one or more classes of user. The important thing to take note of here

is that I’m not saying that the graphical concept map should be elimi-

nated. There are other classes of users that might be unfairly hindered

by having to address a completely text-based version, so the graphi-

cal version would be better for them. This is, after all, the essence of

providing multiple access paths.

You need to be careful when you plan for multiple access paths though.

There is a big difference between designing a page that can be under-

stood clearly by many kinds of users and designing a different page for

every kind of user. Whenever possible, you should avoid writing mul-

tiple versions of the same thing. This point is important enough that

we’ll be covering it next.

Act on it!

1. Consider the web pages and applications that you regularly use. Are there

elements on the page that distract you from doing the things that you

went to the site to do? Is it straightforward to get things done on the site?

How would you change the page to make your work easier and minimize

distraction? Make notes of these changes and ideas for your next project.

2. Watch a movie that you know well with the sound turned down and the

subtitles turned on. Does the experience still work? How would you change

the subtitles to better convey what’s really happening? If the user couldn’t

see the video and had to rely on someone reading the subtitles to them,

what else would you have to add?

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=56

DON’T GET WET! 57

4 Don’t Get WET!
But better die than live mechanically a life that is a

repetition of repetitions.

D. H. Lawrence, Women in Love

D.H. Lawrence wrote, “But better die than live mechanically a life that is

a repetition of repetitions”. Repetition is a definite problem that we need

to keep our eyes open for in any project. Every repetition of a core idea

that we add increases the number of changes that must be made for

revision. If the project has co-dependent repetition, it gets even worse

and starts to increase the change possibilities multiplicatively. This is

particularly important for accessibility oriented projects where we rely

on alternate versions of interfaces and content. We want to provide

these features without branching out into a new career in duplicate

revision. What can we do about this? Fortunately, most of the work is

in learning to think in terms of one simple idea:

The DRY Principle

by Dave Thomas and Andy Hunt, Pragmatic Programmers

Every piece of knowledge must have a single, unambiguous, authoritative

representation within a system.[HT00]

Sounds scary when it’s put that way, no? That’s why DRY says it more

simply: “Don’t Repeat Yourself”. While the DRY Principle was originally

written to describe a principle of software development, it’s also pretty

handy for building structured content. Many times, we repeat small

ideas as a component of larger ones that we use to build our content.

This kind of low level repetition takes us down a dark path toward the

worst case scenario where we fall prey to the WET Dilemma—that of

“Writing Everything Twice”. What we would like to do instead is develop

a set of basic pieces that we can reuse in multiple places.

Building Abstraction

It would be a mistake to believe that keeping DRY means that we’ll

be able to cut down on the number of styles and tags in our content

system. We’ll certainly remove plenty of each but, odds are good that

we’ll be adding even more in. The reason is simple: we want a lot of

really useful basics rather than a handful of overdeveloped ideas. The

basics can be used in many places while maintaining a single defi-

nition. If we build a basic concept into several larger concepts, then

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=57

DON’T GET WET! 58

we have to change it in several places every time. The first thing this

means in the HTML+CSS world is being clear in our definitions. If <div

class=’article’> is our construct and we expect to see <h1>, <p>, , and

so on, we should make sure to define the styles for sub-tags of <div

class=’article’>. Why? Ultimately, we want the style behavior to be inde-

pendent of the rest of the document where appropriate. If we inherit

all of our styles, changes from above may adversely affect us in unex-

pected ways, so we would prefer to define everything we need to protect

us from breakage. Keep in mind this doesn’t mean you have to define

everything. For example, you might want to inherit the base font-family

from above, but it should up to the lower level style to make sure that

necessary local adjustments like relative size are made. It’s also impor-

tant to break apart styles when they’re not naturally connected. For

example, I recently worked with another developer who had defined

multiple styles of the form “iteminfo”, “itempeople”, “articleinfo”, “arti-

clepeople”, and so on. Fortunately, CSS gives us a way around this. If

you define styles for “info”, “people”, “article”, and “item”, they can be

combined pairwise for the same effect without duplicating the specific

aspects of their category. With respect to accessibility, you might find

it valuable to extract basic color information into a separate stylesheet

that can be swapped with another that is designed for higher contrast.

Avoiding One-Off Decisions

As a project develops, you’re likely to run into a number of requests

for “one-offs” These are the single use features that people consider

necessary for their content, and you need to decide whether they’re

right or not. One of three things could be happening here:

It’s really a one-off

Sometimes the content is about a particularly specific idea that requires

some new markup. You don’t know whether this idea will show up

again, but your general feel is that it probably won’t. This is the time

to make a big decision: will creating the one-off be worth the trouble

and will it make maintenance difficult later? Further, will the change

require significant time and additions to achieve cross-browser support

and accessibility? To mitigate these, you’ll want to keep the changes

local to the affected page. Most of the time in HTML this means using

<div> and and CSS classes to define the one-off. I recommend

doing this in a local style definition. This keeps us from polluting our

stylesheet with one-offs and gives us an implementation to extract for

the main stylesheet if the idea does achieve common usage.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=58

DON’T GET WET! 59

They’ve found a gap in the system

No markup system is designed for all things. It could be that the devel-

oper has stumbled onto a perfectly legitimate construct that isn’t sup-

ported already but probably should be. This is often the case when new

kinds of content are being developed that move beyond old assump-

tions. If you look at the history of support for multimedia in the HTML

specs, you will find that (a) these sorts of things do really happen and

(b) it’s important to think them through when they happen to avoid

fracturing the system with multiple one-off solutions. This is the point

in time to build up a proposed solution to propose to the markup design

team. If there is an unresolved debate about the right way to do this, it

is reasonable to pilot the proposed change in the form of a local style

as mentioned above.

It’s time to look again

Most of the time, I’ve found that this is really what is happening. Some-

times the content developer becomes too wrapped up in the original

view of an idea and visualizes a particular markup. When that markup

isn’t there or doesn’t work as expected, change requests come in. The

challenge is to help the developer see what they’re really trying to say

and how the existing markup styles can be used to express it. We’ll go

over an example of this thought process in Layout And Other Bad Table

Manners, on page 122.

Using a Templating System

While I would like to believe that all of us have moved on to web frame-

works with templating engines, I know this isn’t the case. The route

to accessible content is a really good place to make the leap if you

haven’t already. Templates allow us to formalize abstractions and elim-

inate repetitions. Some may even provide support for DTDs that allow

a higher level of abstraction yet. If you’re still working primarily with

static pages, then eliminating redundancy will be nearly impossible.

After all, each page will be stuck with repetition of basic container and

navigation content. Even with basic templating systems like SHTML

you’re still only able to template in a very simple way. Do yourself a

favor now and move forward with a good templating system—preferably

one that supports separation of data, interface and presentation.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=59

DON’T GET WET! 60

Act on it!

1. Are there one-offs in your current projects? Try to classify them across the

three categories in this chapter. Find ways to eliminate the ones that don’t

need to be there.

2. If you don’t feel comfortable with the templating framework that you are

using, learn more about it. In particular, focus on abstraction and accessi-

bility features. If you aren’t using one yet, work on finding one!

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=60

GUIDELINES FOR ACCESSIBILITY 61

5 Guidelines for Accessibility
The best thing about standards is that there are so many to

choose from.

Andrew Tanenbaum, Computer Networks

As you work more with web accessibility, you will find yourself in dis-

cussions about various standards and guidelines for accessibility. It is

good to be familiar with these guidelines because many test suites are

based on them and when a client or manager asks about issues per-

taining to specific guidelines, it is important that you be able to openly

and knowledgeably answer questions about them. It may also be pos-

sible when your team plans for accessibility that, by convention or by

law, one of these sets of rules are chosen as a success criterion for

the finished product. The one thing that I do not want you to do is to

occupy yourself with becoming a “rules lawyer”. Remember at all times

that our real target is to get things done and make it accessible to all of

our users while we’re at it.

Guidelines? We Don’t Need No Stinkin’ Guidelines!

In the preface, I gave you ten principles for web accessibility and told

you that they will usually guide you in the right direction. I still main-

tain that. Ultimately, however, there is a place for guidelines that are

more spelled out than that, particularly once you understand the prin-

ciples of accessibility and need to focus on details of compliance. It’s

useful to have baseline criteria that we can use to measure the quality

of an accessible implementation. The important thing to keep in mind

is that (unless codified as law), guidelines are simply that—guidelines.

In general, the guidelines give us a good set of best practices to work

with. If you run across a situation where following the guidelines to the

letter would cause a reduction in the accessibility of a site, it is proba-

bly best to bend the guidelines a little. Keep in mind that some of the

existing recommendations are headed for ten years old and not all of

the things in them are still entirely relevant. Some things are less of a

problem than they once were and some recommendations never worked

as well as intended. The guidelines that are out there also don’t usu-

ally give much insight into how to achieve accessibility. That’s alright

though—the how is exactly why we’re here. Let’s quickly introduce the

main accessibility standards of interest if you’re working in the United

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=61

GUIDELINES FOR ACCESSIBILITY 62

States. We’ll discuss each of them in more depth in Part V, Building

Codes.

In The Beginning...

...there was nothing in the way of guidelines for web accessibility, so

we had to use known best practices from the software world and do our

best. A few years later, however, when accessibility problems with the

web became a deep concern, W3C formed the Web Accessibility Initia-

tive (WAI) with the goal of bringing the web to its full potential by work-

ing for usability for persons with disabilities. In 1999, WAI responded

with the Web Content Accessibility Guidelines 1.0 (WCAG 1.0). WCAG

1.0 has given much needed guidance to many web developers as well

as formed the basis for many international laws. As we close in toward

its tenth anniversary, some parts of WCAG 1.0 have begun to feel a

little rusty, but it is still a fairly decent model that I expect will con-

tinue to remain the gold standard of guidelines for some time. WCAG

1.0 and some thoughts about it are found in Chapter 13, Web Content

Accessibility Guidelines 1.0, on page 244.

Trust Us—We’re The Government

In many places, governments have written accessibility legislation that

governs the creation and acquisition of technology. In the United States,

that legislation is known as Section 508 of the Rehabilitation Act of

1973, as amended (29 U.S.C. 794d). I, and many others, for obvious

reasons will refer to it simply as Section 508. This legislation states

requirements for computers, software, multimedia, and web-based infor-

mation and applications as well as a few other technology products.

Fortunately, many of the Section 508 criteria sit parallel to guidelines

in WCAG 1.0, so not everything will be different. Section 508, thoughts

about its requirements and its relationship to WCAG 1.0 are found in

Chapter 14, Section 508, on page 261.

Not Your Father’s WCAG

Alright, I’ll admit that WCAG 2.0 hasn’t been in the works for that long.

The workgroup has been busy for quite a while, however—six years is a

large percentage of the lifetime of the web at this point. Part of the rea-

son that it has taken so long may have something to do with arguments

and controversies over the best direction for web accessibility. Some

useful information is already appearing in the working draft, however,

such as metrics for evaluating contrast and flash thresholds. As I said

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=62

GUIDELINES FOR ACCESSIBILITY 63

above though, WCAG 1.0 still has a lot of momentum behind it, and will

for quite a while yet. Because a lot of people are asking about WCAG

2.0, we’ll describe it in Chapter 15, Web Content Accessibility Guidelines

2.0, on page 270

The Same Story in a Different Language

On occasion I hear these strange stories about other countries and

global economies and such, and they appear to be largely true. If we

want to participate at the global level, it will be necessary to understand

what the local standards are and how they differ from what we may or

may not already know. Many other countries have developed national

and regional guidelines and legislation regarding web accessibility. It is

well beyond my knowledge what the specifics of most of these are, and

they really fall beyond the scope of this book but W3C has compiled a

list of links to policies at http://www.w3.org/WAI/Policy/. I’ll also introduce

some standards in other parts of the world in Chapter 16, Meanwhile,

In the Rest of the World..., on page 288.

Act on it!

1. Determine which guidelines pertain to your work. This may be something

that is already a policy in your workplace, so it wouldn’t hurt to ask around.

2. Take a glance at an overview of accessibility guidelines. Just a glance

for now—I don’t recommend getting too deep until you’ve learned more

about the principles behind them. There are overviews of some major guide-

lines in Part V.

http://www.w3.org/WAI/Policy/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=63

The test is to recognize the mistake, admit it and correct it.

To have tried to do something and failed is vastly better

than to have tried to do nothing and succeeded.

Unknown

Chapter 4

Testing for Accessibility
You may be asking yourself why we’re looking at testing as a foundation

for accessibility. After all, isn’t testing something that is usually done at

the end of the project? You would be right—testing is often saved until

late in the game—and that is exactly why we’re going to look at it now.

In Testing as a Design Decision, we’ll look at testing from the beginning

to reduce accessibility costs.

As with any kind of testing, accessibility testing requires that you have

a good selection of tools and techniques in hand to do the job right.

In Building Your Testing Toolbox, I’ll introduce you to a few tools that I

have found useful when I test for accessibility. There are more options

than we’ll be able to cover, so keep your eyes open for alternatives that

suit you better or tools not designed for accessibility that happen to get

the job done. Get used to this idea. The world of accessibility of full of

examples of creative repurposing—this is the part that I find fun about

working in the area.

Tools will only get us so far, however. Automatic tools are incapable

of ensuring that two content alternatives are really communicating the

same idea. In Getting Your Hands Dirty, we talk about hand testing and

how to bring in real experts on accessibility when the need arises.

TESTING AS A DESIGN DECISION 65

6 Testing as a Design Decision

Speed is irrelevant if you are going in the wrong direction.

Mohandas Gandhi

Total cost of development is one of the most common arguments against

accessible web design. While accessibility has a measurable develop-

ment cost, using the cost as a show stopper is a weak argument at

best. The reality is that projects with high accessibility costs fall into

one of two categories: projects with large amounts of media requiring

text alternatives and projects that wait until the end of development to

add accessibility. In the first case, the cost can’t be prevented. Media

handling costs are always going to be proportional to the volume of

media. On the other hand, the cost of refactoring is largely preventable.

It comes as no surprise that, were we to wire a house after finishing the

walls, it would cost considerably more than wiring it beforehand. Why

should it surprise us that the same is true of accessibility? The real

cost of accessibility is the cost of building content twice—the first time

that may or may not be accessible and again to repair it. Projects that

commit to accessible development from the beginning and maintain it

reduce the risk of an expensive accessibility crash session.

Testing From Day One

To ensure accessibility, we need to test for it. These tests should be

happening from the first lines of code at the beginning of a project. The

best solution is to follow a policy where all additions to a project are

expected to be accessible when checked in. The development process

looks like this:1

1. Build an initial version of the content.

2. Ensure this version passes accessibility testing. Check this copy

in as the initial version in the project.

3. Incrementally add new functionality and styling to the content.

4. Verify that the new functionality still passes testing.

5. Once verified, merge changes into the project’s master copy.

1. This process, particularly when discussing styles and scripts is better known as Pro-

gressive Enhancement A description of this and the related issue of “graceful degradaton”

is found in Unassuming Scripts, on page 222

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=65

TESTING AS A DESIGN DECISION 66

6. Repeat from step 3.

Let’s see an example of this process in action. We’ll look at a simple list

of navigation links:

Home

About Us

Contact Us

That was pretty straightforward. But is it accessible? Sure. The markup

is well formed and the links are descriptive in their own right, so we

don’t need to add title= attributes to the <a> tags. Lets go ahead and

check this in as version 1.

Adding Some Style

So far, this isn’t a very attractive solution. It would be nice to style the

list to add boxes around the items and a background tint. First we’ll

add a CSS class to the element:

<ul class='navigation'>

Home

About Us

Contact Us

And then define some styles:

/* Navigation List */

.navigation {

width: 12em;

padding: 0.75em;

background-color: #07c;

}

/* Navigation List Item */

.navigation li {

list-style-type: none;

width: 100%;

margin: 0.25em;

border: 1px solid #ccf;

text-align: center;

background-color: #dc8;

}

/* Navigation Link */

.navigation a {

color: #cb9;

}

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=66

TESTING AS A DESIGN DECISION 67

We know that the new changes fall back properly for users that don’t

have CSS enabled because we already saw the work in the first version

and our addition of a CSS class doesn’t change that. Our first testing

step will be to run automated testing to catch obvious errors. We’ll use

WAVE 3.52 to run automated tests because it allows me to upload an

HTML file rather than serving it from a URL. Here are the results:

• Accessibility Errors: 0

• Accessibility Alerts: 0

• Accessibility Features: 0

• Structural & Semantic Elements: 0

Great—we don’t have any alerts or errors. This isn’t really that sur-

prising because the only thing we changed about the HTML was the

addition of a class= attribute. The “Accessibility Features” and “Struc-

tural & Semantic Elements” counts are to point out features of the page

that offer enhanced accessibility. None of the elements we’re using have

options to offer here, so we can just ignore these.

With automatic verification passed, we need to look at the web page

and manually confirm that everything is correct—and here we have a

problem. There are no images or scripts to turn off, and the page reads

fine without the CSS. That’s our problem—the page only reads well

without the CSS. Notice the background color of the list item (#dc8) and

the link color (#cb9). These colors are very close to one another, which

poses a contrast problem that we’ll discuss further in Thinking in Terms

of Black and White, on page 157. For now, go ahead and trust me that

this color combination doesn’t make the cut. Let’s change the link color

to something darker like (#333). Checking it again, the contrast problem

is solved and we can merge the changes while avoiding the Duck of

Doom (see the sidebar on the following page for more on this).

Continuously testing in this manner prevents us from introducing inac-

cessible features that could result in a time consuming and costly refac-

toring job later on. For this to work, we need a good set of tools and

techniques for testing our content. In the rest of this chapter, we’ll look

at what should be in your toolbox.

2. http://dev.wave.webaim.org/

http://dev.wave.webaim.org/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=67

TESTING AS A DESIGN DECISION 68

The Duck of Doom

Accessible development is a team commitment and, if you
choose to take a test driven perspective, that commitment
needs to include keeping the build clean. This means not let-
ting any little “quick fixes” into the project that break accessibil-
ity tests. Errors should always be resolved before checking the
related code into the master copy of a project.

The nature of development is that sometimes code with errors
will get checked in. If this is an infrequent occurrence, so be
it. Sometimes it starts becoming commonplace, however, and
developers need to be reminded that they are accountable
to the codebase. How you choose to do this is certainly up to
you, but I have heard positive results of a team “mascot” that
gets passed to the last person to break the build and stays with
them until it happens again. I have heard of rubber chickens
and toilet seats among other things—just keep it good natured.
My personal suggestion would be a “Duck of Doom”.

Act on it!

1. Practice starting with a “bare bones” site and progressively enhancing it

with features. This is incredibly useful in having sites that are both feature

rich and accessible.

2. Encourage your team to add accessibility to its testing regimen and to test

early and often. Bring a duck if you need to.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=68

BUILDING A TESTING TOOLBOX 69

7 Building a Testing Toolbox
Man is a tool-using animal. Nowhere do you find him

without tools; without tools he is nothing, with tools he is

all.

Thomas Carlyle, Sartor Resartus

We want to produce good work, so we’ll need to have good tools. No

single tool does everything we need for accessibility testing. We’ll need

a number of tools, some designed for accessibility testing and some

general purpose web design tools. Many of the basic tools that we need

are collected together in the Firefox Accessibility Extension (FAE),3 a

free extension to the Firefox web browser that acts as a launcher for a

wide variety of accessibility related tools. FAE is a useful and organized

way to access the tools that I’m going to be mentioning These are tools

that I have found to be of high quality, but if you feel that you get

the same or better results from other tools that you find to be more

comfortable, by all means use them.

Keep in mind that these are tools for general accessibility testing. Through-

out this book, tools for specific techniques and technologies will be

introduced. For example, in Thinking in Terms of Black and White, on

page 157, we’ll look at tools for testing contrast and in PDF: Trying to

Make Portable Accessible, on page 213, we’ll see tools for PDF accessi-

blity.

Web Standards Validators

For content to be accessible, the first step is that it needs to be stan-

dards compliant. Assistive technologies need to be able to correctly

parse our content for their users. Many assistive technologies have

been designed with workarounds to handle invalid markup, but they

work better when we design the content correctly from the start. To

do so, we need to test all of our HTML markup as well as our CSS

stylesheets and news feeds.

W3C provides validators for all three of these. You can validate your

page content with the Markup Validation Service4 which validates against

all major versions of HTML, XHTML, and SMIL as well as against a few

3. http://firefox.cita.uiuc.edu/

4. http://validator.w3.org/

http://firefox.cita.uiuc.edu/
http://validator.w3.org/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=69

BUILDING A TESTING TOOLBOX 70

Figure 4.1: Turning Off Styles with the Firefox Accessibility Extension.

other formats. Markup validation tells you how well your pages con-

form to their document type definition (DTD)—the formal rules for the

markup language.

The CSS Validation Service5 validates CSS files and HTML files with

included styles with selectable profiles for all versions of CSS as well

as profiles for mobile, television, and Scalable Vector Graphics (SVG)

usage. This points out improper usage including non-standard selec-

tors as well as selectors incompatible with your selected media profile.

The Feed Validation Service6 is used for checking your RSS and Atom

feeds. News feeds are a valuable tool for users, especially those with

certain disabilities because they provide another access path to your

content. In particular, feeds don’t specify visual formatting conventions

which makes them appealing to visually impaired users. If you use FAE,

the HTML and CSS validation services are available in the ‘Validators’

menu on the toolbar.

Keep in mind—standards compliance is only one step toward acces-

sibility. Sometimes this gets misunderstood as the only step toward

accessibility but nothing could be farther from the truth. While stan-

dards compliance is an important component, it is possible to create

sites that are both compliant and inaccessible. We’ll need other tests

beyond these validators to test for accessibility.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=70

BUILDING A TESTING TOOLBOX 71

Fallback Testing

The only things that we can assume about our users is that they can

send and receive text information. All of our content needs to be mean-

ingful without the addition of images, stylesheets, table layout or script-

ing. To test whether our content falls back successfully, we need to

be able to turn off any or all of the above and verify that the page

still makes sense. While I have seen people do this by adding condi-

tional switches to their web pages, I can’t recommend that route. If the

conditional switches aren’t carefully placed, they may be changing the

content in a way that isn’t equivalent to what a user who has the tech-

nology turned off in their browser would receive. Also, alternative text

for images can’t be switched in this way. What we really need to do is

turn off the technologies in the browser. FAE makes all of these options

easily available from the ‘Scripting’ menu and the ‘Style’ menu shown

in Figure 4.1, on the previous page.

Conformance Testing Tools

Many parts of WCAG and Section 508 are machine testable. Confor-

mance testing tools indicate the errors our pages have with respect

to the automatically testable aspects of these guidelines. Each of the

available tools have different strengths in what they test and how they

present results. Cynthia Says7 provides conformance checking against

WCAG 1.0 as well as Section 508. In addition, it can give a basic report

on the quality of alternative text for images. It isn’t as useful for testing

large sites, however, because it has a one page per minute per site limit.

The Functional Accessibility Evaluator8 from the University of Illinois at

Urbana-Champaign, seen in Figure 4.2, on the following page is capa-

ble of evaluating an entire website to two or three levels deep and can

store combined reports of multiple sites into one report. UIUC is also

the home of the Firefox Accessibility Extension; when I use the acronym

FAE, the Firefox Accessibility Extension will be what I am referring to.

Cynthia Says and The Functional Accessibility Evaluator are both avail-

able under the ‘Tools’ button in FAE.

I use both of the tools above, but my current preference is WebAIM’s

WAVE Web Accessibility Tool.9 I recommend the current development

5. http://jigsaw.w3.org/css-validator/

6. http://validator.w3.org/feed/

7. http://www.cynthiasays.com/

8. http://fae.cita.uiuc.edu/

9. http://dev.wave.webaim.org/index.jsp/

http://jigsaw.w3.org/css-validator/
http://validator.w3.org/feed/
http://www.cynthiasays.com/
http://fae.cita.uiuc.edu/
http://dev.wave.webaim.org/index.jsp/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=71

BUILDING A TESTING TOOLBOX 72

Figure 4.2: A Sample Report from UIUC’s Functional Accessibility Eval-

uator

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=72

BUILDING A TESTING TOOLBOX 73

Figure 4.3: WebAIM’s WAVE Web Accessibility Tool Overlays a Page with

Testing Result Icons

version, 3.5 rather than 3.0 which appears as an option in FAE. WAVE

3.5 provides text and outline views of the web page as well as a unique

page view, as seen in Figure 4.3 where testing result icons appear next

to the relevant page element. This makes finding the point in a page

where an error occurs easier. Additionally, WAVE shows where your

page is providing particularly useful accessibility features in the icon

interface.

I recommend using more than one of these tools for your automatic

testing. Each tool interprets accessibility guidelines slightly differently

and using more than one gives better testing coverage. You will want to

spend some time looking over the results that are given and interpreting

what they mean.

Sometimes a tool will issue a failure for something that should really

get a warning, like a duplicated alternative text. This is often a result

of attempting to automatically verify something that should be checked

by hand. If, for example, you get a duplication warning because all of

your pictures have the alternative text “picture”, the warning is really a

failure. On the other hand, if an icon appears at multiple locations with

the same alternative text, that would be correct. Ideally, the correct

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=73

BUILDING A TESTING TOOLBOX 74

response from an automatic testing tool in this situation should be

“Manually Test”.

Similarly, some tools issue a warning or failure for not having anything

to test. This is bad behavior on the part of the testing tool. Some tools

will test for headers and summaries on tables, but return a warning if

no tables were found on the page. Obviously, this is a problem in the

testing tool rather than in your content. You should learn the behavior

of your tools well enough to know when this is happening.

If you choose to target the draft version of WCAG 2.0 as a goal for your

projects, these tools will not work for you. It is likely that some of them

will begin to support WCAG 2.0 after finalization, but that is likely to

be a while yet. Until then, you’re on your own for conformance testing

beyond WCAG 1.0 and Section 508.

Media Testing Tools

All of the visual elements of a page need to be checked for color use,

contrast, flickering and appropriate alternative text. Automatic tools

can check for the presence of alternative text and some, like Cynthia

Says, attempt to measure alternative text quality. For actual media

properties, there are a few web-based tools available, but their limi-

tations make installable desktop tools far more attractive. We’ll spend

much of our time in Chapter 8, A Picture is Worth..., on page 150 and

Chapter 9, Video Killed the Something-Something, on page 179 learning

how to create and test accessible media assets.

Screen Readers

To verify that screen reader can correctly read your pages, you might

want to have a screen reader on hand. Many of the manufacturers

of the screen readers mentioned in Chapter 2, A Brief Introduction to

Disabilities, on page 26 provide limited demonstration versions. The

learning curve for a screenreader is somewhat high, however, so it may

not be a practical testing solution. An easier to learn solution is Peter

Krantz’s Fangs tool for Firefox.10 Fangs translates a web page into text

representative of what would be spoken by a screen reader. This is very

useful for verifying ordering of pages, existence of alternative text, and

other screen reader difficulties.

10. http://sourceforge.net/projects/fangs/

http://sourceforge.net/projects/fangs/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=74

BUILDING A TESTING TOOLBOX 75

Commercially Available Testing Tools

Depending on the size of your project, you may prefer to purchase an

integrated accessibility testing solution. These systems package cus-

tomizable automatic accessibility testing and reporting with a central-

ized tracking and project management solution. LIFT Machine,11 InFo-

cus,12 Deque Systems,13 and WebXM14 are well known options in this

market. All of these tools add some convenience and smart features

beyond other accessibility testing options. They do not, on the other

hand, take care of hand testing any more than other tool will. If you

are looking for a high degree of support for your accessibility testing

efforts, these tools may be worth considering. That said, in their full

“enterprise-ready” versions, some of them can also become quite expen-

sive. If your project has the budget, by all means take a look at them.

If you are already using another testing management system or issue

tracker, however, many of the freely available tools do a fine job.

While there are no completely integrated accessibility testing tools, I

don’t look at that as a disadvantage. With a wide variety of options,

we can choose the best tools for our own usage and needs without

being tied into an end to end solution with strong and weak points.

The real point of tools is to make our lives easier by saving time and

effort. The most important accessibility tests will be hand tests, as we’ll

discuss in the next tip. Hand testing can be time consuming, however,

so automating where we can is essential.

Act on it!

1. Install and experiment with the tools I just introduced. Try them on a variety

of sites and get used to their output.

2. Consider the ways you might integrate these tools into your existing test

suites.

11. http://www.usablenet.com/

12. http://www.ssbtechnologies.com/

13. http://www.deque.com/

14. http://www.watchfire.com/

http://www.usablenet.com/
http://www.ssbtechnologies.com/
http://www.deque.com/
http://www.watchfire.com/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=75

GETTING YOUR HANDS DIRTY 76

8 Getting Your Hands Dirty
Handle your tools without mittens; remember that the cat in

gloves catches no mice.

Benjamin Franklin, The Way to Wealth

Most of the tools that I mentioned in Building a Testing Toolbox, on

page 69 can’t be run automatically. The output of most tools needs to be

reviewed to ensure that their warnings and errors really are something

to worry about. Some matters of accessibility are also impossible to

test in an automatic fashion. Because we’re working with content that

expresses an idea, we simply cannot replace a human reviewer—the

attempts would be like turning loose control of a word processor doc-

ument to automatic grammar, thesaurus, and spellcheck tools without

reviewing them:

The majority of the gear that I mentioned in Structure a Difficult Toolbox

can’t be sprint mechanically. The production of the majority gear wants

to be reviewed to make sure that their cautions and mistakes actually

are amazing to be anxious concerning. A number of substances of con-

venience are also not possible to examination in a routine style. Since

we’re operational with substance that states a thought, we just cannot

substitute a person critic—the efforts would be like rotating not tied up

manages of an utterance computer text to routine syntax, lexicon, and

spell-check gears without appraising them:

See what I mean?

Testing By Hand

Each piece of content needs to have the same basic verification done.

These steps are specifically tuned to HTML content, but the idea remains

the same for any type of content that you produce. Only the exact tech-

niques will differ.

Check the Appropriateness of Alternative Text: You need to verify that all

of your alternative text representations are truly conveying the message

of your content. This includes alt= and label= attributes as well as tran-

scripts and captions. You’re not just looking to make sure the represen-

tation is there—you want to make sure that the representation is good.

For more on writing good text representations, take at look at Chap-

ter 8, A Picture is Worth..., on page 150 and Chapter 9, Video Killed the

Something-Something, on page 179. In the Firefox Accessibility Exten-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=76

GETTING YOUR HANDS DIRTY 77

sion (FAE), introduced in Building a Testing Toolbox, on page 69, you

can automatically view the alternative text for images by choosing Text

Equivalents → Show Text Equivalents.

Turn Off Images: Does your content make sense with images turned

off? Beyond a matter of whether the alternative text is appropriate, you

need to know whether eliminating the images breaks page flow in a

way that obscures the meaning of your content. FAE lets you turn off

images with Text Equivalents → Hide Images.

Turn Off Stylesheets: If your markup isn’t written in a natural reading

order and instead styled with CSS to place it in order on the page, it is

inaccessible to anyone without stylesheet support. You’ll need to view

the page with CSS turned off to test content reading order and flow. In

FAE, you would select Style → Disable CSS. If you use WAVE 3.5, you

can find out what the content would look like in a text only browser by

selecting ‘TEXT View’.

Check Another Screen Size: Many users with visual disabilities don’t

use conventional screen resolutions. You’ll want to make sure that the

page is still usable if viewed at low resolutions. This may mean letting

go of a few design decisions. If you have put effort into minimizing

scroll, it may simply be impossible at low resolution. Your primary goal

is to make sure that the content can still be accessed and understood

at low resolution. To reset screen sizes, you can change your monitor

settings, embed the page inside of a <frame> for testing purposes, or use

the Firefox Web Developer Extension,15 which will allow you to set and

select custom browser sizes.

Play Unplugged: If you remember the ten principles for web accessibility

from the preface, you know that the only thing that we can assume

about our users is that their assistive technologies will provide them

with the ability to send and receive text as if from a terminal screen

and keyboard. Hide your mouse and work your way through the site

to find out whether the process flows naturally. If you are particularly

ambitious and patient, you can also try turning off your monitor and

using a screen reader to navigate.

All of these techniques will give you valuable information about how

well your accessibility efforts are going. Don’t be fooled into thinking

that this is all that can be known, however. It is easy to “slip” doing

15. http://chrispederick.com/work/webdeveloper/

http://chrispederick.com/work/webdeveloper/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=77

GETTING YOUR HANDS DIRTY 78

these kinds of tests because, at the end of the day, we’re effectively

(badly) pretending to have a disability for testing purposes. Sometimes

we need to consult with real experts on using the web with a disability.

Involving Users with Disabilities in the Testing Process

No matter how experienced you become in web accessibility and using

tools and assistive technologies for testing, you’ll never be able to fully

replicate the experience of real users with disabilities. Ideally, we want

users with disabilities to have a voice in the process of designing acces-

sible content. There are two approaches that we can take:

Hold Focus Groups: If your content is already live, or close to release,

you can issue a call for participation to the users with disabilities that

are or will be using your site. You’ll want to inform your users of fea-

tures in your content and give them some questions to think about

as they review the site. When you meet with the users, you’ll want

to get answers to these questions as well as comments on what was

found easy or difficult to use and why. Focus groups are useful for get-

ting information about your how real users experience your content’s

accessibility.

Bringing in Testers with Disabilities: If you aren’t already well into the

development process, you can get more formal step by step feedback

by recruiting testers with disabilities. You need to find testers who

are indicative of your intended user base. For example, if your site is

intended to provide retirement services to elderly persons, you wouldn’t

want to focus your recruiting on college age students.

When you do bring in testers with disabilities, you’ll need to keep a few

things in mind:

• Make sure that the testing environment is appropriate to the needs

of your testers. Your testing environment needs to be physically

accessible. This includes obvious things like ramp and elevator

access as well as other issues like making sure paths are wide

enough and clear of obstacles.

• Be prepared to assist with arrangement of transportation and assur-

ing appropriate parking arrangements if these are factors.

• Ask your testers about specific needs. Odds are that you are not

an expert on your tester’s disability. Mention the arrangements

that you have made and ask if there is anything that you didn’t

think of. You’re not going to sound stupid (and even if you would,

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=78

GETTING YOUR HANDS DIRTY 79

it’s far better to sound stupid ahead of time than keep yourself

uninformed and have something go wrong).

• If the user is not bringing their own assistive technologies, make

sure that appropriate systems are set up and ready. This is another

area where you’ll need to be in communication with your testers

to know what they need ahead of time.

• Compensate your testers! I shouldn’t have to mention this one, but

I have heard of more than one organization that seems to feel that

testers with disabilities should be ready to jump for the opportu-

nity to test pages for accessibility for free. Your accessibility testers

should be compensated the same way any other test group would

be.

Once you have your testers on site, you should run them through the

same testing protocols that you would use for non-disabled users with

three questions in mind:

• Which tasks couldn’t be completed and why? If a tester with a

disability can’t complete a task, you need to ask what is wrong

with the site. Some possibilities are that the interaction requires a

pointer action, critical information is not provided in an alterna-

tive form, or an unnecessary timeout blocked the user.

• Did a task take unreasonably long to complete? This one is diffi-

cult to assess without experience. Different users with different

assistive technologies will have varying task lengths. If some tasks

seem to take much longer than expected, you will need to look for

the sub-tasks that took longest and attempt to find out whether

they can be streamlined.

• Was the user comfortable with the interface for completing the tasks?

It’s interview time. This is your opportunity to find out where the

interface was clear to the user and where it felt cumbersome. If

you are recording interactions, it may be helpful to ask the tester

to work in a speak-aloud fashion, commenting on their actions as

they take them (note that this will affect task completion times,

however).

For an in depth discussion of the issues surrounding planning and

recruiting for live testing involving users with disabilities, take a look

at Accessibility in User Centered Design: Planning Usability Testing at

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=79

GETTING YOUR HANDS DIRTY 80

UIAccess.16

Act on it!

1. Deconstruct a few web sites step by step. Does they stay clear and easy

to follow?

2. Try “playing unplugged”. It can be both terribly frustrating and incredibly

educational.

16. http://www.uiaccess.com/accessucd/ut_plan.html

http://www.uiaccess.com/accessucd/ut_plan.html
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=80

Part II

Building a Solid Structure

Man did not weave the web of life—he is merely a strand in

it. Whatever he does to the web, he does to himself.

Chief Seattle, Treaty Oration of 1854

Chapter 5

The Structured Life
All web content is built around a framework of basic HTML, and that is

where our look at accessible development will begin. Because we have

very few guarantees about the nature of the hardware and software

our users will use to view our content, we need to create markup that

expresses as much information as possible about its meaning. In Say It

With Meaning, we’ll look at reading order, semantic markup, and micro-

formats as ways to provide this information. Above all else, we’re here

to communicate, so we want to ensure that the words we use are under-

stood by our audience. To do this, we’ll discover that Keeping It Simple

Is Smart. Originally, the web didn’t make these distinctions and visual

presentation was done with markup elements. In Minding Your <p>’s

and <q>’s, we’ll look at some of this non-semantic markup as well as

replacement solutions using CSS.

Hyperlinks are what makes the web the web. In Linking It All Together,

we’ll examine ways of making our links clear to our users as well as

specific ways to use links to enhance the accessibility of our content.

Accessibility applies to visual layout too, and we want to make our

visual presentation appealing and useful for our sighted audience. In

Styled To The Nines, we’ll look at the basics of building layouts that

work for a variety of users and devices. Web technology hasn’t stopped

evolving either. There are new specifications in process that intend to

add new technologies and move the web in new directions. In Welcome

To The Future, we’ll look at a few of these new specifications and their

effect on accessible web development.

SAY IT WITH MEANING 83

9 Say It With Meaning
Words are only postage stamps delivering the object for you

to unwrap.

George Bernard Shaw

The only thing we can assume about our users is that they can send

and receive text-based content. Often, the user will be using assistive

technology software that parses the HTML, so we need to make sure

that it is standards compliant and designed with semantics in mind.

Semantic content is based around expressing meaning rather than pre-

sentation specifics. Rather than thinking “This is 18 point bold sans

serif text” you should be thinking “This is a second level heading for a

section”.

The first step to creating semantic content is making sure that markup

tagging is correctly used. Before CSS was widely supported, there were

a wide variety of formatting tricks based on conventional features of

tags, like the ability to indent a block with the <blockquote> tag. To

make matters worse, many web design tools reinforced these tricks by

hiding the actual tagging from the developer. For more on editors, see

the sidebar on the next page.

A well designed HTML document should be, for the most part, under-

standable to a human reader knowledgeable in HTML. Certainly, some

constructs like data tables are more difficult to comprehend, but the

nature of the content in them should be clear.

Reading Order

Our HTML also needs to stay readable with stylesheets and scripts

turned off. The easiest way to do this is to tag the content in natural

reading order. The default behavior of text browsers and many assistive

technologies is to read the content in the order in which it appears. If

you want to use CSS positioning to move things around later, that’s

fine—just make sure at all times that when the stylesheet is turned off,

the content still means the same thing.

For clarity and navigation, content should also be correctly nested.

Unfortunately, HTML doesn’t provide a <section> tag to make this easy1.

1. Although XHTML 2 plans to provide this element. See Welcome To The Future, on

page 105 for more on upcoming technologies.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=83

SAY IT WITH MEANING 84

The Problem with WYSIWYG

People frequently ask which editors I prefer to use for building
accessible web pages. They often stop asking when I tell them
I prefer to use text editors like TextMate or emacs. While visual
editors have gotten a little better over time, they have had a
bad reputation for producing invalid source or using depre-
cated tags. I’m not against the concept of visual editors, but
like all code generating software, you need to have a good
understanding of the code it generates and what you can
expect from it. Up to this point, I have not found a visual edi-
tor that gives me a level of control or quality to my liking—your
results may vary.

We can simulate sections with <div> and headings, but we need to watch

out for the ordering of the heading tags. Top level headings should

always be marked up as <h1> (don’t worry about what it looks like—

that’s what CSS is here for). The next heading should be either <h2> for

a subsection or <h1> for the next section. What it should never be is

<h3>—it isn’t correct to skip levels of headings. Heading tags are avail-

able to 6 levels deep. If you find that you are running out, it is likely

that you are either adding too many levels of headings to a document

where nested lists might be a better solution or you are tagging a large

document that should be broken up into smaller pieces.

Using Storyboards to Avoid Mixing Content and Presentation

When the time comes to design the interface or look and feel of a web

site, I like to start with storyboards. Storyboards help me think about

the look of a site without thinking about the preconceptions of specific

markup and styling. Good storyboards should be simple drawings of

the site that avoid preconceptions of implementation decisions. Many

semantically bad markup choices originate in “throwaway” layouts that

stick around for too long. Web layout tools make it very easy to slip

into table based layouts or misuse of block quotations or lists. For this

reason, I recommend against using WYSIWYG web development tools

to do these storyboards. Using these tools is invariably slower than

simply sketching out the design and, during this process, you want to

be getting ideas down quickly rather than spending time catching up

with a layout tool. This is also a good reason not to use presentation

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=84

SAY IT WITH MEANING 85

tools like Powerpoint or Keynote. These tools also create a problem by

providing interactions that are not reflective of the way a web interface

would be designed.

Additionally, a peculiar psychology surrounds this practice—people are

too tempted to hold on to these “real” views of the final product—either

they assume that the final design will look exactly the same or, even

worse, someone attempts to reuse the storyboard code as it is in the

actual implementation. I find it best to avoid this temptation and just

stick to sketches on paper or a whiteboard. This can have other bene-

fits as well. Recently, I designed a whiteboard layout for a site targeted

toward elementary school students. The look of the whiteboard story-

board worked out so well that we modeled the final site design on a

whiteboard motif. This isn’t an idea that would be used widely, but we

wouldn’t have thought about the direction if I had worked directly in a

WYSIWYG tool. I can’t speak for your results but, if you have difficulty

working through a design, you may find it useful to use unusual media

in design process.

Adding More Information with Microformats

Microformats are small specifications that use the class= attribute to

add semantic information to HTML elements. This allows software tools

to extract the information in the format to be presented in a differ-

ent form or stored for future reuse. Additionally, because the format

uses class=, the tagging provides plenty of information to allow cus-

tomized styling with CSS. Adding microformats for accessibility is a

relatively new approach. Because microformats contain a lot of seman-

tic information and can be output in many ways, we give our users

more options for accessing the information in the way most useful for

them. Let’s look at an example of how a microformat can add extra

contextual information to our page—lets say we want to keep track of

contact information for John, who will be helping us later on in the

book:

<p>John Q. Public

1313 Mockingbird Lane

Nowhere, XX, 99999</p>

This works—we have a name and an address—but we can do better.

We know which parts of the address are first, middle, and last names

as well as the meanings of the different parts of the address. If we

pass this on to the user, their browser can use extensions like Oper-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=85

SAY IT WITH MEANING 86

ator for Firefox, which allows customization of microformat output2 to

access the information on their own terms. One of the benefits is that,

by extracting semantics and allowing for alternative presentations, the

navigational load of the site can be reduced, which is important for

users with disabilities. We could build spans with classes to describe

this information better, but we don’t need to—it’s already been done for

us. Here is how John’s contact information would be marked up with

the hCard microformat:3

<div id="hcard-John-Q-Public" class="vcard">

John

Q

Public

<div class="adr">

<div class="street-address">1313 Mockingbird Lane</div>

Nowhere,

XX,

99999

</div>

</div>

Now we have all of the information about the contact stored in a reusable

semantic format for our users. For those of you with database expe-

rience, it should also be clear that using a microformat reduces the

workload of deciding how to design output templates. Microformats

are a methodology rather than a specific technology, however. I have

described one of the formats provided by http://microformats.org/ but

there are other forms to choose from such as W3C’s RDFa specifica-

tion.4

Custom Formats

Even if there isn’t a predefined microformat for our needs, there is noth-

ing stopping us from building an internal format of our own. Tools like

Operator, mentioned above allow you or your users to add new han-

dlers for parsing new formats if desired. John is a big music fan and

wants to share information about his collection. For each album, he’d

like to have:

• Artist

2. http://addons.mozilla.org/en-US/firefox/addon/4106

3. http://microformats.org/wiki/hcard

4. http://www.w3.org/TR/xhtml-rdfa-primer/

http://microformats.org/
http://addons.mozilla.org/en-US/firefox/addon/4106
http://microformats.org/wiki/hcard
http://www.w3.org/TR/xhtml-rdfa-primer/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=86

SAY IT WITH MEANING 87

• Title

• Year

• Label

And for each track of the album:

• Title

• Length

This is straightforward—by convention, we can use <div> for blocks of

information like album or track and for individual elements like

artist or title. All that’s necessary to create the format is adding classes

to indicate the type of information:

<div id='album-Koala-Grip' class='album'>

Koala Grip

Koala Grip

2006

Unsigned

<div class='track'>

My Little Jewel

2:56

</div>

<div class='track'>

Multiple Frenzy

2:59

</div>

</div>

This is clearly a simplified format. We could easily add more informa-

tion like track numbers, song ratings, cover art, or the song itself. For

the last two, we would need to assign classes for appropriate or

<object> tags, but the method remains the same.

