
24C h a p t e r

W1037

© Philip Toy/iStockphoto.

Web
appliCations

to understand the web application
concept

to learn the syntactical elements of the
Javaserver Faces web application framework

to manage navigation in web applications

to build three-tier web applications

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

24.1  The  Archi Tec Ture  of  A Web 
Applic ATion  W1038

24.2  The  Archi Tec Ture  of  A JSf 
Applic ATion  W1040

Special Topic 24.1: session state and
Cookies W1045

24.3  JAvAbeAnS c omponen TS  W1046

24.4  nAvigATion  beTWeen  pAgeS  W1047

How To 24.1: Designing a Managed bean W1053

24.5  JSf c omponen TS  W1054

24.6  A Three-Tier  Applic ATion  W1056

Special Topic 24.2: aJaX W1063

bj5i_ch24_01.indd 1037 1/7/13 9:50 AM

W1038

© Philip Toy/iStockphoto.

Web applications for a wide variety of purposes, such as
e-mail, banking, shopping, and playing games, run on
servers and interact with users through a web browser.
Developing web-based user interfaces is more complex
and challenging than writing graphical user interfaces.
Fortunately, frameworks for web programming have
emerged that are roughly analogous to Java’s swing
framework for user-interface programming. in this chapter,
you will learn how to write web applications using the
Javaserver Faces (JsF) framework.

24.1 the architecture of a Web application
A web application is an application whose user interface is displayed in a web
browser. The application program resides on the web server. The user fills out form
elements and clicks on buttons and links. The user inputs are transmitted over the
Internet to the server, and the server program updates the web page that the user sees
(see Figure 1).

The browser sends a request to the server using a protocol called HTTP (Hyper-
text transfer protocol). When a user clicks on a link, the request is very simple. The
browser simply asks the server for the page with a given address, for example:

GET /index.html HTTP/1.1
Host: horstmann.com

When the user fills data (such as a user name and password) into a form and then
clicks on a button, the HTTP request includes the data that the user provided. Such a
request has a slightly different format, like this:

POST /login.xhtml HTTP/1.1
Host: horstmann.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 46
blank line
username=jqpublic&passwd=secret&login=Log%20in

The exact syntax of the request is not important; what matters is that HTTP simply
tells the server what the user requested. As a result of the request, the server sends a
web page in a format called HTML (Hypertext markup language). An HTML page
contains tags that describe the structure of the page: headings, bullets, links, images,
input elements, and so on.

the user interface
of a web application
is displayed in a
web browser.

When a form is
submitted, the
names and values
of the form elements
are sent to the
web server.

f igure 1  the architecture of a Web application

Browser Client Web Server

HTTP

HTML

Internet

For example, here is the HTML code for a simple form that prompts for a user name
and password:

<html>
 <head>
 <title>A Simple Form</title>
 </head>
 <body>
 <form action="login.xhtml" method="POST">
 <p>
 User name:
 <input type="text" name="username" />
 Password:
 <input type="password" name="passwd" />
 <input type="submit" name="login" value="Log in"/>
 </p>
 </form>
 </body>

</html>

Figure 2 shows the form. Note that there are three input elements: a text field, a pass-
word field, and a submit button. (The HTML tags are summarized in Appendix J.)

When a submit button is pressed, the form data is submitted to the server. The
web server analyzes the request and sends a new HTML page to the browser. The
new page might tell the user that the login was successful and ask the user to specify
another action. Alternatively, the new page might tell the user that the login failed.

This simple example illustrates why it is difficult to implement a web application.
Imagine what the server program has to do. At any time, it might receive a request
with form data. At that point, the server program has to remember which form it has
last sent to the client. It then needs to analyze the submitted data, decide what form to
show next, and produce the HTML tags for that form.

There are multiple challenges. As described in Special Topic 24.1, the HTTP pro-
tocol is stateless—there is no memory of which form was last sent when a new request
is received. Generating the HTML tags for a form is tedious. Perhaps most impor-
tantly, an application that consists of response strategies for a large number of request
types is very hard to comprehend without additional structure.

In order to overcome these challenges, various web application frameworks have
been developed. A web application framework hides the low-level details of analyz-
ing HTTP and generating HTML from the application programmer. In this chapter,
you will learn about the JavaServer Faces (JSF) framework, the web framework that
is a part of the Java Enterprise Edition. You can think of JSF as “Swing for the Web”.

Upon receiving the
form data, the web
server sends a new
web page to the
browser.

f igure 2  a simple Form

bj5i_ch24_01.indd 1038 1/7/13 9:50 AM

24.1 the architecture of a Web application W1039

For example, here is the HTML code for a simple form that prompts for a user name
and password:

<html>
 <head>
 <title>A Simple Form</title>
 </head>
 <body>
 <form action="login.xhtml" method="POST">
 <p>
 User name:
 <input type="text" name="username" />
 Password:
 <input type="password" name="passwd" />
 <input type="submit" name="login" value="Log in"/>
 </p>
 </form>
 </body>

</html>

Figure 2 shows the form. Note that there are three input elements: a text field, a pass-
word field, and a submit button. (The HTML tags are summarized in Appendix J.)

When a submit button is pressed, the form data is submitted to the server. The
web server analyzes the request and sends a new HTML page to the browser. The
new page might tell the user that the login was successful and ask the user to specify
another action. Alternatively, the new page might tell the user that the login failed.

This simple example illustrates why it is difficult to implement a web application.
Imagine what the server program has to do. At any time, it might receive a request
with form data. At that point, the server program has to remember which form it has
last sent to the client. It then needs to analyze the submitted data, decide what form to
show next, and produce the HTML tags for that form.

There are multiple challenges. As described in Special Topic 24.1, the HTTP pro-
tocol is stateless—there is no memory of which form was last sent when a new request
is received. Generating the HTML tags for a form is tedious. Perhaps most impor-
tantly, an application that consists of response strategies for a large number of request
types is very hard to comprehend without additional structure.

In order to overcome these challenges, various web application frameworks have
been developed. A web application framework hides the low-level details of analyz-
ing HTTP and generating HTML from the application programmer. In this chapter,
you will learn about the JavaServer Faces (JSF) framework, the web framework that
is a part of the Java Enterprise Edition. You can think of JSF as “Swing for the Web”.

Upon receiving the
form data, the web
server sends a new
web page to the
browser.

f igure 2  a simple Form

bj5i_ch24_01.indd 1039 1/7/13 9:50 AM

W1040 Chapter 24 Web applications

Both Swing and JSF handle the tedious details of capturing user input and painting
text fields and buttons. Swing captures mouse and keyboard events and paints pixels
in a frame. JSF handles form-post ing events and paints by emitting HTML code. This
chapter describes JSF 2.0, an improved version of the original JSF framework, that
became available in 2009.

1.  Why are two different protocols (HTML and HTTP) required by a web
application?

2.  How can a web application know which user is trying to log in when the infor-
mation of the sample login screen is submitted?

practice it  Now you can try these exercises at the end of the chapter: R24.1, R24.2.

24.2 the architecture of a JsF application
In the following sections, we give an overview of the architecture of a JSF application
and show a very simple sample application.

24.2.1 JsF pages

The user interface of a JSF application is described by a set of JSF pages. Each JSF
page has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Page title</title>
 </h:head>
 <h:body>
 <h:form>
 Page contents
 </h:form>
 </h:body>
</html>

You can think of this as the required “plumbing”, similar to the public static void main
incantation that is required for every Java program. If you compare this page with the
HTML page from the preceding sec tion, you will notice that the main elements are
very similar to a regular HTML page, but several elements (head, body, and form) are
JSF tags with an h: prefix.

Here is a complete example of a JSF page:

section_2/time/index.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The time application</title>
6 </h:head>

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

a Javaserver Faces
(JsF) page contains
htMl and JsF tags.

7 <h:body>
8 <h:form>
9 <p>

10 The current time is #{timeBean.time}
11 </p>
12 </h:form>
13 </h:body>
14 </html>

Figure 3 shows the result of executing the program.

The purpose of a JSF page is to generate an HTML page. The basic process is as
follows:

• The HTML tags that are present in the JSF page (such as title and p) are retained.
These are the static part of the page: the formatting instructions that do not
change.

• The JSF tags are translated into HTML. This translation is dynamic: it depends on
the state of Java objects that are associated with the tags. In our example, the
expression #{timeBean.time} has been replaced by dynamically generated text,
namely the current time.

Figure 4 shows the basic process. The browser requests a JSF page. The page is pro-
cessed by the JSF con tainer, the server-side software that implements the JSF frame-
work. The JSF container translates all JSF tags into text and HTML tags, yielding a
pure HTML page. That page is transmitted to the client browser. The browser dis-
plays the page.

f igure 3  executing the time Web application

the JsF container
converts a JsF page
to an htMl page,
replacing all JsF
tags with text and
htMl tags.

f igure 4  the JsF Container rewrites the requested page

JSF Page JSF Container HTML File Web Server Internet Web Browser

bj5i_ch24_01.indd 1040 1/7/13 9:50 AM

24.2 the architecture of a JsF application W1041

7 <h:body>
8 <h:form>
9 <p>

10 The current time is #{timeBean.time}
11 </p>
12 </h:form>
13 </h:body>
14 </html>

Figure 3 shows the result of executing the program.

