


1.	 Introduction
2.	 Basic	Syntax
3.	 Basic	Select	Statements
4.	 Table	Variables	&	Set	Operators
5.	 Subqueries	in	the	Where	Clause

i.	 Using	Operators	in	a	Subquery
6.	 Subqueries	in	the	From	&	Select	Clause
7.	 The	'Join'	Family	Operators

i.	 Inner	Join
ii.	 Natural	Join
iii.	 Outer	Join

8.	 Aggregation
i.	 Aggregation	Functions
ii.	 Aggregation	Clauses

9.	 Data	Modification	Statements
i.	 Insert	Commands
ii.	 Delete	Commands
iii.	 Update	Commands

10.	 Glossary

Table	of	Contents



What	This	Book	is	About

This	book	will	cover	the	basics	of	SQL,	and	should	help	introduce	beginners	to	SQL	concepts.	It	is	also	a	good
documentation	source	when	forgetting	how	the	basic	SQL	syntax	works.

Contributing

This	book	is	open	source,	so	please	feel	free	to	visit	the	github	repository	to	help	contribute!	If	you	notice	any	typos	or
errors	in	this	book,	you	can	fork	the	repo	and	open	a	pull	request	with	the	new	and	improved	changes,	or	simply	just	open	a
new	issue.	Any	contribution	is	greatly	appreciated	and	it	will	help	make	this	book	better	for	those	reading	it	after	you!

License

This	book	is	currently	licensed	under	a	Creative	Commons	license.	For	more	information,	read	more	on	the	official	Creative
Commons	website.

Here	is	the	example	database	that	will	be	used	throughout	the	book:

Movies

mID Title Year Director

101 Top	Gun 1986 Tony	Scott

102 Titanic 1997 James	Cameron

103 The	Lion	King 1994 Rob	Minkoff

104 Gravity 2013 Alfonso	Cuaron

105 Harry	Potter 2001 	<null>	

106 Cast	Away 2000 Robert	Zemeckis

107 Spider	Man 2002 Sam	Raimi

108 The	Godfather 1972 Francis	Coppola

User

uID Name

201 James	Dean

202 Chris	Anderson

203 Ashley	Burley

204 Ralph	Truman

SQL	Basics

http://creativecommons.org/licenses/by-nc-sa/4.0/


205 Gordon	Maximus

206 Sarah	Rodgriguez

207 Darrel	Sherman

208 Lisa	Jackson

Review

uID mID Rating ratingDate

201 101 2 2014-03-09

201 101 4 2014-03-02

202 104 4 	<null>	

203 107 2 2014-03-24

204 103 4 2014-03-17

204 104 2 2014-03-13

205 108 3 2014-03-24

206 102 3 2014-03-02

207 104 5 	<null>	

207 106 4 2014-03-07

207 102 5 2014-03-26

208 105 2 2014-03-13



Structured	Query	Langugae,	or	SQL,	is	a	special-purpose	programming	language	used	to	manage	data	within	a	relational
database	mangement	system	(RDMS).

You	will	find	that	there	are	multiple	ways	to	write	the	same	query	in	SQL,	and	some	ways	are	better	than	others.

Data	Definition	Language	(DDL):	DDL	includes	commands	to	create	a	table,	to	drop	a	table,	or	create	and	drop	other
aspects	of	a	database.

Data	Manipulation	Language	(DML):	DML	includes	commands	that	are	used	to	query	and	modify	a	database.	It	includes
the	select	statement	for	querying	the	database,	and	the	insert,	update,	and	delete	statements,	all	for	modifying	the
database.

Basic	Syntax

What	is	Structured	Query	Language?

Two	Parts	of	SQL



The	select	statement	has	three	clauses:	the		FROM		clause,	the		WHERE		clause,	and	the		SELECT		clause.	The	basic	concept	is
that	the		FROM		clause	identifies	the	relation	that	you	want	to	query	over,	the	'WHERE'	condition	is	used	to	combine	the
relations	and	filter	the	relations,	and	the		SELECT		tells	you	what	to	return.

The	syntax	looks	like	this:

SELECT	A1,	A2,	.	.	.	,	A(n)

FROM	R1,	R2,	.	.	.	,	R(m)

WHERE	<condition>;

Since	relational	query	languages	are	compositional,	when	you	run	a	query	over	relations,	you	get	a	relation	as	a	result.
Thus,	the	result	of	the	above	select	statement	is	a	relation,	but	it	doesn’t	have	a	name.	The	schema	of	that	relation	is	the
set	of	attributes	that	are	returned.

Assume	we	have	a	database	with	three	tables:

1.	 A		MOVIE		table	that	has	four	columns	labeled		mID		(movie	ID),		Title	,		Year	,	and		Director	.

2.	 A		User		table	that	has	two	columns	labeled		uID		(User	ID),	and		Name	.

3.	 Lastly,	a		Review		table	that	has	four	columns	labeled		uID	,		mID	,		Star	,	and		ratingDate	.

(This	sample	database	can	be	viewed	in	the	Introduction	chapter	of	this	book.)

We’re	going	to	do	a	basic	query	that	finds	the		Title	,	and		Year		of	movies	that	were	created	after	the	year	2000.	The
	SELECT		tells	us	what	we	want	to	get	out	of	the	query,	the		FROM		tells	us	our	table	name,	and	the		WHERE		gives	us	the	filtering
condition.

The	query	would	look	like	this:

SELECT	Title,	Year

FROM	Movie

WHERE	Year	>	2000;

We	would	then	get	a	table	back	that	would	have	two	columns	labeled		Title	,	and		Year	.	It	would	then	display	all	the
movies	that	were	created	after	the	year	2000.

The	resulting	movies	would	include:	Gravity,	Harry	Potter,	Cast	Away,	and	Spiderman.

Basic	Select	Statements

The	Three	Clauses:

A	Basic	Query:



Now	let’s	create	a	query	that	combines	two	relations,	such	as	finding	movie	titles,	mID's	and	the	rating	that	the	movie
recieved.	We’re	now	involving	the		Movie		table,	and	the		Review		table.

Combining	relations	looks	like	this:

SELECT	Movie.mID,	Title,	Rating

FROM	Movie,	Review

WHERE		Movie.mID	=	Review.mID;

The	condition	above	is	called	a	join	condition	and	is	saying	that	we	want	to	combine	movies	with	review	statistics	that	have
the	same		mID	.	We	would	then	get	a	table	as	a	result	with	three	columns	labeled		mID	,		Title	,	and		Rating	.	It	would	then
display	all	the	movies	with	their		mID		and	their		Rating	.

The	next	query	is	going	to	find	the		Title	,		mID		and		Rating		of	movies	that	were	created	before	the	year	2000,	and		Rating	
is	greater	than	2.

It	would	look	like	this:

SELECT	Movie.mID,	Title,	Rating

FROM	Movie,	Review

WHERE	Movie.mID	=	Review.mID

				and	Rating	>	2	and	Year	<	2000;

So	in	this	case,	we	are	looking	for		mID	,		Title	,	and		Rating	.	We	are	looking	inside	the		Movie		and		Review		tables,	and	we
have	a	join	condition	making	sure	that	the	query	knows	the		mID		in	the		Movie		table	is	the	same		mID		in	the		Review		table.
We	are	filtering	the	results	based	on	the	year	the	movie	was	created,	and	the	rating	it	recieved.	We	would	then	get	a	table
with	the	results	of	the	query.	The	results	would	include	all	movies	that	were	created	before	the	year	2000,	with	a	rating
greater	than	2.

The	resulting	movies	would	be:	Top	Gun,	Titanic,	The	Lion	King,	and	The	Godfather.

This	time	we	are	going	to	combine	all	three	relations,	and	we’re	going	to	get	a	table	with	the	results	of	every		mID	,		Title	,
	Year	,	User		Name	,	and		Rating	.

