
21C h a p t e r

W923

© Felix Alim/iStockphoto.

Internet
networkIng

to understand the concept of sockets

to send and receive data through sockets

to implement network clients and servers

to communicate with web servers and server-side
applications through the hypertext transfer protocol (http)

C h a p t e r g o a l s

C h a p t e r C o n t e n t s

21.1  The InTerneT ProTocol  w924

21.2  APPlIcATIon level 
ProTocols  w926

21.3  A clIenT ProgrAm  w929

21.4  A server ProgrAm  w932

How To 21.1: Designing Client/server
programs w939

21.5  Url connecTIons  w940

Programming Tip 21.1: Use high-level
libraries w943

bj5i_ch21_02.indd 923 1/17/13 2:17 PM

W924

You probably have quite a bit of experience with the
Internet, the global network that links together millions of
computers. In particular, you use the Internet whenever you
browse the world wide web. note that the Internet is not the
same as the “web”. the world wide web is only one of many
services offered over the Internet. e-mail, another popular
service, also uses the Internet, but its implementation
differs from that of the web. In this chapter, you will see
what goes on “under the hood” when you send an e-mail
message or when you retrieve a web page from a remote
server. You will also learn how to write programs that fetch
data from sites across the Internet and how to write server
programs that can serve information to other programs.

21.1 the Internet protocol
Computers can be connected with each other through a variety of physical media. In
a computer lab, for example, computers are connected by network cabling. Elec trical
impulses representing information flow across the cables. If you use a DSL modem
to connect your computer to the Internet, the signals travel across a regular telephone
wire, encoded as tones. On a wireless network, signals are sent by trans mitting a
modulated radio frequency. The physical characteristics of these transmis sions dif-
fer widely, but they ultimately consist of sending and receiving streams of zeroes and
ones along the network connection.

These zeroes and ones represent two kinds of information: application data, the
data that one computer actually wants to send to another, and network protocol data,
the data that describe how to reach the intended recipient and how to check for errors
and data loss in the transmission. The protocol data follow certain rules set forth by
the Internet Protocol Suite, also called TCP/IP, after the two most important proto-
cols in the suite. These protocols have become the basis for connecting computers
around the world over the Internet. We will discuss TCP and IP in this chapter.

Suppose that a computer A wants to send data to a computer B, both on the Inter-
net. The computers aren’t connected directly with a cable, as they could be if both
were on the same local area network. Instead, A may be someone’s home com puter
and connected to an Internet service provider (ISP), which is in turn con nected to
an Internet access point; B might be a computer on a local area network belonging to
a large firm that has an Internet access point of its own, which may be half a world
away from A. The Internet itself, finally, is a complex collection of pathways on
which a message can travel from one Internet access point to, eventu ally, any other
Internet access point (see Figure 1). Those connections carry mil lions of messages,
not just the data that A is sending to B.

For the data to arrive at its destination, it must be marked with a destination
address. In IP, addresses are denoted by sequences of four numbers, each one byte
(that is, between 0 and 255); for example, 130.65.86.66. (Because there aren’t enough
four-byte addresses for all devices that would like to connect to the Internet, these
addresses have been extended to sixteen bytes. For simplicity, we use the classic four-
byte addresses in this chapter.) In order to send data, A needs to know the Internet

the Internet is a
worldwide collection
of networks, routing
equipment, and
computers using
a common set of
protocols to define
how each party
will interact with
each other.

address of B and include it in the protocol portion when sending the data across the
Internet. The routing software that is distributed across the Internet can then deliver
the data to B.

Of course, addresses such as 130.65.86.66 are not easy to remember. You would
not be happy if you had to use number sequences every time you sent e-mail or
requested information from a web server. On the Internet, computers can have so-
called domain names that are easier to remember, such as cs.sjsu.edu or horstmann.com.
A special service called the Domain Name System (DNS) translates between domain
names and Internet addresses. Thus, if computer A wants to have information from
horstmann.com, it first asks the DNS to translate this domain name into a numeric Inter-
net address; then it includes the numeric address with the request.

One interesting aspect of IP is that it breaks large chunks of data up into more
manageable packets. Each packet is delivered separately, and different packets that are
part of the same transmission can take different routes through the Internet. Packets
are numbered, and the recipient reassembles them in the correct order.

The Internet Protocol is used when attempting to deliver data from one computer
to another across the Internet. If some data get lost or garbled in the pro cess, IP has
safeguards built in to make sure that the recipient is aware of that unfor tunate fact and
doesn’t rely on incomplete data. However, IP has no provision for retrying an incom-
plete transmission. That is the job of a higher-level protocol, the Transmission Control
Protocol (TCP). This protocol attempts reliable delivery of data, with retries if there
are failures, and it notifies the sender whether or not the attempt succeeded. Most, but
not all, Internet programs use TCP for reliable deliv ery. (Exceptions are “streaming
media” services, which bypass the slower TCP for the highest possible throughput
and tolerate occasional information loss. However, the most popular Internet ser-
vices—the World Wide Web and e-mail—use TCP.) TCP is independent of the Inter-
net Protocol; it could in principle be used with another lower-level network protocol.

tCp/Ip is the
abbreviation for
Transmission Control
Protocol and Internet
Protocol, the pair
of communication
protocols designed
to establish reliable
transmission of
data between two
computers on
the Internet.

© Felix Alim/iStockphoto.

bj5i_ch21_01.indd 924 1/7/13 9:40 AM

21.1 the Internet protocol W925

Figure 1  two Computers Communicating across the Internet

Computer A Computer B

Internet Service Provider Internet

Internet
Access Points

address of B and include it in the protocol portion when sending the data across the
Internet. The routing software that is distributed across the Internet can then deliver
the data to B.

Of course, addresses such as 130.65.86.66 are not easy to remember. You would
not be happy if you had to use number sequences every time you sent e-mail or
requested information from a web server. On the Internet, computers can have so-
called domain names that are easier to remember, such as cs.sjsu.edu or horstmann.com.
A special service called the Domain Name System (DNS) translates between domain
names and Internet addresses. Thus, if computer A wants to have information from
horstmann.com, it first asks the DNS to translate this domain name into a numeric Inter-
net address; then it includes the numeric address with the request.

One interesting aspect of IP is that it breaks large chunks of data up into more
manageable packets. Each packet is delivered separately, and different packets that are
part of the same transmission can take different routes through the Internet. Packets
are numbered, and the recipient reassembles them in the correct order.

The Internet Protocol is used when attempting to deliver data from one computer
to another across the Internet. If some data get lost or garbled in the pro cess, IP has
safeguards built in to make sure that the recipient is aware of that unfor tunate fact and
doesn’t rely on incomplete data. However, IP has no provision for retrying an incom-
plete transmission. That is the job of a higher-level protocol, the Transmission Control
Protocol (TCP). This protocol attempts reliable delivery of data, with retries if there
are failures, and it notifies the sender whether or not the attempt succeeded. Most, but
not all, Internet programs use TCP for reliable deliv ery. (Exceptions are “streaming
media” services, which bypass the slower TCP for the highest possible throughput
and tolerate occasional information loss. However, the most popular Internet ser-
vices—the World Wide Web and e-mail—use TCP.) TCP is independent of the Inter-
net Protocol; it could in principle be used with another lower-level network protocol.

tCp/Ip is the
abbreviation for
Transmission Control
Protocol and Internet
Protocol, the pair
of communication
protocols designed
to establish reliable
transmission of
data between two
computers on
the Internet.

bj5i_ch21_01.indd 925 1/7/13 9:40 AM

W926 Chapter 21 Internet networking

However, in practice, TCP over IP (often called TCP/IP) is the most commonly used
combination. We will focus on TCP/IP networking in this chapter.

