
©Rob Miles

C# Programming
Data and Types

©Rob Miles

Data in Programs

• Programs are made up of data and
operations that work on that data

• C# programs contain variables that hold
the data to be processed

• The program must declare each variable
before it is used

• Variables are of a particular data type

1-Nov-13Data and Types 2

©Rob Miles

Declaring variables

• A variable is a place you can store things

• You can think of it as a box with a name

1-Nov-13 3

...

static void Main()

{

double width, height, woodLength, glassArea;

string widthString, heightString;

...

Chapter 4 : A First C# Program

©Rob Miles1-Nov-13 4

Variables

• Boxes to put things in

• Hold items of a particular type

– The type of the box determines what you can put in it
– integer, double, float, string

• Converting between different types is not always
automatic

– We have to explicitly convert between string and
double

• You choose the identifier for your variables

Chapter 4 : A First C# Program

©Rob Miles1-Nov-13 5

Identifiers

• A string of text you use to identify
something that you have created

– Starts with a letter or _

– Contains letters, numbers and _ characters:
Fred Height99 The_Score theScore

• The identifier should reflect what the
variable is being used for:

width and height

Chapter 4 : A First C# Program

©Rob Miles

Variable Types

• The program stores numbers for the input
values and output values

• It also stores the strings entered by the user

1-Nov-13 6

...

static void Main()

{

double width, height, woodLength, glassArea;

string widthString, heightString;

...

Chapter 4 : A First C# Program

©Rob Miles

Variables and Type

• The type of a variable determines what a
program can store in it

• The C# language is strongly typed in that
the compiler will prevent you from
combining data types ways it things are
wrong

• This is to make programs more reliable

1-Nov-13Data and Types 7

©Rob Miles

C# Data Types

1-Nov-13Data and Types 8

Stuff

Text Numbers

char string Integers Real

int floatlong double
C# provides a range of
types depending on
what is to be stored

©Rob Miles

Numeric Data Types

1-Nov-13Data and Types 9

Stuff

Text Numbers

char string Integers Real

int floatlong double
C# provides a
selection of types to
store numbers

©Rob Miles

Integer values

1-Nov-13Data and Types 10

Stuff

Text Numbers

char string Integers Real

int floatlong double
C# provides a number
of different integer
types

©Rob Miles

Using Integers

• If you have no need to store fractions, you
should use integers

• Computers can manipulate integers more
quickly than floating point
– This is particularly true for smaller devices

• Even things that you think should be real
numbers can often be integer
– The price of something can be stored in pence

1-Nov-13Data and Types 11

©Rob Miles

Storing Integer Values

• Integer values are held exactly

– i.e. the pattern of bits held in computer
memory exactly matches the integer value it is
supposed to represent

• The more bits that are used to hold an
integer value, the greater the range

• Integers use “2’s complement” notation to
hold negative numbers

1-Nov-13Data and Types 12

©Rob Miles

C# Integer Variable Types

sbyte 8 bits -128 to 127

byte 8 bits 0 to 255

short 16 bits -32768 to 32767

ushort 16 bits 0 to 65535

int 32 bits -2147483648 to 2147483647

uint 32 bits 0 to 4294967295

long 64 bits -9223372036854775808 to 9223372036854775807

ulong 64 bits 0 to 18446744073709551615

char 16 bits 0 to 65535

1-Nov-13Data and Types 13

• These are the integer types provided by C#

• Note that the unsigned types do not store
negative numbers

©Rob Miles

Integer “literals” in C#

• A “literal” is a value in the program that is
literally “just there”

• In C# program a integer literal value is
given with no decimal point

1-Nov-13Data and Types 14

int i;
i = 99;
byte b;
b = 100;

©Rob Miles

Real values

1-Nov-13Data and Types 15

Stuff

Text Numbers

char string Integers Real

int floatlong double
C# provides a number
of different float types

©Rob Miles

Using Real Numbers

• Real numbers are used when you need a
fractional part

– Working out averages

– Any kind of real world calculations

• C# provides a range of real number types
which have different range and precision

