

i

About the Tutorial

Ruby on Rails is an extremely productive web application framework written in Ruby by

David Heinemeier Hansson. This tutorial gives you a complete understanding on Ruby on

Rails.

Audience

This tutorial has been designed for beginners who would like to use the Ruby framework

for developing database-backed web applications.

Prerequisites

You need to have a basic knowledge of Ruby and object-oriented programming to

understand this tutorial. In addition, you need to be familiar with internet and websites

programming in general.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

 About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. INTRODUCTION ... 1

What is Ruby? ... 1

Why Ruby? ... 1

Sample Ruby Code .. 2

Embedded Ruby .. 2

What is Rails? ... 3

Full Stack Framework .. 3

Convention over Configuration ... 4

Rails Strengths .. 4

2. INSTALLATION ... 5

Rails Installation on Windows ... 5

Rails Installation on Linux ... 7

Keeping Rails Up-to-Date .. 9

Installation Verification .. 10

3. FRAMEWORK .. 12

Ruby on Rails MVC Framework ... 12

Pictorial Representation of MVC Framework .. 13

Directory Representation of MVC Framework .. 13

iii

4. DIRECTORY STRUCTURE .. 15

5. EXAMPLES ... 18

Workflow for Creating Rails Applications .. 18

Creating an Empty Rails Web Application ... 18

Starting Web Server .. 19

6. DATABASE SETUP .. 21

Database Setup for MySQL ... 21

Configuring database.yml ... 21

Database Setup for PostgreSQL .. 22

7. ACTIVE RECORDS .. 25

Translating A Domain Model into SQL .. 25

Creating Active Record Files .. 25

Creating Associations between Models .. 26

Implementing Validations ... 27

8. MIGRATIONS ... 28

What Can Rails Migration Do? .. 28

Create the Migrations ... 29

Edit the Code: ... 29

Run the Migration ... 30

Running Migrations for Production and Test Databases ... 31

9. CONTROLLER .. 32

Implementing the list Method .. 33

Implementing the show Method... 33

Implementing the new Method .. 34

Implementing the create Method ... 34

iv

Implementing the edit Method ... 35

Implementing the update Method .. 35

Implementing the delete Method ... 36

Additional Methods to Display Subjects.. 36

10. RUBY ON RAILS – ROUTES ... 39

11. VIEWS ... 41

Creating View File for list Method ... 41

Creating View File for new Method ... 42

Creating View File for show Method ... 45

Creating View File for edit Method ... 46

Creating View File for delete Method ... 47

Creating View File for show_subjects Method .. 48

12. LAYOUTS ... 50

Adding Style Sheet .. 51

13. SCAFFOLDING ... 54

Scaffolding Example .. 54

Creating an Empty Rails Web Application ... 54

Setting Up the Database ... 54

The Generated Scaffold Code .. 55

The Controller ... 56

Enhancing the Model .. 60

Alternative Way to Create Scaffolding .. 61

The Views ... 62

How Scaffolding is Different? .. 62

v

14. AJAX ON RAILS .. 63

How Rails Implements Ajax ... 63

AJAX Example ... 64

Creating an Application ... 64

Creating an Ajax .. 65

15. FILE UPLOADING ... 69

Creating the Model ... 69

16. SEND EMAIL .. 75

Action Mailer - Configuration .. 75

Generate a Mailer ... 76

Calling the Mailer .. 77

Ruby on Rails

1

What is Ruby?

Before we ride on Rails, let us recapitulate a few points of Ruby, which is the base of

Rails.

Ruby is the successful combination of:

 Smalltalk's conceptual elegance,

 Python's ease of use and learning, and

 Perl's pragmatism.

Ruby is

 A high-level programming language.

 Interpreted like Perl, Python, Tcl/TK.

 Object-oriented like Smalltalk, Eiffel, Ada, Java.

Why Ruby?

Ruby originated in Japan and now it is gaining popularity in US and Europe as well. The

following factors contribute towards its popularity:

 Easy to learn

 Open source (very liberal license)

 Rich libraries

 Very easy to extend

 Truly object-oriented

 Less coding with fewer bugs

 Helpful community

Although we have many reasons to use Ruby, there are a few drawbacks as well that

you may have to consider before implementing Ruby:

 Performance Issues - Although it rivals Perl and Python, it is still an interpreted

language and we cannot compare it with high-level programming languages like

C or C++.

 Threading model – Ruby does not use native threads. Ruby threads are simulated

in the VM rather than running as native OS threads.

1. INTRODUCTION

Ruby on Rails

2

Sample Ruby Code

Here is a sample Ruby code to print "Hello Ruby"

 # The Hello Class

 class Hello

 def initialize(name)

 @name = name.capitalize

 end

 def salute

 puts "Hello #{@name}!"

 end

 end

 # Create a new object

 h = Hello.new("Ruby")

 # Output "Hello Ruby!"

 h.salute

Output - This will produce the following result –

Hello Ruby

Embedded Ruby

Ruby provides a program called ERb (Embedded Ruby), written by Seki Masatoshi. ERb

allows you to put Ruby codes inside an HTML file. ERb reads along, word for word, and

then at a certain point, when it encounters a Ruby code embedded in the document, it

starts executing the Ruby code.

You need to know only two things to prepare an ERb document:

 If you want some Ruby code executed, enclose it between <% and %>.

 If you want the result of the code execution to be printed out, as a part of the

output, enclose the code between <%= and %>.

Here's an example. Save the code in erbdemo.rb file. Note that a Ruby file will have an

extension .rb:

<% page_title = "Demonstration of ERb" %>

<% salutation = "Dear programmer," %>

<html>

<head>

Ruby on Rails

3

<title><%= page_title %></title>

</head>

<body>

<p><%= salutation %></p>

<p>This is an example of how ERb fills out a template.</p>

</body>

</html>

Now, run the program using the command-line utility erb.

tp> erb erbdemo.rb

This will produce the following result:

<html>

<head>

<title>Demonstration of ERb</title>

</head>

<body>

<p>Dear programmer,</p>

<p>This is an example of how ERb fills out a template.</p>

</body>

</html>

What is Rails?

 An extremely productive web-application framework.

 Written in Ruby by David Heinemeier Hansson.

 You could develop a web application at least ten times faster with Rails than you

could with a typical Java framework.

 An open source Ruby framework for developing database-backed web

applications.

 Configure your code with Database Schema.

 No compilation phase required.

Full Stack Framework

 Includes everything needed to create a database-driven web application, using

the Model-View-Controller pattern.

Ruby on Rails

4

 Being a full-stack framework means all the layers are built to work seamlessly

together with less code.

 Requires fewer lines of code than other frameworks.

Convention over Configuration

 Rails shuns configuration files in favor of conventions, reflection, and dynamic

runtime extensions.

 Your application code and your running database already contain everything that

Rails needs to know!

Rails Strengths

Rails is packed with features that make you more productive, with many of the following

features building on one other.

Metaprogramming: Where other frameworks use extensive code generation from

scratch. Metaprogramming techniques use programs to write programs. Ruby is one of

the best languages for metaprogramming, and Rails uses this capability well. Rails also

uses code generation but relies much more on metaprogramming for the heavy lifting.

Active Record: Rails introduces the Active Record framework, which saves objects

to the database. The Rails version of the Active Record discovers the columns in a

database schema and automatically attaches them to your domain objects using

metaprogramming.

Convention over configuration: Most web development frameworks for .NET or Java

force you to write pages of configuration code. If you follow the suggested naming

conventions, Rails doesn't need much configuration.

Scaffolding: You often create temporary code in the early stages of development to

help get an application up quickly and see how major components work together. Rails

automatically creates much of the scaffolding you'll need.

Built-in testing: Rails creates simple automated tests you can then extend. Rails

also provides supporting code called harnesses and fixtures that make test cases easier

to write and run. Ruby can then execute all your automated tests with the rake utility.

Three environments: Rails gives you three default environments: development,

testing, and production. Each behaves slightly differently, making your entire software

development cycle easier. For example, Rails creates a fresh copy of the Test database

for each test run.

Ruby on Rails

5

To develop a web application using Ruby on Rails Framework, you need to install the

following software −

 Ruby

 The Rails Framework

 A Web Server

 A Database System

We assume that you already have installed a Web Server and a Database System on

your computer. You can use the WEBrick Web Server, which comes with Ruby. Most

websites however use Apache or lightTPD web servers in production.

Rails works with many database systems, including MySQL, PostgreSQL, SQLite, Oracle,

DB2 and SQL Server. Please refer to a corresponding Database System Setup manual to

set up your database.

Let's look at the installation instructions for Rails on Windows and Linux.

Rails Installation on Windows

Follow the steps given below for installing Ruby on Rails.

Step 1: Check Ruby Version

First, check if you already have Ruby installed. Open the command prompt and

type ruby -v. If Ruby responds, and if it shows a version number at or above 2.2.2, then

type gem --version. If you don't get an error, skip Install Ruby step. Otherwise, we'll

install a fresh Ruby.

Step 2: Install Ruby

If Ruby is not installed, then download an installation package from rubyinstaller.org.

Follow the download link, and run the resulting installer. This is an exe

file rubyinstaller-2.2.2.x.exe and will be installed in a single click. It's a very small

package, and you'll get RubyGems as well along with this package. Please check

the Release Notes for more detail.