It	would	look	like	this:

SELECT	Movie.mID,	Title,	Year,	Name,	User.uID,	Rating

FROM	Movie,	User,	Review

WHERE	Movie.mID	=	Review.mID	and	User.uID	=	Review.uID;

Notice	how	in	the		SELECT		and		WHERE		statements,	we	specify	which	table	we	want	to	pull	some	of	the	attributes	out	of.
Since	there	is	more	than	one	table	with		mID		and		uID	,	we	need	to	specify	which	table	we	want	to	pull	it	out	of.	It	doesn’t
matter	which	table	we	specify,	but	if	we	don’t	specify	we	will	get	an	error	because	the	computer	doesn't	know	which	table	to
pull	from.

Combing	Two	Relations:

Combing	Two	Relations	w/	a	Condition:

Combining	Three	Relations:



SQL	by	default	does	not	order	table	results	in	any	particular	order.	However,	if	we	specify	a	specific	order	that	we	want,	we
can	get	results	sorted	by	a	specific	attribute,	or	set	of	attributes.	Say	we	want	to	sort	all	of	our	movies	by	descending
	Rating	.	In	order	to	do	this,	we	need	to	add	an	additional	clause	called	the		ORDER	BY		clause.	If	we	want	to	get	a
descending	order,	we	write	what	we	want	to	search	for	and	then	use	the	keyword		DESC	.

It	would	look	like	this:

SELECT		Movie.mID,	Title,	Year,	Name,	User.uID,	Rating

FROM	Movie,	User,	Review

WHERE	Movie.mID	=	Review.mID	and	User.uID	=	Review.uID

				ORDER	BY	Rating	DESC;

If	we	wanted	to	have	it	sort	by	additional	attributes,	we	would	just	put	a	comma	after		DESC	,	and	add	another	attribute.
However,	SQL	defaults	to	ascending	order,	so	you	need	to	specify	which	way	you	prefer	for	any	additional	attributes	that
you	add.

While	doing	a		SELECT		statement,	SQL	allows	for	doing	arithmetic	operations.	Say	we	want	to	find	all	the	movie's	attributes,
but	add	to	it	a	scaled		Rating	.	Where	we	are	going	to	scale	the	rating	by	10	to	get	ratings	that	are	in	the	teens.

The	query	would	look	like	this:

SELECT	Movie.mID,	Title,	Rating,	Director,	Rating	+	10

FROM	Movie,	Review;

We	would	then	get	a	table	with	all	of	the	above	attributes,	and	then	an	additional	column	that	shows	the	movie's		Rating	
after	being	scaled	by	10.	However,	we	will	get	a	column	labeled		Rating	+	10	,	but	we	want	to	change	it	to	a	different
particular	label.

We	would	just	use	the	AS	clause	like	so:

SELECT	Movie.mID,	Title,	Rating,	Director,	Rating	+	10	AS	ScaledRating

FROM	Movie,	Review;

We	would	then	have	a	column	labeled		ScaledRating		instead	of		Rating	+	10	.

Sorting	Table	Results:

Doing	Arithmetic	within	Select	Statements:



Take	a	look	at	the	code	block	below:

SELECT	A1,	A2,	.	.	.	,	A(n)

FROM	R1,	R2,	.	.	.	,	R(m)

WHERE	<condition>;

All	of	the	variables	inside	the		FROM		clause	are	called	table	variables.	They	help	with	making	the	query	more	readable,	and
they	rename	relations	within	the		FROM		clause	when	we	have	more	than	one	instance	of	a	relation.

The	second	construct	is	called	a	set	operator.	A	few	examples	of	them	are:	the		UNION		operator,	the		INTERSECT		operator,
and	the		EXCEPT		operator.

Let's	assume	we	want	to	make	a	query	that	outputs	all	the	movies	along	with	their	movie	ID,	title,	User	ID,	User	name,	and
rating.

Our	query	would	look	like	this:

SELECT	Movie.mID,	Title,	User.uID,	Name,	Rating

FROM	Movie,	User,	Review

WHERE	Movie.mID	=	Review.mID	and	User.uID	=	Review.uID;

We	would	then	get	our	expected	table	output.	However,	to	make	the	query	a	little	more	readable,	we	can	place	variables
inside	the		FROM		clause,	and	replace	all	the	table	names	with	just	the	table	variable.

Our	query	would	look	like	this:

SELECT	M.mID,	Title,	U.uID,	Name,	Rating

FROM	Movie	M,	User	U,	Review	R

WHERE	M.mID	=	R.mID	and	U.uID	=	R.uID;

Notice	how	we	added		M		after		Movie		inside	the		FROM		clause.	That	is	called	adding	a	table	variable,	then	where	ever	we
used		Movie		in	our	entire	select	statement,	we	can	just	replace	with		M	.	We	also	did	the	same	thing	for		User	U		and		Review
R	.

In	this	next	query,	we	want	to	find	all	movies	that	have	the	exact	same	rating.	In	order	to	do	that,	we	need	to	have	two
instances	of		Review	.	We	will	call	the	first	instance		R1		and	the	second	instance		R2	.	We	also	need	to	include		Movie		in	the
	FROM		clause	to	get	the	movie		Title	.

Our	query	would	look	like	this:

Table	Variables	&	Set	Operators

What	are	they?

Adding	Table	Variables	for	Readability

Adding	Table	Variables	for	Multiple	Instances



SELECT	DISTINCT	Movie.mID,	Title,	R1.Rating

FROM	Movie	M,	Review	R1,	Review	R2	

WHERE	R1.Rating	=	R2.Rating	and	R1.mID	=	M.mID	and	R1.mID	<>	R2.mID	and	R1.uID	<>	R2.uID;

We	first	added	the	two	table	variables:		R1		and		R2		to	separate	each	instance.	We	are	looking	for	the		mID	's,		Title	's,	and
	Rating	's	of	each	movie.	We	specify		DISTINCT		in	the		WHERE		clause	to	remove	duplicates.	We	then	place	a	condition	in	the
	WHERE		clause	to	specify	that	we	want	to	output	movies	with	the	same	rating.	We	include	the	join	condition		R1.mID	=	M.mID	
to	make	sure	the	movies	are	the	same	in	each	relation.	We	then	specify	two	final	clauses:		and	R1.mID	<>	R2.mID	and	R1.uID
<>	R2.uID;	.		R1.mID	<>	R2.mID		tells	the	computer	that	the		R1.mID		is	different	from		R2.mID	,	or	that	movie	1	needs	to	be
different	from	movie	2.	If	we	didn't	specify	this	clause,	we	would	get	an	output	of	movies	that	equal	themselves,	because
movie	1	would	have	the	same		Rating		as	itself,	thus	satisfying	the	condition.	Likewise,		R1.uID	<>	R2.uID		makes	sure	we
don't	get	back	two	instances	of	a	review	by	the	same	reviewer.	

The		UNION		operator	allows	us	to	create	queries	that	will	output	a	list	of	elements	that	come	from	multiple	tables.	Previously
we	could	only	separate	these	elements	into	different	columns.	However,	by	using	the		UNION		operator,	we	can	get	elements
from	different	tables	listed	into	a	single	column	together.

For	example,	if	we	wanted	to	get	a	single	list	of	all	the	movie	titles	and	reviewer	names,	we	would	create	a	query	that	looks
like	this:

SELECT	Title	FROM	Movie

UNION

SELECT	Name	FROM	User;

We	would	then	get	a	table	with	only	one	column,	and	it	would	list	each	movie	title	and	each	reviewer	name.

By	default,	SQL	would	pick	label	the	column	either		Title		or		Name	.	If	you	wanted	to	specify	a	label	for	the	column,	you
would	use	the		AS		operator.

It	would	look	like	this:

SELECT	Title	AS	list	FROM	Movie

UNION

SELECT	Name	AS	list	FROM	User;

Notice	how	we	placed		AS	list		in	each	select	clause,	and	this	tells	SQL	to	name	the	column		list	.

The		INTERSECT		operator	takes	away	the	necessity	to	specify	a	joint	relation.	It	automatically	knows	that	each	select
statement	in	the	query	is	for	the	same	movie.

