
GET UP TO SPEED WITH HTML5 IN A WEEKEND

Callum is a web developer by trade and a designer
by passion. Armed with knowledge of both design
and development, he is able to influence both
sides of the web building process. His affinity for
for complex coding functions and beautiful design
and functionality drives him to seek out new ways
to build, design and optimize web based solutions
for clients around the world.Callum Hopkins

JU
M

P START : H
TM

L5
Buckler & Brow

n

PHP is a hugely popular language that powers the backend of 80% of websites,
including Internet giants such as Facebook, Wikipedia and WordPress. It’s an
easy language to learn and great for beginners, so you can get up and running
fast!

 _ NO PREVIOUS KNOWLEDGE of PHP REQUIRED: start by installing PHP and downloading

the best free tools

 _ NAIL THE BASICS: Learn syntax, operators, loops and functions

 _ WRITE BETTER CODE: Understand Object Oriented Programming, and learn best

practices used by the pros

 _ BUILD YOUR RESUME: PHP is a rock-solid language to add to your list of skills

In Jump Start PHP you’ll learn step-by-step how to build a complete blog
application, understand and how PHP works with data, and improve the
security your PHP apps. In just one weekend, you’ll have a solid base to start
writing PHP on your own!

USD $29.95 CAD $29.95

WEB DEVELOPMENT
Print: 000
Ebook: 000

WHY YOU SHOULD READ THIS BOOK TODAY

Canvas & SVG
By Kerry Butters

JSHTML5-fullcover.indd 1 22/11/2013 1:36 pm

Summary of Contents

Preface . xiii

1. An Introduction to Canvas . 1

2. Canvas Basics . 5

3. Handling Non-supporting Browsers . 15

4. Gradients . 17

5. Images and Videos . 23

6. An Introduction to SVG . 27

7. Using SVG . 37

8. Bézier Curves . 41

9. Filter Effects . 47

10. Canvas or SVG . 53

JUMP START
HTML5:

CANVAS &
SVG

BY KERRY BUTTERS

Jump Start HTML5: Canvas & SVG
by Kerry Butters

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Paul FitzpatrickProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Craig Buckler

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

Printed and bound in the United States of America

iv

About Kerry Butters

Kerry Butters1 is a technology writer from the UK. With a background in technology and

publishing, Kerry writes across a range of techy subjects including web design and corporate

tech. Kerry also heads up markITwrite digital content agency2, loves to play around with

anything tech related and is an all-round geek.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

1 https://plus.google.com/u/0/+KerryButters?rel=author
2 http://markitwrite.com

v

https://plus.google.com/u/0/+KerryButters?rel=author
http://markitwrite.com
http://www.sitepoint.com/

To my husband Martin,

(affectionately known to me as my

Martian) for being my biggest fan

and blowing my trumpet when I

won’t (which is most of the time!).

For being supportive, for helping

me to realise my dreams and for

being the man I dreamed about

for many years before we met.

Most of all for being my best

friend and my soul mate.

Table of Contents

Preface . xiii

Who Should Read This Book . xiii

Conventions Used . xiv

Code Samples . xiv

Tips, Notes, and Warnings . xv

Supplementary Materials . xv

Tools You'll need . xvi

Browsers . xvi

Enabling Inspection Tools in Chrome . xvii

Do You Want to Keep Learning? . xviii

Chapter 1 An Introduction to Canvas 1

What Can Canvas Be Used For? . 1

Before We Get Started . 2

Canvas Looks Complex, Why Not Use Flash? . 3

What About WebGL? . 3

Chapter 2 Canvas Basics . 5

HTML5 Canvas Template . 5

Drawing a Simple Shape Onto the Canvas . 6

Canvas Coordinates and Paths . 8

Drawing Circles . 9

Drawing Text . 10

Drawing a Triangle . 12

Canvas Sizing . 13

Scaling with JavaScript . 14

Scaling with CSS . 14

CSS Transforms Using JavaScript . 14

Chapter 3 Handling Non-supporting
Browsers . 15

Create Alternative Content . 15

Chapter 4 Gradients . 17

Radial Gradients . 19

Playing with the Color Stops . 20

Chapter 5 Images and Videos . 23

Images . 23

Using the image() Object . 24

Video . 24

Chapter 6 An Introduction to SVG 27

Why Use SVG Instead of JPEG, PNG, or GIF? . 28

Getting Started . 29

Other Shapes . 30

Gradients and Patterns . 34

Patterns . 35

Chapter 7 Using SVG . 37

Inserting SVG Images on Your Pages . 37

Which Method Should You Use? . 38

SVG Tools and Libraries . 39

x

Chapter 8 Bézier Curves . 41

Quadratic Bézier Curves . 42

Cubic Bézier Curves . 44

Chapter 9 Filter Effects . 47

Using Filter Effects . 48

Playing with Filters . 49

Chapter 10 Canvas or SVG . 53

Creation Languages . 54

Typical Uses . 54

xi

Preface
HTML5 is an updated version of HTML which introduces new elements to further

enrich web pages, and allow designers to create animations and graphical elements

in new ways.

SVG and canvas are two such new elements that allow designers to create rich

graphics inside the browser with code. In this book, we'll be looking at how to create

HTML5 canvas and SVG graphics. Both can make use of scripts to create interactive

and animated effects, and while SVG has been around for some time, it can be used

alongside HTML5 to even better effect.

HTML5 canvas is a JavaScript API, which can be used to perform complex drawing

operations using programming. This is achieved by using the canvas element in an

HTML document—a blank area inside which you can draw.

This can then be done using a 2D or 3D (WebGL) drawing context: the former is

readily available across all modern browsers, while the latter is more recent and,

as such, not yet fully supported. In this book, we will be looking at 2D implement-

ation.

The powerful 2D API enables quick drawing operations. There is no file format,

and you can only draw using script. There are no DOM (Document Object Module)

nodes for the shapes you draw—it all happens on the surface, as pixels. This means

you can concentrate on drawing without performance penalties as the complexity

of the image grows.

Who Should Read This Book
This book assumes that you have a basic working knowledge of HTML and JavaS-

cript, and is aimed at those that are just starting out with HTML5. This means that

the book won't go into complex details when it comes to working with SVG and

canvas, but will give beginners enough of a grounding to start experimenting.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

xiv

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/store/jump-start-html5-canvas-svg/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/jshtml-canvas-svg1

The downloadable code archive for this book.

xv

http://www.sitepoint.com/store/jump-start-html5-canvas-svg/
https://github.com/spbooks/jshtml-canvas-svg1

http://www.sitepoint.com/forums/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Tools You'll need
You'll need a text editor of some description, such as notepad, and a browser. You

may need to use more than one browser depending on support and it's not recom-

mended that you attempt to use a word processing program such as Word. This is

because these types of programs add formatting to the document which you can't

see and which will mean your code won't work.