2. INSTALLATION

http://rubyinstaller.org/

Ruby on Rails

6

Step 3: Install Rails

install Rails: With Rubygems loaded, you can install all of Rails and its dependencies

using the following command through the command line −

C:\> gem install rails

Note: The above command may take some time to install all dependencies. Make sure

you are connected to the internet while installing gems dependencies.

Step 4: Check Rails Version

Use the following command to check the rails version.

Ruby on Rails

7

C:\> rails -v

Output

Rails 4.2.4

Congratulations! You are now on Rails over Windows.

Rails Installation on Linux

We are installing Ruby On Rails on Linux using rbenv. It is a lightweight Ruby Version

Management Tool. The rbenv provides an easy installation procedure to manage various

versions of Ruby, and a solid environment for developing Ruby on Rails applications.

Follow the steps given below to install Ruby on Rails using rbenv tool.

Step 1: Install Prerequisite Dependencies

First of all, we have to install git - core and some ruby dependences that help to install

Ruby on Rails. Use the following command for installing Rails dependencies using yum.

tp> sudo yum install -y git-core zlib zlib-devel gcc-c++ patch readline

readline-devel libyaml-devel libffi-devel openssl-devel make bzip2 autoconf

automake libtool bison curl sqlite-devel

Step 2: Install rbenv

Now we will install rbenv and set the appropriate environment variables. Use the

following set of commands to get rbenv for git repository.

tp> git clone git://github.com/sstephenson/rbenv.git .rbenv

tp> echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bash_profile

tp> echo 'eval "$(rbenv init -)"' >> ~/.bash_profile

tp> exec $SHELL

tp> git clone git://github.com/sstephenson/ruby-build.git

~/.rbenv/plugins/ruby-build

tp> echo 'export PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH"' >>

~/.bash_profile

tp> exec $SHELL

Step 3: Install Ruby

Before installing Ruby, determine which version of Ruby you want to install. We will

install Ruby 2.2.3. Use the following command for installing Ruby.

tp> rbenv install -v 2.2.3

Ruby on Rails

8

Use the following command for setting up the current Ruby version as default.

tp> rbenv global 2.2.3

Use the following command to verify the Ruby version.

tp> ruby -v

Output

ruby 2.2.3p173 (2015-08-18 revivion 51636) [X86_64-linux]

Ruby provides a keyword gem for installing the supported dependencies; we call them

gems. If you don't want to install the documentation for Ruby-gems, then use the

following command.

tp> echo "gem: --no-document" > ~/.gemrc

Thereafter, it is better to install the Bundler gem, because it helps to manage your

application dependencies. Use the following command to install bundler gem.

tp> gem install bundler

Step 4: Install Rails

Use the following command for installing Rails version 4.2.4.

tp> install rails -v 4.2.4

Use the following command to make Rails executable available.

tp> rbenv rehash

Use the following command for checking the rails version.

tp> rails -v

Output

tp> Rails 4.2.4

Ruby on Rails framework requires JavaScript Runtime Environment (Node.js) to manage

the features of Rails. Next, we will see how we can use Node.js to manage Asset Pipeline

which is a Rails feature.

Step 5: Install JavaScript Runtime

Let us install Node.js from the Yum repository. We will take Node.js from EPEL yum

repository. Use the following command to add the EPEL package to the yum repository.

tp> sudo yum -y install epel-release

Ruby on Rails

9

Use the following command for installing the Node.js package.

tp> sudo yum install nodejs

Congratulations! You are now on Rails over Linux.

Step 6: Install Database

By default, Rails uses sqlite3, but you may want to install MySQL, PostgreSQL, or other

RDBMS. This is optional; if you have the database installed, then you may skip this step

and it is not mandatory that you have a database installed to start the rails server. For

this tutorial, we are using PostgreSQL database. Therefore use the following commands

to install PostgreSQL.

tp> sudo yum install postgresql-server postgresql-contrib

Accept the prompt, by responding with a y. Use the following command to create a

PostgreSQl database cluster.

tp> sudo postgresql-setup initdb

Use the following command to start and enable PostgreSQL.

tp> sudo systemctl start postgresql

tp> sudo systemctl enable postgresql

Keeping Rails Up-to-Date

Assuming you have installed Rails using RubyGems, keeping it up-to-date is relatively

easy. We can use the same command in both Windows and Linux platform. Use the

following command −

tp> gem update rails

Output

The following screenshot shows a Windows command prompt. The Linux terminal also

provides the same output.

Ruby on Rails

10

This will automatically update your Rails installation. The next time you restart your

application, it will pick up this latest version of Rails. While using this command, make

sure you are connected to the internet.

Installation Verification

You can verify if everything is set up according to your requirements or not. Use the

following command to create a demo project.

tp> rails new demo

Output

Ruby on Rails

11

It will generate a demo rail project; we will discuss about it later. Currently we have to

check if the environment is set up or not. Next, use the following command to run

WEBrick web server on your machine.

tp> cd demo

tp> rails server

It will generate auto-code to start the server

Now open your browser and type the following −

http://localhost:3000

It should display a message, something like, "Welcome aboard" or "Congratulations".

Ruby on Rails

12

A framework is a program, set of programs, and/or code library that writes most of your

application for you. When you use a framework, your job is to write the parts of the

application that make it do the specific things you want.

When you set out to write a Rails application, leaving aside the configuration and other

housekeeping chores, you have to perform three primary tasks:

 Describe and model your application's domain: The domain is the universe

of your application. The domain may be a music store, a university, a dating

service, an address book, or a hardware inventory. So here you have to figure

out what's in it, what entities exist in this universe and how the items in it relate

to each other. This is equivalent to modeling a database structure to keep the

entities and their relationship.

 Specify what can happen in this domain: The domain model is static; you

have to make it dynamic. Addresses can be added to an address book. Musical

scores can be purchased from music stores. Users can log in to a dating service.

Students can register for classes at a university. You need to identify all the

possible scenarios or actions that the elements of your domain can participate in.

 Choose and design the publicly available views of the domain: At this

point, you can start thinking in Web-browser terms. Once you've decided that

your domain has students, and that they can register for classes, you can

envision a welcome page, a registration page, and a confirmation page, etc. Each

of these pages or views shows the user how things stand at a certain point.

Based on the above three tasks, Ruby on Rails deals with a Model/View/Controller (MVC)

framework.

Ruby on Rails MVC Framework

The Model View Controller principle divides the work of an application into three

separate but closely cooperative subsystems.

Model (ActiveRecord)

It maintains the relationship between the objects and the database and handles

validation, association, transactions, and more.

This subsystem is implemented in ActiveRecord library, which provides an interface and

binding between the tables in a relational database and the Ruby program code that

manipulates database records. Ruby method names are automatically generated from

the field names of database tables.

3. FRAMEWORK

Ruby on Rails

13

View (ActionView)

It is a presentation of data in a particular format, triggered by a controller's decision to

present the data. They are script-based template systems like JSP, ASP, PHP, and very

easy to integrate with AJAX technology.

This subsystem is implemented in ActionView library, which is an Embedded Ruby (ERb)

based system for defining presentation templates for data presentation. Every Web

connection to a Rails application results in the displaying of a view.

Controller (ActionController)

The facility within the application that directs traffic, on the one hand, querying the

models for specific data, and on the other hand, organizing that data (searching, sorting,

massaging it) into a form that fits the needs of a given view.

This subsystem is implemented in ActionController, which is a data broker sitting

between ActiveRecord (the database interface) and ActionView (the presentation

engine).

Pictorial Representation of MVC Framework

Given below is a pictorial representation of Ruby on Rails Framework:

Directory Representation of MVC Framework

Assuming a standard, default installation over Linux, you can find them like this:

tp> cd /usr/local/lib/ruby/gems/2.2.0/gems

Ruby on Rails

14

tp> ls

You will see subdirectories including (but not limited to) the following:

 actionpack-x.y.z

 activerecord-x.y.z

 rails-x.y.z

Over a windows installation, you can find them like this:

tp>cd ruby\lib\ruby\gems\2.2.0\gems

ruby\lib\ruby\gems\2.2.0\gems\>dir

ActionView and ActionController are bundled together under ActionPack.

ActiveRecord provides a range of programming techniques and shortcuts for

manipulating data from an SQL database. ActionController and ActionView provides

facilities for manipulating and displaying that data. Rails ties it all together.

Ruby on Rails

15

When you use the Rails helper script to create your application, it creates the entire

directory structure for the application. Rails knows where to find things it needs within

this structure, so you don't have to provide any input.

Here is a top-level view of a directory tree created by the helper script at the time of

application creation. Except for minor changes between releases, every Rails project will

have the same structure, with the same naming conventions. This consistency gives you

a tremendous advantage; you can quickly move between Rails projects without

relearning the project's organization.

To understand this directory structure, let's use the demo application created in the

Installation chapter. It can be created using a simple helper command rails demo.

Now, go into the demo application root directory as follows:

tp> cd demo

demo> dir

You will find a directory structure as follows:

demo/

..../app

......../controller

......../helpers

......../models

......../views

............../layouts

..../components

..../config

..../db

..../doc

..../lib

..../log

..../public

..../script

..../test

..../tmp

..../vendor

README

4. DIRECTORY STRUCTURE

Ruby on Rails

16

Rakefile

Now let's explain the purpose of each directory

 app: It organizes your application components. It's got subdirectories that hold

the view (views and helpers), controller (controllers), and the backend business

logic (models).

 app/controllers: The controllers subdirectory is where Rails looks to find the

controller classes. A controller handles a web request from the user.

 app/helpers: The helpers subdirectory holds any helper classes used to assist

the model, view, and controller classes. This helps to keep the model, view, and

controller code small, focused, and uncluttered.

 app/models: The models subdirectory holds the classes that model and wrap

the data stored in our application's database. In most frameworks, this part of

the application can grow pretty messy, tedious, verbose, and error-prone. Rails

makes it dead simple!

 app/view: The views subdirectory holds the display templates to fill in with data

from our application, convert to HTML, and return to the user's browser.

 app/view/layouts: Holds the template files for layouts to be used with views.