Not all assistive technologies make use of semantic data at this point,

but there is growing interest in using this kind of markup to provide

clear contexts to users. I expect that tools like Operator will continue

to grow in popularity and that microformats will gain support in screen

readers which can benefit from added information.

Act on it!

1. Examine the microformats described at http://microformats.org/. Look specif-

ically for formats that work well with the content on your sites and how using

them might be beneficial.

http://microformats.org/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=87

SAY IT WITH MEANING 88

2. Develop a custom recipe format. Go through the steps of deciding what

information needs to be contained in the format and how it will be marked

up (pay attention to natural reading order). If you get stuck, feel free to

refer to the RecipeML format at http://www.formatdata.com/recipeml/

3. Use storyboards to describe a look and feel for the hCard and music col-

lection formats. Use CSS to style the tag formats for a web browser based

on your storyboards.

http://www.formatdata.com/recipeml/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=88

KEEPING IT SIMPLE IS SMART 89

10 Keeping It Simple is Smart
A vocabulary of truth and simplicity will be of service

throughout your life.

Winston Churchill

Using straightforward language is an easy way to increase the acces-

sibility of content. Some cognitive disabilities can slow down language

processing and complex text makes content really difficult for these

users. Screen readers have also been known to choke on unusual words

and usage.

At some point, most of us have spent a lot of time in school learn-

ing about language grammar and vocabulary. I understand that some

might like to justify the classroom time by attempting to inspire onlook-

ers with impeccable locution utilizing esoteric nomenclature. Please

don’t. It just makes your content more difficult to read. Besides, when

you spend time trying to sound smart, it works—you come off as some-

one trying to sound smart. Keep it simple and informative and leave

the two dollar words for Scrabble. This doesn’t mean you should “talk

down” to your readers by oversimplifying, just that you should use con-

ventional language to express yourself.

Some experts recommend writing to a late primary school level and,

if you are targeting a general audience, this might be useful for you.

Forcing the “fourth grade reading level” standard on all content, how-

ever, is complete nonsense. If you are writing content for researchers

in subaqueous plaited container construction, then you should write to

the level and conventions of that audience rather than to grade school

children. Your content should always be written to the needs of your

users rather than to arbitrary guidelines.

Reading Level

Reading level is a way of measuring the complexity of text by looking at

average sentence length and the average number of syllables per word.

In general, these measures give a good idea of how difficult a page may

be to read. You’ll usually see references to the following measures:

• Flesch Reading Ease is a score where higher numbers represent

more easily read text. In the United States, Reading Ease is used

as a standard test of readability for documents and forms. The

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=89

KEEPING IT SIMPLE IS SMART 90

Reading Ease of this section is 52.78, making it similar in difficulty

to Time magazine.

• Flesch-Kincaid Grade Level represents the number of years of edu-

cation required for understanding. For levels 12 and under, Flesch-

Kincaid is meant to translate to a grade level in school. This sec-

tion’s grade level is 9.56, so a high school freshman should be able

to comprehend it.

Because these measures are widely used, they are often available in

word processor software. Juicy Studio also has a tool that you can use

to check the readability of a web page.5 These measures give a bench-

mark for readability, but you shouldn’t weigh them too heavily. Because

these are simple formulas, they can be tricked easily. For example, even

though ‘alligator’ isn’t a very difficult word, it scores high because it

has four syllables. Many popular books have higher reading levels than

expected for this reason.

Specialized Terminology

When writing technical text or any other specialized content, we need

to pay attention to special words and usages. For example, the words

‘parse’, ‘script’, ’method’, and ’object’ are much more common in texts

about software development. They also have special meanings and con-

notations that a general reader might not be familiar with. If the terms

should be common knowledge for your readership, there is nothing to

worry about. If you have any doubts, however, it is best to define it on

first use.

If you find yourself introducing a lot of new terminology, your users will

find it useful to have a glossary available. The glossary shouldn’t be a

replacement for first use definitions though—jumping back and forth

between text and glossary has a negative impact on the user’s ability to

understand. For software or mathematics related text, you should also

make sure that the meaning of any names are understood. This can

be done with description in the narrative as well as by using names

consistent with common practice (such as using i, j, and k as indexing

variables).

5. http://juicystudio.com/services/readability.php

http://juicystudio.com/services/readability.php
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=90

KEEPING IT SIMPLE IS SMART 91

It’s All Greek to Me

Use of multiple languages can cause accessibility problems. At this

point in time, for example, screen readers are usually designed to work

with a single language. By specifying the natural language of a piece of

text, we can give the screen reader the opportunity to handle unusual

text. Screen readers currently do little or nothing with this information,

but they could use it to switch language patterns to handle the word,

or point out to the user that the word is in another language and spell

it out.

You should specify a text’s native language with the lang= attribute. The

content of the attribute should be an ISO 639-1 language code.6 For

the page’s primary language, add the lang= attribute to the <html> tag.

Nearly all HTML elements can have a lang= attribute, so when you’re

just using a short passage in another language, you would just add

lang= to the <p>, <q>, or tag containing the passage.

You don’t need to highlight all foreign terms though. When the word is

commonly understood, like pizza or sushi, you don’t need to call it out

with a lang= attribute.

The Idiomatic Minefield

Overuse of idiomatic expressions can be like slapping your users with a

2×4. I feel fairly confident that you understand that I’m not really com-

paring idioms to explosives and that I would never suggest that using

them is nearly as bad as hitting your users with a large piece of lum-

ber, but it makes for a nice illustration. Idioms are valuable for putting

abstract ideas into concrete terms, but they can also be confusing to

your readers. If your users have cognitive disabilities that make it dif-

ficult to comprehend idioms or simply if they are unfamiliar with the

idiom used, however, use of expressions can reduce comprehension of

the text as a whole.

You should always be careful of using slang or idiomatic expressions

that might not be understood by your audience, particularly if it doesn’t

in some way enhance the text as a whole. The same problem can apply

to using humor, wit, or satire. Don’t avoid these tools, just use them

carefully and always in context.

6. A list of valid codes can be found at http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=91

KEEPING IT SIMPLE IS SMART 92

Giving Meaning To Abbreviations

Abbreviations and acronyms are nice shorthands for frequently repeated

concepts or phrases. Not all of our users (or their screen readers if

they’re using them) pick up on these, however.

Abbreviations

Abbreviations are marked up with the <abbr> tag:

<abbr title=’expansion’>abbrev.</abbr>

where expansion is the full text abbreviated. Here’s an example:

<abbr title=’tablespoon’>Tbsp.</abbr>

<abbr> can also be used for unconventional types of abbreviation. For

example, emoticons abbreviate concepts like smiling or frowning. We

might mark them like this:

<abbr title=’smile’>:-)</abbr>

Acronyms

Acronyms are marked up with the <acronym> in a similar way to <abbr>:

<acronym title=’expansion’>Acronym</acronym>

where the title= attribute is again an expansion of the acronym. For

example:

<acronym title=’synchronized multimedia integration language’>SMIL</acronym>

Some browsers and screen readers ignore the extra information in the

<abbr> and <acronym> tags but, for those that do, specifying the expan-

sions significantly increases the understandability of your text. For the

users that can’t or don’t know how to access the expansion, it’s a good

idea (and good language style) to expand the acronym or abbreviation

on first use anyway.

Language gives us an immense amount of power for communicating

ideas to our audience, but that power also allows us to overdo it and

lose our audience along the way. By keeping our language usage clear

and well explained, we ensure that our users are more able to get the

meaning we’re trying to convey.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=92

KEEPING IT SIMPLE IS SMART 93

Act on it!

1. Find the reading level of a few of your pages. Compare them to reading

levels for sites that you think have a similar readership. Do the numbers

match reasonably closely?

2. Search your content for abbreviations and specialized terminology. Con-

sider whether it might be obscure for your audience and add extra infor-

mation as necessary.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=93

MINDING YOUR <P>’S AND <Q>’S 94

11 Minding Your <p>’s and <q>’s
When a subject becomes totally obsolete we make it a

required course.

Peter Drucker

Sometimes it seems like “semantic” simply means “use a bunch of tags”.

The reality is that the tags you use with semantic markup need to con-

vey meaning. We have already seen tags like <abbr> and <acronym> that

allow us to clarify the meaning of our content.

HTML provides many markup tags that allow us to express meaning.

For example, <q>, <blockquote>, and <cite> let us refer to other sources

of information and clearly show where that information came from. A

full discussion of every tag in HTML is well outside the scope of this

book, but a good HTML reference will give you an overview.7 Not all

tags are useful for expressing meaning, however. Browsers support a

wide variety of markup that isn’t semantic in nature and may obscure

the meaning of your content, harming overall accessibility.

Fonts and Formatting

Before CSS support allowed us to style text, HTML had tags to do

the job. Most of these formatting tags overlapped in appearance with

semantic tags, leading to confusion about the difference (in fact, the

formatting tags became more popular because they’re shorter to type).

The formatting variants have been deprecated quite some time ago,

however, in favor of semantic equivalents or tags with a class=

attribute and an associated style. For example, the and <base-

font> tags were deprecated (in 1998!) in favor of more powerful CSS

properties, such as font-family, font-size, and color.

W3C’s deprecations with respect to text styling are a bit strange. While

<s> and <u> for strikethrough and underlined text were deprecated, ,

<i>, and <tt> for bold, italicized, and fixed-width text were not. I rec-

ommend avoiding all of these in favor of more semantic choices such

as and for emphasis and strongly stated messages. Fig-

ure 5.1, on the next page shows appropriate translations from depre-

cated HTML to CSS along with a few possibilities for semantic tagging

choices:

7. Jennifer Niederst-Robbins’ Web Design in a Nutshell [nie] is a particularly good option.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=94

MINDING YOUR <P>’S AND <Q>’S 95

Visual Form HTML CSS Semantic

Bold font-weight

Italics <i> font-style: italic <var>

Underline <u> text-decoration: underline 8

Strikethrough <s> text-decoration: line-through

Overline None text-decoration: overline <ins>

Fixed Width <tt> font-family <code> <kbd>

<samp> <var>

Figure 5.1: Visual Formatting Expressed in Deprecated HTML and in

CSS. Also Shown Are Possible Semantics Commonly Represented By

The Formatting

[[Author: Production: Why isn’t footnote 5 showing up anywhere?]]

Framed!

Frames occupy a strange space in the HTML standard. Instead of being

a part of the main specification, frames are kind of “bolted on” to the

side of it. Rather than defining part of a page, frames are a higher level

form for wrapping HTML pages inside of HTML pages. This makes them

kind of a pain to manage in general but also creates a few accessibility

concerns.

Because frames are an external container around normal page flow, it

is much more difficult for someone in a non-visual interface to inter-

act with them. Some screen readers allow the user to jump between

them, but it behaves like interacting with two separate windows (and

for practical purposes, they kind of are). Links targeted from one frame

to another also will not work when frames are disabled.

The official solution to these problems is to let the users know what

is contained within a frame by adding a title= attribute and providing

an alternative version of the content inside of a <noframe> tag. At this

point, you’re usually left with the option of Writing Everything Twice

(No!) or only using frames to create floating navigation. Since we can

do this with CSS, I suggest doing it that way and leaving frames out of

the picture entirely—it’s hard to think outside the box when you keep

drawing them around yourself.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=95

MINDING YOUR <P>’S AND <Q>’S 96

Gate Crashers

During the “Browser Wars”, some tags appeared that never made it into

standard HTML. Some, like <applet> and <embed> were first attempts at

new technologies that were later formalized—in this case, with <object>.

Others were presentation effects intended to sway developers and users

to prefer one browser over another. Many times these effects weren’t

very good to begin with and were never officially adopted. Backward

compatibility made them some of them stick, however. As well as being

generally irritating to most users, these tags are accessibility problems.

The three that concern us are:

• <bgsound> is a way to embed background sounds into pages. The

first problem is that continuous background sounds can interfere

with the output voice of a screen reader. The larger problem is

that <bgsound> doesn’t provide a method to turn the sound off

other than turning off system sound—a completely unacceptable

option for screen reader users. As we’ll see in It’s Their Web—We’re

Just Building In It, on page 131, it is also generally unacceptable

to take control of the user’s system in this way.

• <marquee> provided scrolling “ticker tape” text. This poses two

problems. The user can’t control the speed of the scrolling, so they

may not be able to read the text quickly enough to understand it.

Also, the marquee movement is generally choppy, so there is a

possible threat to users with photosensitive epilepsy (see It’s Not

Polite to Flash the Audience, on page 181 for more on this).

• <blink> is the infamous leader of “bad tags”. Like <marquee>, <blink>

poses a real threat to photosensitive users. Some browsers have

even modernized the blinking text effect by introducing a nonstan-

dard text-decoration: blink; to CSS. Just Say No!

Most of these tags are deprecated or otherwise out of date and hopefully

you haven’t used them in quite some time. Often, however, we have to

go into legacy pages from the time period where these were in common

use. One of the first steps in updating old content should be to purge

these usages.

Act on it!

1. Do some spring cleaning. Search through the sites that you maintain and

eliminate deprecated tags from your markup, replacing them with appro-

priate tags and styles.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=96

MINDING YOUR <P>’S AND <Q>’S 97

2. If you use frames, consider what would be necessary to eliminate them in

favor of positioned <div> elements.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=97

LINKING IT ALL TOGETHER 98

12 Linking It All Together
Thus he goes, building a trail of many items. Occasionally

he inserts a comment of his own, either linking it into the

main trail or joining it by a side trail to a particular item.

Vannevar Bush, As We May Think

Hypertext links are the heart of what makes the web an interesting

environment for developers and users. Because links are so critically

important, we need to make sure that they are used in a clear way that

doesn’t obscure their intent. For sighted users, our links need to be

clearly distinct visually so they don’t require large amounts of attention

and mental processing to find and understand. Similarly, we need to

prevent links from “hiding” when placed next to each other. For screen

readers, we should also provide extra metadata describing the nature

of our links. It isn’t particularly difficult to do this, but we’ll need to

keep a few things in mind.

Making Links Stand Out

For visual accessibility, links should “pop” on the page and clearly be

links. This can be done by assigning the link with a clearly contrasting

color, by changing the font to make it bold or underlined (the de facto

method for representing a link), or both. In addition, it is good practice

to use the CSS :hover selector to give visual feedback to the user.

Links should also be spaced in a manner that makes the separation

between links clear. Consider the following:

These Links

Look Like The

Same Link

These links would appear to be one link in many cases. The biggest cue

would be that the underline, if used, continues under some words but

not others. If the links are separate concepts, you could add a separat-

ing character like a comma between them to reinforce the difference.

If you have added links to words in a sentence in a way that makes

them look like a single link, it’s time to revise the text to clarify the link

usage.

Saying Where The Link Goes

The text enclosed in the <a> tag should give the reader a reasonable idea

of where the link will go. In other words, you should avoid anything that

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=98

LINKING IT ALL TOGETHER 99

looks like:

Click Here

As a general rule, if you have the word “click” in your links, something

is probably wrong with the way you’re writing your content. The user

already knows that links are for clicking, what they want to know is

why they should click that link and what to expect on the other side.

Some accessibility advocates say that every link should have different

text identifying it. While I see the value in clearly labeled links, I don’t

buy going to that extreme. First, if I have the same link at multiple

points on a page, I expect that it should have the same text. Second,

the primary reason to structure the page this way seems to be so people

can scan the links of the page without reading the surrounding context.

I’m sorry if this seems harsh, but when I’ve already explained the links

in the context of my page content, I don’t feel responsible for providing

context a second time for people who don’t want to read it the first time.

The real concept to remember is that the links aren’t all “Read More” or

“Click Here” which doesn’t give any context to the user about the link

function. We also have the option of providing extended information

about the link definition to go with the surrounded text.

The title= attribute can be set for a link to give extra information to the

reader about the nature of the content behind a link. Screen readers

can be configured to make this option available and browsers make it

available as a tooltip for the link. Not all links need titles, however. If you

find yourself writing link titles that simply repeat the text surrounded

by the <a> tag, it is better to leave it blank. Similarly, if you find yourself

writing long titles, it is a good sign that you need to revise your narra-

tive. Link titles should generally follow the same rules as alt= attributes

for images, as described in To Put it Another Way, on page 162. Let’s

look at an example from my blog where I had one link that doesn’t need

a title and one that benefits from it:

About Jeremy

<a title='Information about the design of this site'

href='/static_pages/show/2'>Colophon

In the first link, I didn’t add a title because I feel that “About Jeremy”

gives enough information to the user about what can be found on the

other end of the link. For the second link, I wanted to give title infor-

mation that the user could refer to if they don’t know that a colophon

gives information about the design of a piece of content.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=99

LINKING IT ALL TOGETHER 100

Skip Links

Skip links allow users who cannot use pointer devices because of visual

or mobility impairments to jump past complex or frequently appearing

content like navigational elements. Implementing skip links is about

as trivial as accessibility gets—all you need to do is place a target link

early in the page and a named anchor where you want the user to be

able to skip to:

Skip to Main Content

About Jeremy

<a title='Information about the design of this site'

href='/static_pages/show/2'>Colophon

Articles

Galleries

<h1>My Fine Article</h1>

<p>Some content.</p>

It’s as easy as that. The common use case, as shown, is to skip naviga-

tion. Skip links are also useful if you have lists of links, long tables, or

complex image maps that the user might want to skip past.

Links are what the web is all about. By keeping their purpose clear

we make our sites more accessible as well as increasing the usability

for all of our audience. Now that we know how to make our content

understandable for our users who work in text browsers and screen

readers, it’s time to look at making it visually useful for our sighted

users as well.

Act on it!

1. Make your links clear: Check that your links are clearly separated and add

a title= attribute to links that can benefit from an extended description.

2. Improve navigation for your keyboard users by adding skip links wherever

you have repetitive or complex content.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=100

STYLED TO THE NINES 101

13 Styled To The Nines
Style is the dress of thoughts.

Philip Dormer Stanhope, fourth Earl of

Chesterfield, On Education

Now I’ve done it. I’ve pushed you to design semantic content and push

all of the visual presentation from your markup. Accessibility has made

your page completely bland, right? Absolutely not. Using cascading

style sheets (CSS) to create a visual layout is perfectly compatible with

accessible web development.

Some web accessibility “experts” argue that the only good page is a

style free page, but this perspective is weak at best. When we sepa-

rate content from presentation we allow our users to deactivate the

stylesheet if it helps them better understand our content. Additionally,

if the stylesheet is well designed, it can give visual cues that make our

content more understandable for some users.

In short, when people want to beat your site black and blue (on a white

background) in the name of accessibility, don’t worry about them—

they’re reacting to a previous age of the web when we couldn’t indepen-

dently style our content. That said, there are a few things to keep in

mind when you design accessible stylesheets.

Staying Flexible

To be accessible, our stylesheets need to be ready for a wide variety of

users. First up, you need to make sure your color choices make sense

for users with color deficiencies. Information on making good color

choices can be found in Stoplights and Poison Apples, on page 151 and

Thinking in Terms of Black and White, on page 157. Some sites choose

to provide alternative stylesheets that have been specifically tested for

color and contrast. If you do this, you need to ensure that the inter-

face to change stylesheet is clearly visible to the user. As an example, I

remember one web site where the contrast control was displayed with

paired greyshades that would have made it impossible for someone who

needed high contrast to see it. You should ask, if you have put forth the

time and effort to create a good color and contrast controlled layout,

why not just use it as the default? Even for users who don’t have color

deficiencies, the added contrast is beneficial.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=101

STYLED TO THE NINES 102

Speaking of alternative stylesheets, some people insist that high con-

trast and zoomed layout stylesheets be made available. If you are already

providing multiple stylesheet options, you probably should develop these.

You should know, however, that the people who need extremely high

contrast or zoom levels are probably already using assistive technolo-

gies that do these things for them better than a stylesheet can. What

is more useful for these users is to use relative units of measure like

em or percentage in your layouts rather than fixed units like pixel or

point. Relative units adjust to the font or element size and make it more

comfortable for user adjustment.

Our sites also need to be functional when the stylesheet is turned off

completely. This means that you shouldn’t use CSS to express content.

For example, if you use list-style-image to set custom list bullets, they

can’t be used to give added information to the list because they aren’t

available without the stylesheet. At the other end of the spectrum, if

what you want to mark is the title of a section, you should be using a

heading tag rather than styling a with large bold type.

There is a reasonably well known trick for coercing transparency from

PNG images in Internet Explorer by marking them up like this:

<div class='transparent'></div>

and styling them like this:

<style>

div.transparent {

background: url(transparent.png) no-repeat;

height: 100px; width: 100px;

}

</style>

<!-- Some Evil IE Voodoo -->

<!--[if gte IE 5]>

<style type='text/css'>

div.transparent {

background: none;

filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(

src='transparent.png', sizingMethod='crop');

}

</style>

<![endif]-->

This method has a major problem—when CSS is disabled, there’s no

image at all! When the image does appear, it still doesn’t have an alt=

attribute because the image only exists as a CSS background. This

is certainly not an accessible solution. Fortunately, with improved PNG

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=102

STYLED TO THE NINES 103

support in IE7, this particular problem should fade away, but be careful

not to use other “solutions” like it. Some script tricks also rely on using

the hidden property. Keep in mind that, when the stylesheet is turned

off, the elements aren’t hidden anymore. If you test each change as you

make it, as recommended in Testing as a Design Decision, on page 65,

these kinds of problems won’t sneak up on you.

The Media Types Myth

You may hear recommendations to use the @media rule from CSS 2 to

add device specific accessibility to a web site. The idea behind @media is

to add specific CSS styles that are present for different types of output

device. This is actually a pretty good idea but, in practice, it’s has never

been well enough supported to make it worth spending time on. Major

screen readers haven’t supported the added aural stylesheet properties

necessary to make @media aural work for their users. In a similar fash-

ion, specialized TTY technologies for web accessibility never became

popular due to speed constraints.

But at least @media lets us do something for our braille users, right?

Not so much. It’s important to understand that braille text is com-

posed with a series of contraction rules. For example, contracted text of

the previous sentence might look like: [CAP]S[TH][ING] IMPORTANT TO

U[ST][AND] IS T BRL TEXT IS [COM]POS[ED] [WITH] A S[ER]IES [OF]

[CON]TRAC[TION] RULES. Each of the contractions, marked with ‘[]’

represents one or two braille characters. This translation is difficult to

generate automatically, so I don’t advise doing the translation yourself

unless you are experienced in braille (I’m not, so I don’t). The impor-

tant thing to know in relation to CSS media types is that even if you

build a braille stylesheet, all you would be doing is removing styles that

wouldn’t make sense in braille—the text doesn’t translate any better

than simply ignoring the stylesheet.

I don’t mean to demonize @media, however. The ‘print’ media type is

widely supported for providing a consistent printable version interface

and you can support compact display of pages on some mobile devices

by using the ‘handheld’ type. The only hazard is thinking of @media as

a way to support assistive technologies.

Clearly, the mechanisms for tailoring our CSS for accessibility devices

aren’t ready for prime time, but we have seen that striving for semantic

markup doesn’t mean that we have to give up on providing an engag-

ing visual layout. By assigning styles to markup, the design options

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=103

STYLED TO THE NINES 104

provided by the web can be made available in an accessible manner.

Just make sure that your design choices don’t obscure your content

and allow them to be turned off if the user needs to. Ultimately, we

would like to have even more control over our markup and presenta-

tion. Attempts to improve the web are being made and next we’ll look

at how these attempts impact accessible web design.

Act on it!

1. Turn off the stylesheets on your web pages and make sure that the con-

tent is still understandable. If it isn’t, try to convey the information provided

visually in a secondary way.

2. Check your color usage, using the tools described in Chapter 8, A Picture is

Worth..., on page 150. If the color usage poses a problem, look for an alter-

native that works. Often improving the contrast will take care of problems

for color blind users as well.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=104

WELCOME TO THE FUTURE 105

14 Welcome To The Future

The best way to predict the future is to invent it.

Alan Kay

I’m a big fan of those classic news reels that predict what life in ‘the

future’ is going to be like. These films are always overly optimistic, pre-

dicting revolutionary rather than evolutionary change. The technologies

we’re going to look at aren’t that far in the future (all three are under

active development), but only time will tell whether they will turn out

to be transistors or flying cars.

Even if they change radically before completion, looking at edge tech-

nologies is still valuable. These are major contenders in defining the

future of the web and we should be aware of how they could impact they

way we design content. It also gives us a chance to practice approach-

ing new technologies with an eye on accessibility and evaluating them

accordingly.

CSS 3 Speech

CSS 3’s speech module9 allows us to give guidance to screen readers as

to how content can be best presented in audio to the user. For example,

if we wanted to “highlight” links by marking them with a sound and

speaking them in a female voice, we could do that:

a {

voice-family: female;

cue: url(linksound.aiff);

}

The only concern that I have about this is that there is currently no con-

vention for how links should be signaled with audio. I expect that these

conventions would emerge fairly quickly though. The speech module

also lets us specify how something should be read. In Keeping It Sim-

ple is Smart, on page 89, we looked at the <abbr> and <acronym> tags.

A common problem with these tags is that they still don’t necessarily

read correctly. With CSS 3 speech, we can specify that the screen reader

should read the expansion of abbreviations and spell out acronyms like

this:

abbr {

9. http://www.w3.org/TR/css3-speech/

http://www.w3.org/TR/css3-speech/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=105

WELCOME TO THE FUTURE 106

content: attr(title);

}

acronym {

speak: spell-out;

}

Speech styles can also be used to change the voice to reflect content.

In Chapter 9, Video Killed the Something-Something, on page 179, we’ll

spend a lot of time looking at a dialogue. In the HTML transcript of that

dialogue, we can define differences in the speakers to make it easier to

follow:

.john {

voice-family: male;

voice-channel: left;

}

.mary {

voice-family: female;

voice-channel: right;

}

.roy{

voice-family: neutral;

voice-volume: soft;

voice-stress: moderate;

voice-pitch: high;

voice-rate: slow;

}

In this case, I give gender, position, and pitch information to differenti-

ate the speakers. This is certainly an improvement over a single voice,

where we have to pay attention to announced transitions in speaker. As

speech engines improve, I can even see this being valuable for general

audiences.

CSS 3 speech seems to be a clear win for developers and end users. The

specification is still a working draft, however, so it could still change a

little. Early support for CSS 3 Speech is currently available in the Fire

Vox voice extension for Firefox10 and in the Opera web browser11

10. http://www.firevox.clcworld.net/

11. http://www.opera.com/ — Voice support is currently Windows only

http://www.firevox.clcworld.net/
http://www.opera.com/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=106

WELCOME TO THE FUTURE 107

XHTML 2.0

XHTML 2.012 is W3C’s solution for future web development. It is still

a very active working draft, so many changes can still be expected

before the specification settles. The structure of XHTML 2.0 makes a

few accessibility methods easier to implement.

The most obvious change is the addition of the href= and target= attributes

to the core properties. This means that anything can be a link as well

as be linked to. This makes it easier to add things like skip navigation

without polluting your markup with a horde of named anchors—rather

than linking to something next to where you want to go, you can link

to it directly.

Specifying page structure has also been simplified in XHTML 2.0. With

the addition of a <section> tag, keeping track of which heading level

you’re at becomes less important:

<body>

<h>Top Level Heading</h>

<p>Some introductory Text</p>

<section>

<h>Second Level Heading</h>

<p>More Text</p>

</section>

</body>

This is particularly useful in templating environments where each devel-

oper needs to know what their local top level is to maintain correct

nesting. With sections and headings, that concern no longer exists.

Part of XHTML 2.0 that promises to be particularly useful for accessi-

bility is the expansion of how the <object> tag is used. Let’s present a

video with two levels of graceful degradation:

<object src="video.mpg" srctype='video/mpeg'>

<!-- If the video can't be played, try an image and transcript -->

<object src="photo1.png" srctype='image/png'>

Mary sits facing away at a desk, speaking on the phone.

</object>

<p class='mary'>You worry too much. Everything's Fine!</p>

<!-- More still frames and transcript text follow... -->

</object>

This feels much clearer than existing alternatives. First we present

video—if that doesn’t work, we provide a transcript with still shots—

12. http://www.w3.org/TR/xhtml2/

http://www.w3.org/TR/xhtml2/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=107

WELCOME TO THE FUTURE 108

finally we give alt text for the still shots if they can’t be displayed. The

only thing missing is a clear description of how the user could imme-

diately default out the video without turning it off in the browser itself.

The quality of alternative that be provided is also exceptional. Rather

than being confined to plain text as with alt= attributes, this function-

ality allows us to specify richer, more semantic alternatives to our con-

tent.

XHTML 2.0 doesn’t change accessible development in any earth shat-

tering ways, but it does provide some tools that try to make the job

easier. It will be interesting to see where continuing progress of the

development team takes the specification.

HTML 5.0

HTML 5.0, originally called Web Applications 1.0, is the result of dis-

cussions to update HTML by the Web Hypertext Application Technology

Working Group (WHATWG).13 The WHATWG work has been accepted as

a starting point for an official W3C working group. Thus far, HTML 5.0

doesn’t appear to add much in the way of accessibility support. Many

of the new proposals pose problems for accessibility, however.

Because HTML 5.0 focuses on reverse compatibility with existing browsers

rather than on a new specification, there is little focus on a DTD val-

idation or well-formedness of code. Instead, correctness appears to be

determined by browser behaviors. Allowing unstructured “tag soup”

development without cross-browser standardization will make it signif-

icantly more difficult for accessibility technologies to successfully inter-

pret content

New tags introduced in HTML 5.0 are a bigger problem. At this point,

the new <audio>, <video>, and <canvas> media elements provide fallback

information primarily for older browsers to indicate where to go for the

content, rather than for users that need alternative presentations.

The HTML 5.0 specification is in the early phases, with a tentative target

of 2010 for an initial recommendation and estimates of 5 or 10 years

after that from WHATWG itself. This is clearly an incredibly long time

frame in terms of web development, so I suspect other de facto solutions

will appear in the meantime and, hopefully, accessibility will become

more of a priority.

13. http://www.whatwg.org/

http://www.whatwg.org/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=108

WELCOME TO THE FUTURE 109

As much as we might like to look at the future as a place of revolution-

ary change, the reality is that we move one step at a time. The technolo-

gies we’ve looked at provide a good sample of where things are going

though. Ultimately how these technologies fare and whether they are

adopted widely depends on us. As developers, the technology choices

that we make have a large impact. By knowing what functionalities we

want, we become better adopters and implementers.

Act on it!

1. Download a copy of Fire Vox or Opera with voice extensions and listen

to default voice processing of your pages. Experiment with using CSS 3

speech to alter the voice characteristics of your content. Can you make it

read more clearly?

2. Form your own opinion on these technologies. If you find them useful, let

the standards committee know that. If you think they can be improved, tell

them how. As the developers who use these technologies on a daily basis,

it is important for us to make our voices heard.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=109

At a round table, every seat is the head place.

German Proverb

Chapter 6

Round Tables
The topic of tables is a certain way to get a heated response from acces-

sibility experts. Tables are particularly complicated for screen readers

to work with so it is easy for them to be the center of an accessibility

problem. Further, tables are an infamous example of marking up con-

tent for visual intent rather than semantics since tables are commonly

used as layout tools when they’re intended to represent data.

Even data tables can be difficult to navigate for users with visually dis-

abilities because they are intended to make complex information sim-

pler through visual positioning, which is obviously a real problem for

our visually impaired users. In Setting The Table, we’ll look at adding

header information to tables to make them easier to understand. When

the table is complicated, we’ll also need to add information to describe

the layout of the data. This involves some unusual markup which we’ll

cover in Ah, <table>, I Hardly Knew Ye!

As I said, the most common use accessibility problem for tables is

their use as a layout tool. This isn’t the intent for the <table> tag, and

CSS gives more freedom for layout anyway. It can be difficult to spot

improper uses of tables at first, however. Once you get used to using

tables for layout, it takes some mental retraining to break out of that

habit. In Layout And Other Bad Table Manners we’ll look at eliminat-

ing layout tables and what can be done to patch layout tables in the

meantime while you work on repairing them properly.

SETTING THE TABLE 111

15 Setting The Table
I do not literally paint that table, but the emotion it

produces upon me.

Henri Matisse

Accessible web sites shouldn’t use tables for layout, but what about

tables for data? Tables are particularly problematic for screen readers

because they express a lot of information briefly by putting it into a

visual form. Tables can also be difficult for the rest of our users simply

by being information dense. What we need to do is add extra informa-

tion to our table to better describe it for our users. Fortunately HTML

gives us markup to do this. We’ll be looking at a lot of markup that may

be new to you in the next couple of sections, so we’ll start with basics

and add new information one step at a time.

Basic Tables

I’m confident that we’re all familiar with basic HTML table structure,

using the <table>, <tr>, and <td> tags. John wants to use a table to

share information about his music collection. To start, he’d like to have

the artist, the album name, and whether he has CD or MP3 versions of

the album. The simplest way to do this is like so:

<h1>My Music</h1>

<table>

<tr>

<td>Artist</td>

<td>Album</td>

<td>Compact Disc</td>

<td>MP3</td>

</tr>

<tr>

<td>Magnetic Fields</td>

<td>69 Love Songs</td>

<td>Yes</td>

<td>No</td>

</tr>

<tr>

<td>U2</td>

<td>Zooropa</td>

<td>Yes</td>

<td>Yes</td>

</tr>

</table>

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=111

SETTING THE TABLE 112

Make Sure Your Tables are <table>s

One of the worst things you can do to a screen reader is send it
a bunch of formatting text needlessly. This means that we need
to avoid doing something like this:

+--+
| My Music |
+-----------------+---------------+--------------+-----+
| Artist | Album | Compact Disc | MP3 |
+-----------------+---------------+--------------+-----+
Magnetic Fields	69 Love Songs	Yes	No
Lifter	Melinda	No	Yes
U2	Zooropa	Yes	Yes
+-----------------+---------------+--------------+-----+

This is really difficult to navigate and comprehend if you can’t
see it. Because it is plain text, there is no markup to navigate
across and no context available to understand the values.
Any “text tables” like these need to be converted into well
described HTML tables for accessibility.

We could give a lot more information to our users as to what this table

is all about though. All we have right now is a grid layout for the data. It

can be read in order, but we can give our users a lot more information.

To start, that first row is different than the rest. It’s heading information

and we should mark it up accordingly.

Getting Your <thead> On Straight

You may have seen the <th> tag that marks a table cell as a heading. We

also have access to three other related pieces of markup to describe the

structure of a table. The <thead> and <tfoot> tags are available to set

header and footer sections for tables. When these are used, the main

content of the table needs to be placed in <tbody> tags. Let’s change our

example to add these pieces:

<table>

<thead>

<tr>

<th>Artist</th>

<th>Album</th>

<th>Compact Disc</th>

<th>MP3</th>

</tr>

</thead>

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=112

SETTING THE TABLE 113

<tfoot>

<tr>

<th>Artist</th>

<th>Album</th>

<th>Compact Disc</th>

<th>MP3</th>

</tr>

</tfoot>

<tbody>

<tr>

<td>Magnetic Fields</td>

<td>69 Love Songs</td>

<td>Yes</td>

<td>No</td>

</tr>

<tr>

<td>U2</td>

<td>Zooropa</td>

<td>Yes</td>

<td>Yes</td>

</tr>

</tbody>

</table>

Pay attention to the order of the sections. You can only have one each

of <thead> and <tfoot> (and the <tfoot> is optional). Both of these should

come, in order, before <tbody>. You can specify as many <tbody> sec-

tions as you like, as long as the table follows the structure <thead>

→ [Optional <tfoot>] → <tbody> → [More <tbody> sections]. Yes, <tfoot>

comes before <tbody>. Why? Because, once upon a time, the W3C said

it would be that way—I never promised that HTML would always make

sense.1

With header information specified, we’ve made it clear what is in the

table and what we should expect to find in the rows that follow. It wasn’t

mandatory to put in a footer, but it’s helpful for our sighted users who

may be scanning from the bottom of the table. To be honest, I haven’t

had occasion to use multiple <tbody> sections, but you may find them

helpful for organizing the table, particularly for scripted interactions.

Headers and footers aren’t all we can do, however. There is still a certain

amount of effort in reading a table, especially for our users with screen

readers, so we need to let them know what the table is for.

1. The actual answer has to do with the lineage of HTML in the SGML tradition and

various technical issues with printing tables. In other words, don’t worry about it.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=113

SETTING THE TABLE 114

Labeling The Table

In the first version of the table, I used <h1> to give the table a title. This

isn’t really the best way to do this though. In HTML, the heading tags

imply the start of a section, which isn’t usually the case for a table. A

section usually has some introductory text, rather than going straight

into a table. A better way to specify a title for the table is with the <cap-

tion> tag, which appears as the first markup after <table> (right before

<thead>). For screen reader users, we can also add a longer description

of the table with the summary= attribute. This is there to let them know

whether they are interested in spending time navigating through the

table. The summary should be brief and to the point, much like alter-

native text for images (which we’ll look at closely in To Put it Another

Way, on page 162). With summary and caption information, the begin-

ning of our table now looks like this:

<table summary="Albums in John's Music Collection">

<caption>My Music</caption>

Adding descriptive information to the top level of the table makes it

much more clear, but we still haven’t looked at the actual data in the

table. This is where it is most important to add structure for screen

readers and we’ll be working on that next.

Act on it!

1. Build a data table with descriptive information. Some options might be a

financial report or a metro schedule. We’ll return to this table at the end of

Ah, <table>, I Hardly Knew Ye!, on the following page

2. Update your pages: Add summary, caption, and heading information to

your data tables.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=114

AH, <TABLE>, I HARDLY KNEW YE! 115

16 Ah, <table>, I Hardly Knew Ye!
I drink to the general joy of the whole table.

William Shakespeare, Macbeth, Act III Scene

IV

[[Author: Production: We need to prevent the epigraph title from break-

ing here]] When we look at a table visually, the positioning of informa-

tion into rows and columns lets us quickly understand relationships.

Without positioning, tables can become daunting for visually impaired

users who can only navigate one cell at a time with their screen read-

ers. To make tables usable with a screen reader interface, we need to

add information to connect the cells in a table to their context. The

way we do this is by connecting table cells to their appropriate headers.

We’ll continue with the example of John’s music collection, introduced

in Setting The Table, on page 111.

Connecting Headings To The Rest Of The Table

We can make it easier for users with screen readers by letting them

know where they’re at in the table. For example, when the screen reader

speaks “Yes”, is it referring to CD or MP3 format? we can clarify by

setting the scope= attribute for the table headings. The scope can be set

to row or col depending on if your heading is a row or column heading2

For our table, the headings are by column, so that’s how we’ll specify

scope:

<table summary="Albums in John's Music Collection">

<caption>My Music</caption>

<thead>

<tr>

<th scope='col'>Artist</th>

<th scope='col'>Album</th>

<th scope='col'>Compact Disc</th>

<th scope='col'>MP3</th>

</tr>

</thead>

<tfoot>

<tr>

<th>Artist</th>

<th>Album</th>

<th>Compact Disc</th>

2. The HTML specification also lists rowgroup and colgroup as possible options. Browsers

don’t support these constructs, however, so it doesn’t make much sense to use them.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=115

AH, <TABLE>, I HARDLY KNEW YE! 116

<th>MP3</th>

</tr>

</tfoot>

<tbody>

<tr>

<td>Magnetic Fields</td>

<td>69 Love Songs</td>

<td>Yes</td>

<td>No</td>

</tr>

<tr>

<td>U2</td>

<td>Zooropa</td>

<td>Yes</td>

<td>Yes</td>

</tr>

</tbody>

</table>

With scope set, the screen reader now has the option of reading “Artist:

Magnetic Fields, Album: Sixty Nine Love Songs, Compact Disc: Yes,

MPThree: No”, which will be much clearer for the user than hear-

ing “Magnetic Fields, Sixty Nine Love Songs, Yes, No” and having to

remember that compact disc comes before MP3. Speaking of those two

columns, it would be better if we did a heading / subheading pair like

this:

Media Format

Compact Disc MP3

This isn’t an uncommon way to design a table but, if we do this, we’ll

need something more powerful to connect headers to cells.

Double Headers

We can define multiple headers for an entry in a table by setting the

headers= attribute on a table cell. To make this work, we need to give

each table heading an identifier with the id= attribute. The value of

headers= is a space separated list of these identifier values. This is a lot

to keep track of—let’s see how it looks in action:

<table summary="Albums in John's Music Collection">

<caption>My Music</caption>

<thead>

<tr>

<th rowspan='2' id='c1'>Artist</th>

<th rowspan='2' id='c2'>Album</th>

<th colspan='2' id='c3' abbr='Format'>Media Format</th>

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=116

AH, <TABLE>, I HARDLY KNEW YE! 117

</tr>

<tr>

<th id='c31' abbr='CD'>Compact Disc</th>

<th id='c32'>MP3</th>

</tr>

</thead>

<tbody>

<tr>

<td headers='c1'>Magnetic Fields</td>

<td headers='c2'>69 Love Songs</td>

<td headers='c31 c3'>Yes</td>

<td headers='c32 c3'>No</td>

</tr>

<tr>

<td headers='c1'>U2</td>

<td headers='c2'>Zooropa</td>

<td headers='c31 c3'>Yes</td>

<td headers='c32 c3'>Yes</td>

</tr>

</tbody>

</table>

I’ll also take this opportunity to introduce the abbr= attribute. It gets

cumbersome to keep hearing the phrases “Compact Disc” and “Media

Format” when “CD” and “Format” work just as well. Now the row can

read “Artist: Magnetic Fields, Album: Sixty Nine Love Songs, CD For-

mat: Yes, MPThree Format: No”.

You should have noticed that I played a bit of a trick with the headings.

Headings should be read in the order they appear in headers=. If I had

set headers=’c3 c31’, the appropriate response would have been “Format

CD”.

This brings up a matter of naming. There is no set rule for how you fill

the id= attribute. I like ‘c’ followed by the column and subcolumn num-

bers like in the last example because it is particularly easy to generate

with a script. It is certainly just as acceptable (and probably prefer-

able for hand-constructed tables) to give descriptive identifiers. John is

about to throw another twist at us though—He wants to add track titles

and ratings to the table. We can use the headers= attribute to describe

the table cells, but this has become a pretty complex table now and

HTML gives us one more tool for this kind of complexity.

Axis: An Ally?

Adding track information makes things difficult because it means we

have three dimensions to our data now:

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=117

AH, <TABLE>, I HARDLY KNEW YE! 118

U2 - Zooropa

1: Absolutely Cuckoo

2: I Don't Believe In The Sun

3: All My Little Words

4: A Chicken With Its Head Cu

5: Reno Dakota

6: I Don't Want To Get Over You

Lifter - Melinda

1: Absolutely Cuckoo

2: I Don't Believe In The Sun

3: All My Little Words

4: A Chicken With Its Head Cu

5: Reno Dakota

6: I Don't Want To Get Over You

Magnetic Fields - 69 Love Songs

1: Absolutely Cuckoo

2: I Don't Believe In The Sun

3: All My Little Words

4: A Chicken With Its Head Cut Off

5: Reno Dakota

6: I Don't Want To Get Over You

...

Track Information

A
lb
u
m
 T
r
a
c
k
s

A
lb
um

s

Figure 6.1: John’s Music Collection in Three Directions. The Axis

Attribute Provides One Way To Normalize This Into A Table’

1. The collection of albums

2. Each album, including which tracks it contains.

3. Information about the individual tracks.

Figure 6.1 shows one way of looking at this. We have two options at this

point. First, we could create a table of albums information that links to

tables that contain the track information. This would be the simplest

(and in my opinion, the best) way to handle this situation. Let’s say

we’re not going to do that—for whatever reason, John insists that it

has to be one table.