• You choose the one that fits the problem

1-Nov-13Data and Types 16

©Rob Miles

Range and Precision

• Floating point values are held in C# to a
particular range and precision

– Range: the biggest and smallest numbers I can
store

– Precision: the number of digits of accuracy
available

• Each type has a particular range and
precision

1-Nov-13Data and Types 17

©Rob Miles

Storing Real Numbers

• Real numbers are held as “binary fractions”

• The value ¾ would be represented as:

– “a half plus a quarter”

• This means that the value 0.1 (a tenth)
cannot be represented exactly on a computer
in this way

• Instead we use enough bits to ensure that
values are held sufficiently accurately

1-Nov-13Data and Types 18

©Rob Miles

C# Real Variable Types

float 32 bits ±1.5 × 10−45 to ±3.4 × 1038

7 digits of precision
double 64 bits ±5.0 × 10−324 to ±1.7 × 10308

15 digits of precision
decimal 128 bits ±1.0 × 10−28 to ±7.9 × 1028

28 digits of precision

1-Nov-13Data and Types 19

• These are the real types provided by C#

• decimal is provided for use in high
precision finance calculations

©Rob Miles

Float “literals” in C#

• A literal floating point value is always treated
as if it was of double type by the compiler

• To create a literal value of type float you

have to add an f on the end of the literal value

1-Nov-13Data and Types 20

double d;
d = 0.1;
float f;
f = 0.1f;

©Rob Miles

Float “literals” in C#

• If you leave out the f in the above code the
program will fail to compile

• The compiler will not let a program put a
value into a variable if it thinks the type
might not be able to hold it correctly

1-Nov-13Data and Types 21

double d;
d = 0.1;
float f;
f = 0.1f;

©Rob Miles

Text

1-Nov-13Data and Types 22

Stuff

Text Numbers

char string Integers Real

int floatlong double
C# provides two types
for holding text

©Rob Miles

Individual Characters

1-Nov-13Data and Types 23

Stuff

Text Numbers

char string Integers Real

int floatlong double

The char type can

hold a single
character

©Rob Miles

Using Characters

• You use a char type if you want to store a
single character

• It can be a letter, digit, punctuation
character, control character or space

• This character will be held as a single
value using the UNICODE standard

1-Nov-13Data and Types 24

©Rob Miles

Character Codes

• Computers store everything as patterns of
bits

• For a computer to store text we have to
map these patterns to particular
characters

• C# uses the UNICODE standard to
perform this mapping

1-Nov-13Data and Types 25

©Rob Miles

The UNICODE Standard

• UNICODE is a standard for characters

• Each character is stored in a 16 bit value

• This allows for over 64,000 characters

• You may have heard of an 8 bit code called
ASCII

• The ASCII character set is mapped onto
the first 128 values of UNICODE

1-Nov-13Data and Types 26

©Rob Miles

Character literal values

• A character literal value is written in the
program enclosed in single quotes

• This is how the compiler can tell which is the
character to be used

• Upper and lower case characters are different

1-Nov-13Data and Types 27

char commandKey;
commandKey = 'A';

©Rob Miles

Control Codes

• Some characters are not printed on the
screen, but instead have a control behaviour

– Carriage return

– Take a new line

– Sound an alert

– Tab

• C# uses escape sequences to allow a program
to use these codes

1-Nov-13Data and Types 28

©Rob Miles

Escape Sequence

• The escape sequence is the backslash (\)
character followed by a letter that
identifies the required control character

• Letter n means “newline”

1-Nov-13Data and Types 29

char newLine;

newLine = '\n';

©Rob Miles

Escape Sequence Values

1-Nov-13Data and Types 30

Character Escape Sequence name

\' Single quote
\" Double quote
\\ Backslash
\0 Null
\a Alert
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical quote

©Rob Miles

Strings of Characters

1-Nov-13Data and Types 31

Stuff

Text Numbers

char string Integers Real

int floatlong double

The string type can

hold many characters

©Rob Miles

Using Strings

• You can use a string everywhere you need
to store some text:
– Names

– Addresses

– The book “War and Peace”

• Strings can get very long indeed

• They also provide a bunch of useful text
behaviours

1-Nov-13Data and Types 32

©Rob Miles

Storing Strings

• There is only one string type

• String storage is managed automatically
by the C# runtime system

• A storage area of the right size is created
for each string that is stored

• You don’t need to worry about reserving
memory for strings or releasing it when
you have finished

