Steven Holzner

SamsTeach Yourself

HTML5




Steven Holzner

Sams Teach Yourself

HTMLS

INn 10 Minutes

SAMS ‘ 800 East 96th Street, Indianapolis, Indiana 46240




Sams Teach Yourself HTML5 in 10 Minutes

Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibil-
ity for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.
International Standard Book Number-10: 0-672-33333-3
International Standard Book Number-13: 978-0-672-33333-0

Library of Congress Cataloging-in-Publication Data

Holzner, Steven.
Sams teach yourself HTML5 in 10 minutes / Steven Holzner.
p. cm.
ISBN 978-0-672-33333-0 (pbk.)

1. HTML (Document markup language) 1. Title. Il. Title: Teach
yourself HTML5 in 10 minutes.

QA76.76.H94H647 2011
006.7'4—dc22
2010045971
Printed in the United States of America
First Printing: December 2010
13 12 11 10 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any per-
son or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when

ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor In Chief
Mark Taub
Aquisitions
Editor

Mark Taber

Development
Editor

Songlin Qiu
Managing
Editor
Sandra
Schroeder

Project Editor
Mandie Frank

Copy Editor
Barbara Hacha

Indexer
Heather McNeill

Proofreader
Debbie Williams

Publishing
Coordinator

Vanessa Evans

Composition
Mark Shirar

Book Designer
Gary Adair



Table of Contents

Introduction 1
What's in This Book 1
What You Need 3

1 Essential HTML5 5
Welcome to HTML5 5
Drawing With the Canvas Element 6
Dragging and Dropping 7
Getting Data With the New Web Form Controls 7
Edit Web Pages on the Fly 8
Remembering With Browser History 8
Saying Hello With Interdocument Messaging 8
Awesome Audio and Video 9
Making Use of Web Storage 9
Using the New Elements 10

2 Drawing with the Canvas Element 13
Welcome to the Canvas Element 13
Getting to Know the Canvas API 14
Starting the Canvas Example 18
Drawing Rectangles 20
Drawing Line Art 22
Filling Line Art 24
Drawing with Bezier Curves 25
Drawing with Quadratic Curves 27
Drawing Arcs 28
Drawing Text 30

The canvas.html Example Code 31



Sams Teach Yourself HTML5 in 10 Minutes

3 Dragging and Dropping with HTML5

Welcome to Drag and Drop

Getting to Know the Drag-and-Drop API

Starting the Drag-and-Drop Example

Styling the Draggable and Target Elements

Starting the Drag Operation

Allowing Dragged Objects to Enter the Targets

Allowing Dragged Objects to Be Dropped on Certain Targets
Handling Drop Events

Ending Drop Operations

The draganddrop.html Example Code

Web Form Controls

Welcome to Web Form Controls
Getting to Know the Web Form Controls API
Starting the Web Forms Example
Creating a Default Control

Creating a URL Control

Creating an Email Control

Creating Range and Number Controls
Creating Date and Time Controls
Creating a Color Control

Creating a Search Control

The webforms.html Example Code
The webforms.php Example Code

Inline Editing

Welcome to Inline Editing
Starting the editdiv.html Example
Adding a Bold Button

Adding an Italic Button

Adding an Underline Button
Adding an Add Link Button

35
35
37
41
43
46
47
48
50
51
52

57
58
60
66
67
68
69
70
72
74
75
76
78

79
79
81
83
85
87
88



Contents

Adding a Display Source Button
Spellchecking

The editdiv.html Example Code
Starting the editiframe.html Example
Adding the editiframe.html Buttons

The editiframe.html Example Code

Working with Browser History
Welcome to Browser History
Getting to Know the History API
Starting the pophistory.html Example
Adding a Back Button

Adding a Forward Button

Adding a Go Button

Getting History Length

Pushing Data into the History
Popping Data from the History
The pophistory.html Example Code

Getting the Point Across with Messaging

Welcome to Messaging

Getting to Know the Messaging API
Starting the parent.html Example
Sending a Cross-Window Message
Starting the child.html Example
Receiving a Cross-Window Message
The parent.html Example Code

The child.html Example Code

Starting the domainparent.html Example
Sending a Cross-Domain Message
Starting the domainchild.html Example

Receiving a Cross-Domain Message

91
93
95
96
98
100

103
103
104
106
107
110
112
114
116
119
121

125
125
127
129
130
132
134
135
136
137
138
140
142



vi

Sams Teach Yourself HTML5 in 10 Minutes

The domainparent.html Example Code

The domainchild.html Example Code

Using Video and Audio

Welcome to the Video Media Control
Getting to Know the Video Element API
Converting to OGG Format

Starting the video.html Example
Adding Controls to the video.html Example
Looping a Video

Playing a Video Automatically
Detecting When a Video Has Failed
Welcome to the Audio Media Control
Getting to Know the Audio Element API
Starting the audio.html Example
Detecting When an Audio Has Failed

Web Storage

Welcome to Session Storage

Getting to Know the Session Storage API
Starting the sessionstorage.html Example
Storing Data in the Session

Getting Data from the Session

Clearing Session Data

The sessionstorage.html Code

Welcome to Local Storage

Getting to Know the Local Storage API
Starting the localstorage.html Example
Storing Data in the Browser

Getting Data from the Browser

Clearing Local Data

The localstorage.html Code

143
144

147
147
148
150
153
155
156
156
157
160
160
162
164

167
167
169
171
172
174
175
177
178
180
181
182
184
186
188



Contents

10 The New HTML5 Elements

Adding SVG and MathML
Welcome to the New Elements
The <article> Element
The <aside> Element
The <audio> Element
The <canvas> Element
The <command> Element
The <datalist> Element
The <details> Element
The <embed> Element
The <figcaption> Element
The <figure> Element
The <footer> Element
The <header> Element
The <hgroup> Element
The <keygen> Element
The <mark> Element

The <meter> Element
The <nav> Element

The <output> Element
The <progress> Element
The <rp> Element

The <rt> Element

The <ruby> Element

The <section> Element
The <source> Element
The <summary> Element
The <time> Element

The <video> Element

Index

191
191
192
194
195
196
196
196
198
198
199
200
201
202
202
204
204
205
206
207
208
209
211
211
212
213
214
215
215
216

217

vii



About the Author

Steven Holzner is the award-winning author of 108 computer books and
a contributing editor at PC Magazine. His books have sold 2.5 million
copies and have been translated into 22 languages. He specializes in Web
topics such as Facebook, banner ads, Google, Yahoo, and MSN pay-per-
click campaigns, viral marketing, usenet marketing, and more. He also
owns four apartment buildings that he markets exclusively on the Web
(direct emails, banner ads, pay-per-click, email autoresponders, Craig’s
list, rent.com, and about ten other advertising sites) to find tenants.



We Want to Hear from You!

As the reader of this book, you are our most important critic and com-
mentator. We value your opinion and want to know what we’re doing
right, what we could do better, what areas you’d like to see us publish in,
and any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t
like about this book—as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the
topic of this book, and that due to the high volume of mail I receive, 1
might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as
well as your name and phone or email address. I will carefully review
your comments and share them with the author and editors who worked
on the book.

Email: webdev@samspublishing.com

Mail:  Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for
convenient access to any updates, downloads, or errata that might be
available for this book.


www.informit.com/register

This page intentionally left blank



Introduction

Welcome to HTMLS5, the new edition of HTML.

Many people are saying that it’s about time for HTML5S—HTML 4.01 was
completed in 1999. Others are saying that what HTMLS5 offers is just too
good to pass up. We hope you’ll agree with both opinions.

HTMLS goes beyond all previous versions of HTML in scope and power.
In fact, its biggest additions are in the scripting realm, not in the traditional
realm of HTML elements at all. So if you’re expecting just a list of new
HTML elements, this book may surprise you. HTML has learned about
JavaScript, and puts it to work extensively.

For example, HTMLS5 supports drag and drop, but you’ve got to use a
scripting language like JavaScript to make it work. HTMLS also supports a
Canvas control in which you can draw—using JavaScript. There are many
more such areas that we’ll see come alive in the new HTML.

What’s in This Book

This book gives you a guided tour of the new features of HTML. We
assume you know the previous version of HTML—HTML 4.01—well
enough so that we can discuss only what’s new in version 5. Here are the
stops on your guided tour:

» Lesson 1, “Essential HTML5”—In this lesson, you’ll get an
overview of HTMLS, as well as learning the rules for construct-
ing an HTMLS document.

» Lesson 2, “Drawing with the Canvas Element”—Here you’ll
learn how to use JavaScript to draw in HTMLS5’s new Canvas
element.

» Lesson 3, “Dragging and Dropping with HTML5”—This lesson
shows how to make items in Web pages “draggable” with the
mouse.




Sams Teach Yourself HTML5 in 10 Minutes

Lesson 4, “Web Form Controls”—HTMLS5 includes new controls
(controls are elements such as radio buttons or check boxes that
the user interacts with), including new telephone and datetime
controls. We’ll put them to work here.

Lesson 5, “Inline Editing”—With HTMLS, you can edit the text
contents of elements such as <div> or <span> interactively, and
we’ll see how here.

Lesson 6, “Working With Browser History”—In this lesson, we
take a look at the built-in support in HTML for navigating the
browser through its history, revisiting pages it has already been to.

Lesson 7, “Getting the Point Across with Messaging”—HTMLS5
lets you send messages from one document to another, and we’ll
get a glimpse into how that works here, by sending messages
from one document to another that appears in an <iframe> in the
first document.

Lesson 8, “Using Video and Audio”—Some of the most exciting
aspects of HTMLS5 are the <video> and <audio> elements. We’ll
see how to play videos and audio using them in this lesson.

Lesson 9, “Web Storage”—One thing web page authors have
missed with traditional HTML and JavaScript is some place to
store data between page accesses by the user. HTMLS5 gives you
a couple of options that we’ll take a look at in this lesson.

Lesson 10, “The New HTMLS5 Elements”—HTMLS comes with
many new elements in addition to the ones we’ve already covered
in the book, and we’ll see them here.



Introduction

What You Need

HTMLS is still in its infancy, so it takes a little patience. In particular,
browser support is still spotty, which means that not all features are sup-
ported in all browsers. We’ll be working with five browsers in this book:
Firefox, Chrome, Safari, Opera, and Internet Explorer.

Each time we cover an HTMLS feature in this book, we list which brows-
er(s) currently supports it, so if you want to put something to work, you
might want to check browser support first.

To read this book, you’ll need to have a working knowledge of HTML
4.01 (the current standard version) and JavaScript. You don’t need to be an
expert at either of these, but you will need a working knowledge.

For the most part, all the examples in this book can be run simply by
opening an HTML document in your browser from your hard disk.
However, two short examples (webforms.html and webforms.php in
Lesson 4) require the use of a web server—when we show how to read
data on the server from the new web form controls and when we store data
in the web session that the browser creates with a web server. To use these
two examples, you’ll need to upload them to a web server; otherwise, no
special preparation is needed to run any of the examples in this book.

That’s all you need to get started, so let’s jump in and do just that in
Lesson 1.



This page intentionally left blank



LESSON 1
Essential HTMLS5

Welcome to HTMLS, the new exciting version of HTMLS that pushes the
web-development envelope. Packed with features, HTMLS is winning
legions of fans as it goes beyond what HTML has been traditionally able
to do. In this lesson, we’ll get an overview of what HTMLS can do and
start the process of creating HTMLS documents.

Welcome to HTML5

HTMLS breaks down the barrier between HTML and scripting. HTMLS
turns out to be very script intensive. It has a bunch of new elements and

attributes, but the major push in HTMLS5 has to do with features that you
can access only through scripting.

Whether it’s dragging and dropping items, drawing in a canvas, storing
data in the browser between page accesses, browser history, or any of
more than a dozen other topics, HTMLS5 relies on scripting—and that
means JavaScript for most people—more than ever before. To make
HTMLS work, you have to use scripting.

That’s a good thing, because incorporating the new capabilities, which
demand scripting, into HTML itself means that browser manufacturers will
have to support those new capabilities. Often, what’s possible in JavaScript
varies widely from browser to browser, and requiring a lot of scripting
support in HTML will make support for the new features uniform across
all browsers.

All versions of HTML, including HTMLS, are products of the World Wide
Web Consortium, or W3C (www.w3c.org), which is composed of the peo-
ple responsible for putting together the various versions of the HTML
specifications. The version before HTMLS, which is HTML 4.01, came
out in 1999.



www.w3c.org

LESSON 1: Essential HTML5

Each W3C specification, called a recommendation (W3C is careful not to
consider itself a standards-creating body, so they call their specifications
recommendations), goes through several steps.

First comes Note status, where some people at W3C start discussing some
issue. Then a Working Draft of a specification is created, and the W3C
invites comments. Next comes a Candidate Recommendation, and then the
final version of a W3C specification, the Recommendation.

All these steps are posted online for you to peruse. HTMLS5 is in Working
Draft format at the time this book was written, and you can see the specifi-
cation as it stands at W3C, http://www.w3.org/TR/html5/ (which is just a
long table of contents of links to other documents).

We’ll be working from the W3C HTMLS Working Draft in this book.
Because it’s still relatively early in HTMLS5’s history, browser support is
spotty. All the features we’ll take a look at in this book are supported in
one or more browsers, but not in all browsers (we’ll be looking at Internet
Explorer, Chrome, Firefox, Opera, and Safari). For each feature, we’ll list
which browsers support it.

Let’s get an overview now of HTMLS5 capabilities.

Drawing With the Canvas Element

The Canvas element has been long awaited. As its name implies, you can
use this element to draw on, and that can mean drawing some complex fig-
ures. You can draw lines, circles, arcs, rectangles, curves, and more. You
can color figures as you like them and even insert images.

The Canvas control is a powerful one because it brings dynamic graphics
to Web pages, displaying graphics that you can change in response to the
user’s actions. This element relies extensively on JavaScript, as do most
HTMLS elements, so you do your drawing in JavaScript.

For most figures, you use a simple function call in JavaScript, such as
lineTo(), stroke(), or fill(). So you’re drawing from JavaScript, as we’ll see
in Lesson 2.


http://www.w3.org/TR/html5/

Getting Data With the New Web Form Controls

Dragging and Dropping

Another eagerly anticipated feature in HTMLS is drag and drop. Formerly,
dragging and dropping items in a web page relied on ad hoc JavaScript,
which had to be written differently for every browser. Now dragging and
dropping will be uniform across all browsers.

If you’ve ever written drag and drop code in JavaScript, you know what a
huge relief this will be. No longer will you have to test which browser
your code is executing in and decide what code to run—that for the
Internet Explorer, Firefox, and so on.

In HTMLS, most visual elements have a draggable attribute, which, if set
to true, allows users to drag and drop the element—provided they imple-
ment the dragging and dropping in JavaScript. We’ll see all about drag and
drop in Lesson 3.

Getting Data With the New Web
Form Controls

HTMLS comes stocked with a number of new controls, extending consid-
erably the controls already available in HTML (such as check boxes,
option buttons, and so on). For example, there is now a color picker, an
email field, a datetime control, and even a telephone number control.

These controls offer a lot of much-needed power to HTML. For example,
the color control usually displays a color picker where the user can select
colors just by clicking them. The datetime control usually displays a small
calendar that the user can select dates from. The actual implementation of
these controls is up to the individual browser manufacturers, but many of
these new controls are already being implemented, and we’ll take a look at
them in Lesson 4.



LESSON 1: Essential HTML5

Edit Web Pages on the Fly

Web pages become more interactive with HTMLS, and that includes let-
ting the user edit text in a web page.

Remembering With Browser
History

HTMLS also allows you to get a handle on the browser’s history—that is,
what pages it’s been to.

In Lesson 6, we’re going to take a look at what browser history means in
HTMLS. And it’s not just a trail of pages either—you can store data
between page accesses, so that data is available to you when you return to

a page.

That’s very powerful, because until now, browsers have always started off
with a clean slate whenever they come to—or come back to—a page. Now
you can start storing data that will persist even between page accesses.

Saying Hello With Interdocument
Messaging

HTMLS also lets you send messages between various parts of a document,
even when those parts actually come from different documents. That is,
you might display a web page in an <iframe> in another page. Now you
can send text messages to the contained document, which you couldn’t do
before.

In fact, it’s now possible to send messages to pages displayed in elements
like <iframe> or <div> elements even if those pages come from a com-
pletely different domain, which was quite illegal until now.



Making Use of Web Storage

Awesome Audio and Video

A big part of HTMLS is the video and audio support. The new <video>
element displays videos, and the <audio> element plays soundtracks—all
without the use of browser plug-ins like those for Flash or QuickTime.

These new elements are the subject of Lesson 8. In that lesson, we’ll see
which browser supports what audio and video formats at this point. For
example, as of this writing, Firefox, Opera, and Chrome all support the
Theora video format for the <video> element, which plays videos with the
extension .ogg, as well as the VP8 video codec.

In Lesson 8, we’ll not only get videos to play with the <video> element,
but we’ll also see how to convert common video formats into formats that
will play using that element.

Making Use of Web Storage

One of the things that HTML/JavaScript authors have missed in the past is
somewhere to store data between page accesses. That is, when you reopen
a page that includes standard JavaScript, all the variables in your
JavaScript are reset to their original values.

That’s fixed in HTMLS5, where you have the option of saving data in the
browser, as well as in the browser’s session with the server. The details are
coming up in Lesson 9.

In Lesson 9 we’ll create an example where all you have to do to store text
locally in the browser is to enter that text in a text field and click the Store
button. Then you can navigate away from the page and come back to it
later. When you come back later, you can click the Get button, and the
data in the text field will be restored.

HTML/JavaScript authors now have the ability to store data between page
accesses. Very cool.



10

LESSON 1: Essential HTML5

Using the New Elements

What would a new version of HTML be without new HTML elements?
Here are the HTML elements that are new in HTML5—and we’ll take a
look at them in Lesson 10:

4

4

<article>
<aside>
<audio>
<canvas>
<command>
<datalist>
<details>
<embed>
<figcaption>
<figure>
<footer>
<header>
<hgroup>
<keygen>
<mark>
<meter>
<nav>
<output>
<progress>
<rp>

<rt>



»

>

And these are elements that are dropped in HTMLS5:

»

»

Using the New Elements

<ruby>
<section>
<source>
<summary>
<time>

<video>

<acronym>
<applet>
<basefont>
<big>
<center>
<dir>
<font>
<frame>
<frameset>
<isindex>
<noframes>
<s>
<strike>
<tt>

<u>

11



This page intentionally left blank



LESSON 2

Drawing with the
Canvas Element

The HTMLS5 Canvas element is a popular one, used to display graphics.
The element itself is created very simply in HTMLS, like this:

<canvas height-"yyy" width=xxx">
</canvas>

That’s all you need to create a Canvas element. So how do you draw graph-
ics in such an element? You use JavaScript, as we’ll see in this lesson.

The Canvas element can draw lines, arcs, complex shapes, images, text,
and more. Let’s jump in to this element now.

Welcome to the Canvas Element

Technically speaking, the Canvas element is very simple in HTMLS.
Here’s the specification:

Element: <canvas>

Start tag required: Yes

End tag required: Yes

Required attributes: Height, width

Supported browsers: Chrome, Firefox, Opera, Safari

The real story takes place in JavaScript with this element, and it will let us
draw in the Canvas element example that we’ll develop in this lesson, as
shown in Figure 2.1.




14 LESSON 2: Drawing with the Canvas Element

™ Firefox -+ | =

Canvas Example

L

LN

Hello!

FIGURE 2.1 A Canvas example in Firefox.

Because you use JavaScript to make this element work, we’ll look at an
overview of what’s available first before getting into the details.

Getting to Know the Canvas API

The W3C has created an application programming interface (API) for the
Canvas element, specifying the names of the built-in functions and how
you use them.

You can find the full Canvas API at http://dev.w3.org/html5/canvas-api/
canvas-2d-api.html. We’ll list the most important functions here.

In W3C API specifications, both attributes of the element (these are attrib-
utes of the element you use in JavaScript, not in HTML, like this:

canvasl fillStyle = xxxx) and the supported JavaScript functions are listed.
So you set some aspect of the Canvas with attributes first, then perform
some drawing operation like this, where we first set the drawing style with


http://dev.w3.org/html5/canvas-api/canvas-2d-api.html
http://dev.w3.org/html5/canvas-api/canvas-2d-api.html

Setting Line Styles 15

the fillStyle attribute, and then draw a filled rectangle with the fillRect
function:

canvas1.fillStyle =xxxx
canvas1.fillRect (xx, xx, XX, XX;

Each item in the API is prefixed with its types, such as float for floating
point number. Here are some representative types you’ll see in the W3C
specifications:

» any For attributes—This means that the attribute can be of any
type.

» DOMString Means DOM (Document Object Model) String—For
our purposes, this is just a quoted text string.

» float—This is a floating point number.

Now let’s take a look at what the Canvas API lists for attributes and
functions.

Styling
You use two attributes for setting drawing style in a Canvas—whether
drawing actions should fill in the figure or not:

» attribute any fillStyle; // (default black)

» attribute any strokeStyle; // (default black)

Setting Line Styles

You can set the line styles the Canvas element will use with these
JavaScript attributes:

» attribute DOMString lineCap; // “butt”, “round”, “square”
(default “butt”)

» attribute DOMString lineJoin; // “miter”, “round”, “bevel”*
(default “miter”)

» attribute float lineWidth; // (default 1)

» attribute float miterLimit; // (default 10)



16

LESSON 2: Drawing with the Canvas Element

Casting Shadows

The Canvas element even lets you add shadows to your graphics with
these attributes:

4

v

v

v

attribute float shadowBlur; // (default 0)

attribute DOMString shadowColor; // (default transparent black)
attribute float shadowOffsetX; // (default 0)

attribute float shadowOffsetY; // (default 0)

Drawing Rectangles

Here are the functions you use for rectangles:

4

4

4

clearRect(float x, float y, float w, float h);
fillRect(float x, float y, float w, float h);

strokeRect(float x, float y, float w, float h);

Drawing Complex Shapes

With the Canvas element, you can draw arcs, Bezier curves, and more

using these functions:

4

arc(float x, float y, float radius, float startAngle, float endAngle,
boolean anticlockwise);

arcTo(float x1, float y1, float x2, float y2, float radius);
beginPath();

bezierCurveTo(float cplx, float cply, float cp2x, float cp2y, float
X, float y);

clip();
closePath();
fill();



Drawing Images

» lineTo(float x, float y);

» moveTo(float x, float y);

» quadraticCurveTo(float cpx, float cpy, float x, float y);
» rect(float x, float y, float w, float h);

» stroke();

» boolean isPointInPath(float x, float y);

Drawing Some Text

You can also write text in a Canvas using these attributes and functions:

v

attribute DOMString font; // (default 10px sans-serif)

» attribute DOMString textAlign; // “start”, “end”, “left”, “right”,
“center” (default: “start”)

» attribute DOMString textBaseline; // “top”, “hanging”, “middle”,

LLNT3

“alphabetic”, “ideographic”, “bottom” (default: “alphabetic”)

> fillText(DOMString text, float x, float y, optional float
maxWidth);

» TextMetrics measureText(DOMString text);

» strokeText(DOMString text, float x, float y, optional float
maxWidth);

Drawing Images

You can draw images with these functions:

» drawlmage(HTMLImageElement image, float dx, float dy,
optional float dw, float dh);

» drawlmage(HTMLImageElement image, float sx, float sy, float
sw, float sh, float dx, float dy, float dw, float dh);

» drawlmage(HTMLCanvasElement image, float dx, float dy,
optional float dw, float dh);



18 LESSON 2: Drawing with the Canvas Element

» drawlmage(HTMLCanvasElement image, float sx, float sy, float
sw, float sh, float dx, float dy, float dw, float dh);

» drawlmage(HTMLVideoElement image, float dx, float dy,
optional float dw, float dh);

» drawlmage(HTMLVideoElement image, float sx, float sy, float
sw, float sh, float dx, float dy, float dw, float dh);

Using Transformations

You can rotate, resize (scale), or move (translate) graphics with these
functions:

» rotate(float angle);
» scale(float x, float y);

» translate(float x, float y);

That’s the overview of the Canvas API. Now let’s put it to work with an
example, starting in the next task.

Starting the Canvas Example

To show how to put the Canvas element to work, we’re going to create an
example named canvas.html, which you can see running in Firefox in
Figure 2.1, and whose code appears in its entirety at the end of this lesson.

