

Summary of Contents

Preface . xiii

1. APIs Overview . 1

2. Web Workers . 7

3. The Geolocation API . 17

4. Server Sent Events . 23

5. The WebSocket API . 31

6. The Cross-document Messaging API . 37

JUMP START
HTML5: APIS

BY SANDEEP PANDA

Jump Start HTML5: APIs
by Sandeep Panda

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Craig Buckler

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

Printed and bound in the United States of America

iv

About Sandeep Panda

Sandeep Panda is a web developer and writer with a passion for JavaScript and HTML5. He

has over four years' experience programming for the Web. He loves experimenting with new

technologies as they emerge and is a continuous learner. While not programming, Sandeep

can be found playing games and listening to music.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

v

http://www.sitepoint.com/

To my Mom and Dad who taught

me to love books. It's not possible

to thank you adequately for

everything you have done for me.

To my grandparents for their

strong support. To my brother

Preetish for being a constant

source of inspiration. And to my

awesome friends Ipseeta and

Fazle for always believing in me.

Table of Contents

Preface . xiii

Who Should Read This Book . xiii

Conventions Used . xiv

Code Samples . xiv

Tips, Notes, and Warnings . xv

Supplementary Materials . xvi

Tools You’ll Need . xvi

Chapter 1 APIs Overview . 1

A Quick Tour of the HTML5 APIs Covered . 1

What You Are Going to Learn . 3

Getting Started . 3

Checking Browser Compatibility . 4

Setting Up the Environment . 6

Chapter 2 Web Workers . 7

Introduction and Usage . 7

Passing JSON data . 10

Web Worker Features . 11

More Advanced Workers . 12

Inline Workers . 12

Creating Subworkers Inside Workers . 14

Using External Scripts within Workers . 14

Security Considerations . 14

Polyfills for Older Browsers . 15

Conclusion . 44

Chapter 3 The Geolocation API 17

Hitting the Surface . 17

Continuously Monitoring Position . 20

Accuracy of Geolocation . 21

Conclusion . 44

Chapter 4 Server Sent Events . 23

The Motivation for SSEs . 23

The API . 24

The EventStream Format . 25

How About a Little JSON? . 26

Associating an Event ID . 26

Creating Your Own Events . 27

Handling Reconnection Timeout . 28

Closing a Connection . 28

A Sample Event Source . 28

Debugging . 30

Conclusion . 44

Chapter 5 The WebSocket API . 31

The JavaScript API . 38

Sending Binary Data . 34

Sample Server Implementations . 35

Conclusion . 44

Chapter 6 The Cross-document Messaging
API . 37

The JavaScript API . 38

x

Basic Usage . 38

Detecting the Readiness of the Document . 43

Conclusion . 44

xi

Preface
HTML5 has dramatically changed the way we write web pages. I am sure you might

have heard about many of the new elements that were introduced in HTML5. But

HTML5 also offers several JavaScript APIs that enhance the interactivity of your

pages. This, in turn, enables us to create cutting-edge and powerful web applications

just by using HTML5 and its related JavaScript APIs.

In this book, we’ll take a quick tour of five of the most useful and powerful new

HTML5 APIs. Specifically, we will cover:

■ The Web Workers API

■ The Geolocation API

■ The Server-sent Events API

■ The WebSocket API

■ The Cross-document Messaging API

This is a short book, so we’ll be unable to cover each of these APIs exhaustively;

nor will we be building complex real-life applications with each one. However, we

will provide code snippets for the APIs, and provide example use cases for each of

them.

Who Should Read This Book
This book is for intermediate web developers. You should be familiar with HTML

and the fundamentals of JavaScript and the Document Object Model (DOM). It’s

unnecessary to have a deep knowledge of JavaScript. Still, you should understand

event handling, JavaScript data types, and control structures such as while loops

and if-else conditionals. We’ll keep our script examples fairly simple, though,

and will explain them line by line.

If you’re unfamiliar with JavaScript, you may like to read SitePoint’s Simply

JavaScript1 by Kevin Yank for an introduction.2 Mozilla Developer Network3 also

offers fantastic learning resources and documentation for both JavaScript and the

DOM.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

1 http://www.sitepoint.com/store/simply-javascript/
2 http://www.sitepoint.com/store/simply-javascript/
3 https://developer.mozilla.org/en-US/docs/Web/JavaScript

xiv

http://www.sitepoint.com/store/simply-javascript/
http://www.sitepoint.com/store/simply-javascript/
http://www.sitepoint.com/store/simply-javascript/
https://developer.mozilla.org/en-US/docs/Web/JavaScript

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all the code, a ⋮ will

be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xv

Supplementary Materials
http://www.sitepoint.com/store/jump-start-html5-apis/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/jshtml-apis1

The downloadable code archive for this book.

http://www.sitepoint.com/forums/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support or report a problem,

or for any other reason.

Tools You’ll Need
If you don’t already have a favorite text editor, you’ll need one. Try one of those

listed below:

■ Aptana4 (requires Java)

■ Brackets5

■ NetBeans6 (requires Java)

■ Notepad++7 (Windows only)

■ Bluefish8 (Linux only)

They’re all free, and in most cases, open source. Aside from Notepad++ and Bluefish,

they’re all available on Mac, Linux, and Windows as well.

4 http://aptana.com/
5 http://brackets.io/
6 https://netbeans.org/
7 http://notepad-plus-plus.org/
8 http://bluefish.openoffice.nl/

xvi

http://www.sitepoint.com/store/jump-start-html5-apis/
https://github.com/spbooks/jshtml-apis1
http://www.sitepoint.com/forums/
http://aptana.com/
http://brackets.io/
https://netbeans.org/
http://notepad-plus-plus.org/
http://bluefish.openoffice.nl/

Of course, you’ll also need a browser that supports the features we’ll talk about.

Only the latest versions of Google Chrome9 and Opera10 support everything we’ll

cover in this book. Mozilla Firefox11 and Apple Safari12 support most of what we’ll

talk about, as does Microsoft Internet Explorer 10+.13 We’ll note exceptions where

necessary, but will pay littles if any attention to Internet Explorer 8 and 9.

Internet Explorer and Safari are bundled with Microsoft Windows and Mac OS X

respectively and are only available on those platforms. Other browsers can be

downloaded from their particular vendors’ websites.

You also need to use web server software. Apache HTTP Server,14 Nginx,15 or

Lighttpd16 are all open-source server packages available for Windows, Mac OS X

and Linux respectively.

Mac OS X users can also try MAMP,17 which bundles MySQL, Apache, and PHP

into one easy-to-use package. Windows users can try WAMP18 or XAMPP19, which

are similar packages for that operating system.

Your operating system may also have a web server installed by default. Check its

documentation if you’re unsure.

9 http://google.com/chrome
10 http://www.opera.com/
11 http://mozilla.org/
12 htpp://apple.com/safari
13 http://microsoft.com/ie
14 http://httpd.apache.org/
15 http://nginx.org/
16 http://www.lighttpd.net/
17 http://mamp.info
18 http://www.wampserver.com/en/
19 http://www.apachefriends.org/en/xampp.html

xvii

http://google.com/chrome
http://www.opera.com/
http://mozilla.org/
htpp://apple.com/safari
http://microsoft.com/ie
http://httpd.apache.org/
http://nginx.org/
http://www.lighttpd.net/
http://mamp.info
http://www.wampserver.com/en/
http://www.apachefriends.org/en/xampp.html

Chapter1
APIs Overview
In this chapter, we’ll make a quick trip to the world of HTML5 APIs. I’ll outline the

APIs that are going to be discussed in this book, and what you’ll have learned by

the end. There’ll be no diving into any code in this chapter; rather, it will provide

a quick overview of each API so that you can get a clear idea about what you’re going

to learn.

