

Content panels allow you to showcase extra information
within a limited space. In this chapter, you will see several
examples of content panels that also give you practical
insight into creating your own scripts using jQuery.

In this chapter, you will see how to create many types of content panels: accordions, tabbed
panels, modal windows (also known as a lightboxes), a photo viewer, and a responsive slider.

Each example of a content panel also demonstrates how to apply the code you have learned
throughout the book so far in a practical setting.

Throughout the chapter, reference will be made to more complex jQuery plugins that extend
the functionality of the examples shown here. But the code samples in this chapter also show
how it is possible to achieve techniques you will have seen on popular websites in relatively
few lines of code (without needing to rely on plugins written by other people).

CONTENT PANELS

ACCORDION

An accordion features titles which, when clicked,
expand to show a larger panel of content.

Take your tastebuds for a gentle stroll through an English garden ffied with Morsieur
Piguon's besutifully fr With three sweetly foral
optians: Elderberry. Rose Petal. and Chrysanthemum - all edile and & naturally
flavored - they wil hanve you dresming of butterfies and bisdsang in no Gme.

BALT O THE SEA

MODAL WINDOW

When you click on a link for a modal window (or
"lightbox"), a hidden panel will be displayed.

R

j AHART THE MACIC BT

Maossreen Prcwx>c.
(ﬂ WITH YOUE JRI#Y

\}___/J
0 ® 0

Try our latest sweet]
SALTED CARAMEL &

RESPONSIVE SLIDER

The slider allows you to show panels of content that
slide into view as the user navigates between them.

THEY SAY NO TWO
MARSHMALLOWS
ARE THE SAME..

At Jeast our chefs &t Monsienr
Pigeon do. That's becanse they
eraft each delicions kateh
individually by hand using
all-natural ingredients.

TABBED PANEL

Tabs automatically show one panel, but when you
click on another tab, the panel is changed.

DESCRIPTION

Taka your tastebuds for a gentle stoll through an English garden filled with Monsieur
ifully fragrant With th

options: Rose Petal, and Ch
flawoned - they will ¥ gofb

- alt edible and all naturaly
oy

PHOTO VIEWER

Photo viewers display different images within the
same space when the user clicks on the thumbnails.

THE FLOWER SERIES

ke o b i
s) i 4

/(Y\q e st

_ re———

fawludl-—=
B

Rose Perar.

S575/ 15 e packet

CREATING A JQUERY PLUGIN

The final example revisits the accordion (the first
example) and turns it into a jQuery plugin.

Take your tastebuds for a gentle stroll through an English garden Rfied with Mansisur
Pegean's beautifully fragrant Flower Saries marshmaliows. With thees sweetly lloral

options. . Rose Petal, and Chry « ot edible and all raturally
v you dreaming of busterflies and brdsang in na time.

CONTENT PANELS

SEPARATION

OF CONCERNS

As you saw in the introduction to this book, it is considered good practice
to separate your content (in HTML markup), presentation (in CSS rules),

and behaviors (in JavaScript).

In general, your code should reflect that:

® HTML is responsible for structuring content
® (SSis responsible for presentation

@ JavaScript is responsible for behavior

Enforcing this separation produces code that is
easier to maintain and reuse. While this may already
be a familiar concept to you, it's important to
remember as it is very easy to mix these concerns in
with your JavaScript. As a rule, editing your HTML
templates or stylesheets should not necessitate
editing your scripts and vice versa.

@ CONTENT PANELS

You can also place event listeners and calls to
functions in JavaScript files rather than adding them
to the end of an HTML document.

If you need to change the styles associated with an
element, rather than having styles written in the
JavaScript, you can update the value of the class
attributes for those elements. In turn, they can
trigger new rules from the CSS file that change the
appearance of those elements.

When your scripts access the DOM, you can
uncouple them from the HTML by using class
selectors rather than tag selectors.

ACCESSIBILITY
& NO JAVASCRIPT

When writing any script, you should think about those who might be
using a web page in different situations than you.

ACCESSIBILITY

Whenever a user can interact with an element:
® |Ifitisalink, use <a>
® If it acts like a button, use a button

Both can gain focus, so users can move between
them focusable elements using the Tab key (or other
non-mouse solution). And although any element can
become focusable by setting its tabindex attribute,
only <a> elements and some input elements fire a
click event when users press the Enter key on their
keyboard (the ARIA role="button" attribute will
not simulate this event).

<!DOCTYPE html><html class="no-js"> ...

<body>

NO JAVASCRIPT

This chapter's accordion menu, tabbed panels,
and responsive slider all hide some of their content
by default. This content would be inaccessible to
visitors that do not have JavaScript enabled if we
didn't provide alternative styling. One way to solve
this is by adding a class attribute whose value is
no-js to the opening <html> tag. This class is then
removed by JavaScript (using the replace() method
of the String object) if JavaScript is enabled.

The no-js class can then be used to provide styles
targeted to visitors who do not have JavaScript
enabled.

cll/no-js.html

<div class="js-warning">You must enable JavaScript to buy from us</div>
<l-- Turn off your JavaScript to see the difference -->

<script src="js/no-js.js"></script>

</body>
</html>

JAVASCRIPT

var elDocument = document.documentElement;

cll/js/no-js.js

elDocument.className = elDocument.className.replace(/(~|\s)no-js(\s|$)/, '$1');

CONTENT PANELS

ACCORDION

When you click on the title of an accordion, its corresponding panel
expands to reveal the content.

An accordion is usually created
within an unordered list (in
aelement). Each <1i>
element is a new item in the
accordion. The items contain:

® A visible label (in this

hh:muﬂemiwuwﬂ:wdlmw»b@damﬁlhdmm

example, it is a <button>) Pigeon's beautifully fragrant Flower Series ly floral
= = options: Elderberry, Rose Petal, and Chrysanthemum - all e(ﬂ:i:aﬂd all nalmlly
@ A hidden panel holding the flavored - they will have you dreaming of butterflies and birdsong in na time.

content (a <div>) m——
Clicking a label prompts the
associated panel to be shown
(or to be hidden if it is in view).
To just hide or show a panel, Other tabs scripts include liteAccordion and zAccordion.
you could change the value They are also included in jQuery Ul and Bootstrap.

of the class attribute on the

associated panel (triggering a

new CSS rule to show or hide it).

But, in this case, jQuery will be

used to animate the panel into

view or hide it.

HTMLS introduces <details=>
and <summary> elements to
create a similar effect, but (at the
time of writing) browser support
was not widespread. Therefore,
a script like this would still be
used for browsers that do not
support those features.

CONTENT PANELS

ACCORDION WITH ALL PANELS COLLAPSED

LABEL 1 COLLAPSED
LABEL 2 COLLAPSED

LABEL 3 COLLAPSED

ACCORDION WITH SECOND PANEL EXPANDED

LABEL1 : COLLAPSED
1

LABEL 2

CONTENT 2

| CONTENT 2
EXPANDED

LABEL 3 COLLAPSED

ANIMATING CONTENT WITH SHOW, HIDE, AND TOGGLE

jQuery's .show(), .hide(), and
.toggle() methods animate the
showing and hiding of elements.

jQuery calculates the size of the
box, including its content, and
any margins and padding. This
helps if you do not know what
content appears in a box.

(To use CSS animation, you
would need to calculate the box's
height, margin and padding.)

I BOX HEIGHT il

@ MARGIN @ BORDER @ PADDING

.toggle() saves you writing
conditional code to tell whether
the box is already being shown
or not. (If a box is shown, it hides
it, and if hidden, it will show it.)

