
23C h a p t e r

W997

© Krzysztof Zmij/iStockphoto.

23
XML

to learn to use XML elements and
attributes

to understand the concept of an XML parser

to read and write XML documents

to design Document type Definitions
for XML documents

C h a p t e r G o a L s

C h a p t e r C o n t e n t s

23.1  XML Tags and docuMenTs  W998

How To 23.1: Designing an XML Document
Format W1002

Programming Tip 23.1: prefer XML elements
over attributes W1003

Programming Tip 23.2: avoid Children with
Mixed elements and text W1004

23.2  Parsing XML docuMenTs  W1005

Common Error 23.1: XML elements Describe
objects, not Classes W1009

23.3  creaTing XML docuMenTs  W1010

How To 23.2: Writing an XML Document W1015
Special Topic 23.1: Grammars, parsers, and

Compilers W1017

23.4  VaLidaTing XML docuMenTs  W1019

How To 23.3: Writing a DtD W1026
Special Topic 23.2: schema Languages W1027
Special Topic 23.3: other XML

technologies W1028

bj5i_ch23_01.indd 997 1/7/13 9:47 AM

W998

The Extensible Markup Language (XML) is a popular
mechanism for encoding data. Independent of any
programming language, XML allows you to encode complex
data in a form that the recipient can easily parse. It is simple
enough that a wide variety of programs can generate XML
data. XML data has a nested structure, so you can use it to
describe hierarchical data sets—for example, an invoice that
contains many items, each of which consists of a product
and a quantity. Because the XML format is standardized,
libraries for parsing the data are widely available and—as
you will see in this chapter—easy to use for a programmer.

23.1 XML Tags and Documents
The XML format uses a mixture of text and tags to describe data. Tags are enclosed in
angle brackets <...>. An element is a unit of information that is delimited by a start-
tag and a matching end-tag. An element can contain text and other elements. For
example, <city>Sunnyvale</city> is an element with a text child, and

<address>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
</address>

is an element with three child elements. In the following sections, you will see why
XML is more useful than a plain text format, how it is related to HTML, and which
rules you need to follow when producing an XML document.

23.1.1 Advantages of XML

To understand the advantages of using XML for encoding data, let’s look at a typi-
cal example. We will encode product descriptions, so that they can be transferred to
another computer. Your first attempt might be a naïve encoding like this:

Toaster
29.95

In contrast, here is an XML encoding of the same data:
<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

The advantage of the XML version is clear: You can look at the data and understand
what they mean. Of course, this is a benefit for the programmer, not for a computer
program. A computer program has no understanding of what a “price” is. As a pro-
grammer, you still need to write code to extract the price as the content of the price
element. Nevertheless, the fact that an XML document is comprehensible by humans
is a huge advantage for program development.

XML allows you to
encode complex
data, independent
of any programming
language, in a form
that the recipient can
easily parse.

XML files are
readable by
computer programs
and by humans.

A second advantage of the XML version is that it is resilient to change. Suppose the
product data change, and an additional data item is introduced to denote the manu-
facturer. In the naïve format, the manufacturer might be added after the price, like
this:

Toaster
29.95
General Appliances

A program that can process the old format might get confused when reading a
sequence of products in the new format. The program would think that the price is
followed by the name of the next product. Thus, the program needs to be updated to
work with both the old and new data formats. As data get more complex, program-
ming for multiple versions of a data format can be difficult and time-consuming.

When using XML, on the other hand, it is easy to add new elements:
<product>
 <description>Toaster</description>
 <price>29.95</price>
 <manufacturer>General Appliances</manufacturer>
</product>

Now a program that processes the new data can still extract the old information in the
same way—as the contents of the description and price elements. The program need
not be updated, and it can tolerate dif ferent versions of the data format.

23.1.2 Differences Between XML and HTML

If you know HTML, you may have noticed that the XML format of the product data
looked somewhat like HTML code. However, there are some differences that we will
discuss in this section.

Let’s start with the similarities. The XML tag pairs, such as <price> and </price>
look just like HTML tag pairs, for example and . Both in XML and in
HTML, tags are enclosed in angle brackets < >, and a start-tag is paired with an end-
tag that starts with a slash / character.

However, web browsers are quite permissive about HTML. For example, you can
omit an end-tag and the browser will try to figure out what you mean. In XML,
this is not permissible. When writing XML, pay attention to the following rules:

• You must pay attention to the letter case of the tags; for example, in XML and
 are different tags that bear no relation to each other.

• Every start-tag must have a matching end-tag. You cannot omit tags, such as
. A tag that ends in /> is both a start- and end-tag:

When the parser sees the />, it knows not to look for a matching end-tag.
• Finally, attribute values must be enclosed in quotes. For example,

is not acceptable. You must use

XML-formatted
data files are
resilient to change.

© Krzysztof Zmij/iStockphoto.

bj5i_ch23_02.indd 998 1/17/13 3:10 PM

23.1 XML tags and Documents W999

A second advantage of the XML version is that it is resilient to change. Suppose the
product data change, and an additional data item is introduced to denote the manu-
facturer. In the naïve format, the manufacturer might be added after the price, like
this:

Toaster
29.95
General Appliances

A program that can process the old format might get confused when reading a
sequence of products in the new format. The program would think that the price is
followed by the name of the next product. Thus, the program needs to be updated to
work with both the old and new data formats. As data get more complex, program-
ming for multiple versions of a data format can be difficult and time-consuming.

When using XML, on the other hand, it is easy to add new elements:
<product>
 <description>Toaster</description>
 <price>29.95</price>
 <manufacturer>General Appliances</manufacturer>
</product>

Now a program that processes the new data can still extract the old information in the
same way—as the contents of the description and price elements. The program need
not be updated, and it can tolerate dif ferent versions of the data format.

23.1.2 Differences Between XML and htML

If you know HTML, you may have noticed that the XML format of the product data
looked somewhat like HTML code. However, there are some differences that we will
discuss in this section.

Let’s start with the similarities. The XML tag pairs, such as <price> and </price>
look just like HTML tag pairs, for example and . Both in XML and in
HTML, tags are enclosed in angle brackets < >, and a start-tag is paired with an end-
tag that starts with a slash / character.

However, web browsers are quite permissive about HTML. For example, you can
omit an end-tag and the browser will try to figure out what you mean. In XML,
this is not permissible. When writing XML, pay attention to the following rules:

• You must pay attention to the letter case of the tags; for example, in XML and
 are different tags that bear no relation to each other.

• Every start-tag must have a matching end-tag. You cannot omit tags, such as
. A tag that ends in /> is both a start- and end-tag:

When the parser sees the />, it knows not to look for a matching end-tag.
• Finally, attribute values must be enclosed in quotes. For example,

is not acceptable. You must use

XML-formatted
data files are
resilient to change.

bj5i_ch23_01.indd 999 1/7/13 9:47 AM

W1000 Chapter 23 XML

Moreover, there is an important conceptual difference between HTML and XML.
HTML has one spe cific purpose: to describe web documents. In contrast, XML is an
extensible syntax that can be used to specify many different kinds of data. For exam-
ple, the VRML language uses the XML syntax to describe virtual reality scenes. The
MathML language uses the XML syntax to describe mathematical formulas. You can
use the XML syntax to describe your own data, such as product records or invoices.

Most people who first see XML wonder how an XML document looks inside a
browser. However, that is not generally a useful question to ask. Most data that are
encoded in XML have nothing to do with browsers. For example, it would probably
not be exciting to display an XML document with nothing but product records (such
as the ones in the previous section) in a browser. Instead, you will learn in this chapter
how to write programs that analyze XML data. XML does not tell you how to dis-
play data; it is merely a convenient format for representing data.

23.1.3 the structure of an XML Document

In this section, you will see the rules for properly formatted XML. In XML, text and
tags are combined into a document. The XML standard recommends that every XML
document start with a declaration

<?xml version="1.0"?>

Next, the XML document contains the actual data. The data are contained in a root
element. For example,

<?xml version="1.0"?>
<invoice>
 more data
</invoice>

The invoice root element is an example of an XML element. An element has one of
two forms:

<elementName> content </elementName>
or

<elementName/>

In the first case, the element has content—elements, text, or a mixture of both. A
good example is a para graph in an HTML document:

<p>Use XML for robust data formats.</p>

The p element contains

1. The text: “Use XML for ”
2. A strong child element
3. More text: “ data formats.”

For XML files that contain documents in the traditional sense of the term, the mix-
ture of text and ele ments is useful. The XML specification calls this type of content
mixed content. But for files that describe data sets—such as our product data—it is
better to stick with elements that contain either other elements or text. Content that
consists only of elements is called element content.

XML describes the
meaning of data, not
how to display them.

an XML document
starts out with an
XML declaration and
contains elements
and text.

an element can
contain text, child
elements, or both
(mixed content). For
data descriptions,
avoid mixed content.

An element can have attributes. For example, the a element of HTML has an href
attribute that speci fies the URL of a hyperlink:

 . . .

An attribute has a name (such as href) and a value. In XML, the value must be enclosed
in single or double quotes.

An element can have multiple attributes, for example

And, as you have already seen, an element can have both attributes and content.
Cay Horstmann's web site

Programmers often wonder whether it is better to use attributes or child elements.
For example, should a product be described as

<product description="Toaster" price="29.95"/>

or
<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

The former is shorter. However, it violates the spirit of attributes. Attributes are
intended to provide information about the element content. For example, the price
element might have an attribute currency that helps interpret the element content. The
content 29.95 has a different interpretation in the element

<price currency="USD">29.95</price>

than it does in the element
<price currency="EUR">29.95</price>

You have now seen the components of an XML document that are needed to use
XML for encoding data. There are other XML constructs for more specialized situ-
ations—see http://www.xml.com/axml/axml.html for more information. In the next sec-
tion, you will see how to use Java to parse XML documents.

1.  Write XML code with a student element and child elements name and id that
describe you.

2.  What does your browser do when you load an XML file, such as the section_2/
items.xml file that is contained in the companion code for this book?

3.  Why does HTML use the src attribute to specify the source of an image instead
of hamster.jpeg?

Practice it  Now you can try these exercises at the end of the chapter: R23.1, R23.2, R23.3.

elements can have
attributes. Use
attributes to describe
how to interpret the
element content.

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

bj5i_ch23_01.indd 1000 1/7/13 9:47 AM

23.1 XML tags and Documents W1001

An element can have attributes. For example, the a element of HTML has an href
attribute that speci fies the URL of a hyperlink:

 . . .

An attribute has a name (such as href) and a value. In XML, the value must be enclosed
in single or double quotes.

An element can have multiple attributes, for example

And, as you have already seen, an element can have both attributes and content.
Cay Horstmann's web site

Programmers often wonder whether it is better to use attributes or child elements.
For example, should a product be described as

<product description="Toaster" price="29.95"/>

or
<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

The former is shorter. However, it violates the spirit of attributes. Attributes are
intended to provide information about the element content. For example, the price
element might have an attribute currency that helps interpret the element content. The
content 29.95 has a different interpretation in the element

<price currency="USD">29.95</price>

than it does in the element
<price currency="EUR">29.95</price>

You have now seen the components of an XML document that are needed to use
XML for encoding data. There are other XML constructs for more specialized situ-
ations—see http://www.xml.com/axml/axml.html for more information. In the next sec-
tion, you will see how to use Java to parse XML documents.

1.  Write XML code with a student element and child elements name and id that
describe you.

2.  What does your browser do when you load an XML file, such as the section_2/
items.xml file that is contained in the companion code for this book?