This models the common header/footer method of wrapping views. In your views,

define a layout using the <tt>layout:default</tt> and create a file named

default.html.erb. Inside default.html.erb, call <% yield %> to render the view

using this layout.

 components: This directory holds components, tiny self-contained applications

that bundle model, view, and controller.

 config: This directory contains the small amount of configuration code that your

application will need, including your database configuration (in database.yml),

your Rails environment structure (environment.rb), and routing of incoming web

requests (routes.rb). You can also tailor the behavior of the three Rails

environments for test, development, and deployment with files found in the

environments directory.

 db: Usually, your Rails application will have model objects that access relational

database tables. You can manage the relational database with scripts you create

and place in this directory.

 doc: Ruby has a framework, called RubyDoc, that can automatically generate

documentation for code you create. You can assist RubyDoc with comments in

your code. This directory holds all the RubyDoc-generated Rails and application

documentation.

 lib: You'll put libraries here, unless they explicitly belong elsewhere (such as

vendor libraries).

 log: Error logs go here. Rails creates scripts that help you manage various error

logs. You'll find separate logs for the server (server.log) and each Rails

environment (development.log, test.log, and production.log).

Ruby on Rails

17

 public: Like the public directory for a web server, this directory has web files

that don't change, such as JavaScript files (public/javascripts), graphics

(public/images), stylesheets (public/stylesheets), and HTML files (public).

 script: This directory holds scripts to launch and manage the various tools that

you'll use with Rails. For example, there are scripts to generate code (generate)

and launch the web server (server).

 test: The tests you write and those that Rails creates for you, all goes here.

You'll see a subdirectory for mocks (mocks), unit tests (unit), fixtures (fixtures),

and functional tests (functional).

 tmp: Rails uses this directory to hold temporary files for intermediate

processing.

 vendor: Libraries provided by third-party vendors (such as security libraries or

database utilities beyond the basic Rails distribution) go here.

Apart from these directories, there will be two files available in demo directory.

 README: This file contains a basic detail about Rail Application and description

of the directory structure explained above.

 Rakefile: This file is similar to Unix Makefile, which helps with building,

packaging and testing the Rails code. This will be used by rake utility supplied

along with the Ruby installation.

Ruby on Rails

18

In this chapter, we will create a simple but operational online library system for holding

and managing the books.

This application has a basic architecture and will be built using two ActiveRecord models

to describe the types of data that is stored:

 Books, which describes an actual listing.

 Subject, which is used to group books together.

Workflow for Creating Rails Applications

A recommended workflow for creating Rails Application is as follows:

1. Use the rails command to create the basic skeleton of the application.

2. Create a database on the PostgreSQL server to hold your data.

3. Configure the application to know where your database is located and the login

credentials for it.

4. Create Rails Active Records (Models), because they are the business objects you'll

be working with in your controllers.

5. Generate Migrations that simplify the creating and maintaining of database tables

and columns.

6. Write Controller Code to put a life in your application.

7. Create Views to present your data through User Interface.

So, let us start with creating our library application.

Creating an Empty Rails Web Application

Rails is both a runtime web application framework and a set of helper scripts that

automate many of the things you do when developing a web application. In this step, we

will use one such helper script to create the entire directory structure and the initial set

of files to start our Library System application.

 Go into ruby installation directory to create your application.

 Run the following command to create a skeleton for library application. It will

create th directory structure in the current directory.

tp> rails library

5. EXAMPLES

Ruby on Rails

19

This will create a subdirectory for the library application containing a complete directory

tree of folders and files for an empty Rails application. Check a complete directory

structure of the application. Check Rails Directory Structure for more detail.

Most of our development work will be creating and editing files in the library/app

subdirectories. Here's a quick rundown of how to use them:

 The controllers subdirectory is where Rails looks to find controller classes. A

controller handles a web request from the user.

 The views subdirectory holds the display templates to fill in with data from our

application, convert to HTML, and return to the user's browser.

 The models subdirectory holds the classes that model and wrap the data stored in

our application's database. In most frameworks, this part of the application can

grow pretty messy, tedious, verbose, and error-prone. Rails makes it dead

simple.

 The helpers subdirectory holds any helper classes used to assist the model, view,

and controller classes. This helps to keep the model, view, and controller code

small, focused, and uncluttered.

Starting Web Server

Rails web application can run under virtually any web server, but the most convenient

way to develop a Rails web application is to use the built-in WEBrick web server. Let's

start this web server and then browse to our empty library application:

This server will be started from the application directory as follows. It runs on port

number 3000.

tp> cd ruby\library

ruby\library\> ruby script/server

It generates the auto code to start the server as shown below.

This will start your WEBrick web server.

Now open your browser and browse to http://127.0.0.1:3000. If everything is gone fine,

then you should see a greeting message from WEBrick, otherwise there is something

wrong with your setting.

Ruby on Rails

20

What is Next?

The next chapter explains how to create databases for your application and what is the

configuration required to access these created databases.

Further, we will see what Rails Migration is and how it is used to maintain database

tables.

Ruby on Rails

21

Before starting with this chapter, make sure your database server is up and running.

Ruby on Rails recommends to create three databases - a database each for

development, testing, and production environment. According to convention, their

names should be:

 library_development

 library_production

 library_test

You should initialize all three of them and create a user and password for them with full

read and write privileges. We are using the root user ID for our application.

Database Setup for MySQL

In MySQL, we are using the root user ID for our application. The MySQL console session

in which you do this looks something like:

mysql> create database library_development;

Query OK, 1 row affected (0.01 sec)

mysql> grant all privileges on library_development.*

to 'root'@'localhost' identified by 'password';

Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

You can do the same thing for two more databases library_production and

library_test.

Configuring database.yml

At this point, you need to let Rails know about the user name and password for the

databases. You do this in the file database.yml, available in the library\config

subdirectory of Rails Application you created. This file has live configuration sections for

MySQL databases. In each of the sections you use, you need to change the username

and password lines to reflect the permissions on the databases you've created.

6. DATABASE SETUP

Ruby on Rails

22

When you finish, it should look something like:

development:

 adapter: mysql

 database: library_development

 username: root

 password: [password]

 host: localhost

test:

 adapter: mysql

 database: library_test

 username: root

 password: [password]

 host: localhost

production:

 adapter: mysql

 database: library_production

 username: root

 password: [password]

 host: localhost

Database Setup for PostgreSQL
By default, PostgreSQL does not provide any users. We have to create new users. Use

the following command to create a user with the name rubyuser.

tp> sudo -u postgres createuser rubyuser -s

If you want to create a password for the new user, then use the following command.

tp> sudo -u postgres psql

postgres=# \password rubyuser

Use the following command for creating a database library_development.

postgres=# CREATE DATABASE library_development OWNER rubyuser;

CREATE DATABASE

Use the following command for creating a database library_production.

Ruby on Rails

23

postgres=# CREATE DATABASE library_production OWNER rubyuser;

CREATE DATABASE

Use the following command for creating a database library_test.

postgres=# CREATE DATABASE library_test OWNER rubyuser;

CREATE DATABASE

Press Ctrl+D to terminate PosgreSQL.

Configuring database.yml

At this point, you need to let Rails know the username and password for the databases.

You do this in the file database.yml, available in the library\config subdirectory of

Rails Application you created. This file has live configuration sections for PostgreSQL

databases. In each of the sections, you need to change the username and password

lines to reflect the permissions on the databases you've created.

When you finish, it should look as follows:

default: &default

 adapter: postgresql

 encoding: unicode

development:

 adapter: postgresql

 encoding: unicode

 database: library_development

 username: rubyuser

 password: <Password for rubyuser>

 test:

 adapter: postgresql

 encoding: unicode

 database: library_test

 username: rubyuser

 password: <Password for rubyuser>

 production:

 adapter: postgresql

Ruby on Rails

24

 encoding: unicode

 database: library_production

 username: rubyuser

 password: <Password for rubyuser>

 What is Next?

The next two chapters explain how to model your database tables and how to manage

those using Rails Migrations.

Ruby on Rails

25

Rails Active Record is the Object/Relational Mapping (ORM) layer supplied with Rails. It

closely follows the standard ORM model, which is as follows:

 tables map to classes,

 rows map to objects and

 columns map to object attributes.

Rails Active Records provide an interface and binding between the tables in a relational

database and the Ruby program code that manipulates database records. Ruby method

names are automatically generated from the field names of database tables.

Each Active Record object has CRUD (Create, Read, Update, and Delete) methods for

database access. This strategy allows simple designs and straight forward mappings

between database tables and application objects.

Translating A Domain Model into SQL

Translating a domain model into SQL is generally straightforward, as long as you

remember that you have to write Rails-friendly SQL. In practical terms, you have to

follow certain rules:

 Each entity (such as book) gets a table in the database named after it, but in the

plural (books).

 Each such entity-matching table has a field called id, which contains a unique

integer for each record inserted into the table.

 Given entity x and entity y, if entity y belongs to entity x, then table y has a field

called x_id.

