

JavaScript can be hard to learn and everyone makes
mistakes when writing it. This chapter will help you learn

how to find the errors in your code. It will also teach you how
to write scripts that deal with potential errors gracefully.

When you are writing JavaScript, do not expect to write it perfectly the fi rst time.

Programming is like problem solving: you are given a puzzle and not only do you have to solve

it, but you also need to create the instructions that allow the computer to solve it. too.

When writing a long script, nobody gets everything right in their first attempt. The error

messages that a browser gives look cryptic at fi rst, but they can help you determine what
went wrong in your JavaScript and how to fix it. In this chapter you will learn about:

THE CONSOLE &
DEV TOOLS

Tools built into the browser

that help you hunt for errors.

9 ERROR HANDLING & DEBUGGING

COMMON
PROBLEMS

Common sources of errors,

and how to solve them.

HANDLING
ERRORS

How code can deal with

potential errors gracefully.

,•

\ \ ~ \ \ \ \ \

\ \\\\\\\
\ \\\\\\
\ \\ .\\\\
\ \\\\\\

_ \ \ \

ERROR HANDLING & DEBUGGING @

ORDER OF EXECUTION

To find the source of an error, it helps to know how scripts are processed.

The order in which statements are executed can be complex; some tasks
cannot complete until another statement or function has been run:

function greetUser () {
O return 'He 11 o ' + getName ();

0

function getName() {
var name= 'Molly ' ;
return name;

_, var greeting= greetUser();
e al ert(greeting);

This script above creates a greeting message, then
writes it to an alert box (see right-hand page). In

order to create that greeting, two functions are used:
greetUser () and getName () .

You might think that the order of execution (the
order in which statements are processed) would be

as numbered: one through to four. However, it is a

little more complicated.

To complete step one, the interpreter needs the
results of the functions in steps two and three

(because the message contains values returned by
those functions). The order of execution is more like

this: 1, 2, 3, 2, 1, 4.

8 ERROR HANDLING & DEBUGGING

1. The greeting variable gets its value from the

greetUser () function.

2. greetUser() creates the message by combining
the string 'He 11 o ' with the result of getName ().

3. getName () returns the name to greetUser() .

2. greetUser() now knows the name, and combines
it with the string. It then returns the message to the

statement that called it in step 1.

1. The value of the greeting is stored in memory.

4. This greeting variable is written to an alert box.

EXECUT.ION CONTEXTS

The JavaScript interpreter uses the concept of execution contexts.

There is one global execution context; plus, each function creates a new

new execution context. They correspond to variable scope.

EXECUTION CONTEXT

JavaScript

Hello Molly

Every statement in a script lives in one of three

execution contexts:

Q GLOBAL CONTEXT

Code that is in the script, but not in a function.

There is only one global context in any page.

FUNCTION CONTEXT

Code that is being run within a function.

Each function has its own function context.

Q EVAL CONTEXT (NOT SHOWN)

Text is executed like code in an internal func tion

called eva l {) (which is not covered in this book).

VARIABLE SCOPE

The first two execution contexts correspond with the
notion of scope (which you met on p98):

Q GLOBAL SCOPE

If a variable is declared outside a function, it can

be used anywhere because it has global scope.

If you do not use the var keyword when creating

a variable, it is placed in global scope.

FUNCTION-LEVEL SCOPE

When a variable is declared within a function,
it can only be used within that function. This is

because it has function-level scope.

ERROR HANDLING & DEBUGGING e

Creates greeting
variable and calls

greetUser () to get
the value

greetUser() returns
1 He11 o 1 and the

result of getName ()

Waiting ...

get Name () returns
the value ' Mo 11 y ' to

greetUser()

Waiting ...

Waiting ...

function greetUser() {
return 'Hello ' + getName{);

}

function getName() {
var name = 'Molly ' ;
return name;

}

greetUser() returns
1 He 11 o Molly' to

the greeting variable

Waiting ...
greeting holds the

value 'Hello Molly'

EXECUTION CONTEXT
& HOISTING

Each time a script enters a new execution context, there are two phases

of activity:

1: PREPARE
• The new scope is created
• Variables, functions, and arguments are created
• The value of the this keyword is determined

Understanding that these two phases happen helps

with understanding a concept called hoisting. You
may have seen that you can:

• Call functions before they have been declared
(if they were created using function declarations

- not function expressions, see p96)

• Assign a value to a variable that has not yet been
declared

This is because any variables and functions within

each execution context are created before they are
executed.

The preparation phase is often described as taking

all of the variables and functions and hoisting them
to the top of the execution context. Or you can think

of them as having been prepared.

Each execution context also creates its own

vari ab 1 es object . This object contains details of all

of the variables, functions, and parameters for that
execution context.

8 ERROR HANDLING & DEBUGGING

2: EXECUTE
• Now it can assign values to variables

• Reference functions and run their code
• Execute statements

You may expect the following to fail, because
greetuser() is called before it has been defined:

var greeting= greetUser{);
function greetUser() {

II Create greet ing

It works because the function and first statement are

in the same execution context, so it is treated like this:

function greetUser()
II Create greeting

}
var greeting= greetUser{);

The following would would fai l because greetuser()
is created within the getName () function's context:
var greeting= greetUser();
function getName() {

function greetUser()
II Create greeting

}
II Return name with greeting

::

UNDERSTANDING
SCOPE

In the interpreter, each execution context has its own va ri ables object.

It holds the variables, functions, and parameters available within it.

Each execution context can also access its parent's v a ri ables object.