3.  Why does HTML use the src attribute to specify the source of an image instead
of hamster.jpeg?

Practice it  Now you can try these exercises at the end of the chapter: R23.1, R23.2, R23.3.

elements can have
attributes. Use
attributes to describe
how to interpret the
element content.

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

bj5i_ch23_01.indd 1001 1/7/13 9:47 AM

W1002 Chapter 23 XML

step 1  Gather the data that you must include in the XML document.

Write them on a sheet of paper. If at all possible, work from some real-life examples. For exam-
ple, suppose you need to design an XML document for an invoice. A typical invoice has
• An invoice number
• A shipping address
• A billing address
• A list of items ordered
If possible, gather some actual invoices. Decide which features of the actual invoices you need
to include in your XML document.

step 2  Analyze which data elements need to be refined.

Continue refinement until you reach data values that can be described by single strings or
numbers. Make a note of all data items that you discovered during the refinement process.
When done, you should have a list of data elements, some of which can be broken down fur-
ther and some of which are simple enough to be described by a single string or number.

For example, the “shipping address” actually contains the customer name, street, city, state,
and ZIP code.

The “list of items ordered” contains items. Each item contains a product and the quantity
ordered. Each product contains the product name and price.

Thus, our list now contains

© Steve Simzer/iStockphoto.

hoW to 23.1 designing an XML document format

This How To walks you through the process of designing an XML document format. You
will see in Section 23.4 how to formally describe the format with a document type definition.
Right now, we focus on an informal definition of the document content. The “output” of this
activity is a sample document.

<invoice>
 <address>
 <name>ACME Computer Supplies Inc.</name>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94085</zip>
 </address>
 <items>
 <item>
 <product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
 </product>
 <quantity>8</quantity>
 </item>
 <item>
 <product>
 <description>4-port Mini Hub</description>
 <price>19.95</price>
 </product>
 <quantity>4</quantity>
 </item>
 </items>
</invoice>

step 6  Check that the document doesn’t have mixed content.

That is, make sure each element has as its children either additional elements or text, but not
both. If necessary, add more child elements to wrap any text.

For example, suppose the product element looked like this:

<product>
 <description>Ink Jet Refill Kit</description>
 29.95
</product>

Perhaps someone thought it was “obvious” that the last entry was the price. However, follow-
ing Programming Tip 23.2, it is best to wrap the price inside a price element, like this:

<product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
</product>

Prefer XML elements over attributes

Attributes are shorter than elements. For example,

<product description="Toaster" price="29.95"/>

seems simpler than

<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

There is the temptation to use attributes because they are “easier to type”. But of course, you
don’t type XML docu ments, except for testing purposes. In real-world situations, XML doc-
uments are generated by programs.

programming tip 23.1

© Eric Isselé/iStockphoto.

• Address
• Name
• Street
• City

• State
• ZIP code
• List of items ordered
• Item

• Product
• Description
• Price
• Quantity

Keep breaking the data items down until each of them can be described by a single string or
number. For example, an address cannot be described by a single string, but a city can be
described by a single string.

step 3  Come up with a suitable element name that describes the entire XML document.

This element becomes the root element. For example, the invoice data would be contained in
an element named invoice.

step 4  Come up with suitable element names for the top-level decomposition that you found in Step 1.

These become the children of the root element. For example, the invoice element has children
• address
• items

step 5  Repeat this process to give names to the other elements that you discovered in Step 2.

As you do this, make a comprehensive example that shows all elements at work. For the
invoice problem, here is an example:

bj5i_ch23_01.indd 1002 1/7/13 9:47 AM

23.1 XML tags and Documents W1003

step 1  Gather the data that you must include in the XML document.

Write them on a sheet of paper. If at all possible, work from some real-life examples. For exam-
ple, suppose you need to design an XML document for an invoice. A typical invoice has
• An invoice number
• A shipping address
• A billing address
• A list of items ordered
If possible, gather some actual invoices. Decide which features of the actual invoices you need
to include in your XML document.

step 2  Analyze which data elements need to be refined.

Continue refinement until you reach data values that can be described by single strings or
numbers. Make a note of all data items that you discovered during the refinement process.
When done, you should have a list of data elements, some of which can be broken down fur-
ther and some of which are simple enough to be described by a single string or number.

For example, the “shipping address” actually contains the customer name, street, city, state,
and ZIP code.

The “list of items ordered” contains items. Each item contains a product and the quantity
ordered. Each product contains the product name and price.

Thus, our list now contains

© Steve Simzer/iStockphoto.

hoW to 23.1 designing an XML document format

This How To walks you through the process of designing an XML document format. You
will see in Section 23.4 how to formally describe the format with a document type definition.
Right now, we focus on an informal definition of the document content. The “output” of this
activity is a sample document.

<invoice>
 <address>
 <name>ACME Computer Supplies Inc.</name>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94085</zip>
 </address>
 <items>
 <item>
 <product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
 </product>
 <quantity>8</quantity>
 </item>
 <item>
 <product>
 <description>4-port Mini Hub</description>
 <price>19.95</price>
 </product>
 <quantity>4</quantity>
 </item>
 </items>
</invoice>

step 6  Check that the document doesn’t have mixed content.

That is, make sure each element has as its children either additional elements or text, but not
both. If necessary, add more child elements to wrap any text.

For example, suppose the product element looked like this:

<product>
 <description>Ink Jet Refill Kit</description>
 29.95
</product>

Perhaps someone thought it was “obvious” that the last entry was the price. However, follow-
ing Programming Tip 23.2, it is best to wrap the price inside a price element, like this:

<product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
</product>

Prefer XML elements over attributes

Attributes are shorter than elements. For example,

<product description="Toaster" price="29.95"/>

seems simpler than

<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

There is the temptation to use attributes because they are “easier to type”. But of course, you
don’t type XML docu ments, except for testing purposes. In real-world situations, XML doc-
uments are generated by programs.

programming tip 23.1

© Eric Isselé/iStockphoto.

bj5i_ch23_01.indd 1003 1/7/13 9:47 AM

W1004 Chapter 23 XML

Attributes are less flexible than elements. Suppose we want to add a currency indication to
the value. With ele ments, that’s easy to do:

<price currency="USD">29.95</price>

or even
<price>
 <currency>USD</currency>
 <amount>29.95</amount>
</price>

With attributes, you are stuck—you can’t refine the structure. Of course, you could use

<product description="Toaster" price="USD 29.95"/>

But then your program has to parse the string USD 29.95 and manually take it apart. That’s just
the kind of tedious and error-prone coding that XML is designed to avoid.

In HTML, there is a simple rule when using attributes. All strings that are not part of the
displayed text are attributes. For example, consider a link.

Cay Horstmann's web site

The text inside the a element, Cay Horstmann's web site, is part of what the user sees on the web
page, but the href attribute value http://horstmann.com is not displayed on the page.

Of course, HTML is a little different from the XML documents that you construct to
describe data, such as prod uct lists, but the same basic rule applies. Anything that’s a part
of your data should not be an attribute. An attribute is appropriate only if it tells something
about the data but isn’t a part of the data itself. If you find yourself engaged in metaphysical
discussions to determine whether an item is part of the data or tells something about the data,
make the item an element, not an attribute.

avoid children with Mixed elements and Text

The children of an element can be
1.  Elements
2.  Text
3.  A mixture of both

In HTML, it is common to mix elements and text, for example

<p>Use XML for robust data formats.</p>

But when describing data sets, you should not mix elements and text. For example, you should
not do the following:

<price>
 <currency>USD</currency>
 29.95
</price>

Instead, the children of an element should be either text

<price>29.95</price>

or elements
<price>
 <currency>USD</currency>
 <amount>29.95</amount>
</price>

There is an important reason for this design rule. As you will see later in this chapter, you can
specify much stricter rules for elements that have only child elements than for elements whose
children can contain mixed content.

programming tip 23.2

© Eric Isselé/iStockphoto.

23.2 parsing XML Documents
 To read and analyze the contents of an XML document, you need an XML parser. A
parser is a program that reads a document, checks whether it is syntactically correct,
and takes some action as it processes the document.

Two kinds of XML parsers are in common use. Streaming parsers read the XML
input one token at a time and report what they encounter: a start-tag, text, an end-
tag, and so on. In contrast, a tree-based parser builds a tree that represents the parsed
document. Once the parser is done, you can analyze the tree.

Streaming parsers are more efficient for handling large XML documents whose
tree structure would require large amounts of memory. Tree-based parsers, however,
are easier to use for most applications—the parse tree gives you a complete overview
of the data, whereas a streaming parser gives you the infor mation in bits and pieces.

In this section, you will learn how to use a tree-based parser that produces a tree
structure according to the DOM (Document Object Model) standard. The DOM
standard defines interfaces and methods to analyze and modify the tree structure that
represents an XML document.

In order to parse an XML document into a DOM tree, use the Document Builder
class from the java.xml package. To get a Document Builder object, first call the static
newInstance method of the DocumentBuilderFactory class, then call the new DocumentBuilder
method on the factory object:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Once you have a DocumentBuilder, you can read a document. To read a document from
a file, first construct a File object from the file name, then call the parse method of the
DocumentBuilder class:

String fileName = . . .;
File f = new File(fileName);
Document doc = builder.parse(f);

If the document is located on the Internet, use a URL:
String urlName = . . .;
URL u = new URL(urlName);
Document doc = builder.parse(u);

You can also read a document from an arbitrary input stream:
InputStream in = . . .;
Document doc = builder.parse(in);

Once you have created a new document or read a document from a file, you can
inspect and modify it.

The easiest method for inspecting a document is the XPath syntax. In the DOM
standard, a node is the common superclass for all components that make up an XML
document. In particular, text sequences and elements are nodes. An XPath describes
a node or set of nodes, using a syntax that is similar to directory paths. For example,
consider the following XPath, applied to the document in Figure 1 and Figure 2:

/items/item[1]/quantity

This XPath selects the quantity of the first item, that is, the value 8. (In XPath, array
positions start with 1. Accessing /items/item[0] would be an error.)

a parser is a
program that
reads a document,
checks whether it is
syntactically correct,
and takes some
action as it processes
the document.

a streaming parser
reports the building
blocks of an XML
document. a tree-
based parser builds a
document tree.

a DocumentBuilder
can read an XML
document from a
file, UrL, or input
stream. the result
is a Document object,
which contains
a tree.

an Xpath describes
a node or node set,
using a notation
similar to that for
directory paths.

bj5i_ch23_01.indd 1004 1/7/13 9:47 AM

23.2 parsing XML Documents W1005

23.2 parsing XML Documents
 To read and analyze the contents of an XML document, you need an XML parser. A
parser is a program that reads a document, checks whether it is syntactically correct,
and takes some action as it processes the document.

Two kinds of XML parsers are in common use. Streaming parsers read the XML
input one token at a time and report what they encounter: a start-tag, text, an end-
tag, and so on. In contrast, a tree-based parser builds a tree that represents the parsed
document. Once the parser is done, you can analyze the tree.

Streaming parsers are more efficient for handling large XML documents whose
tree structure would require large amounts of memory. Tree-based parsers, however,
are easier to use for most applications—the parse tree gives you a complete overview
of the data, whereas a streaming parser gives you the infor mation in bits and pieces.

In this section, you will learn how to use a tree-based parser that produces a tree
structure according to the DOM (Document Object Model) standard. The DOM
standard defines interfaces and methods to analyze and modify the tree structure that
represents an XML document.

