

Responsive Web Design by
Example Beginner's Guide

Discover how you can easily create engaging, responsive
websites with minimum hassle!

Thoriq Firdaus

BIRMINGHAM - MUMBAI

Responsive Web Design by Example Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1140313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-542-8

www.packtpub.com

Cover Image by Arief Bahari (ariefbahari@gmail.com)

Credits

Author
Thoriq Firdaus

Reviewers
Kevin M. Kelly

Shawn McBurnie

Volkan Özçelik

Chad Adams

Abhishek Bhardwaj

Acquisition Editor
Erol Staveley

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Prasad Dalvi

Varun Pius Rodrigues

Copy Editors
Brandt D'Mello

Insiya Morbiwala

Alfida Paiva

Ruta Waghmare

Project Coordinator
Amey Sawant

Proofreaders
Lynda Sliwoski

Maria Gould

Indexer
Rekha Nair

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Thoriq Firdaus is a graphic and web designer living in Indonesia. He has been working
in web designing projects with several clients from startup to notable companies and
organizations worldwide for over five years.

He is very passionate on HTML5 and CSS3 and writes on these subjects regularly
at http://www.hongkiat.com/ and at his own blog http://creatiface.com/.
Occasionally, he also gives presentations on web design at some local colleges
and institutions.

Outside of work, he enjoys watching movies with his family and trying out some good food
in a new cafe or restaurant nearby.

First, I would like to thank the team at Packt Publishing for giving me a
chance to write this book and also to the editors and reviewers for their
help on improving this book with their valuable feedback and comments.

I also thank my friends Arief Bahari (www.ariefbahari.com) and Ferina
Berliani (http://nantokaa.tumblr.com/) for allowing me to use their
artwork for this book.

Lastly, I thank my family, especially my wife and daughter, for giving me
support during the process of writing this book.

About the Reviewers

Kevin M. Kelly is an experienced web craftsman specializing in interface development,
producing in areas such as ad agencies, e-commerce places, and government bodies. He
has worked with companies such as Canadian Tire, Rogers, The Toronto Star, Nissan, and
Mazooma. He is the cofounder of the coder-focused meetup, #devTO, and member of
Multimedia Design and Production Technician Program Advisory Committeee at Humber
Institute of Design and Advanced Learning. Kevin is passionate about the industry as well as
his community.

My special thanks to Packt Publishing, my friends, family, and every person
that I have dealt with in regards to my amazing career.

Shawn McBurnie has been developing websites since the late 1990s. He is the principal
developer at Nettercap, a promotion and development shop focused on traditional music
and arts, and is a frontend developer for The Nerdery. He was also a technical reviewer for
Sang Shin's HTML5 Mobile Development Cookbook.

When he's not programming, Shawn can be found performing with his band, Rumgumption,
or teaching at the Center for Irish Music in Minnesota.

Volkan Özçelik is a frontend engineer living in Mountain View, in the middle of Silicon
Valley. Since 2003, he has been creating client-heavy AJAX web applications. He loves to
architect responsive and intuitive web components, driven by amazingly well-organized
JavaScript code. He dreams of the death of Internet Explorer, and shudders at the horror of
thousands of people still using the crazy thing, but tenaciously works around its quirks and
gently aligns it with its more modern peers.

Volkan has a blog (http://o2js.com/) where he shares peculiarities, intricacies,
best practices, patterns, use cases, and implementations of reusable, cross-platform,
optimized JavaScript. He is also the author of a book JavaScript Interview Questions
(http://o2js.com/interview-questions/).

Other than JavaScript, Volkan has experience with NoSQL data stores, ASP.net, C#, PHP, Java,
Python, Django, Ruby, Objective C, and a variety of other languages and frameworks.

Volkan is currently a Software Engineer at Jive Software (http://www.jivesoftware.
com); prior to that he was a JavaScript hacker at SocialWire (http://socialwire.com).
He was the VP of Technology at GROU.PS (http://grou.ps) and also a JavaScript Engineer
at LiveGO (a social mash-up that's gone to dead pool, R.I.P). He was the CTO of Turkey's
largest business network cember.net (which got acquired by Xing A.G.).

When he's not satisfying his never-ending appetite to experiment with cutting-edge
technologies and frameworks, Volkan loves to be with nature spending days away from
anything digital; he's a trekking and camping enthusiast, and a keen lover of parrots.

http://o2js.com/
http://o2js.com/interview-questions/
http://www.jivesoftware.com
http://www.jivesoftware.com
http://socialwire.com
http://grou.ps

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt
 � Copy and paste, print and bookmark content
 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Responsive Web Design 7

Basic responsive web design 8
Viewport meta tag and CSS3 media queries 8

Limitations of responsive web design 10
Responsive image with picture element 11

Learn more about HTML5 and CSS3 14
Introduction to RWD frameworks 15

Why use frameworks? 15
Skeleton 16
Bootstrap 16
Foundation 17

Who is using these frameworks? 17
Hivemind 18
Living.is 18
Swizzle 20

The cons 22
Tools required to build responsive websites 22

Web browsers 23
Code editors 23
Responsive bookmarklets 23

A brief introduction to CSS preprocessors 25
CSS preprocessor compiler tool 25
LESS 26

Nesting rules 26
Variables 28
Mixins 28
Parametric mixins 30
Operations 31

Sass (Syntactically Awesome Stylesheets) 32

Table of Contents

[ii]

Variables 32
Mixins 33
Nested rules 34
Selector inheritance 34

Learning more on CSS preprocessors 35
Learning LESS 35
Learning Sass 36

What are we going to create in this book? 36
Summary 37

Chapter 2: Constructing a Responsive Portfolio Page with Skeleton 39
Getting started with Skeleton 40
Time for action – creating a working directory and getting Skeleton 40
What is included in Skeleton? 41

Starter HTML document 41
The viewport meta tag 41
HTML5 Shim 41

Responsive Grid 42
Clearing styles 44
Media queries 45
Typography styles 46
Button styles 46
Form styles 47
Apple icon devices 48
Photoshop template 48

How will the website look? 50
Website navigation 51
Thumbnail hover effect 52

Setting up the Skeleton document 52
Time for action – adding an extra CSS file 52
Adding custom fonts 53
Time for action – embedding Google Web Fonts 54
Preparing the images 55

Social media icons 56
Time for action – sprite images 57

Contact icons 58
HTML5 elements 59
HTML5 custom data attributes 59
Time for action – structuring the HTML document 60
Summary 66

Table of Contents

[iii]

Chapter 3: Enhancing the Portfolio Website with CSS3 67
CSS box model 68

An introduction to the CSS3 box-sizing property 69
Time for action – specifying box-sizing 70
CSS units of measurement 70

The pixel unit 71
The pixel unit in higher DPI screens 71

The em unit 72
Converting px to em 72
Calculating the em unit manually 73
Browser quirk for the em unit 73

The percent unit 74
Setting font families 74
Time for action – setting the Headings font family 76
Header styles 76
Time for action – adding the header styles 77
Using CSS selectors 78

Direct child selector 79
Adjacent sibling selector 80
General sibling selector 80

Using CSS3 pseudo classes 81
The CSS3 checked pseudo class 81
The CSS3 nth-child pseudo class 81

Portfolio thumbnail and caption styles 83
Time for action – adding thumbnail and caption styles 83
CSS3 2D Transformations 88

The translate() function 89
Vendor prefixes 90

CSS3 Transition 91
CSS3 Transition values 91

Time for action – creating a thumbnail hover effect 93
Website navigation for filtering the portfolio 96
Time for action – creating a portfolio filter 97
Footer section 99
Time for action – styling the footer section 99
Adjusting website styles in a smaller viewport 104
Time for action – viewport size less than 960 px 105
Time for action – viewport size between 767 px and 480 px 107
Time for action – viewport size less than 480 px 108
Testing the website in a different viewport size 110
Summary 114

Table of Contents

[iv]

Chapter 4: Developing a Product Launch Site with Bootstrap 115
Getting started with Bootstrap 116
Time for action – setting up Bootstrap 116
Preparing the website images 119
Introducing LESS applications 120
Time for action – installing CrunchApp 120

Creating new LESS files 123
Time for action – creating a new LESS file with CrunchApp 123

Compiling LESS syntax into standard CSS 125
Time for action – adding LESS files to CrunchApp and compiling them
into standard CSS 125
Introducing the @font-face rule to add a custom font family 126

Finding free fonts for embedding on the web 127
Writing the @font-face rule 127
Font formats for cross-browser compatibility 127

Time for action – adding a new font with @font-face 128
Responsive features in Bootstrap 130

Bootstrap grid system 130
CSS3 media queries in Bootstrap 130

Time for action – creating a new LESS file to store CSS3 media queries 131
Establishing navigation with Bootstrap 132

Creating HTML documents 133
Time for action – creating basic HTML5 documents 134

The homepage content 138
Time for action – adding an HTML content structure for our homepage 139

The HTML5 placeholder attribute 142
New input types in HTML5 142

The Gallery page content 143
Time for action – adding HTML content structure for the Gallery page 144

Contact page content 147
Time for action – adding HTML structure for the Contact page 147

The About page content 149
Time for action – adding HTML content structure for the About page 150

The Policy page 152
Time for action – adding HTML content structure for the Privacy and Policy page 152
Summary 154

Chapter 5: Enhancing the Product Launch Site with CSS3 and LESS 155
Custom LESS variables 156
Time for action – defining custom variables 156
Custom LESS mixins 158
Time for action – defining custom LESS mixins 158

Table of Contents

[v]

LESS color functions 160
Introducing the Scope concept 160
General style rules 161
Time for action – adding general style rules 161

Eliminating vendor prefixes 165
The button styles 166
Time for action – overwriting the Bootstrap button styles 167
Why are the buttons that large? 169
The header styles 170
Time for action – adding website header styles 170
The footer styles 173
Time for action – adding footer styles 173
Working on the homepage 176

The Hero section 176
Time for action – adding styles for the Hello World section 176

The Call-to-action section 177
Time for action – adding styles for the Call-to-action section 178

The Gallery section 179
Time for action – adding styles for the Gallery section 179

The Testimonial section 180
Time for action – adding styles for the Testimonial section 181

Subscribe Form 181
Time for action – adding styles for an input email 182
The Gallery page 184
Time for action – adjusting the page title styles 184
The Contact page 187
Time for action – adding styles for the Contact page 187
The About page 190
The Privacy Policy page 191
Making the website responsive 192
Time for action – enhancing the website's appearance for a viewport size
of 767px or less 192
Time for action – enhancing the website's appearance for a viewport size
of 480px or less 197
Excluding unnecessary style rules 201
Testing the website 202
Summary 204

Chapter 6: A Responsive Website for Business with Foundation Framework 205
A Ruby-based framework 206
The Foundation gem 207

Table of Contents

[vi]

Time for action – installing the Foundation framework and setting up a
new project 207
Sass and SCSS syntax 209

Sass and SCSS code editor 209
Time for action – installing Sublime Text and enabling SCSS syntax highlighting 210
Custom SCSS stylesheets 211
Time for action – creating new SCSS stylesheets for maintainability 211
Introducing Compass 212

Compass Helper Functions 212
Compass project configuration 213

Time for action – configuring the project path in config.rb 215
Compiling SCSS to CSS 216
Time for action – watch SCSS stylesheets for changes 216
Preparing the website images 217
Foundation framework components 218

The grid 218
CSS3 media queries 221
User interface styles 222
Orbit 223

Constructing the HTML documents 223
Basic HTML document 224

Time for action – configuring a basic HTML document 224
The website homepage 228

Time for action – constructing the homepage content 228
The Services page 236

Time for action – constructing the Services page content markup 237
The Pricing page 242

Time for action – constructing the Pricing page content markup 243
The About Us page 248

Time for action – constructing the About Us page content markup 249
The Contact Us page 253

Time for action – structuring the Contact Us page content 254
Summary 259

Chapter 7: Extending Foundation 261
Monitoring the project 262
Time for action – running the command line to monitor the project 262
An introduction to Sass color functions 263
Sass variables 264
Time for action – customizing the Foundation framework Sass variables for colors 265
Custom font families 267

Table of Contents

[vii]

An introduction to the Compass font face mixin 267
Time for action – adding custom font families with the Compass mixin 268
The website navigation 271
Time for action – styling the header section 271
An introduction to Compass Sprite Helpers 273
The website's footer section 274
Time for action – adding styles for the footer section 274
An introduction to CSS3 structural selectors 278
The homepage 281
Time for action – adding styles to the homepage 282
The Services page 292
Time for action – adding styles to the service page 293
The Pricing page 299
Time for action – adding styles to the Pricing page 300
The About page and the Contact page 305
Time for action – adding styles for the About and the Contact page 305
Time for action – finalizing the website 307
Testing the website 308
Summary 308
Further references 309

Books 309
On the Web 310

Index 311

Preface
Responsive web design is one of the most discussed topics on web, and a very demanding
feature for today's websites. It lets the website to adapt in difference viewport sizes
nicely. But, if you think that building a responsive website is hard, wait until you have
finished this book.

It will also show you how to use some development tools that allow you to build responsive
websites faster, more efficiently with lesser number of hurdles.

What this book covers
Chapter 1, Responsive Web Design, explains the basics of responsive web design, explores the
development tools to build it, and highlights some good examples of a responsive website.

Chapter 2, Constructing a Responsive Portfolio Page with Skeleton, introduces Skeleton,
discusses how to use its responsive grid, and starts the first project by constructing the
webpage with HTML5.

Chapter 3, Enhancing the Portfolio Website with CSS3, introduces some additional features in
CSS3 like Transforms and Transitions, and discusses how to incorporate them to enhance our
responsive portfolio website.

Chapter 4, Developing a Product Launch Site with Bootstrap, introduces Bootstrap
framework, and explores some of its components to build responsive websites.

Chapter 5, Enhancing the Product Launch Site with CSS3 and LESS, explains several LESS
functions to author CSS3, and discusses how to use them to make our responsive Product
Launch site look stunning, yet also maintainable. In this chapter, we also test our website to
see how it looks in several difference viewport sizes.

Preface

[2]

Chapter 6, A Responsive Website for Business with Foundation Framework, introduces
Foundation framework, and walks through the key features. We also start the third project
to build responsive website for business purposes.

Chapter 7, Extending Foundation, explores the Sass CSS preprocessors, SCSS and Compass,
and discusses how to extend the website appearance by configuring several Foundation
framework variables.

What you need for this book
You will need, at least a basic understanding in HTML and CSS, a code editor, and
modern browsers.

Who this book is for
This book aims for beginners who are quite familiar with HTML and CSS, and want to extend
their skills to develop responsive websites that virtually fit on any screen size.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the workings of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Preface

[3]

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These practical challenges and give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You may
notice that we used the Unix command rm to remove the Drush directory rather than the
DOS del command."

A block of code is set as follows:

<meta name="viewport" content="width=device-width, initial-scale=1">

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<picture alt="responsive images">
 <source src=big.jpg media="min-width:768px">
 <source src=medium.jpg media="min-width:320px">
 <source src=small.jpg>

</picture>

Any command-line input or output is written as follows:

compass watch

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Responsive Web Design

The number of users and features for mobile devices have been increasing
exponentially in the last few years. Mobile browsers can now render web pages
as good as desktop browsers can, so it is now a common sight to see people
enjoying browsing through websites from their phones or tablets. The number
of mobile users will grow even larger in the future; Cisco predicts that there will
be about 788 million mobile-only users by 2015 [http://www.cisco.com/
en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/
white_paper_c11-520862.pdf].

This event surely comes with a consequence on the other side. Designers are
forced to think of new ways to deliver web pages for mobile users; we can
definitely no longer rely on the static grid, since the sizes of mobile devices are
too varied. In 2010, Ethan Marcotte [http://ethanmarcotte.com/] coined
a new answer to this situation called responsive web design [RWD] that now
has become a popular practice in web design to deliver web pages in varying
viewport sizes [http://www.alistapart.com/articles/responsive-
web-design/].

John Allsopp (http://johnfallsopp.com/) had
actually foretold the adaptability of web pages twelve
years earlier in his post A Dao of Web Design
(http://www.alistapart.com/articles/dao/).

1

Responsive Web Design

[8]

In this first chapter we will:

 � Take a glance at the basics of responsive web design and its
current limitations

 � Take a look at the responsive frameworks that we are going to use to
build responsive websites

 � Look into CSS preprocessors and their syntax to compose styles

 � Prepare the tools to build responsive websites

Let's get started.

Basic responsive web design
RWD basically allows a website to respond or adapt to a different viewport size, smaller
or larger, without your having to set a specific domain/subdomain for people using mobile
devices. The look and feel of the website can be maintained as to have similar experiences
across different device sizes. This is possible with the use of viewport meta tag and CSS3
media queries.

Viewport meta tag and CSS3 media queries
A responsive website is primarily built with two components. The first component is the
viewport meta tag (http://developer.apple.com/library/ios/#documentation/
AppleApplications/Reference/SafariWebContent/UsingtheViewport/
UsingtheViewport.html). This tag is placed inside the <head> tag and is used to control
the scale of the web page.

For example, adding the following viewport meta tag with initial-scale set to 1 will
allow the web page to be scaled by 100 percent of the viewport size upon opening it for the
first time.

<meta name="viewport" content="width=device-width, initial-scale=1">

Ian Yates (http://www.snaptin.com/) has exclusively
covered the use of the viewport meta tag in his post at
Webdesigntuts+ (http://webdesign.tutsplus.com/
tutorials/htmlcss-tutorials/quick-tip-dont-
forget-the-viewport-meta-tag/).

Chapter 1

[9]

The second component is the CSS3 media queries (http://www.w3.org/TR/
css3-mediaqueries/), which specify the styles for specific viewport sizes.
For instance, the following code snippet shows how we can hide images when
the viewport size is between 321 px and 480 px:

Downloading the example code

You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

@media screen and (min-width: 321px) and (max-width: 480px) {
 img { display: none; }
}

The SmashingMagazine website (http://www.smashingmagazine.com/) is a good
example to illustrate how responsive web design is executed; the following screenshot
shows how it is displayed in two different viewports. Note how the search button text
changes from Search to Go! in the smaller viewport size.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Responsive Web Design

[10]

The website http://www.barackobama.com/ is also a good example of a
responsive website:

For more inspiration on responsive websites, you can visit
http://mediaqueri.es/.

Limitations of responsive web design
At this point, RWD is not quite perfect; there are several issues to be resolved, including
making the image responsive. The current practice for making the image responsive is to
scale it to fit the viewport with max-width: 100%, or possibly to hide it with display:
none when the image is not needed.

Chapter 1

[11]

The problem with this practice is that it only alters the image presentation on the surface,
while the actual image on the HTML document remains unaffected. This means that the
users will still be downloading the same image resolution with a larger size regardless of
their device and viewport size, which will result in wasted bandwidth consumption and could
also hurt website performance particularly for mobile users.

From the preceding screenshot, you can see that the image is resized responsively to the
viewport size, however the image resolution and size has not changed.

Responsive image with picture element
Recently at World Wide Web Consortium (W3C), a group called Responsive Image
Community Group (http://www.w3.org/community/respimg/) proposed a new
element called <picture> to address the situation. This <picture> element enables the
delivery of a proper image size and resolution based on a particular situation. It is worth
noting that this new element, at the time of the writing, is still in the draft stage, which
means that it is yet to be implemented by the browser vendors. This specification may be
changed or even removed in the future.

Now let's take a look at the following code example:
<picture alt="responsive images">
 <source src=big.jpg media="min-width:768px">
 <source src=medium.jpg media="min-width:320px">
 <source src=small.jpg>

</picture>

Responsive Web Design

[12]

The preceding code snippet will deliver the big.jpg image file with a high resolution and
probably a wider width only when the viewport is at a minimum
of 768px, while the medium.jpg image file with a lower resolution and file size
will be delivered when the viewport is at a minimum of 320px.

Then, when these conditions are not met, the smaller image small.jpg will be delivered.
Lastly, at the bottom of the list, we also have one more image with the element; this
is additionally used to provide a backup image for the browsers that do not support the
<picture> element.

Let's see how we can use this element in a situation where scaling down the image is not the
suitable approach.

Let's say we have an extremely wide image like a panorama and want to use it as the header
on our website. When we'll view this image on the desktop's screen, we most likely won't
find any issue, and the image will be clearly viewable.

However, when we view this image in a smaller viewport, the image is now too narrow and
the people in the image are barely viewable. If there is text in the image, reading it will be
hard on the eyes.

Chapter 1

[13]

In this case, it will be more sensible to display different image proportions rather than scaling
down the image, and using the <picture> element, this scenario would become possible.
The following screenshot shows how we replace the image with the cropped version for a
smaller viewport. Do you notice the difference? The people in this image look closer.

If you can't wait to implement this ideal responsive image as
demonstrated with the <picture> element, you
can use a server-side solution with Adaptive Image (http://
adaptive-images.com/) created by Matt Wilcox
(http://mattwilcox.net/); technically, it
will detect the user's screen size and deliver the appropriate
image based on the screen size.

Or you can also use a polyfill (http://remysharp.
com/2010/10/08/what-is-a-polyfill/) to
mimic the <picture> element functionality
(https://github.com/scottjehl/picturefill).

Furthermore, at .NET magazine (http://www.netmagazine.com/), James
Young (http://offroadcode.com/) has done a survey for his fellow designers
to understand the common problems with responsive web design and how to
avoid them. You can head over to the post at http://www.netmagazine.com/
features/top-responsive-web-design-problems-and-how-avoid-them and
join the discussion.

Responsive Web Design

[14]

Learn more about HTML5 and CSS3
Having a fairly good understanding of basic HTML5 or CSS3 would be really helpful to follow
the projects in this book. You shouldn't be afraid though, as we will explain what the code
in this book does, in order for you to understand what is happening in each step of building
responsive websites.

Additionally, Packt Publishing has published a book covering these subjects in depth; it
is called Responsive Web Design with HTML5 and CSS3 (http://www.packtpub.com/
responsive-web-design-with-html-5-and-css3/book) written by Ben Frain
(http://www.benfrain.com/). It is a good book for you to start digging into HTML5,
CSS3, and responsive web design.

Just in case this is your first time of dealing with HTML5 and CSS3,
there are many good resources to help you understand these
subjects in more detail.

 � Dive Into HTML5 (http://diveintohtml5.info/)
 � Write Semantic Markup (http://css-tricks.
com/video-screencasts/100-lets-write-
semantic-markup/)

 � Sitepoint CSS Reference (http://reference.
sitepoint.com/css)

 � Using CSS3 (http://css-tricks.com/video-
screencasts/57-using-css3/)

Or else, if you are still puzzled with what RWD is all about, at
this point we suggest you watch the screencast Braindump
on Responsive Web Design (http://css-tricks.com/
video-screencasts/102-braindump-on-responsive-
web-design/) by Chris Coyier that is available at CSS Tricks
(http://css-tricks.com/).

Chapter 1

[15]

Introduction to RWD frameworks
Certainly, whether you are a beginner designer or an expert, creating a responsive website
from the ground up can be convoluted. This is probably because of some indispensable
technical issues in RWD, such as determining the proper number of columns in the grid and
calculating the percentage of the width for each column, determining the correct breakpoint,
and other technicalities that usually appear in the development stage. So in this book, rather
than creating responsive web design from scratch, we will be using frameworks to help us
out and make things a little easier in the process.

Many threads regarding the issues of creating responsive
websites are open on StackOverflow:

 � CSS Responsive grid 1px gap issue
(http://stackoverflow.com/
questions/12797183/css-
responsive-grid-1px-gap-issue)

 � @media queries - one rule overrides another?
(http://stackoverflow.com/
questions/12822984/media-queries-
one-rule-overrides-another)

Why use frameworks?
Following are a few reasons why using a framework is considered a good option:

 � Time saver: If done right, using a framework could obviously save a lot of time. A
framework generally comes with predefined styles and rules, such as the width of
the gird, the button styles, font sizes, form styles, CSS reset, and other aspects to
build a website. So, we don't have to repeat the same process from the beginning
but simply follow the instructions to apply the styles and structure the markup.
Bootstrap, for example, has been equipped with grid styles (http://twitter.
github.com/bootstrap/scaffolding.html), basic styles (http://twitter.
github.com/bootstrap/base-css.html), and user interface styles (http://
twitter.github.com/bootstrap/components.html).

 � Community and extension: A popular framework will most likely have an active
community that extends the framework functionality. jQuery UI Bootstrap is
perhaps a good example in this case; it is a theme for jQuery UI that matches the
look and feel of the Bootstrap original theme. Also, Skeleton, one of the frameworks
we are going to use in this book, has been extended to the WordPress theme
(http://themes.simplethemes.com/skeleton/) and to Drupal (http://
demo.drupalizing.com/?theme=skeleton).

Responsive Web Design

[16]

 � Cross browser compatibility: This task of assuring how the web page is displayed
on different browsers is a really painful one. With a framework, we can minimize
this hurdle, since the developers, most likely, have done this job before the
framework is released publicly. Foundation is a good example in this case.
It has been tested in the iOS, Android, and Windows Phone 7 browsers
(http://foundation.zurb.com/docs/support.html).

 � Documentation: A good framework also comes with documentation. The
documentation will be very helpful when we are working with a team,
to get members on the same page and make them follow the standard
code-writing convention. Bootstrap (http://twitter.github.com/
bootstrap/getting-started.html) and Foundation (http://
foundation.zurb.com/docs/index.php), for example, have provided detailed
documentation on how to use the framework.

There are actually many responsive frameworks to choose from, but as we mentioned, the
ones that we are going to use in this book are Skeleton, Bootstrap, and Foundation. Let's
take a look.

Skeleton
Skeleton (http://www.getskeleton.com/) is a minimal responsive framework; if
you have been working with the 960.gs framework (http://960.gs/), Skeleton should
immediately look familiar. Skeleton is 960 pixels wide with 16 columns in its basic grid; the
only difference is that the grid is now responsive by integrating the CSS3 media queries.

In case this is the first time you have heard about 960.gs or Grid
System, you can follow the screencast tutorial by Jeffrey Way
available at http://learncss.tutsplus.com/lesson/
css-frameworks/. In this screencast, he shows how Grid System
works and also guides you to create a website with 960.gs. It is a good
place to start with Grid System.

Bootstrap
Bootstrap (http://twitter.github.com/bootstrap/) was originally built by Mark
Otto (http://markdotto.com) and only intended for internal use in Twitter. Short story:
Bootstrap was then launched as a free software for public. In it's early development, the
responsive feature was not yet included; it was then added in Version 2 in response to the
increasing demand for RWD.

Chapter 1

[17]

Bootstrap has a lot more added features as compared to Skeleton. It is packed with styled
user interface components of commonly-used interfaces on a website, such as buttons,
navigation, pagination, and forms. Beyond that, Bootstrap is also powered with some custom
jQuery plugins, such as a tab, carousel, popover, and modal box.

To get started with Bootstrap, you can follow the tutorial series (http://www.youtube.
com/playlist?list=PLA615C8C2E86B555E) by David Cochran (https://twitter.
com/davidcochran). He has thoroughly explained from the basics to utilizing the plugins in
this series.

Bootstrap has been associated with Twitter so far, but since the
author has departed from Twitter and Bootstrap itself has grown
beyond expectation, Bootstrap is likely to get separated from
the Twitter brand as well (http://blog.getbootstrap.
com/2012/09/29/onward/).

Foundation
Foundation (http://foundation.zurb.com) was built by a team at ZURB
(http://www.zurb.com/about/), a product design agency based in California.
Similar to Bootstrap, Foundation is beyond just a responsive CSS framework; it is
equipped with predefined styles for a common web user interface, such as buttons
(http://foundation.zurb.com/docs/components/buttons.html), navigation
(http://foundation.zurb.com/docs/components/top-bar.html), and forms. In
addition to this, it has also been powered up with some jQuery plugins. A few high-profile
brands, such as Pixar (http://projection.pixar.com/) and National Geographic
Channel (http://globalcloset.education.nationalgeographic.com/), have
built their website on top of this framework.

Who is using these frameworks?
Now, apart from the two high-profile names we have mentioned in the preceding section, it
will be nice to see what other brands and websites have been doing with these frameworks
to get inspired. Let's take a look.

Responsive Web Design

[18]

Hivemind
Hivemind is a design firm based in Wisconsin. Their website (www.ourhivemind.com)
has been built using Skeleton. As befits the Skeleton framework, their website is very neat,
simple, and well structured. The following screenshot shows how it responds in different
viewport sizes:

Living.is
Living.is (http://living.is) is a social sharing website for living room stuff, ideas, and
inspiration, such as sofas, chairs, and shelves. Their website has been built using Bootstrap.
If you have been examining the Bootstrap UI components yourself, you will immediately
recognize this from the button styles. The following screenshot shows how the Living.is page
is displayed in the large viewport size:

Chapter 1

[19]

When viewed in a smaller viewport, the menu navigation is concatenated, turning into a
navigation button with three stripes, as shown in the following screenshot. This approach
now seems to be a popular practice, and this type of button is generally agreed to be a
navigation button; the new Google Chrome website has also applied this button approach in
their new release.

Responsive Web Design

[20]

When we click or tap on this button, it will expand the navigation downward, as shown in the
following screenshot:

To get more inspiration from websites that are built with Bootstrap,
you can visit http://builtwithbootstrap.com/. However,
the websites listed are not all responsive.

Swizzle
Swizzle (www.getswizzle.com) is an online service and design studio based in Canada.
Their website is built on Foundation. The following screenshot shows
how it is displayed in the large viewport size:

Chapter 1

[21]

Swizzle used a different way to deliver their navigation in a smaller viewport. Rather than
expanding the menu as Bootstrap does, Swizzle replaces the menu navigation with a MENU
link that refers to the navigation at the footer.

Responsive Web Design

[22]

The cons
Using a framework also comes with its own problems. The most common problems found
when adopting a framework are as follows:

 � Excessive codes: Since a framework is likely to be used widely, it needs to cover
every design scenario, and so it also comes with extra styles that you might not
need for your website. Surely, you can sort out the styles and remove them, but this
process, depending on the framework, could take a lot of time and could also be a
painful task.

 � Learning curve: The first time, it is likely that you will need to spend some time to
learn how the framework works, including examining the CSS classes, the ID, and the
names, and structuring HTML properly. But, this probably will only happen in your
first try and won't be an issue once you are familiar with the framework.

 � Less flexibility: A framework comes with almost everything set up, including the grid
width, button styles, and border radius, and follows the standard of its developers. If
things don't work the way we want them to, changing it could take a lot of time, and
if it is not done properly, it could ruin all other code structure.

Other designers may also have particular issues regarding using a
framework; you can further follow the discussion on this matter
at http://stackoverflow.com/questions/203069/
what-is-the-best-css-framework-and-are-they-
worth-the-effort. The CSS Trick forum has also opened a
similar thread on this topic at http://css-tricks.com/
forums/discussion/11904/css-frameworks-the-
pros-and-cons/p1.

Tools required to build responsive websites
There are several tools that we will need to build our website from the projects in this book.
To build a responsive website, we will need web browsers, code editors, and responsive
bookmarklets for responsive design testing.

Chapter 1

[23]

Web browsers
We will need a browser to develop and view the result of our responsive websites.
I personally suggest using Firefox (http://www.mozilla.org/firefox) or Chrome
(www.google.com/chrome) as the main browser for development. You can also install
Opera (http://www.opera.com/), Safari (http://www.apple.com/safari/), and
Internet Explorer (http://windows.microsoft.com/en-US/internet-explorer/
downloads/ie-9/worldwide-languages) to make sure that the website is displayed
properly in those browsers.

Code editors
A code editor is an indispensable equipment for developing a website. Technically, you can
use any code editor as long as it can highlight the code properly.

My personal preference and the one that I have used in this book is Sublime Text 2. This
editor is available for Windows, OS X, and Linux. It can be downloaded for free from
http://www.sublimetext.com/2 for the purpose of evaluating with an unlimited period
of time. However, it sometimes bugs you to purchase the license.

If you are annoyed with this behavior, consider purchasing the license or using other options
for code editors.

OS Code editors

Windows Notepad++ (http://notepad-plus-plus.org/)

WebMatrix (http://www.microsoft.com/web/webmatrix/)

TextPad (http://www.textpad.com/)

OS X TextWrangler (http://www.barebones.com/products/
textwrangler/)

MacVim (http://code.google.com/p/macvim/)

Brackets (http://brackets.io/)

Linux Gedit (http://projects.gnome.org/gedit/)

Geany (http://www.geany.org/)

BlueFish (http://bluefish.openoffice.nl/index.html)

Responsive bookmarklets
It is better to test responsive websites on real mobile devices, such as iPhones and iPads,
Android or Windows Phones, and Nokia devices. But if the budget doesn't allow, you can use
a tool called a responsive bookmarklet.

Responsive Web Design

[24]

It is a sort of emulator tool to test responsive design by resizing the dimension of the
viewable area in the browsers. There are a lot of responsive bookmarklets available today.
Here are some of them:

 � RWD demonstration (http://jamus.co.uk/demos/rwd-demonstrations/)

 � Screenqueri.es (http://screenqueri.es/)

 � Responsinator (http://www.responsinator.com/)

 � ResposnivePX (http://responsivepx.com/)

 � Resizer (http://codebomber.com/jquery/resizer/)

 � Screen Fly (http://quirktools.com/screenfly/)

 � Adobe Edge Inspect (http://html.adobe.com/edge/inspect/)

If you are using Firefox 15 or higher (http://www.mozilla.org/en-US/firefox/new/),
you can use its built-in feature called Responsive Design View. This can be accessed by
navigating to Tools | Web Developer | Responsive Design View.

You can also have similar functionality in Chrome with an extension called
Window Resizer (https://chrome.google.com/webstore/detail/
kkelicaakdanhinjdeammmilcgefonfh). Safari users can use Resize Safari
(http://resizesafari.com/).

Chapter 1

[25]

A brief introduction to CSS preprocessors
There is one more thing to be discussed before we begin work on the projects in this book,
namely CSS preprocessors. What are they? Simply put, a CSS preprocessor extends CSS
capabilities. By using CSS preprocessor, we can compose CSS in more dynamic ways. CSS
preprocessors allow us to use variables and functions, as in programming languages such as
JavaScript and PHP, to compose the styles.

There are several CSS preprocessors available today, such as LESS (http://lesscss.
org/), Sass (http://sass-lang.com/), and Stylus (http://learnboost.github.com/
stylus/). However, in this book we will limit our discussion to LESS and Sass. As these are
some CSS preprocessors that have been adopted in the responsive frameworks, we are going
to use them in this book. Bootstrap utilizes LESS as its style foundation, while Sass is adopted in
Foundation.

CSS preprocessor compiler tool
CSS preprocessors, such as LESS and Sass, are written in a language that browsers do not
recognize. So we have to compile it into standard CSS form, which browsers can read, and
deliver the result with a compiler. There are several CSS preprocessor compilers available
today; following is the list:

Tool Supported languages OS Price

Less.js (http://lesscss.
org) and Node.js (http://
nodejs.org/)

LESS Windows, OS X, and
Linux

Free

WinLESS (http://winless.
org/)

LESS Windows Free

LESS.app (http://
incident57.com/less/)

LESS OS X Free

Simpless (http://
wearekiss.com/
simpless)

LESS Windows and OS X Free

ScoutApp (http://mhs.
github.com/scout-app/)

Sass Windows and OS X Free

ChrunchApp (http://
crunchapp.net)

LESS Windows, OS X, and
Linux

Free

Terminal or Command Prompt LESS and Sass Windows, OS X, and
Linux

Free

http://lesscss.org
http://lesscss.org
http://nodejs.org/
http://nodejs.org/
http://winless.org/
http://winless.org/
http://incident57.com/less/
http://incident57.com/less/
http://wearekiss.com/simpless
http://wearekiss.com/simpless
http://wearekiss.com/simpless
http://mhs.github.com/scout-app/
http://mhs.github.com/scout-app/
http://crunchapp.net
http://crunchapp.net

Responsive Web Design

[26]

Tool Supported languages OS Price

CompassApp (http://
compass.handlino.com)

Sass Windows, OS X, and
Lunix

$ 10

Codekit (http://
incident57.com/
codekit/)

LESS, Sass, and Stylus OS X $ 25

The tools listed in the preceding table, particularly with GUI (graphical user interface), are
sufficiently easy to use. However, we will discuss this matter further when we are about to
work on the projects. For now, let's see how we write styles in the LESS and Sass languages.

LESS
LESS is a JavaScript-based CSS preprocessor created by Alexis Sellier
(http://alexissellier.com/). As mentioned, LESS is used by Bootstrap,
one of the frameworks we will explore in this book. LESS allows us to compose
styles with some programming features. The following are the ones that we may
use frequently in the projects in this book:

 � Nesting rules

 � Variables

 � Mixins

 � Parametric mixins

 � Operation

Nesting rules
Traditionally in CSS, when we need to apply styles for the elements, let's say, under the nav
element with class set to nav-primary, we may write the styles in the following way:

.nav-primary {
 background-color: #000;
 width: 100%;
}
.nav-primary ul {
 padding: 0;
 margin: 0;
}

http://compass.handlino.com
http://compass.handlino.com
http://incident57.com/codekit/
http://incident57.com/codekit/
http://incident57.com/codekit/

Chapter 1

[27]

.nav-primary li {
 display: inline;
}
.nav-primary li a {
 text-decoration: none;
 color: #fff;
}
.nav-primary li a:hover {
 color: #ccc;
}

As you can see, we repeat the parent class selector, .nav-primary, each time we apply styles
to the elements under it. With LESS, we can eliminate this repetition and slightly simplify this
code by nesting the CSS rules, as shown in the following example:

.nav-primary {
 background-color: #000;
 width: 100%;
 ul {
 padding: 0;
 margin: 0;
 }
 li {
 display: inline;
 a {
 text-decoration: none;
 color: #fff;
 &:hover {
 color: #ccc;
 }
 }
 }
}

There is nothing fancy in this code; we have just written it in a different way by nesting the
style rules.

Responsive Web Design

[28]

Variables
Variables in LESS, as in all programming languages, are useful to store a constant or fixed
value; this value can later be assigned to the entire stylesheet. In LESS, a variable is defined
with the @ sign and followed by the variable name. The variable name can be a combination
of numbers and letters. In the following example, we will create some LESS variables to store
colors and assign the variables to the style rules to pass the value.

@primaryColor: #234fb4;
@secondaryColor: #ffb400;
a {
 color: @primaryColor;
}
button {
 background-color: @secondaryColor;
}

In regular CSS, the preceding code will be compiled into the following code snippet:

a {
 color: #234fb4;
}
button {
 background-color: #ffb400;
}

Using variables, however, is not limited to storing colors, as we demonstrated in the
preceding example. We can use variables for any other types of values, such as the radius
size, for example:

@smallRadius: 3px;

One of the advantages of using variables is that in case we need to make changes, we
don't have to search through the entire stylesheet; we can simply change the variable. This
certainly is a time saver.

Mixins
Mixins are like variables; however, rather than storing a single value, we are able to store a
set of CSS properties. These properties can later be inherited by other CSS rulesets. Let's say
we have the following CSS rules in the stylesheet:

.links {
 -webkit-border-radius: 3px;
 -mox-border-radius: 3px;
 border-radius: 3px;
 text-decoration: none;

Chapter 1

[29]

 font-weight: bold;
}
.box {
 -webkit-border-radius: 3px;
 -mox-border-radius: 3px;
 border-radius: 3px;
 position: absolute;
 top: 0;
 left: 0;
}
.button {
 -webkit-border-radius: 3px;
 -mox-border-radius: 3px;
 border-radius: 3px;

}

In the preceding example, we declared border-radius in three different CSS rules.
Each time we declare it in other CSS rules, we need to include the prefixes to cover earlier
browsers. In LESS, we are able to concatenate this border radius and have it inherited by
other CSS rules in the stylesheet using mixins. A mixin in LESS is simply defined with a class
selector; in this example, we will create a mixin called .border-radius:

.border-radius {
 -webkit-border-radius: 3px;
 -moz-border-radius: 3px;
 border-radius: 3px;
}

Then, we can insert .border-radius to the other CSS rules to pass the same properties,
as follows:

.links {
 .border-radius;
 text-decoration: none;
 font-weight: bold;
}
.box {
 .border-radius;
 position: absolute;
 top: 0;
 left: 0;
}
.button {
 .border-radius;
}

Responsive Web Design

[30]

Parametric mixins
Furthermore, we can also extend mixins into a function, or in this case it is officially called
parametric mixins. This method allows us to add an argument or variables and make the
mixins configurable. Let's see the example discussed here.

We are still using our previous example. But this time, we will not assign a fixed value;
instead we will replace it with a variable, as follows:

.border-radius(@radius) {
 -webkit-border-radius: @radius;
 -moz-border-radius: @radius;
 border-radius: @radius;
}

Now, we can insert this mixin into other CSS rulesets and assign a different value
for each.

a {
 .border-radius(3px);
 text-decoration: none;
 font-weight: bold;
}
div {
 .border-radius(10px);
 position: absolute;
 top: 0;
 left: 0;
}
button {
 .border-radius(12px);
}

When we compile it into a regular CSS, the preceding LESS code will be converted into the
following:

a {
 -webkit-border-radius: 3px;
 -moz-border-radius: 3px;
 border-radius: 3px;
 text-decoration: none;
 font-weight: bold;
}
div {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;

Chapter 1

[31]

 border-radius: 10px;
 position: absolute;
 top: 0;
 left: 0;
}
button {
 -webkit-border-radius: 12px;
 -moz-border-radius: 12px;
 border-radius: 12px;
}

As you can see from the examples, this practice could be very helpful when we are working
with the CSS3 properties, eliminating the requirement to write the vendor prefixes
repeatedly.

There is a LESS extension called LESS Elements (http://
lesselements.com/) that contains a number of very useful
CSS3 mixins. If you plan to work with LESS, you can simply use
this extension to cut your workload. Furthermore, SitePoint has
also covered the use of LESS mixins in depth in a post available
at http://www.sitepoint.com/a-comprehensive-
introduction-to-less-mixins/.