A computer that is connected to the Internet may have programs for many dif-
ferent purposes. For example, a computer may run both a web server program and a
mail server program. When data are sent to that computer, they need to be marked so
that they can be forwarded to the appropriate program. TCP uses port numbers for
this purpose. A port number is an integer between 0 and 65,535. The sending com-
puter must know the port number of the receiving program and include it with the
transmitted data. Some applications use “well-known” port numbers. For example,
by convention, web servers use port 80, whereas mail servers running the Post Office
Protocol (POP) use port 110. A TCP connection, therefore, requires

• The Internet address of the recipient.
• The port number of the recipient.
• The Internet address of the sender.
• The port number of the sender.

You can think of a TCP connection as a “pipe” between two computers that links
the two ports together. Data flow in either direction through the pipe. In practical
programming situations, you simply establish a connection and send data across it
without worrying about the details of the TCP/IP mechanism. You will see how to
establish such a connection in Section 21.3.

1.  What is the difference between an IP address and a domain name?
2.  Why do some streaming media services not use TCP?

Practice It  Now you can try these exercises at the end of the chapter: R21.1, R21.2, R21.3.

21.2 application level protocols
In the preceding section you saw how the TCP/IP mechanism can establish an Inter-
net connection between two ports on two computers so that the two comput ers can
exchange data. Each Internet application has a different application protocol, which
describes how the data for that particular application are transmitted.

Consider, for example, HTTP: the Hypertext Transfer Protocol, which is used for
the World Wide Web. Suppose you type a web address, called a Uniform Resource
Locator (URL), such as http://horstmann.com/index.html, into the address window of
your browser and ask the browser to load the page.

The browser now takes the following steps:

1. It examines the part of the URL between the double slash and the first single
slash (“horstmann.com”), which identifies the computer to which you want to
connect. Because this part of the URL contains letters, it must be a domain
name rather than an Internet address, so the browser sends a request to a DNS

a tCp connection
requires the Internet
addresses and port
numbers of both
end points.

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

http, or Hypertext
Transfer Protocol,
is the protocol
that defines
communication
between web
browsers and
web servers.

a Url, or Uniform
Resource Locator,
is a pointer to an
information resource
(such as a web page
or an image) on the
world wide web.

server to obtain the Internet address of the computer with domain name horst
mann.com.

2. From the http: prefix of the URL, the browser deduces that the protocol you
want to use is HTTP, which by default uses port 80.

3. It establishes a TCP/IP connection to port 80 at the Internet address it
obtained in Step 1.

4. It deduces from the /index.html suffix that you want to see the file /index.html,
so it sends a request, formatted as an HTTP command, through the connec tion
that was established in Step 3. The request looks like this:

GET/index.htmlHTTP/1.1
Host:horstmann.com
blank line

(The host is needed because a web server can host multiple domains with the
same Internet address.)

5. The web server running on the computer whose Internet address is the one the
browser obtained in Step 1 receives the request and decodes it. It then fetches
the file /index.html and sends it back to the browser on your computer.

6. The browser displays the contents of the file. Because it happens to be an
HTML file, the browser translates the HTML tags into fonts, bullets, separa-
tor lines, and so on. If the HTML file contains images, then the browser makes
more GET requests, one for each image, through the same connection, to fetch
the image data. (Appendix F contains a summary of the most frequently used
HTML tags.)

You can try the following experiment to see this process in action. The “Telnet” pro-
gram enables a user to type characters for sending to a remote computer and view
characters that the remote computer sends back. On Windows, you need to enable
the Telnet program in the control panel. UNIX, Linux, and Mac OS X sys tems nor-
mally have Telnet preinstalled.

For this experiment, you want to start Telnet with a host of horstmann.com and port
80. To start the program from the command line, simply type

telnethorstmann.com80

table 1 http Commands

Command Meaning

GET Return the requested item

HEAD Request only the header information of an item

OPTIONS Request communications options of an item

POST Supply input to a server-side command and return the result

PUT Store an item on the server

DELETE Delete an item on the server

TRACE Trace server communication

the telnet program
is a useful tool for
establishing test
connections
with servers.

bj5i_ch21_01.indd 926 1/7/13 9:40 AM

21.2 application level protocols W927

server to obtain the Internet address of the computer with domain name horst
mann.com.

2. From the http: prefix of the URL, the browser deduces that the protocol you
want to use is HTTP, which by default uses port 80.

3. It establishes a TCP/IP connection to port 80 at the Internet address it
obtained in Step 1.

4. It deduces from the /index.html suffix that you want to see the file /index.html,
so it sends a request, formatted as an HTTP command, through the connec tion
that was established in Step 3. The request looks like this:

GET/index.htmlHTTP/1.1
Host:horstmann.com
blank line

(The host is needed because a web server can host multiple domains with the
same Internet address.)

5. The web server running on the computer whose Internet address is the one the
browser obtained in Step 1 receives the request and decodes it. It then fetches
the file /index.html and sends it back to the browser on your computer.

6. The browser displays the contents of the file. Because it happens to be an
HTML file, the browser translates the HTML tags into fonts, bullets, separa-
tor lines, and so on. If the HTML file contains images, then the browser makes
more GET requests, one for each image, through the same connection, to fetch
the image data. (Appendix F contains a summary of the most frequently used
HTML tags.)

You can try the following experiment to see this process in action. The “Telnet” pro-
gram enables a user to type characters for sending to a remote computer and view
characters that the remote computer sends back. On Windows, you need to enable
the Telnet program in the control panel. UNIX, Linux, and Mac OS X sys tems nor-
mally have Telnet preinstalled.

For this experiment, you want to start Telnet with a host of horstmann.com and port
80. To start the program from the command line, simply type

telnethorstmann.com80

table 1 http Commands

Command Meaning

GET Return the requested item

HEAD Request only the header information of an item

OPTIONS Request communications options of an item

POST Supply input to a server-side command and return the result

PUT Store an item on the server

DELETE Delete an item on the server

TRACE Trace server communication

the telnet program
is a useful tool for
establishing test
connections
with servers.

bj5i_ch21_01.indd 927 1/7/13 9:40 AM

W928 Chapter 21 Internet networking

Once the program starts, type very carefully, without making any typing errors and
without pressing the backspace key,

GET/HTTP/1.1
Host:horstmann.com

Then press the Enter key twice.
The first / denotes the root page of the web server. Note that there are spaces before

and after the first /, but there are no spaces in HTTP/1.1.
On Windows, you will not see what you type, so you should be extra careful when

typing in the commands.
The server now sends a response to the request—see Figure 2. The response, of

course, consists of the root web page that you requested. The Telnet program is not
a browser and does not understand HTML tags, so it simply displays the HTML
file—text, tags, and all.

The GET command is one of the commands of HTTP. Table 1 shows the other com-
mands of the protocol. As you can see, the protocol is pretty simple.

By the way, be sure not to confuse HTML with HTTP. HTML is a document for
mat (with commands such as <h1> or) that describes the structure of a docu ment,
including headings, bulleted lists, images, hyperlinks, and so on. HTTP is a protocol
(with commands such as GET and POST) that describes the command set for web server
requests. Web browsers know how to display HTML documents and how to issue
HTTP commands. Web servers know nothing about HTML. They merely under-
stand HTTP and know how to fetch the requested items. Those items may be HTML
documents, GIF or JPEG images, or any other data that a web browser can display.