Other editors that you may like to try include Sublime Text 21. The beta version of

this is available and can be used with:

■ OS X (OS X 10.6 or later is required)

■ Windows (also available as a portable version)

■ Windows 64-bit (also available as a portable version_

■ Linux 32-bit

■ Linux 64-bit

If you have a Mac and don't mind paying, then MacFlux2 is worth looking at. A

simple editor that's open source is Notepad++3.

Browsers
Not all browsers support all HTML5 elements, so make sure you download the latest

versions of those you will need. Currently, browsers supporting inline SVG and

canvas are:

1 http://www.sublimetext.com/2
2 http://www.macwareinc.com/products/mac-web-design-software/macflux.html
3 http://notepad-plus-plus.org

xvi

http://www.sitepoint.com/forums/
http://www.sublimetext.com/2
http://www.macwareinc.com/products/mac-web-design-software/macflux.html
http://notepad-plus-plus.org

■ IE9+

■ Firefox

■ Chrome

■ Opera

■ Safari

Enabling Inspection Tools in Chrome
Canvas can be difficult to debug, thanks to its use of calls. With this in mind, it's a

good idea to enable inspection tools in Chrome so that you can capture instructions

and go through them one at a time.

At the time of writing, the tools are experimental and must be enabled:

1. Open a new tab and type chrome//:flags into the address bar.

2. Choose Enable experimental canvas features (this feature is available for Mac,

Windows, Linux, Chrome OS and Android).

3. Towards the bottom of the page, choose Relaunch Chrome.

This is an experimental feature!

Be aware this feature is experimental and may not be stable.

Now, open the Developer Tools and enable canvas inspection by clicking the gear

icon in the lower right-hand corner to open the settings.

Tick the canvas inspection box, then return to Developer Tools. A new canvas profiler

tool has appeared that'll enable you to monitor canvas rendering.

xvii

Do You Want to Keep Learning?
You can now get unlimited access to courses and all SitePoint books at Learnable4

for one low price. Enroll now and start learning today! Join Learnable and you’ll

stay ahead of the newest technology trends: http://www.learnable.com/.

4 https://learnable.com/

xviii

https://learnable.com/
http://www.learnable.com/

Chapter1
An Introduction to Canvas
As the Web has evolved and matured, so too has the language used to display web

pages effectively. The previous version of HTML, v4.01 has many elements that are

now obsolete.

Modern internet users are sophisticated and demanding, and this means they expect

web pages to appear in a certain way and to load quickly. HTML5 seeks to address

what was lacking in earlier versions of HTML to better handle graphics and meet

those expectations.

What Can Canvas Be Used For?
Canvas can be used to draw shapes, such as rectangles, squares and circles, or to

embed images or videos in an HTML5 document. You can use multiple instances

of it in one document, or just one, depending on your needs.

The basic canvas element looks like this:

<canvas id="myCanvas" width="300" height="150"></canvas>

At this point, it's worth noting that the HTML5 canvas element is the DOM (Docu-

ment Object Model) node that's embedded in the page. The context is then created,

which is an object that you use in order to render graphics within the container. If

you create multiple canvases, you'll need to create canvas elements for each context

and name them appropriately so that the browser understands to which object you're

referring.

The canvas element is superficially similar to the img element. Both have a height

and width, and display in a rectangular block on the page. However, img normally

loads a pre-prepared graphic, such as a photograph. canvas is a programmable image;

you use JavaScript drawing methods to directly manipulate the pixels. The techno-

logy is fast and permits you to create sophisticated animations and games. Overall,

canvas is often compared to technologies such as Flash and Silverlight.

Check out this animated graphic1 for a good example of what you can do using

canvas. You should also check out Canvas Demos2 for some great working examples,

including games and apps that have been created using canvas.

Before We Get Started
Some points to think about before we begin playing around with canvas:

■ It's usually best to give each canvas a unique id attribute so your scripts can

reference it directly. No other elements on that page should use the same ID.

■ When no styling is applied, the container or the canvas element will be transpar-

ent, with no border, so it'll appear as a see-through, rectangular box. The default

width is 300 pixels and the default height is 150 pixels.

■ In an ideal world, everyone would use the latest browsers. But it isn't, and they

don't. This means it's usually necessary to tell the browser how to behave when

canvas is not supported.

1 http://raksy.dyndns.org/torus.html
2 http://www.canvasdemos.com/

Jump Start HTML5: Canvas & SVG2

http://raksy.dyndns.org/torus.html
http://www.canvasdemos.com/

■ If you're used to working with the img element then you'll know that it doesn't

require the closing tag. canvas, on the other hand, does require closing,

so you should always include </canvas> at the end of the container code.

It's also worth mentioning at this point that canvas uses coordinates, paths, and

gradients. These can look a little daunting when you first come across them, and

often have would-be developers running for the hills screaming "MATH!" But there's

little need to worry—you'll soon get the hang of it.

Canvas Looks Complex, Why Not Use Flash?
I've come across a lot of questions posted on various forums that all say much the

same thing: "Canvas looks far too complicated for creating animations—why

shouldn't I just stick to using Flash since I know it already?"

Well, it's true that Flash enables you to create animations using professional tools,

which don't necessarily require coding skills. However, canvas is superior to Flash

in other ways, including:

■ good compatibility on desktop and mobile devices

■ it requires no plugins or dependencies outside of the browser

■ it's free to use

■ once you've learned to use it, canvas can create impressive animations using

minimal code

What About WebGL?
WebGL enables 3D graphics to be rendered within the browser window, and for

those graphics to be manipulated using JavaScript. If you're interested in using

canvas then it's likely you'll be interested in investigating WebGL, too, at some

point; the idea that you can create 3D graphics without plugins is a very attractive

one. It's already supported3 by most browsers, too. That said, we won't be covering

WebGL in this book.

3 http://caniuse.com/webgl

3An Introduction to Canvas

http://caniuse.com/webgl

Chapter2
Canvas Basics
First of all, let's look at how to create a canvas document. As noted earlier in this

book, the canvas element itself looks like this:

<canvas id="MyCanvas" width="300" height="150"></canvas>

HTML5 Canvas Template
Let's start with a basic template that we can use to begin working with. We'll add

the canvas element to the page and a small self-executing script that gets the context:

<html>
 <head>
 <title>Getting started with Canvas</title>
 <style type="text/css">
 canvas { border: 1px solid black; }
 </style>
 </head>
 <body>
 <canvas id="MyCanvas" width="300" height="150"></canvas>
 <script>

 (function() {
 var canvas = document.getElementById('MyCanvas');
 if (canvas.getContext){
 var ctx = canvas.getContext('2d');
 }
 }
 </script>
 </body>
</html>

There are two essential attributes that canvas has: width and height. If the attributes

are not specified, then the default of 300px wide by 150px high will be used.

The getElementById function simply finds the canvas element in the DOM, based

on the ID we've assigned the canvas, which, in this case, is MyCanvas. The line var

ctx = canvas.getContext('2d'); is the 2D context method, which returns an

object that exposes the API for the drawing methods we'll use.