The purpose of a JSF page is to generate an HTML page. The basic process is as
follows:

• The HTML tags that are present in the JSF page (such as title and p) are retained.
These are the static part of the page: the formatting instructions that do not
change.

• The JSF tags are translated into HTML. This translation is dynamic: it depends on
the state of Java objects that are associated with the tags. In our example, the
expression #{timeBean.time} has been replaced by dynamically generated text,
namely the current time.

Figure 4 shows the basic process. The browser requests a JSF page. The page is pro-
cessed by the JSF con tainer, the server-side software that implements the JSF frame-
work. The JSF container translates all JSF tags into text and HTML tags, yielding a
pure HTML page. That page is transmitted to the client browser. The browser dis-
plays the page.

f igure 3  executing the time Web application

the JsF container
converts a JsF page
to an htMl page,
replacing all JsF
tags with text and
htMl tags.

f igure 4  the JsF Container rewrites the requested page

JSF Page JSF Container HTML File Web Server Internet Web Browser

bj5i_ch24_01.indd 1041 1/7/13 9:50 AM

W1042 Chapter 24 Web applications

24.2.2 Managed beans

The expression #{timeBean.time} is called a value expression. Value expressions invoke
method calls on Java objects, which are called managed beans.

These objects are called “managed” because they are controlled by the JSF con-
tainer. The container creates a managed bean when it is first used in a value expres-
sion. The scope of the managed bean deter mines which clients can access the object
and how long the object stays alive.

In this chapter, we only consider managed beans with session scope. A session-
scoped object can be accessed by all requests from the same browser. If multiple users
are simultaneously accessing a JSF appli cation, each of them is given a separate object.
This is a good default for simple web applications.

Below is the code for the TimeBean class. Note the following:

• You declare a session-scoped managed bean with the annotations @ManagedBean and
@SessionScoped.

• The name of the bean in a value expression is the class name with the first letter
changed to lowercase, e.g., timeBean.

• The value expression timeBean.time calls the getTime method. You will see the
reason in the next section.

• The getTime method uses the DateFormat class to format the current time, producing
a string such as 9:00:00 AM.

• When deploying the application, all class files must be placed inside the WEB-INF/
classes directory. Because many application servers also require that classes be
contained in a package, we place our classes inside the bigjava package. For that
reason, the class is contained in the WEB-INF/classes/bigjava directory.

section_2/time/Web-inf /classes/bigjava/Timebean.java

1 package bigjava;
2
3 import java.text.DateFormat;
4 import java.util.Date;
5 import java.util.TimeZone;
6 import javax.faces.bean.ManagedBean;
7 import javax.faces.bean.SessionScoped;
8
9 @ManagedBean

10 @SessionScoped
11 public class TimeBean
12 {
13 private DateFormat timeFormatter;
14
15 /**
16 Initializes the formatter.
17 */
18 public TimeBean()
19 {
20 timeFormatter = DateFormat.getTimeInstance();
21 }
22
23 /**
24 Read-only time property.
25 @return the formatted time

a managed bean
is an object that is
controlled by the
JsF container.

a bean with session
scope is available for
multiple requests by
the same browser.

26 */
27 public String getTime()
28 {
29 Date time = new Date();
30 String timeString = timeFormatter.format(time);
31 return timeString;
32 }
33 }

24.2.3 separation of presentation and business logic

We will look at value expressions and managed beans in more detail in the next sec-
tion. The key observa tion is that every JSF application has two parts: presentation
and business logic.

The term “presentation” refers to the user interface of the web application: the
arrangement of the text, images, buttons, and so on. The business logic is the part of
the application that is independent of the visual presentation. In commercial applica-
tions, it contains the rules that are used for business decisions: what products to offer,
how much to charge, to whom to extend credit, and so on. In our example, we simu-
lated the business logic with a TimeBean object.

JSF pages define the presentation logic. Managed beans define the business logic.
Value expressions tie the two together.

The separation of presentation logic and business logic is very important when
designing web applica tions. Some web technologies place the code for the business
logic right into the web page. However, this quickly turns into a serious problem.
Programmers are rarely skilled in web design (as you can see from the boring web
pages in this chapter). Graphic designers don’t usually know much about program-
ming and find it very challenging to improve web pages that contain a lot of code. JSF
solves this problem. In JSF, the graphic designer only sees the elements that make up
the presentation logic. It is easy to take a boring JSF page and make it pretty by add-
ing banners, icons, and so on.

24.2.4 Deploying a JsF application

To run a JSF application, you need a server with a JSF container. We suggest that you
use the GlassFish application server, http://glassfish.java.net, which has, together
with many other features that you can ignore, a JSF container and a convenient
administration interface.

To deploy a JSF application, follow these steps:

1. Make a separate directory tree for each web application.
2. Place JSF pages (such as index.xhtml) into the root directory of the application’s

directory tree.
3. Create a WEB-INF subdirectory in your application directory.
4. Place all Java classes inside a classes subdirectory of the WEB-INF directory. Note

that you should place your classes into a package. Compile with
cd WEB-INF/classes
javac -classpath glassfish/modules/jsf-api.jar bigjava/*.java

the JsF technology
enables the
separation of
presentation and
business logic.

bj5i_ch24_01.indd 1042 1/7/13 9:50 AM

24.2 the architecture of a JsF application W1043

26 */
27 public String getTime()
28 {
29 Date time = new Date();
30 String timeString = timeFormatter.format(time);
31 return timeString;
32 }
33 }

24.2.3 separation of presentation and business logic

We will look at value expressions and managed beans in more detail in the next sec-
tion. The key observa tion is that every JSF application has two parts: presentation
and business logic.

The term “presentation” refers to the user interface of the web application: the
arrangement of the text, images, buttons, and so on. The business logic is the part of
the application that is independent of the visual presentation. In commercial applica-
tions, it contains the rules that are used for business decisions: what products to offer,
how much to charge, to whom to extend credit, and so on. In our example, we simu-
lated the business logic with a TimeBean object.

JSF pages define the presentation logic. Managed beans define the business logic.
Value expressions tie the two together.

The separation of presentation logic and business logic is very important when
designing web applica tions. Some web technologies place the code for the business
logic right into the web page. However, this quickly turns into a serious problem.
Programmers are rarely skilled in web design (as you can see from the boring web
pages in this chapter). Graphic designers don’t usually know much about program-
ming and find it very challenging to improve web pages that contain a lot of code. JSF
solves this problem. In JSF, the graphic designer only sees the elements that make up
the presentation logic. It is easy to take a boring JSF page and make it pretty by add-
ing banners, icons, and so on.

24.2.4 Deploying a JsF application

To run a JSF application, you need a server with a JSF container. We suggest that you
use the GlassFish application server, http://glassfish.java.net, which has, together
with many other features that you can ignore, a JSF container and a convenient
administration interface.

To deploy a JSF application, follow these steps:

1. Make a separate directory tree for each web application.
2. Place JSF pages (such as index.xhtml) into the root directory of the application’s

directory tree.
3. Create a WEB-INF subdirectory in your application directory.
4. Place all Java classes inside a classes subdirectory of the WEB-INF directory. Note

that you should place your classes into a package. Compile with
cd WEB-INF/classes
javac -classpath glassfish/modules/jsf-api.jar bigjava/*.java

the JsF technology
enables the
separation of
presentation and
business logic.

bj5i_ch24_01.indd 1043 1/7/13 9:50 AM

W1044 Chapter 24 Web applications

5. Place the file web.xml (which is shown below) inside the WEB-INF subdirectory.
Some servers need the web.xml file to configure the JSF container. We also turn
on development mode, which gives better error messages.

6. Zip up all application files into a file with extension .war (Web Archive). This
is easily achieved by running the jar command from the command line, after
changing to the application directory. For example,

cd time
jar cvf time.war .

The period (.) denotes the current directory. The jar command creates an
archive time.war consisting of all files in all subdirectories of the current
directory.

7. Make sure the application server is started. The application server listens to
web requests, typically on port 8080.

8. Deploy the application to the application server. With GlassFish, this can be
achieved either through the administrative interface or simply by copying the
WAR file into a special deployment directory. By default, this is the subdirec-
tory domains/domain1/autodeploy inside the GlassFish installation direc tory.

9. Point your browser to a URL such as http://localhost:8080/time/faces/index.
xhtml. Note the faces part in the URL. If you forget this part, the file will not be
processed by the JSF container.

