

Summary of Contents

Preface . xi

1. Detecting When the User Is Connected . 1

2. Application Cache . 7

3. Web Storage: the localStorage and sessionStorage Objects 21

4. Storing Data With Client-side Databases . 39

JUMP START
HTML5:
OFFLINE

APPLICATIONS
BY TIFFANY B. BROWN

Jump Start HTML5: Offline Applications
by Tiffany B. Brown

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Craig Buckler

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

Printed and bound in the United States of America

iv

About Tiffany B. Brown

Tiffany B. Brown is a freelance web developer and technical writer based in Los Angeles.

She has worked on the Web for more than a decade at a mix of media companies and agencies.

Before founding her consultancy, Webinista, Inc., she was part of the Opera Software De-

veloper Relations and Tools team. Now she offers web development and consulting services

to agencies and small design teams.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

v

http://www.sitepoint.com/

Table of Contents

Preface . xi

Who Should Read This Book . xii

Conventions Used . xii

Code Samples . xii

Tips, Notes, and Warnings . xiii

Supplementary Materials . xiv

Tools You’ll Need . xiv

What Are Offline Apps? . xvi

Chapter 1 Detecting When the User Is
Connected . 1

Determining Whether the User Is Online . 1

Listening for Changes in Connectivity State . 2

Online and Offline Events in Internet Explorer 8 3

Limitations of navigator.onLine . 3

Checking Connectivity With XMLHttpRequest . 4

What You’ve Learned . 6

Chapter 2 Application Cache . 7

Cache Manifest Syntax . 8

Saving Files Locally with the CACHE: Section Header 8

Forcing Network Retrieval with NETWORK: . 9

Specifying Alternative Content for Unavailable URLs 10

Specifying Settings . 10

Adding the Cache Manifest to Your HTML . 11

Serving the Cache Manifest . 11

Avoiding Application Cache “Gotchas” . 12

Solving Gotcha #1: Loading Uncached Assets from a Cached

Document . 12

Solving Gotcha #2: Updating the Cache . 12

Cache Gotcha #3: Break One File, Break Them All 13

Testing for Application Cache Support . 13

The Application Cache API . 14

The AppCache Event Sequence . 14

Setting Up Our Cache Manifest . 15

Setting Up Our HTML . 42

Setting Up Our CSS and JavaScript . 16

Chapter 3 Web Storage: the localStorage
and sessionStorage Objects 21

Why Use Web Storage Instead of Cookies? . 22

Browser Support . 22

Inspecting Web Storage . 23

Testing for Web Storage Support . 23

Setting Up Our HTML . 42

Saving Values With localStorage.setItem() 25

Adding an Event Listener . 26

Using localStorage.setItem to Update Existing Values 27

Retrieving Values With localStorage.getItem() 27

Alternative Syntaxes for Setting and Getting Items 29

Looping Over Storage Items . 29

Clearing the Storage Area With localStorage.clear() 31

Storage Events . 31

Listening for the Storage Event . 32

The StorageEvent Object . 32

Storage Events Across Browsers . 33

viii

Determining Which Method Caused the Storage Event 33

Storing Arrays and Objects . 34

Limitations of Web Storage . 36

Chapter 4 Storing Data With Client-side
Databases . 39

The State of Client-side Databases . 39

About IndexedDB . 40

Setting up Our HTML . 42

Creating a Database . 44

Adding an Object Store . 45

Adding a Record . 47

Retrieving and Iterating Over Records . 50

Creating a Cursor Transaction . 50

Retrieving a Subset of Records . 51

Retrieving or Deleting Individual Entries . 52

Updating a Record . 53

Deleting a Database . 54

Wrapping Up and Learning More . 55

ix

Preface
One of the greatest features introduced with HTML5 is support for offline function-

ality. Before HTML5, if you wanted any kind of persistent storage for your web-

based application, there were three options:

■ cookies

■ Flash local shared objects

■ server-side data storage

As a means to store significant amounts of data, cookies were a poor option histor-

ically. Cookies are limited to 4KB of data, and browsers typically limit cookies to

50 per domain. That’s about 200MB of data per domain, and we can’t control what

is deleted with the 51st cookie. But the biggest deal-breaker with cookies for offline

apps is that they’re restricted to the domain that created them—they fail to work

offline.

Local shared objects (LSOs) are a little bit better since they’re stored on the client,

and aren’t sent with each request. LSOs allow an application to store up to 100MB

of data before asking the user to store more. Unfortunately, they also depend on the

user having Flash installed.

The other alternative, of course, is server-side data storage. Server-side storage allows

us to store much larger amounts of data; however, server-side storage often requires

a database server, and it always requires an internet connection. If this connection

is interrupted somehow—for example, while passing through a tunnel on a mobile

device—we’d likely suffer from data loss.

HTML5’s offline capabilities solve many of these problems. They make it possible

to use applications when internet connectivity is patchy or unavailable. Mind, you’ll

still need a server to deliver your files to the user, and your users will require an

internet connection to download those files. But offline applications allow us to

work even when our internet doesn’t.

Who Should Read This Book
This book is for intermediate web developers. You should be familiar with HTML

and the fundamentals of JavaScript and the Document Object Model (DOM). It’s

unnecessary to have deep knowledge of JavaScript. Still, you should understand

event handling, JavaScript data types, and control structures such as while loops

and if-else conditionals. We’ll keep our script examples simple, though, and ex-

plain them line by line.

If you’re unfamiliar with JavaScript, you may like to read SitePoint’s Simply

JavaScript1 by Kevin Yank for an introduction. Mozilla Developer Network2 also

offers fantastic learning resources and documentation for both JavaScript and the

DOM.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

1 http://www.sitepoint.com/store/simply-javascript/
2 https://developer.mozilla.org/en-US/docs/Web/JavaScript

xii

http://www.sitepoint.com/store/simply-javascript/
http://www.sitepoint.com/store/simply-javascript/
https://developer.mozilla.org/en-US/docs/Web/JavaScript

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all the code, a ⋮ will

be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

xiii

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/store/jump-start-html5-offline-applications/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/jshtml-offline1

The downloadable code archive for this book.

http://www.sitepoint.com/forums/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Tools You’ll Need
If you don’t already have a favorite text editor, you’ll need one. Try one of the these

listed below. They’re all free, and in most cases, open source. Aside from Notepad++

and Bluefish, they’re all available on Mac, Linux, and Windows.

■ Aptana3 (requires Java)

■ Brackets4

■ NetBeans5 (requires Java)

3 http://aptana.com/
4 http://brackets.io/
5 https://netbeans.org/

xiv

http://www.sitepoint.com/store/jump-start-html5-offline-applications/
https://github.com/spbooks/jshtml-offline1
http://www.sitepoint.com/forums/
http://aptana.com/
http://brackets.io/
https://netbeans.org/

■ Notepad++6 (Windows only)

■ Bluefish7 (Linux only)

Of course, you’ll also need a browser that supports the features we’ll talk about.

Only the latest versions of Google Chrome8 and Opera9 support everything covered

in this book. Mozilla Firefox10 and Apple Safari11 support most of what we’ll talk

about, as does Microsoft Internet Explorer 10+12. We’ll note exceptions where ne-

cessary, but will pay little, if any, attention to Internet Explorer 8 and 9.

Internet Explorer and Safari are bundled with Microsoft Windows and Mac OS X

respectively and are only available on those platforms. Other browsers can be

downloaded from their respective vendors’ websites.

You will also require web server software. Most of the APIs that we’ll cover in this

book have origin restrictions and won’t work with standard filepaths. Apache HTTP

Server13, Nginx14, or Lighttpd15 are all open-source server packages available for

Windows, Mac OS X, and Linux.

Mac OS X users can also try MAMP16, which bundles MySQL, Apache, and PHP

into one easy-to-use package. Windows users can try WAMP or XAMPP, which are

similar packages for that operating system.

Your operating system may also have a web server installed by default. Check its

documentation if you’re unsure.

6 http://notepad-plus-plus.org/
7 http://bluefish.openoffice.nl/
8 http://google.com/chrome
9 http://www.opera.com/
10 http://mozilla.org/
11 htpp://apple.com/safari
12 http://microsoft.com/ie
13 http://httpd.apache.org/
14 http://nginx.org/
15 http://www.lighttpd.net/
16 http://mamp.info

xv

http://notepad-plus-plus.org/
http://bluefish.openoffice.nl/
http://google.com/chrome
http://www.opera.com/
http://mozilla.org/
htpp://apple.com/safari
http://microsoft.com/ie
http://httpd.apache.org/
http://httpd.apache.org/
http://nginx.org/
http://www.lighttpd.net/
http://mamp.info

What Are Offline Apps?
When we talk about offline apps, we’re really talking about a group of APIs along

with the window.navigator.onLine property. Specifically, we mean:

■ the application cache

■ web storage (sometimes called DOM storage)

■ web databases, such as IndexedDB

The application cache is a way to tell the browser which assets to download and

store locally. It consists of a file syntax and a scripting API for managing and updat-

ing local copies of files.

Web storage is made up of two similar interfaces: localStorage and sessionStorage.

These are two client-side key–value stores, best suited to small bits of data. They

function much the same way, except that localStorage persists across sessions

until deleted, and sessionStorage lasts until the current window or tab (the

“browsing context”) is closed.

