
 EA P P E N D I X

A-53

JAvA SyNtAX
SummAry

In this syntax summary, we use a monospaced font for actual Java reserved words and
tokens such as while. An italic font denotes language constructs such as condition or
variable. Items enclosed in brackets [] are optional. Items separated by vertical bars |
are alternatives. Do not include the brackets or vertical bars in your code!

The summary reflects the parts of the Java language that were covered in this book.
For a full overview of the Java syntax, see http://download.oracle.com/javase/7/docs/
api/.

Please be careful to distinguish an ellipsis . . . from the ... token. The latter appears
twice in this appendix in the “variable parameters” discussion in the “Methods”
section.

types
A type is a primitive type or a reference type. The primitive types are

• The numeric types int, long, short, char, byte, float, double
• The boolean type

The reference types are

• Classes such as String or Employee
• Enumeration types such as enum Sex { FEMALE, MALE }
• Interfaces such as Comparable
• Array types such as Employee[] or int[][]

variables
Local variable declarations have the form

[final] Type variableName [= initializer];

Examples:
int n;
double x = 0;
String harry = "Harry Handsome";
Rectangle box = new Rectangle(5, 10, 20, 30);
int[] a = { 1, 4, 9, 16, 25 };

The variable name consists only of letters, numbers, and underscores. It must begin
with a letter or underscore. Names are case-sensitive: totalscore, TOTALSCORE, and
totalScore are three different variables.

bj5_app_e.indd 53 10/17/12 12:40 PM

A-54 Appendix E Java Syntax Summary

The scope of a local variable extends from the point of its definition to the end of
the enclosing block.

A variable that is declared as final can have its value set only once.
Instance variables will be discussed under “Classes”.

Expressions
An expression is a variable, a method call, or a combination of subexpressions joined
by operators. Exam ples are:

x
Math.sin(x)
x + Math.sin(x)
x * (1 + Math.sin(x))
x++
x == y
x == y && (z > 0 || w > 0)
p.x
e.getSalary()
v[i]

Operators can be unary, binary, or ternary. A unary operator acts on a single expres-
sion, such as x++. A binary operator combines two expressions, such as x + y. A ter-
nary operator combines three expressions. Java has one ternary operator, ? : (see
Special Topic 5.1).

Unary operators can be prefix or postfix. A prefix operator is written before the
expression on which it operates, as in -x. A postfix operator is written after the expres-
sion on which it operates, such as x++.

Operators are ranked by precedence levels. Operators with a higher precedence
bind more strongly than operators with a lower precedence. For example, * has a
higher precedence than +, so x + y * z is the same as x + (y * z), even though the +
comes first.

Most operators are left-associative. That is, operators of the same precedence are
evaluated from the left to the right. For example, x - y + z is interpreted as (x - y) + z,
not x - (y + z). The exceptions are the unary prefix operators and the assignment
operator which are right-associative. For example, z = y = Math.sin(x) means the same
as z = (y = Math.sin(x)).

Appendix B has a list of all Java operators.

Classes
The syntax for a class is

[public] [abstract|final] class ClassName
 [extends SuperClassName]
 [implements InterfaceName1, InterfaceName2, . . .]
{
 feature1
 feature2
 . . .
}

bj5_app_e.indd 54 10/17/12 12:40 PM

Appendix E Java Syntax Summary A-55

Each feature is either a declaration of the form
modifiers constructor|method| instance variable|class

or an initialization block
[static] { body }

See the section “Constructors” for more information about initialization blocks.
Potential modifiers include public, private, protected, static, and final.
An instance variable declaration has the form
Type variableName [= initializer];

A constructor has the form
ClassName(parameter1, parameter2, . . .)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

A method has the form
Type methodName(parameter1, parameter2, . . .)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

An abstract method has the form
abstract Type methodName(parameter1, parameter2, . . .);

Here is an example:
public class Point
{
 private double x; // Instance variable
 private double y;

 public Point() // Constructor with no arguments
 {
 x = 0; y = 0;
 }

 public Point(double xx, double yy) // Constructor
 {
 x = xx; y = yy;
 }

 public double getX() // Method
 {
 return x;
 }

 public double getY() // Method
 {
 return y;
 }
}

A class can have both instance variables and static variables. Each object of the class
has a separate copy of the instance variables. There is only a one per-class copy of the
static variables.

bj5_app_e.indd 55 10/17/12 12:40 PM

A-56 Appendix E Java Syntax Summary

A class that is declared as abstract cannot be instantiated. That is, you cannot con-
struct objects of that class.

A class that is declared as final cannot be extended.

Interfaces
The syntax for an interface is

[public] interface InterfaceName
 [extends InterfaceName1, InterfaceName2, . . .]
{
 feature1
 feature2
 . . .
}

Each feature has the form
modifiers method | instance variable

Potential modifiers are public, static, final. However, modifiers are never necessary
because methods are automatically public and instance variables are automatically
public static final.

An instance variable declaration has the form
Type variableName = initializer;

A method declaration has the form
Type methodName(parameter1, parameter2, . . .);

Here is an example:
public interface Measurable
{
 int CM_PER_INCH = 2.54;

 int getMeasure();
}

Enumeration types
The syntax for an enumeration type is

[public] enum EnumerationTypeName
{
 constant1, constant2, . . .;
 feature1
 feature2
 . . .
}

Each constant is a constant name, followed by optional construction parameters.
constantName[(parameter1, parameter2, . . .)]

bj5_app_e.indd 56 10/17/12 12:40 PM

Appendix E Java Syntax Summary A-57

The semicolon after the constants is only required if the enumeration declares addi-
tional features. An enumeration can have the same features as a class. Each feature has
the form

modifiers method | instance variable

Potential modifiers are public, static, final.
Here are two examples:
public enum Suit { HEARTS, DIAMONDS, SPADES, CLUBS };
public enum Card
{
 TWO(2), THREE(3), FOUR(4), FIVE(5), SIX(6),
 SEVEN(7), EIGHT(8), NINE(9), TEN(10),
 JACK(10), QUEEN(10), KING(10), ACE(11);
 private int value;

 public void Card(int aValue) { value = aValue; }
 public int getValue() { return value; }
}

methods
A method definition has the form

modifiers Type methodName(parameter1, parameter2, . . ., parametern)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

The return type Type is any Java type, or the special type void to indicate that the
method returns no value.