In order to parse an XML document into a DOM tree, use the Document Builder
class from the java.xml package. To get a Document Builder object, first call the static
newInstance method of the DocumentBuilderFactory class, then call the new DocumentBuilder
method on the factory object:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Once you have a DocumentBuilder, you can read a document. To read a document from
a file, first construct a File object from the file name, then call the parse method of the
DocumentBuilder class:

String fileName = . . .;
File f = new File(fileName);
Document doc = builder.parse(f);

If the document is located on the Internet, use a URL:
String urlName = . . .;
URL u = new URL(urlName);
Document doc = builder.parse(u);

You can also read a document from an arbitrary input stream:
InputStream in = . . .;
Document doc = builder.parse(in);

Once you have created a new document or read a document from a file, you can
inspect and modify it.

The easiest method for inspecting a document is the XPath syntax. In the DOM
standard, a node is the common superclass for all components that make up an XML
document. In particular, text sequences and elements are nodes. An XPath describes
a node or set of nodes, using a syntax that is similar to directory paths. For example,
consider the following XPath, applied to the document in Figure 1 and Figure 2:

/items/item[1]/quantity

This XPath selects the quantity of the first item, that is, the value 8. (In XPath, array
positions start with 1. Accessing /items/item[0] would be an error.)

a parser is a
program that
reads a document,
checks whether it is
syntactically correct,
and takes some
action as it processes
the document.

a streaming parser
reports the building
blocks of an XML
document. a tree-
based parser builds a
document tree.

a DocumentBuilder
can read an XML
document from a
file, UrL, or input
stream. the result
is a Document object,
which contains
a tree.

an Xpath describes
a node or node set,
using a notation
similar to that for
directory paths.

bj5i_ch23_01.indd 1005 1/7/13 9:47 AM

W1006 Chapter 23 XML

figure 1 
an XML Document

<?xml version="1.0"?>
<items>
 <item>
 <product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
 </product>
 <quantity>8</quantity>
 </item>
 <item>
 <product>
 <description>4-port Mini Hub</description>
 <price>19.95</price>
 </product>
 <quantity>4</quantity>
 </item>
</items>

Similarly, you can get the price of the second product as
/items/item[2]/product/price

To get the number of items, use the XPath expression
count(/items/item)

In our example, the result is 2.
The total number of children can be obtained as
count(/items/*)

In our example, the result is again 2 because the items element has exactly two children.
To select attributes, use an @ followed by the name of the attribute. For example,
/items/item[2]/product/price/@currency

would select the currency attribute of the price element if it had one.
Finally, if you have a document with variable or unknown structure, you can find

out the name of a child with an expression such as the following:
name(/items/item[1]/*[1])

The result is the name of the first child of the first item, or product.

figure 2 
the tree
View of the
Document

<item>

<quantity> <quantity><product><product>

<description> <description>

Ink Jet
Refill Kit

4-port
Mini Hub

<price> <price>

29.95 19.95

8 4

<items>

<item>

bj5i_ch23_01.indd 1006 1/7/13 9:47 AM

23.2 parsing XML Documents W1007

That is all you need to know about the XPath syntax to analyze simple documents.
(See Table 1 for a summary.) There are many more options in the XPath syntax that
we do not cover here. If you are inter ested, look up the specification (http://www.
w3.org/TR/xpath) or work through the online tutorial (http://www.zvon.org/xxl/XPathTu-
torial/General/examples.html).

To evaluate an XPath expression in Java, first create an XPath object:
XPathFactory xpfactory = XPathFactory.newInstance();
XPath path = xpfactory.newXPath();

Then call the evaluate method, like this:
String result = path.evaluate(expression, doc)

Here, expression is an XPath expression and doc is the Document object that represents
the XML document. For example, the statement

String result = path.evaluate("/items/item[2]/product/price", doc)

sets result to the string "19.95".
Now you have all the tools that you need to read and analyze an XML document.

The example pro gram at the end of this section puts these techniques to work. (The
program uses the LineItem and Product classes from Section 11.3.) The class ItemList-
Parser can parse an XML document that contains a list of product descriptions. Its
parse method takes the file name and returns an array list of LineItem objects:

ItemListParser parser = new ItemListParser();
ArrayList<LineItem> items = parser.parse("items.xml");

The ItemListParser class translates each XML element into an object of the corre-
sponding Java class. We first get the number of items:

int itemCount = Integer.parseInt(path.evaluate("count(/items/item)", doc));

For each item element, we gather the product data and construct a Product object:
String description = path.evaluate(
 "/items/item[" + i + "]/product/description", doc);
double price = Double.parseDouble(path.evaluate(
 "/items/item[" + i + "]/product/price", doc));
Product pr = new Product(description, price);

Then we construct a LineItem object in the same way, and add it to the items array list.

table 1 Xpath syntax summary

syntax element purpose example

name Matches an element item

/ Separates elements /items/item

[n] Selects a value from a set /items/item[1]

@name Matches an attribute price/@currency

* Matches anything /items/*[1]

count Counts matches count(/items/item)

name The name of a match name(/items/*[1])

bj5i_ch23_01.indd 1007 1/7/13 9:47 AM

W1008 Chapter 23 XML

Here is the com plete source code:

section_2/itemListParser.java

1 import java.io.File;
2 import java.io.IOException;
3 import java.util.ArrayList;
4 import javax.xml.parsers.DocumentBuilder;
5 import javax.xml.parsers.DocumentBuilderFactory;
6 import javax.xml.parsers.ParserConfigurationException;
7 import javax.xml.xpath.XPath;
8 import javax.xml.xpath.XPathExpressionException;
9 import javax.xml.xpath.XPathFactory;

10 import org.w3c.dom.Document;
11 import org.xml.sax.SAXException;
12
13 /**
14 An XML parser for item lists.
15 */
16 public class ItemListParser
17 {
18 private DocumentBuilder builder;
19 private XPath path;
20
21 /**
22 Constructs a parser that can parse item lists.
23 */
24 public ItemListParser()
25 throws ParserConfigurationException
26 {
27 DocumentBuilderFactory dbfactory
28 = DocumentBuilderFactory.newInstance();
29 builder = dbfactory.newDocumentBuilder();
30 XPathFactory xpfactory = XPathFactory.newInstance();
31 path = xpfactory.newXPath();
32 }
33
34 /**
35 Parses an XML file containing an item list.
36 @param fileName the name of the file
37 @return an array list containing all items in the XML file
38 */
39 public ArrayList<LineItem> parse(String fileName)
40 throws SAXException, IOException, XPathExpressionException
41 {
42 File f = new File(fileName);
43 Document doc = builder.parse(f);
44
45 ArrayList<LineItem> items = new ArrayList<LineItem>();
46 int itemCount = Integer.parseInt(path.evaluate(
47 "count(/items/item)", doc));
48 for (int i = 1; i <= itemCount; i++)
49 {
50 String description = path.evaluate(
51 "/items/item[" + i + "]/product/description", doc);
52 double price = Double.parseDouble(path.evaluate(
53 "/items/item[" + i + "]/product/price", doc));
54 Product pr = new Product(description, price);
55 int quantity = Integer.parseInt(path.evaluate(
56 "/items/item[" + i + "]/quantity", doc));

57 LineItem it = new LineItem(pr, quantity);
58 items.add(it);
59 }
60 return items;
61 }
62 }

section_2/itemListParserdemo.java

1 import java.util.ArrayList;
2
3 /**
4 This program parses an XML file containing an item list.
5 It prints out the items that are described in the XML file.
6 */
7 public class ItemListParserDemo
8 {
9 public static void main(String[] args) throws Exception

10 {
11 ItemListParser parser = new ItemListParser();
12 ArrayList<LineItem> items = parser.parse("items.xml");
13 for (LineItem anItem : items)
14 {
15 System.out.println(anItem.format());
16 }
17 }
18 }

Program run

Ink Jet Refill Kit 29.95 8 239.6
4-port Mini Hub 19.95 4 79.8

4.  What is the result of evaluating the XPath statement /items/item[1]/product/price
in the XML docu ment of Figure 2?

5.  Which XPath statement yields the name of the root element of any XML docu-
ment?

Practice it  Now you can try these exercises at the end of the chapter: R23.10, P23.1, P23.4.

XML elements describe objects, not classes

When you convert XML documents to Java classes, you need to determine a class for each ele-
ment type. A common mistake is to make a separate class for each XML element. For example,
consider a slightly different invoice descrip tion, with separate shipping and billing addresses:

<invoice>
 <shipto>
 <name>ACME Computer Supplies Inc.</name>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94085</state>
 </shipto>
 <billto>

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

Common error 23.1

© John Bell/iStockphoto.

bj5i_ch23_01.indd 1008 1/7/13 9:47 AM

23.2 parsing XML Documents W1009

57 LineItem it = new LineItem(pr, quantity);
58 items.add(it);
59 }
60 return items;
61 }
62 }

section_2/itemListParserdemo.java

1 import java.util.ArrayList;
2
3 /**
4 This program parses an XML file containing an item list.
5 It prints out the items that are described in the XML file.
6 */
7 public class ItemListParserDemo
8 {
9 public static void main(String[] args) throws Exception

10 {
11 ItemListParser parser = new ItemListParser();
12 ArrayList<LineItem> items = parser.parse("items.xml");
13 for (LineItem anItem : items)
14 {
15 System.out.println(anItem.format());
16 }
17 }
18 }

Program run

Ink Jet Refill Kit 29.95 8 239.6
4-port Mini Hub 19.95 4 79.8

4.  What is the result of evaluating the XPath statement /items/item[1]/product/price
in the XML docu ment of Figure 2?

5.  Which XPath statement yields the name of the root element of any XML docu-
ment?

Practice it  Now you can try these exercises at the end of the chapter: R23.10, P23.1, P23.4.

XML elements describe objects, not classes

When you convert XML documents to Java classes, you need to determine a class for each ele-
ment type. A common mistake is to make a separate class for each XML element. For example,
consider a slightly different invoice descrip tion, with separate shipping and billing addresses:

<invoice>
 <shipto>
 <name>ACME Computer Supplies Inc.</name>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94085</state>
 </shipto>
 <billto>

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

Common error 23.1

© John Bell/iStockphoto.

bj5i_ch23_01.indd 1009 1/7/13 9:47 AM

W1010 Chapter 23 XML

 <name>ACME Computer Supplies Inc.</name>
 <street>P.O. Box 11098</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94080-1098</zip>
 </billto>
 <items>
 . . .
 </items>
</invoice>

Should you have a class Shipto to match the shipto element and another class Billto to match
the billto element? That makes no sense, because both of them have the same contents: ele-
ments that describe an address.

Instead, you should think of the XML element as the value of an instance variable and then
determine an appro priate class. For example, an invoice object has instance variables
• billto, of type Address
• shipto, also of type Address
Note that you don’t see the classes in the XML document. There is no notion of a class Address
in the XML docu ment describing an invoice. To make element classes explicit, you use an
XML schema—see Special Topic 23.2 for more information.

23.3 Creating XML Documents
In the preceding section, you saw how to read an XML file into a Document object and
analyze the contents of that object. In this section, you will see how to do the oppo-
site—build up a Document object and then save it as an XML file. Of course, you can
also generate an XML file simply as a sequence of print statements. However, that is
not a good idea—it is easy to build an illegal XML document in this way, as when data
contain special characters such as < or &.