Some HTML5 APIs are still fairly new, and not every version of every browser

supports them, which you’ll need to bear in mind while creating HTML5 apps.

Whenever you’re going to use any HTML5 API, it’s always a good idea to check the

support for that API in the browser. We’ll see how to do that in the last section of

the chapter.

A Quick Tour of the HTML5 APIs Covered
Since this is a short book, it’s impossible to cover each and every API. Some APIs

are already covered in other books in SitePoint’s Jump Start HTML5 range. In this

book we’ll focus on five important JavaScript APIs that you can use to create really

cool web apps. (Yes, web apps built with plain HTML5 and JavaScript! How cool

is that?) So, let’s see what we’ll be discussing:

■ The Web Workers API: Ever thought of bringing multi-threading to the Web?

Have you every fancied performing some ongoing task in the background without

hampering the main JavaScript thread? If yes, it’s probably time for you to get

cozy with the Web Workers API because it’s designed just for this purpose.

■ Formal definition: The Web Workers API is used to run scripts in a back-

ground thread that run in parallel to the main thread. In other words, you

can perform computationally expensive tasks or implement long polling in

the background and your main UI thread will remain unaffected.

■ The Geolocation API: This new API simply lets you know where your users are.

It enables you to find the position of your users—even when they are moving.

Furthermore, you can show them customized choices (maybe a nice café or a

theater near them) depending on their location, or plot their position on the map.

■ Formal definition: The Geolocation API lets your application receive the

current geographical position of the user through simple JavaScript.

■ The Server-sent Events API: The way Facebook pushes new updates to your wall

is awesome, isn’t it? Prior to the introduction of Server-sent Events (SSE, for

short) this type of functionality was achieved using long polling. But with the

all new SSEs, the server can automatically push new updates to the web page

as they become available. You can access those updates in your script and notify

your users.

■ Formal definition: The Server-sent Events API lets your clients receive push

notifications from the server without the need of long polling.

■ The WebSocket API: This API helps you build applications that allow bi-direc-

tional communication between client and server. The classic use case of the

WebSocket API is a chat application where a client sends a message to the

server and the server processes it and replies back!

■ Formal definition: This API enables low-latency, full-duplex single-socket

connection between client and server.

■ The Cross-document Messaging API: Because of dreaded CSRF attacks, documents

from different domains are usually not allowed to communicate with each other.

Jump Start HTML5: APIs2

But with this new Cross-document Messaging API, documents from different

origins can communicate with each other while still being safe against CSRF.

■ Formal Definition: This API introduces a messaging system that allows doc-

uments to communicate with each other—regardless of the source do-

main—without CSRF being a problem.

Cross-site Request Forgery (CSRF)

CSRF is a type of attack that tricks end users to perform sensitive operations on

a web application without their knowledge. Typically, websites only verify if the

request is coming from the browser of an authenticated user, but they don’t verify

if the actual authenticated user himself is making the request. That’s the common

cause of a CSRF attack.

To learn more about CSRF attacks, please visit the Open Web Application Security

Project.1

What You Are Going to Learn
This book will provide clear and concise explanations of the APIs just mentioned.

You will learn the purpose of each API and how to use them. By the end of the

book, you’ll be able to create cool and exciting apps using some amazing HTML5

features.

While explaining the APIs, I will provide some code snippets that describe the

general working principle of them. Since this is a short book, it’s impossible to

cover everything exhaustively, but I will try to cover as much as possible in each

chapter. I’ll also provide guidance and share example use cases for each of the APIs.

Getting Started
Before diving into the world of HTML5, there is a caveat of which to be aware. As

mentioned, some HTML5 APIs are quite new so you should always make sure the

specific feature is supported in the browsers. If there’s no (or limited) support, you

should handle it gracefully by falling back to another technique. This is known as

graceful degradation; in other words, your app is designed for modern browsers

1 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

3APIs Overview

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

but it is still functional in older browsers. On the other hand you could also opt for

progressive enhancement techniques, where you create an app with limited

functionalities and add new features when the browser supports them. For more

information on this, have a look at Craig Buckler’s article on sitepoint.com.2

In this section, we will discuss addressing the browser compatibility issues and

setting up the development environment.

Checking Browser Compatibility
It’s always good to obtain an overview of the list of HTML5 features supported by

the browsers. Before using any API, refer to a compatibility chart that shows which

browsers support that API. Personally, I prefer caniuse.com3 where you just start

typing the name of the API and it shows the browser versions that support it; how-

ever, although a compatibility chart gives an overview, you should always check

for browser compatibility of API features in your JavaScript code.

Each HTML element is represented by an object inside the DOM, and each object

has several properties. So, in browsers that support HTML5 APIs, certain objects

will have a set of unique properties. This is the key to determining the browser’s

support for various HTML5 features.

Support for some HTML5 features can be detected just by checking the existence

of certain properties on the window or navigator objects. For example, you can

write the following code to check the support for Web Workers:

if(!!window.Worker){
 //proceed further
}
else{
 //do something else
}

As you can see, in Web Worker-enabled browsers there will be a property called

Worker in the window object.

2 http://www.sitepoint.com/progressive-enhancement-graceful-degradation-choice
3 http://caniuse.com

Jump Start HTML5: APIs4

http://www.sitepoint.com/progressive-enhancement-graceful-degradation-choice
http://caniuse.com

Similar techniques can also be used to detect the support for other features. We will

see how to detect each feature when we examine the details of each API.

Modernizr
Wouldn’t it be great if there was a uniform interface for checking the support for

each API? Well, it just so happens there is an open-source JavaScript library that

helps detect HTML5 features: Modernizr.4

Using Modernizr is a matter of downloading the script and adding the the following

code to the <head> element:

<script type="text/javascript" src="modernizr.min.js">

Always put Modernizr in Your <head>

Just make sure to load the Modernizr script in the <head> section. The reason is

because the HTML5 Shiv, which enables the styling of HTML5 elements in

browsers prior to IE9, must execute before the body loads. Also if you are using

Modernizr-specific CSS classes, you might encounter an FOUC (flash of unstyled

content)5 if the script is not loaded in the <head>.

Now, let’s say you want to detect the support for Web Workers in the browser. The

following snippet does that for you:

if(Modernizr.webworkers){
 //proceed further
}
else{
 //no support for web workers
}

So if the browser supports webworkers, the Modernizr.webworkers property will

be true. There are similar tests for all other features. We’ll be using Modernizr in

this book to check for browser compatibility.

4 http://modernizr.com/
5 http://en.wikipedia.org/wiki/Flash_of_unstyled_content

5APIs Overview

http://modernizr.com/
http://en.wikipedia.org/wiki/Flash_of_unstyled_content
http://en.wikipedia.org/wiki/Flash_of_unstyled_content

Setting Up the Environment
To create HTML5 apps, you only really need your favorite text editor and browser.