Figure 5 shows the directory structure for the application.

section_2/time/Web-inf /web.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xmlns="http://java.sun.com/xml/ns/javaee"
4 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
5 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
6 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
7 version="2.5">
8 <servlet>
9 <servlet-name>Faces Servlet</servlet-name>

10 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
11 </servlet>
12 <servlet-mapping>
13 <servlet-name>Faces Servlet</servlet-name>
14 <url-pattern>/faces/*</url-pattern>
15 </servlet-mapping>
16 <welcome-file-list>
17 <welcome-file>faces/index.xhtml</welcome-file>
18 </welcome-file-list>
19 <context-param>
20 <param-name>javax.faces.PROJECT_STAGE</param-name>

f igure 5 
the Directory
structure of the
time application

21 <param-value>Development</param-value>
22 </context-param>
23 </web-app>

3.  What steps are required to add the image of a clock to the time application? (The
clock doesn’t have to show the correct time.)

4.  Does a Swing program automatically separate presentation and business logic?
5.  Why does the WAR file need to be deployed to the application server?

practice it  Now you can try these exercises at the end of the chapter: R24.1, R24.7, P24.1.

Session State and c ookies

Recall that HTTP is a stateless protocol. A browser sends a request to a web server. The web
server sends the reply and then disconnects. This is different from other protocols, such as
POP, where the mail client logs into the mail server and stays connected until it has retrieved
all e-mail messages. In contrast, a browser makes a new connection to the web server for each
web page, and the web server has no way of knowing that those connections originate from
the same browser. This makes it difficult to implement web applications. For example, in a
shopping application, it is essential to track which requests came from a particular shopper.

Cookies were invented to overcome this restriction. A cookie consists of a small string that
the web server sends to a browser, and that the browser sends back to the same server with all
further requests. That way, the server can tie the stream of requests together. The JSF container
matches up the cookies with the beans that have session scope. When a browser request con-
tains a cookie, the value expressions in the JSF page refer to the matching beans.

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

special topic 24.1

© Eric Isselé/iStockphoto.

f igure 6  Viewing the Cookies in a browser

bj5i_ch24_01.indd 1044 1/7/13 9:50 AM

24.2 the architecture of a JsF application W1045

21 <param-value>Development</param-value>
22 </context-param>
23 </web-app>

3.  What steps are required to add the image of a clock to the time application? (The
clock doesn’t have to show the correct time.)

4.  Does a Swing program automatically separate presentation and business logic?
5.  Why does the WAR file need to be deployed to the application server?

practice it  Now you can try these exercises at the end of the chapter: R24.1, R24.7, P24.1.

Session State and c ookies

Recall that HTTP is a stateless protocol. A browser sends a request to a web server. The web
server sends the reply and then disconnects. This is different from other protocols, such as
POP, where the mail client logs into the mail server and stays connected until it has retrieved
all e-mail messages. In contrast, a browser makes a new connection to the web server for each
web page, and the web server has no way of knowing that those connections originate from
the same browser. This makes it difficult to implement web applications. For example, in a
shopping application, it is essential to track which requests came from a particular shopper.

Cookies were invented to overcome this restriction. A cookie consists of a small string that
the web server sends to a browser, and that the browser sends back to the same server with all
further requests. That way, the server can tie the stream of requests together. The JSF container
matches up the cookies with the beans that have session scope. When a browser request con-
tains a cookie, the value expressions in the JSF page refer to the matching beans.

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

special topic 24.1

© Eric Isselé/iStockphoto.

f igure 6  Viewing the Cookies in a browser

bj5i_ch24_01.indd 1045 1/7/13 9:50 AM

W1046 Chapter 24 Web applications

You may have heard some privacy advocates complaining about cookies. Cookies are not
inherently evil. When used to establish a session or to remember login information, they can
make web applications more user-friendly. But when cookies are used to track your identity
while you surf the Web, there can be privacy concerns. For exam ple, Figure 6 shows some
of the cookies that my browser held on a particular day. I have no recollection of visiting the
advertising sites, so it is a bit disconcerting to see that my browser communicated with them.

Some people turn off cookies, and then web applications need to use another scheme to
establish a session, typi cally by embedding a session identifier in the request URL or in a hid-
den field of a form. The JSF session mechanism automatically switches to URLs with session
identifiers if the client browser doesn’t support cookies.

24.3 Javabeans Components
A software component is an entity that encapsulates functionality and can be plugged
into a software sys tem without programming. A managed bean is an example of a
software component. When we added the timeBean object to the web application, we
did not write Java code to construct the object or to call its methods.

Some programming languages have explicit support for components, but Java does
not. Instead, in Java, you use a programming convention to implement components.
A JavaBean is a Java class that fol lows this convention. A JavaBean exposes proper-
ties—values of the component that can be accessed without programming.

Just about any Java class can be a JavaBean—there are only two requirements:

• A JavaBean must have a constructor with no arguments.
• A JavaBean must have methods for accessing the component properties that

follow the get/set naming convention. For example, to get or set a property
named city, the methods must be called getCity and setCity.

In general, if the name of the property is propertyName, and its type is Type, then the
associated methods must be of the form

public Type getPropertyName()
public void setPropertyName(Type newValue)

Note that the name of a property starts with a lowercase letter (such as city), but the
corresponding methods have an uppercase letter (getCity). The only exception is that
property names can be all capitals, such as ID or URL, with corresponding methods
getID or setURL.

If a property has only a get method, then it is a read-only property. If it has only a
set method, then it is a write-only property.

A JavaBean can have additional methods, but they are not connected with
properties.

Here is a simple example of a bean class that formats the time for a given city,
which we will further develop in the next section:

public class TimeZoneBean
{
 // Instance variables
 . . .
 // Required constructor with no arguments
 public TimeZoneBean() { . . . }

properties of a
software component
can be accessed
without having to
write Java code.

a Javabean is a
class that exposes
properties through
its get and
set methods.

 // city property
 public String getCity() { . . . }
 public void setCity(String newValue) { . . . }

 // Read-only time property
 public String getTime() { . . . }

 // Other methods
 . . .
}

This bean has two properties: city and time.
You should not make any assumptions about the internal representation of prop-

erties in the bean class. The getter and setter methods may simply read or write an
instance variable. But they may also do other work. An example is the getTime method
from the TimeBean in the preceding section; it formats the current time.

When a property name is used in a value expression that is included in the JSF
page, then the get method is involved. For example, when the string

The current time is #{timeBean.time}

is rendered, the JSF container calls the getTime method of the session’s TimeBean
instance.

When a property name is used in an h:inputText tag (that, is the equivalent of an
HTML input field or a JTextField), the situation is more complex. Consider this
example:

<h:inputText value="#{timeZoneBean.city}"/>

When the JSF page is first displayed, the getCity method is called, and the current
value of the city prop erty is displayed. But after the user submits the page, the set-
City method is called. It sets the city property to the value that the user typed into the
input field.

6.  Is the Scanner class a JavaBean?
7.  What work does the setCity method of the TimeZoneBean do?

practice it  Now you can try these exercises at the end of the chapter: R24.5, R24.6, P24.2.

24.4 navigation between pages
In most web applications, users will want to move between different pages. For
example, a shopping application might have a login page, a page to show products for
sale, and a checkout page that shows the shopping cart. In this section, you will learn
how to enable users to navigate from one page to another.

Consider a sample time zone program that displays the current time. If the time
computation uses the time zone at the server loca tion, it will not be very useful when
the user is in another time zone. Therefore, the program will prompt for the city in
which the user is located. When the user clicks a submit button, the program moves
to the page next.xhtml and display the time in the user’s time zone (see Figure 7). How-
ever, if no time zone is available for the city, the program displays the page error.xhtml.

in the value
expression of an
output tag, only
the property getter
is called.

in the value
expression of
an input tag, the
property setter is
called when the page
is submitted.

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

bj5i_ch24_01.indd 1046 1/7/13 9:50 AM

24.4 navigation between pages W1047

 // city property
 public String getCity() { . . . }
 public void setCity(String newValue) { . . . }

 // Read-only time property
 public String getTime() { . . . }

 // Other methods
 . . .
}

This bean has two properties: city and time.
You should not make any assumptions about the internal representation of prop-

erties in the bean class. The getter and setter methods may simply read or write an
instance variable. But they may also do other work. An example is the getTime method
from the TimeBean in the preceding section; it formats the current time.

When a property name is used in a value expression that is included in the JSF
page, then the get method is involved. For example, when the string

The current time is #{timeBean.time}

is rendered, the JSF container calls the getTime method of the session’s TimeBean
instance.

When a property name is used in an h:inputText tag (that, is the equivalent of an
HTML input field or a JTextField), the situation is more complex. Consider this
example:

<h:inputText value="#{timeZoneBean.city}"/>

When the JSF page is first displayed, the getCity method is called, and the current
value of the city prop erty is displayed. But after the user submits the page, the set-
City method is called. It sets the city property to the value that the user typed into the
input field.

6.  Is the Scanner class a JavaBean?
7.  What work does the setCity method of the TimeZoneBean do?

practice it  Now you can try these exercises at the end of the chapter: R24.5, R24.6, P24.2.

24.4 navigation between pages
In most web applications, users will want to move between different pages. For
example, a shopping application might have a login page, a page to show products for
sale, and a checkout page that shows the shopping cart. In this section, you will learn
how to enable users to navigate from one page to another.