Operations
We can also perform simple Math operations with LESS, such as addition, subtraction,
division, and multiplication. Operations could be pretty useful in certain circumstances.
In this example, we are going to calculate the proper width of the box by subtracting the
padding from it so that it can fit in the parent container.

First, we will define the variable for the padding with the @padding variable:

@padding: 10px;

Then, we specify the box width and subtract the @padding variable from it:

.box {
 padding: @padding;
 width: 500px – (@padding * 2);
}

Responsive Web Design

[32]

Remember that padding takes any two sides of the box, either the right and left or top and
bottom, so as you can see that is why we multiply the @padding variable in the width
property by 2. Finally when we compile this LESS operation into regular CSS, the example
code will look like the following:

.box {
 padding: 10px;
 width: 480px;
}

In other cases, we can do the same to the height property, as follows:

.box {
 padding: @padding;
 width: 500px – (@padding * 2);
 height: 500px – (@padding * 2);
}

Sass (Syntactically Awesome Stylesheets)
Sass is a Ruby-based CSS preprocessor created by Hampton Catlin (http://www.
hamptoncatlin.com/), Nathan Weizenbaum (http://nex-3.com/), and Chris Eppstein
(http://chriseppstein.github.com/). Like LESS, Sass has the ability
to add variables, mixins, and nesting rules, albeit with a few differences. Let's take
a look at each of these.

Variables
In Sass, a variable is defined with the $ sign. Similar to our example with LESS, here we
define the primary color in the Sass variable with $primaryColor and assign it to the style
rules, as follows:

$primaryColor: #234fb4;
a {
 color: $primary;
}
button {
 background-color: $primaryColor;
}

Chapter 1

[33]

Similar to LESS, when we compile this code into a regular CSS, it gets converted into the
following:

a {
 color: #234fb4;
}
button {
 background-color: #234fb4;
}

Mixins
In Sass, a mixin is defined a bit differently than a mixin in LESS. The mixin in Sass is defined
with the @mixin directive. Similar to our previous example in the LESS section, here we
define a mixin for the border radius and then assign it to other rulesets with the @include
directive, as follows:

@mixin border-radius {
 -webkit-border-radius: 3px;
 -moz-border-radius: 3px;
 border-radius: 3px;
}
a {
 @include border-radius;
 text-decoration: none;
 font-weight: bold;
}
div {
 @include border-radius;
 position: absolute;
 top: 0;
 left: 0;
}
button {
 @include border-radius;
}

Furthermore, we can also add an argument to a Sass mixin like we did in LESS,
as follows:

@mixin border-radius($radius) {
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 border-radius: $radius;
}

Responsive Web Design

[34]

Nested rules
Sass also allows us to nest rules, but it takes this method a step further. In Sass, we are able
to nest individual property. Let me show you how to do it. First of all, in regular CSS, we
sometimes define styles with their individual properties, as follows:

div {
 border-color: #ccc;
 border-style: solid;
 border-width: 5px;
}

In Sass, we can nest this rule in the following way:

div {
 border: {
 color: #ccc;
 style: solid;
 width: 5px;
 }
}

Selector inheritance
Selector inheritance sounds like a mixin, but it actually acts in a different way. While a mixin
will inherit the styles to the other assigned selectors, selector inheritance will eventually
group the selectors that share certain styles.

In the following example, we have the .button class, which defines the general styles of a
button:

.button {
 padding: 5px 15px;
 border-radius: 3px;
 color: #fff;
 border: 1px solid #000;
}

We also have two types of buttons, namely Submit and Reset, and each will be defined with
the .submit and .reset classes respectively. These buttons will have the general styles,
except the background color, to convey their different purposes. In that case, we can utilize
selector inheritance by assigning the .button class to other rulesets with the @extend
directive, as shown in the following code snippet:

.submit {
 @extend .button;
 background-color: green;
}

Chapter 1

[35]

.reset {
 @extend .button;
 background-color: red;
}

Unlike the mixin methods that simply duplicate the CSS properties to the assigned rulesets,
selector inheritance, as mentioned, will group the selectors that share the same styles from
the .button class. The preceding code will be converted into the following when compiled
with regular CSS:

.button, .submit, .reset {
 padding: 5px 15px;
 border-radius: 3px;
 color: #fff;
 border: 1px solid #000;
}
.submit {
 background-color: green;
}
.reset {
 background-color: red;
}

Learning more on CSS preprocessors
Unfortunately, we are not going to dive further into the CSS preprocessor as it is actually
beyond the scope of this book, and there are many other CSS preprocessor features that
are yet to be covered. So if you are interested in the subject, I recommend you refer to the
following sections.

Learning LESS
To learn more about LESS, refer to the documentations mentioned as follows:

 � There is no better place to start learning about LESS than its official documentation
(http://lesscss.org/#docs). It covers anything you'll
need to know about LESS right from the basics. There are also some examples
provided to implement the languages.

 � Over at Webdesigntuts+, Daniel Pataki (http://danielpataki.com) has covered
LESS in depth and even provided more useful examples (webdesign.tutsplus.
com/tutorials/htmlcss-tutorials/
get-into-less-the-programmable-stylesheet-language/).

Responsive Web Design

[36]

 � Oliver Caldwell has shared some tips in his post (http://oli.
me.uk/2012/02/25/getting-started-with-less.html) on getting started
with LESS. He has shown how to run the LESS compiler with Node.js (http://
nodejs.org/) and NPM (https://npmjs.org/).

Learning Sass
To learn more about Saas, refer to the documentations mentioned as follows:

 � The Sass documentation is immensely comprehensive, but for me it often works as a
good sleep inducer. So, I would suggest The Sass Way (thesassway.com) for you to
start with Sass from the beginning.

 � If you prefer video rather than a text-based tutorial, you can follow the Youtube
playlist (www.youtube.com/playlist?list=PL2CB1F80266E986EA) from
LevelUpTuts that covers Sass thoroughly.

 � Chris Coyier has shared a screencast on the introduction to Sass and Compass
(http://css-tricks.com/video-screencasts/88-intro-to-compass-
sass/) at CSS Tricks.

For further reference, Jonathan Verrecchia (http://
verekia.com) has shared a good presentation slide about CSS
preprocessors (http://www.slideshare.net/verekia/
deep-dive-into-css-preprocessors). A few points that
he has discussed in this presentation include CSS's limitations, a
comparison between LESS, Sass, and Stylus, and also which CSS
preprocessors you should use.

What are we going to create in this book?
Now that we have discussed the theoretical parts to equip us for our journey in this book,
at this point you may be wondering exactly what are we going to create.

In this book, we are going to create three responsive websites with the frameworks that we
have discussed earlier in this chapter, each with its own challenges. We most likely will also
utilize the CSS preprocessor that comes with the frameworks, specifically with Bootstrap
and Foundation.

Our first project in this book will be to create a responsive portfolio website with Skeleton.
In the second project, we are going to create a responsive website for a product launch with
Bootstrap. Lastly, we are going to build a responsive website with Foundation, for business
purposes.

Chapter 1

[37]

Summary
We discussed a lot of things in this first chapter. To sum up, we discussed
the following:

 � The basic elements for creating a responsive website, viewport meta
tag, and CSS3 media queries, as well as seeing a few well-executed responsive
websites

 � The limitations of serving responsive images and also the current and future solution
for this issue

 � The frameworks that we are going to use to build websites in this book, namely
Skeleton, Bootstrap, and Foundation

 � CSS preprocessors to compose the styles for the websites LESS and Sass, as well as
learning a few of their languages

In the next chapter, we will start our first project. We are going to create a responsive
portfolio website using Skeleton.

2
Constructing a Responsive Portfolio

Page with Skeleton

In our previous chapter, we discussed responsive web design and had a first
look at the frameworks that make it possible for us to create a responsive
website more quickly.

In this chapter, we will create a simple responsive portfolio website with
Skeleton. So, if you are a creative person who wants to showcase your own
work on your own website, this could be a perfect chapter to work through.

To sum it up, here is what we will focus on in this chapter:

 � Digging into the Skeleton components

 � Utilizing the Skeleton components

 � Setting up a project with Skeleton

 � Preparing the project assets

 � Constructing a website with HTML5

So, let's get started.

Constructing a Responsive Portfolio Page with Skeleton

[40]

Getting started with Skeleton
As mentioned in the previous chapter, one of the disadvantages of using a framework is the
learning curve; we need to spend some time to learn how to use the framework, particularly
if this is the first time using it. So, before we build our responsive portfolio website with
Skeleton, it is a good idea to unpack and take a look at what is included in Skeleton.

Time for action – creating a working directory and
getting Skeleton

Perform the following steps for creating a working directory and getting Skeleton:

1. First, create a folder named portfolio. This should be our working directory for
the responsive portfolio website.

2. Under this portfolio folder, create two folders named html and psd.

3. Now it is time to get Skeleton. So, let's go to the Skeleton website (www.
getskeleton.com).

4. Go to the Download section and download the Skeleton package. At the time of
writing, the latest version of Skeleton is Version 1.2.

5. Save the downloaded file in the html folder.

6. This downloaded file is in the tar.gz format. Let's extract it to retrieve the files
inside the downloaded file.

7. After extracting, you should find two new folders named stylesheet and images,
and an HTML document named index.html. This is optional, but we can now
safely remove the .tar.gz file.

8. Lastly, from the Download section on www.getskeleton.com, download the
Skeleton PSD template, save it in the psd folder, and unpack it.

What just happened?
We have just created a working directory. We have also downloaded the Skeleton package as
well as the PSD template, and placed it in the appropriate folder to work on this project.

Chapter 2

[41]

What is included in Skeleton?
Compared to other frameworks that we have mentioned in this book, Skeleton is the
simplest. It is not overstuffed with heavy styles or additional components, such as jQuery
plugins, which we may not need for the website. Skeleton comes only with an index.html
file, a few stylesheets containing the style rules, a few images, and a PSD template. Let's have
a look at each of these.

Starter HTML document
Skeleton comes with a starter HTML template named index.html, so we don't have to
worry about writing the basic HTML document. The author of Skeleton has added the
essential elements in this template, including the parts discussed in the following sections.

The viewport meta tag
The viewport meta tag in this HTML starter template is set to 1 for both initial-scale
and maximum-scale, as shown in the following code snippet:

<meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1">

As we mentioned in the first chapter, setting initial-scale to 1 will set the web page to
be 100 percent of the viewport size, when we open the web page for the first time.

However, one thing that should be noted when setting maximum-scale to 1 is that it will
prevent the zooming ability. Thus, it is suggested to ensure that the users, later on, can
clearly see the content, text, or images, without zooming the web page.

HTML5 Shim
Since we will be using the HTML5 elements in our document, we need to include the HTML5
Shim JavaScript Library so that Internet Explorer 8 and its earlier versions recognize the new
elements from HTML5.

HTML5 Shim, by default, has also been included in the Skeleton starter HTML document; you
should find the following line inside the <head> section:

<!--[if lt IE 9]>
<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></
script>
<![endif]-->

Constructing a Responsive Portfolio Page with Skeleton

[42]

The preceding HTML5 Shim script is wrapped within the conditional comment tag that is
designated for Internet Explorer. The comment <!—-[if lt IE 9]> stated "if less than
Internet Explorer 9", which means the script within will only apply to Internet Explorer 8
and its earlier versions where new HTML5 elements are not recognized. Other browsers will
simply ignore this comment tag.

You can read a post by Paul Irish (http://paulirish.
com/2011/the-history-of-the-html5-shiv/) for
the history behind HTML5 Shim and about how it was invented
and developed.

Responsive Grid
Skeleton is equipped with Responsive Grid to quickly build responsive layout. The Skeleton's
grid system is 960 px wide and is made up from sixteen columns of grid that are defined in a
very logical naming system.

The columns are defined with the .columns class coupled with the respective column
numbers .one, .two, .three, .four, and so on, to define the column width. These classes
can be found in the skeleton.css file. The following code snippet shows the definitions of
the column numbers and column width in the stylesheet:

.container .one.column,

.container .one.columns { width: 40px; }

.container .two.columns { width: 100px; }

.container .three.columns { width: 160px; }

.container .four.columns { width: 220px; }

.container .five.columns { width: 280px; }

.container .six.columns { width: 340px; }

.container .seven.columns { width: 400px; }

.container .eight.columns { width: 460px; }

.container .nine.columns { width: 520px; }

.container .ten.columns { width: 580px; }

.container .eleven.columns { width: 640px; }

.container .twelve.columns { width: 700px; }

.container .thirteen.columns { width: 760px; }

.container .fourteen.columns { width: 820px; }

.container .fifteen.columns { width: 880px; }

.container .sixteen.columns { width: 940px; }

If you are not familiar with this practice or you don't know how it works, take a look at the
following example.

Chapter 2

[43]

In this example, we have three div elements; one of those is for the container. Inside this
container, we will have a div element to contain a main area and an aside element to
contain the sidebar area. The following code snippet shows how our markup looks in the
code editor:

<div>
 <div>
 <h3>Main Content</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Aenean consequat porttitor elementum. Mauris pulvinar semper
 lobortis. […]</p>
 </div>
 <aside>
 <h3>Sidebar</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Aenean consequat porttitor elementum. Mauris pulvinar semper
 lobortis.[…]</p>
 </aside>
</div>

Since all the styling rules for the columns are predefined, we simply need to add the
appropriate classes into these elements, as follows:

<div class="container">
 <div class="ten columns">
 <h3>Main Content</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Aenean consequat porttitor elementum. Mauris pulvinar semper
 lobortis. […] </p>
 </div>
 <aside class="six columns">
 <h3>Sidebar</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Aenean consequat porttitor elementum. Mauris pulvinar semper
 lobortis. […]</p>
 </aside>
</div>

Constructing a Responsive Portfolio Page with Skeleton

[44]

Then, if we view the document in the browser, we will see something as shown in the
following screenshot:

Yes, it's that simple. But just to remember, in Skeleton, the columns should be nested inside
an element with the .container class, otherwise the column styles will not be applied.

Clearing styles
The column's elements are defined by using the CSS float property definition, which causes
the column's parent element to collapse. To solve it, Skeleton provides special classes; we
can use either the .row class or the .clearfix class to clear things around the columns.
The following code snippet shows the clearing styles' definitions, which can be found in
skeleton.css:

.container:after { content: "\0020"; display: block; height: 0; clear:
both; visibility: hidden; }
.clearfix:before, .clearfix:after,
.row:before,
.row:after { content: '\0020'; display: block; overflow: hidden;
visibility: hidden; width: 0; height: 0; }
.row:after,
.clearfix:after { clear: both; }
.row, .clearfix { zoom: 1; }
.clear { clear: both; display: block; overflow: hidden; visibility:
hidden; width: 0; height: 0; }

Chapter 2

[45]

On the Smashing Magazine website, Louis Lazaris has
thoroughly discussed the CSS float property and how it affects
the elements around it in the post available at http://
coding.smashingmagazine.com/2009/10/19/
the-mystery-of-css-float-property/.

Media queries
Skeleton has provided CSS3 media queries to apply specific style rules for standard viewport
size and also making the grid responsive. For example, the following media query will specify
the styles for 959 px viewport size and less:

@media only screen and (max-width: 959px) {
 …
}

Remember that Skeleton is a 960 grid-based framework, which means the maximum width
of the web page would only be 960 px. So when the viewport is 959 px wide or less, in other
words, smaller than the base size, the styles under this media query will be applied. The
same idea also applies to the other defined media queries for example:

/* Tablet Portrait size to standard 960 (devices and browsers) */
@media only screen and (min-width: 768px) and (max-width: 959px) { }
/* All Mobile Sizes (devices and browser) */
@media only screen and (max-width: 767px) { }
/* Mobile Landscape Size to Tablet Portrait (devices and browsers) */
@media only screen and (min-width: 480px) and (max-width: 767px) { }
/* Mobile Portrait Size to Mobile Landscape Size (devices and
browsers) */
@media only screen and (max-width: 479px) { }

These media query definitions can be found in the skeleton.css and
layout.css stylesheet.

Referring to our previous example, the web page is already responsive, as the column classes
and the styles are predefined under the media queries in the skeleton.css stylesheet.

Constructing a Responsive Portfolio Page with Skeleton

[46]

Thus, when we view it in a much smaller viewport with—in this example it as 320 px—we
will get the result as shown in the following screenshot:

Typography styles
Typography styles have a key role in making a website readable. While the browsers have
default styles for typography, Skeleton provides an improvement in this area for some
elements, including headings, paragraphs, and pull-quotes. In Skeleton, these typography
styles are available in the base.css stylesheet.

Button styles
Skeleton provides basic styles for buttons, which are applied by adding the .button class
to some elements, such as the <button> or <a> elements, as shown in the following
code snippet:

<button class="button" type="submit">Button Element</button>
Anchor Tag

Chapter 2

[47]

The result of the preceding code snippet is rendered, as shown in the following screenshot:

Form styles
Styling form elements can be complicated. But, Skeleton simplifies the process with its
default styles. We simply need to structure the markup properly, without adding any special
classes, as shown in the following code snippet:

<form>
 <label for="name">Name</label>
 <input type="text" id="name">
 <label for="message">Message</label>
 <textarea id="message"></textarea>
 <button type="submit">Submit Form</button>
</form>

In the browsers, we will get the result as shown in the following screenshot:

Constructing a Responsive Portfolio Page with Skeleton

[48]

Apple icon devices
Skeleton comes with favicon and iOS icons, which we can easily replace with our own custom
icons, if needed. The following screenshot shows these images in different sizes for different
devices and resolutions:

The first one, which is the smallest, is the icon for iPhone. The second one, which is bigger
than the first one, is to serve the iPad, while the biggest one will be displayed for Apple
devices with higher resolution Retina Display.

You can read the documentation available at Apple Dev Center
(http://developer.apple.com/library/safari/
#documentation/AppleApplications/Reference/
SafariWebContent/ConfiguringWebApplications/
ConfiguringWebApplications.html#//apple_ref/doc/
uid/TP40002051-CH3-SW3) for more details on the use of these icons.

Photoshop template
We have downloaded a PSD template earlier in this chapter. This template contains only one
extra layer. Layer is a semi-transparent overlay showing the 16 columns of the grid, as shown
in the following screenshot:

Chapter 2

[49]

This grid is useful as a visual helper to design the website. So later on, when we translate
the design into a web document, we will know the appropriate grid number for the
translated elements.

Constructing a Responsive Portfolio Page with Skeleton

[50]

How will the website look?
At this point, you may wonder how our first website will look. It will be really simple with
only three sections: the header, the main content area that displays the portfolio, and the
footer. The following screenshot shows three different views of the website with respect to
the different viewport sizes:

Chapter 2

[51]

Website navigation
Our website's navigation will be somewhat unusual; rather than being used to move
between pages, it will be used to sort the portfolio. We have several categories of portfolios:
they are Illustration, Poster Design, Typography, and Packaging. The following screenshot
shows the result of selecting the Illustration category:

Constructing a Responsive Portfolio Page with Skeleton

[52]

Thumbnail hover effect
We will also add a fancy effect to make our website more attractive. When we hover over
one of the portfolio thumbnails, the description of that portfolio will be revealed. The
following screenshot shows this effect:

Setting up the Skeleton document
Now, it is time to set up the Skeleton document. It is important to note that when we are
working on a framework, it is best not to alter the codes in the core files, which are the
original files from the downloaded package. If we change these files, it may make our
website less maintainable, and our changes may be overwritten if the framework is upgraded
later. Thus we need to add a CSS file for our own.

Time for action – adding an extra CSS file
Perform the following steps for adding an extra CSS file:

1. Go to our working directory, portfolio.

2. Then go to the stylesheets folder and create a new file.

Chapter 2

[53]

3. Rename this new file as styles.css.

4. Open the index.html file.

5. Add the following lines inside the <head> tag, right after the default Skeleton styles
base.css, skeleton.css, and layout.css:

<link rel="stylesheet" href="stylesheets/base.css">
<link rel="stylesheet" href="stylesheets/skeleton.css">
<link rel="stylesheet" href="stylesheets/layout.css">
<link rel="stylesheet" href="stylesheets/styles.css">

What just happened?
We have just created a new stylesheet named styles.css, which we will be using for our
own styles apart from the default Skeleton styles. Then, we called this stylesheet in our
HTML document so that the styles within this stylesheet show their effect.

The reason we added this stylesheet after the other stylesheet links is because we want our
styles to take place over the other style definitions.

You can read about CSS Specificity at
http://coding.smashingmagazine.com/2007/07/27/
css-specificity-things-you-should-know/.

Adding custom fonts
Earlier we were limited to fonts that were installed on a given user's machine, which meant
that the only practical fonts were those with a broad installed base, such as Arial, Times, and
Georgia. Today, we are able to embed font families for websites apart from the ones in the
user's machine.

If you look at our design's header section, you can see that the main Porfolio heading uses an
uncommon font—in this case, Alfa Slab One.

There are several options for embedding fonts. For this website we will use Google Web
Fonts. In Google Web Fonts, we can find various font types that are allowed to be embedded
on websites for free.

Constructing a Responsive Portfolio Page with Skeleton

[54]

Time for action – embedding Google Web Fonts
Perform the following steps for embedding Google Web Fonts:

1. First, go to the Google Web Font website (http://www.google.com/webfonts).

2. Find a Search box and type Alfa Slab One; this is the name of the font that we
are going to use for the website logo.

3. Click on the Quick-use link, as shown in the following screenshot:

This will direct you to a page that contains some additional information about this
font, including how to embed it on a web page.

Chapter 2

[55]

4. There are three ways to embed a Google font: using the standard way, using the @
import rule, or using JavaScript.

For this website, we will use the standard way. So, let's copy the following line:

<link href='http://fonts.googleapis.com/css?family=Alfa+Slab+One'
rel='stylesheet' type='text/css'>

5. Open index.html and paste the preceding line inside the <head> section directly
above the links to other stylesheets, as follows:

<link href='http://fonts.googleapis.com/css?family=Alfa+Slab+One'
rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="stylesheets/base.css">
<link rel="stylesheet" href="stylesheets/skeleton.css">
<link rel="stylesheet" href="stylesheets/layout.css">
<link rel="stylesheet" href="stylesheets/styles.css">

What just happened?
We have just embedded a new font family in our HTML document from Google Web Fonts.

Alternatively, you can use the @font-face rule to embed
the font. Font Squirrel provides a handy tool to generate the
@font-face rule (http://www.fontsquirrel.com/
fontface/generator). Before embedding the fonts, be
sure you agree to the End-users License Agreement of the fonts.

Preparing the images
Since we will be working on a portfolio website, we obviously need some portfolio images to
display. I would like to thank two of my artist friends, Ferina Berliani (http://nantokaa.
tumblr.com/) and Arif Bahari (http://www.ariefbahari.com) for letting me use their
artwork, and the following images show some of their works that we will be using in this book.

http://www.ariefbahari.com
http://www.ariefbahari.com

Constructing a Responsive Portfolio Page with Skeleton

[56]

You can use your own images as long as they are sized to a 480 px by 480 px square; you
can either use Photoshop or any other image editor of your choice to do so. Then put your
images inside the images folder under the working directory and name them using this
convention: image-1.jpg, image-2.jpg, image-3.jpg, and so on. We have a total of 12
image thumbnails:

Social media icons
In addition, we will place three social media icons in our footer area: one each for Facebook,
Twitter, and Dribbble, as shown in the following screenshot:

In the default state, the icons are displayed in grey and then when we hover over these
icons, the platform's main brand color will be displayed, such as Facebook's blue and
Dribbble's pink. These icons have been provided along with this book.

However, you can substitute with any social media icons that are available on the Internet for
free. Just make sure that it is also available in 48 px by 48 px size. These social icons usually
come separately. Thus, we will need to concatenate them into one sprite file.

Chapter 2

[57]

Time for action – sprite images
In the following steps, we will turn these icons into sprite images with a free CSS Sprite
Generator Tool (http://spritegen.website-performance.org/):

1. Given the icons proper names, such as twitter.png and twitter-hover.png,
as shown in the following screenshot:

This naming convention also applies to other icons. You don't have to limit yourself
to our example; you can provide more than three icons. After all the images are
prepared, add these icons to a ZIP file.

2. Go to the CSS Generator Tool website (http://spritegen.website-
performance.org/).

3. Upload the ZIP file that we created in Step 2.

4. Under the Sprite Output Options section, enter 10 in the Horizontal Offset and
Vertical Offset fields to set them to 10 px:

5. Then, click on the Create Sprite Image & CSS button, as shown in the
following screenshot:

This will generate the sprite image as well as the CSS rule to display it.

6. Download the image and save it under the images folder in our working directory.

Constructing a Responsive Portfolio Page with Skeleton

[58]

7. Copy the CSS snippet into our style.css file. It should resemble the following
code snippet:
.sprite-dribbble-hover{ background-position: 0 0; width: 48px;
height: 48px; }
.sprite-dribbble{ background-position: 0 -58px; width: 48px;
height: 48px; }
.sprite-facebook-hover{ background-position: 0 -116px; width:
48px; height: 48px; }
.sprite-facebook{ background-position: 0 -174px; width: 48px;
height: 48px; }
.sprite-twitter-hover{ background-position: 0 -232px; width: 48px;
height: 48px; }
.sprite-twitter{ background-position: 0 -290px; width: 48px;
height: 48px; }

What just happened?
We concatenated the social media icons into one file. We will display these icons on our
website using the CSS rule that we have generated. This practice is known as CSS Sprite.

Alternatively, you can also follow a screencast by Chris Coyier available
at CSS Tricks to create a sprite image in Photoshop (http://css-
tricks.com/video-screencasts/43-how-to-use-css-
sprites/), and as an addition, you can also follow a screencast by
Lynda on how to create a sprite grid to help you in positioning sprite
images (http://www.youtube.com/watch?v=Gq7XCMofxcQ).

Or else, if you are not familiar with CSS Sprites, Dave Shea has discussed
this method thoroughly at A List Apart (http://www.alistapart.
com/articles/sprites).

Contact icons
Our footer will include contact information, such as name, phone number, and e-mail
address, each with its own icon as illustrated in the following screenshot:

Chapter 2

[59]

These icons have been provided along with the code files available with this book, but you
can use other icons in 24 px by 24 px size, which are available on the Internet. Similarly, if the
icons come separately, you need to concatenate them in one file and generate the CSS rules,
as we have demonstrated in the preceding section.

HTML5 elements
HTML5 introduces many new elements and we will use some of them for this website, such
as <header>, <section>, <figure>, <figcaption>, and <footer>.

Element Discussion
<header> This is used for defining the head of a section. The <header>

element can be used for the website's header and also the head of
other sections where it is reasonable to add it, such as the article's
header.

<footer> The <footer> element defines the end or the lowest part of a
section. Like the <header> element, <footer> can also be used
for the website's footer or the footer part of other sections.

<section> <section> can somehow be confusing. But according to the
specifications (http://www.w3.org/html/wg/drafts/
html/master/sections.html#the-section-element),
the <section> element represents a generic section of a
document or application.

<figure> The <figure> element is used to represent the document
figure, such as an illustration or an image. It can be used with
<figcaption> to add the caption, if needed.

<figcaption> As mentioned, <figcaption> represents the caption of
the document's figure. Thus, it should be used along with the
<figure> element.

Now, let's add these elements to our document.

HTML5 custom data attributes
There are times when developers need to retrieve data within specific elements for further
data processing. In the past, some developers used to rely on the rel or class attributes
to store that data, but that way leads to breaking the validity of the document's structure.

Constructing a Responsive Portfolio Page with Skeleton

[60]

To accommodate that situation, HTML5 introduced a new attribute called custom data
attribute. We can use this attribute to embed custom data within an HTML element. This
attribute is specified with data- and followed by the attribute name. For example, an online
gaming website can list the top players and use data attributes to store their scores.

<ul id="top-players">
 <li class="player-name" data-score="98.9">John Doe
 <li class="player-name" data-score="80.5">Someone Else
 <li class="player-name" data-score="70.2">Friend Someone Else

It is worth noting that the custom data attribute should only be used when we do not find
any applicable or more appropriate attribute for that data. Storing the scores in the class
attribute as class="98.9" is definitely not an applicable approach.

For further reference on data attributes, you can head over to
the following pages:

 � A documentation on custom data attributes available at
http://www.w3.org/html/wg/drafts/html/
master/elements.html

 � All You Need to Know About the HTML5 Data Attribute
(http://webdesign.tutsplus.com/
tutorials/htmlcss-tutorials/all-you-
need-to-know-about-the-html5-data-
attribute/)

 � An article on HTML5 data attributes by John Resig
(http://ejohn.org/blog/html-5-data-
attributes/)

Time for action – structuring the HTML document
Perform the following steps for structuring the HTML document:

1. Open the index.html file in your working directory.

2. Remove anything present between the <body> and </body> tags and replace
it with the following code snippet to establish the header section. Our website's
header is wrapped within the HTML5 <header> element and it contains the site
logo that is wrapped within a <div> element with a class of logo.
<header class="header">
 <div class="logo">
 <h1>Portfolio</h1>
 </div>
</header>

Chapter 2

[61]

3. Then, put the following <form> element with a class of container and clearfix
next to the <header> element that we just added. We use this <div> to contain
the website content.
<form class="container clearfix"> </form>

The <form> element is essentially an element like a <div> element. We use
<form> instead of <div> as we will use the HTML form elements <input> and
<label> to construct the website navigation.

You can head over to the article (http://reference.
sitepoint.com/html/elements-form) from SitePoint to
see the complete list of elements that are part of an HTML form.

4. Inside the <form> element for a container, we add the HTML structure for the
website navigation. As we mentioned earlier, our website navigation is uncommon.
We will use the radio button as an input type and each <input> element is assigned
with a unique ID followed by their respective <label> element, as shown in the
following code snippet:
<input class="nav-menu" id="all" type="radio" name="filter"
checked="checked"/>
<label for="all">All</label>

<input class="nav-menu" id="illustrations" type="radio"
name="filter"/>
<label for="illustrations">Illustration</label>

<input class="nav-menu" id="posters" type="radio" name="filter"/>
<label class="nav-menu" for="posters">Posters Design</label>

<input class="nav-menu" id="typography" type="radio"
name="filter"/>
<label for="typography">Typography</label>

<input class="nav-menu" id="packaging" type="radio"
name="filter"/>
<label for="packaging">Packaging</label>

5. Then add an HTML5 <section> element with a class of portfolio next to those
<input> and <label> elements that we just added.
<section class="portfolio"></section>

This <section> element will be used to contain the portfolio, which includes the
image thumbnails and the captions.

http://reference.sitepoint.com/html/elements-form
http://reference.sitepoint.com/html/elements-form

Constructing a Responsive Portfolio Page with Skeleton

[62]

6. Inside this <section> element, we add the portfolio image thumbnails. Each image
thumbnail is wrapped within the HTML5 <figure> element.

We have 12 image thumbnails and we will divide them into four columns. Skeleton
has 16 columns of grid and 16 divided by four results in four columns. So, each
<figure> element is assigned with classes of four and columns with two
additional classes of all and its category name.
<figure class="four columns all poster">
 <img src="images/image-1.jpg" alt=
 "This is 1st portfolio thumbnail.">
</figure>

The classes of four and columns are assigned to apply the column styles from
Skeleton, while the class of all will be used to select the <figure> element when
we need to apply CSS rules to all <figure> elements. We will use the category
name class to group the figures and also apply styles to the figures that share the
same category.

We will also provide some text that describes the image with an alt attribute. This
alt attribute is useful for the browser to show alternative information for the users,
in case the image fails to load.

7. The image thumbnails are grouped into a category. We assign the category name
with the title attribute in the <figure> element, as follows:
<figure class="four columns" title="poster">

</figure>

8. The image thumbnail will have a caption containing the portfolio's description. We
will use the HTML5 <figcaption> element to contain the description text and
place it inside the <figure> element, as follows:
<figure class="four columns all poster">
 <img src="images/image-1.jpg" alt=
 "This is 1st portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>

Chapter 2

[63]

9. Then, we will add an HTML5 data attribute to <figure> to store the category
name where the <figure> element is assigned and we simply name this
attribute data-category.
<figure class="four columns all poster">
 <img src="images/image-1.jpg" alt=
 "This is 1st portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>

Now, let's add the rest of the image thumbnails, as follows.

<figure class="four columns all illustration" data-
category="illustration">
 <img src="images/image-2.jpg" alt=
 "This is 2nd portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all poster" data-category="poster">
 <img src="images/image-3.jpg" alt=
 "This is 3rd portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all typography" data-
category="typography">
 <img src="images/image-4.jpg" alt=
 "This is 4th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all illustration" data-
category="illustration">
 <img src="images/image-5.jpg" alt=
 "This is 5th portfolio thumbnail.">
 <figcaption>

Constructing a Responsive Portfolio Page with Skeleton

[64]

 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all poster" data-category="poster">
 <img src="images/image-6.jpg" alt=
 "This is 6th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all illustration" data-
category="illustration">
 <img src="images/image-7.jpg" alt=
 "This is 7th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all typography " data-
category="typography">
 <img src="images/image-8.jpg" alt=
 "This is 8th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all package" data-category="package">
 <img src="images/image-9.jpg" alt=
 "This is 8th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all poster" data-category="poster">
 <img src="images/image-10.jpg" alt=
 "This is 9th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>

Chapter 2

[65]

 </figcaption>
</figure>
<figure class="four columns all package " data-category="package">
 <img src="images/image-11.jpg" alt=
 "This is 10th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>
<figure class="four columns all illustration "
title="illustration">
 <img src="images/image-12.jpg" alt=
 "This is 10th portfolio thumbnail.">
 <figcaption>
 <h4>Lorem Ipsum</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Morbi molestie lobortis magna eget sagittis.</p>
 </figcaption>
</figure>

10. Lastly, for the website footer area, add the following HTML5 <footer> element
with the container clearfix class next to the <div> element defined for the
container, which we just added in Step 3:

<footer class="container clearfix">
 <div class="contact">

 <li class="contact-name">John Doe
 <li class="contact-phone">(+1) 1-234-5678-9
 <li class="contact-email">me@johndoe.com

 </div>
 <div class="social">
 <p class="copyright">Copyright John Doe 2012</p>

 <li class="social-dribbble">
 Dribbble
 <li class="social-facebook">
 Facebook
 <li class="social-twitter">
 Twitter

 </div>
</footer>

Constructing a Responsive Portfolio Page with Skeleton

[66]

What just happened?
We have just added the structure for the website to index.html using the HTML5 elements
and establishing the website header, the image portfolio, and the website footer.

Summary
In this chapter, we started our first project and accomplished the following things:

 � Unpacked the Skeleton package and walked through some of the components

 � Learned how to use Skeleton responsive grid

 � Set up a working directory as well as the project documents

 � Prepared the project assets

 � Structured the project document with HTML5 elements

Now that the project has been set up, we are going to make up and tweak the website's look
with CSS3 in the next chapter.

3
Enhancing the Portfolio Website

with CSS3

In the previous chapter, we wrote the HTML5 code for our portfolio website.
In this chapter, we will start working on CSS3. We will start with some simple
visual effects that have just been introduced in CSS3, such as drop shadows,
text shadows, and rounded corners.

Then, we will also create a more advanced effect called the thumbnail hover
effect, which was only achieved via JavaScript prior to the introduction of CSS3.

To sum up, here are the tasks we are going to perform in this chapter:

 � Style the website, beginning from the header and navigation, then work through the
content area, and finish with the footer with some new CSS3 properties

 � Create a portfolio filter function with CSS3

 � Create a thumbnail hover effect with CSS3 Transforms and Transitions

 � Adjust website appearance for specific viewport sizes with CSS3 media queries

Enhancing the Portfolio Website with CSS3

[68]

CSS box model
An HTML element that is categorized as a block-level element is essentially a box; it consists
of the content, margin, padding, and borders that are specified through CSS, as illustrated in
the following screenshot:

You can further see the difference between block and inline elements
as well as the list of the elements from the following references:

 � Block-level elements (https://developer.mozilla.
org/en-US/docs/HTML/Block-level_elements)

 � Inline elements (https://developer.mozilla.org/
en-US/docs/HTML/Inline_elements)

Prior to CSS3, we have been facing a constraint when specifying a box, for example, when we
give an element a width and height of 100 pixels, as follows:

div {
 width: 100px;
 height: 100px;
}

Chapter 3

[69]

The browser will simply translate it as a 100 pixel, square box.

However, this is only true if the padding, margin, or border has not been added. Since the
box has four sides, a padding of 10 pixels (padding: 10px;) will actually add 20 pixels to
the width and height—10 pixels for each side.

While it takes up space on the page, the element's margin is space reserved outside the
element rather than part of the element itself; thus, if we give an element a background
color, the margin area will not take on that color.

An introduction to the CSS3 box-sizing property
CSS3 offers additional options for controlling this box model with its box-sizing property.

Value Description
content-box This is the default value of the box model. This value specifies the

padding and the border box's thickness outside the specified width and
height of the content, as we have demonstrated in the preceding section.

border-box This value does the opposite; it specifies the padding and the border box
inside the specified width and height of the content.

Enhancing the Portfolio Website with CSS3

[70]

Now let's get back to our example. This time we will set the box-sizing model to
border-box. So the width and the height will remain 100 px, regardless of the padding
and border length. The following illustration shows a comparison between the different
outputs of the two values:

Time for action – specifying box-sizing
So, let's open up style.css and add the following rule at the beginning of the code:

* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

What just happened?
We've used the CSS universal selector, the asterisk (*), to apply border-box sizing to all
block-level elements so that we can easily set their final width and height.

This simple tip was first promoted by Paul Irish, a lead developer
of Modernizr and HTML5 Boilerplate. You can read his post
(http://paulirish.com/2012/box-sizing-
border-box-ftw/) for more details on this method.

CSS units of measurement
There are a number of units of measurement in CSS specification. In our website, we will
mostly use the px, em, and percent units.

Chapter 3

[71]

The pixel unit
px is an absolute length unit and probably the most popular unit used in web documents. px
gives control of the exact length of an element. With reference to the documentation available
at http://www.w3.org/TR/css3-values/#reference-pixel, a pixel in CSS refers to:

The visual angle of one pixel on a device with a pixel density of 96 DPI.

According to this explanation, 1 CSS pixel in a 96 DPI screen is equal to 1 device pixel.
Thus, 10 px in CSS is simply equal to 10 px on the screen.

So for our project, we will use the px unit to measure box sizing.

The pixel unit in higher DPI screens
Today, with the increasing popularity of higher screen resolution, the preceding example is
no longer relevant. The following screenshot is an example of a high-definition screen with a
resolution of 192 DPI. An element that has a width and height of 10 px will actually take 20
device pixels.

Enhancing the Portfolio Website with CSS3

[72]

The element will still have the same physical size on the screen,only now there will be more
device pixels embedded in the 1 CSS pixel.

There are a lot of discussions regarding a pixel and its relation to
screen resolution.

 � Reda Lemeden, on his post, has covered the challenges
and constraints on designing multiple device densities
(http://coding.smashingmagazine.
com/2012/08/20/towards-retina-web/)

 � Scott Kellum, at A List Apart, has covered the pixel unit and
its relevance towards multiple devices with different screen
sizes and resolutions (http://www.alistapart.
com/articles/a-pixel-identity-crisis/)

The em unit
em is a relative unit. It actually refers to the size of the capital alphabet "M" of the specified
font. In CSS, 1em technically refers to the device- or document-based font size. If there is a
parent element with a specified font size in the em unit, the child elements nested within it
will take the parent element's font size as the reference instead.

In our project, we will use em to specify the font size recommended by W3C
(http://www.w3.org/Style/Examples/007/units.en.html).

Converting px to em
The default body font size in Skeleton is specified in base.css along with the default font
family for 14px, so this would be the base font size the em unit would refer to.

So, let's say we need to find the em number of 20px with 14px as the base font size. There
is a tool to convert px to em (or vice versa) easily, called PXtoEM.com (http://pxtoem.
com/). The following screenshot shows how we do the calculation with this tool:

Chapter 3

[73]

As you can see from the preceding screenshot, with 14px as the base size, 20px is equal
to 1.429em.

Calculating the em unit manually
Alternatively, we can convert px to em (and vice versa) using the formulas listed in the
following table:

Unit conversion Formula Example

px to em Size (px) / font size base (px) 20(px) / 14(px) = 1.429em (rounded)

em to px Size (em) * font size base (px) 1.429(em) * 14(px) = 20px

Browser quirk for the em unit
Browsers translate the em unit a bit differently in some cases. In the example in the
preceding section, 1.429em with 14px as the base size will turn into exactly 20px across all
browsers (Google Chrome, Opera, Safari, and Firefox).

However, as we round up this number to be 1.4em by removing the last two numbers, the
result will be slightly different. In Firefox and Opera, the resulting number will be 19.6px,
while in Webkit browsers (Google Chrome and Safari), this number is rounded up to 20px.

Enhancing the Portfolio Website with CSS3

[74]

You can inspect how the browsers translate em to px through Developer Tool under the the
Computed panel.

The percent unit
Percent is a relative unit and works similarly to em; while em refers to font size, percent refers
to the parent length regardless of the unit being used. For example, if the parent element
has a height of 100px, 100% of its child element will be equal to 100px, 50% will be equal to
50px, and so on.

In our project, we will use the percent unit to measure box size, particularly when it is
displayed in a smaller viewport size.

Setting font families
Skeleton sets Helvetica Neue and Helvetica as the default font in the body document; if these
fonts are not available, it will apply Arial or the default sans-serif fonts to the user's machine.

Chapter 3

[75]

We can find these fonts defined in the base.css stylesheet, as follows:

body {
 background: #fff; font: 14px/21px "HelveticaNeue",
 "Helvetica Neue", Helvetica, Arial, sans-serif;
 color: #444;
 -webkit-font-smoothing: antialiased;
 -webkit-text-size-adjust: 100%;
}

The sans-serif fonts Georgia and Times New Roman are set for the Headings
(h1, h2, h3, and so on).

h1, h2, h3, h4, h5, h6 {
 color: #181818; font-family: "Georgia", "Times New Roman", serif;
 font-weight: normal;
}

These fonts are well fitted to display paragraphs.