Each parameter variable has the form
[final] Type parameterName

A method has variable parameters if the last parameter variable has the special form
Type... parameterName

Such a method can be called with a sequence of values of the given type of any length.
The parameter variable with the given name is an array of the given type that holds
the arguments. For example, the method

public static double sum(double... values)
{
 double s = 0;
 for (double v : values) { s = s + v; }
 return s;
}

can be called as
double result = sum(1, -2.5, 3.14);

In Java, all parameters are passed by value. Each parameter variable is a local variable
whose scope extends to the end of the method body. It is initialized with a copy of the
value supplied in the call. That value may be a primitive type or a reference type. If it

bj5_app_e.indd 57 10/17/12 12:40 PM

A-58 Appendix E Java Syntax Summary

is a reference type, invoking a mutator on the reference will mod ify the object whose
reference has been passed to the method.

Changing the value of the parameter variable has no effect outside the method.
Tagging the parameter variable as final disallows such a change altogether. This is
commonly done to allow access to the parameter variable from an inner class declared
in the method.

Java distinguishes between instance methods and static methods. Instance meth-
ods have a special parameter, the implicit parameter, supplied in the method call with
the syntax

implicitParameterValue.methodName(parameterValue1, parameterValue2, . . .)

Example:
harry.setSalary(30000)

The type of the implicit parameter must be the same as the type of the class containing
the method defini tion. A static method does not have an implicit parameter.

In the method body, the this variable is initialized with a copy of the implicit
parameter value. Using an instance variable name without qualification means to
access the instance variable of the implicit parameter. For example,

public void setSalary(double s)
{
 salary = s; // i.e., this.salary = s
}

By default, Java uses dynamic method lookup. The virtual machine determines the
class to which the implicit parameter object belongs and invokes the method declared
in that class. However, if a method is invoked on the special variable super, then the
method declared in the superclass is invoked on this. For example,

public class MyPanel extends JPanel
{
 . . .
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 // Calls JPanel.paintComponent
 . . .
 }
 . . .
}

The return statement causes a method to exit immediately. If the method type is not
void, you must return a value. The syntax is

return [value];

For example,
public double getSalary()
{
 return salary;
}

A method can call itself. Such a method is called recursive:
public static int factorial(int n)
{
 if (n <= 1) { return 1; }
 return n * factorial(n - 1);
}

bj5_app_e.indd 58 10/17/12 12:40 PM

Appendix E Java Syntax Summary A-59

Constructors
A constructor definition has the form

modifiers ClassName(parameter1, parameter2, . . .)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

You invoke a constructor to allocate and construct a new object with a new expression
new ClassName(parameterValue1, parameterValue2, . . .)

A constructor can call the body of another constructor of the same class with the
syntax

this(parameterValue1, parameterValue2, . . .)

For example,
public Employee()
{
 this("", 0);
}

It can call a constructor of its superclass with the syntax
super(parameterValue1, parameterValue2, . . .)

The call to this or super must be the first statement in the constructor.
Arrays are constructed with the syntax
new ArrayType [= { initializer1, initializer2, . . . }]

For example,
new int[] = { 1, 4, 9, 16, 25 }

When an object is constructed, the following actions take place:

• All instance variables are initialized with 0, false, or null.
• The initializers and initialization blocks are executed in the order in which they

are declared.
• The body of the constructor is invoked.

When a class is loaded, the following actions take place:

• All static variables are initialized with 0, false, or null.
• The initializers of static variables and static initialization blocks are executed in

the order in which they are declared.

Statements
A statement is one of the following:

• An expression followed by a semicolon
• A branch or loop statement
• A return statement

bj5_app_e.indd 59 10/17/12 12:40 PM

A-60 Appendix E Java Syntax Summary

• A throw statement
• A block, that is, a group of variable declarations and statements enclosed in braces

{. . .}
• A try block

Java has two branch statements (if and switch), three loop statements (while, for, and
do), and two mecha nisms for nonlinear control flow (break and continue).

The if statement has the form
if (condition) statement1 [else statement2]

If the condition is true, then the first statement is executed. Otherwise, the second
statement is executed.

The switch statement has the form
switch (expression)
{
 group1
 group2
 . . .
 [default:
 statement1
 statement2
 . . .]
}

Where each group has the form
case constant1:
case constant2:
. . .

 statement1
 statement2
 . . .

The expression must be an integer, enumeration type, or string. Depending on its
value, control is transferred to the first statement following the matching case label,
or to the first statement following the default label if none of the case labels match.
Execution continues with the next statement until a break or return state ment is
encountered, an exception is thrown, or the end of the switch is reached. Execution
skips over any case labels.

The while loop has the form
while (condition) statement

The statement is executed while the condition is true.
The for loop has the form
for (initExpression|variableDeclaration;
 condition;
 updateExpression1, updateExpression2, . . .)
 statement

The initialization expression or the variable declaration are executed once. While the
condition remains true, the loop statement and the updateExpressions are executed.

bj5_app_e.indd 60 10/17/12 12:40 PM

Appendix E Java Syntax Summary A-61

Examples:
for (i = 0; i < 10; i++)
{
 sum = sum + i;
}

for (int i = 0, j = 9; i < 10; i++, j--)
{
 a[j] = b[i];
}

The enhanced for loop has the form
for (Type variable : array|iterableObject)
 statement

When this loop traverses an array, it is equivalent to
for (int i = 0; i < array.length; i++)
{
 Type variable = array[i];
 statement
}

Otherwise, the iterableObject must belong to a class that implements the Iterable
interface. Then the loop is equivalent to

Iterator i = iterableObject.iterator();
while (i.hasNext())
{
 Type variable = i.next();
 statement
}

The do loop has the form
do statement while (condition);

The statement is repeatedly executed until the condition is no longer true. In contrast
to a while loop, the statement of a do loop is executed at least once.

The break statement exits the innermost enclosing while, do, for, or switch statement
(not counting if or block statements).

Any statement (including if and block statements) can be tagged with a label:
label: statement

The labeled break statement
break label;

exits the labeled statement.
The continue statement skips past the end of the statement part of a while, do, or for

loop. In the case of the while or do loop, the loop condition is executed next. In the case
of the for loop, the updateExpressions are executed next.

The labeled continue statement
continue label;

skips past the end of the statement part of a while, do, or for loop with the matching
label.

bj5_app_e.indd 61 10/17/12 12:40 PM

A-62 Appendix E Java Syntax Summary

Exceptions
The throw statement

throw expression;

abruptly terminates the current method and resumes control inside the innermost
matching catch clause of a surrounding try block. The expression must evaluate to a
reference to an object of a subclass of Throw able.

The try statement has the form
try tryBlock
[catch (ExceptionType1 exceptionVariable1) catchBlock1
catch (ExceptionType2 exceptionVariable2) catchBlock2
. . .]
[finally finallyBlock]

• The try statement must have at least one catch or finally clause.
• All blocks are block statements in the usual sense, that is, { . . . }-delimited

statement sequences.