When the page loads, CSS rules
are used to hide the panels.

Clicking a label prompts the
hidden panel that follows it to
animate and reveal its full height.
This is done using jQuery.

Clicking on the label again would
hide the panel.

The three methods are all
shorthand for the animate()
method. For example, the
show() method is shorthand for:

$('.accordion-panel')
.animate({
height: 'show',
paddingTop: 'show',
paddingBottom: 'show',
marginTop: 'show',
marginBottom: 'show'

CONTENT PANELS

CREATING AN ACCORDION

Below you can see a diagram, rather like a flowchart.

These diagrams have two purposes. They help you:

i) Follow the code samples; the numbers on the
diagram correspond with the steps on the right,
and the script on the right-hand page. Together, the
diagrams, steps, and comments in the code should
help you understand how each example works.

ii) Learn how to plan a script before coding it.

This is not a "formal" diagram style, but it gives you
a visual idea of what is going on with the script.
The diagrams show how a collection of small,
individual instructions achieve a larger goal, and

if you follow the arrows you can see how the data
flows around the parts of the script.

o Event: click on tab
|

ANONYMOUS FUNCTION:
Shows/hides the corresponding panel

(2] Prevent default action of button
|
Get button user clicked on
|
(4] Get accordion panel after that button

&
1
e Is panel being
animated?
(6] ? Is panel visible? ?

]]
Show panel

Hide panel

Some programmers use Unified Modeling Language
or class diagrams - but they have a steeper learning
curve, and these flowcharts are here to help you see
how the interpreter moves through the script,

CONTENT PANELS

Now let's take a look at how the diagram is
translated into code. The steps below correspond
to the numbers next to the JavaScript code on the
right-hand page and the diagram on the left.

1. A jQuery collection is created to hold elements
whose class attribute has a value of accordion.

In the HTML you can see that this corresponds to
the unordered list element (there could be several
lists on the page, each acting as an accordion).

An event listener waits for the user to click on one
of the buttons whose class attribute has a value of
accordion-control. This triggers an anonymous
function.

2. The preventDefault () method prevents
browsers treating the the button like a submit
button. It can be a good idea to use the
preventDefault() method early in a function so
that anyone looking at your code knows that the
form element or link does not do what they might
expect it to.

3. Another jQuery selection is made using the
this keyword, which refers to the element the user
clicked upon. Three jQuery methods are applied to
that jQuery selection holding the element the user
clicked on.

4, .next('.accordion-panel') selects the next
element with a class of accordion-panel.

5..not(':animated') checks that it is not in the
middle of being animated. (If the user repeatedly
clicks the same label, this stops the .s1ideToggle()
method from queuing multiple animations.)

6. .slideToggle() will show the panel if it is
currently hidden and will hide the panel if it is
currently visible.

cll/accordion.html

<ul class="accordion">

<button class="accordion-control">Classics</button>
<div class="accordion-panel">Panel content goes here...</div>
</1i>
<li=
<button class="accordion-control">The Flower Series</button>
<div class="accordion-panel">Panel content goes here...</div>
q/]ib
= -2
<button class="accordion-control">Salt 0' the Sea</button>
<div class="accordion-panel">Panel content goes here...</div>
</1i>

CSS cll/css/accordion.css

.accordion-panel {
display: none;}

JAVASCRIPT cll/js/accordion.js

(@ $('.accordion').on('click', '.accordion-control', function(e){ // When clicked

(@ e.preventDefault(); // Prevent default action of button

® $(this) // Get the element the user clicked on

D) .next('.accordion-panel"') // Select following panel

® .not(':animated"') // If it is not currently animating

® .slideToggle(); // Use slide toggle to show or hide it
})s

Note how steps 4, 5, and 6 are chained off the same jQuery selection.
You saw a screenshot of the accordion example on p492, at the start of this section.

CONTENT PANELS

TABBED PANEL

When you click on one of the tabs, its corresponding panel is shown.
Tabbed panels look a little like index cards.

You should be able to see all of
the tabs, but:

MARSHMALLOWS

@ Only one tab should look

active. DESCRIPTION
Take your tastebuds for a gentle stroll through an English garden filled with Monsieur
& Oniy the pane[that Pigeon's beautifully fragrant Flower Series marshmallows. With three sweetly floral
" options: Elderberry, Rose Petal, and Chrysanthemum - all edible and all naturalty
corresponds to the active tab flavored - they will have you dreaming of butterflies and g1 no time.

should be shown (all other
panels should be hidden).

The tabs are typically created
using an unordered list. Each
<1i>element represents a tab
and within each tab is a link. Other tabs scripts include Tabslet and Tabulous.
They are also included in jQuery Ul and Bootstrap.

The panels follow the unordered
list that holds the tabs, and each
panel is stored in a <div>,

To associate the tab to the panel:

@® The link in the tab, like all
links, has an href attribute.

® The panel has an id attribute.
Both attributes share the same
value. (This is the same principle

as creating a link to another
location within an HTML page.)

CONTENT PANELS

FIRST TAB SELECTED When the page loads, CSS is

used to make the tabs sit next to
TA8 3 —=FRS-IMEEE R each other and to indicate which

one is considered active.

CONTENT CSS also hides the panels, except
CONTENT PANEL 1 — PANEL1 for the one that corresponds
SHOWING with the active tab.

When the user clicks on the

link inside a tab, the script uses
jQuery to get the value of the

" href attribute from the link. This

PANEL 2 HIDDEN
PANEL 3 HIDDEN

SECOND TAB SELECTED

corresponds to the id attribute
TAB1 PR — A5 2 HIGHLIGHTED s
PANEL 1 HIDDEN shown.

1

The script then updates the
CONTENT values in the class attribute
CONTENTRANEL £ [~ FANEL 2 on that tab and panel, adding a
SHOWING :
value of active. It also removes
that value from the tab and panel
that had previously been active.

PANEL 3 HIDDEN

If the user does not have
JavaScript enabled, the link in
the tab takes the user to the
appropriate part of the page.

CONTENT PANELS

498

CREATING TAB PANELS

(1] Select all sets of tabs on page

-

LOOP THROUGH EACH SET OF TABS

-

ANONYMOUS FUNCTION:
Setup this group of tabs

Create variables:

$this: current list

(2] $tab: currently active tab

$1ink: link element in active tab
$panel: value of href attribute on link

“

i
o Event: click on tab control
|

ANONYMOUS FUNCTION
Show this tab and hide others

o Prevent default action of link
|
Create variables:
$1ink: jQuery object containing link
id: value of href attribute from tab
'S user just clicked
<

o Is this item
active?

Remove active from class on tab
(5) |
Remove active from class on panel
I
o Set tab user clicked on as active
|

Set corresponding panel as active

+

I
Update $panel & $tab variables

L GO TO NEXT SET OF TABS —J

CONTENT PANELS

The flowchart shows the steps that are involved

in creating tabs when they are found in the HTML.
Below, you can see how these steps can be
translated into code:

1. A jQuery selection picks all sets of tabs within
the page. The .each() method calls an anonymous
function that is run for each set of tabs (like a loop).
The code in the anonymous function deals with

one set of tabs at a time, and the steps would be
repeated for each set of tabs on the page.

2. Four variables hold details of the active tab:

i) $this holds the current set of tabs.

i) $tab holds the currently active tab.

The .find() method selects the active tab.

iii) $11nk holds the <a> element within that tab.

iv) $panel holds the value of the href attribute for
the active tab (this variable will be used to hide the
panel if the user selects a different one).