But to use certain APIs such as Server-sent Events and WebSocket, you will need

a server. So I’ll ask you to install WAMP6 or XAMPP7 on your machine so that we

can easily create a local server to try things out. If you already have a server set up,

you’re good to go.

In this chapter, we discussed the list of APIs covered in the book and learned how

to detect browser support for each HTML5 feature. We also discussed the purpose

of each API in brief and finally set up our development environment.

I know you’ve been waiting to get your hands dirty. Now that you’re aware of all

the basic stuff, let’s start our journey into the world of HTML5 APIs, with Web

Workers being the first place to visit.

6 http://www.wampserver.com/en/
7 http://www.apachefriends.org/en/xampp.html

Jump Start HTML5: APIs6

http://www.wampserver.com/en/
http://www.apachefriends.org/en/xampp.html

Chapter2
Web Workers
Every HTML5 app is written in JavaScript, but the single and the most crucial lim-

itation of HTML5 apps is that the browsers’ JavaScript runtimes are single-threaded

in nature. Some of you might say that you have run tasks asynchronously in the

past using functions like setTimeout, setInterval, and our all-time favorite, XML-

HttpRequest. But, in reality, those functions are just asynchronous, not concurrent.

Actually, all JavaScript tasks run one after the other and are queued accordingly.

Web Workers offer us a multi-threaded environment where multiple threads can

execute in parallel, offering true concurrency.

In this chapter, we’ll first discuss the purpose and how to use Web Workers, before

having a look at some its limitations and security considerations.

Introduction and Usage
The Web Worker API allows us to write applications where a computationally ex-

pensive script can run in the background without blocking the main UI thread. As

a result, unresponsive script dialogs—as shown in Figure 2.1, which is due to the

blocking of main thread—can be a thing of the past.

Figure 2.1. An unresponsive script message

There are two kinds of Web Workers: dedicated workers and shared workers. The

main difference is the visibility. A dedicated worker is accessible from the parent

script that created it, but a shared worker can be accessed from any script of the

same origin. Shared workers have limited browser support: Chrome 4.0+, Safari

5.0+ and Opera 10.6+. Neither Firefox nor IE has support for shared workers.

We’ll be discussing dedicated workers in this book, as that’s what you’ll most

probably use.

Detecting Support

Before going any further, I just want to make that sure you detect the browser's

support for Web Workers. In the previous chapter, I showed an example where

we detected the support for Web Workers using native JavaScript and Modernizr,

so we’ll skip repeating it here.

To use Web Workers, you just need to call the Worker constructor and pass the URI

of the Worker script:

var worker=new Worker('myworker.js');

Worker Script Path

Please note that the Worker script path must have the same origin as the parent

script, and be relative to the parent script’s location.

Jump Start HTML5: APIs8

Here, myworker.js is the Worker script that needs to be executed in the background.

To communicate with a Worker, you just need to call postMessage on the worker

object, passing a message, if any:

// start a worker without any message
worker.postMessage();

// pass a message and start worker
worker.postMessage('Hey, are you in the mood to start work?');

But communication doesn’t have to be unidirectional. Our Worker can also reply!

To receive a message sent by our Worker, we attach an event listener to the worker

object, like so:

//register a callback
worker.addEventListener('message',function(e){
 alert('Got message from worker, '+e.data);
},false);

The handler function is also passed a message event object. This object has a property

called data that contains the actual message sent. So in the above code, we accessed

the e.data property to retrieve the data that was sent by our Worker.

And what happens to the message passed as an argument to postMessage() in our

main script? Well, that is passed to our Worker script, which can be retrieved at the

Worker side by registering the same event listener. The following snippet shows

how to do that:

myworker.js

//sent from worker
self.addEventListener('message',function(e){
 self.postMessage('Hey, I am doing what you told me to do!');
},false);

Workers Are Sandboxed

Workers run in a sandboxed environment. This means that they’re unable to access

everything a normal script can. For example, in the previous code snippet you

can’t access the global object window inside myworker.js. So bad things will

9Web Workers

happen if you try to write window.addEventListener instead of self.ad-

dEventListener. Workers also have no access to the DOM. Why? More on that

later.

In case of any error occurring, the onerror handler is called. The following callback

should be registered in the parent script:

//register an onerror callback
worker.addEventListener('error',function(e) {
 console.log(
 'Error occurred at line: '+e.lineno+' in file '+e.filename
);
},false);

Passing JSON data
Web Workers can only be passed a single parameter; however, that parameter can

be a complex object containing any number of items. Let’s modify our code to pass

JSON data:

parentScript.js

var worker=new Worker('myworker.js');

worker.addEventListener('message',function(e){
 alert('Got answer: '+e.data.answer+' from: '+e.data.answerer);
},false);

worker.postMessage({'question':'how are you?','askedBy':'Parent'});

myworker.js

self.addEventListener('message', function(e) {

 console.log(
 'Question: ' + e.data.question +
 ' asked by: '+e.data.askedBy
);

 self.postMessage(
 {
 'answer': 'Doing pretty good!',
 'answerer':'Worker'

Jump Start HTML5: APIs10

 }
);

},false);

Worker Data Is Copied

The data you pass to the Worker is copied, not shared. The receiver will always

receive a copy of data that is sent. It means that just before being sent, the data is

serialized and becomes de-serialized on the receiving side. You may wonder why

it is implemented this way. Simple! To avoid threading issues.

Web Worker Features
As noted previously, Web Workers run in a sandboxed environment. Their features

include:

■ read-only access to navigator and location objects

■ functions such as setTimeout/setInterval and XMLHttpRequest object, just

like the main thread

■ creating and starting subworkers

■ importing other scripts through importScripts() function

■ ability to take advantage of AppCache

They have no access to:

■ the window, parent, and document objects (use self or this in Workers for

global scope)

■ the DOM

Why Workers Are Unable to Access the DOM

Browsers (and the DOM) operate on a single thread. That's because your code can

prevent other actions, such as a link being clicked. Multiple threads could break

that. Also the DOM is not thread-safe. For these reasons, the Worker threads have

no access to the DOM—but that won't stop your Workers from modifying main

11Web Workers

page content. You can always pass a result back to the parent script and let the

UI thread update the DOM content. I will show you how at the end of the chapter.

There is just one final issue before we move onto more advanced features: how to

close a thread. To terminate a thread, just call worker.terminate() from main script

or self.close() from the worker itself.

More Advanced Workers
Inline Workers
Everybody loves to do things on the fly. Since Web Workers run in a separate context,

the Worker constructor expects a URI that specifies an external script file to run.

But if you want to be really quick, you can create Inline Workers on the fly through

blobs. Have a look at the following code:

var blob = new Blob(["onmessage = function(e) {
➥self.postMessage(e.data); };"]);

var worker = new Worker(window.URL.createObjectURL(blob));

worker.addEventListener('message', function(e){
 alert('Got same Message: '+e.data+' from worker');
},false);

worker.postMessage('Good Morning Worker!!');

In this snippet, we wrote the content of our Worker in a Blob. window.URL.createO-

bjectURL essentially creates a URI (for example, blob:null/027b645d-be05-4f14-

8866-e52604777608) that references the content of the Worker, and that URI is

passed to the Worker constructor. Then we proceed as usual.

Since it’s inconvenient to put all the Worker content into a Blob constructor, we

can alternatively put all the Worker code in a separate script tag inside the parent

HTML. Then, at runtime, we pass that content to the Blob constructor.