To get started with the canvas.html example, follow these steps:

1. Create canvas.html using a text editor such as Windows
WordPad.

2. Enter the following code to create the <canvas> element and to
set up the JavaScript. Note that we’re going to put our JavaScript
in a function named loader, which is run only after the Canvas
element is fully loaded by the browser (don’t enter the three ver-
tical dots—they re just there to show that more code is coming).
<!DOCTYPE html>

<html>
<head>



3.

Starting the Canvas Example 19

<title>
Canvas Example
</title>

<script type="text/javascript">
function loader()

{

</script>
</head>

<body onload="loader()">
<ht1>Canvas Example</h1>
<canvas id="canvas" width="600"
height="500">
</canvas>

</body>
</html>

Add the JavaScript to create an object corresponding to the
Canvas element as shown. We’ll use this object to access the
Canvas element in JavaScript.

<!DOCTYPE html>
<html>
<head>
<title>
Canvas Example
</title>

<script type="text/javascript">
function loader()
{
var canvas = document.getElementById
('canvas');
var canvasi = canvas.getContext('2d');

</script>
</head>

<body onload="loader()">
<h1>Canvas Example</h1>



20 LESSON 2: Drawing with the Canvas Element

<canvas id="canvas" width="600"
height="500">
</canvas>

</body>
</html>

4. Save canvas.html. Make sure you save this code in text format.
The default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers.

Now we’ve got our example started. The next thing we’ll do is draw some
rectangles.

Drawing Rectangles

You can draw hollow rectangles with the strokeRect function:

» strokeRect(float x, float y, float w, float h);

Or you can draw filled-in rectangles with the fillRect function:

» fillRect(float x, float y, float w, float h);

You pass these functions the (v, y) coordinate of the upper-left corner of
the rectangle and the width and height of the rectangle you want. Note that
in a Canvas element, the upper-left corner of the Canvas corresponds to (0,
0), positive x is to the left, positive y is downward, and all measurements
are in pixels.

In this task, we’ll look at the fillRect function. You can set the fill color
with the fillStyle attribute. You set this attribute to a color, which you can
specify with the rgba() function. You pass the rgba() function four values:
the red, green, and blue values (0-255) of the color you're creating, and a
visibility factor (0—1, where 0 means the rectangle will be invisible, and 1
means it will be fully visible).

For example, to set the fill style of the canvasl object to blue, you use this
line of code:

» canvasl.fillStyle = “rgba(0, 0, 200, 1)”;



Drawing Line Art 21

Here’s how to draw multiple rectangles in different colors:
1. Open canvas.html using a text editor such as Windows WordPad.

2. Add the following code to create three rectangles with different
fill colors:
<script type="text/javascript">
function loader()

{

var canvas = document.getElementById
('canvas');

var canvasi = canvas.getContext('2d');

/| Rectangles
canvas1.fillStyle = "rgba(0, 0, 200, 1)";
canvas1.fillRect (30, 30, 75, 70);

canvas1.fillStyle = "rgba(200, 200, 0, 1)";
canvas1.fillRect (70, 50, 55, 70);

canvas1.fillStyle = "rgba(200, 0, 0, 1)";
canvas1.fillRect (90, 50, 75, 50);

}

3. Save canvas.html. Make sure you save this code in text format.

You can see the results in Figure 2.2, where all three overlapping rectan-
gles appear.

(™ Firetox ~ [

Canvas Example

FIGURE 2.2 Drawing rectangles.



22 LESSON 2: Drawing with the Canvas Element

Drawing Line Art

You can draw line art using a Canvas control. You start with the
beginPath() function to let the Canvas know that you’re creating a figure,
then use a combination of the moveTo() and 1ineTo() functions to posi-
tion the drawing location and actually draw lines.

When your figure is complete, you use the closePath() function to com-
plete the path you’ve drawn, and use the stroke function to draw the result.

We’ll take a look at an example here, where we draw three triangles using
these techniques. As an added feature, we’ll draw the triangles in red by
setting the Canvas’s strokeStyle attribute to red:

» canvasl.strokeStyle = “rgba(200, 0, 0, 0.5)”;

Here’s how to draw the triangles:
1. Open canvas.html using a text editor such as Windows WordPad.

2. Add the following code to create three triangles:

<script type="text/javascript">
function loader()
{
var canvas = document.getElementById
('canvas');
var canvasi = canvas.getContext('2d');

// Stroked triangles

canvas1.beginPath();

canvas1.strokeStyle = "rgbha(200, 0, 0, 0.5)";
canvas1.moveTo (110, 205);

canvas1.lineTo (110, 125);

canvas1.lineTo (30, 205);

canvasi1.closePath();

canvas1.stroke();



Drawing Line Art

canvas1.beginPath();
canvas1.moveTo (100, 205);
canvas1.lineTo(100, 125);
canvas1.lineTo (20, 205);
canvas1.closePath();
canvas1.stroke();

canvas1.beginPath();
canvas1.moveTo (90, 205);
canvas1.lineTo (90, 125);
canvas1.lineTo (10, 205);
canvasi1.closePath();
canvasi.stroke();

3. Save canvas.html. Make sure you save this code in text format.

You can see the results in Figure 2.3, where all three overlapping triangles
appear.

™ Fireiox ~ e

Canvas Example

FIGURE 2.3 Drawing triangles.



24 LESSON 2: Drawing with the Canvas Element

Filling Line Art

You can also fill in the figures you draw with color. For example, here
we’ll see how to draw a solid green triangle.

In this case, you draw the triangle much like you did in the previous
task—using beginPath(), moveTo(), lineTo(), and closePath(). But when
it’s time to draw the triangle, you use the fill() function, not the stroke()
function.

The fill() function fills a figure with the canvas’s current fill color, which
you set with the fillStyle attribute. For example, here’s how we set the fill
color to light green:

» canvasl.fillStyle = “rgba(0, 200, 0, 0.5)”;

Here’s how to draw the entire green triangle:
1. Open canvas.html using a text editor such as Windows WordPad.

2. Add the following code to create the green triangle:

<script type="text/javascript">
function loader()
{
var canvas = document.getElementById
('canvas');
var canvasi = canvas.getContext('2d');

//Filled triangle

canvas1.fillStyle = "rgba(0, 200, 0, 0.5)";
canvas1.beginPath();

canvas1.moveTo (225, 25);
canvas1.lineTo (305, 25);
canvas1.lineTo (225, 105);
canvasi1.closePath();

canvas1.fill();

3. Save canvas.html. Make sure you save this code in text format.

You can see the results in Figure 2.4, where the filled triangle appears.



Drawing with Bezier Curves

-

Canvas Example

FIGURE 2.4 Drawing a filled triangle.

Drawing with Bezier Curves

‘Hrefox ¥ | o |

25

You’re not limited to drawing lines using lineTo. You can also draw Bezier

curves with the bezierCurveTo() function:

» bezierCurveTo(float cplx, float cply, float cp2x, float cp2y, float

X, float y);

Here’s an example that draws a red heart using Bezier curves:
1. Open canvas.html using a text editor such as Windows WordPad.

2. Add the following code to create the filled heart:

<script type="text/javascript">
function loader()
{
var canvas = document.getElementById
('canvas');

3
var canvasi = canvas.getContext('2d');

// Heart

canvas1.fillStyle = "rgba(200, 0, 0, 0.5)";

canvas1.beginPath();



26 LESSON 2: Drawing with the Canvas Element

canvas1.moveTo (75, 250);

canvas1.bezierCurveTo(75, 247, 70, 235, 50, 235);
canvasi1.bezierCurveTo(20, 235, 20, 272.5, 20, 272);
canvas1.bezierCurveTo(20, 290, 40, 312, 75, 330);
canvas1.bezierCurveTo(110, 312, 130, 290, 130, 272);
canvasi.bezierCurveTo (130, 272.5, 130, 235, 100, 235);
canvas1.bezierCurveTo(85, 235, 75, 247, 75, 250);
canvas1.closePath();

canvas1.fill();

3. Save canvas.html. Make sure you save this code in text format.

You can see the results in Figure 2.5, where the red heart appears.

| T — i
| Firefox ~ e

Canvas Example

FIGURE 2.5 Drawing a filled heart.



Drawing with Quadratic Curves 27

Drawing with Quadratic Curves

Besides the Bezier curves you saw in the previous task, you can also draw
with quadratic curves by using the quadraticCurveTo() function:

» quadraticCurveTo(float cpx, float cpy, float x, float y);

Here’s an example that draws a shape using quadratic curves:
1. Open canvas.html using a text editor such as Windows WordPad.

2. Add the following code to create the quadratic curve figure:

<script type="text/javascript">
function loader()
{
var canvas = document.getElementById
('canvas');
var canvasi = canvas.getContext('2d');

//Quadratic curves

canvas1.strokeStyle = "rgbha(o, 0, 0, 1)";
canvas1.beginPath();

canvas1.moveTo (275, 125);
canvas1.quadraticCurveTo (225, 125, 225, 162);
canvas1.quadraticCurveTo (260, 200, 265, 200);
canvas1.quadraticCurveTo (325, 200, 325, 162);
canvas1.quadraticCurveTo (325, 125, 275, 125);
canvas1.closePath();

canvasi.stroke();

3. Save canvas.html. Make sure you save this code in text format.

You can see the results in Figure 2.6, where the shape drawn with quadrat-
ic curves appears.



28 LESSON 2: Drawing with the Canvas Element

" Firelox ~ =

Canvas Example

FIGURE 2.6 Drawing with quadratic curves.

Drawing Arcs

The canvas control can also draw arcs with the arc function:

» arc(float x, float y, float radius, float startAngle, float endAngle,
boolean anticlockwise);

Here’s an example that draws a shape using quadratic curves:
1. Open canvas.html using a text editor such as Windows WordPad.

2. Add the following code to create the arcs (note the use of the
JavaScript constant Math.PI to get the value of pi):

<script type="text/javascript">
function loader()
{
var canvas = document.getElementById
('canvas');
var canvasi = canvas.getContext('2d');



/] Arcs
canvas1.
canvas1.

canvasi.
canvasi.

canvasi.
canvasi.

canvasi.
canvasi.
canvasi.
canvasi.

Drawing Arcs

beginPath();
arc(275, 275, 50,

moveTo (310, 275);
arc(275, 275, 35,

moveTo (300, 255);
arc(265, 255, 35,

moveTo (280, 255);
arc (245, 255, 35,
closePath();
stroke();

o,

o,

29

Math.PI * 2, true);

0.75 * Math.PI, false);

0.5 * Math.PI, false);

0.2 * Math.PI, false);

3. Save canvas.html. Make sure you save this code in text format.

You can see the results in Figure 2.7, where you can see the arcs.

| Fiiefox ~

Canvas Example

FIGURE 2.7 Drawing with arcs.



30 LESSON 2: Drawing with the Canvas Element

Drawing Text

You can draw text as well in the Canvas control. To do that, start by select-
ing a font to use by setting the Canvas control’s font attribute to a string
that contains the specification for the font you select, like this:

» canvasl.font = ‘italic 40px sans-serif’;

This line of JavaScript installs the italic san-serif font that is 40 pixels high
as the default font (if you don’t want italics, just omit “italic”).

After setting the font you want, you can draw text with a function like
strokeText (), which you pass the text you want to draw and that text’s
position, as we’ll do in this example:

1. Open canvas.html using a text editor such as Windows WordPad.

2. Add the following code to draw text:

<script type="text/javascript">
function loader()

{

var canvas = document.getElementById
('canvas');
var canvasi = canvas.getContext('2d');

canvasi.font = 'italic 40px sans-serif';
canvasi.strokeText("Hello!", 50, 400);
3. Save canvas.html. Make sure you save this code in text format.

You can see the results in Figure 2.8, where you can see the text at the bot-
tom of the figure.



The canvas.html Example Code

|0
| (&l
}{

Ll ]
r1ello!

FIGURE 2.8 Drawing text.

The canvas.html Example Code

Here’s the full code of the canvas.html example that we developed in this
lesson for reference:

<!DOCTYPE html>
<html>
<head>
<title>
Canvas Example
</title>

<script type="text/javascript">
function loader()
{
var canvas = document.getElementById
('canvas');
var canvasi = canvas.getContext('2d');
// Rectangles
canvas1.fillStyle = "rgba(0, 0, 200, 1)";
canvas1.fillRect (30, 30, 75, 70);



32

LESSON 2: Drawing with the Canvas Element

canvast.

fillStyle = "rgba(200,

200, 0, 1)";

canvas1.fillRect (70, 50, 55, 70);

canvas1.fillStyle = "rgba(200, 0, 0, 1)";
canvas1.fillRect (90, 50, 75, 50);

//Filled
canvasi
canvasi
canvasi
canvasi
canvasi
canvasi
canvasi

/1 Strok
canvasi
canvasi
canvasi
canvasi
canvasi
canvasi
canvasi

canvasi
canvasi
canvasi
canvasi
canvasi
canvasi

canvasi
canvasi
canvasi
canvasi
canvasi
canvasi

// Heart
canvasi
canvasi
canvasi
canvasi
canvasi
canvasi

triangle

ed triangles

.beginPath();
.strokeStyle = "rgba(200, 0, 0, 0.5)";
.moveTo(110, 205);
.lineTo (110, 125);
.1lineTo (30, 205);
.closePath();
.stroke();

.beginPath();
.moveTo (100, 205);
.lineTo (100, 125);
.lineTo (20, 205);
.closePath();
.stroke();

.beginPath();
.moveTo (90, 205);
.lineTo (90, 125);
.1lineTo (10, 205);
.closePath();
.stroke();

.fillStyle = "rgba (200,
.beginPath();

.moveTo (75, 250);
.bezierCurveTo(75, 247,
.bezierCurveTo (20, 235,
.bezierCurveTo (20, 290,

.fillStyle = "rgba(0, 200, 0, 0.5)";
.beginPath();
.moveTo (225, 25);
.1lineTo (305, 25);
.lineTo (225, 105);
.closePath();
LFill();

0, 0, 0.5)";

70, 235, 50, 235);
20, 272.5, 20, 272);
40, 312, 75, 330);



The canvas.html Example Code 33

canvasi.bezierCurveTo(110, 312, 130, 290, 130, 272);
canvas1.bezierCurveTo(130, 272.5, 130, 235, 100, 235);
canvas1.bezierCurveTo(85, 235, 75, 247, 75, 250);
canvasi.closePath();

canvas1.fill();

//Quadratic curves

canvas1.strokeStyle = "rgba(@, 0, 0, 1)";
canvas1.beginPath();

canvas1.moveTo (275, 125);
canvas1.quadraticCurveTo (225, 125, 225, 162);
canvas1.quadraticCurveTo (260, 200, 265, 200);
canvasi.quadraticCurveTo (325, 200, 325, 162);
canvas1.quadraticCurveTo (325, 125, 275, 125);
canvasl.closePath();

canvasl.stroke();

/| Arcs
canvas1.beginPath();
canvasi.arc(275, 275, 50, 0, Math.PI * 2, true);

canvas1.moveTo (310, 275);
canvast.arc(275, 275, 35, 0, 0.75 * Math.PI, false);

canvas1.moveTo (300, 255);
canvasi.arc(265, 255, 35, 0, 0.5 * Math.PI, false);

canvas1.moveTo (280, 255);
canvasl.arc(245, 255, 35, 0, 0.2 * Math.PI, false);
canvasl.closePath();

canvas1.stroke();

canvasi.font = 'italic 40px sans-serif';
canvas1.strokeText("Hello!", 50, 400); }
</script>
</head>

<body onload="loader()">
<hi1>Canvas Example</h1>
<canvas id="canvas" width="600"
height="500">
</canvas>

</body>
</html>



This page intentionally left blank



LESSON 3

Dragging and Dropping
with HTML5

HTMLS supports drag-and-drop operations, where you can move elements
and text around the browser window using a mouse or other pointing device.

That’s useful for such operations as letting the user move items into a
shopping cart, or letting them customize what elements appear in their
home page, and it’s a very popular part of HTMLS5.

Drag and drop is supported by a number of attributes added to HTMLS5
elements, such as the draggable attribute, which you set to true to make the
element draggable. However, you do most of the work supporting drag and
drop yourself, in a scripting language, such as JavaScript, as you’ll see.

Let’s jump into drag and drop operations immediately.

Welcome to Drag and Drop

From the point of view of HTMLS5 elements, drag and drop is pretty sim-
ple, involving these element attributes:

» Required attributes: draggable, ondragenter, ondragover, ondrop,
ondragstart, ondragend

» Supported browsers: Chrome, Firefox, Opera, Safari

The real story takes place in scripting languages such as JavaScript, as
you’ll see. You connect each of the “on” attributes, such as ondragstart, to
a JavaScript function like this for ondragstart, which occurs when the user
starts dragging a draggable element:

ondragstart = "return start(event)";

It’s up to you to write the code for the JavaScript function you connect to
each of the “on” attributes.




36 LESSON 3: Dragging and Dropping with HTML5

TIP: Note that all the “on” attributes start with “ondrag” with one
exception—ondrop, which occurs when you drop a dragged item.
It's worth bearing in mind that this attribute is ondrop, not ondrag-
drop, or you're going to confuse some browsers, which will not run
your code.

In this lesson, we’ll create the drag-and-drop example, draganddrop.html,
you see in Figures 3.1 and 3.2. There are three <div> elements that you
can drag around, labeled 1, 2, and 3. We’ve set up the example so that not
all <div> elements can be dropped on the large square targets in the page.
For example, if you try to drop <div> 1 onto the second target, you’ll just
get a “no” symbol, as shown in Figure 3.1, that indicates that target won’t
accept <div> 1. On the other hand, you can drop <div> 1 onto the third
target, as shown in Figure 3.2.

[~ Fireioa=]] [

Drag and Drop Example

FIGURE 3.1 Denying a drag-and-drop operation.



Getting to Know the Drag-and-Drop API

37

FIGURE 3.2 Allowing a drag-and-drop operation.

Now let’s take a look at the draggable attribute and the “on” attributes and
how you use them to support drag and drop.

Getting to Know the Drag-and-

[

Drag and Drop Example

Lo & ]

Drop API

You can read all about the drag-and-drop specification according to the
W3C at: http://dev.w3.org/html5/spec/dnd.html.

From an HTML point of view, drag and drop is supported with these

attributes:

>

>

draggable

ondragenter

ondragover

ondrop


http://dev.w3.org/html5/spec/dnd.html

38 LESSON 3: Dragging and Dropping with HTML5

» ondragstart

» ondragend

The draggable attribute of an element, as you might guess, is set to true if
you want to allow that element to be dragged. The “on” attributes are used
to connect JavaScript functions to various events. For example, you use
ondragenter to call a JavaScript function when a draggable element is
being dragged over another element (and in the JavaScript function, you
can indicate to the browser whether you can drop the draggable item
there).

Let’s take a look at each of these attributes briefly; then we’ll put them to
work in the draganddrop.html example.

The draggable Attribute

The draggable attribute is the most basic of all drag-and-drop attributes. To
make an element draggable, you set its draggable attribute to true:

<div id="draggable3" draggable="true">
</div>

Doing so informs the browser that this element can be dragged, but setting
this attribute isn’t all that’s needed—you also have to connect up
JavaScript functions to the “on” attributes to make this work.

The ondragenter Attribute

Drag enter events occur in a drop target when the user drags a draggable
element over that target.

You can connect this event to a JavaScript handler function (which it’s up
to you to write) like this:

<div id="targeti1"
ondragenter="return enter(event)"

Note that this event occurs in drop targets, not in draggable elements.



Getting to Know the Drag-and-Drop API 39

The ondragover Attribute

Dragover events occur in a drop target while users drag a draggable ele-
ment over that target. You can connect this event to a JavaScript handler
function like this:

<div id="targeti1"
ondragenter="return enter(event)"
ondragover="return over(event)"

This event occurs in drop targets.

The ondrop Attribute

Drop events occur in a drop target while users drop a draggable element
onto that target. You can connect this event to a JavaScript handler func-
tion like this:
<div id="targett"

ondragenter="return enter(event)"

ondragover="return over(event)"
ondrop="return drop(event)">

This event occurs in drop targets; note that it’s ondrop, not ondragdrop!

The ondragstart Attribute

This event occurs in draggable elements when users start dragging them.
You can connect JavaScript function handlers to this event like this:

<div id="draggablei1" draggable="true"
ondragstart="return start(event)"

This event occurs in draggable elements.



40 LESSON 3: Dragging and Dropping with HTML5

The ondragend Attribute

This event occurs in draggable elements when users stop dragging them.
You can connect JavaScript function handlers to this event like this:
<div id="draggable1" draggable="true"

ondragstart="return start(event)"
ondragend="return end(event)">1

This event occurs in draggable elements.

The dataTransfer Object

There is one more item you should know about—the dataTransfer that
comes built in to event objects in HTML5—because it offers support for
drag-and-drop operations. You access this object through the event object
passed to you when drag-and-drop operations start.

For example, the dataTransfer object has a property named effectAllowed
that lets you specify what drag-and-drop operation is allowed. It has func-
tions named setData() and getData() to allow you to specify what data you
want to drag and drop with a draggable element, and another function
named setDraglmage() lets you specify the image of the item being
dragged.

Here’s how using dataTransfer in JavaScript might work, where we’re
specifying that move operations are OK, storing the ID of the draggable
element so we know what element to move when the drag operation is
complete, and setting the image that the user drags to be a copy of the
draggable element that the mouse clicked (as given by the event object e’s
target attribute):

e.dataTransfer.effectAllowed="move"';
e.dataTransfer.setData("Data",

e.target.getAttribute('id'));
e.dataTransfer.setDragImage(e.target, 0, 0);

To make this clear, let’s see all this at work in an example.



Starting the Drag-and-Drop Example 41

Starting the Drag-and-Drop
Example

To show how to put drag and drop to work, we’re going to create an exam-
ple named draganddrop.html, which you can see running in Figures 3.1
and 3.2, and whose code appears in its entirety at the end of this lesson.

To get started with the draganddrop.html example, follow these steps:

1. Create draganddrop.html using a text editor such as Windows
WordPad.

2. Enter the following code to create the three targets onto which
draggable elements can be dropped. Note that we will use <div>
elements for the targets and that we connect the drag-and-drop
events that targets support to JavaScript functions that we will
write later.

<!DOCTYPE HTML>
<html>
<head>
<title>
Drag and Drop Example
</title>
</head>

<body>
<h1>Drag and Drop Example</h1>

<div id="targett"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">
</div>

<div id="target2"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">
</div>

<div id="target3"
ondragenter="return enter(event)"
ondragover="return over(event)"



42 LESSON 3: Dragging and Dropping with HTML5

ondrop="return drop(event)">
</div>
</body>
</html>

3. Add the following code to create the three draggable <div> ele-
ments as children of the first target. Note that we set each drag-
gable <div> element’s draggable attribute to true and also con-
nect the events that draggables support to JavaScript functions,
which we will write later.

<!DOCTYPE HTML>
<html>
<head>
<title>
Drag and Drop Example
</title>
</head>

<body>
<h1>Drag and Drop Example</hi1>

<div id="targett"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">

<div id="draggable1" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">1
</div>

<div id="draggable2" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">2
</div>

<div id="draggable3" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">3
</div>
</div>

<div id="target2"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">
</div>



Styling the Draggable and Target Elements 43

<div id="target3"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">
</div>
</body>
</html>

4. Save draganddrop.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now we’ve got our example started with the three targets and three drag-
gable elements. All that is invisible so far, however, so we will style them
next.

Styling the Draggable and Target
Elements

In this task, we’ll make the <div> elements we use for the targets and
draggables visible. In particular, we’ll style the targets in cyan and the
draggables in orange.

To do so, follow these steps:

1. Open draganddrop.html using a text editor such as Windows
WordPad.

2. Add the following code to style the draggable <div> elements
and the target <div> elements, as well as give them a size.

<!DOCTYPE HTML>
<html>
<head>
<title>
Drag and Drop Example
</title>

<style type="text/css">
#target1, #target2, #target3

{



LESSON 3: Dragging and Dropping with HTML5

float:left; width:250px; height:250px;
padding:10px; margin:10px;

}

#draggable1, #draggable2, #draggable3

{
width:75px; height:70px; padding:5px;
margin:5px;

}

#target1 {background-color: cyan;}
#target2 {background-color: cyan;}
#target3 {background-color: cyan;}

#draggable1 {background-color: orange;}

#draggable2 {background-color: orange;}

#draggable3 {background-color: orange;}
</style>

</head>

<body>
<h1>Drag and Drop Example</h1>

<div id="targett"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">

<div id="draggablei1" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event) ">1
</div>

<div id="draggable2" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">2
</div>

<div id="draggable3" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">3
</div>
</div>

<div id="target2"
ondragenter="return enter(event)"



Styling the Draggable and Target Elements

45

ondragover="return over(event)"
ondrop="return drop(event)">
</div>

<div id="target3"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">
</div>
</body>
</html>

3. Save draganddrop.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-

text format, which won’t work with browsers).