The statements in the tryBlock are executed. If one of them throws an exception
object whose type is a subtype of one of the types in the catch clauses, then its catch-
Block is executed. As soon as the catch block is entered, that exception is handled.

If the tryBlock exits for any reason at all (because all of its statements executed
completely; because one of its statements was a break, continue, or return statement; or
because an exception was thrown), then the finallyBlock is executed.

If the finallyBlock was entered because an exception was thrown and it itself
throws another exception, then that exception masks the prior exception.

Packages
A class can be placed in a package by putting the package declaration

package packageName;

as the first non-import declaration of the source file.
A package name has the form
identifier1.identifier2. . . .

For example,
java.util
com.horstmann.bigjava

A fully qualified name of a class is
packageName.ClassName

Classes can always be referenced by their fully qualified class names. However, this
can be inconvenient. For that reason, you can reference imported classes by just their
ClassName. All classes in the package java.lang and in the package of the current
source file are always imported.

bj5_app_e.indd 62 10/17/12 12:40 PM

Appendix E Java Syntax Summary A-63

To import additional classes, use an import directive
import packageName.ClassName;

or
import packageName.*;

The second version imports all classes in the package.

Generic types and methods
A generic type is declared with one or more type parameters, placed after the type
name:

modifiers class|interface TypeName<typeParameter1, typeParameter2, . . .>

Similarly, a generic method is declared with one or more type parameters, placed
before the method’s return type:

modifiers <typeParameter1, typeParameter2, . . .> returnType methodName

Each type parameter has the form
typeParameterName [extends bound1 & bound2 & . . .]

For example,
public class BinarySearchTree<T extends Comparable>
public interface Comparator<T>
public <T extends Comparable & Cloneable> T cloneMin(T[] values)

Type parameters can be used in the definition of the generic type or method as if
they were regular types. They can be replaced with any types that match the bounds.
For example, the BinarySearchTree<String> type substitutes the String type for the type
parameter T.

Type parameters can also be replaced with wildcard types. A wildcard type has the
form

? [super|extends Type]

It denotes a specific type that is unknown at the time that it is declared. For example,
Comparable<? super Rectangle> is a type Comparable<S> for a specific type S, which can be
Rectangle or a super type such as RectangularShape or Shape.

Comments
There are three kinds of comments:

/* comment */
// one-line-comment
/** documentationComment */

The one-line comment extends to the end of the line. The other comments can span
multiple lines and extend to the */ delimiter.

Documentation comments are further explained in Appendix F.

bj5_app_e.indd 63 10/17/12 12:40 PM

A-64

 FA P P E N D I X

Tool
SummAry

In this summary, we use a monospaced font for actual commands such as javac. An
italic font denotes descriptions of tool command components such as options. Items
enclosed in brackets [. . .] are optional. Items separated by vertical bars | are alterna-
tives. Do not include the brackets or vertical bars when typ ing the commands.

The Java Compiler
javac [options] sourceFile1|@fileList1 sourceFile2|@fileList2 . . .

A file list is a text file that contains one file name per line. For example,

Greeting.list

1 Greeting.java
2 GreetingTester.java

Then you can compile all files with the command
javac @Greeting.list

The Java compiler options are summarized in Table 1.

Table 1 Common Compiler options

option Description

-classpath locations
or
-cp locations

The compiler is to look for classes on this path, overriding the CLASSPATH environment
variable. If neither is specified, the current directory is used.
Each location is a directory, JAR file, or ZIP file. Locations are separated by a platform-
dependent separator (: on Unix, ; on Windows).

-sourcepath locations The compiler is to look for source files on this path. If not specified, source files are
searched in the class path.

-d directory The compiler places files into the specified directory.

-g Generate debugging information.

-verbose Include information about all classes that are being compiled (useful for troubleshooting).

-deprecation Give detailed information about the usage of deprecated messages.

-Xlint:errorType Carry out additional error checking. If you get warnings about unchecked conversions,
compile with the -Xlint:unchecked option.

bj5_app_f.indd 64 10/17/12 12:48 PM

Appendix F Tool Summary A-65

The Java Virtual machine launcher
The following command loads the given class and starts its main method, passing it an
array containing the provided command line arguments:

java [options] ClassName [argument1 argument2 . . .]

The following command loads the main class of the given JAR file and starts its main
method, passing it an array containing the provided command line arguments:

java [options] -jar jarFileName [argument1 argument2 . . .]

The Java virtual machine options are summarized in Table 2.

Table 2 Common Virtual machine launcher options

option Description

-classpath locations
or
-cp locations

Look for classes on this path, overriding the CLASSPATH environment variable. If
neither is specified, the current directory is used.
Each location is a directory, JAR file, or ZIP file. Locations are separated by a
platform-dependent separator (: on Unix, ; on Windows).

-verbose Trace class loading

-Dproperty=value Set a system property that you can retrieve with the System.getProperties method.

The JAr Tool
To combine one or more files into a JAR (Java Archive) file, use the command

jar cvf jarFile file1 file2 . . .

The resulting JAR file can be included in a class path.
To build a program that can be launched with java -jar, you must create a manifest

file, such as

myprog.mf

1 Main-Class: com/horstmann/MyProg

The manifest must specify the path name of the class file that launches the applica-
tion, but with the .class extension removed. Then build the JAR file as

jar cvfm jarFile manifestFile file1 file2 . . .

You can also use JAR as a replacement for a ZIP utility, simply to compress and bun-
dle a set of files for any purpose. Then you may want to suppress the generation of
the JAR manifest, with the command

jar cvfM jarFile file1 file2 . . .

To extract the contents of a JAR file into the current directory, use
jar xvf jarFile

To see the files contained in a JAR file without extracting the files, use
jar tvf jarFile

bj5_app_f.indd 65 10/17/12 12:48 PM

A-66 Appendix F Tool Summary

The javadoc Tool
To extract documentation comments (summarized in the following section), run the
javadoc program:

javadoc [options] sourceFile1| packageName1 | @fileList1
 sourceFile2 | packageName2 | @fileList2 . . .

Commonly used options are summarized in Table 3. See the documentation of the
javac command in the first section of this appendix for an explanation of file lists.

To document all files in the current directory, use (all on one line)

javadoc -link http://download.oracle.com/javase/7/docs/api -d docdir *.java

Table 3 Common javadoc Command line options

option Description

-link URL Link to another set of javadoc files. You should include a link to the standard library
documentation, either locally or at http://download.oracle.com/javase/7/docs/api.

-d directory Store the output in directory. This is a useful option, because it keeps your current
directory from being cluttered up with javadoc files.