Enhancing the Portfolio Website with CSS3

[76]

However, they don't quite work well in our example, as we will only have very less text on
our website.

So, we will set the Headings fonts in the same way we set the body fonts to maintain
uniformity in the website.

Time for action – setting the Headings font family
Let's open style.css and place the following rule in the box-sizing declaration that we
added in the Time for action – specifying box-sizing section:

h1, h2, h3, h4, h5, h6 {
 font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial,
 sans-serif;
 font-weight: bold;
}

What just happened?
We have just set the Headings font to be the same as the body fonts and set font-weight
to bold.

There is no exact definitive formula for pairing fonts; it is an art. But
there are some general tips to follow to make it work. Ian Yates has
shared a few tips on this subject over at Webdesigntuts+ (http://
webdesign.tutsplus.com/articles/typography-
articles/a-beginners-guide-to-pairing-fonts/).

Header styles
Now, it is time to add styles to the web sections. The header of our website is defined with
the HTML5 <header> element and assigned with the header class. We also have a <div>
element with the logo class that contains the website logo.

Chapter 3

[77]

Time for action – adding the header styles
To add the header styles, perform the following steps:

1. In our style.css file, add the following CSS rule. This CSS rule will set the
header's background color, padding, border, box shadow (we add it with the
CSS3 box-shadow property), and margin bottom to set the distance between
the header and the lower section.
.header {
 padding: 22px 0;
 background-color: #3a3f43;
 margin-bottom: 14px;
 box-shadow: 0 1px 3px 0 rgba(0,0,0,0.3);
 border-bottom: 1px solid #181f25;
}

2. Then, add styles to the website logo's container. In the following CSS rule, add a
CSS3 property border-radius to make the box's corners rounded:
.logo {
 text-align: center;
 border-radius: 3px;
 background-color: #515558;
 width: 250px;
 padding: 5px 0;
 margin: 0 auto;
}

3. Now, add styles to the logo. Our website logo is simply text. We will assign a new
font family "Alfa Slab One" to it, which we added with Google Web Font in Chapter
2, Constructing a Responsive Portfolio Page with Skeleton.

.logo h1 {
 color: #fff;
 font-weight: normal;
 font-family: "Alfa Slab One", Arial, sans-serif;
 margin-bottom: 0;
}

Enhancing the Portfolio Website with CSS3

[78]

What just happened?
We have just added styles to the header, including the background color, box shadow, and
box styles (padding, margin, and border). We also assigned a new font family from Google
Web Font, "Alfa Slab One", to the website's logo. The following screenshot shows how
our website will look at this point:

Using CSS selectors
In our project, we will use several CSS selectors to select an element within a particular
structure. These selectors include the direct child selector, adjacent sibling selector, and
general sibling selector. Let's have a look at these selectors one by one.

Chapter 3

[79]

Direct child selector
CSS allows us to select the child elements nested inside a specific element (the parent
element). You're probably familiar with how we select a child element through CSS; we
firstly select the parent element (with its class, ID, or element type) followed by the child
element we intend to select.

.parent p {
 background-color: tomato;
}

The preceding code snippet selects every <p> element that is nested within an element with
the class parent, without an exception.

But, there may be times when we only want to select the direct child of the parent. In other
words, the grandchild elements of the parent shouldn't be affected. If that is the case, we
can add a > notation in between to limit the selection to only the direct child of the parent,
as follows:

.parent > p {
 background-color: tomato;
}

Given the following HTML structure, the preceding CSS rule will only select the first and
second paragraph.

<div class="parent">
 <p> This is the 1st paragraph </p>
 <p> This is the 2st paragraph </p>
 <section>
 <h3>Section Title</h3>
 <p> This is the 3rd paragraph </p>
 <p> This is the 4th paragraph </p>
 </section>
</div>

This gives us the following result:

Enhancing the Portfolio Website with CSS3

[80]

Adjacent sibling selector
The adjacent sibling selector is defined with a plus (+) notation. It selects the element that
directly follows the previous element that was specified, for example, if we have a <div>
element that is followed by a <p> element, as follows:

<div>This is the div element.</div>
<p>This is the 1st paragraph.</p>
<p>This is the 2nd paragraph.</p>

We target a <p> element that is directly after the <div> element and give it a background
color of tomato, as follows:

div + p {
 background-color: tomato;
}

The previous example gives us the following result:

General sibling selector
The CSS general sibling selector is a new type of selector that's just been added in CSS3. This
type of selector is declared with a ~ notation, as follows:

div ~ p {
 background-color: tomato;
}

And the result is the same as in the adjacent sibling selector, but instead of targeting only
the first child, the general sibling selector will target every selected element that follows the
previous element. So if we have the same HTML structure as in the adjacent sibling selector,
the background color will affect all paragraph elements, as shown in the following screenshot:

Chapter 3

[81]

Using CSS3 pseudo classes
We will discuss a few CSS3 pseudo classes. A pseudo class is used to select an element within
a particular expression or condition. For example, :hover is a pseudo class; it applies CSS
rules when we point the element with a mouse cursor.

In this project, we are going to use the following pseudo classes:

 � :checked

 � :nth-child

Let's have a look.

The CSS3 checked pseudo class
CSS3 has introduced a new pseudo class called :checked. This pseudo class selects an HTML
element, either the checkbox or the radio input type, that is being checked or selected. In
following code snippet, we select the radio input type with an ID of the type posters when it
is checked.

#posters:checked {
/* style rules */
}

This pseudo class, :checked, is useful for selecting the selected radio input that we are
using as website navigation. Similar to a traditional menu navigation that is built with an
<a> element, we use :hover when the mouse cursor is over the element.

The CSS3 nth-child pseudo class
CSS3 has also introduced a new pseudo class named :nth-child. This pseudo class allows
us to select elements in their specified sequence. To select the elements, :nth-child
needs an argument. The argument can take either numbers or keywords (odd and even).

For example, the following code will select the third element and set the
background color:

li:nth-child(3) {
 background-color: tomato;
}

Given the following HTML structure, the preceding CSS rule will add background color to the
 element in the middle:

 List 1
 List 2

Enhancing the Portfolio Website with CSS3

[82]

 List 3
 List 4
 List 5

This is shown in the following screenshot:

Using a keyword, either odd or even, is also allowed. Intuitively, the following code will
apply background color to every element that is in an odd sequence (first, third, fifth,
and so on):

li:nth-child(odd) {
 background-color: tomato;
}

The :nth-child pseudo class also accepts a formula to select elements in a more
specific sequence.

li:nth-child(2n+2) {
 background-color: tomato;
}

n in the formula is a variable, which takes numbers starting from 0, 1, 2, 3, and so on. So, the
formula 2n+2 from the preceding example will select the element in the order second,
fourth, eighth, tenth, and so on.

To know further about how :nth-child works, you can refer to a
post by Chris Coyier at CSS Tricks (http://css-tricks.com/
how-nth-child-works/). He has also created a handy tool to
test the formula with :nth-child (http://css-tricks.
com/examples/nth-child-tester/).

Chapter 3

[83]

Portfolio thumbnail and caption styles
Once we are done with the website header, we will start adding styles and laying out the
portfolio images. We have 12 image thumbnails displaying the portfolio. Each image is
wrapped within an HTML5 <figure> element and has a caption containing the thumbnail
description that is wrapped within an HTML <figcaption> element.

Time for action – adding thumbnail and caption styles
To add a thumbnail and caption styles, perform the following steps:

1. Open style.css. First of all, we will provide a little distance at the top of the
portfolio container by adding a margin:
.portfolio {
 margin-top: 20px;
}

2. We'll divide the images into four columns; each column will have width set to
240px, which we got from the division 960px / 4 = 240px. In addition to this, to
make this number fit into the container, we also need to remove margin-left and
margin-right that have been acquired from the .columns class in Skeleton.
.portfolio .four.columns {
 width: 240px;
 margin-right: 0;
 margin-left: 0;
}

3. Then we'll set the position mode for the <figure> element to relative, so the
child element positions, such as and <figcaption>, are positioned relative
to this <figure> element. We also set the overflow area of the <figure>
element to hidden.
.portfolio > figure {
 position: relative;
 overflow: hidden;
}

Enhancing the Portfolio Website with CSS3

[84]

When setting overflow to hidden in the <figure> element, the element that
flows over the <figure> element will be hidden. In our example, this area will be
used to hide the <figcaption> element, as illustrated in the following screenshot:

4. We will set the image's max-width to 100% so the image fits inside its parent
element (figure) regardless of how narrow it becomes.
.portoflio > figure img {
 max-width: 100%;
}

5. Furthermore, if we take a closer look at the image's thumbnail, we will find a
little whitespace following the element, which seems to be the nature of
inline elements and, presumably, is also affected by its default vertical alignment
(http://www.impressivewebs.com/difference-block-inline-css/).

Chapter 3

[85]

One of the solutions to remove this whitespace is to set display to block. So let's
add display: block to the element, as follows:
.portfolio > figure img {
 max-width: 100%;
 display: block;
}

Alternatively, to remove the whitespace, we can also set the vertical-align
property to top.

6. Next, we will add styles for the thumbnail caption. The caption is wrapped within
the HTML5 <figcaption> element. First, we will set the caption's position
attribute to absolute.
.portfolio figcaption {
 position: absolute;
}

This will affect the parent's height and it will follow the child elements that are not
set for the absolute position. At this point, the caption is hidden due to the position
that is now overflowing from the <figure> area.

7. Then, we set the caption's height and width to 100% so its dimensions (height and
width) will always follow the parent, which in our case is the <figure> element.
.portfolio figcaption {
 position: absolute;
 width: 100%;
 height: 100%;
}

8. By setting the <figcaption> element's position attribute to absolute, we can
freely reposition it to face any direction without affecting the surrounding elements.
In this case, we set the caption's left and top position to 0, as shown in the
following code snippet:
.portfolio figcaption {
 position: absolute;
 width: 100%;
 height: 100%;

 left: 0;
 top: 0;
}

Enhancing the Portfolio Website with CSS3

[86]

Since we have set the <figure> element's position attribute to relative, the
caption's position is relative to the <figure> element (which is its parent), thereby
resulting in the caption being on top of the image thumbnail, as shown in the
following screenshot:

9. We then set the caption's background color. We set the background with the RGBA
(Red, Green, Blue, and Alpha) color mode. Each color channel—Red, Green, and
Blue—is specified with a number ranging from 0 to 255.

For example, setting 0 for each color channel (rgba(0,0,0,1)) will result in black
color and is equal to #000000 in the HEX color mode. Similarly, setting 255 for each
color channel will result in white color; this is equal to #ffffff in the HEX color
mode.

With RGBA, we can also adjust the color transparency through the Alpha channel.
Values in the Alpha channel range from 0 to 1, where 0 is equal to 0% and 1 is equal
to 100%. So in other words, 0.5 would be equal to 50%.

In the following rule, we set the background color to black and the transparency to
80%:

.portfolio figcaption {
 position: absolute;

 width: 100%;
 height: 100%;

 left: 0;
 top: 0;

 background-color: rgba(58,63,67,.8);
}

Chapter 3

[87]

10. We add padding to set the distance between the caption text and the container's
edge. In the following rule, we set padding to 10%:
.portfolio figcaption {
 position: absolute;

 width: 100%;
 height: 100%;

 left: 0;
 top: 0;

 background-color: rgba(58,63,67,.8);

 padding: 10%;
}

As we have set the box sizing to border-box earlier, the caption size (height and
width) remains 100% regardless of the padding addition. The caption size still follows
the parent size, which in our case is 240 px x 240 px.

11. Since the background color is dark, we need to set a lighter color for the caption
text. In this case, we change the caption text color to white (#fff).
.portfolio figcaption h4 {
 color: #fff;
}
.portfolio figcaption p {
 color: #fff;
}

12. This is only a matter of preferences, but the text paragraph in the caption seems too
big. So, we set the caption text paragraph to 1px smaller than the base size. The
base font size is 14px, so 13px is equal to 0.929em.

.portfolio figcaption p {
 color: #fff;
 font-size: 0.87em;
}

Enhancing the Portfolio Website with CSS3

[88]

What just happened?
We have just added style rules for the image thumbnail and the caption. At this stage, our
portfolio section in the website appears as is shown in the following screenshot:

CSS3 2D Transformations
Over the last couple of years, several new CSS3 features have been released, including the
CSS3 Transform (http://www.w3.org/TR/css3-transforms/). Using CSS3 Transform,
we can translate, rotate, skew, and scale HTML elements.

Chapter 3

[89]

The translate() function
The translate() function in CSS3 Transforms is used for moving elements relative to their
original position. This function is declared with the following syntaxes:

 � To move the element in the horizontal direction, we can write:
transform: translateX(value);

 � To move the element in the vertical direction, we can write:
transform: translateY(value);

 � Another way we can use the shorthand syntax is by combining the x and y values, as
follows:

transform: translate(x-value,y-value);

As you can see, the position of the element is specified with the x and y values, where
x represents the horizontal coordinate and y represents the vertical coordinate. This
principle relates to the Cartesian coordinate system (http://en.wikipedia.org/wiki/
Cartesian_coordinate_system).

However, since the web page is read sequentially from top to bottom, the y coordinate is
reversed; a negative y value specifies upward motion whereas a positive y value specifies
downward motion.

Now let's say that we would like to move an element 100px to the right. We can write this in
the following way:

transform: translateX(100px)

Or we can specify it with the shorthand syntax, as follows:

transform: translate(100px,0)

Similarly, when we want to move it upward by 100px, we can write this as follows:

transform: translateY(-100px)

Or we can also write this in the following way:

transform: translate(0,-100px)

In addition to this, to move the element diagonally, we'll specify both the x and the y
coordinates, as follows:

transform: translate(100px,-100px)

Enhancing the Portfolio Website with CSS3

[90]

The preceding declaration will move the element upward and to the right, as illustrated in
the following screenshot:

Vendor prefixes
The translate() function is supported in Google Chrome 4, Safari 3.1, Firefox 3.5,
Internet Explorer 10, and Opera 10.5, though vendor prefixes are still required to make the
transformations work on these browsers. So, the complete CSS rule to run a transformation
is as follows:

-webkit-transform: translate(x,y); /* Webkit (eg. Chrome & Safari) */
-moz-transform: translate(x,y); /* Mozilla Firefox */
-ms-transform: translate(x,y); /* Internet Explorer */
-o-transform: translate(x,y); /* Opera */
transform: translate(x,y); /* Recommendation syntax from W3C */

The browsers will apply their specific prefix, for example, -webkit- will be implemented
in WebKit-based browsers, such as Chrome and Safari, and ignore the other prefixes. Later,
when the specification has been finalized and the browsers have fully applied it, the standard
syntax from the W3C (http://www.w3.org/) is the one that will be applied.

So, it is a good idea to include all vendor prefixes for better browser compatibility.

In the above code snippet, we have to write five different lines that
technically do the same thing to cover browser's capability. So if
writing the vendor prefix manually seems to be a tedious task, there
are several tools to help us deal with the vendor prefix.

Prefixr (http://prefixr.com/index.php) allows us to
generate the vendor prefix quickly. If you are using Sublime Text 2,
there is a package that allows you to run the prefix directly from the
editor.

There is a JavaScript library called Prefix Free (http://leaverou.
github.com/prefixfree/) that allows us to write the
unprefixed syntax as it will append the needed vendor prefix on the fly.

Chapter 3

[91]

CSS3 Transition
Another great addition in CSS3 is Transition. A CSS3 Transition allows us to change one CSS
rule to another CSS rule gradually—rather than instantaneously—within a specific duration.
A CSS3 Transition is defined with the following syntax (including the vendor prefix):

-webkit-transition: property duration timing-function delay; /* Webkit
(eg. Chrome & Safari) */
-moz-transition: property duration timing-function delay; /* Mozilla
Firefox */
-o-transition: property duration timing-function delay; /* Opera */
transition: property duration timing-function delay; /* Recommendation
syntax from W3C */

Currently, CSS3 Transition is supported in the Chrome 4, Firefox 4, Safari 3.1, Opera 10.5, and
Internet Explorer 10.0 browsers (http://caniuse.com/#feat=css-transitions).

Internet Explorer 9 does not support CSS3 Transition; this is why
you do not see the -ms- prefix in the preceding syntax. But,
Internet Explorer 10 will support CSS3 Transition without the prefix
(http://msdn.microsoft.com/en-us/library/ie/
hh673535(v=vs.85).aspx).

CSS3 Transition values
As you can see, four values have been specified in the syntax, namely property,
transition-duration, timing-function, and delay. Let's peel them up one by one:

Value Use
property This value targets the CSS property to which the transition effect

should be applied. The property could be width, height, color,
background, and so on.

But when this value is not explicitly specified, it will take all as the
default value, which will apply the transition to all properties.

transition-
duration

This value specifies the length of transition effect; this value is specified
in milliseconds (ms) and seconds (s). For instance, 200ms and 0.2s.

timing-function This value specifies the transition acceleration. There are five
predefined acceleration types that we can use; they are ease, ease-
in, ease-out, ease-in-out, and linear. You can see how
these timing functions play in a post, at http://www.css3.info/
preview/css3-transitions/.

delay This value sets the delay time before the transition effect starts.

Enhancing the Portfolio Website with CSS3

[92]

In the following code example, we have created a circle with a div element and we want to
turn it into a rectangle when we hover over it.

div {
 width: 200px;
 height: 200px;
 border-radius: 100px;
 border: 5px solid orange;
 background-color: tomato;
}
div:hover {
 border-radius: 0;
}

As mentioned earlier in the chapter, since we did not add the transition, the change will
be instantaneous. Now, let's add the transition effect to border-radius, which is set to
200ms, as follows:

div {
/* the other rules, same as above*/

 -webkit-transition: border-radius 200ms;
 -moz-transition: border-radius 200ms;
 -o-transition: border-radius 200ms;
 transition: border-radius 200ms;
}

After that, the changes will take effect gradually and look more appealing, as illustrated in
the following screenshot:

Chapter 3

[93]

Time for action – creating a thumbnail hover effect
To create a thumbnail hover effect, perform the following steps:

1. Open style.css. Remember that we structure the caption with the HTML5
<figcaption> element. We have added several CSS rules in the previous steps,
such as specifying the position, setting the width and height, setting the background
color, changing the font color, and adding padding.

This time, we will add CSS rules to create the hover effect. The idea here is that
when we hover the thumbnail, the caption will gradually slide from a specific
direction and cover the image.

In the following CSS rule, we first move the caption to the right with CSS3 Transform:

.portoflio figcaption {
 position: absolute;
 left: 0;
 top: 0;

width: 100%;
 height: 100%;
 padding: 10%;

background-color: rgba(58,63,67,.8);

 -webkit-transform: translateX(100%);
 -moz-transform: translateX(100%);
 -ms-transform: translateX(100%);
 -o-transform: translateX(100%);
 transform: translateX(100%);
}

2. Then, we add the transition effect with CSS3 Transition. In the following rule, we set
the transition for all the elements to 350ms.
.portoflio figcaption {
 position: absolute;
 left: 0;
 top: 0;

 width: 100%;
 height: 100%;
 padding: 10%;

 background-color: rgba(58,63,67,.8);

Enhancing the Portfolio Website with CSS3

[94]

 -webkit-transform: translateX(100%);
 -moz-transform: translateX(100%);
 -ms-transform: translateX(100%);
 -o-transform: translateX(100%);
 transform: translateX(100%);

 -webkit-transition: all 350ms;
 -moz-transition: all 350ms;
 -o-transition: all 350ms;
 transition: all 350ms;
}

3. Lastly, we add the hover state. In the hover state, we set the caption to its original
position by specifying 0 for translateX.

.container figure:hover figcaption {
 -webkit-transform: translateX(0);
 -moz-transform: translateX(0);
 -ms-transform: translateX(0);
 -o-transform: translateX(0);
 transform: translateX(0);
}

What just happened?
Well, there are several things that happen in this code. First, we reposition the caption with
the transform property to 100% of the parent's width to the right, as follows:

-webkit-transform: translateX(100%);
-moz-transform: translateX(100%);
-ms-transform: translateX(100%);
-o-transform: translateX(100%);
transform: translateX(100%);

At this point, the caption will not be visible because we have set the outer area of the
figure element to be hidden. We have created a graphic to illustrate this.

Chapter 3

[95]

Then, we apply the transition effect to the caption and apply it to all the properties assigned
with that caption:

-webkit-transition: all 350ms;
-moz-transition: all 350ms;
-o-transition: all 350ms;
transition: all 350ms;

Lastly, we add the styles to the hover state. The idea is that the caption will move from right
to left and back to its original position. That is why we specified the translate coordinate as
0% in the hover state.

Enhancing the Portfolio Website with CSS3

[96]

After adding all the CSS rules mentioned in this section, you should be able to see the
hover effect:

Website navigation for filtering the portfolio
As we mentioned, website navigation is used to sort portfolios into their respective
categories. Thus, our website navigation has been created with a radio input type followed
by a label, as follows:

<input class="nav-menu" id="all" type="radio" name="filter"
checked="checked"/>
<label for="all">All</label>
<input class="nav-menu" id="illustrations" type="radio"
name="filter"/>
<label for="illustrations">Illustration</label>
<input class="nav-menu" id="posters" type="radio" name="filter"/>
<label for="posters">Posters Design</label>
<input class="nav-menu" id="typography" type="radio" name="filter"/>
<label for="typography">Typography</label>
<input class="nav-menu" id="packaging" type="radio" name="filter"/>
<label for="packaging">Packaging</label>

Chapter 3

[97]

Time for action – creating a portfolio filter
To create a portfolio filter, perform the following steps:

1. Open styles.css. Our navigation is based on a radio input type that is assigned
with the class nav-menu. First, we hide the radio button.
.nav-menu {
 display: none;
}

2. Then, we add styles to the input <label>. In the following rule, we set the label's
display property to inline-block so the labels will be displayed beside each
other.
label {
 padding: 5px 10px;
 color: #3a3f43;
 cursor: pointer;
 display: inline-block;
}

3. When the <input> radio button is selected, the <label> element's styles change.
In this case, we set the background color to darker than it is to show that the menu
is selected, so we also need to turn the text color to white.

To select the <label> element next to the selected <input> radio, we use an
adjacent selector.

.nav-menu:checked + label {
 color: #fff;
 background-color: #3a3f43;
 border-radius: 3px;
}

4. Next, we define the filter function. First, we hide the portfolio thumbnail. We define
the following CSS rule with .nav-menu, as follows:
.nav-menu,
.portfolio > figure.columns {
 display: none;
}

Enhancing the Portfolio Website with CSS3

[98]

5. To achieve the filter functionality, we will combine several CSS selectors. First of
all, we structure the website navigation with input radio type and each of them
is assigned with a unique ID. These inputs have a label linked to them using the
for"[id]" attribute. So when we click on the label, the input button is checked.
Then, we can target these checked inputs using the :checked pseudo class from
CSS3. In the following code, we first select the checked <input> radio that has an
ID of all.
#all:checked

Coupled with the adjacent selector, we select the portfolio section:
#all:checked ~ .portfolio

After selecting the portfolio section, we can select the child elements inside it
and apply the CSS rules. In this case, we will target elements that have the all class
and set display to block.
#all:checked ~ .portfolio .all {
 display: block;
}

In this way, all portfolio thumbnails are visible when the <input> radio with an ID
of all is checked.

6. Now, let's add the same thing for specific categories such as poster,
illustration, typography, and package, as follows:

#all:checked ~ .portfolio .all,
#posters:checked ~ .portfolio .poster,
#illustrations:checked ~ .portfolio .illustration,
#typography:checked ~ .portfolio .typography,
#packaging:checked ~ .portfolio .package {
 display: block;
}

What just happened?
We've just added styles for the purpose of navigation and built the filter functionality with a
combination of some CSS selectors.

Despite being officially announced as part of CSS3 specification,
the :checked pseudo class has actually been supported since
as early as Firefox 1. To see how it works, you can view the
demo from the W3C website that is available at http://www.
w3.org/Style/CSS/Test/CSS3/Selectors/current/
html/full/flat/css3-modsel-25.html.

Chapter 3

[99]

At this point, you can sort the portfolios based on their categories with the navigation menu,
as shown in the following screenshot:

Footer section
In this section, we will add styles to the footer section. This section contains the link to our
social presence and contact information, such as our phone number, e-mail, and name.

Time for action – styling the footer section
To style the footer section, perform the following steps:

1. We are still working within the styles.css file. Our website footer is defined with
the HTML5 <footer> element and assigned to the class footer. First of all, we add
some decorative styles, such as a margin, padding, and border line, as follows:
.footer {
 border-top: 1px solid #ccc;
 margin-top: 28px;
 padding: 28px 0;
}

Enhancing the Portfolio Website with CSS3

[100]

2. Next, we place the social links' profiles on the left side of the page, as follows:
.social {
 float: left;
}

3. Inside the social link section, we have a small space to place the website's copyright
text. We will change the color of this text to gray and add a small gap with margin-
bottom.
.social .copyright {
 color: #ccc;
 margin-bottom: 10px;
 font-size: 1em;
}

4. The social links are structured with the element. We need to display them side
by side.
.social ul li {
 display: inline;
}

5. In this step, we will add styles for the links. First, in order to be able to set the width
and height, we need to set the anchor element display to inline-block. Then,
we set the width to 42px and height to 36px.
.social ul li a {
 display: inline-block;
 width: 36px;
 height: 42px;
}

6. We also add what's called CSS image replacement styles to hide the text inside the
anchor element and replace it with an image later through the background-image
property.
.social ul li a {
 display: inline-block;
 width: 48px;
 height: 48px;

/*below is the css image replacement styles*/
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;
}

Chapter 3

[101]

7. We add the social icons, which we have concatenated into a single sprite file in
Chapter 2, Constructing a Responsive Portfolio Page with Skeleton, to the <a>
element with the background-image property:
.social-dribbble a,
.social-facebook a,
.social-twitter a {
 background-image: url('../images/social.png');
 background-repeat: no-repeat;
}

8. Next, we need to edit the CSS rules that were generated when we concatenated the
social icon images. These CSS rules define the icon image's position:
.social-dribbble-hover{
 background-position: 0 0;
 width: 48px;
 height: 48px;
}
.social-dribbble{
 background-position: 0 -58px;
 width: 48px;
 height: 48px;
}
.social-facebook-hover{
 background-position: 0 -116px;
 width: 48px;
 height: 48px;
}
.social-facebook{
 background-position: 0 -174px;
 width: 48px;
 height: 48px;
}
.social-twitter-hover{
 background-position: 0 -232px;
 width: 48px;
 height: 48px;
}
.social-twitter{
 background-position: 0 -290px;
 width: 48px;
 height: 48px;
}

First, we change the class name that defines the hover state (.social-
dribbble-hover) with :hover and assign it to the link icons, as follows:

.social-dribbble a:hover {
 background-position: 0 0;

Enhancing the Portfolio Website with CSS3

[102]

 width: 48px;
 height: 48px;
}
.social-dribbble{
 background-position: 0 -58px;
 width: 48px;
 height: 48px;
}
.social-facebook a:hover{
 background-position: 0 -116px;
 width: 48px;
 height: 48px;
}
.social-facebook{
 background-position: 0 -174px;
 width: 48px;
 height: 48px;
}
.social-twitter a:hover{
 background-position: 0 -232px;
 width: 48px;
 height: 48px;
}
.social-twitter{
 background-position: 0 -290px;
 width: 48px;
 height: 48px;
}

9. Since we have set the width and height in the previous step, we can remove the
height and width definition from these CSS rules, as follows:
.social-dribbble a:hover {
 background-position: 0 0;
}
.social-dribbble{
 background-position: 0 -58px;
}
.social-facebook a:hover{
 background-position: 0 -116px;
}
.social-facebook{
 background-position: 0 -174px;
}
.social-twitter a:hover{
 background-position: 0 -232px;
}
.social-twitter{
 background-position: 0 -290px;
}

Chapter 3

[103]

10. ,We place the contact section to the right of the page:
.contact {
 float: right;
}

11. And change the color of the text and text link to gray.
.contact, .contact a {
 color: #ccc;
}

12. Then, we add the icons for the contacts, which we have concatenated into one
sprite file in Chapter 2, Constructing a Responsive Portfolio Page with Skeleton,
through the background-image property. But this time we will add them in the
:before pseudo element.

The :before pseudo element adds the element before the content of the element
that has been specified. It has a sibling named :after, which adds the element
after the content of the specified element.

In an HTML structure, this can be illustrated as follows:
<div>
 <!-- :before -->
 Content
 <!-- :after -->
</div>

But, a pseudo element does not add an actual or physical element; that is why, it
is called pseudo. When we add a pseudo element, it will be interpreted as if the
element exists in the document (but it does not).

In CSS3, the pseudo element's syntax is revised. The syntax is defined with double
colons (::before or ::after) to differentiate it from a pseudo class, which uses
the single-colon syntax (:hover or :checked).

In the following code snippet, we add the :before pseudo element to . We
change display to inline-block in order to be able to set width and height.

.contact ul li:before {
 content: '';
 display: inline-block;
 width: 24px;
 height: 24px;
 background-image: url('../images/contact.png');
 margin-right: 0.1em;
}

Enhancing the Portfolio Website with CSS3

[104]

13. Lastly, we adjust the background position for the contact's icon image.

.contact-name:before {
 background-position: 0 -29px;
}
.contact-phone:before {
 background-position: 0 -63px;
}
.contact-email:before{
 background-position: 0 5px;
}

What just happened?
We just added styles to the footer section and included the social and contact sections inside
it. The following screenshot shows how the footer section will appear:

Adjusting website styles in a smaller viewport
In this section, we are going to add styles for a specific viewport using CSS3 media queries.

Now, before we start adding styles, we need to copy all the media queries defined in
Skeleton's layout.css into our styles.css file. The following code snippet shows
how they appear in the file:

/* Smaller than standard 960 (devices and browsers) */
@media only screen and (max-width: 959px) {

}
/* Tablet Portrait size to standard 960 (devices and browsers) */
@media only screen and (min-width: 768px) and (max-width: 959px) {

}

Chapter 3

[105]

/* All Mobile Sizes (devices and browser) */
@media only screen and (max-width: 767px) {

}
/* Mobile Landscape Size to Tablet Portrait (devices and browsers) */
@media only screen and (min-width: 480px) and (max-width: 767px) {

}
/* Mobile Portrait Size to Mobile Landscape Size (devices and
browsers) */
@media only screen and (max-width: 479px) {

}

Time for action – viewport size less than 960 px
We are about to add styles that are applicable to a viewport size that is less than 960 pixels:

1. First, we are going to put these styles inside the following media query. This media
query specifies the styles for viewports that are smaller than 960 px.
@media only screen and (max-width: 959px) {
}

2. Since the device is getting smaller, we need to change the column and container
widths to their relative units. In this case, the container width would be 100% while
the width of each column within the container would be 25%, as the container is
divided into four columns.
.container {
 width: 100%;
}
.portfolio .four.columns {
 width: 25%;
}

3. Then, we hide the navigation menu to let the users navigate by scrolling with their
fingers:
label {
 display: none;
}

4. We add a little gap at the bottom of each row by adding margin-bottom to the
figure element.
.portfolio .all {
 margin-bottom: 15px;
}

Enhancing the Portfolio Website with CSS3

[106]

5. Since we have hidden the navigation, we need to shift the category information
somewhere else.

In this case, we will place it at the top of the image. We can add it using the
:before pseudo element and grab the category information from the HTML5
data-* attribute, as follows:

.portofolio > figure:before {
 content: attr(data-category);
 font-size: 1em;
 padding: 8px;
 width: 100%;
 color: #fff;
 display: block;
 font-weight: bold;
 text-transform: capitalize;
 background-color: rgba(42,47,51,0.8);
 position: absolute;
}

6. In this smaller viewport, we will show the image caption instead of hiding it. So we'll
set position to relative and the translateX to 0%. We'll also set the default
background color for the caption.
.portfolio figcaption {
 position: relative;

 -webkit-transform: translateX(0%);
 -moz-transform: translateX(0%);
 -ms-transform: translateX(0%);
 -o-transform: translateX(0%);
 transform: translateX(0%);

 background-color: #3a3f43;
}

7. We use the nth-child pseudo element to select the <figure> element that is set
with an odd order and set the background color darker than the default that we set
in Step 6. In this way, each portfolio caption is distinguishable from the other.
.portoflio figure:nth-child(odd) figcaption {
 background-color: #2a2f33;
}

8. Lastly, we need to adjust the margin of the footer section.

.footer {
 border-top: 1px solid #ccc;
 margin-top: 42px;
 padding: 28px;
}

Chapter 3

[107]

What just happened?
We just added styles for a viewport with a width less than 960 px. Here is the result:

Time for action – viewport size between 767 px and 480 px
This time we are going to add styles when the viewport size is between 767 px and 480 px.
This size is most likely the size of mobile and tablet devices.

1. We will add styles inside the following media query:
@media only screen and (min-width: 480px) and (max-width: 767px) {

}

2. Since the viewport is getting smaller, we need to divide the columns into bigger
sizes. In this case, we divide the 100% width of the container by 2, so each column
will have width set to 50% of the viewport size.

.portfolio .four.columns {
 width: 50%;
}

Enhancing the Portfolio Website with CSS3

[108]

What just happened?
We just added styles for a website that has a viewport size between 767 px and 480 px, and
the following screenshot shows how it will appear:

Time for action – viewport size less than 480 px
This time we are going to add styles for a viewport size that is less than 480 px:

1. The styles for a viewport with a size less than 480 px will be added inside the
following media query:
@media only screen and (max-width: 479px) {
}

2. Since the viewport size is really small, we will set the column's width attribute to
100% as well so the image is more visible.
.portfolio .four.columns {
 width: 100%;
}

Chapter 3

[109]

3. In the footer section, we will remove the float definition and set text-align to
center.

.footer {
 text-align: center;
}
.contact, .social {
 float: none;
 display: block;
}

What just happened?
We just added the styles for our website when it is viewed in a viewport size less than 480
px. The following screenshot shows how it appears:

Enhancing the Portfolio Website with CSS3

[110]

Testing the website in a different viewport size
We are done with the website, and it is ready for testing. During this process, we test the
website in a desktop browser and in a smaller viewport size only by minimizing the browser
window. Alternatively, we can also test it with some other tools, such as the following:

 � Firefox's built-in Responsive Tool (https://developer.mozilla.org/en-US/
docs/Tools/Responsive_Design_View)

 � Responsinator (http://www.responsinator.com/)

 � Screenqueries (http://screenqueri.es/)

It is better to test the website in real devices—phones, tablets, or readers—to see how the
website actually responds. The following screenshots shows how our website from this first
project is displayed in iPhone and iPad.

The following screenshot shows our website when viewed in iPhone with the portrait screen
orientation. In this screen orientation, where the viewport size is really small (320 px x 480 px),
the navigation is hidden and replaced by the category name that is shown above each of the
portfolio thumbnails. The image caption is also viewable next to each portfolio thumbnail.

Chapter 3

[111]

The following screenshot shows how our website will appear when viewed in iPhone with
the landscape screen orientation. Like in portrait orientation, the navigation is hidden. But
since the viewport width is wider—480 px x 320 px—we can display two portfolio image
thumbnails in a row, side by side.

Enhancing the Portfolio Website with CSS3

[112]

The following screenshot shows how our website will appear in iPad with the portrait screen
orientation. As the viewport size is much wider than that of the iPhone (768 px x 1024 px),
we are able to accommodate four portfolio image thumbnails in a row, and the caption is
also visible below each thumbnail.

Chapter 3

[113]

Now, we will see how our website appears in iPad with the landscape screen orientation.
In this orientation, the viewport size is 1024 px x 768 px; this space is wide enough to
accommodate four image thumbnails in one row. The navigation for this viewport size is
visible; we can tap on the navigation menu to sort the portfolio.

Enhancing the Portfolio Website with CSS3

[114]

Summary
We have just finalized our first responsive website with CSS3. In this chapter, we performed
the following tasks:

 � Polished our website with some new properties introduced in CSS3, such as
box-sizing, border-radius, and box-shadow

 � Created a fancy image hover effect with CSS3 Transforms and Transitions

 � Created a portfolio filter function with a combination of CSS selectors

 � Adjusted our website's styles in different viewport sizes with CSS3 media queries

Now that we are done with our first project with Skeleton, we are going to explore another
framework to create a responsive website in the next chapter.

4
Developing a Product Launch Site

with Bootstrap

We will start our second project in this chapter. In this project, we will build our
responsive website with Bootstrap by using some of the provided components.
Bootstrap is currently one of the most popular development frameworks. It
comes with several stylesheets and jQuery plugins for establishing interactive
websites or application user interfaces.

Unlike our first project in Chapter 2, Constructing a Responsive Portfolio Page
with Skeleton, and Chapter 3, Enhancing the Portfolio Website with CSS3,
in which we built only a single-page website, in this project we will build a
responsive website with five pages. We will also learn how to use LESS, a CSS
preprocessor, and to compose our website stylesheet.

To sum up, here are several things we are going to cover in this chapter:

 � Introducing and examining Bootstrap components

 � Setting up working directories

 � Preparing website assets, including the images and JavaScript files

 � Adding a new font family with @font-face rules

 � Installing LESS applications for composing and compiling LESS into CSS

 � Creating and structuring HTML documents

Developing a Product Launch Site with Bootstrap

[116]

Getting started with Bootstrap
In Chapter 1, Responsive Web Design, we took a brief look at Bootstrap's features and saw
a couple of examples of sites built on this framework. Now, we will start building our own
website. However, before we start working on the code, we need to set up our working
environment and get some essential files prepared.

Time for action – setting up Bootstrap
Perform the following steps to set up Bootstrap:

1. We have two options available for downloading the Bootstrap package. We
can either download and customize the download page from the official site
(http://getbootstrap.com/) or download it from the Github. Since we plan
to use LESS (http://lesscss.org/), we will download the package directly from
Github. So, let's head over to https://github.com/twitter/bootstrap and
download the package. At the time of writing this book, Github is at version 2.2.1.

The download button in Github is the one that is highlighted in blue, shown in the
following screenshot:

2. You should now have the Bootstrap package in a ZIP file, which at the time of writing
this book is named bootstrap-master.zip. Extract this ZIP file to unpack the
files inside it.

3. On extracting the ZIP file, by default, a folder named bootstrap-master is
created, containing the Bootstrap core files. Rename this folder to bootstrap. This
naming convention is optional; you can name it as you want to. Only note that this
folder will be our working directory for this second project.

http://getbootstrap.com/
http://getbootstrap.com/

Chapter 4

[117]

4. Now, let's go to the working directory. Inside the working directory, you should find
the following items:

 � docs: The docs folder contains Bootstrap documentations, the very same
documentations and pages that we find at http://twitter.github.
com/bootstrap/.

 � img: The img folder, by default, contains glyph icons in the PNG format, and
we will store our images for the website inside this folder.

 � js: The js folder contains the JavaScript files for the jQuery plugins
Carousel, Modal, Dropdown, Scrollspy, Alert, and many more.

 � less: Bootstrap stylesheets are built on top of LESS, a CSS preprocessor.
The less folder is used to store the LESS files, which are saved with the
.less extension.

 � The MarkDown files: README.md and CONTRIBUTING.md.

 � The JSON files: component.json, composer.json, and package.json.

Among all of these, the items such as the docs folder, components.json,
composer.json, package.json, CONTRIBUTING.md, README.md, LICENSE,
and Makefile are merely additional and will not be of much use in our project. This
is an optional step, but let's remove them from the working directory.

5. Furthermore, let's go to the js folder, which contains the JavaScript files. Since
we will use only bootstrap-collapse.js and bootstrap-transition.js,
we can remove the other files. The two remaining files will be used to animate the
menu navigation when the website is viewed in a small viewport size.

6. To run the plugin scripts, we will need jQuery, so let's go to http://jquery.com/.

7. Select Production (32KB, Minified and Gzipped) and click on Download jQuery.

8. Save it inside the js folder and name it jquery.js.

9. Inside the js folder, you will find a folder named tests. This folder contains scripts
and documents for plugin testing. Since we don't use this on our website, we can
remove them from the working directory.

10. Similarly, you will also find the tests folder inside the less folder, which contains
some HTML documents and a stylesheet for testing the UI styles. We can also
remove it from the working directory so our website will not rely on the HTML
documents or stylesheets from this tests folder as well.

Developing a Product Launch Site with Bootstrap

[118]

What just happened?
We have just downloaded and unpacked the Bootstrap package and given its main folder
the name bootstrap, which will be the working directory for the project. We have also
removed the files that we are not going to use in the project. So, at this stage, the remaining
assets for the project include only those that are shown in the following screenshot:

Chapter 4

[119]

Preparing the website images
Similar to our first website, we will need some images to be displayed, such as the product
images, the logo image, and the social media icons. We have a total of 16 product images,
one image for the website logo, one "hello world" image, three images for the About page,
and social media icons for Facebook, Dribbble, and Twitter. You can find all the images that
we are going to use bundled along with this book, and the following screenshot shows the
list of our images in the img folder:

Developing a Product Launch Site with Bootstrap

[120]

The following screenshot shows a few of these images:

I would like to thank my friend, an artist at Kudos Plush (http://www.kudosplush.com),
who allowed me to use their images for the project in this book. Alternatively, you can also
use your own images. The important thing is that they should be stored in the working
directory under the img folder.

Introducing LESS applications
Bootstrap stylesheets are built on top of LESS, a CSS preprocessor. You can find the LESS
files, which are saved with the .less extension and stored within the less folder in the
working directory.

In Chapter 1, Responsive Web Design, we took a brief look at a few LESS syntaxes; to process
those syntaxes, we need a special application that is able to compose as well as compile LESS
syntaxes into a standard CSS that browsers can recognize.