 The bulk of the fields in any table store the values for that entity's simple

properties (anything that's a number or a string).

Creating Active Record Files (Models)

To create the Active Record files for our entities for library application, introduced in the

previous chapter, issue the following command from the top level of the application

directory.

library\> ruby script/generate model Book

library\> ruby script/generate model Subject

Above rails generate model book commands generates the auto code as below

7. ACTIVE RECORDS

Ruby on Rails

26

You're telling the generator to create models called Book and Subject to store instances

of books and subjects. Notice that you are capitalizing Book and Subject and using the

singular form. This is a Rails paradigm that you should follow each time you create a

model.

When you use the generate tool, Rails creates the actual model file that holds all the

methods unique to the model and the business rules you define, a unit test file for

performing test-driven development, a sample data file (called fixtures) to use with the

unit tests, and a Rails migration that makes creating database tables and columns easy.

Apart from creating many other files and directories, this will create files named

book.rb and subject.rb containing a skeleton definition in the app/models directory.

Content available in book.rb:

class Book < ActiveRecord::Base

end

Content available in subject.rb:

class Subject < ActiveRecord::Base

end

Creating Associations between Models

When you have more than one model in your rails application, you would need to create

connection between those models. You can do this via associations. Active Record

supports three types of associations:

 one-to-one: A one-to-one relationship exists when one item has exactly one of

another item. For example, a person has exactly one birthday or a dog has

exactly one owner.

 one-to-many: A one-to-many relationship exists when a single object can be a

member of many other objects. For instance, one subject can have many books.

 many-to-many: A many-to-many relationship exists when the first object is

related to one or more of a second object, and the second object is related to one

or many of the first object.

You indicate these associations by adding declarations to your models: has_one,

has_many, belongs_to, and has_and_belongs_to_many.

Now, you need to tell Rails what relationships you want to establish within the library

data system. To do so, modify book.rb and subject.rb to look like this:

Ruby on Rails

27

class Book < ActiveRecord::Base

 belongs_to :subject

end

We have used a singular subject in the above example, because one Book can belong to

a single Subject.

class Subject < ActiveRecord::Base

 has_many :books

end

We have used plural books here, because one subject can have multiple books.

Implementing Validations on Models

The implementation of validations is done in a Rails model. The data you are entering

into the database is defined in the actual Rails model, so it only makes sense to define

what valid data entails in the same location.

The validations are -

 The value of title field should not be NULL.

 The value of price field should be numeric.

Open book.rb in the app\model subdiractory and put the following validations:

class Book < ActiveRecord::Base

 belongs_to :subject

 validates_presence_of :title

 validates_numericality_of :price, :message=>"Error Message"

end

 validates_presence_of - protects "NOT NULL" fields against missing user input.

 validates_numericality_of - prevents the user, entering non numeric data.

Besides the validations mentioned above, there are other common validations. Check

Rails Quick Guide.

What is Next?

In the next chapter, we will learn Rails Migration, which allows you to use Ruby to define

changes to your database schema, making it possible to use a version control system to

keep things synchronized with the actual code.

Ruby on Rails

28

Rails Migration allows you to use Ruby to define changes to your database schema,

making it possible to use a version control system to keep things synchronized with the

actual code.

This has many uses, including:

 Teams of developers - If one person makes a schema change, the other

developers just need to update and run "rake migrate".

 Production servers - Run "rake migrate" when you roll out a new release to bring

the database up to date as well.

 Multiple machines - If you develop on both a desktop and a laptop, or in more

than one location, migrations can help you keep them all synchronized.

What Can Rails Migration Do?

 create_table(name, options)

 drop_table(name)

 rename_table(old_name, new_name)

 add_column(table_name, column_name, type, options)

 rename_column(table_name, column_name, new_column_name)

 change_column(table_name, column_name, type, options)

 remove_column(table_name, column_name)

 add_index(table_name, column_name, index_type)

 remove_index(table_name, column_name)

Migrations support all the basic data types: The following list of data types that

migration supports:

 string - for small data types such as a title.

 text - for longer pieces of textual data, such as the description.

 integer - for whole numbers.

 float - for decimals.

 datetime and timestamp - store the date and time into a column.

 date and time - store either the date only or time only.

 binary - for storing data such as images, audio, or movies.

 Boolean - for storing true or false values.

8. MIGRATIONS

Ruby on Rails

29

Valid column options are: The following is the valid column options:

 limit (:limit => “50”)

 default (:default => “blah”)

 null (:null => false implies NOT NULL)

NOTE: The activities done by Rails Migration can be done using any front-end GUI or

directly on SQL prompt, but Rails Migration makes all those activities very easy.

See the Rails API for details on these.

Create the Migrations

Here is the generic syntax for creating a migration:

application_dir> rails generate migration table_name

This will create the file db/migrate/001_table_name.rb. A migration file contains the

basic Ruby syntax that describes the data structure of a database table.

NOTE: Before running the migration generator, it is recommended to clean the existing

migrations generated by model generators.

We will create two migrations corresponding to our three tables: books and subjects.

tp> cd library

library> rails generate migration books

library> rails generate migration subjects

Notice that you are using lowercase for book and subject and plural form while creating

migrations. This is a Rails paradigm that you should follow each time you create a

Migration.

Edit the Code:

Go to db/migrate subdirectory of your application and edit each file one by one using

any simple text editor.

Modify 001_books.rb as follows:

The ID column will be created automatically, so don't do it here as well.

class Books < ActiveRecord::Migration

 def self.up

 create_table :books do |t|

 t.column :title, :string, :limit => 32, :null => false

 t.column :price, :float

 t.column :subject_id, :integer

Ruby on Rails

30

 t.column :description, :text

 t.column :created_at, :timestamp

 end

 end

 def self.down

 drop_table :books

 end

end

The method self.up is used when migrating to a new version, self.down is used to roll

back any changes if needed. At this moment, the above script will be used to create

books table.

Modify 002_subjects.rb as follows:

class Subjects < ActiveRecord::Migration

 def self.up

 create_table :subjects do |t|

 t.column :name, :string

 end

 Subject.create :name => "Physics"

 Subject.create :name => "Mathematics"

 Subject.create :name => "Chemistry"

 Subject.create :name => "Psychology"

 Subject.create :name => "Geography"

 end

 def self.down

 drop_table :subjects

 end

end

The above script will be used to create subjects table and will create five records in the

subjects table.

Run the Migration

Now that you have created all the required migration files. It is time to execute them

against the database. To do this, go to a command prompt and go to the library

directory in which the application is located, and then type rake migrate as follows:

Ruby on Rails

31

library> rake db:migrate

This will create a "schema_info" table if it doesn't exist, which tracks the current version

of the database - each new migration will be a new version, and any new migrations will

be run until your database is at the current version.

Rake is a Ruby build program similar to Unix make program that Rails takes advantage

of, to simplify the execution of complex tasks such as updating a database's structure

etc.

Running Migrations for Production and Test Databases

If you would like to specify what Rails environment to use for the migration, use the

RAILS_ENV shell variable.

For example:

library> export RAILS_ENV=production

library> rake db:migrate

library> export RAILS_ENV=test

library> rake db:migrate

library> export RAILS_ENV=development

library> rake db:migrate

NOTE: In Winows, use "set RAILS_ENV=production" instead of export command.

What is Next?

Now, we have our database and the required tables available. In the two subsequent

chapters, we will explore two important components called Controller (ActionController)

and View (ActionView).

 Creating Controllers (Action Controller).

 Creating Views (Action View).

Ruby on Rails

32

The Rails controller is the logical center of your application. It coordinates the interaction

between the user, the views, and the model. The controller is also a home to a number

of important ancillary services.

 It is responsible for routing external requests to internal actions. It handles

people-friendly URLs extremely well.

 It manages caching, which can give applications orders-of-magnitude

performance boosts.

 It manages helper modules, which extend the capabilities of the view templates

without bulking up their code.

 It manages sessions, giving users the impression of an ongoing interaction with

our applications.

The process for creating a controller is very easy, and it's similar to the process we've

already used for creating a model. We will create just one controller here:

library\> ruby script/generate controller Book

Notice that you are capitalizing Book and using the singular form. This is a Rails

paradigm that you should follow each time you create a controller.

This command accomplishes several tasks, of which the following are relevant here:

 It creates a file called app/controllers/book_controller.rb

If you look at book_controller.rb, you will find it as follows:

class BookController < ApplicationController

end

Controller classes inherit from ApplicationController, which is the other file in the

controllers folder: application.rb.

The ApplicationController contains code that can be run in all your controllers and it

inherits from Rails ActionController::Base class.

You don't need to worry with the ApplicationController as of yet, so let's just define a few

method stubs in book_controller.rb. Based on your requirement, you could define any

number of functions in this file.

Modify the file to look like the following and save your changes. Note that it is up to you

what name you want to give to these methods, but better to give relevant names.

class BookController < ApplicationController

 def list

9. CONTROLLER

Ruby on Rails

33

 end

 def show

 end

 def new

 end

 def create

 end

 def edit

 end

 def update

 end

 def delete

 end

end

Now let us implement all the methods one by one.

Implementing the list Method

The list method gives you a list of all the books in the database. This functionality will be

achieved by the following lines of code. Edit the following lines in book_controller.rb file.

 def list

 @books = Book.all

 end

The @books = Book.all line in the list method tells Rails to search the books table and

store each row it finds in the @books instance object.