Canvas Element Styling

You can style the canvas element just as you would any other image, using bor-

ders, colors, backgrounds, and so on. However, the styling will not affect the ac-

tual drawing on the canvas. A canvas without any styling will simply appear as

a transparent area.

Drawing a Simple Shape Onto the Canvas
Let's have a look at how we can draw some simple shapes. All drawing must be

done in our JavaScript function, after the line var ctx = canvas.getCon-

text('2d');. Let's draw a rectangle:

ctx.fillStyle="#0000FF";
ctx.fillRect(0,0,300,150);

This draws a blue rectangle that fills the canvas area. The fillRect method requires

the top-left x and y coordinates of the rectangle to be drawn, followed by its width

and height. The code above creates a 300x150px rectangle that is positioned at with

its top-left corner at coordinate 0,0 and filled with the current fillStyle, which

Jump Start HTML5: Canvas & SVG6

in this case is a solid blue (#0000FF)—see Figure 2.1. fillStyle can be a color,

gradient, or pattern.

Figure 2.1. Our blue rectangle

The canvas 2D API provides methods for drawing several basic shapes, including:

■ Rectangles

■ Arcs

■ Paths

■ Text

■ Images

W specified the size of the canvas as being 300x150px. If we reduce the rectangle's

size, then you'll see that you have a rectangle within the canvas. For example, if we

modify the code as follows:

7Canvas Basics

ctx.fillStyle="#0000FF";
ctx.fillRect(0,0,150,75);

Figure 2.2. A resized rectangle

The canvas itself remains as a transparent box, as you can see. As we've included

a black border around the canvas you can see its area. Without the border you'd see

nothing but the blue box, but the canvas would still be there.

Remember that the canvas width and height attributes determine the dimensions

of the pixel coordinate system. If you use CSS to specify a different width or height,

the canvas image will be squashed or stretched accordingly. For example, if we

apply a width of 600px and height of 300px to the canvas in CSS, each canvas 'pixel'

would be twice the size of a normal pixel.

Canvas Coordinates and Paths
Canvas uses a two-dimensional coordinates grid. The top-left of the canvas has a

coordinate of (0,0). The bottom-right will have a positive x and y coordinate accord-

ing to the size of the element. In the example above, we used a canvas size of

300x150px, so the bottom-right pixel is at (299,149), because coordinates are zero-

based.

Lines are drawn on the canvas using paths. You create paths by using the moveTo()

and lineTo() methods, in conjunction with one of the ink methods, stroke() or

Jump Start HTML5: Canvas & SVG8

fill(). moveTo() and lineTo() define the start and end points of the line to be

drawn. stroke() draws a shape by "stroking" its outline, while fill() draws a

solid shape by filling in the content area of a path.

So, to draw a simple white line through the rectangle we created above:

ctx.strokeStyle = "#FFFFFF";
ctx.beginPath();
ctx.moveTo(0,0);
ctx.lineTo(300,150);
ctx.stroke();

The beginPath method erases any outstanding path drawing operations in prepar-

ation for a new path. The stroke()method physically draws the path you've defined.

In this case, it's a single line.

Drawing Circles
Now let's look at how we'd draw a circle. The simplest way to do this is to use arc

to effectively create a circular path, which can then be used with ink methods, such

as stroke() or fill(), like this:

ctx.beginPath();
ctx.arc(95,50,40,0,2*Math.PI);
ctx.stroke();

Here we're using the arc method (which can still be part of a path). The parameters

specify the x and y coordinates of the arc's center, the arc's radius, the start angle,

and end angle (in radians1). Therefore, we've created an arc centered on coordinates

95,50, with a radius of 40 pixels, with a start angle of 0 and an end angle of 2*PI

(or 360 degrees). We've used the stroke() method to draw the path, which gives

us a circle, as shown in Figure 2.3:

1 http://en.wikipedia.org/wiki/Radian

9Canvas Basics

http://en.wikipedia.org/wiki/Radian

Figure 2.3. Drawing a circle

If you added the fill() method, you would end up with a circle that is filled in

with the specified color, black by default, as shown in Figure 2.4.

Figure 2.4. A filled circle

Drawing Text
You can draw text onto a canvas using these methods:

■ font—defines the font properties

■ fillText(text,x,y)—draws text on the canvas

■ strokeText(text,x,y)—draws the outline of text on the canvas

Here's an example:

ctx.font = "25px Arial";
ctx.fillText("HTML5 Canvas Rocks!",10,50);

This will draw the words "HTML5 Canvas Rocks!" using block text, using the font

Ariel at 25 pixel size, at the coordinates (10,50), as shown in Figure 2.5.

Jump Start HTML5: Canvas & SVG10

Figure 2.5. Writing text to the canvas

If you were to replace fillText() now with strokeText(), you would instead have

outlined text, as shown in Figure 2.6.

Figure 2.6. Stroked text

You can also add text effects and colors:

ctx.fillStyle= '#0000FF';
ctx.font="Italic 25px Arial";
ctx.fillText("HTML5 Canvas Rocks!",10,50);

This will italicize the text and make it blue, as shown in Figure 2.7.

11Canvas Basics

Figure 2.7. Blue italic text

Drawing a Triangle
Let's draw a triangle. As there's no built-in triangle shape for us to draw with, we'll

need to construct it using paths. To create a basic triangle we can use the following

code:

ctx.beginPath();
ctx.moveTo(25,25);
ctx.lineTo(105,25);
ctx.lineTo(25,105);
ctx.fill();

This should appear as shown in Figure 2.8:

Figure 2.8. A filled triangle

To create a stroked triangle:

ctx.beginPath();
ctx.moveTo(125,125);
ctx.lineTo(125,45);

Jump Start HTML5: Canvas & SVG12

ctx.lineTo(45,125);
ctx.closePath();
ctx.stroke();

Note the closePath() method; this closes the path by drawing a straight line from

the current point to the initial point. This will appear as shown in Figure 2.9:

Figure 2.9. A stroked triangle

So that's how to draw basic shapes in HTML5 using the canvas element and

JavaScript. Now that you've learned the basics, go and practice with different styles,

fonts, and shapes to get further accustomed to using the JavaScript code.

Canvas Sizing
Depending on what you're developing using canvas, you can resize to fit the device

being used—if you're needing to fill the screen for say, a game. This can be achieved

in a number of ways:

■ coding in JavaScript

■ using CSS

■ CSS transforms using JavaScript

13Canvas Basics

Scaling with JavaScript

var canvas = document.getElementById('canvas');
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

This will create a canvas which extends to the current viewport size, but you will

need to ensure the element has no margin or is affected by other items on the page.

In addition, changing the browser window size will not modify the canvas dimen-

sions.