Recall that you needed a DocumentBuilder object to read in an XML document. You
also need such an object to create a new, empty document. Thus, to create a new
document, first make a DocumentBuilderFactory, then a DocumentBuilder, and finally the
empty document:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.newDocument(); // An empty document

A document contains two kind of nodes, elements and text nodes. The DOM stan-
dard provides interfaces for these node types, as well as a common superinterface Node
(see Figure 3). You use the createElement method of the Document interface to create the
elements that you need:

Element priceElement = doc.createElement("price");

You set element attributes with the setAttribute method. For example,
priceElement.setAttribute("currency", "USD");

You have to work a bit harder for inserting text. First create a text node:
Text textNode = doc.createTextNode("29.95");

the Document
interface has
methods to create
elements and
text nodes.

bj5i_ch23_01.indd 1010 1/7/13 9:47 AM

23.3 Creating XML Documents W1011

figure 3  UML Diagram of DoM Interfaces Used in this Chapter

«interface»
Document

«interface»
Node

«interface»
Element

«interface»
Text

«interface»
CharacterData

Then add the text node to the element:
priceElement.appendChild(textNode);

To construct the tree structure of a docu ment, it is a good idea to use a set of helper
methods. We start out with a helper method that creates an element with text:

private Element createTextElement(String name, String text)
{
 Text t = doc.createTextNode(text);
 Element e = doc.createElement(name);
 e.appendChild(t);
 return e;
}

Using this helper method, we can construct a price element like this:
Element priceElement = createTextElement("price", "29.95");

Next, we write a helper method to create a product element from a Product object:
private Element createProduct(Product p)
{
 Element e = doc.createElement("product");
 e.appendChild(createTextElement("description", p.getDescription()));
 e.appendChild(createTextElement("price", "" + p.getPrice()));
 return e;
}

This helper method is called from the createItem helper method:
private Element createItem(LineItem anItem)
{
 Element e = doc.createElement("item");
 e.appendChild(createProduct(anItem.getProduct()));
 e.appendChild(createTextElement("quantity", "" + anItem.getQuantity()));
 return e;
}

bj5i_ch23_01.indd 1011 1/7/13 9:47 AM

W1012 Chapter 23 XML

A helper method
private Element createItems(ArrayList<LineItem> items)

for the items element is implemented in the same way—see the program listing at the
end of this section.

Now you build the document as follows:
ArrayList<LineItem> items = . . .;
doc = builder.newDocument();
Element root = createItems(items);
doc.appendChild(root);

Once you have built the document, you will want to write it to a file. The DOM stan-
dard provides the LSSerializer interface for this purpose. Unfortunately, the DOM
standard uses very generic methods, which makes the code that is required to obtain a
serializer object look like a “magic incantation”:

DOMImplementation impl = doc.getImplementation();
DOMImplementationLS implLS
 = (DOMImplementationLS) impl.getFeature("LS", "3.0");
LSSerializer ser = implLS.createLSSerializer();

Once you have the serializer object, you simply use the writeToString method:
String str = ser.writeToString(doc);

By default, the LSSerializer produces an XML document without spaces or line
breaks. As a result, the output looks less pretty, but it is actually more suitable for
parsing by another program because it is free from unnecessary white space.

If you want white space, you use yet another magic incantation after creating the
serializer:

ser.getDomConfig().setParameter("format-pretty-print", true);

Here is an example program that shows how to build and print an XML document:

section_3/itemListBuilder.java

1 import java.util.ArrayList;
2 import javax.xml.parsers.DocumentBuilder;
3 import javax.xml.parsers.DocumentBuilderFactory;
4 import javax.xml.parsers.ParserConfigurationException;
5 import org.w3c.dom.Document;
6 import org.w3c.dom.Element;
7 import org.w3c.dom.Text;
8
9 /**

10 Builds a DOM document for an array list of items.
11 */
12 public class ItemListBuilder
13 {
14 private DocumentBuilder builder;
15 private Document doc;
16
17 /**
18 Constructs an item list builder.
19 */
20 public ItemListBuilder()
21 throws ParserConfigurationException
22 {

Use an LSSerializer
to write a
DoM document.

bj5i_ch23_01.indd 1012 1/7/13 9:47 AM

23.3 Creating XML Documents W1013

23 DocumentBuilderFactory factory
24 = DocumentBuilderFactory.newInstance();
25 builder = factory.newDocumentBuilder();
26 }
27
28 /**
29 Builds a DOM document for an array list of items.
30 @param items the items
31 @return a DOM document describing the items
32 */
33 public Document build(ArrayList<LineItem> items)
34 {
35 doc = builder.newDocument();
36 doc.appendChild(createItems(items));
37 return doc;
38 }
39
40 /**
41 Builds a DOM element for an array list of items.
42 @param items the items
43 @return a DOM element describing the items
44 */
45 private Element createItems(ArrayList<LineItem> items)
46 {
47 Element e = doc.createElement("items");
48
49 for (LineItem anItem : items)
50 {
51 e.appendChild(createItem(anItem));
52 }
53
54 return e;
55 }
56
57 /**
58 Builds a DOM element for an item.
59 @param anItem the item
60 @return a DOM element describing the item
61 */
62 private Element createItem(LineItem anItem)
63 {
64 Element e = doc.createElement("item");
65
66 e.appendChild(createProduct(anItem.getProduct()));
67 e.appendChild(createTextElement(
68 "quantity", "" + anItem.getQuantity()));
69
70 return e;
71 }
72
73 /**
74 Builds a DOM element for a product.
75 @param p the product
76 @return a DOM element describing the product
77 */
78 private Element createProduct(Product p)
79 {
80 Element e = doc.createElement("product");
81

bj5i_ch23_01.indd 1013 1/7/13 9:47 AM

W1014 Chapter 23 XML

82 e.appendChild(createTextElement(
83 "description", p.getDescription()));
84 e.appendChild(createTextElement(
85 "price", "" + p.getPrice()));
86
87 return e;
88 }
89
90 private Element createTextElement(String name, String text)
91 {
92 Text t = doc.createTextNode(text);
93 Element e = doc.createElement(name);
94 e.appendChild(t);
95 return e;
96 }
97 }

section_3/itemListBuilderdemo.java

1 import java.util.ArrayList;
2 import org.w3c.dom.DOMImplementation;
3 import org.w3c.dom.Document;
4 import org.w3c.dom.ls.DOMImplementationLS;
5 import org.w3c.dom.ls.LSSerializer;
6
7 /**
8 This program demonstrates the item list builder. It prints the XML
9 file corresponding to a DOM document containing a list of items.

10 */
11 public class ItemListBuilderDemo
12 {
13 public static void main(String[] args) throws Exception
14 {
15 ArrayList<LineItem> items = new ArrayList<LineItem>();
16 items.add(new LineItem(new Product("Toaster", 29.95), 3));
17 items.add(new LineItem(new Product("Hair dryer", 24.95), 1));
18
19 ItemListBuilder builder = new ItemListBuilder();
20 Document doc = builder.build(items);
21 DOMImplementation impl = doc.getImplementation();
22 DOMImplementationLS implLS
23 = (DOMImplementationLS) impl.getFeature("LS", "3.0");
24 LSSerializer ser = implLS.createLSSerializer();
25 String out = ser.writeToString(doc);
26
27 System.out.println(out);
28 }
29 }

This program uses the Product and LineItem classes from Chapter 11. The LineItem class
has been modified by adding getProduct and getQuantity methods.

Program run

<?xml version="1.0" encoding="UTF-8"?><items><item><product>
<description>Toaster</description><price>29.95</price></product>
<quantity>3</quantity></item><item><product><description>Hair dryer
</description><price>24.95</price></product><quantity>1</quantity>
</item></items>

6.  Suppose you need to construct a Document object that represents an XML docu-
ment other than an item list. Which methods from the ItemListBuilder class can
you reuse?

7.  How would you write a document to the file output.xml?

Practice it  Now you can try these exercises at the end of the chapter: R23.12, P23.10, P23.11.

step 1  Provide the outline of a document builder class.

To construct the Document object from an object of some class, you should implement a class
such as this one:

public class MyBuilder
{
 private DocumentBuilder builder;
 private Document doc;

 public Document build(SomeClass x) { . . . }
 . . .
 private Element createTextElement(String name, String text)
 {
 Text t = doc.createTextNode(text);
 Element e = doc.createElement(name);
 e.appendChild(t);
 return e;
 }
}

step 2  Look at the format of the XML document that you want to create.

Consider all elements, except for those that only have text content. Find the matching Java
classes. In the ItemList Builder example, we ignore quantity, description, and price because they
have text content. The remaining elements and their Java classes are
• product - Product
• item - LineItem
• items - ArrayList<LineItem>

step 3  For each element in Step 2, add a helper method to your builder class.

Each helper method has the form

private Element createElementName(ClassForElement x)

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

© Steve Simzer/iStockphoto.

hoW to 23.2 Writing an XML document

What is the best way to write an XML document? This How To shows you how to produce a
Document object and generate an XML document from it.

bj5i_ch23_01.indd 1014 1/7/13 9:47 AM

23.3 Creating XML Documents W1015

6.  Suppose you need to construct a Document object that represents an XML docu-
ment other than an item list. Which methods from the ItemListBuilder class can
you reuse?

7.  How would you write a document to the file output.xml?

Practice it  Now you can try these exercises at the end of the chapter: R23.12, P23.10, P23.11.

step 1  Provide the outline of a document builder class.

To construct the Document object from an object of some class, you should implement a class
such as this one:

public class MyBuilder
{
 private DocumentBuilder builder;
 private Document doc;

 public Document build(SomeClass x) { . . . }
 . . .
 private Element createTextElement(String name, String text)
 {
 Text t = doc.createTextNode(text);
 Element e = doc.createElement(name);
 e.appendChild(t);
 return e;
 }
}

step 2  Look at the format of the XML document that you want to create.

Consider all elements, except for those that only have text content. Find the matching Java
classes. In the ItemList Builder example, we ignore quantity, description, and price because they
have text content. The remaining elements and their Java classes are
• product - Product
• item - LineItem
• items - ArrayList<LineItem>

step 3  For each element in Step 2, add a helper method to your builder class.

Each helper method has the form

private Element createElementName(ClassForElement x)

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

© Steve Simzer/iStockphoto.

hoW to 23.2 Writing an XML document

What is the best way to write an XML document? This How To shows you how to produce a
Document object and generate an XML document from it.

bj5i_ch23_01.indd 1015 1/7/13 9:47 AM

W1016 Chapter 23 XML

For example,

public class MyBuilder
{
 . . .
 public Document build(ArrayList<LineItem> x) { . . . }
 private Element createProduct(Product x) { . . . }
 private Element createItem(LineItem x) { . . . }
 private Element createItems(ArrayList<LineItem> x) { . . . }
}

step 4  Implement the helper methods.

For each element, call the helper methods of its children. However, if a child has text content,
call createTextElement instead.

For example, the item element has two children: product and quantity. The former has a
helper method, and the lat ter has text content. Therefore, the createItem method calls create-
Product and createTextElement:

private Element createItem(LineItem anItem)
{
 Element e = doc.createElement("item");
 e.appendChild(createProduct(anItem.getProduct()));
 e.appendChild(createTextElement("quantity", "" + anItem.getQuantity()));
 return e;
}

You may find it helpful to implement the helper methods “bottom up”, starting with the
simplest method (such as createProduct) and finishing with the method for the root element
(createItems).

step 5  Finish off your builder by writing a constructor and the build method.

public class MyBuilder
{
 public MyBuilder() throws ParserConfigurationException
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 builder = factory.newDocumentBuilder();
 }
 public Document build(ClassForRootElement x)
 {
 doc = builder.newDocument();
 doc.appendChild(createRootElementName(x));
 return doc;
 }
 . . .
}

step 6  Use a class, such as the LSSerializer, to convert the Document to a string.