Implementing the show Method

The show method displays only further details on a single book. This functionality will be

achieved by the following lines of code.

 def show

 @book = Book.find(params[:id])

 end

The show method's @book = Book.find(params[:id]) line tells Rails to find only the book

that has the id defined in params[:id].

The params object is a container that enables you to pass values between method calls.

For example, when you're on the page called by the list method, you can click a link for

Ruby on Rails

34

a specific book, and it passes the id of that book via the params object so that show can

find the specific book.

Implementing the new Method

The new method lets Rails know that you will create a new object. So just add the

following code in this method.

 def new

 @book = Book.new

 @subjects = Subject.all

 end

The above method will be called when you will display a page to the user to take user

input. Here second line grabs all the subjects from the database and puts them in an

array called @subjects.

Implementing the create Method

Once you take user input using HTML form, it is time to create a record into the

database. To achieve this, edit the create method in the book_controller.rb to match the

following:

def create

 @book = Book.new(book_params)

 if @book.save

 redirect_to :action => 'list'

 else

 @subjects = Subject.all

 render :action => 'new'

 end

end

def book_params

 params.require(:books).permit(:title, :price, :subject_id, :description)

end

The first line creates a new instance variable called @book that holds a Book object built

from the data, the user submitted. The book_params method is used to collect all the

fields from object:books. The data was passed from the new method to create using the

params object.

Ruby on Rails

35

The next line is a conditional statement that redirects the user to the list method if the

object saves correctly to the database. If it doesn't save, the user is sent back to the

new method. The redirect_to method is similar to performing a meta refresh on a web

page: it automatically forwards you to your destination without any user interaction.

Then @subjects = Subject.all is required in case it does not save data successfully and it

becomes similar case as with new option.

Implementing the edit Method

The edit method looks nearly identical to the show method. Both methods are used to

retrieve a single object based on its id and display it on a page. The only difference is

that the show method is not editable.

 def edit

 @book = Book.find(params[:id])

 @subjects = Subject.all

 end

This method will be called to display data on the screen to be modified by the user. The

second line grabs all the subjects from the database and puts them in an array called

@subjects.

Implementing the update Method

This method will be called after the edit method, when the user modifies a data and

wants to update the changes into the database. The update method is similar to the

create method and will be used to update existing books in the database.

 def update

 @book = Book.find(params[:id])

 if @book.update_attributes(book_param)

 redirect_to :action => 'show', :id => @book

 else

 @subjects = Subject.all

 render :action => 'edit'

 end

end

def book_param

 params.require(:book).permit(:title, :price, :subject_id, :description)

end

Ruby on Rails

36

The update_attributes method is similar to the save method used by create but instead

of creating a new row in the database, it overwrites the attributes of the existing row.

Then @subjects = Subject.all line is required in case it does not save the data

successfully, then it becomes similar to edit option.

Implementing the delete Method

If you want to delete a record from the database, then you will use this method.

Implement this method as follows.

 def delete

 Book.find(params[:id]).destroy

 redirect_to :action => 'list'

 end

The first line finds the classified based on the parameter passed via the params object

and then deletes it using the destroy method. The second line redirects the user to the

list method using a redirect_to call.

Additional Methods to Display Subjects

Assume you want to give a facility to your users to browse all the books based on a

given subject. So, you can create a method inside book_controller.rb to display all the

subjects. Assume the method name is show_subjects:

 def show_subjects

 @subject = Subject.find(params[:id])

 end

Finally your book_controller.rb file will look as follows:

class BooksController < ApplicationController

 def list

 @books = Book.all

 end

 def show

 @book = Book.find(params[:id])

 end

 def new

 @book = Book.new

Ruby on Rails

37

 @subjects = Subject.all

 end

 def book_params

 params.require(:books).permit(:title, :price, :subject_id, :description)

 end

 def create

 @book = Book.new(book_params)

 if @book.save

 redirect_to :action => 'list'

 else

 @subjects = Subject.all

 render :action => 'new'

 end

 end

 def edit

 @book = Book.find(params[:id])

 @subjects = Subject.all

 end

 def book_param

 params.require(:book).permit(:title, :price, :subject_id, :description)

 end

 def update

 @book = Book.find(params[:id])

 if @book.update_attributes(book_param)

 redirect_to :action => 'show', :id => @book

 else

 @subjects = Subject.all

 render :action => 'edit'

 end

Ruby on Rails

38

 end

 def delete

 Book.find(params[:id]).destroy

 redirect_to :action => 'list'

 end

 def show_subjects

 @subject = Subject.find(params[:id])

 end

end

Now, save your controller file.

What is Next?

You have created almost all the methods, which will work on backend. Next, we will

define routes (URLs) for actions.

Ruby on Rails

39

The routing module provides URL rewriting in native Ruby. It's a way to redirect

incoming requests to controllers and actions. It replaces the mod_rewrite rules. Best of

all, Rails' Routing works with any web server. Routes are defined in app/config/routes.rb.

Think of creating routes as drawing a map for your requests. The map tells them where

to go based on some predefined pattern:

Rails.application.routes.draw do

 Pattern 1 tells some request to go to one place

 Pattern 2 tell them to go to another

 ...

end

Example

Let us consider our library management application contains a controller called

BookController. We have to define the routes for those actions which are defined as

methods in the BookController class.

Open routes.rb file in library/config/ directory and edit it with the following content.

Rails.application.routes.draw do

 get 'books/list'

 get 'books/new'

 post 'books/create'

 patch 'books/update'

 get 'books/list'

 get 'books/show'

 get 'books/edit'

 get 'books/delete'

 get 'books/update'

 get 'books/show_subjects'

end

The routes.rb file defines the actions available in the applications and the type of action

such as get, post, and patch.

Use the following command to list all your defined routes, which are useful for tracking

down routing problems in your application, or giving you a good overview of the URLs in

an application you're trying to get familiar with.

10. RUBY ON RAILS – ROUTES

Ruby on Rails

40

library> rake routes

What is Next?

Next, we will create the code to generate screens to display data and to take input from

the user.

Ruby on Rails

41

A Rails View is an ERb program that shares data with controllers through mutually

accessible variables.

If you look in the app/views directory of the library application, you will see one

subdirectory for each of the controllers, we have created: book. Each of these

subdirectories was created automatically when the same-named controller was created

with the generate script.

Rails let's you know that you need to create the view file for each new method. Each

method you define in the controller needs to have a corresponding erb file, with the

same name as the method, to display the data that the method is collecting.

So let's create view files for all the methods we have defined in the book_controller.rb.

While executing these views, simultaneously check these actions are applicable into the

database or not.

Creating View File for list Method
Create a file called list.html.erb using your favorite text editor and save it to

app/views/book. After creating and saving the file, refresh your web browser. You should

see a blank page; if you don't, check the spelling of your file and make sure that it is

exactly the same as your controller's method.

Now, display the actual content. Let us put the following code into list.html.erb.

<% if @books.blank? %>

<p>There are not any books currently in the system.</p>

<% else %>

<p>These are the current books in our system</p>

<ul id="books">

 <% @books.each do |c| %>

 <%= link_to c.title, {:action => 'show', :id => c.id} -%>

 <% end %>

<% end %>

<p><%= link_to "Add new Book", {:action => 'new' }%></p>

11. VIEWS

Ruby on Rails

42

The code to be executed is to check whether the @books array has any objects in it. The

.blank? method returns true if the array is empty, and false if it contains any objects.

This @books object was created in controller inside the list method.

The code between the <%= %> tags is a link_to method call. The first parameter of

link_to is the text to be displayed between the <a> tags. The second parameter is what

action is called when the link is clicked. In this case, it is the show method. The final

parameter is the id of the book that is passed via the params object.

Now, try refreshing your browser and you should get the following screen because we

don't have any book in our library.

Creating View File for new Method

Till now, we don't have any book in our library. We have to create few books in the

system. So, let us design a view corresponding to the new method defined in the

book_controller.rb.

Create a file called new.html.erb using your favorite text editor and save it to

app/views/book. Add the following code to the new.html.erb file.

<h1>Add new book</h1>

<%= form_tag :action => 'create' do %>

<p><label for="book_title">Title</label>:

<%= text_field 'books', 'title' %></p>

<p><label for="book_price">Price</label>:

<%= text_field 'books', 'price' %></p>

<p><label for="book_subject_id">Subject</label>:

<%= collection_select(:books, :subject_id, @subjects, :id, :name, prompt: true)

%></p>

<p><label for="book_description">Description</label>

<%= text_area 'books', 'description' %></p>

<%= submit_tag "Create" %>

Ruby on Rails

43

<% end -%>

<%= link_to 'Back', {:action => 'list'} %>

Here form_tag method interprets the Ruby code into a regular HTML <form> tag using

all the information supplied to it. This tag, for example, outputs the following HTML:

<form action="/book/create" method="post">

Next method is text_field that outputs an <input> text field. The parameters for

text_field are object and field name. In this case, the object is book and the name is

title.

Rails method called collection_select, creates an HTML select menu built from an

array, such as the @books one. There are five parameters, which are as follows:

 :book - The object you are manipulating. In this case, it's a book object.

 :subject_id - The field that is populated when the book is saved.

 @books - The array you are working with.

 :id - The value that is stored in the database. In terms of HTML, this is the

<option> tag's value parameter.

 :name- The output that the user sees in the pull-down menu. This is the value

between the <option> tags.

The next used is submit_tag, which outputs an <input> button that submits the form.

Finally, there is the end method that simply translates into </form>.