3. An event listener is set up to check for when the
user clicks on any tab within that list. When they do,
it runs another anonymous function.

4. e.preventDefault() prevents the link that users
clicked upon taking them to that page.

5. Creates a variable called $11nk to hold the current
link inside a jQuery object.

6. Creates a variable called id to hold the value of
the href attribute from the tab that was clicked. It is
called id because it is used to select the matching
content panel (using its id attribute).

7. An if statement checks whether the id variable
contains a value, and the current item is not active.
If both conditions are met:

8. The previously active tab and panel have the
class of active removed (which deactivates the tab
and hides the panel).

9. The tab that was clicked on and its corresponding
panel both have active added to their class
attributes (which makes the tab look active and
displays its corresponding panel, which was hidden).
At the same time, references to these elements are
stored in the $panel and $tab variables.

HTML c11/tabs.html

<ul class="tab-list">
<1i class="active">Description</1i>
Ingredients</1i>
Delivery</1i>

-:/u'|>

<div class="tab-panel active" id="tab-1">Content 1...</div>

<div class="tab-panel" id="tab-2">Content 2...</div>

<div class="tab-panel" id="tab-3">Content 3...</div>

CcSS cll/css/tabs.css

.tab-panel {
display: none;}
.tab-panel.active {
display: block;}

JAVASCRIPT c11/js/tabs.js

@ $('.tab-list').each(function(){ // Find lists of tabs
var $this = $(this); // Store this list
var $tab = $this.find('1i.active'); - // Get the active list item
var $1ink = $tab.find('a'); // Get link from active tab
var $panel = $($1ink.attr('href')); // Get active panel
® $this.on('click', '.tab-control', function(e) { // When click on a tab
@ e.preventDefault(); // Prevent link behavior
® var $1ink = $(this); // Store the current Tink
® var id = this.hash; // Get href of clicked tab
@ if (id && !$1ink.is('.active')) { // If not currently active
® $panel.removeClass('active'); // Make panel inactive
$tab.removeClass('active'); // Make tab inactive
$panel = $(id).addClass('active'); // Make new panel active
$tab = $link.parent().addClass('active'); // Make new tab active
}
s
s

CONTENT PANELS @

MODAL WINDOW

A modal window is any type of content that appears "in front of" the rest
of the page's content. It must be "closed" before the rest of the page can
be interacted with.

In this example, a modal window
is created when the user clicks
on the heart button in the top
left-hand corner of the page.

The modal window opens in
the center of the page, allowing
users to share the page on social

- > e, e
networks. ,F Yt ik o

Moasipvn Picion

Try our latest sweel) ®itw Yo om

The content for the modal SALTED CARAMEL &
window will typically sit within
the page, but it is hidden when
the page loads using CSS.

JavaScript then takes that
content and displays it inside

<div> elements that create the Other examples of modal window scripts include Colorbox (by Jack L.
modal window on top of the Moore), Lightbox 2 (by Lokesh Dhakar), and Fancybox (by Fancy Apps).
existing page. They are also included in jQuery Ul and Bootstrap.

Sometimes modal windows

will dim out the rest of the

page behind them. They can

be designed to either appear
automatically when the page has
finished loading or they can be
triggered by the user interacting
with the page.

CONTENT PANELS

A design patternis a term
programmers use to describe a
common approach to solving a
range of programming tasks.

This script uses the module
pattern. It is a popular way to
write code that contains both
public and private logic.

<div class="modal">

Once the script has been
included in the page, other
scripts can use its public
methods: open(), close(), or
center(). But users do not need
to access the variables that
create the HTML, so they remain
private (on p505 the private
code is shown on green).

<div class="modal-content">

<button role="button" class="modal-close">close</button>

Users of this script only need to
know how the open () method
works because;

@ close() is called by an event
listener when the user clicks
on the close button.

@ center() is called by the
open() method and also by
an event listener if the user
resizes the window.

When you call the open()
method, you specify the content
that you want the modal window
to contain as a parameter (you
can also specify its width and
height if you want).

In the diagram, you can see that
the script adds the content to the
page inside <div=> elements.

Using modules to build parts of

an application has benefits:

@ |t helps organize your code.

® You can test and reuse the
individual parts of the app.

@ |t creates scope, preventing
variable /method names
clashing with other scripts.

This modal window script
creates an object (called modal),
which, in turn, provides three
new methods you can use to
create modal windows:

open() opens a modal window
close() closes the window
center() centers it on the page

Another script would be used
to call the open() method and
specify what content should
appear in the modal window.

div.modal acts as a frame
around the modal window.

div.modal-content actsas a
container for the content being
added to the page.

button.modal-close allows the
user to close the modal window.

CONTENT PANELS

CREATING MODALS

The modal script needs to do two things:

1. Create the HTML for the modal window

2. Return the modal object itself, which consists of
the open(), close(), and center() methods

Including the script in the HTML page does not have
any visible effect (rather like including jQuery in your
page does not affect the appearance of the page).

But it does allow any other script you write to use the
functionality of the modal object and call its open()
method to create a modal window (just like including
jQuery script includes the jQuery object in your
page and allows you to use its methods).

This means that people who use the script only need

to know how to call the open() method and tell it
what they want to appear in the modal window.

In the example on the right, the modal window is
called by a script called modal-init.js. You will see
how to create the modal object and its methods on
the next double page spread, but for now consider
that including this script is the equivalent of adding
the following to your own script. It creates an object
called modal and adds three methods to the object:

var modal = {
center: function() {
// Code for center() goes here
1,
open: function(settings) {
// Code for open() goes here
by
close: function() {
// Code for close() goes here

}
S

The modal-init.js file removes the share content
from the HTML page. It then adds an event handler
to call the modal object's open() method to open

a modal window containing the content it just
removed from the page. init is short for initialize
and is commonly used in the name of files and
functions that set up a page or other part of a script.

o Create variable:
$content: part of page to appear in modal
|
Hide that part of page by detaching it

v

I
[2] Event: click on share button
I

ANONYMOUS FUNCTION:
Show content in modal window

Call open.g] method of modal object, then
© passit the Scontent variable as a parameter,
along with the modal’s width and height

CONTENT PANELS

1. First the script gets the contents of the element
that has an id attribute whose value is share-
options. Note how the jQuery .detach() method
removes this content from the page.

2. Next an event handler is set to respond to when

the user clicks on the share button. When they do,

an anonymous function is run.

3. The anonymous function uses the open() method

of the modal object. It takes parameters in the form

of an object literal:

@ content: the content to be shown in the modal
window. Here it is the content of the element
whose id attribute has a value of share-options.

@ width: the width of the modal window.

® height: the height of the modal window.

Step 1uses the .detach() method because it keeps
the elements and event handlers in memory so they
can be used again later. jQuery also has a . remove()
method but it removes the items completely.

USING THE MODAL SCRIPT

HTML c11/modal-window. html

® <div id="share-options">
<!-- This is where the message and sharing buttons go -->
</div>
<script src="js/jquery.js"></script>
@ <script src="js/modal-window.js"></script>
<script src="js/modal-init.js"></script>
</body>
</html>
In the HTML above, you should note three things: The modal-init.js file below opens the modal
1. A <div> that contains the sharing options. window. Note how the open() method is passed
2. A link to the script that creates the modal object three pieces of information in JSON format:
(modal-window. js). i) content for modal (required)
3. A link to the script that will open a modal window ii) width of modal (optional - overrides default)
using the modal object (modal-init.js), using it iii) height of modal (optional - overrides default)

to display the sharing options.