Consider a sample time zone program that displays the current time. If the time
computation uses the time zone at the server loca tion, it will not be very useful when
the user is in another time zone. Therefore, the program will prompt for the city in
which the user is located. When the user clicks a submit button, the program moves
to the page next.xhtml and display the time in the user’s time zone (see Figure 7). How-
ever, if no time zone is available for the city, the program displays the page error.xhtml.

in the value
expression of an
output tag, only
the property getter
is called.

in the value
expression of
an input tag, the
property setter is
called when the page
is submitted.

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

bj5i_ch24_01.indd 1047 1/7/13 9:50 AM

W1048 Chapter 24 Web applications

f igure 7  the timezone application

A button yields an outcome, a string that determines the next page. Unless speci-
fied otherwise, the next page is the outcome string with the .xhtml extension added.
For example, if the outcome string is error, the next page is error.xhtml. (It is possible
to specify a different mapping from outcomes to pages, but there is no need to do so
for a simple application.)

In many situations, the next page depends on the result of some computation. In
our example, we need different outcomes depending on the city that the user entered.
To achieve this flexibility, you specify a method expression as the action attribute:

<h:commandButton value="Submit" action="#{timeZoneBean.checkCity}"/>

A method expression consists of the name of a bean and the name of a method. When
the form is submit ted, the JSF container calls timeZoneBean.checkCity(). The checkCity
method returns the outcome string:

public class TimeZoneBean
{
 . . .
 public String checkCity()
 {
 zone = getTimeZone(city);
 if (zone == null) { return "error"; }
 return "next";
 }
}

the outcome
string of an action
determines the next
page that the JsF
container sends to
the browser.

a method expression
specifies a bean and
a method that should
be invoked on
the bean.

bj5i_ch24_01.indd 1048 1/7/13 9:50 AM

24.4 navigation between pages W1049

If the next page does not depend on a computation, then you set the action attribute
of the button to a fixed outcome string, like this:

<h:commandButton value="Back" action="index"/>

If a button has no action attribute, or if the action outcome is null, then the current
page is redisplayed.

We can now complete our time zone application. The Java library contains a con-
venient TimeZone class that knows about time zones across the world. A time zone is
identified by a string such as "America/Los_Angeles" or "Asia/Tokyo". The static method
getAvailableIDs returns a string array containing all IDs:

String[] ids = TimeZone.getAvailableIDs();

There are several hundred time zone IDs. (We are using time zones in this example
because the TimeZone class gives us an interesting data source with lots of data. Later in
this chapter, you will see how to access data from a database, but of course that’s more
complex.)

The static getTimeZone method returns a TimeZone object for a given ID string:
String id = "America/Los_Angeles";
TimeZone zone = TimeZone.getTimeZone(id);

Once you have a TimeZone object, you can use it in conjunction with a DateFormat object
to get a time string in that time zone.

DateFormat timeFormatter = DateFormat.getTimeInstance();
timeFormatter.setTimeZone(zone);
Date now = new Date();
// Suppose the server is in New York, and it’s noon there
System.out.println(timeFormatter.format(now));
// Prints 9:00:00 AM

Of course, we don’t expect the user to know about time zone ID strings, such as
"America/Los_Angeles". Instead, we assume that the user will simply enter the city
name. The time zone bean will check whether that string, with spaces replaced by
underscores, appears at the end of one of the valid time zone IDs.

Here is the code for the bean class:

section_4/timezone/Web-inf /classes/bigjava/TimeZonebean.java

1 package bigjava;
2
3 import java.text.DateFormat;
4 import java.util.Date;
5 import java.util.TimeZone;
6 import javax.faces.bean.ManagedBean;
7 import javax.faces.bean.SessionScoped;
8
9 /**

10 This bean formats the local time of day for a given city.
11 */
12 @ManagedBean
13 @SessionScoped
14 public class TimeZoneBean
15 {
16 private DateFormat timeFormatter;
17 private String city;
18 private TimeZone zone;
19
20 /**

bj5i_ch24_01.indd 1049 1/7/13 9:50 AM

W1050 Chapter 24 Web applications

21 Initializes the formatter.
22 */
23 public TimeZoneBean()
24 {
25 timeFormatter = DateFormat.getTimeInstance();
26 }
27
28 /**
29 Setter for city property.
30 @param aCity the city for which to report the local time
31 */
32 public void setCity(String aCity)
33 {
34 city = aCity;
35 }
36
37 /**
38 Getter for city property.
39 @return the city for which to report the local time
40 */
41 public String getCity()
42 {
43 return city;
44 }
45
46 /**
47 Read-only time property.
48 @return the formatted time
49 */
50 public String getTime()
51 {
52 if (zone == null) { return "not available"; }
53 timeFormatter.setTimeZone(zone);
54 Date time = new Date();
55 String timeString = timeFormatter.format(time);
56 return timeString;
57 }
58
59 /**
60 Action for checking a city.
61 @return "next" if time zone information is available for the city,
62 "error" otherwise
63 */
64 public String checkCity()
65 {
66 zone = getTimeZone(city);
67 if (zone == null) { return "error"; }
68 return "next";
69 }
70
71 /**
72 Looks up the time zone for a city.
73 @param aCity the city for which to find the time zone
74 @return the time zone or null if no match is found
75 */
76 private static TimeZone getTimeZone(String aCity)
77 {
78 String[] ids = TimeZone.getAvailableIDs();
79 for (int i = 0; i < ids.length; i++)
80 {

bj5i_ch24_01.indd 1050 1/7/13 9:50 AM

24.4 navigation between pages W1051

81 if (timeZoneIDmatch(ids[i], aCity))
82 {
83 return TimeZone.getTimeZone(ids[i]);
84 }
85 }
86 return null;
87 }
88
89 /**
90 Checks whether a time zone ID matches a city.
91 @param id the time zone ID (e.g., "America/Los_Angeles")
92 @param aCity the city to match (e.g., "Los Angeles")
93 @return true if the ID and city match
94 */
95 private static boolean timeZoneIDmatch(String id, String aCity)
96 {
97 String idCity = id.substring(id.indexOf('/') + 1);
98 return idCity.replace('_', ' ').equals(aCity);
99 }

100 }

Following is the JSF page for setting the city. The h:inputText tag produces an input
field and the h:commandButton tag produces a button. (We discuss its action attribute in
the next section.) When the user clicks the but ton, the browser sends the form values
(that is, the contents of the input field) back to the web applica tion. The web applica-
tion calls the setCity method on the bean because the input field has a #{timeZoneBean.
city} value expression.

section_4/timezone/index.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The timezone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 Set time zone:
11 <h:inputText value="#{timeZoneBean.city}"/>
12 </p>
13 <p>
14 <h:commandButton value="Submit"
15 action="#{timeZoneBean.checkCity}"/>
16 </p>
17 </h:form>
18 </h:body>
19 </html>

The next JSF page shows the result, using two value expressions that display the city
and time properties. These expressions invoke the getCity and getTime methods of the
bean class.

section_4/timezone/next.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"

bj5i_ch24_01.indd 1051 1/7/13 9:50 AM

W1052 Chapter 24 Web applications

3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The timezone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 The current time in #{timeZoneBean.city} is #{timeZoneBean.time}
11 </p>
12 <p>
13 <h:commandButton value="Back" action="index"/>
14 </p>
15 </h:form>
16 </h:body>
17 </html>

section_4/timezone/error.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The timezone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 Sorry, no information is available for #{timeZoneBean.city}
11 </p>
12 <p>
13 <h:commandButton value="Back" action="index"/>
14 </p>
15 </h:form>
16 </h:body>
17 </html>

Figure 8 shows the directory structure of the timezone application.

8.  What tag would you need to add to error.xhtml so that the user can click on a
button labeled “Help” and see help.xhtml?

9.  Which page would be displayed if the checkCity method returned null instead of
“error”?

practice it  Now you can try these exercises at the end of the chapter: R24.10, P24.4, P24.5.

f igure 8 
the Directory structure
of the timezone application

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

Step 1  Decide on the responsibility of the bean.

When designing a JSF application, it is tempting to stuff all code into a single bean class. Some
development environ ments even encourage this approach. However, from a software engi-
neering perspective, it is best to come up with different beans for different responsibilities. For
example, a shopping application might have a UserBean to describe the current user, a SiteBean
to describe how the user visits the shopping site, and a ShoppingCartBean that holds the items
that the user is purchasing.

Step 2  Discover the properties that the bean should expose.

A property is an entity that you want to access or modify from your JSF pages. For example, a
UserBean might have properties firstName, lastName, and password.

Sometimes, you have to resort to a bit of trickery. For example, consider adding an item
to the shopping cart. You could use a property items, but it would be cumbersome to access
all items in a JSF page and then set items to a new collection that contains one additional ele-
ment. Instead, you can design a property addedItem. When that property is set, the setAddedItem
method of your bean adds its value to the collection of items.

Step 3  Settle on the type and access permissions for each property.

Properties that are only used to generate output can be read-only. Properties that are used in
h:inputText and other input tags must have read-write access.

Step 4  Define action methods for navigation.