In the following example, we write the Worker in the parent HTML page itself. Once

the Worker starts, it will execute a function every second and return the current

time to the main thread. The main thread will then update the div with the time

(remember we talked about updating the DOM?):

Jump Start HTML5: APIs12

parentPage.html

<!DOCTYPE html>
<html>
<head>
<!--
 The following script won't be parsed by the JavaScript engine
 because of its type
-->
<script type="text/javascript-worker" id="jsworker">

 setInterval(function(){
 postMessage(getTime());
 }, 1000);

 function getTime(){
 var d = new Date();
 return d.getHours()+":"+d.getMinutes()+":"+d.getSeconds();
 }

</script>

<script>
 var blobURI = new Blob(
 [document.querySelector("#jsworker").textContent]
);

 var worker=new Worker(window.URL.createObjectURL(blobURI));

 worker.addEventListener('message',function(e){
 document.getElementById('currTime').textContent=e.data;
 },false);

 worker.postMessage();
</script>
</head>
<body>
<div id="currTime"></div>
</body>
</html>

This code is fairly self-explanatory. Once the Worker starts, we register a function

that is executed every second and returns the current time. The same data is retrieved

and the DOM is updated by the main thread. Furthermore, #currTime can be cached

for better performance.

13Web Workers

If you’re creating many blob URLs, it’s good practice to release them once you’re

done (I’d recommend that you avoid creating too many blob URLs):

window.URL.revokeObjectURL(blobURI); // release the resource

Creating Subworkers Inside Workers
In your Worker files you can further create subworkers and use them. The process

is the same. The main benefit is that you can divide your task between many threads.

The URIs of the subworkers are resolved relative to their parent script’s location,

rather than the main HTML document. This is done so that each Worker can manage

its dependencies clearly.

Using External Scripts within Workers
Your Workers have access to the importScripts() function, which lets them import

external scripts easily. The following snippet shows how to do it:

// import a single script
importScripts('external.js');

//import 2 script files
importScripts('external1.js','external2.js');

URIs are Relative to the Worker

When you import an external script from the Worker, the URI of the script is re-

solved relative to the Worker file location instead of the main HTML document.

Security Considerations
The Web Worker API follows the same origin principle. It means the argument to

Worker() must be of the same origin as that of the calling page.

For example, if my calling page is at http://xyz.com/callingPage.html, the

Worker cannot be on http://somethingelse.com/worker.js. The Worker is allowed

as long as its location starts with http://xyz.com. Similarly, an http page cannot

spawn a Worker whose location starts with https://.

Jump Start HTML5: APIs14

Figure 2.2 shows the error thrown by Chrome when trying to go out of the origin:

Figure 2.2. Origin error in Chrome

Some browsers may throw security exceptions if you try to access the files locally

(via the file:// protocol). If you are getting any such exceptions, just put your file

in the local server and access it with this: http://localhost/pro-

ject/somepage.html.

Polyfills for Older Browsers
What if the browser does not support the Web Workers API? There are several

polyfills available to support older browsers by simulating the behavior of Web

Workers. The Modernizr page on Github1 has a list of such polyfills, but long-running

code may fail with these implementations. In those cases, it may be necessary to

offload some processing to the server via Ajax.

Conclusion
Web Workers give you a big performance boost because of their multi-threaded

nature. All modern browsers, including IE10 and above, offer support for Web

Workers.

Here are a few use cases that you can try to implement:

■ long polling2 in the background and notifying the user about new updates

■ pre-fetching and caching content

■ performing computationally expensive tasks and long-running loops in the

background

■ a syntax highlighter tool

1 https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills#web-workers
2 http://techoctave.com/c7/posts/60-simple-long-polling-example-with-javascript-and-jquery

15Web Workers

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills#web-workers
http://techoctave.com/c7/posts/60-simple-long-polling-example-with-javascript-and-jquery

■ a spell-checker that runs continuously in the background

There are many more uses. I encourage you to be creative and try implementing

new projects using what you have learned so far.

The next chapter will be about the Geolocation API.

Jump Start HTML5: APIs16

Chapter3
The Geolocation API
The Geolocation API provides an easy way to retrieve the exact position of your

users. For example, you can create an app that gives personalized suggestions to

the users based on their current location. You may also plot their position on the

map to show navigation details.

In this chapter, I will give you an overview of the Geolocation API and show how

you can use it to create magical location-based HTML5 apps.

Hitting the Surface
Before using the API, let’s just make sure the browser supports it:

if (navigator.geolocation) {
 // do something awesome
}
else {
 // provide alternative content
}

The same check can be achieved through Modernizr:

if (Modernizr.geolocation) {
 //do something awesome
}
else {
 //provide alternative content
}

Use the following code for the actual position of the user:

navigator.geolocation.getCurrentPosition
➥(success_callback,error_callback);

 function success_callback(position){
 console.log("Hey, there you are at Longitude:"
➥+position.coords.longitude+"and latitude:"
➥+position.coords.latitude);
 }
 function error_callback(error){
 var msg="";
 switch(error.code){
 case 1:
 msg="Permission denied by user";
 break;
 case 2:
 msg="Position unavailable";
 break;
 case 3:
 msg="Request Timed out";
 break;
 }
 console.log("Oh snap!! Error logged: "+msg);
 }

The function getCurrentPosition() is asynchronous in nature. It means the

function returns immediately, and tries to obtain the location of the user asynchron-

ously. As soon as location information is retrieved, the success callback is executed.

A position object is also passed to the callback. All the data related to the

user'scurrent position is encapsulated in that object.

The following properties are available inside the position object:

■ coords.latitude: latitude of the position

Jump Start HTML5: APIs18

■ coords.longitude: longitude of the position

■ coords.accuracy: informs the developer how accurate the location information

is (this result is in meters)

■ coords.altitude: the current altitude in meters

■ coords.altitudeAccuracy: used to establish the accuracy of the altitude given

(previous point)

■ coords.heading: the direction in which the user is heading

■ coords.speed: the speed of the end user (device) in meters per second

■ timestamp: the timestamp indicating when the position is recorded

You may not need all the information contained in the position object. In most

cases, all you’ll ever need are the first three properties, as those are sufficient to

plot a user’s position on the map.

The next point to note is that you should handle any error gracefully. When your

app tries to retrieve the location, the browser asks the user if the requesting page

should be allowed to access the user’s location. If the user denies permission, the

error callback (see the previous piece of code) is called and an error object is passed.

The code property indicates the type of error that has occurred. There could also

be an error because the request timed out.

Now let’s see what else you can do with getCurrentPosition(). This function

takes an optional third parameter, PositionOptions, which is a JavaScript object

representing additional options. The available properties are:

1. enableHighAccuracy: If this is set true, it will instruct the hosting device to

provide the best possible location details. If the device is a smartphone, it may

use GPS to provide highly accurate information.

2. timeout: This essentially indicates how many milliseconds you want to wait to

obtain a position. For example, if you set the value to 5,000 milliseconds and the

app is unable to detect the current position of the user within that interval, it

will fail with an error.

19The Geolocation API

3. maximumAge: This property indicates if you want the device to cache the last

known location. Let’s assume the device detects the current location of the user

at 5.00 p.m. One minute later (at 5.01 p.m.), your app again calls getCurrentPos-

ition() with maximumAge of 100,000 (means 100 seconds). Since the device

knows where the user was 60 seconds ago and this is less than the maximumAge

property, it will answer back with that last known location. This is useful if you’re

satisfied with a previously known location rather than firing a new request for

the current position (conserving battery life in many cases). It’s like saying “hey

device, give me your current position, and I don’t mind if that position is x mil-

liseconds old.” Note that a value of 0 indicates no caching should be done.