If	we	wanted	to	create	a	query	that	searched	for	movies	that	were	created	before	the	year	2000,	and	had	a		mID		of	less
than	105,	we	could	use	the		INTERSECT		operator.

Our	query	would	look	like	this:

The	Union	Operator

Specifying	a	Column	Name

The	Intersect	Operator



SELECT	Title	FROM	Movie	WHERE	Year	<	2000

INTERSECT

SELECT	Title	FROM	Movie	WHERE	mID	<	105;

We	would	then	get	a	table	in	return	with	all	the	movies	that	were	created	before	the	year	2000,	and	had	a		mID		less	than
105.

The	resulting	movies	would	be:	Top	Gun,	Titanic,	and	The	Lion	King.

The		EXCEPT		operator	does	exactly	the	opposite	of	the		INTERSECT		operator.

Lets	create	a	query	that	looks	for	movies	that	were	created	before	the	year	2000,	but	do	not	have	a		mID		less	than	105.

Our	query	would	look	like	this:

SELECT	Title	FROM	Movie	WHERE	Year	<	2000

EXCEPT

SELECT	Title	FROM	Movie	WHERE	mID	<	105;

In	this	case,	the		EXCEPT		operator	tells	SQL	to	look	for	movies	that	were	made	before	the	year	2000,	and	then	take	away
the	movies	with	a		mID		less	than	105.	This	then	leaves	us	with	a	result	of	movies	which	were	created	before	2000,	but	have
a		mID		greater	than	or	equal	to	105.

The	resulting	movie	would	be:	The	Godfather.

The	Except	Operator



Just	like	before,	our	queries	will	contain	a		SELECT		clause,	a		FROM		clause,	and	a		WHERE		clause	specifying	a	condition.
However,	we	now	are	adding	in	the	ability	to	nest	a		SELECT		clause	inside	the		WHERE		clause,	thus	creating	a	subquery.

Subqueries	can	be	very	powerful	when	trying	to	eliminate	duplicates,	and	is	often	more	efficient	than	using	joining	relations.

Let's	create	a	query	that	looks	for	a	movie's	ID,	title,	and	director,	but	only	if	it	has	a	rating	above	4.

We	can	create	a	sub-query	like	so:

SELECT	DISTINCT	Movie.mID,	Title,	Director

FROM	Movie,	Review

WHERE	Movie.mID	in	(SELECT	mID	FROM	Review	WHERE	Rating	>	4);

We	could	easily	do	this	query	without	implementing	a	subquery	by	joining	the	Movie	relation	with	the	Review	relation.
However,	this	is	just	to	show	how	a	subquery	would	be	performed.

We	would	then	get	the	movies:	Titanic,	and	Gravity.

Lets	create	a	query	that	retrieves	the		Title		of	all	movies	which	have	a		Rating		less	than	3,	and	have	a		mID		greater	than
103.

Our	query	would	look	like	this:

SELECT	Title

FROM	Movie

WHERE	mID	in	(SELECT	mID	FROM	Review	WHERE	Rating	<	3)

		AND	mID	NOT	IN	(SELECT	mID	FROM	Review	WHERE	mID	<	103);

Our	outside	query	returns	the		Title		of	all	movies	whose		mID		is	in	the	first	subquery,	but	not	in	the	second	subquery.	Our
first	subquery	looks	for	all		mID	's	whose		Rating		is	less	than	3,	and	the	second	subquery	looks	for	all		mID	s	that	are	greater
than	103.

The	output	movies	would	be:	Spiderman,	Gravity,	and	Harry	Potter.

Subqueries	in	the	Where	Clause

Basic	Syntax

Creating	a	Basic	Subquery

Slightly	More	Complex	Subqueries



The		EXISTS		operator	checks	whether	a	subquery	is	empty	or	not,	instead	of	checking	whether	values	are	in	the	subquery.

A	correlated	reference	is	where	you	use	a	value	inside	a	subquery,	that	comes	from	outside	that	subquery.

Lets	look	at	an	example:

SELECT	mID,	Rating

FROM	Review	R1

WHERE	EXISTS	(SELECT	*	FROM	Review	R2

														WHERE	R1.Rating	=	R2.Rating	and	R1.mID	<>	R2.mID);

This	query	will	return	all	movies	that	have	the	same	rating.	First	we're	going	to	take	the		mID	's	from		R1	.	Then	we're
creating	a	new	relation	called		R2	.	For	each	movie	we're	going	to	check	if	there	is	another		mID	,	where	the		Rating		in		R2	
is	the	same	as	the		Rating		in		R1	.	We	then	say	that	each		mID		should	be	different,	and	not	equal	to	itself.

We	use	a	correlated	reference	to	use	an	outside	variable	inside	a	subquery.

Assume	that	you	wanted	to	look	for	the	largest	value	of	some	element.	In	this	case,	we	want	to	find	the	movie	that	was
most	recently	created.	Thus,	the	movie's		Year		would	be	the	largest.

We	could	write	a	query	that	looks	like	this:

SELECT	Title,	Year

FROM	Movie	M1

WHERE	NOT	EXISTS	(SELECT	*	FROM	Movie	M2

																		WHERE	M1.Year	<	M2.Year);

This	query	says	that	we	are	going	to	find	all	movies	where	there	does	not	exist	another	movie	whose		Year		is	greater	than
the	first	movie.	This	would	be	a	form	of	query	that	we	could	write	whenever	looking	for	the	greatest	value	of	some-sort.

The	resulting	movie	would	be:	Gravity.

The		ALL		keyword	tells	us	that	instead	of	checking	whether	a	value	is	in	or	not	in	the	result	of	a	subquery,	we're	going	to
check	if	the	value	has	a	certain	relationship	with		ALL		the	results	of	a	subquery.

Lets	create	a	query	that	checks	to	see	if	the		Rating		of	a	movie	is	greater	than	or	equal	to		ALL		elements	of	the	subquery
which	returns	all	the		Ratings		of	each	movie.

It	would	look	like	this:

Using	Operators	in	a	Subquery

The	Exist	Operator	&	Correlated	References

Looking	for	a	Largest	Value

The	All	Operator



SELECT	mID,	Rating

FROM	Review

WHERE	Rating	>=	all	(SELECT	Rating	FROM	Review);

We	would	then	get	an	output	table	of	all	the	movie's	with	a		Rating		of	5,	since	there	is	no	single	movie	with	a	greater
	Rating		than	every	other	movie.

The	output	table	would	include	the	movies:	Gravity,	and	Titanic.

The		ANY		keyword	performs	very	similar	to	the		ALL		keyword,	except	instead	of	having	to	satisfy	a	condition	with		ALL		of
the	elements	of	a	set,	it	only	has	to	satisfy	a	condition	with	at	least	one	element	of	a	set.

Lets	create	a	query	that	finds	all	movies	that	have	a		Year		that	is	not	the	smallest		Year		value.	In	other	words,	we	are
looking	for	movies	whose		Year		is	greater	than		ANY		other	movie		Year	.

Our	query	would	look	like	this:

SELECT	Title,	Year

FROM	Movie

WHERE	Year	>	ANY	(SELECT	Year	FROM	Movie);

In	the	above	example	query,	a	movie	will	be	returned	if	there	is	some	other	movie	whose		Year		is	less	than	this	movie.	We
then	get	a	resulting	table	with	all	the	movies	that	do	not	have	the	least		Year		value.	Thus,	we	would	get	every	movie	except
for	The	Godfather,	because	it	has	the	smallest		Year		value.

The		ANY		and		ALL		operators	are	very	convienient	when	creating	queries,	however,	they	are	not	vital	to	creating	a	query.
We	can	always	write	a	query	that	would	normally	use	the		ANY		or		ALL		keywords,	by	using	the		EXISTS		or		NOT	EXISTS	
operators.