In this project, we are going to use a dedicated code editor for LESS, named CrunchApp
(http://crunchapp.net).

Time for action – installing CrunchApp
Perform the following steps to install CrunchApp:

1. CrunchApp is an Adobe AIR application. If Adobe Air is already installed, we can skip
directly to step 4; otherwise, we need to install it before we can install CrunchApp.

2. Go to the Adobe AIR website (http://get.adobe.com/air/).

Chapter 4

[121]

3. Adobe.com will automatically detect your system and provide the proper file to be
downloaded. Find and click on the Download Now button to download the file.

4. Launch the file and follow the installation instructions. Each OS will have a different
method of installing the application.

You can also read the tutorial available at
http://www.clickonf5.org/6268/how-to-
install-adobe-air-windows-mac-ubuntu/ for
more detailed instructions on Adobe AIR installation on each
platform (Windows, OS X, and Linux).

5. After the Adobe AIR installation is complete, go to the CrunchApp website (http://
crunchapp.net/) and download the CrunchApp installation file.

At the time of writing this book, the installation file name is Crunch.1.5.3.air;
this shows that the current version is 1.5.3.

6. Launch the CrunchApp installation file, Crunch.1.5.3.air.

7. The window shown in the following screenshot should appear. Click on the Install
button to start the installation process.

Developing a Product Launch Site with Bootstrap

[122]

8. The installer will prompt for installation location. Since the default location is fine,
we can simply click on the Continue button.

9. Wait until the installation is complete. After that, CrunchApp will automatically
start running.

What just happened?
We have just installed CrunchApp, an application for composing and compiling files with the
.less extension. You can actually use your current editor and set it up to be able to open
and highlight LESS syntax.

But everyone has his/her own code editor of choice. Here, we decided to use CrunchApp,
because it is a free application, is easy to use, and can be run on popular platforms such as
Windows, OS X, and Linux.

Chapter 4

[123]

Creating new LESS files
Similar to our first project, we will use some dedicated stylesheets to store our own style
rules for the website. It is always a good idea to not interfere with the core files from
Bootstrap so that when the framework core files are updated, our changes will not be
overwritten with the new files, and thus the website is easily maintainable.

In the following steps, we will create a new .less file as we are going to compose the styles
with LESS.

Time for action – creating a new LESS file with CrunchApp
To create a new LESS file with CrunchApp, perform the following steps:

1. Open CrunchApp.

2. Then, drag-and-drop the less folder from the working directory into the CrunchApp
sidebar. CrunchApp will list all the .less files inside this folder, as shown in the
following screenshot:

3. Create a new LESS file. There are several ways to do so, either by navigating to
File | New or by pressing Ctrl + N (for Windows or Linux) or Command + N (for OS X).

Developing a Product Launch Site with Bootstrap

[124]

4. Save the file in the working directory under the less folder and name it _styles.
less with underscore. We initialize the file name with the underscore sign so that
the file will be listed on top of other files, and thus our files are easily discoverable.

5. Now, copy a LESS file named bootstrap.less and rename the copied file
to _bootstrap.less—with underscore.

6. Then, import _bootstrap.less to our new LESS file, as follows:
@import "_bootstrap.less";

This will import anything within _bootstrap.less.

7. Don't forget to save these changes in our new file.

Chapter 4

[125]

What just happened?
We have just created a new LESS file named _styles.less to store our own styles. We also
made a copy of bootstrap.less, renamed it to _bootstrap.less, and then imported it
to the new LESS file. That way, we do not interfere with the core files from Bootstrap.

Compiling LESS syntax into standard CSS
LESS syntax is not the standard syntax that the browsers can understand. Thus, we need to
compile LESS syntax into standard CSS rules before we can see the result in the browsers.
CrunchApp, which we have just installed, is able to do so.

Time for action – adding LESS files to CrunchApp and compiling
them into standard CSS

To add files to CrunchApp and compile them into standard CSS, perform the following steps:

1. First, create a new folder named css inside the working directory. In this folder, we
will save all the CSS files generated from CrunchApp.

2. Then, open our _styles.less file. This file has imported _bootstrap.less,
which contains @import rules for several LESS files within the less folder. So,
everything that is defined or added within _bootstrap.less is compiled
to _styles.less.

3. To compile it into CSS, you can press Ctrl + Enter (for Windows or Linux) or
Command + Enter (for OS X).

4. After that, you will be prompted for a location in which to save the compiled file.
Save it under the css folder that we have created in step 1.

What just happened?
We have just compiled _styles.less into CSS browser-compatible format. It imports all
other .less files from _bootstrap.less and saves them to the CSS stylesheet named
_styles.css. So, at this stage, this is the only stylesheet saved under the css folder in
the working directory.

Developing a Product Launch Site with Bootstrap

[126]

Alternative to CrunchApp

There are other options available for carrying out the same task too. Here, we
have put together some resources where you can enable syntax highlighting for
LESS syntax in some popular code editors and then use them along with a LESS
compiler application, such as LESS.app for OS X or WinLESS for Windows.

Sublime Text 2 users can install the LESS syntax highlighter package (https://
github.com/danro/LESS-sublime) through Package Control.

DreamWeaver users can install the extension available at Adobe.com (http://
www.adobe.com/cfusion/exchange/index.cfm?event=extensi
onDetail&extid=2756522).

There is also a LESS highlighter bundle (https://github.com/appden/
less.tmbundle) available for the TextMate code editor.

If you are a Windows user, you can use WebMatrix (http://www.
microsoft.com/web/), a free web development tool provided and built
by Microsoft. It already supports LESS; follow the instructions (at http://
www.microsoft.com/web/post/how-to-use-less-css-in-
webmatrix) on authoring LESS with WebMatrix as well as compiling it into CSS
with its special extension, called OrangeBits.

Introducing the @font-face rule to add a custom
font family
We are also going to add a new font family to make our website more appealing. If, you
prefer to remain with Arial or Georgia, you can skip this section.

In our first project, we embedded the font with the Google Web Font service. When we
embed the font with Google Web Font, the font is served from the Google server, which is a
good way to save a little workload on our own server.

In this second project, we are going to take a look at another option: embedding the font with
the @font-face rule. The @font-face rule allows us to host and serve the font ourselves.

One advantage of obtaining and hosting the fonts on our own is that we get more control
over the font, for instance, subsetting the font, replacing or removing unnecessary
characters, and adding new characters in the set.

Google Web Font also offers font the subsetting capability
(https://developers.google.com/webfonts/
docs/getting_started#Subsets). But the
implementation is currently quite limited and not too flexible.

Chapter 4

[127]

Finding free fonts for embedding on the web
One of the main concerns, however, when hosting and embedding fonts using @font-face
is the font EULA (End-user License Agreement). Some type foundries prohibit their font from
being freely embedded on the web, with the exception of buying the license through some
premium @font-face services, such as Typekit (https://typekit.com) or Fontdeck
(http://fontdeck.com).

In 2009, Ethan Dunham started Font Squirrel (http://www.fontsquirrel.com) to bridge
this license barrier and push the use of @font-face by collecting available fonts that are
free for commercial use and are allowed to be embedded on the web.

At the time of writing this book, there are 819 font families with various typefaces in the
Font Squirrel library from Serif, Sans serif, and Script to Calligraphic and Retro.

Writing the @font-face rule
Adding a new font family with the @font-face rule is relatively easy. We simply specify the
new font family name with the font-family property along with the font file source. In the
following example, we set a new font family named MyFont and use the .ttf font format
within the source:

@font-face {
 font-family: "MyFont"; /* defining new font family name*/
 src: url(

MyFont.ttf'); /* targeting the font source */
}

Then, we can add this new font family, MyFont, through the stylesheet with the font-
family property, for example:

h1 {
 font-family: "MyFont";
}

Font formats for cross-browser compatibility
The @font-face rule was actually introduced since CSS2 specification, and thus, it has been
supported in both earlier and latest browsers—Internet Explorer 5.5, Firefox 3.5, Chrome
4.0, Safari 3.2, Opera 10, iOS 3.2, Android 2.2, and so on.

Developing a Product Launch Site with Bootstrap

[128]

Unfortunately, these browsers set their own rules that outline which font format to use for
web embedding, as shown in the following table.

Browser Compatible font format

Internet Explorer .eot (.woff support added in Internet Explorer 9)

Firefox .ttf and .otf (.woff support added in Firefox 3.6)

Chrome .ttf and .svg (.woff support added in Chrome 5)

Safari .ttf, .otf, and .svg (.woff support added in Safari 5.1)

Opera .ttf, .otf, and .svg

iOS .svg

Android .svg

So, the line of codes for defining a new font family with @font-face turns out to be a
bit longer as we need to provide four formats for the sake of, both earlier and latest,
browser compatibility.

In the post at http://paulirish.com/2009/bulletproof-font-face-
implementation-syntax/, Paul Irish has explained comprehensively about implementing
the @font-face rule and has given a tip for the better @font-face syntax that works
across all browsers, as follows:

@font-face {
 font-family: 'MyFont;
 src: url('MyFont.eot');
 src: local('?'),
 url('MyFont.woff') format('woff'),
 url('MyFont.ttf') format('truetype'),
 url('MyFont.svg#webfont') format('svg');
 font-weight: normal;
 font-style: normal;
}

In addition, if you prefer to not deal with the preceding syntax manually, you can
achieve it easily with the free @font-face generator tool from Font Squirrel
(http://www.fontsquirrel.com/fontface/generator).

Time for action – adding a new font with @font-face
To add a new font with @font-face, perform the following steps:

1. First, go to the css folder in the working directory.

2. Inside this css folder, create a new folder and name it fonts.

Chapter 4

[129]

3. We will use a free font from Font Squirrel. So, let's head over to
http://www.fontsquirrel.com/.

4. Browse the Font Squirrel library and download the @font-face kit for Droid Sans
(http://www.fontsquirrel.com/fonts/Droid-Sans), this kit contains the
font files with the @font-face rules in the stylesheet.

5. Extract the kit and place all the font files inside the fonts folder that we created
in step 2.

6. You should also find a stylesheet named stylesheet.css in the extracted package.
Open it in a code editor and copy the @font-face rules from stylesheet.css.
Change the path in a url type to point to our fonts folder, as follows:
@font-face {
 font-family: 'DroidSansRegular';
 src: url('fonts/DroidSans-webfont.eot');
 src: url('fonts/DroidSans-webfont.eot?#iefix')
 format('embedded-opentype'),
 url('fonts/DroidSans-webfont.woff') format('woff'),
 url('fonts/DroidSans-webfont.ttf') format('truetype'),
 url('fonts/DroidSans-webfont.svg#DroidSansRegular')
 format('svg');
 font-weight: normal;
 font-style: normal;
}
@font-face {
 font-family: 'DroidSansBold';
 src: url('fonts/DroidSans-Bold-webfont.eot');
 src: url('fonts/DroidSans-Bold-webfont.eot?#iefix')
 format('embedded-opentype'),
 url('fonts/DroidSans-Bold-webfont.woff') format('woff'),
 url('fonts/DroidSans-Bold-webfont.ttf')
 format('truetype'),
 url('fonts/DroidSans-Bold-webfont.svg#DroidSansBold')
 format('svg');
 font-weight: normal;
 font-style: normal;

}

7. Go to CrunchApp, create a new LESS file, and name it _fonts.less. This file is
dedicated to defining the @font-face rules.

Developing a Product Launch Site with Bootstrap

[130]

What just happened?
We have just added a new font, Droid Sans, which will be our website's main font, and
saved it within a new file named _fonts.less. We dedicate this new file to saving the
@font-face rule in our project.

You can also use other font families; just make sure that you do not
violent the font license. As mentioned, some fonts are prohibited
from being freely embedded on the web.

Responsive features in Bootstrap
Before we work on the HTML structure, we will first examine how Bootstrap applies
its responsive features and see what classes are used to define the columns and other
components so that we will be able to structure the HTML markup properly.

Bootstrap grid system
Bootstrap uses 12 columns of grid system. Each column is defined with classes ranging from
span1 to span12. When we add several columns, the sum of our span classes should be equal
to 12, and specifically in Bootstrap, the columns should be wrapped within a <div> element or
other appropriate elements with the row class, as shown in the following code snippet:

<div class="row">
 <div class="span9"> This is the main content </div>
 <div class="span3"> and this is the sidebar... </div>
</div>

In the preceding example, we have two <div> elements wrapped within a <div> element
that is assigned with the row class, while the two <div> elements within are respectively
assigned with the span3 and span9 classes, which add up to 12.

Given the preceding example, we will get the following result in the browsers by adding a
few decorative styles:

CSS3 media queries in Bootstrap
By default, Bootstrap does not include the responsive features. But those can easily be
enabled by including the meta viewport tag and the stylesheet that contains the CSS3 media
query definitions.

Chapter 4

[131]

Bootstrap has provided several CSS3 media queries for supporting a wide range of viewport
widths. See the following example:

@media (min-width: 1200px) {
 .container {
 width: 1170px;
 ...
 }
}
@media (min-width: 768px) and (max-width: 979px) { ... }
@media (max-width: 767px) { ... }
@media (max-width: 480px) { ... }

Referring to the preceding code snippet, when we enable the responsive feature by including
these CSS3 media queries, Bootstrap extends the container width to 1170px within the
1200px viewport width.

However, the width of 1170px would be too large for our website. So, in order for the styles
to not be applied to the website, we need to remove the media query @media (min-
width: 1200px) as well as the style rules from our stylesheet.

Time for action – creating a new LESS file to store CSS3
media queries

To add a new LESS file for storing CSS3 media queries, perform the following steps:

1. Open CrunchApp, create a new LESS file, and name it _responsives.less.
This will be used to store our own definitions of CSS3 media queries.

2. Then, in the CrunchApp sidebar, find and open the LESS file named responsive.
less. This is the default file where Bootstrap saves the CSS3 media queries.

3. Copy the following @import rules from responsive.less:
@import "variables.less";
@import "mixins.less";

4. These files, variables.less and mixins.less, store Bootstrap's core variables
and mixins. The responsive style rules are dependent on these variables and mixins,
so let's paste it into the _responsive.less file that we created in step 1.

5. Then, add the following line to import special class helpers for responsive design:
@import "responsive-utilities.less";

6. Open a LESS file named responsive-767px-max.less from the
CrunchApp sidebar.

Developing a Product Launch Site with Bootstrap

[132]

7. Copy everything from responsive-767px-max.less and paste it into _
responsives.less after the line @import "responsive-utilities.less".

8. Then, add the following line to the @import styles for responsive navigation at the
very bottom:
@import "responsive-navbar.less";

9. Save the file and compile it to CSS.

10. Save the compiled file in the css folder in the working directory.

What just happened?
We have just created a new file dedicated to saving our own styles within CSS3 media queries.

To learn more about the Bootstrap grid system, you can visit the
official documentation, which has accommodated everything you
need to know on this matter (http://twitter.github.com/
bootstrap/scaffolding.html#gridSystem).

Establishing navigation with Bootstrap
Bootstrap provides extensive classes to establish web navigations. The web navigation is
basically formed with an element assigned to the class navbar as well as by nesting one
more element inside it with the navbar-inner class to contain inner elements within the
navigation, as follows.

<nav class="navbar">
 <div class="navbar-inner">
 ...
 </div>
</nav>

The navbar class should be nested within the element with
a class container that defines the width of the web page.

Then, we can add additional elements, such as the link menu. In Bootstrap, the link menu is
structured with an unordered list element, , assigned to the class nav.

<nav class="navbar">
 <div class="navbar-inner">
 <ul class="nav">
 Home
 About Us

Chapter 4

[133]

 Contact Us

 </div>
</nav>

The preceding example will give us the following result, by default:

Furthermore, the navigation can be responsive. As we briefly discussed in Chapter 1,
Responsive Web Design, when the website is viewed in a small viewport, the navigation
will turn into a button, as shown in the following screenshot:

For further reference, Bootstrap has provided a comprehensive
documentation on forming web navigation at http://twitter.
github.com/bootstrap/components.html#navbar.

Creating HTML documents
At this stage, we have done a few things from setting up the project's working directory as
well as preparing the website assets to installing and creating new .less files with the LESS
application, CrunchApp.

Now, we will start creating the HTML markup for our website. To create these documents,
you can use any code editor of your choice.

Developing a Product Launch Site with Bootstrap

[134]

Time for action – creating basic HTML5 documents
Perform the following steps to create basic HTML5 documents:

1. First, create a new file in code editor and save it as index.html in the
working directory.

2. Add some essential stuff for an HTML document, including doctype and the html,
body, and head tags as follows.
<!DOCTYPE html>
<html>
 <head> </head>
 <body> </body>
</html>

3. Some style rules in Bootstrap are defined with more specificity. So, in order to be
able to overwrite the styles later on, we will need to add a unique class name. In
this project, we add a class named kudosplush and then add it in the <body> tag
as follows:
<body class="kudosplush"> </body>

4. Inside the <head> tag, we add the title tag and the document charset.
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<meta charset="utf-8">
<title>Home</title>

5. The viewport meta tag is an important part of development for mobile devices. So,
let's add it after the title tag:
<meta name="viewport" content="width=device-width,
initial-scale=1">

6. Then, link all the stylesheets that we have created by compiling the LESS files
as follows:
<link href="css/_styles.css" rel="stylesheet">
<link href="css/_responsives.css" rel="stylesheet">

7. To allow old browsers to support HTML5 elements, we need to add HTML5 Shim.
<!--[if lt IE 9]>
<script src="http://html5shim.googlecode.com/svn/trunk/html5.js">
</script>
<![endif]-->

Chapter 4

[135]

8. Afterwards, we add the website header with a <header> element, the content
section with a <div> element, and footer with a <footer> element inside the
<body> tag, as follows:
<body class="kudosplush">
 <header class="header"> </header>
 <div class="content"> </div>
 <footer class="header"> </footer>
</body>

We used the <div> element instead of using HTML5 <section> to define the
content section because the section will not immediately be followed with a
heading, as described in the documentation (http://www.whatwg.org/specs/
web-apps/current-work/multipage/sections.html#headings-and-
sections):

"The first element of heading content in an element of sectioning
content represents the heading for that section. Subsequent
headings of equal or higher rank start new (implied) sections,
headings of lower rank start implied subsections that are part
of the previous one. In both cases, the element represents the
heading of the implied section."

9. Inside the <header> element, we add a <div> element with the class container to
contain the inner content of the header.
<div class="container"> </div>

10. Add a <nav> element with the class navbar to form the navigation.
<div class="container">
 <nav class="navbar"> </nav>
</div>

11. Inside the <nav class="navbar"> definition, add a <div> element with the class
navbar-inner to contain the inner elements within the navigation.
<div class="container">
 <nav class="navbar">
 <div class="navbar-inner"> </div>
 </nav>
</div>

12. Add an <a> element with the class brand inside the <div class="navbar-
inner"> definition to display the website logo later on.
<div class="container">
 <nav class="navbar">
 <div class="navbar-inner">

Developing a Product Launch Site with Bootstrap

[136]

 Kudos Plush
 </div>
 </nav>
</div>

13. Then, add the following code next to the
definition for the link menu.
Kudos Plush

<div class="nav-collapse collapse">
 <ul class="nav pull-right">
 <li class="active">
 Home

 Gallery
 Contact Us

</div>

We wrapped the menu links within a <div> element with the nav-collapse
collapse class in order for the navigation to collapse when it is viewed in a small
viewport size.

14. Lastly, we add the button as the toggle key for the menu links. Define this button
with the HTML5 <button> element and add the following code before the Kudos Plush definition as follows:
<button data-target=".nav-collapse" data-toggle="collapse"
class="btn btn-navbar collapsed" type="button">

</button>
Kudos Plush

In Bootstrap, the three stripes icon is structured with three
 elements, as explained in the documentation. But, we
can replace them with an HTML character named Trigram from
Heaven. This character is defined with HTML entity number
☰ and gives us the following result in the browser:

We can then customize the look or the size with CSS rules.

Chapter 4

[137]

15. While in the content section, for now, we will only add the div container to contain
the future content.
<div class="container"> </div>

16. For the footer, we also need to add a <div> element that is assigned to the class
container.
<footer class="footer">
 <div class="container"> </div>
</footer>

17. For the footer contents, we add two columns. So, let's add a <div> element
assigned to the class row.
<footer class="footer">
 <div class="container">
 <div class=""row> </div>
 </div>
</footer>

18. Inside the <div class="row"> definition, add two <div> elements for each
column assigned to the class span6. So, they have equal width.
<footer class="footer">
 <div class="container">
 <div class="row">
 <div class="span6"> </div>
 <div class="span6"> </div>
 </div>
 </div>
</footer>

19. In the first column, we add the footer navigation structure as follows:
<div class="span6">
 <nav class="nav-footer">

 Home
 Gallery
 Contact
 About
 Policy

 </nav>
</div>

Developing a Product Launch Site with Bootstrap

[138]

20. In the second column, we add the copyright text and social media links.
<div class="span6">
 <small class="copyright">Copyright © 2012 John Doe - All
 rights reserved</small>
 <ul class="social-links">
 <li class="facebook">Facebook
 <li class="twitter">Twitter
 <li class="dribbble">Dribbble

</div>

21. Save the document.

22. Then, copy the document index.html into five copies.

23. Apart from index.html, save the copies with the names gallery.html,
contact.html, about.html, and policy.html.

What just happened?
We have just created an HTML document, which becomes the basic document for our web
pages. Each web page will have the same header, navigation, and footer structure.

The only difference would be the content structure; that is why we added only the div
container in the content section at the moment.

In the following steps, we will start adding HTML content structure for each page.

Pop quiz
What is the HTML entity number that is used for generating the "three stripes" icon?

1. ☰

2. #&9776;

The homepage content
We are about to start structuring the HTML for the homepage. In the homepage, we will
have five sections: the "Hello World" (Hero), the order section, the gallery, the testimonial,
and the e-mail subscription form.

Chapter 4

[139]

Time for action – adding an HTML content structure for
our homepage

To add an HTML content structure for homepage, perform the following steps:

1. Open the index.html file in your code editor.

2. Add the following lines within the <header> element below the navigation to
establish the Hello World (Hero) or introductory section:
<div class="hero-unit row">
 <div class="hero-text span7">
 <h1>Hello World. Welcome to our website!</h1>
 <p>Lorem Ipsum! Only</p>
 <p class="price">USD50.0</p>
 </div>
 <div class="hero-image span5">
 <img src="img/hero-image.png" alt=
 "KudosPlush Hero image">
 </div>
</div>

3. Next, we add what we call the call-to-action (CTA) section within the
<div class="container"> definition in the content. This section contains
some copy text (in reality, the text would be there to encourage visitors to order
or buy the offered product) and a button.

So, we will split this section into two columns. The first column with the span9 call
will contain the copy text, while the next column with the class span3 will contain
the button.
<div class="cta row">
 <div class="copy-text span9">
 <p>Brownie oat cake donut gummies carrot macaroon cake
 jelly-o. Cheesecake apple pie gummi bears.</p>
 </div>
 <div class="button span3">
 <a class="btn btn-primary btn-block btn-order"
 href="#">Order Now
 </div>
</div>

In its basic form, the button is applied with class btn. However, in this project, we
added it with a custom class called btn-order to apply our own style rules.

Bootstrap provides extensive classes for styling buttons.

Developing a Product Launch Site with Bootstrap

[140]

4. Add an <hr> element next to the <div class="cta row"> definition to separate
it from the next section, the Gallery.

5. Add the following lines to establish the Gallery section. We have previewed four of
our product images. Each image is wrapped within an HTML5 <figure> element,
and we will display all these images side by side in a row. Since Bootstrap uses
12 columns of the grid, each <figure> element is assigned to the class span3
(12 divided by 4 results in 3).
<div class="gallery row">
 <figure class="span3">
 <img class="img-polaroid" src="img/image-1.jpg
 alt="featured product no.1">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-2.jpg"
 alt=" featured product no.2">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-3.jpg"
 alt=" featured product no.3">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-4.jpg"
 alt=" featured product no.4">
 </figure>
</div>

6. Add an <hr> element to a separate Gallery with the next section, Testimonial.

7. We add the Testimonial section next to the Gallery. This section contains only copy
text. In reality, this would be the testimonial of satisfied customers.
<div class="testimonial row">
 <p>Oat cake jelly faworki. Tootsie roll powder faworki
 applicake. Marshmallow macaroon icing soufflé.</p>
</div>

8. Lastly, we add the form for e-mail subscription. We use the HTML input type, email,
add placeholder text for the input field, and use the <button> element for the
submit key.

<form action="index_submit" method="get" accept-charset="utf-8">
 <input type="email" name="email_subscribe"
 placeholder="Input your email address">
 <button class="btn btn-large"
 type="submit">Submit</button>
</form>

Chapter 4

[141]

What just happened?
We have just added HTML structure for the homepage content, including the Hello World
(Hero) section. The Hero section will only be available in the homepage.

Also, in step 8, we added the <input> element within the form subscription with the
placeholder attribute and email type.

The following screenshot shows how the homepage looks at the moment.

Developing a Product Launch Site with Bootstrap

[142]

The HTML5 placeholder attribute
HTML5 introduced a new attribute named placeholder. The spec described this
attribute as:

"A short hint (a word or short phrase) intended to aid the user with data entry
when the control has no value."

See the code snippet from step 8:

<input type="email" name="email_subscribe" placeholder="Input your
email address">

This gives us the following result in the browser:

Earlier, we used to rely on JavaScript to achieve a similar effect. Today, with placeholder,
the application gets much simpler.

New input types in HTML5
HTML5 also introduced a bunch of new input types, such as email, url, number, range,
and search. In step 8, we added the email input type.

<input type="email" name="email_subscribe" placeholder="Input your
email address">

These new input types are special as they come with built-in validations. So, when the users
enter an invalid e-mail format, for example, within our form subscription, it will return an
error, as shown in the following screenshot:

Chapter 4

[143]

Furthermore, these new inputs give better experience in mobile devices. Given our example
with the email input type, we will be provided with a special virtual keyboard for typing
e-mail with the addition of the @ key to make typing e-mail addresses faster.

You can head over to http://diveintohtml5.info/
forms.html, where Mark Pilgrim has discussed this topic in detail in
the article Dive Into HTML5 (http://diveintohtml5.info/).

The Gallery page content
We are going to add HTML content structure for the Gallery page. In this page, we will
display all our product images. We have a total of 16 images, and we will display four
images in a row—as we did it on the home page.

Developing a Product Launch Site with Bootstrap

[144]

Time for action – adding HTML content structure for the
Gallery page

To add HTML content structure for the Gallery page, perform the following steps:

1. Open gallery.html in your code editor.

2. First, we add page title with the H1 element.
<h1>Plush Gallery <small>collection to our previous toys</small></
h1>

3. Then, add a <div> element assigned to the class gallery page to contain the
gallery images.
<div class="gallery page"> </div>

4. As mentioned, the structure for the gallery is the same as in the homepage. Each
<figure> element is assigned to the class span3. That way, it will divide these
images into four images in a row.

We also add a special class from Bootstrap, img-polaroid, to apply image styles.

<div class="row">
 <figure class="span3">
 <img class="img-polaroid" src="img/image-1.jpg"
 alt="product image no.1">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-2.jpg"
 alt="product image no.2">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-3.jpg"
 alt="product image no.3">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-4.jpg"
 alt="product image no.4">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-5.jpg"
 alt="product image no.5">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-6.jpg"
 alt="product image no.6">
 </figure>

Chapter 4

[145]

 <figure class="span3">
 <img class="img-polaroid" src="img/image-7.jpg"
 alt="product image no.7">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-8.jpg"
 alt="product image no.8">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-9.jpg"
 alt="product image no.9">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-10.jpg"
 alt="product image no.10">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-11.jpg"
 alt="product image no.11">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-12.jpg"
 alt="product image no.12">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-13.jpg"
 alt="product image no.13">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-14.jpg"
 alt="product image no.14">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-15.jpg"
 alt="product image no.15">
 </figure>
 <figure class="span3">
 <img class="img-polaroid" src="img/image-16.jpg"
 alt="product image no.16">
 </figure>
</div>

Developing a Product Launch Site with Bootstrap

[146]

What just happened?
We have just added the HTML content structure for the Gallery page. In this page, we added
the page heading and all the product images. At this stage, our Gallery page looks as shown
in the following screenshot:

Chapter 4

[147]

Contact page content
Next, we are going to work on the Contact page. In this page, we will add three sections: the
map image (in a real case, this would show the store location), the address information, and
the contact form for contacting the website owners online.

Time for action – adding HTML structure for the Contact page
To add HTML structure for the Contact page, perform the following steps:

1. First open up contact.html in your code editor.

2. Then, add the content title with H1, as we did in the Gallery page.
<h1>Contact Us <small>we would like to hear from you</small></h1>

3. Then, we add the map image. This map section will be hidden when viewed in a
very small viewport size, so we add a special class hidden-phone in the container,
as follows:
<div class="row hidden-phone">
 <div class="map span12">
 <img class="img-polaroid" src="img/map.jpg"
 alt="This is where we are">
 </div>
</div>

4. Add an <hr> element next to the preceding map section to separate it from the
next section.

5. Add the second row to wrap the section.
<div class="row"> </div>

6. In the second row, we add the address and contact information as well as the
contact form. So, we split this section into two columns. The first column will wrap
the address.
<div class="address span6">
<h3>KudosPlush Toys</h3>

 <address>
 Street Anywhere In the World 123

 The Country, NaN 123456

 <abbr title="Phone">P.</abbr> (123) 987-654321

 <abbr title="Fax">F.</abbr> (123) 123-123456
 </address>

 <p>Cupcake ipsum dolor sit amet oat cake cotton candy
 carrot cake gummi bears. Chupa chups croissant powder

Developing a Product Launch Site with Bootstrap

[148]

 danish toffee pudding jujubes cupcake cotton candy.
 Tootsie roll jelly beans macaroon sweet faworki
 dragée.</p>

 <p>Jelly danish danish chocolate cake gingerbread candy
 fruitcake donut jelly beans. Dragée cheesecake tootsie
 roll halvah carrot cake fruitcake sweet roll. Topping
 dragée pudding. Candy oat cake candy canes.</p>
</div>

7. The second column will wrap the contact form. This form is quite simple; it consists
of the name, email, and message input fields as well as the submit button.

<div class="form span6">
 <h4>Contact Form</h4>
 <form action="index_submit" method=
 "get" accept-charset="utf-8">
 <div class="row">
 <label class="span2" for="name">Your Name</label>

 <input class="span4" id="name"
 type="text" placeholder="e.g. John Doe">
 </div>

 <div class="row">
 <label class="span2" for="email">Email Adress</label>
 <input class="span4" id="email" type=
 "email" placeholder="eg. yourname@email.com">
 </div>

 <div class="row">
 <label class="span2" for="message">
 Your Message</label>
 <textarea class="span4" id="message"></textarea>
 </div>

 <button type="submit" class="btn btn btn-large
 btn-submit pull-right">Submit</button>
 </form>
</div>

Chapter 4

[149]

What just happened?
We have just added HTML structure for the Contact page content. We first added the map
(in a real case, this would show the business or store location), and then we also added
the address information, including imaginary phone and fax numbers. Lastly, we added the
contact form for visitors contacting online.

Here is how the Contact page looks at the moment:

The About page content
Now, we are going to add HTML content structure for the About page. This page will have
two sections, the business story and the founder profiles.

Developing a Product Launch Site with Bootstrap

[150]

Time for action – adding HTML content structure for the
About page

To add HTML content structure for the About page, perform the following steps:

1. First, open contact.html in your code editor.

2. As with previous pages, we will add the title of the page.
<h1>About <small>read the story</small></h1>

3. Then, we add the Business Story section. This section ideally tells the story of the
business and the products. But, since we have many stories, we only add some
random text in it.
<div class="row">

 <div class="img-story span6">

 </div>
 <div class="story span6">
 <p>Donut pie brownie sweet lollipop. Lollipop wypas
 dessert sesame snaps chocolate cake chocolate bar
 croissant. Lollipop jelly jelly liquorice bonbon sweet.
 ... Chupa chups sugar plum powder gingerbread bonbon.
 Tiramisu tart cookie jelly beans.</p>
 </div>
</div>
<hr>

4. Lastly, add the founder's profile section. This section will be split up into two
columns as our imaginary business has two founders.

<h3>Meet the Founders</h3>
 <div class="profile row">
 <div class="span6">
 <div class="row">
 <div class="span2">

 </div>
 <div class="span4">
 <h4>Salman Fariz Alutfi</h4>
 <p>Donut pie brownie sweet lollipop. Lollipop wypas
 dessert sesame snaps chocolate cake chocolate bar
 croissant...</p>
 </div>
 </div>
 </div>
 <div class="span6">
 <div class="row">

Chapter 4

[151]

 <div class="span2">

 </div>
 <div class="span4">
 <h4>Arief Bahari</h4>
 <p>Donut pie brownie sweet lollipop. Lollipop wypas
 dessert sesame snaps chocolate cake chocolate bar
 croissant...</p>
 </div>
 </div>
 </div>
</div>

What just happened?
We have just added HTML content structure for the About page. On this page, we added a
map image; alternatively, you can replace it by embedding a real map from services such as
Google Maps. We also added the profiles of the two founders of the business.

The following screenshot shows what this page currently looks like:

Now, we only have one more document to work on, the Policy page.

Developing a Product Launch Site with Bootstrap

[152]

The Policy page
Typically, a website should have a Privacy and Policy page containing some agreements
regarding the website. For example, information that the website collects when we visit the
it, ads on the website that may also collect our information, or what policy is protecting the
collected information.

In this project, we will also add this kind of page. This page is the simplest on our site. It will
only consist of the page title and the text content, which is divided into two columns.

Time for action – adding HTML content structure for the Privacy
and Policy page

To add HTML content structure for the Privacy and Policy page, perform the following steps:

1. Open policy.html in your code editor.

2. Then, add the title with the <h1> tag.
<h1>Privacy & Policy <small>sweet user agreement</small></h1>

3. Let's add the content. As we mentioned, this content will be divided into two
columns. We will use a pair of <div> elements with the .span6 class. The content
of this page is extremely long, so in the following code snippet, we have cut it off to
fit well in the page.

<div class="span6">
 <h3>Donut pie brownie sweet lollipop.</h3>
 <p>Donut pie brownie sweet lollipop. Lollipop wypas
 dessert sesame snaps chocolate cake chocolate bar
 croissant. Lollipop jelly jelly liquorice bonbon sweet ..</p>
</div>
<div class="span6">
 <h3>Powder jelly toffee marshmallow cake</h3>
 <p>Cupcake ipsum dolor sit. Amet bear claw croissant.
 Pudding toffee jujubes topping ice cream icing chupa
 chups. Cotton candy cupcake sugar plum lemon drops. Pastry
 pudding croissant cupcake ...</p>
</div>

Chapter 4

[153]

What just happened?
We have just finished structuring the last page, the Privacy and Policy page. In this project,
we added several paragraphs to fill the content and split it into two columns. At this stage,
here is how the Privacy and Policy page appears:

Developing a Product Launch Site with Bootstrap

[154]

Summary
In this chapter we have done many things to construct the website, including:

 � Setting up Bootstrap and Project working directories

 � Preparing the website images and the JavaScript

 � Adding a new font family with the @font-face rule

 � Installing and using an application to edit and compile LESS files

 � Structuring the HTML documents

We are about halfway through our project. In the next chapter we will start styling our
website's presentation using CSS3 with LESS syntax.

5
Enhancing the Product Launch Site

with CSS3 and LESS

In the previous chapter we laid the foundation of our product launch site with
Bootstrap, including setting up the Bootstrap, creating the working directory,
and preparing website assets, such as images and JavaScript libraries. We also
installed a LESS application, called CrunchApp, to later compose and compile
LESS into CSS. Lastly, we structured the HTML markup for the website.

In this chapter we are going to focus on enhancing the look of our website, thus
we are mostly going to work with CSS3, which will be compiled using LESS.

In this chapter, we will execute the process in the following order:

 � We will first work on the website's header and footer styles, since all the pages will
have the same styles

 � We will add styles for the content section on each page

 � We will add styles for a specific viewport width with CSS3 Media Queries

 � We will examine and sort out the styles that are not necessary and test our website
in different viewport sizes

Let's get started!

Enhancing the Product Launch Site with CSS3 and LESS

[156]

Custom LESS variables
In the previous chapter, we imported the built-in variables from Bootstrap. However, we
need to define our own variables to meet the special requirement for our website.

In Chapter 1, Responsive Web Design, we discussed how to define a variable in LESS. But just
in case you are not willing to flip back to the previous chapter, the variable in LESS is simply
defined with the @ symbol.

For example, the following code snippet defines the white color with the @color variable:

@color: #fff;

This is just a small tip. You can name the variable as desired, but make sure that the name is
logical to the variable purpose, descriptive, easy to memorize, and also easy to write.

Time for action – defining custom variables
For defining custom variables, perform the following steps:

1. Let's open CrunchApp.

2. Create a new LESS file and name it as _variables.less. This file is dedicated
to store our own variables. Also, make sure that this file is stored within the less
folder in our working directory.

3. We will define our new font family that we added in the previous chapter with the
@font-face rule. Thus, we need to import _fonts.less into the _variables.
less file.
@import "_fonts.less";

4. The new font family, Droid Sans, is set as the primary font of our website with the @
primaryFont variable.
@primaryFont: "DroidSansRegular", Arial, sans-serif;

You can name this variable in accordance with the font family name,
let's say, @droidSans. But if you decide to change the font family, you
will most likely need to change the variable name too.

For example, if I change the font family to Open Sans, I have to change
the variable name from @droidSans to @openSans and the names
of the variables that I have added through the stylesheet to represent
that change. This certainly is not a very pleasant task.

For further tips on naming conventions, you can read the post available
at CSS Wizardry (http://csswizardry.com/2010/08/
semantics-and-sensibility/).

Chapter 5

[157]

5. In this project, we set the basic font size to 1em. We save the font size value into a
variable named @baseFontSize as follows:
@baseFontSize: 1em;

6. We set the line height to twice that of the basic font size. We can achieve it by using
the following code:
@lineHeight: @baseFontSize * 2;

7. We set the basic length for measuring CSS properties, such as the padding and the
margin. In this project, we set the basic length to 10px.
@baseLength: 10px;

8. We also need to define our website color scheme with variables. If you take a look
at the images shown in the following screenshot, you will notice that we have three
unique colors: green, brown, and cream. These colors will be the brand colors of
our website.

First, we set green as the primary color of the website. We save the color with a
variable named @primaryColor.
@primaryColor: #3e6b6d;

Brown is the secondary color saved within @secondaryColor.
@secondaryColor: ##cd9a62;

Cream is set as the tertiary color and we save it in a variable named
@tertiaryColor.
@tertiaryColor: ##fff7b6;

Enhancing the Product Launch Site with CSS3 and LESS

[158]

9. Open _styles.less.

10. Import our _variables.less file to _styles.less.

@import "_variables.less";

So, we can reuse these variables in _styles.less.

What just happened?
We just defined the custom variables for our site in a new LESS file named _variables.
less and we then imported this file to _styles.less. At this stage, our _styles.less
file contains the following two import rules:

@import "_bootstrap.less";
@import "_variables.less";

Now, we can use our custom variables along with the LESS variables that come from
the Bootstrap.

Custom LESS mixins
In addition, we also need to define our own mixins for the same reasons that we created the
custom variables in the preceding section.

Time for action – defining custom LESS mixins
Perform the following steps to define the custom LESS mixins:

1. Let's open CrunchApp.

2. Create a new LESS file and name it as _mixins.less. Save it in the less folder.
We will use _mixins.less to store our own mixins' definitions.

3. Image replacement is a technique of hiding text and then replacing it with an image
through the background-image property. In our project, we will apply this method
to display the website's logo image and social media icons. We will define the style
rules for image replacement in .ir, as follows:
.ir {
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;
}

Chapter 5

[159]

4. Next, we define a mixin for the text shadow. But this time we will also add some
parameters to it. As discussed in Chapter 1, Responsive Web Design, these are also
called as parametric mixins.

Let's add the following line to define the text shadow mixin:

.text-shadow(@h: 1px, @v: 1px, @b: 1px, @txtshadowcolor: @black) {
 text-shadow: @h @v @b @txtshadowcolor;
}

5. Open _styles.less.

6. Import our _mixins.less file with the @import rule as follows:
@import "_mixins.less";

So, we can use these mixins within _styles.less.

What just happened?
We just defined two new mixins, one for applying the image replacement technique and one
for applying the text shadow. We had a glimpse of LESS mixins in Chapter 1, Responsive Web
Design. Using mixins in LESS allows us to pass particular styles by simply declaring the class
selector as part of another definition, so we don't have to write all the style rules again.

We can add some parameters to the mixin for the text shadow so that we can customize
the values.

The CSS3 text-shadow property requires four parameters: the horizontal offset, the vertical
offset, the shadow blur, and lastly, the shadow color.

In step 4, these text shadow parameters are represented with the following variables:
@h for the horizontal offset, @v for the vertical offset, @b for the shadow blur, and @
txtShadowColor for the shadow color.

These parameters also have their own default values: 1px for @h, @v, and @b and black
for the default text shadow. Bootstrap provides a variable to add the black color with the
@black variable.

There are a number of image replacement methods; the one
that has been the most popular over the years is called FIR or
Fahrner Image Replacement. It utilizes the text-indent
property with the extreme negative value, -9999px.

The image replacement method that we just added in the
preceding steps is popularized by Scott Kellum (http://
www.zeldman.com/2012/03/01/replacing-the-
9999px-hack-new-image-replacement/).