The following snippet demonstrates using PositionOptions:

navigator.geolocation.getCurrentPosition(
 success_callback,
 error_callback,
 {enableHighAccuracy: true, timeout: 35000, maximumAge: 60000}
);

Continuously Monitoring Position
If you want to monitor the user’s position continuously, getCurrentPosition()

will fail to work for you; instead, you should use watchPosition(). Both functions

have the same signatures but they differ in the way they work.

In the case of watchPosition(), the success callback is called every time the user’s

position changes. Yes, it’s that good! If your app needs to plot the user’s location

on the map as the user moves, this is the best way to do it. You don’t even have to

bother about when the position changes. The API takes care of that for you and ex-

ecutes your callback at the appropriate time.

The following code demonstrates the use of watchPosition():

var watchId;
function startWatchingPosition() {
 watchId=navigator.geolocation.watchPosition(plotPosition);
}

function plotPosition(position){
 console.log(

Jump Start HTML5: APIs20

 'got position: Latitude='+
 position.coords.latitude+
 ', longitude='+
 position.coords.longitude
);

 // your code to update the position on map
}

function stopWatchingPosition(){
 navigator.geolocation.clearPosition(watchId);
}

Here, the callback plotPosition() will be called every time a new location is re-

trieved. Note that the watchPosition() function returns a number that you can

store and later use with clearPosition() to stop monitoring; it works much like

setInterval() and clearInterval().

Fast-moving Users

If the user is moving very fast, the callback may execute frequently and slow down

the system. Some event throttling may be necessary to reduce the number of times

our callback runs. There is a small JavaScript library1 designed by Jonatan Heyman

that reduces the number of callbacks we receive from watchPosition().

Accuracy of Geolocation
Geolocation accuracy may be important to your app. As discussed, you can always

choose to enable high location accuracy using PositionOptions.enableHighAccur-

acy. But that’s just hinting to the device to use a little more power so as to return a

more accurate position. The device may silently disregard it. In many situations,

the location retrieved may not be accurate enough or even be wrong. And sometimes

the user may have no interest in the retrieved location. In those cases, you may want

to allow the users to override the location.

1 https://github.com/heyman/geolocation-throttle

21The Geolocation API

https://github.com/heyman/geolocation-throttle

Conclusion
The Geolocation API is a great tool for the developer who wants to build cool loca-

tion-based applications that give real-time feedback to the users; however, you

should remember that the user always has a choice. As mentioned, the user has to

explicitly grant permission to your application for you to actually access the location.

In those cases, you should be ready with alternative content.

Here are a few small projects you can try to implement on your own:

■ Detect your position and plot it on a Google Map.

■ Continuously monitor your own position and plot them on the map.

■ Detect the position of a user and show them theaters nearby.

■ Let your users check in at different places and plot these on a map to later show

them the places they visited that day.

Jump Start HTML5: APIs22

Chapter4
Server Sent Events
Server Sent Events is an API by which browsers receive push notification from

servers through the HTTP connection. Once a connection is established, the server

can send updates to the client periodically as new data is available. In other words,

a client subscribes to the events generated on the server side. Once a particular

event occurs, the server sends a notification to the client. With Server Sent Events

(SSEs), you can create rich applications that provide real-time updates to the browser

without significant HTTP overhead.

In this chapter, we’ll discuss the concepts behind SSEs and learn how to use them

to build real-time HTML5 apps.

The Motivation for SSEs
Before moving any further, it’s important to understand the need for this API. To

explain, let me first ask you a question: how would you design a real-time app that

continuously updates the browser with new data if there were no Server Sent Events

API? Well, you could always follow the traditional approach of long polling through

setInterval()/setTimeout() and a little bit of Ajax. In this case, a callback executes

after a specified time interval and polls the server to check if new data is available.

If data is available. it's loaded asynchronously and the page is updated with new

content.

The main problem with this approach is the overhead associated with making

multiple HTTP requests. That’s where SSEs come to rescue. With SSEs, the server

can push updates to the browser as they’re made available through a single unidirec-

tional connection. And even if the connection drops, the client can reconnect with

the server automatically and continue receiving updates.

Keep in mind that SSEs are best suited for applications that require unidirectional

connection. For example, the server may obtain latest stock quotes periodically and

send the updates to the browser, but the browser doesn’t communicate back to the

server, it just consumes the data sent by server. If you want a bi-directional connec-

tion, you’ll need to use Web Sockets, which are covered in the next chapter.

Okay, enough talking. Let’s code!

The API
Here’s some example code showing the use of SSEs:

if (!!window.EventSource) {
 var eventsource=new EventSource('source.php');
 eventsource.addEventListener('message',function(event) {
 document.getElementById("container").innerHTML = event.data;
 }, false);
}
else{
 // fallback to long polling
}

Using Modernizr

Note that we’re checking for browser support of SSEs. The same check can be

achieved using Modernizr:

if (Modernizr.eventsource) {
 // proceed further
}

Jump Start HTML5: APIs24

else{
 // fallback to long polling
}

To use SSEs, you just call the EventSource constructor, passing the source URL.

The source may be any back-end script that produces new data in real time. Here I

have used a PHP script (source.php), but any server-side technology that supports

SSEs can be used.

You can then attach event listeners to the eventsource object. The message event

is fired whenever the server pushes some data to the browser and the corresponding

callback is executed. The callback accepts an event object and its data property

contains our data from the server. Once you have the data, you can perform tasks

such as updating a part of the page with new information automatically in real time.

You can be aware of when the connection opens and when an error occurs, as fol-

lows:

eventsource.addEventListener('open', function(event) {
 // connection to the source opened
},false);

eventsource.addEventListener('error', function(event) {
 // Bummer!! an error occurred
},false);

The EventStream Format
There needs to be something in your server’s response to help the browser identify

the response as a Server Sent Event. When the server sends the data to the client,

the Content-Type response header has to be set to text/event-stream. The content

of the server’s response should be in the following format:

data: the data sent by server \n\n

data: marks the start of the data. \n\n marks the end of the stream.

25Server Sent Events

\n is the Carriage Return Character

You should note that the \n used above is the carriage return character, not simply

a backslash and an n.

While this works for single-line updates, in most cases we’ll want our response to

be multiline. In that case, the data should be formatted as follows:

data: This is the first line \n
data: Now it's the second line \n\n

After receiving this stream, client-side event.datawill have both the lines separated

by \n. You can remove these carriage returns from the stream as follows:

console.log(e.data.split('\n').join(' '));

How About a Little JSON?
In most real-world apps, sending a JSON response can be convenient. You can send

the response this way:

data: {generator: "server", message: "Simple Test Message"}\n\n

Now in your JavaScript, you can access the data in the onmessage callback quite

simply:

var parsedData = JSON.parse(event.data);
console.log(
 "Received from " + parsedData.generator +
 " and the message is: " + parsedData.message
);

Associating an Event ID
You can associate an event id with the data you are sending as follows:

id: 100\n
data: Hey, how are you doing?\n\n

Jump Start HTML5: APIs26

Associating an event id can be beneficial because the browser tracks the last event

fired. This id becomes a unique identifier for the event. In case of any dropped

connection, when the browser reconnects to the server it will include an HTTP

header Last-Event-Id in the request. On the server side, you can check the presence

of the Last-Event-Id header. If it’s present, you can try to send only those events

to the browser that have event id greater than the Last-Event-Id header value. In

this way, the browser can consume the missed events.