Now you can see the draggables and the targets as shown in Figure 3.3.

[ [

Drag and Drop Example

FIGURE 3.3 The draggables and targets in draganddrop.html.



46 LESSON 3: Dragging and Dropping with HTML5

Starting the Drag Operation

When the user starts dragging a draggable <div> element in our example,
that <div> element’s ondragstart event occurs, and we’ve tied that event to
a JavaScript function named start().

In this task, we’ll write the start() function to get the dragging operation
started. That involves three steps: setting the allowed drag operation to
“move” so the draggable <div> element that the user wants to drag may be
dragged, storing the ID of the element that’s being dragged so we can
move it when it’s dropped, and setting the image that the user will drag
around.

To do all these things, follow these steps:

1. Open draganddrop.html using a text editor such as Windows
WordPad.

2. Add the following code to the <head> section of dragdrop.html,
starting a new <script> element, and creating the start() function:
<script type="text/javascript">

function start(e)

{

3. Add the following code to the start() function to indicate that the
draggable <div> element the user is attempting to drag may
indeed be moved (which you do by setting the
dataTransfer.effectAllowed property of the event object passed to
the start() function to “move”):
<script type="text/javascript">

function start(e)

{

e.dataTransfer.effectAllowed='move';



Allowing Dragged Objects to Enter the Targets 47

4. Add the following code to the start() function to store the ID of
the <div> element being dragged so we can move it when it’s
dropped:
<script type="text/javascript">

function start(e)

{

e.dataTransfer.effectAllowed="move';
e.dataTransfer.setData("Data",
e.target.getAttribute('id'));

5. Add the following code to the start() function to set the drag
image to the draggable <div> element, with an offset of (0, 0):
<script type="text/javascript">

function start(e)

{
e.dataTransfer.effectAllowed="'move';
e.dataTransfer.setData("Data",
e.target.getAttribute('id'));
e.dataTransfer.setDragImage(e.target, 0, 0);
return true;

6. Save draganddrop.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now the user will be able to drag the draggable <div> elements in this
example.

Allowing Dragged Objects to
Enter the Targets

When the user drags a draggable <div> element to a target <div> element,
the target <div> element’s ondragEnter event occurs. We’ve tied that event
to a JavaScript function named enter(), and in that function, we want to
indicate that draggable objects are allowed to enter the target by returning
a value of true from the enter() function.



48 LESSON 3: Dragging and Dropping with HTML5

To do that, follow these steps:

1. Open draganddrop.html using a text editor such as Windows
WordPad.

2. Add the following code to the <script> section of dragdrop.html,
creating the enter() function and returning a value of true from it,
indicating that draggable elements may enter a target:
function enter(e)

{

return true;

}

3. Save draganddrop.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now the user will be able to drag the draggable <div> elements to the
targets.

Allowing Dragged Objects to Be
Dropped on Certain Targets

When the user drags a draggable <div> element over a target, that target’s
ondragover event occurs, and we’ve tied that event to a function named
over(). You can use the over() function to indicate whether the dragged
item may be dropped on the current target. If you return a value of true
from this function, the dragged item may not be dropped; returning a value
of false means that it can be dropped.

To create the over() function, follow these steps:

1. Open draganddrop.html using a text editor such as Windows
WordPad.

2. Add the following code to the <script> section of dragdrop.html,
creating the over() function and getting the ID of the dragged
item (iddraggable) and the ID of the target (id):
function over(e)

{

var iddraggable =



Allowing Dragged Objects to Be Dropped on Certain Targets 49

e.dataTransfer.getData("Data");
var id = e.target.getAttribute('id');

3. Add the following code to the over() function to indicate that any
dragged item may be dropped on target 1, that draggable <div>
element 3 may be dropped on target 2 only, and that draggable
<div> elements 1 and 2 may be dropped on target 3 only:

function over(e)

{
var iddraggable =
e.dataTransfer.getData("Data");
var id = e.target.getAttribute('id');

if(id =='target1')
return false;

if((id =="'target2')
&& iddraggable == 'draggable3')
return false;

else if(id =='target3’
&& (iddraggable == 'draggableil' |,
iddraggable =='draggable2'))
return false;

else
return true;

4. Save draganddrop.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now you’ve indicated to the browser which draggable <div> elements may
be dropped on which target <div> elements.



50 LESSON 3: Dragging and Dropping with HTML5

Handling Drop Events

When the user drops a draggable <div> element on an allowed target
<div> element, how do we move the draggable <div> to the target? That
turns out to be simple—we’ll just use the built-in JavaScript function
appendChild to append the draggable <div> element to the current target
<div> element.

When the user drops a draggable <div> element on a target, the ondrop
event occurs in the target element, and we have connected a JavaScript
function named drop() to implement the drop operation. To add drop() to
the draganddrop.html example, follow these steps:

1. Open draganddrop.html using a text editor such as Windows
WordPad.

2. Add the following code to the <script> section of dragdrop.html,
creating the drop() function and getting the ID of the dragged
item (iddraggable):

function drop(e)

{
var iddraggable =
e.dataTransfer.getData("Data");

3. Add the following code to the drop() function to append the
draggable <div> element to the target <div> element, as well as
stopping further propagation of the event in the browser with the
stopPropagation() function (returning a value of false also stops
further propagation of the event):

function drop(e)
{
var iddraggable =
e.dataTransfer.getData("Data");
e.target.appendChild
(document.getElementById(iddraggable));
e.stopPropagation();
return false;

}



Ending Drop Operations 51

4. Save draganddrop.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now you’ve handled the drop operation.

Ending Drop Operations

When a draggable <div> element is dropped, its ondragEnd event occurs,
and we’ve tied that event to the JavaScript function end(). We’ll add code
to the end() function to clear the data stored in the dataTransfer object
(that is, the ID of the element being dragged) now that the drop operation
is finished. Just follow these steps:

1. Open draganddrop.html using a text editor such as Windows
WordPad.

2. Add the following code to the <script> section of dragdrop.html,
creating the end() function and then ending the <script> section
in draganddrop.html:

function end(e)

{

e.dataTransfer.clearData("Data");
return true

}

</script>

3. Save draganddrop.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now you’ve completed the draganddrop.html example and can drag and
drop using any supported browser, as shown in Figure 3.4.



52 LESSON 3: Dragging and Dropping with HTML5

[ o= [T

Drag and Drop Example

FIGURE 3.4 Dragging and dropping with draganddrop.html.

The draganddrop.html Example
Code

Here’s the full code of the draganddrop.html example that we developed in
this lesson for reference:

<!DOCTYPE HTML>
<html>
<head>
<title>
Drag and Drop Example
</title>

<style type="text/css">
#targetl1, #target2, #target3
{
float:left; width:250px; height:250px;
padding:10px; margin:10px;
}



The draganddrop.html Example Code

#draggablei, #draggable2, #draggable3

{
width:75px; height:70px; padding:5px;
margin:5px;

}

#targeti1 {background-color: cyan;}
#target2 {background-color: cyan;}
#target3 {background-color: cyan;}

#draggable1 {background-color: orange;}

#draggable2 {background-color: orange;}

#draggable3 {background-color: orange;}
</style>

<script type="text/javascript">

function start(e)

{
e.dataTransfer.effectAllowed="'move';
e.dataTransfer.setData("Data",

e.target.getAttribute('id'));

e.dataTransfer.setDragImage(e.target, 0, 0);
return true;

}

function enter(e)

{

return true;

}

function over(e)
{
var iddraggable =
e.dataTransfer.getData("Data");
var id = e.target.getAttribute('id');

if(id =='targetl')
return false;

if((id =='target2')
&& iddraggable == 'draggable3')
return false;

else if(id =='target3'
&& (iddraggable == 'draggabletl' |,



54 LESSON 3: Dragging and Dropping with HTML5

iddraggable =='draggable2'))
return false;

else
return true;

}

function drop(e)
{
var iddraggable =
e.dataTransfer.getData("Data");
e.target.appendChild
(document.getElementById(iddraggable));
e.stopPropagation();
return false;

}

function end(e)
{
e.dataTransfer.clearData("Data");
return true
}
</script>
</head>

<body>
<h1>Drag and Drop Example</h1>

<div id="targett"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">

<div id="draggablei" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">1
</div>

<div id="draggable2" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">2
</div>

<div id="draggable3" draggable="true"
ondragstart="return start(event)"
ondragend="return end(event)">3



The draganddrop.html Example Code

</div>
</div>

<div id="target2"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">
</div>

<div id="target3"
ondragenter="return enter(event)"
ondragover="return over(event)"
ondrop="return drop(event)">
</div>
</body>
</html>

55



This page intentionally left blank



LESSON 4
Web Form Controls

HTML has always supported form controls using the <input> element,
such as text boxes:

<input name="text" type="text">

or radio buttons:

<input name="radio" type="radio">

You create such controls using the <input> element with the type attribute
set to the type of control you want (check box, radio button, text field),
and the name attribute set to the name of the control as you’ll reference it
in code (in a scripting language like JavaScript or a server-side language
like PHP).

HTMLS extends the number of form controls available to you, adding
such controls as a date-time picker and a numeric range control. Those
new controls are the focus of this lesson.

We’ll also create an example in this lesson, webforms.html, that displays
the new controls. The only browser that displays the new controls so far is
the Opera browser, so this example runs in Opera. We’ll also create a small
PHP server-side program that displays the value you entered into the date
time picker control when you click the Submit button in this example to
show how you can extract data from these controls on the server (but note
that you don’t have to know PHP to read this book).

For reference, you can read what W3C has to say about the web form
controls at www.whatwg.org/specs/web-apps/current-work/multipage/
the-input-element.html#attr-input-type.

Let’s jump into web form controls now.



www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html#attr-input-type
www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html#attr-input-type

58 LESSON 4: Web Form Controls

Welcome to Web Form Controls

As mentioned, you create web form controls with the <input> element,
setting the type attribute to indicate which control you want:

Element: <input>

Required attributes: You specify which web form control you want with
the type attribute.

Supported browsers: Opera

Which controls are available in HTMLS5? You can see the list by type
attribute in HTMLS5 in Table 4.1 (not all are new to HTMLYS5, of course).

TABLE 4.1 The Web Form Controls

Type Control Type

button A button

checkbox A check box

color A color well

date A date control

datetime A date and time control

datetime-local

A date and time control

email A text field

file A label and a button

hidden n/a

image Either a clickable image or a button
month A month control

number A text field or spinner control
password Text field that obscures data entry
radio A radio button

range A slider control or similar

reset A button

search Search field

submit A button

tel A text field

text Text field



Welcome to Web Form Controls 59

TABLE 4.1 The Web Form Controls

Type Control Type
time A time control
url A text field
week A week control

In this lesson, we’re going to create an example named webforms.html that
focuses on the new HTMLS controls, as shown in Figure 4.1, running in
the Opera browser.

O Web Form Example - Opera |

Web Form Example

Diefanit

Numbser 40 5

Date -

Week -

Meonth -

Time 00:00 (%)

Datetane 2010-0816 [{112.00 5
1 September

0 Tuw led T Fri St

Local Datetime ||

Color

Search Query

Submil

Today HNong

FIGURE 4.1 The webforms.html example.

As a demonstration, we’ll also write a small program, webforms.php, in
the PHP language, that will run on a server and will read the value entered
into the datetime control in webforms.html and report that value, as shown
in Figure 4.2. By reading data from a particular control, the PHP script
shows how to read data from any web form control on the server, if that’s
what you want to do.

Now let’s get deeper into the web form controls, taking a look at which
attributes and function are available.



60 LESSON 4: Web Form Controls

U] o

¥ Reading data trom dat.. + @

Reading data from datetime
controls

You entered: 2010-06-09T12:00Z

FIGURE 4.2 Reading the value from a datetime control.

Getting to Know the Web Form
Controls API

You know that you create web form controls with the <input> element,
setting the type attribute as shown in Table 4.1. But what other attributes
are available for each control? For example, when you use a range con-
trol—which lets the user specify values using a slider—you can use min
and max attributes in the <input> element in addition to the type attribute.

Table 4.2 shows which attributes are allowed with which controls. In addi-
tion, each control has built-in functions, which can be called in JavaScript
when you access the control as an object, and you’ll find those functions
in Table 4.3. Finally, many controls have built-in events that occur when
the user enters data; you’ll find those events in Table 4.4.



TABLE 4.2 Allowed Control Attributes

Date
and
Time, Local
Text, Date, Date
Search, Month, and Checkbox, Reset
URL, Pass- Week, Time, Radio File Submit Image Button,
Hidden Telephone E-mail word Time Number Range Color Button Upload Button Button Button
accept . . . . . . . . . X
autocomplete - X X X X X X X
checked . . . . . . . . X
formaction X X
formenctype X X
formmethod X X
formnovalidate X X
formtarget X X
height X

IdY SI03UOD W04 GBM BY} Mouy 0} BuIjen

19



TABLE 4.2 Allowed Control Attributes

Date
and
Time, Local
Text, Date, Date
Search, Month, and Checkbox, Reset
URL, Pass- Week, Time, Radio File Submit Image Button,
Hidden Telephone E-mail word Time Number Range Color Button Upload Button Button Button
list X X X X X X
max X X X
maxlength X X X
min X X X
multiple X X
pattern X X X
placeholder X X X
readonly X X X X X
required X X X X X X X
size X X X
src X
step X X X
width X

9

S[|0JIU0D W04 g9M & NOSSaT



TABLE 4.3 Built-in Control Data Attributes and Functions

Date
and
Time, Local
Text, Date, Date
Search, Month, and Reset
URL, Week, Time, Checkbox, Submit  Image Button,
Telephone E-mail Password Time Number Range Color Radio Button File Upload Button Button Button
checked X
files X
value value value value value value value value default/on filename default default default
valueAsDate X
valueAsNumber - X
list X X X X X X
selectedOption X X X X X X
select() X X X
selectionStart X X X
selectionEnd X X X
setSelection X X X

Range()
stepDown()

stepUp()

IdY SI03UOD W04 GBM BY} Mouy 0} BuIjen

€9



*G'H 9[qRL, Ul [01U0D Yord Aq pauanjal sadA) vjep oY) 99s Ued NOX ‘vlep
PINBWLIOJ WINIAI SISYI0 ‘STUINS 1X3) S[dWIS WINIST S[OIIUOD SWOS SLAIIYA

TABLE 4.4 Control Events

Date
and
Time, Local
Text, Date, Date
Search, Month, and Checkbox, Reset
URL, Week, Time, Radio File Submit Image Button,
Hidden Telephone E-mail Password Time Number Range Color Button Upload Button Button Button
input - X X X X X X
change - X X X X X X X X

79

S[|0JIU0D W04 g9M & NOSSaT



Getting to Know the Web Form Controls API 65

TABLE 4.5 Control Data Types

Type Data Type

button n/a

checkbox A set of zero or more values from a predefined list

color An sRGB color with 8-bit red, green, and blue components

date A date (year, month, day) with no time zone

datetime A date and time (year, month, day, hour, minute, second,
fraction of a second) with the time zone set to UTC

datetime- A date and time (year, month, day, hour, minute, second,

local fraction of a second) with no time zone

email An email address or list of email addresses

file Zero or more files each with a MIME type and optionally a
filename

hidden An arbitrary string

image A coordinate, relative to a particular image’s size, with the
extra semantic that it must be the last value selected and
initiates form submission

month A date consisting of a year and a month with no time zone

number A numerical value

password Text with no line breaks (sensitive information)

radio An enumerated value

range A numerical value, with the extra semantic that the exact
value is not important

reset n/a

search Text with no line breaks

submit An enumerated value, with the extra semantic that it must
be the last value selected and initiates form submission

tel Text with no line breaks

text Text with no line breaks

time A time (hour, minute, seconds, fractional seconds) with no
time zone

url An absolute IRI

week A date consisting of a week-year number and a week num-

ber with no time zone




66 LESSON 4: Web Form Controls

Starting the Web Forms Example

In this lesson, we’re going to put the new HTML5 controls to work in an
example, webforms.html, which you can see in Figure 4.1.

To get started with the webforms.html example, follow these steps:

1. Create webforms.html using a text editor such as Windows
WordPad.

2. Enter the following code to create the HTML table that will
enclose the web form controls, and add the Submit button.

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>
<h1>Web Form Example</h1>
<form method="post" action="webforms.php">
<table border="1" cellpadding="5">

<input type="submit" value="Submit">
</form>
</body>
</html>

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Now that we’ve started webforms.html, let’s begin adding some web form
controls.



Creating a Default Control 67

Creating a Default Control

If you don’t specify the type of control you want to create, you’ll get a text
field, as shown in this task.

Follow these steps:

1. Open webforms.html using a text editor such as Windows
WordPad.

2. Add the following code to create a default control, without speci-
fying a type attribute. Note the autofocus attribute, which means
that the blinking cursor will appear in this control when the page
loads, and the placeholder attribute, which lets you set placehold-
er text in the control. (This doesn’t work in any browser yet.)

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>

<h1>Web Form Example</h1>

<form method="post" action="webforms.php">
<table border="1" cellpadding="5">
<tr>
<td>Default</td><td><input name="name"
placeholder="Enter your nickname" autofocus>
</td>
</tr>

<input type="submit" value="Submit">
</form>
</body>
</html>



68 LESSON 4: Web Form Controls

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Now the default control appears as a text field, as you can see at the top of
Figure 4.1.

Creating a URL Control

You can also create URL fields; just follow these steps:

1. Open webforms.html using a text editor such as Windows
WordPad.

2. Add the following code to create a URL control.

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>

<h1>Web Form Example</h1>

<form method="post" action="webforms.php">
<table border="1" cellpadding="5">
<tr>
<td>Default</td><td><input name="name"
placeholder="Enter your nickname" autofocus>
</td>
</tr>
<tr>
<td>URL</td><td><input name="url"

type="url"></td>

</tr>

<input type="submit" value="Submit">
</form>
</body>
</html>



Creating an Email Control 69

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

The browser will try to format the text you entered into this field as a
proper URL, starting with http://. If it can’t do that, it will display an error.

Creating an Email Control

HTMLS also supports email controls; just follow these steps:

1. Open webforms.html using a text editor such as Windows
WordPad.

2. Add the following code.

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>
<h1>Web Form Example</h1>
<form method="post" action="webforms.php">
<table border="1" cellpadding="5">

<tr>

<td>Email</td><td><input name="email"
type="email"></td>

</tr>

<input type="submit" value="Submit">
</form>
</body>
</html>



70 LESSON 4: Web Form Controls

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

The browser will try to format the text you entered into this field as an
email address. If it can’t, it will display an error, as you see in Figure 4.3.

ey ——
| [E] web torm t-:ample_ L* =
Web Form Example
Defanlt [
URL
Email ddd I
=r]ddd is not a legal T
Range email address
Numnbe 40 §
Date I - . i

FIGURE 4.3 An email control error.

Creating Range and Number
Controls

You can create range and number controls as well; just follow these steps:

1. Open webforms.html using a text editor such as Windows
WordPad.
2. Add the following code.

<!DOCTYPE html>
<html>



Creating Range and Number Controls

<head>
<title>
Web Form Example
</title>
</head>

<body>
<h1>Web Form Example</h1>
<form method="post" action="webforms.php">
<table border="1" cellpadding="5">

<tr>

<td>Range</td><td><input name="range"
type="range" min="0" max="100" step="5"
value="40"></td>

</tr>

<td>Number</td><td><input name="number"
type="number" min="0" max="100"
step="5" value="40"></td>

</tr>

<input type="submit" value="Submit">
</form>
</body>
</html>

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

As you can see in Figure 4.1, the range control displays a slider, and the
number control displays up and down arrows. Both allow you to enter a
number. Note the min and max attributes, which let you set the allowed
range of values, the step attribute, which lets you set the value increment,
and the value attribute, which lets you specify the default value of the
control.



72 LESSON 4: Web Form Controls

Creating Date and Time Controls

You can create date and time controls. In this task, we’ll create these
controls:

» Date

» Time

> Week

» Month
» Datetime

» Local Datetime

To create these controls, follow these steps:

1. Open webforms.html using a text editor such as Windows
WordPad.

2. Add the following code.

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>
<h1>Web Form Example</h1>
<form method="post" action="webforms.php">
<table border="1" cellpadding="5">

<tr>



Creating Date and Time Controls 73

<td>Date</td><td><input name="date"
type="date"></td>

</tr>

<tr>

<td>Week</td><td><input name="week"
type="week"></td>

</tr>

<tr>

<td>Month</td><td><input name="month"
type="month"></td>

</tr>

<tr>

<td>Time</td><td><input name="time"
type="time"></td>

</tr>

<tr>

<td>Datetime</td><td><input name="datetime"
type="datetime"></td>

</tr>

<tr>

<td>Local Datetime</td><td><input
name="datetimelocal"
type="datetime-local"></td>

</tr>

<tr>

<input type="submit" value="Submit">
</form>
</body>
</html>

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text

format, which won’t work with browsers).

To let the user select dates, a date pop-up appears, as shown in Figure 4.4.



74 LESSON 4: Web Form Controls

(U | e
| [= Web Form Example | + | @
Month - a
Time =,
Datctime I : Burc
<]  September [»]2010/F
Local £ : )
1
Da.tehlme Weak Mon Tis Wed Thu Fri Sat Sun
1.2 A4 &
’ 8 7 % 3 101 13
S 13 14 16 18 17 18 19
2021 22324 25 26 L
Search Query 27 28 29 30 E
[ml Today | None

FIGURE 4.4 Date and time controls.

Creating a Color Control

You can let the user select colors with a color control.

Follow these steps:

1. Open webforms.html using a text editor such as Windows
WordPad.

2. Add the following code.

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>
<h1>Web Form Example</h1>
<form method="post" action="webforms.php">
<table border="1" cellpadding="5">



Creating a Search Control 75

<tr>

<td>Color</td><td><input name="color"
type="color"></td>

</tr>

<input type="submit" value="Submit">
</form>
</body>
</html>

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Currently, you can enter hexadecimal color values (as normally used in
HTML) like “ffffff” or “f89f8a” in color controls, but it’s not unreasonable
to assume that in the future, color pickers that display clickable tables of
colors will be used.

Creating a Search Control

You can let the user enter search strings with search controls.
Follow these steps:

1. Open webforms.html using a text editor such as Windows
WordPad.

2. Add the following code.

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>
<h1>Web Form Example</h1>
<form method="post" action="webforms.php">
<table border="1" cellpadding="5">



76 LESSON 4: Web Form Controls

<tr>

<td>Search Query</td><td><input name="query"
type="search"></td>

</tr>

<input type="submit" value="Submit">
</form>
</body>
</html>

3. Save webforms.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

The webforms.html Example Code

Following is the full code of the webforms.html example that we devel-
oped in this lesson for reference:

<!DOCTYPE html>
<html>
<head>
<title>
Web Form Example
</title>
</head>

<body>

<h1>Web Form Example</h1>

<form method="post" action="webforms.php">
<table border="1" cellpadding="5">
<tr>
<td>Default</td><td><input name="name"
placeholder="Enter your nickname" autofocus>
</td>
</tr>
<tr>
<td>URL</td><td><input name="url"

type="url"></td>

</tr>
<tr>



The webforms.html Example Code

<td>Email</td><td><input name="email"
type="email"></td>

</tr>

<tr>

<tr>

<td>Range</td><td><input name="range"
type="range" min="0" max="100" step="5"
value="40"></td>

</tr>

<td>Number</td><td><input name="number"
type="number" min="0" max="100"
step="5" value="40"></td>

</tr>

<tr>

<td>Date</td><td><input name="date"
type="date"></td>

</tr>

<tr>

<td>Week</td><td><input name="week"
type="week"></td>

</tr>

<tr>

<td>Month</td><td><input name="month"
type="month"></td>

</tr>

<tr>

<td>Time</td><td><input name="time"
type="time"></td>

</tr>

<tr>

<td>Datetime</td><td><input name="datetime"
type="datetime"></td>

</tr>

<tr>

<td>Local Datetime</td><td><input
name="datetimelocal"
type="datetime-local"></td>

</tr>

<tr>

<td>Color</td><td><input name="color"
type="color"></td>

</tr>

<tr>

<td>Search Query</td><td><input name="query"



78 LESSON 4: Web Form Controls

type="search"></td>

</tr>
</table>
<pbr>
<input type="submit" value="Submit">

</form>

</body>
</html>

The webforms.php Example Code

Here’s the full code of webforms.php that reads the datetime control and
reports its value. If you want to use this code, you’ll have to place it on a
server that runs PHP in the same directory as webforms.html:

<html>
<head>
<title>
Reading data from datetime controls
</title>
</head>
<body>
<h1>
Reading data from datetime controls
</h1>
You entered:
<?php
echo $_REQUEST[ "datetime"];
?>
</body>
</html>



LESSON 5
Inline Editing

HTMLS specifies that you can make elements editable—that is, let the user
edit its content. In fact, you can make a whole document editable, which is
what we’ll discuss in this lesson.