IndexedDB is also a client-side key-value store, but it is suited to larger amounts of

data. It functions more like a local database with indexing and search capabilities.

There’s also the Web SQL API, which is a special case.

The World Wide Web Consortium (W3C) and the Web Hypertext Applications

Working Group (WHATWG) have stopped work on the Web SQL specification as

it’s considered deprecated; however, Web SQL is the only web database that Safari

supports. Other browsers either support IndexedDB exclusively (Firefox, Internet

Explorer), or support both (Chrome, Opera 15+; Opera versions 10—12 only support

Web SQL).

The good news is that we can bridge the gap between browsers that support Indexed-

DB versus those that support Web SQL with the IndexedDBShim. As a result, we’ll

focus little—if at all—on Web SQL in this book.

Now that you have an overview of what we’ll cover, let’s get started.

xvi

Chapter1
Detecting When the User Is Connected
Perhaps the hardest part of building an app that works offline is actually determining

when the user is offline.

In this chapter, we’ll cover the ononline and onoffline events of the window object

and the window.navigator.onLine property. We’ll also talk about their limits as

well as an alternative way to test for connectivity.

Determining Whether the User Is Online
The window.navigator.onLine property tells us whether or not the user is connected

to a network. It returns a Boolean true or false value:

if(navigator.onLine){
 console.log('We are connected!');
} else {
 console.log('We don't have connectivity.');
}

We can use this property with other offline APIs to determine when and whether

to store data locally. Then we can sync it with a server once we have connectivity

again.

Anytime the value of navigator.onLine changes, it fires one of two events:

■ offline: when the value of navigator.onLine would be false

■ online: when the value of navigator.onLine would be true

We can listen for these events, of course, and take action when one is fired.

Listening for Changes in Connectivity State
In Firefox, Internet Explorer 9+, and Safari, the online and offline events are fired

on the document.body object. In Chrome and Opera 15+, however, they are fired

on the window object.

The good news is that even when fired on the document.body, these online and

offline events “bubble up” to the window object. This means we can listen for

events fired there instead of setting event listeners or handlers for both.

There are two options in listening for our online and offline events. We can use

the event attributes onoffline and ononline, as shown here:

 window.ononline = function(){
 // Alert the user that connectivity is back.
 // Or sync local data with server data.
 }

 window.onoffline = function(){
 // Alert the user that connectivity was lost.
 // Or just silently save data locally.
 }

Or we can use the addEventListener method and listen for the online or offline

event:

Jump Start HTML5: Offline Applications2

 window.addEventListener('offline', offlineHandler);
 window.addEventListener('online', onlineHandler);

The addEventListener method requires two parameters: the event we want to listen

for, and the function to invoke ― known as a callback ― when the event occurs.

For compatibility with some older versions of Firefox (< 6.0) and Opera (< 11.6),

you will need to add a third parameter. This parameter tells the browser whether

to use event capture or event bubbling. A value of true means that events should

be captured. A false value means that events should bubble. In general, you should

set it to false.

Most modern browsers use event bubbling by default, making the third parameter

optional in those browsers. If you’d like to know more about bubbling versus capture,

read Peter-Paul Koch’s 2006 article, “Event order.”1

Online and Offline Events in Internet Explorer 8
The exception to this rule is Internet Explorer 8. IE8 fires online and offline events

at the document.body object, but they do not bubble. What’s more, Internet Explorer

doesn’t support addEventListener(). You’ll need to use the attachEvent()

method instead, or a polyfill that smooths over the differences.

That said, the only component of offline applications that Internet Explorer supports

is web storage (which we’ll cover in Chapter 3). Internet Explorer 8 does have some

vendor-specific storage features, but in the interest of promoting web standards and

shortening the length and complexity of this book, we will not cover them here.

Limitations of navigator.onLine
Here’s the downside of navigator.onLine: it’s unreliable. What’s more, it works

differently depending on the browser and operating system.

Chrome, Safari, Opera 15+, and Internet Explorer 9+ can detect when the user has

lost connectivity with the network. Losing or turning off a Wi-Fi connection will

trigger an offline event in those browsers. Reconnecting will trigger an online

1 http://www.quirksmode.org/js/events_order.html

3Detecting When the User Is Connected

http://www.quirksmode.org/js/events_order.html

event. The value of navigator.onLine will be true if connected to the Internet,

and false if it is not.

Opera 12 (and older versions) will not fire online or offline events at all. It does,

however, report false for navigator.onLine when the user is disconnected from

a network and true when connected.

Firefox for desktop and laptop computers is a special case. Whether it fires offline

or online events depends on user activity. Firefox fires an offline event when the

user selects the Work Offline menu option, and fires an online event when the user

deselects it. It’s wholly unrelated to whether there is a functional internet connection.

Even if the user has disconnected from the network, the value of navigator.onLine

will be true if the user hasn’t also elected to work offline.

Firefox for Android and Firefox OS work differently, however. Those versions of

the browser will fire online and offline events when connectivity is lost or turned

off (as with Airplane Mode).

Where all browsers struggle, however, is when there is network connectivity but

not internet connectivity. If the browser can connect to a local network, the value

of navigator.onLine will be true, even if the connection from the local network

to the wider internet is down.

In other words, the navigator.onLine property may not tell you what you want to

know. So we need to use an alternative.

Checking Connectivity With
XMLHttpRequest

A better way to determine connectivity is to do it at the time of a network request.

We can do this using XMLHttpRequest and its error and timeout events.

In this example, we’ll attempt to send the contents of our form to the server. If we

have no connection, or if the connection takes too long to complete, we’ll save our

data to localStorage and tell the user.

First, let’s define our error and timeout event handler:

Jump Start HTML5: Offline Applications4

var form = document.querySelector('form');
var xhrerrorhandler = function(errorEvent){
 var i = 0;
 // Save the value if we have one
 while(i < form.length){
 if(form[i].value != ''){
 localStorage.setItem(form[i].name, form[i].value);
 }
 i++;
 }
}

We’ll use the same function for both events, since we want to do the same task in

both cases. This function saves each form field name as a localStorage key, and

each field’s corresponding value as a localStorage value.

Next, let’s define our submit event handler. This function will make the XHR request,

monitor it for failure, and add our error handlers:

submithandler = function(submitEvent){
 var fd, ls, i=0, key;

 // Prevent form submission
 submitEvent.preventDefault();

 // If we have localStorage data, build a FormData object from it
 // Otherwise, just use the form
 if(localStorage.length > 0){
 fd = new FormData();
 ls = localStorage.length;
 while(i < ls){
 key = localStorage.key(0);
 fd.append(key, localStorage.getItem(key));
 i++;
 }
 } else {
 fd = new FormData(form);
 }

 // Set a timeout for slow connections
 xhr.timeout = 3000;
 xhr.open('POST','return.php');
 xhr.send(fd);

5Detecting When the User Is Connected

 // Set our error handlers.
 xhr.addEventListener('timeout', xhrerrorhandler);
 xhr.addEventListener('error', xhrerrorhandler);
}
form.addEventListener('submit', submithandler);

In this function, if there is localStorage data, we will append it to a FormData object.

Then we’ll send the FormData object as the payload for our request.

FormData is part of the XMLHttpRequest, Level 2 specification.2 It accepts a series

of key-value pairs using its append() method (append(key,value)). Alternatively,

you can pass a form object as an argument to the constructor. Here we’ve done both,

based on whether or not we have saved anything to localStorage. A more robust

version of this demo might handle this with separate features: one for sending form

data and another for syncing with the server.

This doesn’t work if the server response contains an HTTP error code. You can work

around this by checking the value of the status property in the XHR response, as

shown here:

var xhronloadhandler = function(loadEvent){
 if(loadEvent.target.status >= 400){
 xhrerrorhandler();
 } else {
 // Parse the response.
 }
}

If it’s 400 or greater―HTTP error codes start at 400―we’ll save the data locally.

Otherwise, parse the response.

What You’ve Learned
In this chapter, we’ve discussed the advantages and limitations of the navigator.on-

Line property, an alternate way to test for connectivity. Now let’s talk about the

browser features and APIs that let us create offline web applications. In our next

chapter, we’ll look at the application cache.

2 http://www.w3.org/TR/XMLHttpRequest/

Jump Start HTML5: Offline Applications6

http://www.w3.org/TR/XMLHttpRequest/

Chapter2
Application Cache
Application Cache―“AppCache” for short―provides a way to save the assets of an

application locally so that they can be used without an internet connection. It’s es-

pecially well-suited to “single-page” applications that are JavaScript-driven and

use local data stores such as localStorage and IndexedDB.

AppCache consists of two parts: the plain text file known as a manifest, and a DOM

interface for scripting and help managing updates. By the end of this chapter, you’ll

know how to write a cache manifest file, how to manage updates, and some of the

aspects to watch out for when using this API.

AppCache in IE

Application Cache is not supported in Internet Explorer 9 or below. You’ll need

to use version 10 or later. For a complete list of browsers supporting AppCache,

try CanIUse.com.1

1 http://caniuse.com/#search=appcache

http://caniuse.com/#search=appcache

Cache Manifest Syntax
Cache manifest files are plain text files, but they must adhere to the manifest syntax.