-classpath locations Look for classes on the specified paths, overriding the CLASSPATH environment variable.
If neither is specified, the current directory is used. Each location is a directory, JAR
file, or ZIP file. Locations are separated by a platform-dependent separator (: Unix,
; Windows).

-sourcepath locations Look for source files on the specified paths. If not specified, source files are searched
in the class path.

-author, -version Include author, version information in the documentation. This information is
omitted by default.

Documentation Comments
A documentation comment is delimited by /** and */. You can comment

• Classes
• Methods
• Instance variables

Each comment is placed immediately above the feature it documents.
Each /** . . . */ documentation comment contains introductory text followed

by tagged documenta tion. A tag starts with an @ character, such as @author or @param.
Tags are summarized in Table 4. The first sentence of the introductory text should be a
summary statement. The javadoc utility automatically gener ates summary pages that
extract these sentences.

You can use HTML tags such as em for emphasis, code for a monospaced font, img
for images, ul for bul leted lists, and so on.

bj5_app_f.indd 66 10/17/12 12:48 PM

Appendix F Tool Summary A-67

Here is a typical example. The summary sentence (in color) will be included with
the method sum mary.

/**
 Withdraws money from the bank account. Increments the
 transaction count.
 @param amount the amount to withdraw
 @return the balance after the withdrawal
 @throws IllegalArgumentException if the balance is not sufficient
*/
public double withdraw(double amount)
{
 if (balance - amount < minimumBalance)
 {
 throw new IllegalArgumentException();
 }
 balance = balance - amount;
 transactions++;
 return balance;
}

Table 4 Common javadoc Tags

Tag Description

@param parameter explanation A parameter of a method. Use a separate tag for
each parameter.

@return explanation The return value of a method.

@throws exceptionType explanation An exception that a method may throw. Use a
separate tag for each exception.

@deprecated A feature that remains for compatibility but that
should not be used for new code.

@see packageName.ClassName
@see packageName.ClassName
 #methodName(Type1, Type2, . . .)
@see packageName.ClassName#variableName

A reference to a related documentation entry.

@author The author of a class or interface. Use a separate tag
for each author.

@version The version of a class or interface.

bj5_app_f.indd 67 10/17/12 12:48 PM

A-68

 GA P P E N D I X

NumbEr
SyStEmS

binary Numbers
Decimal notation represents numbers as powers of 10, for example

1729 1 10 7 10 2 10 9 103 2 1 0
decimal = × + × + × + ×

There is no particular reason for the choice of 10, except that several historical num
ber systems were derived from people’s counting with their fingers. Other number
systems, using a base of 12, 20, or 60, have been used by various cultures through out
human history. However, computers use a number system with base 2 because it is far
easier to build electronic components that work with two values, which can be rep
resented by a current being either off or on, than it would be to represent 10 different
values of electrical signals. A number written in base 2 is also called a binary number.

For example,

1101 1 2 1 2 0 2 1 2 8 4 1 133 2 1 0
binary = × + × + × + × = + + =

For digits after the “decimal” point, use negative powers of 2.

1 101 1 2 1 2 0 2 1 2

1 1
2

1
8

0 1 2 3. binary = × + × + × + ×

= + +

=

− − −

11 0 5 0 125 1 625+ + =. . .
In general, to convert a binary number into its decimal equivalent, simply evaluate
the powers of 2 corresponding to digits with value 1, and add them up. Table 1 shows
the first powers of 2.

To convert a decimal integer into its binary equivalent, keep dividing the integer
by 2, keeping track of the remainders. Stop when the number is 0. Then write the
remainders as a binary number, starting with the last one. For example,

 100 ÷ 2 = 50 remainder 0
 50 ÷ 2 = 25 remainder 0
 25 ÷ 2 = 12 remainder 1
 12 ÷ 2 = 6 remainder 0
 6 ÷ 2 = 3 remainder 0
 3 ÷ 2 = 1 remainder 1
 1 ÷ 2 = 0 remainder 1

Therefore, 100decimal = 1100100binary .

bj5_app_g.indd 68 10/17/12 12:47 PM

Appendix G Number Systems A-69

Conversely, to convert a fractional number less than 1 to its binary format, keep
multiplying by 2. If the result is greater than 1, subtract 1. Stop when the number is
0. Then use the digits before the decimal points as the binary digits of the fractional
part, starting with the first one. For example,

 0.35 ⋅ 2 = 0.7
 0.7 ⋅ 2 = 1.4
 0.4 ⋅ 2 = 0.8
 0.8 ⋅ 2 = 1.6
 0.6 ⋅ 2 = 1.2
 0.2 ⋅ 2 = 0.4

Here the pattern repeats. That is, the binary representation of 0.35 is 0.01 0110
0110 0110 . . .

To convert any floatingpoint number into binary, convert the whole part and the
fractional part separately.

table 1 Powers of two

Power Decimal Value

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1,024

211 2,048

212 4,096

213 8,192

214 16,384

215 32,768

216 65,536

bj5_app_g.indd 69 10/17/12 12:47 PM

A-70 Appendix G Number Systems

Overflow and roundoff Errors
In Java, an int value is an integer that is 32 bits long. When combining two such val
ues, it is possible that the result does not fit into 32 bits. In that case, only the last 32
bits of the results are used, yielding an incorrect answer. For example,

int fiftyMillion = 50000000;
System.out.println(100 * fiftyMillion); // Expected: 5000000000

displays 705032704.
To see why this curious value is the result, one can carry out the long multiplica

tion by hand:
1 1 0 0 1 0 0 * 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 0
 0
 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 0
 0

1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

The result has 33 bits. However, you can’t fit a 33bit result into a 32bit int, and the
top bit is discarded. The last 32 bits are the binary representation of 705032704. (Note
that the top bit is 232 = 4294967296, and the two values add up to 5000000000, the
correct result.)

With floatingpoint numbers, you can encounter another type of error: roundoff
error. Consider this example:

double price = 4.35;
double quantity = 100;
double total = price * quantity; // Should be 100 * 4.35 = 435
System.out.println(total); // Prints 434.99999999999999

To see why the error occurs, carry out the long multiplication:
1 1 0 0 1 0 0 * 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0 . . .

1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0 . . .
 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 . . .
 0
 0
 1 0 0.0 1|0 1 1 0|0 1 1 0 . . .
 0
 0

1 1 0 1 1 0 0 1 0.1 1 1 1 1 1 1 1 . . .