Functions in JavaScript are said to have lexical scope.
They are linked to the object they were defined within.
So, for each execution context, the scope is the
current execution context's variables object, plus the
variables object for each parent execution context.

var greeting = (function()
var d =new Date();
var time= d.getHours();
var greeting= greetUser{);

function greetUser() {
if (time < 12) {

var msg
else {
var msg

'Good morning ';

'Welcome ' ;

return= msg + getName();

funct i on getName() {
var name = 'Molly';
return name;

}) ;
alert(greeting);

Imagine that each function is a nesting doll.

The children can ask the parents for information in
their variables. But the parents cannot get variables

from their chi ldren. Each child will get the same
answer from the same parent.

If a variable is not found in the variables object
for the current execution context, it can look in the

variables object of the parent execution context.
But it is worth knowing that looking further up the

stack can affect performance, so ideally you create
variables inside the functions that use them.

If you look at the example on the left, the inner
functions can access the outer functions and their

variables. For example, the greetUser() function
can access the time variable that was declared in the
outer greeting() function.

Each time a function is called, it gets its own

execution context and va r i ables object.

Each time an outer function calls an inner function,

the inner function can have a new variables object.
But variables in the outer function remain the same.

Note: you cannot access this variables object from
your code; it is something the interpreter is creating

and using behind the scenes. But understanding

what goes on helps you understand scope.

ERROR HANDLING & DEBUGGING 8

UNDERSTANDING ERRORS

If a JavaScript statement generates an error, then it throws an exception.

At that point, the interpreter stops and looks for exception-handl ing code.

If you are anticipating that something in your code
may cause an error, you can use a set of statements

to handle the error (you meet them on p480).
This is important because if the error is not handled,

the script will just stop processing and the user will

not know why. So exception-handling code should
inform users when there is a problem.

function greetUser()
4 • 11 Interpreter 1 ooks here

}

function getName() {

4
• II Imagine this had an error

II It was caused by greetUser()
}

t» var greeting= greetUser();
C» al ert(greeting);

9 ERROR HANDLING & DEBUGGING

Whenever the interpreter comes across an error,
it wi ll look for error-handling code. In the diagram

below, the code has the same structure as the code
you saw in the diagrams at the start of the chapter.

The statement at step 1 uses the function in step 2,

which in turn uses the function in step 3. Imagine
that there has been an error at step 3.

When an exception is thrown, the interpreter
stops and checks the current execution context for

exception-handling code. So if the error occurs in the
getName () function (3), the interpreter starts to look

for error handling code in that function.

If an error happens in a function and the function
does not have an exception handler, the interpreter

goes to the line of code that called the function.
In this case, the get Name () function was called by

greetUser(), so the interpreter looks for exception­

handling code in the greetUser() function (2).

If none is found, it continues to the next level,
checking to see if there is code to handle the error

in that execution context. It can continue until it
reaches the global context, where it would have to it
terminate the script, and create an Error object.

So it is going through the stack looking for error­

handling code until it gets to the global context.

If there is stil l no error handler, the script stops

running and the Error object is created.

ERROR OBJECTS

Error objects can help you find where your mistakes are

and browsers have tools to help you read them.

When an Er ror object is created, it will contain the
following properties:

PROPERTY DESCRIPTION

name Type of execution

message Description

fi l eNumber Name of the JavaScript file

l i neNumber Line number of error

When there is an error, you can see all of this
information in the JavaScript console I Error console

of the browser.

You wil l learn more about the console on p464, but

you can see an example of the console in Chrome in
the screen shot below.

There are seven types of buil t-in error objects in
JavaScript. You'l l see them on the next two pages:

OBJECT

Error

Syntax Error

DESCRIPTION

Generic error - the other errors

are all based upon this error

Syntax has not been followed

Ref erenceError Tried to reference a variable that is

not declared/within scope

TypeError

Range Error

URI Error

EvalEr r or

An unexpected data type that

cannot be coerced

Numbers not in acceptable range

encodeURI ().decodeURI(),and

similar methods used incorrectly

eva l () function used incorrectly

Q. Elements Network Sources Timeline Profiles Resources Audits I ~I 0 1 >:: 0 d;I ~ ><

6) ? <top frame> ~

O Uncaught SyntaxError: Unexpected token ILLEGAL
>

1. In the red on the left, you can see this is a
SyntaxError. An unexpected character was found.

errors.js:4

2. On the right, you can see that the error happened

in a file called errors .js on line 4.

ERROR HANDLING & DEBUGGING 9

ERROR OBJECTS
CONTI NUED
Please note that these error messages are from the Chrome browser. Other browsers' error messages may vary.

Syntax Error
SYNTAX IS NOT CORRECT

This is caused by incorrect use of the rules of the
language. It is often the result of a simple typo.

MISMATCHING OR UNCLOSED QUOTES

document .write ("Howdyl);

SyntaxError: Unexpect ed EOF

MISSING CLOSING BRACKET

document .getElementByid('page' I

SyntaxErr or : Expected token ') '

MISSING COMMA IN ARRAY

Would be same for missing] at the end

var l ist = ['Item 1', 'Item 2 ' l 'rtem 3'];

SyntaxError : Expected token ']'

MALFORMED PROPERTY NAME

It has a space but is not surrounded by quote marks

user = { f i rst l name: "Ben", lastName: "Lee"};

Synt axError: Expected an identifier but

found 'name ' instead

EvalError
INCORRECT USE OF eval() FUNCTION

The eva l () function evaluates text through the
interpreter and runs it as code (it is not discussed

in this book). It is rare that you would see this type
of error, as browsers often throw other errors when

they are supposed to throw an Eva 1 Error.

8 ERROR HANDLING & DEBUGGING

Ref erenceError
VARIABLE DOES NOT EXIST

This is caused by a variable that is not declared or is

out of scope.