This is where the axis= attribute comes into play. An axis is a cross

section through the data in a table. Referring back to Figure 6.1, we

need to add two axes: one for the albums and one for the tracks in an

album. Because the track information is a single row of data, there’s no

need for an axis. We’re actually going to create one axis per album for

track information to separate tracks from different albums. Let’s add

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=118

AH, <TABLE>, I HARDLY KNEW YE! 119

axis=’albums’ to each album’s title field and axis=’album#’ for each song

and see where that takes us:

<table summary="Albums in John's Music Collection">

<caption>My Music</caption>

<thead>

<tr>

<th id='artist' rowspan='2'>Artist</th>

<th id='album' abbr='Title' rowspan='2'>Album Title</th>

<th id='format' abbr='Format' colspan='2'>Media Format</th>

</tr>

<tr>

<th id='formatcd' abbr='CD'>Compact Disc</th>

<th id='formatmp3'>MP3</th>

</tr>

</thead>

<tbody>

<!-- The first album on the albums axis. This songs on this -->

<!-- album will be put on the 'album1' axis. -->

<tr>

<td id='a1artist' headers='artist'>Magnetic Fields</td>

<td id='a1title' headers='album' axis='albums' >69 Love Songs</td>

<td headers='formatcd format'>Yes</td>

<td headers='formatmp3 format'>No</td>

</tr>

<tr>

<th id='tracktitle' abbr='Title' colspan='3'>Song Title</th>

<th id='trackrating'>Rating</th>

</tr>

<!-- The First Song on the album1 axis -->

<tr>

<td id='a1t1title' axis='album1'

headers='a1artist a1title tracktitle'

colspan='3'>

Absolutely Cuckoo

</td>

<td headers='a1t1title trackrating'>

<abbr title='Four Stars'>****</abbr>

</td>

</tr>

<!-- The Second Song on the album1 axis -->

<tr>

<td id='a1t2title' axis='album1'

headers='a1artist a1title tracktitle'

colspan='3'>

I Don't Believe In The Sun

</td>

<td headers='a1t2title trackrating'>

<abbr title='Four Stars'>****</abbr>

</td>

</tr>

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=119

AH, <TABLE>, I HARDLY KNEW YE! 120

<!-- -->

<!-- 67 more songs in the first album on the album1 axis. -->

<!-- -->

<!-- The second album on the albums axis. This songs on this -->

<!-- album will be put on the 'album2' axis. -->

<tr>

<td id='a2artist' headers='artist'>U2</td>

<td id='a2title' headers='album' axis='albums'>Zooropa</td>

<td headers='formatcd format'>Yes</td>

<td headers='formatmp3 format'>Yes</td>

</tr>

<tr>

<th abbr='title' colspan='3'>Song Title</th>

<th>Rating</th>

</tr>

<!-- The first song on the album2 axis -->

<tr>

<td id='a2t1title' axis='album2'

headers='a2artist a2title tracktitle'

colspan='3'>

Zooropa

</td>

<td headers='a2t1title trackrating'>

<abbr title='Five Stars'>*****</abbr>

</td>

</tr>

<!-- The second song on the album2 axis -->

<tr>

<td id='a2t2title' axis='album2'

headers='a2artist a2title tracktitle'

colspan='3'>

Babyface

</td>

<td headers='a2t1title trackrating'>

<abbr title='Two Stars'>**</abbr>

</td>

</tr>

</tbody>

</table>

As I said, I prefer to break up the tables instead. This is a complex table

to describe and this should be your cue that it would be simpler for you

and for your screen reader users to have the table split along one of the

dimensions. Sometimes this just isn’t possible, however, and on rare

occasion you’ll need axis=.

We’ve taken a data table from a simple undescribed grid to a complex

multidimensional form with multiple navigation paths for our users.

Data tables aren’t the end of the story, however. Layout tables are far

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=120

AH, <TABLE>, I HARDLY KNEW YE! 121

more common and a far greater accessibility problem. Next, we’ll be

looking at these and how to avoid them.

Act on it!

1. Return to your data table design from Setting The Table, on page 111. Add

scopes or headers to make the data more descriptive.

2. Re-design the axis implementation above to use separated tables. Con-

sider which solution you find better in this case and why.

3. Build a small music database. Using a templating framework, automati-

cally output versions of the database using scopes, headers, and axes.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=121

LAYOUT AND OTHER BAD TABLE MANNERS 122

17 Layout And Other Bad Table
Manners

The greater the power, the more dangerous the abuse.

Edmund Burke

When HTML first showed up, the emphasis was on communication

of research between scientists. In that environment, the demand for

visual formatting was low so the few formatting needs that did exist

were served with specialized markup tags rather than with a sepa-

rate layout standard. When the web became a major communications

medium, these needs changed rapidly and, before a layout standard

could emerge, designers were left to use whatever tricks they could find

to generate their layouts. Often this involved (ab)using the <table> tag.

The end result is that, in most cases, <table> usage has little to do with

representing tabular information, leading to three problems:

1. Hard to Manage Layouts When you build pages that have layers

upon layers of nested tables, it becomes progressively more dif-

ficult to maintain. Every change that you make means altering

one or more tables, hoping that you haven’t broken the layout

somewhere, and tweaking until it comes out right. Even if you use

plenty of comments in your HTML,3 this gets old quick.

2. Slower Web Pages Those tables don’t come for free. Tables use a

lot of markup and that increases your page sizes. If you use spacer

images to force a table layout, that also adds on to the bandwidth

use. Even after the page makes it to the browser, tables take time

to process and display.

3. Less Accessible Pages Screen readers and text browsers often have

different modes for tables than for the rest of your content. This

places an unreasonable burden on your users. We’ll also see a

little later that screen readers linearize tables, which may obscure

the meaning of your content.

Fortunately for us, CSS came along and gave us freedom to format

elements to our content while avoiding the worst of these problems.

3. If you have to sort through a lot of comments, you might want to take a closer look at

what is happening. Comments are a good thing, but if you really need them to have an

idea of what is going on, it probably means that something has gone very wrong.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=122

LAYOUT AND OTHER BAD TABLE MANNERS 123

Sometimes A Cigar is Just A Cigar...

...and sometimes a table really is a table. When we over focus
on staying semantic and avoiding visually oriented markup,
sometimes we lose track of the real goal. I remember updating
some older content, updating old layout to CSS and introduc-
ing semantics when I came across a form asking for a rating
from the user based on evaluation criteria:

<table>
<th>

<td colspan='5'>Please rate what you have just seen:</td>
</th>
<tr>

<td>
<input id='rating_1' name='rating' type='radio' value='1'/>
<label for='rating_1'>This was missing X, Y, and Z.</label>

</td>
...
<td>

<input id='rating_5' name='rating' type='radio' value='5'/>
<label for='rating_5'>X, Y, and Z were all present

and of high quality.</label>
</td>

</tr>
</table>

Because tables have such a bad reputation for misuse, I looked
at this markup and immediately jumped to finding an alter-
native solution. Then I stopped to think—this rating is part of
a rubric giving evaluation criteria. A rubric is a table, and this
question is simply looking at one row from it. The real problem
is: I hadn’t noticed that this content reflects tablular data. Cer-
tainly the tagging needed to be styled and have deprecations
removed, but the important thing is that this was essentially cor-
rect markup in need of cleanup, rather than misuse of the table
construct. Make sure to keep an eye open—sometimes that old
code was right after all.

Now we can throw out most of our <table> markup and tag for meaning

(Just don’t get too carried away—See the sidebar on the current page)

If You Must Use Table Based Layout

I’ve heard a lot of versions of, “But I can’t get rid of my table layout

because of X, so how do I just make the table layout accessible?” I

have yet to see a table layout that can’t be replaced, but I’ve seen many

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=123

LAYOUT AND OTHER BAD TABLE MANNERS 124

1 2 3

4 5 6

987

Figure 6.2: Linearized Reading Order For A 3×3 Table

developers that just don’t want to mess with it. The truth is that table

layout just isn’t an accessible thing to do. I know that it takes some

work to get rid of it, but I don’t find that to be a compelling reason

to keep the table layouts. For large sites, however, making all of the

updates might take some time and we may need to do some temporary

accessibility triage in the meantime.

When a screen reader or text browser processes a table, it often handles

it in linearized form. The linearized form is the order that the <td> cells

appear in HTML. For example, the table in Figure 6.2 reads “1 2 3 4 5

6 7 8 9”. To ensure minimal accessibility, any table layouts used would

need to read correctly in linearized order.

Linearization adds more limits to what table based layout can do for us

though. Consider the layout in Figure 6.3, on the next page. This lay-

out is a real problem for users with text browsers and screen readers.

Because our visually impaired users don’t see the layout, they need to

trace through in order. Let’s follow along:

1. Listen to the heading information.

2. Verify that the order is correct.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=124

LAYOUT AND OTHER BAD TABLE MANNERS 125

Figure 6.3: Because Of Table Layout, This Page Could Mislead The User

3. Get bothered by a credit card advertisement.

4. Check the shipping type.

5. Activate “Continue” to go to the next part of the order.

6. End up on the credit card application page.

7. Get irritated and either:

a) Back up a page and scan forward for the correct option (Lucky

Us!).

b) Decide the checkout page is broken and go elsewhere.

c) Assume they’re being harassed into a credit card and go else-

where.

Not a pleasant outcome—all because of table layout. Get your table

based layouts linearized immediately and update the markup with nat-

ural reading order and CSS as soon as you can. It won’t be long before

you can’t imagine doing things any other way.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=125

LAYOUT AND OTHER BAD TABLE MANNERS 126

Interaction
 Nielsen
 Norman
 Raskin

Pedagogy
 Papert

Technology
 Kay
 Minsky

Figure 6.4: People and Their Roles

When A Table Isn’t Really A Table

Table layout hasn’t just been used for page layouts. Smaller elements

on the page have been tossed into tables to give them a particular look

as well. Most of the time, there are already other ways to mark these

ideas up that make more sense. One of the most common cases of this

seems to be using tables when the information is really a list.

Our Friend, The Definition List

Repeat after me, “A List is Not A Table!” So, why have we used tables

as lists so often? I would guess that it comes from the ease with which

tables could lay things out pre-CSS. Lets think about the roles in Fig-

ure 6.4. I can already see the table:

<table>

<tr><td>Interaction</td>

<td>Nielsen</td><td>Norman</td><td>Raskin</td>

</tr>

<tr><td>Pedagogy</td>

<td>Papert</td>

</tr>

<tr><td>Technology</td>

<td>Kay</td><td>Minsky</td>

</tr>

</table>

I don’t like this at all. First, if you notice, this isn’t even a well-formed

table—our columns aren’t consistent. Beyond the fact that this doesn’t

represent a table properly, it’s also going to be ugly as sin. We could

set colspan= if we wanted to be stuck maintaining the list by hand (I

certainly don’t) or push all of the names into a single column to make

it fit better. That strikes me as a warning sign. Why would we want to

adjust our content to make the markup work? Seems a little backward

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=126

LAYOUT AND OTHER BAD TABLE MANNERS 127

Please Login

User ID:

Password:

Figure 6.5: A Basic Login Form

to me. Instead, lets think about this as a list. We have a list of roles and

the people who fit their description. How about a definition list?

<dl class='roles'>

<dt>Interaction</dt>

<dd>Nielsen</dd>

<dd>Norman</dd>

<dd>Raskin</dd>

<dt>Pedagogy</dt>

<dd>Papert</dd>

<dt>Technology</dt>

<dd>Kay</dd>

<dd>Minsky</dd>

</dl>

This ends up being clear, meaningful (roles are defined by the people

who fill them), properly marked up, and easy to understand in screen

readers and text browsers.

Tables and Forms

Tables also show up when people try to give layout to forms. For a

simple example, lets take a look at a storyboard for a login form in

Figure 6.5. Our first instinct might be to do something like this:

<table>

<th><td colspan='2'>Please Login</td></th>

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=127

LAYOUT AND OTHER BAD TABLE MANNERS 128

<tr>

<td align='right'>User ID:</td>

<td><input id='userid' type='text' /></td>

</tr>

<tr>

<td align='right'>Password:</td>

<td><input id='pass' type='password' /></td>

</tr>

</table>

A couple of problems jump out though. First, we have those align=’right’

attributes that mix formatting into our content, but that behavior could

be easily moved into a stylesheet. The deeper problem is that we’re

using all of this table markup for something that isn’t particularly tab-

ular. Let’s look at what we’re really trying to say here. The main <table>

declaration is giving us a container for the rest of the form. That makes

sense, but HTML already gives us one in the form of <fieldset>4, so let’s

use that instead. This means that the <th>, <tr>, and <td> all need to

go. The <th> is only being used to give a title for the form. Again, HTML

already gives us that with the <legend> tag. The rest of the table layout

is being used for formatting, so lets just get rid of it. Now we have:

<fieldset>

<legend>Please Login</legend>

User ID: <input id='userid' type='text' />

Password: <input id='passwd' type='password'/>

</fieldset>

I don’t like the “User ID:” and “Password:” text just hanging around like

that though. These are labels for fields, and we should mark them as

such with the appropriately named <label> tag:

<fieldset>

<legend>Please Login</legend>

<label for='userid'>User ID:</label>

<input id='userid' type='text' />

<label for='passwd'>Password:</label>

<input id='passwd' type='password'/>

</fieldset>

Much nicer—the form is now described in terms of being a form rather

than as a table. This isn’t to say that forms and tables should never mix.

It just doesn’t in this case because there’s nothing tabular about a login

box. Sometimes the form is oriented around tabular data, however. See

the sidebar on page 123 for an example.

4. If you’re not familiar with <fieldset>, <legend>, or <label>, their use is discussed in more

depth in Getting <form>al, on page 135

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=128

LAYOUT AND OTHER BAD TABLE MANNERS 129

It takes work to break away from using tables as layout grids, but it

is a powerful way of removing barriers to accessibility from your web

sites. As we saw in our definition list and form examples, avoiding table

based layout can also make our code clearer and easier to maintain.

Speaking of forms, I dropped in a couple of tags back there that you

may or may not have seen. Forms are another facet of our pages that

need to be accessible and it’s time we discussed them, so that’ll be our

next step.

Act on it!

1. Ensure that any of your existing table based layouts linearize correctly.

2. Purge your sites of table based layouts (You knew that was coming, didn’t

you?)

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=129

An interface is humane if it is responsive to human needs

and considerate of human frailties.

Jef Raskin, The Humane Interface

Chapter 7

The Accessible Interface
The interface we present to our users is as important as the accessibil-

ity of our content. If our users can’t reasonably get to our content, it

might as well not be there at all. One of the ways that users are often

prevented from accessing content successfully is because developers

have designed sites that try to control their users in an unreasonable

way. It’s always important to remember that It’s Their Web—We’re Just

Building In It

The default method of creating interfaces to interact with our users is

the HTML form. In Getting <form>al, we’ll look at the kinds of informa-

tion we need to add to our forms to make sure our users can give us

the information we’re looking for, particularly if they’re using assistive

technologies. Next, in Tickling The Keys, we’ll look at a couple of often

recommended methods for making forms more accessible and see that

they may not be the best solution in most cases.

Simplifying our interfaces is the best thing we can do for all our users,

including those who have special needs due to a disability. In Your

Interface Has Some Explaining To Do, we’ll finish up by looking at a

simple way to get a basic benchmark for interface complexity.

IT’S THEIR WEB—WE’RE JUST BUILDING IN IT 131

18 It’s Their Web—We’re Just
Building In It

Your master is he who controls that on which you have set

your heart or wish to avoid.

Epictetus

We can’t lose sight of the users that we are developing for. Without

users, there is very little point in what we do as web developers, so we

need to keep them at the absolute center of our process. Unfortunately

for us, users have their own ideas of what our site is for and how they’d

like to use it and, unless we want to turn away readers or customers,

we need to do our best to provide a good experience. Keeping users is

a large task, but a big step is to never make our users feel like they’re

being pushed around.

As convenient as it might be to build restrictive interfaces that force

an action from the users, it ultimately makes the user frame us as an

adversary—not what we want our user community to see us as. This is

particularly true when we look at our users with disabilites. The devices

and technologies that they use to navigate the web often have different

dynamics. Forcing a particular pattern of usage makes their usage of

the web more difficult if not impossible. It’s better for all concerned if

we learn how to let go a little with our interface designs.

Don’t Be A Control Freak

When a user requests our pages, we should treat it as being invited into

their system, so we should do our best to be a good guest. Among other

things, this means not taking control of their systems away from them

any more than necessary. Certainly, some applications require the user

to step through our pages in a specific order but we need to keep them

informed about what we plan to do.

One example is the popup window. Popups should never be created

without letting the user know it’s going to happen and popups should

always have alternatives for users of browsers that don’t allow for them.

Some people recommend just not using popups at all, but I think that’s

a little too extreme—sometimes a popup is the cleanest interface choice.

What we really need to be mindful of is that popups are only generated

as a response to a user request and that the interface clearly marks

that a popup will result.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=131

IT’S THEIR WEB—WE’RE JUST BUILDING IN IT 132

Media objects are another area where web pages often unreasonably

take control from the user. Because our users may be reliant on screen

reader technologies, it is critical to not “autoplay” media objects. Doing

this creates crosstalk with the screen reader that makes the page unin-

telligible. As we’ll see in Chapter 9, Video Killed the Something-Something,

on page 179, we’ll want to give the user plenty of options with respect

to audio and video, so it makes more sense to let them start the media

anyway.

Media also brings up one more control issue. Not only should the user

be in control of starting events, but they also need to have the ability

to stop them once started. For example, if a video file doesn’t have a

control set accessibly available, the user has no way to pause of mute

it without actually turning down their speaker volume which is again

unacceptable for screen reader environments. Even more important to

the user than control of their browser is control of their time.

I’m Sorry, Your Time Is Up

Part of giving control to the user is eliminating unnecessary timing

effects. Two particular nuisances in this realm are timed page redirects

and system timeouts. Consider the timed redirect:

<html>

<head>

<title>This Page Has Moved</title>

<meta http-equiv='refresh' content='3; http://.../' />

</head>

<body>

<h1>This Page Has Moved</h1>

<p>We're glad to see that you are interested in our page, "Giant

Pygmy Weasels", but this page has been relocated to

http://.../. Please update your

bookmarks. You will be automatically redirected to the new

location in three seconds.</p>

</body>

</html>

There are a few control issues here. First, there’s a presumption that

the user bookmarked the page. More often, the user clicked an outdated

link on another site. The real problem is that the refresh takes control

from the user and forces an arbitrary time constraint on them. Even

worse, this example uses a really short refresh time—three seconds.

Odds are that the user will get just past “Giant Pygmy Weasels” when

the refresh occurs.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=132

IT’S THEIR WEB—WE’RE JUST BUILDING IN IT 133

Changing the refresh time isn’t a great solution either. You can’t guess

how long it will take every user to read the page (they could be dis-

tracted by an angry weasel while they’re reading, for example). At best,

you could give a really long timeout that ensures that everyone has

time to read the page but, at that point, it makes just as much sense to

eliminate the timeout and tell them to click the link to the new location.

That assumes that this kind of page makes sense in the first place.

A reality of the web is that, if you do well, people link to your content

and, even if you move the page, people will remain linked to the old

location pretty much until the end of time. It’s best to just cope with

this and either automatically redirect at the server level or, if you can’t

do that, issue a <meta> style refresh with a time of zero.

This problem also applies to page or session timeouts. Some users need

more time than others to process all of the content on a page or to nav-

igate around a form and fill it in. Page timeouts may prevent our users

from being able to read all of the content or being able to reasonably fill

in a form. At the very least, the user should be given the ability to alter

the amount of time that passes before an automatic session expiration.

We don’t always have a choice about this, however. If a page is running

a realtime event like an auction or a test, the nature of the content

prevents us from allowing the user to change the timing to fit their

needs. All we can do in these cases is make sure that critical paths

through the application are made a brief and simple as possible. In the

case of tests with dramatic consequences, like tests for educational or

employment purposes, an alternative test method will probably need to

be provided as an accommodation for users with timing problems on

the web.

Not taking control from the user is a key step toward web accessibility.

When we take control away of the users’ systems or time, we may be

preventing them from being able to interact with our site at all. Our

users have individual differences that make it impossible to success-

fully force their actions to be consistent, so we need to let them make

the decision. By giving control of the experience to the user, we allow

them to come to our content on their own terms. This is especially

important when we want interactions from our users, which we’ll dis-

cuss next.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=133

IT’S THEIR WEB—WE’RE JUST BUILDING IN IT 134

Act on it!

1. Check your sites for control-seizing operations like unmarked popups and

media elements that autostart or have no user controls. Give control back

to the user.

2. Eliminate any non-critical timeout effects from your pages.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=134

GETTING <FORM>AL 135

19 Getting <form>al
A beautiful form is better than a beautiful face; it gives a

higher pleasure than statues or pictures; it is the finest of

the fine arts.

Ralph Waldo Emerson

Many web pages wouldn’t be very interesting or useful if they didn’t

allow for user interaction. The HTML <form> serves as our most basic

tool for supplying interactivity to our web pages. This being the case,

it’s essential to make our forms accessible to all of our users. Look at

it this way—when we put forms in our web pages, we’re asking our

users a question. This makes it our responsibility to make sure that

our users understand clearly both what we’re asking the for and how

we need them to respond.

Making the overall body of a form accessible is relatively simple—all

we need to do is make sure there we give some basic instructions at

the beginning and ensure that the parts of the form are in a reason-

able order. The depth of the instructions, of course, is dependent on

the the complexity of the form. If the form is a simple login or search

form, you’ll probably only need to title it “Login” or “Search”. If the form

is more complex, you may need a full instruction document. Putting

the parts in order is also pretty simple—place the HTML in the order

you wish for the form to be read.1 These parts—the bits and pieces

of markup that actually make up the interface of the form—are our

real accessibility challenge. Even so, making form elements accessible

isn’t all that difficult and, for existing pages, you probably already have

much of the information you need. We’ll just need to put it into the right

form.

Sticking A <label> On It

Usually we don’t leave form elements hanging around with no explana-

tion at all—this isn’t very usable for any of our users. Normally, we give

some sort of description like this:

Username <input type='text' name='username' />

Password <input type='password' name='password' />

1. You may be tempted to use tab indexing instead of natural order to specify the form

ordering. Take a look at Tickling The Keys, on page 142 to see why this isn’t such a great

idea.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=135

GETTING <FORM>AL 136

This gives us a nice little title that we see next to the text input box.

Hmm—“see” and “next to” are the two clues that not all is well with this.

I want you to imagine a real label for a moment, let’s say on a box of

squirrels. It wouldn’t make much sense to write “Danger! Box of Angry

Squirrels” on the floor next to the box. It’s much smarter to write it on

a sticky note and put it right on the box where it can do people some

good. This is exactly what the HTML <label> tag does for us.

The <label> tag wraps around descriptive text like a and takes

an for= attribute that specifies which element the label applies to. We

have two steps then—first we give a unique id= attribute to each of our

form elements and then we mark up descriptions of the elements with

<label>. Our previous example becomes:

<label for='user'>Username</label>

<input id='user' type='text' name='username' />

<label for='pass'>Password</label>

<input id='pass' type='password' name='password' />

It’s as simple as that—like I said, you probably already have this infor-

mation in your forms already, so it’s just a matter of <label>’ing it prop-

erly. Now we’ve associated the label text with the form element, so soft-

ware like assistive technologies can link the two together for our users.

You may be wondering about the usage of id= and name=. When you

submit a form, the value of the name= attribute is sent with the form to

identify the data. Inside of the browser, however, id= is the name for the

element with respect to CSS, DOM, and references like <label for=’x’>.

Another issue to keep in mind about <label> is one of nesting. Some

sources have suggested that you put the form element inside the <label>

tag along with the descriptive text, like this:

<label>

Username

<input id='user' type='text' name='username' />

</label>

Don’t do this—it doesn’t work well in screen readers and it doesn’t make

much semantic sense either. Labels describe forms, they don’t contain

them. We’ve kind of worked <input type=’text’> to death here, and there

are a lot of other types of form elements. Let’s look at some examples of

labeling the rest of them.

Text Entry Elements

There are three types of form element used to ask for a text response:

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=136

GETTING <FORM>AL 137

• <input type=’text’>

• <input type=’password’>

• <textarea>

All of these work as in the examples above:

<p>We like to make our users feel like we're listening to them.

Please feel free to send us your complaints and comments

about this web site.</p>

<label for='comment'>Your Feedback</label>

<textarea id='comment' name='comment' cols='40' rows='10'></textarea>

<p>We really only care about what our subscribed users think, so

please enter your username and password with your response</p>

<label for='user'>Username</label>

<input id='user' type='text' name='username' />

<label for='pass'>Password</label>

<input id='pass' type='password' name='password' />

No problems for our users here—no accessibility problems at least.

Buttons

HTML buttons, including <input type=’submit’>, <input type=’reset’>, and

<input type=’button’> are as easy as it gets. These elements are self-

labeled with their value= attribute. As long as you keep the value= descrip-

tive, you’re good to go (no “Click Me” here—I’m not Alice and this isn’t

Wonderland).

Some people use <input type=’image’> as a button substitute. This usage

is not self-labeling and <label> doesn’t really make sense either. What

we do for this is specify an alt= attribute that describes the content of

the image. For more on alternate text, take a look at To Put it Another

Way, on page 162.

Selection Elements

We also have three ways to ask our users to make choices:

• <input type=’radio’>

• <input type=’checkbox’>

• <select> and <option>

Radio and checkbox types get <label>s, just like the text input elements.

The important thing to remember is that all of the radio buttons and

checkboxes need a unique corresponding label. This means if you are

doing a bunch of “Rate X from 1 to 5” type questions, each question will

have five labels (if you don’t want the numbers to show up visually for

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=137

GETTING <FORM>AL 138

each question, you can always assign visibility: hidden to the labels with

CSS). Let’s have a look:

<h1>Sam-Is-He's Breakfast Options</h1>

<p>Color</p>

<label for='colorRed'>Red</label>

<input type='radio' id='colorRed' name='color'

value='Red' />

<label for='colorGreen'>Green</label>

<input type='radio' id='colorGreen' name='color'

value='Green' checked='yes'/>

<label for='colorBlue'>Blue</label>

<input type='radio' id='colorBlue' name='color'

value='Blue' />

<p>Food Choices</p>

<label for='foodEggs'>Eggs</label>

<input type='checkbox' id='foodEggs' name='food'

value='Eggs' checked='yes'/>

<label for='foodHam'>Ham</label>

<input type='checkbox' id='foodHam' name='food'

value='Ham' checked='yes'/>

Adding labels to <select> and <option> should seem pretty familiar as

well at this point. We need to add an id= to <select> as well as a <label>

but, like a button, <option> is self-labeled—this time by its contained

text:

<label for='favWork'>Select Your Favorite Gaiman Work:</label>

<select id='favWork' name='favWork'>

<option>Sandman: The Dream Hunters</option>

<option>Death: The High Cost of Living</option>

<option>American Gods</option>

<option>Good Omens</option>

<option>Coraline</option>

<option>The Wolves in the Walls</option>

</select>

Hidden Elements

Hidden elements, marked up with <input type=’text’>, only exist for inter-

nal use. They’re not meant to be accessed by the user, so we shouldn’t

be doing anything to try to change that. Leave them hidden and unla-

beled and there should be nothing to worry about.

File Uploads

File uploads with <input type=’file’> are a pain in the neck. This is true

for all users, not just the population with disabilities. The browser just

kind of leaves us waiting with no feedback until the upload is complete,

so sometimes file uploads act like a locked up browser. There isn’t much

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=138

GETTING <FORM>AL 139

When User Agents Grow Up...

Once upon a time, some browsers and screen readers didn’t
correctly handle forms if they didn’t have some form of default
text inside their input elements. Because of this, when WCAG
1.0 showed up, there was a recommendation to add default
text to all form elements. What many people forget is that the
recommendation starts with the phrase “Until user agents han-
dle empty controls correctly...” It’s considered appropriate to
declare this a solved problem now, adding default text should
no longer be looked at as an accessibility requirement

Some argue that the default text should still be there for expla-
nation. I disagree with this completely—that’s what <label> is
for and it feels like a setup to populate form fields with defaults
that will (probably) be the wrong input. The only time I agree
with default text in form elements is when it is either likely to be
the common choice (i.e. the default) or when the form is being
used to edit existing information.

we can do to change this so, unfortunately, the users with disabilities

will have to suffer through their file uploads along with the rest of us.2

Do make sure to put a <label> for the input element though.

That takes care of labeling the parts of our form. The next thing we

should take a look at is making sure that the parts of the form are

grouped together in a way that makes sense.

Putting Your Eggs (And Ham) In One Basket

Lets go back to the breakfast example from earlier. Take special note of

the “Color” and “Food Choices” paragraphs:

<h1>Sam-Is-He's Breakfast Options</h1>

<p>Color</p>

<label for='colorRed'>Red</label>

<input type='radio' id='colorRed' name='color'

value='Red' />

<label for='colorGreen'>Green</label>

2. A Note for Browser Developers: Seriously, what is up with this? The interface for file

uploads stinks. You know it, we know it, and our users certainly know it. We’re not asking

for miracles here, just a blasted (screen readable) progress indicator—is that so much to

ask?

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=139

GETTING <FORM>AL 140

<input type='radio' id='colorGreen' name='color'

value='Green' checked='yes'/>

<label for='colorBlue'>Blue</label>

<input type='radio' id='colorBlue' name='color'

value='Blue' />

<p>Food Choices</p>

<label for='foodEggs'>Eggs</label>

<input type='checkbox' id='foodEggs' name='food'

value='Eggs' checked='yes'/>

<label for='foodHam'>Ham</label>

<input type='checkbox' id='foodHam' name='food'

value='Ham' checked='yes'/>

Paragraphs? That doesn’t seem right at all. Those are really another

type of label for the group of options following them. Speaking of that

‘group’, it would also be nice to show somehow that we really have two

groups of options there, not just three radio buttons and two check-

boxes. Enter <fieldset> and <legend>. The <fieldset> tag lets us put a

group of controls together and <legend> lets us give the group a name.

Here’s how we would use these on our food choices:

<fieldset>

<legend>Food Choices</legend>

<label for='foodEggs'>Eggs</label>

<input type='checkbox' id='foodEggs' name='food'

value='Eggs' checked='yes'/>

<label for='foodHam'>Ham</label>

<input type='checkbox' id='foodHam' name='food'

value='Ham' checked='yes'/>

</fieldset>

Much nicer. We can take this one step farther, however. That heading

is really a title for the rest of the form and it would be nice to handle it

the same way. Because <fieldset>s can be nested, this isn’t a problem:

<fieldset>

<legend>Sam-Is-He's Breakfast Options</legend>

<fieldset>

<legend>Color</legend>

<!-- Color Choices -->

</fieldset>

<fieldset>

<legend>Food Choices</legend>

<!-- Food Choices -->

</fieldset>

</fieldset>

Using <fieldset> and <legend> in this way to classify the parts of a form

gives extra labeling information and makes it easier for our users to

work through. We can also improve the favorite book example. I only

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=140

GETTING <FORM>AL 141

listed a small fraction of Gaiman’s works. If we added all of them, the

list would quickly become difficult to navigate. We can help this some

by using the <optgroup> tag to classify parts of the list:

<label for='favWork'>Select Your Favorite Gaiman Work:</label>

<select id='favWork' name='favWork'>

<optgroup label='Comics'>

<option>Sandman: The Dream Hunters</option>

<option>Death: The High Cost of Living</option>

</optgroup>

<optgroup label='Novels'>

<option>American Gods</option>

<option>Good Omens</option>

</optgroup>

<optgroup label="Children's Books">

<option>Coraline</option>

<option>The Wolves in the Walls</option>

</optgroup>

</select>

Adding these option groups again gives more information about the

form element and makes navigating it a little simpler. Keep in mind

that <optgroup>s can’t be nested. If you feel you need to, you might

want to simplify your <select> options.

By adding labeling and structuring information to our forms, we have

made them easier to navigate and understand, particularly for our visu-

ally impaired users. Ease of navigation and reduced complexity are

important components of accessible interface design. Next we’ll look

at one attempt at simplifying interfaces that, unfortunately, isn’t all it’s

cracked up to be.

Act on it!

1. Label your form elements (and your squirrels)

2. Clarify any complex forms you have by adding <fieldset>, <legend>, and

<optgroup> as appropriate to large groups of elements.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=141

TICKLING THE KEYS 142

20 Tickling The Keys
It turns out that an eerie kind of chaos can lurk just behind

a façade of order—and yet, deep inside the chaos lurks an

even eerier type of order.

Douglas Hofstadter

It may surprise you to know that I’m about to tell you not to use certain

accessibility features. The problem is that certain features, while being

well intentioned, often cause more problems than they repair. Such

is the case with the accesskey= and tabindex= HTML attributes. Both

of these are frequently recommended as solutions for users who can-

not use pointer devices and rely on the keyboard for navigation. Both

of these attributes also can cause major problems so many people in

web accessibility field (including myself) urge developers to use them

extremely cautiously or preferably to not to use them at all. Because

they are commonly recommended, however, I’d like for us to take a look

at them and understand how they are intended to work and what goes

wrong with them, so you can explain to managers or clients why they

shouldn’t be used.

Keys For Access

The accesskey= is supported by elements that can be “activated” like

<a>, <area>, <button>, <input>, or <textarea>. The key specified becomes

a keyboard shortcut to activate the item or link by pressing a keystroke.

This keystroke is implementation dependent but is usually one of Alt-

<char>, Ctrl-<char>, or Cmd-<char>. For example, if we marked up a

link like this:

Read Comments

The user would be able to jump to the comments page by hitting Ctrl-C.

Not all is well with accesskey=, however. The first problem up is that we

can assign pretty much any key to any element. This is a big problem

for our users who might need to learn access keys for every site they

go to. We could reduce this problem somewhat by using conventional

access keys like those in Figure 7.1, on the next page and by using the

first letter of a command as an access key otherwise (like using ‘c’ for

comments above).

The larger problem is that access keys can override system and browser

keystrokes. Think about the example I gave before—we mapped ‘c’ to

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=142

TICKLING THE KEYS 143

Key Function

1 Go to the home page

2 Skip to main page content

3 Site map

4 Site search

9 Send feedback about the site.

0 Index of available access keys.

Figure 7.1: Recommended Conventions for Access Keys

“comments”. If our users can only use a keyboard, they may be pre-

vented from copying a selection on the page (often mapped to Ctrl or

Cmd-C). Even worse, we risk conflicting with keystroke command for

screen reader software—we could accidentally reduce accessibility with

access keys! Some suggest using numbers only to reduce this problem,

but even this may have problems for some applications. In general, I

don’t recommend accesskey because of overriding conventions on the

users system and difficulty predicting where conflicts might occur. If

you do use accesskey=, I recommend keeping it to a minimum and test-

ing thoroughly.

Put It On My Tab

When you press the tab key in a web browser, the element focus should

travel through all of the elements on the page that can be interacted

with in the order they appear in the HTML markup. This is called the

natural reading order of the web page. This ordering can be adjusted by

setting a tabindex= attribute with a value of 0–327673. Here’s a (really

bad) example:

1

3

2

With natural ordering, the tab would take you in the order “1, 3, 2”

but with tabindex= set as shown, it would be “1, 2, 3”. Tab indices also

have problems, however. Anything that doesn’t have a tabindex= falls

through to the bottom of the list:

3. Why 32767? Because someone decided it would be based on a signed 16 bit value—

that is, don’t worry about it.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=143

TICKLING THE KEYS 144

1

4

3

2

This should read in “1 2 3 4” order as well. Another problem shows

up when you work with templating environments. Let’s assume import

templates for a login form and a search form on the same page that

have been independently indexed (I’ll leave out the labels and ids for

brevity):

<input type='text' name='name' tabindex='1' />

<input type='password' name='password' tabindex='2' />

<!-- Other Page Content -->

<input type='text' name='search' tabindex='1' />

The tab order should be "Input Name, Input Search, Input Password"—

clearly not what we would like to see happen. To get around this, you’d

have to parcel our blocks of index values to each form, ranking them

by priority and hoping everything goes well. This reminds me a lot of

line numbering in BASIC. I hated line numbering in BASIC. A better

solution is to just build your pages in natural reading order and let the

browser handle the tabbing for you.

The accesskey= and tabindex= properties were well intended attempts

at making the web better for the population with disabilities. Unfortu-

nately the reality of the situation is that the lack of a standard keyboard

interface guideline and the ways that these properties actually behave

in browsers prevent us from successfully using them to help our users

most of the time. The behavior usually carries a risk of complicating the

interface, which we don’t want. I’ve mentioned the idea of simple and

complex interfaces a few times now, so next we’ll look at a simple way

to see the difference.

Act on it!

1. Look at the menus of your web browser to see how many (few) keys there

are that don’t have the potential of conflicting with an access key. Do the

same using the command reference for a screen reader.

2. Look at any areas where you may have already used tabindex=. If the

indices are already in natural order, get rid of them to prevent updates

from breaking your tab ordering. If the indices aren’t in natural order, find

a way of reordering your content to put it into natural order.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=144

YOUR INTERFACE HAS SOME EXPLAINING TO DO 145

21 Your Interface Has Some
Explaining To Do

Man can alter his life by altering his thinking.

William James

We want our users to be able to direct as much of their attention as

possible to the work they want to do. For this to happen, we need our

interfaces to be simple and easy to use so their efforts aren’t mostly

spent working through our interfaces. This is particularly important

for our users with disabilities who, either due to personal limitations

or the nature of their assistive technology, may already have some dif-

ficulties with navigation. We need to understand then, what makes a

user interface simple or complex.

There are many ways to determine the complexity of an interface and

most of them are well beyond the scope of this book to describe. I can,

however, start you off with a quick and easy way of comparing two

interface options as well as getting a feel for how much work a task is

going to be.

Action Counting

The simplest way to go about evaluating an interface is to count the

steps it takes to get things done. For example, to login to a site, we

might have a series like this:

1. Navigate to username input box.

2. Activate username input.

3. Type username.

4. Navigate to password input box.

5. Activate password input.

6. Type password.

7. Navigate to login button.

8. Activate login button.

That gives us eight steps for login. If the login form is the only thing

on the page, we could optimize this a little by ensuring that the initial

focus is on the username input box, verifying a natural tab ordering

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=145

YOUR INTERFACE HAS SOME EXPLAINING TO DO 146

(In Tickling The Keys, on page 142, we see how not to do this), and

making sure that pressing the return key while the password input box

is active submits the form without navigating to the login button. With

these changes, a user familiar with the convention would go through

these steps:

1. Type username.

2. Navigate to password input box (Tabbing automatically activates).

3. Type password.

4. Press the return key to Login.

So we have a reduction of half the steps for a user familiar with the con-

ventions of forms. This method is admittedly very simple and doesn’t

account for many factors like switching between different input devices

or the number of keystrokes typed. This kind of accounting should

never be claimed as an attempt at a formal interface evaluation. If you

need a heavier weight tool for formal evaluation, I recommend looking

into a method called GOMS (Goals, Operators, Methods, and Selec-

tion).4 Nevertheless, action counting is still a handy way to get a quick

informal idea of the an interface’s complexity.

Comparing Two Interfaces

Action counting also lets us compare two interface options. Lets look at

the shopping cart interface design mockups in Figure 7.2, on the next

page and Figure 7.3, on the following page. The first is a conventional

“Add to Cart” button and the second is a AJAX style drag and drop

interface. We would like to know which of the two options is simpler for

our users, so let’s count the actions for the two options and see how

they compare. Let’s start with the button interface:

1. Locate item to add.

2. Locate ‘Add to Cart’ Button

3. Navigate to ‘Add to Cart’ Button

4. Activate Button

Four actions—not too bad overall. How does the drag and drop com-

pare?

4. For an introduction to the basics of GOMS as well as many other well thought insights

on user interface design, refer to Jef Raskin’s The Humane Interface [Ras00]

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=146

YOUR INTERFACE HAS SOME EXPLAINING TO DO 147

Figure 7.2: A Run Of The Mill Way To Add A Book To A Cart

Figure 7.3: A Drag And Drop Shopping Cart. Not Only Does It Require

A Pointer, But It’s Also More Complex

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=147

YOUR INTERFACE HAS SOME EXPLAINING TO DO 148

1. Locate item to add.

2. Navigate to item icon.

3. Click and hold item icon5

4. Locate cart icon

5. Drag item icon to location of cart icon

6. Release item icon at cart icon location

Six actions—does this mean this navigation is “worse”? Not necessar-

ily. It is certainly more complex, but it could be argued that it’s more

“intuitive” and hence worth the extra complexity. You just won’t find

me arguing that.

With information in hand to get you started on finding unnecessary

complexity in your sites we come to the end of our discussion of web

interface accessibility and nearly to the end of our discussion of HTML

accessiblity. The last part of HTML to discuss is a big one, however—

images, sound, and video. We’ll be spending all of Part III getting up to

speed on these issues.

Act on it!

1. Count the required actions for some of the common tasks on your sites. Do

any of the tasks have a surprisingly high number of actions? What can you

do to streamline the interface?

2. Look for more information about GOMS modeling and apply it to the same

interfaces. Note how formal evaluation compares to action counting.

5. You may notice that the drag and drop cart is also inaccessible because it relies on

pointer input. We’ll discuss this issue and how to work around it in Higher Order Scripts,

on page 226

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=148

Part III

Getting the Perfect View

There are always two people in every picture: the

photographer and the viewer.

Ansel Adams

Chapter 8

A Picture is Worth...
It’s no secret that pictures are among of the most powerful tools we

have for communication. Images allow us to express complex ideas in a

relatively small amount of space. We also know some of our users can’t

get the message we want to express through images alone. Many people

are challenged by difficulties in differentiating colors. In Stoplights and

Poison Apples, we’ll cover some ways to know what our representations

look like for our color blind audience as well as make sure we don’t use

color alone to express our ideas. We’ll also learn how to understand the

consequence of the contrast of our color schemes by Thinking in Terms

of Black and White.

We also must provide another information access path for users who

can’t see our images at all. Alternative text representations are one of

the fundamental building blocks of web accessibility and we’ll discuss

using the alt attribute of images To Put it Another Way. Sometimes an

attribute worth of text isn’t enough, however, and when we’ll need a few

more techniques when we have More than alt= Can Say. That covers the

basic everyday things we need to understand about providing accessi-

bility for our image content, but, on occasion, a few oddities show up

as well. To close the chapter, we’ll discuss some of the more common

anomalies in alt.text.odds-and-ends

STOPLIGHTS AND POISON APPLES 151

22 Stoplights and Poison Apples
I have played hell somewhat with the truthfulness of the

colors.

Vincent van Gogh

As designers, one of our most compelling tools for conveying a message

is color. Proper use of color enables us to easily and clearly evoke a

perception in the mind of our viewer. The ways in which color is used

provide a challenge, however, to the members of our audience who are

affected by one of the forms of colorblindness. Do you leave your users

in the position of Figure 8.1, on the following page? Less dramatically,

consider this: Without the ability to distinguish red from green, how

would you suggest navigating a standard traffic light? Would you know

whether to stop or go?

An Introduction to Colorblindness

First off, I need to confess to a little deception. In Figure 8.1, on the

next page, I’ve simply changed the photo to grayscale. It illustrates the

point, but isn’t fully reflective of how colorblind users would necessar-

ily see the apples. Colorblindness, rather than the inability to see any

color, is the inability to distinguish differences between certain colors.

Generally, we are concerned with three types: red-green colorblindness,

yellow-blue colorblindness, and total colorblindness.

Red-Green Colorblindness

The vision disorders protanopia, protanomaly, deuteranopia, and deuter-

anomaly are all associated with limitations to the ability to differentiate

red from green. Some members of this group also experience a darken-

ing or dimming effect where red becomes indistinguishable with black.

Red-green colorblindness is, by far, the most common form of color

resolution disability at roughly 7–10 percent of the population, with a

prevalence among men by a factor of 20:1.

Yellow-Blue Colorblindness

Tritanopia and trianomaly results in difficulty discriminating yellow

and blue tones. Much rarer than red-green colorblindness, yellow-blue

colorblindness affects less than 0.5 percent of the population with no

discrimination between men and women.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=151

STOPLIGHTS AND POISON APPLES 152

Figure 8.1: Are You Feeling Lucky? Both apples are quite delicious—The

green one, however, has been poisoned. Have a nice day.