1-Nov-13Data and Types 33

©Rob Miles

String literal values

• A string literal is enclosed in double quotes

• You can put escape sequences in the string
as well – they must be preceded by the \
character as used in chars

1-Nov-13Data and Types 34

string name;
name = "Rob Miles";

©Rob Miles

Verbatim String literal values

• If you don’t want to use escape sequences
in your string literal you can put an @ in
front of it

• This means the string is used verbatim

1-Nov-13Data and Types 35

string backslash;
backslash = @"A backslash : \";

©Rob Miles

Multi-Line Verbatim Strings

• A verbatim string can spread over several
lines

• The line breaks are preserved

1-Nov-13Data and Types 36

string address;
address = @"University of Hull
Cottingham Road
Hull";

©Rob Miles

Taking newlines in strings

• The newline character in a string will
cause a new line to be taken at that point

1-Nov-13Data and Types 37

Console.WriteLine("Hello\nWorld");

Hello

World

©Rob Miles

Storing State

1-Nov-13Data and Types 38

Stuff

Text Numbers State

bool

The bool type does not hold a

value as such

Instead it holds a state which is
either true or false

©Rob Miles

Storing State

• Some things that are to be stored are not
values as such, but instead are states

– “is a member of the club”

– “input is valid”

– “network OK”

• C# provides a bool type which is used to
hold the states true or false

1-Nov-13Data and Types 39

©Rob Miles

The bool type

• The bool type can only hold two possible

values

– true or false

• These could be held by a single bit in the
computer memory

– This is not usually how it is done however, as
such a value would be hard to address

1-Nov-13Data and Types 40

©Rob Miles

Bool literal values

• Variables of the bool type can be set to the
values true or false and nothing else

• They can be used directly in conditions, as
we shall see later

1-Nov-13Data and Types 41

bool ageIsValid;
ageIsValid = true;

©Rob Miles

Choosing a Variable Type

• Price of an ice cream
• The possible types are:

sbyte – hold an integer from -127 to +128
byte – hold an integer from 0 to 255
short – hold an integer from + or – 32,000
int – hold an integer + or – 2,000,000,000
float – hold a real with 7 digit precision
double – hold a real with 15 digit precision

• Which would you choose?

1-Nov-13Data and Types 42

©Rob Miles

Ice Cream Price

• I'd use int or short

• Although it will be priced in pounds and
pence (e.g. 1.20) I don't want to use a real
number since these are not what they are
for

• An ice cream could cost more than 2.55
and so it has to be short or int

1-Nov-13Data and Types 43

©Rob Miles

Choosing Another Variable

• Speed of a car in MPH
• The possible types are:

sbyte – hold an integer from -127 to +128
byte – hold an integer from 0 to 255
short – hold an integer from + or – 32,000
int – hold an integer + or – 2,000,000,000
float – hold a real with 7 digit precision
double – hold a real with 15 digit precision

• Which would you choose?

1-Nov-13Data and Types 44

©Rob Miles

Speed of a Car

• This depends on the accuracy of the sensor
and the way the result is to be displayed

– sbyte is no good because the range is too

small

– byte is no good because you can't go

backwards

• You can make a good case for just about
any of the others

1-Nov-13Data and Types 45

©Rob Miles

Identifiers

• Each item we create in a program must
have an identifier (or name)

• We decide what the identifier is:

The identifier of an item must
reflect what the item is to be

used for.

1-Nov-13Data and Types 46

©Rob Miles

C# Identifier Rules

• Used in the program use to identify
something that you have created

– Can only contain letters, digits and the
underscore (_) character

– Must start with a letter or underscore (_)
Width HeightString 99ImIllegal soamI

• The case is significant:

– Fred is a different identifier from fred

1-Nov-13Data and Types 47

©Rob Miles

Summary

• Programs work by operating on data

• The data is stored in variables which are
of a particular data type

• The type of a variable determines what you
can put into it

• The programmer must select appropriate
data types and create appropriate
identifiers for variables in a program

1-Nov-13 48Data and Types

