
11/9/2012

1

©Rob Miles

Neater Printing

C# Programming

©Rob Miles 9-Nov-12 2

Improving Print Formatting

• At the moment we have been using the
default printing behaviours which are
somewhat limited

• The C# printing library provides
additional ways to control the printing
process

• We are going to investigate these here

Neater Printing

©Rob Miles

Simple Printing

• The Write and WriteLine methods
provide a way of getting the values of
variables onto the screen

• The simple string version of the item is
created and displayed

9-Nov-12 Neater Printing 3

int i;

i = 99;

Console.WriteLine (i);

11/9/2012

2

©Rob Miles

Complicated Printing

• If we want to merge text and values we
have to use the + operator to concatenate
the strings

• This can make the write statements look
quite complicated

9-Nov-12 Neater Printing 4

Console.WriteLine("X is " +

x + " and y is " + y + ".");

©Rob Miles

Using Placeholders

• You can use placeholders in a string being
written

• These are replaced by the values of the
given variables when they are printed

• The items are numbered starting at 0

9-Nov-12 Neater Printing 5

Console.WriteLine(

"X is {0} and Y is {1}.", x, y);

©Rob Miles

Controlling the Print Behaviour

• Placeholders can have additional
information added to them

• This would output the value of f with 6
digits and two decimal places:
 F: 001234.57

9-Nov-12 Neater Printing 6

double f = 1234.56789;

Console.WriteLine(
 "f: {0:000000.00}", f);

11/9/2012

3

©Rob Miles

Suppressing Leading Zeroes

• If you use # rather than 0 this prints a
space if the digit is a leading zero

• Note that we need at least one zero so that
the value 0 is printed correctly:
 F: 1234.57

9-Nov-12 Neater Printing 7

double f = 1234.56789;

Console.WriteLine(
 "f: {0:#####0.00}", f);

©Rob Miles

Adding other Formatting

• By putting extra characters in the format
string we can add commas for thousands

• If the leading digits are spaces the extra
characters are not printed:
 F: 1,234.57

9-Nov-12 Neater Printing 8

double f = 1234.56789;

Console.WriteLine(
 "f: {0:###,##0.00}", f);

©Rob Miles

Setting the Print Width

• You can add a width value which will cause
the output to be right justified that width

• In the example the width is 15 characters:
 F: 1,234.57

9-Nov-12 Neater Printing 9

double f = 1234.56789;

Console.WriteLine(
 "f: {0,15:###,##0.00}", f);

11/9/2012

4

©Rob Miles

Left Justifying the Output

• If you give the width as a negative value
the number is left justified

• In the example the width is 15 characters:
 F:1,234.57 E

9-Nov-12 Neater Printing 10

double f = 1234.56789;

Console.WriteLine(
 "f: {0,-15:###,##0.00}E", f);

©Rob Miles

Formatting Integers

• Integers are formatted exactly as floating
point values, but without the decimal
places:
 F:05 E

9-Nov-12 Neater Printing 11

int i = 5;

Console.WriteLine(
 "i: {0,-15:##00}X", i);

©Rob Miles 9-Nov-12 12

Summary

• The Write and WriteLine methods can be

given formatting instructions when they
output a value

• This allows for great flexibility when
producing printed output

Neater Printing