The	Any	Operator

Conclusion	on	Operators



When	using	subqueries	in	the		WHERE		clause,	the	subquery	generates	a	set	of	elements	that	will	be	used	in	a
comparison.
When	using	subqueries	in	the		FROM		clause,	the	subquery	generates	a	new	table	that	will	be	used	for	the	rest	of	the
query.
When	using	subqueries	in	the		SELECT		clause,	the	subquery	produces	a	sub-select	expression	that	returns	a	single
value.

Lets	create	a	query	that	scales	all	the	movie	ratings	depending	on	which	year	they	were	produced.	For	example,	a	movie
produced	in	2012	with	a	rating	of	4	would	be	higher	ranked	than	a	movie	produced	in	1990	with	a	rating	of	4.	Lets	assume
that	throughout	the	years	in	the	movie	industry,	the	CGI	and	film	effects	get	better,	thus	producing	a	better	movie.	This
technology	wouldn't	be	available	in	the	previous	years,	so	older	movie's	ratings	won't	hold	the	same	value	as	present	day
movies.

Our	query	would	look	like	this:

SELECT	*

FROM	(SELECT	M.mID,	Title,	Year,	Rating,	Rating*(Year/1000.0)	as	scaledRating

				FROM	Movie	M,	Review

				WHERE	M.mID	=	Review.mID)	sR

WHERE	abs(sR.scaledRating)	>	8;

This	query	is	saying	that	it	will		SELECT		all	attributes		FROM		a	table	produced	by	a	subquery.	This	subquery	is	going	to
produced	a	table	that	has	the		mID	,		Title	,		Year	,		Rating	,	then	a	scaled	rating	with	a	column	name	as		scaledRating	.	The
results	of	this	subquery	has	the	table	variable	name	of		sR	.	Then	in	the	main	query,	we	only	want	to	output	the	movies
where	the	absolute	value	(	abs()	)	of	the		scaledRating		is	greater	than	8.

We	would	then	get	output	the	following	movies:	Titanic,	and	Gravity.

Lets	create	a	query	that	lists	all	the	users	and	pairs	them	with	the	highest	rating	that	they	have	given.

The	query	would	look	like	so:

SELECT	uID,	Name

(SELECT	DISTINCT	Rating

	FROM	User,	Review

	WHERE	User.uID	=	Review.uID

				and	Rating	>=	ALL

								(SELECT	Rating

									FROM	User,	Review

									WHERE	User.uID	=	Review.uID))	as	hRating

FROM	User;

Subqueries	in	the	From	&	Select	Clause

What	They	Are	Used	For

Using	a	Subquery	in	the	From	Clause

Using	Subqueries	in	the	Select	Clause



This	query	says	that	we	are	going	to	find		uID		and	that	user's		Name		from	the		User		table,	and	then	it	runs	a	subquery.	The
subquery	looks	for	a		Rating		inside	the	table		Review	.	We	make	sure	to	join	the		uID		from	the		User		table	to	the		uID		in	the
	Review		table.	We	then	choose	the	largest		Rating		among		ALL		the		Rating	s	that	are	associated	with	that	user.	Lastly,	we
give	the	subquery	result's	a	variable	name,	which	takes	the	name	of		hRating	,	which	stands	for	'highest	rating'.

In	other	words,	we	would	get	a	resutling	table	with	each	user's		uID		and		Name	.	Then,	it	would	have	a	column	labeled
	hRating		which	has	the	highest	rating	that	each	individual	user	has	ever	done.

Our	query	would	ouput	these	results:

uID Name hRating

201 James	Dean 4

202 Chris	Anderson 4

203 Ashley	Burley 2

204 Ralph	Truman 4

205 Gordon	Maximus 3

206 Sarah	Rodgriguez 3

207 Darrel	Sherman 5

208 Lisa	Jackson 2

When	implenting	a	subquery	in	the		SELECT		clause,	it	is	crucial	that	the	subquery	only	returns	exactly	one	value,	because
the	result	of	that	subquery	is	being	used	to	only	fill	in	one	cell	of	the	parent	query.

Important	Note	on	Subqueries	in	the	Select	Clause



In	our	select	statements,	we	seperate	tables	in	the		FROM		clause	by	commas,	and	that	is	implicitly	a	cross	product	of	those
tables.

Like	so:

SELECT	A1,	A2,	.	.	.	,	A(n)

FROM	R1,	R2,	.	.	.	,	R(m)

WHERE	<condition>;

However,	there	is	a	way	to	explicitly	join	two	or	more	tables	using	one	of	the		JOIN		operators.	There	are	a	few	different
types,	and	they	are	listed	below:

1.	 The		INNER	JOIN		on	condition
This	kind	of	join	operator	takes	the	cross	product	of	the	tables	and	then	applies	a	condition,	and	only	taking	the
cross	product	elements	that	satisfy	the	condition	given.	It	then	eliminates	all	duplicate	columns	that	are	created.

2.	 The		NATURAL	JOIN	
The		NATURAL	JOIN		operator	equates	all	columns	with	the	same	name	in	the	tables	that	are	being	joined.	It	requires
the	values	in	the	columns	to	be	the	same	in	order	to	keep	the	elements	in	the	cross	product.	This	type	of	join	also
eliminates	any	duplicate	columns	that	are	created.

3.	 The		INNER	JOIN	USING(attrs)	
This	again	is	an		INNER	JOIN	,	however	this	type	of	join	takes	a	special	clause	called		USING		and	listing	attributes.
This	is	sort	of	like	the		NATURAL	JOIN	,	except	you	specifically	state	the	attributes	that	you	want	to	be	equated.

4.	 The		OUTER	JOIN	
There	are	multiple	forms	of	this	kind	of	join	operator.	There	is	the		LEFT	OUTER	JOIN	,	the		RIGHT	OUTER	JOIN	,	and	the
	FULL	OUTER	JOIN	.	These	joins	combine	elements	similar	to	the		INNER	JOIN	,	except	when	elements	don't	match	the
	INNER	JOIN		condition,	they're	still	added	to	the	result	and	padded	with		<null>		values.

All	of	these	join	operators	don't	add	any	specific	power	to	SQL,	they	can	all	be	described	using	different	constructs,
however	they	can	be	very	helpful	when	creating	queries.	Especially	the		OUTER	JOIN	,	for	it	is	very	difficult	to	express	without
the		OUTER	JOIN		itself.

The	'Join'	Family	Operators

The	Basics



Let's	create	a	query	that	you	should	be	familiar	with,	which	outputs	the		Title		and		Rating		of	all	the	movies.

Like	so:

SELECT	Title,	Rating

FROM	Movie,	Review

WHERE	Movie.mID	=	Review.mID;

In	the	above	query,	we	make	a	join	relation	making	sure	that	the	movie	ID	is	the	same	across	the		Movie		and		Review		table.

Now	let's	rewrite	it	using	an		INNER	JOIN	:

SELECT	Title,	RATING

FROM	Movie	INNER	JOIN	Review

ON	Movie.mID	=	Review.mID;

This	query	does	the		INNER	JOIN	,	or	the	combination	of		Movie		and		Review	,	ON	a	specific	condition.	So	it	does	the	cross
product	of	the	two	tables,	then	after	doing	the	cross	product,	it	checks	the	condition	and	only	returns	the	elements	that
satisfy	the	condition.

We	would	then	get	a	table	in	return	with	every	movie	in	the	database	and	its		Rating	.

The		INNER	JOIN		operator	is	the	default	operator	in	SQL,	and	even	if	you	were	to	take	out	the		INNER		and	just	write:		<table>
JOIN	<table>	,	it	would	default	to	an		INNER	JOIN	.

Let's	create	another	query	that	gets	the		Title		and		Rating		of	all	movies	whose		Rating		is	greater	than	3,	and	was
produced	after	the	year	1990.