That’s not to say that we’re talking about text fields either—when you
make an element editable, you can include all kinds of elements, such as
<div> elements.

In this lesson, we’ll make a <div> element editable, which means that
when a user clicks it, a text-insertion caret appears, and the user can type.
Users can also format the text, as we’ll see.

In addition, we’ll make a whole document editable, including an <iframe>
element. We’ll even let users spell check their text.

Let’s jump into inline editing now.

Welcome to Inline Editing

You can use three attributes with inline editing:
» contenteditable—Makes individual HTML elements editable
» designmode—Makes a whole document editable

» spellcheck—Enables spellchecking

Let’s take a quick look at these attributes.

Making Elements Editable: contenteditable
Works in: Chrome, Firefox, IE, Safari, Opera




80 LESSON 5: Inline Editing

In HTMLYS, you can use the contenteditable attribute to make an element
editable. This attribute takes three settings:

» true—Makes the element content editable
» false—Makes the element content not editable
» inherit—Makes this attribute the same as the element’s parent

element

We’ll be setting contenteditable to true in our <div> element in our edit-
div.html example to let the user enter text into the <div> element.

Making Documents Editable: designmode
Works in: Chrome, Firefox, IE, Safari, Opera

This attribute is an attribute of the document itself and can make the entire
document editable. The designmode attribute can take two settings:

» on—Turns designmode on, which makes the document editable
» off—Turns designmode off, which makes the document not

editable

We’ll set the document’s designmode attribute to “on” in our
deditiframe.html example, letting the user edit the document in an
<iframe> element.

Enabling Spell Checking: spelicheck

Works in: Firefox

When you edit the content of an element like a <div> element, the browser
may let you spellcheck your text. The spellcheck attribute can take two
values:

» true—Turn spellchecking on

» false—Turn spellchecking off

We’ll see how to use spellchecking in a <div> element in Firefox.



Starting the editdiv.html Example 81

Let’s see all this at work in an example, starting by making a <div> ele-
ment editable in the editdiv.html example.

Starting the editdiv.html Example

In this lesson, we’re going to put the new HTMLS contenteditable attribute
to work with a <div> element, letting the user enter text as you can see in
Figure 5.1.

Firefox = | = x|

ILditable <div> Element

Bold Italic Underline Add Link Display Source

[Here is some texii

s

FIGURE 5.1 The editdiv.html example.

We’ll also see how to format the text, so this example will include Bold,
Italic, and Underline buttons, as you see in the figure. We’ll let users add
links to their text and see what the final text looks like with the appropriate
HTML formatting added when they click the Display Source button.

To get started with the editdiv.html example, follow these steps:

1. Create editdiv.html using a text editor such as Windows
WordPad.



82 LESSON 5: Inline Editing

2. Enter the following code:

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;div&gt; Element
</title>
</head>

<body>
<h1>Editable &lt;div&gt; Element</h1>

</body>
</html>

3. Enter the following code to create the <div> element, setting its
contenteditable attribute to true.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;div&gt; Element
</title>
</head>

<body>
<h1>Editable &lt;div&gt; Element</h1>

<div id="div" style='border:solid
black; height: 300px; width: 400px'
contenteditable="true">

</div>

</body>
</html>

4. Save editdiv.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text

format, which won’t work with browsers).

Now we’ve started editdiv.html, as you can see in Figure 5.1.



Adding a Bold Button 83

Adding a Bold Button

You can let the user make text in the editable <div> element bold—and it’s
easy. Users select the text they want bold with the mouse, and then click
the Bold button. It’s up to you to then send the command “bold” to the
document.

To send the bold command to the document, you use the JavaScript
execCommand() function, passing it these argument:

object.execCommand(sCommand [, bUserInterface] [, vValue])

The arguments mean the following:

» sCommand Required—This is a string that specifies the com-
mand to execute.

» bUserInterface Optional—A true/false value that specifies one of
the following:

> true
» Display a user interface.
> false
» Default. Do not display a user interface.

» vValue Optional. Specifies a value to assign.

In this case, we’ll send the bold command like this:

document.execCommand('bold', false, null);

To add the Bold button to this example, follow these steps:
1. Open editdiv.html using a text editor such as Windows WordPad.

2. Add the following code to create a new <div> element for the
buttons in this example.

<!DOCTYPE html>
<html>



84 LESSON 5: Inline Editing

<head>
<title>
Editable &l1t;div&gt; Element
</title>
</head>

<body>
<hi1>Editable &lt;div&gt; Element</h1>
<div>

</div>

<br>

<div id="div" style='border:solid
black; height: 300px; width: 400px'
contenteditable="true">

</div>

</body>
</html>

3. Add the following code to create the Bold button and send the

bold command when it is clicked.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;div&gt; Element
</title>
</head>

<body>
<hi1>Editable &1lt;div&gt; Element</h1>
<div>
<input type="button" value="Bold"

onclick="document.execCommand('bold', false,

null);">
</div>
<br>
<div id="div" style='border:solid
black; height: 300px; width: 400px'
contenteditable="true">
</div>



Adding an Italic Button 85

</body>
</html>

4. Save editdiv.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Now the user can select text and click the Bold button to make that text
bold, as shown in Figure 5.2.

FHiretox ¥ | =y x|

Editable <div> Element

Buld |il'dliul Undeiline || AddLink || Display Souice

ere is some boldl text

FIGURE 5.2 Bold text in the editdiv.html example.

Adding an Italic Button

You can let the user italicize text with the italic command and an Italic
button.

To add that button to the editdiv.html example, follow these steps:
1. Open editdiv.html using a text editor such as Windows WordPad.

2. Add the following code to create the Italic button and send the
italic command when it is clicked.

<!DOCTYPE html>
<html>
<head>
<title>



86 LESSON 5: Inline Editing

Editable &lt;div&gt; Element
</title>
</head>

<body>
<h1>Editable &lt;div&gt; Element</h1>
<div>
<input type="button" value="Bold"
onclick="document.execCommand('bold', false,
null);">
<input type="button" value="Italic"
onclick="document.execCommand
('italic', false, null);">
</div>
<br>
<div id="div" style='border:solid
black; height: 300px; width: 400px'
contenteditable="true">
</div>

</body>
</html>

3. Save editdiv.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Now the user can select text and click the Italic button to make that text
italic, as shown in Figure 5.3.

™ Hretox * | | =y x|

Editable <div> Element

Buld | Ilalic | Undeiline |AddLir|k | Display Suuice

ere is some bold italic text

FIGURE 5.3 Italic text in the editdiv.html example.



Adding an Underline Button

Adding an Underline Button

You can let the user underline text with the underline command and an
Underline button.

To add that button to the editdiv.html example, follow these steps:
1. Open editdiv.html using a text editor such as Windows WordPad.

2. Add the following code to create the Underline button and send
the “underline” command when it is clicked.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &1t;div&gt; Element
</title>
</head>

<body>
<h1>Editable &1t;div&gt; Element</h1>
<div>
<input type="button" value="Bold"
onclick="document.execCommand('bold', false,
null);">
<input type="button" value="Italic"
onclick="document.execCommand
('italic', false, null);">
<input type="button" value="Underline"
onclick="document.execCommand( 'underline’,
false, null);">
</div>
<br>
<div id="div" style='border:solid
black; height: 300px; width: 400px'
contenteditable="true">
</div>

</body>
</html>

3. Save editdiv.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

87



88 LESSON 5: Inline Editing

Now the user can select text and click the Underline button to make that
text underlined, as shown in Figure 5.4.

FHiretox ¥ | =y x|

Editable <div> Element

Buld | Ilalic | Undeiline || AddLink || Display Souice

ere is some bold italic underlined text

FIGURE 5.4 Underlined text in the editdiv.html example.

Adding an Add Link Button

You can also let the users add links to their text with the createlink com-
mand and an Add Link button. When the user selects some text and clicks
the Add Link button, we’ll pop a dialog box on the screen to let them enter
the URL of the link and then create a link of the text they’ve selected.

To add the Add Link button to the editdiv.html example, follow these
steps:

1. Open editdiv.html using a text editor such as Windows WordPad.

2. Add the following code to create the Add Link button and call
the createlink() function.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &l1t;div&gt; Element
</title>

</head>

<body>



Adding an Add Link Button 89

<h1>Editable &lt;div&gt; Element</h1>
<div>
<input type="button" value="Bold"
onclick="document.execCommand('bold', false,
null);">
<input type="button" value="Italic"
onclick="document.execCommand
('italic', false, null);">
<input type="button" value="Underline"
onclick="document.execCommand('underline',
false, null);">
<input type="button" value="Add Link"
onclick="createLink();">
</div>
<br>
<div id="div" style='border:solid
black; height: 300px; width: 400px’'
contenteditable="true">
</div>

</body>
</html>

. Add the following JavaScript code to get the URL of the link
from the user with a dialog box and then add that URL to the
link with the createlink command:

<!DOCTYPE html>
<html>
<head>
<title>
Editable &l1t;div&gt; Element
</title>

<script type="text/javascript">
function createLink()

{
var url = prompt("Enter URL:", "http://");
if (url)

document.execCommand("createlink",
false, url);
}
</script>
</head>

<body>



90 LESSON 5: Inline Editing

<h1>Editable &lt;div&gt; Element</h1>
<div>
<input type="button" value="Bold"
onclick="document.execCommand('bold', false,
null);">
<input type="button" value="Italic"
onclick="document.execCommand
('italic', false, null);">
<input type="button" value="Underline"
onclick="document.execCommand('underline',
false, null);">
<input type="button" value="Add Link"
onclick="createLink();">
</div>
<br>
<div id="div" style='border:solid
black; height: 300px; width: 400px’'
contenteditable="true">
</div>

</body>
</html>

4. Save editdiv.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Now the user can select text and click the Add Link button to make that
text into a hyperlink, as shown in Figure 5.5 (the link was underlined with
the Underline button).

" Hretox * | | =y x|

Editable <div> Element

Buld | Ilalic | Undeiline |F\ddLir|k | Display Suuice

[Here is some bold ifalic underlined text. Here is a link

FIGURE 5.5 A link in the editdiv.html example.



Adding a Display Source Button 91

Adding a Display Source Button

When users are done formatting their text, you can let them display the
HTML of that text when they click a Display Source button. For example,
the HTML for the text shown in Figure 5.5 is

Here is some <span style="font-weight: bold;">bold </span><span
style="font-style: italic;">italic </span><span style="text-
decoration: underline;">underlined </span>text! Here is a <a
href="http://www.usatoday.com"><span style="text-decoration:
underline;">1link</span></a>.

To add the Display Source button to the editdiv.html example, follow these
steps:

1. Open editdiv.html using a text editor such as Windows WordPad.

2. Add the following code to create the Display Source button and
call the showSource() function.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;div&gt; Element
</title>

</head>

<body>
<h1>Editable &lt;div&gt; Element</h1>
<div>
<input type="button" value="Bold"
onclick="document.execCommand('bold', false,
null);">
<input type="button" value="Italic"
onclick="document.execCommand
('italic', false, null);">
<input type="button" value="Underline"
onclick="document.execCommand('underline',
false, null);">
<input type="button" value="Add Link"
onclick="createLink();">
<input type="button"
value="Display Source"
onclick="showSource();">
</div>



92

LESSON 5: Inline Editing

<br>

<div id="div" style='border:solid
black; height: 300px; width: 400px’'
contenteditable="true">

</div>

</body>
</html>

. Add the following JavaScript code to read the HTML source

from the innerHTML property of the <div> element and display
that source in a dialog box:

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;div&gt; Element
</title>

<script type="text/javascript">

function showSource()

{
var content = document.getElementById

("div").innerHTML;

content.replace(/</g, '&1t;"');
content.replace(/>/g, '&gt;');
alert(content);

}
function createlLink()
{
var url = prompt("Enter URL:", "http://");
if (url)
document.execCommand("createlink",
false, url);
}
</script>
</head>
<body>
<h1>Editable &1lt;div&gt; Element</h1>
<div>

<input type="button" value="Bold"
onclick="document.execCommand('bold', false,



Spellchecking 93

null);">
<input type="button" value="Italic"
onclick="document.execCommand
('italic', false, null);">
<input type="button" value="Underline"
onclick="document.execCommand('underline’,
false, null);">
<input type="button" value="Add Link"
onclick="createLink();">
</div>
<br>
<div id="div" style='border:solid
black; height: 300px; width: 400px'
contenteditable="true">
</div>

</body>
</html>

4. Save editdiv.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Now the user can click the Display Source button to see the HTML source
of the text in the <div> element, as shown in Figure 5.6.

[lavaScript Applhcation] -

| Here s some <span style="font-weight: bold:">bald </span> <span style="font-style: dale"> talic
</span> <span style="text- decoration: underdling: "> underlined </span> tet. Here is 2 <a
hiref="https//www.usateday.com”™ > linke fa» < br>

FIGURE 5.6 Displaying the HTML source in the editdiv.html example.

Spelichecking

If your browser supports it—and that’s only Firefox now—you can
spellcheck the text you enter in editable elements and documents.
Spellchecking is on by default in Firefox.



94 LESSON 5: Inline Editing

TIP: To turn spellchecking off in Firefox, set the spellcheck attribute
of the editable element or document to false.

To spellcheck your text in Firefox, follow these steps:

1. Enter your text in an editable element or document. Firefox will
underline words it considers misspelled with a wavy red under-
line, as you see in Figure 5.7.

Firefox ™ == |-d—3—1

Editable <div> Element

[ Dold || halic || Undesline | [ AddLink || Display Source

[Here is anml

apple N

appeal
rappel
Add to Dictionary

Undo

Select All

v | Check Spelling

Languages r

FIGURE 5.7 Spellchecking in Firefox.

2. Right-click a word that Firefox has identified as misspelled. This
pops up a menu of possible correct spellings, as you can see in
Figure 5.7.

3. Select a correct spelling from the pop-up menu. Firefox inserts
the correct spelling into your text.



The editdiv.html Example Code 95

The editdiv.html Example Code

Here is the whole editdiv.html example code:

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;div&gt; Element
</title>

<script type="text/javascript">

function showSource()

{
var content = document.getElementById

("div").innerHTML;

content.replace(/</g, '&1t;");
content.replace(/>/g, '&gt;');
alert(content);

}
function createlLink()
{
var url = prompt("Enter URL:", "http://");
if (url)
document.execCommand("createlink",
false, url);
}
</script>
</head>
<body>
<hi1>Editable &lt;div&gt; Element</h1>
<div>

<input type="button" value="Bold"
onclick="document.execCommand('bold', false,
null);">

<input type="button" value="Italic"
onclick="document.execCommand
('italic', false, null);">

<input type="button" value="Underline"
onclick="document.execCommand('underline',
false, null);">

<input type="button" value="Add Link"
onclick="createLink();">



96 LESSON 5: Inline Editing

<input type="button"
value="Display Source"
onclick="showSource();">

</div>

<br>

<div id="div" style='border:solid
black; height: 300px; width: 400px'
contenteditable="true">

</div>

</body>
</html>

Starting the editiframe.html
Example

Now we’re going to put the new HTMLS5 designmode attribute, which
makes a whole document editable, to work with an <iframe> floating
frame, letting the user enter text, as you can see in Figure 5.8. Here, using
the designmode attribute of the <iframe> will make the entire <iframe>—
and any elements you might want to add to it—editable. So instead of just
making a <div> editable, now a whole document, contained in an
<iframe> will be editable.

|_|:~|E|—£h]

Editable <iframe>

Bold || Malic || Underine || AddLink || Lisplay Source

Here is some bold and ifalic and underlined text for you.

FIGURE 5.8 The editiframe.html example.

As in the editdiv.html example, the user can click buttons to format the text.



Starting the editiframe.html Example 97

To get started with the editiframe.html example, follow these steps:

1. Create editframe.html using a text editor such as Windows
WordPad.

2. Enter the following code, creating this example and the
<iframe>.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;iframe&gt;
</title>

</head>

<body onload="loader()">
<h1>Editable &lt;iframe&gt;</h1>
<iframe id="content" style='border:solid
black; height: 300px; width: 400px’'
src="about:blank">
</iframe>
</body>
</html>

3. Enter the following code to set the designmode attribute of the
<iframe> to on.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;iframe&gt;
</title>

<script type="text/javascript">
var iframe;

function loader()
{
iframe =
document.getElementById("content");
iframe.contentDocument.designMode = "

on";

}



98 LESSON 5: Inline Editing

window.addEventListener("loader", onload,
false);
</script>
</head>

<body onload="loader()">
<h1>Editable &1t;iframe&gt;</h1>
<iframe id="content" style='border:solid
black; height: 300px; width: 400px'
src="about:blank">
</iframe>
</body>
</html>

4. Save editiframe.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

We’ve started editiframe.html, created the <iframe>, and set its design-
mode attribute to on. Next, we’ll add the formatting buttons.

Adding the editiframe.html
Buttons

Now we can add the buttons to the editiframe.html example. Because
those buttons work the same way as in the editdiv.html example, we won’t
spend a lot of time here.

To add the buttons to the editiframe.html example, follow these steps:

1. Open editframe.html using a text editor such as Windows
WordPad.

2. Add the following code, adding the buttons to this example.

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;iframe&gt;
</title>



Adding the editiframe.html Buttons 99

<script type="text/javascript">
var iframe;

function loader()
{
iframe =
document.getElementById("content");
iframe.contentDocument.designMode = "on";

}

function showSource()
{
var content =
iframe.contentDocument.body.innerHTML;
content.replace(/</g, '&lt;');
content.replace(/>/g, '&gt;');
alert(content);

}

function createlLink()

{
var url = prompt("Enter URL:", "http://");
if (url)

iframe.contentDocument.execCommand
("createlink", false, url);
}
window.addEventListener("loader", onload,
false);
</script>
</head>

<body onload="loader()">
<h1>Editable &lt;iframe&gt;</h1>
<div>
<input type="button" value="Bold" onclick=
"iframe.contentDocument.execCommand
('bold', false, null);">
<input type="button" value="Italic"
onclick="iframe.contentDocument.execCommand
('italic', false, null);">
<input type="button" value="Underline"
onclick="iframe.contentDocument.execCommand
('underline', false, null);">
<input type="button" value="Add Link"



100 LESSON 5: Inline Editing

onclick="createLink();">
<input type="button" value="Display Source"
onclick="showSource();">
</div>
<pbr>
<iframe id="content" style='border:solid
black; height: 300px; width: 400px'
src="about:blank">
</iframe>
</body>
</html>

3. Save editiframe.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

That completes the editiframe.html example, which you can see at work in
Figure 5.8. To all appearances, this example functions the same way as the
editdiv.html example, except that here the user is editing the entire docu-
ment in an <iframe>.

The editiframe.html Example Code

Here is the whole editiframe.html example code:

<!DOCTYPE html>
<html>
<head>
<title>
Editable &lt;iframe&gt;
</title>

<script type="text/javascript">
var iframe;

function loader()

{
iframe =
document.getElementById("content");
iframe.contentDocument.designMode = "on";

}

function showSource()



The editiframe.html Example Code 101

{
var content =
iframe.contentDocument.body.innerHTML;
content.replace(/</g, '&lt;');
content.replace(/>/g, '&gt;');
alert(content);
}
function createlLink()
{
var url = prompt("Enter URL:", "http://");
if (url)
iframe.contentDocument.execCommand
("createlink", false, url);
}
window.addEventListener("loader", onload,
false);
</script>
</head>

<body onload="loader()">
<h1>Editable &1lt;iframe&gt;</h1>
<div>
<input type="button" value="Bold" onclick=
"iframe.contentDocument.execCommand
('bold', false, null);">
<input type="button" value="Italic"
onclick="iframe.contentDocument.execCommand
('italic', false, null);">
<input type="button" value="Underline"
onclick="iframe.contentDocument.execCommand
('underline', false, null);">
<input type="button" value="Add Link"
onclick="createLink();">
<input type="button" value="Display Source"
onclick="showSource();">
</div>
<br>
<iframe id="content" style='border:solid
black; height: 300px; width: 400px’'
src="about:blank">
</iframe>
</body>
</html>



This page intentionally left blank



LESSON 6

Working with Browser
History

HTMLS gives you control over the browser’s history—where it’s been and
where it is now. The History object lets you move forward and backward,
from page to page in the browser, which means you can use the history
object, for example, to go back three pages.

You can also store data in a browser’s history state object. That is, you can
add data to the state object and then push that state object to store it with
the current page. You can also pop the state object, recovering the data you
stored, which allows you to pass data from page to page.

We’ll see how all this works in the current lesson. Let’s jump into browser
history now.

Welcome to Browser History

In this lesson, we’ll develop an example named pophistory.html, which
you can see in Figure 6.1.

This example illustrates the different aspects of the HTML history object.
The user can click the Back button to go back one page (just like clicking
the browser’s Back button). The user can click the Forward button to go
forward one page (if there is no next page, nothing happens).

You can also enter an integer in the text field and click the Go button to
move, for example, five pages ahead. Entering a negative number takes
you into the pages the browser has already been to.

In addition, the example displays the length of the browser history, as you
can see in Figure 6.1; making that length accessible is part of the HTMLS
specification.




104 LESSON 6: Working with Browser History

o Rt | i1 |

(‘ P> - e/ /G TYHTMLY pephistery.html

Page to Page History

Back || Fomward |
Pages to move by Go
Text to push: Push Data

History length: 3

FIGURE 6.1 The pophistory.html example.

Finally, the example lets the user enter some text and push that text as data
in the current history state, then go to another page and come back—and
when the state object is popped, the text you entered is displayed. In this
way, you can pass data from page to page.

To make the pushing and popping of data work, you need a browser that
supports this part of the history functionality. Unfortunately, there are no
official releases of any browsers that support this yet. Nonetheless, we’ll
see how this works in code so you’ll be ready when the browsers are.

Next, let’s see some of the details behind this example.

Getting to Know the History API

The history object is part of the window object in the browser, so you can
refer to it as the window.history object. Following are the attributes and
functions you use to implement window.history support in HTMLS5:

» window.history.length;

» window.history.go();

v

window.history.back();

v

window.history.forward();



Getting to Know the History API 105

» window.history.pushState();
» window.history.replaceState();

» window.onpopstate

We’ll take a closer look at them now.

window.history.length

The window.history.length attribute gives the number of entries in the
browser session history. We’ll take a look at this attribute in the pophisto-
ry.html example.

window.history.back()
This function goes back one step in the browser history. That is, it returns

the browser to the previous page.

If there was no previous page, this function does nothing.

window.history.forward()

This function moves forward one step in the browser history. That is, if
you went to another page, page A, then returned to the current page and
executed this function, you’d return to page A.

Note that if there is no next page in the browser history, this function does
nothing.

window.history.go([delta])

This is a general purpose function that lets you move forward or backward
by the number of pages you specify with delta. For example, passing a
value of -2 makes the browser go back two pages; passing a value of 5
makes the browser go ahead five pages.

The delta argument is in brackets because it’s optional. If you don’t supply
a delta, however, the browser just reloads the current page.

And, as you’d expect, if delta is out of history range, this function does
nothing.



106 LESSON 6: Working with Browser History

window.history.pushState(data, title
[,url])

This function lets you push data into the history. The data argument is an
object that contains your data, fitle is the name with which you want to
reference that data, and the url argument lets you associate the data with a
particular page so it’ll be popped when that page is reloaded.

window.history.replaceState(data, title
[,url])

This function replaces the current entry in the history to have the given
data, title, and, if you give it, URL.

window.onpopstate

This event occurs when the state history is popped and so becomes acces-
sible—including the data you pushed. We’ll see how to put this event to
work in pophistory.html.

Starting the pophistory.html
Example

To get started with the pophistory.html example, follow these steps:

1. Create pophistory.html using a text editor such as Windows
WordPad.

2. Enter the following code.

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

</head>

<body>
<h1>Page to Page History</h1>



Adding a Back Button 107

</body>
</html>

3. Add the following code to create the <div> elements this exam-
ple uses to display results.
<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

</head>

<body onload="loader()">
<h1>Page to Page History</hi1>
<pbr>
<div id="length"></div>
<br>
<div id="state"></div>
<br>

</body>

</html>

4. Save pophistory.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

We’ve started pophistory.html. Now let’s make it do something.