VA RIABLE IS UNDECLARED

var wi dth = 12 ;

var area = width * llt!ftNU! ;
ReferenceError: Can ' t find vari able:
height

NAMED FUNCTION IS UNDEFINED

document.write () ; randomFunction()

ReferenceError : Can't find variable :
randomFunction

UR I Error
INCORRECT USE OF URI FUNCTIONS

If these characters are not escaped in URls, they will

cause an error: / ? & I : ;

CHARACTERS ARE NOT ESCAPED

decodeURI('http : //bbc . com/ news . phplla=l') ;

URlError : URI error

These two pages show JavaScript's seven different types of error objects

and some common examples of the kinds of errors you are likely to see.

As you can tell, the errors shown by the browsers can be rather cryptic.

Type Error
VALUE IS UNEXPECTED DATA TYPE

This is often caused by trying to use an object or
method that does not exist.

INCORRECT CASE FOR document OBJECT

l!Jocument.wri te ('Oops! ');

TypeError: 'undefined' is not a funct ion
(eval uating 'Document.write('Oops! ')')

INCORRECT CASE FOR write() METHOD

document. eJrite('Oops ! ') ;

TypeError: 'undefined' is not a function
(evaluating 'document.Write('Oops! ') ')

METHOD DOES NOT EXIST

var box = {};
box . @Mi}id ;

II Create empty object
II Try to access getArea()

TypeError: 'undefined ' is not a function
(evaluating 'box.getArea()')

DOM NODE DOES NOT EXIST

var el = document .getElementByid(llll) ;
el.innerHTML = 'Mango';

TypeError: 'null' is not an object
(evaluating 'el .innerHTML = 'Mango'')

Error
GENERIC ERROR OBJECT

The generic Error object is the template (or
prototype) from which all other error objects are
created.

RangeError
NUMBER OUTSIDE OF RANGE

If you call a function using numbers outside of its
accepted range.

CANNOT CREATE ARRAY WITH -1 ITEMS

var anArray = new Array(~);

RangeError : Array si ze is not a smal l
enough positive integer

NUMBER OF DIGITS AFTER DECIMAL IN
tofhed() CAN ONLY BE 0-20
var price = 9.99;
price.toFixed(fJI);

RangeError : toFixed() argument must be
between 0 and 20

NUMBER OF DIGITS IN toPrecision() CAN
ONLY BE 1-21
num = 2.3456;
num.toPrecisi on(flJ) ;

RangeError: toPrecision() argument must
be between 1 and 21

NaN
NOT AN ERROR

Note: If you perform a mathematical operation using
a value that is not a number, you end up with the
value of NaN, not a type error.

NOT A NUMBER

var total = 3 * lilllJil ;

ERROR HANDLING & DEBUGGING @

HOW TO DEAL WITH
ERRORS

Now that you know what an error is and how the browser treats them,
there are two things you can do with the errors.

1: DEBUG THE SCRIPT TO FIX ERRORS

If you come across an error while writing a script
(or when someone reports a bug), you will need to

debug the code, track down the source of the error,

and fix it.

You wi ll find that the developer tools available in
every major modern browser will help you with
this task. In this chapter, you will learn about the

developer tools in Chrome and Firefox. (The tools in
Chrome are identical to those in Opera.)

IE and Safari also have their own tools (but there is
not space to cover them all).

@ ERROR HANDLING & DEBUGGING

2: HANDLE ERRORS GRACEFULLY

You can handle errors gracefully using try, catch,

throw, and f i na 1 ly statements.

Sometimes, an error may occur in the script for a

reason beyond your control. For example, you might
request data from a third party, and their server

may not respond. In such cases, it is particularly
important to write error-handling code.

In the latter part of the chapter, you will learn how to

gracefully check whether something will work, and
offer an alternative option if it fails.

A DEBUGGING
WORKFLOW

Debugging is about deduction: eliminating potential causes of an error.
Here is a workflow for techniques you will meet over the next 20 pages.

Try to narrow down where the problem might be, then look for clues.

WHERE IS THE PROBLEM?

First, should try to can narrow down the area where

the problem seems to be. In a long script, this is

especially important.

1. Look at the error message, it tells you:

• The relevant script that caused the problem.

• The line number where it became a problem for

the interpreter. (As you will see, the cause of

the error may be earlier in a script; but this is the

point at which the script could not continue.)

• The type of error (although the underlying cause

of the error may be different).

2. Check how far the script is running.

Use tools to write messages to the console to tell

how far your script has executed.

3. Use breakpoints where things are going wrong.

They let you pause execution and inspect the values

that are stored in variables.

If you are stuck on an error, many programmers

suggest that you try to describe the situation (talking

out loud) to another programmer. Explain what

should be happening and where the error appears

to be happening. This seems to be an effective way

of f inding errors in all programming languages. (If

nobody else is available, try describing it to yourself.)

WHAT EXACTLY IS THE PROBLEM?

Once you think that you might know the rough area

in which your problem is located, you can then try to

find the actual line of code that is causing the error.

1. When you have set breakpoints, you can see if the

variables around them have the values you would

expect them to. If not, look earlier in the script.

2. Break down I break out parts of the code to test

smaller pieces of the functionality.

• Write values of variables into the console.

• Calrfunctions from the console to check if they

are returning what you would expect them to.

• Check if objects exist and have the methods I
properties that you think they do.

3. Check the number of parameters for a function, or

the number of items in an array.

And be prepared to repeat the whole process if the

above solved one error just to uncover another ...

If the problem is hard to find, it is easy to lose track

of what you have and have not tested. Therefore,

when you start debugging, keep notes of what you

have tested and what the result was. No matter

how stressful the circumstances are, if you can,

stay calm and methodical, the problem wi ll feel less

overwhelming and you will solve it faster.

ERROR HANDLING & DEBUGGING 9

BROWSER DEV TOOLS &
JAVASCRIPT CONSOLE

The JavaScript console will tell you when there is a problem with a script,
where to look for the problem, and what kind of issue it seems to be.