JAVASCRIPT cll/js/modal-init.js

(function(){
(@ var $content = $('#share-options').detach(); _// Remove modal from page

@ $('#share').on('click', function() { // Click handler to open modal
® modal.open({content: $content, width:340, height:300});
1); ® @
10)s
The z-index of the modal window must be very high These styles ensure the modal window sits on top of
so that it appears on top of any other content. the page (there are more styles in the full example).
CsS cl1/css/modal-window.css
.modal {

position: absolute;
z-index: 1000;}

CONTENT PANELS

MODAL OBJECT

Create HTML for modal window:
$window: the window object

o $modal: modal window element
$content: modal window content
$close: close button -
Add $content and $close to $modal

(3] Event: click on close button

ANONYMOUS FUNCTION:
Used to close the modal window

Prevent default action of link
|
Call close() function

(s FUNCTION: center() —

Center the modal window

Get height of viewport & subtract
height of modal, halve that figure to get
distance modal should be from top of
window, then do same for widths

|
o Set CSS for modal using these values

a FUNCTION: open(settings)
Show/hide the modal window

e Empty modal window & add new content
i
o Use CSS to set height & width of modal
|
Add modal window to <body>
|

(10] Center window using center()
m Event: resize on browser window ——
@ FUNCTION: close()

Close the modal window

Remove content from modal window
|
Detach modal and its event handlers

CONTENT PANELS

Below are the steps for creating the modal object.
Its methods are used to create modal windows.

1. The modal object is declared. The methods of

this object are created by an Immediately Involved
Function Expression or IIFE (see p97). (This step

is not shown in the flowchart.)

2. Store the current window object in a jQuery
selection, then create the three HTML elements
needed for the modal window. Assemble the modal
window and store it in $modal.

3. Add an event handler to the close button which
calls the modal object's close() method.

4. Following the return keyword, there is a code
block in curly braces. It creates three public methods
of the modal object. Please note: This step is not
shown in the flowchart.

5. The center() method creates two variables:

i) top: takes the height of the browser window and
subtracts the height of the modal window. This
number is divided by two, giving the distance of the
modal from the top of the browser window.

ii) 1eft: takes the width of the browser window and
subtracts the width of modal window. This number
is divided by twe, giving the distance of the modal
from the left of the browser window.

6. The jQuery .css() method uses these variables
to position the modal in the center of the page.

7. open() takes an object as a parameter; it is
referred to as settings (the data for this object was
shown on the previous page).

8. Any existing content is cleared from the modal,
and the content property of the settings object is
added to the HTML created in steps 1and 2.

9. The width and height of the modal are set using
values from the settings object. If none were given,
auto is used. Then the modal is added to the page
using the appendTo() method.

10. center() is used to center the modal window.
11. If the window is resized, call center() again.

12. close() empties the modal, detaches the HTML
from the page, and removes any event handlers.

In the code below, the lines that are highlighted in When this script has been included in a page, the

green are considered private. These lines of code center(), open(), and close() methods in steps
are only used within the object. (This code cannot be 5-12 are available on the modal object for other
accessed directly from outside the object.) scripts to use. They are referred to as public.
cl11/js/modal-window.js
(@ var modal = (function() { // Declare modal object

@

®

® ©® © 00 _©

var $window = $(window);

var $modal = $('<div class="modal"/>'); // Create markup for modal
var $content = $('<div class="modal-content"/>');

var $close = $('<button role="button" class="modal-close">close</button>');

$modal.append($content, $close); // Add close button to modal

$close.on('click', function(e) { // If user clicks on close
e.preventDefault(); // Prevent link behavior
modal.close(); // Close the modal window

1s

return { // Add code to modal
center: function() { // Define center() method

// Calculate distance from top and left of window to center the modal
var top = Math.max($window.height() - $modal.outerHeight(), 0) / 2;
var left = Math.max($window.width() - $modal.outerWidth(), 0) / 2;

$modal.css({ // Set CSS for the modal
top: top + $window.scrol1Top(), // Center vertically
left: Teft + $window.scrollLeft() // Center horizontally
1)
}!
open: function(settings) { // Define open() method
$content.empty().append(settings.content); // Set new content of modal
$modal.css({ // Set modal dimensions
width: settings.width || 'auto’, // Set width
height: settings.height || 'auto’ // Set height
}).appendTo('body'); // Add it to the page
modal.center(); // Call center() method
$(window) .on('resize', modal.center); // Call it if window resized
ks
close: function() { // Define close() method
$content.empty(); // Remove content from modal
$modal.detach(); // Remove modal from page
$(window) .of f('resize', modal.center); // Remove event handler
}
I3

10D

CONTENT PANELS

PHOTO VIEWER

The photo viewer is an example of an image gallery. When you click on a
thumbnail, the main photograph is replaced with a new image.

In this example, you can see
one main image with three
thumbnails underneath it.

The HTML for the photo viewer
consists of:

® One large <div> element that
will hold the main picture.
The images that sit in the
<div> are centered and
scaled down if necessary to
fit within the allocated area.

® A second <div> element that
holds a set of thumbnails that
show the other images you
can view. These thumbnails
sit inside links. The href
attribute on those links point
to the larger versions of their
images.

CONTENT PANELS

THE FLOWER SERIES

Tane yonus tastnbuc fora
jgezie s theough an
Engian ganden Rlied with
Morewr Pigeon's beautfulry
fragrant Mower Series

Rose PeTaL.

$5.75 / 15 oz packet

- B

Other gallery scripts include Galleria, Gallerific, and TN3Gallery.

FIRST PHOTO SELECTED

PHOTO 1

THUMBE § THUMB
2 3

SECOND PHOTO SELECTED

PHOTO 2

THUMB § THUMB

P 3

PHOTO1
SHOWING

— THUMBNAIL 1 HIGHLIGHTED

PHOTO 2

|~ SHOWING

— THUMBNAIL 2 HIGHLIGHTED

When you click on a thumbnail,
an event listener triggers an
anonymous function that:

1. Looks at the value of the href
attribute (which points to the
large image)

2. Creates a new element
to hold that image

3. Makes it invisible

4. Adds it to the big <div=
element

Once the image has loaded, a
function called crossfade()

is used to fade between the
existing image and the new one
that has been requested.

CONTENT PANELS

USING THE PHOTO ViIEVWEK

In order to use the photo viewer, The thumbnails sit in another ® class always has a value of
you create a <div>element to <div>. Each oneisin an <a> thumb and the current main
hold the main image. It is empty, element with three attributes: image has a value of active
and its id attribute has a value of @ href points to the larger @ titledescribes the image (it
photo-viewer. version of the image will be used for alt text)

cl1/photo-viewer.html HTML

<div id="photo-viewer"></div>
<div id="thumbnails">

</div>

The script comes before the
closing </body> tag. As you will
see, it simulates the user clicking
on the first thumbnail.

cll/css/photo-viewer.css CcSss

#photo-viewer {
position: relative;
height: 300px;

The <div> that holds the main overflow: hidden;)

picture uses relative positioning.
This removes the element from
normal flow, so a height for the
viewer must be specified.