Let’s look at a simple example:

CACHE MANIFEST

These files will be saved locally. This line is a comment.
CACHE:
js/todolist.js
css/style.css

Every cache manifest must begin with the line CACHE MANIFEST. Comments must

begin with a #. Notice that each file is also listed as a separate line.

The CACHE: line is a section header. There are four defined section headers in total,

each with a slightly different function.

■ CACHE: explicitly states which files should be stored locally

■ NETWORK: explicitly states which URLs should always be retrieved from the

network

■ FALLBACK: specifies which locally available file should be displayed when a

URL isn’t available

■ SETTINGS: defines caching settings

Saving Files Locally with the CACHE: Section Header
CACHE: is unique because it is an optional section header―and it’s the only one

that is. Our cache manifest example could also be written without it:

Jump Start HTML5: Offline Applications8

CACHE MANIFEST

These files will be saved locally. This line is a comment.
js/todolist.js
css/style.css

In this case, js/todolist.js and css/style.css will be cached locally, since they

follow our CACHE: section header. So will the page that linked to our manifest, even

though we haven’t explicitly said that it should be saved.

In these examples, we are using relative URLs. We can also cache assets across origins

but the details are a little bit more complicated.

In recent versions of Firefox, you can cache assets across origins when they share

the same scheme or protocol (HTTP or HTTPS). You can, for example, cache assets

from http://sitepoint.com on http://example.com. And you can cache assets from

https://secure.ourcontentdeliverynetwork.com on https://thisisasecureurl.com. In

these cases, the protocol is the same. What you can’t do is cache HTTPS URLs over

HTTP or vice-versa.

Current versions of Internet Explorer, Safari, Chrome, and Opera allow cross-origin

caching regardless of scheme. Caching assets from http://sitepoint.com on https://this-

isasecureurl.com will work. This behavior could change, however, since it is out

of line with the specification. Don’t depend on it. As of this writing, however,

Chrome Canary ― version 33 ― doesn’t allow cross-origin requests from HTTP to

HTTPS and vice versa.

Forcing Network Retrieval with NETWORK:
NETWORK: allows us to explicitly tell the browser that it should always retrieve

particular URLs from the server. You may, for example, want a URL that syncs data

to be a NETWORK resource. Let’s update our manifest from earlier to include a NETWORK

section:

CACHE MANIFEST

These files will be saved locally. This line is a comment.
js/todolist.js
css/style.css

9Application Cache

NETWORK:
sync.cgi

Any requests for sync.cgi will be made to the network. If the user is offline, the

request will fail.

You may also use a wildcard—or * character—in the network section. This tells the

browser to use the network to fetch any resource that hasn’t been explicitly outlined

in the CACHE: section. Partial paths also work with the wildcard.

Specifying Alternative Content for Unavailable URLs
Using the FALLBACK: section header lets you specify what content should be shown

should the URL not be available due to connectivity. Let’s update our manifest to

include a fallback section:

CACHE MANIFEST

These files will be saved locally. This line is a comment.
CACHE:
js/todolist.js
css/style.css

FALLBACK:
status.html offline.html

Every line in the fallback section must adhere to the <requested file name> <alternate

file name> pattern. Here, should the user request the status.html page while offline,

he or she will instead see the content in offline.html.

Specifying Settings
To date, there’s only one setting that you can set using the SETTINGS: section

header, and that’s the cache mode flag. Cache mode has two options: fast and prefer-

online. The fast setting always uses local copies, while prefer-online fetches re-

sources using the network if it’s available.

Fast mode is the default. You don’t actually need to set it in the manifest. Doing so

won’t cause any parsing errors, but there’s no reason to add it.

Jump Start HTML5: Offline Applications10

To override this behavior, you must use prefer-online, and add this to the end of

your manifest file:

SETTINGS:
prefer-online

NETWORK:
*

There’s a caveat here, however. The master file―the file that owns the manifest―will

still be retrieved from the local store. Other assets will be fetched from the network.

Adding the Cache Manifest to Your HTML
Now for the simplest part of AppCache: adding it to your HTML document. This

requires adding a manifest attribute to your <html> tag:

<html manifest="todolist.appcache">

As your page loads, the browser will download and parse this manifest. If the

manifest is valid, the browser will also download your assets.

You’ll need to add the manifest to every HTML page that you wish to make available

offline. Adding it to http://example.com/index.html will not make http://ex-

ample.com/article.html work offline.

Verify Your Manifest Syntax

To avoid problems with your manifest file, verify that its syntax is correct by using

a validator. One such validator is the straightforwardly named Cache Manifest

Validator,2 an online tool. If you’re comfortable with Python and the command

line, try Caveman.3

Serving the Cache Manifest
In order for the browser to recognize and treat your cache manifest as a manifest,

it must be served with a Content-type: text/cache-manifest header. Best practice

2 http://manifest-validator.com/
3 https://pypi.python.org/pypi/caveman

11Application Cache

http://manifest-validator.com/
http://manifest-validator.com/
https://pypi.python.org/pypi/caveman

is to use an .appcache extension (e.g. manifest.appcache or offline.appcache), though

it’s not strictly necessary.

Without this header, most browsers will ignore the manifest. Consult the document-

ation for your server (or ask your web hosting support team) to learn how to set it.

Avoiding Application Cache “Gotchas”
As mentioned, AppCache uses local file copies by default. This produces a more

responsive user interface, but it also creates two problems that are very confusing

at first glance:

■ uncached assets do not load on a cached page, even while online

■ updating assets will not update the cache

That’s right: browsers will use locally stored files regardless of whether new file

versions are available, even when the user is connected to the network.

Solving Gotcha #1: Loading Uncached Assets from a
Cached Document
Application Cache is designed to make web applications into self-contained entities.

As a result, it unintelligently assumes all referenced assets have also been cached

unless we’ve said otherwise in our cache manifest. Browsers will look in the cache

first, and if they’re unable to find the referenced assets, those references break.

To work around this, include a NETWORK: section header in your manifest file, and

use a wildcard (*). A wildcard tells the browser to download any associated un-

cached file from the network if it’s available.

Solving Gotcha #2: Updating the Cache
Unfortunately, if you need to push updates to your users, you can’t just overwrite

existing files on the server. Remember that AppCache always prefers local copies.

In order to refresh files within the cache, you’ll need to update the cache manifest

file. As a document loads, the browser checks whether the manifest has been up-

dated. If it has, the browser will then re-download all the assets outlined in the

manifest.

Jump Start HTML5: Offline Applications12

Perhaps the best way to update the manifest is to set and use version numbers.

Changing an asset name or adding a comment also works. When the browser encoun-

ters the modified manifest, it will download the specified assets.

Though the cache will update, the new files will only be used when the application

is reloaded. You can force the application to refresh itself by using location.re-

load() inside an updateready event handler.

Cache Gotcha #3: Break One File, Break Them All
Something else to be aware of when using AppCache: any resource failure will

cause the entire caching process to fail. “404 Not Found,” “403 Forbidden,” and

“500 Internal Server Error” responses can cause resource failures, as well as the

server connection being interrupted during the caching process.

When the browser encounters any of these errors, the applicationCache object will

fire an error event and stop downloading everything else. We can listen for this

event, of course; however, to date no browser includes the affected URL as part of

the error message. The best we can do is alert the user that an error has occurred.

Safari, Opera, and Chrome do report the failed URL in the developer console.

Testing for Application Cache Support
To test for support, use the following code:

var hasAppCache = window.applicationCache === undefined;

If you’re going to use several HTML5 features, you may also want to try Modernizr4

to check for them all.

It’s unnecessary to test for AppCache support using JavaScript, unless your applic-

ation interacts with the cache programmatically. In browsers without support for

Application Cache, the manifest attribute will be ignored.

4 http://modernizr.com/

13Application Cache

http://modernizr.com/

The Application Cache API
Now that we’ve talked about the syntax of Application Cache, and a few of its quirks,

let’s talk about its JavaScript API. AppCache works quite well without it, but you

can use this API to create your own user interface for your application’s loading

process. Creating such a user interface requires understanding the event sequence,

as well as a bit of JavaScript.

The AppCache Event Sequence
As the browser loads and parses the cache manifest, it fires a series of DOM events

on the applicationCache object. Since they’re DOM events, we’ll use the addEvent-

Listener method to listen for and handle them.

When the browser first encounters the manifest attribute, it dispatches a checking

event. “Checking” means that the browser is determining whether the manifest has

changed, indicating an application update. We can use this event to trigger a message

to the user that our application is updating:

var checkinghandler = function(){
 updatemessage('Checking for an update');
}
applicationCache.addEventListener('checking',checkinghandler);

If the cache hasn’t been downloaded before or if the manifest has changed

(prompting a new download), the browser fires a downloading event. Again, we

can use this event to update the user about our progress:

var downloadinghandler = function(){
 updatemessage('Downloading files');
}
applicationCache.addEventListener('downloading',downloadinghandler);

If the cache manifest file hasn’t changed since the last check, the browser will fire

a noupdate event. Should we have an update, the browser will fire a series of pro-

gress events.

Every event is an object. We can think of this object as a container with information

about the operation that triggered it. In the case of progress events, there are two

properties to know about: loaded and total. The loaded property tells us where

Jump Start HTML5: Offline Applications14

the browser is in the download queue, while total tells us the number of files to

be downloaded:

var downloadinghandler = function(event){
 var progress = document.querySelector('progress');
 progress.max = event.total;
 progress.value = event.loaded;
}
applicationCache.addEventListener('downloading',downloadinghandler);

The first time a cache downloads, the browser fires a cached event if everything

goes well. Updates to the cache end with an updateready event.