These two pages show instructions for opening the

console in all of the main browsers (but the rest of

this chapter will focus on Chrome and Firefox).

CHROME/ OPERA

On a PC, press the F12 key or:

1. Go to the options menu (or three line menu icon)

2. Select Toots or More tools.
3. Select JavaScript Console or Developer Tools
On a Mac press A lt + Cmd + J. Or:

4. Go to the View menu.

5. Select Developer.
6. Open the JavaScript Console or Developer Tools
option and select Console.

INTERNET EXPLORER

Press the F12 key or:

1. Go to the settings menu in the top-right.

2. Select developer tools.

8 ERROR HANDLING & DEBUGGING

Browser manufacturers occasionally change how

to access these tools. If they are not where stated,

search the browser help files for "console."

Fil<

Zoom(100%)

Safdy

Add sit• to St.rt Scr«n

Vie.t downlo•ds Ctrl•J

Managtadd·o_n•----~
F12 devtloper tools ___ __.

Go to pinned sites

The JavaScript console is just one of severa l developer tools that are

found in all modern browsers.

When you are debugging errors, it can help if you

look at the error in more than one browser as they

can show you different error messages.

•
Hide Wtb Inspector \'.Kl

Show Page Sour(e \'.ICU
Show Page Resources \'.ICA

Show Snippet Editor
Show Extension Bulld-er

Start Profiling Jav.SCrlpt \'.()KP
St1rtTimelint Recording ~OICT

\'.ICE

If you open the errors . html file from t he sample

code in your browser, and then open the console,

you will see an error is displayed.

FIREFOX

On a PC, press Ctrl + Shift + Kor:

1. Go to the Firefox menu.

2. Select Web Developer.
3. Open the Web Console.
On a Mac press Alt + Cmd + K. Or:

1. Go to the Tools menu.

2. Select Web Developer.
3. Open the Web Console.

SAFARI

Press Alt + Cmd + C or:

1. Go to the Develop menu.

2. Select Show Error Console.
If the Develop menu is not shown:

1. Go to the Safari menu.

2. Select Preferences.
3. Select Advanced.
4. Check the box that says "Show Develop menu in

menu bar."

ERROR HANDLING & DEBUGGING 8

HOW TO LOOK AT ERRORS
IN CHROME

The console will show you when there is an

error in your JavaScript. It also displays the line

where it became a problem for the interpreter.

e 0 0 D JavaScript & jQuery - Chn1 x

+- -i C [j javascriptbook.com/code/clO/errors.html

Find the area of a wall:

+-+ width

l height

Calculate area ...

Q. Elements Network Sources Timeline Profiles Resources Audits I Console I O 1 >= 0 ~ .. x

<S> 'if' <top frame> • -0-
O Uncaught SyntaxError: Unexpected token ILLEGAL
> e

1. The Console option is selected.

2 . The type of error and the error

message are shown in red.

3. The file name and the line

number are shown on the

right-hand side of the console.

e ERROR HANDLING & DEBUGGING

Note that the line number does

not always indicate where the

error is. Rather, it is where the

interpreter noticed there was a

problem with the code.

errors.js :4

e
If the error stops JavaScript from

executing, the console will show

only one error - there may be

more to troubleshoot once this

error is fixed.

HOW TO LOOK AT ERRORS
IN FIREFOX

8 0 0 JavaScript & jQuery - Chapter 10: Error Handling & Debugging - Console Errors
.--~~~~~~~~~~~

»

1. The Console option is selected.

2. Only the JavaScript and

Logging options need to be

turned on. The Net, CSS, and

Security options show other

information.

+

Find the area of a wall:

+-+ width

! height

Calculate area ...

3. The type of error and the error

message are shown on the left.

4. On the right-hand side of the

console, you can see the name

of the JavaScript file and the line

number of the error.

Note that when debugging any

JavaScript code that has been

minified, it will be easier to

understand if you expand it first.

ERROR HANDLING & DEBUGGING 9

TYPING IN THE CONSOLE
IN CHROME

You can also just type code into the console

and it will show you a result.

8 0 6 C) JavaScript & JQvery - Ch31 x

~ -+ C ID javascriptbook.com/code/clO/

Find the area of a wall:

+-+ w idth

! height

Calculate area ...

e. <Ci' -

Timeline Profiles Resources Audits I Console I
~ l(<top frame> T

> width = 3;
3

> height = 5;
5

> area = width * height ;
15

>

Above, you can see an example

of JavaScript being written

straight into the console. This

is a quick and handy way to test

your code.

8 ERROR HANDLING & DEBUGGING

Each time you write a line, the

interpreter may respond. Here,

it is writing out the value of each

variable that has been created.

Any variable that you create in

the console will be remembered

until you clear the console.

1. In Chrome, the no-entry sign is

used to clear the console.

TYPING IN THE CONSOLE
IN FIREFOX

6 0 0 JavaScript & jQuery - Chapter 10: Error Handling & Debugging
,.-~~~~~~~~~~~...---..

»

.. area = width * height;

... 15

1. In Firefox, the Clear button will

clear the contents of the console.

+

Find the area of a wall:

..+ width

! height

Calculate area ...

This tells the interpreter that it

no longer needs to remember
the variables you have created.

2. The left and right arrows show

which lines you have written, and

which are from the interpreter.

ERROR HANDLING & DEBUGGING 8

WRITING FROM THE
SCRIPT TO THE CONSOLE

Browsers that have a console have a console object, which has several

methods that your script can use to display data in the console.

The object is documented in the Console API.

e 0 0 D ,lwlScripC & JQIJery - Chai x ~

+- ~ C I[] javascriptbook.com/code/clO/console-tog.html

>

You entered 4
Clicked submit •••
Width 3
Height 4
12

1. The console.log() method
can write data from a script

to the console. If you open

console- l og. html, you wil l
see that a note is written to the

console when the page loads.