Enhancing the Product Launch Site with CSS3 and LESS

[160]

LESS color functions
LESS provides a few functions for adjusting colors and the following table shows some of the
color functions that we are going to use frequently in this project:

Function Use Example
lighten(@color, n%); Makes the color

lighter than its
initial value

@black: #000000
lighten(@black, 10%);

In this example, we make the black color
lighter by 10 percent and turn it to #1a1a1a

darken(@color, n%); Makes the color
darker than its
initial values

@white: #ffffff
darken(@color, 10%);

In this example, we make the white color
darker by 10 percent and turn it to #e6e6e6

fade(@color, n%); Lowers the color
density

@black: #000000
fade(@black, 10%);

In this example, we lower the black color
density to 10% and it turns into the RGBA
color format with 10% on the Alpha channel,
for example, rgba(0,0,0,0.1)

Introducing the Scope concept
If you are familiar with other programming languages, such as JavaScript, you will find
a programming concept called Scope, where the local functions or variables are initially
applied. In this case, LESS also follows the same concept.

In the following example, we have two @color variables. These variables store different
values, one stores #000000 and the other one stores #ffffff, and one of these is nested
within the particular selector as follows:

@color: #000000

.nav {
 a {
 @color: #ffffff;
 color: @color;
 }
}
.content {
 p {
 color: @color;
 }
}

Chapter 5

[161]

In the preceding example, the .nav class will take the variable that is defined within its
brackets, and the color will turn into #ffffff when compiled to CSS. But the @color variable
nested inside the a class will not be applied to p, which is nested in .content. Instead, the p
class takes the global @color variable, which stores the color number #000000.

General style rules
Before we go into the specifics, we will define some general style rules that apply to
particular elements in our HTML document, such as the headings, horizontal lines, inputs,
and textarea elements.

Time for action – adding general style rules
To add general style rules perform the following steps:

1. Let's open our _styles.less file.

2. First, we specify the box-sizing model for the HTML elements to border-box.
Bootstrap has a special mixin to specify the box model with .box-sizing.
* {
 .box-sizing(border-box);
}

The .box-sizing mixin includes the vendor prefix. If we open the mixins.less
file, where Bootstrap stores its mixins' definitions, we can find the .box-sizing
mixin defined as follows:
.box-sizing(@boxmodel) {
 -webkit-box-sizing: @boxmodel;
 -moz-box-sizing: @boxmodel;
 box-sizing: @boxmodel;
}

This eliminates the requirement to write the vendor prefixes ourselves, which is
quite a time saver.

3. Then, we specify the document's font family, font size, and line height.
body {
 font-family: @primaryFont;
 font-size: @baseFontSize;
 line-height: @lineHeight;
}

Enhancing the Product Launch Site with CSS3 and LESS

[162]

4. Turn the color of headings to brown.
h1, h2, h3, h4, h5, h6 {
 color: @secondaryColor;
}

5. Next, we add styles for the horizontal line with the <hr> element. We first remove
the default <hr> element from the borderline by setting the border property to 0.
hr {
 border: 0;
}

6. We replace the border style with 1px of height and CSS3 Gradient. In this case,
Bootstrap does not provide a mixin for creating a gradient that meets our
specification. So, we have to write it ourselves as follows:
hr {
 border: 0;
 height: 1px;
 background-image: -webkit-linear-gradient(left,
 fade(@black, 0%), fade(@black, 15%), fade(@black, 0%));
 background-image: -moz-linear-gradient(left,
 fade(@black, 0%), fade(@black, 15%), fade(@black, 0%));
 background-image: -ms-linear-gradient(left,
 fade(@black, 0%), fade(@black, 15%), fade(@black, 0%));
 background-image: -o-linear-gradient(left,
 fade(@black, 0%), fade(@black, 15%), fade(@black, 0%));
 background-image: linear-gradient(left,
 fade(@black, 0%), fade(@black, 15%), fade(@black, 0%));
}

In the preceding code, we added three color stops in the gradient and used the @
fade function to specify the color.

 � In the first and last color stops, we faded the color to 0; the color will not be
visible in the browser

 � In the second color stop, we faded the color to 15%; the color is faded, but
still visible

Lastly, we add margins at the top and bottom to add some whitespaces between the
horizontal line and the sections it separates.
margin: (@baseLength * 4) 0;

When we view this in the browser, we will get the following result:

Chapter 5

[163]

Thanks to Chris Coyier for the tip on the style rules: you can
head over to the following post at CSS-Tricks.com (http://
css-tricks.com/simple-styles-for-horizontal-
rules/) to find additional tips for styling the <hr> element.

Additionally, you can head over to the post at Hongkiat.com for
further discussion on creating gradient with CSS3 (http://www.
hongkiat.com/blog/css3-linear-gradient/).

7. We will overwrite the default border color and shadow color of the <input> and
<textarea> elements when they are in the focus state with our brand colors.
We will define the style rules for these elements together, nested under the
kudosplush class, as follows:
.kudosplush {
 input, textarea {
 &:focus {

 }
 }
}

Within the &:focus curly brackets, we define the border color with the @
borderColor variable.
.kudosplush {
 input, textarea {
 &:focus {
 @borderColor: darken(@secondaryColor, 10%);
 }
 }
}

Referring to the Scope concept, this variable will be applied only within the
&:focus curly brackets and the nested selectors.

Next, we also define the shadow color and styles with the @inputShadow variable.
In this case, we add two shadows: the inner and outer shadows.
.kudosplush {
 input, textarea {
 &:focus {
 @borderColor: darken(@secondaryColor, 10%);
 @inputShadow: inset 0 1px 1px fade(@black, 7%),
 0 0 8px fade(@borderColor, 50%);
 }
 }
}

Enhancing the Product Launch Site with CSS3 and LESS

[164]

Now we can apply the @borderColor variable to set the <input> and
<textarea> border colors.
.kudosplush {
 input, textarea {
 &:focus {
 @borderColor: darken(@secondaryColor, 10%);
 @inputShadow: inset 0 1px 1px fade(@black, 7%),
 0 0 8px fade(@borderColor, 50%);
 border-color: @borderColor;
 }
 }
}

Then, we use the .box-shadow mixin from Bootstrap along with the @
inputShadow variable (as the value) to set the CSS3 box shadow as follows:

.kudosplush {
 input, textarea {
 &:focus {
 @borderColor: darken(@secondaryColor, 10%);
 @inputShadow: inset 0 1px 1px fade(@black, 7%),
 0 0 8px fade(@borderColor, 50%);
 border-color: @borderColor;
 .box-shadow(@inputShadow);
 }
 }
}

8. Lastly, we use a mixin from Bootstrap that defines the input placeholder text styles.
In this case, we make the placeholder text color a little softer using the LESS color
function, darken().
input {
 .placeholder(darken(@white, 10%));
}

9. Save the _styles.less file. Then, press Ctrl + Enter (for Windows and Linux) or
Command + Enter (for OS X) to convert all these codes into regular CSS. Save the
result in the _styles.css file within the css folder.

Chapter 5

[165]

What just happened?
We just added general style rules for particular elements, such as the headings, horizontal line,
and inputs, and then compiled them into a regular CSS. When you view them in the browser,
you should get the following result if you focus on the <input> and <textarea> elements:

Eliminating vendor prefixes
Some of the styles discussed in the preceding section are built with mixins that come with
Bootstrap. One of the advantages of using these mixins is that we don't have to worry about
the vendor prefixes that are required to ensure cross-browser compatibility.

If we take a look at one of the mixins, let's say .box-shadow, you will find that the vendor
prefixes have been properly defined as follows:

.box-shadow(@shadow) {
 -webkit-box-shadow: @shadow;
 -moz-box-shadow: @shadow;
 box-shadow: @shadow;
}

Thus, when we compile it into a regular CSS, all these vendor prefixes will be automatically
passed over to the assigned CSS ruleset. For example, in the preceding steps, we have
assigned .box-shadow to the input and textarea focus states as follows:

input, textarea {
 &:focus {
 @borderColor: darken(@brown, 10%);
 @inputShadow: inset 0 1px 1px fade(@black, 7%),
 0 0 8px fade(@borderColor, 50%);

 border-color: @borderColor;
 .box-shadow(@inputshadow);
 }
}

Enhancing the Product Launch Site with CSS3 and LESS

[166]

When we compile this code into a regular CSS, it will turn into the following:

input:focus,
textarea:focus {
 border-color: #bf813d;
 -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.07),
 0 0 8px rgba(191, 129, 61, 0.5);
 -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.07),
 0 0 8px rgba(191, 129, 61, 0.5);
 box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.07),
 0 0 8px rgba(191, 129, 61, 0.5);
}

The other mixins that store CSS3 properties and the vendor prefixes act in the same way.
You can see all the mixins more thoroughly in mixins.less, which you can find in the
less folder in our working directory.

The button styles
Bootstrap has its own default button styles. At the time of writing this book, Bootstrap sets
the color for the basic button to gray, while the primary button is set to the blue color, as
shown in the following screenshot:

Unfortunately, these colors don't fit our design. So, we need to overwrite them with our own
brand colors.

Chapter 5

[167]

Time for action – overwriting the Bootstrap button styles
For overwriting the Bootstrap button styles, perform the following steps:

1. Open _styles.less.

2. First, we overwrite the default button styles, including the button's background
color, border radius, and text shadow. We nest the style rules for buttons under
the .kudosplush class to overwrite the default style from Bootstrap as follows:
.kudosplush {
 .btn {
 .buttonBackground(@secondaryColor,
 darken(@secondaryColor, 10%), @white,
 0 1px 1px fade(@white, 75%));
 .border-radius(@borderRadiusSmall);
 .text-shadow(1px,1px,0,fade(@black, 30%)) ;
 }
}

In the preceding code snippet, we changed the background color and border radius
with Bootstrap's .buttonBackground and .border-radius mixins respectively.
We also set the button's border radius to be a bit smaller using Bootstrap's @
borderRadiusSmall variable, which is set to 3px.

We used the .text-shadow mixin that we have defined on our own to change the
text shadow color.

3. Then, we overwrite the primary button styles. In this ruleset, we will overwrite the
background color in the same way as in the default button. We also increase the
font size and the padding a bit and transform the entire text to uppercase.
.btn-primary {
 .buttonBackground(@green, darken(@green, 10%),
 @white, 0 1px 1px rgba(255,255,255,.75));
 font-size: @fontsize * 1.2;
 padding: (@length * 2) (@length * 4);
 text-transform: uppercase;
}

4. Save the file and compile it into a regular CSS.

Enhancing the Product Launch Site with CSS3 and LESS

[168]

What just happened?
We just added styles to override the default button styles from Bootstrap. The following
screenshot shows how the button styles have been changed from the default to the one
of our choice.

If you inspect further in the _styles.css file, you will see that it has also compiled the
button hover styles, active styles, and disabled styles. It has even provided support for the
gradient color in Internet Explorer with a filter, as shown in the following code snippet:

.kudosplush .btn-primary {
 font-size: 1.2em;
 padding: 20px 40px;
 text-transform: uppercase;
 color: #ffffff;
 text-shadow: 0 1px 1px rgba(255, 255, 255, 0.75);
 background-color: #375e60;
 background-image: -moz-linear-gradient(top, #3e6b6d, #2c4b4c);
 background-image: -webkit-gradient(linear, 0 0, 0 100%,
 from(#3e6b6d), to(#2c4b4c));
 background-image: -webkit-linear-gradient(top, #3e6b6d, #2c4b4c);
 background-image: -o-linear-gradient(top, #3e6b6d, #2c4b4c);
 background-image: linear-gradient(to bottom, #3e6b6d, #2c4b4c);
 background-repeat: repeat-x;
 filter: progid:DXImageTransform.Microsoft.gradient
 (startColorstr='#ff3e6b6d', endColorstr=
 '#ff2c4b4c', GradientType=0);
 border-color: #2c4b4c #2c4b4c #101b1c;
 border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1)
 rgba(0, 0, 0, 0.25);

Chapter 5

[169]

 *background-color: #2c4b4c;
 /* Darken IE7 buttons by default so they stand out more given they
 won't have borders */

 filter: progid:DXImageTransform.Microsoft.gradient
 (enabled = false);
}

Why are the buttons that large?
As you can see in the preceding screenshots, our buttons are quite large. You are probably
wondering, why are they that large?

In Chapter 1, Responsive Web Design, we have mentioned that more people are accessing
websites from mobile devices, and most of them are featured with multitouch screens.
People use their fingers instead of a mouse or a physical keyboard to interact with websites,
which includes clicking on the links, scrolling on the page, and pressing the buttons. So, we
need to provide a convenient target space that comfortably fits the user's finger.

A study from Microsoft, Target Size Study for One-Handed Thumb Use on Small Touchscreen
Devices (http://research.microsoft.com/pubs/75812/parhi-mobileHCI06.
pdf), shows that by providing a wider target size for the user interface--such as the
buttons--users are able to interact easier and faster with lesser errors, which eventually
serves a better user experience.

On the contrary, specifying very minimal target size will, in fact, irritate the users; users tend
to make tap errors when the target size is too small for their fingers.

Further on this discussion, you can follow:
 � Touch Target Sizes (http://www.lukew.com/ff/entry.
asp?1085)

 � Finger-Friendly Design: Ideal Mobile Touchscreen Target Sizes
By Anthony T (http://uxdesign.smashingmagazine.
com/2012/02/21/finger-friendly-design-
ideal-mobile-touchscreen-target-sizes/)

 � Mobile UX - the intricacies of designing for mobile devices
(http://www.slideshare.net/ribot/mobile-ux-
the-intricacies-of-designing-for-mobile-
devices-presentation)

 � Why Whitespace matters (http://boagworld.com/
design/why-whitespace-matters/)

Referring to these studies, we will specify the length on our website—for the parameters
such as the whitespace, width, height, and font size—wider for user convenience.

Enhancing the Product Launch Site with CSS3 and LESS

[170]

The header styles
In this section, we will start off by adding styles for the website header. Our website header
contains the logo and the site navigation. Except on the homepage, we also add the Hero
section (http://twitter.github.com/bootstrap/examples/hero.html).

Time for action – adding website header styles
For adding website header styles, perform the following steps:

1. Open _styles.less.

2. First, we change the header's background color with the LESS color function,
darken(), as well as by specifying the padding for top and bottom, as follows:
.header {
 background-color: darken(@white, 2%);
 padding: (@length * 2) 0;
}

3. We will display the website's logo in the header. To display the image logo, we need
to specify the size as well as hide the text by including the image replacement mixin,
.ir. The logo in Bootstrap is added within .brand and we will nest .ir under the
.brand class as follows:
.header {
background-color: darken(@white, 2%);
padding: (@length * 2) 0;
 .brand {
 .ir;
 width: 188px;
 height: 100px;
 padding: 0;
 }
}

Then, we add the logo image through the background property.
.header {
 background-color: darken(@white, 2%);
 padding: (@baseLength * 2) 0;
 .brand {
 .ir;
 width: 188px;
 height: 100px;
 background: url('../img/plush-logo.png') no-repeat;
 }
}

Chapter 5

[171]

4. By default, the navigation bar, or navbar, has a number of decorative styles as
shown in the following screenshot:

As we can see in the preceding screenshot, it has a gradient background, box
shadow, and borderline. In this project, we will overwrite these with our own styles.
So, let's nest all these styles under the .header class.
.header {
/* existing styles */
 .navbar {
 .navbar-inner {
 @navShadow: inset 0 0 0 fade(@black, 0%),
 0 0 0 fade(@black, 0%);
 .box-shadow(@navShadow);
 #gradient > .vertical(fade(@white,0%),
 fade(@white,0%));
 border: 0;
 }
 }
}

Bootstrap provides several mixins to add CSS3 gradients, which you can find nested
under #gradient in mixins.less.

Given the preceding code snippet, we have just added a vertical gradient using
the #gradient > .vertical setting to change the default vertical gradient in
navbar, as follows:
#gradient > .vertical(fade(@white,0%),fade(@white,0%));

It requires two color stops, and we specified these colors using the fade() function
and setting it to 0% to make this gradient invisible.

Additionally, you can use the following selectors:

 � #gradient > .horizontal to add the horizontal gradient

 � #gradient > .directional to add the diagonal gradient

 � #gradient > .radial to add the radial gradient

Enhancing the Product Launch Site with CSS3 and LESS

[172]

5. We also need to overwrite the default styles for the link menu in the navigation,
including changing the text color and adding the background color and some
whitespaces (with margin and padding). So, let's nest these styles under the
.header class as well.
.nav {
 margin-top: @baseLength * 3;
 li {
 margin-left: @baseLength;
 }
 a {
 .text-shadow(0,0,0,@white);
 text-transform: uppercase;
 color: @primaryColor;
 padding: 0 (@baseLength * 1.5);
 height: @baseLength * 4;
 line-height: @baseLength * 4.3;
 &:hover {
 .box-shadow(inset 0 0 0 fade(@black, 0%));
 .border-radius(@borderRadiusSmall);
 background-color: @primaryColor;
 color: @tertiaryColor;
 }
 }
 .active {
 > a {
 .box-shadow(inset 0 0 0 fade(@black, 0%));
 .border-radius(@borderRadiusSmall);
 .text-shadow(0,0,0,fade(@white, 0%));
 background-color: @primaryColor;
 color: @tertiaryColor;
 }
 }
}

6. Save the file and compile it into a regular CSS.

What just happened?
We just styled the header section. In this section, we added the logo image with the image
replacement technique, which was introduced by Scott Kellum (http://scottkellum.
com/). We have used this technique in our first project, but here is a little detail on how the
technique hides the text.

Chapter 5

[173]

The image replacement technique is specified with the following style declaration:

text-indent: 100%;
white-space: nowrap;
overflow: hidden;

The text is moved to the right of its container by 100%. Thus, we actually have to first
specify the width of the text container in order for this code to work properly. As the text is
overflowing from the container, the overflow property is set to hidden to hide the text.

We also have overwritten the Bootstrap navbar default styles with our own, and the
following screenshot shows how our website's header and navigation appear at this stage:

The footer styles
As mentioned earlier in this chapter, after working on the header section, we will work on
the footer section. Our footer is rather simple. In the footer, we have menu navigation, social
media icons, and a small copyright text, quite similar to the footer from our previous project.
So, let's get started!

Time for action – adding footer styles
To add the footer styles, perform the following steps:

1. Open _styles.less in CrunchApp.

2. First, let's add a few basic styles to the footer, such as the background color, text
color, and some whitespaces.
.footer {
 color: lighten(@black, 70%);
 background-color: darken(@white, 2%);
 padding: (@baseLength * 5) 0;
 margin-top: @baseLength * 3;
}

Enhancing the Product Launch Site with CSS3 and LESS

[174]

3. We remove the margin of the elements and display the elements side
by side, with display:inline, as well as provide a little gap on its right with
margin-right, as follows:
.footer {
 color: lighten(@black, 70%);
 background-color: darken(@white, 2%);
 padding: (@baseLength * 5) 0;
 margin-top: @baseLength * 3;
 ul {
 margin: 0;
 }
 li {
 display: inline;
 margin-right: @baseLength;
 }
}

4. Next, we set the color of the links in the footer, as well as the color of the links when
they are being hovered over. Nest these styles under the .footer class.
.footer {
 /* existing styles */
 a {
 color: lighten(@black, 70%);
 &:hover {
 color: lighten(@black, 30%);
 text-decoration: none;
 }
 }
}

5. As we have mentioned before, the social media icons are similar to our previous
projects, in fact, we are using the same images. Nest all these styles under the
.footer class as well.
.footer {
/* existing styles */
 .social-links {
 text-align: right;
 li {
 margin-right: 0;
 }
 a {
 display: inline-block;
 width: 36px;
 height: 42px;
 .ir;

Chapter 5

[175]

 }
 .dribbble a, .facebook a, .twitter a {
 background-image: url('../img/social.png');
 background-repeat: no-repeat;
 }
 .dribbble a {
 background-position: -7px -58px;
 &:hover {
 background-position: -7px 0;
 }
 }
 .facebook a {
 background-position: -7px -174px;
 &:hover {
 background-position: -7px -116px;
 }
 }
 .twitter a {
 background-position: -7px -290px;
 &:hover {
 background-position: -7px -232px;
 }
 }
 }
}

6. Lastly, we align the copyright text to the right as follows:
.copyright {
 text-align: right;
 display: block;
 }

7. Save it and compile it into CSS.

What just happened?
We have just added the styles for the footer section, such as the background color, links'
color at the navigation, and also added the social media icons with sprite images. At this
stage, here is how the footer looks:

Enhancing the Product Launch Site with CSS3 and LESS

[176]

Working on the homepage
We will be working on the specific styles for each page and we will start off with the
homepage. We have a few sections on the homepage, such as the Hero (Hello World),
Call-to-action, Gallery, Testimonial, and Subscribe Form.

The Hero section
The Hero or Hello World section is simply the section where we add content such as text,
image, or perhaps a button as well to draw the visitor's attention to the website in the first
place. In our case, this section is nested within the <header> element.

Time for action – adding styles for the Hello World section
To add styles for the Hello World section, perform the following steps:

1. Open _styles.less in CrunchApp.

2. First, we set the background color to inherit from the parent element, which is a
<header> element, and then set the text with the primary color. In Boostrap, this
section is specified with the .hero-unit class as follows:
.hero-unit {
 background-color: inherit;
 padding: (@baseLength * 3) 0;
 color: @primaryColor;
 margin-bottom: 0;
}

3. The text in the Hero section is wrapped within the paragraph elements and we will
increase the font size just to make it standout a bit more. So nest these styles under
the .hello-unit class.
.hero-unit {
 background-color: inherit;
 padding: (@baseLength * 3) 0;
 color: @primaryColor;
 margin-bottom: 0;
 p {
 font-size: @baseFontSize * 2.8;
 line-height: @lineHeight / 1.8;
 }
}

Chapter 5

[177]

4. We have a paragraph with the .price class, which contains the product's price. In
this case, we will make the price look distinct by applying a secondary color to it and
making it bolder. So let's nest these styles under the .hero-unit class as well.
.hero-unit {
 background-color: inherit;
 padding: (@baseLength * 3) 0;
 color: @primaryColor;
 margin-bottom: 0;
 p {
 font-size: @baseFontSize * 2.8;
 line-height: @lineHeight / 1.8;
 }
 .price {
 font-weight: bold;
 color: @secondaryColor;
 }
}

5. Save the file and compile it to CSS.

What just happened?
We have just added the styles to the Hero section on the homepage by adjusting the
background color to inherit from the parent element and adjusting the paragraph's font
size so that it catches the user's eyes. At this stage, here is how it looks:

The Call-to-action section
The Call-to-action section is a common section in a product page or sales page, where we
place some text, or perhaps also a button, with a prominent appearance to grab the visitors'
attention in the hope that they perform an action in accordance to what we expect. In this
project, we have placed some placeholder text with a button that says Order Now.

Enhancing the Product Launch Site with CSS3 and LESS

[178]

Time for action – adding styles for the Call-to-action section
To add styles for the Call-to-action section, perform the following steps:

1. Let's get back to _styles.less.

2. Unlike the Hero section, the Call-to-action section is part of the homepage content
and is wrapped within a <div> element assigned with the .cta class. First, let's add
margin-top to give some whitespaces between the Call-to-action section and the
section preceding it.
.content {
 .cta {
 margin-top: @baseLength * 4;
 }
}

3. We change the color of the placeholder text to the secondary color and increase its
font size.
.cta {
 margin-top: @baseLength * 4;
 .copy-text {
 color: @secondaryColor;
 font-size: @baseFontSize * 1.5;
 }
}

4. Save the file and compile it into CSS.

What just happened?
We have just added styles for the Call-to-action section. In the preceding steps we merely
provided whitespaces and adjusted the placeholder font styles. We actually have the Order
Now button, but we specified the button's color in the earlier section and Bootstrap has
covered the complementary styles—the CSS3 rounded corners, gradients, shadows, and so on.

The following screenshot shows how it appears:

Chapter 5

[179]

The Gallery section
On the homepage, we also have a Gallery section that features four images of the product.
This Gallery section is positioned right after the Call-to-action section and is wrapped within
a <div> element assigned with the .gallery class. As shown in Chapter 4, Developing a
Product Launch Site with Bootstrap, each of the images in this Gallery section is wrapped
within the new HTML5 <figure> element. This section is also a part of the homepage
content, so we will nest the styles in the following steps under .content.

Time for action – adding styles for the Gallery section
For adding styles for the Gallery section, perform the following steps:

1. Open _styles.less in CrunchApp.

2. We can rely on Bootstrap's default styles for most of the gallery's needs, including the
image styles. In Chapter 4, Developing a Product Launch Site with Bootstrap, we have
added a Bootstrap special class img-polaroid, which gives us the following result:

So, in this step, we simply need to adjust the distance between these images, which
flow over the place as shown in the following screenshot:

Enhancing the Product Launch Site with CSS3 and LESS

[180]

If we inspect it using Web Developer Tool (in Google Chrome) or Firebug (in Firefox),
we will find out the cause. The <figure> element inherits margin-right for
40px from the browser's default styles.

So let's set margin-right for the <figure> element to 0, as follows:

 .gallery {
 figure {
 margin-right: 0;
 }
 }

3. Save the file and compile it to CSS.

What just happened?
Technically, we only removed margin-right from the <figure> element that is inherited
from the default browser's stylesheet. The Gallery section now appears as shown in the
following screenshot:

The Testimonial section
A website that offers a product or service commonly has a section for displaying customer
testimonials or reviews, and as you can see, we also have one on our website. It is
statistically said that providing customer testimonials or reviews on the website can help
in increasing the sales (http://econsultancy.com/id/blog/9366-e-commerce-
consumer-reviews-why-you-need-them-and-how-to-use-them).

Chapter 5

[181]

The Testimonial section is also a part of the homepage section, so we will nest the styles
under .content in the following steps.

Time for action – adding styles for the Testimonial section
Perform the following steps for adding styles to the Testimonial section:

1. Let's get back to _styles.less.

2. We will add styles to set the text alignment to the center, set the text color to be
lighter with the LESS color function, and specify a larger size for the font.
.testimonial {
 font-size: @baseLength * 3;
 padding-bottom: @baseLength * 2;
 color: lighten(@black, 50%);
 text-align: center;
}

3. Save the file and compile it into CSS.

What just happened?
We have just added styles to the Testimonial section, which is quite simple. We simply
changed the text color, font size, and alignment. Nothing too fancy in this section and the
following screenshot shows how it appears:

Subscribe Form
We also have an e-mail subscription form, it consists of an <input> element with a new
email type form and a submit button.

Enhancing the Product Launch Site with CSS3 and LESS

[182]

Time for action – adding styles for an input email
To add styles for an input e-mail, perform the following steps:

1. Let's get back to _styles.less.

2. This section is wrapped within a <div> element with the .subscribe-form class.
We will first add a little distance between this section and the footer with margin-
bottom and adjust the content alignment to the center.
.subscribe-form {
 margin-bottom: @baseLength * 2;
 text-align: center;
}

3. We will use most of Bootstrap's default input styles and change only a few details. In
this case, we will expand the input width to be wider, as follows:
.subscribe-form {
 margin-bottom: @baseLength * 2;
 text-align: center;
 input {
 width: @baseLength * 28;
 }
}

4. Then, we set the height of the input and the submit button to be equal.
.subscribe-form {
 margin-bottom: @baseLength * 2;
 text-align: center;
 input {
 width: @baseLength * 28;
 }
 input, button {
 height: @baseLength * 5;
 padding: @baseLength (@baseLength * 2);
 margin-bottom: 0;
 }
}

5. Save the file and compile it into CSS.

What just happened?
We have just added styles to the <input> element and the submit button in the
Subscription Form section. In the preceding steps, we aligned the form to the center, and
then we specified the width and height of the <input> element.

Chapter 5

[183]

Technically, we are done with the homepage, and the following screenshot shows how our
website homepage appears:

Enhancing the Product Launch Site with CSS3 and LESS

[184]

The Gallery page
Next, we are going to work on the Gallery page. This page features images of the product
and, in fact, the HTML structure of this page is similar to the Gallery section on the
homepage. So, you will see that the product images are already displayed properly, as
shown in the following screenshot:

We only need to adjust the page title styles; as you can see in the preceding screenshot, the
title, at this stage, is not displayed correctly.

The title and the images are part of the page content, so we will nest all the styles
under .content.

Time for action – adjusting the page title styles
Perform the following steps for adjusting the page title styles:

1. Let's open the _styles.less file in CrunchApp.

2. The page title is structured in the following way with the <h1> element:
<h1>Plush Gallery <small>collection to our previous toys</small></
h1>

We also have a <small> element for displaying a smaller title text. But it turns out
that it is displayed with a bigger font.

Chapter 5

[185]

If we inspect this element through Firebug, we will find out that the font size
within the <small> element is set to 1.75em. As we have discussed in Chapter 3,
Enhancing the Portfolio Website with CSS3, the em unit relates to the base font size
of the document or the parent element. In our case, 1.75em turns out to be equal
to 77px, as shown in the following screenshot:

So let's decrease the font size; in this case, we decrease it to 0.75em as follows:

h1 {
small {
 font-size: 0.75em;
 }
 }

3. Furthermore, if we view the result in the following screenshot:

We find that the whitespace between the title and the header is narrower than the
one between the Gallery images, which makes this section imbalanced. So, let's add
some more whitespaces at the top of the title with a margin as follows:

h1 {
 margin: (@baseLength * 4) 0 (@baseLength * 2);
 small {
 font-size: 0.75em;
 }
}

4. Save the file and compile it to CSS.

Enhancing the Product Launch Site with CSS3 and LESS

[186]

What just happened?
Technically, we did not add styles to the Gallery page as Bootstrap has predefined the styles
for us, including the styles for image and layout. In the preceding steps, we only adjusted the
page title styles.

The following screenshot shows how the Gallery page appears at this stage:

Chapter 5

[187]

The Contact page
We are now going to work on the Contact page. On this page, we have three sections: the
map image, the store contact and address, and the online contact form.

Similar to the other pages, most of the styles on this page are already defined between
Bootstrap and some extra styles that we have added earlier in this chapter. So we only need
to do a little adjustment to enhance its looks.

We will add these styles under the .content class.

Time for action – adding styles for the Contact page
For adding styles to the Contact page, perform the following steps:

1. Open _styles.less in CrunchApp.

2. If we take a look at the contact form on this page, we will see that the height of the
<input> and <textarea> elements is short. It could be difficult for the users to
tap the input correctly. So let's extend their height a little.
.contact {
 .contact-form {
 input {
 height: (@baseLength * 4);
 }
 textarea {
 min-height: (@baseLength * 8);
 }
 }
}

3. We will also add a little more whitespace between the address and the contact form
sections.
.contact {
 .contact-form {
 input {
 height: (@baseLength * 4);
 }
 textarea {
 min-height: (@baseLength * 8);
 }
 }
 .contact-form, .address {
 padding: (@baseLength * 2) (@baseLength * 1.5);
 margin-bottom: @baseLength * 2;
 }
}

Enhancing the Product Launch Site with CSS3 and LESS

[188]

4. We will also add borderline in between, to separate these two sections.
.contact {
 .contact-form {
 input {
 height: (@baseLength * 4);
 }
 textarea {
 min-height: (@baseLength * 8);
 }
 }
 .contact-form, .address {
 padding: (@baseLength * 2) (@baseLength * 1.5);
 margin-bottom: @baseLength * 2;
 }
 .address {
 border-right: 1px solid darken(@white, 5%);
 }
 }

5. Save the file and compile it to a regular CSS.

What just happened?
We have just made some adjustments in the Contact page to make it look more appealing.
Technically, we adjusted the <input> and <textarea> height to make the users tap on the
input easily, particularly when they are accessing from mobile devices (with touch-screen
support). We also separated the contact form and the address section by adding a thin
borderline and added more whitespaces in between with padding and margin.

Why whitespace matters

Paul Boag in his post on http://boagworld.com/design/
why-whitespace-matters/ has explained thoroughly about
whitespace and why it is important in web design.

Chapter 5

[189]

At this stage, here's how the Contact page appears:

Enhancing the Product Launch Site with CSS3 and LESS

[190]

The About page
This is one of the advantages of using a framework. The author has provided the essential
style rules to minimize repetitive tasks. We, as the developers, only need to add the
appropriate classes from the framework to reuse the styles. For example, our About
page—as you can see from the following screenshot-- has been surprisingly well displayed.
The images, the headings, and the layout are already styled. Thus, we technically don't have
to add any extra styles for enhancement.

Chapter 5

[191]

The Privacy Policy page
Similar to the About page, the Privacy & Policy page has already been presented well and does
not need any further adjustments. The following screenshot shows how this page appears:

Enhancing the Product Launch Site with CSS3 and LESS

[192]

Making the website responsive
Now that we are done with the all-inclusive styles for the website, we will start adjusting the
styles for when the website is viewed in smaller viewport sizes with CSS3 Media Queries.

In Chapter 4, Developing a Product Launch Site with Bootstrap, we created a new file
named _responsive.less. We then copied some of the media queries and style rules
from Bootstrap's responsive-767px-max.less file to this file and linked the compiled
file, _responsive.css, in the HTML document. Starting on this section, we will work with
_responsive.less most of the time.

For testing the website's responsiveness in this project, we will use the built-in Responsive
Design View from Firefox, which was introduced in Firefox 15. In case you don't have this
version, we suggest that you update your Firefox to the latest one (http://www.mozilla.
org/en-US/firefox/new/).

In the following steps, we will first adjust the styles for the viewport size of 767px or less. So,
we will place all the style rules.

@media (max-width: 767px) {

}

Let's get started!

Time for action – enhancing the website's appearance for a
viewport size of 767px or less

For enhancing the website's appearance for a viewport size of 767px or less, perform the
following steps:

1. Let's open _responsive.less in CrunchApp.

2. If we decrease the viewport size to 765px, for example, you will notice
unexpected whitespaces on the right and left sides of the website, as shown
in the following screenshot:

Chapter 5

[193]

We will remove these whitespaces by setting the body's padding to 0.

body {
 padding-left: 0;
 padding-right: 0;
 }

3. Instead, we add these paddings to the .container class as follows:
.container {
 padding-left: @baseLength * 2;
 padding-right: @baseLength * 2;
 }

4. Remove the padding and the margin in the logo and the navbar.
.header {
.navbar-inner {
 margin: 0;
 padding: 0;
 .brand {
 margin: 0;
 padding: 0;
 }
 }
 }

Enhancing the Product Launch Site with CSS3 and LESS

[194]

5. As we can see from the preceding screenshot, the color still inherits from the default
button, which is using the secondary color. There is nothing wrong with this color.
This button, however, turns out to look unified within the header section, as this
section is using the primary color.

So, we will change the color of the button to the primary color. Nest these styles
under the .header class as follows:

.navbar {
 .btn-navbar {
 padding: (@baseLength * 1) (@baseLength * 2);
 @navShadow: inset 0 1px 0 fade(@white, 10%),
 0 1px 0 fade(@white, 7%);
 .box-shadow(@navShadow);
 .buttonBackground(@primaryColor,
 darken(@primaryColor, 5%));
 .text-shadow(0, -1px, 0, fade(@black, 25%));
 }
 }

6. As the screen gets narrower, we will need to stack particular sections, including the
<small> element, within the title. So let's set display to block.
.content {
 h1 {
 small {
 display: block;
 }
 }
}

7. We will make some specific adjustments in the content section. First, we will align
the text in the Call-to-action section to the center.
.content {
 h1 {
 small {
 display: block;
 }
 }
 .cta {
 text-align: center;
 }
}

Chapter 5

[195]

8. Further, since the viewport size is getting narrower, we will split the Gallery section
to be displayed in two sections, so that each row displays two images.
.content {
 h1 {
 small {
 display: block;
 }
 }
 .cta {
 text-align: center;
 }
 .gallery {
 figure {
 display: inline-block;
 float: left;
 width: 50%;
 text-align: center;
 }
 img {
 max-width:95%;
 }
 }
}

9. Then, for the same reason, we will align everything within the footer to the center.
.footer {
 text-align: center;
 .copyright {
 display: inline;
 }
 .social-links {
 text-align: center;
 }
}

10. Save the file and compile it to a regular CSS.

Enhancing the Product Launch Site with CSS3 and LESS

[196]

What just happened?
We have just adjusted the website styles for a viewport size of 767px and less. As the
viewport size gets smaller, the available vertical space also becomes limited. Thus, in the
preceding steps, some particular sections were stacked and aligned to the center. The
following screenshot shows how the website's home page appears in this viewport size:

Chapter 5

[197]

We are about to adjust the website styles for when it is viewed in a very small viewport size
of 480px and less. So, the style rules in the next steps will be added within the following
media query:

@media (max-width: 480px) {

}

Let's get started!

Time for action – enhancing the website's appearance for a
viewport size of 480px or less

To enhance the website's appearance for a viewport size of 480px or less, perform the
following steps:

1. In this viewport size, the images in the Gallery section are shrunken, as shown in the
following screenshot:

Enhancing the Product Launch Site with CSS3 and LESS

[198]

The images are relatively smaller in appearance and the users might need to zoom
the images if they want to see them in detail. So, for the sake of user convenience,
let's make these images wider by displaying just one image in a row as follows:

.content {
 .gallery {
 figure {
 display: block;
 float: none;
 width: 100%;
 text-align: center;
 img {
 max-width: 100%;
 }
 }
 }
}

2. When we view the subscription form on the homepage, we will find that the
input and the Submit button are pretty close to each other, as shown in the
following screenshot:

So, let's add some whitespaces in between these elements with margin-bottom as
follows:

.content {
 .gallery {
 figure {
 display: block;
 float: none;
 width: 100%;
 text-align: center;
 img {
 max-width: 100%;
 }
 }
 }

Chapter 5

[199]

 .subscribe-form {
 input {
 width: 100%;
 margin-bottom: @baseLength;
 }
 button {
 margin-top: @baseLength;
 width: 100%;
 }
 }
}

3. Then, let's make the input and the button wider. This can be helpful for those users
who navigate with only one thumb.

4. Let's add some whitespaces at the bottom of the images in the About pages.
.content {
/* existing images */
 .about {
 img {
 margin-bottom: @baseLength * 2;
 }
 }
}

5. In the footer section, we will stack the navigation links and set the links' widths and
heights to larger values. The users can easily click on these links.
 .footer {
 nav {
 li, a {
 display: block;
 }
 a {
 padding: @baseLength;
 width: 100%;
 background-color: darken(@white, 3%);
 margin-bottom: @baseLength * 0.5;
 .border-radius(@borderRadiusSmall);
 &:focus {
 background-color: darken(@white, 7%);
 color: @white;
 }
 }
 }
 }

6. Save the file and compile it to CSS.

Enhancing the Product Launch Site with CSS3 and LESS

[200]

What just happened?
We have just adjusted our website's styles for when it is viewed on a viewport size of
480px and less. We adjusted some sections on the homepage, such as the Gallery and the
Subscription Form sections. In the About page, we added some whitespaces between the
images and the text at the bottom. Lastly, we styled the navigation links in the footer section.

Here is how the page that we just adjusted looks in this viewport size:

Chapter 5

[201]

Excluding unnecessary style rules
At this point, we have completed the website's styles for both the desktop view and for
a small viewport size. In Chapter 1, Responsive Web Design, we have mentioned that the
framework commonly provides a bunch of predefined styles, which are sometimes wasteful.

We will examine the style rules that can be excluded, and for your convenience, we have
listed them in the following table:

Imported styles in _bootstrap.less

Bootstrap provides We are using Styles that can be excluded
reset.less reset.less code.less

variabels.less variables.less tables.less

mixins.less mixins.less sprites.less

scaffolding.less scaffolding.less wells.less

grid.less grid.less close.less

layouts.less layouts.less alerts.less

type.less type.less breadcrumbs.less

code.less forms.less pagination.less

forms.less navs.less pager.less

tables.less navbar.less modals.less

sprites.less thumbnails.less tooltip.less

wells.less hero-unit.less popovers.less

component-animations.
less

utilities.less media.less

close.less component-animations.
less

labels-badges.less

buttons.less progress-bars.less

button-groups.less accordion.less

alerts.less carousel.less

navs.less

navbar.less

breadcrumbs.less

pagination.less

pager.less

Enhancing the Product Launch Site with CSS3 and LESS

[202]

Imported styles in _bootstrap.less

Bootstrap provides We are using Styles that can be excluded
modals.less

tooltip.less

popovers.less

thumbnails.less

media.less

labels-badges.less

progress-bars.less

labels-badges.less

progress-bars.less

accordion.less

carousel.less

hero-unit.less

utilities.less

To exclude, simply comment out the unnecessary lines in _bootstrap.less by adding a
double slash at the beginning of the lines, as follows:

// @import "code.less";
// @import "tables.less";
// @import "sprites.less";
// @import "dropdowns.less";

Testing the website
Our website is ready for testing. During the process, we will be using the Firefox built-in
Responsive Design. Still, there is no substitute for the real devices, such us iPhone, iPad,
Android devices, and Windows Phone. In the following screenshots, you can see how our
website is displayed on the iPhone:

Chapter 5

[203]

Enhancing the Product Launch Site with CSS3 and LESS

[204]

Summary
In this chapter, we have performed many tasks to enhance the look of our product launch
website, and we have finalized our project.

To sum up, here are the things that we have covered in this chapter:

 � Customizing the Bootstrap LESS file structure, custom variables, and mixins for easy
maintainance in the future

 � Enhancing the website's look with CSS3 for both the desktop view and a smaller
viewport size

 � Using LESS for authoring the CSS3 syntax

 � Using the LESS function for adjusting colors

 � Eliminating unnecessary styles in Bootstrap and testing the website

We will start a new project in the next chapter. We are going to build a website for a business
with a framework called Foundation.

6
A Responsive Website for Business

with Foundation Framework

In this chapter, we will start on our third project. In the previous chapters we
have built websites for a portfolio and a product launch site. This time, we are
going to build a responsive website for business purposes with the Foundation
framework.

The Foundation framework is a responsive frontend development framework
developed by ZURB (http://www.zurb.com), which is one of the most
notable design companies based in Campbell, California.

This website will consist of five pages, including the Home, Services, Pricing,
About, and Contact page.