Creating Your Own Events
One of the most crucial aspects of SSEs is being able to name your events. In a sports

app, you can use a particular event name for sending score updates and another for

sending other information related to the game. To do that, you have to register

callbacks for each of those events on the client side. Here’s an example:

Response from server:

event: score \n
data: Some score!! \n\n
event: other \n
data: Some other game update\n\n

Client-side JavaScript:

var eventsource=new EventSource('source.php');

// our custom event
eventsource.addEventListener('score',function(e) {
 // proceed with your logic
 console.log(e.data);
}, false);

//another custom event
eventsource.addEventListener('other',function(e) {
 // proceed in a different way
 console.log(e.data);
}, false);

Having different event names allows your JavaScript code to handle each event in

a separate way, and keeps your code clean and maintainable.

27Server Sent Events

Handling Reconnection Timeout
The connection between the browser and server may drop any time. If that happens,

the browser will automatically try to reconnect to the server by default after roughly

five seconds and continue receiving updates; however, you can control this timeout.

The following response from the server specifies how many milliseconds the browser

should wait before attempting to reconnect to the server in case of disconnection:

retry: 15000 \n
data: The usual data \n\n

The retry value is in milliseconds and should be specified once when the first

event is fired. You can set it to a larger value if your app does not produce new

content rapidly and it’s okay if the browser reconnects after a longer interval. The

benefit is that it may reduce the overhead of unnecessary HTTP requests.

Closing a Connection
We always reach this part in almost every API; when resources are no longer needed

and it’s better to release them. So, how do you close an event stream? Write the

following and you’ll no longer receive updates from the source:

eventsource.close(); //closes the event stream

A Sample Event Source
To finish with, how about some Chuck Norris jokes? Let’s create a simple Event-

Source that will randomly fetch a joke and push it to our HTML page. Here’s a

simple PHP script that pushes the new data:

source.php

<?php
header('Content-Type: text/event-stream');
header('Cache-Control: no-cache');
ob_implicit_flush(true);
ob_end_flush();
while (true) {
 sleep(2);

Jump Start HTML5: APIs28

 $curl=curl_init('http://api.icndb.com/jokes/random');
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 $result=curl_exec($curl);
 echo "data:$result\n\n";
}
?>

Some Notes on the PHP Script

The data from the API is in JSON format. SSEs require you to prepend your data

with data: and mark the end with \n\n. If you miss these points, the Event-

Source won’t work, and remember to also pay attention to the headers. The

reason for the loop is to keep the connection open. Without the loop, the browser

will attempt to open a new connection after five seconds or so.

As we are looping continuously in the PHP script, the execution time of the script

may exceed PHP’s max_execution_time. You may also face problems because

of the Apache user connection limit. Technologies such as Node.js may be a better

choice for these types of real-time apps.

Here’s the HTML page that displays the data:

jokes.html

<!DOCTYPE html>
<html>
<head>
<title>A Random Jokes Website</title>
<script>
if(typeof(EventSource)!=="undefined"){
 var eventsource=new EventSource('source.php');
 eventsource.addEventListener('message', function(event) {
 document.getElementById("container").innerHTML =
 ➥JSON.parse(event.data).value.joke + '
' +
 ➥document.getElementById("container").innerHTML;
 },false);
}
else console.log("No EventSource");
</script>
</head>
<body>

 <div id="container"></div>

29Server Sent Events

</body>
</html>

Debugging
In case you encounter problems, you can debug your application using the browser’s

JavaScript console. In Chrome, the console is opened from Menu > Tools > JavaScript

Console. In Firefox, the same can be accessed from Menu > Web Developer > Web

Console. In case the event stream is not working as expected, the console may report

the errors, if any.

You need to pay special attentions to the following:

■ sending the header Content-Type: text/event-stream from the server

■ marking the start and end of content with data: and \n\n respectively

■ paying attention to same-origin policies

Conclusion
Server Sent Events have solved the long polling hack that we previously used to

achieve real-time update functionality. Here are a few simple projects that you might

want to implement:

■ Creating a page that has a clock updated from the server side.

■ Reading and displaying the latest tweets with the help of the Twitter API.

■ Fetching a random photo with the Flickr API and updating the page.

The Mozilla Developer Network has a good resource for learning more about SSEs.1

Here, you can also find some demo apps and polyfills for older browsers.

1 https://developer.mozilla.org/en-US/docs/Server-sent_events

Jump Start HTML5: APIs30

https://developer.mozilla.org/en-US/docs/Server-sent_events

Chapter5
The WebSocket API
I think that WebSockets are one of the coolest APIs available in HTML5. The real

strength of the WebSocket API comes to the fore when you want your clients to talk

to the server through a persistent connection. This means that once the connection

is opened, the server and the client can send messages to each other anytime. Gone

are the days when clients used to send a message to the server and wait until the

server responded back. Clearly, WebSockets eliminate the need for long polling!

The API is very useful if you want to create real-time apps where clients and the

server talk to each other continuously. For instance, you can build chat systems,

multi-player HTML5 games and similar apps with WebSockets.

WebSockets versus Server Sent Events (SSEs)

WebSockets and SSEs can achieve similar tasks but they are different. In the case

of SSEs, the server only pushes data to the client once new updates are available.

In the case of WebSockets, both client and server send data to each other; to be

precise, the communication is bi-directional (full-duplex, if you love more tech-

nical terms).

To use WebSockets, you’ll need a WebSocket-enabled server. Well, that’s the tricky

part. Don’t worry! There are implementations of WebSockets available for several

different languages. I will cover those shortly.

Additionally, you should always bear in mind that WebSockets allows cross-origin

communication. So, you should always only connect to the clients and servers that

you trust.

The JavaScript API
Let’s quickly try it out. The developers at WebSocket.org1 have created a demo

WebSocket server at ws://echo.websocket.org. We can connect to it and start ex-

changing messages with it in no time.

The ws:// Protocol

ws:// is a protocol that’s similar to http://, except that it’s used for specifying

the Web Sockets server URLs.

First, let’s see how to connect to a simple WebSocket server using the JavaScript

API. After that, I will show how you can create your own WebSocket server and let

others connect with you.

// test if the browser supports the API
if('WebSocket' in window) {

 var socket = new WebSocket('ws://echo.websocket.org');

 if (socket.readyState == 0) console.log('Connecting...');

 // As soon as connection is opened, send a message to the server
 socket.onopen = function () {
 if (socket.readyState == 1) {
 console.log('Connection Opened');
 socket.send('Hey, send back whatever I throw at you!');
 }
 };

 // Receive messages from the server

1 http://www.websocket.org/

Jump Start HTML5: APIs32

http://www.websocket.org/

 socket.onmessage = function(e) {
 console.log('Socket server said: ' + e.data);
 };

 socket.onclose = function() {
 if (socket.readyState == 2) console.log('Connection Closed');
 };

 // log errors
 socket.onerror = function(err) {
 console.log('An Error Occurred ' + err);
 };

}
else {
 // sadly, no WebSockets!
}

Using Modernizr

With Modernizr, we can check for the browser support of WebSockets this way:

if (Modernizr.websockets) {
 // proceed
}
else{
 // No WebSocket
}

So, you start by passing the socket server URL to the WebSocket constructor. The

constructor also accepts an optional second parameter, which is an array of sub-

protocols. This parameter defaults to an empty string.