Find the area of a wall:

Calculate area ...

Timeline Profiles Resources Audits

2 . Such notes can tell you how

far a script has run and what
values it has received. In this

example, the blur event causes

the value entered into a text
input to be logged in the console.

8 ERROR HANDLING & DEBUGGING

console-too . is;l
console-tog.js;6
console-log . js;6

consote-tog.js: ll
console--tog , js:14
consote--loq . js;17
consote-tog . js:20

3. Writing out variables lets you

see what values the interpreter
holds for them. In this example,

the console wil l write out the
values of each variable when the

form is submitted.

-·

LOGGING DATA
TO THE CONSOLE

This example shows several uses

of the console . log () method.

1. The first line is used to indicate
the script is running.

2. Next an event handler waits

for the user leaving a text input,
and logs the value that they
entered into that form field.

JAVASCRIPT

When the user submits the form,
four values are displayed:

3. That the user cl icked submit

4. The value in the width input
5. The value in the height input

6 . The value of the area variable

They help check that you are
getting the values you expect.

The console . log() method

can write several values to the
console at the same t ime, each

separated by a comma, as shown
when displaying the height (5).

You should always remove this

kind of error handling code from
your script before you use it on

a live site.

clO/ js/ console- log.js

G) console.log('And we\'re off ... ');
var $form, width, height, area ;
$form = $('#calculator');

II Indicates script is running

$('form i nput[type="text"]').on(' blur ' , function() { II When input l oses focus
console . log('You entered ', this.value); II Write va l ue to console

}) ; .

$(' #calculator').on('submit', function(e)
e.preventDefault();

~ console.log('Clicked submit . . . ') ;

width = $('#width').val();
© console.log('Width ' +width} ;

height= $('#height').val();
~ console.log('Height ', height);

area = width * height;
@ console. log(area);

$form.append('<p> ' +area+ ' <Ip>')
}) ;

II When the user clicks submit
II Prevent the form submitting
II Indicat e but ton was cl i cked

II Write width to consol e

II Write height t o console

II Wri te area to console

ERROR HANDLING & DEBUGGING e

MORE CONSOLE METHODS

To differentiate between the
types of messages you write

to the console, you can use
three different methods. They

use various colors and icons to
distinguish them.

clO/ js/ console-methods .js

1. con so 1 e . info() can be used
for general information
2. consol e .warn() can be used

for warnings
3. console .er ror () can be used

to hold errors

G) console.info('And we\'re off ... ');

var $form, width, height, area;
$form = $('#calculator ') ;

$(' form input[type="text"]').on('blur', function()
console .warn(' You entered ', this .value);

}) ;

$(' #calculator') .on('submi t', function(e) {
e.preventDefault();

wid t h = $('#width').val ();
height= $('#height').val();

area = width * height;
~ console.error(area);

$form.append('<p class="result">' + area + '<I p>');
}) ;

This technique is particularly

helpful to show the nature of the
information that you are writ ing

to the screen. (In Firefox, make
sure you have the logging option

selected.)

JAVASCRIPT

II Info: scr ipt running

II On blur event
II Warn: what was ent ered

II When form is submitted

II Error: show area

°' Elements Network Sources Timeline Profiles Resources Audits »

~ 'ii <top frame> T

C> And we're off ,,,
You entered 12
You ent ered 14

0 • 168
>

@ ERROR HANDLING & DEBUGGING

console-methods . is ;l
console-methods. js :7
console- met hods . is;?

console-met hods . js ;17
..,

GROUPING MESSAGES

1. If you want to write a set of

related data to the console, you

can use the console. group ()

method to group the messages

together. You can then expand

and contract the results.

It has one parameter; the name

that you want to use for the

group of messages. You can

then expand and collapse the

contents by cl icking next to the

group's name as shown below.

2. When you have finished

writing out the results for the

group, to indicate the end of the

group the console .groupEnd ()

method is used.

JAVASCRIPT

var $form = $('#calculator');

$form.on('submit', function(e)
e.preventDefault();
con so 1e .1 og ('Cl i eked submit. . . ') ;

var width, height, area;
width= $('#width') .val();
height= $(' #height') .val();
area = width * height;

CI) console .group('Area calculations');
console .i nfo('Width ' , width);
console .info('Height ', height);
consol e. l og(area);

cY console.groupEnd();

$form.append('<p>' +area+ '<I p> ');
}) ;

clO/ j s/ console-group.js

II Runs when submit is pressed

II Show the button was clicked

II Start group
II Write out the width
II Write out the height
.II Write out the area
II End group

Q. Elements Network Sources Timeline Profiles Resources Audits) Console I
(Si) 'i' <top frame> T

Clicked submit ...
"' Area calculations

l 0 Width 12
0 Height 14

168
>

console-gcoup,js ;S
conso\e-group. is;l2
coosole-group,js:13
conso\e=group . 1s;14
cooso\e-gcouo . js:lS

ERROR HANDLING & DEBUGGING 8

WRITING TABULAR DATA

In browsers that support it, the
console. table () method lets

you output a table showing:

• objects
• arrays that contain other

objects or arrays

clO/ js/ console-table. j s

The example below shows data
from the contacts object. It

displays the city, telephone
number, and country. It is
particularly helpful when the

data is coming from a third party.

The screen shot below shows
the result in Chrome (it looks the

same in Opera). Safari will show
expanding panels. At the time

of writing Firefox and IE did not
support this method.