For example,

Invoice x = . . .;
InvoiceBuilder builder = new InvoiceBuilder();
Document doc = builder.build(x);
LSSerializer ser = . . .;
String str = ser.writeToString(doc);

grammars, Parsers, and compilers

Grammars are very important in many areas of computer science to describe the structure
of computer programs or data formats. To introduce the concept of a grammar, consider this
set of rules for a set of simple English language sentences:

1.  A sentence has a noun phrase followed by a verb and another noun phrase.
2.  A noun phrase consists of an article followed by an adjective list followed by a noun.
3.  An adjective list consists of an adjective or an adjective followed by an adjective list.
4.  Articles are “a” and “the”.
5.  Adjectives are “quick”, “brown”, “lazy”, and “hungry”.
6.  Nouns are “fox”, “dog”, and “hamster”.
7.  Verbs are “jumps over” and “eats”.

Here are two sentences that follow these rules:
• The quick brown fox jumps over the lazy dog.
• The hungry hamster eats a quick brown fox.
Symbolically, these rules can be expressed by a formal grammar:

<sentence> ::= <noun-phrase> <verb> <noun-phrase>
<noun-phrase> ::= <article> <adjective-list> <noun>
<adjective-list> ::= <adjective> |
 <adjective> <adjective-list>
<article> ::= a | the
<adjective> ::= quick | brown | lazy | hungry
<noun> ::= fox | dog | hamster
<verb> ::= jumps over | eats

Here the symbol ::= means “can be replaced with” and | separates alternate choices. For
example, <article> can be replaced with “a” or “the”.
The grammar symbols, such as <noun>, happen to be enclosed in angle brackets just like XML
tags, but they are different from tags. One purpose of a grammar is to produce strings that are
valid according to the grammar by starting with the start symbol (<sentence> in this example)
and applying replacement rules until the resulting string is free from symbols. See Table 2 for
an example of the replacement process.

If you have a grammar and a string, such as “the hungry hamster eats a quick brown fox” or
“a brown jumps over hamster quick lazy”, you can parse the sentence: that is, check whether
the sentence is described by the grammar rules and, if it is, show how it can be derived from
the start symbol (see Table 2). Another way to show the derivation is to construct a parse tree
(see Figure 4).

table 2 Deriving a sentence from a Grammar

string rule

<sentence> Start

<noun-phrase> <verb> <noun-phrase> 1

<noun-phrase> eats <noun-phrase> 7

<article> <adjective-list> <noun> eats <noun-phrase> 2

the <adjective-list> <noun> eats <noun-phrase> 4

special topic 23.1

bj5i_ch23_01.indd 1016 1/7/13 9:47 AM

23.3 Creating XML Documents W1017

grammars, Parsers, and compilers

Grammars are very important in many areas of computer science to describe the structure
of computer programs or data formats. To introduce the concept of a grammar, consider this
set of rules for a set of simple English language sentences:

1.  A sentence has a noun phrase followed by a verb and another noun phrase.
2.  A noun phrase consists of an article followed by an adjective list followed by a noun.
3.  An adjective list consists of an adjective or an adjective followed by an adjective list.
4.  Articles are “a” and “the”.
5.  Adjectives are “quick”, “brown”, “lazy”, and “hungry”.
6.  Nouns are “fox”, “dog”, and “hamster”.
7.  Verbs are “jumps over” and “eats”.

Here are two sentences that follow these rules:
• The quick brown fox jumps over the lazy dog.
• The hungry hamster eats a quick brown fox.
Symbolically, these rules can be expressed by a formal grammar:

<sentence> ::= <noun-phrase> <verb> <noun-phrase>
<noun-phrase> ::= <article> <adjective-list> <noun>
<adjective-list> ::= <adjective> |
 <adjective> <adjective-list>
<article> ::= a | the
<adjective> ::= quick | brown | lazy | hungry
<noun> ::= fox | dog | hamster
<verb> ::= jumps over | eats

Here the symbol ::= means “can be replaced with” and | separates alternate choices. For
example, <article> can be replaced with “a” or “the”.
The grammar symbols, such as <noun>, happen to be enclosed in angle brackets just like XML
tags, but they are different from tags. One purpose of a grammar is to produce strings that are
valid according to the grammar by starting with the start symbol (<sentence> in this example)
and applying replacement rules until the resulting string is free from symbols. See Table 2 for
an example of the replacement process.

If you have a grammar and a string, such as “the hungry hamster eats a quick brown fox” or
“a brown jumps over hamster quick lazy”, you can parse the sentence: that is, check whether
the sentence is described by the grammar rules and, if it is, show how it can be derived from
the start symbol (see Table 2). Another way to show the derivation is to construct a parse tree
(see Figure 4).

table 2 Deriving a sentence from a Grammar

string rule

<sentence> Start

<noun-phrase> <verb> <noun-phrase> 1

<noun-phrase> eats <noun-phrase> 7

<article> <adjective-list> <noun> eats <noun-phrase> 2

the <adjective-list> <noun> eats <noun-phrase> 4

special topic 23.1

bj5i_ch23_01.indd 1017 1/7/13 9:47 AM

W1018 Chapter 23 XML

table 2 Deriving a sentence from a Grammar

string rule

the <adjective> <noun> eats <noun-phrase> 3

the hungry <noun> eats <noun-phrase> 5

the hungry hamster eats <noun-phrase> 6

the hungry hamster eats <article> <adjective-list> <noun> 2

the hungry hamster eats a <adjective-list> <noun> 4

the hungry hamster eats a <adjective> <adjective-list> <noun> 3

the hungry hamster eats a quick <adjective-list> <noun> 5

the hungry hamster eats a quick <adjective> <noun> 3

the hungry hamster eats a quick brown <noun> 5

the hungry hamster eats a quick brown fox 6

A parser is a program that reads strings and decides whether the input conforms to the rules
of a certain grammar. Some parsers—such as the DOM XML parser—build a parse tree in the
process or report an error message when a parse tree cannot be constructed. Other parsers—
such as the SAX XML parser—call user-specified methods when ever a part of the input was
successfully parsed.

The most important use for parsers is inside compilers for programming languages. Just as
our grammar can describe (some) simple English language sentences, the valid “sentences” in
a programming language can be described by a grammar. The actual grammar for the Java pro-
gramming language occupies about fifteen pages in The Java Language Specification (http://
docs.oracle.com/javase/specs/jls/se7/html/index.html). To give a flavor of a small subset of
such a grammar, here is a grammar that describes arithmetic expressions.

<expression> ::= <term> |
 <expression> <additive-operator> <term>
<additive-operator> ::= + | -
<term> ::= <factor> |
 <term> <multiplicative-operator> <factor>
<multiplicative-operator> ::= * | /
<factor> ::= <integer> | (<expression>)
<integer> ::= <digits> | - <digits>
<digits> ::= <digit> | <digit> <digits>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example of a valid expression in this grammar is

-2 * (3 + 10)

Try deriving this expression from the <expression> start symbol, as was done in Table 2 or
Figure 4!

In a compiler, parsing the program source is the first step toward generating code that the
target processor (the Java virtual machine in the case of Java) can execute. Writing a parser is a
challenging and interesting task. You may at one point in your studies take a course in com-
piler construction, in which you learn how to write a parser and how to generate code from
the parsed input. Fortunately, to use XML you don’t have to know how the parser does its job.

You simply ask the XML parser to read the XML input and then process the resulting Document
tree.

23.4 Validating XML Documents
In this section you will learn how to specify rules for XML documents of a particular
type. There are sev eral mechanisms for this purpose. The oldest and simplest mecha-
nism is a Document Type Definition (DTD), the topic of this section. We discuss
other mechanisms in Special Topic 23.2.

23.4.1 Document type Definitions

Consider a document of type items. Intuitively, items denotes a sequence of item ele-
ments. Each item ele ment contains a product and a quantity. A product contains a descrip-
tion and a price. Each of these elements contains text describing the product’s descrip-
tion, price, and quantity. The purpose of a DTD is to for malize this description.

A DTD is a sequence of rules that describes

• The valid attributes for each element type
• The valid child elements for each element type

Let us first turn to child elements. The valid child elements of an element are described
by an ELEMENT rule:

<!ELEMENT items (item*)>

This means that an item list must contain a sequence of 0 or more item elements.
As you can see, the rule is delimited by <! . . . >, and it contains the name of the ele-

ment whose chil dren are to be constrained (items), followed by a description of what
children are allowed.

figure 4  a parse tree for a simple sentence

<sentence>

<verb>

eats

<noun-
phrase>

<noun-
phrase>

<noun> <noun><article><article>

a

<adjective>

<adjective-
list>

<adjective-
list>

<adjective>

quick fox

<adjective-
list>

<adjective>

brown

hungry

hamsterthe

a DtD is a sequence
of rules that
describes the valid
child elements and
attributes for each
element type.

bj5i_ch23_01.indd 1018 1/7/13 9:47 AM

23.4 Validating XML Documents W1019

You simply ask the XML parser to read the XML input and then process the resulting Document
tree.

23.4 Validating XML Documents
In this section you will learn how to specify rules for XML documents of a particular
type. There are sev eral mechanisms for this purpose. The oldest and simplest mecha-
nism is a Document Type Definition (DTD), the topic of this section. We discuss
other mechanisms in Special Topic 23.2.

23.4.1 Document type Definitions

Consider a document of type items. Intuitively, items denotes a sequence of item ele-
ments. Each item ele ment contains a product and a quantity. A product contains a descrip-
tion and a price. Each of these elements contains text describing the product’s descrip-
tion, price, and quantity. The purpose of a DTD is to for malize this description.

A DTD is a sequence of rules that describes

• The valid attributes for each element type
• The valid child elements for each element type

Let us first turn to child elements. The valid child elements of an element are described
by an ELEMENT rule:

<!ELEMENT items (item*)>

This means that an item list must contain a sequence of 0 or more item elements.
As you can see, the rule is delimited by <! . . . >, and it contains the name of the ele-

ment whose chil dren are to be constrained (items), followed by a description of what
children are allowed.

figure 4  a parse tree for a simple sentence

<sentence>

<verb>

eats

<noun-
phrase>

<noun-
phrase>

<noun> <noun><article><article>

a

<adjective>

<adjective-
list>

<adjective-
list>

<adjective>

quick fox

<adjective-
list>

<adjective>

brown

hungry

hamsterthe

a DtD is a sequence
of rules that
describes the valid
child elements and
attributes for each
element type.

bj5i_ch23_01.indd 1019 1/7/13 9:47 AM

W1020 Chapter 23 XML

table 3 replacements for special Characters

Character encoding name

< < Less than (left angle bracket)

> > Greater than (right angle bracket)

& & Ampersand

' ' Apostrophe

" " Quotation mark

Next, let us turn to the definition of an item element:
<!ELEMENT item (product, quantity)>

This means that the children of an item element must be a product element, followed
by a quantity element.