HTTP is just one of many application protocols in use on the Internet. Another
commonly used protocol is the Post Office Protocol (POP), which is used to down-
load received messages from e-mail servers. To send messages, you use yet another
protocol called the Simple Mail Transfer Protocol (SMTP). We don’t want to go into

the http GET
command requests
information from
a web server. the
web server returns
the requested item,
which may be a web
page, an image, or
other data.

Figure 2  Using telnet to Connect to a web server

the details of these protocols, but Figure 3 gives you a flavor of the com mands used
by the Post Office Protocol.

Both HTTP and POP use plain text, which makes it particularly easy to test and
debug client and server programs (see How To 21.1).

3.  Why don’t you need to know about HTTP when you use a web browser?
4.  Why is it important that you don’t make typing errors when you type HTTP

commands in Telnet?

Practice It  Now you can try these exercises at the end of the chapter: R21.13, R21.14, R21.15.

21.3 a Client program
In this section you will see how to write a Java program that establishes a TCP con-
nection to a server, sends a request to the server, and prints the response.

In the terminology of TCP/IP, there is a socket on each side of the connection (see
Figure 4). In Java, a client establishes a socket with a call

Sockets=newSocket(hostname,portnumber);

For example, to connect to the HTTP port of the server horstmann.com, you use
finalintHTTP_PORT=80;
Sockets=newSocket("horstmann.com",HTTP_PORT);

The socket constructor throws an UnknownHostException if it can’t find the host.
Once you have a socket, you obtain its input and output streams:
InputStreaminstream=s.getInputStream();
OutputStreamoutstream=s.getOutputStream();

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

a socket is an object
that encapsulates a
tCp connection. to
communicate with
the other end point of
the connection, use
the input and output
streams attached to
the socket.

bj5i_ch21_01.indd 928 1/7/13 9:40 AM

21.3 a Client program W929

Figure 3  a sample pop session

USER harryh

PASS secret

STAT

RETR 1

DELE 1

QUIT

+OK San Quentin State POP server

+OK Password required for harryh

+OK harryh has 2 messages (320 octets)

+OK 2 320

+OK 120 octets
the message is included here

+OK message 1 deleted

+OK POP server signing off

Black = mail client requests

Color = mail server responses

the details of these protocols, but Figure 3 gives you a flavor of the com mands used
by the Post Office Protocol.

Both HTTP and POP use plain text, which makes it particularly easy to test and
debug client and server programs (see How To 21.1).

3.  Why don’t you need to know about HTTP when you use a web browser?
4.  Why is it important that you don’t make typing errors when you type HTTP

commands in Telnet?

Practice It  Now you can try these exercises at the end of the chapter: R21.13, R21.14, R21.15.

21.3 a Client program
In this section you will see how to write a Java program that establishes a TCP con-
nection to a server, sends a request to the server, and prints the response.

In the terminology of TCP/IP, there is a socket on each side of the connection (see
Figure 4). In Java, a client establishes a socket with a call

Sockets=newSocket(hostname,portnumber);

For example, to connect to the HTTP port of the server horstmann.com, you use
finalintHTTP_PORT=80;
Sockets=newSocket("horstmann.com",HTTP_PORT);

The socket constructor throws an UnknownHostException if it can’t find the host.
Once you have a socket, you obtain its input and output streams:
InputStreaminstream=s.getInputStream();
OutputStreamoutstream=s.getOutputStream();

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

a socket is an object
that encapsulates a
tCp connection. to
communicate with
the other end point of
the connection, use
the input and output
streams attached to
the socket.

bj5i_ch21_01.indd 929 1/7/13 9:40 AM

W930 Chapter 21 Internet networking

Figure 4  Client and server sockets

Client output stream Server input stream

Client input stream Server output stream

Client

Socket

Server

Socket

When you send data to outstream, the socket automatically forwards it to the server.
The socket catches the server’s response, and you can read the response through
instream (see Figure 4).

When you are done communicating with the server, you should close the socket:
s.close();

In Chapter 19, you saw that the InputStream and OutputStream classes are used for read-
ing and writing bytes. If you want to communicate with the server by sending and
receiving text, you should turn the streams into scanners and writers, as fol lows:

Scannerin=newScanner(instream);
PrintWriterout=newPrintWriter(outstream);

A print writer buffers the characters that you send to it. That is, characters are not
immediately sent to their destination. Instead, they are placed into an array. When the
array is full, then the print writer sends all characters in the array to its destina tion.
The advantage of buffering is increased performance—it takes some amount of time
to contact the destination and send it data, and it is expensive to pay for that contact
time for every character. However, when communicating with a server that responds
to requests, you want to make sure that the server gets a complete request at a time.
Therefore, you need to flush the buffer manually whenever you send a command:

out.print(command);
out.flush();

The flush method empties the buffer and forwards all waiting characters to the
destination.

The WebGet program at the end of this section lets you retrieve any item from a
web server. You need to specify the host and the item from the command line. For
example,

javaWebGethorstmann.com/

The / item denotes the root page of the web server that listens to port 80 of the host
horstmann.com. Note that there is a space before the /.

The WebGetprogram establishes a connection to the host, sends a GET command to
the host, and then receives input from the server until the server closes its connection.

when transmission
over a socket is
complete, remember
to close the socket.

For text protocols,
turn the socket
streams into
scanners and writers.

Flush the writer
attached to a socket
at the end of every
command. then the
command is sent to
the server, even if the
writer’s buffer is not
completely filled.

bj5i_ch21_01.indd 930 1/7/13 9:40 AM

21.3 a Client program W931

section_3/Webget.java

1 importjava.io.InputStream;
2 importjava.io.IOException;
3 importjava.io.OutputStream;
4 importjava.io.PrintWriter;
5 importjava.net.Socket;
6 importjava.util.Scanner;
7
8 /**
9 This program demonstrates how to use a socket to communicate

10 with a web server. Supply the name of the host and the
11 resource on the command line, for example,
12 javaWebGethorstmann.comindex.html.
13 */
14 publicclassWebGet
15 {
16 publicstaticvoidmain(String[]args)throwsIOException
17 {
18 //Get command-line arguments
19
20 Stringhost;
21 Stringresource;
22
23 if(args.length==2)
24 {
25 host=args[0];
26 resource=args[1];
27 }
28 else
29 {
30 System.out.println("Getting/fromhorstmann.com");
31 host="horstmann.com";
32 resource="/";
33 }
34
35 //Open socket
36
37 finalintHTTP_PORT=80;
38 Sockets=newSocket(host,HTTP_PORT);
39
40 //Get streams
41
42 InputStreaminstream=s.getInputStream();
43 OutputStreamoutstream=s.getOutputStream();
44
45 //Turn streams into scanners and writers
46
47 Scannerin=newScanner(instream);
48 PrintWriterout=newPrintWriter(outstream);
49
50 //Send command
51
52 Stringcommand="GET"+resource+"HTTP/1.1\n"
53 +"Host:"+host+"\n\n";
54 out.print(command);
55 out.flush();
56
57 //Read server response
58

bj5i_ch21_01.indd 931 1/7/13 9:40 AM

W932 Chapter 21 Internet networking

59 while(in.hasNextLine())
60 {
61 Stringinput=in.nextLine();
62 System.out.println(input);
63 }
64
65 //Always close the socket at the end
66
67 s.close();
68 }
69 }

Program run

Getting/fromhorstmann.com
HTTP/1.1200OK
Date:Sat,15Sep201214:15:04GMT
Server:Apache/1.3.41(Unix)SunONEASP/4.0.2
...
ContentLength:6654
ContentType:text/html

<html>
<head><title>CayHorstmann'sHomePage</title></head>
<body>
<h1>WelcometoCayHorstmann'sHomePage</h1>
...
</body>
</html>

5.  What happens if you call WebGet with a nonexistent resource, such as wombat.html
at horstmann.com?

6.  How do you open a socket to read e-mail from the POP server at
email.sjsu.edu?

Practice It  Now you can try these exercises at the end of the chapter: R21.7, R21.8, P21.1,
P21.2.