The following are the things we will cover in this chapter through the process of establishing
the website:

 � Installing Ruby

 � Installing the Foundation framework

 � Enabling the SCSS code highlighting in a code editor

 � Configuring a project with the Compass configuration properties

 � Compiling SCSS to CSS with a command line

 � Examining the Foundation framework's HTML structure for establishing a
responsive layout

 � Creating the HTML documents

http://www.zurb.com

A Responsive Website for Business with Foundation Framework

[206]

Let's get started!

We will be using Sass and Compass a lot in this chapter. So,
before you jump further into this chapter, I recommend that
you spare a little time to have a look at the Sass (http://
sass-lang.com/) and Compass (http://compass-
style.org/) websites to get a feel for these two subjects,
as we won't be able to cover everything from the ground up.

A Ruby-based framework
The Foundation framework is built on top of the CSS preprocessor named Sass (http://
sass-lang.com/) and its extension called Compass (http://compass-style.org/),
while Sass and Compass are themselves based on Ruby (http://www.ruby-lang.org/
en/). So before we can work with Foundation, we essentially need Ruby installed on
our machine.

If you are working in OS X, Ruby will probably already have been installed. But just to ensure
that Ruby has indeed been installed, we can run the following command in the Terminal:

ruby–v

If it returns something similar to the following result, it means that Ruby has already been
installed on our system. Congratulations!

ruby 1.8.7 (2012-02-08 patchlevel 358) [universal-darwin12.0]

If you are running the Windows operating system, Ruby is probably not available for your
system by default. So, you need to first install Ruby using RubyInstaller for Windows
(http://rubyinstaller.org/).

If you prefer, there are some apps available to process Sass and Compass, such as Compass.
app (http://compass.handlino.com/), which is available for the OS X, Windows, and
Linux operating systems without having to install the Ruby environment.

Installing Ruby is only required if we decide to go with Sass and Compass.
If you decide to just develop with CSS—which you can—installing Ruby
would not be necessary.

For further information on installing Ruby, you can head over to the
documentation that is available at http://www.ruby-lang.org/
en/downloads/. This documentation shows you how to install Ruby
on OS X, Linux, and Unix-like operating systems.

http://sass-lang.com/
http://sass-lang.com/
http://compass-style.org/
http://compass-style.org/
http://sass-lang.com/
http://sass-lang.com/
http://compass-style.org/
http://www.ruby-lang.org/en/
http://rubyinstaller.org/
http://rubyinstaller.org/
http://compass.handlino.com/
http://compass.handlino.com/
http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/

Chapter 6

[207]

The Foundation gem
The Foundation framework is available as a Ruby gem. A gem is a package containing Ruby
applications and libraries. We can install a Ruby gem easily through a command line with the
gem command. For example, we can install Sass by writing the following command:

gem install sass

We can remove it with the following command:

gem uninstall sass

It is worth noting that to be able to run the gem command, Ruby should already be installed
in the system, otherwise the gem command will not be recognized.

For more information about the Ruby gem, you can head over to the
RubyGems user guide at http://docs.rubygems.org/read/
chapter/1. You can also see the list of all the available Ruby gems
at https://rubygems.org/gems.

Time for action – installing the Foundation framework and
setting up a new project

In the following steps, we are about to install the Foundation gem and set up a new
Foundation project, all through the command line:

1. Open up Terminal (OS X or Linux), then type the following command:
sudo gem install zurb-foundation

Or, if you are using Command Prompt from Windows, you can write it without the
sudo command, as follows:

gem install zurb-foundation

This command will grab and install the Foundation framework, including all its
dependencies from the Ruby gem repository.

Depending on your Internet connection's speed, this process may take a while. A
typical output when the process has succeeded will be as follows:

Successfully installed zurb-foundation-4.0.3

http://docs.rubygems.org/read/chapter/1
https://rubygems.org/gems
https://rubygems.org/gems

A Responsive Website for Business with Foundation Framework

[208]

2. Now we will install the Foundation project. To do so, we need to navigate to the
directories where we will run our project. In Terminal (OS X and Linux) or Windows
Command Prompt, you can navigate through the directories with the cd command
as shown in the following command:
cd path/to/where-you-want-to-add-your-project

For example, assuming that you will run this project under a folder named Sites,
the following command line will take you there:
cd /Users/thoriq/Sites

3. Then, run the following command to create a new Foundation project:

compass create <project-name> -r zurb-foundation --using
foundation

For example, assuming that we will name this project business, we can write the
command as follows:
compass create business -r zurb-foundation --using foundation

This command will create a new directory named business, and grab all the
necessary files to build a website with the Foundation framework including the
images, the JavaScript, and the style sheets. The typical report for this process will
look as follows:
directory business/

directory business/js/foundation/

directory business/js/vendor/

directory business/scss/

create business/scss/_settings.scss

create business/scss/normalize.scss

create business/scss/app.scss

What just happened?
We have just installed the Foundation gem and created a new project named business.
Given the examples from the preceding steps, our working directory for this project is
located at /Users/thoriq/Sites/business.

Of course, depending on your operating system and where you created the project, the path
for the working directory will be slightly different.

For further information on command lines, you can head over to the
following reference at http://www.lsi.upc.edu/~robert/
teaching/foninf/doshelp.html.

http://www.lsi.upc.edu/~robert/teaching/foninf/doshelp.html
http://www.lsi.upc.edu/~robert/teaching/foninf/doshelp.html

Chapter 6

[209]

Sass and SCSS syntax
There are two available syntaxes for writing Sass, which are Sass and SCSS. Sass and SCSS
have similar syntaxes. So once you master one of them, it's relatively easy to learn the other.
The only difference would be the way of writing the syntax.

Sass uses indentation and spaces, as in the Python syntax (http://loris.som.jhmi.
edu/python_course/basic_syntax.html) or the Stylus syntax (http://learnboost.
github.com/stylus/) to differentiate the cascading level, whereas the SCSS indents use
curly braces to identify blocks, such as in CSS. For example, let's say we want to add color to
a paragraph element.

In the Sass syntax, we will write this as follows:

p
color: #000

In the SCSS syntax, we will write this as follows:

p {
 color: #000
}

In this project, we will use the SCSS syntax to compose the styles as it is more popular than
the Sass syntax. One of the reasons that the SCSS syntax is commonly used by many is its
similarity with the CSS syntax, which most people are familiar with. The SCSS files will be
saved within the .scss extension.

For more information about these two syntaxes (Sass and SCSS),
you can head over to the following reference available on The Sass
Way at http://thesassway.com/articles/sass-vs-
scss-which-syntax-is-better.

Sass and SCSS code editor
Unlike LESS that has CrunchApp to compose and process LESS syntax, Sass on the other hand
does not have a similar application. The best option is to use a general code editor and install
a special plugin or package that gives you the ability to highlight Sass or SCSS syntax, so that
we can comfortably write the syntax.

In this project, we are going to use Sublime Text (http://www.sublimetext.com/) as our
code editor, and then install a package to enable SCSS syntax highlighting through Sublime
Text Package Control.

http://loris.som.jhmi.edu/python_course/basic_syntax.html#auto1
http://loris.som.jhmi.edu/python_course/basic_syntax.html#auto1
http://learnboost.github.com/stylus/
http://thesassway.com/articles/sass-vs-scss-which-syntax-is-better
http://thesassway.com/articles/sass-vs-scss-which-syntax-is-better
http://thesassway.com/articles/sass-vs-scss-which-syntax-is-better
http://www.sublimetext.com/

A Responsive Website for Business with Foundation Framework

[210]

Time for action – installing Sublime Text and enabling SCSS
syntax highlighting

In the following steps, we are first going to install Sublime Text and then install a package to
enable SCSS syntax highlighting:

1. First, let's go to http://www.sublimetext.com/2.

2. Download the appropriate installer for your OS (OS X, Windows, or Linux) and install
Sublime Text with the default settings.

3. After the installation is complete, open Sublime Text.

4. We then need to install the Package Control. To install it, you can head over to the
following reference for more detailed, updated, and accurate instructions:

http://wbond.net/sublime_packages/package_control/installation

5. After the Package Control has been installed, hit the Command + Shift + P keys (for
OS X) or Ctrl + Shift + P (for Windows and Linux). This key combination will show the
Sublime Text Command Palette, as shown in the following screenshot:

Alternatively, you can go to Tools | Command Palette to do the same thing.

6. Search Install Package, and hit the Enter key. This will load the Sublime Text
package repositories and list all available packages:

http://wbond.net/sublime_packages/package_control/installation
http://wbond.net/sublime_packages/package_control/installation

Chapter 6

[211]

7. Then, search the repository for SCSS as shown in the following screenshot:

8. Select the first result, the SCSS package from https://github.com/kuroir/
SCSS.tmbundle, and hit Enter to install the SCSS package for Sublime Text.
Depending on your Internet connection speed, this process may take a while.

What just happened?
We have just installed Sublime Text and this will be our code editor through this project.
We have also installed Package Control, which allows us to install the SCSS package easily to
enable highlighting for the SCSS syntax.

Custom SCSS stylesheets
In the folder named scss under the working directory, you should find three SCSS files
named _settings.scss (which stores a bunch of Sass variables), app.scss (which
contains the Foundation component styles, such as the styles for the grid, buttons,
typography, and forms), and normalize.scss (http://necolas.github.com/
normalize.css/).

As in our previous two projects, we will not alter the core files directly, so the framework will
be easily maintainable in the future.

In the case of the Foundation framework, the _settings.scss and app.scss files will be
overwritten when updated (through a command line). Thus, in this project, we will create
new dedicated SCSS style sheets to store our own, customized styles for the website.

Time for action – creating new SCSS stylesheets for
maintainability

In the following steps, we are going to create SCSS style sheets for maintainability:

1. In our working directory, go to the sass folder and create a new SCSS file
named _config.scss.

http://necolas.github.com/normalize.css/

A Responsive Website for Business with Foundation Framework

[212]

2. We will use _config.scss to store our customized variables. So, let's copy all the
variables from _settings.scss to our newly created SCSS file _config.scss.

3. Create a new SCSS file and name it base.scss.

4. We will use the base.scss file to store the basic styles that come from the
Foundation framework. So, let's copy all the Foundation styles from app.scss to
our newly created base.scss file.

5. Within the base.scss file, change @import "settings" to @import "config"
so that we can use the variables from our _config.scss instead of _settings.
scss.

6. Create a new file named styles.scss to store our own styles for the website.

7. Lastly, import the _config.scss to styles.scss, so that we can use the
variables in our _styles.scss as well:
@import "config";

What just happened?
We have just created three new SCSS files named _config.scss, base.scss, and
styles.scss to store our own, customized styles for the website.

That way, the original SCSS files from the Foundation framework will remain unchanged.
Also, in case we decide to update the framework or the project (via a command line), our
custom settings and styles will not be overwritten.

Introducing Compass
Compass is an extension to Sass. Like LESS Elements (http://lesselements.com/) for
LESS, Compass (http://compass-style.org/) contains a bunch of useful mixins and
some additional functions for more efficiency in authoring the style rules, particularly for
writing CSS3.

In this project, there are a few Compass features that we are going to use, including the
Compass Helper Functions.

Compass Helper Functions
Compass has a set of Helper Functions that extend the functions from Sass, and one function
that we are going to use frequently throughout this project is the image-url() function.

http://lesselements.com/

Chapter 6

[213]

This function, image-url(), generates a path to the image directory that has been
specified in config.rb; it is a Ruby file to configure the Compass project. For example, if
we want to add a background image with the background-image property, we can simply
write it in the following way with this function:

div {
background-image: image-url('image-file.jpg');
}

By default, the image directory in config.rb is set to the images folder. That way, when
we compile the preceding code into regular CSS, it will result in the following:

div {
background-image: url('../images/image-file.jpg');
}

Compass project configuration
Compass is equipped with config.rb, which you can find directly under the working
directory. This file, config.rb, is a Ruby file containing some properties that are used to
configure the project, such as the HTTP path, the project assets directory (images, JavaScript,
and style sheet), and the CSS output.

The following table shows a list of the configuration properties that are added in config.rb
by default:

Configuration property Default value Discussion
http_path / This property specifies the path to the project

when running in a web server. It is, by default,
set to /, so the path output will begin with /,
for instance:

background-image: url("/image/
file.png");

Assuming you will deploy the website in a web
server with the domain name of foo.com,
we can change the http_path value to
http_path ="http://foo.com/", which
will change the path output in the compiled CSS to
the following:

background-image: url('http://foo.
com/images/image.png');

http://foo.com/

A Responsive Website for Business with Foundation Framework

[214]

Configuration property Default value Discussion
css_dir css This property specifies the folder name where the

CSS style sheets should be saved.

If you prefer, you can change the css_dir value
to something like css or styles, but make
sure that you also change the folder name in
the working directory to the one that matches
the change.

sass_dir scss The sass_dir property specifies the folder
name where the Sass or SCSS style sheets are
saved.

images_dir img The images_dir property specifies the folder
name where all the images are stored. This
configuration property relates to the image-
url() helper function.

As we have discussed in preceding section, when
we add image-url() in the SCSS stylesheet,
the image path output in CSS will refer to the one
specified in this property.

javascripts_dir js This property specifies the folder where the
JavaScript files are stored.

output_style :expanded The output_style property specifies the
compiled CSS output. The accepted values for
this property are :expanded, :nested,
:compact, or :compressed.

relative_assets true
(commented
out)

The relative_assets property specifies the
output path in the compiled CSS.

If it is set to true, the http_path property will
be ignored and Compass will generate a relative
URL.

line_comments false
(commented
out)

The line_comments property specifies whether
Compass should generate the line number where
the style rules are defined in the SCSS style sheets.

When set to true, it will result to something like
the following in the CSS output:

/* line 100, ../../style.sass */

preferred_syntax :sass
(commented
out)

This property specifies the syntax we use in the
project. It is by default set to :sass, but it can be
specified to :scss.

You can find the other configuration properties that, by default, are not added in config.rb
at http://compass-style.org/help/tutorials/configuration-reference/.

http://compass-style.org/help/tutorials/configuration-reference/

Chapter 6

[215]

Time for action – configuring the project path in config.rb
In the following steps, we are about to configure the project path and CSS output with
config.rb:

1. Open config.rb in Sublime Text.

2. We will use a relative URL. So, whether you develop this project within a web
server or just in plain folders, the path output will point to the assets correctly
as it is relative.

Let's uncomment the relative_assets property, and set the value to true.
Compass will generate the relative URL within the compiled CSS:
relative_assets = true

What just happened?
We have configured the asset path via config.rb to relative. That way, the output path
in the compiled CSS will be relative to the stylesheet instead of to the HTTP path, and the
output of the relative URL will typically look as follows:

div {
background-image: url('../images/image.png');
}

For more information about relative URL in CSS and asset path with
Compass, you can visit the following references:

 � The Using relative URL in CSS, what location is it relative
to? post available at http://stackoverflow.com/
questions/940451/using-relative-url-in-css-
file-what-location-is-it-relative-to

 � The Understanding Absolute and Relative URL Addresses post
at http://msdn.microsoft.com/en-us/library/
bb208688(v=office.12).aspx

 � The Where's Your Assets? Compass' image-url solves the
problem post at http://blog.grayghostvisuals.
com/compass/image-url/

 � Chris Eppstein has discussed how to specify an image path with
the Compass function in a more advanced way in his post Where
are your Images? at http://chriseppstein.github.
com/blog/2010/05/17/where-are-your-images/

http://stackoverflow.com/questions/940451/using-relative-url-in-css-file-what-location-is-it-relative-to
http://stackoverflow.com/questions/940451/using-relative-url-in-css-file-what-location-is-it-relative-to
http://stackoverflow.com/questions/940451/using-relative-url-in-css-file-what-location-is-it-relative-to
http://msdn.microsoft.com/en-us/library/bb208688(v=office.12).aspx
http://msdn.microsoft.com/en-us/library/bb208688(v=office.12).aspx
http://blog.grayghostvisuals.com/compass/image-url/
http://blog.grayghostvisuals.com/compass/image-url/

A Responsive Website for Business with Foundation Framework

[216]

Compiling SCSS to CSS
There are several applications for compiling SCSS into a standard CSS syntax such as Codekit
(http://incident57.com/codekit/), Compass.app (http://compass.handlino.
com/), and FireApp (http://fireapp.handlino.com/). These are paid applications; if
you prefer these, you can purchase one.

In this project, however, we will use none of these applications. Instead, we can do the same
thing by simply using Terminal or Command Prompt.

Time for action – watch SCSS stylesheets for changes
In the following steps, we are about to compile SCSS into a standard CSS syntax:

1. Let's open Terminal (for OS X and Linux) or Command Prompt (for Windows).

2. Navigate to your working directory with the cd command. For example, assuming
that your working directory path is /Users/thoriq/Sites/business, you can
write the following line and hit Enter:
cd /Users/thoriq/Sites/business

3. Run the following command line afterwards:
compass watch

4. Open base.scss and styles.scss in Sublime Text.

5. Save those files and Compass will eventually compile them into CSS. If the process
succeeds, you should obtain a typical report like this:
>>> Compass is polling for changes. Press Ctrl-C to Stop.
>>> Change detected at 15:46:43 to: base.scss
create css/base.css
create css/styles.css

What just happened?
We have just run the compass watch command in Terminal or Command Prompt. This
command will monitor our project assets, including the SCSS files in the working directory,
and will automatically compile them into CSS upon saving the file.

At this stage, you should find new CSS files under the css folder in the working directory
named base.css and styles.css; these are the compiled files.

http://incident57.com/codekit/
http://incident57.com/codekit/
http://compass.handlino.com/
http://fireapp.handlino.com/

Chapter 6

[217]

A few things worth noting while running compass watch command

If you decide to change some configuration within the config.
rb file, do it before you run this command. Otherwise, Compass will
catch and apply the changes in the configuration.

Run this command before you make any changes in the SCSS style
sheets. Otherwise, the SCSS will not be compiled into CSS.

Preparing the website images
Our website will need a few images. We have provided the images along with the website
source code in this book, including the images for the slideshow, social media icons, and
some random images to display in particular pages.

Some of the graphics in the images are taken from the free PSDs shared by Orman Clark
(http://www.ormanclark.com), a very talented designer from the UK. You can visit
Premium Pixels (http://www.premiumpixels.com/) to explore the PSDs that he
has shared.

The following screenshot previews the list of images inside the img directory:

http://www.premiumpixels.com/

A Responsive Website for Business with Foundation Framework

[218]

Foundation framework components
Similar to Bootstrap, the Foundation framework provides the components that we need
to build a responsive website, including the Grid, the CSS3 media queries, user interface
elements, and several jQuery plugins to display an interactive presentation. However,
Foundation has its own convention on specifying these components.

So, in this section, we will first examine these components before we jump into constructing
the HTML documents for the website.

The grid
The Foundation framework uses 12 columns of grid that is specified using the columns
class. However, as of Version 4, the Foundation framework has introduced a set of new
classes to construct the responsive grid.

In Version 4, the Foundation framework has 12 columns for both the small and the large
grid. The small grid is specified with the small-<number> class, and it is used to set the
column's width when it is viewed in the viewport size of 768 px and lower. The large grid
does the opposite; it is used to set the column's width in the viewport size that is larger than
768 px, and it is specified with the large-<number> class. Let's take a look at the following
example to understand this grid concept better.

In this example, we will have two <div> elements under a row. In the first <div> element,
we will assign small-8 large-6 columns. In the second <div> element, we will assign a
small-4 large-6 columns class, as follows.

<div class="row">
 <div class="small-8 large-6 columns">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esscillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
 </div>
 <div class="small-4 large-6 columns">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>
 </div>
</div>

Chapter 6

[219]

When we view the preceding markup in the large viewport size (greater than 768 pixels), the
columns will be displayed with an equal width, as both the <div> elements are assigned
with a large-6 class.

Then, when we view it in the small viewport size (less than or equal to 768 pixels), the
column's width proportion changes; the first column is wider than the second one. This is
because, the first <div> is assigned with a small-8 class, while the second one is assigned
with a small-4 class.

The Foundation framework also allows for nesting of the columns, for example:
<div class="row">
 <div class="small-8 large-6 columns">
 <div class="panel">

A Responsive Website for Business with Foundation Framework

[220]

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua...</p>
 </div>
 <div class="row">
 <div class="small-4 large-6 columns">
 <div class="panel">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor ...</p>
 </div>
 </div>
 <div class="small-8 large-6 columns">
 <div class="panel">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor ...</p>
 </div>
 </div>
 </div>
 </div>
 <div class="small-4 large-6 columns">
 <div class="panel">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua...</p>
 </div>
 </div>
</div>

Notice that columns in each row always add up to 12, whether it is for the small grid or the
large grid. This structure will give us the following result in the browser:

Chapter 6

[221]

In order for the columns to be displayed properly, they should be wrapped
within a row, as we have demonstrated in the preceding examples.

Furthermore, the Foundation framework also provides an additional class
to position the column for particular layout cases. For more details on
constructing the Grid columns with the Foundation framework, head over
to the following page:

http://foundation.zurb.com/docs/grid.php

CSS3 media queries
The Foundation framework has defined the CSS3 media queries for handling styles in a wide
range of viewport sizes and screen orientations. The following code snippet shows how the
CSS3 media queries are specified in the Foundation framework:

@media only screen and (min-width: 48em) { … }
@media only screen and (min-width: 58.75em) { … }
@media only screen and (min-width: 80em) { … }
@media only screen and (min-width: 90em) { … }
@media screen and (orientation: landscape) { … }
@media screen and (orientation: portrait) { … }

As you can see from the preceding CSS3 media queries, the breakpoint is specified in an em
unit. The em unit, as we have discussed in Chapter 1, Responsive Web Design, is relative to
the document's base font size. If the base font size is 16 px, then 48 em is equal to 768
px—in addition, 58.75em equal to 940px, 80em equal to 1280px, and 90em equal to 1440px.

For more details about the CSS3 media queries, visit:
 � CSS3 Media Queries documentation (http://www.
w3.org/TR/css3-mediaqueries/)

 � How to Use CSS3 Media Queries to Create a Mobile Version of
Your Website (http://mobile.smashingmagazine.
com/2010/07/19/how-to-use-css3-media-
queries-to-create-a-mobile-version-of-
your-website/)

http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/
http://mobile.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
http://mobile.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
http://mobile.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
http://mobile.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/

A Responsive Website for Business with Foundation Framework

[222]

User interface styles
Foundation provides a set of user interface styles, including one for the button. A button is
an essential UI element for any kind of website, and we will also add a few in our pages.

In the Foundation framework, we can construct a button with the <a> or <button>
element, and assign it with the button class, as shown in the following code snippet:

With Anchor Element
<button class="button" href="#">With Button Element</button>

This example gives us the following result:

Furthermore, we can specify the button size by adding the tiny, small, and large classes,
as follows:

Large Button
Normal Button
Small Button
Tiny Button

The result will look as shown in the following screenshot:

We can also set the rounded corner style for the button by adding the radius and round
classes to the element:

Radius Button
Round Button

Given the preceding example, the result will look as shown in the following screenshot:

Chapter 6

[223]

For further knowledge on creating buttons and other UI elements
with the Foundation framework, head over to the following page:

http://foundation.zurb.com/docs/components/
buttons.html

Orbit
One of the Foundation jQuery plugins that we are going to use in the website is called Orbit.
Orbit is a plugin for displaying an image or a content slideshow. To construct the HTML for
the slideshow, simply wrap the content or the images within an unordered list element with
the data-orbit attribute, as follows:

<ul data-orbit>
 Content Slide 1
 Content Slide 2
 Content Slide 3

To enable the slideshow, we will need to include jquery.js (or zepto.js), foundation.
js, and foundation.orbit.js within the HTML document.

For further information on applying Orbit, visit http://
foundation.zurb.com/docs/components/orbit.html.

Constructing the HTML documents
Now, we will build the HTML documents for the website. In the working directory, you
should find an HTML document named index.html. This is the HTML document that was
generated when we created the Foundation project. By default, this document contains the
essential elements to establish a responsive website, which includes the following:

 � Conditional comments for specifically targeting Internet Explorer:
<!--[if IE 8]><html class="no-js lt-ie9" lang="en"><![endif]-->
<!--[if gt IE 8]><!--><html class="no-js" lang="en"><!--
<![endif]-->

 � A meta viewport tag for handling the device viewport size, that is set as follows:
<meta name="viewport" content="width=device-width/>

http://foundation.zurb.com/docs/components/buttons.html
http://foundation.zurb.com/docs/components/buttons.html
http://foundation.zurb.com/docs/components/orbit.html
http://foundation.zurb.com/docs/components/orbit.html

A Responsive Website for Business with Foundation Framework

[224]

 � A custom build of Modernizr for browser feature detection:
<script src="js/vendor/custom.modernizr.js"></script>

Also, at the very bottom of the page, there are scripts that point out to the
JavaScript files for running the Foundation framework plugins (http://
foundation.zurb.com/docs/javascripts.php).

We will need a dummy text to fill in the documents. But instead of
using the conventional Lorem Ipsum, we will use Cupcake Ipsum in this
project (http://cupcakeipsum.com/). Of course, you can use
Lorem Ipsum (http://www.lipsum.com/), if you prefer it.

Basic HTML document
Before we build the HTML structure for each page, we will first customize the default HTML
document that comes with the Foundation framework.

This document will contain the header and footer sections and also the stylesheet and
JavaScript links that will be shared by all the pages. This means we don't need to add all
these elements every time we create a new page.

Time for action – configuring a basic HTML document
In the following steps, we are going to customize the default HTML document that comes
with the Foundation framework:

1. Open index.html in Sublime Text.

2. Add the normalize.css in the <head> section:
<link rel="stylesheet" href="css/normalize.css">

3. In the <head> section, remove the following stylesheet link:
<link rel="stylesheet" href="stylesheets/app.css">

And replace it with:
<link rel="stylesheet" href="css/base.css">

The base.css is the compiled CSS from base.scss, which contains the basic
Foundation component styles, such as the Grid and the button styles.

4. Below it, add another stylesheet link that points out to styles.css, as follows:
<link rel="stylesheet" href="css/styles.css">

The styles.css file is the compiled CSS from styles.scss, which will contain
the styles for the website.

http://foundation.zurb.com/docs/javascripts.php
http://foundation.zurb.com/docs/javascripts.php
http://cupcakeipsum.com/
http://www.lipsum.com/

Chapter 6

[225]

5. By default, the <body> element in the index.html document is not empty.
Foundation includes some examples of the HTML structure. Let's remove all the
HTML markup from <body>, as we will not use them.

6. At the very bottom of the document you will find a list of scripts for the jQuery
plugins. We will not use all of these plugins, so let's remove the unnecessary ones,
but keep the following scripts:

 � <script> document.write('<script src=' + ('__proto__' in
{} ? 'js/vendor/zepto' : 'js/vendor/jquery') + '.js><\/
script>')</script>: This JavaScript will load the JavaScript library that
is required to run the plugin—Zepto.js or jQuery.js

Zepto.js is a lightweight JavaScript library with a similar API to
jQuery.js. In Version 4, the Foundation framework switched to this
library to make the plugins run faster. For more about Zepto.js,
you can head over to: http://zeptojs.com/.

 � js/foundation/foundation.js: All the Foundation plugins are
dependent on this JavaScript

 � foundation.topbar.js: This script is required to enable functionality in
the navigation bar, particularly in touch devices

 � foundation.topbar.js: This script is required to run the slideshow

 � foundation.placeholder.js: A polyfill for placeholder attribute in
unsupported browsers

For more information about the jQuery plugins in the Foundation
framework, head over to http://foundation.zurb.com/
docs/javascripts.php.

7. We will start the website with navigation that contains the website logo, the link
menu, and the search form. We will wrap the navigation with contain-to-grid
class, so that it will follow the grid width:
<div class="contain-to-grid">
 <nav class="top-bar" role="navigation">
 <ul class="title-area">
 <li class="name">
 <h1>business</h1>

 <li class="toggle-topbar menu-icon">
 Menu

http://zeptojs.com/

A Responsive Website for Business with Foundation Framework

[226]

 <section class="top-bar-section">
 <ul class="left">
<li class="has-dropdown">
Services
 <ul class="dropdown">
 Web Design
 Graphic Design
 Icon Design
 WordPress Theme
 See all →

 Pricing
 About
 Contact

 <ul class="right">
 <li class="has-form">
 <form>
 <div class="row collapse">
 <div class="small-8 columns">
 <input type="search" name="search" placeholder="Input
the keyword">
 </div>
 <div class="small-4 columns">
 Search
 </div>
 </div>
 </form>

 </section>
 </nav>
</div>

For more information about constructing the menu navigation in the
Foundation framework, you can visit http://foundation.zurb.
com/docs/components/top-bar.html.

8. Next, add the HTML5 <footer> element to define the website footer section,
as follows:
<footer class="footer" role="contentinfo">
</footer>

http://foundation.zurb.com/docs/components/top-bar.html
http://foundation.zurb.com/docs/components/top-bar.html

Chapter 6

[227]

9. The footer is rather simple; we will have the footer navigation, social media links,
and copyright statement. So, let's first add the row class to contain these elements:
<div class="row"></div>
<div class="row"></div>

10. In the first row, we will add the footer navigation and the social media links. We
specify the footer navigation section simply with a <div> element and assign it
with the large-6 columns footnav class, as follows:
<div class="large-6 columns footnav">
 <ul class="inline-list">
 Home
 Service
 Pricing
 About
 Contact
 Privacy & Policy

</div>

Notice that we added the inline-list class in the element. The Foundation
framework provides this special class to display the tag side by side (inline).

11. Then, we add the social media links within a <div> element that is assigned with
the large-4 columns social class, as follows:
<div class="large-4 columns social">
<ul class="inline-list">
<li class="facebook">Facebook
<li class="twitter">Twitter
<li class="linkedin">LinkedIn
<li class="dribbble">Dribbble

</div>

12. Similarly, as you can see in the preceding example, we construct the social media
links with an unordered list element, and assign the element with the
inline-list class, so that the element is displayed inline.

13. Lastly, we add the copyright statement in the second row. We add it with a <div>
element that is assigned with the large-12 columns copyright class, as
follows:
<div class="large-12 columns copyright">
 <p>© 2012 Business. All rights reserved.</p>
</div>

A Responsive Website for Business with Foundation Framework

[228]

14. Copy this index.html document into five copies.

15. Apart from index.html, rename the copies as services.html, pricing.html,
about.html, and contact.html respectively.

What just happened?
We have just built the master HTML template for the pages in the website. This document
contains the navigation and the footer section that are shared by all the pages of the website.

We now have five HTML documents, namely, index.html, service.html, pricing.
html, about.html, and contact.html. The following screenshot is how this document
looks in the browser at this stage:

The website homepage
The first web page that we are going to work on is the homepage. In the homepage, we will
have several sections as follows:

 � An image/content slideshow, which we will build using Orbit

 � An introductory section that contains some (dummy) text for welcoming the users to
our website, and a button

 � Some (imaginary) features of the services

 � Some (imaginary) featured projects

Time for action – constructing the homepage content
In the following steps, we are going to create and customize the homepage of our website:

1. Let's open the index.html file in Sublime Text.

2. Rename the document title in the <title> tag to something like Homepage
or Home.

Chapter 6

[229]

3. Create a <div> element below the navigation container, <div class="contain-
to-grid">, with the row content home class. We will use this <div> element to
hold the the homepage content:
<div class="row content home"></div>

The additional home class will allow us to apply styles specifically to the elements in
the homepage, if needed.

4. Under <div class="row content home">, add a <div> element with the
large-12 column class, so that the content will span entirely across the row
width:
<div class="large-12 columns"></div>

5. Then, under <div class="large-12 columns">, create a <div> element with
the row slideshow class to contain the slideshow:
<div class="row content home">
 <div class="large-12 columns">
 <div class="row slideshow"></div>
 </div>
</div>

6. Under <div class="row slideshow">, create a element with a
data-orbit attribute:
<ul data-orbit>

7. Let's add an under the to hold the slide content:
<ul data-orbit>

8. Then, create a <div> element under the tag with the large-6 columns
class, as well as adding the content as follows:
<div class="large-6 columns">
 <h3>This is the first slide</h3>
 <p>Carrot cake apple pie sweet jelly beans jujubes dragée
dessert cake. Cake cheesecake cookie sesame snaps tart applicake
jelly bonbon.</p>
 Click
Me!
</div>

The content consists of a heading, a paragraph, and a link button. The <div>
element with the large-6 columns class that wraps the content make it pan only
half of the slide width.

A Responsive Website for Business with Foundation Framework

[230]

9. In this project, we add three more slides as follows:

 <div class="large-6 columns">
 <h3>We are the second one</h3>
 <p>Sweet roll cheesecake gingerbread fruitcake sweet roll.
Marzipan sweet faworki carrot cake dragée lemon drops applicake
muffin cotton candy.</p>
 Pay a
Visit!
 </div>

 <div class="large-6 columns">
 <h3>We are the third</h3>
 <p>Brownie gummi bears jujubes. Biscuit danish tootsie roll
cotton candy oat cake jujubes dessert pastry bear claw.</p>
 Click
Me As Well!
 </div>

 <div class="large-6 columns">
 <h3>We are the last</h3>
 <p>Liquorice brownie sugar plum cookie lemon drops chocolate
bar faworki chocolate bar. Brownie carrot cake muffin cake
topping.</p>
 This is
a Button
 </div>

You can surely add more slides if you prefer.

10. Next, we add a section that we can call an "introductory" section. So, let's create
a new <div> element with the row intro class below <div class="row
slideshow">, as follows:
<div class="row intro"></div>

11. This row will be split into two columns. The first is the column number 9, which
contains some (dummy) text for welcoming the users:
<div class="large-9 columns">
 <h3>Welcome to Our Website <small>Marzipan pudding candy
applicake</small></h3>
 <p>Caramels marzipan sesame snaps sugar plum carrot cake brownie
jujubes sweet roll. Faworki topping jujubes. Marzipan pudding
candy applicake.</p>
</div>

Chapter 6

[231]

12. Create a <div> element after <div class="large-9 columns"> to contain
the button, and assign it with the large-3 columns class. The total number of
columns adds up to 12 (9 + 3 = 12):
<div class="large-3 columns">
 Take a Tour
</div>

13. Then, create an HTML5 <section> element below the "introductory" section, and
assign it with the row features class, as follows:
<section class="row features"></section>

As the class name implies, this section will contain a list of features of the
(imaginary) services that we offer on the website.

14. Create a new <div> element with the large-12 column class under <section
class="row features">. Fill this section with some (dummy) text, as follows:
<div class="large-12 columns">
 <h3 class="title-section">Features</h3>
 <p>Toffee jelly candy sweet cotton candy carrot cake
applicakewypas carrot cake. Wafer faworki sweet roll…</p>
</div>

Each section in our website will be introduced with a heading. In our case,
depending on the level of the section, we will either use an <h3> or <h4> element.

For further information on structuring document headings you can
head over to the following references:

 � Heading Headaches: Balancing Semantics and SEO
(http://www.sitepoint.com/heading-
headaches-balancing-semantics-and-seo/)

 � HTML Technique for Web Accessibility Content
(http://www.w3.org/TR/WCAG10-HTML-TECHS/
- document-headers)

15. Create a new <div> element with the row class below the paragraph, as follows:
<div class="large-12 columns">
<h3 class="title=section">Features</h3>
<p>Toffee jelly candy sweet cotton candy carrot cake
applicakewypas carrot cake. Wafer faworki sweet roll…</p>
<div class="row"></div>
</div>

This row will contain a list of the service's features.

http://www.sitepoint.com/heading-headaches-balancing-semantics-and-seo/
http://www.sitepoint.com/heading-headaches-balancing-semantics-and-seo/
http://www.sitepoint.com/heading-headaches-balancing-semantics-and-seo/
http://www.w3.org/TR/WCAG10-HTML-TECHS/#document-headers
http://www.w3.org/TR/WCAG10-HTML-TECHS/#document-headers
http://www.w3.org/TR/WCAG10-HTML-TECHS/#document-headers

A Responsive Website for Business with Foundation Framework

[232]

16. We will add four lists of feature with the <div> element. If we divide 12 by 4 we will
get 3, so each <div> element will be assigned with the large-3 columns class.

Additionally, we will also assign the <div> element with the feature class, so we
will be able to add styles specifically to this element:

<div class="large-3 columns feature"></div>

17. This section will contain a heading title, and some (dummy) text. As we have used an
<h3>, for the upper section, we will use an <h4> for the heading title in this section,
as follows:
<div class="large-3 columns feature">
<h4>Cake apple pie</h4>
<p>Croissant apple pie dragee cheesecake gummi bears croissant.
Wafer apple pie dragee wafer sweet roll tart croissant lollipop
donut…</p>
</div>

18. Then add the remaining three feature lists, as follows:
<div class="large-3 columns feature">
 <h4>Candy halvah</h4>
 <p>Cotton candy danish muffin jelly biscuit ice cream caramels.
Chocolate cake fruitcake liquorice…</p>
</div>
<div class="large-3 columns feature">
 <h4>Biscuit snaps</h4>
 <p>Carrot cake sweet pie chupachups pudding liquorice croissant
cookie pie...</p>
</div>
<div class="large-3 columns feature">
 <h4>Souffle sweet</h4>
 <p>Icing donut tootsie roll danish carrot cake cotton candy.
Gummi bears croissant pudding …</p>
</div>

19. We will add one more section to display some (imaginary) featured projects. Let's
create an HTML5 <section> element with the row projects class:
<section class="row projects"></section>

Chapter 6

[233]

20. Similar to the previous feature section, we also add a <div> element with the
large-12 columns class:
<section class="row projects">
<div class="large-12 columns">
<h3 class="title-section">Featured Projects</h3>
<p>Lollipop powder marzipan topping cheesecake danishwypas...</p>
</div>
</section>

21. Create a new row to contain the list of the featured projects, as follows:
<div class="large-12 columns">
<h3 class="title-section">Featured Projects</h3>
<p>Lollipop powder marzipan topping cheesecake danishwypas …</p>
<div class="row"></div>
</div>

22. We will add three featured projects with the <div> element, so each <div>
element is assigned with the large-4 columns class (12 / 3 = 4). Similarly, we
also add a special class, project, so that we are able to apply specific styles to this
section:
<div class="large-4 columns project"></div>

23. Then, we first add the image thumbnail for the project. We wrap it with the HTML5
<figure> and <a> elements, as follows:
<div class="large-4 columns project">
<figure>

</figure>
</div>

Notice that the <a> element is assigned with the th class, which
stands for a thumbnail. Foundation provides this special class
for styling images, and to learn more about this kind of class,
you can visit http://foundation.zurb.com/docs/
components/thumbnails.html.

http://foundation.zurb.com/docs/components/thumbnails.html
http://foundation.zurb.com/docs/components/thumbnails.html

A Responsive Website for Business with Foundation Framework

[234]

24. Add a heading and a paragraph to describe the project below the <figure>
element:
<div class="large-4 columns project">
 <figure>

 </figure>
 <h4>Jelly-o Sweet</h4>
 <p>Gummi bears biscuit souffle candy marshmallow. Tiramisu tart
cupcake bear claw muffin cheesecake dragée…</p>
</div>

25. Lastly, add the rest of the two featured projects:

<div class="large-4 columns project">
 <figure>
 <img src="img/cart.png" alt="Shopping
Website">
 </figure>
 <h4>Gingerbread Dessert</h4>
 <p>Tootsie roll candy liquorice cupcake cake donut brownie. </p>
</div>
<div class="large-4 columns project">
 <figure>
 <img src="img/growl.png" alt="OSX
Notification, Growl">
 </figure>
 <h4>Tiramisu Tart</h4>
 <p>Sweet dragée candy canes soufflé tart croissant. Tootsie roll
candy canes donut applicake...</p>
</div>

What just happened?
We have just finished constructing the homepage content with several sections, including
the content slideshow and the list of some featured (imaginary) projects. The following
screenshot shows how the homepage looks in the browser at this stage:

Chapter 6

[235]

A Responsive Website for Business with Foundation Framework

[236]

In addition, our webpage is actually already responsive. This is because some of the classes
that we added in the preceding steps have been specified and adjusted for different screen
sizes under the CSS3 media queries. So if we view the homepage in a 360 pixel viewport size,
we will get the following result:

The Services page
Next, we will work on constructing the Services page. This page is saved within the
service.html document and it contains a list of (imaginary) services that we offer
on the website. So, let's get started!

Chapter 6

[237]

Time for action – constructing the Services page content
markup

We will be creating the Services page in the following steps:

1. Open service.html in a code editor.

2. Change the document title in the <title> tag to something like Services or Our
Service. It is up to you to rename the title, as long as it relates to the page.

3. Similar to the homepage, we will first create a container for the content. In this case,
we assign <div>, with the row content page our-services class, as follows:
<div class="row content page our-services">
 <div class="large-12 columns">
 </div>
</div>

An additional page class is added so that we are able to apply styles to the
webpages in general. The our-services class will be used to apply styles
specifically to the service page, if the need arises.

4. Then we add the breadcrumb navigation:
<div class="row content page our-services">
 <div class="large-12 columns">
 <ul class="breadcrumbs">
 Home
 <li class="current">Services

 </div>
</div>

5. Below the breadcrumb navigation, we create an HTML5 <section> element
with a row intro for containing the page title and some (dummy) text that describes
the page.