The definition for a product is similar:
<!ELEMENT product (description, price)>

Finally, here are the definitions of the three remaining elements:
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT price (#PCDATA)>

The symbol #PCDATA refers to text, called “parsed character data” in XML terminol-
ogy. The character data can contain any characters. However, certain characters, such
as < and &, have special meaning in XML and need to be replaced if they occur in char-
acter data. Table 3 shows the replacements for special charac ters.

table 4 regular expressions for element Content

rule Description element Content

EMPTY No children allowed

(E*) Any sequence of 0 or more elements E

(E+) Any sequence of 1 or more elements E

(E?) Optional element E (0 or 1 occurrences allowed)

(E1, E2, . . .) Element E1, followed by E2 , . . .

(E1 | E2 | . . .) Element E1 or E2 or . . .

(#PCDATA) Text only

(#PCDATA | E1 | E2 . . .)* Any sequence of text and elements E1, E2 , . . . , in any order

ANY Any children allowed

bj5i_ch23_01.indd 1020 1/7/13 9:47 AM

23.4 Validating XML Documents W1021

figure 5 
DtD regular
expression
operations

(E?)

(E+)

(E*) (E1, E2)

(E1 | E2)

E

E

E E1 E2

E2

E1

The complete DTD for an item list has six rules, one for each element type:
<!ELEMENT items (item*)>
<!ELEMENT item (product, quantity)>
<!ELEMENT product (description, price)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT price (#PCDATA)>

Let us have a closer look at the descriptions of the allowed children. Table 4 shows
the expressions used to describe the children of an element. The EMPTY reserved word
is self-explanatory: an element that is declared as EMPTY may not have any children.
For example, the HTML DTD defines the img element to be EMPTY—an image has only
attributes, specifying the image source, size, and placement, and no children.

More interesting child rules can be formed with the regular expression operations
(* + ? , |). (See Table 4 and Figure 5. Also see Special Topic 10.4 for more information
on regular expressions.) You have already seen the * (“0 or more”) and , (sequence)
operations. The children of an items element are 0 or more item elements, and the chil-
dren of an item are a sequence of product and description elements.

You can also combine these operations to form more complex expressions:
<!ELEMENT section (title, (paragraph | (image, title?))+)

defines an element section whose children are:

1. A title element
2. A sequence of one or more of the following:

• paragraph elements
• image elements followed by optional title elements

bj5i_ch23_01.indd 1021 1/7/13 9:47 AM

W1022 Chapter 23 XML

Thus,
<section>
 <title/>
 <paragraph/>
 <image/>
 <title/>
 <paragraph/>
</section>

is valid, but
<section>
 <paragraph/>
 <paragraph/>
 <title/>
</section>

is not—there is no starting title, and the title at the end doesn’t follow an image.
You already saw the (#PCDATA) rule. It means that the children can consist of any

character data. For example, in our product list DTD, the description element can
have any character data inside.

You can also allow mixed content—any sequence of character data and specified
elements. However, in mixed content, you have no control over the order in which
the elements appear. As explained in Programming Tip 23.2, you should avoid mixed
content for DTDs that describe data sets. This feature is intended for docu ments that
contain both text and markup instructions, such as HTML pages.

Finally, you can allow an element to have children of any type—you should avoid
that for DTDs that describe data sets.

You now know how to specify what children an element may have. A DTD also
gives you control over the allowed attributes of an element. An attribute description
looks like this:

<!ATTLIST Element Attribute Type Default>

The most useful attribute type descriptions are listed in Table 5. The CDATA type
describes any sequence of character data. As with #PCDATA, certain characters, such
as < and &, need to be encoded (as <, & and so on). There is no practical differ-
ence between the CDATA and #PCDATA types. Simply use CDATA in attribute declarations and
#PCDATA in element declarations.

Rather than allowing arbitrary attribute values, you can specify a finite number
of choices. For exam ple, you may want to restrict a currency attribute to U.S. dollar,
euro, and Japanese yen. Then use the fol lowing declaration:

<!ATTLIST price currency (USD | EUR | JPY) #REQUIRED>

You can use letters, numbers, and the hyphen (-) and underscore (_) characters for the
attribute values.

table 5 Common attribute types

type Description attribute type

CDATA Any character data

(V1 | V2 | . . .) One of V1, V2 , . . .

bj5i_ch23_01.indd 1022 1/7/13 9:47 AM

23.4 Validating XML Documents W1023

table 6 attribute Defaults

Default Declaration explanation

#REQUIRED Attribute is required

#IMPLIED Attribute is optional

V Default attribute, to be used if attribute is not specified

#FIXED V Attribute must either be unspecified or contain this value

There are other type descriptions that are less common in practice. You can find
them in the XML ref erence (http://www.xml.com/axml/axml.html).

The attribute type description is followed by a “default” declaration. The reserved
words that can appear in a “default” declaration are listed in Table 6.

For example, this attribute declaration specifies that each price element must have
a currency attribute whose value is any character data:

<!ATTLIST price currency CDATA #REQUIRED>

To fulfill this declaration, each price element must have a currency attribute, such as
<price currency="USD">. A price without a currency would not be valid.

For an optional attribute, you use the #IMPLIED reserved word instead:
<!ATTLIST price currency CDATA #IMPLIED>

That means that you can supply a currency attribute in a price element, or you can
omit it. If you omit it, then the application that processes the XML data implicitly
assumes some default currency.

A better choice would be to supply the default value explicitly:
<!ATTLIST price currency CDATA "USD">

That means that the currency attribute is understood to mean USD if the attribute is not
specified. An XML parser will then report the value of currency as USD if the attribute
was not specified.

Finally, you can state that an attribute can only be identical to a particular value.
For example, the rule

<!ATTLIST price currency CDATA #FIXED "USD">

means that a price element must either not have a currency attribute at all (in which
case the XML parser will report its value as USD), or specify the currency attribute as
USD. Naturally, this kind of rule is not very common.

You have now seen the most common constructs for DTDs. Using these constructs,
you can define your own DTDs for XML documents that describe data sets. In the
next section, you will see how to specify which DTD an XML document should use,
and how to have the XML parser check that a docu ment conforms to its DTD.

23.4.2 specifying a DtD in an XML Document

When you reference a DTD with an XML document, you can instruct the parser
to check that the docu ment follows the rules of the DTD. That way, the parser can
check errors in the document.

bj5i_ch23_01.indd 1023 1/7/13 9:47 AM

W1024 Chapter 23 XML

In the preceding section you saw how to develop a DTD for a class of XML docu-
ments. The DTD specifies the permitted elements and attributes in the document. An
XML document has two ways of ref erencing a DTD:

1. The document may contain the DTD.
2. The document may refer to a DTD that is stored elsewhere.

A DTD is introduced with the DOCTYPE declaration. If the document contains its DTD,
then the declara tion looks like this:

<!DOCTYPE rootElement [rules]>

For example, an item list can include its DTD like this:
<?xml version="1.0"?>
<!DOCTYPE items [

<!ELEMENT items (item*)>
<!ELEMENT item (product, quantity)>
<!ELEMENT product (description, price)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>
<items>
 <item>
 <product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
 </product>
 <quantity>8</quantity>
 </item>
 <item>
 <product>
 <description>4-port Mini Hub</description>
 <price>19.95</price>
 </product>
 <quantity>4</quantity>
 </item>
</items>

However, if the DTD is more complex, then it is better to store it outside the XML
document. In that case, you use the SYSTEM reserved word inside the DOCTYPE declara-
tion to indicate that the system that hosts the XML processor must locate the DTD.
The SYSTEM reserved word is followed by the location of the DTD. For example, a DOC-
TYPE declaration might point to a local file

<!DOCTYPE items SYSTEM "items.dtd">

Alternatively, the resource might be a URL anywhere on the Web:
<!DOCTYPE items SYSTEM "http://www.mycompany.com/dtds/items.dtd">

For commonly used DTDs, the DOCTYPE declaration can contain a PUBLIC reserved
word. For example,

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

an XML document
can contain its DtD
or refer to a DtD that
is stored elsewhere.

When referencing an
external DtD, you
must supply a UrL
for locating the DtD.

A program parsing the DTD can look at the public identifier. If it is a familiar identi-
fier, then it need not spend time retrieving the DTD from the URL.

23.4.3 parsing and Validation

When you include a DTD with an XML document, then you can tell the parser to
validate the document. That means that the parser will check that all child elements
and attributes of an element conform to the ELEMENT and ATTLIST rules in the DTD. If
a document is invalid, then the parser reports an error. To turn on validation, you
use the set Validating method of the DocumentBuilderFactory class before calling the new -
DocumentBuilder method:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(. . .);

Validation can simplify your code for processing XML documents. For example, if
the DTD specifies that the child elements of each item element are product and quantity
elements in that order, then you can rely on that fact and don’t need to put tedious
checks in your code.

If the parser has access to the DTD, it can make another useful improvement. By
default, the parser converts all spaces in the input document to text, even if the spaces
are only used to logically line up ele ments. As a result, the document contains text
nodes that are wasteful and can be confusing when you analyze the document tree.

To make the parser ignore white space, call the setIgnoringElementContent Whitespace
method of the Docu mentBuilderFactory class.

factory.setValidating(true);
factory.setIgnoringElementContentWhitespace(true);

Finally, if the parser has access to the DTD, it can fill in default values for attributes.
For example, sup pose a DTD defines a currency attribute for a price element:

<!ATTLIST price currency CDATA "USD">

If a document contains a price element without a currency attribute, then the parser
can supply the default:

String attributeValue = priceElement.getAttribute("currency");
 // Gets "USD" if no currency specified

This concludes our discussion of XML. You now know enough XML to put it to
work for describing data formats. Whenever you are tempted to use a “quick and
dirty” file format, you should consider using XML instead. By using XML for data
interchange, your programs become more professional, robust, and flexible.

8.  How can a DTD specify that the quantity element in an item is optional?
9.  How can a DTD specify that a product element can contain a description and a

price element, in any order?
10.  How can a DTD specify that the description element has an optional attribute

language?

Practice it  Now you can try these exercises at the end of the chapter: R23.13, P23.3, P23.5.

When your XML
document has a
DtD, you can
request validation
when parsing.

When you parse an
XML file with a DtD,
tell the parser to
ignore white space.

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

bj5i_ch23_01.indd 1024 1/7/13 9:47 AM

23.4 Validating XML Documents W1025

A program parsing the DTD can look at the public identifier. If it is a familiar identi-
fier, then it need not spend time retrieving the DTD from the URL.

23.4.3 parsing and Validation

When you include a DTD with an XML document, then you can tell the parser to
validate the document. That means that the parser will check that all child elements
and attributes of an element conform to the ELEMENT and ATTLIST rules in the DTD. If
a document is invalid, then the parser reports an error. To turn on validation, you
use the set Validating method of the DocumentBuilderFactory class before calling the new -
DocumentBuilder method:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(. . .);

Validation can simplify your code for processing XML documents. For example, if
the DTD specifies that the child elements of each item element are product and quantity
elements in that order, then you can rely on that fact and don’t need to put tedious
checks in your code.

If the parser has access to the DTD, it can make another useful improvement. By
default, the parser converts all spaces in the input document to text, even if the spaces
are only used to logically line up ele ments. As a result, the document contains text
nodes that are wasteful and can be confusing when you analyze the document tree.

To make the parser ignore white space, call the setIgnoringElementContent Whitespace
method of the Docu mentBuilderFactory class.

factory.setValidating(true);
factory.setIgnoringElementContentWhitespace(true);

Finally, if the parser has access to the DTD, it can fill in default values for attributes.
For example, sup pose a DTD defines a currency attribute for a price element:

<!ATTLIST price currency CDATA "USD">

If a document contains a price element without a currency attribute, then the parser
can supply the default:

String attributeValue = priceElement.getAttribute("currency");
 // Gets "USD" if no currency specified

This concludes our discussion of XML. You now know enough XML to put it to
work for describing data formats. Whenever you are tempted to use a “quick and
dirty” file format, you should consider using XML instead. By using XML for data
interchange, your programs become more professional, robust, and flexible.