Like	so:

SELECT	Title,	Rating

FROM	Movie,	Review

WHERE	Movie.mID	=	Review.mID

				and	Rating	>	3	and	Year	>	1990;

Let's	now	rewrite	this	query	to	use	the		INNER	JOIN		operator.	Our	query	would	look	like	this:

SELECT	Title,	Rating

FROM	Movie	JOIN	Rating

ON	Movie.mID	=	Review.mID

				and	Rating	>	3	and	Year	>	1990;

Our	query	selects	all	movies	whose		Rating		is	greater	than	3,	and	whose		Year		is	greater	than	1990.	It	joins	the		Movie	

The	Inner	Join	Operator

Basic		INNER	JOIN		Query

Inner	Join	with	Multiple	Conditions



and		Review		tables,	and	the	join	relation	is	again	combining	the		Movie		and		Review		records	where	the		mID		matches.	It
then	checks	the	condition	and	returns	the	tuples	that	satisfy	the	condition.

We	would	then	get	the	following	movies	in	return:	Gravity,	The	Lion	King,	Titanic,	and	Cast	Away.

The		ON		condition	can	also	be	ran	using	the		WHERE		clause,	but	it's	more	efficient	to	use	the	the		ON		operator	for	reasons	I
will	not	get	into	here.

We	will	create	a	query	that	just	gets	all	the	general	information	on	each	individual	movie,	and	also	return	all	the	user's
names.

Our	query	will	look	like	this:

SELECT	Movie.mID,	Title,	Year,	Director,	Rating,	User.uID	Name

FROM	Movie,	User,	Review

WHERE	Movie.mID	=	Review.mID

				and	User.uID	=	Review.uID;

Now	lets	rewrite	it	using	a	join	operator:

SELECT	Movie.mID,	Title,	Year,	Director,	Rating,	User.uID,	Name

FROM	Movie	JOIN	User	JOIN	Review

ON	Movie.mID	=	Review.mID

				and	User.uID	=	Review.uID;

In	this	particular	query,	we	would	possibly	get	an	error	depending	on	the	type	of	system	that	you	are	using.	A	few	SQL
sytems	are:	SQLite,	MySQL,	and	Postrisk.

If	working	in	the	Postrisk	system,	we	would	get	an	error	when	running	the	above	query	because	Postrisk	does	not	support
multiple	join	operators.	It	requires	all	join	operations	to	be	binary,	meaning	it	can	only	join	two	relations.	If	running	on	the
Postrisk	system,	you	could	rewrite	the	query	to	look	like	this:

SELECT	Movie.mID,	Title,	Year,	Director,	Rating,	User.uID,	Name

FROM	(Movie	JOIN	Review	ON	Movie.mID	=	Review.mID)	JOIN	User

ON	User.uID	=	Review.uID;

Notice	in	the	above	query	we	joined	the	two	relations		Movie		and		Review		and	then	wrapped	them	in	parenthesis.	This
allows	for	it	to	satisfy	the	Postrisk's	requirement	for	all	join	relations	to	be	binary.	We	are	saying	"First	join	the		Movie		and
	Review		table,	then	join	that	result	with	the		User		table.	Lastly,	we	moved	the		ON		condition	inside	the	parenthesis	for	that
particular	join	operator.

Running	a	Query	with	Three	Relations



Let's	use	one	of	our	previous	querys	where	we	used	the		INNER	JOIN		to	combine	the		Movie		and		Review		in	order	to	find	the
	Rating		that	the	each	movie	had.

It	looked	like	this:

SELECT	Title,	Rating

FROM	Movie	INNER	JOIN	Review

ON	Movie.mID	=	Review.mID;

As	a	reminder,	the		NATURAL	JOIN		operator	takes	two	relations	that	have	column	names	in	common,	and	then	it	performs	a
cross-product	that	only	keeps	the	tuples	where	the	tuples	have	the	same	value	in	those	common	attribute	names.	For
example,		Movie		and		Review		have	the		mID		column	in	common.	If	I	were	to	change	the		INNER	JOIN		to	a		NATURAL	JOIN	,
they	system	will	automatically	apply	this	equality	between	the		mID		in	the		Movie		relation	and	the		Review		relation.

It	would	look	like	this:

SELECT	Title,	Rating

FROM	Movie	NATURAL	JOIN	Review;

Let's	go	back	to	our	query	using	the		INNER	JOIN		that	finds	the	movies	whose		Rating		is	greater	than	3,	and	was	produced
after	the	year	1990.

SELECT	Title,	Rating

FROM	Movie	JOIN	Rating

ON	Movie.mID	=	Review.mID

				and	Rating	>	3	and	Year	>	1990;

Now	if	we	changed	this	to	using	a		NATURAL	JOIN	,	it	would	look	like	this:

SELECT	Title,	Rating

FROM	Movie	NATURAL	JOIN	Rating

WHERE	Rating	>	3	and	Year	>	1990;

We	changed		JOIN		to		NATURAL	JOIN	,	then	deleted	the		ON		condition	and	changed	it	to	a		WHERE		clause.	Lastly,	we	deleted
join	relation	since		NATURAL	JOIN		automatically	equates	columns	with	the	same	name.

We	would	then	get	the	same	movies	we	got	before:	Gravity,	The	Lion	King,	Titanic,	and	Cast	Away.

The	Natural	Join	Operator

Basic		NATURAL	JOIN		Query

	NATRUAL	JOIN		with	Additional	Conditions

The		USING		Clause



There	is	a	feature	in	SQL	that	goes	with	the		NATURAL	JOIN		operator	that	is	often	regarded	as	better	practice	than	just	using
	NATURAL	JOIN	.	That	feature	is	the		USING		clause,	and	it	explicitly	lists	the	attributes	that	should	be	equated	when	joining	two
relations.

Using	the	previous		INNER	JOIN		query,	it	would	look	like	this:

SELECT	Title,	Rating

FROM	Movie	JOIN	Rating

ON	Movie.mID	=	Review.mID

				and	Rating	>	3	and	Year	>	1990;

Now	if	we	changed	this	to	using	a		NATURAL	JOIN		with		USING	,	it	would	look	like	this:

SELECT	Title,	Rating

FROM	Movie	JOIN	Rating	USING(mID)

WHERE	Rating	>	3	and	Year	>	1990;

Notice	that	we	deleted		NATURAL		and	only	kept	the	word		JOIN	.	We	then	specify	that	the		mID		is	the	attribute	that	should	be
equated	across		Movie		and		Review	.

We	can	only	put	in	the		USING		clause	any	attributes	that	appear	in	both	tables.	If	we	tried	to	put	an	attribute	that	was	only	in
one	table,	the	query	would	not	run	and	would	return	an	error.

The	reason	this	is	considered	better	practice	is	because	the		NATURAL	JOIN		implicitly	joins	all	columns	that	have	the	same
name,	when	this	may	not	be	favored.	For	instance,	it's	possible	to	not	realize	that	two	relations	have	the	same	column
name,	and	then	the	system	will	sort-of,	under	the	covers,	equate	those	values.	Compared	to	specificaly	stating	which
relations	to	join	which	will	prevent	the	query	from	equating	values	that	don't	need	to	be	equated.	Also,	in	real	applications
there	can	often	be	upwards	of	100	attributes	in	a	relationship.	Thus,	making	it	more	likely	that	you	have	attributes	with	the
same	name	but	aren't	meant	to	get	equated.



Let's	start	with	a	query	that	joins	using	the		INNER	JOIN		operator	which	will	join		Movie		and		Review		on	the	matching	movie
IDs,	and	will	return	a	few	attributes.

Like	so:

SELECT	Movie.mID,	Title,	Rating,	ratingDate

FROM	Movie	INNER	JOIN	Review	USING(mID);

Now	let's	assume	that	we	want	results	with	movies	that	do	not	have	a	rating	date.	That	is,	there	is	a		<null>		value	for	that
particular	element.