21.4 a server program
Now that you have seen how to write a network client, we will turn to the server side.
In this section we will develop a server program that enables clients to manage a set of
bank accounts in a bank.

Whenever you develop a server application, you need to specify some applica tion-
level protocol that clients can use to interact with the server. For the purpose of this
example, we will create a “Simple Bank Access Protocol”. Table 2 shows the protocol
format. Of course, this is just a toy protocol to show you how to imple ment a server.

The server program waits for clients to connect to a particular port. We choose
port 8888 for this service. This number has not been preassigned to another ser-
vice, so it is unlikely to be used by another server program. To listen to incoming

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

connections, you use a server socket. To construct a server socket, you need to sup ply
the port number:

ServerSocketserver=newServerSocket(8888);

The accept method of the ServerSocket class waits for a client connection. When a
cli ent connects, then the server program obtains a socket through which it communi-
cates with the client:

Sockets=server.accept();
BankServiceservice=newBankService(s,bank);

The BankService class carries out the service. This class implements the Runnable inter-
face, and its run method will be executed in each thread that serves a client connec tion.
The run method gets a scanner and writer from the socket in the same way as we dis-
cussed in the preceding section. Then it executes the following method:

publicvoiddoService()throwsIOException
{
while(true)
{
if(!in.hasNext()){return;}
Stringcommand=in.next();
if(command.equals("QUIT")){return;}
executeCommand(command);
}
}

The executeCommand method processes a single command. If the command is DEPOSIT,
then it carries out the deposit:

intaccount=in.nextInt();
doubleamount=in.nextDouble();
bank.deposit(account,amount);

The WITHDRAW command is handled in the same way. After each command, the account
number and new balance are sent to the client:

out.println(account+""+bank.getBalance(account));

The doService method returns to the run method if the client closed the connection or
the command equals "QUIT". Then the run method closes the socket and exits.

Let us go back to the point where the server socket accepts a connection and con-
structs the BankService object. At this point, we could simply call the run method. But
then our server program would have a serious limitation: only one client could con-
nect to it at any point in time. To overcome that limitation, server programs spawn
a new thread whenever a client connects. Each thread is responsible for serv ing one
client.

table 2 a simple Bank access protocol

Client request server response Description

BALANCEn n and the balance Get the balance of account n

DEPOSITn a n and the new balance Deposit amount a into account n

WITHDRAWn a n and the new balance Withdraw amount a from account n

QUIT None Quit the connection

the ServerSocket
class is used by
server applications
to listen for client
connections.

bj5i_ch21_01.indd 932 1/7/13 9:40 AM

21.4 a server program W933

connections, you use a server socket. To construct a server socket, you need to sup ply
the port number:

ServerSocketserver=newServerSocket(8888);

The accept method of the ServerSocket class waits for a client connection. When a
cli ent connects, then the server program obtains a socket through which it communi-
cates with the client:

Sockets=server.accept();
BankServiceservice=newBankService(s,bank);

The BankService class carries out the service. This class implements the Runnable inter-
face, and its run method will be executed in each thread that serves a client connec tion.
The run method gets a scanner and writer from the socket in the same way as we dis-
cussed in the preceding section. Then it executes the following method:

publicvoiddoService()throwsIOException
{
while(true)
{
if(!in.hasNext()){return;}
Stringcommand=in.next();
if(command.equals("QUIT")){return;}
executeCommand(command);
}
}

The executeCommand method processes a single command. If the command is DEPOSIT,
then it carries out the deposit:

intaccount=in.nextInt();
doubleamount=in.nextDouble();
bank.deposit(account,amount);

The WITHDRAW command is handled in the same way. After each command, the account
number and new balance are sent to the client:

out.println(account+""+bank.getBalance(account));

The doService method returns to the run method if the client closed the connection or
the command equals "QUIT". Then the run method closes the socket and exits.

Let us go back to the point where the server socket accepts a connection and con-
structs the BankService object. At this point, we could simply call the run method. But
then our server program would have a serious limitation: only one client could con-
nect to it at any point in time. To overcome that limitation, server programs spawn
a new thread whenever a client connects. Each thread is responsible for serv ing one
client.

table 2 a simple Bank access protocol

Client request server response Description

BALANCEn n and the balance Get the balance of account n

DEPOSITn a n and the new balance Deposit amount a into account n

WITHDRAWn a n and the new balance Withdraw amount a from account n

QUIT None Quit the connection

the ServerSocket
class is used by
server applications
to listen for client
connections.

bj5i_ch21_01.indd 933 1/7/13 9:40 AM

W934 Chapter 21 Internet networking

Our BankService class implements the Runnable interface. Therefore, the server pro-
gram BankServer simply starts a thread with the following instructions:

Threadt=newThread(service);
t.start();

The thread dies when the client quits or disconnects and the run method exits. In the
meantime, the BankServer loops back to accept the next connection.

while(true)
{
Sockets=server.accept();
BankServiceservice=newBankService(s,bank);
Threadt=newThread(service);
t.start();
}

The server program never stops. When you are done running the server, you need to
kill it. For example, if you started the server in a shell window, press Ctrl+C.

To try out the program, run the server. Then use Telnet to connect to localhost,
port number 8888. Start typing commands. Here is a typical dialog (see Figure 5):

DEPOSIT31000
31000.0
WITHDRAW3500
3500.0
QUIT

Alternatively, you can use a client program that connects to the server. You will find a
sample client program at the end of this section.

Figure 5  Using the telnet program to Connect to the Bank server

bj5i_ch21_01.indd 934 1/7/13 9:40 AM

21.4 a server program W935

section_4/Bankserver.java

1 importjava.io.IOException;
2 importjava.net.ServerSocket;
3 importjava.net.Socket;
4
5 /**
6 A server that executes the Simple Bank Access Protocol.
7 */
8 publicclassBankServer
9 {

10 publicstaticvoidmain(String[]args)throwsIOException
11 {
12 finalintACCOUNTS_LENGTH=10;
13 Bankbank=newBank(ACCOUNTS_LENGTH);
14 finalintSBAP_PORT=8888;
15 ServerSocketserver=newServerSocket(SBAP_PORT);
16 System.out.println("Waitingforclientstoconnect...");
17
18 while(true)
19 {
20 Sockets=server.accept();
21 System.out.println("Clientconnected.");
22 BankServiceservice=newBankService(s,bank);
23 Threadt=newThread(service);
24 t.start();
25 }
26 }
27 }

section_4/Bankservice.java

1 importjava.io.InputStream;
2 importjava.io.IOException;
3 importjava.io.OutputStream;
4 importjava.io.PrintWriter;
5 importjava.net.Socket;
6 importjava.util.Scanner;
7
8 /**
9 Executes Simple Bank Access Protocol commands