That is, the result is 434, followed by an infinite number of 1s. The fractional part
of the product is the binary equiv alent of an infinite decimal fraction 0.999999 . . . ,
which is equal to 1. But the CPU can store only a finite number of 1s, and it discards
some of them when converting the result to a decimal number.

bj5_app_g.indd 70 10/17/12 12:47 PM

Appendix G Number Systems A-71

two’s Complement Integers
To represent negative integers, there are two common representations, called “signed
magnitude” and “two’s complement”. Signed magnitude notation is simple: use the
leftmost bit for the sign (0 = positive, 1 = negative). For example, when using 8bit
numbers,

− =13 10001101signed magnitude

However, building circuitry for adding numbers gets a bit more complicated when
one has to take a sign bit into account. The two’s complement representation solves
this problem. To form the two’s complement of a number,

• Flip all bits.
• Then add 1.

For example, to compute –13 as an 8bit value, first flip all bits of 00001101 to get
11110010. Then add 1:

− =13 11110011two s complement’

Now no special circuitry is required for adding two numbers. Simply follow the nor
mal rule for addition, with a carry to the next position if the sum of the digits and the
prior carry is 2 or 3. For example,

+13 0000 1101
-13 1111 0011

 1 0000 0000

1 1 1 1 1 1 1 1

But only the last 8 bits count, so +13 and –13 add up to 0, as they should.
In particular, –1 has two’s complement representation 1111 . . . 1111, with all bits

set.
The leftmost bit of a two’s complement number is 0 if the number is positive or

zero, 1 if it is negative.
Two’s complement notation with a given number of bits can represent one more

negative number than positive numbers. For example, the 8bit two’s complement
numbers range from –128 to +127.

This phenomenon is an occasional cause for a programming error. For example,
consider the following code:

short b = ...;
if (b < 0) { b = (byte) -b; }

This code does not guarantee that b is nonnegative afterwards. If b happens to be
-128, then computing its negative again yields -128. (Try it out—take 10000000, flip
all bits, and add 1.)

bj5_app_g.indd 71 10/17/12 12:47 PM

A-72 Appendix G Number Systems

IEEE Floating-Point Numbers
The Institute for Electrical and Electronics Engineering (IEEE) defines standards for
floatingpoint representations in the IEEE754 standard. Figure 1 shows how single
precision (float) and doubleprecision (double) values are decomposed into

• A sign bit
• An exponent
• A mantissa

Floatingpoint numbers use scientific notation, in which a number is represented as

b b b b e
0 1 2 3 2. … ×

In this representation, e is the exponent, and the digits b b b b0 1 2 3. … form the man
tissa. The normalized representation is the one where b0 ≠ 0. For example,

100 1100100 1 100100 26
decimal binary binary

= = ×.

In the binary number system, because the first bit of a normalized representation
must be 1, it is not actually stored in the mantissa. Therefore, you always need to add
it on to represent the actual value. For example, the mantissa 1.100100 is stored as
100100.

The exponent part of the IEEE representation uses neither signed magnitude nor
two’s complement representation. Instead, a bias is added to the actual exponent. The
bias is 127 for singleprecision numbers and 1023 for doubleprecision num bers. For
example, the exponent e = 6 would be stored as 133 in a singleprecision number.

Thus,

100decimal = 0 10000101 10010000000000000000000 singleprecision IEEE

In addition, there are several special values. Among them are:

• Zero: biased exponent = 0, mantissa = 0.
• Infinity: biased exponent = 11. . .1, mantissa = ±0.
• NaN (not a number): biased exponent = 11 . . . 1, mantissa ≠ ±0.

Figure 1 IEEE Floating-Point representation

1 bit

1 bit

sign

sign

biased exponent
e + 127

8 bit 23 bit

Single Precision

11 bit 52 bit

biased exponent
e + 1023

mantissa
(without leading 1)

mantissa
(without leading 1)

Double Precision

bj5_app_g.indd 72 10/17/12 12:47 PM

Appendix G Number Systems A-73

Hexadecimal Numbers
Because binary numbers can be hard to read for humans, programmers often use the
hexadecimal number system, with base 16. The digits are denoted as 0, 1, …, 9, A, B,
C, D, E, F. (See Table 2.)

Four binary digits correspond to one hexadecimal digit. That makes it easy to con
vert between binary and hexadecimal values. For example,

11|1011|0001binary = 3B1hexadecimal

In Java, hexadecimal numbers are used for Unicode character values, such as \u03B1
(the Greek lowercase letter alpha). Hexadecimal integers are denoted with a 0x prefix,
such as 0x3B1.

table 2 Hexadecimal Digits

Hexadecimal Decimal binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

bj5_app_g.indd 73 10/17/12 12:47 PM

A-74 Appendix G Number Systems

bit and Shift Operations
There are four bit operations in Java: the unary negation (~) and the binary and (&),
or (|), and exclusive or (^), often called xor.

Tables 3 and 4 show the truth tables for the bit operations in Java. When a bit oper
ation is applied to integer values, the operation is carried out on corre sponding bits.

For example, suppose you want to compute 46 & 13. First convert both values to
binary. 46decimal = 101110 binary (actually 00000000000000000000000000101110 as a
32bit integer), and 13decimal = 1101binary . Now combine corresponding bits:

 0.....0101110
& 0.....0001101

 0.....0001100

The answer is 1100binary = 12decimal.
You sometimes see the | operator being used to combine two bit patterns. For

example, the symbolic constant BOLD is the value 1, and the symbolic constant ITALIC
is 2. The binary or combination BOLD | ITALIC has both the bold and the italic bit set:

 0.....0000001
| 0.....0000010

 0.....0000011

Don’t confuse the & and | bit operators with the && and || operators. The latter work
only on boolean val ues, not on bits of numbers.

table 3 the unary Negation Operation

a ~a

0 1

1 0

table 4 the binary And, Or, and Xor Operations

a b a & b a | b a ̂ b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Besides the operations that work on individual bits, there are three shift operations
that take the bit pattern of a number and shift it to the left or right by a given number
of positions. There are three shift operations: left shift (<<), right shift with sign exten
sion (>>), and right shift with zero extension (>>>).

The left shift moves all bits to the left, filling in zeroes in the least significant bits.
Shifting to the left by n bits yields the same result as multiplication by 2n. The right
shift with sign extension moves all bits to the right, propagating the sign bit. There

bj5_app_g.indd 74 10/17/12 12:47 PM

Appendix G Number Systems A-75

fore, the result is the same as integer division by 2n, both for pos itive and negative
values. Finally, the right shift with zero extension moves all bits to the right, filling in
zeroes in the most significant bits. (See Figure 2.)

Note that the righthandside value of the shift operators is reduced modulo 32
(for int values) or 64 (for long values) to determine the actual number of bits to shift.