Your action methods can carry out arbitrary tasks in order to react to the user inputs. The only
limitation is that they don’t have access to the form data. Everything that the user entered on
the form must have already been set as a bean property.

The action method’s return value is the name of the next page to be displayed, or null if you
want to redisplay the current page.

Step 5  Implement the constructor with no arguments.

The constructor initializes any instance variables that are reused whenever the bean’s compu-
tation is executed. Examples are for matters, random number generators, and so on.

Step 6  Implement the get and set methods for all properties.

Most get and set methods simply get or set an instance variable. However, you can carry out
arbitrary computations in these methods if it is convenient. For example, a get method may
retrieve information from a database instead of an instance variable.

© Steve Simzer/iStockphoto.

hoW to 24.1 Designing a managed bean

A managed bean is just a regular Java class, with these three special characteristics:
• The bean must have a constructor with no arguments.
• Methods of the form

Type getPropertyName()
void setPropertyName(Type x)

define properties that can be accessed from JSF pages.
• Methods of the form

String methodName()

can be used to specify command actions.
This How To provides step-by-step instructions for designing a managed bean class.

bj5i_ch24_01.indd 1052 1/7/13 9:50 AM

24.4 navigation between pages W1053

Step 1  Decide on the responsibility of the bean.

When designing a JSF application, it is tempting to stuff all code into a single bean class. Some
development environ ments even encourage this approach. However, from a software engi-
neering perspective, it is best to come up with different beans for different responsibilities. For
example, a shopping application might have a UserBean to describe the current user, a SiteBean
to describe how the user visits the shopping site, and a ShoppingCartBean that holds the items
that the user is purchasing.

Step 2  Discover the properties that the bean should expose.

A property is an entity that you want to access or modify from your JSF pages. For example, a
UserBean might have properties firstName, lastName, and password.

Sometimes, you have to resort to a bit of trickery. For example, consider adding an item
to the shopping cart. You could use a property items, but it would be cumbersome to access
all items in a JSF page and then set items to a new collection that contains one additional ele-
ment. Instead, you can design a property addedItem. When that property is set, the setAddedItem
method of your bean adds its value to the collection of items.

Step 3  Settle on the type and access permissions for each property.

Properties that are only used to generate output can be read-only. Properties that are used in
h:inputText and other input tags must have read-write access.

Step 4  Define action methods for navigation.

Your action methods can carry out arbitrary tasks in order to react to the user inputs. The only
limitation is that they don’t have access to the form data. Everything that the user entered on
the form must have already been set as a bean property.

The action method’s return value is the name of the next page to be displayed, or null if you
want to redisplay the current page.

Step 5  Implement the constructor with no arguments.

The constructor initializes any instance variables that are reused whenever the bean’s compu-
tation is executed. Examples are for matters, random number generators, and so on.

Step 6  Implement the get and set methods for all properties.

Most get and set methods simply get or set an instance variable. However, you can carry out
arbitrary computations in these methods if it is convenient. For example, a get method may
retrieve information from a database instead of an instance variable.

© Steve Simzer/iStockphoto.

hoW to 24.1 Designing a managed bean

A managed bean is just a regular Java class, with these three special characteristics:
• The bean must have a constructor with no arguments.
• Methods of the form

Type getPropertyName()
void setPropertyName(Type x)

define properties that can be accessed from JSF pages.
• Methods of the form

String methodName()

can be used to specify command actions.
This How To provides step-by-step instructions for designing a managed bean class.

bj5i_ch24_01.indd 1053 1/7/13 9:50 AM

W1054 Chapter 24 Web applications

Step 7  Supply any needed helper methods.

Your bean can have methods that are not property getters and setters. For example, the Time-
ZoneBean has helper meth ods to look up the time zone for a city.

24.5 JsF Components
In this section, you will see the most useful user-interface components that you can
place on a JSF form. Table 1 shows a summary. (For a comprehensive discussion of all
JSF components, see Core JavaServer Faces, 3rd ed., by David Geary and Cay Horst-
mann (Sun Microsystems Press/Prentice Hall, 2010)).

Each component has a value attribute that allows you to connect the component
value with a bean property, for example

<h:inputSecret value="#{user.password}"/>

The h:inputTextArea component has attributes to specify the rows of text and columns
of characters, such as

<h:inputTextArea value="#{user.comment}" rows="10" cols="40"/>

table 1 Common JsF Components

Component JsF tag
Common
attributes

example

Text Field h:inputText value

Password Field h:inputSecret value

Text Area h:inputTextArea value
rows
cols

Radio Button
Group

h:selectOneRadio value
layout

Checkbox h:selectOneCheckbox value

Checkbox
Group

h:selectManyCheckbox value
layout

Menu h:selectOneMenu
h:selectManyMenu

value

Image h:graphicImage value

Submit Button h:commandButton value
action

there are JsF
components for
text input, choices,
buttons, and images.

the value attribute
of an input
component denotes
the value that the
user supplies.

The radio button and checkbox groups allow you to specify horizontal or vertical
layout:

<h:selectOneRadio value="#{burger.topping}" layout="lineDirection">

In European languages, lineDirection means horizontal and pageDirection means ver-
tical. However, in some languages, lines are written top-to-bottom, and the meanings
are reversed.

Button groups and menus are more complex than the other user-interface compo-
nents. They require you to specify two properties:

• the collection of possible choices
• the actual choice

The value attribute of the component specifies the actual choice to be displayed. The
collection of possible choices is defined by a nested f:selectItems tag, like this:

<h:selectOneRadio value="#{creditCardBean.expirationMonth}"
 layout="pageDirection">
 <f:selectItems value="#{creditCardBean.monthChoices}"/>
</h:selectOneRadio>

When you use the f:selectItems tag, you need to add the namespace declaration

xmlns:f="http://java.sun.com/jsf/core"

to the html tag at the top of your JSF page.
The value of the f:selectItems tag must have a type that can describe a list of

choices. There are several types that you can use, but the easiest—and the only one
that we will discuss—is a Map. The keys of the map are the labels—the strings that are
displayed next to each choice. The corresponding map values are the label values—
the values that correspond to the selection. For example, a choice map for months
would map January to 1, February to 2, and so on:

public class CreditCardBean
{
 . . .
 public Map<String, Integer> getMonthChoices()
 {
 Map<String, Integer> choices = new LinkedHashMap<String, Integer>();
 choices.put("January", 1);
 choices.put("February", 2);
 . . .
 return choices;
 }
}

Here, we use a LinkedHashMap because we want to visit entries in the order in which
they are inserted. This is more useful than a HashMap, which would visit the labels in
random order or a TreeMap, which would visit them in alphabetical order (starting
with April!).

The type of the value property of the component enclosing the f:selectItems tag
must match the type of the map value. For example, creditCardBean.expirationMonth
must be an integer, not a string. If multiple selections are allowed, the type of the value
property must be a list or array of matching types. For exam ple, if one could choose
multiple months, a selectManyRadio component would have a value property with a
type such as int[] or ArrayList<Integer>.

Use an f:selectItems
tag to specify
all choices for a
component that
allows selection from
a list of choices.

bj5i_ch24_01.indd 1054 1/7/13 9:50 AM

24.5 JsF Components W1055

The radio button and checkbox groups allow you to specify horizontal or vertical
layout:

<h:selectOneRadio value="#{burger.topping}" layout="lineDirection">

In European languages, lineDirection means horizontal and pageDirection means ver-
tical. However, in some languages, lines are written top-to-bottom, and the meanings
are reversed.

Button groups and menus are more complex than the other user-interface compo-
nents. They require you to specify two properties:

• the collection of possible choices
• the actual choice

The value attribute of the component specifies the actual choice to be displayed. The
collection of possible choices is defined by a nested f:selectItems tag, like this:

<h:selectOneRadio value="#{creditCardBean.expirationMonth}"
 layout="pageDirection">
 <f:selectItems value="#{creditCardBean.monthChoices}"/>
</h:selectOneRadio>

When you use the f:selectItems tag, you need to add the namespace declaration

xmlns:f="http://java.sun.com/jsf/core"

to the html tag at the top of your JSF page.
The value of the f:selectItems tag must have a type that can describe a list of

choices. There are several types that you can use, but the easiest—and the only one
that we will discuss—is a Map. The keys of the map are the labels—the strings that are
displayed next to each choice. The corresponding map values are the label values—
the values that correspond to the selection. For example, a choice map for months
would map January to 1, February to 2, and so on:

public class CreditCardBean
{
 . . .
 public Map<String, Integer> getMonthChoices()
 {
 Map<String, Integer> choices = new LinkedHashMap<String, Integer>();
 choices.put("January", 1);
 choices.put("February", 2);
 . . .
 return choices;
 }
}

Here, we use a LinkedHashMap because we want to visit entries in the order in which
they are inserted. This is more useful than a HashMap, which would visit the labels in
random order or a TreeMap, which would visit them in alphabetical order (starting
with April!).

The type of the value property of the component enclosing the f:selectItems tag
must match the type of the map value. For example, creditCardBean.expirationMonth
must be an integer, not a string. If multiple selections are allowed, the type of the value
property must be a list or array of matching types. For exam ple, if one could choose
multiple months, a selectManyRadio component would have a value property with a
type such as int[] or ArrayList<Integer>.