Go to your browser and visit http://localhost:3000/book/new. This will give you the

following screen.

Ruby on Rails

44

Enter some data in this form and then click the Create button. Here I have added the

following details into the fields-

Title: Advance Physics

Price: 390

Subject: Physics

Description: This is test to create new book

When you click the Create button, it will call the create method, which does not need

any view because this method is using either list or new methods to view the results.

So, when you click the Create button, the data should submit successfully and redirect

you to the list page, in which you now have a single item listed as follows:

Ruby on Rails

45

If you click the link, you should see another Template is missing error, since you haven't

created the template file for show method yet.

Creating View File for show Method

This method will display the complete detail about any book available in the library.

Create a show.html.erb file under app/views/book and populate it with the following

code:

<h1><%= @book.title %></h1>

<p>Price: $<%= @book.price %>

Subject : <%= @book.subject.name %>

Created Date: <%= @book.created_at %>

</p>

<p><%= @book.description %></p>

<hr />

<%= link_to 'Back', {:action => 'list'} %>

This is the first time you have taken the full advantage of associations, which enable you

to easily pull data from related objects.

The format used is @variable.relatedObject.column. In this instance, you can pull the

subject's name value through the @book variable using the belongs_to associations. If

click on any listed record then it will show you the following screen.

Ruby on Rails

46

Creating View File for edit Method

Create a new file called edit.html.erb and save it in app/views/book. Populate it with the

following code:

<h1>Edit Book Detail</h1>

<%= form_for @book, :url =>{:action => "update", :id =>@book} do |f| %>

<p>Title: <%= f.text_field 'title' %></p>

<p>Price: <%= f.text_field 'price' %></p>

<p>Subject: <%= f.collection_select :subject_id, Subject.all, :id, :name %></p>

<p>Description

<%= f.text_area 'description' %></p>

<%= f.submit "Save changes" %>

<% end %>

<%= link_to 'Back', {:action => 'list' } %>

This code is very similar to the new method except action to be updated instead of

creating and defining an id.

In this scenario, we used form_for tag for the form action. It will perform better than

form_tag. Why because it will create interaction with the Model easily. Therefore it is

better to use form_for tag whenever you need interaction between the model and the

form fields.

At this point, we need some modification in the list method's view file. Go to the

 element and modify it to look like the following:

Ruby on Rails

47

<%= link_to c.title, {:action => "show", :id => c.id} -%>

 <%= link_to 'Edit', {:action => "edit",

:id => c.id} %>

Now, try to browse books using the http://localhost:3000/book/list. It will give you the

listing of all the books along with Edit option. When you click the Edit option, then you

will have next screen as follows:

Now, you edit this information and then click at Save Changes button. This will result in a

call to update method available in the controller file and it will update all the changed

attribute. Notice that the update method does not need any view file because it's using

either show or edit methods to show its results.

Creating View File for delete Method

Removing information from a database using Ruby on Rails is almost too easy. You do

not need to write any view code for the delete method because this method is using list

method to display the result. So, let's just modify list.html.erb again and add a delete

link.

Go to the element and modify it to look like the following:

<%= link_to c.title, {:action => 'show', :id => c.id} -%>

Ruby on Rails

48

 <%= link_to 'Edit', {:action => 'edit', :id => c.id} %>

 <%= link_to "Delete", {:action => 'delete', :id => c.id},

:confirm => "Are you sure you want to delete this item?" %>

The :confirm parameter presents a JavaScript confirmation box asking if you really want

to perform the action. If the user clicks OK, the action proceeds, and the item is deleted.

Now, try browsing books using http://localhost:3000/book/list. It will give you listing of

all the books along with Edit and Delete options as follows:

Now using the Delete option, you can delete any listed record.

Creating View File for show_subjects Method

Create a new file, show_subjects.html.erb, in the app/views/book directory and add the

following code to it:

<h1><%= @subject.name -%></h1>

<% @subject.books.each do |c| %>

<%= link_to c.title, :action => "show", :id => c.id -%>

<% end %>

You are taking advantage of associations by iterating through a single subject's many

books listings.

Now modify the Subject: line of show.html.erb so that the subject listing shows a link.

Subject: <%= link_to @book.subject.name,

:action => "show_subjects", :id => @book.subject.id %>

Ruby on Rails

49

This will output a list of subject on the index page, so that users can access them

directly.

Modify list.html.erb to add the following to the top of the file:

<ul id="subjects">

 <% Subject.find(:all).each do |c| %>

 <%= link_to c.name, :action => "show_subjects", :id => c.id %>

 <% end %>

Now try browsing books using http://localhost:3000/book/list. It will display all subjects

with links so that you can browse all the books related to that subject.

What is Next?

Hope now you are feeling comfortable with all the operations of Rails.

The next chapter explains how to use Layouts to put your data in a better way. We will

show you how to use CSS in your Rails applications.

Ruby on Rails

50

A layout defines the surroundings of an HTML page. It's the place to define a common

look and feel of your final output. Layout files reside in app/views/layouts.

The process involves defining a layout template and then letting the controller know that

it exists and to use it. First, let's create the template.

Add a new file called standard.html.erb to app/views/layouts. You let the controllers

know what template to use by the name of the file, so following a same naming scheme

is advised.

Add the following code to the new standard.html.erb file and save your changes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html;.

charset=iso-8859-1" />

<meta http-equiv="Content-Language" content="en-us" />

<title>Library Info System</title>

<%= stylesheet_link_tag "style" %>

</head>

<body id="library">

<div id="container">

<div id="header">

<h1>Library Info System</h1>

<h3>Library powered by Ruby on Rails</h3>

</div>

<div id="content">

<%= yield -%>

</div>

<div id="sidebar"></div>

</div>

</body>

</html>

12. LAYOUTS

Ruby on Rails

51

Everything you just added were standard HTML elements except two lines. The

stylesheet_link_tag helper method outputs a stylesheet <link>. In this instance, we

are linking style.css style sheet. The yield command lets Rails know that it should put

the RHTML for the method called here.

Now open book_controller.rb and add the following line just below the first line:

class BookController < ApplicationController

 layout 'standard'

 def list

 @books = Book.all

 end

...................

It instructs the controller that we want to use a layout available in the standard.html.erb

file. Now try browsing books that will produce the following screen.

Adding Style Sheet

Till now, we have not created any style sheet, so Rails is using the default style sheet.

Now let's create a new file called style.css and save it in /public/stylesheets. Add the

following code to this file.

body {

 font-family: Helvetica, Geneva, Arial, sans-serif;

Ruby on Rails

52

 font-size: small;

 font-color: #000;

 background-color: #fff;

}

a:link, a:active, a:visited {

 color: #CD0000;

}

input {

 margin-bottom: 5px;

}

p {

 line-height: 150%;

}

div#container {

 width: 760px;

 margin: 0 auto;

}

div#header {

 text-align: center;

 padding-bottom: 15px;

}

div#content {

 float: left;

 width: 450px;

 padding: 10px;

}

div#content h3 {

 margin-top: 15px;

}

ul#books {

 list-style-type: none;

}

ul#books li {

 line-height: 140%;

}

div#sidebar {

Ruby on Rails

53

 width: 200px;

 margin-left: 480px;

}

ul#subjects {

 width: 700px;

 text-align: center;

 padding: 5px;

 background-color: #ececec;

 border: 1px solid #ccc;

 margin-bottom: 20px;

}

ul#subjects li {

 display: inline;

 padding-left: 5px;

}

Now refresh your browser and see the difference:

What is Next?

The next chapter explains how to develop applications using Rails Scaffolding to give

user access to add, delete, and modify the records in any database.

Ruby on Rails

54

While you're developing Rails applications, especially those which are mainly providing

you with a simple interface to data in a database, it can often be useful to use the

scaffold method.

Scaffolding provides more than cheap demo thrills. Here are some benefits:

 You can quickly get code in front of your users for feedback.

 You are motivated by faster success.

 You can learn how Rails works by looking at the generated code.

 You can use scaffolding as a foundation to jumpstart your development.

Scaffolding Example

To understand scaffolding, let’s create a database called cookbook and a table called

recipes.

Creating an Empty Rails Web Application

Open a command window and navigate to where you want to create this cookbook web

application. So, run the following command to create a complete directory structure.

tp> rails cookbook

Setting up the Database

Here is the way to create a database:

mysql> create database cookbook;

Query OK, 1 row affected (0.01 sec)

mysql> grant all privileges on cookbook.*

to 'root'@'localhost' identified by 'password';

Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

13. SCAFFOLDING

Ruby on Rails

55

To instruct Rails how to find the database, edit the configuration file

cookbook\config\database.yml and change the database name to cookbook. Leave the

password empty. When you finish, it should look as follows:

development:

 adapter: mysql

 database: cookbook

 username: root

 password: [password]

 host: localhost

test:

 adapter: mysql

 database: cookbook

 username: root

 password: [password]

 host: localhost

production:

 adapter: mysql

 database: cookbook

 username: root

 password: [password]

 host: localhost

Rails lets you run in the development mode, test mode, or production mode, using

different databases. This application uses the same database for each.

The Generated Scaffold Code
With the scaffold action, Rails generates all the code it needs dynamically. By running

scaffold as a script, we can get all the code written to disk, where we can investigate it

and then start tailoring it to our requirements.