Adding a Back Button

You can let the user navigate backward in the browser history with the
window.history.back() function. To add the Back button to this example,
follow these steps:

1. Open pophistory.html using a text editor such as Windows
WordPad.

2. Add the following code to create a new Back button.



108 LESSON 6: Working with Browser History

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

</head>

<body onload="loader()">
<h1>Page to Page History</hi>
<input type="button" value="Back"
onclick="back();">

<pr>
<div id="length"></div>
<br>
<div id="state"></div>
<br>
</body>
</html>

3. Add the following code to make the Back button active by con-
necting it to the window.history.back() function.

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

<script type="text/javascript">
function back()
{
window.history.back();
}
</script>
</head>

<body onload="loader()">
<h1>Page to Page History</hi1>
<input type="button" value="Back"
onclick="back();">
<br>



Adding a Forward Button 109

<div id="length"></div>
<br>
<div id="state"></div>
<br>
</body>
</html>

4. Save pophistory.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now the user can click the Back button, which appears in Figure 6.1, to
navigate the browser back one page. For example, you might go to www.
usatoday.com, as shown in Figure 6.2, then to the pophistory.html page, as
shown in Figure 6.3, and click the Back button, which would take you
back to www.usatoday.com, as shown in Figure 6.4.

| Firefox > o 50 [

(' é e m hitp://www.usateday.com/
il Tl b ki

Home News Travel Moncy

Fasenlials: Markets | Scores | Games | Lotteries | Video | Photos | Opinion

FIGURE 6.2 The USA Today page.


www.usatoday.com
www.usatoday.com
www.usatoday.com

110 LESSON 6: Working with Browser History
T | bl ]
files/ /G TYHTMLY/ pophistory.html
Page to Page History
Hack
FIGURE 6.3 Navigating to the pophistory.html page.
| Firefux ~ ol =) [
&> - |0 ntpswustoday.coms
pdated 04:25 PM ET
Home News Travel Money
Fasenlials: Markets | Scores | Games | Lotteries | Video | Photos | Opinion
Used grease a hot item for thieves ODama;.tmerlcan:
FIGURE 6.4 Back to USA Today.

Adding a Forward Button

You can also let the user navigate forward in the browser history with the
window.history.forward() function. To add the Forward button to this

example, follow these steps:

1. Open pophistory.html using a text editor such as Windows
WordPad.

2. Add the following code to create a new Forward button.



Adding a Forward Button 111

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

</head>

<body onload="loader()">
<h1>Page to Page History</hi1>
<input type="button" value="Back"
onclick="back();">
<input type="button" value="Forward"
onclick="forward();">
<pbr>

<br>
<div id="length"></div>
<br>
<div id="state"></div>
<br>
</body>
</html>

. Add the following code to make the Forward button active by
connecting it to the window.history.forward() function.

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

<script type="text/javascript">
function back()
{
window.history.back();

}

function forward()

{

window.history.forward();

}
</script>
</head>



112 LESSON 6: Working with Browser History

<body onload="loader()">
<h1>Page to Page History</hi>
<input type="button" value="Back"
onclick="back();">
<pbr>
<input type="button" value="Forward"
onclick="forward();">
<pr>
<div id="length"></div>
<br>
<div id="state"></div>
<br>
</body>
</html>

4. Save pophistory.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

When the user clicks the Forward button, the browser navigates forward
one page in the browser history.

Adding a Go Button

You can let users specify how many pages forward or backward they want
to navigate the browser by entering an integer (positive means forward,
negative means backward) into a text field and clicking a Go button, which
will use the window.history.go() function to navigate the browser.

To add the Go button to this example, follow these steps:

1. Open pophistory.html using a text editor such as Windows
WordPad.

2. Add the following code to create a new text field and a Go button.

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

</head>



Adding a Go Button 113

<body onload="loader()">

<h1>Page to Page History</hi1>

<input type="button" value="Back"
onclick="back();">

<input type="button" value="Forward"
onclick="forward();">

<br>

Pages to move by: <input id="amount"
type="text">

<input type="button" value="Go" onclick="go();">

<br>

<br>
<div id="length"></div>
<pbr>
<div id="state"></div>
<br>

</body>

</html>

. Add the following code to make the Go button active by connect-
ing it to the window.history.go() function.

<!DOCTYPE html>
<html>

<head>
<title>
Page to Page History
</title>

<script type="text/javascript">
function back()

{

window.history.back();

}

function forward()

{

window.history.forward();

}



114 LESSON 6: Working with Browser History

function go()
{
var amount =
document.getElementById
("amount").value;
window.history.go(amount);
}
</script>
</head>

<body onload="loader()">
<h1>Page to Page History</hi>
<input type="button" value="Back"
onclick="back();">
<pbr>
<input type="button" value="Forward"
onclick="forward();">

<pbr>
<div id="length"></div>
<br>
<div id="state"></div>
<br>

Pages to move by: <input id="amount"
type="text">
<input type="button" value="Go" onclick="go();">
<br>
</body>
</html>

4. Save pophistory.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

When the user enters a number in the text field and clicks the Go button,
the browser navigates forward or backward a matching number of pages.

Getting History Length

You can determine the total number of pages in the browser’s history (both
forward and backward entries) with the window.history.length attribute.
We’ll display that length in pophistory.html; to do so, follow these steps:

1. Open pophistory.html using a text editor such as Windows WordPad.

2. Add the following code to display the number of entries in the
history in a <div> element in pophistory.html.



Getting History Length

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

<script type="text/javascript">
function back()
{
window.history.back();

}

function forward()
{
window.history.forward();

}

function loader()
{
var length = window.history.length;
document.getElementById
("length").innerHTML = "<h1>" +
"History length: " + length +

"</h1>";
}
</script>
</head>

<body onload="loader()">
<h1>Page to Page History</hi>
<input type="button" value="Back"
onclick="back();">
<br>
<input type="button" value="Forward"
onclick="forward();">

<br>
<div id="length"></div>
<br>
<div id="state"></div>
<br>

Pages to move by: <input id="amount"
type="text">

<input type="button" value="Go" onclick="go();">

<br>
</body>
</html>

115



116 LESSON 6: Working with Browser History

3. Save pophistory.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now when the page loads, it’ll display the number of entries in the win-
dow history, as shown in Figure 6.5.

Firefox ~ | = =

€ . files///C/ TYHTMLS/ pephistory. html

Page to Page History

Back Fomward

Pages to move by Go

History length: 9

FIGURE 6.5 Window history length.

Pushing Data into the History

You can let the user push text data into the current page’s history, to be
recovered later. Here’s how:

1. Open pophistory.html using a text editor such as Windows WordPad.

2. Add the following code to display a text field and a button with
the caption Push Data.

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

function forward()

{

window.history.forward();

}

</script>
</head>



Pushing Data into the History 117

<body onload="loader()">

<h1>Page to Page History</hi>

<input type="button" value="Back"
onclick="back();">

<pbr>

<input type="button" value="Forward"
onclick="forward();">

<pbr>

<br>

<br>

Text to push: <input id="statedata"
type="text">

<input type="button" value="Push Data"
onclick="pushdata();">

<br>
<div id="length"></div>
<br>
<div id="state"></div>
<pbr>

Pages to move by: <input id="amount"
type="text">
<input type="button" value="Go" onclick="go();">
<br>
</body>
</html>

. Add the following code to add the text the user entered to an
object, then push that object into the current page’s history (so it
will be popped when you return to this page).

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

<script type="text/javascript">
function back()
{

window.history.back();

}

function forward()

{

window.history.forward();

}



118

LESSON 6: Working with Browser History

function pushData()
{
var statedata =
document.getElementById
("statedata").value;
var containerObject =
{container: statedata};
history.pushState(containerObject,
"item", "pophistory.html");
}

</script>
</head>

<body onload="loader()">

<h1>Page to Page History</hi>

<input type="button" value="Back"
onclick="back();">

<pbr>

<input type="button" value="Forward"
onclick="forward();">

<pbr>

<br>

<br>

Text to push: <input id="statedata"
type="text">

<input type="button" value="Push Data"
onclick="pushdata();">

<br>
<div id="length"></div>
<pbr>
<div id="state"></div>
<br>

Pages to move by: <input id="amount"
type="text">
<input type="button" value="Go" onclick="go();">
<br>
</body>
</html>

. Save pophistory.html. Make sure you save this code in text for-

mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).



Popping Data from the History 119

Now when the user enters data in the text field and clicks the Push Data
button, that text will be pushed into the history of the current page. In the
next task, we’ll see about recovering that pushed text.

Popping Data from the History

Because we’ve pushed data into the current page’s history state, it’ll be
popped automatically when the current page is reloaded, and we can
recover the data the user pushed. Here’s how to do that and display that
data by connecting a function to the onpopstate event for the page:

1. Open pophistory.html using a text editor such as Windows
WordPad.

2. Add the following code to the onpopstate event, which will
recover the text the user pushed and display it in a <div> element.

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

<script type="text/javascript">
function go()
{
var amount =
document.getElementById
("amount").value;
window.history.go(amount);

}

function back()

{

window.history.back();

}

function forward()

{

window.history.forward();

}

function pushData()



120 LESSON 6: Working with Browser History

{

var statedata =
document.getElementById
("statedata").value;

var containerObject =
{container: statedata};

history.pushState(containerObject,
"item", "pophistory.html");

}
function popData(event)
{

var state = "Page: " +

document.location + " Data: " +
event.state.container;
document.getElementById
("state").innerHTML = "<h1>" +
state + "</h1>";

}s

window.addEventListener("popstate", popData,
false);
</script>
</head>

<body onload="loader()">

<h1>Page to Page History</hi>

<input type="button" value="Back"
onclick="back();">

<input type="button" value="Forward"
onclick="forward();">

<br>

Pages to move by: <input id="amount"
type="text">

<input type="button" value="Go" onclick="go();">

<br>

<pr>

<br>

Text to push: <input id="statedata"
type="text">

<input type="button" value="Push Data"
onclick="pushdata();">

<pbr>

<div id="length"></div>

<pbr>



The pophistory.html Example Code 121

<div id="state"></div>
<br>
</body>
</html>

3. Save pophistory.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now when the user enters text into the pophistory.html page, clicks the
Push Data page, navigates to a new page, then returns to the
pophistory.html page, the text will be popped and displayed automatically.

As mentioned, this functionality isn’t supported by any officially released
browser yet, but now you’re ready when support for this feature appears.

The pophistory.html Example Code

Here is the whole pophistory.html example code:

<!DOCTYPE html>
<html>
<head>
<title>
Page to Page History
</title>

<script type="text/javascript">
function go()
{
var amount =
document.getElementById
("amount") .value;
window.history.go(amount);

}

function back()

{

window.history.back();

}

function forward()



122 LESSON 6: Working with Browser History

{

window.history.forward();

}

function loader()
{
var length = window.history.length;
document.getElementById
("length").innerHTML = "<h1>" +
"History length: " + length +
"</h1>";
}

function pushData()
{
var statedata =
document.getElementById
("statedata").value;
var containerObject =
{container: statedata};
history.pushState(containerObject,
"item", "pophistory.html");

}
function popData(event)
{

var state = "Page: " +

document.location + " Data: " +
event.state.container;
document.getElementById
("state").innerHTML = "<h1>" +
state + "</h1>";
}s

window.addEventListener("popstate", popData,
false);
</script>
</head>

<body onload="loader()">
<h1>Page to Page History</hi>
<input type="button" value="Back"
onclick="back();">
<input type="button" value="Forward"
onclick="forward();">



The pophistory.html Example Code 123

<br>

Pages to move by: <input id="amount"
type="text">

<input type="button" value="Go" onclick="go();">

<pbr>

<br>

<br>

Text to push: <input id="statedata"
type="text">

<input type="button" value="Push Data"
onclick="pushdata();">

<br>

<div id="length"></div>

<br>

<div id="state"></div>

<br>

</body>
</html>



This page intentionally left blank



LESSON 7

Getting the Point
Across with Messaging

HTMLS lets you send messages in a cross-window or cross-domain way;
we’ll see how that works in this lesson.

Say, for example, that in page A, page B—which comes from the same
directory on the server—appears in an <iframe> element. Now you can
send text messages from page A to page B and make use of those mes-
sages in page B. That’s cross-window messaging.

In fact, page B can come from an entirely different domain and still appear
in the <iframe> in page A, and you can still send messages to page A.
That’s called cross-domain messaging, and it used to be prohibited, but
now you can do it. So even if page B comes from an entirely different
server than page A, you can still send page B messages.

We’ll see how all this works in the current lesson. Let’s jump into
messaging now.

Welcome to Messaging

In this lesson, we’ll develop an example named parent.html, which you
can see in Figure 7.1.

That’s an <iframe> element you see outlined in black in Figure 7.1. It
contains a second page, child.html, from the same directory as parent.html
itself. So now you can send messages between windows in the same
application.

You can enter a message in the text field in this example, as you see in
Figure 7.1, and when you click the button, that message is sent to and




126 LESSON 7: Getting the Point Across with Messaging

A ol
B Cross-Window Messag... % | o |

Cross-Window Messaging

Message to Send. Here's the text] Send

FIGURE 7.1 The parent.html and child.html example.

echoed by the second page in the <iframe>, as shown in Figure 7.2. This is
a good example of cross-window messaging.

A T ]
B Cross-Window Messag... % | o |

Cross-Window Messaging

Here's the text!

FIGURE 7.2 Sending a cross-window message.

The second example in this lesson will show how to use cross-domain
messaging, where the windows are in different Internet domains. This
time, the domainparent.html page shown in Figure 7.3 is from a different
domain than the page, domainchild.html, that appears in the <iframe> ele-
ment, as shown in Figure 7.3.

You can enter a message in the text field as shown in Figure 7.3 and click
the button to send that message cross-domain from domainparent.html to



Getting to Know the Messaging API

¥ Cross-Doman Message.. +

Cross-Domain Messaging

Message to Send: Here is some more test| | Send

FIGURE 7.3 The domainparent.html and domainchild.html example.

127

domainchild.html. The domainchild.html page echoes the message, as you

can see in Figure 7.4.

¥ Cross-Doman Message.. +

Cross-Domain Messaging

Here is some more text

FIGURE 7.4 Sending a cross-domain message.

Let’s see some of the details behind this example now.

Getting to Know the Messaging API

You make messaging work behind the scenes with a scripting language

like JavaScript. You can find a good introduction to messaging at

www.whatwg.org/specs/web-apps/current-work/multipage/comms.html


www.whatwg.org/specs/web-apps/current-work/multipage/comms.html

128 LESSON 7: Getting the Point Across with Messaging

Here are the scripting features you use with messaging:
» postMessage() function
» onMessage event
» event.data attribute
» event.origin attribute

» event.source attribute

We’ll take a closer look at these items now.

postMessage()

Supported browsers: Opera, Safari

This function is the core of sending messages in HTMLS, and you use it to
post a message to a target:

window . postMessage(message, targetOrigin)

Here, message is the text message you are posting to the farget, and
targetOrigin is the origin of the target. We’ll see more about origins when
it becomes time to send messages in this lesson; the origin uniquely speci-
fies the target (as by URL). If you send a message to a target that doesn’t
match the origin you pass to postMessage(), the message is discarded. To
match any origin, you can pass a value of “*:

onMessage

Supported browsers: Opera, Safari

This is the event that occurs when a message is received. You connect a
function to this message, and then you can recover the actual message sent
by examining the event object’s data member.

event.data

Supported browsers: Opera, Safari



Starting the parent.html Example 129

The event object passed to the onMessage handler contains the informa-
tion about the message you need—the data attribute contains the
message’s text.

event.origin
Supported browsers: Opera, Safari

The event.origin attribute contains the origin that the message was sent to.

event.source

Supported browsers: Opera, Safari
The event.source attribute contains the WindowProxy of the source window.

Let’s put all this to work with an example, starting with the cross-window
parent.html/child.html example.

Starting the parent.html Example

To get started with the parent.html example, follow these steps:
1. Create parent.html using a text editor such as Windows WordPad.

2. Enter the following code.
<!DOCTYPE html>

<html>
<head>
<title>
Cross-Window Messaging
</title>

</head>
<body>

<h1>Cross-Window Messaging</h1>
</body>

3. Add the following code to create the <iframe> element this
example uses to display child.html in, as well as a text field to



130 LESSON 7: Getting the Point Across with Messaging

accept the message to send, and a button connected to a function
named send() to send the message.

<!DOCTYPE html>

<html>
<head>
<title>
Cross-Window Messaging
</title>

</head>

<body>
<h1>Cross-Window Messaging</h1>
<iframe id="iframe" src="child.html"
height="300" width="600">
</iframe>
<bhr>
<br>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>

4. Save parent.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

We’ve started parent.html. Now let’s make it send the message.

Sending a Cross-Window
Message

You can send a message from parent.html to child.html by following these
steps:

1. Open parent.html using a text editor such as Windows WordPad.

2. Add the following code to implement the send() function that
sends the message, which starts by getting the message and some
information about the target window.



Sending a Cross-Window Message

<!DOCTYPE html>

<html>
<head>
<title>
Cross-Window Messaging
</title>

<script type="text/javascript">

function send()

{
var message =

document.getElementById("message").value;

var location = window.location;
var protocol = location.protocol;
var host = location.host;

}
</script>
</head>

<body>
<h1>Cross-Window Messaging</h1>
<iframe id="iframe" src="child.html"
height="300" width="600">
</iframe>
<br>
<br>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>

3. Add the following code to send the message to the target window.

<!DOCTYPE html>

<html>
<head>
<title>
Cross-Window Messaging
</title>

<script type="text/javascript">



132 LESSON 7: Getting the Point Across with Messaging

function send()
{
var message =
document.getElementById("message").value;
var location = window.location;
var protocol = location.protocol;
var host = location.host;
document.getElementById
("iframe").contentWindow.postMessage
(message, protocol + "//" + host);
}
</script>
</head>

<body>
<h1>Cross-Window Messaging</h1>
<iframe id="iframe" src="child.html"
height="300" width="600">
</iframe>
<br>
<br>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>

4. Save parent.html. Make sure you save this code in text format
(the default format for WordPad, for example, is RTF, rich-text
format, which won’t work with browsers).

Now the user can enter a message into the text field, as shown in Figure
7.1, and click the button to send the message to child.html. Let’s build
child.html next (don’t try to run parent.html until you’ve created
child.html).

Starting the child.html Example

To get started with the child.html example, follow these steps:
1. Create child.html using a text editor such as Windows WordPad.

2. Enter the following code.



Starting the child.html Example 133

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

</head>

<body>
</body>
</html>

3. Add the following code to create a <div> element that we’ll use
to display the text of the message we receive in child.html.

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

</head>

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>
</html>

4. Save child.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-

mat, which won’t work with browsers).

We’ve started child.html. Now let it receive the message.



134 LESSON 7: Getting the Point Across with Messaging

Receiving a Cross-Window
Message

Now let’s enable child.html to receive and display the message sent to it
by parent.html. To do that, follow these steps:

1. Open child.html using a text editor such as Windows WordPad.

2. Add the following code to connect the onMessage event to a
function named loader()

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

<script type="text/javascript">
window.addEventListener("message", loader,
false);
</script>

</head>

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>
</html>

3. Add the following code to read the message from the event
object’s data property and display it in the <div> in child.html.

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

<script type="text/javascript">
window.addEventListener("message", loader,
false);



The parent.html Example Code 135

function loader(e)
{
document.getElementById
("messages").innerHTML = e.data;

}

</script>
</head>

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>

</html>

4. Save child.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).

Now, as

shown in Figures 7.1 and 7.2, the user can open parent.html in a

messaging-supported browser (Opera or Safari), enter text into the text
field, click the button, and see the message sent to child.html appear. Cool.

The

parent.html Example Code

Here is the whole parent.html example code:

<!DOCTYPE html>

<html>

<head>
<title>
Cross-Window Messaging
</title>

<script type="text/javascript">
function send()

{

var message =
document.getElementById("message").value;

var location = window.location;

var protocol = location.protocol;

var host = location.host;



136 LESSON 7: Getting the Point Across with Messaging

document.getElementById
("iframe").contentWindow.postMessage
(message, protocol+"//"+host);
}
</script>
</head>

<body>
<h1>Cross-Window Messaging</h1>
<iframe id="iframe" src="child.html"
height="300" width="600">
</iframe>
<br>
<br>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>
</html>

The child.html Example

Here is the whole child.html example code:

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

<script type="text/javascript">
window.addEventListener("message", load
false);

function loader(e)
{
document.getElementById
("messages").innerHTML = e.data;

}

</script>

</head>

Code

er,



Starting the domainparent.html Example 137

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>
</html>

Starting the domainparent.html
Example

Now we’ll see how cross-domain messaging works. To get started with the
domainparent.html example, follow these steps:

1. Create domainparent.html using a text editor such as Windows
WordPad.

2. Enter the following code.
<!DOCTYPE html>

<html>
<head>
<title>
Cross-Domain Messaging
</title>

</head>

<body>
<h1>Cross-Domain Messaging</h1>

</html>

3. Add the following code to create the <iframe> element this
example uses to display domainchild.html in, as well as a text
field to accept the message to send, and a button connected to a
function named send() to send the message (replace
www.domain.com with the domain where you’re going to store
domainchild.html).



138

LESSON 7: Getting the Point Across with Messaging

<!DOCTYPE html>

<html>
<head>
<title>
Cross-Domain Messaging
</title>

</head>

<body>
<h1>Cross-Domain Messaging</h1>
<iframe id="iframe"
src="http://www.domain.com/domainchild.html"
height="300" width="600">
</iframe>
<br>
<hr>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>
</html>

. Save domainparent.html. Make sure you save this code in text

format (the default format for WordPad, for example, is RTF,
rich-text format, which won’t work with browsers).

We’ve started domainparent.html. Now let’s make it send the message.

Sending a Cross-Domain Message

You can send a cross-domain message from domainparent.html to domain-
child.html; to do so, follow these steps:

1. Open domainparent.html using a text editor such as Windows

WordPad.

. Add the following code to implement the send() function that

sends the message.
<!DOCTYPE html>

<html>
<head>



Sending a Cross-Domain Message 139

<title>
Cross-Domain Messaging
</title>

<script type="text/javascript">
function send()

{

}
</script>
</head>

<body>
<h1>Cross-Domain Messaging</h1>
<iframe id="iframe"
src="http://www.domain.com/domainchild.html"
height="300" width="600">
</iframe>
<br>
<br>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>
</html>

. Add the following code to send the message to the target win-
dow; this time, we’ll use the full URL of the domainchild.html
page, with an origin of “*”—which will work smoothly with any
origin.

<!DOCTYPE html>

<html>
<head>
<title>
Cross-Domain Messaging
</title>

<script type="text/javascript">
function send()

{

var message =



140

At this point, users can enter a message into the text field, as shown in

LESSON 7: Getting the Point Across with Messaging

document.getElementById("message").value;
document.getElementById
("iframe").contentWindow.postMessage
(message, "*");
}
</script>
</head>

<body>
<h1>Cross-Domain Messaging</h1>
<iframe id="iframe"
src="http://www.domain.com/domainchild.html"
height="300" width="600">
</iframe>
<br>
<br>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>

</html>

. Save domainparent.html. Make sure you save this code in text
format (the default format for WordPad, for example, is RTF,
rich-text format, which won’t work with browsers).

Figure 7.3. They can click the button to send the message to

domainchild.html, even though domainchild.html comes from a different
domain. Let’s build domainchild.html next (don’t try to run domainpar-

ent.html until you’ve completed domainchild.html).

Starting the domainchild.html
Example

To get started with the domainchild.html example, just follow these steps:

1. Create domainchild.html using a text editor such as Windows
WordPad.

2. Enter the following code.



Starting the domainchild.html Example

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

</head>

<body>

</body>
</html>

3. Add the following code to create a <div> element that we’ll use
to display the text of the message we receive in
domainchild.html].

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

</head>

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>
</html>

4. Save domainchild.html at the domain you’ve chosen (replacing
www.domain.com in domainparent.html with that domain). Make
sure you save this code in text format (the default format for
WordPad, for example, is RTF, rich-text format, which won’t
work with browsers).

We’ve begun domainchild.html. Now let’s let it receive the message.