8.  How can a DTD specify that the quantity element in an item is optional?
9.  How can a DTD specify that a product element can contain a description and a

price element, in any order?
10.  How can a DTD specify that the description element has an optional attribute

language?

Practice it  Now you can try these exercises at the end of the chapter: R23.13, P23.3, P23.5.

When your XML
document has a
DtD, you can
request validation
when parsing.

When you parse an
XML file with a DtD,
tell the parser to
ignore white space.

© Nicholas Homrich/iStockphoto.

s e L f   c h e c k

bj5i_ch23_01.indd 1025 1/7/13 9:47 AM

W1026 Chapter 23 XML

step 1  Get or write a couple of sample XML documents.

For example, if you wanted to make a DTD for XML documents that describe an invoice, you
could study samples such as the one in How To 23.1.

step 2  Make a list of all elements that can occur in the XML document.

In the invoice example, they are

© Steve Simzer/iStockphoto.

hoW to 23.3 Writing a dTd

You write a DTD to describe a set of XML documents of the same type. The DTD specifies
which elements contain child elements (and the order in which they may appear) and which
elements contain text. It also specifies which ele ments may have attributes, which attributes
are required, and which defaults are used for missing attributes.

These rules are for DTDs that describe program data. DTDs that describe narrative text
generally have a much more complex structure.

step 6  For each of those elements, decide in which order the child elements should occur and how
often they should occur.

Then form the rule

<!ELEMENT elementName child1 count1, child2 count2, . . .>

where each count is one of the following:

Quantity Count

0 or 1 ?

1 omit

0 or more *

1 or more +

In the invoice example, the items element can contain any number of items, so the rule is

<!ELEMENT items (item*)>

In the remaining cases, each child element occurs exactly once. That leads to the rules

<!ELEMENT invoice (address, items)>
<!ELEMENT address (name, street, city, state, zip)>
<!ELEMENT item (product, quantity)>
<!ELEMENT product (descripton, price)>

step 7  Decide whether any elements should have attributes.

Following Programming Tip 23.1, it is best to avoid attributes altogether or to minimize the
use of attributes. Because we have no good reason to add attributes in the invoice example, our
invoice is complete without attributes.

schema Languages

Several mechanisms have been developed to deal with the limitations of DTDs. DTDs can-
not express certain details about the structure of an XML document. For example, you can’t
force an element to contain just a number or a date—any text string is allowed for a (#PCDATA)
element.

The XML Schema specification is one mechanism for overcoming these limitations. An
XML schema is like a DTD in that it is a set of rules that documents of a particular type need to
follow, but a schema can contain far more precise rule descriptions.

Here is just a hint of how an XML schema is specified. For each element, you specify the
element name and the type. For example, this definition restricts the contents of quantity to an
integer.

<xsd:element name="quantity" type="xsd:integer"/>

Note that an XML schema is itself written in XML—unlike a DTD, which uses a com-
pletely different syntax. (The xsd: prefix is a name space prefix to denote that xsd:element and
xsd:integer are part of the XML Schema Definition name space. See Special Topic 23.3 for
more information about name spaces.)

special topic 23.2

© Eric Isselé/iStockphoto.

• invoice

• address

• name

• street

• city

• state

• zip

• items

• item

• product

• description

• quantity

step 3  For each of the elements, decide whether its children are elements or text.

It is best to avoid elements whose children are a mixture of both.
In the invoice example, the following elements have element content:
• invoice

• address

• items

• item

• product

The remainder contain text.

step 4  For elements that contain text, the DTD rule is

<!ELEMENT elementName (#PCDATA)>

Thus, we have the following simple rules for the invoice elements that contain text:

<!ELEMENT name (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>

step 5  For each element that contains other elements, make a list of the possible child elements.

Here are the lists in the invoice example:

• invoice
 address
 items

• address
 name
 street
 city
 state
 zip

• items
 item

• item
 product
 quantity

• product
 description
 price

bj5i_ch23_01.indd 1026 1/7/13 9:47 AM

23.4 Validating XML Documents W1027

step 1  Get or write a couple of sample XML documents.

For example, if you wanted to make a DTD for XML documents that describe an invoice, you
could study samples such as the one in How To 23.1.

step 2  Make a list of all elements that can occur in the XML document.

In the invoice example, they are

© Steve Simzer/iStockphoto.

hoW to 23.3 Writing a dTd

You write a DTD to describe a set of XML documents of the same type. The DTD specifies
which elements contain child elements (and the order in which they may appear) and which
elements contain text. It also specifies which ele ments may have attributes, which attributes
are required, and which defaults are used for missing attributes.

These rules are for DTDs that describe program data. DTDs that describe narrative text
generally have a much more complex structure.

step 6  For each of those elements, decide in which order the child elements should occur and how
often they should occur.

Then form the rule

<!ELEMENT elementName child1 count1, child2 count2, . . .>

where each count is one of the following:

Quantity Count

0 or 1 ?

1 omit

0 or more *

1 or more +

In the invoice example, the items element can contain any number of items, so the rule is

<!ELEMENT items (item*)>

In the remaining cases, each child element occurs exactly once. That leads to the rules

<!ELEMENT invoice (address, items)>
<!ELEMENT address (name, street, city, state, zip)>
<!ELEMENT item (product, quantity)>
<!ELEMENT product (descripton, price)>

step 7  Decide whether any elements should have attributes.

Following Programming Tip 23.1, it is best to avoid attributes altogether or to minimize the
use of attributes. Because we have no good reason to add attributes in the invoice example, our
invoice is complete without attributes.

schema Languages

Several mechanisms have been developed to deal with the limitations of DTDs. DTDs can-
not express certain details about the structure of an XML document. For example, you can’t
force an element to contain just a number or a date—any text string is allowed for a (#PCDATA)
element.

The XML Schema specification is one mechanism for overcoming these limitations. An
XML schema is like a DTD in that it is a set of rules that documents of a particular type need to
follow, but a schema can contain far more precise rule descriptions.

Here is just a hint of how an XML schema is specified. For each element, you specify the
element name and the type. For example, this definition restricts the contents of quantity to an
integer.

<xsd:element name="quantity" type="xsd:integer"/>

Note that an XML schema is itself written in XML—unlike a DTD, which uses a com-
pletely different syntax. (The xsd: prefix is a name space prefix to denote that xsd:element and
xsd:integer are part of the XML Schema Definition name space. See Special Topic 23.3 for
more information about name spaces.)

special topic 23.2

© Eric Isselé/iStockphoto.

bj5i_ch23_01.indd 1027 1/7/13 9:47 AM

W1028 Chapter 23 XML

In XML Schema, you can define complex types, much as you define classes in Java. Here is
the definition of an Address type:

<xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Then you can specify that an invoice should have shipto and billto instance variables that are
both of type Address:

<xsd:element name="shipto" type="Address"/>
<xsd:element name="billto" type="Address"/>

These examples show that an XML schema can be more precise than a DTD.
The XML Schema specification has many advanced features—see the W3C web site, www.

w3.org/xml, for details. However, some programmers find that specification overly complex
and instead use a competing standard called Relax NG—see www.relaxng.org. Relax NG is sim-
pler than XML Schema, and it shares a feature with DTDs: a com pact notation that is not
XML.

For example, in Relax NG, you simply write

element quantity { xsd:integer }

to denote that quantity is an element containing an integer. The designers of Relax NG realized
that XML, despite its many advantages, is not always the best notation for humans.

other XML Technologies

This chapter covers the subset of the XML 1.0 specification that is most useful for common
programming situations. Since version 1.0 of the XML specification was released, there has
been a huge amount of interest in advanced XML technologies. A number of useful technolo-
gies have recently been standardized. Among them are:
• Schema Definitions
• Name Spaces
• XHTML
• XSL and Transformations
Special Topic 23.2 contains more information about schema definitions.

Name spaces were invented to ensure that many different people and organizations can
develop XML documents without running into conflicts with element names. For example,
if you look inside Special Topic 23.2, you will see that XML Schema definitions have element
names that are prefixed with a tag xsd:, such as

<xsd:element name="city" type="xsd:string"/>

That way, the tag and attribute names, such as element and string, don’t conflict with other
names. In that regard, name spaces are similar to Java packages. However, a name space pre-
fix such as xsd: is just a shortcut for the actual name space identifier, which is a much longer,
unique string. For example, the full name space for XML Schema defi nitions is http://www.
w3.org/2000/08/XMLSchema. Each schema definition starts out with the statement

<xsd:schema xmlns:xsd="http://www.w3.org/2000/08/XMLSchema">

which binds the xsd prefix to the full name space.

special topic 23.3

© Eric Isselé/iStockphoto.

XHTML is the most recent recommendation of the W3C for formatting web pages. Unlike
HTML, XHTML is fully XML-compliant. Once web-editing tools switch to XHTML, it will
become much easier to write programs that parse web pages. The XHTML standard has been
carefully designed to be backward compatible with existing browsers.

While XHTML documents are intended to be viewed by browsers, general XML docu-
ments are not designed to be viewed at all. Nevertheless, it is often desirable to transform an
XML document into a viewable form. XSL (Extensible Stylesheet Language) was created for
this purpose. A style sheet indicates how to change an XML docu ment into an HTML docu-
ment, or even a completely different format, such as PDF.

For more information on these and other emerging technologies, see the W3C web site,
http://www.w3.org/xml.

describe the purpose of XML and the structure of an XML doc ument.

• XML allows you to encode complex data, independent of any programming lan-
guage, in a form that the recipient can easily parse.

• XML files are readable by computer programs and by humans.
• XML-formatted data files are resilient to change.
• XML describes the meaning of data, not how to display them.
• An XML document starts out with an XML declaration and contains elements

and text.
• An element can contain text, child elements, or both (mixed content). For data

descriptions, avoid mixed content.
• Elements can have attributes. Use attributes to describe how to interpret the ele-

ment content.

use a parser and the XPath language to process an XML docu ment.

• A parser is a program that reads a document, checks whether it is syntactically
correct, and takes some action as it processes the document.

• A streaming parser reports the building blocks of an XML document. A tree-
based parser builds a document tree.

• A DocumentBuilder can read an XML document from a file, URL, or input stream.
The result is a Document object, which contains a tree.

• An XPath describes a node or node set, using a notation similar to that for
direc tory paths.

Write Java programs that create XML documents.

• The Document interface has methods to create elements and text nodes.
• Use an LSSerializer to write a DOM document.

explain the use of dTds for validating XML documents.

• A DTD is a sequence of rules that describes the valid child elements and attributes
for each element type.

C h a p t e r s U M M a r y

bj5i_ch23_01.indd 1028 1/7/13 9:47 AM

Chapter summary W1029

XHTML is the most recent recommendation of the W3C for formatting web pages. Unlike
HTML, XHTML is fully XML-compliant. Once web-editing tools switch to XHTML, it will
become much easier to write programs that parse web pages. The XHTML standard has been
carefully designed to be backward compatible with existing browsers.

While XHTML documents are intended to be viewed by browsers, general XML docu-
ments are not designed to be viewed at all. Nevertheless, it is often desirable to transform an
XML document into a viewable form. XSL (Extensible Stylesheet Language) was created for
this purpose. A style sheet indicates how to change an XML docu ment into an HTML docu-
ment, or even a completely different format, such as PDF.