Scaling with CSS

#canvas {
 position: relative;
 left: 0;
 right: 0;
 top: 0;
 bottom: 0;
 margin: auto;
 width: 100%;
 height: 100%;
}

This changes the size of the canvas box but not the pixel dimensions; the coordinate

system remains the same.

CSS Transforms Using JavaScript

var scaleX = canvas.width / window.innerWidth;
var scaleY = canvas.height / window.innerHeight;
var scaleToFit = Math.min(scaleX, scaleY);
canvas.style.transformOrigin = "0 0";
canvas.style.transform = "scale("+scaleToFit+")";

Again, this changes the size of the canvas box, but not the pixel dimensions.

Jump Start HTML5: Canvas & SVG14

Chapter3
Handling Non-supporting Browsers
In this short chapter, we'll look at creating code that tells the browser how to behave

if it doesn't support canvas rendering.

Create Alternative Content
The best way to handle the possibility that a user's browser doesn't support canvas

is to place alternative content within the <canvas> tag. This does away with confu-

sion for the end user if they can't see what's supposed to be displayed.

You can use an img tag, explanatory text, or any other HTML you think necessary

for this alternative content. For example:

<canvas id="MyCanvas" width="150" height="300">
 <img src="http://yoursite.com/locationofimage.jpg"
 ➥alt="Browser Not Supported" />
</canvas>

If the browser supports canvas, the img tag and any other content between the

<canvas> and </canvas> tags are ignored and won't appear in the document.

How useful you want to make fallback content is up to you; you can offer a download

link to the latest version of the user's browser, or you can add a framework that'll

allow you to show the content using a different technology, such as SVG or Flash.

You can also use the getContext method to check for canvas support in JavaScript,

e.g.

function supports_canvas() {
 return !!document.createElement('canvas').getContext;
}

Alternatively, you can use the getContext method on an existing element:

var canvas = document.createElement("MyCanvas");
if (!canvas.getContext || !canvas.getContext("2d")) {
 alert("Sorry - canvas is not supported.");
}
else {
 // start drawing
 var ctx = canvas.getContext('2d');
}

Jump Start HTML5: Canvas & SVG16

Chapter4
Gradients
With HTML5 canvas, you're not limited to block colors, but can use gradients to

fill shapes such as rectangles and circles. There are two different types of gradient

you can use:

// create a linear gradient
createLinearGradient(x,y,x1,y1)

Figure 4.1. An example of a linear gradient

// create a radial gradient
createRadialGradient(x,y,r,x1,y1,r1)

Figure 4.2. An example of a radial gradient

Let's start by creating a linear gradient (the canvas context, ctx, has already been

defined):

// create linear gradient
var grd = ctx.createLinearGradient(0,0,400,0);
grd.addColorStop(0,"blue");
grd.addColorStop(1,"yellow");

// fill with gradient
ctx.fillStyle = grd;
ctx.fillRect(40,20,300,160);

The result is shown in Figure 4.3.

Figure 4.3. Our linear blue-yellow gradient

The first line var grd = ctx.createLinearGradient(0,0,400,0); creates a Can-

vasGradient object which defines a gradient between two sets of coordinates

Jump Start HTML5: Canvas & SVG18

(x1,y1,x2,y2). These determine the size and direction of the gradient. In our example,

we use (0,0) to (400,0) which results in a horizontal gradient which is 400 pixels in

width. If our box was wider, the last color would extend accordingly.

If we required a 300px vertical gradient, we would use:

var grd = ctx.createLinearGradient(0,0,0,300);

A 45-degree diagonal gradient in a 100x100px space would be defined as:

var grd = ctx.createLinearGradient(0,0,100,100);

We can now set the color values at certain color stop points within that gradient

using the addColorStop method. It is passed two values:

■ a stop value between 0 (the left-most end of the linear gradient) and 1 (the right-

most end of the gradient)

■ a color

We have used "blue" at stop value 0—or coordinate (0,0)—and "yellow" at stop

value 1—or coordinate (400,0). The browser uses the values to define a smooth

color gradient from blue to yellow.

You can add any number of gradient stops. For example, a "red" color stop at stop

value 0.5 would create a smooth gradient from blue, to red at the mid-point (200px),

to yellow at the end.

Radial Gradients
Now let's look at a radial gradient:

// create radial gradient
var grd = ctx.createRadialGradient(150,100,10,180,120,200);
grd.addColorStop(0,"blue");
grd.addColorStop(1,"yellow");

19Gradients

// fill with gradient
ctx.fillStyle = grd;
ctx.fillRect(0,0,300,150);

The createRadialGradient parameters are:

■ the x and y coordinates of the starting circle

■ the radius of the starting circle

■ the x and y coordinates of the ending circle

■ the radius of the ending circle

Our code produces the output seen in Figure 4.4. You can experiment with different

values to create interesting effects.

Figure 4.4. A radial gradient

Playing with the Color Stops
Let's modify the linear gradient code we created above and go a little crazy with

adding some color stops:

var grd = ctx.createLinearGradient(35,25,25,190,105,50);
grd.addColorStop(0,"red");
grd.addColorStop(0.25,"blue");
grd.addColorStop(0.3,"yellow");
grd.addColorStop(0.35,"magenta");
grd.addColorStop(0.4,"green");
grd.addColorStop(0.45,"pink");
grd.addColorStop(0.5,"gray");
grd.addColorStop(1,"white");

Jump Start HTML5: Canvas & SVG20

// Fill with gradient
ctx.fillStyle=grd;
ctx.fillRect(20,20,400,400);

The results are shown in Figure 4.5.

Figure 4.5. A crazy linear gradient

To create a radial gradient using the same colors you could modify one line as fol-

lows:

var grd=ctx.createRadialGradient(35,25,25,190,105,50);

which would display as shown in Figure 4.6:

Figure 4.6. A crazy radial fill

21Gradients

Pretty groovy effect on that radial gradient, don't you think?

Jump Start HTML5: Canvas & SVG22

Chapter5
Images and Videos
You can use bitmap images and video with canvas. In this chapter, we’ll look at

how you can copy images and videos onto your canvas.

Images
You can copy a pre-defined bitmap image to your canvas using the drawImage()

method. The same method can also be used to draw part of an image or alter its

size. You can position the image on the canvas much in the same way as you would

draw a line:

var c = document.getElementById("MyCanvas");
var ctx=c.getContext("2d");
var img = document.getElementById("yourimage");
ctx.drawImage(img,10,10);

As you can see here, the image (which is on our page with the ID "yourimage") is

positioned at the x,y coordinates passed in the method: ctx.drawImage(img,x,y).

You can specify the size of the image by adding width and height, like this:

ctx.drawImage(img,x,y,width,height);

To crop the image and position the cropped part only:

ctx.drawImage(img,sx,sy,swidth,sheight,x,y,width,height);

In the code above, the sx and sy coordinates dictate where to begin cropping the

image, and swidth and sheight dictate the dimensions of the image.

Using the image() Object
The above example assumes that the image is on the page already. You may find it

preferable to load the image dynamically using JavaScript.