141



142 LESSON 7: Getting the Point Across with Messaging

Receiving a Cross-Domain
Message

At this point, we’ll enable domainchild.html to receive the cross-domain
message sent to it by domainparent.html. To do that, follow these steps:

1. Open domainchild.html using a text editor such as Windows
WordPad.

2. Add the following code to connect the onMessage event to a
function named loader()

<!DOCTYPE html>

<html>
<head>
<title>
Child
</title>

<script type="text/javascript">
window.addEventListener("message", loader,
false);

</script>
</head>

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>
</html>

3. Add the following code to read the message from the event
object’s data property and display it in the <div> in
domainchild.html.

<!DOCTYPE html>

<html>
<head>



The domainparent.html Example Code 143

<title>
Child
</title>

<script type="text/javascript">
window.addEventListener("message", loader,
false);

function loader(e)

{
document.getElementById
("messages").innerHTML = e.data;

}

</script>
</head>

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>
</html>

4. Save domainchild.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

Now, as shown in Figures 7.3 and 7.4, the user can open
domainparent.html in a supported browser (Opera or Safari), enter a mes-
sage into the text field, click the button, and see the message sent cross-
domain to domainchild.html appear.

The domainparent.html Example
Code

Here is the whole domainpophistory.html example code—replace
www.domain.com with the domain domainchild.html is at:

<!DOCTYPE html>

<html>



144 LESSON 7: Getting the Point Across with Messaging

<head>
<title>
Cross-Domain Messaging
</title>

<script type="text/javascript">
function send()
{
var message =
document.getElementById("message").value;
document.getElementById
("iframe").contentWindow.postMessage
(message, "*");
}
</script>
</head>

<body>
<h1>Cross-Domain Messaging</h1>
<iframe id="iframe"
src="http://www.domain.com/domainchild.html"
height="300" width="600">
</iframe>
<br>
<pbr>
Message to Send: <input id="message"
type="text">
<input type="button" onclick="send();"
value="Send">
</body>
</html>

The domainchild.html Example
Code

Here is the whole domainchild.html example code:
<!DOCTYPE html>

<html>
<head>
<title>
Child



The domainchild.html Example Code 145

</title>

<script type="text/javascript">
window.addEventListener("message", loader,
false);

function loader(e)
{
document.getElementById
("messages").innerHTML = e.data;

}

</script>
</head>

<body>
<div id="messages" style="width:400px;
height:250px"></div>
</body>
</html>



This page intentionally left blank



LESSON 8
Using Video and Audio

HTMLS lets you play video with ease—just use the <video> element.

Currently, however, most browsers that let you play video only play videos
in .ogg format, a relatively obscure open-source format. Fortunately, you
can convert videos from almost any format into .ogg format. In addition,
some browsers enable you to use other video formats with the <video>
element.

In this lesson, we’ll play an .ogg video in an HTMLS5 web page, including
displaying controls so the user can control playback.

We’ll also take a look at playing audio in this lesson with the new <audio>
element.

TIP: One reason the <video> element is so eagerly anticipated is
because the Apple iPad does not play Flash video, and the <video>
element may supplant it.

Welcome to the Video Media
Control

In this lesson, we’ll develop an example named video.html, which you can
see in Figure 8.1. This example plays a video named hawaii.ogg, which is
included in the download for this book.

Let’s look at some of the details behind this example now.




148 LESSON 8: Using Video and Audio

B e _

& D |- |__ files///C-/TYHTMLS /uvideo html o .

L

HTML S Video

FIGURE 8.1 The video.html example.

Getting to Know the Video
Element API

The <video> element has a number of attributes; here are the details:
Element:

» <video>

Attributes:
> autoplay

» controls

v

height

» loop



Getting to Know the Video Element API 149

» poster

v

preload
» src
> width

» onerror

Supported browsers:

» Chrome, Opera, Firefox, Safari, Internet Explorer 9
You can read what the W3C has to say about the <video> element at www.
w3.org/TR/html5/video.html.

Let’s take a look at the attributes in overview next.

The autoplay Attribute

The autoplay attribute is a true/false attribute that controls whether the
video plays automatically.

The controls Attribute

The controls attribute lets you specify whether to display a control bar
under the video with play/pause buttons.

The height Attribute

This attribute sets the height of the video.

The loop Attribute

The loop attribute is a true/false attribute that, if true, makes the video play
over and over.


www.w3.org/TR/html5/video.html
www.w3.org/TR/html5/video.html

150 LESSON 8: Using Video and Audio

The poster Attribute

This attribute holds the URL of an image to display if no video is available.

The preload Attribute

The preload attribute controls whether the video is preloaded into the
<video> element; it can take one of three values:

» none—No preloading necessary.

» metadata—Tells the browser that detecting metadata about the
video (dimensions, first frame, and so on) is a good idea.

» auto—The browser can decide whether to preload the video.

The src Attribute

The src attribute holds the URL of the video.

The width Attribute

The width attribute specifies the width of the video.

In this lesson, we’ll see the <video> element at work as it plays .ogg
videos, and we’ll start by seeing how to convert from common video for-
mats to .ogg format.

The onerror Attribute

The <video> element has an error event that occurs when there is a failure.

Converting to OGG Format

At this point, most browsers can only use the <video> element to play
.ogg format video (although more formats are coming). Being able to play
OGG format videos is all very well, but what if your video is in .wmv for-
mat? Or .mp4?



Converting to OGG Format 151

First, you might check if your browser supports your current format by
specifying the URL of your video in the src attribute of a <video> ele-
ment. As time goes on, more browsers will display more video formats.

But if you find you have to stick with OGG format, it’s time to find a file
convertor, like the one at http://media-convert.com/. This popular file con-
vertor appears in Figure 8.2. It’s popular because it converts from many
file formats to many others, and because it’s online, there’s nothing to

download.
[~ Tireto =] |==ro]
t/_: = [T ——— = - v -

File Heowse Input format Flash Video (M) [}

= = O e — o~k
#” MEDIA-CONVERT oo Wil

AVS Audio Converter ;"o vt vorr, ..

Www.avsdyou.com Convert All Popular Audio File Types! Chcl here 10 doe

FIGURE 8.2 The media-convert.com site.

Do you want to convert a video to OGG format using this site? Just follow

these steps:

1.
2.

Navigate to http://media-convert.com/.
Click the Browse button. A dialog box listing files appears.

Browse to the file you want to convert to OGG format and
select it.

Click the Open button. The dialog box closes.


http://media-convert.com/
http://media-convert.com/

152 LESSON 8: Using Video and Audio

5. Select the format of your file in the Input Format box. There are
many types to select from; for video formats, you can select and
convert from these types:

3GP/3G2 Video (.3g2,.3gp)

AMYV Video Format (.amv)

Apple QuickTime (.mov)

ASF Video (.asf)

Audio Video Interleave (.avi)

Digital Video File (.dv)

DPG Video (.dpg)

DVD Video Object (.vob)

Flash SWF (.swf)

Flash Video (.flv)

FLIC Animation (.fli)

Google Video File (.gvi)

Matroska (.mkv)

MPEG 1 (.mpg)

MPEG-2 (.mpg)

MPEG-4 (.mp4)

NSV (.nsv)

OGG video (.ogg)

Ogg Vorbis compressed video (.ogm)

RealVideo (.rm)

RPL video (.rpl)

Video stream descriptor (.asx)

» Windows Media Video (.wmv)
6. Select the OGG Video (.ogg) item in the Output Format box.

vV V. VvV vV vV vV vV VvV vV VvV VvV VvV vV vV VvV Vv Vv v v v yvVvyy

7. Click the OK button.

The site converts your file and displays a URL to the completed
OGG file. Use your browser to download the OGG file, and store
it in the same directory as your page that uses the .ogg file.



Starting the video.html Example 153

Now that you have OGG files to work with, we can start on this lesson’s
example, video.html.

Starting the video.html Example

To get started with the video.html example, follow these steps:
1. Create video.html using a text editor such as Windows WordPad.

2. Enter the following code:
<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>
</head>

</html>

3. Add the following code to create the <body> element.
<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>
</head>

<body>
<h1>HTML 5 Video</h1>

</body>
</html>

4. Save video.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).



154 LESSON 8: Using Video and Audio

We’ve started video.html; now let’s make it do something.
To add the <video> element to the video.html example, follow these steps:
1. Open video.html using a text editor such as Windows WordPad.

2. Enter the following code:
<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>
</head>

<body>
<h1>HTML 5 Video</h1>
<video>
</video>
</body>
</html>

3. Add the following code to specify the location of the video and
its dimensions:

<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>
</head>

<body>
<h1>HTML 5 Video</h1>
<video height="300" width="400"
src="hawaii.ogg">
</video>
</body>
</html>

4. Save video.html in the same directory as your .ogg video. Make
sure you save this code in text format (the default format for



Adding Controls to the video.html Example 155

WordPad, for example, is RTF, rich-text format, which won’t
work with browsers).

That displays the video, but the only way to play it is to right-click it and
select the Play item. In the next task, we’ll make it easier to play by dis-
playing controls.

Adding Controls to the video.html
Example

To add video controls to the video.html example, follow these steps:
1. Open video.html using a text editor such as Windows WordPad.

2. Enter the controls attribute to the <video> element.

<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>
</head>

<body>
<h1>HTML 5 Video</h1>
<video controls height="300" width="400"
src="hawaii.ogg">
</video>
</body>
</html>

3. Save video.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).

Now the video appears as shown in Figure 8.1. To play the video, click the
Play button. Cool.



156 LESSON 8: Using Video and Audio

Looping a Video
You can make a video loop over and over; to do so follow these steps:
1. Open video.html using a text editor such as Windows WordPad.

2. Enter the following code:
<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>
</head>

<body>
<h1>HTML 5 Video</h1>
<video controls height="300" width="400"
loop src="hawaii.ogg">
</video>
</body>
</html>

3. Save video.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).

Now when the user plays the video, it’ll loop continuously.

Playing a Video Automatically

You can make a video play automatically when its page opens; to do so,
follow these steps:

1. Open video.html using a text editor such as Windows WordPad.

2. Enter the following code:
<!DOCTYPE html>

<html>



Detecting When a Video Has Failed 157

<head>
<title>
HTML 5 Video
</title>
</head>

<body>
<h1>HTML 5 Video</h1>
<video controls height="300" width="400"
autoplay src="hawaii.ogg">
</video>
</body>
</html>

3. Save video.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).

Detecting When a Video Has
Failed

You can catch video failures with the onerror attribute, handling several
different errors (such as not being able to find the video). Here’s how:

1. Open video.html using a text editor such as Windows WordPad.

2. Enter the following JavaScript code to create the fail() function,
handle the possible errors, and alert the user.

<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>

<script>
function fail(e)

{

switch (e.target.error.code) {



158 LESSON 8: Using Video and Audio

case e.target.error.MEDIA_ERR_ABORTED:
alert('You aborted the playback.');
break;

case e.target.error.MEDIA_ERR_NETWORK:
alert('Network error.');
break;

case e.target.error.MEDIA_ERR_DECODE:
alert('Corruption problem.');
break;

case

e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:

alert(
'"Format unsupported or file not found.');
break;

default:
alert('An unknown error occurred.');
break;

}
}
</script>
</head>

<body>
<h1>HTML 5 Video</h1>
<video controls height="300" width="400"
src="hawaii.ogg">
</video>
</body>
</html>

3. Enter the following code to connect the fail() function to the
<video> element.

<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Video
</title>

<script>
function fail(e)

{

switch (e.target.error.code) {



Detecting When a Video Has Failed 159

case e.target.error.MEDIA_ERR_ABORTED:
alert('You aborted the playback.');
break;

case e.target.error.MEDIA_ERR_NETWORK:
alert('Network error.');
break;

case e.target.error.MEDIA_ERR_DECODE:
alert('Corruption problem.');
break;

case

e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:

alert(
'"Format unsupported or file not found.');
break;

default:
alert('An unknown error occurred.');
break;

}
}
</script>
</head>

<body>
<h1>HTML 5 Video</h1>
<video controls height="300" width="400"
onerror="fail(event)" src="hawaii.ogg">
</video>
</body>
</html>

4. Save video.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).

Now when an error occurs, the page will inform the user, as shown in
Figure 8.3.

Javasc nptl lert

Format unsupported or file not fiound,

FIGURE 8.3 A video error.



160 LESSON 8: Using Video and Audio

Welcome to the Audio Media
Control

Next, we’ll develop an example named audio.html, which you can see in
Figure 8.4.

2
@ HTML 5 Audio - Mozilla Firefox B

o file/f/C/TYHTMLS/audio.htmi -

HTML 5 Audio

FIGURE 8.4 The audio.html example.

If you want to play the audio, just click the Play button. As with the <video>
element, most browsers let you play .ogg audio (other formats are coming).
If you need to onvert to .ogg format, you can use media-convert.com.

Let’s see some of the details behind this example now.

Getting to Know the Audio
Element API

The <audio> element has a number of attributes available for use; here are
the details:

Element:

» <audio>

Attributes:
» autoplay

» controls



Getting to Know the Audio Element API 161

» loop

v

preload
» src

» onerror

Supported browsers:

» Chrome. Opera, Safari, Firefox, Internet Explorer 9
You can read what the W3C has to say about the <audio> element at:
http://www.w3.org/TR/html5/video.html#audio.

We’ll take a look at the attributes in overview next.

The autoplay Attribute

As with the <video> element, the autoplay attribute is a true/false attribute
that controls whether the audio plays automatically.

The controls Attribute

The controls attribute lets you specify whether to display a control bar
with play/pause buttons so the user can control playback.

The loop Attribute

The loop attribute is a true/false attribute that, if true, makes the audio play
over and over.

The preload Attribute

As with the <video> control, the preload attribute controls whether the
audio is preloaded into the page. It can take one of these three values:

» none—No preloading necessary.

» metadata—Tells the browser that detecting metadata about the
audio (length, etc.) is a good idea.

» auto—The browser can decide whether to preload the audio.


http://www.w3.org/TR/html5/video.html#audio

162 LESSON 8: Using Video and Audio

The src Attribute

The src attribute holds the URL of the sound file you want to play.

The onerror Attribute

The <audio> element has an error event that occurs when there is a failure,
as when the sound file is not found.

Starting the audio.html Example

To get started with the audio.html example, follow these steps:
1. Create audio.html using a text editor such as Windows WordPad.

2. Enter the following code:
<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Audio
</title>
</head>

</html>

3. Add the following code to create the <body> element:
<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Audio
</title>
</head>

<body>
<h1>HTML 5 Audio</h1>



Starting the audio.html Example 163

</body>
</html>

4. Save audio.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).

We’ve started audio.html. Now let’s make it do something.
To add the <audio> element to the audio.html example, follow these steps:
1. Open audio.html using a text editor such as Windows WordPad.

2. Enter the following code:
<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Audio
</title>
</head>

<body>
<h1>HTML 5 Audio</h1>
<audio>
</audio>
</body>
</html>

3. Add the following code to specify the location of the audio and
to add controls so the user can play the sound recording.

<!DOCTYPE html>

<html>
<head>
<title>
HTML 5 Audio
</title>
</head>



164 LESSON 8: Using Video and Audio

<body>
<h1>HTML 5 Audio</h1>
<audio controls src="hawaii.ogg">
</audio>
</body>
</html>

4. Save audio.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-
mat, which won’t work with browsers).

There you have it—now the user can click the Play button to play the
sound recording.

As with the <video> element, you can use the loop attribute to make the
playback keep repeating, and use the autoplay attribute to make the sound
start as soon as the page loads.

TIP: Note that it's possible, if you omit the controls attribute and
include the autoplay and loop attributes, to create one of those
annoying pages that play music continuously as soon as it loads
with no way to turn it off—but it’s not going to make your users like
you very much.

Detecting When an Audio Has
Failed

You can catch audio failures with the onerror attribute, handling several
different errors; here’s how:

1. Open audio.html using a text editor such as Windows WordPad.

2. Enter the following JavaScript code to create the fail() function,
handle the possible errors, and alert the user.

<!DOCTYPE html>
<html>

<head>
<title>



Detecting When an Audio Has Failed

HTML 5 Audio
</title>

<script>
function fail(e)
{
switch (e.target.error.code) {
case e.target.error.MEDIA_ERR_ABORTED:
alert('You aborted the playback.');
break;
case e.target.error.MEDIA_ERR_NETWORK:
alert('Network error."');
break;
case e.target.error.MEDIA_ERR_DECODE:
alert('Corruption problem.');
break;
case
e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
alert(
'"Format unsupported or file not found.');
break;
default:
alert('An unknown error occurred.');
break;
}
}
</script>
</head>

<body>
<h1>HTML 5 Audio</h1>
<audio controls
src="hawaii.ogg">
</audio>
</body>
</html>

. Enter the following code to connect the fail() function to the
<audio> element.

<!DOCTYPE html>
<html>

<head>
<title>

165



166 LESSON 8: Using Video and Audio

HTML 5 Audio
</title>

<script>
function fail(e)
{
switch (e.target.error.code) {
case e.target.error.MEDIA_ERR_ABORTED:
alert('You aborted the playback.');
break;
case e.target.error.MEDIA_ERR_NETWORK:
alert('Network error."');
break;
case e.target.error.MEDIA_ERR_DECODE:
alert('Corruption problem."');
break;
case
e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
alert(
'"Format unsupported or file not found.');
break;
default:
alert('An unknown error occurred.');
break;
}
}
</script>
</head>

<body>
<h1>HTML 5 Audio</h1>
<audio controls
onerror="fail(event)" src="hawaii.ogg">
</audio>
</body>
</html>

4. Save audio.html. Make sure you save this code in text format (the
default format for WordPad, for example, is RTF, rich-text for-

mat, which won’t work with browsers).

Now when there’s an error, the page will inform the user.



LESSON 9
Web Storage

One of the things that HTML authors have missed is some way of storing
data between page accesses. When the page gets refreshed, all JavaScript
variables get reset to their original values, for example. How can you store
data that’s still there when the user comes back to your page?

This is often why people start working with server-side code—to preserve
data between page accesses. However, now, in HTMLS, there’s a new
way. So, for example, if you’re keeping track of a user’s purchases, you
can store that information so that it’ll be available when they come back
to the page.

Using plain JavaScript and HTMLS, you can now store data so that it’s
there even after the current page is reloaded. You can store data in either
the current browser session with the server (data is usually deleted after 15
minutes of user inactivity) or locally, in the browser. We’ll take a look at
both ways in this lesson, starting with session storage.

Welcome to Session Storage

When a browser connects to a server, it starts a session. The browser can
store data in that session, and that data will be safe as long as there isn’t
15 minutes of inactivity on the user’s part. If there is, the session times out
and the session data is deleted.

In this lesson, we’ll create an example called sessionstorage.html, which
appears in Figure 9.1.

The user can enter some data into the text field, as shown in Figure 9.1,
and click the Store button to store that data in the session. Then the user
can erase the data from the text field, as shown in Figure 9.2.




168

LESSON 9: Web Storage

T TFiretox = | =

http://www.lightlink.com/steve/sessionstorage.html 3 ~

Session Storage

Data Here is the data! | Store | Get | Clear |

FIGURE 9.1 The sessionstorage.html example.

™ Fretox ~ | e

http://www.lightlink.com/steve/sessionstorage.html 3 ~

Session Storage

Data | Store | Get | Clear |

FIGURE 9.2 Erasing data.

Then you can click the Get button to get the stored data from the session,

as shown in Figure 9.3.

In other words, the sessionstorage.html example shows you how to save

and get data from the session, using only JavaScript.

Note that to use this example, the browser must be talking to a web server,
which means that you have to upload sessionstorage.html to a web server
and open it in your browser. You can’t just open it from your disk and have

it work.



Getting to Know the Session Storage API 169

(= | & )

http://www.lightlink.com/steve/sessionstorage.html 3 ~

Session Storage

Data Herc is the datal | Store [ Gc% || Clear |

FIGURE 9.3 Getting data back again.

Getting to Know the Session
Storage API

Session storage is based on the JavaScript object named sessionStorage,
which comes built in to browsers that support this HTMLS5 feature. You
can read about this object at: http://dev.w3.org/html5/webstorage/. Here
are the details:

Object:

»

sessionStorage

Attributes:

4

length attribute

Functions:

4

4

key() function
getltem() function
setltem() function
removeltem() function

clear() function


http://dev.w3.org/html5/webstorage/

170 LESSON 9: Web Storage

Supported browsers:
» Firefox and Safari
You store values in the sessionStorage object using key/value pairs—that

is, when you store data, you specify both the data and the key (text like
“data” or “phone”’). When you read data back, you supply the key.

Let’s take a look at the sessionStorage object’s attributes and functions now.

The length Attribute

The length attribute holds the number of key/value pairs currently present
in the sessionStorage object.

The key() Function

Here’s how you use this function:

» key(index)

This function returns the name of the nth key in the sessionStorage object.

The getitem() Function

Here’s how you use this function:

» getltem(key)

This function returns the value of the item associated with the specified key.

The setitem() Function

Here’s how you use this function:
» setltem(key, data)
You use this function to store data in the session. You specify the key to

store data under, and the value of that data. For example, setltem(“Data”,
“turbulent”) stores the word “turbulent” under the key “Data”.



Starting the sessionstorage.html Example 171

The removeltem() Function

Here’s how you use this function:

» removeltem(key)

You use this function to remove items from the sessionStorage object.

The clear() Function

The clear() function clears all session data.

Now let’s put all this to work in the sessionstorage.html example, where
we store and then get data from the session.

Starting the sessionstorage.html
Example

To get started with the sessionstorage.html example, follow these steps:

1. Create sessionstorage.html using a text editor such as Windows
WordPad.

2. Enter the following code.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
</head>

<body>
<h1>Session Storage</h1>

</body>
</html>

3. Add the following code to create the text field and the three
buttons.



172

LESSON 9: Web Storage

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
</head>

<body>
<h1>Session Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store">
<input type="button" value="Get">
<input type="button" value="Clear">

</body>

</html>

. Save sessionstorage.html. Make sure you save this code in text

format (the default format for WordPad, for example, is RTF,
rich-text format, which won’t work with browsers).

We’ve started sessionstorage.html; now let’s make it do something.

Storing Data in the Session

To store the data the user enters in the sessionstorage.html example, follow
these steps:

1. Open sessionstorage.html using a text editor such as Windows

WordPad.

. Enter the following code to connect the Store button to

JavaScript.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
</head>

<body>
<h1>Session Storage</h1>



Storing Data in the Session

Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="sessionStore();">
<input type="button" value="Get">
<input type="button" value="Clear">
</body>
</html>

3. Add the following code to read the text the user has entered and
store it in the session.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function sessionStore()
{
var text =
document.getElementById
("Data").value;
sessionStorage.setItem("Data", text);
}
</script>
</head>

<body>
<h1>Session Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="sessionStore();">
<input type="button" value="Get"
onclick="sessionGet();">
<input type="button" value="Clear"
onclick="sessionClear();">
</body>
</html>

4. Save sessionstorage.html. Make sure you save this code in text
format (the default format for WordPad, for example, is RTF,
rich-text format, which won’t work with browsers).

That stores the data the user has entered in the session. Now how about
getting it back?

173



174 LESSON 9: Web Storage

Getting Data from the Session

To get the stored data back from the session in the sessionstorage.html
example, follow these steps:

1. Open sessionstorage.html using a text editor such as Windows
WordPad.

2. Enter the following code to connect the Get button to JavaScript.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function sessionStore()
{
var text =
document.getElementById
("Data").value;
sessionStorage.setItem("Data", text);
}
</script>
</head>

<body>
<h1>Session Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="sessionStore();">
<input type="button" value="Get"
onclick="sessionGet();">
<input type="button" value="Clear">
</body>
</html>

3. Add the following code to read the data from the session and dis-
play it in the text field again.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>



Clearing Session Data 175

<script type="text/javascript">
function sessionStore()
{
var text =
document.getElementById
("Data").value;
sessionStorage.setItem("Data", text);

}

function sessionGet()

{
document.getElementById("Data").value =

sessionStorage.getItem("Data");

}
</script>
</head>

<body>
<h1>Session Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="sessionStore();">
<input type="button" value="Get"
onclick="sessionGet();">
<input type="button" value="Clear"
onclick="sessionClear();">
</body>
</html>

4. Save sessionstorage.html. Make sure you save this code in text
format (the default format for WordPad, for example, is RTF,
rich-text format, which won’t work with browsers).

That restores the data from the session.