If there are problems, the browser will fire an error event. Typically this happens

when a file listed in the manifest returns an error message. But it can also happen

if the manifest can’t be found or reached, returns an error (such as “403 Forbidden”),

or changes during an update.

Let’s look at an example using a simple to-do list.

Setting Up Our Cache Manifest
First, let’s define our manifest file: todolist.appcache. This file tells the browser

which files to cache offline:

CACHE MANIFEST
revision 1

CACHE:
js/todolist.js
js/appcache.js
css/style.css
imgs/checkOk.svg

Once the browser encounters the manifest attribute, it will begin downloading the

files listed, plus the master HTML page.

15Application Cache

Setting Up Our HTML
In order to set up our application, we first need to create an HTML document. This

is a single-page application without a lot of functionality, so our markup will be

minimal:

<!DOCTYPE html>
<html lang="en-us" manifest="todolist.appcache">
<head>
 <meta charset="utf-8">
 <title>To do list</title>
 <link rel="stylesheet" type="text/css" href="css/style.css">
</head>
<body>
 <section id="applicationstatus"></section>

 <section id="application" class="hidden">
 <form id="addnew">
 <p>
 <label for="newitem">
 What do you need to do today?
 </label>
 <input type="text" id="newitem" required autofocus>
 <button type="submit" id="saveitem">Add</button>
 </p>
 <p>
 <button type="button" id="delete">Delete completed</button>
 </p>
 </form>
 <ul id="list">
 </section>

 <script src="js/appcache.js"></script>
 <script src="js/todolist.js"></script>
</body>
</html>

Setting Up Our CSS and JavaScript
Notice here that we have added a manifest attribute to our html tag. Our stylesheet

controls the appearance of our application, including the styles we’ll need for our

interactions. The pertinent CSS from our stylesheet is shown:

Jump Start HTML5: Offline Applications16

.hidden{
 display:none;
}

Our hidden class controls the display of our elements. We’ll use DOM scripting to

add and remove this class name from our elements when the browser has fired a

particular event.

First, let’s define our global variables:

var appstatus, app, progress, p;

appstatus = document.getElementById('applicationstatus');
app = document.getElementById('application');
progress = document.createElement('progress');
p = document.createElement('p');

appstatus.appendChild(p);
appstatus.appendChild(progress);

We’ll also create an updatemessage function that we’ll use to update our messages:

/* Create a reusable snippet for updating our messages */
function updatemessage(string){
 var message = document.createTextNode(string);
 if(p.firstChild){
 p.replaceChild(message, p.firstChild)
 } else {
 p.appendChild(message);
 }
}

Next, let’s set up our checking event handler. This function will be called when the

browser fires a checking event:

17Application Cache

function checkinghandler(){
 updatemessage('Checking for an update');
}
applicationCache.addEventListener('checking', checkinghandler);

Here, we’ve updated our application to tell the user that the browser is checking

for an update.

Let’s also add a progress event handler. This handler will update our application

with the index of the file currently being downloaded:

function progresshandler(evt){
 evt.preventDefault();
 progress.max = evt.total;
 progress.value = evt.loaded;
 updatemessage('Checking for an update');
}
applicationCache.addEventListener('progress', progresshandler);

If this is the first time our application cache is downloading our application, it will

fire a cached event. In this function, we’re going to hide div#applicationstatus,

and show div#application by adding and removing the hidden class:

function whendonehandler(evt){
 evt.preventDefault();
 appstatus.classList.add('hidden');
 app.classList.remove('hidden');
}
applicationCache.addEventListener('cached', whendonehandler);

This is what makes our application active. We’ll also use this function to handle

our noupdate event. If there isn’t an application update, we’ll just hide the status

screen and show the application:

applicationCache.addEventListener('noupdate', whendonehandler);

Finally, we need to take an action when the browser has downloaded an update.

Once the cache updates, the web application won’t use the latest files until the next

page load.

Jump Start HTML5: Offline Applications18

In order to force an update, we reload our page using location.reload(). And we

can invoke location.reload() when the browser fires the updateready event:

function updatereadyhandler(){
 location.reload();
}

applicationCache.addEventListener('updateready',updatereadyhandler);

That’s it! We have a loading interface for our application. Now let’s take a look at

the application itself. In the next chapter, we’ll take a look at web storage: the loc-

alStorage and sessionStorage objects.

19Application Cache

Chapter3
Web Storage: the localStorage and

sessionStorage Objects
Web storage1 (also known as DOM storage) is a simple client-side, key-value system

that lets us store data in the client. It consists of two parts: localStorage and ses-

sionStorage.

The main difference between localStorage and sessionStorage is persistence.

Data stored using localStorage persists from session to session. It’s available until

the user or the application deletes it.

Data stored using sessionStorage, on the other hand, persists only as long as the

browsing context is available. Usually this means that we lose our sessionStorage

data once the user closes the browser window or tab. It may, however, persist in

browsers that allow users to save browsing sessions.

1 http://dev.w3.org/html5/webstorage/

http://dev.w3.org/html5/webstorage/

In this chapter, we’ll talk about some advantages web storage offers over cookies.

We’ll then discuss how to use the Web Storage API and look at some of its limita-

tions.

Why Use Web Storage Instead of Cookies?
There are three main reasons to use localStorage or sessionStorage over cookies:

■ HTTP request performance

■ data storage capacity

■ better protection against cross-site scripting attacks

Cookies are included with each request to the server, increasing the size and duration

of each request. Using smaller cookies helps, but using localStorage and session-

Storage helps most of all. Data is stored locally, and sent only when requested.

Another advantage of using web storage is that you can store much more data.

Modern browsers begin to max out at 50 cookies per domain. At 4 kilobytes per

cookie, we can safely store about 200KB before some browsers will start to delete

cookies. And no, we’re unable to control what’s deleted. Web storage limits, on the

other hand, range from about 2.5MB in Safari and Android to about 5MB in most

other browsers. And we can delete data by key.

Finally, web storage is less vulnerable to cross-site scripting attacks than cookies.

Cookies adhere to a same-domain policy. A cookie set for .example.com can be read

or overwritten by any subdomain of example.com, including hackedsubdomain.ex-

ample.com. If sensitivedata.example.com also uses the .example.com cookie, a script

at hackedsubdomain.example.com can intercept that data.

A same-origin restriction means that only the origin that created the data can access

the data. Data written to localStorage by http://api.example.com will not be

available to http://example.com, http://store.example.com, https://ex-

ample.com, or even http://api.example.com:80.

Browser Support
Of all of the APIs discussed in this book, Web Storage is the most widely supported

among major browsers. It’s available in Internet Explorer 8+, Firefox 3.5+, Safari

Jump Start HTML5: Offline Applications22

4+, Opera 10.5+, and Android WebKit. There are a few polyfill scripts that mimic

the Web Storage API in browsers that lack it. One such script is Storage polyfill by

Remy Sharp.2 It uses cookies and window.name to mimic localStorage and ses-

sionStorage respectively.

Inspecting Web Storage
For this chapter, use Chrome, Safari, or Opera. The developer tools for these browsers

let you inspect and manage web storage values. In Chrome (seen in Figure 3.1), Safari,

and Opera 15+, you can find web storage under the Resources panel of the developer

tools. In Opera 12 (the only version of Opera available for Linux users), you can

find it under the Storage panel of Dragonfly.

Figure 3.1. The Local Storage inspector in Google Chrome.

Testing for Web Storage Support
Both localStorage and sessionStorage are attributes of the window object. We

can test for browser support by testing whether these attributes are undefined:

2 https://gist.github.com/remy/350433

23Web Storage: the localStorage and sessionStorage Objects

https://gist.github.com/remy/350433
https://gist.github.com/remy/350433

if(typeof window.localStorage == 'undefined'){
 // Use something other than localStorage.
} else {
 // Save a key-value pair.
}

Testing for sessionStorage works similarly; use typeof window.sessionStorage

== 'undefined' instead. Typically, though, if a browser supports localStorage it

also supports sessionStorage, and vice versa.

Let’s look at using the Storage API by building a simple to-do list. We’ll use local-

Storage to save our to-do items and their status. Although we’ll focus on localStor-

age in this chapter, keep in mind that this also works for sessionStorage. Just swap

the attribute names.

Setting Up Our HTML
A basic HTML outline is fairly simple. We’ll set up a form with aninput field and

a button for adding new items. We’ll also add buttons for deleting items. And we’ll

add an empty list. Of course, we’ll also add links to our CSS and JavaScript files.

Your HTML should look a little like this:

<!DOCTYPE html>
<html lang="en-us">
<head>
 <meta charset="utf-8">
 <title>localStorage to do list</title>
 <link rel="stylesheet" href="css/style.css">
</head>
<body>
 <form>
 <p>
 <label for="newitem">What do you need to do today?</label>
 <input type="text" id="newitem" required>
 <button type="submit" id="saveitem">Add</button>
 </p>
 <p>
 <button type="button" id="deletedone">Delete completed</button>
 <button type="button" id="deleteall">Reset the list</button>
 </p>
 </form>
 <ul id="list">

Jump Start HTML5: Offline Applications24

 <script src="js/todolist.js"></script>
</body>
</html>

Our form will resemble the one seen in Figure 3.2.