// canvas set-up
var canvas = document.getElementById('MyCanvas');
var ctx = canvas.getContext('2d');

// load image from a URL
var img = new Image();
img.src = "http://mydomain.com/image1.png";

// is image loaded?
if (img.complete) addToCanvas();
else img.onload = addToCanvas;

// add image to canvas
function addToCanvas() {
 ctx.drawImage(img,10,10);
}

Video
The content of an HTML5 video element can also be copied to a canvas. You may

want to do this so you can overlay additional text or apply processing effects.

Jump Start HTML5: Canvas & SVG24

var video = document.createElement("video");
video.src = "yourvideo.mp4";
video.controls = true;

In order to then draw the video to canvas, you'll need to add a handler for the video's

onplay event, which copies the current video frame.

var canvas = document.getElementById('MyCanvas')
var ctx = canvas.getContext('2d');

// set canvas dimensions to same as video
video.onplay = function() {
 canvas.width = video.videoWidth;
 canvas.height = video.videoHeight;
 draw();
};

// copy frame to canvas
function draw() {
 if(video.paused || video.ended) return false;
 ctx.drawImage(video, 0, 0);
 setTimeout(draw, 20);
}

// start video playback
video.play();

25Images and Videos

Chapter6
An Introduction to SVG
SVG stands for Scalable Vector Graphics. It allows you to create graphics using the

XML markup language. SVG's been around for quite some time and is supported

by the majority of browsers. Unlike Canvas, it's not intended for pixel manipulation.

It allows you to create scalable graphics and, as it's resolution independent, it's

ideal for use on projects that are likely to be used on a variety of screen resolutions

and sizes. For example, SVG is ideal for sites using Responsive Web Design (RWD).

In fact, the use of SVG in RWD is so obvious, you have to wonder why some websites

are redesigned using traditional images. SVG also displays perfectly on retina and

other high-resolution screens. As resolutions get better, it's likely they'll be more

widely used.

SVG uses an accessible DOM node-based API and is perfect for those with a good

understanding of HTML, CSS, and some JavaScript. You can style it using CSS and

make it interactive with JavaScript, and for those that aren't overly familiar with

JavaScript, there are plenty of libraries around to help.

As with any web technology, SVG is ever changing but many of its features are

available for animations, transforms, gradients, filter effects, and much more. It

works in all modern browsers—you can check compatibility at caniuse.com1.

Why Use SVG Instead of JPEG, PNG, or GIF?
There are two types of graphics that can be used in computing: bitmap and vector.

Bitmaps, such as JPEG, PNG and GIF, are also known as raster graphics and are

composed of individual pixels with differing colors. Vector graphics like SVG, on

the other hand, define paths and points; they can be resized and retain their quality.

This makes them ideal for web uses such as:

■ logos

■ banners

■ signage

■ illustrations

■ line art

SVG images have a few inherent advantages over bitmap images:

■ Since SVG images are comprised of text, they are often more accessible and

search engine-friendly than bitmap images.

■ Vectors can also be placed over other objects and made translucent, so the object

below remains visible.

■ Graphics created using SVG can be edited with relative ease, and SVG can be

used in conjunction with CSS in order to style the output. This isn't something

that's currently achievable with traditional bitmap images.

■ SVG images are normally smaller in terms of file size than bitma

However, while they do have many advantages, like many things in life, vector

images are not a perfect solution for every application. For example, it's unlikely

that you'd be able to produce realistic-looking photos with vectors.

1 http://caniuse.com/svg

Jump Start HTML5: Canvas & SVG28

http://caniuse.com/svg

You can embed SVG in standard HTML documents, and SVG can be created using

any text editor. However, you may prefer to use Adobe Illustrator or InkScape2 (an

open source vector graphics editor) to create your SVG images.

Now that you know what SVG is all about, let's get down to the good stuff: learning

how to use it.

Getting Started
To get started, you can just use a bare bones HTML5 page and drop inline-SVG code

right into it. Let's start with an SVG image of a red circle:

<!DOCTYPE HTML>
<html>
<body>
 <h1>A red circle:</h1>

 <!-- inline SVG -->
 <svg width="200" height="200" xmlns="http://www.w3.org/2000/svg">
 <circle id="redcircle" cx="100" cy="100" r="100" fill="red" />
 </svg>

</body>
</html>

Save the file and open it in your browser and you should see a page with a red circle

which is titled "A red circle:".

The SVG section is delimited by the svg tag, which defines dimensions of 200x200px

for the image on the page.

Try altering some of the code yourself. The circle element specifies the shape that

we want to draw with various attributes. The cx and cy attributes define the circle's

center in relation to the drawing area; the r attribute gives the circle's radius. This

means that the diameter (width) of the circle will appear as twice the value you've

set as the radius.

You can also add a border around the circle

2 http://inkscape.org/download/?lang=en

29An Introduction to SVG

http://inkscape.org/download/?lang=en

<circle id="redcircle" cx="100" cy="100" r="100"
➥stroke="black" stroke-width="1" fill="red"/>

Other Shapes
As well as a circle, it's a simple matter to create other shapes by appending appro-

priate tags within the svg block:

■ line—Creates a simple line

<line x1="25" y1="150" x2="300" y2="150"
➥stroke="#F00" stroke-width="5" />

Figure 6.1. A line

■ polyline—Defines shapes built from multiple line definitions

<polyline points="0,40 40,40 40,80 80,80 80,120 120,120 120,160"
➥stroke="#F00" stroke-width="5" fill="#FFF" />

Jump Start HTML5: Canvas & SVG30

Figure 6.2. A polyline

■ rect—Creates a rectangle

<rect width="300" height="100" fill="#F00" />

Figure 6.3. A rectangle

■ ellipse—Creates an ellipse

<ellipse cx="300" cy="80" rx="100" ry="50" fill="#F00"/>

31An Introduction to SVG

Figure 6.4. Ellipse

■ polygon—Creates a polygon

<polygon points="200,10 250,190 160,210"
➥stroke="#000" stroke-width="1" fill="#F00" />

Figure 6.5. A (polygon) triangle

Polygons define a series of x and y co-ordinates in the points attribute. This allows

you to create complex shapes with any number of sides.

Jump Start HTML5: Canvas & SVG32

<polygon points="100,10 40,180 190,60 10,60 160,180 100,10"
➥stroke="#000" stroke-width="1" fill="pink" />

Figure 6.6. A star

■ path—Allows for the definition of arbitrary paths

The path element allows you to created drawings using special commands. These

can be upper or lowercase, which apply absolute and relative positioning accord-

ingly. It looks complex and there are many options so please refer to this SitePoint

tutorial3 for more information.

All the above shapes can be made using paths. The code below creates a segmented

circle using paths and, as you can see in Figure 6.7, this is perfect for creating pie

charts and similar graphics.