So now, let's start once again to generate Scaffold code manually by using the scaffold

helper script:

cookbook> rails generate scaffold recipe

Ruby on Rails

56

It generates auto-files as shown below

The Controller

Let's look at the code behind the controller. This code is generated by the scaffold

generator. If you open app/controllers/recipes_controller.rb, then you will find

something as follows:

class RecipesController < ApplicationController

 before_action :set_recipe, only: [:show, :edit, :update, :destroy]

 # GET /recipes

 # GET /recipes.json

 def index

 @recipes = Recipe.all

 end

Ruby on Rails

57

 # GET /recipes/1

 # GET /recipes/1.json

 def show

 end

 # GET /recipes/new

 def new

 @recipe = Recipe.new

 end

 # GET /recipes/1/edit

 def edit

 end

 # POST /recipes

 # POST /recipes.json

 def create

 @recipe = Recipe.new(recipe_params)

 respond_to do |format|

 if @recipe.save

 format.html { redirect_to @recipe, notice: 'Recipe was successfully

created.' }

 format.json { render :show, status: :created, location: @recipe }

 else

 format.html { render :new }

 format.json { render json: @recipe.errors, status:

:unprocessable_entity }

 end

 end

 end

 # PATCH/PUT /recipes/1

 # PATCH/PUT /recipes/1.json

 def update

Ruby on Rails

58

 respond_to do |format|

 if @recipe.update(recipe_params)

 format.html { redirect_to @recipe, notice: 'Recipe was successfully

updated.' }

 format.json { render :show, status: :ok, location: @recipe }

 else

 format.html { render :edit }

 format.json { render json: @recipe.errors, status:

:unprocessable_entity }

 end

 end

 end

 # DELETE /recipes/1

 # DELETE /recipes/1.json

 def destroy

 @recipe.destroy

 respond_to do |format|

 format.html { redirect_to recipes_url, notice: 'Recipe was successfully

destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_recipe

 @recipe = Recipe.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white list

through.

 def recipe_params

 params.require(:recipe).permit(:tittle, :instructions)

 end

end

Ruby on Rails

59

When the user of a Rails application selects an action, e.g. "Show" - the controller will

execute any code in the appropriate section - "def show" - and then by default will

render a template of the same name - "show.html.erb". This default behavior can be

overwritten.

The controller uses ActiveRecord methods such as find, find_all, new, save,

update_attributes, and destroy to move data to and from the database tables. Note that

you do not have to write any SQL statements, rails will take care of it automatically.

This single line of code will bring the database table to life. It will provide with a simple

interface to your data, and ways of:

 Creating new entries

 Editing current entries

 Viewing current entries

 Destroying current entries

When creating or editing an entry, scaffold will do all the hard work like form generation

and handling for you, and will even provide clever form generation, supporting the

following types of inputs:

 Simple text strings

 Text areas (or large blocks of text)

 Date selectors

 Date-time selectors

You can use Rails Migrations to create and maintain tables.

rake db:migrate RAILS_ENV=development

Now, go to the cookbook directory and run the Web Server using the following

command:

cookbook> rails server

Now, open a browser and navigate to http://127.0.0.1:3000/recipe/new. This will

provide you a screen to create new entries in the recipes table. A screenshot is shown

below:

Ruby on Rails

60

Once you press the Create button to create a new recipe, your record is added into the

recipes table and it shows the following result:

You can see the option to edit, show, and destroy the records. So, play around with

these options.

You can also list down all the recipes available in the recipes table using the URL

http://127.0.0.1:3000/recipe/list.

Enhancing the Model

Rails gives you a lot of error handling for free. To understand this, add some validation

rules to the empty recipe model:

Modify app/models/recipe.rb as follows and then test your application:

class Recipe < ActiveRecord::Base

 validates_length_of :title, :within => 1..20

 validates_uniqueness_of :title, :message => "already exists"

end

Ruby on Rails

61

These entries will give automatic checking.

 validates_length_of - the field is not blank and not too long.

 validates_uniqueness_of - duplicate values are trapped. Instead of the default

Rails error message, we have given a custom message here.

Alternative Way to Create Scaffolding

Create an application as shown above and The Generated Scaffold Code as shown

below

 rails g scaffold Recipe tittle:string instructions:text

Above code generates the auto files with data base by using with sqlite3 with tittle and

instruction column as shown below an image.

We need to migrate the data base by using below syntax

$ rake db:migrate RAILS_ENV=development

Ruby on Rails

62

Finally run the application by using the following command line:

rails server

It will generate the result as shown above output images.

The Views

All the views and corresponding all the controller methods are created by scaffold

command and they are available in the app/views/recipes directory.

How Scaffolding is Different?

If you have gone through the previous chapters, then you must have seen that we had

created methods to list, show, delete and create data etc., but scaffolding does that job

automatically.

Ruby on Rails

63

Ajax stands for Asynchronous JavaScript and XML. Ajax is not a single technology; it is

a suite of several technologies. Ajax incorporates the following:

 XHTML for the markup of web pages

 CSS for the styling

 Dynamic display and interaction using the DOM

 Data manipulation and interchange using XML

 Data retrieval using XMLHttpRequest

 JavaScript as the glue that meshes all this together

Ajax enables you to retrieve data for a web page without having to refresh the contents

of the entire page. In the basic web architecture, the user clicks a link or submits a form.

The form is submitted to the server, which then sends back a response. The response is

then displayed for the user on a new page.

When you interact with an Ajax-powered web page, it loads an Ajax engine in the

background. The engine is written in JavaScript and its responsibility is to both

communicate with the web server and display the results to the user. When you submit

data using an Ajax-powered form, the server returns an HTML fragment that contains

the server's response and displays only the data that is new or changed as opposed to

refreshing the entire page.

For a complete detail on AJAX you can go through our AJAX Tutorial

How Rails Implements Ajax

Rails has a simple, consistent model for how it implements Ajax operations. Once the

browser has rendered and displayed the initial web page, different user actions cause it

to display a new web page (like any traditional web application) or trigger an Ajax

operation:

 Some trigger fires: This trigger could be the user clicking on a button or link,

the user making changes to the data on a form or in a field, or just a periodic

trigger (based on a timer).

 The web client calls the server: A JavaScript method, XMLHttpRequest, sends

data associated with the trigger to an action handler on the server. The data

might be the ID of a checkbox, the text in an entry field, or a whole form.

 The server does processing: The server-side action handler (Rails controller

action) does something with the data and returns an HTML fragment to the web

client.

14. AJAX ON RAILS

Ruby on Rails

64

 The client receives the response: The client-side JavaScript, which Rails

creates automatically, receives the HTML fragment and uses it to update a

specified part of the current page's HTML, often the content of a <div> tag.

These steps are the simplest way to use Ajax in a Rails application, but with a little extra

work, you can have the server return any kind of data in response to an Ajax request,

and you can create custom JavaScript in the browser to perform more involved

interactions.

AJAX Example

This example works based on scaffold, Destroy concept works based on ajax.

In this example, we will provide, list, show, and create operations on subject table. If

you don't have any understanding on Library Info System explained in the previous

chapters, then we would suggest you to go through the previous chapters first and then

continue with AJAX on Rails.

Creating an Application
Let us start with the creation of an application. It will be done as follows:

rails new ponies

The above command creates an application, now we need to call the app directory using

with cd command. It will enter in to an application directory then we need to call a

scaffold command. It will be done as follows

rails generate scaffold Pony name:string profession:string

The above command generates the scaffold with name and profession column. We need

to migrate the data base as follows command

rake db:migrate

Now Run the Rails application as follows command

rails s

Now open the web browser and call a url as http://localhost:3000/ponies/new, The

output will be as follows

Ruby on Rails

65

Creating an Ajax

Now open app/views/ponies/index.html.erb with suitable text editors. Update your

destroy line with :remote => true, :class => 'delete_pony'.At finally, it looks like as

follows

Create a file, destroy.js.erb, put it next to your other .erb files (under

app/views/ponies). It should look like this:

Now enter the code as shown below in destroy.js.erb

Ruby on Rails

66

$('.delete_pony').bind('ajax:success', function() {

 $(this).closest('tr').fadeOut();

});

Now Open your controller file which is placed at app/controllers/ponies_controller.rb and

add the following code in destroy method as shown below

 # DELETE /ponies/1

 # DELETE /ponies/1.json

 def destroy

 @pony = Pony.find(params[:id])

 @pony.destroy

 respond_to do |format|

 format.html { redirect_to ponies_url }

 format.json { head :no_content }

 format.js { render :layout => false }

 end

 end

At finally controller page is as shown image.

Now run an application, Output called from http://localhost:3000/ponies/new, it will

looks like as following image

Ruby on Rails

67

Press on create pony button, it will generate the result as follows

Now click on back button, it will show all pony created information as shown image

Till now, we are working on scaffold, now click on destroy button, it will call a pop-up as

shown below image, the pop-up works based on Ajax.

Ruby on Rails

68

If Click on ok button, it will delete the record from pony.Here I have clicked ok

button.Final output will be as follows

Ruby on Rails

69

You may have a requirement in which you want your site visitors to upload a file on your

server. Rails makes it very easy to handle this requirement. Now we will proceed with a

simple and small Rails project.

As usual, let's start off with a new Rails application called testfile. Let's create the basic

structure of the application by using simple rails command.

tp> rails new testfile

Before starting application development, we should install gem files as shown below:

gem install carrierwave

gem install bootstrap-sass

Open up your gemfile and add the following two gems at the bottom as shown in the

following image:

After adding gems in the gem file, we need to run the following command on the

console:

bundle install

Creating the Model

We need to create a model with two strings as name and attachment as shown below:

rails g model Resume name:string attachment:string

We need to create the database migration as shown below:

rake db:migrate

We need to generate the controller as shown below:

rails g controller Resumes index new create destroy

Great! Now we have the basic structure set up. Now we need to create an uploader. An

Uploader came from carrierwave gem and it tells to carrierwave how to handle the files.