Figure 3.2. Our to-do list interface rendered in Firefox after adding the barest bit of CSS magic.

On form submission―when a submit event is fired on our form―we will append

the new task to our unordered list element, and save it to localStorage.

Saving Values With
localStorage.setItem()

To add an item to local storage or session storage, we need to use the setItem

method. This method accepts two arguments: key and value, in that order. Both

arguments must be strings, or be converted to strings:

25Web Storage: the localStorage and sessionStorage Objects

localStorage.setItem(keyname, value);

For our to-do list, we’ll take the text entered in <input type="text" id="newitem"

required>, create a new list item, and save it to localStorage. That’s what we’ve

done in this function:

function addItemToList(itemtxt){
 var li = document.createElement('li'),
 list = document.getElementById('list');

 /* Saves the item to storage */
 localStorage.setItem(itemtxt, 0);

 /* Update the innerHTML value of our list item
 and add as a child of our list */
 li.innerHTML = itemtxt;
 list.appendChild(li);
}

Notice here that we are setting the value of our key to 0 (localStor-

age.setItem(itemtxt, 0)). For this application, we'll use 0 to indicate a task that

needs to be completed and 1 for a task that is complete. When saved, these values

will be converted to numeric strings.

Sanitize Your Inputs

In this case, accepting user input for keys is low-risk from a security standpoint.

This application and its data is contained entirely within the user's browser. When

synchronizing the data with a server, be sure to sanitize and validate your input

and escape your output.

Since we want to update our list every time the form is submitted, we also need to

add an event listener to our form.

Adding an Event Listener
To add an event listener, use the addEventListener() method and define a function

that will be invoked when our event is fired:

Jump Start HTML5: Offline Applications26

var form, updateList;

form = document.forms[0];

var updateList = function(event){
 /* Prevent the default action, in this case, form submission */
 event.preventDefault();

 /* Invoke the addItemToList function */
 addItemToList(document.getElementById('newitem').value);

 /* Clear the input field */
 document.getElementById('newitem').value = '';
}

form.addEventListener('submit', updateList);

Using localStorage.setItem to Update Existing
Values
Should a key already exist, using setItem will overwrite the old value rather than

create a new record. For our to-do list, this is exactly what we want. To prevent the

value of your key from being overwritten, check whether the key exists before saving

the item.

We will also use setItem to update our task's status when it's clicked, as we'll see

in the next section.

Retrieving Values With
localStorage.getItem()

To retrieve the value of a key, we use localStorage.getItem(). This method accepts

one argument, the key of the value we’d like to retrieve, which must be a string.

If the key exists, getItem will return the value of that key. Otherwise, it will return

null. That makes it useful for determining whether a key exists before calling

setItem. For example, if we wanted to test the presence of a lunch key, we might

do the following:

27Web Storage: the localStorage and sessionStorage Objects

if(localStorage.getItem('lunch')){
 // do something.
}

In our case, we’re going use getItem to retrieve the status of our task. Based on the

value returned by getItem, we will update the value of our key using setItem.

In the code below, we’ve added an event listener to our unordered list rather than

to each list item. We’re using a technique called event delegation. When an event

is fired on an element, it “bubbles up” to its ancestors. This means we can set a

listener on its parent element, and use the target property of the event object to

determine which element triggered the event. Because we only want to take an action

if the element clicked was a list item, we need to check the nodeName property of

the target object:

function toggleStatus(event){
 var status;
 if(event.target.nodeName == 'LI'){
 /*
 Using + is a trick to convert numeric strings to numbers.
 */
 status = +localStorage.getItem(event.target.textContent);
 if(status){
 localStorage.setItem(event.target.textContent,0);
 } else {
 localStorage.setItem(event.target.textContent,1);
 }
 /* Toggle a 'done' class */
 event.target.classList.toggle('done');
 }
}

var list = document.getElementById('list');
list.addEventListener('click',toggleStatus);

The event.target property is a pointer to the element that was clicked. Every ele-

ment object also has a textContent attribute, which is its child text, if applicable.

Each list item’s textContentmatches a localStorage key, so we can use it to retrieve

the value we want. That’s what we’re doing with status = localStor-

age.getItem(event.target.textContent).

Jump Start HTML5: Offline Applications28

localStorage keys and values are strings

Remember, all localStorage keys and values are strings. What look like numbers

are actually numeric strings. To make comparisons with numbers or Boolean

values, you’ll need to convert the variable type. Here we’ve used a + sign to convert

each key’s value to a number. Zero is a falsy value, equivalent to but not equal to

the Boolean false; 1 is a truthy value.

Alternative Syntaxes for Setting and Getting Items
Using setItem and getItem are not the only way to set or retrieve localStorage

values. You can also use square-bracket syntax or dot syntax to add and remove

them:

localStorage['foo'] = 'bar';

console.log(localStorage.foo) // logs 'bar' to the console

This is the equivalent of using localStorage.setItem('foo','bar') and local-

Storage.getItem('foo'). If there’s a chance that your keys will contain spaces

though, stick to square-bracket syntax or use setItem()/getItem() instead.

Looping Over Storage Items
On page reload, our list of to-dos will be blank. They’ll still be available in local-

Storage, but not part of the DOM tree. To fix this, we’ll have to rebuild our to-do

list by iterating over our collection of localStorage items, preferably when the

page loads. This is where localStorage.key() and localStorage.length come

in handy.

localStorage.length tells us how many items are available in our storage area.

The key() method retrieves the key name for an item at a given index. It accepts

one argument: an integer value that’s greater or equal to 0 and less than the value

of length. If the argument is less than zero, or greater than equal to length, local-

Storage.key() will return null.

Indexes and keys have a very loose relationship. Each browser orders its keys dif-

ferently. What’s more, the key and value at a given index will change as items are

29Web Storage: the localStorage and sessionStorage Objects

added or removed. To retrieve a particular value, key() is a bad choice. But for

looping over entries, it’s perfect. An example follows:

var i = localStorage.length;
while(i--){ /* As long as i isn't 0, this is true */
 console.log(localStorage.key(i));
}

This will print every key in our storage area to the console. If we wanted to print

the values instead, we could use key() to retrieve the key name, then pass it to

getItem() to retrieve the corresponding value:

var i = localStorage.length, key;
while(i--){
 key = localStorage.key(i);
 console.log(localStorage.getItem(key));
}

Let’s go back to our to-do list. We have a mechanism for adding new items and

marking them complete. But if you reload the page, nothing happens. Our data is

there in our storage area, but not the page.

We can fix this by adding a listener for the load event of the window object. Within

our event handler, we’ll use localStorage.length and localStorage.key() along

with localStorage.getItem(key) to rebuild our to-do list:

function loadList(){
 var len = localStorage.length;
 while(len--){
 var key = localStorage.key(len);
 addItemToList(key, localStorage.getItem(key));
 }
}
window.addEventListener('load', loadList);

Since we’re working with existing items in this loop, we want to preserve those

values. Let’s tweak our addItemToList function a bit to do that:

function addItemToList(itemtxt, status){
 var li = document.createElement('li');

Jump Start HTML5: Offline Applications30

 if(status === undefined){
 status = 0;
 localStorage.setItem(itemtxt, status);
 }

 if(status == true){ li.classList.add('done'); }

 li.textContent = itemtxt;
 list.appendChild(li);
}

We’ve added a status parameter, which gives us a way to specify whether a task

is complete. When we add a task and call this item, we’ll leave out the status

parameter; but when loading items from storage as we are here, we’ll include it.

The line if(status == true){ li.classList.add('done'); } adds a done class

to the list item if our task status is 1.

Clearing the Storage Area With
localStorage.clear()

To clear the storage area completely, use the localStorage.clear() method. It

doesn’t accept any parameters:

function clearAll() {
 list.innerHTML = '';
 localStorage.clear();
}

Once called, it will remove all keys and their values from the storage area. Once

removed, these values are no longer available to the application. Use it carefully.

Storage Events
Storage events are fired on the window object whenever the storage area changes.

This happens when removeItem() or clear() deletes an item (or items). It also

happens when setItem() sets a new value or changes an existing one.

31Web Storage: the localStorage and sessionStorage Objects

Listening for the Storage Event
To listen for the storage event, add an event listener to the window object:

window.addEventListener('storage', storagehandler);

Our storagehandler function that will be invoked when storage event is fired.

We’re yet to define that function―we’ll deal with that in a moment. First, let’s take

a look at the StorageEvent object.

The StorageEvent Object
Our callback function will receive a StorageEvent object as its argument. The

StorageEvent object contains properties that are universal to all objects, and five

that are specific to its type:

■ key: contains the key name saved to the storage area

■ oldValue: contains the former value of the key, or null if this is the first time

an item with that key has been set

■ newValue: contains the new value added during the operation

■ url: contains the URL of the page that made this change

■ storageArea: indicates the storage object affected by the update―either local-

Storage or sessionsStorage

With these properties, you can update the interface or alert the user about the status

of an action. In this case, we’ll just quietly reload the page in other tabs/windows

using location.reload().

function storagehandler(event){
 location.reload();
}

Now our list is up-to-date in all tabs.