#photo-viewer.is-loading:after {
content: url (images/load.gif);
position: absolute;

A top: 0;
While images are loading, a right: 0;)

class of is-1oading is added
to them (it displays an animated

#photo-viewer img {
loading gif). When the image has

position: absolute;

loaded, is-1oading is removed. max-width: 100%;
max-height: 100%;

If the images are larger than top: 50%:
the viewer the max-width and left: 50%;)
max-height properties will scale
them to fit. To center the image
within the viewer a mix of CSS
and JavaScript will be used. See
p511 for detailed explanation.

a.active {
opacity: 0.3;}

@ CONTENT PANELS

ASYNCHRONOUS LOADING
& CACHING IMAGES

This script (shown on the next page) shows two interesting techniques:
1. Dealing with asynchronous loading of content

2. Creating a custom cache object

SHOWING THE RIGHT IMAGE WHEN
LOADING IMAGES ASYNCHRONOUSLY

PROBLEM:

The larger images are only loaded into the page
when the user clicks on a thumbnail, and the script
waits for the image to fully load before displaying it.

Because larger images take longer to load, if a user

clicks on two different images in quick succession:

1. The second image could load faster than the first
one and be displayed in the browser.

2.1t would be replaced by the first image the user
clicked on when that image had loaded. This could
make users think the wrong image has loaded.

SOLUTION:

When the user clicks on a thumbnail:

® A function-level variable called src stores the
path to this image.

® A global variable called request is also updated
with the path to this image.

® Anevent handler is set to call an anonymous
function when this image has loaded.

When the image loads, the event handler checks if

the src variable (which holds the path to this image)

matches the request variable. If the user had clicked

on another image since the one that just loaded, the

request variable would no longer match the src

variable and the image should not be shown.

CACHING IMAGES THAT HAVE
ALREADY LOADED IN THE BROWSER

PROBLEM:

When the user requests a big image (by clicking on
the thumbnail), a new element is created and
added to the frame.

If the user goes back to look at an image they have
already selected, you do not want to create a new
element and load the image all over again.

SOLUTION:

A simple object is created, and it is called cache.
Every time a new element is created, it will be
added to the cache object.

That way, each time an image is requested, the code

can check if the corresponding element is
already in the cache (rather than creating it again).

CONTENT PANELS

PHOTO VIEWER SCRIPT (1)

This script introduces some new concepts, so it will
be spread over four pages. On these two pages you
see the global variables and crossfade() function.

Store In variables:

request: last image that was requested
o $current: image currently being shown

cache: object to remember loaded images

$frame: container for image

$thumbs: container for thumbnails

e FUNCTION: crossfade($img)
Fades to new image (passed as a parameter)

Is there a
e ? current image? ?
[
Stop animation

& fade out old
image
v,

e Center new image using CSS

|
(5] Fade in new image

|
(6] Store new image in $current

THE CACHE OBJECT

The idea of a cache object might sound complicated,
but all objects are just sets of key/value pairs. You
can see what the cache object might look like on

the right. When an image is requested by clicking

on a new thumbnail, a new property is added to the
cache object:

® The key added to the cache object is the path to
the image (below this is referred to as src).
Its value is another object with two properties.

@ src.$img holds a reference to a jQuery object that
contains the newly created element.

@ src.isloadingis a property indicating whether or
not it is currently loading (its value is a Boolean).

CONTENT PANELS

1. A set of global variables is created. They can

be used throughout the script - both in the
crossfade() function (on this page) and the event
handlers (on p512).

2. The crossfade () function will be called when the
user has clicked on a thumbnail. It is used to fade
between the old image and the new one.

3. An if statement checks to see if there is an image
loaded at the moment. If there is, two things happen:
the .stop() method will stop any current animation
and then . fadeOut () will fade the image out.

4, To center the image in the viewer element, you
set two CSS properties on the image. Combined
with the CSS rules you saw on p508, these CSS
properties will center the image in its container.

(See the diagrams on the bottom of p511.)

i) marginleft: gets the width of the image using the
.width() method, divides it by two, and uses that
number as a negative margin.

ii) marginTop: gets the height of the image, using the
.height () method, divides it by two, and makes that
number a negative margin.

5. If the new image is currently being animated, the
animation is stopped and the image is faded in.

6. Finally, the new image becomes the current image
and is stored in the $current variable.

var cache = {
"c11/img/photo-1.jpg": {
"$img": jQuery object,
"isLoading": false
15
"c11/img/photo-2.jpg": {
"$img": jQuery object,
"isLoading": false
}'
"c11/img/photo-3.jpg": |
"$img": jQuery object,
"isLoading": false
b
}

JAVASCRIPT

var request;
var $current;
var cache = {};

var $frame = §('#photo-viewer');

n

var $thumbs = $('.thumb');
(@ function crossfade($img) {

if ($current) {

cll/js/photo-viewer.js

// Latest image to be requested
// Image currently being shown
// Cache object

// Container for image

// Container for image

// Function to fade between images
// Pass in new image as parameter
// If there is currently an image showing

©; $current.stop().fadeOut('slow'); // Stop animation and fade it out

| 3

$img.css ({

L 133

@ marginLeft: -$img.width() / 2
marginTop: -$img.height() / 2

(B $img.stop().fadeTo('slow', 1);

® $current = $img;

CENTERING THE IMAGE

i) Centering the image involves
three steps. In the style sheet,
absolute positioning is used to
place it in the top-left corner of
the containing element.

3

// Set the CSS margins for the image
// Negative margin of half image's width
// Negative margin of half image's height

// Stop animation on new image & fade in

// New image becomes current image

:

ii) In the style sheet, the image is iii) In the script, negative margins
moved down and right by 50% of move the image up and left by
the container's width and height: half the image's width and height:
width: 800px+2 =400 px width: 500 px + 2 = 250 px
height: 500px +2 =250 px height: 400px +2 =200 px

CONTENT PANELS @

PHOTO VIEWER SCRIPT (2)

@ ® 06 00

® O

Event: click on thumbnail

-

I
Simulate user clicking on first thumbnail

=

ANONYMOUS FUNCTION

Create variables: $img: to load image, src:
path to image, request: path to latest image

Prevent default action of link
|
Update active thumbnail

-

o Is this image
in the cache?
-
Is this image
? still loading?

Call function: crossfade()

Create element & store in $img

Update cache & set isLoading to true

-

I
Event: load on new image

-

I
Add is-loading class to frame
|
Update src & alt of image

e e

| |

S T WP ST —

S HE e s

S ISTEE T S EEE

ANONYMOUS FUNCTION

Hide image
|
Remove ‘loading’ & add image
|

Update cache & set isLoading to false

k3

Is image still
latest wanted? ?

Call function: crossfade()

S —

@ CONTENT PANELS

1. The thumbnails are wrapped in links. Every time

users click on one, the anonymous function will run.

2. Three variables are created:

i) $img will be used to create new elements

that will hold the larger images when they load.

ii) src (a function-level variable) holds the path to

the new image (it was in the href attribute of the link).

iii) request (a global variable) holds the same path.

3. The link is prevented from loading the image.

4. The active class is removed from all the thumbs

and is added to the thumb that was clicked on.

5. If the image is in the cache object and it has

finished loading, the script calls crossfade().

6. If the image has not yet loaded, the script creates

a new element.

7. It is added to the cache. isLoading is set to true.

8. At this point, the image has not loaded yet (only

an empty element was created). When the

image loads, the 1o0ad event triggers a function

(which needs to be written before the image loads).

9. First, the function hides the image that just loaded.

10. It then removes the is-1o0ading class from the

frame and adds the new image to the frame.

11. In the cache object, isLoading is set to false (as

it will have loaded when this function runs).

12. An if statement checks if the image that just

loaded is the one the user last requested. To see how

this is done, look back at step 2 again:

® The src variable holds the path to the image that
just loaded. It has function-level scope.

® The request variable is updated each time the
user clicks on an image. It has global scope.

So, if the user has clicked on an image since this one,

the request and src variables will not be the same

and nothing should be done. If they do match, then:

crossfade() is called to show the image.