Total-Colorblindness

Monochromacy is exceedingly rare and is marked by a complete inabil-

ity to distinguish color hues and possibly by increased light sensitivity.

Prevalence of Colorblindness Types

In our natural environment, red and green often appear with one another.

Because of this and of the higher likelihood of red-green colorblindness,

we’re most likely to encounter difficulties in these ranges of the color

spectrum. Because of the rarity of Yellow-Blue colorblindness, fewer

issues will occur, but we should be aware of them when we design in

those color ranges so we can avoid color dependence and use appropri-

ate contrast. The odds of encountering a user with total colorblindness

are extremely low. In fact, awareness of how pages look monochromat-

ically is more likely to be a factor for users who deliberately view pages

in monochrome because of contrast needs or equipment limitations.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=152

STOPLIGHTS AND POISON APPLES 153

Simulating Colorblindness

While you can get some information by shifting your monitor settings

to grayscale, the best way to check your stylesheets and images for

colorblindness problems is to use a simulation tool. Several simulators

available for viewing web pages and images, so you’ll want to try a few to

find one that you’re comfortable using. The Colorblind Web Page Filter1

translates web page stylesheets and images to appear as they would

to the various classes of colorblind users. Vischeck2 is another option

that exchanges fewer viewing options for a simpler interface as well as

providing a Photoshop plug-in to check images during development.

The problem with web-based translation filters is that some parts of

your content, like plug-in media won’t be properly transformed. To get

an overall view of the page as it would be seen by a color blind user,

you’ll want to install a local simulation tool to perform a transformation

on your local desktop. Sim Daltonism3 for OS X and ColorDoctor4 for

Windows are two good options.

Color Keying of Information

The biggest challenge for colorblind users is the use of color keyed infor-

mation. Certainly for users who can clearly resolve the colors chosen,

keying is a valuable tool. The key point is to pick colors that don’t

resolve too closely for the colorblind. When colors do behave badly in a

colorblindness simulation, we have three options:

• Change One of the Conflicting Colors: Clearly, if possible, it is

best to change the color scheme to avoid the color conflict entirely.

This might still put a considerable burden on the user, however,

who may still need to consider different values of the same hue

in order to understand the color keying. For this reason, I prefer

to add other cues in addition to preferring non-conflicting color

palettes.

• Add Texture for Clarity: When texture is added to the color, it

provides an additional visual cue to assist the audience in under-

standing the keying. This may also provide added content clar-

ity for non-colorblind users. Actual texturing of the color doesn’t

1. http://colorfilter.wickline.org/

2. http://www.vischeck.com/

3. http://www.michelf.com/projects/sim-daltonism/

4. http://www.fujitsu.com/global/accessibility/assistance/cd/

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=153

STOPLIGHTS AND POISON APPLES 154

Figure 8.2: HTML and Photoshop Interfaces for the Vischeck Color-

blindness Simulator

make sense in all situations, however. For example, if the color

keying is used for navigation, then associated symbols or icons

should be used to provide alternate cueing.

• Add Data Information to the Keying Explanation: If the color

keying is used for a chart or another data application, adding sum-

mary information gives an alternate access path if the visual rep-

resentation proves to be troublesome for the user.

Let’s consider the progression in Figure 8.3, on the following page, of

retooling a chart to minimize the impact of color keying. In sample A,

the original color choices (red and green) don’t resolve well when color

information is removed. For fun, let’s assume we can’t change the col-

ors outright. By adding a texture to one of the colors, as seen in sample

B, the meaning of the chart is made clear. If we couldn’t do that either

(though I can’t image why it wouldn’t be possible to do either of these),

we could just summarize the data for the user. Even if it’s possible to

change colors or add textures, this is still a good idea and we’ve done

such in sample C, since it provides one more way for the person reading

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=154

STOPLIGHTS AND POISON APPLES 155

Figure 8.3: Color Keying in Charts: A is unacceptably color keyed, B

uses texture to improve the chart, and C adds a data summary. Of

course, appropriate alt text should be used in any case.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=155

STOPLIGHTS AND POISON APPLES 156

the chart to understand it.

Act on it!

1. Use a colorblindness simulator to review your web sites. Pay particular atten-

tion to images that lose their meaning and uses of color keying that don’t

provide other cues.

2. Consider items in your environment that employ color keying. What other

information is available to inform your use of the item other than color?

How would you redesign the item to reduce the need for color vision? For

example, consider the traffic light question posed at the beginning of the

section. Some colorblind individuals rely on the fact that traffic lights are

standardized to read Red Yellow Green from top to bottom or left to right.

Some regions are also beginning to consider the use of shaped lights to

improve clarity.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=156

THINKING IN TERMS OF BLACK AND WHITE 157

23 Thinking in Terms of Black and
White

Both of your socks should always be the same color—or

they should at least both be fairly dark.

Dave Barry, “A Conflation of Dunces” Miami

Herald, 1990.10.25

The color hues we design with pose only one accessibility issue. The

value has at least as much, if not more, impact on our users’ ability

to comprehend our work. When color values are too similar, there may

not be enough contrast for some users to differentiate between layout

elements or resolve the content of images. Some forms of colorblindness

as well as low vision disorders such as macular degeneration can lead

to contrast resolution difficulties.

To illustrate the problem, lets take a look at a rainbow that I’ve con-

structed and reduced to grayscale in Figure 8.4, on the next page.

Notice anything wrong? If it weren’t for the labeling and lines, would you

clearly see seven colors? In my case, I can only distinguish two grays—

one for green and indigo and another for everything else. Clearly, some

pretty important information in this figure has been lost. So, what went

wrong?

Luminosity and Contrast

To see what happened, we’ll need a definition of contrast. In the Web

Content Accessibility Guidelines 2.0 (WCAG 2.0), the W3C defines con-

trast in terms of the difference of the relative luminance two colors.

Relative luminance is essentially the brightness of the color, but not all

of the components of a color are equal contributors to the brightness.

For a given value, green contributes much more to brightness than red

and both contribute more than blue. To get a relative luminance value,

the formula is:5

Relative Luminance = (0.2126 * R) + (0.7152 * G) + (0.0722 * B)

To get R, G, and B, we need to transform the red, green and blue com-

ponents of our colors into sRGB like this:

RsRGB = R8bit

255
, GsRGB = G8bit

255
, BsRGB = B8bit

255

5. http://www.w3.org/TR/WCAG20/#relativeluminancedef

http://www.w3.org/TR/WCAG20/#relativeluminancedef
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=157

THINKING IN TERMS OF BLACK AND WHITE 158

Red

Orange

Yellow

Green

Blue

Indigo

Violet

0xFF9999

0xFF9900

0xCCCC00

0x99CC99

0x99CCFF

0x9999FF

0xCC99FF

Color Hex Value

Figure 8.4: This image was constructed with seven hues. Key in the hex

values if you don’t believe me.

Then we can get R, G, and B like this:

If RsRGB <= 0.03928, R = RsRGB

12.92
. Otherwise R = (RsRGB+0.055

1.055
)2.4

If GsRGB <= 0.03928, G = GsRGB

12.92
. Otherwise G = (GsRGB+0.055

1.055
)2.4

If BsRGB <= 0.03928, B = BsRGB

12.92
. Otherwise B = (BsRGB+0.055

1.055
)2.4

These relative luminance values will always be in the range 0–1. In

Figure 8.5, on the following page, I’ve added the luminance values for

all seven shades. With these values in hand, it becomes possible to take

a look at some relative contrasts. The contrast of two colors is simply a

ratio of the lighter to darker relative luminance (with a scaling factor of

0.05 prevent an unpleasant divide-by-zero problem). The formula is:

Contrast = L1+0.05

L2+0.05

Where L1 is the greater (lighter) and L2 is the lesser (darker) luminosity

value of the colors being compared. This yields a contrast ratio in the

range 1–21 where the higher the number, the stronger the contrast.

So, we now have the information we need to look at what happened,

and I’ve added the relative contrast values to Figure 8.5, on the next

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=158

THINKING IN TERMS OF BLACK AND WHITE 159

Red

Orange

Yellow

Green

Blue

Indigo

Violet

0xFF9999

0xFF9900

0xCCCC00

0x99CC99

0x99CCFF

0x9999FF

0xCC99FF

0.4634

0.4404

0.5602

0.5226

0.5718

0.3678

0.4284

Color Hex Value Luminance

1.05

1.24

1.07

1.09

1.49

1.15

Contrast

Figure 8.5: Another look at the rainbow with luminosity and contrast

information. Clearly, this color scheme doesn’t quite get there.

page. Hmmmmm—That’s not good. With a contrast of less than 1.5 in

all cases, it’s really no surprise that the shades are hard to differentiate.

Obviously, this color scheme isn’t going to be something we would want

to design our layouts around.

Some might say that this example seems contrived. After all, how often

are seven colors from different parts of the color wheel chosen for a page

layout? Probably not often, but remember that it only takes placing

two non-contrasting colors next to one another to cause a problem.

Note that all seven of the colors selected for the example fall into the

classic web safe palette, so we’re not talking about strange or rare color

options. Before any color pairing is finalized, it should be checked for

adequate contrast.

Evaluating Contrast

Unless you’re the sort of person that majored in mathematics in college,

you’re not looking forward to spending an afternoon plugging num-

bers into the luminosity and contrast formulas. I’m exactly the sort of

person that majored in mathematics in college and I certainly don’t.

Fortunately, we have a few other options to use for contrast check-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=159

THINKING IN TERMS OF BLACK AND WHITE 160

Figure 8.6: Preference windows for OS X and Windows XP to enable

high contrast display modes.

ing. A simple way to make a snap judgement is to switch your display

to grayscale or to a high contrast mode. This doesn’t give the precise

comparison formulas do but, if the matching doesn’t look good here, it

probably wont pass the formula anyway and flipping modes is much

faster than punching numbers. Another way to do a grayscale check

is to use GrayBit,6 which will transform a page, including images, to

grayscale. Keeping in mind that not all plug-in enabled media respects

the system contrast settings, and GrayBit doesn’t convert everything, so

contrast settings and grayscale conversions may not completely work

for a given page.

While number of tools are available to do color contrast checking online

such as the one at Juicy Studio,7 as of this writing, they all appear to

use an older contrast formula proposed in WCAG 1.0. This formula also

works well, but your results will be different than you would get with

the formula above.

6. http://www.graybit.com/

7. http://juicystudio.com/services/colourcontrast.php

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=160

THINKING IN TERMS OF BLACK AND WHITE 161

When All Else Fails

I mentioned earlier that the rainbow scheme introduced in Figure 8.4,

on page 158 wouldn’t be a good choice for a layout. What if your con-

tent really is about the colors of a rainbow? It isn’t possible to simply

select different colors for contrast as it would be if their purpose were

for layout. Unfortunately, for “normal” rainbows (those which someone

without a vision impairment would recognize as a rainbow), it is essen-

tially impossible to get to the 5:1 contrast ratio recommended by WCAG

2.0. Additionally, whenever an actual color is being referred to, as in the

example, it is important to accurately represent it. What we need to do

is understand what information is important to the end user. Certainly,

in this case, it is important to know what the color codes used are since

the luminosity and contrast information provided rely on them. It is

also nice to have the descriptive labels for the intent of the color. None

of that information is directly related to the color usage, however. All

that needs to be happen is what is shown in the example—appropriate

labeling was added to the image to allows someone who can’t resolve

the color and contrast (and via the magic of grayscale, I’ve made that

happen for everyone) to get all of the information without needing to

resolve the color itself. Because the label color is not mandated, I chose

to make it full white, which provides very good contrast against all of the

values present. Additionally, the important thing to remember is that

the content needs to be accessible as a whole. It is certainly reasonable

to place the relevant labeling and information in the surrounding text,

if that works better. After all, the general gist of what’s in the actual

image is already available from the alt text, right? Right?

Act on it!

1. If you can, examine the colors produced for the hex values in Figure 8.4,

on page 158. Even if you have no visual impairment, you may feel that

something looks “strange” about the combination of colors even without

the grayscale reduction. If you pay attention to that feeling as you design,

you will have fewer unpleasant surprises when you evaluate your proposed

color schemes for contrast.

2. If you never have, spend some time browsing the web with high contrast

settings turned on. Take note of what works and what doesn’t. Keep these

things in mind while you design.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=161

TO PUT IT ANOTHER WAY 162

24 To Put it Another Way
When someone tells you something defies description, you

can be pretty sure he’s going to have a go at it anyway.

Clyde B. Aster

In my experience, when most developers think about accessibility for

the web, the first thing that comes to mind is adding alternate text to

their images. While there is certainly more to accessibility than alt text,

this first inclination is a good one. In 2006, the United Nations commis-

sioned Nomensa to conduct a Global Audit of Web Accessibility.8 The

findings of this audit were that 93% of sites surveyed had inadequate

text descriptions for graphical elements. That’s a whole lot of untagged

content, so we should probably get started.

Basics of Alternate Text Representations

Alternate text representations (alt text from here on out) are probably

the easiest accessibility measure to implement from a technical stand-

point. All you do is add the alt= attribute to all of your and <area>

tags (and you have to anyway if you want valid HTML—alt= is a manda-

tory attribute on these tags):

<!-- Images -->

<!-- Image Map Areas -->

<area shape='rect' coords='0,0,75,75' href='somewhere.html'

alt='Area Alt Text'/>

There you go. That’s it. Well, not really. I only said that it was easy from

a technical standpoint. The real work of alt text is determining what

text needs to be in the attribute, and that’s a “One moment to learn, a

lifetime to master” kind of art.

Writing The Right Alt Text

The problem with writing correct alt text is that it often can’t be done

simply by looking at the image. Consider the photo in Figure 8.7, on the

following page. What should the alt text be? There are a lot of choices,

depending on the context of the photo:

• It might be about clothing: alt=’Action shot of a one piece jumper’

8. http://www.nomensa.com/resources/research/united-nations-global-audit-of-

accessibility.html

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=162

TO PUT IT ANOTHER WAY 163

Figure 8.7: A Picture With Many Possible Alternative Texts.

• Or about child development: alt=’An infant learning to walk by cruising

with a chair as a support’

• To identify a specific person: alt=’Aidan John Sydik’

• Part of my personal photo gallery: alt=’Aidan playing in the kitchen’

• Perhaps I’m writing about web accessibility and talking about the

context dependent nature of alt text: alt=’A Picture With Many Possible

Alternative Texts.’

Clearly the context matters. So does the length. The alt= attribute is

meant to be a brief description as well. Something like alt=’Aidan, a

blond haired toddler, wearing a light and dark blue striped jumper while stand-

ing against a green accented chair in a kitchen with hardwood floors that might

need a bit of a sweep’ would be far too long and detailed for normal alt

text. Most of the time, the alt text should be no more than 40-80 charac-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=163

TO PUT IT ANOTHER WAY 164

It Isn’t Called tooltip=

Some time ago, the makers of a couple of web browsers
decided that it would be a nifty idea to add tooltips (those
little text boxes that appear when you hold the mouse over
top of something) to images. In and of itself, this wasn’t a bad
thing. The problem comes from the fact that these browsers
use the alt= attribute as the source for tooltips. This resulted
in alt text being written as an extended description for users
who could see the image rather than as a true alternative for
users who couldn’t. For supplementary information, the title=

attribute should be used instead. This attribute is also the first
choice in current browsers that display tooltips. This effect is not
guaranteed, however—some browsers display the information
in the status bar, while other don’t display it at all.

ters or a couple of seconds when spoken. Odds are that it isn’t suitable

alternative text if it looks or sounds run on.

Something alt text should not generally contain is the phrase “image

of...”. When alt text is rendered, the image is generally identified as such

and what the user will get is something like “image: image of...” which

is more than a little irritating, particularly in screen reader software.

This should be avoided entirely unless, like the last example above, it

is conceptually important that the image is an image. Similarly, words

like “photo”, “painting”, and “sketch” may be redundant.

We also need to avoid providing information in alt text that isn’t other-

wise available. For example, if I identify Aidan by name in the alt text

but not in the narrative text of the content, I have actually tipped the

balance the other direction and put the users who can view the image

at a disadvantage. When this does happen, the extra information needs

to either be removed from the alt text or moved into the narrative as

appropriate. We need to ask then, what if the image doesn’t say any-

thing not already covered in the text content?

If there’s nothing good to say...

Sometimes the alt text should be nothing. That doesn’t mean not having

an alt= attribute (remember, valid and <area> tags always do) It

means having the empty attribute alt=”. There are two primary reasons

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=164

TO PUT IT ANOTHER WAY 165

Figure 8.8: Some Things Are Best Left Unsaid. This Situation Calls for

Empty Alt Text.

to specify empty alt text and both are found in Figure 8.8, on the next

page:

• Redundant Images: Sometimes the purpose of the image is already

fully specified elsewhere, such as the shopping cart icon. It cer-

tainly doesn’t make sense for the user to receive “Image: Cart View

Cart”, so it would be better to leave the alt text empty with the

intention that the icon simply disappear if it can’t be viewed.

• Decorative Images: When a user is unable to view the nicely rounded

corners, gradiated borders, spacers, and other images only meant

to improve the look of a page, they probably don’t care to be

flooded with information about them via alt text. By setting alt=”,

you clarify that there is nothing useful to be said about the images

and that it’s alright to ignore them.

With regard to empty alt text, I have one specific warning for those

who prefer to use WYSIWYG editors. In many cases, these editors do

not allow you to enter empty alt text, instead leaving out the attribute

entirely. Usually the editor will have a checkbox or option visible if

empty attributes are an option. If you are unsure about your editor’s

behavior, open up the generated HTML in a text editor and check the

actual code being generated (and take a look at the sidebar on page 84).

Responsibility For Alt Text

From my experience, the most common cause of bad or missing alt text

is misplaced responsibility. I have watched (and participated in) situ-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=165

TO PUT IT ANOTHER WAY 166

ations where web developers are given text and images to put online.

Usually no alternate text is specified for the images and the developer is

left to either ignore adding alt text (Don’t even think about it) or trying

to come up with some appropriate text. The problem is that the devel-

oper didn’t create the content and doesn’t necessarily have any reason

to know what the correct alt text should be. What should happen is for

the author to submit appropriate alt text with their content that clearly

expresses their intended context.

Getting Rid of Images

At some point, there might be temptation to simply do away with images

rather than write good alt text for them. In the big picture, this isn’t a

great idea though. While visually impaired users need have text alter-

natives for images, other users benefit from explanatory imagery. Some

developers choose the path of “text-only” versions of their pages. Don’t

make this mistake! To do this right, you would need to write alternative

text content anyway—you would just be doing it the WET way. Take a

look at Don’t Get WET!, on page 57 if you don’t know why that would

be a Bad Thing.

Act on it!

1. Act Locally. Take the time to add alternate text to your work if it isn’t there

already. If you are unsure of what a text should be, discuss it with the author

of the content or image—Don’t add to the problem by generating bad

attributes!

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=166

MORE THAN ALT= CAN SAY 167

25 More Than alt= Can Say
An image can say more than a thousand words, but which

words are these?

Taeke de Jong, Naming Components and

Concepts

The text in the alt= attribute should be reasonably concise—ideally, no

more than 40-80 characters. Sometimes an image says much more

than can be summarized briefly though. There are charts, diagrams,

and other illustrations representing sizable amounts of content infor-

mation and, fortunately for us, we have ways to manage longer alter-

native texts.

So Much to Say

If more needs to be said about an image than fits into normal alt-text,

we can place a longer explanation on a separate page and link to it

with the longdesc= attribute. However, its important to keep in mind

that long descriptions are meant to be an extension to the alt-text, not

a replacement (alt= doesn’t stop being a required attribute just because

longdesc= is defined). Careful attention needs to be paid to the nature

of the long description as well. Descriptions should still be reasonable

in length and not contain any information needed by users who are

viewing the image and not getting the long description. In fact, when I

find myself getting ready to add a long description, I immediately stop

and think it through. If the ideas presented by an image require that

much alternative text to explain and the body text doesn’t explain it,

have I risked leaving my readers in the dark? Most of the time the

answer seems to be yes, and revisions to the body text eliminate the

need for a long description entirely. That said, sometimes it is the right

solution and here’s what it looks like:

<!-- In The Main Page -->

<img src='YourImage.png'

alt='Alt Text Goes Here'

longdesc='YourImageExplanation.html'/>

<!-- YourImageExplanation.html -->

...

<p>Narrative Explaining YourImage.png. Just be careful not to

put anything here that non-alternative text readers might

need to know.

</p>

...

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=167

MORE THAN ALT= CAN SAY 168

The Honorable But Venerable “D Link”

Here and there you might see references to “D Links”. Back in
an earlier era (i.e. before longdesc=), some accessibility experts
recommended adding a link marked “D” (or “d”) immediately
after images needing further alternate text description. This was
a useful way to present the information in a conventional way
for users who needed alternate description. In the here and
now, however, this functionality is provided by the longdesc=

and the “D Link” should receive its applause for a job well done
and exit stage left.

Simple enough. Long descriptions give us an opportunity to say a few

more words about complex images. Just be judicious and make sure

they aren’t covering for deficiencies in your body text.

Charts and Graphs

When it comes to needing a lengthy explanation of imagery, nothing

beats data images. Consider Figure 8.9, on the following page. The

briefest it gets is: alt=’Pie Preference: 42% Peach, 28% Cherry, 16% Blueberry,

7% Key Lime, 5% Other. Sample Size 42. Error +/- 2%’. 107 characters is well

longer than an alt-text should be and ultimately, this is a very simple

graph described as tersely as possible. If the graph is more complex,

this won’t do at all. We can use three strategies:

• Minimize The Content: In Figure 8.9, on the next page, The

heading “Pie Preference” could be moved into an HTML heading

and the sampling and error information could be moved into a

paragraph just below the actual image. This would reduce some

complexity

• Rely on longdesc=: Long descriptions are stored at a separate URL.

This gives more freedom to mark up an explanation for clarity:

...

<h1>Pie Preference</h1>

Peach: 42%

Cherry: 28%

Blueberry: 16%

Key Lime: 7%

Other: 5%

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=168

MORE THAN ALT= CAN SAY 169

Peach (42%)

Cherry (28%)

Key Lime (7%)

Other (5%)

Blueberry (16%)

Pie Preference

Sample Size: 42
Error: +/- 2%

Figure 8.9: A Simple Pie Chart.

<p>Preference data is based on a sample size of 42 and has an

error of plus or minus 2%.</p>

...

• Explain It In The Narrative: Particularly for complex graphs, It

is important to explain what the graph says and means in the

body text of the page. If this is done well, it may suffice to say

alt=’Pie Preferences Chart representing the data discussed below’. If the

narrative doesn’t refer explicitly to the chart and all of its content

is clearly described, it might even be reasonable to use an empty

alt-text (though it’s probably better to explicitly mention it).

Which should you use? All of the above—Do what you can to make the

content of the graph easily understandable by all of your users.

Sometimes You Don’t Need An Image At All

For simple charts, there’s another option. If you’re comfortable with

CSS and look at the right “obscure” tags, you could try to build your

chart entirely in HTML. In a project where I was generating a simple his-

togram plot of user response data, I encountered two problems. First,

the overhead of dynamically generating the image was a little higher

than warranted—i.e. it was too darned slow! Second, it was a slower

process yet because I needed to feed raw data to the chart generator

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=169

MORE THAN ALT= CAN SAY 170

and do most of the same calculations a second time to generate alt-text

for the image. Not Good. Let’s consider the chart in Figure 8.10, on the

following page (No, The percentages don’t total to 100%. Such is the

nature of rounding real data). If you think about it, isn’t that just a list

of possible options and what the response percentage was for each? If

you think about it a little bit more, couldn’t you think of the content as

a list defining the percentage response for each option? Maybe it would

look something like:

<dl>

<dt>A</dt><dd>25%</dd>

<dt>B</dt><dd>66%</dd>

<dt>C</dt><dd>8%</dd>

</dl>

Not bad. It certainly represents the content, but in a browser, it doesn’t

look anything like a chart. If we want to define this as a special class of

list and build some CSS styles, we’ll get there though.

<style>

.Chart {

height: 250px;

width: 360px;

background-color: #8ad;

border: 1px solid black;

text-align: center;

padding: 0px;

margin: 15px;

margin-top: 5px;

}

.Chart dl {

margin-left: 25px;

}

.Chart dt {

display: inline-block;

float: left;

width: 90px;

margin: 0px;

margin-top: 210px;

margin-left: 10px;

padding-top: 4px;

}

.Chart dd {

display: inline-block;

float: left;

overflow: hidden;

width: 90px;

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=170

MORE THAN ALT= CAN SAY 171

Figure 8.10: The Same Definition List With And Without CSS Styling

color: white;

background-color: #00a;

border: 1px solid black;

font-size: 0.8em;

text-align: center;

vertical-align: bottom;

margin: 0px;

margin-left: -90px;

padding-top: 2px;

}

</style>

Of course, we’ll need to reference the CSS in the HTML document.

Here’s the markup for the chart in Figure 8.10:

<div class='Chart'>

<dl>

<dt>A</dt><dd style='margin-top: 150px; height: 50px'>25%</dd>

<dt>B</dt><dd style='margin-top: 68px; height: 132px'>66%</dd>

<dt>C</dt><dd style='margin-top: 184px; height: 16px'> 8%</dd>

</dl>

</div>

Nice. Nicer yet, for those users who are using a screen reader, text

browser, or simply browsing with styles turned off, the chart will render

as a list of options and percentages like the one on the right hand side

of Figure 8.10. Of course, in a real application, this would probably be

generated with a script but, since the heavy lifting is being done with

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=171

MORE THAN ALT= CAN SAY 172

Figure 8.11: A Simple Filet Crochet Diagram. A Not So Simple Alt-Text

Problem.

the CSS, the scripting isn’t particularly difficult.

Explanatory Diagrams

I won’t pull any punches here—developing alternative text for diagrams

explaining the steps of a process is usually a real pain. Sometimes even

a lengthy narrative isn’t quite enough to give the entire idea. Consider

diagrams explaining the design of a circuit or device. The best solution

possible may be to provide a general description of the purpose of an

image and provide a high resolution version that can be rendered into

a raised line or braille diagram. In other cases, we can describe the

diagram with a lengthy narrative and we have two ways to do this. We

can push the explanation out to a long description if it doesn’t appear

to be useful for everyone. As is often the case, however, it may be better

to incorporate the explanation into the body text.

Consider Figure 8.11. With the resurgence of knit and crochet as popu-

lar crafts, the web has been the obvious media to share pattern and

tutorial information. This example of a filet crochet pattern is very

basic—normally the pattern would be dozens if not hundreds of stitches

wide and use many different shorthand symbols. In many cases, tex-

tual shorthands exist that can be used as the basis for our alternate

text. For this example, the written shorthand for a crochet pattern looks

like this:

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=172

MORE THAN ALT= CAN SAY 173

Row 1: Ch 10. Row 2: SC, Ch 2, SC 4, Ch 2, SC. Row 3: SC 4, Ch 2, SC

4.

To be useful for the visually impaired, however, a couple of consider-

ations need to be made. First, this shorthand is mostly composed of

abbreviations. For best possible content accessibility, these should be

marked up with <acronym> or <abbr> tags as appropriate and screen

reader tested for understanding. For all users, it would also be con-

siderate to add abbreviations to a site glossary. It is not necessary,

however, for accessibility to expand all abbreviations that would be

commonly understood in the content’s context. While “SC” might not

be clear to the general public, it is understood as “Single Crochet” for

anyone with minimal experience in the craft.

Act on it!

1. Try your hand at generating a graph entirely with XHTML and CSS. Better

yet, if you’re of the programming persuasion, build a library to generate

them for you.

2. If your site already uses long descriptions, review them to ensure that they

aren’t providing a significantly different experience to that provided by

imagery. If any of these long descriptions are old school “D Links”, update

them to use longdesc= attributes.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=173

ALT.TEXT.ODDS-AND-ENDS 174

26 alt.text.odds-and-ends

The path of excess leads to the tower of wisdom.

William Blake

Images can represent things are neither purely informational nor com-

pletely presentational in nature. It is well worth our time to look at

these kinds of images, because working with them doesn’t necessarily

fit into our general patterns and methods for image accessibility. Let’s

take a closer look at these areas and find out what we need to do about

them.

Image Maps

Image maps have had a bad accessibility reputation. In the case of

server side image maps, this reputation is well deserved. Because there

server side image maps require both vision and access to a pointing

device, they are, by default, inaccessible. Client side image maps, on

the other hand, are effectively a list of links bound to a special visual

representation. As we saw in To Put it Another Way, on page 162, the

<area> tag requires the use of an alt attribute. We should still watch for

two issues even after we’ve added appropriate alternative text is to the

image map though. First, if the map has a lot of regions, it would be

good to add a link, either before the map or as the first region allowing

the user to skip past the contents of the image map. Regions also need

to be large enough for users with mobility impairments can accurately

select them.

Text of Images of Text of...

The only guarantee we have regarding fonts on the web is that we can

use the CSS font-face property with any of the default values serif, sans-

serif, monospace, cursive, or fantasy. This doesn’t give us a lot of freedom,

especially when you stop to consider that almost nothing is guaran-

teed about these fonts between platforms. There was a lot of talk about

downloadable fonts for a time but, partly due to fears about the secu-

rity risk to proprietary fonts, nothing really came of it. That lack of

typographical support lead many to take the route of opening up an

image editing tool, setting up the font as they wanted, and exporting an

image for inclusion on the web page.

This leads to a couple of problems. Obviously, if these images weren’t

given proper alt attributes, parts of the text would go missing. Another

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=174

ALT.TEXT.ODDS-AND-ENDS 175

issue is that these images are often used as headers, but not given

any semantic information to mark them as such. Again, this is easy.

By adding the correct <h#> tags (yes, it turns out you can do that—

headings are block type elements), we can mark this correctly. The last

major problem is less straightforward to solve. When images of text

are magnified, they quickly become difficult to read because of pixela-

tion and aliasing. The point of typography is to create a pleasing visual

effect, but how can we achieve this consistently and accessibly?

Enter Scalable Inman Flash Replacement (sIFR)9. sIFR allows replace-

ment of short lengths of normal browser text with typeset text embed-

ded in Adobe Flash media. The replacement itself involves a script func-

tion that checks for Flash and performs the substitution. The advan-

tages is that when Flash isn’t available or scripting is turned off, the

system falls back to normal CSS styling. The process happens trans-

parently to the user and text remains text with respect to screen reading

and browser selection. Figure 8.12, on the next page shows an example

of a “sIFRed” page.

Color Descriptions

Sometimes an image is meant to describe a color swatch. This is com-

mon practice for any content where a product is available in multi-

ple colors or fabrics. I have been asked on more than a few occasions

how we can successfully provide a complete text alternative for these

swatches. To put it bluntly, we can’t. This falls into the category of

attempting to explain an almost purely visual concept. That doesn’t

mean we should drop back to a null alt attribute, however. For each

swatch we provide, we also give a description of the nature of the color

involved, any patterning used, and color codes or order numbers as

appropriate.

For example, we might provide alternative text like "Style 4242: Black

and Green Plaid". This gives the user most of the information that we

can give them. If they know they don’t look good in green or hate plaid,

this is not an acceptable choice for them. If they think this is a good

choice, however, we have also provided a style number for them to use

for future reference. This approach also allows someone who can’t see

the swatch to make choices based on information given to them. If

the description of a swatch is complex, there is always the option of

9. http://www.mikeindustries.com/sifr/

http://www.mikeindustries.com/sifr/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=175

ALT.TEXT.ODDS-AND-ENDS 176

Figure 8.12: sIFR Allows Accessible Typography On The Web. Take Par-

ticular Note of The Selected Text.

using longdesc—just make sure you’re not getting too complex in your

description.

CAPTCHA’ed!

Completely Automated Public Turing tests to tell Computers and Humans

Apart (CAPTCHAs) are a type of challenge posed to a user, often as an

image to verify that a response is coming from a human rather than

from automated software. An example of a typical CAPTCHA is seen

in Figure 8.13, on the following page. These systems create accessi-

bility problems by creating content intended to be impossible to parse

with software. The systems is attempting to prevent access by auto-

mated “bot” software, but many assistive technologies are also software.

I think we have a problem.

Some attempts have been made to create an accessible CAPTCHA, but

this is unlikely to be successful. In order to beat automatic scanners,

character or image recognition systems have to be difficult to read and

sound recognition systems have to be hard to hear. In order for either of

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=176

ALT.TEXT.ODDS-AND-ENDS 177

Figure 8.13: CAPTCHAs Are Meant To Be Difficult For Software To

Interpret. Unfortunately This Includes Accessibility Software.

these to have a chance of success, we are faced with the unacceptable

option of eliminating alternative representations. Others have proposed

logic puzzles or riddles as a potential alternative, but this shuts out

some of our audience who have cognitive disabilities (as well as those

who just aren’t good at these kind of games). Ultimately, we would

end up in a situation where we are offering many different varieties

of CAPTCHA, each of which is made deliberately inaccessible in some

manner.

Clearly attempting to build accessibility around CAPTCHAs isn’t a lot

of fun. The unfortunate punchline is—if we did manage to make it to

the point of an accessible implementation—CAPTCHAs don’t actually

work very well. Many implementations have had gaps in the system

and brute force techniques like image cataloging are very reliable in

defeating the system. Worse yet, some neural network applications have

been found to have higher rates of success at responding to CAPTCHAs

than humans. My general advice is to not compete in this arms race

and try to select a different kind of validation system entirely.

ASCII Art

There is a long standing online tradition of using text characters to

create images. I’m referring to things like building a face like this:

[[Author: Production: This code needs to stay on one page]]

/ \

| ^ ^ |

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=177

ALT.TEXT.ODDS-AND-ENDS 178

| ^ |

| ___/ |

_______/

Even though this is made up entirely of text, we need to treat it as an

image. Doing this correctly will require the use of the <pre> tag, so we

already have a way to separate it from surrounding content. What we

don’t have is the convenience of the alt attribute so we’ll have to create

a caption for the image, preferably before the image itself. Why before?

Because we also should place a link before the block that targets a

point just after it—screen readers will generally drop into character

read mode for ASCII art and we need to give a way to skip it.

In most cases, full scale ASCII artwork isn’t particularly common on the

web, but in the small scale, the emoticon is a very common case. Emoti-

cons are the little “smiley” faces added to express emotion. I’m sure

you’ve seen one or two of them ;). For small inline ASCII art like this, we

can usually tag it as an abbreviation: <abbr title="Winking Smile">;)</abbr>.

Act on it!

1. Replace banner and heading images of text with a more functional alter-

native like sIFR.

2. Add alternative text and links to skip any image maps that you might have.

3. Bonus: Seek fame and fortune—develop a CAPTCHA that successfully pro-

vides security to a site while maintaining accessibility (and good luck).

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=178

When he approaches the light, his eyes will be dazzled,

and he will not be able to see anything at all of what are

now called realities.

Plato, The Republic, Book VII

Chapter 9

Video Killed the
Something-Something

Video is a great tool for presenting large amounts of information quickly

in an engaging format. Not all of our users can access our video con-

tent, however, because of their impairments. They may only be able

to understand the audio or video component of the content and some

users may not be able to safely view certain videos at all.

We’ll start this chapter off by learning how to ensure that the videos

we present aren’t harmful to our users. In It’s Not Polite to Flash the

Audience, we’ll take a look at the dangers of flickering video to users

who have photosensitive epilepsy. Once we know that the video is safe

to use, it’s back into the land of multiple access paths

If a picture is worth a thousand words, video is worth about two mil-

lion per minute. We’ll want to be a little more brief than that and in

Words That Go [Creak] in the Night, we’ll look at writing good captions

using them to provide an alternative to the dialogue and sounds of our

videos. Users that have visual rather than auditory impairments need

auditory descriptions to fill in the details of the video component. We’ll

look at creating these in Describe it to Me. With caption and auditory

description scripts, we can also add full-featured transcript alternatives

for video content.

Knowing how to write captions and auditory descriptions does little

good until we connect them to the video for presentation. Wrapping

up the chapter in On the Cutting Room Floor, we will look at common

presentation formats as well as a tool that makes the job easier.

CHAPTER 9. VIDEO KILLED THE SOMETHING-SOMETHING 180

Not all web developers produce video content and even fewer are directly

responsible for creating captions or auditory descriptions. Even if you

never produce alternative content for video, it is likely that you will be

involved in deployment or testing, so it is important to have at least a

working knowledge of how the process works and what makes for good

alternative content.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=180

IT’S NOT POLITE TO FLASH THE AUDIENCE 181

27 It’s Not Polite to Flash the
Audience

For thousands the world is a freak show, the images flicker

past and disappear, the impressions remain flat and

disconnected in the soul.

Johann Wolfgang von Goethe

We need to watch out for the presence of flicker when we add video

and multimedia content to our web sites. Flicker can be anything from

a strobe effect, the transition of color in a high speed passing train,

or even something as subtle as the movement of shadows on a light

colored surface. Flickering video certainly has the capability to be irri-

tating or bothersome, but our foremost concern here is that flickering

also has the potential to be severely harmful to our users.

Photosensitive Epilepsy

Photosensitive epilepsy results in seizures of varying nature and sever-

ity upon exposure to certain visual stimuli. The most common triggers

are stroboscopic light, repetitive patterns and flickering video. Some

developers argue that photosensitivity is a relatively rare condition and

minimize the importance of flicker prevention. In 1997 however, photo-

sensitive epilepsy was brought to prominent public attention when the

Pokémon episode “Dennou Senshi Porygon” was broadcast in Japan,

triggering seizures in hundreds of viewers. Clearly, when large audi-

ences are targeted, as we do on the web, even relatively small percent-

ages translate into large numbers of susceptible viewers. Even if the

numbers were minimal, the importance of preventing potential harm

to our users is still worth significant effort on our parts.

What is Flicker?

Flicker is the rapid switching back and forth of any form of visual

input from from high to low brightness. With respect to photosensitive

epilepsy, we are specifically concerned about flickering at a rate of 2–

55Hz. The concept of flicker is often misunderstood, however. You may

have noticed that video runs at a frame rate of 12–30 frames per second

(12–30Hz). Does this mean that we can’t have video at all? Absolutely

not. While any kind of motion has the capability to flicker, motion itself

is not, in and of itself, a concern. The motion also has to have the previ-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=181

IT’S NOT POLITE TO FLASH THE AUDIENCE 182

Stumbling in International Competition

In June 2007, flicker struck again in a video meant to intro-
duce the 2012 London Olympic Games. A segment in the video
featured a multicolor flicker that went untested and caused
seizures in some viewers. Fortunately, the impact was much
smaller than the 1997 Pokémon incident, affecting fewer than a
dozen people. I’m not as concerned about the reported num-
bers as by the potential damage though—in the end, 23000
people in the UK were put at risk of seizures caused by this
video.

It’s often easy to lose perspective and view photosensitivity as
a minor factor that effects only a few people. It’s never just a
few people - a small fraction of percent of the total population
still adds up to thousands of people. This perspective is also a
pretty bad way to do business. At the time, London mayor Ken
Livingstone had these comments:

• “If you employ someone to design a logo for you and they
haven’t done a basic health check you have to ask what
they do for their money.”

• “Who would go into a firm like that again and ask them to
do that work. This is a pretty basic thing.”

These are important things to think about. As web developers,
we make our livings by serving an audience. If we allow harm
to come to that audience, we allow harm to come to ourselves
as well.

ously mentioned back and forth switching. What we really need is a way

of understanding whether the type of motion is potentially harmful.

The Flash Threshold

WCAG 2.0 gives us a way of measuring flicker, though it is anything but

simple.1 What we’re really looking for are changes in brightness. For

this we’ll need relative luminance formula that we used for evaluating

contrast in Thinking in Terms of Black and White, on page 157. This

time, instead of looking for the difference of brightness by location, we’ll

be looking at it as time passes.

1. http://www.w3.org/TR/WCAG20/#general-thresholddef

http://www.w3.org/TR/WCAG20/#general-thresholddef
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=182

IT’S NOT POLITE TO FLASH THE AUDIENCE 183

A flash is defined as a sequence of two shifts in relative luminance of

more than 10 percent. Both Dim→Bright→Dim and Bright→Dim→Bright

are possible flash transitions. Three or more of these in a one second

period is the threshold for a flicker problem. When counting the number

of flashes in an interval, it is important to remember that the flash com-

ponents can overlap. This means that Dim→Bright→Dim→Bright→Dim

counts as three flashes. There is also a red flash threshold, where the

luminosity is assessed in terms of fully saturated red rather than fully

saturated white.

Unfortunately, it gets more complex. Small flickering parts of the screen

are not generally considered to be harmful while larger ones are. The

recommended metric is that if the total flashing occupies more than

a quarter of the pixels in any 341×256 pixel rectangle anywhere on

the display when viewed at 1024×768, there’s a problem. I didn’t react

very well to that recommendation the first time that I read that, and

I am betting that you aren’t either. On first impulse, this looks very

complex and difficult to measure. In this case, the first impulse is spot

on—particularly because the 341×256 rectangle mentioned can be any

sub-rectangle on the screen.

This is obviously the kind of evaluation that we do not want to do

by hand. Luckily for us, the TRACE Center offers the Photosensitive

Epilepsy Analysis Tool (PEAT).2 PEAT analyzes a video file for flicker

problems. For an analysis of a full web page, we need to create a screen-

cast video of the page with a tool like iShowU3 or Camtasia4 and analyze

it with PEAT.

Wherever possible, it is best to simply avoid creating content that uses

flashing elements. Beyond the risk of triggering a seizure, they distract

the user and generally reduce usability.

When the Flicker is the Content

What about videos of lightning or stroboscopic photography where flick-

ering effects are an essential part of the content? There is very little we

can do to change the nature of the content, but we can create an alter-

nate path to the information. The video should be loaded in a stopped

state, which is a generally good idea anyway, and a warning added

2. http://trace.wisc.edu/peat/

3. http://shinywhitebox.com/

4. http://www.techsmith.com/camtasia/

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=183

IT’S NOT POLITE TO FLASH THE AUDIENCE 184

before the video that informs the user about it’s nature and that per-

sons with photosensitivity should not watch. Additionally, we need to

provide a transcript of the video that gives the essential information

presented in the video. More about transcripts will be discussed later

in this chapter in Describe it to Me, on page 190.

Act on it!

1. Get a plan in place to have your video tested for flicker.

2. Try out the PEAT tool and get a feel for how it works on a variety of videos.

Note—If you have any suspicion that you yourself are photosensitive, DO

NOT TRY THIS! (Not that I thought you would)

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=184

WORDS THAT GO [CREAK] IN THE NIGHT 185

28 Words That Go [Creak] in the
Night

We apologise for the fault in the subtitles. Those

responsible have been sacked.

Python (Monty) Pictures Ltd., Monthy Python

and The Holy Grail

When we make video accessible for the hearing impaired, we do it by

providing captions. It is not uncommon for people to mistake subtitles

for captions. They do seem very much alike visually. Both are text dis-

played on screen, either in an “open” format mastered on to the video

and always visible or in “closed” format, where the user can control

whether the text is visible or not. The content and intent of the text

is where the two differ. Subtitles are meant to provide a translation of

foreign language or clarification of mumbled words to someone who is

able to hear the audio. Captions, on the other hand, provide an alter-

nate representation of all relevant audio content.

Keeping it Relevant

What do I mean by relevant? What I mean is that, while we need to

express the meaning of an audio segment, not every single background

sound needs to be (or should be) captioned. We’re looking for the sweet

spot between too little and too much. Lets look at a caption set that

misses the mark for relevance:

Too Little Information:

Don’t worry, I’ll be there soon.

You worry too much

Everything’s Fine

John

John

John

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=185

WORDS THAT GO [CREAK] IN THE NIGHT 186

Hello Mary

Well, that’s nice. It certainly represents dialogue. It doesn’t do it very

well though. We have no indication of who is saying what, what their

intonations are, or ultimately what is going on. It could be that I’m

misleading you, since you don’t have any video to go with this. Let’s say

that I’m not—lets say that the video for this is of a female character,

holding a phone and turned three quarters away from camera (i.e. you

can’t see her face). That tells us a little more but not enough to give

us a good understanding of what’s going on. We’ll clearly need to add

some more information for this to be a useful group of captions. We can

also go too far in the other direction as far as information in captions

is concerned:

Too Much Information:

Jeremy: When we [book dropping] make video

Jeremy: accessible for the [cough] hearing

Jeremy: impaired, we [sniff] do it by

[door opening]

[footsteps off camera]

Jeremy: providing captions.