Jump Start HTML5: Offline Applications32

Storage Events Across Browsers
Storage events are a bit tricky, and work differently to how you might expect in

most browsers. Rather than being fired on the current window or tab, the storage

event is supposed to be fired in other windows and tabs that share the same storage

area. Let’s say that our user has http://ourexamplesite.com/buy-a-ticket open in two

tabs. If they take an action in the first tab that updates the storage area, the storage

event should be fired in the second.

Chrome, Firefox, Opera, and Safari are in line with the web storage specification,

while Internet Explorer is not. Instead, Internet Explorer fires the storage event in

every window for every change, including the current window.

There isn’t a good hack-free way to work around this issue. For now, reloading the

application―as we’ve done above―is the best option across browsers.

IE’s Nonstandard remainingSpace Property

Internet Explorer includes a nonstandard remainingSpace property on its loc-

alStorage object. We can handle our storage event differently depending on

whether or not localStorage.remainingSpace is undefined. This approach

has its risks, though; Microsoft could remove the remainingSpace property

without fixing the storage event bug.

Determining Which Method Caused the Storage Event
There isn’t an easy way to determine which method out of setItem(), removeItem(),

or clear() triggered the storage event. But there is a way: examine the event prop-

erties.

If the storage event was caused by invoking localStorage.clear(), the key,

oldValue, and newValue properties of that object will all be null. If removeItem()

was the trigger, oldValue will match the removed value and the newValue property

will be null. If newValue isn’t null, it’s a safe bet that setItem() was the method

invoked.

33Web Storage: the localStorage and sessionStorage Objects

Storing Arrays and Objects
As mentioned earlier in this chapter, web storage keys and arrays must be strings.

If you try to save objects or arrays, the browser will convert them to strings. This

can lead to unexpected results. First, let’s take a look at saving an array:

var arrayOfAnimals = ['cat','dog','hamster','mouse','frog','rabbit'];

localStorage.setItem('animals', arrayOfAnimals);

console.log(localStorage.animals[0])

If we look at our web storage inspector, we can see that our list of animals was saved

to localStorage, as shown in Figure 3.3.

Figure 3.3. An array saved to web storage as a string in Safari’s developer tools

But if you try to read the first item of that array, you’ll see that the first item is the

letter C and not cat as in our array. Instead, it’s been converted to a comma-separated

string.

Similarly, when an object is converted to a string, it becomes [object Object].

You lose all your properties and values, as shown in Figure 3.4.

Jump Start HTML5: Offline Applications34

Figure 3.4. The result of saving an object to web storage in Safari’s developer tools

To prevent this from happening, use the native JSON.stringify() method to turn

your objects and arrays into strings before saving:

var foodcouples = {
 'ham':'cheese',
 'peanut_butter':'jelly',
 'eggs':'toast'
}

localStorage.setItem(
 'foodpairs_string',
 JSON.stringify(foodcouples)
);

Using JSON.stringify() will serialize arrays and objects. They’ll be converted to

specially formatted strings that hold indexes or properties and values, as shown in

Figure 3.5.

35Web Storage: the localStorage and sessionStorage Objects

Figure 3.5. Using JSON.stringify() to save an object to web storage in Safari’s developer tools

To retrieve these values, use JSON.parse() to turn it back into a JavaScript object

or array. A word of caution: JSON.parse() and JSON.stringify() can affect the

performance of your application. Use them sparingly, especially when getting and

setting items.

Limitations of Web Storage
Web storage comes with a couple of limitations: performance and capacity.

Web storage is synchronous. Reads and writes are added to the JavaScript processing

queue immediately. Other tasks in the queue won't be completed until the engine

is done writing to or reading from the storage area. For small chunks of data, this

usually is no issue. But for larger chunks of data or a large number of write opera-

tions, it will be.

Web storage also has a size limit. Should your application reach that limit, the

browser will throw a DOMException error. Use a try-catch statement to catch and

handle this error. In browsers that support it, you can also use window.onerror (or

use addEventListener and the error event):

try {
 localStorage.setItem('keyname',value);

Jump Start HTML5: Offline Applications36

 return true;
} catch (error) {
 // Could alternatively update the UI.
 console.log(error.message);
}

Size limits vary by browser and version. The web storage specification suggests an

initial size of 5MB per origin. However, Safari, currently allows 2.5MB of data to

be stored per origin. Chrome, Internet Explorer, and Opera 15+ currently store 5MB

of data. Firefox stores 5MB by default, but the user can adjust this limit in the

about:config menu. Older versions of Opera (12 and below) prompt the user to

raise the storage limit.

The good news is that these values may increase. The bad news is that most browsers

fail to expose the amount of storage space available to the application.

Now that we’ve covered the ins and outs of web storage, let’s take a look at a web

database: IndexedDB.

37Web Storage: the localStorage and sessionStorage Objects

Chapter4
Storing Data With Client-side

Databases
Web storage (localStorage and sessionStorage) is fine for small amounts of data

such as our to-do list, but it’s an unstructured data store. You can store keys and

values, but you can’t easily search values. Data isn’t organized or sorted in a partic-

ular way, plus the 5MB storage limit is too small for some applications.

For larger amounts of structured searchable data, we need another option: web

databases. Web databases such as Web SQL and IndexedDB provide an alternative

to the limitations of web storage, enabling us to create truly offline applications.

The State of Client-side Databases
Unfortunately, this isn’t as easy as it sounds. Browsers are split into three camps

in the way they support client-side databases:

■ both IndexedDB and Web SQL (Chrome, Opera 15+)

■ IndexedDB exclusively (Firefox, Internet Explorer 10+)

■ Web SQL exclusively (Safari)

IndexedDB is a bit of a nonstarter if you plan to support mobile browsers. Safari for

iOS and Opera Mobile 11-12 support Web SQL exclusively; same for the older ver-

sions of Android and Blackberry browsers.

If you want your application to be available across desktop browsers, you’re about

halfway there with Web SQL. It’s available in Safari, Chrome, and Opera 15+, but

Firefox and Internet Explorer 10+ have no plans to add support.

Here’s the thing: the World Wide Web Consortium has stopped work on the Web

SQL specification. As a result, there is a risk that browsers will drop Web SQL

support, or that further development will proceed in nonstandard ways. Relying

on it is risky, so for that reason we will focus on IndexedDB in this chapter, and

use a polyfill to support Safari and older versions of Opera.

The bright side is that there are a few JavaScript polyfills and libraries available to

bridge the gap between Web SQL and IndexedDB. Lawnchair1 supports both, and

will use localStorage if you prefer. There’s also PouchDB,2 which uses its own

API to smooth over the differences between Web SQL and Indexed DB. PouchDB

also supports synchronization with a CouchDB server, though CouchDB isn’t neces-

sary for building an app with PouchDB.

In this chapter, we’ll focus on IndexedDB, and use IndexedDBShim3 for other

browsers.

About IndexedDB
IndexedDB is a schema-less, transactional, key-value store database. Data within

an IndexedDB database lacks the rigid, normalized table structure as you might find

with MySQL or PostgresSQL. Instead, each record has a key and each value is an

object. It’s a client-side “NoSQL” database that’s more akin to CouchDB or MongoDB.

Objects may have any number of properties. For example, in a to-do list application,

some objects may have a tags property and some may not, as evident in Figure 4.1.

1 http://brian.io/lawnchair/
2 http://pouchdb.com/
3 http://nparashuram.com/IndexedDBShim/

Jump Start HTML5: Offline Applications40

http://brian.io/lawnchair/
http://pouchdb.com/
http://nparashuram.com/IndexedDBShim/

Figure 4.1. Objects with and without a tags property

Two objects in the same database can even have completely different properties.

Usually, we’ll want to use a naming convention for our object property names.

IndexedDB is also transactional. If any part of the read or write operation fails, the

database will roll back to the previous state. These operations are known as trans-

actions, and must take place inside a callback function. This helps to ensure data

integrity.

IndexedDB has two APIs: synchronous and asynchronous. In the synchronous API,

methods return results once the operation is complete. This API can only be used

with Web Workers4, where synchronous operations won't block the rest of the ap-

plication. There is no browser support for the synchronous API at the time of writing.

In this chapter, we’ll cover the asynchronous API. In this mode, operations return

results immediately without blocking the calling thread. Asynchronous API support

is available in every browser that supports IndexedDB.

4 http://en.wikipedia.org/wiki/Web_worker

41Storing Data With Client-side Databases

http://en.wikipedia.org/wiki/Web_worker

Examples in this book use the latest version of the IndexedDB5 specification. Older

versions of IndexedDB in Chrome (23 and earlier) and Firefox (16 and earlier) re-

quired a vendor prefix. These experimental versions had several inconsistencies

between them, which have been largely worked out through the specification process.

Since the standardized API has been available for several versions in both Firefox

and Chrome, and is available in Internet Explorer 10+, we won’t bother with older

versions.

Inspecting IndexedDB Records

If you’d like to inspect your IndexedDB records, use Chrome or Opera 15+. These

browsers currently have the best tools for inspecting IndexedDB object stores.

With IndexedDBShim, you can use Safari’s Inspector to view this data in Web

SQL, but it won’t be structured in quite the same way. Internet Explorer offers an

IDBExplorer package6 for debugging IndexedDB, but it lacks native support in its

developer tools. Firefox developer tools are yet to support database inspections.