13. Having set all of this in place, it is time to load the

image. The is-1oading class is added to the frame.

14. Finally, by adding a value to the src attribute on

the image, the image will start to load. Its alt text is

retrieved from the tit1e attribute on the link.

15. The last line of the script simulates the user

clicking on the first thumbnail. This will load the first

image into the viewer when the script first runs.

JAVASCRIPT

cll/js/photo-viewer.js

(@ $(document).on('click', '.thumb', function(e){ // When a thumb is clicked on

var $img;
var src = this.href;
request = src;

@

e.preventDefault();

$thumbs.removeClass('active');
| $(this).addClass('active');

®

if (cache.hasOwnProperty(src)) {

®

crossfade(cache[src].$img);
|}
} else {
$img = $('');
cache[src] = {
$img: $img,
islLoading: true

Q)

L i

if (cache[src].isloading === false)

// Create local variable called $img
// Store path to image

// Store path again in request

// Stop default 1ink behavior

// Remove active from all thumbs
// Add active to clicked thumb

// If cache contains this image

{ // And if islLoading is false

// Call crossfade() function

// Otherwise it is not in cache

// Store empty element in $img
// Store this image in cache

// Add the path to the image

// Set isloading property to true

// Next few lines will run when image has loaded but are prepared first

$img.on('load', function() {
$img.hide();

// When image has loaded
// Wide it

// Remove is-loading class from frame & append new image to it
$frame.removeClass('is-loading').append($img);
cache[src].islLoading = false; // Update isLoading in cache
// If still most recently requested image then

if (request === src) {
crossfade($img);
}
D

$frame.addClass('is-1oading');

S &) ® 66 ©O®

}
1)s

// Call crossfade() function
// Solves asynchronous Toading issue

// Add is-loading class to frame

$img.attr({ // Set attributes on element
By o, // Add src attribute to load image
‘gl thisatitle: [| ¥ // Add title if one was given in link
B

// Last line runs once (when rest of script has loaded) to show the first image

@® $('.thumb').eq(0).click();

// Simulate click on first thumbnail

CONTENT PANELS @

RESPONSIVE SLIDER

A slider positions a series of items next to each other, but only shows one
at a time. The images then slide from one to the next.

This slider loads several panels,
but only shows one at a time. It
also provides buttons that allow
users to navigate between each
of the slides and a timer to move
them automatically after a set
interval.

In the HTML, the entire slider

is contained within a <div>
element whose class attribute
has value of slider-viewer. In
turn, the slider needs two further
<div> elements:

® A container for the slides.
Its class attribute has a value
of s1ide-group. Inside this
container, each individual
slide is in another <div>
element.

® A container for the buttons.
Its class attribute has a
value of s1ide-buttons. The
buttons are added by the
script.

If the HTML contains markup for
more than one slider, the script
will automatically transform all
of them into separate sliders.

@ CONTENT PANELS

THEY SAY NO TWO
MARSHMALLOWS

ARE THE SAME..

At least our ehefs at Monsleur
Pigeon do. That's because they
eraft each delicious bateh
individually by hand using
all-natural ingredients.

Other slider scripts include Unslider, Anything Slider, Nivo Slider, and
WOW Slider. Sliders are also included in jQuery Ul and Bootstrap.

When the page first loads, the CSS hides all of the
slides, which takes them out of normal flow.

The CSS then sets the display property of the first
slide b1ock to make it visible.

The script then goes through each slide and:
® Assigns an index number to that slide
® Adds a button for it under the slide group

For example, if there are four slides, when the page
first loads, the first slide will be shown by default,
and four buttons will be added underneath it.

The index numbers allow the script to identify
each individual slide. To keep track of which slide
is currently being shown, the script uses a variable
called currentIndex (holding the index number of

the current slide). When the page loads, this is 0, so

it shows the first slide. It also needs to know which
slide it is moving to, which is stored in a variable
called newS1ide.

When it comes to moving between the slides (and
creating the sliding effect), if the index number of
the new slide is higher than the index number of the
current slide, then the new slide is placed to the right
of the group. As the visible slide is animated to the
left, the new slide automatically starts to come into
view, taking its place.

If the index number of the new slide is lower than the
current index, then the new slide is placed to the left
of the current slide, and as it is animated to the right,
the new slide starts to come into view.

After the animation, the hidden slides are placed
behind the one that is currently active.

CONTENT PANELS @

USING THE SEIDER

As long as you include the script within your page,
any HTML that uses the structure shown here will
get transformed into a slider.

There could be several sliders on the page and each
one will be transformed using the same script that
you see on the next double-page spread.

c11/slider.html
<div class="slide-viewer">
<div class="slide-group">
<div class="slide slide-1"><!-- slide content --></div>
<div class="slide slide-2"><!-- slide content --></div>
<div class="slide slide-3"><!-- slide content --></div>
<div class="slide slide-4"><!-- slide content --></div>
</div>
</div>
<div class="slide-buttons"></div>

The width of the s1ide-viewer is not fixed, so it
works in a responsive design. But a height does need
to be specified because the slides have an absolute
position (this removes them from the document flow
and without it they could only be Tpx tall).

cll/css/slider.css

slide-viewer |
position: relative;
overflow: hidden;
height: 300px;}

.slide-group {
width: 100%;
height: 100%;
position: relative;}

.slide {
width: 100%;
height: 100%;
display: none;
position: absolute;}

.slide:first-child {
display: block;)

CONTENT PANELS

Each slide is shown at the same width and height as
the viewer. If the content of a slide is larger than the
viewer, the overflow property on the slide-viewer
hides the parts of the slides that extend beyond the

frame. If it is smaller it is positioned to the top-left.

CSS

SLIDER SCRIPT OVERVIEW

A jQuery selector finds the sliders within the HTML markup.
An anonymous function then runs for each one to create the slider.
There are four key parts to the function.

1: SETUP

Each slider needs some variables, they are in
function-level scope so they:

@ Can have different values for each slider
@ Do not conflict with variables outside of the script

2: CHANGING SLIDE: move()

move() is used to move from one slide to another,

and to update the buttons that indicate which slide
is currently being shown. It is called when the user
clicks on a button, and by the advance() function.

3: ATIMER TO SHOW THE NEXT SLIDE
AFTER 4 SECONDS: advance()

A timer will call move() after 4 seconds.

To create a timer, JavaScript's window object has a
setTimeout () method. It executes a function after a
number of milliseconds. The timer is often assigned
to a variable, and it uses the following syntax:

var timeout = setTimeout(function, delay);

® timeout is avariable name that will be used to
identify the timer.

® function can be a named function or an
anonymous function.

@ delay is the number of milliseconds before the
function should run.