[chair sliding]

For the video component, assume that you are looking at me facing

camera and lecturing. Here we definitely know what’s going on in the

room. Enough so that we can put together a reasonable picture that I’m

speaking to a room where book was dropped, someone might have had

a cold, and another came into the room and sat down. The more impor-

tant question is, “Who cares?”. Unless these offscreen noises somehow

become important to understanding the video, leave them out.

Synchronization

Another important aspect of captioning is that the captions be synchro-

nized. That is, we want the captions to appear on screen as closely as

possible to the audio elements that are represented. This is particularly

important for dramatic videos (see the sidebar on the next page for more

on this), but also for informational videos where a significant time lapse

can be distracting or otherwise have a negative impact on the viewer’s

ability to understand the video. If you’ve ever watched a badly dubbed

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=186

WORDS THAT GO [CREAK] IN THE NIGHT 187

Don’t Spoil the Show

When the content being captioned has a dramatic element,
we need to not damage these aspects when we caption it.
This means not spoiling the plot or buildup by including impor-
tant information in the captions that a viewer wouldn’t normally
have.

For example, we normally identify the speaker, if it isn’t clear
from the video. Sometimes, it is important to conceal the iden-
tity of the speaker, however, if they aren’t meant to be iden-
tified yet. When the identity of a speaker isn’t intended to be
revealed yet, the caption should still be identified but with
something like “Offscreen” or “adjective’ing voice” with an
appropriate adjective. That way you aren’t ruining the surprise
that the mysterious lady in black is really Roy, our hero’s long lost
twin uncle.

Similarly, we don’t want to ruin a buildup to a climactic event
by spoiling the timing of a caption. When the killer is exposed,
the winner announced, or the killer of the winner rewarded, the
timing of the appropriate caption should match up extremely
closely to when spoken in the audio track. If not, the dramatic
effect in video of the announcement is lost. If the viewer in need
of captions is watching with others who can hear the audio
track, it is even more unpleasant for all concerned.

foreign film where the voices are completely out of time with the actors,

you know the effect that I’m referring to. Marking timecodes to use for

synchronization is, of course, a long and tedious task. In On the Cutting

Room Floor, on page 194, you’ll learn about a tool that will help make

this a little easier.

Putting it Together

Now we have some basic rules for captioning:

• Every important spoken word should be represented by a cap-

tion. Ums, ahs, and other vocal effects that have no impact on the

meaning can be ignored.

• If the speaker is unclear, identify them in the caption. If doing so

would ruin the content, identify the speaker abstractly (something

like “Offscreen” or “Mysterious Voice”).

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=187

WORDS THAT GO [CREAK] IN THE NIGHT 188

• Describe any important background sounds, noises, or music.

• Disregard irrelevant background noises.

• Time captions such that they match correctly to video

With these in hand, let’s take a look at our examples from earlier in

the chapter. We’ll start with our “Too Much Information” example. This

is easy to correct, since all we need to do is eliminate the irrelevant

background noises. I’m also going to eliminate the repetitive speaker

identifier. It wouldn’t be harmful to leave it in, but caption space is

somewhat limited and we’d rather not fill it with unnecessary charac-

ters. I’ve also added rough timecodes that can be used to synchronize

them with the video. Normally, the timecodes would be synchronized to

fractions of a second, but we’re not going to worry about that just yet:

Jeremy: When we make video [00:45]

accessible for the hearing [00:47]

impaired, we do it by [00:50]

providing captions [00:52]

Much better. We’re now representing the essential characteristics of

what is being said in a clear manner. What about our example of too

little information? That requires interpreting the story as it exists with

the audio available. We need to know which characters are speaking

the lines and how they are being spoken. Let’s take another look:

John: Don’t worry, I’ll be there soon. [15:36]

Mary: You worry too much. [15:42]

Everything’s Fine! [15:45]

[glass breaking over the phone][15:47]

[gunshot][15:49]

Mary: John? [15:55]

[Loudly] John? [15:58]

[Screaming] John! [16:01]nSuspenseful Musicn[16:04]

Voice: [Snidely] Hello Mary...[16:07]

That makes a significant difference. Instead of a series of disconnected

phrases, we now have captions that give the whole picture of the audio

track. As you can see, captioning is as much art as science and there

are a lot of decisions to make when creating good ones. We have just

scratched the surface of this art, and it can take years or more to reach

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=188

WORDS THAT GO [CREAK] IN THE NIGHT 189

Unattended Video

Unattended web cameras that provide frequently or contin-
uously updated content are essentially impossible make truly
accessible. When we work with one of these, we should pro-
vide a general description of what is being captured, such as
“Live video feed of the site of our new building”. This does not
apply to attended cameras at live events, however, because
nothing prevents providing alternate content. See the sidebar
on page 204 for more information.

mastery at captioning. If you are generating a lot of captioned audio,

it is likely that you will want to bring in a captioning specialist with

experience in reinterpreting audio as text.

At this point, you may be wondering about creating an alternate page

with the caption information for people who can’t access the video. If

you have thought about this, I applaud you for it—you’re beginning

to think accessibly. Hold off on the thought for now though. If you’re

going to provide that alternate script, the captions aren’t quite enough.

We also need the information that we’ll look at in the next tip.

Act on it!

1. Watch some captioned video with sound turned on. Try to get a feel for

what the captioner is looking for in the soundtrack.

2. Try writing captions for a short piece of video with captions turned off.

Watch again with them turned on and note the differences.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=189

DESCRIBE IT TO ME 190

29 Describe it to Me

Let these describe the indescribable.

Lord Byron

Captions take care of presenting video with audio for the hearing impaired,

but we also need to look at what we need to do to video for the vision

impaired. Auditory descriptions are our tool of choice for creating an

alternate path to essential visual information. Auditory descriptions are

voiceovers that can be presented as an alternate audio track or dubbed

onto the primary audio channel. In the television world, you might peri-

odically see a reference to Second Audio Program (SAP) along with the

closed caption, stereo, surround, and other notes at the beginning of

the show. If you turn on SAP with your set, you should hear the audi-

tory descriptions for the show. When we create these for our videos,

there are similar rules to those of captioning with regard to relevance.

Saying What Needs to be Said

...and no more is our rule for auditory descriptions. Where possible,

we want to interleave the auditory descriptions with the primary audio

content. This means we need to get in the essentials rather quickly and

avoid describing every little detail of the scene. In the previous tip, we

looked at and corrected some poorly written captions. Like a visually

impaired user, we didn’t have any of the video context to add to our

understanding of the story. Because we can’t actually look at the video

of John and Mary’s story (if for no other reason that it doesn’t actually

exist), we’ll need to improvise a little. Let’s take another look at the

story, with a narrator filling in the gaps:

John: Don’t worry, I’ll be there soon.

Narrator: Mary sits back, taking a drink.

Mary: You worry too much. Everything’s Fine!

Narrator: Mary jumps, drops the phone, and picks it back up

Mary: John? John? John!

Voice: Hello Mary...

Narrator: The lights go out in the room.

What we have now is dialogue added into the audio that captures the

essential blocking information as it would have appeared in the origi-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=190

DESCRIBE IT TO ME 191

nal screenplay for our scene. Something that you might notice is that

the timecodes for the narrator are sometimes very close to the spoken

dialogue. Unlike captions, when we work with auditory descriptions we

are adding an alternate representation to a channel that is already in

use. Many times we’ll be lucky and find gaps in the audio where we can

insert the narration. Other times, we may have to fade down a piece of

background music to make room. In the worst case, there is no place to

fit the description and we may have to edit in a pause to fit the auditory

description. This can be very difficult with pre-produced content, but

if we’re producing new content, it may be more straightforward. There

are examples of video where no reasonable pause will take care of the

problem, however, and we’ll need to be a little more creative.

When There is Too Much for Auditory Description to Say

Certain kinds of technical content may require more auditory descrip-

tion than can be reasonably inserted into a pause in the audio. One

option is to master an alternate copy of the video with long narrations

inserted at appropriate points. I don’t like this option, but sometimes

that is the best we can do. For web based video we have another option,

however. We can take the long content description and call it out from

another location in a manner similar to long descriptions for images

as discussed in More Than alt= Can Say, on page 167. Lets look at an

example where we might want to use this technique:

Jeremy: Not bad. It certainly represents the content, but in a browser,

it doesn’t look anything like a chart. If we want to define this as a special

class of list and build some CSS styles, we’ll get there though.

Narrator: Jeremy writes on the board

.Chart {

text-align: center;

height: 230px;

border: 1px solid black;

background-color: #8ad;

...

I refuse to go further—that road leads only toward pain and suffering.

Our day certainly has gone wrong at this point, hasn’t it? Especially

when you stop to consider that this is spoken, so we’re actually look-

ing at something like “dot capital ‘c’ chart open brace new line text

hyphen align colon.” Long winded and nearly useless to our audience.

Lets approach this from another direction. Being read the code by a

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=191

DESCRIBE IT TO ME 192

narrator without fine grained navigation or speed control isn’t likely to

be very useful anyway, so lets take the code description out of the video

entirely. Instead, we can extract the code example out to a separate

page that we’ll call “Example 1”. Then we would add an explanation to

the introduction that points the user to the code examples. That done,

let’s give the auditory description another try:

Jeremy: Not bad. It certainly represents the content, but in a browser,

it doesn’t look anything like a chart. If we want to define this as a special

class of list and build some CSS styles, we’ll get there though.

Narrator: Jeremy writes Example 1 on the board. Please pause and

review the code.

Now we have a way to get the viewer to the code and let them review

it at their own pace before returning to the video. As a matter of form,

we should make sure that, with notification, the code opens to another

window so the viewer doesn’t lose their place in the video.

Extra Strength Transcripts

If you consider the example of our friends John and Mary earlier in

the chapter, you should notice that we have pretty comprehensively

described all of the essential content of the video. This makes sense,

because we have a complete script with all of the dialogue and blocking.

Since we have it anyway, why not put in a little more effort to put it

together into a standalone transcript that we can provide alongside the

captioned auditorily described video as another alternate path to the

content? This is, in fact, nearly trivial if we have the original script that

the video was created from, rather than having to work backward from

a finished video. When we combine the dialog from our captions with

sound information from our auditory descriptions into a standalone

transcript, we get something like this for users who can’t access our

video at all:

John: Don’t worry, I’ll be there soon.

Mary: [sitting back, taking a drink]

You worry too much. Everything’s Fine!

[glass breaking and a gunshot are heard over the phone]

[Mary jumps, drops the phone and picks it back up]

Mary: John?

[Loudly] John?

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=192

DESCRIBE IT TO ME 193

[Screaming] John!nSuspenseful Music Playsn
Voice: [Snidely] Hello Mary...

[Lights go out in the room.]

In the last two tips, we’ve learned what the essential characteristics

of captioning and audio description are. As with captioning, auditory

description is a topic that runs deep and there are many people who

have devoted their careers to it. If you are producing more than a small

handful of videos, you may wish to seek these professionals out and

consult with them about your projects. If you only need to develop a

small amount of video, then you may wish to handle it yourself. Either

way, we eventually need to combine all of this information together into

something that we can publish for our users. In the next tip, we’ll learn

about tools and formats to get the rest of the way there.

Act on it!

1. Try writing auditory descriptions for a short piece of video (that has auditory

descriptions) with the second audio program turned off. Watch again with

them turned on and note the differences between your version and theirs.

Try this experiment a few times to get a feel for what is being done.

2. Find a piece of video that is captioned and auditorily described. Try your

hand at generating a full scale transcript for the video (or at least a few

minutes of it).

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=193

ON THE CUTTING ROOM FLOOR 194

30 On the Cutting Room Floor

Batteries not included, some assembly required.

Unknown

Once we have created good captions and auditory descriptions that

clearly describe our video content, we’re only part of the way there. We

need a way to combine these with their video asset to present them to

our users. Unfortunately, our methods for connecting alternative rep-

resentations to video aren’t as simple and straightforward as they were

for static images. There are many ways to go about synchronizing the

final content depending on the format you are using and each have dif-

ferent benefits and drawbacks. Let’s take a look at some of the more

common formats and how we can use them to connect our captions

and descriptions for the clip about John and Mary from the previous

two tips.

A Cornucopia of Formats

The format that you select will depend largely on your targeted media

format. Each one has a preferred captioning format and there has been

little standardization across media players. Even SMIL, described later,

relies in implementation specific technologies. If you intend to support

multiple formats, it may be preferable to use an internal format and

then use text or XML processing tools to convert it to the appropriate

format when needed.

The commonalities between formats are greater than the differences,

however. All of them require the same pieces of information for each

caption:

• The timecode the caption occurs at.

• For spoken words, the current speaker, if it has changed or is

otherwise unclear.

• The text of the caption representing spoken words, sound effects,

or music

With this in mind, let’s take a look at some formats.

Simple Subtitling Formats

A family of similar subtiling formats are available that are simple to

produce captions in, but provide very little in the way of formatting

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=194

ON THE CUTTING ROOM FLOOR 195

A Matter of Quality

Because captioning is a completely alternate access path to
a piece of content, it needs to be correct and of high quality.
There is a fair amount of debate out there as to what the quality
standard should be, however. Some captioning firms make a
“99% correct” guarantee. We need to ask ourselves what that
really means and if that is a good measure of quality.

Often, the correctness mentioned is in terms of misspelled or
incorrect words. There are two major problems with this. First,
there are a lot of words in a piece of captioning, which means
that small percentages compound. This sidebar, for example,
contains 230 words. If one percent of them were wrong by this
standard, that would mean 3 words that are either incorrect or
misspelled. Would you consider this book to be of high quality if
one word per paragraph were incorrect?

A second issue is that not all words are equal. Certain parts of
a caption must be spot on or the whole caption is worthless. If
we caption “John and Mary seem to be in trouble” as “John
nd Mary seem be in trouble” the caption is a little difficult to
understand but is still effectively functional. On the other hand,
if we caption “We find the defendant not guilty” as “We find
teh defendant guilty” we have a serious problem.

control and no capacity for auditory description inclusion. The common

aspects are that they use blank line separated blocks that may or may

not include a caption number, a separated timecode range and multiple

lines of captioning. The general format looks like this:

[caption number for some formats]

[starting timecode][separator][ending timecode]

[first caption line]

[second caption line]

[next caption begins after a blank line]

While there are differences in the variations, they can generally be

translated back and forth with simple text replacement. The SubRip5

SRT format and SubViewer6 SUB formats are two commonly used vari-

5. http://zuggy.wz.cz/

6. http://www.dado.be/subviewer.Asp

http://zuggy.wz.cz/
http://www.dado.be/subviewer.Asp
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=195

ON THE CUTTING ROOM FLOOR 196

ants of this type. The variant that we’re going to look at is that used

to caption of Google Video content.7 This variant does not use cap-

tion numbering and separates start and end timecodes with a comma.

Here’s our example with John and Mary:

[[Author: Production: For All Code Samples in this Tip, Single quote

misbehaves—Note Italics]]

00:15:36.000,00:15:39.000

John: Don't worry, I'll be there soon.

00:15:42.000,00:15:44.000

Mary: You worry too much.

00:15:45.000,00:15:46.500

Everything's Fine!

00:15:47.000,00:15:48.500

[glass breaking over the phone]

00:15:49.000,00:15:51.000

[gunshot]

00:15:55.000,00:15:57.000

Mary: John?

00:15:58.000,00:16:00.000

[Loudly] John?

00:16:01.000,00:16:03.500

[Screaming] John!

00:16:04.000,00:16:06.500nSuspenseful Musicn
00:16:07.000,00:16:09.000

Voice [Snidely]: Hello Mary...

00:16:12.000

Take note of the “blank” timecode at the end. If this isn’t placed, the

last text caption would stay on screen until the end of the video. While

the caption before it should only last the specified length, some soft-

ware that uses these formats ignores the end timecode and holds the

caption on screen until replaced by the next (a behavior that should

normally only result from leaving the end timecode blank). To ensure

that it behaves, I usually add a blank timecode at the end to make sure

7. http://video.google.com/support/bin/answer.py?answer=26577

http://video.google.com/support/bin/answer.py?answer=26577
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=196

ON THE CUTTING ROOM FLOOR 197

that the caption doesn’t stick around for the rest of the video. As I said

earlier, this type of format gets the job done in a simple way. On the

other hand, the price of simplicity is that we have very little control

over the presentation of the captions relative to other formats.

SAMI

Microsoft’s Synchronized Accessible Media Interchange (SAMI) format

is the method of choice for working with captions if you’re targeting

Windows Media Player as your video output format of choice. SAMI pro-

vides an HTML-like format with some CSS styling as well as the ability

to specify multiple language captions. The form of CSS that is avail-

able in SAMI is limited, only allowing basic alignment and font styling

selectors to the <p> tag. Additionally, CSS classes are only permitted to

specify language alternatives.

In the SAMI version of our example, I have chosen to provide english

and spanish captioning, identified as ENUSCC and ESCC respectively.

Each caption, identified by the <sync> tag uses the start= attribute to

specify the timecode. Rather than a format based on hours, minutes,

seconds, and fractions of a second, SAMI uses milliseconds from the

beginning of the video as its synchronization time. Let’s see it:

<sami>

<head>

<title>Title Goes Here</title>

<style type="text/css"><!--

P {text-align: center;

font-family: sans-serif;

font-size: 1.5em;}

.ENUSCC {Name: English; lang: en-US;}

.ESCC {Name: Español; lang: es;}

--></style>

</head>

<body>

<sync start=0>

<p class='ENUSCC'> </p>

<p class='ESCC'> </p>

</sync>

<sync start='936000'>

<p class='ENUSCC'>John: Don't worry, I'll be there soon.</p>

<p class='ESCC'>John: No preocuparte, yo estará allí pronto.</p>

</sync>

<sync start='942000'>

<p class='ENUSCC'>Mary: You worry too much.</p>

<p class='ESCC'>Mary: Te preocupas demasiado.</p>

</sync>

<sync start='945000'>

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=197

ON THE CUTTING ROOM FLOOR 198

<p class='ENUSCC'>Everything's Fine!</p>

<p class='ESCC'>¡Todo muy bien!</p>

</sync>

<sync start='947000'>

<p class='ENUSCC'><i>[glass breaking over the phone]</i></p>

<p class='ESCC'><i>[cristal que se rompe sobre el teléfono]</i></p>

</sync>

<sync start='949000'>

<p class='ENUSCC'><i>[gunshot]</p>

<p class='ESCC'><i>[tiro]</i></p>

</sync>

<sync start='955000'>

<p class='ENUSCC'>Mary: John?</p>

<p class='ESCC'>Mary: ¿John?</p>

</sync>

<sync start='958000'>

<p class='ENUSCC'><i>[Loudly]</i>John?</p>

<p class='ESCC'><i>[en alta voz]</i>¿John?</p>

</sync>

<sync start='961000'>

<p class='ENUSCC'><i>[Screaming]</i>John!</p>

<p class='ESCC'><i>[griterío]</i>¡John!</p>

</sync>

<sync start='964000'>

<p class='ENUSCC'><i>♪Suspenseful Music♪</i></p>

<p class='ESCC'><i>♪Música Suspenseful♪</i></p>

</sync>

<sync start='967000'>

<p class='ENUSCC'>Voice <i>[Snidely]</i>: Hello Mary...</p>

<p class='ESCC'>Voz <i>[Snidely]</i>: Hola Mary...</p>

</sync>

<sync start='972000'>

<p class='ENUSCC'> </p>

<p class='ESCC'> </p>

</sync>

</body>

</sami>

We finish the caption sequence with blank caption as we did with the

simple subtitle format. Because SAMI doesn’t specify a finish timecode,

however, this is a required step to clear out the last caption rather than

a move to ensure compatibility. SAMI has the advantage over simple

formats by supporting HTML <i> and for formatting the caption

text.8 For more information about the SAMI format, including which

tags are available for formatting, you can look at the MSDN article,

8. I’ve been asked whether it bothers me that subtitle formats use formatting oriented

tags rather than something more semantic. Not so much. The captions themselves are

presented in a visual manner and I provide transcripts that are tagged semantically.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=198

ON THE CUTTING ROOM FLOOR 199

“Understanding SAMI 1.0.”9

QuickText

If you distribute your video in one of Apple’s QuickTime formats, you

will need to become familiar with the QuickText captioning format.

QuickText provides formatting via braced parameters such as {italic},

{bold}, and {plain}. Each of these parameters is active until another

parameter changes it—i.e. if you apply {bold} in one caption and {italic}

in the next, that caption and everything following will be bold italicized

text until you issue {plain}. As we have seen before, a final timecode is

entered to turn the last caption off. Unlike other formats, however, a

second timecode is placed at the end which specifies the length of the

video. This second timecode is used to create a text track of the same

length as the video being captioned. Let’s take a closer look:

{QTtext}

{font: Helvetica}{justify: center}{size: 18}{backcolor:0, 0, 0}

{timescale: 30}

{width: 320}{height: 120}

[00:15:36.00] {italic}John:{plain} Don't worry, I'll be there soon.

[00:15:42.00] {italic}Mary:{plain} You worry too much.

[00:15:45.00] Everything's Fine!

[00:15:47.00] {italic}[glass breaking over the phone]{plain}

[00:15:49.00] {italic}[gunshot]{plain}

[00:15:55.00] {italic}Mary:{plain} John?

[00:15:58.00] {italic}[Loudly]{plain} John?

[00:16:01.00] {italic}[Screaming]{plain} John!

[00:16:04.00] {italic}[Suspenseful Music]{plain}

[00:16:07.00] {italic}Voice [snidely]:{plain} Hello Mary...

[00:16:09.00]

[00:30:00.00]

There are two ways to use QuickText. The first is to embed the text

track into the video directly. This method requires QuickTime Pro, but

results in a single distributable file. To do this, you would:

1. Open the QuickText file in QuickTime.

2. Select the entire track and copy it.

3. In the video to be captioned, use Edit | Add to Movie to overlay the

text track.

9. http://msdn2.microsoft.com/en-us/library/ms971327.aspx

http://msdn2.microsoft.com/en-us/library/ms971327.aspx
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=199

ON THE CUTTING ROOM FLOOR 200

4. Go to Window | Show Movie Properties. In the Visual Settings Tab

for the text track, change the vertical offset to match the height of

your video.

5. Save or Export a merged copy of the video.

If you would prefer to keep the captions and video in separate files, you

would want to use SMIL to merge the QuickText captions.

SMIL

The Synchronized Multimedia Integration Language (SMIL) format is

W3C’s solution for a variety of multimedia composition problems includ-

ing that of adding captions and audio description to video. SMIL is not

a purely standalone format, however, as it does not specify a standard

underlying format for its pieces. For example, in the SMIL version of

our example, I specify an MPEG 4 video stream, MP3 audio for the

primary audio and auditory description tracks, and QuickText for the

captioning. These media features may or may not be available in a given

implementation. A certain problem is that the two predominant SMIL

players, QuickTime and RealPlayer, support incompatible captioning

formats (QuickText and RealText respectively). This means that, if you

choose to support users of both players, it will need to be done through

the use of two SMIL files. Here’s what the QuickTime one would look

like:

<smil>

<head>

<meta name="title" content="John and Mary" />

<layout>

<root-layout background-color="black"

height="300" width="320" />

<region id="video" background-color="black"

top="0" left="0" height="240" width="320" />

<region id="text" background-color="black"

top="240" left="0" height="60" width="320" />

</layout>

</head>

<body>

<par>

<!-- Video Track -->

<video src="JohnAndMaryVideo.m4v" region="video" />

<!-- Audio Tracks ->

<switch>

<audio src="JohnAndMaryAudio_ENUS.mp3"

system-language="en" />

<audio src="JohnAndMaryAudio_ES.mp3"

system-language="es" />

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=200

ON THE CUTTING ROOM FLOOR 201

</switch>

<!-- Auditory Descriptions -->

<switch>

<audio src="JohnAndMaryAD_ENUS.mp3"

system-language="en" />

<audio src="JohnAndMaryAD_ES.mp3"

system-language="es" />

</switch>

<!-- Captions -->

<switch>

<textstream src="JohnAndMaryENUS.txt"

region="textregion"

system-captions="on"

system-language="en" />

<textstream src="JohnAndMaryES.txt"

region="textregion"

system-captions="on"

system-language="es" />

</switch>

</par>

</body>

</smil>

There are a couple of features of the file to point out here. First, we

have a lot of power in SMIL to specify where the video and caption-

ing are placed. Second, we have the SMIL specific tags <switch>, <par>,

and <seq> (not used in this example). The <switch> tag is used to pro-

vide alternatives based on player settings. In the example, it is used

to provide multilingual audio and captioning. We also have the abil-

ity to control whether the components are played in parallel (<par>) or

sequentially (<seq>). Obviously, for captions, we want them in parallel

with their associated video but we may want to separate the video into

pieces for production and <seq> can be used to present the pieces in

order.

Timed Text Authoring Format (DXFP)

DXFP is a W3C solution for the distribution and transfer of timed text

information. DXFP is intended to be usable as a portable transport for-

mat between tools or as a distribution format. In particular, the timed

text committee mentions DXFP as a possible standard format for SMIL

text tracks. There seems to be very little activity in the direction of

actively supporting DXFP in SMIL implementations but there is one

implementation that we’ll find very useful. In Adobe Flash CS3, a cap-

tioning component is included that utilizes DXFP captions. We’ll look at

this again in The Many Faces of Flash, on page 233 For now, let’s see

how the format compares to what we’ve seen before.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=201

ON THE CUTTING ROOM FLOOR 202

<?xml version="1.0" encoding="UTF-8"?>

<tt xmlns = "http://www.w3.org/2006/04/ttaf1"

xmlns:tts = "http://www.w3.org/2006/04/ttaf1#styling"

xml:lang = "en">

<head>

<styling>

<style id="defaultCaption"

tts:fontSize = "12"

tts:fontFamily = "SansSerif"

tts:fontWeight = "normal"

tts:fontStyle = "normal"

tts:textDecoration = "none"

tts:color = "white"

tts:backgroundColor = "black"

tts:textAlign = "left" />

</styling>

</head>

<body style="defaultCaption" id="thebody">

<div xml:lang="en">

<p begin="0:15:36.00" end="0:15:39.00">

John

Don't worry, I'll be there soon.</p>

<p begin="0:15:42.00" end="0:15:44.00">

Mary

You worry too much.</p>

<p begin="0:15:45.00" end="0:15:46.50">

Everything's Fine!</p>

<p begin="0:15:47.00" end="0:15:48.50">

[Glass breaking

over the phone]</p>

<p begin="0:15:49.00" end="0:15:51.00">

[Gunshot]</p>

<p begin="0:15:55.00" end="0:15:57.00">

Mary

John?</p>

<p begin="0:15:58.00" end="0:16:00.00">

[Loudly]

John?</p>

<p begin="0:16:01.00" end="0:16:03.50">

[Screaming]

John!</p>

<p begin="0:16:04.00" end="0:16:06.50">nSuspenseful Musicn</p>
<p begin="0:16:07.00" end="0:16:09.00">

Voice

[Snidely]Hello Mary...</p>

<p begin="0:16:12.00" end="0:55:28.16"></p>

</div>

</body>

</tt>

For the most part, there’s very little new to say about DXFP. The style

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=202

ON THE CUTTING ROOM FLOOR 203

Figure 9.1: Captioning with WGBH NCAM’s MAGpie

and span information is very much like other captioning formats we’ve

seen. The real benefit of DXFP is the direct support from Flash and the

promise of future support in SMIL clients10

I’ve left an important question unanswered until now: “How do I collect

all of these timecodes?” Stepping through the video, writing timecodes

down in a text document, spreadsheet, or directly into a subtitle format

is one option—and I have met people who do this.

MAGpie to the Rescue

You didn’t think that I’d really leave you there to count timecodes for

the rest of your life, did you? In reality you will want to use a subti-

tling or captioning tool. WGBH’s National Center for Accessible Media

(NCAM) provides an excellent choice called MAGpie.11 MAGpie provides

a convenient interface for adding captions to video as well as provides

tools for recording auditory descriptions. An added benefit is that it

stores the information in an internal format that can be exported to

plain text for use with simple formats, SAMI, SMIL for QuickTime and

10. Apple, Microsoft, and RealNetworks are all contributors to the recommendation, so

the situation is hopeful

11. http://ncam.wgbh.org/webaccess/magpie/

http://ncam.wgbh.org/webaccess/magpie/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=203

ON THE CUTTING ROOM FLOOR 204

Live Broadcasts

Controversy surrounds the issue of live audio and video web-
casts. For accessibility, these need to be captioned and tran-
scripted, and ideally, it should be done live with the webcast.
For some content providers, this may not be possible, however.
If you are a small shop with a small budget, this might qual-
ify as an undue burden. You will want to be absolutely sure of
this before you decide against live captioning—that is, talk to
your legal counsel. Even if you can’t provide live captioning, it
is essential that the captioning be added and transcripts made
available as soon as possible after the initial broadcast.

Another issue that comes with real-time captioning is that
accuracy of captioning is necessarily lower. This is an under-
stood factor of working in a live environment where there is
no time to review and edit the captions before sending them.
Before the video is archived for future viewing, however, the
captions should be error checked and edited for correctness
and clarity.

RealPlayer and W3C’s Distribution Format Exchange Profile (DFXP), a

complex format that can be used with NCAM’s CC for Flash, 12 to cap-

tion Flash videos.

Extracting Existing Captions

If you are working with large amounts of content that have already

been produced as videotape or DVD, it may be possible to extract exist-

ing caption work for reuse. You can do this by using caption decoder

hardware or a subtitle OCR tool like SubRip13 but, keep in mind that

this can be a complicated and time consuming process. It is far better

to obtain the original captioning information if at all possible.

We have just covered a lot of information about making video accessi-

ble. It will take some time to absorb everything that I’ve said here and

put it into practice. I recommend that, before you try to set forth on any

major project, you practice with small pieces of video, no more than 5

or 10 minutes at most to get a feel for how the process works.

12. http://ncam.wgbh.org/webaccess/ccforflash/

13. http://zuggy.wz.cz/

http://ncam.wgbh.org/webaccess/ccforflash/
http://zuggy.wz.cz/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=204

ON THE CUTTING ROOM FLOOR 205

Oh, and if you were wondering—It turns out that, after a long series of

ups, downs, wild plot twists, and mistaken identities, everything turned

out well for our friends John and Mary and they lived happily ever after.

Well, mostly happily. You see, Mary is a web developer and , while her

web pages are fine, she has a pile of scripts and embedded content

that aren’t doing as well. Certainly less exciting than gunshots and

shattered glass—but much more likely.

Act on it!

1. Try adding captions to short pieces of video using some of the formats

described to get a feel for the process.

2. Repeat the first exercise using MAGpie.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=205

Part IV

Putting on Some Additions

[The press is] the best instrument for enlightening the mind

of man, and improving him as a rational, moral and social

being.

Thomas Jefferson, Letter to A. Coray, 1823

Chapter 10

Not All Documents Are Created
Equal

We often need to deal with the situation of moving non-HTML content

onto the web and, of course, we need to do it accessibly. The most

accessible thing we can do is to provide the content in HTML. This

isn’t always as easy as it sounds, however. When the document you’re

converting to HTML wasn’t created with accessibility in mind, the HTML

output you get from exporting it may require quite a bit of cleanup

work. While you can’t entirely eliminate the cleanup, there is less work

involved when the original document is created accessibly. In Back at

the Office, we’ll look at the basics of writing office suite documents that

are more ready for conversion to accessible HTML.

When you already have print ready documents, it is often desirable to

use PDF to put them online. Because there’s already a finished docu-

ment, it is less appealing to put effort into an HTML alternative, so you

might prefer to make the PDF accessible. This decision requires some

understanding of what it takes to add accessibility features to the doc-

ument and in PDF: Trying to Make Portable Accessible we’ll go through

the issues involved so you can determine the best route for your project.

A key concept that I would like you to take from this chapter is that

most of the basic accessibility principles that are covered in the first

three parts of the book haven’t changed. We’re still looking at the same

types of things and creating solutions using the same basic techniques.

The big change is that, because we’re working with a different docu-

ment format, the execution of the technique will differ somewhat. As

CHAPTER 10. NOT ALL DOCUMENTS ARE CREATED EQUAL 208

you become more experienced, you should become comfortable apply-

ing accessibility principles to many media formats beyond HTML.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=208

BACK AT THE OFFICE 209

31 Back at the Office
The brain is a wonderful organ. It starts working the

moment you get up in the morning and does not stop until

you get into the office.

Robert Frost

It is common to receive documents for web placement that were designed

in a word processing, spreadsheet, or presentation application. In most

circumstances, we won’t want to put these online directly. Besides the

problem of assuming that the audience has the same software as we do

on their system, concerns about harmful macros cause informed users

to skip the content if they can. Conversion to HTML should be our pref-

erence at all times for office suite documents but there are a few things

that we can do to make the conversion easier.

General Specifics of Accessible Documents

The first steps that we need to take with office suite documents are

universal across format. You should check all of your documents for

correct color and contrast usage as described in Stoplights and Poison

Apples, on page 151 and Thinking in Terms of Black and White, on

page 157. If video is embedded in the document, you should either cap-

tion it as described in Chapter 9, Video Killed the Something-Something,

on page 179 or provide an alternate version. Finally, and this shouldn’t

be surprising, we need to make sure that all of the informational images

in the document have alternative text descriptions.

In OpenOffice.org1 and the Windows version of Microsoft Office,2 alter-

native text is added by selecting the image and opening the picture

properties under Format→Picture... In OpenOffice.org, alternative text

settings are in the found under the “Options” tab and in Microsoft

Office, it is the only option under the “Web” tab. Both are shown in

Figure 10.1, on the next page.

Where possible, we would like to continue to reenforce semantic doc-

ument design. Word processors provide some functionality to do this

via styles. Use of consistent styles rather than ad-hoc formatting sim-

plifies document creation and makes the document easier to work with

1. http://www.openoffice.org/

2. http://office.microsoft.com/ (Alternative text editing is not available in the Macintosh

version of Office)

http://www.openoffice.org/
http://office.microsoft.com/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=209

BACK AT THE OFFICE 210

Figure 10.1: Adding Alternative Text in OpenOffice.org and Microsoft

Office (Windows Only)

after the fact. When it comes time to export the content for the web,

style usage will result in cleaner code to work with. Both OpenOf-

fice.org Writer and Microsoft Word provide a wide variety of built-in

styles as well as functionality for defining custom styles in their for-

matting palettes.

Presentations software poses a different challenge for accessibility. Unlike

word processor and spreadsheet documents, presentations represent

information and a specific way of viewing it. When you produce acces-

sible versions of the presentation for the web, you need to take a couple

of extra steps. First, you need to make transcripts or captions available

for any attached spoken audio of the presentation. The other matter is

one of presentation. When a presentation is viewed without synchro-

nized audio or captions, in-slide transitions make the presentation less

navigable and more difficult to follow. When you place presentations

online, you should use a version that has had the in-slide transitions

turned off.

You won’t always have control over the creation of the documents to

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=210

BACK AT THE OFFICE 211

be converted. To get accessible document, you may need to make the

people who produce them aware of a few issues of accessible document

design including color choice, clarity of content, and use of seman-

tic styling in document creation. The document authors often have an

easier time when they’re provided with templates that have predefined

palettes and styles for use on submissions of content targeted for the

web.

Exporting to HTML

Exporting to HTML should be as easy as using the “Save as HTML”

option but, as always, there’s a little more to it than that. The HTML

produced by office suites is notoriously messy and full of markup intended

to duplicate the original document formatting. This HTML will usually

need some rework to be what you need for your site and should always

be checked for accessibility. In particular, any usage of tables will need

a fair amount of work to add table headings and the other descriptive

aids described in Chapter 6, Round Tables, on page 110.

If possible, you might want to have multiple office suites available that

handle the same document types, like OpenOffice.org in addition to

Microsoft Office. The various strengths and weaknesses of HTML gen-

eration from each differ and, for a given document, you may find that

one produces significantly better results.

It’s also tempting to put PDF versions of these documents online. Keep

in mind that this also has a few problems. First, you’re now assuming

that your audience has a different piece of software, so you shouldn’t

provide critical path information this way. Second, you will still need to

go through most of the accessibility steps above for PDF as well. Finally,

as shown in PDF: Trying to Make Portable Accessible, on page 213, PDF

accessibility isn’t necessarily going to make the job easier.

External documents provide challenges to accessibility for the web but,

in general, the principles that we use for general web accessibility serve

us well when handling these documents as well. As I said in the begin-

ning of the chapter, it is often simpler to provide HTML wherever pos-

sible, but when the an external format is necessary, there is much we

can do to make that format as accessible as possible.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=211

BACK AT THE OFFICE 212

Act on it!

1. Work through a few HTML conversions from office suite documents with a

specific eye toward accessibility.

2. Develop some templates and styles to streamline the process of placing

office suite documents online.

3. Educate people responsible for content submission about the use of tem-

plates. Some content authors will discover that they prefer to work without

worrying about styling the document.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=212

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 213

32 PDF: Trying to Make Portable
Accessible

What gunpowder did for war, the printing press has done

for the mind.

Wendell Phillips

Adobe’s PDF format has become the de facto standard for distributing

print type documents on the web and it is looking more and more likely

that PDF is on the way toward ISO standardization in the near future.

PDF won’t be going away anytime soon, so we’ll need to make sure that

our PDF content is as accessible as the rest of our web content.

The good news is that, if we’re comfortable with HTML accessibility,

we already know quite a lot about creating accessible PDF. All of the

lessons learned earlier about accessible content design apply directly

to PDF accessibility. The difference is in the execution.

There is also some bad news though—that difference in execution is a

big one. Because there are so many ways to create PDFs and some are

easier to make accessible than others, PDF accessibility is an abstract

art, with many changing dependencies. The tools to make PDF acces-

sible can also be a little obtuse, so it won’t be quite as straightforward

as web accessibility. We’ll proceed by assuming that PDF is your only

option (though we’ll finish off by looking at exporting our PDFs), so our

first step is finding out what we have to work with.

Getting Your Bearings

There are a wide variety of tools and techniques for creating PDF output

but, most of the time, the PDFs generated fall into three categories:

• Scanned Image: PDF may be a collection of scanned page images.

These PDFs are not at all accessible with screen readers unless

some OCR (optical character recognition) work is performed. Because

the pages are rendered as bitmap images, they also do not scale

well for users who need to zoom in on the page. If you cannot

select the text in your document, odds are, you’re working with

scanned pages.

• Untagged Text: Some PDF output methods directly embed text into

the PDF. If the document is entirely text (no images that need

alternate text), you might be accessible, but this is uncertain—you

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=213

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 214

would need someone expert in screen reader use navigate through

the PDF to know for certain. Depending on the way the PDF was

generated, the PDF text may not be read correctly so this is clearly

a concern. If you can select the text in the PDF you know it’s there.

To know whether it’s tagged or not, you’ll need to understand what

“tagged” means.

• Tagged PDF : Tagged PDF is an extension introduced in PDF 1.4

(Acrobat 5) to embed a text-only representation of the PDF content

inside of the PDF file. These tags are similar to HTML tags that

describe the structure of the document. We’ll look at creating and

editing tags shortly, but first we need to know if we already have

tags. In Acrobat,3 you can find out whether the document is tagged

under File→Properties. The information we’re interested in is the

bottom line “Tagged PDF”. If it says “Yes”, then we’re looking at a

tagged PDF. If it doesn’t (or if the tagging is incomplete) we’ll have

to add it ourselves.

For the rest of this section, I’m going to assume that we’re starting from

the most labor intensive case and go through the steps of working with

a scanned image document.

Obtaining Text for Scanned Images

The first step will be to see where we’re at with a basic accessibility

check. The basic check is Advanced→Accessibility→Quick Check. With

a scanned image, Acrobat will tell us that our document doesn’t appear

to have any text and suggests that, if it is a scanned image, that we can

use Document→OCR Text Recognition→Recognize Text Using OCR to

add text automatically, so let’s do that.

The Recognize Text dialog contains a few options, as seen in Figure 10.2,

on the following page. The one we’re most concerned about is “PDF Out-

put Style”, which tells Acrobat what kind of OCR we want. If you want

Acrobat to convert the page images into text, you can pick “Formatted

Text & Graphics”. This is also useful for verifying how well the OCR pro-

cess is working. If you want the PDF to retain the look of the scanned

document, “Searchable Image” will do that, embedding invisible text

blocks in the page while retaining the scanned page image. Be warned,

3. While there are many tools for working with PDF, I find Acrobat to be the most useful

for accessibility related tasks. I’ll be speaking specifically about Acrobat Professional CS3

though the steps I give should apply to most recent versions.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=214

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 215

Figure 10.2: Using OCR to Recognize Text with Acrobat.

however—OCR is a tricky art and conversions are usually less than

perfect. You will probably need to spend some time correcting the out-

put before it’s what you’re looking for. Let’s run the Quick Check again.

Now Acrobat tells us that the document isn’t structured and that the

reading order might not be right. What it’s actually trying to say is that

we don’t have PDF tags yet.

Adding Tags to the PDF File

Acrobat can add tags with the action Advanced→Accessibility→Add

Tags to Document. After you select this, Acrobat will take over for a

while and come back with a recognition report. This report points out

aspects of the document that still pose accessibility problems. The most

common problems are text that doesn’t have a language specification

and figures with no alternative text.

Odds are that most of the errors you will see in the accessibility report

are from missing language specifications. The report is easier to read

if you take care of these first. The language for the entire document

can be set under the “Advanced” tab in File→Properties. If you need a

different language setting for a region of the tagged text, that can be

added as a property of the tag later.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=215

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 216

Figure 10.3: The TouchUp Reading Order tool can be used to add and

adjust tags.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=216

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 217

Figure 10.4: The Tag Editor isn’t necessarily convenient—but it’s what

we have.

Figures that don’t have alternative text need to be handled one of two

ways. If the figure is a decorative image, we’ll want to mark it as back-

ground (the equivalent of alt=” as described in To Put it Another Way, on

page 162). For this, we’ll need to use Tools→Advanced Editing→TouchUp

Reading Order Tool, shown in Figure 10.3, on the preceding page.

If you select the figure and click “Background”, the object should be

marked as decorative content. This is also useful for scanning artifacts

that don’t convey meaning. You may also have to delete a <Figure> that

matches the background artifact. For this, we’ll need to know how to

edit tags

The Acrobat Tag Editor

By selecting “Show Order Panel” from the TouchUp Reading Order tool,

and selecting the “Tags” tab, we get the tag editor, shown in Figure 10.4.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=217

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 218

Figure 10.5: The Tag TouchUp Properties Dialog is where much of our

accessibility work will take place.

Editing markup in a tree view leaves a little to be desired, but we’ll need

to make do with what we have. In the editor we can reorder tags by

dragging them around,4 add or delete tags, or alter the properties of

an existing tag. Tag properties are where most of our accessibility work

will happen.

By selecting “Properties...” from the tag editor’s Options menu, we arrive

at the TouchUp properties dialog, shown in Figure 10.5. The options

we’re most concerned with are:

• Actual Text: Sometimes text tags are incorrect due to an OCR fail-

ure or misspelling. We can place the corrected text here.

4. You may have noticed that several of the accessibility steps I’ve mentioned require

the use of pointer input and that this is an accessibility concern in its own right. The

topic of accessibility in authoring tools is an important one, but beyond the scope of this

book. If you are interested in this topic, you might want to look at WCAG’s Authoring

Tool Accessibility Guidelines at http://www.w3.org/TR/WAI-AUTOOLS/

http://www.w3.org/TR/WAI-AUTOOLS/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=218

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 219

Acrobat’s Screen Reader

Acrobat comes with a built in screen reader, available under
View→Read Out Loud. If you use this feature to check your PDF
tagging, you will notice that it doesn’t react to your changes.
At this point, it appears that the built in reader ignores the tag-
ging and reads embedded PDF text instead. To verify your tags,
you’ll need to export tags and check manually. Hopefully, in a
future release, this issue will be resolved and we will be able to
use Acrobat’s accessibility features to verify PDF’s accessibility
features.

• Alternate Text: This is the place where we can add descriptive text

for figures in the PDF file that are informational in nature.

• Language: If a piece of tagged text is in a different language than

the main body content, it should be specified as a tag property.

