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Expressions and Casting

C# Programming 

©Rob Miles

Data Manipulation

• We know that programs use data storage 
(variables) to hold values and statements 
to process the data

• The statements are obeyed in sequence 
when the program runs

• Remember that at this point we should be 
creating code to implement our solution
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Simple Program

• This is a simple (and fairly useless) program
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class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}
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Variable Declaration

• This statement creates three variables
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class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}

©Rob Miles

Variable Assignment

• The next statement assigns a value to one of 
the variables
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class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}
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Next Variable Assignment

• This is another assignment
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class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}
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Expression Evaluation

• This assignment evaluates an expression and 
puts the result into the variable called second
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class Assignment {
static void Main ()
{

int first, second, third ;
first = 1 ;
second = 2 ;
second = second + first ;

}
}
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Expressions 

• An expression is made up of operators and 
operands
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second + first

Operand OperandOperator
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Complex Expressions

• The simplest kind of expression is a single 
literal value:
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23

• More complicated ones involve literals,
variables, operators and brackets

2 * ( width + height ) * 3.25 
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The Assignment Operator

• The assignment operator takes the result 
of an expression and puts it into a variable

• This is the fundamental means by which a 
program works on data
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second = second + first ;
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Simple Arithmetic Operators
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Op. Use

-
unary minus, the minus that C# uses in negative 

numbers, e.g. -1. 

Unary means applying to only one item.

*
multiplication, note the use of the * rather than the 

more mathematically correct but confusing x.

/
division, because of the difficulty of drawing one 

number above another on a screen we use this 

character instead

+ Addition.

-
subtraction. Note that we use exactly the same 

character as for unary minus.

©Rob Miles

Data and Type

• C# provides a range of types to store 
numbers

• Each type can store values in a particular 
range

• The compiler will not let us combine 
values in a way that might lose data
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Dangerous Code

• This code will fail to compile

• The compiler is not happy to put a double 
precision value into an integer
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int i;
double d = 1.5;
i = d;
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Narrowing

• When you put a double value into an 
integer variable it won’t fit:

– The double value may have a fractional part

– The double value may be too big to fit in the 
integer variable

• This is called “narrowing” and the 
compiler will not let a program do it
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Casting

• Casting is a way that the programmer can 
take responsibility for a narrowing 
operation

• It is an explicit narrowing operation that 
the programmer asks to be done

• The compiler will generate code that 
performs the conversion
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Adding a Cast

• The cast operation is given a particular 
target type

• In this case we are casting the value d to 
an integer
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int i;
double d = 1.5;
i = (int) d;
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Responsible Casting

• When you perform a cast you are telling 
the compiler that you know better than it

• You are forcing the compiler to do 
something it would normally not like to

• For this reason you need to be sure when 
you cast that it is sensible to do so

• Otherwise you will break your program
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Casting Literals

• You can use casting to convert literals into 
particular types in your program

• The cast works on the value immediately 
to the right of the cast type
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float x;

x = (float) 3.14;
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Limited Casting Powers

• You can’t use casting to convert from 
integer to string (or back)

• It only works between numeric types
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int i;
string s;
i = 99;
s = (string) i;
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Types in Expressions

• We have seen that the result produced by 
an operator depends on the items it is 
working on

– + can add integers or concatenate strings

• Now we are going to explore how this 
effects the way that expressions are 
worked out
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Integer Division

• This happens because the compiler uses a 
version of the division operator that 
matches the operands

• Integer values use integer division
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double d;
d = 1/2;
Console.WriteLine ( "d is : " + d ) ;
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Forcing double Division

• The compiler will generate a double 
precision division if one of the operands is 
a double precision one

• We can do this by casting
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double d;
d = (double) 1/2;
Console.WriteLine ( "d is : " + d ) ;
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Good Casting

• It is said that good casting makes a movie 
much better

• I think this is true of programs too

• I often add the casts so that it is clear what 
is going on, even if the compiler doesn’t 
need them 
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Summary

• Expression evaluation is how data is 
processed by a program

• The evaluation is performed by operators

• A program will not be allowed to “narrow” 
data unless an explicit “cast” is given

• Casting can also be used to determine 
which operator is used in an expression
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