To stop the timer, call clearTimeout (). It takes one
parameter: the variable used to identify the timer:
clearTimeout (timeout);

4: PROCESSING EACH OF THE SLIDES
THAT APPEAR WITHIN A SLIDER

The code loops through each of the slides to:

® Create the slider
@ Add a button for each slide with an event handler
that calls the move () function when users clicks it

CONTENT PANELS @

SLIDER SCRIPT

LOOP THROUGH EACH SLIDER

S

ANONYMOUS FUNCTION:
Create slider for this set of markup

Store [n variables: $this: current slider,
$group: slides contalner, $s11ides: all slides,
buttonArray: buttons, currentIndex:
current slide, timeout: stores the timer

v

LOOP THROUGH EACH SLIDE

ANONYMOUS FUNCTION:
Create button for each slide

Create a button for this item

¥
]
Is this the
current slide? ?
»
]
Add class:
active
g J
s
Event: click on this radio element
¥ |
Add button to Call move()

container & array (see p520)

k-.._._ GO TO NEXT SLIDE —____..J

Call advance() function

FUNCTION: advance()
Clear and reset the timer

Call clearTimeout () & setTimeout ()

+
I
Is this the
? last slide? ?
1 1
Call move() Call move()
to next slide to first slide

3

@ CONTENT PANELS

N GO TO NEXT SLIDER ———-——-)

1. There may be several sliders on a page, so the
script starts by locking for every element whose
class attribute has a value of s1ider. For each one,
an anonymous function is run to process that slider.
2. Variables are created to hold:

i) The current slider

ii) The element that wraps around the slides

iii) All of the slides in this slider

iv) An array of buttons (one for each slide)

v) The current slide

vi) The timer

3. The move() function appears next; see p520.
Please note: This is not shown in the flowchart,

4, The advance() function creates the timer.

5. It starts by clearing the current timer. A new timer
is set and when the time has elapsed it will run an
anonymous function.

6. An if statement checks whether or not the
current slide is the last one.

If it is not the last slide then it calls move () with a
parameter that tells it to go to the next slide.
Otherwise it tells move() to go to the first slide.

7. Each slide is processed by an anonymous function.
8. A <button> element is created for each slide.

9. If the index number of that slide is the same as the
number held in the currentIndex variable, then a
class of active is added to that button.

10. An event handler is added to each button. When
clicked it calls the move () function. The slide's index
number indicates which slide to move to.

11. The buttons are then added to the button
container, and to the array of buttons.

This array is used by the move () function to indicate
which slide is currently being shown.

12. advance() is called to start the timer.

JAVASCRIPT

(D $('.slider').each(function(){

[var $this = $(this),

var $group $this.find('.slide-gr

& var $slides = $this.find('.slide'),
var buttonArray = [],

var currentIndex = 0,

var timeout;

i

// move() - The function to move th

©)
(@ function advance() {
(:}[clearTimeout (timeout);
// Start timer to run an anonymou
timeout = setTimeout (function(){
if (currentIndex < ($slides.len
move (currentIndex + 1);
} else |
move (0) ;
}
}, 4000);
]

A= s

.each($slides, function(index){

// Create a button element for th

var $bhutton = $('<button type="hu

if (index === currentIndex) {
$button.addClass('active');

}

$button.on('click', function(){
move (index) ;

}).appendTo('.sTide-buttons');

buttonArray.push($button);

13

98 000

@ advance();
1)

PROBLEM: GETTING THE RIGHT GAP
BETWEEN SLIDES USING A TIMER

Each slide should show for four seconds (before the
timer moves it on to the next slide). But if the user
clicks a button after two seconds, then the new slide
might not show for four seconds because the timer
is already counting down.

cll/js/slider.js

// For every slider
// Get the current slider

oup'), // Get the slide-group (container)
// 3Query object to hold all slides
// Create array to hold nav buttons
// Index number of current slide
// Used to store the timer

e slides goes here (see next page)

// Sets a timer between slides
// Clear timer stored in timeout
s function every 4 seconds
//
gth - 1)) { // If not the last slide
// Move to next slide
// Otherwise
// Move to the first slide

// Milliseconds timer will wait

e button

tton" class="slide-btn">•</button>');
// If index is the current item

// Add the active class

// Create event handler for the button
// 1t calls the move() function

// Add to the buttons holder

// Add it to the button array

SOLUTION: RESET THE TIMER WHENEVER A

BUTTON IS CLICKED

The advance() function clears the timer before

setting it off again. Every time the user clicks on a

button the mave() function (shown on the next two
. pages) it calls advance() to ensure the new slide is

shown for four seconds.

CONTENT PANELS

SLIDER MOVE() FUNCTION

o FUNCTION: move(index)
Slides to the image specified
. Createvariables:
© animateleft: animate from left/right
~ slideleft: position new slide to left/right
. .

o Call advance() function
4
1
Is slider moving
o OR is new image
current image?
(s} Update buttons to show which is active
Is index number
of new image > ?

K
]
? current image?
Set variable: Set variable:
slideleft: position slideleft: position
new slide to left new slide to right
| |
Set variable: Set variable:
animateleft: animateleft:
animate current animate current
slide to right slide to left
\ J
i 4
(7} Update CSS of new slide to position it
to right or left of current slide
|
e Animate current slide to position set in
variable above (this reveals new slide)
|
(o} Hide slide that just moved out of view
|
@ Position new item (left property set to 0)
|
@ Reposition all items (left property set to 0)
|
@ setScurrentIndex to index no. of new slide

CONTENT PANELS

1. The move() function will create the animated
sliding movement between two slides. When it is
called, it needs to be told which slide to move to.

2. Two variables are created that are used to control
whether the slider is moving to the left or right.

3. advance() is called to reset the timer.

4. The script checks if the slider is currently
animating or if the user selected the current slide. In
either case, nothing should be done, and the return
statement stops the rest of the code from running.

5. References to each of the buttons were stored in
an array in step 11 of the script on the previous page.
The array is used to update which button is active.

6. If the new item has a higher index number, then
the slider will need to move from right to left. If the
item has a lower index number, the slider will need
to move from left to right. These variable values are
set first and are then used in step 7.

slideLeft positions the new slide in relation to the
current slide. (100% sits the new slide to the right of
it and -100% sits the new slide to the left of it.)

animateleft indicates whether the current slide
should move to the left or the right, letting the new
slide take its place. (-100% moves the current slide to
the left, 100% moves the current slide to the right.)

7. The new slide is positioned to the right or the left
of the current slide using the value in the s1ideLeft
variable and its display property is set to block so
that it becomes visible. That new slide is identified
using newIndex, which was passed into the function.

8. The current slide is then moved to the left or right
using the value stored in the animateLeft variable.
That slide is selected using the currentIndex
variable, which was defined at the start of the script.

JAVASCRIPT

// Setup of the script shown on the previous page

cll/js/slider.js

(@) function move(newIndex) {
® var animatelLeft, slideleft;

// Creates the slide from old to new one
// Declare variables

® advance();

// When slide moves, call advance() again

// If current slide is showing or a slide is animating, then do nothing
if ($group.is(':animated') || currentIndex === newlndex) {

@) return;
. 3

e buttonArray[currentIndex].removeClass('active'); // Remove class from item
buttonArray[newIndex] .addClass('active'); // Add class to new item

if (newIndex > currentIndex) {
slideleft = '100%"';
animatelLeft = '-100%';

else {

slidelLeft = '-100%';
animateleft = '100%';

// 1f new item > current

// Sit the new slide to the right

// Animate the current group to the left
// Otherwise

// Sit the new slide to the left

// Animate the current group to the right

[

®

L }
// Position new slide to left (if less) or right (if more) of current
$slides.eq(newIndex).css({left: slideleft, display: 'block'});
$group.animate({left: animateLeft} , function() { // Animate slides and
$slides.eqg(currentIndex).css({display: 'none'}); // Hide previous slide
$slides.eg(newIndex).css({left: 0}); // Set position of the new item
$group.css({left: 0}); // Set position of group of slides
currentIndex = newIndex; // Set currentIndex to new image
35
}

PEEO®R

// Handling the slides shown on p519

Once the slide has finished animating, an
anonymous function performs housekeeping tasks:

9. The slide that was the currentIndex is hidden.

10. The position of the left-hand side of the new slide
is set to 0 (left-aligning it).

11. The position of all of the other slides is set so the
left-hand side is 0 (left-aligning them).

12. At this point, the new slide will be visible, and
the transition is complete, so it is time to update the
currentIndex variable to hold the index number

of the slide that has just been shown. This is easily
done by giving it the value that was stored in the
newIndex variable.