The amount of work needed to adjust the tags will vary considerably

depending on the properties and length of the PDF you are working

with. If the tags are poor to start with, it will take longer yet. In fact,

if the tags are bad enough, you might want to start over by selecting

“Clear Page Structure” from the TouchUp Reading Order tool and start

selecting and tagging by hand.

Done? Not Quite.

Even after you’ve been through all of these steps, there’s still a little

more to do. We need to verify our PDF. The accessibility checker per-

forms some nice tests but PDFs really should be tested by an actual

user with a screen reader to verify that there aren’t any subtle prob-

lems with the tagging (and unfortunately, the built in tool won’t do the

trick. See the sidebar on the current page).

We can do a little bit of checking before we bring in our tester though.

Exporting the PDF with File→Export→XML 1.0 allows us to do a basic

“View Source” on the PDF tags. If you just want to verify the text substi-

tutions, File→Export→Text→Text (Accessible) will give you the appro-

priate plain text. Be warned—none of the changes you make to the

output files can be reimported into the PDF.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=219

PDF: TRYING TO MAKE PORTABLE ACCESSIBLE 220

Is All Of This Worth It?

At this point, you might be wondering if it would be better to simply

convert the PDF to HTML. This depends on a few things. If you’re com-

mitted to providing PDF, then obviously this isn’t an option. If HTML is

a viable option, you might find that easier to implement, however. The

third option is to provide both. Before you remind me not to get WET,

let me point out that PDF tagging already screams of nearly writing the

document a second time anyway, particularly if the automatic tagging

doesn’t work out well.

Another consideration is that not all of your users will have the ability

to work with PDF, tagged or not. If the information in the PDF is critical

to the value of your site, working with an HTML representation may be

the best solution. Ultimately these are decisions that you will have to

weigh project by project.

PDF is here to stay, so we’ll need to make sure that we use it in an

accessible way. Whether we use PDF accessibility features directly, or

export the document’s contents to provide an HTML alternative, under-

standing accessibility tools for PDF allows us to provide the information

in these documents in a more useful way for our audience.

Act on it!

1. Grab a PDF (preferably one you didn’t create) and walk through the steps

of adding accessibility features.

2. Run OCR on a scanned image PDF using both “Searchable Image” and

“Formatted Text & Graphics” to get a feel for the differences.

3. Use PDF tools to build a few HTML versions and decide for yourself whether

you find it best to work directly in PDF or build an HTML alternative.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=220

It is the framework that changes with each new technology

and not just the picture within the frame.

Marshall McLuhan

Chapter 11

Scripted Responses
JavaScript has grown to be an essential component of web develop-

ment...except for the fact that it isn’t really—there are many times

it isn’t even an available component of web development. JavaScript

suffers from a bit of a chicken and egg problem. Not every browser

supports scripting and those that do have no guarantee that it’ll be

enabled. This leaves us in the position of needing to create sites that

are completely functional without JavaScript and enhance themselves

with scripting for people who can use it.

There’s an old Irish proverb that says it’s far better to make a good

retreat than to take a bad stand. This is exactly how we need to treat

our scripted interactions and the notion of scripts that step aside with-

out taking the site’s functionality with them is the topic of Unassuming

Scripts. We’ll also discuss the philosophy of progressive enhancement

and how it lets us provide the best possible experience for both audi-

ences. JavaScript has become a very powerful language at this point

and has been around long enough that some developers have attained

deep expertise in the language. These developers have begun to step

to the next level and stretch our notion of what JavaScript is useful

for. In Higher Order Scripts we’ll briefly look at what this means for

accessibility—and some of the news may be very good indeed.

The thing we won’t be doing in this chapter is learning JavaScript. I’m

not one of the deep JavaScript experts that I mentioned above, so I

won’t pretend to be. If you want to develop a good understanding of the

depths of JavaScript, I recommend David Flanagan’s JavaScript: The

Definitive Guide [Fla06] and Jeremy Keith’s DOM Scripting: Web Design

with JavaScript and the Document Object Model [Kei05]

UNASSUMING SCRIPTS 222

33 Unassuming Scripts
User-centered design means understanding what your

users need, how they think, and how they behave - and

incorporating that understanding into every aspect of your

process.

Jesse J. Garrett, The Nine Pillars of Success-

ful Web Teams

JavaScript puts us in a tough position sometimes. It gives us the oppor-

tunity to enhance user interactions with our site. At the same time, we

don’t know if a given user has scripting available or whether it’s enabled

if they do have it. Further, even if the scripting is there, we still have to

remember that we can only assume that our users have access to some

equivalent to keyboard access.

Ultimately we need our scripted pages to satisfy three properties:

• Scripts should be designed with the same separation of concerns

that we use for styles.

• Pages can’t rely on the presence of a specific input device.

• The page needs to function without scripts

First up, lets see how broken separation of concerns indicates a likely

accessibility problem.

Signs of Script Problems

How do we know if scripts are causing an accessibility problem? The

obvious test is to turn off scripting in our browser and load your site.

If it doesn’t work anymore, you have a problem. Similarly, if you block

unrequested popup windows and essential functionality disappears from

your site, scripts are killing your accessibility. There also a few com-

mon bad smells that you should watch for that regularly show up in

the source of pages with accessibility problems.

Pages that maintain the separation of concerns necessary for accessi-

bility also usually keep their code in a separate resource. This means

seeing a lot of <script src=’...’> elements, usually nicely grouped together.

On the other hand, if you find reams of inline code scattered through

the file, odds are good that the page doesn’t function well if those scripts

don’t run.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=222

UNASSUMING SCRIPTS 223

The best signs of scripting gone wrong are a horrible group of three bad

habits that showed up in the early days of JavaScript, and all three of

them hang around the anchor element:

• : Long scripts inside

event handlers isn’t a direct accessibility problem in its own right

but, like massive inline script blocks, it’s a good sign that the

script is too tightly bound to the content for the page to function

properly without it.

• : This one is wrong on so many levels it’s

painful to even bring it up.1 First up, a JavaScript function isn’t

a location, so it has no business at all being in an href= attribute.

This also makes the worst assumption possible—If JavaScript isn’t

available, this link is either going to do nothing or send the user

to a malformed URL. Either way, Bad News for your users.

• : The “empty” href=’#’ attribute shares the

problem above of assuming the presence of JavaScript. The under-

lying intent of the “#” is a little more subtle, however. This link con-

struct executes the event handler then activates the URL assigned

to the href= attribute. At some point, someone noticed that, by tar-

geting the blank named anchor, href=’#’, the browser wouldn’t do

anything. Many tutorials and references were written that described

this method. A better way to get this behavior is to add return false;

to the end of the event handler. By returning false, we can prevent

the browser from following the link. As we’ll see in Higher Order

Scripts, on page 226, this is one of the first steps to building higher

order scripts that maintain accessibility.

Avoiding Event Lockout

JavaScript interaction is based around providing handlers for device

events. By relying exclusively on handlers for a specific input type,

sites are rendered inaccessible to people who don’t have the ability to

use that device. The two general types of device are pointers and key-

boards. As usual, however, we can only assume that the user has a

keyboard equivalent device. This doesn’t mean that we shouldn’t sup-

port the mouse at all—after all, some users with mobility impairments

1. And in fact I wasn’t going to until someone passed me a recently written JavaScript

tutorial that actually recommended exactly this usage.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=223

UNASSUMING SCRIPTS 224

may have more difficulties with keyboards than with pointers—what we

really need to do is provide support for multiple devices.

Whenever you find yourself writing an event for a pointer event, you

need to make sure that the same functionality is available with a key-

board triggered event as well. The only exception to this would be where

a function isn’t essential for interacting with the site or the functional-

ity is available without an event handler. The shopping cart in Higher

Order Scripts, on page 226 is an example of this. The drag and drop

feature presented would require mouse events, but the provided link

can be activated without an event handler.

Two JavaScript events need special consideration in terms of accessibil-

ity. The onchange event doesn’t always behave as expected, specifically

for <select> elements. In some browsers, each time a cursor key moves

the selected position of the <select> element, it issues an onchange. This

means that, for keyboard users, they can only select the first option in

the list. Your choices for working around this are either to add a sub-

mit button and avoid onchange or to add handlers for key events to

interrupt the onchange event2

The onclick event is also misunderstood to be a pointer-only event. In

modern browsers, pressing “Return” while an item is active results in

an onclick, so this event should be considered available to keyboard

users as well. If you still aren’t comfortable with this, similar function-

ality can be developed by filtering keyCode with the onkeypress event.

The filter is important to make sure you don’t inadvertently capture

other keyboard events (like the ones the user might be sending to their

assistive technology).

Progressive Enhancement for Graceful Degradation

In conversations about scripting and styling, you will run into the phrases

“Graceful Degradation” and “Progressive Enhancement”. What we’re

really talking about here is making sure that our pages operate in the

best possible fashion for our users. These two ideas approach this goal

from opposite directions and will directly influence how we view our

usage of scripts.

The perspective of graceful degradation is that pages start out feature-

rich. The developer then has to find ways to strike out parts of the style

2. One solution for this problem is described by Cameron Adams at

http://www.themaninblue.com/writing/perspective/2004/10/19/

http://www.themaninblue.com/writing/perspective/2004/10/19/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=224

UNASSUMING SCRIPTS 225

or functionality to allow the page to continue working. We might have

to go back and add static links and page refreshes that take the place

of scripts that we had previously written to perform a task. The flaw of

this perspective is that it puts the blame on the user for not doing what

the developer expects them to.

Progressive enhancement takes the opposite perspective. In this case,

we design pages start out with basic content and function. Styling and

scripts are then added to the page as additional feature and enhance-

ments the the user experience for the users who are able to use them.

This is a more user-centric point of view as well as one that makes

accessible development easier to manage.3

Ultimately the difference between these two is largely philosophical—

you can easily look at progressive enhancement as a great way of imple-

menting graceful degradation and avoid getting into a debate about

user-centric vs. developer-centric design. The important key is to under-

standing how pages can be built to function then customized with extra

features. This has become extremely important as we watch the rise of

the rich web application which we’ll look at next.

Act on it!

1. Search for href=’#’ and href=’javascript:...’ in your source. Eliminate with extreme

prejudice.

2. Verify that, if you are using device-specific event handlers, you aren’t lock-

ing users out through your event choices.

3. Can you still use your site if JavaScript is turned off? If not, step back and

make it work, using the principles of progressive enhancement to bring in

the scripted features.

3. Which is why I recommend this kind of process in Testing as a Design Decision, on

page 65

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=225

HIGHER ORDER SCRIPTS 226

34 Higher Order Scripts
This is the approach of stratified design, the notion that a

complex system should be structured as a sequence of

levels that are described using a sequence of languages.

Harold Abelson and Gerald J. Sussman, The

Structure and Interpretation of Computer

Programs

The latest concern for web accessibility professionals is the use of higher

order script techniques. I’m using the phrase “higher order” to refer to

JavaScript frameworks that are used to implement rich web interfaces

including those use the Ajax approach.4 From my perspective, most

of the concern stems from the fact that JavaScript has usually meant

inaccessibility so higher order scripting can only compound the prob-

lem. That doesn’t have to be the case, however, and there are a few

accessibility positive results of higher order scripting to consider.

We need to cut the hype though—and there’s a lot of it. People have

credited higher order techniques with everything from bringing appli-

cations to the web (which it’s about ten years too late to have done) to

a completely reinterpreting the design of the web (insert version num-

ber here). The reality is that we’re still just talking about a pile of tags

and scripts. That’s it. That’s also where bringing accessibility to higher

order scripting is a win for everyone—it’s already well on the way.

Higher Order Accessibility

Most of the magic of higher order scripting lies in manipulation of

the page’s Document Object Model (DOM). For this to work well, the

HTML should be designed using clean semantics and standards-based

markup. It’s also better if the presentation is moved out into CSS rules

that apply to the semantics and markup of the page design—is this

sounding familiar yet? If we add the principle of progressive enhance-

ment to what already needs to be done to let the scripting work, we’re

already well on our way to accessible higher order scripting.

4. Ajax has been used to refer to all types of higher order scripting

but I think this does a disservice to the asynchronous model described

in Jesse James Garrett’s “Ajax: A New Approach to Web Applications”

(http://www.adaptivepath.com/ideas/essays/archives/000385.php), so I’ll only use “Ajax” to

refer to that particular practice

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=226

HIGHER ORDER SCRIPTS 227

The first question I get about this is “How can my application provide

these rich interfaces and not require JavaScript?” Essentially it can’t—

the real goal is to provide the highest quality interactions that you can

without JavaScript and enhance that model with script handlers for the

people who can use them.

The essential tool for achieving this understanding the difference between

 and <a href=’[URL]’ onclick=’[do some-

thing and return false]’>. When scripts are available in the browser, these

behave identically (except in the second version, you don’t have the ‘#’

character magically appearing in the URL all the time—another bonus).

When scripts are turned off, the user is directed to the URL assigned to

href=. This means that we now know that the user doesn’t have script-

ing and we can react by doing things through basic page flipping. It

may not be as exciting as an automatically updating application, but

it’s much more useful than being blocked from the application because

of enhanced features. Now we have the best of both worlds—we can

add features for users that can use them without shutting out parts

of our audience to our application. Using progressive enhancement in

this way takes us a long way toward accessibility, but there are a few

other things we should look at.

Ajax: Across The State Line

The “A” in Ajax means asynchronous. This refers to the use of the XML-

HttpRequest object to send and receive information without triggering a

page refresh. This makes web applications appear to behave more like

conventional desktop applications. It can also lead to some confusion

for your users, however. Because the convention thus far has been for

pages to refresh on actions, some users find that Ajax applications don’t

feel like they’re doing anything. Additionally, screen readers generally

don’t refresh their view of the page when an update occurs, so these

page transitions may go unnoticed for users with visual impairments.5.

Three interim solutions to this problem come to mind:

• Use visual or aural feedback to indicate page updates: This helps

the users who are simply unused to Ajax pages, but it doesn’t

resolve the screen reader refresh problem. so this might be a use-

ful addition but we’ll need to go further.

5. And the history of screen reader support for the web doesn’t necessarily give hope

that support will be coming rapidly.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=227

HIGHER ORDER SCRIPTS 228

• Explain to the user that the page automatically refreshes its content

and how they can initiate a reload or turn off JavaScript if they’re

using a screen reader: Yeah, right. If you do this, I can explain

to you why your screen reader using audience thinks you’re out

of your mind. Remember that most of your users with disabil-

ities fit the same profile as the general user populace. Many of

your users are going to give up and leave if you start trying to

explain JavaScript, Ajax, and stateful web applications to them.

Remember that it’s still their browser—and they’re likely to be very

uncomfortable messing around with its settings.

• Make a preference clearly available that allows users to select them-

selves into page refresh mode if they’re using a screen reader or

simply prefer to use the other version: This isn’t ideal—I really don’t

like the idea of asking the user to “turn on” accessibility but I also

don’t see another clear path at this point in time.

Clearly, none of these solutions are ideal but, until screen readers

adapt, we need to be ready to do what we can to assure an accessi-

ble experience for our users.

Multiple Inputs: It Doesn’t Always Have To Be A Drag

Higher order scripting has brought with it a wave of draggable inter-

faces. Without getting into a debate about whether drag and drop inter-

faces are the best solution,6 lets look at what we can do to make them

accessible. If we’ve been progressively enhancing our sites, we already

have a solution. Somewhere in the early phases, the interface will have

had a standard link. If we retain these links, we can also open access

to keyboard interfaces.

Consider the shopping cart examples in Figure 7.2, on page 147 and

Figure 7.3, on page 147. There is no reason that we can’t have the

hybrid interface shown in Figure 11.1, on the following page. Better yet,

since the first interface should have been enhanced into the second, we

should effectively get it for free.

As another example, look at the two interfaces in Figure 11.2, on page 230.

These are a design for ranking authors by preference. In the first design,

we simply have a collection of draggable elements. In the second, by

adding “move up” and “move down” arrows, we do two things. We have

6. If you have already read Your Interface Has Some Explaining To Do, on page 145,

you’ve seen my opinion on the matter

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=228

HIGHER ORDER SCRIPTS 229

Figure 11.1: A hybrid cart design offers drag and drop or button func-

tionality and lets the user decide which is more useful

enabled keyboard access by having links that can be activated but we’ve

also added indicators that signal that those items can be reordered.

Overall the second interface is better for all of your audience. Again, if

you built a basic version and enhanced it with the draggable interface,

having the links should simply be a matter of not getting rid of them.

When I’ve presented this interface, I’ve usually been asked whether

reordering a list that way could be a little tedious. This is a valid point—

there may be a better interface yet. That isn’t the point though. While

the link interface might be more inconvenient than the draggable inter-

face, both are vastly better than not being able to interact with the list

at all, which is what we subject some of our users to when we don’t

provide both solutions.

Letting Someone Else Help With The Heavy Lifting

Another nice characteristic of higher order scripting is that the tech-

niques are complex enough that we’re beginning to see a number of

APIs showing up that take care of the details. The presence of an API

doesn’t guarantee anything about accessibility but, when the API is

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=229

HIGHER ORDER SCRIPTS 230�
our Ranking

 Rowling

 Snicket

 Black

 Milne

 Gaiman

Your Ranking

 Rowling

 Snicket

 Black

 Milne

 Gaiman

Figure 11.2: Drag and drop preference ranking. Note that the second

example is accessible by keyboard and signals that the list can be

reordered

designed for accessibility, it makes our lives as developers significantly

easier.

The Yahoo! User Interface Library7 has displayed a strong commitment

to providing accessibility in their components. At this point, the DataT-

able, Menu, and Grids[[Author: Production: We need to keep DataT-

able from hyphenating here]] components have documented accessi-

bility features and provide significant pieces of useful functionality that

would take considerable time to implement and test (and test for acces-

sibility) on your own.

The rise of higher order scripting has been controversial in accessi-

bility circles, but I’m not sure it needs to be. The basic requirements

for these scripts often overlap with accessibility requirements and the

presence of common libraries allows accessibility to be written once

and shared by multiple developers. This has great potential to turn

into a win across the board if we want it to. Further, because higher

7. http://developer.yahoo.com/yui/

http://developer.yahoo.com/yui/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=230

HIGHER ORDER SCRIPTS 231

order scripts are still located within the core browser, we can provide

rich accessible applications without worrying about the availability and

accessibility of plug-in technologies, which we’ll look at next.

Act on it!

1. Think locally. Begin to transition toward the philosophy of progressive enhance-

ment if you haven’t already.

2. Can your interfaces be accessed without a pointer device? How about

without a keyboard? What needs to be done to make this the case?

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=231

Isn’t it queer: there are only two or three human stories and

they go on repeating themselves as fiercely as if they had

never happened before; like the larks in this country that

have been singing the same five notes over for thousands

of years.

Willa Cather, O Pioneers!

Chapter 12

Embedded Applications: Rinse
and Repeat

In this chapter, we’re going to look at the edge of the web and discover

that our ten principles for web accessibility from back in the preface

can be used for other technologies as well.1 Embedded applications are

an important part of our web content but, most of the time, they don’t

feel very connected to web development at all. Most of the time, unless

we’re the one writing the application, we just add an <object> tag, and

the application just sits there in our page layout in its own isolated box,

providing data access, text chat, or some other functionality.

It’s valuable for us to discuss the matter, however. First, the embedded

parts often are critical pieces of our pages so we need to understand

how they can be made accessible. This includes understanding that

they have to be made accessible from the inside—if you receive a com-

piled component and it’s inaccessible, there’s nearly nothing you can

do to fix it.

Even more importantly, embedded applications give us a different venue

to look at accessibility. You’ll find out in this chapter that all of the

ideas and principles from HTML accessibility are applicable here too.

We’ll actually be spending most of our time looking at the differences

in execution. We’ll start out by looking at The Many Faces of Flash and

then repeat the process in Java: Is Your Brew Fair Trade?

1. In fact, this is principle number 10

THE MANY FACES OF FLASH 233

35 The Many Faces of Flash

It was the best of times, it was the worst of times.

Charles Dickens, A Tale of Two Cities

Flash is a difficult topic for accessibility. On one hand, Flash has a

bad reputation from old versions that didn’t provide accessibility sup-

port and proliferation of annoying banner ads with blinking images

and uncontrollable audio. On the other, tools like sIFR, described in

alt.text.odds-and-ends, on page 174, use Flash to enhance the acces-

sibility of web typography. The reality is that Flash is just a tool and

can be used well or badly in terms of accessible development. Here,

we’ll be focusing on Flash CS3—The captioning features alone make

this a must-have upgrade for accessible development. All of the basic

principles of web accessibility also apply to Flash, it’s mostly a matter

of finding out where the accessibility information goes. Flash can be

looked at in two ways, however. It can be seen as a web media player

or as a platform for applications. We’ll look at both cases and see what

needs to be done. First, however, we need to look at a major caveat to

accessible Flash development.

How Accessible is Single Platform?

A major concern about Flash accessibility is that it is strictly platform

restricted. Because Flash uses Microsoft Active Accessibility (MSAA), a

bridging component that Windows provides to connect software appli-

cations with assistive technologies, accessibility features are only avail-

able to users of both Microsoft Windows and Internet Explorer. This

leaves us in a bad position—because we can’t use the built-in acces-

sibility functionality on all platforms that we might like to deploy to,

we’re left with two options.

1. We could add audio overlays that act as a surrogate screen reader.

This isn’t ideal, but bypassing the need for a screen reader is one

viable approach.

2. If the functionality is essential to our site, we’ll need an alternate

form of the content anyway, so we could direct the user to that.

This isn’t nearly as nice of an approach but it’ll also work.

How this issue needs to be addressed will vary from project to project.

For example, if all of your Flash usage is as a media player and the

controls are keyboard accessible, you may not have to worry about this

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=233

THE MANY FACES OF FLASH 234

Figure 12.1: Embedding DXFP captions with the FLVPlaybackCaption-

ing Component

too much. On the other hand, if you have a complex application that

isn’t already self voicing, you’ll have some big decisions to make.

Flash: The Media Player

Because of its widespread availability, Flash is particularly useful for

streaming media content. For a long time the problem has been jump-

ing through component and ActionScript hoops to attach good captions

to the media. Flash CS3 changes that with the introduction of the FLV-

PlaybackCaptioning component. This new component combines with

an FLVPlayback component to provide captioning.

The captions are added as an XML file by referencing the file in the

source parameter to FLVPlaybackCaptioning as shown in Figure 12.1.

The captions need to be provided in DFXP format, which can be cre-

ated with the MAGpie tool introduced in On the Cutting Room Floor,

on page 194. Flash takes over the heavy lifting at this point and all you

need to do is make sure to let the user control the playback and provide

transcript alternatives.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=234

THE MANY FACES OF FLASH 235

Figure 12.2: Adding accessibility properties to Flash movies (left) and

objects (right)

Flash: The Application Environment

When you’re working with Flash applications, the job is a little more

complex. We’ll need to add some information to describe our component

and their order in the application. First up are text descriptions. To add

alternate text, you’ll need to open the accessibility properties viewer

(Window→Other Panels→Accessibility) shown in Figure 12.2. We have

a few options here.

The “Name” and “Description” fields play the roles of alt= and longdesc=,

detailed in To Put it Another Way, on page 162 and More Than alt= Can

Say, on page 167. The “Auto label” option will attempt to automati-

cally create text alternatives. Because there is no easy way to verify the

automatic choices, it is probably better to manually specify the alter-

natives. The “Make child objects accessible” option should usually be

set unless the object acts as a container and provides alternative text

clearly describing the entire group of objects.

The “Shortcut” option is easily misunderstood. The content of this field

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=235

THE MANY FACES OF FLASH 236

does not create a shortcut key, it simply provides text to tell the user

what the shortcut is. The actual shortcut key will need to be created

separately.

If you’ve read Tickling The Keys, on page 142, you may be surprised to

hear me tell you to set the “Tab index” option for all available compo-

nents. In Flash, there is no natural reading order to rely on as in HTML,

so we’ll have to organize the tab ordering ourselves.

Overall, there’s nothing surprising here, just different ways of doing the

same things we would with HTML. Flash does provide some automa-

tion of this process for some components though. Labeling and key-

board access automation can be enabled by calling enableAccessibility()

from ActionScript for the Button, Checkbox, Combo Box, Data Grid,

List Box, Radio Button, Text Area, Text Input, and Tile List compo-

nents. Remember that this functionality is not available by default—the

ActionScript call is a necessary step.

A Note About Flex

The Flex framework for developing Flash applications has a similar

issue with accessibility being turned off by default. The rationale is

that it causes more bandwidth consumption by generating larger file. If

you’re worried about bandwidth that much, accessible HTML will save

you even more. There are three ways to turn on accessibility for Flex:

• Add ?accessible=true to the URL.

• Pass -accessible to the mxmlc compiler.

• Add <accessible>true</accessible>2 to the server configuration.

Keep in mind that Flex only supports accessibility for core compo-

nents under the same platform conditions as Flash. If you develop cus-

tom components, you’ll need to generate your own MSAA information.

Adobe recommends sticking with the included components for this rea-

son.

Flash provides useful tools for web accessibility for distributing media

and for deploying applications to environments where users with dis-

abilities access the application with Windows and Internet Explorer. If

you are deploying to broader environments, accessible Flash may still

require a fair amount of retooling for self-voicing and may not be as

2. If only accessibility were this easy!

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=236

THE MANY FACES OF FLASH 237

Flash Satay: Quieting the Compliance Tools

One minor annoyance of working with Flash is the HTML
used to place it on a page. For cross-browser support, the
markup usually uses a combination of <object> and <embed>.
Unfortunately, because the <embed> isn’t standards-compliant
markup, your pages with Flash content end up failing vali-
dation. Drew McLellan, with some help from Jeffrey Zeldman,
developed a clever solution to this problem that they call Flash
Satay

To load a streamed Flash movie using only <object> in a cross-
browser way, you’ll need to create a new Flash movie, loader.swf

with this script at frame 1 of the movie’s root:

_root.loadMovie(_root.path, 0);

With this in place, we can load our real Flash content with the
following:

<object type="application/x-shockwave-flash"
data="loader.swf?path=YourMovie.swf"
width="600" height="400">

<param name="movie"
value="loader.swf?path=YourMovie.swf" />

<!-- AND you can stick a fallback alternative
here for browsers that don't support Flash

-->
</object>

And, by using <object>, we have a great location to
place alternate content to our Flash file if the user doesn’t
have Flash installed. For a more detailed development
and description of Flash Satay, see Drew McLellan’s Article
“Flash Satay: Embedding Flash While Supporting Standards”
(http://www.alistapart.com/articles/flashsatay)

http://www.alistapart.com/articles/flashsatay
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=237

THE MANY FACES OF FLASH 238

viable. By carefully evaluating your usage to determine whether Flash

is the right tool for your content and by applying general accessibility

principles, Flash doesn’t necessarily have to be the accessibility “hands-

off” zone that it once was.

Act on it!

1. Add captions to your flash videos

2. Add alternate text and keyboard access to your flash applications. Better

yet, work on making them self voicing for multi-platform accessibility

3. Spend a little bandwidth: Make sure that your Flex components have built-

in component accessibility enabled.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=238

JAVA: IS YOUR BREW FAIR-TRADE? 239

36 Java: Is Your Brew Fair-Trade?
Second verse, same as the first—a little bit louder and a

little bit worse.

Traditional

Java doesn’t get the amount of buzz as a “web language” as it once did.

However, along with Flash, Java is still one of the prominent ways to

embed external applications into a web page. More importantly, Java

gives us an opportunity to examine how what we’ve learned about

accessibility applies to other venues. The tools and syntax for mak-

ing Java applications accessible are different than the ones we use for

HTML but the principles and techniques are the same. All of the con-

cepts covered earlier in the book about clear language, color, contrast,

and media preparation apply to Java applications in the same way they

did for web pages. We’ll be taking a look at the Java Accessibility API3

gives us essentially for free, how to add basic accessibility features, and

what tools are available to check the accessibility of Java applications.

Getting Something for Nothing (Well—Not For Much)

Because the accessibility API is supported by Swing components, some

of our accessibility work is already done for us. Any component that

has text attached to it will automatically provide that text to assistive

technologies. For example for these components:

JLabel myLabel = new JLabel("My Label");

JButton myButton = new JButton("Hello, Java!");

Assistive technologies will be provided the information to let the user

know that there is a UI label with the text “My Label” and a button titled

“Hello, Java!”. Not all components have text attached to them, however,

and we have ways to work with these as well. First, let’s look at alter-

nate text for images—in this case, the ImageIcon class. It is useful to

know that, in addition to the plain constructors, there are alternative

constructors that take a description parameter as well as a method set-

Description() that we can use to provide alternative text:

// Why do this:

ImageIcon myImage = new ImageIcon("MyImage.jpg");

3. Found in the package javax.accessibility, accessibility API functionality is implemented

into Swing.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=239

JAVA: IS YOUR BREW FAIR-TRADE? 240

// When you can do this instead:

ImageIcon myImage = new ImageIcon("MyImage.jpg",

"Description of My Image");

// And if you need to change the description or if you

// prefer to not to use the constructor:

myImage.setDescription("Updated Description of My Image");

The description attribute becomes the alternative text exposed by the

accessibility API. What about other components? We can address them

through their accessibility context, obtained from the getAccessibleCon-

text() method. The context has methods setAccessibleName() and setAc-

cessibleDescription that are used to set an associated text label and a

functional description of the component:

// Get The Accessibility Context so we can set some attributes:

myButtonContext = myButton.getAccessibleContext();

// Explicitly set the name sent to assistive technologies:

myButtonContext.setAccessibleName("Hello, Java!");

// Describe the purpose of the button for the user:

myButtonContext.setAccessibleDescription("Play audio of a cat meowing.");

Often, you will find it better to describe the purpose of your components

as a tooltip with setToolTipText() but in cases like the example where sen-

sory modalities come into play, setAccessibleDescription() may be a more

appropriate choice.

Custom components can also be handled by the accessibility API but

you’ll need to be a little careful in how you develop your components.

First, JComponent does not support the accessibility API so you’ll want

to inherit from JComponent.AccessibleJComponent instead. The acces-

sibility API can’t penetrate through inaccessible containers, however,

so you’ll also need to avoid using containers that don’t implement the

Accessible interface. Of course, you always have the option of extending

a class and implementing Accessible on your own if that better suits

your needs.

Helping Users Navigate

Beyond the functionality of the accessibility API, we can do a few more

things to make an application easier to navigate. In Getting <form>al,

on page 135, we see that the <label> used to tie an on-screen text label

to the element it refers to. JLabel has a setLabelFor() method that we can

use to do the same thing:

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=240

JAVA: IS YOUR BREW FAIR-TRADE? 241

Figure 12.3: The Java Accessibility Helper reports on accessibility con-

cerns of multiple severities.

myField = new JTextField(10);

myLabel = new JLabel("My JTextField:");

myLabel.setLabelFor(myField);

We also look at grouping related components with <fieldset>. In Java,

JPanel should be used in a similar way to organize related items into a

cohesive whole.

Testing for Accessibility in Java

Even though Java does all of these nice things for us in terms of acces-

sibility, it doesn’t eliminate the need to test. While many of the methods

covered in Chapter 4, Testing for Accessibility, on page 64 are still use-

ful, none of the tools are. Fortunately, Sun has provided a few that’ll

keep our code in line:

• Ferret is provided with the Java Accessibility Utilities4 as a way to

track the state of an on screen component. Ferret tracks cursor

4. http://java.sun.com/products/jfc/jaccess-1.3/doc/

http://java.sun.com/products/jfc/jaccess-1.3/doc/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=241

JAVA: IS YOUR BREW FAIR-TRADE? 242

focus and returns accessibility information about the object at

the cursor. This allows manual checking that all components are

exposing an appropriate accessible interface.

• Monkey, also part of the Java Accessibility Utilities takes a dif-

ferent approach by tracking through the component tree and dis-

playing comparative information about the actual component and

its accessible representation. Monkey also allows you to see places

where the Accessible interface isn’t implemented, blocking access

to child components.

• Java Accessibility Helper5 works similarly to a web standards val-

idator, sweeping through the application searching against a series

of accessibility rules. The output, seen in Figure 12.3, on the pre-

vious page, even looks quite a bit like a web evaluation, ranking

the severity of observed problems and linking to further informa-

tion

As discussed in Getting Your Hands Dirty, on page 76, you’ll always

want to do plenty of manual testing, preferably involving testers with

disabilities at some point in the process.

That covers the basics of getting started with Java accessibility. The

important thing to remember when approaching accessibility for any

new platform is to stop and leverage the principles you already know,

find out what the local dialect is for applying those principles, and stop

for a moment to put together the new toolbox necessary for working

with the platform.

Act on it!

1. Add Java Accessibility API features to your applications in the places that

there is no attached text or a need for greater description. Use the testing

tools to check that the accessibility information makes sense.

2. Browse through the first three parts of this book. Think about how you would

apply these ideas to accessible Java application development.

5. http://java.sun.com/developer/earlyAccess/jaccesshelper/

http://java.sun.com/developer/earlyAccess/jaccesshelper/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=242

Part V

Building Codes

Chapter 13

Web Content Accessibility
Guidelines 1.0

Up to this point, I have only made passing remarks about web acces-

sibility guidelines. I think they are valuable tools but shouldn’t dom-

inate our thinking on the topic. In this part we’re going to look more

closely at the guidelines. We need to do this because many developers,

managers, and clients are going to want to talk with us in terms of

guidelines. When someone tells you “Guideline X says we need to do

Y because of Z”, you need to know whether that is true or not as well

as how to respond. This chapter as well as Chapter 14, Section 508,

on page 261 and Chapter 15, Web Content Accessibility Guidelines 2.0,

on page 270 present walkthroughs of major guidelines. I’ll break down

what they’re trying to tell us as well as point out where in the book we

cover the concepts. If you have been reading the book in order, most of

this should look familiar by now. If you’ve come here straight away, the

discussion will point you in the right direction.

In the beginning, web content was specialized communication between

scientists and HTML was a simple markup language with minimal design.

Accessibility of content was easy—there were no images to create alter-

nate text for and no tables to be abused for layout effects. This also

meant that there were a lot of things that couldn’t be said with web

content. As the web grew in scope and popularity, users wanted more

functionality for including media, expressing complex information and

customizing look and feel. Because solutions weren’t always provided

quickly, developers found workarounds like table-based layout to get

the job done. In addition, competition between browser manufactur-

CHECKPOINT PRIORITIES 245

ers gave rise to nonstandard features that harmed interoperability and

accessibility suffered.

In 1997, W3C launched the Web Accessibility Initiative (WAI) with the

goal of creating guidelines and tools to make the web accessible for

people with disabilities. Two years later, the Web Content Accessibil-

ity Guidelines 1.0 (WCAG 1.0)1 were made a W3C recommendation.

WCAG 1.0 introduces a set of clear guidelines for the production of

accessible web content, prioritized by importance and categorized as a

series of checkpoints under each guideline. WCAG 1.0 is still the docu-

ment most often referred to when discussing general principles of web

accessibility.

13.1 Checkpoint Priorities

Each of the checkpoints in WCAG 1.0 is assigned a priority level. The

priority level designates how critical the checkpoint is and signifies how

comprehensively the guideline has been addressed. The level of confor-

mance to WCAG 1.0 is determined by the priority levels of the check-

points addressed. The priority levels are:

• Level 1 (Must Be Satisfied): These are the checkpoints that must be

done to meet a marginal level of accessibility. Providing alternate

text equivalents and ensuring that content is readable with scripts

and stylesheets disabled are examples of level 1 priorities.

• Level 2 (Should Be Satisfied): Level 2 priorities are a mixed bag.

Some of them are things that I would call essential. Others should

be done as part of being a good host to your visitors or as good

content development principles.

• Level 3 (May Be Addressed): This is the priority where most web

developers step down. Level three priorities are usually actions

that qualify as going above and beyond for your users. Some, how-

ever, address problems that existed when WCAG 1.0 was written

that have gone away. Others still have a feel of “we think this tech-

nology might happen soon, so let’s try to address it”. Of course,

divining the future is a difficult art, and some of these technolo-

gies never came to pass.

1. http://www.w3.org/TR/WCAG10/

http://www.w3.org/TR/WCAG10/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=245

CONFORMANCE 246

Claims to Conformance

It’s good to be proud of a job well done but I’m not a fan
of conformance and validation banners on sites. They both
strike me as being the same realm as the old “Best Viewed
in...” browser advertisement banners. If you want to make an
accessibility statement somewhere in your “About This Site /
Colophon” page, that’s fine. In the interest of keeping your
content neat and clean, however, lose the little banners—the
users who need the accessibility functionality will notice that
you’ve done a good job without them.

13.2 Conformance

We don’t talk about conformance to WCAG 1.0 in terms of which check-

points were satisfied for which guidelines directly. Instead, we look at

three conformance levels based on the priority levels of the checkpoints.

There are three levels of conformance:

• A (All Priority 1 Checkpoints Satisfied): Ok, so you’re accessible—

marginally. You’ve just inched over the line where you can say

that you’re accessible under WCAG 1.0, but many of your users

with disabilities will still have a hard time with your pages. Is that

really all you want to do? Sounds more like a ‘C’ to me.

• Double-A (All Priority 1 and 2 Checkpoints Satisfied): This is the

sweet spot for WCAG 1.0 compliance. At this level, you’re doing

the things that are most likely to improve the experience of users

visiting your site.

• Triple-A (All Priority 1, 2, and 3 Checkpoints Satisfied): I would like

to say that this is a good ideal but, as we’ll see later in the chapter,

some of the level 3 checkpoints relate to technologies that never

quite took off or are otherwise not viable. I suggest that, rather

than putting a lot of effort into attaining Triple-A compliance, that

your time be spent working beyond the guidelines to create usabil-

ity and accessibility.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=246

THE 14 GUIDELINES OF WCAG 1.0 247

13.3 The 14 Guidelines of WCAG 1.0

In this section, we’re going to look at the checkpoints one by one. I’ll

give a little bit of background on what they actually mean and point

you to the places in this book that explain how to design content that

satisfies the checkpoint where appropriate. The goal of this is not to

start thinking about accessibility in terms of the guidelines but rather

to give you the information that you need to understand what is being

said by others who are guidelines focused.

1: Provide equivalent alternatives to auditory and visual content.

Providing multiple paths to access information is an essential theme to

web accessibility. Look at Multiple Access Paths, on page 53 for more

information.

• 1.1 [Priority 1] Provide a text equivalent for every non-text element

(e.g., via “alt”, “longdesc”, or in element content). This includes:

images, graphical representations of text (including symbols), image

map regions, animations (e.g., animated GIFs), applets and pro-

grammatic objects, ascii art, frames, scripts, images used as list

bullets, spacers, graphical buttons, sounds (played with or without

user interaction), stand-alone audio files, audio tracks of video, and

video.

This is the big one. At many points throughout this book, we

return to the topic of creating alternative text representations.

Particular focus on this topic is found in To Put it Another Way,

on page 162; More Than alt= Can Say, on page 167; and Words

That Go [Creak] in the Night, on page 185.

• 1.2 [Priority 1] Provide redundant text links for each active region of

a server-side image map.

The short story is that there really isn’t a good reason at this point

in time to be using server-side image maps at all. If you do, you’ll

need to have a list of links somewhere else in the page as an alter-

nate.

• 1.3 [Priority 1] Until user agents can automatically read aloud the

text equivalent of a visual track, provide an auditory description of

the important information of the visual track of a multimedia pre-

sentation.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=247

THE 14 GUIDELINES OF WCAG 1.0 248

“Until user agents...” hasn’t happened yet. You’ll still need audi-

tory descriptions of the visual information. See Describe it to Me,

on page 190

• 1.4 [Priority 1] For any time-based multimedia presentation (e.g., a

movie or animation), synchronize equivalent alternatives (e.g., cap-

tions or auditory descriptions of the visual track) with the presenta-

tion.

Captions and Auditory descriptions are our standard accessibility

tool when dealing with video information. Chapter 9, Video Killed

the Something-Something, on page 179 is dedicated to issues of

accessible video.

• 1.5 [Priority 3] Until user agents render text equivalents for client-

side image map links, provide redundant text links for each active

region of a client-side image map.

User agents seem to have gotten it right at this point. Adding alt=

attributes to the <area> tag should do the trick. To Put it Another

Way, on page 162 gives advice on writing appropriate alternative

text. If you’re concerned about users with older technologies that

might still get client-side image maps wrong, you can add an alter-

nate set of links as well.

2: Don’t rely on color alone

None of our web content should rely on any single sensory mode.

• 2.1 [Priority 1] Ensure that all information conveyed with color is

also available without color, for example from context or markup.

Whenever something is visually keyed, it should have an alterna-

tive representation that expresses the same intent. This includes

alt= attributes for images and stylesheet designs that don’t obscure

the difference between text and links.

• 2.2 [Priority 2 for images, 3 for text] Ensure that foreground and

background color combinations provide sufficient contrast when viewed

by someone having color deficits or when viewed on a black and

white screen.

The priority differentiation here only makes sense because, when

stylesheets are used appropriately, text color can be customized

by the user. Really, both of these should be at least priority 2.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=248

THE 14 GUIDELINES OF WCAG 1.0 249

Testing contrast for accessibility is discussed in Thinking in Terms

of Black and White, on page 157

3: Use markup and style sheets and do so properly.

Many assistive technologies rely on the machine readability of your con-

tent. By using standard HTML and CSS, you allow these technologies

to work better for their users.

• 3.1 [Priority 2] When an appropriate markup language exists, use

markup rather than images to convey information.

I’m not sold on this one. Some developers use this to recommend

SVG markup over other image formats for accessible development.

In reality, SVG isn’t any better supported by assistive technolo-

gies, so you’re still falling back to alternative text.

• 3.2 [Priority 2] Create documents that validate to published formal

grammars.

Using undocumented or browser-specific behaviors can make a

page unreadable by assistive technologies. At all times, you will

want to verify that your markup follows standard DTDs. Validation

tools for HTML, CSS, and RSS are mentioned in Building a Testing

Toolbox, on page 69.

• 3.3 [Priority 2] Use style sheets to control layout and presentation.

We want to separate content and presentation to ensure that our

pages are structured in a way that makes them understood for

people who need assistive technologies to process the page for

them or need to disable our stylesheet. Basics of CSS stylesheets

are covered in Styled To The Nines, on page 101.

• 3.4 [Priority 2] Use relative rather than absolute units in markup

language attribute values and style sheet property values.

This one is a little obscure on first glance. The reason that we

want to use relative units like em or percentages is that absolute

units like px don’t change if the font is scaled by the user. By using

relative units, spacing on the page can change appropriately when

the font scales.

• 3.5 [Priority 2] Use header elements to convey document structure

and use them according to specification.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=249

THE 14 GUIDELINES OF WCAG 1.0 250

Header tags (<h1>, <h2>, etc) should only be used to mark the title

of a section of content. By “according to specification”, WAI means

that heading numbers shouldn’t be skipped (1 or 2 always follow

1, 2 or 3 always follow 2). Whenever the next heading is a lower

number (1 after 2, for example), it should mean that the section

has concluded and the next is beginning.

• 3.6 [Priority 2] Mark up lists and list items properly.

List items should be properly nested and never used to achieve a

layout effect. The first is easily testable with HTML validation. The

second is a direct result of separating presentation from content.

• 3.7 [Priority 2] Mark up quotations. Do not use quotation markup for

formatting effects such as indentation.

This is clearly WAI’s response to the (in)famous use of <blockquote>

as the universal indentation tool. Quotation tags like <q>, <block-

quote>, and <cite> should only be used to add semantic informa-

tion about cited material.

4: Clarify natural language usage.

The web is international, so we need to provide information for assistive

technologies to determine how a page should be processed.

• 4.1 [Priority 1] Clearly identify changes in the natural language of a

document’s text and any text equivalents (e.g., captions).

To allow any screen reader that wishes to implement multiple lan-

guage support or spell out unknown foreign words, it is useful to

signal that the language used in the document has changed.

• 4.2 [Priority 3] Specify the expansion of each abbreviation or acronym

in a document where it first occurs.

This is important for cognitively impaired users, but useful for

all readers of your content. Abbreviation and acronym expansions

also provide information that screen readers could use for proper

output. Any new terminology, including abbreviations, that are

unusual should be introduced in the text or placed into an easily

searchable page glossary.

• 4.3 [Priority 3] Identify the primary natural language of a document.