Use an f:selectItems
tag to specify
all choices for a
component that
allows selection from
a list of choices.

bj5i_ch24_01.indd 1055 1/7/13 9:50 AM

W1056 Chapter 24 Web applications

10.  Which JSF components can be used to give a user a choice between “AM/PM”
and “military” time?

11.  How would you supply a set of choices for a credit card expiration year to a
h:selectOneMenu compo nent?

practice it  Now you can try these exercises at the end of the chapter: R24.11, P24.3, P24.9.

24.6 a three-tier application
In this chapter’s final JSF example, you will see a web application with a very com-
mon structure. In this example, we will use a database for information storage. We
will enhance the time zone example by storing addi tional cities that are not known to
the TimeZone class in a database. Such an application is called a three-tier application
because it consists of three separate layers or tiers (see Figure 9):

• The presentation tier: the web browser
• The “business logic” tier: the JSF container, the JSF pages, and the JavaBeans
• The storage tier: the database

Contrast the three-tier architecture with the more traditional client-server or two-
tier architecture that you saw in the database programs of Chapter 22. In that archi-
tecture, one of the tiers is the database server, which is accessed by multiple client
programs on desktops. Each client program has a presentation layer—usually with a
specially programmed graphical user interface—and business logic code. (See Figure
10.) When the business logic changes, a new client program must be distributed over
all desktops. In contrast, in a three-tier application, the business logic resides on a
server. When the logic changes, the server code is updated, but the presentation tier—
the browser—remains unchanged. That is much sim pler to manage than updating
multiple desktops.

In our example, we will have a single database table, CityZone, with city and time
zone names (see Figure 11).

section_6/multizone/sql/c ityZone.sql

1 CREATE TABLE CityZone (City VARCHAR(40), Zone VARCHAR(40))
2 INSERT INTO CityZone VALUES ('San Francisco', 'America/Los_Angeles')
3 INSERT INTO CityZone VALUES ('Hamburg', 'Europe/Rome')
4 SELECT * FROM CityZone

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

a three-tier
application has
separate tiers
for presentation,
business logic, and
data storage.

f igure 9  three-tier architecture

Internet

Storage TierMiddle Tier
(Business Logic)

Presentation Tier
(Browser)

If the TimeZoneBean can’t find the city among the standard time zone IDs, it makes a
database query:

SELECT Zone FROM CityZone WHERE City = the requested city

If there is a matching entry in the database, that time zone is returned.
To query the database, the bean needs a Connection object. In Chapter 22, we used

the static getConnec tion method of the Driver Manager class to obtain a database connec-
tion. However, JSF con tainers have a better mechanism for configuring a database in
one central location so that multiple web applications can access it.

The GlassFish application server includes the Derby database. It has a predefined
data source with the resource name jdbc/__default. In your bean code, you declare an
instance variable of type DataSource and tag it with a @Resource annotation, like this:

@Resource(name="jdbc/__default")
private DataSource source;

You can use the administrative interface of GlassFish to define other data sources.
When the application server loads the web application, it automatically initializes

this instance vari able. Whenever you need a database connection, call
Connection conn = source.getConnection();
try
{
 Use the connection.
}
finally
{
 conn.close();
}

The application server provides an additional service: it pools database connections.
When a pooled con nection is closed, it is not physically terminated but instead

f igure 11  the CityZone table

c ityZone

City Zone

San Francisco America/Los_Angeles

Hamburg Europe/Rome

.

You define data
sources in the JsF
container and use
resource annotations
to initialize them.

bj5i_ch24_01.indd 1056 1/7/13 9:50 AM

24.6 a three-tier application W1057

figure 10  two-tier Client-server architecture

Local Area
Network

Server
(Database)

Client
(Presentation and

Business Logic)

If the TimeZoneBean can’t find the city among the standard time zone IDs, it makes a
database query:

SELECT Zone FROM CityZone WHERE City = the requested city

If there is a matching entry in the database, that time zone is returned.
To query the database, the bean needs a Connection object. In Chapter 22, we used

the static getConnec tion method of the Driver Manager class to obtain a database connec-
tion. However, JSF con tainers have a better mechanism for configuring a database in
one central location so that multiple web applications can access it.

The GlassFish application server includes the Derby database. It has a predefined
data source with the resource name jdbc/__default. In your bean code, you declare an
instance variable of type DataSource and tag it with a @Resource annotation, like this:

@Resource(name="jdbc/__default")
private DataSource source;

You can use the administrative interface of GlassFish to define other data sources.
When the application server loads the web application, it automatically initializes

this instance vari able. Whenever you need a database connection, call
Connection conn = source.getConnection();
try
{
 Use the connection.
}
finally
{
 conn.close();
}

The application server provides an additional service: it pools database connections.
When a pooled con nection is closed, it is not physically terminated but instead

f igure 11  the CityZone table

c ityZone

City Zone

San Francisco America/Los_Angeles

Hamburg Europe/Rome

.

You define data
sources in the JsF
container and use
resource annotations
to initialize them.

bj5i_ch24_01.indd 1057 1/7/13 9:50 AM

W1058 Chapter 24 Web applications

f igure 12  the multizone application shows a list of Cities

returned to a queue and given out again to another caller of the getConnection method.
Pooling avoids the overhead of creating new database connec tions. In a web applica-
tion, it would be particularly inefficient to connect to the database with every web
request. Connection pooling is completely automatic.

In order to make the application more interesting, we enhanced the TimeZoneBean so
that it manages a list of cities. You can add cities to the list and remove a selected city
(see Figure 12).

You will find the code for this web application below. Figure 13 shows the direc-
tory structure of the application.

You have now seen how to use the JavaServer Faces technology to build web applica-
tions. JSF takes care of low-level details so that you don’t have to think about HTML
forms and the HTTP protocol. Instead, you can focus on the presentation and busi-
ness logic of your application.

section_6/multizone/index.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The multizone application</title>
6 </h:head>
7 <h:body>

f igure 13 
the Directory structure
of the multizone application

bj5i_ch24_01.indd 1058 1/7/13 9:50 AM

24.6 a three-tier application W1059

8 <h:form>
9 <p>

10 Enter city:
11 <h:inputText value="#{timeZoneBean.cityToAdd}"/>
12 </p>
13 <p>
14 <h:commandButton value="Submit"
15 action="#{timeZoneBean.addCity}"/>
16 </p>
17 </h:form>
18 </h:body>
19 </html>

section_6/multizone/next.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:f="http://java.sun.com/jsf/core"
4 xmlns:h="http://java.sun.com/jsf/html">
5 <h:head>
6 <title>The multizone application</title>
7 </h:head>
8 <h:body>
9 <h:form>

10 <p>
11 <h:selectOneRadio value="#{timeZoneBean.cityToRemove}"
12 layout="pageDirection">
13 <f:selectItems value="#{timeZoneBean.citiesAndTimes}"/>
14 </h:selectOneRadio>
15 </p>
16 <p>
17 <h:commandButton value="Remove selected"
18 action="#{timeZoneBean.removeCity}"/>
19 <h:commandButton value="Add another" action="index"/>
20 </p>
21 </h:form>
22 </h:body>
23 </html>

section_6/multizone/error.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The multizone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 Sorry, no information is available for #{timeZoneBean.cityToAdd}.
11 </p>
12 <p>
13 <h:commandButton value="Back" action="index"/>
14 </p>
15 </h:form>
16 </h:body>
17 </html>

bj5i_ch24_01.indd 1059 1/7/13 9:50 AM

W1060 Chapter 24 Web applications

section_6/multizone/Web-inf /classes/bigjava/TimeZonebean.java

1 package bigjava;
2
3 import java.sql.Connection;
4 import java.sql.PreparedStatement;
5 import java.sql.ResultSet;
6 import java.sql.SQLException;
7 import java.text.DateFormat;
8 import java.util.ArrayList;
9 import java.util.Date;