As we've already used <h1> for the website logo, we will use the <h2> element for
the page title and an <h3> element for the subheading as follows:
<section class="row page intro">
 <div class="large-12 columns">
 <h2>Our Services</h2>
 <h3 class="subheader">Tart croissant jelly beans oat cake
donut.</h3>
 <p>Lemon drops toffee tootsie roll gingerbread macaroon.
Chocolate topping cotton candy cheesecake chocolate cake …</p>
 </div>
</section>

A Responsive Website for Business with Foundation Framework

[238]

6. Below <section class="row page intro"></section>, create an HTML5
<section> element with row service-list and a <div> element with the
large-12 columns class, as follows:
<section class="row service-list">
 <div class="large-12 columns">
 </div>
</section>

7. In this project, we will list six (imaginary) services. As the content's height in each list
will not be equal, we need to wrap every two services within a row, as follows:
<div class="row">
 <div class="large-6 columns service">
 <h4>Candy jelly beans</h4>
 <p>Dessert sugar plum muffin applicakeapplicake cheesecake
wafer bonbon jelly beans. Icing donut marshmallow liquorice
dessert chocolate …Learn More →</p>
 </div>
 <div class="large-6 columns service">
 <h4>Sweet cupcake jelly</h4>
 <p>Jujubes halvah lollipop toffee sweet cupcake jelly.
Chupachups chocolate carrot cake donut... Learn More
→</p>
 </div>
</div>

So regardless of the height, the service list will still be arranged properly. Otherwise,
the list will end up like this:

Chapter 6

[239]

8. Then, let's add the rest of the service list below the one that we added in step 7:
<div class="row">
 <div class="large-6 columns service">
 <h4 class="setting">Cotton candy</h4>
 <p>Candy lollipop gummi bears jujubes pie. Cake brownie
toffee brownie apple pie sesame snaps donut carrot cake. Learn More →</p>
 </div>
 <div class="large-6 columns service">
 <h4 class="setting">Cake brownie toffee</h4>
 <p>Candy lollipop gummi bears jujubes pie. Cake brownie
toffee brownie apple pie sesame snaps donut carrot cake... Learn More →</p>
 </div>
</div>
<div class="row">
 <div class="large-6 columns service">
 <h4>Cupcake icing</h4>
 <p>Brownie liquorice jelly. Macaroon pudding jelly beans
pastry. Gummies sugar plum jelly-o. …Learn More
→</p>
 </div>
 <div class="large-6 columns service">
 <h4>Cake donut</h4>
 <p>Muffin sweet biscuit jujubes. Cake donut bear claw sweet
roll soufflé lemon drops tootsie roll cookie halvah... Learn More →</p>
 </div>
</div>

9. After seeing the offers (products or services), the users usually expect to see the
price. So in this case, we will add one more section to guide the users to the page.

This section will consist of two columns. We will fill the first column with some
(dummy) text. In reality, this can be the text to encourage the users to visit the
pricing page. In the second column, we will add the link button that refers to the
pricing page. So let's create a <div> element with a panel class below <section
class="row service-list">, as follows:

<div class="panel"></div>

A Responsive Website for Business with Foundation Framework

[240]

The Foundation framework describes the panel as a simple,
helpful CSS class that enables you to outline sections (http://
foundation.zurb.com/docs/components/panels.html).

10. Then, under the <div class="panel"></div> element, create a new row to
hold the columns:
<div class="panel">
 <div class="row"></div>
</div>

11. Under the row class, create two <div> elements; one with the large-9
columns intro class, and the other one with the large-3 columns class. As
we mentioned in step 8, fill the first column with some (dummy) text and add the
button in the second column, as follows:

<div class="panel">
 <div class="row">
 <div class="large-9 columns intro">
 <p>Toffee sweet roll wypas jelly chocolate cake. Lemon drops
jelly-o pudding fruitcake gingerbread sesame snaps tootsie roll
lemon drops gingerbread…</p>
 </div>
 <div class="large-9 columns">
 See Pricing
 </div>
 </div>
</div>

What just happened?
We have just constructed the Services page content that contains the list of the (imaginary)
services that we offer. The following screenshot shows how the Services page looks at
this stage:

http://foundation.zurb.com/docs/components/panels.html
http://foundation.zurb.com/docs/components/panels.html

Chapter 6

[241]

A Responsive Website for Business with Foundation Framework

[242]

Similar to the homepage, this Services page is also already responsive. When we view it in a
360 pixel viewport size, we will get the following result:

The Pricing page
Next, we work on the Pricing page. The Pricing page contains the service table price, which
we commonly see in similar websites.

Let's imagine that this is a real web project; we certainly expect the users to convert and
purchase our service after visiting this page. So to convince the users, we will add an
additional section to place a user's testimonial or review.

Chapter 6

[243]

Refer to the article on SEOmoz.org, one of the most notable companies for Internet
marketing and Search Engine Optimization, at http://www.seomoz.org/blog/
holygrail-of-ecommerce-conversion-optimization-91-points-checklist#27:

Positive customer reviews make your store more shop worthy and thus can have a
direct impact on the store's conversion rate.

Although this guide mainly talks on e-commerce, the basic idea of having positive
testimonial for increasing conversion rate applies to the website that sells products
or offers services.

Time for action – constructing the Pricing page content markup
We'll now start creating the Pricing page:

1. First, open the pricing.html file in the code editor.

2. Rename the document title in the <title> tag to Pricing or something similar.

3. The idea of constructing this page is similar to our previous pages. We will add the
content wrapper with a <div> element that is assigned with the row content
page class, and one special class to apply specific styles to the page. Let's add the
following markup:
<div class="row content page pricing">
 <div class="large-12 columns">
 </div>
</div>

4. Then, under <div class="large-12 columns"></div>, let's add the
breadcrumb navigation:
<ul class="breadcrumbs">
 Home
 <li class="current">Pricing

5. Below the breadcrumb, add the page introduction:
<section class="row page intro">
 <div class="large-12 columns">
 <h2>Pricing and Plan</h2>
 <h3 class="subheader">Tart croissant jelly beans oat cake
donut.</h3>
 <p>Lemon drops toffee tootsie roll gingerbread macaroon.
Chocolate topping cotton candy cheesecake chocolate cake.
Chupachups caramels marzipan bonbon danish candy canes.</p>
 </div>
</section>

A Responsive Website for Business with Foundation Framework

[244]

6. Create a new row below the page introduction with the row compare class to
contain the table for price comparison:
<div class="row compare"></div>

7. The Foundation framework provides a reusable markup to construct the pricing
table. We can create one using an unordered list with the pricing-table class,
for example:
<ul class="pricing-table">
 <li class="title">Basic
 <li class="price">$10.99
 <li class="description">Lollipop cotton candy wafer caramels
tootsie roll.
 <li class="bullet-item">1 Cheesecake
 <li class="bullet-item">2GB Chocolate
 <li class="bullet-item">5 Candies
 <li class="bullet-item">7 Cupcakes
 <li class="bullet-item">8 Beans
 <li class="bullet-item">10 Carrots
 <li class="cta-button">
 Order Now »

For further information on the Foundation framework pricing
table, you can visit http://foundation.zurb.com/docs/
components/pricing-tables.html.

We will add three pricing tables. So, each pricing table will be wrapped using a
<div> element with the large-4 columns class, as follows:

<div class="large-4 columns four">
 <ul class="pricing-table">
 <li class="title">Basic
 <li class="price">$10.99
 <li class="description">Lollipop cotton candy wafer caramels
tootsie roll.
 <li class="bullet-item">1 Cheesecake
 <li class="bullet-item">2GB Chocolate
 <li class="bullet-item">5 Candies
 <li class="bullet-item">7 Cupcakes
 <li class="bullet-item">8 Beans
 <li class="bullet-item">10 Carrots
 <li class="cta-button">Order
Now »

</div>

Chapter 6

[245]

<div class="large-4 columns">
 <ul class="pricing-table">
 <li class="title">Standard
 <li class="price">$20.99
 <li class="description">Pastry fruitcake cheesecake halvah
croissant.
 <li class="bullet-item">3 Cheesecake
 <li class="bullet-item">4GB Chocolate
 <li class="bullet-item">10 Candies
 <li class="bullet-item">15 Cupcakes
 <li class="bullet-item">20 Beans
 <li class="bullet-item">25 Carrots
 <li class="cta-button">Order
Now »

</div>
<div class="large-4 columns">
 <ul class="pricing-table">
 <li class="title">Professional
 <li class="price">$30.99
 <li class="description">Cupcake sweet roll apple pie bonbon.</
li>
 <li class="bullet-item">5 Cheesecake
 <li class="bullet-item">6GB Storage
 <li class="bullet-item">15 Candies
 <li class="bullet-item">30 Cupcakes
 <li class="bullet-item">35 Beans
 <li class="bullet-item">40 Carrots
 <li class="cta-button">Order
Now »

</div>

8. Create a new row class below the pricing table section with the row testimonial
class to contain the customer testimonials:
<section class="row testimonial"></section>

9. Under <section class="row testimonial"></section>, add the
introduction to this section, which consists of a heading and some (dummy) text:
<div class="large-12 columns">
 <h3>Testimonial</h3>
 <p>Toffee pastry jelly bear claw icing sweet roll fruitcake.
Faworki jujubes pastry donut marzipan chupachups bear claw gummies
cheesecake.</p>
</div>

A Responsive Website for Business with Foundation Framework

[246]

10. Then, below the paragraph, create a new row to contain the testimonial list as
follows:
<div class="large-12 columns">
 <h3 class="title-section">Testimonial</h3>
 <p>Toffee pastry jelly bear claw icing sweet roll fruitcake.
Faworki jujubes pastry donut marzipan chupachups bear claw gummies
cheesecake.</p>
 <div class="row"></div>
</div>

11. The <blockquote> element is the most appropriate element to wrap a quotation,
which in our case, is the user's testimonial (http://www.w3.org/wiki/HTML/
Elements/blockquote).

In this website, we will list three user testimonials. Each <blockquote> element
will be wrapped within a <div> element with the columns four class. Let's add
the following markup under the row that we have created in step 10:

<div class="columns large-4">
 <blockquote>
 <p>Macaroon tootsie roll tiramisu macaroon marshmallow.
Pudding gummies biscuit halvah donut lemon drops. Gingerbread
applicake pastry jelly beans liquorice icing. <cite>John Doe</
cite></p>
 </blockquote>
</div>
<div class="columns large-4">
 <blockquote>
 <p>Lollipop powder marzipan topping cheesecake danishwypas.
Bonbon caramels gingerbread pudding liquorice donut sweet sugar
plum. Candy canes brownie sesame snaps cake. <cite>John Doe
Sister</cite></p>
 </blockquote>
</div>
<div class="columns large-4">
 <blockquote>
 <p>Dragée jujubes pudding sweet roll cake sesame snaps soufflé
ice cream muffin. Gingerbread sweet gingerbread marshmallow bear
claw. Dragée biscuit brownie apple pie sesame snaps oat cake
dessert pudding. <cite>John Doe Brother</cite></p>
 </blockquote>
</div>

Chapter 6

[247]

What just happened?
We have just constructed the content markup in the Pricing page. We use the Foundation
reusable classes and markup to create the pricing table. The following screenshot shows how
the pricing looks when we view it in the browser at this stage:

A Responsive Website for Business with Foundation Framework

[248]

In addition, the following screenshot shows how it looks in a smaller (360 pixel)
viewport size:

The About Us page
Next, we work on the About Us page. This page will contain two columns; the first column
will wrap the main content, while the second column will be the sidebar. The other parts in
the content are similar to the other pages; it will have the breadcrumb navigation, and the
page's introductory section (title, subheader, and a few more).

Chapter 6

[249]

Time for action – constructing the About Us page content
markup

In the following steps, we are going to create and customize the About Us page:

1. Let's open the about.html file in the code editor.

2. Rename the title to About Us (or something similar).

3. Then add the <div> elements that will wrap the content, as follows:
<div class="row content page about">
<div class="twelve columns">
</div>
</div>

We assume that you're already familiar with the class name and the markup pattern
for the content wrapper after creating the previous three pages.

4. Let's add the breadcrumb navigation of the page under <div class="twelve
columns">:
<ul class="breadcrumbs">
Home
<li class="current">About

5. Below the breadcrumb, add the page introductory section, as follows:
<section class="row page intro">
<div class="tweleve columns">
<h2>About Us</h2>
<h4 class="subheader">Tart croissant jelly beans oat cake donut.</
h4>
<p>Lollipop applicake biscuit. Macaroon jelly beans caramels
faworkioat cake marshmallow pudding. Candy pastry oat cake
marzipan pie sugar plum donut. Souffle donut croissant. Marzipan
brownie marzipan soufflé liquorice cotton candy liquorice
chocolate gingerbread.</p>
</div>
</section>

6. Below the page introductory, create a new row class, as follows:
<div class="row story"></div>

A Responsive Website for Business with Foundation Framework

[250]

7. Then, create two columns with the <div> and HTML5 <aside> elements under the
row that we created in step 5. Assign the <div> element with eight columns,
and the <aside> element with the four columns class, as follows:
<div class="row story">
 <div class="eight columns">
 </div>
 <aside class="four columns">
 </div>
</div>

Note that the content that we will add in this step is merely an
example; you can actually add anything you want.

8. In the first column, I would like to add a heading and some paragraphs for the
content. As we have already used the <h2> and <h3> tags for the page introduction,
we will use <h4> for the heading in this section, as follows:
<div class="eight columns">
 <h4>Our Story</h4>
 <p>Lollipop applicake biscuit. Macaroon jelly beans caramels
faworki oat cake marshmallow pudding...</p>
 <p>Jujubes chocolate oat cake cheesecake candy pie sugar
plum donut. Tiramisu biscuit pudding icing candy.Apple pie jelly
biscuit.Faworki powder chocolate cake ice cream…</p>
</div>

9. I would like to add one more row below the paragraphs that we added in the
previous step, just to make the content look a little bit longer:
<div class="eight columns">
 <h4>Our Story</h4>
 <p>Lollipop applicake biscuit. Macaroon jelly beans caramels
faworki oat cake marshmallow pudding...</p>
 <p>Jujubes chocolate oat cake cheesecake candy pie sugar
plum donut. Tiramisu biscuit pudding icing candy.Apple pie jelly
biscuit.Faworki powder chocolate cake ice cream…</p>
 <div class="row"></div>
</div>

10. Then, I add three columns with a heading and some random content in the row:
<div class="row">
 <div class="columns four">
 <h4>Cookie lollipop</h4>
 <p>Pie gummi bears chocolate cake topping. Sugar plum oat cake
candy pie marshmallow sweet roll ice …</p>

Chapter 6

[251]

 </div>
 <div class="columns four">
 <h4>Tiramisu biscuit</h4>
 <p>Liquorice macaroon cupcake jujubes. Jujubes marshmallow
soufflé tiramisu bonbon donut. Tootsie roll icing chupachups
jelly-o sesame snaps lollipop marzipan.</p>
 </div>
 <div class="columns four">
 <h4>Faworki powder</h4>
 <p>Marshmallow wypas cookie caramels dessert cupcake pastry
bear claw. Candy marshmallow ice cream candy gummi bears icing
liquorice apple pie.</p>
 </div>
</div>

11. In <aside>, I would like to add a heading, an image, and some text content, as
follows:

<aside class="four columns">
<h4>Aside</h4>
<figure>

</figure>
<blockquote><p>Pie gummi bears chocolate cake topping. Sugar plum
oat cake candy pie marshmallow sweet roll ice cream marshmallow.
Bear claw biscuit candy canes pastry jujubes sweet carrot cake
wafer. Liquorice macaroon cupcake jujubes. Jujubes marshmallow
soufflé tiramisu bonbon donut.<cite>Founder</cite></p></
blockquote>
</aside>

What just happened?
We have just constructed the content markup for the About Us page. As we have mentioned
earlier, the content within this page is merely an example. You don't have to strictly follow
the steps above. Feel free to explore by adding different content.

A Responsive Website for Business with Foundation Framework

[252]

In this case, the following screenshot shows how this page looks in the browser:

Chapter 6

[253]

And the following screenshot shows how it looks in a 360 pixel viewport size:

The Contact Us page
The Contact Us page is the last page of our website. The Contact Us page will have two
columns; the first column will contain a map image, a phone number, an e-mail address, and
a little dummy text for complement, while the second column will contain the contact form.

Note that the content on this page is only an example. You don't have to strictly follow the
instructions in the following steps; feel free to add anything you want to this page.

A Responsive Website for Business with Foundation Framework

[254]

Time for action – structuring the Contact Us page content
In the following steps, we are going to create and customize the Contact Us page:

1. Let's open the contact.html file in the code editor.

2. Rename the document title within the <title> tag to Contact Us or something
similar.

3. Similar to the other pages, create the <div> element to contain the
content, as follows:
<div class="row content page contact">
 <div class="twelve columns">
 </div>
</div>

4. Add the breadcrumb navigation under the twelve columns class, as
follows:
<div class="row content page contact">
 <div class="twelve columns">
 <ul class="breadcrumbs">
 Home
 <li class="current">Contact Us

 </div>
</div>

5. Add the page's introduction section below the breadcrumb navigation, as
follows:
<section class="row page intro">
 <div class="tweleve columns">
 <h2>Contact Us</h2>
 <h4 class="subheader">Tart croissant jelly beans oat cake
donut.</h4>
 <p>Lollipop applicake biscuit. Macaroon jelly beans caramels
faworkioat cake marshmallow pudding. Candy pastry oat cake
marzipan pie sugar plum donut.</p>
 </div>
</section>

6. Create a new row below the introductory section that we added in step 5 to
contain the columns:
<div class="row"></div>

Chapter 6

[255]

7. This row will have two columns, as follows:
<div class="row">
 <div class="columns seven"></div>
 <div class="columns five"></div>
</div>

8. As we mentioned in the preceding steps, the first column will contain some text, a
map, a phone number, and an e-mail address. So, let's add the following markup
under the first column, column number 7:
<figure>

</figure>
<h3>Get in Touch</h3>
<p>Macaroon jelly beans caramels faworki oat cake marshmallow
pudding. Candy pastry oat cake marzipan pie sugar plum</p>
<div class="panel">
 <div class="row">
 <div class="columns eight intro">
 <p>Toffee sweet roll wypas jelly chocolate cake. Lemon drops
jelly-o pudding fruitcake gingerbread sesame snaps tootsie roll
lemon drops gingerbread.</p>
 </div>
 <div class="columns four">
 <ul class="call-us">
 <li class="phone">(000) 123-45678
 <li class="email">johndoe@packt.com

 </div>
 </div>
</div>

9. In the second column, we will have the contact form. The Foundation
framework provides a set of reusable classes to build forms. For the details, you can
head over to this page: http://foundation.zurb.com/docs/forms.php.

In this case, I would like to include the name, e-mail (using the HTML5 email input
type), Twitter, URL (using the HTML5 url input type), and message field in the form.

So let's add the following markup in the second column:

<form method="get">
 <fieldset>
 <legend>Contact Form</legend>
 <div class="row">
 <div class="twelve columns">

http://foundation.zurb.com/docs/forms.php

A Responsive Website for Business with Foundation Framework

[256]

 <label>Name</label>
 <input type="text" name="name">
 <label>Email</label>
 <input type="email" name="email">
 <label>Twitter</label>
 <div class="row collapse">
 <div class="two mobile-one columns">
 @
 </div>
 <div class="ten mobile-three columns">
 <input type="text" placeholder="youremail">
 </div>
 </div>
 <label>URL</label>
 <div class="row collapse">
 <div class="nine mobile-three columns">
 <input type="url" placeholder="yourwebsite">
 </div>
 <div class="three mobile-one columns">
 .com
 </div>
 </div>
 </div>
 </div>
 <label>Message</label>
 <textarea name="message"></textarea>
 </fieldset>
 <button class="button large radius" type="submit">Submit</
button>
</form>

What just happened?
We have just constructed the content for the Contact Us page. In this page we have included
our (imaginary) e-mail address and phone number, as well as the contact form for users to
contact us online.

Chapter 6

[257]

The following screenshot shows how this page looks in the browser at this stage:

A Responsive Website for Business with Foundation Framework

[258]

And this next screenshot shows how it looks when we view it in a 360 pixel viewport size:

Chapter 6

[259]

Summary
We have come to the end of this chapter. To sum up, here are the things that we have
covered in this chapter:

 � Creating a Foundation framework project through a command line

 � Setting up a project with config.rb

 � Creating new SCSS style sheets for defining customized styles for the website

 � Compiling SCSS to CSS through a command line

 � Constructing the document and the content markup with the Foundation framework
responsive grid and some new HTML5 elements

In the next chapter, we are going to complete the project. We are going to add the styles for
the website with some CSS3 properties to make the website look more appealing, and we
will compose the styles with Sass, SCSS, and Compass.

7
Extending Foundation

In this chapter, our aim will be to enhance the look of our responsive business
website even further and for that we will be working with stylesheets. The
stylesheets in this project are saved in .scss format, which you can find in the
sass folder under the working directory.

Furthermore, if you have followed the previous chapter where we set up the
project, you should already have these SCSS stylesheets: _config.scss,
base.scss, and styles.scss.

Similar to the previous chapter, we will start off by adding styles to the header
and the footer sections, and then proceed with each page specifically.

Here is what we are going to cover in this chapter:

 � Customizing Foundation framework variables

 � Using Sass color functions to extend color schemes

 � Using Compass mixins for adding custom font families

 � Using Compass helper functions to generate a CSS sprite image

 � Using CSS3 structural selectors

 � Adjusting styles for different viewport sizees

Without further ado, let's just get started.

Extending Foundation

[262]

Monitoring the project
The first thing before we start working on the Compass project, which in this case is bundled
with a Foundation project, is to monitor the project so that every time we make changes to
the assets in the working directory, including the images or in the stylesheets, Compass will
automatically process the proper output for those changes.

In the previous chapter, we ran the compass watch command to monitor our project's
changes. If, by any chance, you have stopped the operation or closed your Terminal (OS X
or Linux) or Command Prompt (Windows), you should perform the steps mentioned in the
following section before continuing this chapter further—just to make sure that Compass will
be monitoring our project.

Time for action – running the command line to monitor
the project

Perform the following steps for running the command line to monitor the project:

1. Open Terminal (OS X or Linux) or Command Prompt (Windows).

2. Navigate to the working directory with the cd command.

3. Then, run the compass watch command line in Terminal or Command Prompt.

Wait for a few moments until it returns with the following notification, which
indicates that the command has run successfully:

Chapter 7

[263]

What just happened?
We have just run a command line in Terminal or Command Prompt to monitor our working
directory for changes in the assets. Now, let's say we add some random stuff to styles.scss
and save it. You will find that the Terminal (OS X) or Command Prompt (Windows) detects the
changes and compiles them into regular CSS, as shown in the following screenshot:

To stop the watch operation, simply hit Ctrl + C.

An introduction to Sass color functions
Similar to LESS, Sass also provides a set of functions for altering colors and the following
table lists some of the color functions that we will frequently use in this project:

Functions Description Example
lighten($color,
$amount)

Turns a color lighter by the
specified amount

$black: #000000
lighten($black, 10%);

In this example we lighten $black
by 10%

Extending Foundation

[264]

Functions Description Example
darken($color,
$amount)

Turns a color darker by the
specified amount

$white: #ffffff;
darken($white, 10%)

In this example we darken $white
by 10%

rgb($color,
$alpha)

Turns the color format into RGB
and adds Alpha channel

$black: #000000;
rgb($black, .5);

In this example, we change $black
into RGB format and lower the color
density to 50%

For more details about the other color functions, you can read the
official documentation at http://sass-lang.com/docs/
yardoc/Sass/Script/Functions.html.

In addition, you can try SassMe (http://sassme.arc90.com/).
This tool visualizes and generates Sass color functions in real time
with GUI so that you can immediately see what color it would be
when you lighten or darken, saturate or desaturate a color.

Sass variables
In Chapter 1, Responsive Web Design, we had a glimpse of Sass variables. In Sass, a variable
is declared as follows:

$variable-name: value;

The Foundation framework provides a set of variables, which we have copied into a new
Scss stylesheet named _config.scss (in the previous chapter). In this section, we will
customize some of these variables that we expect to apply often throughout the stylesheet.

By default, all the variables in _config.scss are commented out by the addition of a
double slash at the beginning of the line as follows:

// $em-base: 16px;

// $body-bg: #fff;
// $body-font-color: #222;

Thus, the variables are simply ignored. To enable it, simply remove the double slash as follows:

$em-base: 16px;
$body-bg: #fff;
$body-font-color: #222;

Chapter 7

[265]

Time for action – customizing the Foundation framework Sass
variables for colors

Perform the following steps to customize the Foundation framework Saas variables
for colors:

1. Open _config.scss in the code editor.

2. Since version 4, Foundation has standardized the unit measurement to the em unit.
It has introduced a new function, emCalc(), for this reason. This function is used to
convert the px unit to the em unit.
margin-top: emCalc(30px);

Given the preceding example, it will return to the following when it is compiled
into CSS:
margin-top: 1.875em;

As we discussed in Chapter 3, Enhancing the Portfolio Website with CSS3, the em unit
is relative to the font size. In Foundation 4, the base font size is specified with the
$em-base variable. So let's first uncomment this variable.
$em-base: 16px;

3. Choosing a color scheme is more of an art and in some cases it could take days or
weeks doing the research to find the right one. But, in this project, we can simply
use the following tools as a shortcut:

 � Adobe Kuler (http://kuler.adobe.com/)

 � Color Scheme Designer (http://colorschemedesigner.com/)

 � Photocopa (http://www.colourlovers.com/photocopa)

 � Colllor (http://colllor.com/)

Here are the colors for our website: #00a1d9, #f9f8f4, #c2bdb7, #a8bb26,
and #473016.

Extending Foundation

[266]

Let's assign these colors to the variables and start off with the website background
color, which is declared with the $body-bg variable. Uncomment the $body-bg
variable and change the value to #f9f8f4—it is the lightest color in the color scheme.
$body-bg: #f9f8f4;

4. Add the #473016 color to $body-font-color, which is set for the text color.
$body-font-color: #473016;

5. We will use #00a1d9 as our primary color. Let's add it to the $primary-color
variable as follows:
$primary-color: #00a1d9;

6. Add the #c2bdb7 color as the secondary color.
$secondary-color: #c2bdb7;

7. Add #a8bb26 to $success-color.
$success-color: #a8bb26;

Applying color is a matter of art, thus you don't have to follow the preceding steps
rigidly. If you have your own color scheme, you can freely assign it to those variables.

8. Lastly, we will also need black and white colors. Let's create two new variables,
$black and $white, as follows:
$black: #000;
$white: #fff;

9. Then, create a new variable named $grey for storing the gray color. The gray color
is a mixture of black and white. We are able to get a gray color by lightening the
black color, as follows:
$grey: lighten($black, 50%);

Alternatively, we can also set the color by darkening the white color as follows:
$grey: darken($white, 50%);.

10. We will also need dark and light gray colors. So, let's create two new variables for
these colors, as follows:
$dark-grey: lighten($black, 30%);
$light-grey: darken($white, 10%);

11. The row's width is declared with the $row-width variable, and it is set to 61.25em,
by default. If the base font size is 16 px, 61.25em is equal to 1000px. Depending
on several factors, 1000 px might be a fit, but it is too wide for our case. So, we will
shorten the width a bit to 980 px. Given 16px as the base font size, 980 px is equal
to 61.250em.
$row-width: 61.25em;

Chapter 7

[267]

12. The column gutter is the whitespace between columns. In the Foundation
framework, the gutter is set to 1.875em, which is equal to 30 px. That means each
column has 15 px for both the right and the left padding. In this project, we will set it
to 50px in order for the website to look more spacious as the whitespace between
the columns is wider.

So, let's uncomment the $column-gutter variable and change the value to
3.125em, as follows:
$column-gutter: 3.125em;

What just happened?
We have just customized a few of the variables from the Foundation framework, which
include the row's width, the column gutter, and the assigned color scheme. We also created
some new variables to store the colors for our website.

Custom font families
We will add a few custom font families with the @font-face rule to make our website look
more appealing, and this time we are going to use the following fonts:

 � ChunkFive (http://www.fontsquirrel.com/fonts/ChunkFive)

 � Open Sans (http://www.fontsquirrel.com/fonts/open-sans)

 � Foundation Icon Fonts (http://www.zurb.com/playground/
foundation-icons)

But, before we jump into adding these fonts, let's first take a look at how we add
@font-face with Compass.

An introduction to the Compass font face mixin
Compass provides a mixin to add @font-face in more efficient way. Let's say we want to
add the "Foo" font family. Assuming that the necessary font files, including .eot, .ttf,
.svg, and .woff are ready, we can simply include the font in the SCSS stylesheet with a
Compass mixin as follows:

@include font-face("FontName", font-files("font-name.ttf", "font-name.
otf", "font-name.woff"), "font-name.eot", normal);

Extending Foundation

[268]

When we compile this into a regular CSS, it will turn into a CSS3 standard format, as follows.

@font-face {
 font-family: "FontName"; src: url('fonts/font-name.eot');
 src: url('fonts/font-name.eot?#iefix') format('eot'),
 url('fonts/font-name.ttf') format('truetype'),
 url('fonts/font-name.otf') format('opentype'),
 url('fonts/font-name.woff') format('woff'); font-weight: normal;
}

You can dig into this mixin further in the official documentation
(http://compass-style.org/reference/compass/
css3/font_face/) or else the official documentation from W3C
to take a look on the standard CSS3 @font-face rule (http://
www.w3.org/TR/css3-fonts/#the-font-face-rule).

Time for action – adding custom font families with the
Compass mixin

For adding custom font families with the Compass mixin, perform the following steps:

1. Let's go to the working directory. Create a new folder named fonts under the css
directory, as this is the default font folder where Compass locates the font files.

2. Go to http://www.fontsquirrel.com/fonts/ChunkFive. There are a few
tabs on that page. Go to the @font-face kit tab and click on the Download button
to grab ChunkFive fonts with the @font-face rules.

3. Go to http://www.fontsquirrel.com/fonts/open-sans and download the
Open Sans @font-face kit.

4. Next, go to http://www.zurb.com/playground/foundation-icons and
download the fonts under General Enclosed Set.

5. Extract all these fonts and place the font files under the fonts folder, which we
created in step 1.

6. We will add new font families with the @font-face rules. So, let's open styles.
scss in Sublime Text.

7. Then, add the following import rule so that we are able to use Compass CSS3 mixins,
including one that adds @font-face:
@import "compass/css3";

Chapter 7

[269]

8. Add those font families with the Font Face mixin from Compass that we have
discussed in the preceding steps, as follows:
@include font-face("ChunkFive", font-files("Chunkfive-webfont.
ttf", "Chunkfive-webfont.otf", "Chunkfive-webfont.woff"),
"Chunkfive-webfont.eot", normal);
@include font-face("OpenSans", font-files("OpenSans-Regular-
webfont.ttf", "OpenSans-Regular-webfont.otf", "OpenSans-Regular-
webfont.woff"), "OpenSans-Regular-webfont.eot", normal);
@include font-face("FoundationIcons", font-files("foundation-
icons.ttf", "foundation-icons.otf", "foundation-icons.woff"),
"foundation-icons.eot", normal);

9. We will add these new font families in the variables, so let's go to _config.scss.

10. We will use the Open Sans font family for the headings. Let's uncomment the
$headerFontFamily variable and set the value to OpenSans, as follows:
$header-font-family: "OpenSans", Arial, sans-serif;

11. As the Open Sans font family, which we have just added in step 8, is the regular
style (in other words, it does not include the bold styles), we will set the font weight
to normal.
$header-font-weight: normal;

For more details about the issue on specifying bold styles on a font
that actually does not come with bold style, you can read the article
Say no to Faux Bold (http://alistapart.com/article/
say-no-to-faux-bold) from A List Apart.

12. We then set the heading's color to dark gray. So, set the $headerFontColor
variable's value to $dark-grey, as follows:
$header-font-color: $dark-grey;

13. Let's create a new variable named $logo-font-family to define the font for
the website logo. In this project, we will use ChunkFive as the font for the logo, as
follows:
$logo-font-family: "ChunkFive", Arial, sans-serif;

14. We will use Foundation Icon Fonts to display several icons in our website.
Let's create a new variable named $icon-font-family and set the value to
FoundationIcons.

$icon-font-family: "FoundationIcons";

Extending Foundation

[270]

What just happened?
We have just added three new font families in styles.scss with a Compass mixin. Since
we have run the watch command to monitor the SCSS stylesheets within our working
directory, the changes within styles.scss will automatically be compiled into standard
CSS syntax.

In our case, the font face that we have just added in the preceding steps will turn into
the following:

@font-face {
 font-family: "ChunkFive";
 src: url('fonts/Chunkfive-webfont.eot');
 src: url('fonts/Chunkfive-webfont.eot?#iefix') format('eot'),
 url('fonts/Chunkfive-webfont.ttf') format('truetype'),
 url('fonts/Chunkfive-webfont.otf') format('opentype'),
 url('fonts/Chunkfive-webfont.woff') format('woff');
 font-weight: normal;
}
@font-face {
 font-family: "OpenSans";
 src: url('fonts/OpenSans-Regular-webfont.eot');
 src: url('fonts/OpenSans-Regular-webfont.eot?#iefix')
 format('eot'),
 url('fonts/OpenSans-Regular-webfont.ttf') format('truetype'),
 url('fonts/OpenSans-Regular-webfont.otf') format('opentype'),
 url('fonts/OpenSans-Regular-webfont.woff') format('woff');
 font-weight: normal;
}
@font-face {
 font-family: "FoundationIcons";
 src: url('fonts/foundation-icons.eot');
 src: url('fonts/foundation-icons.eot?#iefix') format('eot'),
 url('fonts/foundation-icons.ttf') format('truetype'),
 url('fonts/foundation-icons.otf') format('opentype'),
 url('fonts/foundation-icons.woff') format('woff');
 font-weight: normal;
}

This compiled CSS from styles.scss can be found under the css folder, saved within a
CSS stylesheet named styles.css.

Furthermore, we have also assigned these new font families in the variables. Later when we
want to change the font families, we can simply change the values within those variables.

For instance, if you want to change the font family for the headings, you can simply change
the value within the $header-font-family variable.

Chapter 7

[271]

The website navigation
Now, we will start styling the website navigation. There are several elements nested under
the navigation: the website logo, menu navigation, and search form. Similar to our previous
project with LESS, we will nest the style rules.

In addition, the following screenshot shows how the header section looks at the moment:

For more details on nested rules in Sass, you can head over
to http://sass-lang.com/docs/yardoc/file.
SASS_REFERENCE.html#nested_rules.

Time for action – styling the header section
For styling the header section, perform the following steps:

1. The Foundation framework provides a set of variables to control the component's
styles. So, we will go to styles.scss and _config.scss back and forth to make
the style adjustments.

First, we will change the navigation's background color. To do so, go to _config.
scss and find the $topbar-bg variable.

2. Set the $topbar-bg value to our primary color as follows:
$topbar-bg: $primary-color;

3. We will also set the background color of the menu when it is in hover and active
state by using the primary color as well. At this point, the color is set to #333, which
doesn't fit well in our case.

Extending Foundation

[272]

4. To change the background color, uncomment $topbar-dropdown-bg in _config.
scss. We will make the background color lighter by using the Sass color function
as follows:
$topbar-dropdown-bg: lighten($primary-color, 5%);

It is only a matter of preference to make the background color
lighter by using the lighten($primary-color, 5%);
function. If you prefer and you think that it would be better,
you can darken the color with the darken() function, or even
use the other color from the color scheme.

5. As mentioned, we will use the ChunkFive font family for the logo, which we have
declared in the $logo-font-family variable.

Go to styles.scss and set the font family for the website logo, as follows:

.top-bar {
 .name h1 {
 font-family: $logo-font-family;
 }
}

6. This is only a matter of preference. In this project, I would like to transform the first
letter, in the logo, into the capital letter, as follows:

.top-bar {
 .name h1 {
 font-family: $logo-font-family;
 text-transform: uppercase;
 }
}

 What just happened?
We have just added the styles for the website navigation, including the elements that are
nested under it such as the website logo, the search form, and the menu. The following
screenshot shows how our website header appears at this stage:

Chapter 7

[273]

An introduction to Compass Sprite Helpers
Creating sprite images and the CSS that goes with them can be tedious. But, with Compass
Sprite it becomes much simpler. Compass Sprite comes with a set of functions and we have
sorted out these functions in the following table:

Functions Description Example
@import "<map>/*.
png";

Sprites images with the .png
extension under <map>.
Replaces map with the folder
where you save the images.

Note that this folder should
be inside the images folder
or as specified in config.
rb.

@import "icons/*.png"

This function will sprite the image
under the folder images/icons
into a single image file.

Note that the images folder
is relative to the images_dir
property in config.rb. So,
given the preceding example, it
will point to images/icons.

<map>-sprite-
height(image-name);

Retrieves image's height from
image-name.

Similarly, replaces <map>
with the folder name.

icons-sprite-
height(facebook)

This example will retrieve height of
the image named facebook.

<map>-sprite-
width(image-name)

Retrieves image's width from
image-name.

icons-sprite-
height(dribbble).

This will retrieve width of the
image named dribble.

@include all-<map>-
sprites;

Includes all Image Sprite
styles, including the
background image and the
background position.

@include all-icons-
sprites;

This is still related to the previous
example. It will generate the
styles for background image and
position depending on the images
stored under, in this example, the
images/icons folder.

@include <map>-
sprite(image-name);

Includes Image Sprite styles
only for image-name.

li {
@include icons-sprite-
(facebook)
}

This will generate background
image and position for the image
named facebook.

Extending Foundation

[274]

The website's footer section
Our footer section is rather simple like in our previous projects. We have link menus, social
media links, and copyright statements. At this stage, here is how the footer sections appear:

Let's get started.

Time for action – adding styles for the footer section
For adding styles for the footer section, perform the following steps:

1. Let's go to styles.scss in the code editor.

2. The footer section is defined with HTML5 <footer> element that is assigned with
the footer class. So, let's add .footer, where we will add the style for the footer
section and the nested elements.
.footer {
}

3. First, let's add some whitespaces between the footer and the upper section using
margin-top and the emCalc() function, as follows:
.footer {
 margin-top: emCalc(25px);
}

4. By default, the link uses the color from the $primary-color variable—as you
can see from the preceding screenshot. In this case, we will change it to use
the $body-font-color variable so that it will look more unified with the
background color.
.footer {
 margin-top: emCalc(25px);

 a {
 color: $body-font-color;
 }
}

5. In this step, we will perform a few style adjustments to the links menu, including the
whitespace between each of the links and the hover styles.

Chapter 7

[275]

The links menu is wrapped using a <div> element that is assigned with the
footnav class, so we will nest the styles under .footnav, as follows:
.footnav {
 ul {
 margin: emCalc(5px) 0 0 0;
 }
 li {
 margin-left: 0;
 margin-right: emCalc(15px);
 }
 a {
 &:hover {
 text-decoration: underline;
 }
 }
}

6. We will add the social media icons using the Compass Sprite Helper. Let's first add
the following @import rule:
@import "social/*.png";

The @import rule will grab the .png images inside the social folder and
concatenate them into one file. After adding it and saving the stylesheet, you should
find a newly generated .png file under the working directory. In my case, the file is
named social-sfa0ec548ec.png, as shown in the following screenshot:

Extending Foundation

[276]

7. We will retrieve the social media icon's height and width using <map>-sprite-
height(image-name) and <map>-sprite-width(image-name). Then, we
store the value in variables as follows:
.social {

 $height: social-sprite-height(facebook);
 $width: social-sprite-width(facebook);
}

These variables are defined and nested within .social, thus their values can only
be inherited locally under .social.

8. We will set the height and width that we have just retrieved in step 7 to an <a>
element. On top of that we need to set the <a> element to inline-block, in
order for the <a> element to accept the value within the height and width
properties:
 .social {
 $height: social-sprite-height(facebook);
 $width: social-sprite-width(facebook);
 li {
 a {
 display: inline-block;
 height: $height;
 width: $width;
 }
 }
}

9. We hide the text inside the <a> element, using CSS Image Replacement.
.social {
 $height: social-sprite-height(facebook);
 $width: social-sprite-width(facebook);
 li {
 a {
 display: inline-block;
 height: $height;
 width: $width;
 /*css image replacement*/
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;
 }
 }
}

Chapter 7

[277]

10. We add the social media icon as the background image including the icon for the
hover state using the social-sprite() Compass mixin that we discussed earlier
in this chapter, as follows:
.social {
 $height: social-sprite-height(facebook);
 $width: social-sprite-width(facebook);
 li {
 a {
 display: inline-block;
 height: $height;
 width: $width;
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;
 }
 &.facebook a {
 @include social-sprite(facebook);
 &:hover {
 @include social-sprite(facebook-hover);
 }
 }
 &.twitter a {
 @include social-sprite(twitter);
 &:hover {
 @include social-sprite(twitter-hover);
 }
 }
 &.linkedin a {
 @include social-sprite(linkedin);
 &:hover {
 @include social-sprite(linkedin-hover);
 }
 }
 &.dribbble a {
 @include social-sprite(dribbble);
 &:hover {
 @include social-sprite(dribbble-hover);
 }
 }
 }
}

Extending Foundation

[278]

11. Lastly, let's align these icons to the right, as follows:
.social {
 $height: social-sprite-height(facebook);
 $width: social-sprite-width(facebook);
 ul {
 float: right;
 }
 li {
 /*existing icons*/
 }
}

What just happened?
We have added the styles for the footer section. We have also added the social media icons
using the Compass mixin, and here is how our footer section appears at this stage:

In addition, the following screenshot shows how the icons change when we hover
over them:

An introduction to CSS3 structural selectors
CSS3 introduced the nth-child selector, which allows the selecting of child elements
within their order without having to add an extra class to the elements specified. In this
example, we have added three nested paragraphs inside a <div> element as follows:

<div>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
 <p>Paragraph 3</p>
</div>

Chapter 7

[279]

Now, let's say we want to target the second paragraph element, so we can write in the
stylesheet as follows:

p:nth-child(2) {
 background-color: tomato;
 font-weight: bold;
}

The result will be as shown in the following screenshot:

However, the HTML should be structured subsequently in order that this selector works
properly, as shown in the preceding example. In addition, the child element cannot be
preceded with other type of element.

<div>
 <div>This is a div</div>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
 <p>Paragraph 3</p>
</div>

Otherwise, this selector won't select the proper element.

To solve this issue, CSS3 introduced a new pseudo class, nth-of-type. This pseudo class
will select and count within the order specified—only to the matching elements rather than
all the elements of the common parent.