Again, this checkpoint is of greatest use to a screen reader that

attempts to process multiple languages.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=250

THE 14 GUIDELINES OF WCAG 1.0 251

5: Create tables that transform gracefully.

Tables are a major accessibility problem for many web sites. While this

is largely a result of using tables for layout, complex tabular informa-

tion requires extra information to be added for navigation. Chapter 6,

Round Tables, on page 110 is an in depth discussion of table accessi-

bility.

• 5.1 [Priority 1] For data tables, identify row and column headers.

Tables need headings to express their content. Setting The Table,

on page 111 describes adding descriptive information to tables.

• 5.2 [Priority 1] For data tables that have two or more logical levels

of row or column headers, use markup to associate data cells and

header cells.

For more complex tables, we can define relationship attributes for

table cells that clarify the organization of the table. You can find

information on these attributes in Ah, <table>, I Hardly Knew Ye!,

on page 115.

• 5.3 [Priority 2] Do not use tables for layout unless the table makes

sense when linearized. Otherwise, if the table does not make sense,

provide an alternative equivalent (which may be a linearized ver-

sion).

Let’s just revise this to “Do not use tables for layout”. Seriously.

CSS is not new technology anymore and hasn’t been for some

time. If you decide to add a layout table anyway, at least check

out Layout And Other Bad Table Manners, on page 122 to find out

how to do it without completely trashing your site’s accessibility.

• 5.4 [Priority 2] If a table is used for layout, do not use any structural

markup for the purpose of visual formatting.

See checkpoint 5.3 above. If you do choose to create a layout table,

you get to use <table>, <tr>, and <td>. That’s it—none of the other

table related tags.

• 5.5 [Priority 3] Provide summaries for tables.

A brief description of the data contained in a table should be pro-

vided to the user. This is done either with surrounding text narra-

tive, or with the summary= attribute.

• 5.6 [Priority 3] Provide abbreviations for header labels.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=251

THE 14 GUIDELINES OF WCAG 1.0 252

Because header labels may be repeated frequently by screen read-

ers, it is useful to provide abbreviated versions of the header with

the abbr= attribute.

6: Ensure that pages featuring new technologies transform

gracefully.

This goes back to our one valid assumption: our users are capable of

sending and receiving text information. If our images, stylesheets, and

scripts go away, the content still needs to be usable.

• 6.1 [Priority 1] Organize documents so they may be read without

style sheets. For example, when an HTML document is rendered

without associated style sheets, it must still be possible to read the

document.

As mentioned in Getting Your Hands Dirty, on page 76, accessi-

bility testing should always include checking that the page makes

sense and is usable with stylesheets turned off.

• 6.2 [Priority 1] Ensure that equivalents for dynamic content are updated

when the dynamic content changes.

Remember that multiple access paths are only useful if they repre-

sent the same information. If anything changes in one, the others

need to be updated as well.

• 6.3 [Priority 1] Ensure that pages are usable when scripts, applets,

or other programmatic objects are turned off or not supported. If

this is not possible, provide equivalent information on an alternative

accessible page.

My recommendation is to do everything in your power to make this

possible. Alternative pages are another way of Writing Everything

Twice. Take a look at Don’t Get WET!, on page 57 to see why you

don’t want to do this and Unassuming Scripts, on page 222 to learn

how to make your scripts step out of the way.

• 6.4 [Priority 2] For scripts and applets, ensure that event handlers

are input device-independent.

True input device independence isn’t possible unless you build

pages that don’t take input from users. Again, we look at the

assumption that our users can send text to the browser. This

doesn’t mean that we can’t use pointer based events at all. In fact

we should allow pointer interaction for mobility impaired users

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=252

THE 14 GUIDELINES OF WCAG 1.0 253

among others. See Linking It All Together, on page 98 for more

information on browser events and which ones pose accessibility

problems.

• 6.5 [Priority 2] Ensure that dynamic content is accessible or provide

an alternative presentation or page.

Make sure that the “alternative presentation or page” provides the

same experience as the original if you go that route. Alternative

pages are particularly prone to the WET Dilemma. It is far better

to build a single page with multiple representations as needed.

7: Ensure user control of time-sensitive content changes.

Depending on the type of assistive technologies your users have, they

may not be able to go through your page at the rate you would predict

that they would. In general, unless there is a compelling reason to do

so, we don’t want to take away control of the browser from the user.

Look at It’s Their Web—We’re Just Building In It, on page 131 for more.

• 7.1 [Priority 1] Until user agents allow users to control flickering,

avoid causing the screen to flicker.

• 7.2 [Priority 2] Until user agents allow users to control blinking,

avoid causing content to blink (i.e., change presentation at a reg-

ular rate, such as turning on and off).

User agents still don’t allow users to control flickering and blink-

ing and I’m not entirely sure how they could as a general rule.

See It’s Not Polite to Flash the Audience, on page 181 for more on

preventing flicker. As far as the <blink> tag, just pretend it never

existed—it never officially did.

• 7.3 [Priority 2] Until user agents allow users to freeze moving con-

tent, avoid movement in pages.

This one, like 7.1 and 7.2, have important consequences related to

photosensitive epilepsy. In addition, however, audio elements that

auto play can cause problems with cross talk for users of screen

readers. It is better to load multimedia elements in a stopped state

and let the user decide when they want to interact with it. Never

use audio or video content that cannot be stopped!

• 7.4 [Priority 2] Until user agents provide the ability to stop the refresh,

do not create periodically auto-refreshing pages.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=253

THE 14 GUIDELINES OF WCAG 1.0 254

Better yet, don’t cause periodic refresh without the user specifi-

cally requesting it. Changing content while it’s being read is dis-

orienting and negatively impacts comprehension.

• 7.5 [Priority 2] Until user agents provide the ability to stop auto-

redirect, do not use markup to redirect pages automatically. Instead,

configure the server to perform redirects.

If you’re redirecting the user, don’t stop and give them a couple of

seconds to read that you’re redirecting them. Either transparently

take them to the new location or give them a link and let them

move on to the new location on their own.

8: Ensure direct accessibility of embedded user interfaces.

• 8.1 [Priority 1 if functionality is important and not presented else-

where, otherwise Priority 2] Make programmatic elements such as

scripts and applets directly accessible or compatible with assistive

technologies

Any embedded applications need to be made accessible for the

page as a whole to be accessible. In Chapter 12, Embedded Appli-

cations: Rinse and Repeat, on page 232, we see that the same

principles and techniques that we use for web accessibility gen-

erally apply to these technologies as well. When you use media

formats that use plug-in software for display, there needs to be

at least one implementation available that provides an accessible

interface (and if the technology is very new, you should let your

users know where to get that implementation).

9: Design for device-independence.

“Device independence” simply means providing more than one chan-

nel through with our users can interact with our content. We always

need to pay attention to two classes of input device: the keyboard and

the pointer. Assistive technologies always provide some equivalent to

keyboard input and a version of pointer input where possible.

• 9.1 [Priority 1] Provide client-side image maps instead of server-side

image maps except where the regions cannot be defined with an

available geometric shape.

Server-side image maps don’t provide links that can be used with

a keyboard interface or screen reader. The “where the regions can-

not be defined” bit is moot. Any shaped region that cannot be rea-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=254

THE 14 GUIDELINES OF WCAG 1.0 255

sonably defined with <area shape="poly"> is probably too visually

and navigationally complex for even non-disabled users

• 9.2 [Priority 2] Ensure that any element that has its own interface

can be operated in a device-independent manner.

This is really a consequence of checkpoint 8.1. See Chapter 12,

Embedded Applications: Rinse and Repeat, on page 232 for more

on this.

• 9.3 [Priority 2] For scripts, specify logical event handlers rather than

device-dependent event handlers.

This is a matter of giving preference to event handlers that make

no assumptions about input devices like onfocus and onselect rather

than those that do like onclick and onkeypress.

• 9.4 [Priority 3] Create a logical tab order through links, form controls,

and objects.

• 9.5 [Priority 3] Provide keyboard shortcuts to important links (includ-

ing those in client-side image maps), form controls, and groups of

form controls.

These are references to the tabindex= and accesskey= attributes.

As seen in Tickling The Keys, on page 142, I am not convinced

that these are the best solutions. I certainly think that logical tab

ordering is important, but that it should be done as a consequence

of content ordering. Access keys are a nice idea that poses too

many potential problems for the end user.

10: Use interim solutions.

Many of the interim solutions given in WCAG 1.0 are still useful for

other reasons, but sometimes the solution causes a different problem.

• 10.1 [Priority 2] Until user agents allow users to turn off spawned

windows, do not cause pop-ups or other windows to appear and do

not change the current window without informing the user.

Popup blockers are available now, but it still isn’t a good idea to

take control of the user’s browser without their direct action.

• 10.2 [Priority 2] Until user agents support explicit associations between

labels and form controls, for all form controls with implicitly associ-

ated labels, ensure that the label is properly positioned.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=255

THE 14 GUIDELINES OF WCAG 1.0 256

Labels can be associated with form controls at this point, but

there are still concerns about the positioning of the label relative

to the control. See Getting <form>al, on page 135 for information

on labeling form elements.

• 10.3 [Priority 3] Until user agents (including assistive technologies)

render side-by-side text correctly, provide a linear text alternative

(on the current page or some other) for all tables that lay out text in

parallel, word-wrapped columns.

Table layout: Just say no.

• 10.4 [Priority 3] Until user agents handle empty controls correctly,

include default, place-holding characters in edit boxes and text areas.

The problem of empty controls has been addressed for a long

time now. Default placeholders are problematic in their own right

because they look to some assistive technologies like fields that

have already been filled in.

• 10.5 [Priority 3] Until user agents (including assistive technologies)

render adjacent links distinctly, include non-link, printable charac-

ters (surrounded by spaces) between adjacent links.

This is a debatable issue. Neighboring links should be discernible

by the user, but that can be done in multiple ways. You can place

characters between links as suggested or, if the context is clear

you may not need to. The thing that you should avoid is sentences

where each word is a different link—it isn’t clear that there are

multiple links.

11: Use W3C technologies.

With all due respect to W3C, this is an incredibly pretentious guideline.

W3C has had a generally good track record for producing technologies

with accessibility support, but they are certainly not the only provider

out there. A more appropriate guideline is: “Use accessible technologies

from stable providers with a good accessibility reputation”.

• 11.1 [Priority 2] Use W3C technologies when they are available and

appropriate for a task and use the latest versions when supported.

Same thing as Guideline 11 with an appeal to use the latest sup-

ported version. As long as the latest supported provides the same

or better accessibility support, I would agree.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=256

THE 14 GUIDELINES OF WCAG 1.0 257

• 11.2 [Priority 2] Avoid deprecated features of W3C technologies.

This one has merit. Many deprecated features were deprecated

because they broke separation of content and presentation. See

Minding Your <p>’s and <q>’s, on page 94 for a list of deprecated

tags in HTML and how they should be handled.

• 11.3 [Priority 3] Provide information so that users may receive doc-

uments according to their preferences (e.g., language, content type,

etc.)

This comes back to multiple access paths. The checkpoint also

brings up language preference. I think that translations are fan-

tastic, but I don’t consider them to be an issue of accessibility for

users with disabilities.

• 11.4 [Priority 1] If, after best efforts, you cannot create an accessible

page, provide a link to an alternative page that uses W3C technolo-

gies, is accessible, has equivalent information (or functionality), and

is updated as often as the inaccessible (original) page.

I’m sorry but, if your best efforts lead to an inaccessible page, you

need to step back in your design process to figure out what went

wrong. Punting by deliberately trying to bandage the problem is

the wrong answer. See Don’t Get WET!, on page 57.

12: Provide context and orientation information.

You should write content that is well structured and semantic. This

includes properly nesting content and making it clear how different

parts of the content are related. In Say It With Meaning, on page 83, we

cover issues of organizing our content in a semantic way.

• 12.1 [Priority 1] Title each frame to facilitate frame identification and

navigation.

• 12.2 [Priority 2] Describe the purpose of frames and how frames

relate to each other if it is not obvious by frame titles alone.

These two checkpoints specifically deal with organizing frames. I

usually deal with it by not using them. If you need to use frames,

make sure to give them titles and appropriate <noframes> alter-

natives. Just keep in mind that some alternative browsers don’t

handle them well at all.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=257

THE 14 GUIDELINES OF WCAG 1.0 258

• 12.3 [Priority 2] Divide large blocks of information into more man-

ageable groups where natural and appropriate.

This checkpoint is pretty much common sense. Long documents

should use well structured heading for logical section with added

navigation and you should add hierarchy to long lists of links or

form options.

• 12.4 [Priority 2] Associate labels explicitly with their controls.

That is, use the <label> tag and tie it to form elements rather than

just putting text next to them.

13: Provide clear navigation mechanisms.

Good content is irrelevant if our users can’t make their way through

it. In Chapter 7, The Accessible Interface, on page 130, we cover many

issues of interface including navigation.

• 13.1 [Priority 2] Clearly identify the target of each link.

This one of the most self explanatory checkpoints in WCAG 1.0:

Don’t use links with titles like “click here”.

• 13.2 [Priority 2] Provide metadata to add semantic information to

pages and sites.

I agree that semantic information gives assistive technologies more

to work with, but I don’t know of an example where the <meta>

and <link> tags mentioned in connection with this checkpoint have

ever been used to successfully do this. I prefer to add semantics

through tagging rather than with metadata.

• 13.3 [Priority 2] Provide information about the general layout of a

site (e.g., a site map or table of contents).

I’m not specifically against site maps and tables of contents, but

they do raise a red flag for me. The first thing you should ask

before adding site maps is what is wrong with the standard navi-

gation that makes one necessary.

• 13.4 [Priority 2] Use navigation mechanisms in a consistent manner.

Does this need to be said? Has inconsistent navigation ever seemed

like a good idea? The gist is that when you place navigation in the

same place, it is easier to users to find or skip it.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=258

THE 14 GUIDELINES OF WCAG 1.0 259

• 13.5 [Priority 3] Provide navigation bars to highlight and give access

to the navigation mechanism.

I prefer “make your navigation system clear and understandable”.

Often a navigation bar is the best solution, but it isn’t the only

way to go.’

• 13.6 [Priority 3] Group related links, identify the group (for user

agents), and, until user agents do so, provide a way to bypass the

group.

The first two parts of this are a matter of organization. When a

large number of links appear in series, they should be sorted and

placed in categories for easier navigation. User agents do not pro-

vide a convenient way to skip past groups of links, but it is simple

to create a link to skip to a point just after the group.

• 13.7 [Priority 3] If search functions are provided, enable different

types of searches for different skill levels and preferences.

This isn’t really a matter of accessibility—it’s one of general usabil-

ity. Your search systems should be easily usable by all of your

users.

• 13.8 [Priority 3] Place distinguishing information at the beginning of

headings, paragraphs, lists, etc.

Some users navigate by skipping through headings. I don’t know

that I agree that it is our responsibility as content designers to

help our users read information out of context. What we should

do, however is eliminate redundant prefix text in our headings. For

example, don’t create headings like “My Really Interesting Book’s

Title, Chapter 3: The Plot Thickens, Section N” for each section.

• 13.9 [Priority 3] Provide information about document collections (i.e.,

documents comprising multiple pages).

This is another checkpoint that is about general usability more

than accessibility. It isn’t a checkpoint to worry about because

concept of bundled documents that use <link> to express relation-

ships was never implemented in the way described by W3C.

• 13.10 [Priority 3] Provide a means to skip over multi-line ASCII art.

I don’t know why this is priority 3. Screen readers don’t play well

with ASCII art and a link to skip it is easy to add. Call it priority

1.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=259

THE 14 GUIDELINES OF WCAG 1.0 260

14: Ensure that documents are clear and simple.

We need to communicate our content clearly, particularly for our users

with cognitive disabilities. By creating easy to follow content, we add

value for all of our users.

• 14.1 [Priority 1] Use the clearest and simplest language appropriate

for a site’s content.

Don’t try to impress your audience with your vocabulary—try to

impress them with your content. Staying clear and simple is the

focus of Keeping It Simple is Smart, on page 89

• 14.2 [Priority 3] Supplement text with graphic or auditory presenta-

tions where they will facilitate comprehension of the page.

When communicating complex ideas, people who can use images

may benefit from diagrams or charts that clarify the content. These

shouldn’t be used as an excuse for writing overly complex narra-

tives, however.’

• 14.3 [Priority 3] Create a style of presentation that is consistent

across pages.

As always, consistency is an important usability factor. In terms

of accessibility it means that navigation and understanding are

made easier for the user.

That completes our walkthrough of WCAG 1.0. There are many dis-

cussions available online about these guidelines and their implementa-

tion. If you would like to see W3C’s recommendations for satisfying the

checkpoints, WAI has produced documents outlining general,2 HTML,3

and CSS4 techniques. WCAG 1.0 is the current standard for accessi-

ble web development, so it is important to understand. You’ll also find

many local and national government standards on web accessibility to

be based on or compatible with WCAG 1.0. In the United States, for

example, you will find parallels between these guidelines and Section

508.

2. http://www.w3.org/TR/WCAG10-CORE-TECHS/

3. http://www.w3.org/TR/WCAG10-HTML-TECHS/

4. http://www.w3.org/TR/WCAG10-CSS-TECHS/

http://www.w3.org/TR/WCAG10-CORE-TECHS/
http://www.w3.org/TR/WCAG10-HTML-TECHS/
http://www.w3.org/TR/WCAG10-CSS-TECHS/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=260

Chapter 14

Section 508
The United States federal government has mandates that prevent it

from purchasing inaccessible web content. These mandates were added

to Section 508 of the Rehabilitation Act of 1973 in 1998. Section 508

is important both at the federal level and in many US states that have

based their own policies on Section 508. How do you know if your work

falls under section 508 mandates? Section 508 applies to the develop-

ment, procurement, maintenance and use of electronic and information

technologies. Services and information provided by the federal govern-

ment must be made accessible to federal employees and to the public

at large. That’s fairly comprehensive.

Section 508 does not apply directly to non federal web sites, though the

Section 508 criteria could be used as a baseline for accommodation in

an Americans with Disabilities Act suit. This is relatively unlikely, but it

means that the mandates of Section 508 could be potentially applied to

private businesses. If you are a non-federal developer working under a

federal contract, however, Section 508 applies to your work. The notion

of operating under contract has been interpreted very widely, including

direct contracts, grants, acceptance of federal loans, and more. It is

safe to assume that if your project is in any way funded with money

that originated at the federal level, you should be aware of Section 508.

As web developers, three sections of Section 508 apply to the work

that we do under federal funding, though we are often only told about

Section 1194.22. Let’s walk through sections 1194.21, 22, and 24 to

see how we can meet these mandates.

SOFTWARE APPLICATIONS AND OPERATING SYSTEMS (§1194.21) 262

Undue Burden

The notion of undue burden gets brought up along with Sec-
tion 508. Undue burden is the exception provided when the
implementation of accessibility would be financially or techno-
logically impossible to achieve. It is not usually viable to claim
undue burden for web accessibility—usually physically engi-
neered objects are more eligible to make this claim. Claiming
undue burden is a risky line to walk and is the sort of risk that is
not in your interest to take without expert advice. If you find an
accessibility matter that seems to impose an undue burden, it is
important to pass it up the chain to legal counsel or an accessi-
bility coordinator. In short, never assume undue burden on your
own.

14.1 Software Applications and Operating Systems (§1194.21)

You won’t see §1194.21 brought up often in terms of web accessibility.

Many people only believe it to apply to standalone desktop applica-

tions. This is beginning to change, however. If the content you produce

is best described as a “web application”, you should be keeping an eye

on §1194.21. When Section 508 was written, there was a clear distinc-

tion between web and desktop applications, but this distinction has

become unclear with the rise of rich internet applications. Some of the

mandates of this section are taken care of for us by the web browser,

but we should always be aware of when this is or is not the case.

(a) When software is designed to run on a system that has a keyboard,

product functions shall be executable from a keyboard where the function

itself or the result of performing a function can be discerned textually.

Here we return to the one assumption of web accessibility: Our users

can be expected to have the ability to send and receive text based con-

tent.

(b) Applications shall not disrupt or disable activated features of other

products that are identified as accessibility features, where those fea-

tures are developed and documented according to industry standards.

Applications also shall not disrupt or disable activated features of any

operating system that are identified as accessibility features where the

application programming interface for those accessibility features has

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=262

SOFTWARE APPLICATIONS AND OPERATING SYSTEMS (§1194.21) 263

been documented by the manufacturer of the operating system and is

available to the product developer.

In short, don’t take control of the user’s system. You should avoid auto-

matically playing audio and video elements to prevent crosstalk with a

screen reader and, as seen in Tickling The Keys, on page 142, access

keys should be handled with caution if you use them so you don’t inad-

vertently override important keyboard behaviors for the user.

(c) A well-defined on-screen indication of the current focus shall be pro-

vided that moves among interactive interface elements as the input focus

changes. The focus shall be programmatically exposed so that assistive

technology can track focus and focus changes.

This functionality is generally provided at the browser or system level.

(d) Sufficient information about a user interface element including the

identity, operation and state of the element shall be available to assistive

technology. When an image represents a program element, the informa-

tion conveyed by the image must also be available in text.

We need to assign labels to form elements and create alternate text. The

browser usually handles reporting the state of an element (like checked

or unchecked)..

(e) When bitmap images are used to identify controls, status indicators,

or other programmatic elements, the meaning assigned to those images

shall be consistent throughout an application’s performance.

Vector images aren’t common yet, but this applies to them as well—

never use a graphic element to mean more than one thing.

(f) Textual information shall be provided through operating system func-

tions for displaying text. The minimum information that shall be made

available is text content, text input caret location, and text attributes.

The browser, system, and installed assistive technology take care of

presenting alternative text to the user so long as we have added it cor-

rectly.

(g) Applications shall not override user selected contrast and color selec-

tions and other individual display attributes.

With web applications, we don’t have a way to know the user’s display

attributes but, when we create our presentation with stylesheets and

test that they degrade gracefully, we know that our users can use their

own custom stylesheet if they choose.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=263

WEB-BASED INTRANET AND INTERNET INFORMATION AND APPLICATIONS (§1194.22) 264

(h) When animation is displayed, the information shall be displayable in

at least one non-animated presentation mode at the option of the user.

Animated elements should be accompanied with a transcript detailing

the information presented in the animation.

(i) Color coding shall not be used as the only means of conveying infor-

mation, indicating an action, prompting a response, or distinguishing a

visual element.

See Stoplights and Poison Apples, on page 151 for information and

examples on this topic.

(j) When a product permits a user to adjust color and contrast settings, a

variety of color selections capable of producing a range of contrast levels

shall be provided.

If you provide multiple color schemes that are user selectable, some

of them should be tailored to the needs of color perception or contrast

impaired users.

(k) Software shall not use flashing or blinking text, objects, or other ele-

ments having a flash or blink frequency greater than 2 Hz and lower

than 55 Hz.

We need to test all moving images against the flash threshold for pho-

tosensitivity. See It’s Not Polite to Flash the Audience, on page 181 for

more information.

(l) When electronic forms are used, the form shall allow people using

assistive technology to access the information, field elements, and func-

tionality required for completion and submission of the form, including all

directions and cues.

This is a higher level accessibility mandate. Forms must be provided

in an accessible format. Specifically, scanned images of forms are not

acceptable we separately provide their information in an accessible for-

mat. See Getting <form>al, on page 135 for more on accessible forms.

14.2 Web-Based Intranet and Internet Information and

Applications (§1194.22)

This section is the most important for web accessibility. If you have

already read Chapter 13, Web Content Accessibility Guidelines 1.0, on

page 244 and are familiar with WCAG 1.0, most of these paragraphs

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=264

WEB-BASED INTRANET AND INTERNET INFORMATION AND APPLICATIONS (§1194.22) 265

will be familiar because they are equivalent to WCAG 1.0 checkpoints.

I will give pointers to the appropriate checkpoints as we go through

these.

(a) A text equivalent for every non-text element shall be provided (e.g., via

“alt”, “longdesc”, or in element content).

As always, alternative text is key to web accessibility. This paragraph

is parallel to WCAG 1.0 checkpoint 1.1. Alternative text is discussed in

depth in To Put it Another Way, on page 162 and More Than alt= Can

Say, on page 167.

(b) Equivalent alternatives for any multimedia presentation shall be syn-

chronized with the presentation.

Alternatives aren’t equivalent if they don’t occur in parallel to the default

information. WCAG 1.0 checkpoint 1.4 is parallel to this paragraph and

On the Cutting Room Floor, on page 194 discusses formats for synchro-

nizing your alternatives.

(c) Web pages shall be designed so that all information conveyed with

color is also available without color, for example from context or markup.

As a sensory modality, coding only with color is unacceptable for acces-

sibility. WCAG 1.0 checkpoint 2.1 also makes this assertion and an

example of how to eliminate color coding is available in Stoplights and

Poison Apples, on page 151.

(d) Documents shall be organized so they are readable without requiring

an associated style sheet.

Docuuments should be written in natural reading order whenever pos-

sible, as described in Say It With Meaning, on page 83. This is equiva-

lent to WCAG 1.0 checkpoint 6.1.

(e) Redundant text links shall be provided for each active region of a

server-side image map.

I prefer “Server-side image maps shall not be used.” See the paragraph

(f) below as well as WCAG 1.0 checkpoint 1.2.

(f) Client-side image maps shall be provided instead of server-side image

maps except where the regions cannot be defined with an available geo-

metric shape.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=265

WEB-BASED INTRANET AND INTERNET INFORMATION AND APPLICATIONS (§1194.22) 266

As I stated in my discussion of WCAG 1.0 checkpoint 9.1, the sibling to

this paragraph, the presence of <area shape="poly"> means that there is

no viable reason to require the use of server-side image maps.

(g) Row and column headers shall be identified for data tables.

(h) Markup shall be used to associate data cells and header cells for data

tables that have two or more logical levels of row or column headers.

Paragraphs (g) and (h) are equivalent to WCAG 1.0 checkpoint 5.1 and

5.2 as well as the subject of Chapter 6, Round Tables, on page 110.

(i) Frames shall be titled with text that facilitates frame identification and

navigation.

I really prefer to avoid frames whenever I can because they are not well

supported in many alternative browsers. WCAG 1.0 checkpoint 12.1

makes a similar appeal but reasons for avoiding frames entirely are

discussed in Minding Your <p>’s and <q>’s, on page 94.

(j) Pages shall be designed to avoid causing the screen to flicker with a

frequency greater than 2 Hz and lower than 55 Hz.

Section 508 gives a more specific mandate for flicker control than WCAG

checkpoints 7.1 and 7.2 by specifying a flicker frequency. In It’s Not

Polite to Flash the Audience, on page 181, we borrow the flash threshold

definition from WCAG 2.0 because it provides a compatible definition

and tools are available to measure it for us.

(k) A text-only page, with equivalent information or functionality, shall be

provided to make a web site comply with the provisions of this part, when

compliance cannot be accomplished in any other way. The content of the

text-only page shall be updated whenever the primary page changes.

Like WCAG 1.0 checkpoint 11.4, Section 508 gives us a way out by

Writing Everything Twice. In Don’t Get WET!, on page 57, I recommend

avoiding this at all costs. If your interface can’t be made accessible, it

may be that you’re trying to build the wrong interface.

(l) When pages utilize scripting languages to display content, or to cre-

ate interface elements, the information provided by the script shall be

identified with functional text that can be read by assistive technology.

Our scripts need to fall away and allow the user to access information

when they don’t have scripting available or choose to turn it off. In

Unassuming Scripts, on page 222, we look at how to write scripts that

do this.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=266

VIDEO AND MULTIMEDIA PRODUCTS (§1194.24) 267

(m) When a web page requires that an applet, plug-in or other applica-

tion be present on the client system to interpret page content, the page

must provide a link to a plug-in or applet that complies with §1194.21(a)

through (l).

This is the recursive clause. When we embed other types of documents

and applications into our pages, their interfaces and content need to

be accessible as well. Chapter 12, Embedded Applications: Rinse and

Repeat, on page 232 as well as most of the rest of Part IV are focused

on bringing accessibility to these external elements.

(n) When electronic forms are designed to be completed on-line, the form

shall allow people using assistive technology to access the information,

field elements, and functionality required for completion and submission

of the form, including all directions and cues.

Implementing accessible forms is the focus of Getting <form>al, on

page 135. Forms that are not intended to be filled out online need to

be provided in an accessible format as well, rather than as scanned

images. An important note here is that any related instructions must

also be made accessible—but that isn’t surprising.

(o) A method shall be provided that permits users to skip repetitive navi-

gation links.

This appears so many times in various documents about usability and

accessibility that I am astounded that there is no explicit call to provide

“skip links” from the beginning to the end of groups of links. It’s easy

to do, so just do it.

(p) When a timed response is required, the user shall be alerted and given

sufficient time to indicate more time is required.

This is something that should have been part of WCAG 1.0 Guideline

7: “Ensure user control of time-sensitive content changes”. Unless the

nature of a page requires timed responses, they should be eliminated

entirely. It’s Their Web—We’re Just Building In It, on page 131 discusses

the issue of user control and timing effects.

14.3 Video and Multimedia Products (§1194.24)

This section, like §1194.21 isn’t usually brought up in discussions of

Section 508 and web accessibility. I suspect that this has a lot to do

with people starting to read the first two paragraphs and assuming

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=267

VIDEO AND MULTIMEDIA PRODUCTS (§1194.24) 268

that this is all about television. If your web presence is used to provide

video and multimedia content, however, the last three paragraphs are

important to your adherence to section 508.

(a) All analog television displays 13 inches and larger, and computer

equipment that includes analog television receiver or display circuitry,

shall be equipped with caption decoder circuitry which appropriately

receives, decodes, and displays closed captions from broadcast, cable,

videotape, and DVD signals. As soon as practicable, but not later than

July 1, 2002, widescreen digital television (DTV) displays measuring at

least 7.8 inches vertically, DTV sets with conventional displays measur-

ing at least 13 inches vertically, and stand-alone DTV tuners, whether

or not they are marketed with display screens, and computer equipment

that includes DTV receiver or display circuitry, shall be equipped with

caption decoder circuitry which appropriately receives, decodes, and dis-

plays closed captions from broadcast, cable, videotape, and DVD signals.

(b) Television tuners, including tuner cards for use in computers, shall be

equipped with secondary audio program playback circuitry.

Clearly these first two paragraphs are not directly applicable to us as

web developers, but I thought it better to give them here than leave you

wondering where (a) and (b) went.

(c) All training and informational video and multimedia productions which

support the agency’s mission, regardless of format, that contain speech

or other audio information necessary for the comprehension of the con-

tent, shall be open or closed captioned.

This is very broadly stated. The only video elements exempt from this

paragraph are those of purely decorative function and those that con-

tain no audio to be captioned. See Words That Go [Creak] in the Night,

on page 185 for more on captioning audio content.

(d) All training and informational video and multimedia productions which

support the agency’s mission, regardless of format, that contain visual

information necessary for the comprehension of the content, shall be

audio described.

This is simply the auditory description version of §1194.24 (c). This

book covers auditory description in Describe it to Me, on page 190

(e) Display or presentation of alternate text presentation or audio descrip-

tions shall be user-selectable unless permanent.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=268

VIDEO AND MULTIMEDIA PRODUCTS (§1194.24) 269

I am not particularly an advocate for either exclusively open or closed

production of captions and auditory descriptions. Both have advan-

tages and disadvantages for you and for your end users. Closed pro-

duction refers to captions and auditory descriptions that can be turned

on or off by the user, where open production is mastered onto the video

in a permanent manner. Some of the formats discussed in On the Cut-

ting Room Floor, on page 194 allow closed production and some do not.

It is probably nicer to allow them to be turned on and off, but I am

more concerned that the content is there than I am about how it is

presented.

That completes our look at Section 508. If you have been following

WCAG 1.0 guidelines, there shouldn’t have been many surprises and

everything you need to know in order to meet these mandates is given

at the referenced points in the book.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=269

Chapter 15

Web Content Accessibility
Guidelines 2.0

WCAG 1.0 has been a useful guideline and, as we’ll see in Chapter 16,

Meanwhile, In the Rest of the World..., on page 288, it has been influen-

tial on the development of many other guidelines and regulations per-

taining to web accessibility. WCAG 1.0 has aged, however, and doesn’t

always reflect the current state of web development. Additionally, WCAG

1.0 also takes an approach that is tightly wedded to HTML and there

are many document types other than HTML that we need to think about

when we work in web development. Responding to these issues, the

WAI, rather than issuing an revision to WCAG 1.0, chose to develop an

entirely new set of guidelines that would take all of these things into

account. The new set of guidelines, WCAG 2.0, is intended to be a more

comprehensive general guideline for web accessibility.

The path to WCAG 2.0 has been a long one, however and it has yet

to be finalized. This chapter will look at WCAG 2.0 as it existed in the

May 2007 Working Draft. It seems that some progress has been made

toward finalization but there is no set date for finalization and it is still

very likely that the guidelines will continue to change. An up to date

copy of the guidelines can be found at the WAI’s WCAG 2.0 site.1 At

this point, WCAG 2.0 isn’t something that will concern you on a day to

day basis but you should have some basic familiarity with it. It’s useful

to stay informed about where the WAI wants to take web accessibility

as well as to see some suggestions for issues not covered in WCAG 1.0.

1. http://www.w3.org/TR/WCAG20/

http://www.w3.org/TR/WCAG20/

THE BASICS OF WCAG 2.0 271

15.1 The Basics of WCAG 2.0

WCAG 2.0 is a significantly more complex set of guidelines than WCAG

1.0 and the related documents attest to this. In addition to the main

guidelines document, there are extensive Techniques2 and Understand-

ing3 documents that describe the intent and meaning of the guidelines

in depth. To assist the casual user in finding their way through these

large documents, there is also a Quick Reference4 that allows you to

narrow down appropriate techniques and recommendations based on

the technologies you use and the level of conformance you wish to

attain.

Conformance has also changed a bit in WCAG 2.0. The three levels of

conformance (A, AA, and AAA) are similar to WCAG 1.0 but some useful

clarifications have been made:

• Only known accessible technologies can be used to meet success

criteria.

• Non accessible technologies can’t prevent accessible use of the

page by preventing keyboard access, generating flicker, or other-

wise interfering with content accessibility while turned on or off.

• Conformance claims are made for full web pages only. (but see the

exception below)

• For determining conformance, alternative content is considered

part of the page.

• If any page in a sequence, such as a wizard, is inaccessible, then

the entire sequence of pages are to be considered inaccessible.

Most of these clarifications boil down to common sense. Clearly, if

the accessible parts of your pages are only available by going through

inaccessible content, the accessibility becomes pointless. There is one

exception made for the rule about full page compliance, however. If you

have user submitted content like message boards or wikis, you have

two options.

First, you can claim conformance based on your best knowledge of the

site. If you do this, however, you need to make sure that any inacces-

sible content is repaired or removed when it is discovered. The other

2. http://www.w3.org/TR/WCAG20-TECHS/

3. http://www.w3.org/TR/UNDERSTANDING-WCAG20/

4. http://www.w3.org/WAI/WCAG20/quickref/

http://www.w3.org/TR/WCAG20-TECHS/
http://www.w3.org/TR/UNDERSTANDING-WCAG20/
http://www.w3.org/WAI/WCAG20/quickref/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=271

CONCERNS ABOUT WCAG 2.0 272

option is to make a statement of partial compliance. This can only be

done for content that isn’t under the author’s control and only when

the user is made clearly aware of which content may be inaccessible.

Saying something like “The parts we dont have control over” doesn’t

count—you’ll need to be specific like “The comments for this article”.

Compared to the relative simplicity of WCAG 1.0 and US Section 508,

even the basics of WCAG 2.0 may seem verbose or difficult to follow.

You wouldn’t be the first to feel this way—this issue is only one of the

controversies regarding WCAG 2.0.

15.2 Concerns About WCAG 2.0

WCAG 2.0 has been controversial among accessibility experts and web

developers alike. First and foremost, many developers have had backed

away from web accessibility due to difficulty in understanding or imple-

menting WCAG 1.0. It is counterintuitive to believe that releasing a

more complex set of guidelines will reverse this situation.

Another point of concern is that of testability. One of the core philoso-

phies of WCAG 2.0 is that the success criteria be constructed in a way

that is either machine testable or can be interpreted by human testers

in a consistent manner. While the idea of consistency is nice, the down-

side is that WCAG 2.0 has nearly no coverage for issues of cognitive

disability because they are difficult to test.5

There has been some question whether the problems of WCAG 2.0 can

be resolved at all. Some are hopeful that the WAI will remove the testa-

bility requirement and simplify the guidelines while others, including

a group of developers under the name WCAG Samurai6 feel that the

WCAG 2.0 guidelines are not likely to be fixed and that a better solu-

tion would be to issue proper errata for WCAG 1.0.7 Regardless of the

final fate of WCAG 2.0, it is clear that the wait will go on for some time

yet, so any discussion of how WCAG 1.0 should be approached in the

meantime should be valuable for all developers of accessible web sites.

5. Gian Sampson-Wild has written an in depth discussion on the problems imposed by

testability requirements at http://www.alistapart.com/articles/testability

6. http://wcagsamurai.org/

7. Joe Clark’s reasons for founding the WCAG Samurai are described in the article To

Hell with WCAG 2 (http://alistapart.com/articles/tohellwithwcag2)

http://www.alistapart.com/articles/testability
http://wcagsamurai.org/
http://alistapart.com/articles/tohellwithwcag2
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=272

THE WCAG 2.0 GUIDELINES 273

15.3 The WCAG 2.0 Guidelines

WCAG 2.0 is organized according to four principles of perceivability,

operability, understandability, and robustness. Each of these princi-

ples are described by one or more guidelines which can be met by con-

formance to specified success criteria. The criteria are divided up by

level (A, AA, AAA), much like they were in WCAG 1.0 and all success

criteria of a level must be met in all guidelines to claim the correspond-

ing level of conformance. In other words, if you meet all of the criteria

marked ‘A’, your site is A compliant, if you also meet all of the AA cri-

teria, then you can claim AA compliance. With that, let’s take a look at

what the guidelines and criteria mean for us while we design as well as

where in the book you can find more information about satisfying the

requirements of the guidelines.

Principle 1: Perceivable - Information and user interface

components must be perceivable by users

I understand the desire to have the “POUR” acronym for the principles

but, in this case, it obscures the intent. What we’re really trying to do

under the first principle is ensure that we’re not relying on our users

being able to use a particular sense to understand our content.

Guideline 1.1 Provide text alternatives for any non-text content so that

it can be changed into other forms people need such as large print,

braille, speech, symbols or simpler language

This guideline comes off as being far too ambitious. Clearly we want

text alternative but, in practice, the translation to braille, symbols or

simplified language isn’t something that’s going to happen automati-

cally. Users of magnification software and screen readers need access

to alternative text, however.

Level A

• 1.1.1 Non-text Content: All non-text content has a text alternative

that presents equivalent information, except for the situations listed

below.

– Controls-Input: If non-text content is a control or accepts user

input, then it has a name that describes its purpose. (See also

Guideline 4.1.)

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=273

THE WCAG 2.0 GUIDELINES 274

This is where the <label> tag from Getting <form>al, on page 135

comes in.

– Media, Test, Sensory: If non-text content is multimedia, live

audio-only or live video-only content, a test or exercise that

must be presented in non-text format, or primarily intended to

create a specific sensory experience, then text alternatives at

least identify the non-text content with a descriptive text label.

(For multimedia, see also Guideline 1.2.)

If the nature of the media makes it impossible to create a text

alternative, we still don’t want to leave the user completely out

of the loop, so we should at least describe the media rather

than leaving a blank space.

– CAPTCHA: If the purpose of non-text content is to confirm that

content is being accessed by a person rather than a computer,

then text alternatives that identify and describe the purpose

of the non-text content are provided and alternative forms in

different modalities are provided to accommodate different dis-

abilities.

CAPTCHA is generally problematic. See alt.text.odds-and-ends,

on page 174 for more on this topic.

– Decoration, Formatting, Invisible: If non-text content is pure dec-

oration, or used only for visual formatting, or if it is not pre-

sented to users, then it is implemented such that it can be

ignored by assistive technology.

This means setting alt=” for decorative images and using CSS

to set non-content images where possible.

Guideline 1.2 Provide synchronized alternatives for multimedia

Level A

• 1.2.1 Captions (Prerecorded): Captions are provided for prerecorded

multimedia, except for multimedia alternatives to text that are clearly

labeled as such.

We look at creating good captions in Words That Go [Creak] in the

Night, on page 185 and we need to provide these for all multimedia

that has an audio track. Clearly, it doesn’t make sense to create

alternative text for the cases where the media is an alternative to

text.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=274

THE WCAG 2.0 GUIDELINES 275

• 1.2.2 Audio Description or Full Text Alternative: Audio description

of video, or a full text alternative for multimedia including any inter-

action, is provided for prerecorded multimedia.

WCAG 2.0 also notes that there’s no need to audio describe media

that has nothing to describe. Look at Describe it to Me, on page 190

if you don’t know what to look for.

Level AA

• 1.2.3 Captions (Live): Captions are provided for live multimedia.

When you have the resources to do such, live material should be

captioned as well.

• 1.2.4 Audio Description: Audio description of video is provided for

prerecorded multimedia.

The level A equivalent to this criterion also provides the option of a

full text alternative. When possible, it’s better to provide the audio

description as well.

Level AAA

• 1.2.5 Sign Language: Sign language interpretation is provided for

multimedia.

I have mixed feelings about this criterion. If you have the capac-

ity to create sign language “bubbles”, it’s certainly a useful thing

to add. On the other hand, I don’t think provision of sign lan-

guage interpretation should outweigh the need to provide cap-

tions, which serve a wider audience.

• 1.2.6 Audio Description (Extended): Extended audio description of

video is provided for prerecorded multimedia.

Not all level AAA criterion are applicable in all situations. Some-

times it is necessary to pause video playback to fit audio descrip-

tion so this only applies to those cases.

• 1.2.7 Full Text Alternative: A full text alternative for multimedia

including any interaction is provided for all prerecorded multimedia,

except for multimedia alternatives to text that are clearly labeled as

such.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=275

THE WCAG 2.0 GUIDELINES 276

Full text alternatives, described in Describe it to Me, on page 190,

are a nice addition to all sites. Because you often need to generate

a script for captions and audio descriptions anyway, it’s also not

usually a lot of extra effort to provide.

Guideline 1.3 Create content that can be presented in different ways (for

example spoken aloud, simpler layout, etc.) without losing information or

structure

Level A

• 1.3.1 Info and Relationships: Information and relationships con-

veyed through presentation can be programmatically determined or

are available in text, and notification of changes to these is avail-

able to user agents, including assistive technologies.

This one isn’t very clear—all we’re doing here is expressing our

content semantically. See Say It With Meaning, on page 83

• 1.3.2 Meaningful Sequence: When the sequence in which content is

presented affects its meaning, a correct reading sequence can be

programmatically determined and sequential navigation of interac-

tive components is consistent with that sequence.

This is our warning to use natural reading order. Figure 6.3, on

page 125 is an example of a page where the meaning is confused

when read sequentially.

• 1.3.3 Size, Shape, Location: Instructions provided for understanding

and operating content do not rely on shape, size, visual location, or

orientation of components.

This comes down to not assuming that our user can receive more

than text. In a text only presentation, none of these indicators

make any sense.

Guideline 1.4 Make it easier for people with disabilities to see and hear

content including separating foreground from background

Level A

• 1.4.1 Use of Color: Any information that is conveyed by color dif-

ferences is also simultaneously visually evident without the color

differences.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=276

THE WCAG 2.0 GUIDELINES 277

Color keying is another sensory modality issue that we need to

avoid. Figure 8.3, on page 155 shows an example of avoiding

exclusive color keying.

• 1.4.2 Audio Turnoff: If any audio plays automatically for more than

3 seconds, either a mechanism is available to pause or stop the

audio, or a mechanism is available to control audio volume which

can be set independently of the system volume.

Particularly for users of screen readers, we don’t want to force

uncontrolled audio. This is a specific case of keeping the user in

control of their own system. See It’s Their Web—We’re Just Building

In It, on page 131.

Level AA

• 1.4.3 Contrast (Minimum): Text (and images of text) have a contrast

ratio of at least 5:1, except if the text is pure decoration. Larger-scale

text or images of text can have a contrast ratio of 3:1.