For example, 1 << 35 is the same as 1 << 3. Actually shifting 1 by 35 bits to the left
would make no sense—the result would be 0.

The expression
1 << n

yields a bit pattern in which the nth bit is set (where the 0 bit is the least significant
bit).

To set the nth bit of a number, carry out the operation
x = x | 1 << n

To check whether the nth bit is set, execute the test
if ((x & 1 << n) != 0) . . .

Note that the parentheses around the & are required—the & operator has a lower pre
cedence than the rela tional operators.

Figure 2
the Shift Operations

Left shift (<<)

Right shift with sign extension (>>)

Right shift with zero extension (>>>)

0 0

00

bj5_app_g.indd 75 10/17/12 12:47 PM

A-76

 HA P P E N D I X

UML
SUMMAry

In this book, we use a very restricted subset of the UML notation. This appendix lists
the components of the subset.

CrC Cards
CRC cards are used to describe in an informal fashion the responsibilities and col-
laborators for a class. Figure 1 shows a typical CRC card.

UML Diagrams
Figure 2 shows the UML notation for classes and interfaces. You can optionally sup-
ply attributes and methods in a class diagram, as in Figure 3.

Figure 1 Typical CrC Card

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

Figure 2
UML Symbols for Classes
and Interfaces

ClassName

‹‹interface››
InterfaceName

bj5_app_h.indd 76 10/17/12 12:50 PM

Appendix H UML Summary A-77

Figure 3
Attributes and Methods
in a Class Diagram

Attributes

balance

deposit()
withdraw()

BankAccount

Methods

Customer

Class name

No attributes or
methods shown

Table 1 shows the arrows used to indicate relationships between classes. Multiplicity
can be indicated in a diagram, as in Figure 4.

Table 1 UML Relationship Symbols

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface
Implementation

Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

Dependencies between objects are described by a dependency diagram. Figure 5 is a
typical example.

Figure 4
An Aggregation Relationship
with Multiplicities

Customer BankAccount
1..*

Figure 5
UML Class Diagram for
the ATM Simulation

ATMFrame

Keypad

ATM

BankAccount

Customer

Bank
1

1

1 2

*

bj5_app_h.indd 77 11/6/12 8:44 PM

A-78 Appendix H UML Summary

State diagrams are used when an object goes through a discrete set of states that af-
fects its behavior (see Figure 6).

For a complete discussion of the UML notation, see The Unified Modeling Lan-
guage User Guide, by Booch, Rumbaugh, and Jacobson (Addison-Wesley, 2005).

Figure 6 UML State Diagram for the ATM Class

START

PIN

Customer
not found

Customer found

Account selected

Customer number entered

Exit selected

Transaction
completed or
canceled

ACCOUNT

TRANSACT

bj5_app_h.indd 78 10/17/12 12:50 PM

 IA P P E N D I X

A-79

JAvA LANguAgE
CoDINg guIDELINEs

Introduction
This coding style guide is a simplified version of one that has been used with good
success both in indus trial practice and for college courses.

A style guide is a set of mandatory requirements for layout and formatting. Uni-
form style makes it easier for you to read code from your instructor and classmates.
You will really appreciate that if you do a team project. It is also easier for your
instructor and your grader to grasp the essence of your programs quickly.

A style guide makes you a more productive programmer because it reduces gratu-
itous choice. If you don’t have to make choices about trivial matters, you can spend
your energy on the solution of real prob lems.

In these guidelines, several constructs are plainly outlawed. That doesn’t mean
that programmers using them are evil or incompetent. It does mean that the con-
structs are not essential and can be expressed just as well or even better with other
language constructs.

If you already have programming experience, in Java or another language, you
may be initially uncom fortable at giving up some fond habits. However, it is a sign
of professionalism to set aside personal pref erences in minor matters and to compro-
mise for the benefit of your group.

These guidelines are necessarily somewhat dull. They also mention features that
you may not yet have seen in class. Here are the most important highlights:

• Tabs are set every three spaces.
• Variable and method names are lowercase, with occasional upperCase characters

in the middle.
• Class names start with an Uppercase letter.
• Constant names are UPPERCASE, with an occasional UNDER_SCORE.
• There are spaces after reserved words and surrounding binary operators.
• Braces must line up horizontally or vertically.
• No magic numbers may be used.
• Every method, except for main and overridden methods, must have a comment.
• At most 30 lines of code may be used per method.
• No continue or break is allowed.
• All non-final variables must be private.

Note to the instructor: Of course, many programmers and organizations have strong
feelings about cod ing style. If this style guide is incompatible with your own prefer-
ences or with local custom, please feel free to modify it.

bj5_app_i.indd 79 10/17/12 12:53 PM

A-80 Appendix I Java Language Coding guidelines

source Files
Each Java program is a collection of one or more source files. The executable program
is obtained by compiling these files. Organize the material in each file as follows:

• package statement, if appropriate
• import statements
• A comment explaining the purpose of this file
• A public class
• Other classes, if appropriate
The comment explaining the purpose of this file should be in the format recognized
by the javadoc utility. Start with a /**, and use the @author and @version tags:

/**
 Classes to manipulate widgets.
 Solves CS101 homework assignment #3
 COPYRIGHT (C) 2015 Harry Morgan. All Rights Reserved.
 @author Harry Morgan
 @version 1.01 2015-02-15
*/

Classes

Each class should be preceded by a class comment explaining the purpose of the class.
First list all public features, then all private features.
Within the public and private sections, use the following order:

1. Instance variables
2. Static variables
3. Constructors
4. Instance methods
5. Static methods
6. Inner classes

Leave a blank line after every method.
All non-final variables must be private. (However, instance variables of a private

inner class may be public.) Methods and final variables can be either public or private,
as appropriate.

All features must be tagged public or private. Do not use the default visibility (that
is, package visibil ity) or the protected attribute.

Avoid static variables (except final ones) whenever possible. In the rare instance
that you need static variables, you are permitted one static variable per class.

bj5_app_i.indd 80 10/17/12 12:53 PM

Appendix I Java Language Coding guidelines A-81

Methods
Every method (except for main) starts with a comment in javadoc format.