Our	query	would	look	like	this:

SELECT	Movie.mID,	Title,	Rating,	ratingDate

FROM	Movie	RIGHT	OUTER	JOIN	Review	USING(mID);

Notice	that	we	changed	the		INNER	JOIN		to	a		RIGHT	OUTER	JOIN		operator.	We	would	get	our	exact	same	results	as	before,
which	would	be	table	with	all	the	movies	and	some	of	their	data,	such	as		Rating		and		ratingDate	.	What	the		RIGHT	OUTER
JOIN		operator	does	is	that	it	takes	the	tuples	on	the	right	side	of	the	relation,	and	if	they	don't	have	a	matching	tuple	on	the
left	then	it's	still	added	to	the	results	and	padded	with		null		values.	When	there	is	a	tuple	on	the	right	with	no	matching
tuple	on	the	left	side	of	the	relation,	that	is	called	a	dangling	tuple,	and	the		RIGHT	OUTER	JOIN		includes	all	dangling	tuples	in
its	results.

You	can	also	abbreviate	the		RIGHT	OUTER	JOIN		to	just		<LEFT/RIGHT>	JOIN		and	it	will	produce	the	same	results.	On	top	of
that,	the		OUTER		join	can	also	be	combined	with	the		NATURAL	JOIN		by	joining	relations	like	this:		NATURAL	<LEFT/RIGHT>	OUTER
JOIN	.

In	our	previous	query,	we	checked	to	see	if	a	tuple	in	the		Review		table	matched	the	tuple	in	the		Movie		table.	Now	what	if
we	wanted	to	do	it	the	other	way	arround?	For	example,	check	to	see	if	a	tuple	in	the		Movie		table	matches	a	tuple	in	the
	Review		table.	You	might	assume	that	we	could	just	switch	the	relations	around	and	put		Movie		on	the	right,	and		Review		on
the	left.	However,	SQL	actually	has	a	counterpart	to	the		RIGHT	OUTER	JOIN		operator,	and	it	is	the		LEFT	OUTER	JOIN	.

It	would	look	like	this:

SELECT	Movie.mID,	Title,	Director,	Rating

FROM	Movie	LEFT	OUTER	JOIN	Review	USING(mID);

In	the	above	query	we	are	checking	to	see	if	the	tuples	in	the		Movie		table	match	any	tuples	in	the		Review		table.	Instead	of
checking	it	the	other	way	arround	like	in	our	previoius	query.	We	are	also	including	the		Director		names	in	this	query,	and
since	the		Director		tuples	won't	match	any	tuples	in	the		Review		table,	they	will	be	considered	dangling	tuples.	However,
recall	that	the		OUTER	JOIN		operator	includes	dangling	tuples	in	the	result,	so	no	need	to	worry!

The	Outer	Join	Operator

Basic	Query

The		FULL	OUTER	JOIN		Operator



So	we	know	how	to	include	dangling	tuples	from	one	relation	into	our	results,	but	what	if	we	want	to	include	unmatched
results	from	both	the	left	and	the	right	side	relation?	In	this	case,	we	use	the		FULL	OUTER	JOIN		operator.

Let's	create	another	query	that	includes		null		values	from	both	the		ratingDate		and		Director		columns.

Our	query	would	look	like	this:

SELECT	Movie.mID,	Title,	Director,	Rating,	ratingDate

FROM	Movie	FULL	OUTER	JOIN	Review	USING(mID);

We	would	then	get	a	table	of	results	in	return	will	all	the	values	for	each	column	even	the	ones	that	are		null	.



The	aggregate,	or	aggregation	functions,	initially	appear	inside	the		SELECT		clause	of	a	query,	and	they	perform
computations	over	sets	of	values	in	multiple	rows	of	our	relations.	The	basic	aggregation	functions	suuported	by	every	SQL
systems	are:		MIN	,		MAX	,		SUM	,		AVG	,	and		COUNT	.

Now	that	the	aggregation	functions	have	been	introduced,	two	new	clauses	can	be	added	to	the	SQL	select	statements.
These	are	the:		GROUP	BY	,	and	the		HAVING		clauses.

The		GROUP	BY		allows	us	to	partition	our	relations	into	groups,	and	then	compute	aggregated	aggregate	functions	over
each	group	independently.
The		HAVING		condition	allows	us	to	test	filters	on	the	results	of	aggregate	values.
The	difference	between	the		WHERE		and		HAVING		conditions	is	the		HAVING		applies	to	all	the	groups	generated	from	the
	GROUP	BY		clause.	While	the		WHERE		condition	applies	to	single	rows	at	a	time.

The	syntax	looks	like	this:

SELECT	A1,	A2,	.	.	.	,	A(n)

FROM	R1,	R2,	.	.	.	,	R(m)

WHERE	<condition>

GROUP	BY	<columns>

HAVING	<condition>;

Aggregation

Aggregation	Functions

Two	New	Clauses



Our	first	aggregation	query	is	going	to	compute	the	average	movie		Rating		of	the	movies	in	the	database.

Like	so:

SELECT	AVG(Rating)

FROM	Review;

We	would	then	get	a	single	cell	back	with	the	result	of:		3.333333333	.	All	the	ratings	add	up	to	40,	and	there	are	twelve
ratings,	so	40/12	=	3.33	repeating.

Our	second	query	is	going	to	be	a	little	more	complicated.	It	finds	the	minimum		Rating		of	movies	that	were	produced
before	the	year		2000	.

Our	query	would	look	like	this:

SELECT	MIN(Rating)

FROM	Movie,	Review

WHERE	Movie.mID	=	Review.mID	and	Year	<	2000

The	above	query	is	saying	that	the	aggregation	is	going	to	look	at	the		Rating		column	and	it's	going	to	find	the	lowest
value.	It	is	going	to	look	inside	the		Movie		and		Review		tables,	it	will	join	the		mID		across	both	relations,	and	will	filter	for
movies	that	were	produced	before	the	year	2000.

Our	resulting	movie	would	be	Top	Gun.

Now	lets	go	back	to	our		AVG		aggregation	query	again.	We	will	again	compute	the	average		Rating		of	all	the	movies	that
were	produced	after	the	year	1995.	However,	we	have	to	change	up	the	query	because	some	movies	were	rated	more	than
once,	and	we	don't	want	to	include	the	duplicate	ratings	in	our	average	rating	computation.	We	only	want	to	count	the
	Rating		one	time	for	each	movie.	In	order	to	do	that,	we	need	to	use	a	subquery	from	where	we	select	from		Review	,	and
the	we	just	want	to	check	for	each	movie	whether	their	ID	is	among	those	whose	year	is	greater	than	1995.

Our	query	would	look	like	this:

SELECT	AVG(Rating)

FROM	Review

WHERE	mID	IN	(SELECT	mID	FROM	Movie	WHERE	Year	>	1995);

So	now	we	would	get	a	resulting	table	where	the		Rating		for	each	movie	is	only	counted	once	in	the	computation.	Our
average		Rating		for	all	movies	produced	after	the	year	1995	would	be:	3.

Aggregation	Functions

Basic	Aggregation	Query

Aggregation	and	Joins



The		COUNT		function,	not	suprisingly,	counts	the	number	of	tuples	in	the	result	that	meet	the		WHERE		condition.

Like	so:

SELECT	COUNT(*)

FROM	Movie

WHERE	Year	>	1990;

We	are		SELECT	ing	all	attributes	inside	the		Movie		table,	and	we	are	going	to		COUNT		the	number	of	movies	whose	year	is
greater	than	1990.

Our	result	would	be	the	number	6,	because	the	following	movies	all	were	produced	after	the	year	1990:	The	Lion	King,
Titanic,	Gravity,	Harry	Potter,	Cast	Away,	and	Spiderman.

Now	lets	create	another	query	that	counts	the	number	of	movies	with	a		Rating		greater	than	3.

It	would	look	like	this:

SELECT	COUNT(*)

FROM	Review

WHERE	Rating	>	3;

We	would	then	get	a	result	of	6.	However,	there	are	some	movies	that	were	rated	more	than	once	and	who	have	multiple
ratings	greater	than	3,	so	we	want	to	eliminate	the	duplicates	and	only	count	each	movie	once.