JAVASCRIPT

var contacts = {
"London": {

II Store contact info in an object literal

"Tel": "+44 (0)207 946 0128",
"Country": "UK"},

"Sydney": {
"Tel" : "+61 (0)2 7010 1212",
"Country": "Australia"},

"New York" : {
"Tel": "+1 (0)1 555 2104",
"Country": "USA"}

G) console.table(contacts); II Write data to console

var city, contactDetails;
contactDetails = '';

II De~lare variabl es for page
II Hol d details written t o page

$.each(contacts , function(city, contacts) { II Loop t hrough data to
contactDetails += city+ ': ' +contacts.Tel + '<br I>' ;

}) ;
$('h2').after('<p>' + contactDetails + '<Ip>'); II Add data to the page

0. Elements Network Sources Tlmeline Profiles Resources Audits I Console I
& 'ii' <top frame> ...

(index)
London
Sydney
New York

Tel
"+44 (0)207 946 0128"
"+61 (0)2 7010 1212"
"+l (0)1 SSS 2104"

Country
"UK"
"Aust ralia"
"USA"

>:: 0 i!;;I x ..

console-table.js:l3
)

8 ERROR HANDLING & DEBUGGING

WRITING ON A CONDITION

Using the console. assert()

method, you can test if a

condition is met, and write to the

console only if the expression

evaluates to false.

JAVASCRIPT

1. Below, when users leave an

input, the code checks to see if

they entered a value that is 10

or higher. If not, it will write a

message to the screen.

var $fonn, width, height, area;
$form= $('#calculator');

$('form input[type="text"] ') . on('bl ur', function() {

2. The second check looks to

see if the calculated area is a

numeric value. If not, then the

user must have entered a value

that was not a number.

clO/ js/ console-assert . j s

II The message only shows if user has entered number less than 10
CD console.assert(this.value > 10, 'User entered less than 10');

}) ;

$('#calculator') .on('submit', function(e)
e.preventDefault();
console.log('Clicked submit ... ');

width= $('#width').val();
height= $('#height').val() ;
area = width * height;
II The message on ly shows if user has not entered a number

~ console.assert($.isNumeric(area), 'User entered non-numeric value');

$form.append('<p>' +area+ '<I p>');
}) ;

Q. Elements Network Sources Timeline Profiles Resources Audits I Console I 0 2 >:: 0 d;I,. x

(5) U' <top frame> .,

f) ., Assertion failed: User entered less than 10
(anonymous function)
x.event.dispatch
v.handle

Clicked subm.it • ••
)

consol e-assert.js:6
conso\e-assert . js:6

iguerv. i s:5095
jguery.j s :4766

coosole-assert. js:ll

ERROR HANDLING & DEBUGGING 8

BREAKPOINTS

You can pause the execution of a script on any
line using breakpoints. Then you can check the

va lues stored in variables at that point in time.

lso ... co. .. s~
-. ~ Jav .. criptbook.com

-. c:J code/clO
•D ess
-. D Js

~ breakpoints.

• ~ ajax.googlupls.c
• 0 fonts.google•pls.co

8 ERROR HANDLING & DEBUGGING

CHROME

1. Select the Sources option.

2. Select the script you are
working with from the left-hand

pane. The code will appear to

the right.
3. Find the line number you want
to stop on and click on it.

4 . When you run the script, it
wi ll stop on this line. You can

now hover over any variable to

see its value at that time in the

script's execution.

FIREFOX

1. Select the Debugger option.
2 . Select the script you are

working with from the left-hand

pane. The code will appear to

the right.
3. Find the line number you want
to stop on and click on it.

4 . When you run the script, it
will stop on this line. You can

now hover over any variable to

see its value at that time in the

script's execution.

STEPPING THROUGH CODE

When you have set breakpoints,

you will see that the debugger
lets you step through the code
line by line and see the values

or variables as your script

progresses.

When you are doing this, if
the debugger comes across a
function, it will move onto the

next line after the function.
(It does not move to where

the function is defined.) This

behavior is sometimes called
stepping over a function.

If you want to, it is possible

to tell the debugger to step
into a function to see what is

happening inside the function.

If you set multiple breakpoints, you can step
through them one-by-one to see where values

change and a problem might occur.

Chrome and Firefox both have very similar tools for letting you step

through the breakpoints.

II ...
•

@ ©

1. A pause sign shows until the interpreter comes across a breakpoint.
When the interpreter stops on a breakpoint, a play-style button is then

shown. This lets you tell the interpreter to resume running the code.

2. Go to the next line of code and step through the lines one-by-one
(rather than running them as fast as possible).

3. Step into a function call. The debugger will move to the first line in

that function.

4. Step out of a function that you stepped into. The remainder of the
function will be executed as the debugger moves to its parent function.

ERROR HANDLING & DEBUGGING 8

CONDITIONAL
BREAKPOINTS

You can indicate that a breakpoint should be
triggered only if a condition that you specify is

met. The condition can use existing variables.

f • Jd ,) .~ •

C.: 9 ilr<!il • I ,.ldt~ ot ~el-

<.) 0

8 ERROR HANDLING & DEBUGGIN G

CHROME

1. Right-click on a line number.
2 . Select Add Conditional

Breakpoint...

3. Enter a condition into the
popup box.

4 . When you run the script , it
wi ll only stop on this line if the

condition is true (e.g., if area is
less than 20).

FIREFOX

1. Right-cl ick on a line of code.

2. Select Add conditional
breakpoint.

3. Enter a condition into the

popup box.
4. W hen you run the script, it

w ill stop on this line only if the
condition is true (e.g., if area is
less than 20).

DEBUGGER KEYWORD

You can create a breakpoint

in your code using just the
debugger keyword. When the
developer tools are open, this

wi ll automatically create a
breakpoint.

You can also place the debugger
keyword within a conditional
statement so that it only triggers

the breakpoint if the condition is
met. This is demonstrated in the

code below.

It is particularly important to
remember to remove these
statements before your code

goes live as this could stop
the page running if a user has

developer tools open.