/**
 Convert calendar date into Julian day.
 Note: This algorithm is from Press et al., Numerical Recipes
 in C, 2nd ed., Cambridge University Press, 1992.
 @param day day of the date to be converted
 @param month month of the date to be converted
 @param year year of the date to be converted
 @return the Julian day number that begins at noon of the
 given calendar date.
*/
public static int getJulianDayNumber(int day, int month, int year)
{
 . . .
}

Parameter variable names must be explicit, especially if they are integers or Boolean:
public Employee remove(int d, double s)
 // Huh?
public Employee remove(int department, double severancePay)
 // OK

Methods must have at most 30 lines of code. The method signature, comments, blank
lines, and lines con taining only braces are not included in this count. This rule forces
you to break up complex computations into separate methods.

variables and Constants
Do not define all variables at the beginning of a block:

{
 double xold; // Don’t
 double xnew;
 boolean done;
 . . .
}

Define each variable just before it is used for the first time:
{
 . . .
 double xold = Integer.parseInt(input);
 boolean done = false;
 while (!done)
 {
 double xnew = (xold + a / xold) / 2;
 . . .
 }
 . . .
}

bj5_app_i.indd 81 10/17/12 12:53 PM

A-82 Appendix I Java Language Coding guidelines

Do not define two variables on the same line:
int dimes = 0, nickels = 0; // Don’t

Instead, use two separate definitions:
int dimes = 0; // OK
int nickels = 0;

In Java, constants must be defined with the reserved word final. If the constant is
used by multiple meth ods, declare it as static final. It is a good idea to define static
final variables as private if no other class has an interest in them.

Do not use magic numbers! A magic number is a numeric constant embedded in
code, without a con stant definition. Any number except -1, 0, 1, and 2 is considered
magic:

if (p.getX() < 300) // Don’t

Use final variables instead:
final double WINDOW_WIDTH = 300;
. . .
if (p.getX() < WINDOW_WIDTH) // OK

Even the most reasonable cosmic constant is going to change one day. You think there
are 365 days per year? Your customers on Mars are going to be pretty unhappy about
your silly prejudice. Make a con stant

public static final int DAYS_PER_YEAR = 365;

so that you can easily produce a Martian version without trying to find all the 365s,
364s, 366s, 367s, and so on, in your code.

When declaring array variables, group the [] with the type, not the variable.
int[] values; // OK
int values[]; // Ugh—this is an ugly holdover from C

When using collections, use type parameters and not “raw” types.
ArrayList<String> names = new ArrayList<String>(); // OK
ArrayList names = new ArrayList(); // Not OK

Control Flow

statement Bodies
Use braces to enclose the bodies of branch and loop statements, even if they contain
only a single statement. For example,

if (x < 0)
{
 x++;
}

and not
if (x < 0)
 x++; // Not OK--no braces

bj5_app_i.indd 82 10/17/12 12:53 PM

Appendix I Java Language Coding guidelines A-83

The for statement
Use for loops only when a variable runs from somewhere to somewhere with some
constant increment/decrement:

for (int i = 0; i < a.length; i++)
{
 System.out.println(a[i]);

}

Or, even better, use the enhanced for loop:
for (int e : a)
{
 System.out.println(e);
}

Do not use the for loop for weird constructs such as
for (a = a / 2; count < ITERATIONS; System.out.println(xnew)) // Don’t

Make such a loop into a while loop. That way, the sequence of instructions is much
clearer:

a = a / 2;
while (count < ITERATIONS) // OK
{
 . . .
 System.out.println(xnew);
}

Nonlinear Control Flow
Avoid the switch statement, because it is easy to fall through accidentally to an
unwanted case. Use if/else instead.

Avoid the break or continue statements. Use another boolean variable to control the
execution flow.

Exceptions
Do not tag a method with an overly general exception specification:

Widget readWidget(Reader in) throws Exception // Bad

Instead, specifically declare any checked exceptions that your method may throw:
Widget readWidget(Reader in)
 throws IOException, MalformedWidgetException // Good

Do not “squelch” exceptions:
try
{
 double price = in.readDouble();
}
catch (Exception e)
{ } // Bad

Beginners often make this mistake “to keep the compiler happy”. If the current
method is not appropri ate for handling the exception, simply use a throws specifica-
tion and let one of its callers handle it.

bj5_app_i.indd 83 10/17/12 12:53 PM

A-84 Appendix I Java Language Coding guidelines

Lexical Issues

Naming Conventions
The following rules specify when to use upper- and lowercase letters in identifier
names:

• All variable and method names are in lowercase (maybe with an occasional
upperCase in the middle); for example, firstPlayer.

• All constants are in uppercase (maybe with an occasional UNDER_SCORE); for
example, CLOCK_RADIUS.

• All class and interface names start with uppercase and are followed by lowercase
letters (maybe with an occasional UpperCase letter); for example, BankTeller.

• Generic type variables are in uppercase, usually a single letter.

Names must be reasonably long and descriptive. Use firstPlayer instead of fp. No
drppng f vwls. Local variables that are fairly routine can be short (ch, i) as long as they
are really just boring holders for an input character, a loop counter, and so on. Also,
do not use ctr, c, cntr, cnt, c2 for variables in your method. Surely these variables all
have specific purposes and can be named to remind the reader of them (for example,
current, next, previous, result, . . .). However, it is customary to use single-letter names,
such as T or E for generic types.

Indentation and White space
Use tab stops every three columns. That means you will need to change the tab stop
setting in your edi tor!

Use blank lines freely to separate parts of a method that are logically distinct.
Use a blank space around every binary operator:
x1 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);
// Good

x1=(-b-Math.sqrt(b*b-4*a*c))/(2*a);
// Bad

Leave a blank space after (and not before) each comma or semicolon. Do not leave a
space before or after a parenthesis or bracket in an expression. Leave spaces around
the (. . .) part of an if, while, for, or catch statement.

if (x == 0) { y = 0; }

f(a, b[i]);

Every line must fit in 80 columns. If you must break a statement, add an indentation
level for the contin uation:

a[n] = ..
 +;

Start the indented line with an operator (if possible).

bj5_app_i.indd 84 10/17/12 12:53 PM

Appendix I Java Language Coding guidelines A-85

Braces
Opening and closing braces must line up, either horizontally or vertically:

while (i < n) { System.out.println(a[i]); i++; }

while (i < n)
{
 System.out.println(a[i]);
 i++;
}

Some programmers don’t line up vertical braces but place the { behind the reserved
word:

while (i < n) { // DON’T
 System.out.println(a[i]);
 i++;
}

Doing so makes it hard to check that the braces match.

unstable Layout
Some programmers take great pride in lining up certain columns in their code:

firstRecord = other.firstRecord;
lastRecord = other.lastRecord;
cutoff = other.cutoff;

This is undeniably neat, but the layout is not stable under change. A new variable
name that is longer than the preallotted number of columns requires that you move
all entries around:

firstRecord = other.firstRecord;
lastRecord = other.lastRecord;
cutoff = other.cutoff;
marginalFudgeFactor = other.marginalFudgeFactor;

This is just the kind of trap that makes you decide to use a short variable name like mff
instead. Use a sim ple layout that is easy to maintain as your programs change.

bj5_app_i.indd 85 10/17/12 12:53 PM

A-86

 JA P P E N D I X

HTML
SuMMAry

A Brief Introduction to HTML
A web page is written in a language called HTML (Hypertext Markup Language).
Like Java code, HTML code is made up of text that follows certain strict rules. When
a browser reads a web page, the browser interprets the code and renders the page, dis-
playing characters, fonts, paragraphs, tables, and images.