Now, let’s look at the concepts of IndexedDB by creating a journaling application

to record diary entries.

Setting up Our HTML
Before we dive into IndexedDB, let’s build a very simple interface for our journaling

application:

<!DOCTYPE html>
<html lang="en-us">
<head>
 <meta charset="utf-8">
 <title>IndexedDB Journal</title>
 <link rel="stylesheet" type="text/css" href="css/style.css">
</head>
<body>
<form>
 <p>
 <label for="tags">How would you like to tag this entry?</label>
 <input type="text" name="tags" id="tags" value="" required>

5 http://www.w3.org/TR/IndexedDB/
6 http://ie.microsoft.com/testdrive/HTML5/newyearslist/IDBExplorer.zip

Jump Start HTML5: Offline Applications42

http://www.w3.org/TR/IndexedDB/
http://ie.microsoft.com/testdrive/HTML5/newyearslist/IDBExplorer.zip

 (Optional. Separate tags with a comma.)
 </p>
 <p>
 <label for="entry">What happened today?</label>
 <textarea id="entry" name="entry" cols="30" rows="12" required>
 </textarea>
 <button type="submit" id="submit">Save entry</button>
 </p>
</form>

 <section id="allentries" class="hidden">
 <h1>View all entries</h1>
 </section>

<script src="js/IndexedDBShim.min.js"></script>
<script src="js/journal.js"></script>
</body>
</html>

This gives us a very simple interface consisting of two form fields and a Save entry

button, as shown in Figure 4.2. We've also added a view that displays all entries

after we've saved our latest one. A production-ready version of this application

might have a few more screens, but for this demo this is fine.

43Storing Data With Client-side Databases

Figure 4.2. Our simple journal interface as shown in Firefox.

Creating a Database
To create a database, use the open() method. It accepts two arguments: the name

of your database and an optional integer value that sets the version of the database:

var idb = indexedDB.open('myIDBJournal',1);

Your database name may be any string value, including the empty string (''). The

name just ties the database to its origin. As with localStorage, IndexedDB databases

can only be read to from—or written to by—scripts that share its origin. Remember

that an origin consists of the scheme (such as http:// or https://), the hostname,

and port number). These must match exactly, meaning that a database created at

http://example.com can't be accessed by scripts at http://api.example.com and

vice versa.

Jump Start HTML5: Offline Applications44

Version numbers can be any integer from 1 to 2^53 (that’s 9,007,199,254,740,991).

Floats, or decimal values, won’t work. Floats will be converted to integers. For ex-

ample, 2.2 becomes 2 and 0.8 becomes 0 (and throws a TypeError). If you don’t

include a version number, the browser will use 1.

If the open operation is successful, the browser will fire a success event. We can

use the onsuccess callback to perform transactions or, as we’ve done here, use it

to assign our database object to a global variable:

// initialize the variable.
var databaseObj;
idb.onsuccess = function(successEvent){
 // set its value.
 databaseObj = successEvent.target.result;
}

As with all DOM events, our successEvent object contains a target property. In

this case, the target is our open request transaction. The target property is also an

object, and contains a result property, which is the result of our transaction. In

this case, the value of result is our database.

This is a really important point to understand. Every transaction requires an onsuc-

cess handler. The results of that transaction will always be a child property of the

target object, which is a property of the event object (event.target.result).

Now that we’ve set our global databaseObj variable to our database object, we can

use databaseObj for our transactions.

Adding an Object Store
Creating a database won’t automatically make it do anything by itself. To begin

storing data, you’ll have to create at least one object store. If you are familiar with

SQL databases, an object store is analogous to an SQL table. Object stores are where

we store our records, or entries. IndexedDB databases can contain multiple object

stores.

To add an object store, we first need to trigger a version change. To trigger a version

change, the version argument (the second parameter) needs to be greater than the

45Storing Data With Client-side Databases

database’s current version value. For the first release of your application, this value

can be 1.

When the database version number increases (or is set for the first time), the browser

will fire an upgradeneeded event. Any structural changes―adding an object store,

adding an index to an object store―must be made within the onupgradeneeded

event handler method:

idb.onupgradeneeded = function(event){
 // Change the database.
}

Let’s create an object store named entries. To do this, we need to use the createO-

bjectStore method of the database object:

idb.onupgradeneeded = function(event){
 try {
 event.target.result.createObjectStore(
 ['entries'],
 { keyPath: 'entrydate' }
);
 } catch(error) {}
}

If the object store doesn’t exist, it will be created. If it does, the browser will fire a

constraint error. We’ve wrapped this in a try-catch block so that we can silently

handle an error should one occur. But we could also set an event handler using the

onerror event attribute:

idb.onerror = function(event){
 // Log the error to the console, or alert the user
}

At a minimum, createObjectStore requires a name argument. It must be a string,

but this string can’t contain any spaces. The second argument is optional, but it

must be a dictionary. Dictionaries are objects that have defined properties and values.

For createObjectStore, those properties and values are as follows:

■ autoIncrement: Must be either true or false; auto-generates keys and indexes

for each record in the store. Default value is false.

Jump Start HTML5: Offline Applications46

■ keyPath: Specifies which object property to use as an index for each record in

the store. Default value is null. Makes the named field a required one.

Here we’ve chosen to set a keyPath. This means that every object we add to the

database will need to contain an entrydate property, and the value of the entrydate

property will become our key.

You don’t have to set autoIncrement or keyPath. It’s possible to add our object

store without it. If you choose not to set either, you must set a key for every record

stored. We’ll discuss this in the next section.

Notice that we didn’t use our databaseObj variable with our onupgradeneeded

callback? That’s because the onupgradeneeded event is fired before the onsuccess

event when working with IndexedDB. It won’t be defined when we need it.

Adding a Record
Adding records is a little more complicated. We need to create a transaction, and

then take an action once the transaction completes. The process is roughly as follows:

1. Open a transaction connection to one or more object stores.

2. Select which object store to use for the transaction request.

3. Create a request by invoking the put, add, delete or get methods.

4. Define an onsuccess handler to process our results.

These steps need to happen within a callback or event handler of some kind. Here

we’ll do it when our journal entry form is submitted:

document.forms[0].onsubmit = function(submitEvent){
 var entry, i, transaction, objectstore, request, fields;

 fields = submitEvent.target;

 // Prevent form submission and page reload.
 submitEvent.preventDefault();

 /* Build our record object */
 entry = {};

47Storing Data With Client-side Databases

 entry.entrydate = new Date().getTime();

 for(i=0; i < fields.length; i++){
 if(fields[i].value !== undefined){
 entry[fields[i].name] = fields[i].value;
 }
 }

 /* Set our success handler */
 request.onsuccess = showAllEntries;

 /* Start our transaction. */
 transaction = databaseObj.transaction(['entries'],'readwrite');

 /* Choose our object store (the only one we've opened). */
 objectstore = transaction.objectStore('entries');

 /* Save our entry. We could also use the add() method */
 request = objectstore.put(entry);
}

There’s a lot happening in this function, but the most important parts are the follow-

ing three lines:

/* Start our transaction. */
transaction = databaseObj.transaction(['entries'],'readwrite');

/* Choose our object store (the only one we've opened). */
objectstore = transaction.objectStore('entries');

/* Save our entry */
request = objectstore.put(entry);

In these lines, we’ve first created a transaction by calling the transaction method

on our database object. transaction accepts two parameters: the name of the object

store or stores we’d like to work with, and the mode. The mode may be either

readwrite or readonly. Use readonly to retrieve values. Use readwrite to add,

delete, or update records.

Next, we’ve chosen which object store to use. Since the transaction connection was

only opened for the entries store, we’ll use entries here as well. It’s possible to

open a transaction on more than one store at a time, however.

Jump Start HTML5: Offline Applications48

Let’s say our application supported multiple authors. We might then want to create

a transaction connection for the authors object store at the same time. We can do

this by passing a sequence—an array of object store names—as the first argument

of the transaction method, as shown here:

trans = databaseObj.transaction(['entries','authors'], 'readwrite');

This won’t write the record to both object stores. It just opens them both for access.

Which object store will be affected is determined by the objectStore() method.

Use Square Brackets

In newer versions of Chrome (33+) and Firefox, you may pass a single object store

name to the transaction method without square brackets; for example, databaseO-

bj.transaction('entries','readonly'). For the broadest compatibility,

though, use square brackets.

req = objectstore.put(entry); is the final line. It saves our entry object to the

database. The put method accepts up to two arguments. The first is the value we’d

like to store, while the second is the key for that value: for example: object-

Store.put(value, key).

In this example, we’ve just passed the entry object to the putmethod. That’s because

we’ve defined entrydate as our keyPath. If you define a keyPath, the property

name you’ve specified will become the database key. In that case, you don’t need

to pass one as an argument. If, on the other hand, we didn’t define a keyPath and

autoIncrement was false, we would need to pass a key argument.

When the success event fires, it will invoke the showAllEntries function.

put Versus add

The IndexedDB API has two methods that work similarly: put and add. You can

only use addwhen adding a record. But you can use putwhen adding or updating

a record.

49Storing Data With Client-side Databases

Retrieving and Iterating Over Records
You probably noticed the line request.onsuccess = showAllEntries in our form’s

onsubmit handler. We’re yet to define that function, but this is where we’ll retrieve

all our entries from the database.