Our	new	query	would	look	like	this:

SELECT	COUNT(DISTINCT	mID)

FROM	Review

WHERE	Rating	>	3;

SQL	includes	a	nice	keyword	for	us	ot	use	in	this	particular	query.	In	the		COUNT		function	we	put	the		DISTINCT		keyword	and
then	the	name	of	the	attribute	that		COUNT		will	look	for.	In	this	case,		COUNT		will	look	at	the	result,	and	then	it	will	count	the
distinct	values	for	the	particular	attribute.

Our	result	would	be	the	number	5,	because	the	movie	Gravity	was	rated	twice	with	a		Rating		greater	than	3.	So	now	we
eliminate	the	duplicate	and	get	our	correct	result	by	only	counting	each	movie	once	in	the	computation.

We're	going	to	write	up	a	fairly	complicated	query	this	time.	This	query	computes	the	difference	of	the	average		Rating	
between	movies	produced	after	the	year	2000,	and	movies	produced	before	the	year	2000.

Our	query	will	look	like	this:

SELECT	Post.avgRating	-	Pre.avgRating

FROM

				(SELECT	AVG(Rating)	as	avgRating

				FROM	Review

				WHERE	mID	IN

								(SELECT	mID	FROM	Movie	WHERE	Year	>=	2000))	as	Post

				(SELECT	AVG(Rating)	as	avgRating

				FROM	Review

				WHERE	mID	NOT	IN

The		COUNT		Function

Aggregation	in	Subqueries



								(SELECT	mID	FROM	Movie	WHERE	Year	>=	2000))	as	Pre;

In	the	above	query	we	are	using	subqueries	in	the		FROM		clause.	Recall	from	earlier	chapters	that	a	subquery	in	the		FROM	
clause	allows	you	to	write	a	select	statement,	and	then	use	the	result	as	if	it	were	an	actual	relation	in	the	database.	So	we
are	going	to	compute	two	subqueries	in	the		FROM		clause,	one	of	them	computing	the	average		Rating		of	movies	that	were
produced	on	or	after	the	year	2000,	and	the	second	one	computing	the	average		Rating		of	movies	that	were	NOT
produced	on	or	after	the	year	2000.

So	lets	walk	through	the	query:

The	first	subquery	says,	let's	find	the	movies	whose		Year		is	greater	than	or	equal	to	2000,	let's	compute	their	average
	Rating	,	and	we	will	call	it		avgRating	.	We	will	take	the	whole	result	of	this	query	and	then	name	it		Post	,	as	in	post-
2000.
Similarly	the	second	relation	that	we	are	computing	in	the		FROM		clause	computes	the	average		Rating		of	movies
whose		Year		is	not	greater	than	or	equal	to	2000,	so	their		mID		is		NOT	IN		the	set	of	movies	whose		Year		is	greater
than	2000.	We	then	name	the	result	of	this	query		Pre	,	as	in	pre-2000.
To	conclude,	in	the		FROM		clause	we	now	have	a	relation	called		Post		with	an	attribute	called		avgRating	,	and	a	second
relation	called		Pre		with	an	attribute	called		avgRating	.	Then,	in	the		SELECT		clause	of	the	main	query,	we	subtract	the
	avgRating		of	movies	from		Pre		from	the		avgRating		of	movies	from		Post	.

If	we	were	to	run	the	query,	we	would	get	the	result	of:	0.	Thus,	that	means	the	average		Rating		of	movies	produced	before
the	year	2000	is	exactly	the	same	as	the	average		Rating		of	movies	produced	on	or	after	the	yeary	2000.



The		GROUP	BY		clause	is	only	used	in	conjuction	with	aggregation.	Our	first	query	is	going	to	find	the	number	of	movies	that
were	produced	in	each	year,	and	it's	going	to	do	so	by	using	grouping.	Essentially	what	grouping	does	is	it	takes	a	relation
and	it	partitions	it	by	values	of	a	given	attribute	or	set	of	attributes.

SELECT	Year,	COUNT(*)

FROM	Movie

GROUP	BY	Year;

Specifically	in	this	query	we're	taking	the		Movie		relation	and	we're	breaking	it	into	multiple	groups.	Each	group	is
represented	by	each	individual	year.	Then	for	each	group	we	return	one	tuple	in	the	result	containing	the		Year		for	the
group	and	the	number	of	tuples	in	the	group.

We	would	then	get	the	number	1	for	each	year,	because	there	is	no	two	movies	in	our	database	that	were	produced	in	the
same	year.

The		HAVING		clause	is	another	clause	that	is	only	used	with	aggregation.	The		HAVING		clause	allows	us	to	apply	conditions
to	the	results	of	the	aggregate	functions.	The		HAVING		clause	is	placed	after	the		GROUP	BY		clause	and	it	allows	us	to	check
conditions	that	involve	the	entire	group.	In	contrast,	the		WHERE		clause	applies	only	to	one	tuple	at	a	time.

Let's	create	a	query	that	finds	directors	which	have	produced	more	than	one	movie.

Our	query	will	look	like	this:

SELECT	Director

FROM	Movie

GROUP	BY	Director

HAVING	COUNT(DISTINCT	mID)	>	1;

The	above	query	is	going	to	get	each		Director		from	the		Movie		table,	and	then	put	them	into	their	own	groups.	For	each
group,	or		Director	,	it	is	going	to	check	to	see	if	there	are	more	than	one		mID	's	that	are	associated	with	that		Director	.	If
there	is,	the		Director		will	be	returned	in	the	results.	If	not,	then	the		Director		will	not	be	returned.

For	this	particular	query,	we	would	either	get	an	error	or	a		null		value,	because	there	is	no	director	in	our	database	that
has	produced	more	than	one	movie.

Aggregation	Clauses

The		GROUP	BY		Clause

The		HAVING		Clause



In	SQL,	there	are	statements	for	inserting	data,	deleting	data,	and	modifying	data	in	a	databse.	For	inserting	data,	there	are
two	methods:

INSERT	INTO	<table>

				VALUES(A1,	A2,	.	.	.,	An);

The	first	method	allows	us	to	insert	one	tuple	into	the	database	by	specifying	its	actual	value.	The	command	above	is
saying	to		INSERT	INTO		a	table,	then	specify	the	value	of	that	tuple,	and	the	result	of	the	command	will	be	to	insert	one	new
tuple	into	that	table	with	the	specified	value.

The	other	method	of	inserting	data	into	a	table	is	to	run	a	query	over	the	database	as	a	select	statement.	That	select
statement	will	produce	a	set	of	tuples,	and	as	long	as	that	set	of	tuples	has	the	same	schema	as	the	table,	we	could	insert
all	of	the	tuples	into	the	table.

Like	this:

INSERT	INTO	<table>

				SELECT	STATEMENT;

Deleting	data	is	fairly	simple,	and	looks	like	this:

DELETE	FROM	<table>

WHERE	<condition>;

The	above	query	is	saying	to		DELETE	FROM		a	table,		WHERE		a	certain	condition	is	true,	so	this	condition	is	similar	to	the
conditions	that	we	see	in	the	select	statement.	Then	every	tuple	in	the	table	that	satisfies	the	given	condition	will	be
deleted.

This	condition	can	sometimes	get	fairly	complicated,	because	it	can	include	subqueries,	and	aggregation	over	other	tables.

Updating	data	is	done	through	a	command	similar	to	the		DELETE	FROM		command.	It	similarily	operates	on	a	single	table,	it
then	evaluates	a	condition	over	each	tuple	of	the	table,	and	when	the	condition	is	true,	it	will	modify	the	tuple.

It	looks	like	this:

UPDATE	<table>

SET	<attr>	=	<expression>

WHERE	<condition>;

Data	Modification	Statements

Inserting	Data

Deleting	Data

Updating	Data



The	above	query	takes	an	attribute	that	is	specified	and	reassigns	it	to	have	the	value	that	is	the	result	of	the	expression.
The	condition	can	also	get	fairly	complicated,	for	it	can	have	subqueries	and	so	on.	As	well	as	the	expression,	for	it	can
involve	queries	over	other	tables	or	the	same	table	in	the	database.