<path d="M300,200 h-150 a150,150 0 1,0 150,-150 z"
➥fill="pink" stroke="red" stroke-width="3"/>
<path d="M275,175 v-150 a150,150 0 0,0 -150,150 z"
➥fill="purple" stroke="red" stroke-width="3"/>

3 http://www.sitepoint.com/svg-path-element/

33An Introduction to SVG

http://www.sitepoint.com/svg-path-element/
http://www.sitepoint.com/svg-path-element/

Figure 6.7. Paths

Gradients and Patterns
As with canvas, SVG enables you to paint or stroke shapes using gradients and

patterns. This is achieved by creating special gradient tags such as linearGradient

and radialGradient within a defs section of the SVG. Other elements can then

refer to these by name and reuse them on any shape.

To add a linear gradient to the circle within the svg:

<!-- define gradient -->
<defs>
 <linearGradient id="MyGradient">
 <stop offset="10%" stop-color="yellow" />
 <stop offset="90%" stop-color="blue" />
 </linearGradient>
</defs>

<!-- use gradient in a circle -->
<circle cx="100" cy="100" r="100" fill="url(#MyGradient)" />

Now open it in your browser, you'll see that you now have a blue and yellow circle.

To make it a radial gradient, it's then just a case of using the radialGradient tag:

Jump Start HTML5: Canvas & SVG34

<!-- define gradient -->
<defs>
 <radialGradient id="MyGradient">
 <stop offset="10%" stop-color="yellow" />
 <stop offset="90%" stop-color="blue" />
 </radialGradient>
</defs>

<!-- use gradient in a circle -->
<circle cx="100" cy="100" r="100" fill="url(#MyGradient)" />

Patterns
You can also create repeating designs within a pattern tag. This defines a series of

SVG elements, which can be used to fill an area:

<svg>
<defs>
<pattern id="mypattern" x="0" y="0" width="150" height="100"
➥patternUnits="userSpaceOnUse">
 <circle cx="50" cy="50" r="10" fill="red" stroke="black"
/>
 <rect x="100" y="0" width="50" height="50" fill="cyan"
stroke="red" />
</pattern>
</defs>
 <ellipse fill="url(#mypattern)" stroke="black"
 stroke-width="1" cx="200" cy="200" rx="200" ry="200" />
</svg>

<!-- define pattern -->
<defs>
 <pattern id="mypattern" patternUnits="userSpaceOnUse"
 ➥x="0" y="0" width="50" height="50">
 <circle cx="25" cy="25" r="25" fill="red" stroke="black" />
 <rect x="25" y="25" width="25" height="25"
 ➥fill="cyan" stroke="red" />
 </pattern>
</defs>

35An Introduction to SVG

<!-- use pattern in a circle -->
<circle cx="100" cy="100" r="100" fill="url(#MyPattern)"
➥stroke-width="1" stroke="black" />

Save the code above and open it in a browser to see the results, shown in Figure 6.8.

Now you can experiment to see what other patterns you can make, using various

shapes and color gradients.

Figure 6.8. Pattern fill

Jump Start HTML5: Canvas & SVG36

Chapter7
Using SVG
In modern browsers, SVG can be used anywhere where you would normally use

JPGs, GIFs or PNGs. Add to this the ability to add colors and gradients, plus the fact

that you get no loss of quality when scaled, and it's something to get excited about

for the majority of designers.

Inserting SVG Images on Your Pages
There are several ways to add SVG to your page:

■ The object tag

■ The embed tag

■ Within an iFrame

■ Using a CSS background

■ Inline SVG embedded into your HTML5 page

■ Using an img tag

Use CSS for Repeating Backgrounds

Only CSS can be used for repeating backgrounds. The other methods will just

show a single image.

Which Method Should You Use?
That will depend on the project at hand but, generally, object or embed should be

used if you intend to use DOM scripting to manipulate the image in JavaScript. An

iframe can be used for the same purpose although the code becomes a little more

cumbersome. Alternatively, an inline SVG may be appropriate if you need scripting

but the image is used on a single page on your website.

If you just need a static SVG, use the img tag or a CSS background. These do not

permit the SVG to be modified on the client.

SVG MIME type

Your web server should return SVG images with the MIME type image/svg+xml.

Most servers should do this automatically, but double-check if images do not

display correctly.

Let's have a look at how you'd go about it using the object method using an SVG

file we created using an application such as Illustrator or Inkscape:

<object type="image/svg+xml"
➥width="400" height="400" data="image.svg">
</object>

An embed tag is similar, but embed only became standard in HTML5. It's possible

some older browsers could ignore it, but most implement the tag:

<embed type="image/svg+xml"
➥width="400" height="400" src="image.svg">
</embed>

An iframe loads the SVG much like any other web page:

Jump Start HTML5: Canvas & SVG38

<iframe src="image.svg">
</iframe>

We've already used inline SVG images added directly to the HTML page. This does

not incur additional HTTP requests but will only be practical for very small images

or those you don't intend using elsewhere:

<svg width="200" height="200" xmlns="http://www.w3.org/2000/svg">
 <circle id="redcircle" cx="100" cy="100" r="100" fill="red" />
</svg>

An img tag is identical to any you've used before:

Finally, the CSS background-image property can reference an SVG:

#myelement {
 background-image: url(image.svg);
}

SVG Tools and Libraries
There are many libraries, snippets and useful tools for creating and manipulating

SVG images.

Snap SVG1 from Adobe is a free, open-source tool for generating interactive SVG.

Another great resource, Bonsai2, provides a JavaScript library with snippets and

demonstrations to help you alter SVG images using client-side code.

1 http://snapsvg.io/
2 http://bonsaijs.org/

39Using SVG

http://snapsvg.io/
http://bonsaijs.org/

Chapter8
Bézier Curves
Bézier curves are used extensively in graphics software and are sometimes described

as a polynomial expression1, which is basically used to describe a curve. Sometimes,

Bézier curves are referred to simply as curves, which can be slightly confusing if

you're not familiar with all of the common (or less common) terms when it comes

to design.

A Bézier curve is constructed by control points, as shown in Figure 8.1. A quadratic

Bézier curve has one control point, whilst a cubic has two.