10 from a socket.
11 */
12 publicclassBankServiceimplementsRunnable
13 {
14 privateSockets;
15 privateScannerin;
16 privatePrintWriterout;
17 privateBankbank;
18
19 /**
20 Constructs a service object that processes commands
21 from a socket for a bank.
22 @paramaSocketthe socket
23 @paramaBankthe bank
24 */
25 publicBankService(SocketaSocket,BankaBank)
26 {
27 s=aSocket;
28 bank=aBank;

bj5i_ch21_01.indd 935 1/7/13 9:40 AM

W936 Chapter 21 Internet networking

29 }
30
31 publicvoidrun()
32 {
33 try
34 {
35 try
36 {
37 in=newScanner(s.getInputStream());
38 out=newPrintWriter(s.getOutputStream());
39 doService();
40 }
41 finally
42 {
43 s.close();
44 }
45 }
46 catch(IOExceptionexception)
47 {
48 exception.printStackTrace();
49 }
50 }
51
52 /**
53 Executes all commands until the QUIT command or the
54 end of input.
55 */
56 publicvoiddoService()throwsIOException
57 {
58 while(true)
59 {
60 if(!in.hasNext()){return;}
61 Stringcommand=in.next();
62 if(command.equals("QUIT")){return;}
63 elseexecuteCommand(command);
64 }
65 }
66
67 /**
68 Executes a single command.
69 @paramcommandthe command to execute
70 */
71 publicvoidexecuteCommand(Stringcommand)
72 {
73 intaccount=in.nextInt();
74 if(command.equals("DEPOSIT"))
75 {
76 doubleamount=in.nextDouble();
77 bank.deposit(account,amount);
78 }
79 elseif(command.equals("WITHDRAW"))
80 {
81 doubleamount=in.nextDouble();
82 bank.withdraw(account,amount);
83 }
84 elseif(!command.equals("BALANCE"))
85 {
86 out.println("Invalidcommand");
87 out.flush();
88 return;

bj5i_ch21_01.indd 936 1/7/13 9:40 AM

21.4 a server program W937

89 }
90 out.println(account+""+bank.getBalance(account));
91 out.flush();
92 }
93 }

section_4/Bank.java

1 /**
2 A bank consisting of multiple bank accounts.
3 */
4 publicclassBank
5 {
6 privateBankAccount[]accounts;
7
8 /**
9 Constructs a bank account with a given number of accounts.

10 @paramsizethe number of accounts
11 */
12 publicBank(intsize)
13 {
14 accounts=newBankAccount[size];
15 for(inti=0;i<accounts.length;i++)
16 {
17 accounts[i]=newBankAccount();
18 }
19 }
20
21 /**
22 Deposits money into a bank account.
23 @paramaccountNumberthe account number
24 @paramamountthe amount to deposit
25 */
26 publicvoiddeposit(intaccountNumber,doubleamount)
27 {
28 BankAccountaccount=accounts[accountNumber];
29 account.deposit(amount);
30 }
31
32 /**
33 Withdraws money from a bank account.
34 @paramaccountNumberthe account number
35 @paramamountthe amount to withdraw
36 */
37 publicvoidwithdraw(intaccountNumber,doubleamount)
38 {
39 BankAccountaccount=accounts[accountNumber];
40 account.withdraw(amount);
41 }
42
43 /**
44 Gets the balance of a bank account.
45 @paramaccountNumberthe account number
46 @returnthe account balance
47 */
48 publicdoublegetBalance(intaccountNumber)
49 {
50 BankAccountaccount=accounts[accountNumber];
51 returnaccount.getBalance();

bj5i_ch21_01.indd 937 1/7/13 9:40 AM

W938 Chapter 21 Internet networking

52 }
53 }

section_4/Bankclient.java

1 importjava.io.InputStream;
2 importjava.io.IOException;
3 importjava.io.OutputStream;
4 importjava.io.PrintWriter;
5 importjava.net.Socket;
6 importjava.util.Scanner;
7
8 /**
9 This program tests the bank server.

10 */
11 publicclassBankClient
12 {
13 publicstaticvoidmain(String[]args)throwsIOException
14 {
15 finalintSBAP_PORT=8888;
16 Sockets=newSocket("localhost",SBAP_PORT);
17 InputStreaminstream=s.getInputStream();
18 OutputStreamoutstream=s.getOutputStream();
19 Scannerin=newScanner(instream);
20 PrintWriterout=newPrintWriter(outstream);
21
22 Stringcommand="DEPOSIT31000\n";
23 System.out.print("Sending:"+command);
24 out.print(command);
25 out.flush();
26 Stringresponse=in.nextLine();
27 System.out.println("Receiving:"+response);
28
29 command="WITHDRAW3500\n";
30 System.out.print("Sending:"+command);
31 out.print(command);
32 out.flush();
33 response=in.nextLine();
34 System.out.println("Receiving:"+response);
35
36 command="QUIT\n";
37 System.out.print("Sending:"+command);
38 out.print(command);
39 out.flush();
40
41 s.close();
42 }
43 }

Program run

Sending:DEPOSIT31000
Receiving:31000.0
Sending:WITHDRAW3500
Receiving:3500.0
Sending:QUIT

7.  Why didn’t we choose port 80 for the bank server?
8.  Can you read data from a server socket?

Practice It  Now you can try these exercises at the end of the chapter: P21.3, P21.4, P21.7.

step 1  Determine whether it really makes sense to implement a stand-alone server and a matching
client.

Many times it makes more sense to build a web application instead. Chapter 24 discusses
the construction of web applications in detail. For example, the bank application of this sec-
tion could easily be turned into a web application, using an HTML form with Withdraw and
Deposit buttons. However, programs for chat or peer-to-peer file sharing cannot easily be
implemented as web applications.

step 2  Design a communication protocol.

Figure out exactly what messages the client and server send to each other and what the suc cess
and error responses are.

With each request and response, ask yourself how the end of data is indicated.
• Do the data fit on a single line? Then the end of the line serves as the data terminator.
• Can the data be terminated by a special line (such as a blank line after the HTTP header or

a line containing a period in SMTP)?
• Does the sender of the data close the socket? That’s what a web server does at the end of a

GET request.
• Can the sender indicate how many bytes are contained in the request? Web browsers do

that in POST requests.
Use text, not binary data, for the communication between client and server. A text-based pro-
tocol is easier to debug.

step 3  Implement the server program.

The server listens for socket connections and accepts them. It starts a new thread for each
connection. Supply a class that implements the Runnable interface. The run method receives
commands, interprets them, and sends responses back to the client.

step 4  Test the server with the Telnet program.

Try out all commands in the communication protocol.

step 5  Once the server works, write a client program.

The client program interacts with the program user, turns user requests into protocol com-
mands, sends the commands to the server, receives the response, and displays the response for
the program user.

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

© Steve Simzer/iStockphoto.

how to 21.1 Designing client/server Programs

The bank server of this section is a typical example of a client/server program. A
web browser/web server is another example. This How To outlines the steps to fol-
low when designing a client/server application.

bj5i_ch21_01.indd 938 1/7/13 9:40 AM

21.4 a server program W939

7.  Why didn’t we choose port 80 for the bank server?
8.  Can you read data from a server socket?

Practice It  Now you can try these exercises at the end of the chapter: P21.3, P21.4, P21.7.

step 1  Determine whether it really makes sense to implement a stand-alone server and a matching
client.

Many times it makes more sense to build a web application instead. Chapter 24 discusses
the construction of web applications in detail. For example, the bank application of this sec-
tion could easily be turned into a web application, using an HTML form with Withdraw and
Deposit buttons. However, programs for chat or peer-to-peer file sharing cannot easily be
implemented as web applications.

step 2  Design a communication protocol.

Figure out exactly what messages the client and server send to each other and what the suc cess
and error responses are.

With each request and response, ask yourself how the end of data is indicated.
• Do the data fit on a single line? Then the end of the line serves as the data terminator.
• Can the data be terminated by a special line (such as a blank line after the HTTP header or

a line containing a period in SMTP)?
• Does the sender of the data close the socket? That’s what a web server does at the end of a

GET request.
• Can the sender indicate how many bytes are contained in the request? Web browsers do

that in POST requests.
Use text, not binary data, for the communication between client and server. A text-based pro-
tocol is easier to debug.

step 3  Implement the server program.