Clearing Session Data

You can also clear the data in the session; to do so, follow these steps:

1. Open sessionstorage.html using a text editor such as Windows
WordPad.

2. Enter the following code to connect the Clear button to
JavaScript.



176 LESSON 9: Web Storage

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function sessionStore()
{
var text =
document.getElementById
("Data").value;
sessionStorage.setItem("Data", text);

}

function sessionGet()
{
document.getElementById("Data").value =
sessionStorage.getItem("Data");
}
</script>
</head>

<body>
<h1>Session Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="sessionStore();">
<input type="button" value="Get"
onclick="sessionGet();">
<input type="button" value="Clear"
onclick="sessionClear();">
</body>
</html>

3. Add the following code to clear the session data.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function sessionStore()

{

var text =



The sessionstorage.html Code 177

document.getElementById
("Data").value;
sessionStorage.setItem("Data", text);

}

function sessionGet()
{
document.getElementById("Data").value
sessionStorage.getItem("Data");

}

function sessionClear()

{
sessionStorage.removeltem("Data");
document.getElementById("Data").value

nn,
3

}
</script>
</head>

<body>
<h1>Session Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="sessionStore();">
<input type="button" value="Get"
onclick="sessionGet();">
<input type="button" value="Clear"
onclick="sessionClear();">
</body>
</html>

4. Save sessionstorage.html. Make sure you save this code in text
format (the default format for WordPad, for example, is RTF,
rich-text format, which won’t work with browsers).

And now you can clear the data in the session.

The sessionstorage.html Code

For reference, here is the full sessionstorage.html code:

<!DOCTYPE html>
<html>



178 LESSON 9: Web Storage

<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function sessionStore()
{
var text =
document.getElementById
("Data").value;
sessionStorage.setItem("Data", text);

}

function sessionGet()
{
document.getElementById("Data").value
sessionStorage.getItem("Data");

}

function sessionClear()

{
sessionStorage.removeltem("Data");
document.getElementById("Data").value
"3

}

</script>
</head>

<body>
<h1>Session Storage</hi>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="sessionStore();">
<input type="button" value="Get"
onclick="sessionGet();">
<input type="button" value="Clear"
onclick="sessionClear();">
</body>
</html>

Welcome to Local Storage

Besides storing data in a server-side session, you can store data in the
browser. In this lesson, we’ll create an example called localstorage.html,
which appears in Figure 9.4.



Welcome to Local Storage

i ey
Firefox * |

| file///C/TYHTMLS/localstorage html

Local Storage

| T |

FIGURE 9.4 The localstorage.html example.

Data Here's the text. SR}IT :| Get | Clear |

179

As with the sessionstorage.html example, you can enter some text into the

text field, as shown in Figure 9.4, and click the Store button to store that
data in the browser. Then you can erase the data from the text field, as

shown in Figure 9.5.

™ Fretox ~ | e
| file///C/TYHTMLS/localstorage html -
Local Storage
Data | Storc || Get || Clear |

FIGURE 9.5 Erasing data.

Then you can click the Get button to get the stored data from the browser,

as shown in Figure 9.6.

The localstorage.html example shows you how to save and get data from
the browser between page accesses, using only JavaScript.



180 LESSON 9: Web Storage

Firefox *

(e ) e

| file:///C/TYHTMLS/localstorage.hitml X

Local Storage

Data Here's the toxt] | Store | Getp, | Clear |

FIGURE 9.6 Getting data back again.

Getting to Know the Local
Storage API

You can also use local storage in the browser, which is good until the user
closes the browser. That is, the user can come back to the same page over
and over, and the data will still be available as long as the user hasn’t
closed the browser.

Local storage revolves around the localSession object. You can read about
this object at: http://dev.w3.org/html5/webstorage/. Here are the details:

Object:

» localStorage

Attributes:

» length attribute

Functions:
» key() function
» getltem() function

» setltem() function


http://dev.w3.org/html5/webstorage/

Starting the localstorage.html Example 181

» removeltem() function

» clear() function

Supported Browsers:

» Chrome, Firefox and Safari

As with the sessionStorage object earlier in this lesson, you store values in
the localStorage object using key/value pairs—that is, when you store data,
you specify both the data and the key. When you read data back, you sup-
ply the key.

For the details on how to use these attributes and functions, take a look at
the sessionStorage object’s section at the beginning of this lesson. The
syntax is the same for the attributes and functions of localStorage.

Starting the localstorage.html
Example

To get started with the localstorage.html example, follow these steps:

1. Create localstorage.html using a text editor such as Windows
WordPad.

2. Enter the following code:

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
</head>

<body>
<hi>Local Storage</h1>

</body>
</html>



182 LESSON 9: Web Storage

3. Add the following code to create the text field and the three
buttons:

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
</head>

<body>
<h1>Local Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store">
<input type="button" value="Get">
<input type="button" value="Clear">

</body>

</html>

4. Save localstorage.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

We’ve started localstorage.html; now let’s make it do something.

Storing Data in the Browser

To store the data the user enters in the localstorage.html example, follow
these steps:

1. Open localstorage.html using a text editor such as Windows
WordPad.

2. Enter the following code to connect the Store button to
JavaScript.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
</head>



Storing Data in the Browser 183

<body>
<h1>Local Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"

onclick="localStore();">

<input type="button" value="Get">
<input type="button" value="Clear">

</body>

</html>

. Add the following code to read the text the user has entered and
store it in the browser.

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function localStore()
{
var text =
document.getElementById
("Data").value;
localStorage.setItem("Data", text);
}
</script>
</head>

<body>
<h1>Local Storage</hi>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="localStore();">
<input type="button" value="Get"
onclick="localGet();">
<input type="button" value="Clear"
onclick="localClear();">
</body>
</html>

Save localstorage.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).



184 LESSON 9: Web Storage

That stores the data the user has entered. Now how about getting it back
from the browser?

Getting Data from the Browser

To get the stored data back from the browser in the localstorage.html
example, follow these steps:

1. Open localstorage.html using a text editor such as Windows
WordPad.

2. Enter the following code to connect the Get button to JavaScript:

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function localStore()
{
var text =
document.getElementById
("Data").value;
localStorage.setItem("Data", text);
}
</script>
</head>

<body>
<hi>Local Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="localStore();">
<input type="button" value="Get"
onclick="localGet();">
<input type="button" value="Clear">
</body>
</html>

3. Add the following code to read the data from the local storage
and display it in the text field again.



Getting Data from the Browser 185

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function localStore()
{
var text =
document.getElementById
("Data").value;
localStorage.setItem("Data", text);

}

function localGet()
{
document.getElementById("Data").value =
localStorage.getItem("Data");
}
</script>
</head>

<body>
<hi>Local Storage</h1>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="localStore();">
<input type="button" value="Get"
onclick="localGet();">
<input type="button" value="Clear"
onclick="localClear();">
</body>
</html>

4. Save localstorage.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-

text format, which won’t work with browsers).

And that reads the data back from the browser.



186 LESSON 9: Web Storage

Clearing Local Data

You can also clear the data in the browser by following these steps:

1. Open localstorage.html using a text editor such as Windows
WordPad.

2. Enter the following code to connect the Clear button to
JavaScript:

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function localStore()
{
var text =
document.getElementById
("Data").value;
localStorage.setItem("Data", text);
}

function localGet()
{
document.getElementById("Data").value =
localStorage.getItem("Data");
}
</script>
</head>

<body>
<h1>Local Storage</hi>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="localStore();">
<input type="button" value="Get"
onclick="localGet();">
<input type="button" value="Clear"
onclick="localClear();">
</body>
</html>



3.

Clearing Local Data

Add the following code to clear the local data:

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function localStore()
{
var text =
document.getElementById
("Data").value;

localStorage.setItem("Data", text);

}

function localGet()

{

document.getElementById("Data").value

localStorage.getItem("Data");
}

function localClear()

{

localStorage.removeItem("Data");

document.getElementById("Data").value

nn,
3

}
</script>
</head>

<body>
<hi1>Local Storage</hi>
Data <input id="Data" type="text">
<input type="button" value="Store"
onclick="localStore();">
<input type="button" value="Get"
onclick="localGet();">
<input type="button" value="Clear"
onclick="localClear();">
</body>
</html>

187



188 LESSON 9: Web Storage

4. Save localstorage.html. Make sure you save this code in text for-
mat (the default format for WordPad, for example, is RTF, rich-
text format, which won’t work with browsers).

That’s how to clear the data you’ve stored in the browser.

The localstorage.html Code

For reference, here is the full localstorage.html code:

<!DOCTYPE html>
<html>
<head>
<title>
Web Storage
</title>
<script type="text/javascript">
function localStore()

{
var text =
document.getElementById
("Data").value;
localStorage.setItem("Data", text);
}
function localGet()
{
document.getElementById("Data").value =
localStorage.getItem("Data");
}

function localClear()

{
localStorage.removeltem("Data");
document.getElementById("Data").value

}
</script>
</head>

<body>
<ht1>Local Storage</hi>
Data <input id="Data" type="text">



The localstorage.html Code 189

<input type="button" value="Store"
onclick="localStore();">

<input type="button" value="Get"
onclick="localGet();">

<input type="button" value="Clear"
onclick="localClear();">

</body>
</html>



This page intentionally left blank



LESSON 10

The New HTMLS
Elements

HTMLS includes some new elements, and they’re the focus of this lesson.
We’ve already covered some of these new elements in previous lessons, but
there are many more, most having to do with document structure.

Adding SVG and MathML

Here’s something that might surprise you—HTMLS has taken two XML
languages, SVG (Scalable Vector Graphics) and MathML (a language for
displaying equations), and now supports them.

SVG is already supported by some browsers, such as Firefox, as you can
see in Figure 10.1.

Creating polylines

FIGURE 10.1 An SVG example.




192 LESSON 10: The New HTML5 Elements

Only one browser supports MathML and HTML at this time—that’s the
Amaya test browser from W3C, and you can get it at www.w3.org/
Amaya/.

Welcome to the New Elements
Here are the HTML elements that are new in HTMLS5:

» <article>

> <aside>

» <audio>

» <canvas>

» <command>
> <datalist>
» <details>

» <embed>

» <figcaption>
> <figure>

» <footer>

» <header>

» <hgroup>
> <keygen>
» <mark>

» <meter>

> <nav>

> <output>

> <progress>

> <rp>


www.w3.org/Amaya/
www.w3.org/Amaya/

v

Welcome to the New Elements

<rt>
<ruby>
<section>
<source>
<summary>
<time>

<video>

193

You can have a look at what W3C has to say about each of these elements
at www.w3.org/TR/html5/spec.html#auto-toc-8. You should also take note
that the following elements are dropped in HTMLS5:

4

4

<acronym>
<applet>
<basefont>
<big>
<center>
<dir>
<font>
<frame>
<frameset>
<isindex>
<noframes>
<s>
<strike>
<tt>

<u>


www.w3.org/TR/html5/spec.html#auto-toc-8

194 LESSON 10: The New HTML5 Elements

Let’s take a look at the new elements.

The <article> Element

The <article> element straddles an article, which is intended to be an inde-
pendently distributable document, like an article in a magazine. Here are
this element’s attributes:

» accesskey

> class

» contenteditable
> contextmenu
» dir

» draggable
» hidden

> id

> lang

» spellcheck
> style

» tabindex

> title

Here’s an example putting the <article> element to work:

<!DOCTYPE HTML>
<html>
<head>
<title>
It's going to rain
</title>
</head>
<body>
<article>
<header>
<h1>It's going to rain</hi>



The <aside> Element 195

<p>
<time pubdate datetime="2010-10-09T14:28-08:00"></time>
</p>
</header>
<p>Current forecast is for bigtime rain.</p>
<section>
<h1>Comments</h1>
<article>
<footer>
<p>Posted by: Sam Budd</p>
<p><time pubdate datetime="2010-10-10T19:10-08:00">
</time></p>
</footer>
<p>We need the rain.</p>
</article>
<article>
<footer>
<p>Posted by: Fred SMith</p>
<p><time pubdate datetime="2010-10-10T19:15-08:00">
</time></p>
</footer>
<p>Maybe you do. I don't.</p>
</article>
</section>
</article>
</body>
</htl>

The <aside> Element

The <aside> element represents an aside to the text, such as a sidebar. The
text in an <aside> element is usually set off from the main body of text.
Here are the attributes of this element:

> accesskey

» class

» contenteditable
» contextmenu
» dir

» draggable



196 LESSON 10: The New HTML5 Elements

» hidden

> id

» lang

» spellcheck
> style

» tabindex

> title

The <audio> Element

This element is covered in Lesson 8, “Using Video and Audio.”

The <canvas> Element

This element is covered in Lesson 2, “Drawing with the Canvas Element.”

The <command> Element

The <command> element can appear as a button, check box, or radio but-
ton. Here are the attributes:

» [accesskey

» [checked

» [class

» [contenteditable
» [contextmenu
» [dir

» [disabled

» [draggable



4

The type attribute sets the type of control that will be displayed.

The <command> Element

[hidden
[icon

[id

[label
[lang
radiogroup
spellcheck
style
tabindex

title

type

197

When the type attribute is set to “command” keyword, the control displays

a button; the check box keyword maps to the Checkbox state, and the

radio keyword maps to the Radio state.

Here’s an example:

<men

<command type="radio" radiogroup="colors" checked="checked"
<command type="radio" radiogroup="colors"

<command type="radio" radiogroup="colors"

u type="toolbar">
label="Left" onclick="red()">
label="Center" onclick="blue()">

label="Right" onclick="green()">

<hr>

<c

</me

ommand type="command" disabled
label="Publish" onclick="publish()">
nu>



198 LESSON 10: The New HTML5 Elements

The <datalist> Element

The <datalist> element supplies <option> elements for other controls; you
hook it up to <input> elements using the <input> elements’ list attribute.
Here are the attributes of this element:

> accesskey
» class

» contenteditable
»> contextmenu
» dir

» draggable
» hidden

> id

» lang

» spellcheck
> style

» tabindex

» title

The <details> Element

The <details> element is a clickable element that opens to display more
details when the user requests them. Here are the attributes of this element:

» accesskey

> class

» contenteditable
» contextmenu

» dir



»

The <embed> Element

draggable
hidden

id

lang

open
spellcheck
style
tabindex

title

199

You store the actual details using <dt> (details title) and <dd> (details data
elements). Here’s an example:

<details>
<summary>Ice Cream</summary>
<dl>
<dt>Flavor:</dt> <dd>Strawberry</dd>
<dt>Name</dt> <dd>Big Red</dd>
<dt>Contains Sugar</dt> <dd>0Oh yes</dd>
</dl>
</details>
</section>

The <embed> Element

The <embed> element lets you embed output from other applications,
typically plug-ins, such as video or audio. Here are the attributes of this

element:

4

»

»

accesskey
class
contenteditable
contextmenu

dir



200 LESSON 10: The New HTML5 Elements

» draggable
» height

» hidden
> id

» lang

» spellcheck
> src

> style

» tabindex
> title

> type

» width

The src attribute gives the URL of the resource you want to embed. The
type attribute should be set to the MIME type of the resource.

The <figcaption> Element

The <figcaption> element contains a figure caption for a <figure> element;
see the <figure> element for more details. Here are the attributes of the
<figcaption> element:

> accesskey

> class

» contenteditable
» contextmenu
» dir

» draggable

» hidden



The <figure> Element

id

lang
spellcheck
style
tabindex

title

The <figure> Element

The <figure> element lets you associate a figure caption with an image.

Here are the attributes of this element:

4

4

4

accesskey
class
contenteditable
contextmenu
dir
draggable
hidden

id

lang
spellcheck
style
tabindex

title

Here’s an example:

<figure>

201



202 LESSON 10: The New HTML5 Elements

<img src="icecream.jpeg"
alt="Strawberry ice cream">
<figcaption>Strawberry ice cream</figcaption>
</figure>

The <footer> Element

This element lets you display text in a footer for the most recent <section>
element; here are the attributes of this element:

» accesskey
> class

» contenteditable
> contextmenu
> dir

» draggable
» hidden

> id

» lang

» spellcheck
> style

» tabindex

» title

See “The <article> Element” section for an example.

The <header> Element

This element groups together introductory and/or navigational material.
Here are the attributes of this element:

> accesskey



The <header> Element

» class

» contenteditable
»> contextmenu
» dir

» draggable

» hidden

> id

> lang

» spellcheck
> style

» tabindex

» title

Here’s an example:

<body>

<header>
<h1>Ice Cream</h1>
<nav>
<ul>

<li><a href="/strawberry">Strawberry</a>
<li><a href="/chocolate">Chocolate</a>

<li><a href="/vanilla">Vanilla</a>
</ul>
</nav>
<h2>Good News About Ice Cream</h2>
</header>

203



204 LESSON 10: The New HTML5 Elements

The <hgroup> Element

The <hgroup> element contains the heading of a section. The element is
used to group a set of h1-h6 elements when the heading has multiple levels,
such as subheadings, alternative titles, or taglines. Here are the attributes:

> accesskey
» class

» contenteditable
»> contextmenu
» dir

» draggable
» hidden

> id

» lang

» spellcheck
> style

» tabindex

> title

You use this element to group multiple header elements as one as far as
outlining programs are concerned.

The <keygen> Element

The <keygen> element represents a key/pair generator control for public
and private keys. When the control’s form is submitted, the private key is
stored, and the public key is sent to the server. Here are the attributes of

this element:

> accesskey

» autofocus



The <mark> Element

challenge
class
contenteditable
contextmenu
dir

disabled
draggable
form

hidden

id

keytype

lang

name
spellcheck
style
tabindex

title

The <mark> Element

The <mark> element represents text in one document marked or highlight-
ed for reference purposes because of its relevance in another context. Here
are this element’s attributes:

4

4

v

accesskey
class
contenteditable

contextmenu

205



206 LESSON 10: The New HTML5 Elements

» dir

» draggable
» hidden

> id

» lang

» spellcheck
> style

» tabindex

> title

Here’s an example:

<p>The highlighted text below is the problem:</p>
<pre><code>
var x: Integer;

begin

X = <mark>'a'</mark>;
end.
</code></pre>

The <meter> Element

The <meter> element displays a gauge that indicates how complete a mea-
sure or process is. The attributes of this element are the following:

> accesskey

> class

» contenteditable
» contextmenu
» dir

» draggable

» form



The <nav> Element

» hidden
» high

> id

> lang

> low

> max

> min

» optimum
» spellcheck
> style

» tabindex
> title

» value

Here’s an example:

<meter min=0 max=60 value=15 title="Minutes"></meter>

The <nav> Element

The <nav> element contains navigation links; here are its attributes:

> accesskey

» class

» contenteditable
» contextmenu
» dir

» draggable

» hidden

207



208 LESSON 10: The New HTML5 Elements

> id

» lang

» spellcheck
> style

» tabindex

» title

And here’s an example:

<body>
<header>
<nav>
<h1>Ice Cream News</h1>
<ul>
<li><a href="articles.html">Index of all articles</a></li>
<li><a href="today.html">Ice creeam issues today</a></li>
<li><a href="new.html">New flavors</a></li>
</ul>
</nav>
</header>
<div>

The <output> Element

The <output> element is a control that displays the result of a calculation.
Here are its attributes:

> accesskey

» class

» contenteditable
» contextmenu
» dir

» draggable



The <progress> Element 209

» for

» form

» hidden

> id

» lang

> name

» spellcheck
> style

» tabindex

> title

Here’s an example:

<form onsubmit="return false">
<input name=x type=number step=any>
<br>

+

<br>

<input name=y type=number step=any>
<br>

<br>
<output onforminput="value = x.value + y.value"></output>
</form>

It’s not clear at this time how the <output> element will differ from a read-
only text field.

The <progress> Element

The <progress> element displays a progress bar; here are this element’s
attributes:

> accesskey

» class



210 LESSON 10: The New HTML5 Elements

» contenteditable
»> contextmenu
» dir

» draggable
» form

» hidden

> id

> lang

> max

» spellcheck
> style

» tabindex

> title

» value

Here’s an example where you call a function named updateBar() to update
the progress bar:

<head>
<title>The Progress Bar</title>
<script>
var bar = document.getElementById('pb');
function updateBar(new)

{
bar.value = new;
bar.getElementsByTagName('span')[0].textContent =
new;
}
</script>
</head>
<body>

<h2>Task Progress</h2>

<p>Progress: <progress id="pb"

max=100><span>0</span>%</progress></p>
</body>



The <rp> Element 211

The <rp> Element

The <rp> element is part of the <ruby> element, which displays annota-
tions for text (for example, ruby text is sometimes used to display pronun-
ciation aids). The <rp> element encloses its text in parentheses inside the
ruby text. Here are the attributes of this element:

> accesskey
» class

» contenteditable
> contextmenu
» dir

» draggable
» hidden

> id

> lang

» spellcheck
> style

» tabindex

» title

See the <ruby> element for more information.

The <rt> Element

The <rt> element marks the text component of a ruby annotation—see the
<ruby> element for more information. Here are the attributes of the <rt>
element:

» accesskey
> class

» contenteditable



212 LESSON 10: The New HTML5 Elements

» contextmenu
» dir

» draggable
> hidden

> id

» lang

» spellcheck
> style

» tabindex

> title

The <ruby> Element

Rubies display annotations, often pronunciation aids, next to the text they
annotated. Here are the attributes of this element:

» accesskey

> class

» contenteditable
> contextmenu
» dir

» draggable

» hidden

> id

> lang

» spellcheck

> style



4

4

tabindex

title

The <section> Element 213

The <section> Element

The <section> element represents a section of a body of text—for exam-
ple, it could represent a chapter in a longer document. The <section> ele-
ment is typically used to break up the <article> element into smaller divi-
Here are this element’s attributes:

sions.
|

>

accesskey
class
contenteditable
contextmenu
dir
draggable
hidden

id

lang
spellcheck
style
tabindex

title

See “The <article> Element” section for an example.



214 LESSON 10: The New HTML5 Elements

The <source> Element

The <source> element lets you specify multiple alternative media
resources for media elements. In case one resource can’t be found, the next
one can be searched for. Here are the attributes of this element:

> accesskey
» class

» contenteditable
»> contextmenu
» dir

» draggable

» hidden

> id

» lang

» media

» spellcheck
» src

> style

» tabindex

» title

> type

Here’s an example:

<source src=icecream.mp4' type='video/mp4;
codecs="mp4v.20.240, mp4a.40.2""'>



The <summary> Element 215

The <summary> Element

The <summary> element is a child element of the <details> element and
provides a summary of the content of the <details> element. Here are the
<summary> element’s attributes:

4

4

accesskey
class
contenteditable
contextmenu
dir
draggable
hidden

id

lang
spellcheck
style
tabindex

title

The <time> Element

The <time> element contains a date stamp; here are its attributes:

4

»

v

accesskey
class
contenteditable

contextmenu



216 LESSON 10: The New HTML5 Elements

» datetime
» dir

» draggable
» hidden

> id

» lang

» pubdate
» spellcheck
> style

» tabindex

> title

And here is an example:

<time datetime="2010-10-09T14:28-08:00"></time>

The <video> Element

This element is covered in Lesson 8.