JAVASCRIPT clO/ js/ breakpoints .js

var $form, width, height, area;
$form = $(' #calculator') ;

$(' #calculator ').on('submi t' , functi on(e)
e.preventDefault();
consol e. log('Clicked submit. . . ') ;

width = $('#width').val ();
height = $('#height').val() ;
area = (width* he ight);

if (area < 100) {
debugger; II A breakpoint is set i f the devel oper tools are open

$form .append('<p> ' +area+ '<I p>');
}) ;

0. Elements Network I Sources I Timeline Profiles Resources Audits Console

[1!]1 breakpoints.JS x [Ell Ill 111> ~
11 - ~-.--.-----------------! ~

... • . .
31
~---.,,..-....,.,,,,;q ~"'"'""~

~ch ~pression_s _
4 $('#calcul ator ') . on(' submit' , function(e) { ll> CallStack ----
5 console. log(' Clicked submit • •• ');
6
7 a,
9

width = $('#width '). val();
height = $('#height '). val();
area = (width * height);

- -
II> Scope Variables -----------!
II> Breakpoints

... DOM Breakpoints

11> XHR Breakpoints + 181
11 if (area < 100) {
12 1U1=:~~-~r:=:::~==]/'j_,/]AUb~.g~!(:u~:isetii:]1;ffJt~hei:!dll~IM~tY-li~11>1E~vent Lis_.Eener Breakpoints
13 [} ; II> Workers
14 ··~~~-1-~~~~~~~~~~----i

{} Line 12, Column 1

If you have a development server, your debugging code can be placed in conditional statements that check

whether it is running on a specific server (and the debugging code only runs if it is on the specified server).

ERROR HA NDLING & D EBUGGING @

HANDLING EXCEPTIONS

If you know your code might fail, use try, catch, and finally.
Each one is given its own code block.

try {
II Try to execute this code
catch (exception) {
II If there is an exception, run this code
fina ll y {
II This always gets executed

TRY

First, you specify the code
that you think might throw an

exception within the try block.

If an exception occurs in this

section of code, control is
automatically passed to the

corresponding catch block.

The try clause must be used in
this type of error handling code,

and it should always have either
a catch, fi na 1 ly, or both.

If you use a continue, break, or

return keyword inside a try, it
will go to the f i na 11 y option.

8 ERROR HANDLING & DEBUGGING

CATCH
If the try code block throws an

exception, catch steps in with an
alternative set of code.

It has one parameter: the error

object. Although it is optional,
you are not handling the error if

you do not catch an error.

The ability to catch an error can
be very helpful if there is an issue

on a live website.

It lets you tell users that

something has gone wrong
(rather than not informing them

why the site stopped working).

FI NALLY
The contents of the fi na 11 y

code block wil l run either

way - whether the try block
succeeded or failed.

It even runs if a return keyword
is used in the try or catch block.

It is sometimes used to clean up
after the previous two clauses.

These methods are similar
to the .done() , . fail() , and

. a 1 ways() methods in jQuery.

You can nest checks inside each
other (place another t ry inside a

catch), but be aware that it can

affect performance of a script.

TRY, CATCH, FINALLY

This example displays JSON data
to the user. But, imagine that the
data is coming from a third party
and there have been occasional
problems with it that could
cause the page to fail.

This script checks if the JSON
can be parsed using a try block
before trying to display the
information to the users.

JAVASCRIPT

If the try statement throws an
error (because the data cannot
be parsed), the code in the catch
code block will be run, and the
error will not prevent the rest of
the script from being executed.

The catch statement creates
a message using the name and
message properties of the Error
object.

The error will be logged to the
console, and a friendly message
will be shown to the users of
the site. You could also send
the error message to the server
using Ajax so that it could
be recorded. Either way, the
f i na 11 y statement adds a link
that allows users to refresh the
data they are seeing.

clO/ js/ try-catch-finally.js

response= ' {"deals" : [{"title" : "Farrow and Ball", . . . 'II JSON data

if (response) {
try{

var dealOata = JSON . parse(response);
showContent (dealData);

}cat ch(e) {
var errorMessage = e.name + ' ' + e .me ssage;
console . log(errorMessage);
feed.innerHTML = 'Sorry, cou l d not l oad

finally {

II Try to par se J SON
II Show J SON dat a

II Crea t e error msg
II Show devs msg

dea ls' <lem>; II Users msg

var l i nk= document . creat eEl ement('a'); II Add r efresh l i nk
l ink. i nnerHTML = ' rel oad<la>';
f eed.appendChi l d{link);

Q. Elements Network Sources Timeline Profiles Resources Audits I Console I
~ 'tr' <top frame> T

SyntaxError Unexpected end of input try-catch- f inally. js:l4
>

ERROR HANDLING & DEBUGGING s

THROWING ERRORS

If you know something might cause a problem for your script, you can
generate your own errors before the interpreter creates them.

To create your own error, you use the following line:

throw new Error(1 message 1
) ;

Being able to throw an error at the time you know
there might be a problem can be better than letting

that data cause errors further into the script.

If you are working with data from a third party, you
may come across problems such as:

• JSON that contains a formatting error

• Numeric data that occasionally has a non­
numeric value

• An error from a remote server

• A set of information with one missing value

Bad data might not cause an error in the script
straight away, but it could cause a problem later on.

In such cases, it helps to report the problem straight
away. It can be much harder to find the source of the

problem if the data causes an error in a different part

of the script.

@ ERROR HANDLING & DEBUGGING

This creates a new Error object (using the default
Error object). The parameter is the message you

want associated with the error. This message should
be as descriptive as possible.

For example, if a user enters a string when you

expect a number, it might not throw an error
immediately.