HTML files are made up of text and tags that tell the browser how to render the
text. Nowadays, there are dozens of HTML tags—see Table 1 for a summary of the
most important tags. Fortunately, you need only a few to get started. Most HTML
tags come in pairs consisting of an opening tag and a closing tag, and each pair applies
to the text between the two tags. Here is a typical example of a tag pair:

Java is an <i>object-oriented</i> programming language.

The tag pair <i> </i> directs the browser to display the text inside the tags in italics:
Java is an object-oriented programming language.

The closing tag is just like the opening tag, but it is prefixed by a slash (/). For exam-
ple, bold-faced text is delimited by , and a paragraph is delimited by <p> </p>.

<p>Java is an <i>object-oriented</i> programming language.</p>

The result is the paragraph
Java is an object-oriented programming language.

Another common construct is a bulleted list. For example:
Java is

• object-oriented
• safe
• platform-independent

Here is the HTML code to display it:
<p>Java is</p>
object-oriented
safe
platform-independent

Each item in the list is delimited by (for “list item”), and the whole list is
surrounded by (for “unnumbered list”).

bj5_app_j.indd 86 10/17/12 12:56 PM

Appendix J HTML Summary A-87

Table 1 Selected HTML Tags

Tag Meaning Children Commonly used Attributes

html HTML document head, body

head Head of an HTML document title

title Title of an HTML document

body Body of an HTML document

h1 . . . h6 Heading level 1 . . . 6

p Paragraph

ul Unnumbered list li

ol Ordered list li

dl Definition list dt, dd

li List item

dt Term to be defined

dd Definition data

table Table tr

tr Table row th, td

th Table header cell

td Table cell data

a Anchor href, name

img Image src, width, height

pre Preformatted text

hr Horizontal rule

br Line break

i or em Italic

b or strong Bold

tt or code Typewriter or code font

s or strike Strike through

u Underline

super Superscript

sub Subscript

form Form action, method

bj5_app_j.indd 87 10/17/12 12:56 PM

A-88 Appendix J HTML Summary

Table 1 Selected HTML Tags

Tag Meaning Children Commonly used Attributes

input Input field type, name, value, size, checked

select Combo box style selector option name

option Option for selection

textarea Multiline text area name, rows, cols

As in Java, you can freely use white space (spaces and line breaks) in HTML code
to make it easier to read. For example, you can lay out the code for a list as follows:

<p>Java is</p>

object-oriented
safe
platform-independent

The browser ignores the white space.
If you omit a tag (such as a), most browsers will try to guess the missing

tags—sometimes with differing results. It is always best to include all tags.
You can include images in your web pages with the img tag. In its simplest form, an

image tag has the form

This code tells the browser to load and display the image that is stored in the file
hamster.jpeg. This is a slightly different type of tag. Rather than text inside a tag pair
 , the img tag uses an attribute to specify a file name. Attributes have names
and values. For example, the src attribute has the value "ham ster.jpeg". Table 2 con-
tains commonly used attributes.

Table 2 Selected HTML Attributes

Attribute Description Commonly Contained in

name Name of form element or anchor input, select, textarea, a

href Hyperlink reference a

src Source (as of an image) img

code Applet code applet

width, height Width, height of image or applet img, applet

rows, cols Rows, columns of text area textarea

type Type of input field, such as text, password,
checkbox, radio, submit, hidden

input

value Value of input field, or label of submit button input

bj5_app_j.indd 88 10/17/12 12:56 PM

Appendix J HTML Summary A-89

Table 2 Selected HTML Attributes

Attribute Description Commonly Contained in

size Size of text field input

checked Check radio button or checkbox input

action URL of form action form

method GET or POST form

It is considered polite to use several additional attributes with the img tag, namely
the image size and an alternate description:

<img src="hamster.jpeg" width="640" height="480"

alt="A photo of Harry, the Horrible Hamster"/>
These additional attributes help the browser lay out the page and display a temporary
description while gathering the data for the image (or if the browser cannot display
images, such as a voice browser for blind users). Users with slow network connec-
tions really appreciate this extra effort.

Because there is no closing tag, we put a slash / before the closing >. This is
not a requirement of HTML, but it is a requirement of the emerging XHTML stan-
dard, the XML-based successor to HTML. See www.w3c.org/TR/xhtml1 for more infor-
mation on XHTML.

The most important tag on a web page is the <a> tag pair, which makes the
enclosed text into a link to another file. The links between web pages are what makes
the Web into, well, a web. The browser dis plays a link in a special way (for example,
underlined text in blue color). Here is the code for a typical link:

Cay Horstmann is the author of this book.

When the viewer of the web page clicks on the words Cay Horstmann, the browser
loads the web page located at horstmann.com. (The value of the href attribute is a Uni-
versal Resource Locator (URL), which tells the browser where to go. The prefix http:,
for Hypertext Transfer Protocol, tells the browser to fetch the file as a web page. Oth-
er protocols allow different actions, such as ftp: to download a file, mailto: to send
e-mail to a user, and file: to view a local HTML file.)

Table 3 Selected HTML Entities

Entity Description Appearance

< Less than <

> Greater than >

& Ampersand &

" Quotation mark "

 Nonbreaking space

© Copyright symbol ©

bj5_app_j.indd 89 10/17/12 12:56 PM

A-90 Appendix J HTML Summary

You have noticed that tags are enclosed in angle brackets (less-than and greater-
than signs). What if you want to show an angle bracket on a web page? HTML pro-
vides the notations < and > to pro duce the < and > symbols, respectively. Oth-
er codes of this kind produce symbols such as accented letters. The & (ampersand)
symbol introduces these codes; to get that symbol itself, use &. See Table 3 for
a summary.

You may already have created web pages with a web editor that works like a word
processor, giving you a WYSIWYG (what you see is what you get) view of your web
page. But the tags are still there, and you can see them when you load the HTML file
into a text editor. If you are comfortable using a WYSI WYG web editor, you don’t
need to memorize HTML tags at all. But many programmers and professional web
designers prefer to work directly with the tags at least some of the time, because it
gives them more control over their pages.

bj5_app_j.indd 90 10/17/12 12:56 PM

