
©Rob Miles

Creating Loops

C# Programming

©Rob Miles11-Oct-13 2

What we can do so far

• Store data (using variables)

• Change data (using assignments)

• Make decisions (using conditions)

• There is not much more that we need to
know how to do

– But we do need to know how to create loops

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 3

Loops

• We create a loop so that we can repeat one
or more statements

• A condition is used to determine whether
or not the loop stops

• The condition is either true or false, just
like that used in an if construction

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 4

A Stupid Loop

• We can write never ending loops if we like:

• This loop will never finish (use CTRL+C to
kill a program if it does this..

do
Console.WriteLine ("Har har");

while (true);

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 5

The do – while loop

• do-while continues while the condition is true

• We can use a block to get more than one
statement repeated

int i = 0;
do {
Console.WriteLine (i);
i = i + 1;

} while (i < 4);

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 6

Another Stupid Loop

• We can write “non loops” if we like:

• In this case the loop will not repeat, but it
will execute once as the test is at the end

• Remember that statements are executed in
sequence

do
Console.WriteLine ("Har har");

while (false);

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 7

Doing the test at the end of the loop

• In the do – while loop the test to see if the
loop continues is performed after the
statements in the loop have been
performed

• This is useful if you want the code to do
something and then check the result

– For example if you were reading numbers in
from a user..

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 8

Reading in Numbers

• This will repeatedly read the width value
until a valid one is entered

• Make sure you test with invalid values too

do {
Console.Write("Enter width:");
widthString = Console.ReadLine();
width = double.Parse(widthString);

} while ((width<0) || (width>3.0));

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 9

Doing the test first

• Sometimes you want to do the test before
you perform the loop code

• There is a C# construction for this too:

• Note that the word do is not required
• Note that the statement could be a block

while (false)
Console.WriteLine("Never Printed");

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 10

For loops

• We have already seen how we can create
code which will repeat something a
particular number of times

• However, since this is something that we
need to do a lot, C# provides a special
constructions for this, the for loop

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 11

The For loop

• The for loop has the following form:

• The setup, finish test, and update are
added to get the loop that we want

for (setup ; finish test ; update) {
// things we want to do a given
// number of times

}

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 12

A working For Loop

• This will print out Hello 10 times

• When the value in i reaches 11 the loop

stops

int i ;
for (i = 1 ; i < 11 ; i = i+1)
{
Console.WriteLine ("Hello") ;

}

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 13

A stupid For Loop

• This will print out Hello for ever because
the control variable is updated in the
wrong direction

int i ;
for (i = 0 ; i < 11 ; i = i-1)
{
Console.WriteLine ("Hello") ;

}

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 14

Another stupid For Loop

• This will print out Hello for ever because
the control variable is reset in the code
inside the loop

int i ;
for (i = 0 ; i < 11 ; i = i+1)
{
Console.WriteLine ("Hello") ;
i = 0;

}

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 15

Breaking out

• The break keyword lets us escape from any loop

• You can use it in do-while, while and for loops

int i ;
for (i = 0 ; i < 11 ; i = i+1)
{
Console.WriteLine ("Hello") ;
if (i==3) break;

}

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 16

Continuing

• The continue keyword takes us back to the
"top" of any loop

int i ;
for (i = 0 ; i < 11 ; i = i+1)
{
Console.WriteLine ("Hello") ;
if (i==3) continue;
Console.WriteLine ("Not 3") ;

}

Chapter 6.2 : Loops

©Rob Miles11-Oct-13 17

Summary

• We now have the three fundamental loop
constructions

• The trick with programming is to use the
construction which is appropriate to the
task in hand

• You can make the code work with any loop
design

Chapter 6.2 : Loops