For more information on these and other emerging technologies, see the W3C web site,
http://www.w3.org/xml.

describe the purpose of XML and the structure of an XML doc ument.

• XML allows you to encode complex data, independent of any programming lan-
guage, in a form that the recipient can easily parse.

• XML files are readable by computer programs and by humans.
• XML-formatted data files are resilient to change.
• XML describes the meaning of data, not how to display them.
• An XML document starts out with an XML declaration and contains elements

and text.
• An element can contain text, child elements, or both (mixed content). For data

descriptions, avoid mixed content.
• Elements can have attributes. Use attributes to describe how to interpret the ele-

ment content.

use a parser and the XPath language to process an XML docu ment.

• A parser is a program that reads a document, checks whether it is syntactically
correct, and takes some action as it processes the document.

• A streaming parser reports the building blocks of an XML document. A tree-
based parser builds a document tree.

• A DocumentBuilder can read an XML document from a file, URL, or input stream.
The result is a Document object, which contains a tree.

• An XPath describes a node or node set, using a notation similar to that for
direc tory paths.

Write Java programs that create XML documents.

• The Document interface has methods to create elements and text nodes.
• Use an LSSerializer to write a DOM document.

explain the use of dTds for validating XML documents.

• A DTD is a sequence of rules that describes the valid child elements and attributes
for each element type.

C h a p t e r s U M M a r y

bj5i_ch23_01.indd 1029 1/7/13 9:47 AM

W1030 Chapter 23 XML

• An XML document can contain its DTD or refer to a DTD that is stored
else where.

• When referencing an external DTD, you must supply a URL for locating
the DTD.

• When your XML document has a DTD, you can request validation when pars ing.
• When you parse an XML file with a DTD, tell the parser to ignore white space.

• r23.1  Give some examples to show the differences between XML and HTML.

• r23.2  Design an XML document that describes a bank account.

• r23.3  Draw a tree view for the XML document you created in Exercise R23.2.

• r23.4  Write the XML document that corresponds to the parse tree in Figure 2.

• r23.5  Make an XML document describing a book, with child elements for the author
name, the title, and the publication year.

• r23.6  Add a description of the book’s language to the document of Exercise R23.5. Should
you use an element or an attribute?

•• r23.7  What is mixed content? What problems does it cause?

• r23.8  Design an XML document that describes a purse containing three quarters, a dime,
and two nickels.

•• r23.9  Explain why a paint program, such as Microsoft Paint, is a WYSIWYG program that
is also “what you see is all you’ve got”.

javax.xml.parsers.DocumentBuilder
 newDocument
 parse
javax.xml.parsers.DocumentBuilderFactory
 newDocumentBuilder
 newInstance
 setIgnoringElementContentWhitespace
 setValidating
javax.xml.xpath.XPath
 evaluate
javax.xml.xpath.XPathExpressionException
javax.xml.xpath.XPathFactory
 newInstance
 newXPath
org.w3c.dom.Document
 createElement
 createTextNode
 getImplementation

org.w3c.dom.DOMConfiguration
 setParameter
org.w3c.dom.DOMImplementation
 getFeature
org.w3c.dom.Element
 getAttribute
 setAttribute
org.w3c.dom.ls.DOMImplementationLS
 createLSSerializer
org.w3c.dom.ls.LSSerializer
 getDomConfig
 writeToString
org.xml.sax.SAXException

s ta n D a r D L I B r a r y I t e M s I n t r o D U C e D I n t h I s C h a p t e r

r e V I e W Q U e s t I o n s

bj5i_ch23_01.indd 1030 1/7/13 9:47 AM

review Questions W1031

•• r23.10  Consider the XML file
<purse>
 <coin>
 <value>0.5</value>
 <name lang="en">half dollar</name>
 </coin>
 <coin>
 <value>0.25</value>
 <name lang="en">quarter</name>
 </coin>
</purse>

What are the values of the following XPath expressions?
a. /purse/coin[1]/value
b. /purse/coin[2]/name
c. /purse/coin[2]/name/@lang
d. name(/purse/coin[2]/*[1])
e. count(/purse/coin)
f.  count(/purse/coin[2]/name)

•• r23.11  With the XML file of Exercise R23.10, give XPath expressions that yield
a. the value of the first coin.
b. the number of coins.
c. the name of the first child element of the first coin element.
d. the name of the first attribute of the first coin’s name element. (The

expression @* selects the attributes of an element.)
e. the value of the lang attribute of the second coin’s name element.

••• r23.12  Harry Hopeless doesn’t want to build a DOM tree to produce an XML document.
Instead, he uses the following code:

System.out.println("<?xml version="1.0"?><items>");
for (LineItem anItem: items)
{
 Product p = anItem.getProduct();
 System.out.println("<item><product><description>" + p.getDescription()
 + "</description><price>" + p.getPrice()
 + "</price></product><quantity>" + anItem.getQuantity()
 + "<quantity></item>");
}
System.out.println("</items>");

What can go wrong? How can one fix the problems?

•• r23.13  Design a DTD that describes a bank with bank accounts.

•• r23.14  Design a DTD that describes a library patron who has checked out a set of books.
Each book has an ID number, an author, and a title. The patron has a name and tele-
phone number.

•• r23.15  Write the DTD file for the following XML document
<?xml version="1.0"?>
<productlist>
 <product>
 <name>Comtrade Tornado</name>

bj5i_ch23_01.indd 1031 1/7/13 9:47 AM

W1032  Chapter 23   XML

 <price currency="USD">2495</price>
 <score>60</score>
 </product>
 <product>
 <name>AMAX Powerstation 75</name>
 <price>2999</price>
 <score>62</score>
 </product>
</productlist>

•• R23.16 Design a DTD for invoices, as described in How To 23.3.

••• R23.17 Design a DTD for simple English sentences, as described in Special Topic 23.1.

••• R23.18 Design a DTD for arithmetic expressions, as described in Special Topic 23.1.

•• P23.1 Write a program that can read XML files, such as
<purse>
 <coin>
 <value>0.5</value>
 <name>half dollar</name>
 </coin>
 . . .
</purse>

Your program should construct a Purse object and print the total value of the coins in
the purse.

••• P23.2 Building on Exercise P23.1, make the program read an XML file as described in that
exercise. Then print an XML file of the form

<purse>
 <coins>
 <coin>
 <value>0.5</value>
 <name>half dollar</name>
 </coin>
 <quantity>3</quantity>
 </coins>
 <coins>
 <coin>
 <value>0.25</value>
 <name>quarter</name>
 </coin>
 <quantity>2</quantity>
 </coins>
</purse>

•• P23.3 Repeat Exercise P23.1, using a DTD for validation.

•• P23.4 Write a program that can read XML files, such as
<bank>
 <account>
 <number>3</number>
 <balance>1295.32</balance>

P r o g r a M M i n g  E X E r C i s E s

bj5i_ch23_02.indd 1032 1/17/13 3:12 PM

Programming Exercises  W1033

 </account>
 . . .
</bank>

Your program should construct a Bank object and print the total value of the balances
in the accounts.

•• P23.5 Repeat Exercise P23.4, using a DTD for validation.

•• P23.6 Enhance Exercise P23.4 as follows: First read the XML file in, then add ten percent
interest to all accounts, and write an XML file that contains the increased account
balances.

••• P23.7 Write a DTD file that describes documents that contain information about coun
tries: name of the country, its population, and its area. Create an XML file that has
five different countries. The DTD and XML should be in different files. Write a
program that uses the XML file you wrote and prints:

• The country with the largest area.
• The country with the largest population.
• The country with the largest population density (people per square

kilometer).

•• P23.8 Write a parser to parse invoices using the invoice structure described in How To
23.1. The parser should parse the XML file into an Invoice object and print out the
invoice in the format used in Chapter 11.

•• P23.9 Modify Exercise P23.8 to support separate shipping and billing addresses. Supply a
modified DTD with your solution.

•• P23.10 Write a document builder that turns an invoice object, as defined in Chapter 11, into
an XML file of the format described in How To 23.2.

••• P23.11 Modify Exercise P23.10 to support separate shipping and billing addresses.

• Graphics P23.12 Write a program that can read an XML document of the form
<rectangle>
 <x>5</x>
 <y>10</y>
 <width>20</width>
 <height>30</height>
</rectangle>

and draw the shape in a window.

• Graphics P23.13 Write a program that can read an XML document of the form
<ellipse>
 <x>5</x>
 <y>10</y>
 <width>20</width>
 <height>30</height>
</ellipse>

and draw the shape in a window.

•• Graphics P23.14 Write a program that can read an XML document of the form
<rectangularshape shape="ellipse">
 <x>5</x>
 <y>10</y>

bj5i_ch23_02.indd 1033 1/17/13 3:12 PM

W1034 Chapter 23 XML

Your program should process the commands and then produce an XML file that
consists of the updated appointments.

a n s W e r s t o s e L F - C h e C k Q U e s t I o n s

 <width>20</width>
 <height>30</height>
</rectangularshape>

Support shape attributes "rectangle", "roundrectangle", and "ellipse".
Draw the shape in a window.

•• graphics P23.15  Write a program that can read an XML document of the form
<polygon>
 <point>
 <x>5</x>
 <y>10</y>
 </point>
 . . .
</polygon>

and draw the shape in a window.

••• graphics P23.16  Write a program that can read an XML document of the form
<drawing>
 <rectangle>
 <x>5</x>
 <y>10</y>
 <width>20</width>
 <height>30</height>
 </rectangle>
 <line>
 <x1>5</x1>
 <y1>10</y1>
 <x2>25</x2>
 <y2>40</y2>
 </line>
 <message>
 <text>Hello, World!</text>
 <x>20</x>
 <y>30</y>
 </message>
</drawing>

and show the drawing in a window.

••• graphics P23.17  Repeat Exercise P23.16, using a DTD for validation.

••• P23.18  Following Exercise P11.8, design an XML format for the appointments in an
appointment calendar. Write a program that first reads in a file with appointments,
then another file of the format

<commands>
 <add>
 <appointment>
 . . .
 </appointment>
 </add>
 . . .
 <remove>
 <appointment>
 . . .
 </appointment>
 </remove>
</commands>

bj5i_ch23_01.indd 1034 1/7/13 9:47 AM

answers to self-Check Questions W1035

Your program should process the commands and then produce an XML file that
consists of the updated appointments.

a n s W e r s t o s e L F - C h e C k Q U e s t I o n s

1.  Your answer should look similar to this:
<student>
 <name>James Bond</name>
 <id>007</id>
</student>

2.  Most browsers display a tree structure that
indicates the nesting of the tags. Some brows-
ers display nothing at all because they can’t
find any HTML tags.

3.  The text hamster.jpg is never displayed, so it
should not be a part of the document. Instead,
the src attribute tells the browser where to find
the image that should be displayed.

4.  29.95.
5.  name(/*[1]).

6.  The createTextElement method is useful for
creating other documents.

7.  First construct a string, as described, and then
use a PrintWriter to save the string to a file.

8.  <!ELEMENT item (product, quantity?)>
9.  <!ELEMENT product ((description, price) |

(price, description))>
10.  <!ATTLIST description language CDATA #IMPLIED>

bj5i_ch23_01.indd 1035 1/7/13 9:47 AM

bj5i_ch23_01.indd 1036 1/7/13 9:47 AM