Next, we attach different callbacks for different events. As soon as the connection

opens, the onopen event is fired and our callback executes. You can send a simple

message to the server by calling socket.send(). You can also send binary data,

which we’ll see in the next section.

Similarly, the server can also send us messages. In that case, the onmessage callback

fires. At the moment, the server sends us back whatever we send to it, and we simply

33The WebSocket API

log the message received. But you can always capture the message and dynamically

update your page with it.

Just paste the code in an HTML file and run it ― you’ll be delighted to see the

server’s response!

The readyState Property

The variable socket in the aforementioned code has a property called readyS-

tate indicating the status of the connection:

■ 0 = connecting

■ 1 = opened

■ 2 = closed

Sending Binary Data
You can also send binary data to the server. The following program sends the image

drawn on canvas to a sample WebSocket:

// you need to create this socket server
var connection=new WebSocket('ws://localhost:8080');

connection.onopen = function() {

 // get an image from canvas
 var image = canvas2DContext.getImageData(0, 0, 440, 300);
 var binary_data = new Uint8Array(image.data.length);
 for (var i = 0; i < image.data.length; i++) {
 binary_data[i] = image.data[i];
 }
 connection.send(binary_data.buffer); // send the data

}

In the code, we read the image from the HTML page and create an ArrayBuffer to

contain the binary data. Finally, connection.send() actually sends the data.

Jump Start HTML5: APIs34

Using Blobs

We can also send the binary data as a blob. For example, you could create a file

uploader and read the files through querySelector(). Then you can send those

files with the help of connection.send(). HTML5Rocks has an excellent tutorial

on WebSockets2 that also covers sending binary data to the server through blobs.

Sample Server Implementations
Here are a few WebSockets implementations available for different server-side lan-

guages. You can choose a library based on your preferred language:

■ PHP: Ratchet3

■ Node.js: Socket.IO4

■ Java: jWebSocket5

For a complete overview of server-side libraries, Andrea Faulds maintains a com-

prehensive list.6

It’s beyond the scope of this short book to discuss each of these libraries in detail.

But regardless of the implementation, they all offer a simple API through which

you can interact with your clients. For example, they all offer a handler function

to receive messages from the browser and you can also communicate back with the

client. I encourage you to grab a library for your favorite language and play around

with it.

I have written an extensive tutorial on WebSockets on SitePoint.com.7 In that tutorial,

I’ve shown how to implement a WebSockets-enabled server using jWebSocket and

let others connect to it.

2 http://www.html5rocks.com/en/tutorials/websockets/basics/
3 http://socketo.me/
4 https://github.com/learnboost/socket.io
5 http://jwebsocket.org/
6 http://ajf.me/websocket/#libs
7 http://www.sitepoint.com/introduction-to-the-html5-websockets-api/

35The WebSocket API

http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://socketo.me/
https://github.com/learnboost/socket.io
http://jwebsocket.org/
http://ajf.me/websocket/#libs
http://ajf.me/websocket/#libs
http://www.sitepoint.com/introduction-to-the-html5-websockets-api/

Conclusion
If you want to learn more about the WebSocket API, the following resources are

worth checking out:

■ the WebSocket API8

■ WebSocket tutorial at Mozilla Ddeveloper Network9

■ WebSocket demo apps10

Here are a few use cases of the API:

■ creating a simple online chat application

■ updating a page as new updates are available on the server and communicating

back

■ creating an HTML5 game with multiple users.

8 http://dev.w3.org/html5/websockets/
9 https://developer.mozilla.org/en-US/docs/WebSockets
10 http://www.websocket.org/demos.html

Jump Start HTML5: APIs36

http://dev.w3.org/html5/websockets/
https://developer.mozilla.org/en-US/docs/WebSockets
http://www.websocket.org/demos.html

Chapter6
The Cross-document Messaging API
The Cross-document Messaging API in HTML5 makes it possible for two documents

to interact with each other without directly exposing the DOM. Just imagine the

following scenario: Your web page has an iframe that is hosted by a different website.

If you try to read some data from that iframe, the browser will be very upset and

may throw a security exception. It prevents the DOM from being manipulated by a

third-party document, thereby stopping potential attacks such as CSRF1 or cross-

site scripting (XSS).2 But the Cross-document Messaging API never directly exposes

the DOM. Instead, it lets HTML pages send messages to other documents through

a message event.

The Cross-document Messaging API is useful for creating widgets and allowing

them to communicate with third-party websites. For example, let’s say that you

have a page that serves ads and you allow the end-users to embed this page in their

websites. In this case, you can let users personalize the ads or modify the type of

ads through the Cross-document Messaging API. Clients can send messages to your

page and you can receive those messages too.

1 http://en.wikipedia.org/wiki/Cross-site_request_forgery
2 http://en.wikipedia.org/wiki/Cross-site_scripting

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

The JavaScript API
The Cross-document Messaging API revolves around a single method: window.post-

Message(). As its name suggests, this method allows you to post messages to a dif-

ferent page. When the method is called, a message event is fired on the receiving

document side. Before moving further, it’s crucial to understand the properties of

the message event. There are three properties we’re interested in:

1. data: This holds the message being sent. You have already played with it in

previous chapters (remember calling event.data in SSEs?).

2. origin: This property indicates the sender document’s origin; i.e the protocol

(scheme) along with the domain name and port, something like http://ex-

ample.com:80. Whenever you receive a message, you should always, always

check that the message is coming from a trusted origin. I will explain how to do

that in the next section.

3. source: This is a reference to the sender’s window. After receiving a cross-docu-

ment message, if you want to send something back to the sender, this is the

property you’ll use.

Basic Usage
You send a message to another document by calling window.postMessage(). This

function takes two arguments:

■ message: the actual message you want to send

■ targetOrigin: a simple string indicating the target origin—an additional security

feature (I’ll explain how this is useful in the next section)

The code looks like the following:

targetWindow.postMessage(message, targetOrigin);

You should note that targetWindow refers to the window to which you want to send

a message. It may be a window you just opened through a call to window.open(),

or it can also be the contentWindow property of some iframe.

Jump Start HTML5: APIs38

A Reference to an Open Window

window.open('a URL') returns a reference to the opened window. You can

always call postMessage() on it.

Let’s build a very simple example. Say that we have a parent page that has an iframe

inside it. The iframe’s src points to a third-party website that provides us with a

random image.

This is the page referenced by the iframe in our parent page:

child.html

.f<!DOCTYPE html>
<html>
<head>
<title>A page that provides a random image</title>
</head>
<body>
 <div id="container">
 <img
 ➥src="http://randomimage.setgetgo.com/get.php?key=2323232"
 ➥id="image"
 />
 <div>
</body>
</html>

So far, so good! Now let’s have a look at our parent page:

parent.html

<!DOCTYPE html>
<html>
<head>
<title>The Parent Document</title>
</head>
 <body>
 <iframe
 ➥src="child.html"
 ➥height="500" width="500" id="iframe">
 </iframe>

39The Cross-document Messaging API

 </body>
</html>

When you open up the parent page, you can see the image coming from the page

child.html. For now, both parent.html and child.html are on the same server (local-

host) for testing purposes. But they should ideally be on different servers.