1 http://en.wikipedia.org/wiki/Polynomial

http://en.wikipedia.org/wiki/Polynomial

Quadratic Bézier Curves

Figure 8.1. A quadratic Bézier curve

Now let's look at creating this whole image in SVG. Save the following code using

your text editor and then open it up in your browser and you should see an A shape

with a curved line reaching to the line that crosses the shape:

<!DOCTYPE html>
<html>
<body>
<svg width="500" height="500"
➥xmlns="http://www.w3.org/2000/svg" version="1.1">

 <!-- lines -->
 <path id="lineAB" d="M 100 350 l 150 -300" stroke="gold"
 ➥stroke-width="10" fill="none" />
 <path id="lineBC" d="M 250 50 l 150 300" stroke="gold"
 ➥stroke-width="10" fill="none" />
 <path id="lineDE" d="M 175 200 l 150 0" stroke="purple"

Jump Start HTML5: Canvas & SVG42

 ➥stroke-width="10" fill="none" />

 <!-- quadratic bezier curve -->
 <path d="M 100 350 q 150 -300 300 0" stroke="black"
 ➥stroke-width="6" fill="none" />

 <!-- mark points with a red dot -->
 <g stroke="red" stroke-width="5" fill="red">
 <circle id="pointA" cx="100" cy="350" r="3" />
 <circle id="pointB" cx="250" cy="50" r="3" />
 <circle id="pointC" cx="400" cy="350" r="3" />
 </g>

 <!-- Add labels to each point -->
 <g font-size="25" font="sans-serif" fill="black" stroke="none"
 ➥text-anchor="middle">
 <text x="100" y="350" dx="-30">A</text>
 <text x="250" y="50" dy="-10">B</text>
 <text x="400" y="350" dx="30">C</text>
 </g>

</svg>
</body>
</html>

The quadratic Bézier curve is defined by the path tag:

<path d="M 100 350 q 150 -300 300 0" stroke="black"
➥stroke-width="6" fill="none" />

The d attribute instructs the parser to move to coordinate (100,350). The 'q' defines

two further coordinates which are relative to (100,350). The first is the control point

(150,-300)—which equates to the absolute position (450,50). The second is the

ending point of the curve at (300,0)—which equates to the absolute position

(400,350).

Alternatively, we could have used an uppercase 'Q' to use absolute, rather than rel-

ative, coordinate references.

43Bézier Curves

Cubic Bézier Curves
While quadratic Bézier curves have one control point, cubic Bézier curves have

two. This allows more complex shapes which can reverse direction or wrap back

on to themselves.

The following code provides three cubic Bézier examples:

<!DOCTYPE html>
<html>
<body>
 <svg width="1200" height="500"
➥xmlns="http://www.w3.org/2000/svg" version="1.1">

 <!-- cubic bezier curves -->
 <path id="cubic1" d="M 100 350 c 150 -300 150 -300 300 0"
 ➥stroke="red" stroke-width="5" fill="none"/>
 <path id="cubic2" d="M 450 350 c 200 -300 100 -300 300 0"
 ➥stroke="red" stroke-width="5" fill="none"/>
 <path id="cubic3" d="M 800 350 c 100 -300 200 -300 300 0"
 ➥stroke="red" stroke-width="5" fill="none"/>

 <!-- show control points -->
 <g stroke="blue" stroke-width="3" fill="blue">

 <!-- left curve -->
 <circle cx="250" cy="50" r="3"/>

 <!-- middle curve control points -->
 <circle cx="650" cy="50" r="3"/>
 <circle cx="550" cy="50" r="3"/>

 <!-- right curve control points -->
 <circle cx="900" cy="50" r="3"/>
 <circle cx="1000" cy="50" r="3"/>

 </g>

 <!-- text -->
 <g font-size="30" font="sans-serif"
 ➥fill="red" stroke="none" text-anchor="middle">

 <text x="250" y="50" dy="-10">
 Both control points

Jump Start HTML5: Canvas & SVG44

 </text>

 <text x="650" y="50" dy="-10">
 CP1
 </text>
 <text x="550" y="50" dy="-10">
 CP2
 </text>

 <text x="900" y="50" dy="-10">
 CP2
 </text>
 <text x="1000" y="50" dy="-10">
 CP1
 </text>

 </g>

 </svg>
</body>
</html>

This will produce the output shown in Figure 8.2.

Figure 8.2. A cubic Bézier curve

Let's examine the third curve:

45Bézier Curves

<path id="cubic3" d="M 800 350 c 100 -300 200 -300 300 0"
➥stroke="red" stroke-width="5" fill="none"/>

The d attribute instructs the parser to move to coordinate (800,350). The 'c' defines

three further coordinates which are relative to (800,350). The first is the start control

point (100,-300)—which equates to the absolute position (900,50). The second is

the end control point (200,-300)—which equates to the absolute position (1000,50).

The third is the ending point of the curve at (300,0)—which equates to the absolute

position (1100,350).

Alternatively, we could have used an uppercase 'C' directive to use absolute, rather

than relative, coordinate references.

There are also shorthand 'S' (absolute) and 's' (relative) directives. These accept two

coordinates; the end control point and the end point itself. The start control point

is assumed to be the same as the end control point.

These commands can be used to change the shape of cubic Bézier curves depending

on the position of the control points. Have a play about and don't just view your

results in the same browser window either, resize them, look at them on your tablet

or smartphone and marvel at how well SVG copes with resizing.

Fortunately, there are tools to help you define curve directives. SitePoint's Craig

Buckler has created Quadratic Bézier Curve2 and Cubic Bézier Curve3 tools, which

allow you to move the control points and copy/paste the resulting SVG code.

In the next chapter, we'll take a look at filters.

2 http://blogs.sitepointstatic.com/examples/tech/svg-curves/quadratic-curve.html
3 http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html

Jump Start HTML5: Canvas & SVG46

http://blogs.sitepointstatic.com/examples/tech/svg-curves/quadratic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html

Chapter9
Filter Effects
You can use filter effects in SVG. If you use any graphic design or photo manipula-

tion packages, then you're almost certain to have come across filters before. The

filters in SVG include:

■ feBlend

■ feColorMatrix

■ feComponentTransfer

■ feComposite

■ feConvolveMatrix

■ feDiffuseLighting

■ feDisplacementMap

■ feFlood

■ feGaussianBlur

■ feImage

■ feMerge

■ feMorphology

■ feOffset

■ feSpecularLighting

■ feTile

■ feTurbulence

■ feDistantLight

■ fePointLight

■ feSpotLight

If you've used image-editing software you'll probably be familiar with what filters

do. Essentially, they apply effects to an image such as bezels, blurring, soft-focus,

and so on. In essence, think of filter elements as a form of image processing for the

Web. Filter elements can be used in most modern browsers, with the exception of

Blackberry Browser. For an example of what filters can do, take a look at Microsoft's

hands on: SVG Filter Effects1.

Using Filter Effects
Especially if you're new to using filters, it's a good idea to begin testing and experi-

menting with one filter at a time, otherwise you could end up with some pretty

weird-looking images. For a comprehensive overview and sample code on filters,

take a look at the SVG/Essentials Filters2 page on O'Reilly Commons.

Below is an example of the code used to create a circle (which you've already learned

how to create) with the feGaussianBlur filter applied. You can see the output in

Figure 9.1.