Extending Foundation

[280]

Let's say, we have the same HTML structure as in the preceding example. We have a <div>
element followed by three paragraphs. This time, we replace the :nth-child() method
with the :nth-of-type() method, as follows:

p:nth-of-type(2) {
 font-weight: bold;
 background-color: tomato;
}

Now, it should target the right element, which is the second paragraph:

For more details on the nth-of-type selector, you can visit the
following references:

 � CSS3 pseudo-class: nth-of-type (http://reference.
sitepoint.com/css/pseudoclass-nthoftype)

 � The Difference Between :nth-child and :nth-of-type
(http://css-tricks.com/the-difference-
between-nth-child-and-nth-of-type/)

 � Combining 'nth-of-type()' With Negation (http://
meyerweb.com/eric/thoughts/2012/06/12/
combining-nth-of-type-with-negation/)

Additionally, there are several tools to test how this selector works
on the web, and one of my favorite is from CSS-tricks (http://
css-tricks.com/examples/nth-child-tester/).

Chapter 7

[281]

The homepage
We will start styling the homepage. Unlike in our previous projects, this time, we have a
content or image slider in the homepage, which is built using the Foundation framework
jQuery plugin, Orbit (http://www.zurb.com/playground/orbit-jquery-image-
slider). The following screenshot shows how our homepage looks, at the moment:

Extending Foundation

[282]

Time for action – adding styles to the homepage
For adding styles to the homepage, perform the following steps:

1. Open styles.scss in the code editor.

2. Before we go into the specific styles for the homepage, we will first add the styles
for the content in general. In other words, we will add styles for the elements that
are shared with the other pages in our website.

These elements include the button and the introductory section. Each of the pages
in the website has an introductory section that—in the real world—describes what
the page is about.

We will start off by adding the styles for the button. In this project, I want the
website to look cleaner and less beveled. Thus, I would like to remove the default
style of inner shadow and the border from the button, as follows.
.button {
 border: 0;
 @include box-shadow(0 0 0 rgba($white, 0) inset);
}

Removing the button's default style is only a matter of preference. If you like the
original button's style, you can simply skip this step. In addition, the following
screenshot shows how the button looks before and after adding the preceding
style rules.

3. We first set the content's background color to white and add some whitespace
between the navigation and the content section with margin-top. Add the style
rule below .button as follows:
.button {
 border: 0;
 @include box-shadow(0 0 0 rgba($white, 0) inset);
}
.content {
 margin-top: emCalc(30px);
 background-color: $white;
}

Chapter 7

[283]

4. We will add the style for the introductory section.

First, we set the background color with the color in the $secondary-color
variable, and specify the padding and margin to provide some whitespace inside
and outside of the introductory section.
.content {
margin-top: emCalc(30px);

 background-color: $white;
 .intro {
 padding: emCalc(20px) 0;
 background-color: $secondary-color;
 color: $white;
 margin-bottom: emCalc(20px);
 }

5. The introductory section could also contain buttons. We will change the background
color to differentiate it with the general button—that is outside the introductory
section.

In this case, we will use the $success-color variable for the button's background
color including when it is in the hover state, as follows:
.content {
 background-color: $white;
 .intro {
 padding: 20px 0;
 background-color: $secondary-color;
 color: $white;
 margin-bottom: 20px;
 .button {
 margin-top: emCalc(20px);
 background-color: $success-color;
 width: 100%;
 &:hover {
 background-color: lighten($success-color, 10%);
 }
 }
 }
}

Extending Foundation

[284]

Our homepage has an introductory section and the following screenshot shows how
it appears after adding the preceding style rules:

6. Furthermore, each page may consist of several sections that are introduced with
a heading. In each page, this heading will share similar styles. So, let's add the
following two style rules for the title.
// style for title
.title-section {
 margin-bottom: emCalc(14px);
 padding-bottom: emCalc(14px);
 border-bottom: emCalc(3px) solid $light-grey;
}
.title-section-secondary {
 margin-bottom: emCalc(14px);
 padding-bottom: emCalc(14px);
 border-bottom: emCalc(3px) solid lighten
 ($body-font-color, 50%);
}

It is worth noting that these two classes, title-section and title-section-
secondary, are not assigned in the HTML markup. Later, we will apply this class to
the proper heading using Selector Inheritance.

For more details about Sass Selector Inheritance, you can
visit http://nex-3.com/posts/99-selector-
inheritance-the-easy-way-introducing-extend.

7. The Foundation framework automatically generates the classes for the slider, and by
default it wraps the slider with the .orbit-container class.

Let's add the class selector below the .content class, as follows:

.content {
/*the exisitng content's styles*/
}
.orbit-container {
}

Chapter 7

[285]

8. We add gradient color as the background using the Compass background mixin.
.orbit-container {
 @include background(radial-gradient(lighten($body-bg, 6%),
 darken($body-bg, 3%)));
}

For further details on the Compass background mixin, you
can visit http://compass-style.org/reference/
compass/css3/images/.

9. Then, we add a background image to each slide using the Compass image-url()
function and target the slide with the new CSS3 selector :nth-of-type. We will
also provide some whitespace inside the slide with padding, at the same time.
.orbit-container {
 @include background(radial-gradient(lighten($body-bg, 6%),
 darken($body-bg, 3%)));
 li {
 padding: emCalc(20px) emCalc(40px);
 &:nth-child(1) {
 background: image-url('desktop.png')
 no-repeat left bottom;
 }
 &:nth-child(2) {
 background: image-url('editor.png')
 no-repeat left bottom;
 }
 &:nth-child(3) {
 background: image-url('macbook.png')
 no-repeat left bottom;
 }
 &:nth-child(4) {
 background: image-url('panel.png')
 no-repeat left bottom;
 }
 }

http://compass-style.org/reference/compass/css3/images/
http://compass-style.org/reference/compass/css3/images/
http://compass-style.org/reference/compass/css3/images/

Extending Foundation

[286]

10. We will also add a few decorative styles to the heading and the paragraph inside the
slider. Nest the following styles under the .orbit-container class:
.orbit-container {
/*existing styles*/
 h3 {
 padding: emCalc(20px);
 background-color: rgba($white, .3);
 + p {
 padding: emCalc(20px);
 background-color: rgba($white, .5);
 position: relative;
 bottom: emCalc(20px);
 }
 }
}

In these styles, you should find that we target the p element preceded
with a + sign. This is an Adjacent Selector, where we select the
element next to the previous element. You can read more about this
type of selector at http://reference.sitepoint.com/css/
adjacentsiblingselector.

11. The slider has a navigation to move the slide to the right and left. By default, this
navigation is visible. But, in this case, we want it to be initially hidden and be visible
only when we hover over the slider.

To do so, simply add the following styles, below the .orbit-container class:
.orbit-container {
 a.orbit-prev, a.orbit-next {
 @include opacity(0);
 @include single-transition(opacity, 400ms);
 }
 &:hover {
 a.orbit-prev, .orbit-next {
 @include opacity(1);
 }
 }
}

Chapter 7

[287]

We have done styling for the content slider, and here is how it appears at this stage:

12. We will start adding the styles for the content that is solely added in the homepage.
We will add the styles under the .home class so that the styles will specifically be
applied for the homepage.
.home {
}

13. On the homepage, we have a section that contains the (imaginary) features of
our service—that we offer in the website. We have displayed the features in
four columns side by side, and each column has a title and some paragraphs for
description. The idea is we will add an icon before the title with the Foundation
Icons font.

First, we apply styles for the title in the columns as follows:
.home {
 .feature {
 h4 {
 padding-left: emCalc(28px);
 position: relative;
 @extend .title-section-secondary;
 }
 }
}

Extending Foundation

[288]

Each column is assigned with the .feature class in the HTML markup. That is why,
in the preceding code, you can see that we nested the styles rules for the title under
the .feature class selector.

14. We will add the icon through the :before pseudo-element. Thus, we first set
the font-family to FoundationIcons and add a few decorative styles to the
:before pseudo element, as follows:
h4:before {
 content: "";
 display: inline-block;
 padding: emCalc(5px) 0;
 width: emCalc(28px);
 height: emCalc(28px);
 position: absolute;
 left: 0;
 bottom: emCalc(5px);
 font-family: $icon-font-family;
 font-size: emCalc(22px);
}

15. We add the icon to each of the titles in the column by using the :nth-of-type
selector:
.home {
 .feature {
 /*some existing styles*/
 &:nth-of-type(1) h4:before {
 content:"\f000";
 }
 &:nth-of-type(2) h4:before {
 content:"\f00a";
 }
 &:nth-of-type(3) h4:before {
 content:"\f00e";
 }
 &:nth-of-type(4) h4:before {
 content:"\f01e";
 }
 }
}

Chapter 7

[289]

We have finished the styling for the features section, and the following screenshot
shows how it appears in the browser after adding the preceding style rules:

16. Lastly, if you take a look at the bottom of the content, you will see that the
whitespace is narrower compared to one at the right and left, as shown in the
following screenshot:

This makes the content wrapper (in the homepage) look imbalanced. So, let's add
padding to the .home class to give it more whitespace, as follows:

.home {
 padding-bottom: emCalc(25px);
/*some existing styles from the previous step*/
}

Extending Foundation

[290]

What just happened?
We have just added styles for the homepage content that include ones for the content slider,
the introductory section, and the service features section. The following screenshot shows
how the homepage appears after completing the preceding steps:

Chapter 7

[291]

Have a go hero
In the preceding steps, we added styles to some specific elements in the homepage by using
one of the CSS3 structural selectors. Take a look at the following HTML structure:

<div>
 <p>Paragraph 1st</p>

 List 1st
 List 2nd
 List 3rd

 <div>div 1st</div>
 <p>Paragraph 2nd</p>
 <div>div 2nd</div>
 <p>Paragraph 3rd</p>
 <p>Paragraph 4th</p>
 <p>Paragraph 5th</p>
 <div>div 3nd</div>
</div>

How do we target the first, third, and fifth paragraphs?

Extending Foundation

[292]

The Services page
Now we will work on the Our Services page. This page essentially lists the (imaginary)
services that we offer on the website. On this page, we have several elements, such as
the breadcrumb navigation, the introductory section, and the service list. The following
screenshot shows how this page looks, at the moment:

Chapter 7

[293]

Time for action – adding styles to the service page
There are several style adjustments that we are going to perform in the following steps for
this page. So, let's just get started.

1. Open styles.scss in the code editor.

2. This page, as well as the other pages in this website (excluding the homepage), have
a breadcrumb navigation. At this moment, it is present right at the top edge of the
page's content wrapper, as shown in the following screenshot:

3. Add the padding to the page wrapper to give it more whitespace at the top and the
bottom edge:
.page {
 padding: {
 top: emCalc(25px);
 bottom: emCalc(25px);
 }
}

4. We will assign a background color to the breadcrumb navigation and a border color
that's slightly darker from the background. Foundation provides the variable to
make these adjustments.

Go to _config.scss and uncomment the following variables:

 � $crumb-bg

 � $crumb-function-factor

 � $crumb-border-color

 � $crumb-font-color

 � $crumb-font-color-current

 � $crumb-font-color-unavailable

Extending Foundation

[294]

5. Then, set the value of those variables as follows:
$crumb-bg: lighten($light-grey, 5%);
$crumb-function-factor: 10%;
$crumb-border-color: darken($light-grey, $crumb-function-factor);
$crumb-font-color: $dark-grey;
$crumb-font-color-unavailable: $light-grey;

Here is how the breadcrumb navigation looks, after we made those changes.

6. The introductory section's styles that we added in the previous steps also affect the
one in the other pages, as it shares the same class name, intro. We will not do any
more style adjustment for the introductory section in this page. We will move on to
add the styles for the service list section.

We will add the icons to each list in the same way as we added the icons to the title
of the features section in the homepage. The only difference will be that the icons in
this page are much bigger.

Add the following style rules below the .page class, as follows:

.page {
/*existing page style rules from the preceding steps*/
}
.service-list {
 .service {
 position: relative;
 padding-left: emCalc(150px);
 &:before {
 content: "";
 display: inline-block;
 padding: emCalc(5px);
 position: absolute;
 left: emCalc(-2px);
 top: emCalc(-2px);
 font-family: $icon-font-family;
 color: lighten($secondary-color, 10%);
 font-size: emCalc(110px);
 }

Chapter 7

[295]

 a {
 font-weight: bold;
 color: $body-font-color;}
 h4 {
 padding-bottom: emCalc(20px);
 border-bottom: emCalc(3px) solid lighten
 ($secondary-color, 10%);
 }
 }
 .row:nth-child(1) {
 .service:nth-child(1):before {
 content: "\f021";
 }
 .service:nth-child(2):before {
 content: "\f022";
 }
 }
 .row:nth-child(2) {
 .service:nth-child(1):before {
 content: "\f026";
 }
 .service:nth-child(2):before {
 content: "\f028";
 }
 }
 .row:nth-child(3) {
 .service:nth-child(1):before {
 content: "\f009";
 }
 .service:nth-child(2):before {
 content: "\f00b";
 }
 }
 .row:nth-child(4) {
 .service:nth-child(1):before {
 content: "\f00f";
 }
 .service:nth-child(2):before {
 content: "\f010";
 }
 }
}

Extending Foundation

[296]

7. Lastly, this page has a panel section that—in the real world—could be used to drive
the visitors to visit the pricing page after they see the offer.

If you take a look at the panel section, you will see that the whitespace at the
bottom is wider than the one at the top and the left. This whitespace comes from
the paragraph's margin-bottom property.

However, we cannot simply remove it by setting it to 0, as we still need the margin
to give whitespace between the paragraphs—in case you add more than one.

So, we will restrict the selection by removing the margin-bottom property only in
the last paragraph using last-of-type. Since the other pages also have a panel
section, we will nest the style rules under the .page class, as follows:
.page {
/**existing styles from the preciding steps**/
 .panel {
 p:last-of-type {
 margin-bottom: 0;
 }
 }
}

8. We then set the text color in the paragraph to dark gray.
.page {
/**the existing styles from the preceding steps**/
 .panel {
 p:last-of-type {
 margin-bottom: 0;
 }
 }
 color: $dark-grey;
}

Chapter 7

[297]

9. We remove the margin bottom from the panel, as we have already added padding
bottom to the page content's wrapper. But, at the same time, we will provide more
whitespace above the panel section by using margin-top.
 .page {
/**the existing styles from the preceding steps**/
 .panel {
 p:last-of-type {
 margin-bottom: 0;
 }
 }
 color: $dark-grey;
 margin: {
 top: emCalc(25px);
 bottom: 0;
 }
}

10. Lastly, we set the width of the button to cover 100 percent of the parent's width,
as follows:

.page {
/**the existing styles from the preceding steps**/
 .panel {
 p:last-of-type {
 margin-bottom: 0;
 }
 }
 color: $dark-grey;
 margin: {
 top: emCalc(25px);
 bottom: 0;
 }
 .button {
 width: 100%;
 }
}

Extending Foundation

[298]

What just happened?
We have just added styles for the Service page's content, which includes several sections
such as the breadcrumb navigation, the service list, and the panel section. The following
screenshot shows how it appears after adding the style rules from the preceding steps:

Chapter 7

[299]

The Pricing page
Now we will work on the styles for the Pricing page where we place the pricing tables of our
(imaginary) services and we will also add a few lists of customer testimonial. Additionally,
this page also has breadcrumb navigation and an introductory section.

We've already specified the styles for these elements that also affect the ones in the other
pages. So, at this point, the breadcrumb navigation and the introductory section are already
well presented, as shown in the following screenshot:

Extending Foundation

[300]

The things that we are going to do in the following steps are adjust the styles of the pricing
tables and give the title—in the testimonial section—its styles. So, let's just get started.

Time for action – adding styles to the Pricing page
For adding styles to the Pricing page, perform the following steps:

1. Open styles.scss in the code editor.

2. The pricing tables are wrapped under the compare class. Let's add the class
selector.
.compare {}

3. We have three pricing tables in the page, and we will assign a different color
for each of the tables. The colors that we are going to use are as shown in the
following image:

We will first adjust the color in the pricing table, so let's select the pricing table in
the first column by using the nth-child property, as follows:

.compare {
 .columns:nth-child(1) .pricing-table {
 }
}

4. We will assign the color number #2a77b3 to the first pricing table. Let's create a
variable named $table-color to store the color.
.compare {
 .columns:nth-child(1) .pricing-table {
 $table-color: #2a77b3;
 }
}

The color in the $table-color variable will only be applied under
.columns:nth-child(1) .pricing-table.

Chapter 7

[301]

5. We set the border color of the table with the color in the $table-color variable,
as follows:
.columns:nth-child(1) .pricing-table {
 $tableColor: #2a77b3;
 border: 3px solid $table-color;
}

6. We also change the title's background color with the $table-color variable as
well. On top of that, we change the text color inside it to white, in order to make it
distinct from the background.
.columns:nth-child(1) .pricing-table {
 $table-color: #2a77b3;
 border: 3px solid $table-color;
 .title {
 background-color: $table-color;
 color: $white;
 }
}

7. We change the styles for the row that contains the price in the table.
.columns:nth-child(1) .pricing-table {
 $table-color: #2a77b3;
 border: 3px solid $table-color;
 .title {
 background-color: $table-color;
 color: $white;
 }
 .price {
 color: $table-color;
 background-color: lighten($table-color, 30%);
 font-weight: bold;
 }
}

8. We also change the styles of the row that contains a button, as follows:
 .columns:nth-child(1) .pricing-table {
 /*existing styles from previous steps*/
 .cta-button {
 background-color: lighten($table-color, 30%);
 }
 .button {
 background-color: $table-color;
 &:hover {
 background-color: lighten($table-color, 15%);
 }
 }
}

Extending Foundation

[302]

9. We have made some adjustments to the first table. After adding those styles, the
Pricing page turns out to be as follows:

10. We will also add similar styles for the other two tables. To do so, copy all the style
rules for the Pricing table in the first column, and change the nth-child number
and the color in $table-color, as follows:

.columns:nth-child(2) .pricing-table {
 $table-color: #95be60;
 border: 3px solid $table-color;
 .title {
 background-color: $table-color;
 color: $white;
 }
 .price {
 color: $table-color;
 background-color: lighten($table-color, 30%);
 font-weight: bold;
 }

Chapter 7

[303]

 .cta-button {
 background-color: lighten($table-color, 30%);
 }
 .button {
 background-color: $table-color;
 &:hover {
 background-color: lighten($table-color, 15%);
 }
 }
}
.columns:nth-child(3) .pricing-table {
 $table-color: #f2c265;
 border: 3px solid $table-color;
 .title {
 background-color: $table-color;
 color: $white;
 }
 .price {
 color: $table-color;
 background-color: lighten($table-color, 30%);
 font-weight: bold;
 }
 .cta-button {
 background-color: lighten($table-color, 30%);
 }
 .button {
 background-color: $table-color;
 &:hover {
 background-color: lighten($table-color, 15%);
 }
 }
}

Extending Foundation

[304]

What just happened?
We have just done some style adjustment in the Pricing page, particularly for the pricing
tables. At this stage, here is how this page appears:

Chapter 7

[305]

The About page and the Contact page
These are the last two pages of our website. We will perform a few style improvements in
these pages. So, let's just get started.

Time for action – adding styles for the About and the
Contact page

For adding styles for the About and the Contact page, perform the following steps:

1. Open styles.scss in the code editor.

2. We add styles for the title section in the About page.
.about {
 .story > .columns {
 > .row h4 {
 @extend .title-section-secondary;
 }
 }
}

3. Then, we add an icon before the telephone number and the e-mail address in the
Contact page, as follows:
.call-us {
 margin-top: 10px;
 li {
 list-style: none;
 position: relative;
 margin-bottom: 10px;
 &:before {
 font-family: $icon-font-family;
 font-size: 1.5em;
 position: absolute;
 width: 18px;
 height: 18px;
 left: -30px;
 top: -5px;
 }
 }
 .phone:before {
 content: "\f011";
 }
 .email:before {
 content: "\f007";
 }
}

Extending Foundation

[306]

What just happened?
We have just added styles for the About and the Contact page, and the following screenshot
shows how they appear:

Chapter 7

[307]

Time for action – finalizing the website
We will do a few style improvements to the website.

1. First we will put all the elements under the footer to the center:
@media only screen and (max-width: 48em) {
 .footer {
 text-align: center;
 .footnav, .social {
 margin-bottom: 20px;
 ul {
 float: none;
 }
 li {
 display: inline-block;
 float: none;
 margin: {
 left: 10px;
 right: 10px;
 }
 }
 }
 }
}

2. Then, we will remove unnecessary styles from Foundation. So, let's open base.
scss and comment out the following @import rule:
// @import "foundation";

3. Uncomment the following @import rules:

@import "foundation/foundation-global";
@import "foundation/components/grid";
@import "foundation/components/visibility";
@import "foundation/components/type";
@import "foundation/components/buttons";
@import "foundation/components/forms";
@import "foundation/components/top-bar";
@import "foundation/components/orbit";
@import "foundation/components/breadcrumbs";
@import "foundation/components/inline-lists";
@import "foundation/components/panels";
@import "foundation/components/pricing-tables";
@import "foundation/components/thumbs";

Extending Foundation

[308]

Testing the website
Our website is ready for testing. Though we can see how the website responds in various
viewports using some tools, it is always better to test it on a real device, and the following
screenshot shows how our website looks on the iPhone:

Summary
In this chapter, we completed our responsive website by using the Foundation framework,
and overall we built three responsive websites in this book.

Using a framework is only an option. For those who are skilled at CSS/CSS3, HTML5, and CSS3
Media Queries, you can build a responsive website (even a framework) in your own way.

Chapter 7

[309]

However, there are several advantages of using a framework. As mentioned in Chapter 1,
Responsive Web Design, the framework's creator has thought about all of the necessary
pieces to build a responsive website; from setting up the grid, specifying the breakpoints
with CSS3 media queries, and even further providing user interface styles, and providing
jQuery plugins. All these features can help boost our development process.

Furthermore, we also used LESS and Sass in our second and third projects, which technically
are the frameworks for writing CSS. Using a CSS preprocessor is not essential for building a
responsive website, but it helps with improving our website's maintainability and efficiency
in writing CSS. Using our third project as an example, we can seamlessly apply CSS Image
Sprite using the Compass function.

The frameworks that we used in this book have their own strengths and weaknesses. So, at
the end of the day, it's your decision to choose which one fits your project best.

Further references
There are lots of things in this book that were not explained in depth. So, here I include some
references to follow up on the subjects that are discussed in this book.

Books
 � Responsive Web Design by Ethan Marcotte (http://www.abookapart.com/
products/responsive-web-design)

 � Responsive Web Design with HTML5 and CSS3 by Ben Frain (http://www.
packtpub.com/responsive-web-design-with-html-5-and-css3/book)

 � HTML5 for Web Designers by Jeremy Keith (http://www.abookapart.com/
products/html5-for-web-designers)

 � Book of CSS3 (http://nostarch.com/css3.htm)

 � HTML5 and CSS3 for the Real World by Alexis Goldstein, Louis Lazaris, and Estelle
Weyl (http://www.sitepoint.com/books/htmlcss1/)

 � Instant LESS CSS Preprocessor How-to by Alex Libby (http://www.packtpub.com/
less-css-preprocessor-library/book)

 � Instant SASS CSS How-to by Alex Libby (http://www.packtpub.com/
syntactically-awesome-stylesheets-css-how-to/book)

Extending Foundation

[310]

On the Web
 � 30 Days to Learn HTML and CSS by Jeffrey Way (http://learncss.tutsplus.
com/)

 � HTML5 Doctor (http://html5doctor.com/)

 � HTML5 Rocks (http://www.html5rocks.com/en/)

 � Mozilla Developer Networks Documentation on CSS3 (https://developer.
mozilla.org/en-US/docs/CSS/CSS3)

 � CSS3 Secrets: 10 Things you might not know about CSS3 by Lea Verou (http://
vimeo.com/31719130)

 � Compass CSS3 (http://compass-style.org/reference/compass/css3/)

 � Responsive Web Design (http://alistapart.com/article/responsive-
web-design)

 � Twitter Bootstrap 101 by David Cochran (http://webdesign.tutsplus.com/
series/twitter-bootstrap-101/)

 � 10 LESS CSS Examples You Should Steal for Your Projects by Joshua Johnson
(http://designshack.net/articles/css/10-less-css-examples-you-
should-steal-for-your-projects/)

 � A Beginner's Guide to Zurb Foundation 3: The Grid (http://designshack.net/
articles/css/a-beginners-guide-to-zurb-foundation-3-the-grid/)

 � The Sass Way (http://thesassway.com/)

Index
Symbols
<div> element 136
<figcaption>, HTML5 elements 59
<figure> element 144
<figure>, HTML5 elements 59
@font-face rule

about 126
font, adding 128, 129
font formats, using 128
free fonts, finding 127
writing 127

<footer>, HTML5 elements 59
<header> element 135
<header>, HTML5 elements 59
@import 273
@include all-<map>-sprites function 273
@include <map>-sprite(image-name)

function 273
<input> element 141
@ key 143
<map>-sprite-height(image-name) function 273
<map>-sprite-width(image-name)function 273
:nth-of-type() method 280
<section>, HTML5 elements 59

A
About page

about 190, 305
styles, adding 305
website, finalizing 307

About page content
HTML structure, adding 150, 151

About Us page
about 248
content markup, constructing 249-251

adjacent sibling selector 80
Adobe AIR website 120
Adobe Edge Inspect 24
Apple Dev Center 48
apple icon devices 48

B
background-image property 100
Balancing Semantics and SEO

URL 231
basic HTML document

configuring 224-227
Bootstrap

about 17
responsive features 130
setting up 116, 117
starting with 116

border-box value 69
box-sizing property

about 69, 70
specifying 70

button
about 222
size 169

button styles
about 46, 166
Bootstrap button styles, overwriting 167, 168

[312]

C
call-to-action. See CTA
Call-to-action section

styles, adding 177
caption styles

adding 83-87
Cartesian coordinate system 89
cd command 262
ChrunchApp 25
clearing styles 44, 45
code editors

for Linux 23
for OS X 23
for Windows 23

Codekit 26, 216
Compass

about 206, 212
Helper Functions 212
project configuration 213
URL 206

Compass.app
about 216
URL 206

CompassApp 26
compass font face mixin 267, 268
Compass project configuration

CSS output, config.rb used 215
project path, configuring 215

Compass Sprite Helpers 273
compiler tool, CSS preprocessors

ChrunchApp 25
Codekit 26
CompassApp 26
LESS.app 25
Less.js 25
Node.js 25
ScoutApp 25
Simpless 25
WinLESS 25

components, Skeleton
apple icon devices 48
button styles 46
form styles 47
media queries 45
photoshop template 48, 49
Responsive Grid 42

Starter HTML document 41
typography styles 46

Contact page
about 187, 305
styles, adding 187, 188, 305
website, finalizing 307

Contact page content
HTML structure, adding 147-149

Contact Us page
about 253
content, structuring 254, 255

container clearfix class 65
content-box value 69
Continue button 122
CrunchApp 120, 209
CSS3 14
CSS3 2D transformations

about 88
translate() function 89

CSS3 checked pseudo class 81
CSS3 media queries

about 221
documentation, URL 221

CSS3 media queries, in Bootstrap
about 131
storing, Less file creating 131, 132

CSS3 nth-child pseudo class 81
CSS3 pseudo classes

about 81
:checked class 81
:nth-child class 81, 82

CSS3 Structural Selector
about 278-280

CSS3 Transform 88
CSS3 Transition

about 91
values 91

CSS3 Transition values
about 92
delay 91
property 91
thumbnail hover effect, creating 93-96
timing-function 91
transition-duration 91

CSS box model
about 68, 69
box-sizing property 69

[313]

css_dir property 214
CSS Generator Tool website 57
CSS preprocessors

about 25
compiler tool 25
LESS 25, 26
SaaS 32
Sass 25
Stylus 25

CSS selectors
about 78
adjacent sibling selector 80
Direct child selector 79
general sibling selector 80

CSS Sprite 58
CSS Sprite Generator Tool 57
CTA 139
Cupcake Ipsum

URL 224
custom font

adding 53
Google Web Fonts, embedding 54, 55

custom font families
about 267
adding, with Compass mixin 268-270
ChunkFive 267
compass font face mixin 267, 268
Foundation Icon Fonts 267
Open Sans 267

custom LESS mixins
defining 158, 159

custom LESS variables
about 156
defining 156-158

custom SCSS style sheets
about 211
creating 211

D
darken($color, $amount) function 264
direct child selector 79

E
emCalc() function 274
em unit

about 72

browser quirk 73
calculating, manually 73
px, converting to 72

End-user License Agreement. See EULA
EULA 127

F
FireApp 216
Firefox's built-in Responsive Tool 110
Fontdeck 127
font family

about 74
Headings font family, setting 76
setting 76

Font Squirrel 128
footer section

about 99
styling 99-104

footer styles
about 173
adding 173-175

form styles 47
Foundation 17
Foundation framework 205
Foundation framework components

about 218
CSS3 media queries 221
Grid 218, 219
Orbit 223
URL 221
user interface styles 222, 223

Foundation gem
about 207
Foundation gem, installing 207, 208
new project, setting up 207, 208

foundation.placeholder.js script 225
foundation.topbar.js script 225

G
Gallery page

about 184
page title styles, adjusting 184-186

Gallery page content
HTML content structure, adding 144, 146

[314]

Gallery section
about 179, 180
styles, adding 179

gem 207
general sibling selector 80
general style rules

about 161
adding 161-164
vendor prefixes, eliminating 165, 166

Google Web Font website 54
Grid 218, 219
GUI 26

H
header styles

about 76, 170
adding 77, 78
website header styles, adding 170-173

Hero section(Hello World section)
styles, adding 176, 177

Hivemind 18
homepage

about 176
Call-to-action section 177
Gallery section 179
Hero section(Hello World section) 176
styles, adding 282-291
styling 281
Subscribe Form 181
Testimonial section 180

homepage content
HTML5 placeholder attribute 142
HTML content structure, adding 139, 140
new input types 142

HTML5 14
HTML5 custom data attributes

about 59, 60
HTML document, structuring 60-66

HTML5 elements
about 59
<figcaption> 59
<figure> 59
<footer> 59
<header> 59
<section> 59

HTML5 placeholder attribute 142
HTML documents

about 133
About page content 149
About Us page 248
basic documents, configuring 224
constructing 223, 224
Contact page content 147
Contact Us page 253
creating 134-138
Gallery page content 143
homepage content 138
Policy page 152
Pricing page 242, 243
Services page 236
website homepage 228

HTML Technique for Web Accessibility Content
URL 231

http_path property 213, 214

I
Ian Yates 8
image preparation

about 55
contact icons 58
social media icons 56

images_dir property 214
image-url() function 212, 285
Install button 121

J
James Young 13
javascripts_dir property 214
John Allsopp 7
jQuery plugins 17
js/foundation/foundation.js script 225

K
Kudos Plush 120

L
large-6 columns footnav class 227
Layer 48

[315]

LESS
about 26, 35
Mixins 28, 29
nesting rules 26, 27
operations 31, 32
parametric mixins 30
variables 28

LESS applications
about 120
CrunchApp, installing 120-122
LESS syntax, compiling into standard CSS 125

LESS color functions
about 160
darken() 160
fade() 160
lighten() 160

LESS Elements
about 31
URL 212

LESS files
creating 123
creating, CrunchApp used 123, 125

Less.js 25
LESS syntax

compiling, into standard CSS 125, 126
lighten($color, $amount function 263
line_comments property 214
Living.is 18-20
Lorem Ipsum

URL 224

M
margin-bottom property 296
media queries 45

N
Node.js 25
normalize.scs

URL 211

O
Orbit

about 223
URL 223

Orman Clark
URL 217

output_style property 214

P
parametric mixins 30
percent unit 74
Pixar 17
pixel unit

about 71
higher DPI screens 71, 72

placeholder attribute 141
Policy page

HTML structure, adding 152
portfolio filtration

website navigating 96
portfolio thumbnail

adding 83-87
preferred_syntax property 214
Prefix Free 90
Prefixr 90
Premium Pixels

URL 217
Pricing page

about 242, 243, 299
content markup, constructing 243-246
styles, adding 300-304

pricing table, Foundation Framework
URL 244

Privacy & Policy page 191
project

command line, running 262, 263
monitoring 262

pseudo 103

Q
Quick-use link 54

R
references 309, 310
relative_assets property 214
Resizer 24
Resize Safari 24
Responsinator 24, 110

[316]

responsive bookmarklets
Resizer 24
Responsinator 24
ResposnivePX 24
RWD demonstration 24
Screen Fly 24
Screenqueri.es 24

responsive features, Bootstrap
CSS3 media queries 130, 131
grid system 130
navigation, establishing 132, 133

Responsive Grid 42-44
Responsive Image Community Group 11
ResposnivePX 24
rgb($color, $alpha) function 264
row intro class 230
Ruby

URL 206
Ruby-based framework 206
RubyGems

URL 207
RubyInstaller for Windows 206
RWD

about 7, 8
CSS3 media queries 9, 10
frameworks 15
limitations 10
responsive image, with picture element 11-13
viewport meta tag 8

RWD demonstration 24
RWD frameworks

about 15
benefits 15, 16
Bootstrap 16
clients 17
clients, Hivemind 18
clients, Living.is 18-20
clients, Swizzle 20, 21
cons 22
Foundation 17
skeleton 16

S
SaaS

about 32, 36
mixins 33

nested rules 34
selector inheritance 34
variables 32

Sass
about 206, 209
URL 206

Sass and SCSS
URL 209

Sass color functions
about 263
darken($color, $amount) 264
lighten($color, $amount) 263
rgb($color, $alpha) 264

sass_dir property 214
SassMe 264
Sass syntax 209
Sass variables

about 264
foundation framework, customizing 265-267

Scope concept 160, 161
ScoutApp 25
Screen Fly 24
Screenqueri.es 24
Screenqueries tool 110
SCSS

compiling to CSS 216
compiling, to standard CSS syntax 216

Services page
about 236, 292
content markup, constructing 237-240
styles, adding 293-298

Simpless 25
Skeleton

about 16, 40
clearing styles 44, 45
components 41
document, setting up 52
getting, working directory creating 40

Skeleton document, setting up
extra CSS file, adding 52, 53

Skeleton document
setting up 52

SmashingMagazine website 9
social media icons

about 56
sprite images 57, 58

[317]

Starter HTML document
about 41
HTML5 Shim 41, 42
viewport meta tag 41

Sublime Text
about 209
installing 210, 211
SCSS syntax highlighting, enabling 210, 211

Subscribe Form
about 181
styles, adding for input email 182

Swizzle 20, 21

T
Testimonial section

about 180
styles, adding 181

thumbnail hover effect
creating 93

tools, for responsive websites building
bookmarklets 24
code editors 23
responsive bookmarklets 23
web browsers 23

translate() function
about 89, 90
syntaxes 89
vendor prefixes 90

Typekit 127
typography styles 46

U
units of measurement, CSS

em unit 72
percent unit 74
pixel unit 71

unnecessary style rules
excluding 201, 202

user interface styles
about 222
URL 223

V
viewport

size between 767 px and 480 px 107

size less than 480 px 108
size less than 960px 105, 106
website styles, adjusting 104

W
W3C 11, 90
web browsers

Chrome 23
Firefox 23
Internet Explorer 23
Safari 23

WebMatrix 126
website

appearance, enhancing 192-200
customizing 192
look 50
navigating 51
responsiveness 192
testing 110-113, 202, 308
testing, tools 110
Thumbnail hover effect 52

website homepage
about 228
content, constructing 228-234

website images
preparing 119, 120, 217

website navigation
header section, styling 271, 272
portfolio filter, creating 97, 98
styling 271

website's footer section
about 274
styles, adding 274-278

Window Resizer 24
WinLESS 25
WordPress theme 15
working directory

creating, steps 40

Z
Zepto.js 225
ZURB

URL 205

Thank you for buying
Responsive Web Design by Example
Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Twitter Bootstrap Web Development
How-To
ISBN: 978-1-84951-882-6 Paperback: 68 pages

A hands-on introduction to building websites with Twitter
Bootstrap's powerful front-end development framework

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Conquer responsive website layout with
Bootstrap's flexible grid system

3. Leverage carefully-built CSS styles for typography,
buttons, tables, forms, and more

4. Deploy Bootstrap's jQuery plugins to create
drop-downs, switchable tabs, and an image
carousel

Responsive Web Design with HTML5
and CSS3
ISBN: 978-1-84969-318-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to adapt
websites to any browser or screen size

1. Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2. Learn the main new features of HTML5 and
use CSS3's stunning new capabilities including
animations, transitions and transformations

3. Real world examples show how to progressively
enhance a responsive design while providing fall
backs for older browsers

Please check www.PacktPub.com for information on our titles

WordPress 3 Complete
ISBN: 978-1-84951-410-1 Paperback: 344 pages

Create your own complete website or blog from scratch
with WordPress

1. Learn everything you need for creating your own
feature-rich website or blog from scratch

2. Clear and practical explanations of all aspects of
WordPress

3. In-depth coverage of installation, themes,
plugins, and syndication

4. Explore WordPress as a fully functional content
management system

Learning jQuery, Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web development
with simple JavaScript techniques

1. An introduction to jQuery that requires minimal
programming experience

2. Detailed solutions to specific client-side problems

3. Revised and updated version of this popular
jQuery book

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Responsive Web Design
	Basic responsive web design
	Viewport meta tag and CSS3 media queries

	Learn more about HTML5 and CSS3
	Introduction to RWD frameworks
	Why use frameworks?
	Skeleton
	Bootstrap
	Foundation

	Who is using these frameworks?
	The cons

	Tools required to build responsive websites
	Web browsers
	Code editors
	Responsive bookmarklets

	A brief introduction to CSS preprocessors
	CSS preprocessor compiler tool
	LESS
	Nesting rules
	Variables
	Mixins
	Parametric mixins
	Operations

	Sass (Syntactically Awesome Stylesheets)
	Variables
	Mixins
	Nested rules
	Selector inheritance

	Learning more on CSS preprocessors
	Learning LESS
	Learning Sass

	What are we going to create in this book?
	Summary

	Chapter 2: Constructing a Responsive Portfolio Page with Skeleton
	Getting Started with Skeleton
	Time for action – creating a working directory and
getting Skeleton
	What is included in Skeleton?
	Starter HTML document
	The viewport meta tag
	HTML5 Shim

	Responsive Grid
	Media queries

	Adding custom font
	HTML5 elements
	HTML5 custom data attributes
	Time for action – structuring the HTML document
	Summary

	Chapter 3: Enhancing the Portfolio Website
with CSS3
	CSS units of measurement
	The em unit
	Converting px to em

	Time for action – adding the header styles
	Using CSS3 pseudo classes
	The CSS3 checked pseudo class
	The CSS3 nth-child pseudo class

	Portfolio thumbnail and caption styles
	Time for action – adding thumbnail and caption styles
	CSS3 2D Transformations
	The translate() function

	CSS3 Transition
	CSS3 Transition values

	Time for action – creating a thumbnail hover effect
	Time for action – creating a portfolio filter
	Time for action – viewport size less than 960 px
	Summary

	Chapter 4: Developing a Product Launch Site with Bootstrap
	Time for action – creating a new LESS file with CrunchApp
	Compiling LESS syntax into standard CSS

	Time for action – adding LESS files to CrunchApp and compiling them into standard CSS
	Introducing the @font-face rule to add a custom
font family
	Finding free fonts for embedding on the web
	Writing the @font-face rule
	Font formats for cross-browser compatibility

	Time for action – adding a new font with @font-face
	Time for action – creating a new LESS file to store CSS3
media queries
	Establishing navigation with Bootstrap

	Time for action – creating basic HTML5 documents
	The homepage content

	Time for action – adding an HTML content structure for
our homepage
	Time for action – adding HTML content structure for the
Gallery page
	Contact page content

	Time for action – adding HTML structure for the Contact page
	Time for action – adding HTML content structure for the
About page
	The Policy page

	Time for action – adding HTML content structure for the Privacy and Policy page
	Summary

	Chapter 5: Enhancing the Product Launch Site with CSS3 and LESS
	Custom LESS Variables
	Time for action – defining custom variables
	Custom LESS mixins
	Time for action – defining custom LESS mixins
	LESS color functions
	Introducing the Scope concept
	General style rules
	Time for action – adding general style rules
	Time for action – overwriting the Bootstrap button styles
	Why are the buttons that large?
	The header styles
	Time for action – adding website header styles
	Working on the homepage
	The Hero section

	Time for action – adding styles for the Hello World section
	Time for action – adding styles for an input email
	The Contact page
	Time for action – adding styles for the Contact page
	Making the website responsive
	Time for action – enhancing the website's appearance for viewport size 767px or less
	Excluding unnecessary style rules
	Testing the website
	Summary

	Chapter 6: A Responsive Website for Business with Foundation Framework
	A Ruby-based framework
	The Foundation gem
	Time for action – installing the Foundation framework and setting up a new project
	Sass and SCSS syntax
	Sass and SCSS code editor

	Introducing Compass
	Compass Helper Functions
	Compass project configuration

	Time for action – configuring the project path in config.rb
	Compiling SCSS to CSS
	Time for action – watch SCSS stylesheets for changes
	Foundation framework components
	The grid
	CSS3 media queries
	Orbit

	Constructing the HTML documents
	Basic HTML document

	Time for action – configuring a basic HTML document
	Time for action – constructing the Services page content markup
	Time for action – constructing the Pricing page content markup
	Time for action – constructing the About Us page content markup
	Time for action – structuring the Contact Us page content
	Summary

	Chapter 7: Extending Foundation
	Sass variables
	Custom font families
	An introduction to the Compass font face mixin

	Time for action – adding custom font families with the
Compass mixin
	An introduction to Compass Sprite Helpers
	The About page and the Contact page
	Time for action – adding styles for the About and the
Contact page
	Time for action – finalizing the website
	Further references
	Books
	On the Web

	Index