Now that this function has been defined, as you saw
on the p519, the code creates a timer and goes
through each slide adding a button and an event

- handler for it. (Steps 4-12 on the page p519.)

CONTENT PANELS @

CREATING A
JQUERY PLUGIN

jQuery plugins allow you to add new methods
to jQuery without customizing the library itself.

jQuery plugins have benefits over plain scripts: You can turn any function into a plugin if it:

® You can perform the same task on any elements ® Manipulates a jQuery selection
that match jQuery's flexible selector syntax ® Canreturn a jQuery selection

® Once the plugin has done its job, you can chain
other methods after it (on the same selection) The basic concept is that you:

® They facilitate re-use of code (either within one ® Passit a set of DOM elements in a jQuery
project or across multiple projects) selection

® They are commonly shared within the JavaScript ® Manipulate the DOM elements using the jQuery
and jQuery community plugin code

® Namespace collisions (problems when two ® Return the jQuery object so that other functions
scripts use the same variable name) are can be chained off it

prevented by placing the script is placed in an IIFE
(immediately invoked function expression, which

you met on p97)
This final example shows you The earlier version applied to all Here a jQuery selection is made
how to create a jQuery plugin. matching markup on the page; collecting elements with a class
It takes the accordion example the plugin version requires that of menu. The .accordion()
you saw at the start of the users call the accordion() method is called; once that has
chapter and turns it into a plugin. method on a jQuery selection. run, . fadeIn() is called.

$('.menu').accordion(500).fadeIn();

1. A jQuery selection is made 2. The .accordion() method 3. The .fadeIn() methodis
containing any elements which is called on those elements. It applied to the same selection of
have the class of menu. has one parameter; the speed of elements once .accordion()

animation (in milliseconds). has done its job.

@ CONTENT PANELS

BASIC PLUGIN STRUCTURE

1) ADDING A METHOD TO JQUERY

jQuery has an object called . fn
which helps you extend the
functionality of jQuery.

Plugins are written as methods

that are added to the . fn object.

$.fn.accordion = function(speed) {

// Plugin will go here
}

Parameters that can be passed
to the function are placed inside
the parentheses on the first line:

2) RETURNING THE JQUERY SELECTION TO CHAIN METHODS

jQuery works by collecting a set
of elements and storing them

in a jQuery object. The jQuery
object's methods can be used to
alter the selected elements.

Because jQuery lets you chain
multiple methods to the same
selection, once the plugin has
done its job it should return the
selection for the next method.

$.fn.accordion = function(speed) {

// Plugin will go here
return this;

}

3) PROTECTING THE NAMESPACE

jQuery is not the only JavaScript
library to use $ as a shorthand,
so the plugin code lives in an
IIFE, which creates function-level
scope for the code in the plugin.

(function($){

On the first line below, the |IFE
has one named parameter: $. On
the last line, you can see that the
JQuery selection is passed into
the function.

$.fn.accordion = function(speed) {

// Plugin code will go here

}
}) (iQuery);

If you want to pass in more

values, it is typically done using a

single parameter called options.

When the function is called, the
options parameter contains an
object literal.

The selection is returned using:
1. The return keyword (sends a
value back from a function)
2. this (refers to the selection

that was passed in)

Inside the plugin, $ acts like a
variable name. It references the
JQuery object containing the set
of elements that the plugin is
supposed to be working with.

The object can contain a set of
key/value pairs for the different
options.

CONTENT PANELS

THE ACCORDION PLUGIN

e A

IIFE:
Pass in the jQuery selection ($)

0o

FUNCTION: accordion()
Created on fn object

Event: click on tab
s

ANONYMOUS FUNCTION:
Shows/hides corresponding panel

]

Prevent default action of button |
|
Get button user clicked on
|
Get corresponding panel

+

000 O

Is panel being
animated?

©

4 4
Lﬁ
(8] ? Is panel visible? ?

Show panel

e O T

Hide panel

L T ST

e Return jQuery object

e A

LIRS

To use the plugin, you create a jQuery selection that
contains any elements that hold an accordion.
In the example on the right, the accordionisin a
 element that has a class name of menu (but
you could use any name you wish). You then call the
.accordion() method on that selection, like so:

$('.menu').accordion(500);

This code could be placed in the HTML document
(as shown on the right-hand page), but it would
be better placed in a separate JavaScript file that
runs when the page loads (to keep the JavaScript
separate from the HTML).

CONTENT PANELS

You can see the full code for the accordion plugin
on the right. The parts in orange are identical to the
accordion script at the start of the chapter.

1. The plugin is wrapped in an IIFE to create function-
level scope. On the first line, the function is given
one named parameter: $ (which means you can use
the $ shortcut for jQuery in the function).

10. On the last line of code, the jQuery object is
passed into the function (using its full name jQuery
rather than its shortcut $). This jQuery object
contains the selection of elements that the plugin is
working with. Together, points 1and 10 mean that in
the IIFE, $ refers to the jQuery object and it will not
be affected if other scripts use $ as a shorthand, too.

2. Inside the IIFE, the new .accordion() method is
created by extending the fn object. It takes the one !
parameter of speed.

3. The this keyword refers to the jQuery selection
that was passed into the plugin. It is used to create
an event handler that will listen for when the user
clicks on an element with a class attribute whose
value is accordien-control. When the user does,
the anonymous function runs to animate the
corresponding panel into or out of view.

4. The default action of the link is prevented.

5. In the anonymous function, $(this) refersto a
jQuery object containing the element that the user
clicked upon.

6. 7. 8. The only difference between this anonymous
function and the one used in the example at the start
of the chapter is that the .s1ideToggle() method
takes a parameter of speed to indicate how fast the
panel should be shown or hidden. (It is specified
when the .accordion() method is called.)

9. When the anonymous function has done its work, ;
the jQuery object containing the selected elements
is returned from the function, allowing the same set
of elements to be passed to another jQuery method.

cll/js/accordion-plugin.js

(@ (function($){ // Use § as variable name
@ $.fn.accordion = function(speed) { // Return the jQuery selection
® this.on('click', '.accordion-control', function(e){
@ e.preventDefault();
® $(this)
® .next('.accordion-panel’)
@ .not(':animated")
.slideToggle(speed);
s
® return this; // Return the jQuery selection
}
@ })(jQuery); // Pass in jQuery object
Note how the filename for After the accordion plugin Below you can see the HTML
the jQuery plugin starts with script has been included, the for the accordion. This time it
Jjquery. to indicate that this accordion() method can be includes both the jQuery script
script relies upon jQuery. used on any jQuery selection. and the jQuery accordion script.

cll/accordion-plugin.html

<ul class="menu">
<]i>
<h3>Classics</h3>
<div class="accordion-panel">If you like your flavors traditional...</div>

<h3>The Flower Series</h3>
<div class="accordion-panel">Take your tastebuds for a gentle...</div>
</1i>
<]i>
<h3>Salt o' the Sea</h3>
<div class="accordion-panel">Ahoy! If you long for a taste of...</div>
</]i>
(/u])
<script src="js/jquery.js"></script>
<script src="js/jquery.accordion.js"></script>
<script>
$('.menu').accordion(500);
</script>

CONTENT PANELS @

SUMMARY

CONTENT PANELS

CONTENT PANELS