To retrieve multiple records there are two steps:

1. run a cursor transaction on the database object

2. iterate over the results with the continue() method

Creating a Cursor Transaction
As with any transaction, the first step is to create a transaction object. Next, select

the store. Finally, open a cursor with the openCursor method. A cursor is an object

consisting of a range of records. It’s a special mechanism that lets us iterate over a

collection of records:

function showAllEntries(){
 var transaction, objectstore, cursor;

 transaction = databaseObj.transaction(['entries'],'readonly');
 objectstore = transaction.objectStore('entries');
 cursor = objectstore.openCursor();
};

Since we want to show our entries once this transaction completes, let’s add an

onsuccess handler to our cursor operation:

function showAllEntries(){
 var transaction, objectstore, cursor;

 transaction = databaseObj.transaction(['entries'],'readonly');
 objectstore = transaction.objectStore('entries');
 cursor = objectstore.openCursor();

 cursor.onsuccess = function(successEvent) {
 var resultset = successEvent.target.result;
 if(resultset){
 buildList(resultset.value);
 }

Jump Start HTML5: Offline Applications50

 resultset.continue();
 };
};

Within this handler, we’re passing each result of our search to a buildList function.

We won’t discuss that function here, but it is included in this chapter’s code sample.

That final line―resultset.continue()―is how we iterate over our result set. The

onsuccess handler is called once for the entire transaction, but this transaction may

return multiple results. The continue method advances the cursor until we’ve iter-

ated over each record.

Retrieving a Subset of Records
With IndexedDB, we can also select a subset or range of records by passing a key

range to the openCursor() method.

Key ranges are created with the IDBKeyRange object. IDBKeyRange is what’s known

as a static object, and it’s similar to the way the Math() object works. Just as you’d

type Math.round() rather than var m = new Math(), with IDBKeyRange, you must

always use IDBKeyRange.methodName().

In this example, we’re only setting a lower boundary using the lowerBound method.

Its value should be the lowest key value we want to retrieve. In this case, we’ll use

0 since we want to retrieve all the records in our object store, starting with the first

one:

objectstore.openCursor(IDBKeyRange.lowerBound(0));

If we wanted to set an upper limit instead, we could use the upperBound method.

It also accepts one argument, which must be the highest key value we want to retrieve

for this range:

objectstore.openCursor(IDBKeyRange.upperBound(1385265768757));

By default, openCursor sorts records by key in ascending order. We can change the

direction of the cursor and its sorting direction, however, by adding a second argu-

ment. This second argument may be one of four values:

51Storing Data With Client-side Databases

■ next: puts the cursor at the beginning of the source, causing keys to be sorted

in ascending order

■ prev: short for “previous”, it places the cursor at the end of the source, causing

keys to be sorted in descending order

■ nextunique: returns unique values sorted by key in ascending order

■ prevunique: returns unique values sorted by key in descending order

To display these entries in descending order (newest entry first), change object-

store.openCursor(IDBKeyRange.lowerBound(0)) to objectstore.openCursor(IDB-

KeyRange.lowerBound(0), 'prev').

Retrieving or Deleting Individual Entries
But what if we wanted to retrieve just a single entry instead of our entire store? For

that, we can use the get method:

var transaction, objectstore, request;

transaction = databaseObj.transaction(['entries'],'readonly');
objectstore = transaction.objectStore('entries');
request = objectstore.get(key_of_entry_to_retrieve);

request.onsuccess = function(event){
 // display event.target.result
}

When this transaction successfully completes, we can do something with the result.

To delete a record, use the delete method. Its argument should also be the key of

the object to delete:

var transaction, objectstore, request;

transaction = databaseObj.transaction(['entries'],'readwrite');
objectstore = trans.objectStore('entries');
request = objectstore.delete(1384911901899);

Jump Start HTML5: Offline Applications52

request.onsuccess = function(event){
 // Update the user interface or take some other action.
}

Unlike retrieval operations, deletions are write operations. Use readwrite for this

transaction type, instead of readonly.

Updating a Record
To update a record, we can once again use the put method. We just need to specify

which entry we’re updating. Since we’ve set a keyPath, we can pass an object with

the same entrydate value to our put method:

var transaction, objectstore, request;

transaction = databaseObj.transaction(['entries'],'readwrite');
objectstore = trans.objectStore('entries');
request = objectstore.put(
 {
 entrydate: 1384911901899,
 entry: 'Updated value for key 1384911901899.'
 }
);

request.onsuccess = function(event){
 // Update the user interface or take some other action.
}

The browser will update the value of the record whose key is 1384911901899, as

shown in Figure 4.3.

53Storing Data With Client-side Databases

Figure 4.3. The updated value for our key

Updates, like additions, are write operations. When creating an update transaction,

the second parameter of the transaction method must be readwrite.

Be careful when using put for updates. Updates replace the entire object value with

the new one. You aren’t simply overwriting individual object properties; you’re

actually replacing the whole record.

Deleting a Database
Deleting a database is just as easy as opening one. It doesn’t require using a callback.

Just call the deleteDatabase method of the IndexedDB database object:

idb.deleteDatabase('myIDBJournal');

It accepts one argument: the name of the database you wish to delete. Use it with

caution.

We’ve covered enough to get you started with IndexedDB, but there’s more to the

API than can be covered in a single chapter. The Mozilla Developer Network7 has

7 https://developer.mozilla.org/en-US/docs/IndexedDB

Jump Start HTML5: Offline Applications54

https://developer.mozilla.org/en-US/docs/IndexedDB

the most robust documentation available to date, including coverage of older versions

of the API.

Wrapping Up and Learning More
With offline web technologies, you can develop applications that work without an

internet connection. We’ve covered the basics of offline applications in this book.

If you’d like to learn more about any of these topics, a good place to start is with

the W3C’s WebPlatform.org.8 It features tutorials and documentation on HTML5,

CSS, JavaScript and web APIs.

Vendor-specific sites also have a wealth of information, particularly for documenting

browser-specific quirks. Yet Google’s HTML5Rocks.com9 and the Mozilla Developer

Network, mentioned above, are particularly good at documenting new technologies

in their browsers while also addressing other vendors’ implementations. The Mi-

crosoft Developer Network10 includes a wealth of documentation about web tech-

nologies, especially as supported in Internet Explorer.

To track specifications, pay attention to the World Wide Web Consortium (W3C)11

and the Web Hypertext Application Technology Working Group (WHATWG).12

These bodies develop specifications and documentation for current and future APIs.

And of course, you can always visit Learnable.com13 or SitePoint.com14 to stay up

to date on web technologies.

8 http://webplatform.org/
9 http://html5rocks.com/
10 http://msdn.microsoft.com/
11 http://w3.org/
12 http://whatwg.org/
13 https://learnable.com/
14 http://www.sitepoint.com/

55Storing Data With Client-side Databases

http://webplatform.org/
http://html5rocks.com/
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://w3.org/
http://whatwg.org/
https://learnable.com/
http://www.sitepoint.com/

	Jump Start HTML5: Offline Applications
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Tools You’ll Need
	What Are Offline Apps?

	Detecting When the User Is Connected
	Determining Whether the User Is Online
	Listening for Changes in Connectivity State
	Online and Offline Events in Internet Explorer 8

	Limitations of navigator.onLine
	Checking Connectivity With XMLHttpRequest
	What You’ve Learned

	Application Cache
	Cache Manifest Syntax
	Saving Files Locally with the CACHE: Section Header
	Forcing Network Retrieval with NETWORK:
	Specifying Alternative Content for Unavailable URLs
	Specifying Settings

	Adding the Cache Manifest to Your HTML
	Serving the Cache Manifest
	Avoiding Application Cache “Gotchas”
	Solving Gotcha #1: Loading Uncached Assets from a Cached Document
	Solving Gotcha #2: Updating the Cache
	Cache Gotcha #3: Break One File, Break Them All

	Testing for Application Cache Support
	The Application Cache API
	The AppCache Event Sequence
	Setting Up Our Cache Manifest
	Setting Up Our HTML
	Setting Up Our CSS and JavaScript

	Web Storage: the localStorage and sessionStorage Objects
	Why Use Web Storage Instead of Cookies?
	Browser Support
	Inspecting Web Storage

	Testing for Web Storage Support
	Setting Up Our HTML
	Saving Values With localStorage.setItem()
	Adding an Event Listener
	Using localStorage.setItem to Update Existing Values

	Retrieving Values With localStorage.getItem()
	Alternative Syntaxes for Setting and Getting Items

	Looping Over Storage Items
	Clearing the Storage Area With localStorage.clear()
	Storage Events
	Listening for the Storage Event
	The StorageEvent Object
	Storage Events Across Browsers
	Determining Which Method Caused the Storage Event

	Storing Arrays and Objects
	Limitations of Web Storage

	Storing Data With Client-side Databases
	The State of Client-side Databases
	About IndexedDB
	Setting up Our HTML
	Creating a Database
	Adding an Object Store
	Adding a Record
	Retrieving and Iterating Over Records
	Creating a Cursor Transaction
	Retrieving a Subset of Records

	Retrieving or Deleting Individual Entries
	Updating a Record
	Deleting a Database
	Wrapping Up and Learning More

