
11/5/2013

1

©Rob Miles

Expressions and Casting

C# Programming

©Rob Miles

Data Manipulation

• We know that programs use data storage
(variables) to hold values and statements
to process the data

• The statements are obeyed in sequence
when the program runs

• Remember that at this point we should be
creating code to implement our solution

5-Nov-13Expressions and Casting 2

©Rob Miles

Simple Program

• This is a simple (and fairly useless) program

5-Nov-13Expressions and Casting 3

class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}

11/5/2013

2

©Rob Miles

Variable Declaration

• This statement creates three variables

5-Nov-13Expressions and Casting 4

class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}

©Rob Miles

Variable Assignment

• The next statement assigns a value to one of
the variables

5-Nov-13Expressions and Casting 5

class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}

©Rob Miles

Next Variable Assignment

• This is another assignment

5-Nov-13Expressions and Casting 6

class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}

11/5/2013

3

©Rob Miles

Expression Evaluation

• This assignment evaluates an expression and
puts the result into the variable called second

5-Nov-13Expressions and Casting 7

class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}

©Rob Miles

Expressions

• An expression is made up of operators and
operands

5-Nov-13Expressions and Casting 8

second + first

Operand OperandOperator

©Rob Miles

Complex Expressions

• The simplest kind of expression is a single
literal value:

5-Nov-13Expressions and Casting 9

23

• More complicated ones involve literals,
variables, operators and brackets

2 * (width + height) * 3.25

11/5/2013

4

©Rob Miles

The Assignment Operator

• The assignment operator takes the result
of an expression and puts it into a variable

• This is the fundamental means by which a
program works on data

5-Nov-13Expressions and Casting 10

second = second + first ;

©Rob Miles

Simple Arithmetic Operators

5-Nov-13Expressions and Casting 11

Op. Use

-
unary minus, the minus that C# uses in negative

numbers, e.g. -1.

Unary means applying to only one item.

*
multiplication, note the use of the * rather than the

more mathematically correct but confusing x.

/
division, because of the difficulty of drawing one

number above another on a screen we use this

character instead

+ Addition.

-
subtraction. Note that we use exactly the same

character as for unary minus.

©Rob Miles

Data and Type

• C# provides a range of types to store
numbers

• Each type can store values in a particular
range

• The compiler will not let us combine
values in a way that might lose data

5-Nov-13Expressions and Casting 12

11/5/2013

5

©Rob Miles

Dangerous Code

• This code will fail to compile

• The compiler is not happy to put a double
precision value into an integer

5-Nov-13Expressions and Casting 13

int i;
double d = 1.5;
i = d;

©Rob Miles

Narrowing

• When you put a double value into an
integer variable it won’t fit:

– The double value may have a fractional part

– The double value may be too big to fit in the
integer variable

• This is called “narrowing” and the
compiler will not let a program do it

5-Nov-13Expressions and Casting 14

©Rob Miles

Casting

• Casting is a way that the programmer can
take responsibility for a narrowing
operation

• It is an explicit narrowing operation that
the programmer asks to be done

• The compiler will generate code that
performs the conversion

5-Nov-13Expressions and Casting 15

11/5/2013

6

©Rob Miles

Adding a Cast

• The cast operation is given a particular
target type

• In this case we are casting the value d to
an integer

5-Nov-13Expressions and Casting 16

int i;
double d = 1.5;
i = (int) d;

©Rob Miles

Responsible Casting

• When you perform a cast you are telling
the compiler that you know better than it

• You are forcing the compiler to do
something it would normally not like to

• For this reason you need to be sure when
you cast that it is sensible to do so

• Otherwise you will break your program

5-Nov-13Expressions and Casting 17

©Rob Miles

Casting Literals

• You can use casting to convert literals into
particular types in your program

• The cast works on the value immediately
to the right of the cast type

5-Nov-13Expressions and Casting 18

float x;

x = (float) 3.14;

11/5/2013

7

©Rob Miles

Limited Casting Powers

• You can’t use casting to convert from
integer to string (or back)

• It only works between numeric types

5-Nov-13Expressions and Casting 19

int i;
string s;
i = 99;
s = (string) i;

©Rob Miles

Types in Expressions

• We have seen that the result produced by
an operator depends on the items it is
working on

– + can add integers or concatenate strings

• Now we are going to explore how this
effects the way that expressions are
worked out

5-Nov-13Expressions and Casting 20

©Rob Miles

Integer Division

• This happens because the compiler uses a
version of the division operator that
matches the operands

• Integer values use integer division

5-Nov-13Expressions and Casting 21

double d;
d = 1/2;
Console.WriteLine ("d is : " + d) ;

11/5/2013

8

©Rob Miles

Forcing double Division

• The compiler will generate a double
precision division if one of the operands is
a double precision one

• We can do this by casting

5-Nov-13Expressions and Casting 22

double d;
d = (double) 1/2;
Console.WriteLine ("d is : " + d) ;

©Rob Miles

Good Casting

• It is said that good casting makes a movie
much better

• I think this is true of programs too

• I often add the casts so that it is clear what
is going on, even if the compiler doesn’t
need them

5-Nov-13Expressions and Casting 23

©Rob Miles

Summary

• Expression evaluation is how data is
processed by a program

• The evaluation is performed by operators

• A program will not be allowed to “narrow”
data unless an explicit “cast” is given

• Casting can also be used to determine
which operator is used in an expression

5-Nov-13Expressions and Casting 24