Index

A <article> element, 194-195
<aside> element, 195-196
attributes

accept attribute, 61

alt attribute, 61
Amaya test browser, 192
annotations (text)
<rp> element, 211
<rt> element, 211-212
APIs (application programming
interfaces), 14-15
<audio> element, 160-162
<canvas> element, 14-15
complex shapes, 16-17
images, 17-18
line styles, 15
rectangles, 16
shadows, 16
styling, 15
text, 17
transformations, 18
drag-and-drop, 37-40
form controls, 60-65
allowed attributes, 61-62

built-in attributes/
functions, 63

history object, 104-106
local storage, 180-181
messaging, 128-129
data attribute, 128-129
onMessage() function, 128
origin attribute, 129
postMessage() function, 128
source attribute, 129
session storage, 169-188
specification website, 37
<video> element, 148-150
arc() function, 16, 28
arcs, 28-29
arcTo() function, 16

<article> element, 194
<aside> element, 195-196
<audio> element, 160-161
<canvas> element
line styles, 15
shadows, 16
styling, 15
text, 17
<command> element, 196-197
contenteditable, 79-80
<datalist> element, 198
designmode, 80
<details> element, 198-199
drag-and-drop, 35, 37-38
draggable, 38
ondragend, 40
ondragenter, 38
ondragover, 39
ondragstart, 39
ondrop, 39
<embed> element, 199-200
<figcaption> element, 200-201
<figure> element, 201
<footer> element, 202
form controls, 61-62
allowed, 61-62
built-in, 63
<header> element, 202-203
<hgroup> element, 204
history object, 105
inline editing, 79
<keygen> element, 204-205
length, 114-116
<mark> element, 205-206




218

attributes

messaging
data, 128-129
origin, 129
source, 129
<meter> element, 206-207
<nav> element, 207-208
<output> element, 208-209
<progress> element, 209-210
<rp> element, 211
<rt> element, 211-212
<ruby> element, 212-213
<section> element, 213
<source> element, 214
spellcheck, 80
<summary> element, 215
<time> element, 215-216
<video> element, 148-150
<audio> element
API, 160-162
browser support, 161
error handling, 164-166
support, 9
W3C website, 161
audio.html, 162-164
autocomplete attribute, 61
autoplay attribute
<audio> element, 161
<video> element, 149

onpopstate events, 106

overview, 103-104

popping data, 119-121

pushing data, 116-119
support, 5

audio support, 161

drag and drop support, 35

editable documents
support, 80

editable elements support,
79-80

local storage support, 181
MathML support, 192
spell check support, 80
SVG support, 191

video support, 149

button controls, 65

Back buttons, 107-110
back() function, 105
beginPath() function, 16, 22
bezier curves, 25-26
bezierCurveTo() function, 16, 25
bolding text, 83-85
browsers
Amaya test, 192
history
Back buttons, 107-110
forward buttons, 110-112
length, 114-116

<canvas> element

API, 14-15
complex shapes, 16-17
images, 17-18
line styles, 15
rectangles, 16
shadows, 16
styling, 15
text, 17
transformations, 18
arcs, 28-29
bezier curves, 25-26
canvas.html example
Canvas, creating, 18-19
code, 31-33
JavaScript, adding, 19-20
creating, 13
Firefox example, 14
line art
drawing, 22-23
filling, 24-25
overview, 6
quadratic curves, 27-28



date and time controls 219

rectangles
drawing, 20-21
functions, 16
specification, 13
text, 30-31
change events, 64
checkbox controls, 65
checked attribute, 61-63
child.html
creating, 132-133
receiving messages, 134-135
clear() function, 171
clearRect() function, 16
clip() function, 16
closePath() function, 16, 22
color controls
creating, 74-75
data types, 65
<command> element, 196-197
complex shapes, drawing, 16-17
contenteditable attribute, 79-80
controls
form
allowed attributes, 61-62
API, 60-65
built-in attributes/
functions, 63
color, 74-75
creating, 57
data extraction, 65
data types, 65
date and time, 72-73
default, creating, 67-68
email, 69-70
events, 64
new, 7
number, 70-71
range, 70-71
search, 75-76
text, 67-68

URL, 68-69
W3C specification, 57

webforms.html example,
66, 76-78
webforms.php example, 78
<video> element, 155
controls attribute
<audio> element, 161
<video> element, 149
cross-domain messaging, 126-127
domainchild.html, 140-141
code, 144-145

receiving messages,
142-143

domainparent.html

code, 143-144

creating, 137-138
receiving, 142-143
sending, 138-140

cross-window messaging, 126

child.html

creating, 132-133

receiving messages,
134-135

parent.html
code, 135-136
creating, 129-130

sending message to
child.html, 130-132

receiving, 134-135

sending, 130-132
curves

bezier, 25-26

quadratic, 27-28

data attribute, 128-129
<datalist> element, 198
dataTransfer object, 40

data types (form controls), 65
date and time controls

How can we make this index more useful? Email us at indexes@samspublishing.com




220 date and time controls

creating, 72-73
data types, 65
dates, 65, 72-73
times, 65, 72-73
datetime control, 72-73
default controls, creating, 67-68
designmode attribute, 80
<details> element, 198-199
display sources, adding, 91-93
<div> elements
drag and drop example, 36
inline editing example, 82
documents (editable)
attributes, 79
contenteditable, 79-80
designmode, 80
spellcheck, 80
links, 88-90
making, 80
spell checking, 93-94
text
bolding, 83-85
italicizing, 85-86
underlining, 87-88
domainchild.html, 140-141
code, 144-145
receiving messages, 142-143
domainparent.html
code, 143-144
creating, 137-138
draggable attribute, 38
dragging and dropping, 7
API, 37-40
attributes, 35, 37-38
draggable, 38
ondragend, 40
ondragenter, 38
ondragover, 39
ondragstart, 39
ondrop, 39

browser support, 35

dataTransfer object, 40

<div> elements, 36

draganddrop.html example
code, 52-55

draggable elements,
creating, 42-43

targets, creating, 41-42
dragging elements
starting, 46-47
styling, 43-45
target entrance, allowing,
47-48
dropping elements
allowing, 48-49
drop events, handling, 50
ending, 51
JavaScript functions,
connecting, 35-36

targets
creating, 41-42
styling, 43-45
drawlmage() function, 17
drawing
arcs, 28-29
complex shapes, 16-17
curves
bezier, 25-26
quadratic, 27-28
hearts, 25-26
images, 17-18
line art, 22-23
rectangles, 16, 20-21
text, 30-31
triangles

green triangle example,
24-25

three triangles example,
22-23
drop() function, 50
dropped elements (HTMLS)



elements

221

dropping elements
allowing, 48-49
ending, 51
handling, 50

editdiv.html example
bolding, 83-85
code, 95-96
display sources, 91-93
<div> element, creating, 82
italicizing, 85-86
links, 88-90
underlining, §7-88
editiframe.html example
buttons, adding, 98-100
code, 100-101
iframe, creating, 97-98
editing
attributes, 79
contenteditable, 79-80
designmode, 80
spellcheck, 80
text, 8
bolding, 83-85
display sources, 91-93
italicizing, 85-86
links, 88-90
spell checking, 91-94
underlining, 87-88
elements
<audio>
API, 160-162
browser support, 161
error handling, 164-166
support, 9
W3C website, 161
<canvas>
API, 14-15
arcs, 28-29

bezier curves, 25-26
canvas.html example,
18-20, 31-33
complex shapes, 16-17
creating, 13
Firefox example, 14
images API, 17-18
line art, drawing, 22-23
line art, filling, 24-25
line styles, 15
overview, 6
quadratic curves, 27-28
rectangle functions, 16
rectangles, drawing, 20-21
shadows, 16
specification, 13
styling, 15
text, 17, 30-31
transformations API, 18
<div>
drag and drop example, 36
inline editing example, 82
dropped, 11, 193
editable
bolding text, 83-85
italicizing text, 85-86
links, 88-90
making, 79-80
spell checking, 93-94
underlining text, 87-88
new
<article>, 194-195
<aside>, 195-196

<audio>. See <audio>
element

canvas>. See <canvas>
element

<command>, 196-197
<datalist>, 198
<details>, 198-199
<embed>, 199-200
<figcaption>, 200-201

How can we make this index more useful? Email us at indexes@samspublishing.com




222 elements

<figure>, 201-202
<footer>, 202
<header>, 202-203
<hgroup>, 204
<keygen>, 204-205
listing of, 10-11, 192-193
<mark>, 205-206
<meter>, 206-207
<nav>, 207-208
<output>, 208-209
<progress>, 209-210
<rp>, 211
<rt>, 211-212
<ruby>, 212-213
<section>, 213
<source>, 214
<summary>, 215
<time>, 215-216
<video>
API, 148-150
controls, adding, 155
looping, 156
OGG conversions,
150-152

playing automatically,
156-157

email controls
creating, 69-70
data types, 65
<embed> element, 199-200
end() function, 51
enter() function, 48
error handling
<audio> element, 164-166
<video> element, 157-159
events
control, 64
drop events, 50
input, 64
onpopstate, 106, 119-121
execCommand() function, 83

F

fail() function, 157
<figcaption> element, 200-201
<figure> element, 201-202
file controls, 65
file converters, 151
files attribute, 63
fill() function, 16, 24
filling
bezier curves, 25-26
line art, 24-25
rectangles, 20-21
fillRect() function, 16, 20
fillStyle attribute
<canvas> element, 15
line art, 24
rectangles, 20
fillText() function, 17
font attribute, 17, 30
<footer> element, 202
formaction attribute, 61
formatting text
bolding, 83-85
italicizing, 85-86
links, 88-90
underlining, 87-88
form controls
API, 60-65
allowed attributes, 61-62

built-in attributes/func-
tions, 63

data types, 65
events, 64
color, 74-75
creating, 57
data extraction, 65
date and time, 72-73
default, creating, 67-68
email, 69-70
new, 7
number, 70-71
range, 70-71



history object 223

search, 75-76
text, 67-68
URL, 68-69
creating, 68-69
data types, 65
W3C specification, 57
webforms.html example
code, 76-78
HTML table, creating, 66
webforms.php example, 78
formenctype attribute, 61
formmethod attribute, 61
formnovalidate attribute, 61
formtarget attribute, 61
Forward buttons, 110-112
forward() function, 105
functions
<canvas> element
complex shapes, 16-17
images, drawing, 17-18
rectangles, 16
text, 17
transformations, 18
drop(), 50
end(), 51
enter(), 48
execCommand(), 83
fail(), 157
form controls, 61-62
getData(), 40
history object
back(), 105, 107-110
forward(), 105, 110-112
go(), 105, 112-114
pushState(), 106, 116-118
replaceState(), 106
messaging
onMessage(), 128
postMessage(), 128
send(), 130, 138-140

over(), 48-49
select(), 63
setData(), 40
setDraglmage(), 40
showSource(), 91
start(), 46
updateBar(), 210

getData() function, 40
getltem() function, 170

go() function, 105, 112-114
green triangle example, 24-25

handling
drop events, 50
errors
<audio> element, 164-166
<video> element, 157-159
<header> element, 202-203
hearts, drawing, 25-26
height attribute, 61, 149
<hgroup> element, 204
hidden controls, 65
history object
API, 104-106
back buttons, 107-110
forward buttons, 110-112
functions
back(), 105
forward(), 105
go(), 105, 112-114
pushState(), 106
replaceState(), 106
length, 105, 114-116
onpopstate events, 106
overview, 103-104
pophistory.html
code, 121-123
creating, 106-107




224 history object

popping data, 119-121
pushing data, 116-119
HTMLS5
new features
audio/video support, 9
browser history, 8
Canvas, 6
dragging and dropping, 7
elements, 10-11
form controls, 7
interdocument
messaging, 8
text editing, 8
web storage, 9
overview, 6
W3C specification, 6
HTML tables, creating, 66

iframe, creating, 98-100
images
controls, 65
drawing, 17-18
inline editing
attributes, 79
contenteditable, 79-80
designmode, 80
spellcheck, 80
editdiv.html example
code, 95-96

<div> element,
creating, 82

editiframe.html example, 96-98
buttons, adding, 98-100
code, 100-101
iframe, creating, 97-98

text
bolding, 83-85
display sources, 91-93
italicizing, 85-86
links, 88-90

spell checking, 91-94
underlining, 87-88
input events, 64

interdocument messaging.
See messaging

isPointInPath() function, 17
italicizing text, 85-86

J

JavaScript, drag and drop functions,

35-36

K

key() function, 170
<keygen> element, 204-205

L

length attribute, 105
browser history, 114-116
session storage, 170

line art
drawing, 22-23
filling, 24-25

lineCap attribute, 15

lineJoin attribute, 15

line styles, 15

lineTo() function, 17, 22

lineWidth attribute, 15

links, adding, 88-90

list attribute, 62-63

local datetime control, 72-73

local storage, 178-179
API, 180-181
browser support, 181
data

clearing, 186-187
retrieving, 184-185
storing, 182-183

localstorage.html example,
181-182, 188-189

W3C website, 180



new features 225

loop attribute
<audio> element, 161
<video> element, 149
looping video, 156

<nav> element, 207-208
navigating browsers
Back buttons, 107-110
Forward buttons, 112-114
specific number of pages,

<mark> element, 205-206
MathML, 192
max attribute, 62
maxlength attribute, 62
measureText() function, 17
messaging, 8

API, 127-129

data attribute, 128-129

112-114

new elements
<article>194-195
<aside>195-196
<audio>. See <audio> element
<canvas>. See <canvas> element
<command>, 196-197
<datalist>, 198

onMessage() function, 128 <details>, 198-199

origin attribute, 129
postMessage() function,
128

source attribute, 129
cross-domain, 126-127

domainchild.html, 140-
141, 144-145

domainparent.html,
137-138, 143-144

receiving, 142-143

sending, 138-140
cross-window, 126

child.html, 132-133

parent.html, 129-130,
135-136

receiving, 134-135
sending, 130-132
introduction website, 127

<meter> element, 206-207
min attribute, 62
miterLimit attribute, 15
month controls, 65, 72-73
moveTo() function, 17, 22
multiple attribute, 62

<embed>, 199-200
<figcaption>, 200-201
<figure>, 201-202
<footer>, 202
<header>, 202-203
<hgroup>, 204
<keygen>, 204-205
listing of, 10-11, 192-193
<mark>, 205-206
<meter>, 206-207
<nav>, 207-208
<output>, 208-209
progress>, 209-210
<rp>, 211
<rt>, 211-212
<ruby>, 212-213
<section>, 213
<source>, 214
<summary>, 215
<time>, 215-216

new features
audio/video support, 9
browser history, 8
<canvas> element, 6
controls, 7

How can we make this index more useful? Email us at indexes@samspublishing.com




226

new features

dragging and dropping, 7
elements, 10-11
interdocument messaging, 8
text editing, 8
web storage, 9

number controls
creating, 70-71
data types, 65

o

objects

dataTransfer, 40

history
API, 104-106
back buttons, 107-110
back() function, 105
data, pushing, 116-119
forward buttons, 110-112
forward() function, 105

go() function, 105, 112-
114

length, 114-116

length attribute, 105

onpopstate events, 106

overview, 103-104

pophistory.html, 106-107,
121-123

popping data, 119-121

pushState() function, 106

replaceState()
function, 106

OGG video conversions, 150-152
ondragend attribute, 40
ondragenter attribute, 38
ondragover attribute, 39
ondragstart attribute, 39
ondrop attribute, 39
ondrop events, 50
onerror attribute
<audio> element, 162
<video> element, 150
onMessage() function, 128

onpopstate events, 106, 119-121
origin attribute, 129

<output> element, 208-209
over() function, 48-49

P

parent.html
code, 135-136
creating, 129-130

sending message to child.html,
130-132

password controls, 65
pattern attribute, 62
placeholder attribute, 62
playing video, 156-157
pophistory.html

code, 121-123

creating, 106-107
popping data, 119-121
poster attribute, 150
postMessage() function, 128
preload attribute

<audio> element, 161

<video> element, 150
<progress> element, 209-210
pushing data, 116-119
pushState() function, 106, 116-118

Q

quadratic curves, 27-28
quadraticCurveTo() function, 17, 27

radio controls, 65
range controls
creating, 70-71
data types, 65
readonly attribute, 62
receiving messages
cross-domain, 142-143
cross-window, 134-135



storage 227

recommendations (W3C), 6 retrieving, 174-175
rectangles, drawing storing, 172-173
examples, 20-21 sessionstorage.html, 167, 171,
functions, 16 177-178
rect() function, 17 setData() function, 40
removeltem() function, 171 setDragIlmage() function, 40
replaceState() function, 106 setltem() function, 170
required attribute, 62 setSelectionRange() function, 63
reset controls, 65 shadowBlur attribute, 16
rotate() function, 18 shadowColor attribute, 16
<rp> element, 211 shadowOffsetX attribute, 16
<rt> element, 211-212 shadowOffsetY attribute, 16
<ruby> element, 212-213 shadows, 16
showSource() function, 91
s size attribute, 62
Scalable Vector Graphics (SVG), <source> element, 214
191 source attribute, 129
scale() function, 18 specifications
search controls <canvas> element, 13
creating, 75-76 drag-and-drop, 37
data types, 65 form controls, 57
<section> element, 213 HTMLS, 6
selectedOption attribute, 63 spellcheck attribute, 80
select() function, 63 spell checking
selectionEnd attribute, 63 enabling, 80
selectionStart attribute, 63 text, 88-90
send() function src attribute, 62
cross-domain messaging, <audio> element, 162
138-140 <video> element, 150
cross-window messaging, 130 start() function, 46
sending messages starting drag operations, 46-47
cross-domain, 138-140 step attribute, 62
cross-window, 130-132 stepDown() function, 63
session storage, 167-168. stepUp() function, 63
See also local storage stopping dropping operations, 51
API, 169-188 storage
browser support, 170 local, 178-179
data API, 180-181
clearing, 175-177 browser support, 181
erasing, 167-168 clearing data, 186-187

restoring, 168-169

How can we make this index more useful? Email us at indexes@samspublishing.com




228 storage

data retrieval, 184-185

localstorage.html example,
181-182, 188-189

storing data, 182-183
W3C website, 180
session, 167-168
API, 169-188
browser support, 170
clearing data, 175-177
data retrieval, 174-175
erasing data, 167-168
restoring data, 168-169
storing data, 172-173
web, 9
stroke() function, 17
strokeRect() function, 16, 20
strokeStyle attribute, 15, 22
strokeText() function, 17, 30
styling
<canvas> element, 15
draggable elements, 43-45
targets, 43-45
submit controls, 65
<summary> element, 215

SVG (Scalable Vector Graphics),
191

T

tables, creating, 66
targets
creating, 41-42
dragging elements
creating, 42-43
entrance, allowing, 47-48
starting, 46-47
dropping elements
allowing, 48-49
ending, 51
handling, 50
styling, 43-45
tel controls, 65

text
annotations
<rp> element, 211
<rt> element, 211-212
<canvas> element, 17
controls
creating, 67-68
data types, 65
data
popping, 119-121
pushing, 116-119
display sources, 91-93
drawing, 30-31
editing, 8
formatting
bolding, 83-85
italicizing, 85-86
links, 88-90
underlining, 87-88
spell checking, 88-90
textAlign attribute, 17
textBaseline attribute, 17
three triangles example, 22-23
<time> element, 215-216

time controls. See date and time
controls

transformations, 18
translate() function, 18

underlining text, 87-88
updateBar() function, 210
URL controls

creating, 68-69

data types, 65

Vv

valueAsDate attribute, 63
valueAsNumber attribute, 63
value attribute, 63



World Wide Web Consortium (W3C) 229

<video> element
API, 148-150
browser support, 149
controls, adding, 155
error handling, 157-159
looping, 156
OGG conversions, 150-152
playing automatically, 156-157
support, 9
video.html example

body, 153

<video> element, adding,
154-155

W3C website, 149

W-Z

W3C (World Wide Web
Consortium), 5

Amaya test browser, 192
<audio> element, 161
new elements, 193
recommendations, 6
specifications
drag-and-drop, 37
HTMLS, 6
local storage, 180
web form controls, 57
<video> element, 149
website, 5

web form controls. See form con-
trols

webforms.html example
code, 76-78
HTML table, creating, 66
webforms.php example, 78
websites
Amaya test browser, 192
<canvas> element API, 14-15
file converters, 151
messaging introduction, 127

W3C (World Wide Web
Consortium), 5

Amaya test browser, 192

drag-and-drop
specification, 37

form control
specification, 57

HTMLS specification, 6

local storage, 180

new elements, 193

<video> element, 149

<audio> element, 161

web storage, 9
local, 178-179

API, 180-181

browser support, 181

clearing data, 186-187

localstorage.html example,
181-182, 188-189

retrieving data, 184-185
storing data, 182-183
W3C website, 180
session, 167-168
API, 169-188
browser support, 170
clearing data, 175-177
erasing data, 167-168
restoring data, 168-169
retrieving data, 174-175
storing data, 172-173

sessionstorage.html,
167, 171, 177-178

week control, 72-73
week data types, 65
width attribute, 62, 150

World Wide Web Consortium
(W3C). See W3C

How can we make this index more useful? Email us at indexes@samspublishing.com




1. B
FREE Online

HTML5 Edition

Your purchase of Sams Teach Yourself HTML5 in 10 Minutes includes
access to a free online edition for 45 days through the Safari Books
Online subscription service. Nearly every Sams book is available
online through Safari Books Online, along with more than 5,000 other
technical books and videos from publishers such as Addison-Wesley
Professional, Cisco Press, Exam Cram, IBM Press, O'Reilly, Prentice
Hall, and Que.

SAFARI BOOKS ONLINE allows you to search for a specific answer,
cut and paste code, download chapters, and stay current with
emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: HIOVXFA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online Safa rl
edition, please e-mail customer-service@safaribooksonline.com B

Books Online

. 4 sas (F)WILEY


www.informit.com/safarifree

	Table of Contents
	Introduction
	What’s in This Book
	What You Need

	1 Essential HTML5
	Welcome to HTML5
	Drawing With the Canvas Element
	Dragging and Dropping
	Getting Data With the New Web Form Controls
	Edit Web Pages on the Fly
	Remembering With Browser History
	Saying Hello With Interdocument Messaging
	Awesome Audio and Video
	Making Use of Web Storage
	Using the New Elements

	2 Drawing with the Canvas Element
	Welcome to the Canvas Element
	Getting to Know the Canvas API
	Starting the Canvas Example
	Drawing Rectangles
	Drawing Line Art
	Filling Line Art
	Drawing with Bezier Curves
	Drawing with Quadratic Curves
	Drawing Arcs
	Drawing Text
	The canvas.html Example Code

	3 Dragging and Dropping with HTML5
	Welcome to Drag and Drop
	Getting to Know the Drag-and-Drop API
	Starting the Drag-and-Drop Example
	Styling the Draggable and Target Elements
	Starting the Drag Operation
	Allowing Dragged Objects to Enter the Targets
	Allowing Dragged Objects to Be Dropped on Certain Targets
	Handling Drop Events
	Ending Drop Operations
	The draganddrop.html Example Code

	4 Web Form Controls
	Welcome to Web Form Controls
	Getting to Know the Web Form Controls API
	Starting the Web Forms Example
	Creating a Default Control
	Creating a URL Control
	Creating an Email Control
	Creating Range and Number Controls
	Creating Date and Time Controls
	Creating a Color Control
	Creating a Search Control
	The webforms.html Example Code
	The webforms.php Example Code

	5 Inline Editing
	Welcome to Inline Editing
	Starting the editdiv.html Example
	Adding a Bold Button
	Adding an Italic Button
	Adding an Underline Button
	Adding an Add Link Button
	Adding a Display Source Button
	Spellchecking
	The editdiv.html Example Code
	Starting the editiframe.html Example
	Adding the editiframe.html Buttons
	The editiframe.html Example Code

	6 Working with Browser History
	Welcome to Browser History
	Getting to Know the History API
	Starting the pophistory.html Example
	Adding a Back Button
	Adding a Forward Button
	Adding a Go Button
	Getting History Length
	Pushing Data into the History
	Popping Data from the History
	The pophistory.html Example Code

	7 Getting the Point Across with Messaging
	Welcome to Messaging
	Getting to Know the Messaging API
	Starting the parent.html Example
	Sending a Cross-Window Message
	Starting the child.html Example
	Receiving a Cross-Window Message
	The parent.html Example Code
	The child.html Example Code
	Starting the domainparent.html Example
	Sending a Cross-Domain Message
	Starting the domainchild.html Example
	Receiving a Cross-Domain Message
	The domainparent.html Example Code
	The domainchild.html Example Code

	8 Using Video and Audio
	Welcome to the Video Media Control
	Getting to Know the Video Element API
	Converting to OGG Format
	Starting the video.html Example
	Adding Controls to the video.html Example
	Looping a Video
	Playing a Video Automatically
	Detecting When a Video Has Failed
	Welcome to the Audio Media Control
	Getting to Know the Audio Element API
	Starting the audio.html Example
	Detecting When an Audio Has Failed

	9 Web Storage
	Welcome to Session Storage
	Getting to Know the Session Storage API
	Starting the sessionstorage.html Example
	Storing Data in the Session
	Getting Data from the Session
	Clearing Session Data
	The sessionstorage.html Code
	Welcome to Local Storage
	Getting to Know the Local Storage API
	Starting the localstorage.html Example
	Storing Data in the Browser
	Getting Data from the Browser
	Clearing Local Data
	The localstorage.html Code

	10 The New HTML5 Elements
	Adding SVG and MathML
	Welcome to the New Elements
	The <article> Element
	The <aside> Element
	The <audio> Element
	The <canvas> Element
	The <command> Element
	The <datalist> Element
	The <details> Element
	The <embed> Element
	The <figcaption> Element
	The <figure> Element
	The <footer> Element
	The <header> Element
	The <hgroup> Element
	The <keygen> Element
	The <mark> Element
	The <meter> Element
	The <nav> Element
	The <output> Element
	The <progress> Element
	The <rp> Element
	The <rt> Element
	The <ruby> Element
	The <section> Element
	The <source> Element
	The <summary> Element
	The <time> Element
	The <video> Element

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-Z