1 http://ie.microsoft.com/testdrive/graphics/hands-on-css3/hands-on_svg-filter-effects.htm
2 http://commons.oreilly.com/wiki/index.php/SVG_Essentials/Filters

Jump Start HTML5: Canvas & SVG48

http://ie.microsoft.com/testdrive/graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://commons.oreilly.com/wiki/index.php/SVG_Essentials/Filters

<!DOCTYPE html>
<html>
<body>
 <svg xmlns="http://www.w3.org/2000/svg" version="1.1">
 <defs>
 <filter id="f1" x="0" y="0">
 <feGaussianBlur stdDeviation="14"/>
 </filter>
 </defs>

 <circle cx="200" cy="200" r="200" stroke="red"
 ➥stroke-width="5" fill="gold" filter="url(#f1)" />

 </svg>
</body>
</html>

Figure 9.1. A circle with the Gaussian blur filter applied

Playing with Filters
As you can see, you'll have to give the filter an ID so that this can later be specified

in the circle: filter="url(#f1). The parameter that's associated with this filter is

stdDeviation; this controls the amount of blurring. So, for example, if you were to

set the stdDeviation to a value of 1, then you would get such a minimal amount

of blurring as to be hardly noticeable. However, if you were to set this to, say, 200,

49Filter Effects

then it creates a blurring effect that's almost transparent. And as we've applied a

red stroke to the image (which you can't really see in the example above), this effect

fills the SVG canvas with an extremely blurred circle, as shown in Figure 9.2

Figure 9.2. A very blurry circle

If you were to apply a lower value, then the blurring wouldn't be so apparent and

would allow the stroke to be seen as an orange color with the yellow blurring into

the red, as shown in Figure 9.3.

Jump Start HTML5: Canvas & SVG50

Figure 9.3. A less blurry circle

Let's try combining filter effects. We'll create a drop shadow using the feOffset

filter; this is achieved by taking the relevant SVG image or element and moving it

in the x-y plane. We'll use the feBlend and feOffset elements, which will create

a duplicate image that's slightly offset from the original, to create the effect that one

image is sitting behind the other, as shown in Figure 9.4.

<!DOCTYPE html>
<html>
<body>
 <svg xmlns="http://www.w3.org/2000/svg" version="1.1">
 <defs>
 <filter id="f1" x="0" y="0" width="200%" height="200%">
 <feOffset result="offOut" dx="25" dy="20" />
 <feBlend in="SourceGraphic" in2="offOut" mode="normal" />
 </filter>
 </defs>

 <polygon points="220,10 300,210 170,250 123,234" fill="blue"
 ➥stroke="purple" stroke-width="3" filter="url(#f1)" />

51Filter Effects

 </svg>
</body>
</html>

Figure 9.4. Using multiple filters

Filters can help you to create excellent effects. For example, if we were to apply

feGaussianBlur to the above, then you could blur the rear image to create a kind

of 3D effect.

Filter Future

SVG filter technology is coming to CSS3 so you'll be able to apply effects to any

HTML element.

Jump Start HTML5: Canvas & SVG52

Chapter10
Canvas or SVG
As we've seen, both canvas and SVG can do similar things. So how do you decide

which to use?

Firstly, let's look at how each one is defined:

■ SVG is short for Scalable Vector Graphics and is a language that's used to de-

scribe graphics in XML.

■ Canvas, on the other hand, is a way of drawing graphics on the fly using JavaS-

cript.

Now that really doesn't tell you a great deal about the differences between them

and how they can each be used, so let's look at it in a little more depth. In SVG,

drawn shapes are remembered as objects and therefore, if the attributes of that object

change, the browser can then re-render the shape automatically. However, as canvas

elements are drawn pixel-by-pixel, then any changes that are made will require the

entire scene to be redrawn.

All elements of SVG are available in the DOM, so you can easily attach JavaScript

event handlers to them. For the most part, the project will dictate which element

you use, so it's worth giving it some thought at the planning stage.

Bear in mind that SVG is fully scalable, unlike canvas, and so SVG may very well

be a better choice if you're designing a responsive site that has graphics that need

to scale.

Creation Languages
To create images on a canvas element you have one choice: JavaScript. Those who

understand the language will have a head start, but it's still necessary to learn the

drawing APIs. However, animating canvas images is incredibly fast; you can draw

and animate hundreds of items every second because the element is not constrained

by the number of items being shown. This makes it ideal for action games.

SVG files are XML—which is simply structured text. They can be pre-prepared in

a vector graphics package such as Illustrator or Inkscape, or you can dynamically

create them on the server using any language: Node.js, PHP, Ruby, Python, C#, Java,

BASIC, Cobol etc.

You can also create and manipulate SVG on the client using JavaScript with a famil-

iar DOM and event-handling API. It's rarely necessary to re-draw the whole image

because objects remain addressable. Unfortunately, this is far slower than moving

bitmaps on canvas. SVG may be ideal for an animated bar chart, but not necessarily

suitable for fast-moving action games.

Typical Uses
In general, SVG is ideal for:

■ static images, especially within responsive and fluid layouts

■ images which can be resized to any dimension without losing quality

■ projects which benefit from DOM methods to attach events and manipulate ob-

jects

■ projects which create images server-side

Jump Start HTML5: Canvas & SVG54

■ projects where accessibility and SEO are important

Canvas is ideal for:

■ bitmap images, editing photographs or any operation which requires pixel-level

manipulation

■ images which must be created and animated on-the-fly

■ graphically-intense applications, such as games

Sometimes, there will not be an obvious best solution and either technology can be

used. Remember neither is mutually exclusive; you can use both canvas and SVG

on the same page at the same time, e.g. multiple animated canvas elements over a

static SVG background. The only limit is your imagination.

I hope you've enjoyed this book and are ready to get started with some awesome

examples of your own.

Thanks for reading, and have fun with canvas and SVG!

55Canvas or SVG

	Jump Start HTML5: Canvas & SVG
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Tools You'll need
	Browsers
	Enabling Inspection Tools in Chrome

	Do You Want to Keep Learning?

	An Introduction to Canvas
	What Can Canvas Be Used For?
	Before We Get Started
	Canvas Looks Complex, Why Not Use Flash?
	What About WebGL?

	Canvas Basics
	HTML5 Canvas Template
	Drawing a Simple Shape Onto the Canvas
	Canvas Coordinates and Paths
	Drawing Circles
	Drawing Text
	Drawing a Triangle
	Canvas Sizing
	Scaling with JavaScript
	Scaling with CSS
	CSS Transforms Using JavaScript

	Handling Non-supporting Browsers
	Create Alternative Content

	Gradients
	Radial Gradients
	Playing with the Color Stops

	Images and Videos
	Images
	Using the image() Object

	Video

	An Introduction to SVG
	Why Use SVG Instead of JPEG, PNG, or GIF?
	Getting Started
	Other Shapes

	Gradients and Patterns
	Patterns

	Using SVG
	Inserting SVG Images on Your Pages
	Which Method Should You Use?
	SVG Tools and Libraries

	Bézier Curves
	Quadratic Bézier Curves
	Cubic Bézier Curves

	Filter Effects
	Using Filter Effects
	Playing with Filters

	Canvas or SVG
	Creation Languages
	Typical Uses