You	can	also	update	multiple	attributes	in	a	tuple.	You	can	update	any	number	of	attributes	simultaneously	by	evaluating	an
expression	for	each,	and	assigning	the	result	of	that	expression	to	the	attribute.

Like	so:

UPDATE	<table>

SET	A1=<expr>,	A2=<expr>,	...,		An=<expr>

WHERE	<condition>;



Let's	assume	that	we	want	to	insert	a	new	movie	into	our	database.	We	do	this	by	saying	we	want	to		INSERT	INTO	Movie	,
we	use	the	keyword	values	and	we	siply	list	the	values	we	want	to	insert.

Like	so:

INSERT	INTO	Movie	VALUES(109,	'Cinderella',	1950);

In	this	query	we	are	inserting	values	for	the	attributes	of	the		Movie		table.	We	included	a		mID	,		Title	,	and		Year	.	We	did
not	include	a		Director	,	so	thus	there	will	be	a		null		value	in	the	database	for	that	attribute	of	Cinderella.

Now	let's	do	a	little	more	complicated	insert	command.	Now	that	we	have	Cinderella	in	our	database,	lets	add	a	few	users
into	the		Review		table	and	have	them	rate	the	new	movie.	We're	going	to	start	by	inserting	two	new	users	into	the		User	
table.

Like	so:

INSERT	INTO	Review	VALUES(209,	'Jonathan	Murleau')

INSERT	INTO	Review	VALUES(210,	'Barabara	Vance');

We	now	have	two	new	users	but	they	have	not	yet	rated	on	any	movies,	so	let's	have	them	rate	on	our	new	movie
Cinderella.

We	now	want	to	return	all	users	where	there		mID		does	not	appear	in	the		Review		table.	Like	so:

SELECT	*

FROM	User

WHERE	uID	NOT	IN	(SELECT	uID	FROM	Review);

Our	query	would	the	result	the	two	users	that	we	just	inserted:	Jonathan	and	Barbara.	Well	now	that	we	have	singled	out
the	users	who	have	not	rated	yet,	lets	insert	those	users	into	the		Review		table	with	the	correct	schema.

Like	this:

INSERT	INTO	Review

SELECT	uID,	109,	3,	null

FROM	User

WHERE	uID	NOT	IN	(SELECT	uID	FROM	Review);

This	query	is	saying	to	select	all	users	who	do	not	already	appear	in	the		Review		table.	We're	going	to	take	these	users	and
we're	going	to	select	their		uID	,	then	we	are	going	to	assign	them	the	correct	values	for	all	of	the		Review		attributes.	As	a
reminder,	the		Review		table	has	the	attributes:		uID	,		mID	,		Rating	,	and		ratingDate	.	So	in	our	query	we	are	selecting	their
	uID	,	then	having	the	rate	the		mID		of	109	(which	is	the	movie	Cinderella),	they	both	are	going	to	rate	the	movie	with	a	3,
and	we	inserted	a		null		value	for	the		ratingDate	.	Lastly,	we	are	going	to	take	this	end	result,	and		INSERT	INTO		the
	Review		table.

Insert	Commands



Let's	create	a	query	that	finds	all	users	who	rated	more	than	2	movies.	Let's	assume	that	users	are	only	allowed	to	rate	2
movies,	and	no	more.

Our	query	would	look	like	this:

SELECT	uID,	COUNT(DISTINCT	Rating)

FROM	Review

GROUP	BY	uID

HAVING	COUNT(DISTINCT	Rating)	>	2;

This	query	says	to	go	into	the		Review		relation,	then	form	groups	or	paritions	by	each	user	ID.	This	allows	us	to	evaluate	the
set	of	ratings	for	each	individual		User	.	We're	going	to	count	how	many		DISTINCT			Rating	s	there	are	in	each	group	(or	for
each	user).	Then	it's	going	to	check	to	see	if	that	number	is	greater	than	two,	and	if	it	is,	it's	going	to	return	the		uID		of	that
user,	and	also	the	number	of		Rating	s	that	user	has	given.

If	we	were	to	run	the	query	we	would	return	the	user:	"Darrel	Sherman",	who	has	a		uID		of	207.	He	is	the	only	person	to
have	gone	over	his	rating	limit,	and	has	rated	3	movies.	Since	he	has	broken	the	hypothetical	contract,	we	are	going	to
have	to	delete	him	from	the	database.

Our	query	would	look	like	this:

DELETE	FROM	Review

WHERE	uID	in

(SELECT	uID,	COUNT(DISTINCT	Rating)

FROM	Review

GROUP	BY	uID

HAVING	COUNT(DISTINCT	Rating)	>	2);

So	all	we	did	was	add	the		DELETE	FROM	<table>	WHERE	<condition>		statement,	and	turned	our	previous	query	into	a
subquery	in	the		WHERE		clause.	The	query	is	saying	to	return	all	the	users	who	have	rated	more	than	2	movies	(just	like
before),	then		DELETE		those	users	from	the		Review		relation.

If	we	were	to	run	the	query,	we	would	delete	all	instances	of	the		uID		207,	or	Darrel	Sherman,	from	the		Review		relation.
However,	we	would	NOT	delete	him	from	the		User		relation.	In	order	to	do	that	we	would	just	have	to	change	the	relation	to
	DELETE	FROM	.

Like	so:

DELETE	FROM	User

WHERE	uID	in

(SELECT	uID,	COUNT(DISTINCT	Rating)

FROM	Review

GROUP	BY	uID

HAVING	COUNT(DISTINCT	Rating)	>	2);

We	did	the	exact	same	query	before,	except	change	the	table	from		Review		to		User	.	Now	some	SQL	database	systems
don't	allow	you	to	delete	data	if	the	subquery	includes	the	same	relation	that	you	are	deleting	from,	so	it	can	get	a	little
tricky	depending	on	the	database	you	are	using.

Delete	Commands



Let's	find	all	users	who	do	not	currently	have	a		ratingDate		assigned	to	one	of	their	rating's,	and	let's	assign	it	a	value.

Our	query	will	look	like	this:

SELECT	*

FROM	User

WHERE	uID	in	(SELECT	uID	FROM	Review	WHERE	ISNULL	ratingDate);

The	query	is	going	to	look	in	the		User		relation	and	for	each	individual	user,	it	will	check	for	their		uID		in	the		Review		table,
and	if	the		ratingDate		returns	true	for		ISNULL	,	then	it	will	retrn	that	user	in	the	end	result.

If	we	ran	the	query,	our	results	would	include	the	users	"Darrel	Sherman",	and	"Chris	Anderson",	with	a		uID		of	207	and
202	respectively.

Well	no	we	want	to	update	the		ratingDate		for	these	two	individuals	in	the		Review		table.	We	would	have	to	edit	our	query	a
little	bit	and	have	it	look	like	this:

UPDATE	Review

SET	ratingDate	=	'2014'

WHERE	uID	in	(SELECT	uID	FROM	Review	WHERE	ISNULL	ratingDate);

We	added	the		UPDATE		statement,	and	we're	telling	SQL	to		UPDATE		the		Review		table.	Find	all	the	users	with	a		uID		that
satisfy	the	subquery	in	the		WHERE		clause,	and	then	take	the		ratingDate		for	those	users	and	give	it	a	value	of		'2014'	.	We'll
assume	we	don't	know	the	exact	date	that	they	rated	the	movie,	but	we	know	it	was	in	2014.

Update	Commands



Glossary
Data	Definition	Language	(DDL)

Includes	commands	to	create	and/or	drop	a	table	or	database.

Data	Manipulation	Language	(DML)

Includes	commands	to	query	and	modify	databases.


	Introduction
	Basic Syntax
	Basic Select Statements
	Table Variables & Set Operators
	Subqueries in the Where Clause
	Using Operators in a Subquery

	Subqueries in the From & Select Clause
	The 'Join' Family Operators
	Inner Join
	Natural Join
	Outer Join

	Aggregation
	Aggregation Functions
	Aggregation Clauses

	Data Modification Statements
	Insert Commands
	Delete Commands
	Update Commands