In short, it contained all file processing functionalities. Run the command to create an

uploader as shown below

15. FILE UPLOADING

Ruby on Rails

70

rails g uploader attachment

Now open the resume model and call the uploader as shown below. Resume model has

placed at app/models/resume.rb:

class Resume < ActiveRecord::Base

 mount_uploader :attachment, AttachmentUploader # Tells rails to use this

uploader for this model.

 validates :name, presence: true # Make sure the owner's name is present.

end

Before working on controller, we need to modify our config/routes.db as shown below

CarrierWaveExample::Application.routes.draw do

 resources :resumes, only: [:index, :new, :create, :destroy]

 root "resumes#index"

end

Let us edit the controller as shown below.

class ResumesController < ApplicationController

 def index

 @resumes = Resume.all

 end

 def new

 @resume = Resume.new

 end

 def create

 @resume = Resume.new(resume_params)

 if @resume.save

 redirect_to resumes_path, notice: "The resume #{@resume.name} has been

uploaded."

 else

 render "new"

 end

 end

Ruby on Rails

71

 def destroy

 @resume = Resume.find(params[:id])

 @resume.destroy

 redirect_to resumes_path, notice: "The resume #{@resume.name} has been

deleted."

 end

private

 def resume_params

 params.require(:resume).permit(:name, :attachment)

 end

end

Let's add bootstrap implementation in css file.css file could be in

app/assets/stylesheets/resumes.css.scss

@import "bootstrap";

Now open up app/views/layouts/application.html.erb and add codes as shown below

<!DOCTYPE html>

<html>

<head>

 <title>Tutorialspoint</title>

 <%= stylesheet_link_tag "application", media: "all", "data-turbolinks-

track" => true %>

 <%= javascript_include_tag "application", "data-turbolinks-track" => true %>

 <%= csrf_meta_tags %>

</head>

<body>

<div class="container" style="padding-top:20px;">

<%= yield %>

</div>

</body>

</html>

Now we need to set up index views as shown below:

<% if !flash[:notice].blank? %>

Ruby on Rails

72

 <div class="alert alert-info">

 <%= flash[:notice] %>

 </div>

<% end %>

<%= link_to "New Resume", new_resume_path, class: "btn btn-primary" %>

<table class="table table-bordered table-striped">

 <thead>

 <tr>

 <th>Name</th>

 <th>Download Link</th>

 <th> </th>

 </tr>

 </thead>

 <tbody>

 <% @resumes.each do |resume| %>

 <tr>

 <td><%= resume.name %></td>

 <td><%= link_to "Download Resume", resume.attachment_url %></td>

 <td><%= button_to "Delete", resume, method: :delete, class: "btn btn-

danger", confirm: "Are you sure that you wish to delete #{resume.name}?"

%></td>

 </tr>

 <% end %>

 </tbody>

</table>

Now, let us edit new.html.erb and add our form code.

<% if !@resume.errors.empty? %>

 <div class="alert alert-error">

 <% @resume.errors.full_messages.each do |msg| %>

 <%= msg %>

 <% end %>

Ruby on Rails

73

 </div>

<% end %>

<div class="well">

 <%= form_for @resume, html: { multipart: true } do |f| %>

 <%= f.label :name %>

 <%= f.text_field :name %>

 <%= f.label :attachment %>

 <%= f.file_field :attachment %>

 <%= f.submit "Save", class: "btn btn-primary" %>

 <% end %>

</div>

Now start the server and visit http://localhost:3000. It will produce a screen similar to

as follows:

One last thing we need to do is filter the list of allowed filetypes. For that we need add

simple code as shown below at app/uploaders/attachment_uploader.rb

class AttachmentUploader < CarrierWave::Uploader::Base

 storage :file

 def store_dir

 "uploads/#{model.class.to_s.underscore}/#{mounted_as}/#{model.id}"

 end

 def extension_white_list

 %w(pdf doc htm html docx)

http://localhost:3000/

Ruby on Rails

74

 end

end

Now start the server and visit http://localhost:3000. Now input a wrong format; it will

generate a wrong message as shown below:

For a complete detail on File object, you need to go through the Ruby Reference

Manual.

http://localhost:3000/

Ruby on Rails

75

Action Mailer is the Rails component that enables applications to send and receive

emails. In this chapter, we will see how to send an email using Rails. Let’s start creating

an emails project using the following command.

tp> rails new mailtest

This will create the required framework to proceed. Now, we will start with configuring

the ActionMailer.

Action Mailer - Configuration

Following are the steps you have to follow to complete your configuration before

proceeding with the actual work:

Go to the config folder of your emails project and open environment.rb file and add the

following line at the bottom of this file.

config.action_mailer.delivery_method = :smtp

It tells ActionMailer that you want to use the SMTP server. You can also set it to be

:sendmail if you are using a Unix-based operating system such as Mac OS X or Linux.

Add the following lines of code at the bottom of your environment.rb as well.

config.action_mailer.smtp_settings = {

 address: 'smtp.gmail.com',

 port: 587,

 domain: 'example.com',

 user_name: '<username>',

 password: '<password>',

 authentication: 'plain',

 enable_starttls_auto: true }

Replace each hash value with proper settings for your Simple Mail Transfer Protocol

(SMTP) server. You can take this information from your Internet Service Provider if you

already don't know. You don't need to change port number 25 and authentication type if

you are using a standard SMTP server.

You may also change the default email message format. If you prefer to send email in

HTML instead of plain text format, add the following line to config/environment.rb as

well:

ActionMailer::Base.default_content_type = "text/html"

16. SEND EMAIL

Ruby on Rails

76

ActionMailer::Base.default_content_type could be set to "text/plain", "text/html", and

"text/enriched". The default value is "text/plain".

The next step will be to create a mailer.

Generate a Mailer

Use the following command to generate a mailer as follows:

tp> cd emails

emails> rails generate mailer Usermailer

This will create a file user_mailer.rb in the app\mailer directory. Check the content of

this file as follows:

class Emailer < ActionMailer::Base

end

Let's create one method as follows:

class UserMailer < ApplicationMailer

 default from: 'notifications@example.com'

 def welcome_email(user)

 @user = user

 @url = 'http://www.gmail.com'

 mail(to: @user.email, subject: 'Welcome to My Awesome Site')

 end

end

 default Hash - This is a hash of default values for any email you send from this

mailer. In this case we are setting the :from header to a value for all messages in

this class. This can be overridden on a per-email basis.

 mail - The actual email message, we are passing the :to and :subject headers in.

Create a file called welcome_email.html.erb in app/views/user_mailer/. This will be the

template used for the email, formatted in HTML:

<html>

 <head>

 <meta content='text/html; charset=UTF-8' http-equiv='Content-Type' />

 </head>

 <body>

 <h1>Welcome to example.com, <%= @user.name %></h1>

Ruby on Rails

77

 <p>

 You have successfully signed up to example.com,

 your username is: <%= @user.login %>.

 </p>

 <p>

 To login to the site, just follow this link: <%= @url %>.

 </p>

 <p>Thanks for joining and have a great day!</p>

 </body>

</html>

Next we will create a text part for this application as follow

Welcome to example.com, <%= @user.name %>

===

You have successfully signed up to example.com,

your username is: <%= @user.login %>.

To login to the site, just follow this link: <%= @url %>.

Thanks for joining and have a great day!

Calling the Mailer

First, let's create a simple User scaffold

$ bin/rails generate scaffold user name email login

$ bin/rake db:migrate

Action Mailer is nicely integrated with Active Job so you can send emails outside of the

request-response cycle, so the user doesn't have to wait on it:

class UsersController < ApplicationController

 # POST /users

 # POST /users.json

 def create

 @user = User.new(params[:user])

Ruby on Rails

78

 respond_to do |format|

 if @user.save

 # Tell the UserMailer to send a welcome email after save

 UserMailer.welcome_email(@user).deliver_later

 format.html { redirect_to(@user, notice: 'User was successfully

created.') }

 format.json { render json: @user, status: :created, location: @user }

 else

 format.html { render action: 'new' }

 format.json { render json: @user.errors, status: :unprocessable_entity

}

 end

 end

 end

end

Now, test your application by using http://127.0.0.1:3000/users/new. It displays the

following screen and by using this screen, you will be able to send your message to

anybody.

This will send your message and will display the text message "Message sent

successfully" and output as follow

sent mail to kittuprasad700@gmail.com (2023.Sms)

[ActiveJob] [ActionMailler::DeliveryJob] [2cfde3c-260e-4a33-1a6ada13a9b] Date:

Thu, 09 Jul 2015 11:44:05 +0530

From: notification@example.com

Ruby on Rails

79

To: kittuprasad700@gmail.com

Message-Id: <559e112d63c57_f1031e7f23467@kiranPro.mail>

Subject: Welcome to My Awesome Site

Mime-Version: 1.0

Content-Type: multipart/alternative;

boundary="--mimepart_559e112d601c8_f1031e7f20233f5";

charset=UTF-8

Content-Transfer-Encoding:7bit

For more information on how to send emails using Rails, please go through ActionMailer.

http://en.wikibooks.org/wiki/Ruby_on_Rails/ActionMailer