Poor contrast makes your content illegible. See Thinking in Terms

of Black and White, on page 157 for examples of this as well as

information on measuring contrast.

• 1.4.4 Resize text: Visually rendered text can be resized without

assistive technology up to 200 percent and down to 50 percent with-

out loss of content or functionality.

This criterion seems a bit weak. With CSS, we can use relative

sizing to keep our layout in place while the font resizes but the

percentages seem arbitrary. If I design with 6 point type, 200% is

still going to be too small for many users with visual impairments.

Level AAA

• 1.4.5 Contrast (Enhanced): Text (and images of text) have a contrast

ratio of at least 7:1, except if the text is pure decoration. Larger-scale

text or images of text can have a contrast ratio of 5:1.

This is just the “more is better” equivalent to criterion 1.4.3.

• 1.4.6 Low or No Background Audio: Audio content that contains

speech in the foreground does not contain background sounds, back-

ground sounds can be turned off, or background sounds are at

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=277

THE WCAG 2.0 GUIDELINES 278

least 20 decibels lower than the foreground speech content, with

the exception of occasional sound effects.

Some users may have trouble understanding foreground audio if

there is too much background noise. WCAG 2.0 notes that the

threshold for background noise is about 25% of foreground vol-

ume.

• 1.4.7 Resize and Wrap: Visually rendered text can be resized with-

out assistive technology up to 200 percent and down to 50 percent

without loss of content or functionality and in a way that does not

require the user to scroll horizontally. (Level AAA)

This criterion is a real problem. It combines the issues of 1.4.4

with the requirement to not require horizontal scrolling. Ultimately

this is intractable—in the worst case, a narrowly sized browser

window with a long word could force this to fail (try the WCAG 2.0

page in Firefox if you don’t believe me).

Principle 2: Operable - User interface components must be

operable by users

Operability is the mirror to perceivability—we can’t assume that our

user has a particular physical ability in order to use our content.

Guideline 2.1 Make all functionality available from a keyboard

Level A

• 2.1.1 Keyboard: All functionality of the content is operable through

a keyboard interface without requiring specific timings for individ-

ual keystrokes, except where the underlying function requires input

that depends on the path of the user’s movement and not just the

endpoints.Note1: Relates to function, not technique (user could

be entering text by handwriting or AAC which need path) Note2:

Shouldn’t discourage other input method impl.

This addresses two issues. First, we can never assume that the

user has the ability to use a device other than a keyboard equiv-

alent. This doesn’t mean that we can’t support mouse input—in

fact, some users will have easier access if we do. The other issue

is that, we should never take control away from the user if we

don’t have to by setting arbitrary timing constraints. The excep-

tion given is when the input doesn’t have any reasonable key-

board equivalent. For example, some tools in a drawing applica-

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=278

THE WCAG 2.0 GUIDELINES 279

tion don’t have a sensible keyboard mapping. You should make

sure this is the case though. I have heard people incorrectly argue

that the “drag and drop” examples shown in Higher Order Scripts,

on page 226 fall under this exception.

Level AAA

• 2.1.2 Keyboard (No Exception): All functionality of the content is

operable through a keyboard interface without requiring specific

timings for individual keystrokes.

This criterion seems unreasonable—our job is to make our web

content as accessible as possible. If the nature of an applica-

tion requires non-keyboard input, there is nothing can be done

to make it more accessible. Apparently we have to settle with a

maximum compliance of AA in that case.

Guideline 2.2 Provide users with disabilities enough time to read and use

content

Level A

• 2.2.1 Timing: For each time limit that is set by the content , at least

one of the following is true:

– Turn off: the user is allowed to turn off the time limit before

encountering it; or

– Adjust: the user is allowed to adjust the time limit before encoun-

tering it over a wide range that is at least ten times the length

of the default setting; or

– Extend: the user is warned before time expires and given at

least 20 seconds to extend the time limit with a simple action

(for example, "hit any key"), and the user is allowed to extend

the time limit at least ten times; or

– Real-time Exception: the time limit is a required part of a real-

time event (for example, an auction), and no alternative to the

time limit is possible; or

– Essential Exception: the time limit is part of an activity where

timing is essential (for example, time-based testing) and time

limits can not be extended further without invalidating the activ-

ity.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=279

THE WCAG 2.0 GUIDELINES 280

Obviously, as discussed in It’s Their Web—We’re Just Building In

It, on page 131, we want to avoid timeouts wherever possible. If we

can’t we need to give the user the greatest degree of control pos-

sible and the Adjust and Extend options both seem reasonable. If

it is simply impossible to alter the time limit, as in the real-time

exception there’s nothing we can do. I give a small caveat for the

Essential exception, however. In the time-based testing example

given, contact information should be given for the person that per-

sons with disabilities should discuss alternate test taking arrange-

ments with.

Level AA

• 2.2.2 Blinking: Content does not blink for more than three seconds,

or a method is available to stop all blinking content in the Web page.

Note: Criterion in 2.3

Preferably, moving content should load in a stopped state and be

left in control of the user. Blinking should always be treated as a

potentially serious problem—see It’s Not Polite to Flash the Audi-

ence, on page 181

• 2.2.3 Pausing: Moving, blinking, scrolling, or auto-updating infor-

mation can be paused by the user unless it is part of an activity

where timing or movement is essential. Moving content that is pure

decoration can be stopped by the user.

As always, it is best to leave the user in control of the system

wherever possible. When the timing or movement is essential, the

user should be warned if there is any level of blinking that would

raise a photosensitivity concern.

Level AAA

• 2.2.4 Timing: Timing is not an essential part of the event or activity

presented by the content, except for non-interactive multimedia and

real-time events.

Like 2.1.2, this criterion seems to unreasonably disqualify those

applications for which timing is essential from AAA status.

• 2.2.5 Interruptions: Interruptions, such as updated content, can be

postponed or suppressed by the user, except interruptions involving

an emergency.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=280

THE WCAG 2.0 GUIDELINES 281

This criterion just seems strange. Certainly, we’d like to allow

the user to control interruptions from the page. I would generally

assume that the user would still be open to receiving emergency

information, so sure—why not?

• 2.2.6 Re-authenticating: When an authenticated session expires,

the user can continue the activity without loss of data after re-

authenticating.

I’m not convinced that this is really an accessibility issue so much

as one of usability. It also seems unclear whether this implies

that the current page should automatically save—which makes an

unacceptable insistence that scripting be available. More likely, it

means that the user’s current session should be stored—again, an

issue of general usability rather than accessibility specifically.

Guideline 2.3 Do not create content that is known to cause seizures

Level A

• 2.3.1 Three Flashes or Below Threshold: Content does not contain

anything that flashes more than three times in any one second

period, or the flash is below the general flash and red flash thresh-

olds.

Flickering content threaten the health of your users. Not all flash-

ing content is likely to be harmful though. If the content tests well

against the flash thresholds, described in It’s Not Polite to Flash

the Audience, on page 181, it should be safe to use.

Level AAA

• 2.3.2 Three Flashes: Content does not contain anything that flashes

more than three times in any one second period.

This is simply the restrictive form of 2.3.1 that bars all flashing

content that might pose a threat.

Guideline 2.4 Provide ways to help users with disabilities navigate, find

content and determine where they are

Level A

• 2.4.1 Bypass Blocks: A mechanism is available to bypass blocks of

content that are repeated on multiple Web pages.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=281

THE WCAG 2.0 GUIDELINES 282

It’s better for users who navigate by keyboard if they can use a

“skip link” that points to a point just past a large block to simplify

navigation.

• 2.4.2 Page Titled: Web pages have descriptive titles.

In particular, the page title shouldn’t be the same on each page.

Instead of “MyCorp”, use “MyCorp - Products - Spice Weasel”.

• 2.4.3 Focus Order: If a Web page can be navigated sequentially,

focusable components receive focus in an order that follows infor-

mation and relationships conveyed through presentation.

Simply put, build your pages in natural reading order as described

in Say It With Meaning, on page 83

• 2.4.4 Link Purpose (Context): The purpose of each link can be deter-

mined from the link text and its programmatically determined link

context.

Links should usually be presented in a context that makes it

clear where will happen if the user clicks it. This is really another

usability issue.

Level AA

• 2.4.5 Multiple Ways: More than one way is available to locate con-

tent within a set of Web pages where content is not the result of, or

a step in, a process.

I’ve never been convinced that multiple navigation methods are

strictly necessary. They certainly don’t hurt, but when they’re

needed I often ask what’s lacking the primary navigation method.

• 2.4.6 Labels Descriptive: Headings and labels are descriptive.

This is a parallel to 2.4.2. Headings and labels are often used to

rapidly navigate a page, so they should let the user know what

they’re going to see. Non-descriptive headings and labels often

seem to mean something has gone wrong with the semantics of

the document. You’ll want to check to make sure the tags are

being used for meaning.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=282

THE WCAG 2.0 GUIDELINES 283

Level AAA

• 2.4.7 Location: Information about the user’s location within a set of

Web pages is available.

Providing bread crumb style navigation is particularly useful for

users who may have difficulty concentrating on content while main-

taining a mental map of the site.

• 2.4.8 Link Purpose (Link Text): The purpose of each link can be iden-

tified from the link text.

Descriptive link text is useful but usually a good link context

should be sufficient. The primary argument for this is from users

of technologies that let them navigate links without reading the

surrounding context. I don’t think that it is generally necessary to

make the site specifically easier to use in this case.

• 2.4.9 Section Headings: Where content is organized into sections,

the sections are indicated with headings.

Sectioned documents are generally also long documents. By pro-

viding headings, users are better able to navigate the the section

they need.

Principle 3: Understandable - Information and operation of user

interface must be understandable by users

This one is kind of a “well, yeah” moment. Web pages are meant to

provide information and services to users. If we can’t make it under-

standable, we’ve failed on a fundamental level. For this reason, a lot of

the guidelines in this part fall more into general usability than they do

in to accessibility.

Guideline 3.1 Make text content readable and understandable

Level A

• 3.1.1 Language of Page: The default human language of each Web

page within the content can be programmatically determined.

As discussed in Keeping It Simple is Smart, on page 89, lang= can

be used with the <html> element to provide information about the

native page language.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=283

THE WCAG 2.0 GUIDELINES 284

Level AA

• 3.1.2 Language of Parts: The human language of each passage or

phrase in the content can be programmatically determined.

The lang= can also be used with other elements to describe lan-

guage usage within a page. Keep in mind that this isn’t necessary

for words that have been adopted into the page’s primary lan-

guage.

Level AAA

• 3.1.3 Unusual Words: A mechanism is available for identifying spe-

cific definitions of words or phrases used in an unusual or restricted

way, including idioms and jargon.

• 3.1.4 Abbreviations: A mechanism for finding the expanded form or

meaning of abbreviations is available.

Whenever any unusual language usage needs to be understood to

comprehend the page it should be defined on first use. It is also

useful to provide a glossary for reference, particularly if there is a

significant amount of terminology to learn.

• 3.1.5 Reading Level: When text requires reading ability more advanced

than the lower secondary education level, supplemental content or

an alternate version is available that does not require reading abil-

ity more advanced than the lower secondary education level.

I disagree with this guideline for non-general use sites. For exam-

ple, content created for medical practitioners will necessarily have

language more advanced than the lower secondary level. This is

perfectly appropriate so long as the language is at a basic level for

the intended audience.

• 3.1.6 Pronunciation: A mechanism is available for identifying spe-

cific pronunciation of words where meaning is ambiguous without

knowing the pronunciation.

Pronunciation guides for the user seem useful but not necessarily

related directly to accessibility concerns. Pronunciation informa-

tion provided for text to speech devices, on the other hand, would

be a direct accessibility feature (though not a commonly used one

at this point in time. See Welcome To The Future, on page 105.)

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=284

THE WCAG 2.0 GUIDELINES 285

Guideline 3.2 Make Web pages appear and operate in predictable ways

Level A

• 3.2.1 On Focus: When any component receives focus, it does not

initiate a change of context.

• 3.2.2 On Input: Changing the setting of any user interface compo-

nent does not automatically cause a change of context unless the

user has been advised of the behavior before using the component.

Launching new windows or submitting forms should be something

done with deliberate intent by the user—in other words, Don’t

Take Control From The User.

Level AA

• 3.2.3 Consistent Navigation: Navigational mechanisms that are repeated

on multiple Web pages within a set of Web pages occur in the same

relative order each time they are repeated, unless a change is initi-

ated by the user.

• 3.2.4 Consistent Identification: Components that have the same func-

tionality within a set of Web pages are identified consistently.

Particularly for users who need to use accessibility features like

skip links, it’s important that navigation and controls stay consis-

tent rather than changing position or function.

Level AAA

• 3.2.5 Change on Request: Changes of context are initiated only by

user request.

This eliminates the exception of 3.2.2 where you can take control

as long as you tell the user you’re going to do it.

Guideline 3.3 Help users avoid and correct mistakes

Level A

• 3.3.1 Error Identification: If an input error is automatically detected,

the item that is in error is identified and described to the user in text.

This criterion just clarifies that we can’t rely on color, sound, or

another sensory effect to convey the error.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=285

THE WCAG 2.0 GUIDELINES 286

Level AA

• 3.3.2 Error Suggestion: If an input error is detected and suggestions

for correction are known, then the suggestions are provided to the

user, unless it would jeopardize the security or purpose of the con-

tent.

The user’s mental effort can be reduced by providing clear instruc-

tions on how to correct errors in their input.

• 3.3.3 Error Prevention (Legal, Financial, Data): For forms that cause

legal commitments or financial transactions to occur, that modify

or delete user-controllable data in data storage systems, or that

submit test responses, at least one of the following is true:

1. Reversible: Transactions are reversible.

2. Checked: Submitted data is checked for input errors before

going on to the next step in the process.

3. Confirmed: A mechanism is available for reviewing, confirming,

and correcting information before finalizing the transaction.

These are all great suggestions for interaction design. On the other

hand, there’s absolutely nothing about any of these that are spe-

cific issues of accessibility.

• 3.3.4 Labels or Instructions: Labels or instructions are provided

when content requires user input.

All form elements should be labeled as described in Getting <form>al,

on page 135. Additionally, non-trivial forms should be clearly explained

to the user.

Level AAA

• 3.3.5 Help: Context-sensitive help is available.

• 3.3.6 Error Prevention (All): For forms that require the user to submit

information, at least one of the following is true

1. Reversible: Transactions are reversible.

2. Checked: Submitted data is checked for input errors before

going on to the next step in the process.

3. Confirmed: A mechanism is available for reviewing, confirming,

and correcting information before finalizing the transaction.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=286

THE WCAG 2.0 GUIDELINES 287

Again, both of these checkpoints fall into general usability.

Principle 4: Robust - Content must be robust enough that it can be

interpreted reliably by a wide variety of user agents, including

assistive technologies

Robustness is a touchy issue. While the two checkpoints for this prin-

ciple are basically about standards compliant design, the real problems

of providing robust content show up when dealing with non standards

compliant browser implementations.

Guideline 4.1 Maximize compatibility with current and future user agents,

including assistive technologies

Level A

• 4.1.1 Parsing: Content implemented using markup languages has

elements with complete start and end tags, except as allowed by

their specifications, and are nested according to their specifications.

Simply put—use the tools in Building a Testing Toolbox, on page 69

to validate your content and make sure it’s standards compliant.

• 4.1.2 Name, Role, Value: For all user interface components, the name

and role can be programmatically determined; states, properties,

and values that can be set by the user can be programmatically

determined and programmatically set; and notification of changes

to these items is available to user agents, including assistive tech-

nologies.

The gist of this is that, if you create your own custom controls,

make sure that their properties are available to assistive technolo-

gies.

This finishes our trip through WCAG 2.0. It’s definitely a large topic

and some parts of it seem to need a little more time to evolve before

they’re completely ready for general use. It’s good to know where these

are going, however. As we’ll see next, if WCAG 2.0 can reach the level of

use that WCAG 1.0 did, it may become a reference document for many

other guidelines and laws.

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=287

I want you to be concerned about your next door neighbour.

Do you know your next door neighbour?

Mother Teresa of Calcutta

Chapter 16

Meanwhile, In the Rest of the
World...

In this part of the book, we’ve looked at general guidelines from W3C

as well as US accessibility law—but the laws in other countries are

equally compelling. Many countries and international bodies have been

very active in developing standards and mandates. Before we finish

up, I’d like to take a brief look at the state of web accessibility on the

international front.

We have a few really good reasons to do this. First, you may be from

one of these countries and I’d like to give you a few resources to get

moving with. It’s also possible that you’re developing for companies

internationally. Global development has become common and the more

you can expand your skill set to adapt to this reality, the better off you’ll

be in the long term.1

Finally, it’s useful to look at standardization on the global front to better

understand our local standards. Many localities base their standards

closely on WCAG while others have opted to develop their own. Some

countries have mandates only on public web sites while others, like

the US, have mandates on private industry as well. By looking at these

differences, we gain insight about our local situation.

1. For more on the issue of adapting to globalization, I highly recommend taking a look

at Chad Fowler’s excellent book, My Job Went to India [Fow05]

AUSTRALIA 289

16.1 Australia

Australia mandates accessibility for public and private sector web devel-

opment as part of the Disability Discrimination Act (DDA) of 1992. The

DDA makes it illegal to discriminate against someone who has a disabil-

ity when providing goods, facilities, and services. Further, terms can’t

be added that changes the conditions or manner of delivery for persons

with disabilities. This makes the DDA a particularly powerful piece of

legislation.

The manner of provision clause has been particularly interesting on the

legal front. There has been considerable controversy over PDF media in

Australia. Currently, the stance of the Human Rights and Equal Oppor-

tunity Commission (HREOC) is that PDF is not sufficiently accessible

and alternative formats must be provided and preferred. Opponents

counter that PDF has become more accessible in recent years and

should be reconsidered because of it’s widespread usage.

Beyond controversies over document format, the accepted standard for

web accessibility in Australia is WCAG 1.0. The common understand-

ing, however is that single-A compliance is absolutely minimal and

ultimately undesirable while double-A compliance is significantly more

desirable.

A brief guide to the DDA. . .

. . . http://www.hreoc.gov.au/disability_rights/dda_guide/dda_guide.htm

[[Author: Production: I think I broke the resurl tag :) Can we put a break

between the name and the url?]] The HREOC’s “getting started” site to out-

line and introduce the Disability Discrimination Act. The guide is written in

straightforward language and also provides links to frequently asked questions,

other materials, and state and territorial guides.

Web Publishing Guide .http://webpublishing.agimo.gov.au/

The Australian Government Information Management Office guide is provided

to help departments and agencies to implement website standards. This docu-

ment gives information about all areas of web development including accessi-

bility and equity issues.

16.2 Canada

Web accessibility in Canada is explicitly mandated for government sites

by the Treasury Board. Like many nations, the standard follows closely

from W3C. In the case of Canada the rule of the day is WCAG1.0 double-

A level compliance and a requirement of validation against XHTML 1.0

http://www.hreoc.gov.au/disability_rights/dda_guide/dda_guide.htm
http://webpublishing.agimo.gov.au/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=289

THE EUROPEAN UNION 290

Strict.2 The story of clear and explicit accessibility ends with the gov-

ernment, however.

Web accessibility is not explicitly mandated for the private sector in

Canada. That said, it is widely considered to be mandated by the Cana-

dian Human Rights Act and informed by the Ontario Human Rights

Code as well as by legal decisions in Australia and the United King-

dom. The prevailing current opinion seems to be that private sector

sites be designed to WCAG 1.0 double-A.

Common Look and Feel for the Internet 2.0. . .

. . . http://www.tbs-sct.gc.ca/clf2-nsi2/

The Treasury Board of Canada’s common look and feel is an overall guide on

designing governmental web sites in accordance with standards. Part two of the

guide includes guidance and examples for accessibility, usability, and interop-

erability.

Web Accessibility Law in Canada . . . http://www.zvulony.com/accessibility.html

Gil Zvulony and Jaime Weinman provide an extensive overview of accessibility

laws and precedents in Canada and why the general view is that private sector

web accessibility is probably covered by the Canadian Human Rights Act.

16.3 The European Union

The EU calls upon its members to improve the availability of accessible

information technologies in Europe. The European union, through it’s

financial support and by formal resolutions, has supported WCAG 1.0

and the activities of the WAI.

EU web accessibility has become part of the larger goal of e-Inclusion.

The e-Inclusion initiative’s goal is to work for progress in accessibility-

related areas such as aging, lifelong learning, social participation, increased

well-being of economically disadvantaged areas, and inclusive govern-

ment in web settings. While enabling accessibility is still a standalone

goal, the techniques of accessible web development prove useful in all

of these other areas as well.

Many EU states, including France, Germany, Ireland, Italy, Spain, Swe-

den, and the United Kingdom have, in addition to supporting EU work,

enacted national legislation mandating public or private sector web

accessibility.

2. http://www.w3.org/TR/xhtml1/

http://www.tbs-sct.gc.ca/clf2-nsi2/
http://www.zvulony.com/accessibility.html
http://www.w3.org/TR/xhtml1/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=290

JAPAN 291

e-Inclusion.http://ec.europa.eu/information_society/activities/einclusion/

The EU’s e-Inclusion activity site includes information about policy and practice

related to developing web content for all populations. Issues of accessibility for

persons with disability and the aging population are core focuses of e-Inclusion.

EDeAN . http://www.e-accessibility.org/

The European Design for All e-Accessibility Network is a network of EU organi-

zations that collaborate to communicate and provide resources on accessibility

issues. In particular, EDeAN focuses on the Design for All goals of the EU’s

e-Inclusion plan

16.4 Japan

Japan does not have a legal mandate for web accessibility in the pri-

vate sector though there has been significant support from industry

for Japan Industrial Standard (JIS) X 8341-3. This standard has been

referred to as the Web Content JIS and is titled “Guideline for older per-

sons and persons with disabilities—information and communications

equipment, software and services”. While JIS X 8341-3 is not a legal

mandate, there has been some consensus that the standard falls in

the realm of general best practice. Additionally, accessibility mandates

from trade partners make accessible design an important issue.

JIS X 8341-3 is largely modified from WCAG 1.0 and some pieces of

a 2004 draft of WCAG 2.0. In general JIS 8341-3 differs from the two

WAI guidelines by disregarding pieces of WCAG 1.0 that were perceived

as dated and including particularly useful notions from an incomplete

WCAG 2.0. Also notable are a number of specific guidelines that are

more strict about the usage of font and text formatting to address spe-

cific issues of the Japanese language.

Web Content JIS Compliance. . .

. . . http://www.mitsue.co.jp/english/column/backnum/20040625a.html

Kazuhito Kidachi provides a high level introduction to JIS X 8341-3 and ratio-

nale for the importance of accessibility in the Japanese market.

JIS Web Content Accessibility Guideline. . .

. . . http://www.comm.twcu.ac.jp/nabe/data/JIS-WAI/

Takauki Watanabe’s 2004 CSUN presentation describing JIS X 8341-3. This

presentation is useful for understanding the background and decisions made

in implementing accessibility in an Asian language environment.

http://ec.europa.eu/information_society/activities/einclusion/
http://www.e-accessibility.org/
http://www.mitsue.co.jp/english/column/backnum/20040625a.html
http://www.comm.twcu.ac.jp/ nabe/data/JIS-WAI/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=291

UNITED KINGDOM 292

16.5 United Kingdom

As in the United States and Australia, accessibility is legally mandated

for public and private sector web sites. Part III of the Disability Discrim-

ination Act (DDA)3 is the law of the land for the United Kingdom. The

DDA uses a model of services provided and introduces mandates to:

• Not refuse to provide any service to a person with a disability

which is provided to the public.

• Not to reduce the standard or manner of service to a person with

a disability.

• Make all “reasonable adjustments” necessary to allow a person

with a disability to make use of services impossible or unreason-

ably difficult to use.

These obligations make it clear that all services must be made to the

best possible degree for all audiences and that few exceptions are to be

considered. In terms of application, WCAG 1.0 is looked to as the base

guideline for web accessibility though, in general, there seems to be a

greater focus on practical outcomes for users with disabilities.

DDA Code of Practice http://www.drc-gb.org/PDF/CoP_Access.pdf

The UK Disability Rights Commission’s Code of Practice is a comprehensive

guide to the DDA. While not tailored specifically to web development, focus on

services makes this a useful guide to the language and intent of the DDA, which

is focused on the idea of service provision rather than specifics to the means of

provision.

Disability Rights Commission . http://www.drc-gb.org/

The Disability Rights Commission provides a wide variety of resources on all

issues related to disability in the United Kingdom. The library portion of the

site is particularly useful, including website accessibility resources such as

PAS 78, a guide to good practice in commissioning accessible websites.

16.6 United Nations

The United Nations have also been considering issues of accessibility as

part of the Convention on the Rights of Persons with Disabilities. The

convention has been signed by more than 100 member nations and

focuses on accessibility as a human rights issue. As web developers,

Article 21 should be of great interest:

3. Similar to but not the same as the Australian legislation with the same name.

http://www.drc-gb.org/PDF/CoP_Access.pdf
http://www.drc-gb.org/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=292

UNITED NATIONS 293

Article 21: Freedom of expression and opinion, and access to

information

States Parties shall take all appropriate measures to ensure that persons

with disabilities can exercise the right to freedom of expression and opin-

ion, including the freedom to seek, receive and impart information and

ideas on an equal basis with others and through all forms of communi-

cation of their choice, as defined in article 2 of the present Convention,

including by:

(a) Providing information intended for the general public to persons with

disabilities in accessible formats and technologies appropriate to differ-

ent kinds of disabilities in a timely manner and without additional cost;

(b) Accepting and facilitating the use of sign languages, Braille, augmen-

tative and alternative communication, and all other accessible means,

modes and formats of communication of their choice by persons with dis-

abilities in official interactions;

(c) Urging private entities that provide services to the general public,

including through the Internet, to provide information and services in

accessible and usable formats for persons with disabilities;

(d) Encouraging the mass media, including providers of information through

the Internet, to make their services accessible to persons with disabilities;

(e) Recognizing and promoting the use of sign languages.

The UN has, to promote this convention, been working to build collab-

orative environments to understand and resolve issues of web accessi-

bility. The first major result was the December 2006 publication of the

Global Audit of Web Accessibility.

United Nations Enable http://www.un.org/esa/socdev/enable/

Enable is the central point for following progress of the UN in accessibility.

Mandates, resolutions, and resources are regularly being added.

UN Global Audit of Web Accessibility. . .

. . . http://www.nomensa.com/resources/research/united-nations-global-audit-of-accessibility.html

The report commissioned by the UN as the first audit of web accessibility on a

global level. The report, while not deeply comprehensive, evaluates 100 sites

in five key industries from 20 countries. The results were not terribly inspiring

but give insight about the next steps to take.

http://www.un.org/esa/socdev/enable/
http://www.nomensa.com/resources/research/united-nations-global-audit-of-accessibility.html
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=293

MORE INFORMATION 294

16.7 More Information

We’ve only seen a small portion of what’s happening on the global acces-

sibility front. Accessibility guidelines and legislation are rapidly devel-

oping in many places. Not all countries are equal in terms of web acces-

sibility for many of the same reasons that not all countries are equal in

terms of web availability.

One thing that seems certain is that, as widespread connectivity con-

tinues to advance, the question of accessibility will come up. As we’ve

seen in this chapter, whether you’re concerned with Section 508, the

DDA, a variant of WCAG, or something else entirely, there will be some

differences in how the question is answered. When you focus on the

basic principles of accessibility that we’ve used throughout this book,

however, you’ll find that the answers to the questions will remain the

same.

Policies Relating to Web Accessibility.http://www.w3.org/WAI/Policy/

The WAI Education and Outreach provides information about legislation, doc-

uments, guidelines, and responsible parties for a variety of countries.

WebAIM World Laws.http://www.webaim.org/articles/laws/world/

WebAIM provides information and links to many world accessibility laws.

http://www.w3.org/WAI/Policy/
http://www.webaim.org/articles/laws/world/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=294

An ideal world is left as an exercise to the reader.

Paul Graham, On Lisp

Chapter 17

Final Thoughts
Well then, we’re almost at the end of our time together and it’s time for

you to continue this path on your own. You have a solid set of principles

that you can use to design accessible web sites. You know how to put

them into action (if you’ve been following the Act on It sections, you

already have a few times). You’re familiar with the major web guidelines

and how they relate to accessibility principles. In other words, you’re

ready to go. Before you do, however, I have a couple more things to

leave you with:

17.1 Keep Trying

I’ll put it as gently as I can—no matter how long you work in acces-

sibility, it’s still going to go wrong for you on occasion. There’s always

going to be a situation you hadn’t accounted for or a technology that

doesn’t behave the way you thought it would. That’s just the way it is.

It’s not the end of the world. Users with disabilities understand that

there are bugs too. I have yet to hear about a site that strives for acces-

sibility getting sued over an honest mistake. Your goal should simply be

to respond to the problem, apologize for the inconvenience, and under-

stand what happened so you can prevent it from happening again.

17.2 Stay Informed

While the technologies of the web don’t change as rapidly as they once

did, our understandings of them do. You should always be watching for

new additions to your understanding of accessible web development.

HAVE FUN 296

There are many great sites for keeping up with current accessibility

issues. Here are a few that I recommend:

Juicy Studio .http://juicystudio.com/

Gez Lemon says that his site is about best practices. This, more often than

not, means accessibility. The articles are always well thought through and the

selection of tools on Juicy Studio makes it a must-add for your bookmark bar.

WebAIM .http://www.webaim.org/

WebAIM hosts a wide collection of accessibility articles and resources as well

as the WAVE evaluation tool.

A List Apart .http://www.alistapart.com/

A List Apart is a must read for any web developer who wants to keep up with

content design. Accessibility is only one of many content focuses.

456 Berea St. http://www.456bereastreet.com/

Roger Johansson’s articles and tutorials about high quality accessibility and

usability are informative and sure to keep you thinking.

Standards schmandards http://standards-schmandards.com/

Peter Krantz’s site is a nice place to watch for information on techniques and

tools (Peter wrote the Fangs and RAAKT tools) as well as articles that keep you

thinking about the big picture of accessibility.

Accessify . http://www.accessify.com/

Accessify provides tools, wizards, and tutorials to aid in accessible development

as well as news about web accessibility.

The Web Standards Project http://www.webstandards.org/

WaSP is the place to go for information on standards-compliant web design.

The accessibility task force has been following the development of WCAG 2.0

closely with many well informed analyses.

Accessify Forum . http://www.accessifyforum.com/

If you want to ask some questions, see what other developers are up to, or keep

up with emerging issues in accessibility, this is a great place to be. If it’s about

accessibility, you’ll often find someone here who’s already been there.

17.3 Have Fun

Seriously. Have Fun. We have the pleasure of working in a dynamic

media with fantastic creative opportunities. Many accessibility solu-

tions, like other web development started by simply asking “what if”

and playing around to see what happened. Play with the media. Create

great things. Just make sure to bring everyone you can along for the

ride.

http://juicystudio.com/
http://www.webaim.org/
http://www.alistapart.com/
http://www.456bereastreet.com/
http://standards-schmandards.com/
http://www.accessify.com/
http://www.webstandards.org/
http://www.accessifyforum.com/
http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=296

HAVE FUN 297

[[Author: Production: Since we have plenty of whitespace to work with

here, can we center up and space down the following quote to set it off

a little? I’m thinking something similar in style to the Santayana quote

at the beginning of Practices of an Agile Developer]] Start by doing what

is necessary; then do what is possible; and suddenly you are doing the

impossible. —St. Francis of Assisi

http://books.pragprog.com/titles/jsaccess/errata/add?pdf_page=297

Appendix A

Bibliography
[[Author: Production: Since this is the only appendix, can we strike the

"Appendix A" bit?]]

[Fla06] David Flanagan. JavaScript: The Definitive Guide. O’Reilly &

Associates, Inc, Sebastopol, CA, fifth edition, 2006.

[Fow05] Chad Fowler. My Job Went To India: 52 Ways to Save Your

Job. The Pragmatic Programmers, LLC, Raleigh, NC, and

Dallas, TX, 2005.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Kei05] Jeremy Keith. DOM Scripting: Web Design with JavaScript

and the Document Object Model. friends of ED, Berkeley,

CA, 2005.

[nie]

[Ras00] Jef Raskin. The Humane Interface: New Directions for

Designing Interactive Systems. Addison-Wesley, Reading,

MA, 2000.

[RD05] Johanna Rothman and Esther Derby. Behind Closed Doors:

Secrets of Great Management. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2005.

Index
A
Abstraction, 57

Accessibility

complementary vs.

non-complementary, 54

guidelines, 61–63

multiple access points, 53–56

repetition and, 57–59

Accessibility coordinator, 43–44

Accessibility First, 46n

Accountability, 68

ADA coordinator, 43–44

Aging population market, 20

Alternative text, 29, 76

American Mathematical Society (AMS),

47

American Psychological Association

(APA), 47

Americans with Disabilities Act (ADA),

22

Amplification system, 30

Aphasia, 32

Assigning tasks, 51

Associated Press (AP), 47

Audience, 20

assumptions about, 83

Audio transcripts, 30

Auditory impairment

deafness, 30

hardness of hearing, 30

Auditory impairments, 29–31, 53

Auto-summarization software, 33

Automated testing, 67, 73

B
Baby boomers, 20

Blindness, 26

Braille keyboards, 27

Braille-ready content, 28

Browser stylesheets, 28

C
Capability, 24–25

Captioning, 30

Captions, 33

Cascading style sheet (CSS) support, 24

Chicago Manual of Style (CMS), 47

Civil rights and web accessibility,

19–20

Cognitive impairments, 32–33

Cognitive load theory, 54

Color deficiency, 28, 67

Complementary vs.

non-complementary text and

imagery, 54

Compliance, 61, 69–70

Conformance testing tools, 72f, 73f,

71–74

Content creators, 38–40

Content style, 47

Contrast deficiency, 28

Cost

of accessibility, 46, 65

Costs

of lawsuit settlement, 22

CSS, 58

standards, 46

styling, 66–67

teseting for accessibility, 67

testing stylesheets, 77

validators, 71

CSS Validation Service, 71n

CSS Zen Garden, 24

Customers, 20

assumptions about, 83

Cynthia Says, 71

DEAFNESS 300 LOW VISION

D
Deafness, 30

Deque Systems, 75

Design, 35

abstraction in, 57

one-offs, 58–59

presentation consistency, 55

repetition in, 57–59

style, 66–67

teams, 37–45

template use in, 59

and testing, 65–67

user assumptions, 83

Disabilities, 26–34

accessibility coordinator and, 43–44

Americans with Disabilities Act and,

22

assumptions about users with, 83

auditory impairments, 29–31

cognitive impairments, 32–33

and equivalent access, 23

market for, 20

mobility impairments, 31

multiple, 33–34

testers with, 78–80

visual impairment, 26–29

Discrimination

compliance, guidelines for, 61

in hiring, 55

DocBook, 48

Documentation

and DTDs, 48

master revision list, 49

media specifications sheet, 49

of style choices, 47

Dragon Naturally Speaking, 31

DRY principle, 57–59

DTD, 47

testing, 48

Duck of Doom, 68

Dyslexia, 32

E
Elderly population market, 20

Equality, 26

Equivalent access, 23

F
Fallback testing, 70f, 71

Fangs tool for Firefox, 74

Feed Validation Service, 71n

Firefox accessibility extension, 70f, 71,

76, 77

Firefox Accessibility Extension (FAE),

69

Firefox Web Developer Extension, 77

Focus groups, 78

Framework, 82

Functional Accessibility Evaluation, 71

Functional Accessibility Evaluator, 72f

G
Globalization and guidelines, 63

Graphic designers, 40–41

Guidelines, 61–63

H
Hal, 27

Hard of hearing, 53

Hardness of hearing, 30

Highlighting systems, 33

Hiring, 55

Horn, Christy, 43–44

HTML, 58

readability, 83

understandability, 83

I
IBM ViaVoice, 31

Image assets, 49

Images, 77

InFocus, 75

Infrastructure developers, 42

J
JAWS, 27

K
Keyboards, alternative, 31

Krantz, Peter, 74

L
Legal blindness, 27

Legal fees, 22

Legal requirements and legislation, 22

LIFT Machine, 75

Lotus Notes, 44n

Low vision, 27

MACSPEECH 301 TEAMS

M
MacSpeech, 31

Magnifiers, 27, 77

Markets

disabilities, persons with, 20

elderly, 20

reaching, 20

Markup Validation Service, 69n

Master revision list, 49

Media

attributes of, 55–56

for auditory impairments, 30

complementary vs.

non-complementary, 54

image assets, 49

images, 77

planning for, 40

standards, 47

testing tools for, 74

visual impairment and, 29

Media testing tools, 74

Meetings, 44

Mobility impairments, 31

Modern Language Association (MLA),

47

Multiple access paths, 53–56

media attributes, 55

overload, 54

Multiple disabilities, 33–34

N
Navigation, 29

mobility impairments and, 32

testing, 77

Nielsen, Jakob, 21

O
One-offs, 58–59

Orca, 27

Output formatting, documenting, 47

Overload, 54

P
Perceptual disorders, 32

Photosensitive seizures, 28

Planning process, 35

style guide revision, 49–51

style guides, 46–49

team meetings, 44

teams, 37–45

and technology, 39

for testers with disabilities, 78

testing and design, 65–67

Pointing devices, 31

Policies of W3C, 63

Processing disorders, 32

Progressive enhancement, 65

Project stakeholders, 37–38

Project style guide, 46–49

R
Reading order, 83

Recipe example, 50

Repetition, 57–59

Resume builders, 39

Rights and web accessibility, 19–20

Rosmaita, Brian, 46n

S
SAP (second audio program), 55

Screen magnification, 27

Screen readers, 27, 33, 74

Screen size, 77

Screencasts, 53

Section 508

as law, 23

and WCAG guidelines, 62

Semantic content, 83

Sequential processing disorder, 32

Settlement costs, 22

Shared project databases, 44n

Speech recognition, 30

Speech recognition software, 31

Speech-to-tect converters, 30

Structure

overview of, 82

Style guides, 46–49

revision of, 49–51

Stylesheets, 77

Styling pages, 66–67

Subtitles, 30, 53, 54

Synchronized captioning, 30

T
Tagging from a DTD, 48

TDD (telecommunications device for

the deaf), 23

Teams, 37–45

accessibility advocacy, 45

accessibility coordinator, 43–44

TECHNOLOGY 302 WEBSITES

checking in work, 65

content creators, 38–40

errors and accountability, 68

infrastructure developers, 42

project stakeholders, 37–38

unity and dynamics, 44

user interface designers, 40–41

visual identity designers, 41–42

Technology

assistive, 69–70

browser stylesheets, 28

for cognitive impairments, 33

for mobility impairments, 31

project needs and planning, 39

screen readers, 27

speech-to-text converters, 30

Templates, 59

Testing

automating, 67, 73

commercially available tools, 75

conformance testing tools, 72f, 73f,

71–74

as design decision, 65–67

DTDs, 48

fallback, 70f, 71

feedback for, 78–80

by hand, 76–78

infrastructure developers and, 42

media testing tools, 74

navigation, 77

overview, 64

screen readers, 74

toolbox for, 69–75

Text-to-speech (TTS) technology, 27

Timed effects, 29

Timing effects, 31

Tinnitus, 30

Toolbox for testing, 69–75

Total blindness, 26

Traffic and productivity

usability and, 21

Transcripts, 30, 33

U
Universal Declaration of Human

Rights, 19

Universal design, 22

Usability, 21

User interface designers, 40–41

V
Validators, 69–70

Visual acuity (VA), 27

Visual identity designers, 41–42

Visual impairments, 21, 26–29, 67

blindness, 27

color and contrast deficiencies, 28

photosensitive seizures, 28

web development implications, 29

VoiceOver, 27

Voiceover, 53

W
WAVE 3.5, 67

WAVE Web Accessibility Tool, 71, 73f,

73

Web accessibility

benefits of, 19–25

capability and, 24–25

civil rights and, 19–20

legal requirements of, 22

markets, reaching, 20

vs. Universal design, 22

usability and, 21

Web Accessibility Initiative (WAI), 62

Web Content Accessibility Guidelines

(WCAG), 62–63, 74

Web developing

accountability, 68

Web development

abstraction, 57

auditory impairment implications

for, 30

cognitive impairment implications

for, 33

CSS, 58

HTML, 58

mobility impairment implications for,

31

testing, 65–67

visual impairment implications for,

29

Web Standards Project, 46n

Web standards validators, 69–70

WebAIM’s WAVE Web Accessibility Tool,

71, 73f, 73

Websites

for Accessibility First, 46n

for CSS Validation Service, 71n

for Cynthia Says, 71n

for Deque Systems, 75n

WEBXM 303 ZOOMTEXT

for DocBook, 48

for Fangs tool for Firefox, 74n

for Feed Validation Service, 71n

for Firefox, 69n

for Firefox Web Developer Extension,

77n

for Functional Accessibility

Evaluator, 71n

for InFocus, 75n

for LIFT Machine, 75n

for screen readers, 27n

for speech recognition software, 31n

for Universal Declaration of Human

Rights, 19n

for usability studies, 21n

for W3C international policies, 63

for WAVE 3.5, 67n

for Web Standards Project, 46n

for WebAIM’s WAVE Web

Accessibility Tool, 71n

for WebXM, 75n

for Zen Garden, 24

for ZoomText magnifier, 27n

WebXM, 75

WET dilemma, 35, 36

WET principle, 57–59

Wiki, 46, 51

Wiki, project, 44

World Wide Web Consortium (W3C), 46,

62, 63

Write everything twice (WET), 35

Writing style, 47

Z
Zen Garden for CSS, 24

ZoomText, 28

	Contents
	Acknowledgments
	Preface
	Getting to Know Each Other
	Finding Your Way Through This Book
	Principles Before Guidelines

	Laying the Foundation
	Why Be Accessible?
	It's the Right Thing to Do
	Accessibility is Good Business
	Accessible Sites are More Usable
	It's the Law
	Building with Accessibility Can Make You More Capable

	A Brief Introduction to Disabilities
	Visual Impairments
	Auditory Impairments
	Mobility Impairments
	Cognitive Impairments
	Multiple Disabilities

	An Environment for Access
	Making a Team Effort
	Plan for Access
	Multiple Access Paths
	Don't Get WET!
	Guidelines for Accessibility

	Testing for Accessibility
	Testing as a Design Decision
	Building a Testing Toolbox
	Getting Your Hands Dirty

	Building a Solid Structure
	The Structured Life
	Say It With Meaning
	Keeping It Simple is Smart
	Minding Your <p>'s and <q>'s
	Linking It All Together
	Styled To The Nines
	Welcome To The Future

	Round Tables
	Setting The Table
	Ah, <table>, I Hardly Knew Ye!
	Layout And Other Bad Table Manners

	The Accessible Interface
	It's Their Web---We're Just Building In It
	Getting <form>al
	Tickling The Keys
	Your Interface Has Some Explaining To Do

	Getting the Perfect View
	A Picture is Worth...
	Stoplights and Poison Apples
	Thinking in Terms of Black and White
	To Put it Another Way
	More Than alt= Can Say
	alt.text.odds-and-ends

	Video Killed the Something-Something
	It's Not Polite to Flash the Audience
	Words That Go [Creak] in the Night
	Describe it to Me
	On the Cutting Room Floor

	Putting on Some Additions
	Not All Documents Are Created Equal
	Back at the Office
	PDF: Trying to Make Portable Accessible

	Scripted Responses
	Unassuming Scripts
	Higher Order Scripts

	Embedded Applications: Rinse and Repeat
	The Many Faces of Flash
	Java: Is Your Brew Fair-Trade?

	Building Codes
	Web Content Accessibility Guidelines 1.0
	Checkpoint Priorities
	Conformance
	The 14 Guidelines of WCAG 1.0

	Section 508
	Software Applications and Operating Systems (§1194.21)
	Web-Based Intranet and Internet Information and Applications (§1194.22)
	Video and Multimedia Products (§1194.24)

	Web Content Accessibility Guidelines 2.0
	The Basics of WCAG 2.0
	Concerns About WCAG 2.0
	The WCAG 2.0 Guidelines

	Meanwhile, In the Rest of the World...
	Australia
	Canada
	The European Union
	Japan
	United Kingdom
	United Nations
	More Information

	Final Thoughts
	Keep Trying
	Stay Informed
	Have Fun

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