The server listens for socket connections and accepts them. It starts a new thread for each
connection. Supply a class that implements the Runnable interface. The run method receives
commands, interprets them, and sends responses back to the client.

step 4  Test the server with the Telnet program.

Try out all commands in the communication protocol.

step 5  Once the server works, write a client program.

The client program interacts with the program user, turns user requests into protocol com-
mands, sends the commands to the server, receives the response, and displays the response for
the program user.

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

© Steve Simzer/iStockphoto.

how to 21.1 Designing client/server Programs

The bank server of this section is a typical example of a client/server program. A
web browser/web server is another example. This How To outlines the steps to fol-
low when designing a client/server application.

bj5i_ch21_01.indd 939 1/7/13 9:40 AM

W940 Chapter 21 Internet networking

21.5 Url Connections
In Section 21.3, you saw how to use sockets to connect to a web server and how
to retrieve information from the server by sending HTTP commands. However,
because HTTP is such an important protocol, the Java library contains a URLConnection
class, which provides convenient support for the HTTP. The URLConnection class takes
care of the socket connection, so you don’t have to fuss with sockets when you want
to retrieve from a web server. As an additional benefit, the URLConnection class can also
handle FTP, the file transfer protocol.

The URLConnection class makes it very easy to fetch a file from a web server given the
file’s URL as a string. First, you construct a URL object from the URL in the familiar
format, starting with the http or ftp prefix. Then you use the URL object’s openConnec
tion method to get the URLConnection object itself:

URLu=newURL("http://horstmann.com/index.html");
URLConnectionconnection=u.openConnection();

Then you call the getInputStream method to obtain an input stream:
InputStreaminstream=connection.getInputStream();

You can turn the stream into a scanner in the usual way, and read input from the
scanner.

The URLConnection class can give you additional useful information. To understand
those capabilities, we need to have a closer look at HTTP requests and responses.
You saw in Section 21.2 that the command for getting an item from the server is

GETitemHTTP/1.1
Host:hostname
blank line

You may have wondered why you need to provide a blank line. This blank line is a
part of the general request format. The first line of the request is a command, such
as GET or POST. The command is followed by request properties (such as Host:). Some
commands—in particular, the POST command—send input data to the server. The rea-
son for the blank line is to denote the boundary between the request property section
and the input data section.

A typical request property is IfModifiedSince. If you request an item with
GETitemHTTP/1.1
Host:hostname
IfModifiedSince:date
blank line

the server sends the item only if it is newer than the date. Browsers use this feature
to speed up redisplay of previously loaded web pages. When a web page is loaded,
the browser stores it in a cache directory. When the user wants to see the same web
page again, the browser asks the server to get a new page only if it has been modified
since the date of the cached copy. If it hasn’t been, the browser simply redisplays the
cached copy and doesn’t spend time downloading another identical copy.

The URLConnection class has methods to set request properties. For example, you
can set the IfModifiedSince property with the setIfModifiedSince method:

connection.setIfModifiedSince(date);

You need to set request properties before calling the getInputStream method. The URL
Connection class then sends to the web server all the request properties that you set.

the URLConnection
class makes it easy to
communicate with a
web server without
having to issue http
commands.

the
URLConnection and
HttpURLConnection
classes can give
you additional
information about
http requests
and responses.

bj5i_ch21_01.indd 940 1/7/13 9:40 AM

21.5 Url Connections W941

Similarly, the response from the server starts with a status line followed by a set of
response parameters. The response parameters are terminated by a blank line and fol-
lowed by the requested data (for example, an HTML page). Here is a typical response:

HTTP/1.1200OK
Date:Tue,28Aug201200:15:48GMT
Server:Apache/1.3.3(Unix)
LastModified:Sat,23Jun201220:53:38GMT
ContentLength:4813
ContentType:text/html
blank line
requested data

Normally, you don’t see the response code. However, you may have run across
bad links and seen a page that contained a response code 404NotFound. (A successful
response has status 200OK.)

To retrieve the response code, you need to cast the URLConnection object to the
HttpURLConnection subclass. You can retrieve the response code (such as the number
200 in this example, or the code 404 if a page was not found) and response message
with the getResponseCode and getResponseMessage methods:

HttpURLConnectionhttpConnection=(HttpURLConnection)connection;
intcode=httpConnection.getResponseCode();//e.g., 404
Stringmessage=httpConnection.getResponseMessage();//e.g., “Not found”

As you can see from the response example, the server sends some information about
the requested data, such as the content length and the content type. You can request
this information with methods from the URLConnection class:

intlength=connection.getContentLength();
Stringtype=connection.getContentType();

You need to call these methods after calling the getInputStream method.
To summarize: You don’t need to use sockets to communicate with a web server,

and you need not master the details of the HTTP protocol. Simply use the URLCon
nection and HttpURLConnection classes to obtain data from a web server, to set request
properties, or to obtain response information.

The program at the end of this section puts the URLConnection class to work. The
program fulfills the same purpose as that of Section 21.3—to retrieve a web page from
a server—but it works at a higher level of abstraction. There is no longer a need to
issue an explicit GET command. The URLConnection class takes care of that. Similarly, the
parsing of the HTTP request and response headers is handled trans parently to the
programmer. Our sample program takes advantage of that fact. It checks whether the
server response code is 200. If not, it exits. You can try that out by testing the pro-
gram with a bad URL, like http://horstmann.com/wombat.html. Then the program prints
a server response, such as 404NotFound.

This program completes our introduction to Internet programming with Java.
You have seen how to use sockets to connect client and server programs. You also
saw how to use the higher-level URLConnection class to obtain information from web
servers.

section_5/Urlget.java

1 importjava.io.InputStream;
2 importjava.io.IOException;
3 importjava.io.OutputStream;
4 importjava.io.PrintWriter;

bj5i_ch21_01.indd 941 1/7/13 9:40 AM

W942 Chapter 21 Internet networking

5 importjava.net.HttpURLConnection;
6 importjava.net.URL;
7 importjava.net.URLConnection;
8 importjava.util.Scanner;
9

10 /**
11 This program demonstrates how to use a URL connection
12 to communicate with a web server. Supply the URL on
13 the command line, for example
14 javaURLGethttp://horstmann.com/index.html
15 */
16 publicclassURLGet
17 {
18 publicstaticvoidmain(String[]args)throwsIOException
19 {
20 //Get command-line arguments
21
22 StringurlString;
23 if(args.length==1)
24 {
25 urlString=args[0];
26 }
27 else
28 {
29 urlString="http://horstmann.com/";
30 System.out.println("Using"+urlString);
31 }
32
33 //Open connection
34
35 URLu=newURL(urlString);
36 URLConnectionconnection=u.openConnection();
37
38 //Check if response code isHTTP_OK(200)
39
40 HttpURLConnectionhttpConnection
41 =(HttpURLConnection)connection;
42 intcode=httpConnection.getResponseCode();
43 Stringmessage=httpConnection.getResponseMessage();
44 System.out.println(code+""+message);
45 if(code!=HttpURLConnection.HTTP_OK)
46 {
47 return;
48 }
49
50 //Read server response
51
52 InputStreaminstream=connection.getInputStream();
53 Scannerin=newScanner(instream);
54
55 while(in.hasNextLine())
56 {
57 Stringinput=in.nextLine();
58 System.out.println(input);
59 }
60 }
61 }

Program run

Usinghttp://horstmann.com/
200OK
<html>
<head><title>CayHorstmann'sHomePage</title></head>
<body>
<h1>WelcometoCayHorstmann'sHomePage</h1>
...
</body>
</html>

9.  Why is it better to use a URLConnection instead of a socket when reading data from
a web server?

10.  What happens if you use the URLGet program to request an image (such as
http://horstmann.com/caytiny.gif)?

Practice It  Now you can try these exercises at the end of the chapter: P21.10, P21.11, P21.12.