But we don’t want to keep showing a static image to our users, nor reload our iframe.

It would be really great if we could ask the page child.html to reload its image when

a user hits a button on our parent page; i.e. parent.html.

Let’s start by adding a button to our parent page. We’ll also write a function that

responds to the click event and sends a message to child.html.

parent.html

<!DOCTYPE html>
<html>
<head>
<title>The Parent Document</title>
</head>
 <body>
 <iframe
 ➥src="child.html"
 ➥height="500" width="500" id="iframe">
 </iframe>

 <button id="reloadbtn">Reload</button>

 <script>
 document.getElementById("reloadbtn").
 ➥addEventListener("click", reload, false);

 // reload handler
 function reload(e) {
 // is cross-messaging supported?
 if (window.postMessage) {
 document.getElementById('iframe').
 ➥contentWindow.postMessage(
 Math.random()*1000, 'http://localhost'
);
 }

Jump Start HTML5: APIs40

 else {
 console.log('postMessage() not supported');
 }
 }
 </script>

 </body>
</html>

Using Modernizr

If you’re using Modernizr to check browser compatibility, check for the property

Modernizr.postmessage.

As you can see, when a user clicks on reload button our callback reload() executes.

First, we ensure that postMessage() is supported by the browser. Next, we call

postMessage() on the iframe’s contentWindow. The contentWindow property of an

iframe is simply a reference to that iframe’s window. Here, our message is a simple

random number (we will see why shortly). The second argument to postMessage()

is http://localhost. This represents the targetOrigin to which the message can

be sent. The origin of the iframe’s src and this argument must be same in order for

postMessage() to succeed. This is done so that other unintended domains cannot

capture the messages. In this case, if you pass something else as the targetOrigin,

postMessage() will fail.

targetOrigin

Think of targetOrigin as a way of telling the browser to which origin the

message can be sent. You can also pass "*" as the targetOrigin. As you might

have guessed, * is a wildcard that says the message can be sent to documents from

any origin. But using a wildcard means loosening your security system by allowing

the message to be sent to any origin. I recommend passing the exact origin as the

second argument to postMessage() instead of the wildcard.

Now we have to receive the message in child.html and take appropriate action. Here’s

the modified child.html this:

41The Cross-document Messaging API

child.html

<!DOCTYPE html>
<html>
<head>
<title>A page that provides random image</title>
</head>
<body>

 <div id="container">
 <img
 ➥src="http://randomimage.setgetgo.com/get.php?key=2323232"
 ➥id="image"
 />
 <div>

 <script>
 window.addEventListener('message', messageReceiver, false);

 function messageReceiver(event) {

 // can the origin can be trusted?
 if (event.origin != 'http://localhost') return;

 document.getElementById('image').src =
 ➥"http://randomimage.setgetgo.com/get.php?key=" + event.data;

 console.log(
 'source=' + event.source +
 ', data=' + event.data +
 ', origin=' + event.origin
);

 }
 </script>

</body>
</html>

First, we attach a callback to the message event. Whenever parent.html sends a

message to child.html, this callback will be executed. The first and most important

step is to check whether you are receiving messages from the intended origin. After

adding an event listener to the message event, you can receive messages from doc-

Jump Start HTML5: APIs42

uments of any origin. So, it’s recommended to always put a check inside your call-

back to ensure that the message is coming from a trusted origin.

Next, we retrieve the message from event.data. This particular API that we’re using

for random images requires a different random number each time so that the gener-

ated image will be a unique one. That’s why we’re generating a random number on

a button click (in parent.html) and passing that as a message to child.html. In child.html,

we simply construct a new image URL with the help of the random number and

update the image’s src. As a result, we can see a new image each time we click the

reload button from the main page.

Sending a Message Back

If you want to send a message back to parent.html, you can always use

event.source.postMessage() inside your event listener in child.html. Con-

sequently, you’ll also need an event handler in the parent page.

Detecting the Readiness of the Document
Most of the time, you’ll send messages to iframes embedded in your pages. But

many times, you may also need to open a new window from your page and post

messages to that. In this case, ensure that the opened window has fully loaded. Inside

the opened window, attach a callback to the DOMContentLoaded event, and in that

function send a message to the parent window indicating that the current window

has fully loaded.

Getting a Reference

Inside the DOMContentLoaded event listener (in the opened window), you can

get a reference to the window by accessing event.currentTarget.opener and

calling postMessage() on it as usual. Tiffany Brown explains how to achieve

this in an excellent tutorial.3

3 http://dev.opera.com/articles/view/window-postmessage-messagechannel/#whenisdocready

43The Cross-document Messaging API

http://dev.opera.com/articles/view/window-postmessage-messagechannel/#whenisdocready

Conclusion
This was the overview of the Cross-document Messaging API. By using this API,

two cross-origin documents can securely exchange data. Because the DOM is not

directly exposed, it’s now possible for a page to directly manipulate a third-party

document.

The Cross-document Messaging API certainly gives you more power. But, as you

know, with great power comes great responsibility! If you fail to use this API

properly, you may end up exposing your website to various security risks. So, as

discussed in this chapter, you should be very, very careful while receiving cross-

document messages to avoid security risks. Similarly, while sending messages with

window.postMessage(), don’t use * as targetOrigin. Instead, provide a single

valid origin name.

Although it’s not possible to cover each and everything about the API in detail, this

chapter gives you a head start. You should now be able to experiment with different

things on your own. For further reading, I strongly recommend the following re-

sources:

■ the Mozilla Developer Network4

■ the W3C specification.5

So, this brings us to the end of our tour through five of the most important and

useful HTML5 APIs. I hope you've found this book a useful introduction to these

powerful technologies. Do take a look at the sample project ideas that I have shared

in the end of each chapter; I also encourage you to get creative and think of some

other good use cases that can be implemented.

Happy coding!

4 https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage
5 http://www.w3.org/TR/webmessaging/

Jump Start HTML5: APIs44

https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage
http://www.w3.org/TR/webmessaging/

	Jump Start HTML5: APIs
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Tools You’ll Need

	APIs Overview
	A Quick Tour of the HTML5 APIs Covered
	What You Are Going to Learn
	Getting Started
	Checking Browser Compatibility
	Modernizr

	Setting Up the Environment

	Web Workers
	Introduction and Usage
	Passing JSON data
	Web Worker Features

	More Advanced Workers
	Inline Workers
	Creating Subworkers Inside Workers
	Using External Scripts within Workers

	Security Considerations
	Polyfills for Older Browsers
	Conclusion

	The Geolocation API
	Hitting the Surface
	Continuously Monitoring Position
	Accuracy of Geolocation
	Conclusion

	Server Sent Events
	The Motivation for SSEs
	The API
	The EventStream Format
	How About a Little JSON?
	Associating an Event ID
	Creating Your Own Events
	Handling Reconnection Timeout
	Closing a Connection
	A Sample Event Source
	Debugging
	Conclusion

	The WebSocket API
	The JavaScript API
	Sending Binary Data
	Sample Server Implementations
	Conclusion

	The Cross-document Messaging API
	The JavaScript API
	Basic Usage
	Detecting the Readiness of the Document
	Conclusion