10 import java.util.Map;
11 import java.util.TimeZone;
12 import java.util.TreeMap;
13 import java.util.logging.Logger;
14 import javax.annotation.Resource;
15 import javax.faces.bean.ManagedBean;
16 import javax.faces.bean.SessionScoped;
17 import javax.sql.DataSource;
18
19 /**
20 This bean formats the local time of day for a given date
21 and city.
22 */
23 @ManagedBean
24 @SessionScoped
25 public class TimeZoneBean
26 {
27 @Resource(name="jdbc/__default")
28 private DataSource source;
29
30 private DateFormat timeFormatter;
31 private ArrayList<String> cities;
32 private String cityToAdd;
33 private String cityToRemove;
34
35 /**
36 Initializes the formatter.
37 */
38 public TimeZoneBean()
39 {
40 timeFormatter = DateFormat.getTimeInstance();
41 cities = new ArrayList<String>();
42 }
43
44 /**
45 Setter for cityToAdd property.
46 @param city the city to add to the list of cities
47 */
48 public void setCityToAdd(String city)
49 {
50 cityToAdd = city;
51 }
52
53 /**
54 Getter for cityToAdd property.
55 @return the city to add to the list of cities
56 */
57 public String getCityToAdd()
58 {

bj5i_ch24_01.indd 1060 1/7/13 9:50 AM

24.6 a three-tier application W1061

59 return cityToAdd;
60 }
61
62 /**
63 Setter for the cityToRemove property.
64 @param city the city to remove from the list of cities
65 */
66 public void setCityToRemove(String city)
67 {
68 cityToRemove = city;
69 }
70
71 /**
72 Getter for the cityToRemove property.
73 @return the city to remove from the list of cities
74 */
75 public String getCityToRemove()
76 {
77 return cityToRemove;
78 }
79
80 /**
81 Read-only citiesAndTimes property.
82 @return a map containing the cities and formatted times
83 */
84 public Map<String, String> getCitiesAndTimes()
85 {
86 Date time = new Date();
87 Map<String, String> result = new TreeMap<String, String>();
88 for (int i = 0; i < cities.size(); i++)
89 {
90 String city = cities.get(i);
91 String label = city + ": ";
92 TimeZone zone = getTimeZone(city);
93 if (zone != null)
94 {
95 timeFormatter.setTimeZone(zone);
96 String timeString = timeFormatter.format(time);
97 label = label + timeString;
98 }
99 else

100 {
101 label = label + "unavailable";
102 }
103 result.put(label, city);
104 }
105
106 return result;
107 }
108
109 /**
110 Action for adding a city.
111 @return "next" if time zone information is available for the city,
112 "error" otherwise
113 */
114 public String addCity()
115 {
116 TimeZone zone = getTimeZone(cityToAdd);
117 if (zone == null) { return "error"; }
118 cities.add(cityToAdd);

bj5i_ch24_01.indd 1061 1/7/13 9:50 AM

W1062 Chapter 24 Web applications

119 cityToRemove = cityToAdd;
120 cityToAdd = "";
121 return "next";
122 }
123
124 /**
125 Action for removing a city.
126 @return null if there are more cities to remove, "index" otherwise
127 */
128 public String removeCity()
129 {
130 cities.remove(cityToRemove);
131 if (cities.size() > 0) { return null; }
132 else return "index";
133 }
134
135 /**
136 Looks up the time zone for a city.
137 @param city the city for which to find the time zone
138 @return the time zone or null if no match is found
139 */
140 private TimeZone getTimeZone(String city)
141 {
142 String[] ids = TimeZone.getAvailableIDs();
143 for (int i = 0; i < ids.length; i++)
144 {
145 if (timeZoneIDmatch(ids[i], city))
146 {
147 return TimeZone.getTimeZone(ids[i]);
148 }
149 }
150 try
151 {
152 String id = getZoneNameFromDB(city);
153 if (id != null)
154 {
155 return TimeZone.getTimeZone(id);
156 }
157 }
158 catch (Exception ex)
159 {
160 Logger.global.info("Caught in TimeZone.getTimeZone: "
161 + ex);
162 }
163 return null;
164 }
165
166 private String getZoneNameFromDB(String city)
167 throws SQLException
168 {
169 if (source == null)
170 {
171 Logger.global.info("No database connection");
172 return null;
173 }
174 Connection conn = source.getConnection();
175 try
176 {

177 PreparedStatement stat = conn.prepareStatement(
178 "SELECT Zone FROM CityZone WHERE City=?");
179 stat.setString(1, city);
180 ResultSet result = stat.executeQuery();
181 if (result.next()) { return result.getString(1); }
182 else { return null; }
183 }
184 finally
185 {
186 conn.close();
187 }
188 }
189
190 /**
191 Checks whether a time zone ID matches a city.
192 @param id the time zone ID (e.g., "America/Los_Angeles")
193 @param city the city to match (e.g., "Los Angeles")
194 @return true if the ID and city match
195 */
196 private static boolean timeZoneIDmatch(String id, String city)
197 {
198 String idCity = id.substring(id.indexOf('/') + 1);
199 return idCity.replace('_', ' ').equals(city);
200 }
201 }

12.  Why don’t we just keep a database connection as an instance variable in the Time-
ZoneBean?

13.  Why does the removeCity method of the TimeZoneBean return null or "index", de-
pending on the size of the cities instance variable?

practice it  Now you can try these exercises at the end of the chapter: R24.12, P24.6, P24.7.

AJAX

In Section 24.1, you learned that a web application receives an HTTP request from the browser
and then sends back an HTML form. The cycle repeats when the user submits the next form
data. Web application designers and users dislike the “page flip”—the visual discontinuity
between pages that is often accompanied by a significant delay, as the browser waits for the
new form tags.

The AJAX (Asynchronous JavaScript and XML) technology, invented in 2005, aims to
solve this problem. In an AJAX application, the browser does not merely display an HTML
page, but it also executes code written in the Jav aScript language. The JavaScript code continu-
ously communicates with the server program and updates parts of the HTML page.

One example of an AJAX application is the Google Maps™ mapping service—see Fig-
ure 14. In a traditional map application, the user might click on a “move North” button and
then wait until the browser receives the new map image and displays it in a new page. The
Google Maps application uses AJAX to fetch only the needed tiles, and it fluidly rearranges
the tiles in the current page, without the dreaded page flip.

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

special topic 24.2

© Eric Isselé/iStockphoto.

bj5i_ch24_01.indd 1062 1/7/13 9:50 AM

24.6 a three-tier application W1063

177 PreparedStatement stat = conn.prepareStatement(
178 "SELECT Zone FROM CityZone WHERE City=?");
179 stat.setString(1, city);
180 ResultSet result = stat.executeQuery();
181 if (result.next()) { return result.getString(1); }
182 else { return null; }
183 }
184 finally
185 {
186 conn.close();
187 }
188 }
189
190 /**
191 Checks whether a time zone ID matches a city.
192 @param id the time zone ID (e.g., "America/Los_Angeles")
193 @param city the city to match (e.g., "Los Angeles")
194 @return true if the ID and city match
195 */
196 private static boolean timeZoneIDmatch(String id, String city)
197 {
198 String idCity = id.substring(id.indexOf('/') + 1);
199 return idCity.replace('_', ' ').equals(city);
200 }
201 }

12.  Why don’t we just keep a database connection as an instance variable in the Time-
ZoneBean?

13.  Why does the removeCity method of the TimeZoneBean return null or "index", de-
pending on the size of the cities instance variable?

practice it  Now you can try these exercises at the end of the chapter: R24.12, P24.6, P24.7.

AJAX

In Section 24.1, you learned that a web application receives an HTTP request from the browser
and then sends back an HTML form. The cycle repeats when the user submits the next form
data. Web application designers and users dislike the “page flip”—the visual discontinuity
between pages that is often accompanied by a significant delay, as the browser waits for the
new form tags.

The AJAX (Asynchronous JavaScript and XML) technology, invented in 2005, aims to
solve this problem. In an AJAX application, the browser does not merely display an HTML
page, but it also executes code written in the Jav aScript language. The JavaScript code continu-
ously communicates with the server program and updates parts of the HTML page.

One example of an AJAX application is the Google Maps™ mapping service—see Fig-
ure 14. In a traditional map application, the user might click on a “move North” button and
then wait until the browser receives the new map image and displays it in a new page. The
Google Maps application uses AJAX to fetch only the needed tiles, and it fluidly rearranges
the tiles in the current page, without the dreaded page flip.

© Nicholas Homrich/iStockphoto.

S e l f   c h e c k

special topic 24.2

© Eric Isselé/iStockphoto.

bj5i_ch24_01.indd 1063 1/7/13 9:50 AM

W1064 Chapter 24 Web applications

AJAX applications are much more difficult to program than regular web applications.
Frameworks are being pro posed to handle these additional challenges. JSF 2 supports AJAX,
giving the web application programmer the bene fit of producing a pleasant user experience
without having to worry about the intricate details of the JavaScript communication chan-
nel. The book’s companion code contains a modification of the multizone application that uses
AJAX. When you click one of the buttons, the page is updated without a page flip.

f igure 14  a Google Maps image with partially-Fetched tiles
Google Earth™ mapping services screenshot © Google, Inc. Reprinted with permission. ©2009 Google - Imagery ©2009 DigitalGlobe,
GeoEye, U.S. Geological Survey, Map data ©2009 Tele Atlas.

f u l l  c o De  eXAmpl e

Go to wiley.com/go/
javacode to download
the multizone
application code
using aJaX.

Describe the architecture of a web application.

• The user interface of a web application is displayed in a web browser.
• When a form is submitted, the names and values of the form elements are sent to

the web server.
• Upon receiving the form data, the web server sends a new web page to the browser.

Describe the architecture of a JSf application.

• A JavaServer Faces (JSF) page contains HTML and JSF tags.
• The JSF container converts a JSF page to an HTML page, replacing all JSF tags

with text and HTML tags.
• A managed bean is an object that is controlled by the JSF container.
• A bean with session scope is available for multiple requests by the same browser.
• The JSF technology enables the separation of presentation and business logic.

explain how properties are defined in managed beans and accessed in value expressions. 