Use high-level libraries

When you communicate with a web server to obtain data, you have two choices. You can
make a socket connection and send GET and POST commands to the server over the socket. Or
you can use the URLConnection class and have it issue the commands on your behalf.

Similarly, to communicate with a mail server, you can write programs that send SMTP and
POP commands, or you can learn how to use the Java mail extensions. (See http://oracle.com/
technetwork/java/javamail/index.html for more information on the Java Mail API.)

In such a situation, you may be tempted to use the low-level approach and send com mands
over a socket connection. It seems simpler than learning a complex set of classes. However,
that simplicity is often deceptive. Once you go beyond the simplest cases, the low-level
approach usually requires hard work. For example, to send binary mail attachments, you may
need to master complex data encodings. The high-level libraries have all that knowledge built
in, so you don’t have to reinvent the wheel.

For that reason, you should not actually use sockets to connect to web servers. Always
use the URLConnection class instead. Why did this book teach you about sockets if you aren’t
expected to use them? There are two reasons. Some client programs don’t communicate with
web or mail servers, and you may need to use sockets when a high-level library is not avail able.
And, just as importantly, knowing what the high-level library does under the hood helps you
understand it better. For the same reason, you saw in Chapter 15 how to imple ment linked
lists, even though you probably will never program your own lists and will just use the stan-
dard LinkedList class.

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

programming tip 21.1

© Eric Isselé/iStockphoto.

bj5i_ch21_01.indd 942 1/7/13 9:40 AM

21.5 Url Connections W943

Program run

Usinghttp://horstmann.com/
200OK
<html>
<head><title>CayHorstmann'sHomePage</title></head>
<body>
<h1>WelcometoCayHorstmann'sHomePage</h1>
...
</body>
</html>

9.  Why is it better to use a URLConnection instead of a socket when reading data from
a web server?

10.  What happens if you use the URLGet program to request an image (such as
http://horstmann.com/caytiny.gif)?

Practice It  Now you can try these exercises at the end of the chapter: P21.10, P21.11, P21.12.

Use high-level libraries

When you communicate with a web server to obtain data, you have two choices. You can
make a socket connection and send GET and POST commands to the server over the socket. Or
you can use the URLConnection class and have it issue the commands on your behalf.

Similarly, to communicate with a mail server, you can write programs that send SMTP and
POP commands, or you can learn how to use the Java mail extensions. (See http://oracle.com/
technetwork/java/javamail/index.html for more information on the Java Mail API.)

In such a situation, you may be tempted to use the low-level approach and send com mands
over a socket connection. It seems simpler than learning a complex set of classes. However,
that simplicity is often deceptive. Once you go beyond the simplest cases, the low-level
approach usually requires hard work. For example, to send binary mail attachments, you may
need to master complex data encodings. The high-level libraries have all that knowledge built
in, so you don’t have to reinvent the wheel.

For that reason, you should not actually use sockets to connect to web servers. Always
use the URLConnection class instead. Why did this book teach you about sockets if you aren’t
expected to use them? There are two reasons. Some client programs don’t communicate with
web or mail servers, and you may need to use sockets when a high-level library is not avail able.
And, just as importantly, knowing what the high-level library does under the hood helps you
understand it better. For the same reason, you saw in Chapter 15 how to imple ment linked
lists, even though you probably will never program your own lists and will just use the stan-
dard LinkedList class.

© Nicholas Homrich/iStockphoto.

s e l F   c h e c k

programming tip 21.1

© Eric Isselé/iStockphoto.

bj5i_ch21_01.indd 943 1/7/13 9:40 AM

W944 Chapter 21 Internet networking

Describe the IP and TcP protocols.

• The Internet is a worldwide collection of networks, routing equipment, and
com puters using a common set of protocols to define how each party will interact
with each other.

• TCP/IP is the abbreviation for Transmission Control Protocol and Internet Proto
col, the pair of communication protocols designed to establish reliable transmis-
sion of data between two computers on the Internet.

• A TCP connection requires the Internet addresses and port numbers of both end
points.

Describe the hTTP protocol.

• HTTP, or Hypertext Transfer Protocol, is the protocol that defines communica-
tion between web browsers and web servers.

• A URL, or Uniform Resource Locator, is a pointer to an information resource
(such as a web page or an image) on the World Wide Web.

• The Telnet program is a useful tool for establishing test connections with servers.
• The HTTP GET command requests information from a web server. The web server

returns the requested item, which may be a web page, an image, or other data.

Implement programs that use network sockets for reading data.

• A socket is an object that encapsulates a TCP connection. To communicate with
the other end point of the connection, use the input and output streams attached
to the socket.

• When transmission over a socket is complete, remember to close the socket.
• For text protocols, turn the socket streams into scanners and writers.
• Flush the writer attached to a socket at the end of every command. Then the com-

mand is sent to the server, even if the writer’s buffer is not completely filled.

Implement programs that serve data over a net work.

• The ServerSocket class is used by server applications to listen for client
connec tions.

Use the URLConnection class to read data from a web server.

• The URLConnection class makes it easy to communicate with a web server without
having to issue HTTP commands.

• The URLConnection and HttpURLConnection classes can give you additional informa-
tion about HTTP requests and responses.

C h a p t e r s U M M a r Y

• r21.1  What is the IP address of the computer that you are using at home? Does it have a
domain name?

• r21.2  Can a computer somewhere on the Internet establish a network connection with the
computer at your home? If so, what information does the other computer need to
establish the connection?

• r21.3  What is a port number? Can the same computer receive data on two different ports?

• r21.4  What is a server? What is a client? How many clients can connect to a server at one
time?

• r21.5  What is a socket? What is the difference between a Socket object and a ServerSocket
object?

• r21.6  Under what circumstances would an UnknownHostException be thrown?

•• r21.7  What happens if the Socket constructor’s second argument is not the same as the port
number at which the server waits for connections?

• r21.8  When a socket is created, which of the following Internet addresses is used?
a. The address of the computer to which you want to connect
b. The address of your computer
c. The address of your ISP

• r21.9  What is the purpose of the accept method of the ServerSocket class?

• r21.10  After a socket establishes a connection, which of the following mechanisms will
your client program use to read data from the server computer?

a. The Socket will fill a buffer with bytes.
b. You will use a Reader obtained from the Socket.
c. You will use an InputStream obtained from the Socket.

• r21.11  Why is it not common to work directly with the InputStream and OutputStream objects
obtained from a Socket object?

• r21.12  When a client program communicates with a server, it sometimes needs to flush the
output stream. Explain why.

java.net.HttpURLConnection
getResponseCode
getResponseMessage
java.net.ServerSocket
accept
close
java.net.Socket
close
getInputStream
getOutputStream

java.net.URL
openConnection
java.net.URLConnection
getContentLength
getContentType
getInputStream
setIfModifiedSince

s ta n D a r D l I B r a r Y I t e M s I n t r o D U C e D I n t h I s C h a p t e r

r e v I e w Q U e s t I o n s

bj5i_ch21_01.indd 944 1/7/13 9:40 AM

review Questions W945

• r21.1  What is the IP address of the computer that you are using at home? Does it have a
domain name?