However, if you know that the application will try to
use that value in a mathematical operation at some

point in the future, you know that it wi ll cause a
problem later on.

If you add a number to a string, it will result in a

string. If you use a string in any other mathematical

calculations, the result would be NaN. In itself, NaN is
not an error; it is a value that is not a number.

Therefore, if you throw an error when the user enters

a value you cannot use, it prevents issues at some
other point in the code. You can create an error that

explains the problem, before the user gets further

into the script.

THROW ERROR FOR NaN

If you try to use a string in a
mathematical operation (other
than in addition), you do not get
an error, you get a special value
called NaN (not a number).

JAVASCRIPT

var width = 12;
var height = 'test';

In this example, a try block
attempts to calculate the area of
a rectangle. If it is given numbers
to work with. the code will run.
If it does not get numbers, a
custom error is thrown and the
catch block displays the error.

By checking that the results
are numeric, the script can fail
at a specific point and you can
provide a detailed error about
what caused the problem (rather
than letting it cause a problem
later in the script).

clO/j s/throw. j s

II width var i able
II height va r iable

function calculateArea(width, height)
try {

var area = width * height;
if (!isNaN(area)) {

return area;
else {

II Try to calculate area
II If it is a number
II Return the area

throw new Error('cal culateArea() received
II Otherwise th row an error

i nvalid number');
}
catch(e) {
consol e. l og(e.name +' ' + e.message);
return 'We were unable to calculate the

II If the re was an error
II Show error in console

area.'; II Show users a message

I/ TRY TO SHOW THE AREA ON THE PAGE
document.getElementByld(' area ').innerHTML calculateArea(width, height);

There are two different errors
shown: one in the browser
window for the users and
another in the console for the
developers.

This not only catches an error
that would not have been thrown
otherwise, but it also provides a
more descriptive explanation of
what caused the error.

Ideally, form validation, which
you learn about in Chapter 13,
would solve this kind of issue. It
is more likely to occur when data
comes from a third party.

ERROR HANDLING & DEBUGGING 9

DEBUGGING TIPS

Here are a selection of practical tips that you
can try to use when debugging your scripts.

ANOTHER BROWSER
Some problems are browser­

specific. Try the code in another
browser to see which ones are

causing a problem.

ADD NUMBERS

Write numbers to the console
so you can see which the items

get logged. It shows how far your
code runs before errors stop it.

STRIP IT BACK

Remove parts of code, and strip

it down to the minimum you
need. You can do this either by

removing the code altogether, or
by just commenting it out using

multi-line comments:

/* Anything between these

characters is a cofllllent */

EXPLAINING THE CODE

Programmers often report

finding a solution to a problem
while explaining the code to

someone else.

8 ERROR HANDLING & DEBUGGING

SEARCH
Stack Overflow is a Q+A site for
programmers.

Or use a traditional search

engine such as Google, Bing, or
DuckDuckGo.

CODE PLAYGROUNDS

If you want to ask about

problematic code on a forum, in

addition to pasting the code into

a post, you could add it to a code
playground site (such as

JSBin.com, JSFiddle. com, or
Dabbl et. corn) and then post a
link to it from the forum.

(Other popular playgrounds

include CSSDeck. com and

Code Pen. com - but these sites

place more emphasis on show
and tell.)

VALIDATION TOOLS
There are a number of on line
validation tools that can help you

try to find errors in your code:

JAVASCRIPT

http://www.jslint.com
http://www.jshint . com

JSON

http:// www.jsonlint.com

JQUERY

There is a jQuery debugger
plugin available for Chrome

which can be found in the
Chrome web store.

GO BACK TO BASICS

JavaScript is case sensitive so

check your capitalization.

If you did not use var to declare

the variable, it w ill be a global
variable, and its value could be
overwritten elsewhere (either in

your script or by another script
that is included in the page).

If you cannot access a variable's
value, check if it is out of scope,

e.g., declared within a function

that you are not w ithin.

Do not use reserved words or

dashes in variable names.

Check that your single I double
quotes match properly.

Check that you have escaped
quotes in variable values.

Check in the HTML that values
of your id attributes are unique.

COMMON ERRORS

Here is a list of common errors you might find

with your scripts.

MISSED/ EXTRA
CHARACTERS

Every statement should end in a

semicolon.

Check that there are no

missing closing braces } or
parentheses) .

Check that there are no commas
inside a , } or ,) by accident.

Always use parentheses to­

surround a condition that you

are testing.

Check the script is not missing
a parameter when call ing a

function.

undefined is not the same

as nu 11 : nu 11 is for objects,

undefi ned is for properties,
methods, or variables.

Check that your script has
loaded (especially CDN fi les).

Look for conflicts between

different script files.

DATA TYPE ISSUES

Using= rather than == will assign

a value to a variable, not check

that the values match.

If you are checking whether
values match, try to use strict

comparison to check datatypes
at the same time. (Use ===

rather than ==.)

Inside a switch statement. the

values are not loosely typed (so

their type will not be coerced).

Once there is a match in a switch

statement, all expressions will be
executed until the next br eak or

return statement is executed.

The replace() method only

replaces the first match. If you
want to replace all occurrences,

use the global flag.

If you are using the parse Int()
method, you might need to pass

a radix (the number of unique

digits including zero used to
represent the number).

ERROR HANDLING & DEBUGGING 8

If you understand execution contexts (which have two

stages) and stacks, you are more likely to find the error

in your code.

Debugging is the process of finding errors. It involves a

process of deduction.

The console helps narrow down the area in which the

error is located, so you can try to find the exact error.

JavaScript has 7 different types of errors. Each creates

its own error object, which can tell you its line number

and gives a description of the error.

If you know that you may get an error, you can handle

it gracefully using the try, catch, finally statements.

Use them to give your users helpful feedback.

& DEBUGGING