• Properties of a software component can be accessed without having to write
Java code.

• A JavaBean is a class that exposes properties through its get and set methods.
• In the value expression of an output tag, only the property getter is called.
• In the value expression of an input tag, the property setter is called when the page

is submitted.

implement navigation between pages.

• The outcome string of an action determines the next page that the JSF container
sends to the browser.

• A method expression specifies a bean and a method that should be invoked on
the bean.

use common JSf components for designing a user interface.

• There are JSF components for text input, choices, buttons, and images.
• The value attribute of an input component denotes the value that the

 user sup plies.
• Use an f:selectItems tag to specify all choices for a component that allows selec-

tion from a list of choices.

Develop applications that use JSf and a database.

• A three-tier application has separate tiers for presentation, business logic, and
data storage.

• You define data sources in the JSF container and use resource annotations to ini-
tialize them.

C h a p t e r s U M M a r Y

bj5i_ch24_01.indd 1064 1/7/13 9:50 AM

Chapter summary W1065

Describe the architecture of a web application.

• The user interface of a web application is displayed in a web browser.
• When a form is submitted, the names and values of the form elements are sent to

the web server.
• Upon receiving the form data, the web server sends a new web page to the browser.

Describe the architecture of a JSf application.

• A JavaServer Faces (JSF) page contains HTML and JSF tags.
• The JSF container converts a JSF page to an HTML page, replacing all JSF tags

with text and HTML tags.
• A managed bean is an object that is controlled by the JSF container.
• A bean with session scope is available for multiple requests by the same browser.
• The JSF technology enables the separation of presentation and business logic.

explain how properties are defined in managed beans and accessed in value expressions. 

• Properties of a software component can be accessed without having to write
Java code.

• A JavaBean is a class that exposes properties through its get and set methods.
• In the value expression of an output tag, only the property getter is called.
• In the value expression of an input tag, the property setter is called when the page

is submitted.

implement navigation between pages.

• The outcome string of an action determines the next page that the JSF container
sends to the browser.

• A method expression specifies a bean and a method that should be invoked on
the bean.

use common JSf components for designing a user interface.

• There are JSF components for text input, choices, buttons, and images.
• The value attribute of an input component denotes the value that the

 user sup plies.
• Use an f:selectItems tag to specify all choices for a component that allows selec-

tion from a list of choices.

Develop applications that use JSf and a database.

• A three-tier application has separate tiers for presentation, business logic, and
data storage.

• You define data sources in the JSF container and use resource annotations to ini-
tialize them.

C h a p t e r s U M M a r Y

bj5i_ch24_01.indd 1065 1/7/13 9:50 AM

W1066  Chapter 24   Web Applications 

• R24.1 Most web browsers have a command to “view the source” of a web page. Load
the page http://horstmann.com into your browser and view the source. What is the
“language” used for formatting the source? What images, links, bullets, and input
elements can you find?

• R24.2 Have a closer look at the HTTP POST request on page W1038. Where is the data that
the user provided? What does login=Log%20in mean? (The code %20 denotes a space in
the “URL encoding” scheme.)

• R24.3 What is the difference between a JSF page and a JSF container?

• R24.4 What is a bean?

• R24.5 What is a bean property?

• R24.6 Is a JButton a bean? Why or why not?

• R24.7 What is the software engineering purpose of using beans in conjunction with JSF
pages?

•• R24.8 How are variables in the JSF expression language different from variables in Java
programs?

•• R24.9 When is a bean constructed in a JSF application? Can you have two different
instances of a bean that are active at the same time?

•• R24.10 How can you implement error checking in a JSF application? Explain, using a login
page as an example.

•• R24.11 What input elements can you place on a JSF form? What are their Swing equivalents?

• R24.12 What is the difference between a client-server application and a three-tier
application?

• P24.1 Write a JSF application that reports the values of the following system properties of
the web server:

• The Java version (java.version)
• The operating system name (os.name)
• The operating system version (os.version)

Supply a bean that uses the getProperties method of the System class.

 java.text.DateFormat
 format
 getTimeInstance
 setTimeZone
java.util.LinkedHashMap

java.util.TimeZone
 getAvailableIDs
 getTimeZone
javax.sql.DataSource
 getConnection

S tA n d A r d  L i b r A r y   i t e m S   i n t r o d u C e d   i n  t h i S  C h A p t e r

r e v i e W  Q u e S t i o n S

p r o g r A m m i n g  e x e r C i S e S

bj5i_ch24_02.indd 1066 1/17/13 3:23 PM

programming exercises  W1067

• P24.2 Write a JSF application that simulates two rolls of a die, producing an output such as
“Rolled a 4 and a 6”. When the user reloads the page, a new pair of values should be
displayed. Provide a bean that yields random numbers.

•• P24.3 Enhance Exercise P24.2 by producing a web page that shows images of the rolled
dice. Find GIF images of dice with numbers 1 through 6 on the front, and generate
an HTML page that references the appropriate images. Hint: Use the tag <h:graphic
Image value=imageURL/> and take advantage of the fact that you can embed a value
expression into regular text, such as "/image#{expression}.gif".

• P24.4 Write a web application that allows a user to specify six lottery numbers. Generate
your own combination on the server, and then print out the user’s and the server’s
combinations together with a count of matches.

•• P24.5 Add error checking to Exercise P24.4. If the lottery numbers are not within the cor-
rect range, or if there are duplicates, show an appropriate message and allow the user
to fix the error.

••• P24.6 Personalize the time zone application of Section 24.3. Prompt the user to log in and
specify a city to be stored in a profile. The next time the user logs in, the time of their
favorite city is displayed automatically. Store users, passwords, and favorite cities in
a database. You need a logout button to switch users.

••• P24.7 Extend Exercise P24.6 so that a user can choose multiple cities and all cities chosen
by the user are remembered on the next login.

••• P24.8 Write a web version of the ExecSQL utility of Chapter 22. Allow users to type arbi-
trary SQL queries into a text area. Then submit the query to the database and dis play
the result.

••• P24.9 Produce a web front end for the ATM program in Worked Example 11.1.

••• P24.10 Produce a web front end for the appointment calendar application of Exercise P11.8.

••• P24.11 Produce a web front end for the airline reservation program of Exercise P11.12.

••• Business P24.12 Write a shopping cart application. A database contains items that can be purchased
and their prices, descriptions, and available quantities. If the user wants to check out,
ask for the user account. If the user does not yet have an account, create one. The
user name and address should be stored with the account in the database. Display
an invoice as the last step in the check out process. When the user has con firmed the
purchase, update the quantities in the warehouse.

••• P24.13 Write a web-based grade book application that your instructor might use to man-
age student grades in this course. Your application should have one account for the
instructor, and one account for each student. Instructors can enter and view grades
for all students. Students can only see their own grades and their ranking within the
course. Implement the features that your instructor uses for determining the course
grade (such as dropping the lowest quiz score, counting homework as 30 percent of
the total grade, and so on.) All information should be stored in a database.

bj5i_ch24_02.indd 1067 1/17/13 3:23 PM

W1068 Chapter 24 Web applications

a n s W e r s t o s e l F - C h e C k Q U e s t i o n s

1.  Each protocol has a specific purpose. HTML
describes the appearance of a page; it would be
useless for sending requests from a browser to
a server. HTTP describes a request; it cannot
describe the appearance of a page.

2.  The data of the POST request contain a
portion username=the name supplied by the
user&password=the password supplied by the user.

3.  Place an image file, say clock.gif, into the time
directory, and add a tag
to the index.xhtml file.

4.  No—it is possible (and sadly common) for
programmers to place the business logic into
the frame and component classes of the user
interface.

5.  The application server knows nothing about
the files on your computer. You need to hand
it the WAR file with all the application’s pages,
code, and configuration files so that it can
execute the application when it receives a web
request.

6.  No. The Scanner class does not have a construc-
tor with no arguments.

7.  There is no way of knowing without looking
at the source code. Perhaps it simply executes
a statement city = newValue, setting an instance
variable of the bean class. But the method may
also do other work, for example checking
whether the city name is valid or storing the
name in a database.

8.  Add the tag <h:commandButton value="Help"
action="help"/> to error.xhtml.

9.  The current page would be redisplayed.
10.  h:selectOneRadio, h:selectOneMenu, or

h:selectOneCheckbox

11.  You would need a bean with a property such as
the following:
public Map<String, Integer> getYearChoices()
{
 Map<String, Integer> choices =
 new TreeMap<String, Integer>();
 choices.put("2003", 2003);
 choices.put("2004", 2004);
 . . .
 return choices;
}

Then supply a tag <f:selectItems
value="#{creditCard.yearChoices}"/>.

12.  Then the database connection would be kept
open for the entire session.

13.  As long as there are cities, the same page (next.
xhtml) page is redisplayed. If all cities are
removed, it is pointless to display the next.
xhtml page, so the application navigates to the
index.xhtml page.

bj5i_ch24_01.indd 1068 1/7/13 9:50 AM