• r21.2  Can a computer somewhere on the Internet establish a network connection with the
computer at your home? If so, what information does the other computer need to
establish the connection?

• r21.3  What is a port number? Can the same computer receive data on two different ports?

• r21.4  What is a server? What is a client? How many clients can connect to a server at one
time?

• r21.5  What is a socket? What is the difference between a Socket object and a ServerSocket
object?

• r21.6  Under what circumstances would an UnknownHostException be thrown?

•• r21.7  What happens if the Socket constructor’s second argument is not the same as the port
number at which the server waits for connections?

• r21.8  When a socket is created, which of the following Internet addresses is used?
a. The address of the computer to which you want to connect
b. The address of your computer
c. The address of your ISP

• r21.9  What is the purpose of the accept method of the ServerSocket class?

• r21.10  After a socket establishes a connection, which of the following mechanisms will
your client program use to read data from the server computer?

a. The Socket will fill a buffer with bytes.
b. You will use a Reader obtained from the Socket.
c. You will use an InputStream obtained from the Socket.

• r21.11  Why is it not common to work directly with the InputStream and OutputStream objects
obtained from a Socket object?

• r21.12  When a client program communicates with a server, it sometimes needs to flush the
output stream. Explain why.

java.net.HttpURLConnection
getResponseCode
getResponseMessage
java.net.ServerSocket
accept
close
java.net.Socket
close
getInputStream
getOutputStream

java.net.URL
openConnection
java.net.URLConnection
getContentLength
getContentType
getInputStream
setIfModifiedSince

s ta n D a r D l I B r a r Y I t e M s I n t r o D U C e D I n t h I s C h a p t e r

r e v I e w Q U e s t I o n s

bj5i_ch21_01.indd 945 1/7/13 9:40 AM

W946 Chapter 21 Internet networking

• r21.13  What is the difference between HTTP and HTML?

• r21.14  Try out the HEAD command of the HTTP protocol. What command did you use?
What response did you get?

•• r21.15  Connect to a POP server that hosts your e-mail and retrieve a message. Provide
a record of your session (but remove your password). If your mail server doesn't
allow access on port 110, access it through SSL encryption (usually on port 995). Get
a copy of the openssl utility and use the command openssls_clientconnectserver
name:995.

• r21.16  How can you communicate with a web server without using sockets?

• r21.17  What is the difference between a URL instance and a URLConnection instance?

• r21.18  What is a URL? How do you create an object of class URL? How do you connect to a
URL?

• P21.1  Modify the WebGet program to print only the HTTP header of the returned HTML
page. The HTTP header is the beginning of the response data. It consists of several
lines, such as

HTTP/1.1200OK
Date:Tue,15Jan201316:10:34GMT
Server:Apache/1.3.19(Unix)
CacheControl:maxage=86400
Expires:Wed,16Jan201316:10:34GMT
Connection:close
ContentType:text/html

followed by a blank line.

• P21.2  Modify the WebGet program to print only the title of the returned HTML page. An
HTML page has the structure

<html><head><title>...</title></head><body>...</body></html>

For example, if you run the program by typing at the command line
javaWebGethorstmann.com/

the output should be the title of the root web page at horstmann.com, such as Cay
Horstmann’sHomePage.

•• P21.3  Modify the BankServer program so that it can be terminated more elegantly. Provide
another socket on port 8889 through which an administrator can log in. Support
the commands LOGIN password, STATUS, PASSWORD newPassword, LOGOUT, and SHUTDOWN. The
STATUS command should display the total number of clients that have logged in since
the server started.

•• P21.4  Modify the BankServer program to provide complete error checking. For example,
the program should check to make sure that there is enough money in the account
when withdraw ing. Send appropriate error reports back to the client. Enhance the
protocol to be similar to HTTP, in which each server response starts with a number
indicating the success or failure condition, followed by a string with response data or
an error description.

p r o g r a M M I n g e x e r C I s e s

bj5i_ch21_01.indd 946 1/7/13 9:40 AM

programming exercises W947

•• P21.5  Write a program to display the protocol, host, port, and file components of a URL.
Hint: Look at the API documentation of the URL class.

•• P21.6  Write a client application that executes an infinite loop that
a. Prompts the user for a number.
b. Sends that value to the server.
c. Receives the number.
d. Displays the new number.

Also write a server that executes an infi nite loop whose body accepts a client connec-
tion, reads a number from the client, computes its square root, and writes the result
to the client.

•• P21.7  Implement a client-server program in which the client will print the date and time
given by the server. Two classes should be implemented: DateClient and DateServer.
The DateServer simply prints newDate().toString() whenever it accepts a connection
and then closes the socket.

••• P21.8  Write a simple web server that recognizes only the GET request (without the Host:
request parameter and blank line). When a client connects to your server and sends a
command, such as GETfilenameHTTP/1.1, then return a header

HTTP/1.1200OK

followed by a blank line and all lines in the file. If the file doesn’t exist, return 404Not
Found instead.
Your server should listen to port 8080. Test your web server by starting up your web
browser and loading a page, such as localhost:8080/c:\cs1\myfile.html.

••• P21.9  Write a chat server and client program. The chat server accepts connections from
clients. Whenever one of the clients sends a chat message, it is displayed for all other
clients to see. Use a protocol with three commands: LOGINname, CHATmessage, and
LOGOUT.

•• P21.10  A query such as
http://aa.usno.navy.mil/cgibin/aa_moonphases.pl?year=2011

returns a page containing the moon phases in a given year. Write a program that asks
the user for a year, month, and day and then prints the phase of the moon on that
day.

••• P21.11  A page such as
http://www.nws.noaa.gov/view/states.php

contains links to pages showing the weather reports for many cities in the fifty states.
Write a program that asks the user for a state and city and then prints the weather
report.

••• P21.12  A page such as
https://www.cia.gov/library/publications/theworldfactbook/geos/
countrytemplate_ca.html

contains information about a country (here Canada, with the symbol ca—see
https://www.cia.gov/library/publications/theworldfactbook/print/textversion.html for
the country symbols). Write a program that asks the user for a country name and
then prints the area and population.

bj5i_ch21_01.indd 947 1/7/13 9:40 AM

W948 Chapter 21 Internet networking

a n s w e r s t o s e l F - C h e C k Q U e s t I o n s

1.  An IP address is a numerical address, consist-
ing of four or sixteen bytes. A domain name is
an alphanumeric string that is associated with
an IP address.

2.  TCP is reliable but somewhat slow. When
sending sounds or images in real time, it is
acceptable if a small amount of the data is lost.
But there is no point in transmit ting data that
is late.

3.  The browser software translates your requests
(typed URLs and mouse clicks on links) into
HTTP commands that it sends to the appro-
priate web servers.

4.  Some Telnet implementations send all key-
strokes that you type to the server, includ-
ing the backspace key. The server does not
recognize a character sequence such as G W
Backspace E T as a valid command.

5.  The program makes a connection to the server,
sends the GET request, and prints the error mes-
sage that the server returns.

6.  Sockets=newSocket("email.sjsu.edu",110);

7.  Port 80 is the standard port for HTTP. If a web
server is running on the same com puter, then
one can’t open a server socket on an open port.

8.  No, a server socket just waits for a connection
and yields a regular Socket object when a client
has connected. You use that socket object to
read the data that the cli ent sends.

9.  The URLConnection class understands the
HTTP protocol, freeing you from assem bling
requests and analyzing response headers.

10.  The bytes that encode the images are displayed
on the console, but they will appear to be ran-
dom gibberish.

bj5i_ch21_01.indd 948 1/7/13 9:40 AM

