

Content panels allow you to showcase extra information
within a limited space. In this chapter, you will see several
examples of content panels that also give you practical

insight into creating your own scripts using jQuery.

In this chapter, you will see how to create many types of content panels: accordions, tabbed

panels, modal windows (also known as a lightboxes), a photo viewer, and a responsive slider.

Each example of a content panel also demonstrates how to apply the code you have learned

throughout the book so far in a practical setting.

Throughout the chapter, reference w ill be made to more complex jQuery plugins that extend

the functionality of the examples shown here. But the code sampies in this chapter also show

how it is possible to achieve techniques you will have seen on popular websites in relatively

few lines of code (without needing to rely on plugins written by other people).

8 CONTENT PANELS

ACCORDION

An accordion features titles which, when clicked,

expand to show a larger panel of content.

MODAL W INDOW

When you cl ick on a link for a modal window (or

"l ightbox"), a hidden panel wi ll be displayed.

RESPONSIVE SLIDER

The slider allows you to show panels of content that

sl ide into view as the user navigates between them.

THEY SAY NO TWO
MARSHMALLOWS

ARE THE SAME ...

A.I k~t our (he()" at iMciroicor
~do. Thain &«lust they
crafl Qeb dd.ldoo, Wtdt
inJMduall)' Ly hand 11slo1t
a.ll·nat11ral ;nsrrecliwts.

TABBED PANEL

Tabs automatically show one panel, but when you

click on another tab, the panel is changed.

PHOTO VIEWER

Photo viewers display different images within the

same space when the user clicks on the thumbnails.

THE FLOWER SE RIES

•

!At,....~,...

ftH"CWtl>
~.-...,,.
-~~toe~ ---__ _,,ilo;o'ol

::-.:.~I')'.--- · .. ___ _,,..,
~."""'" ,,_,.,,..
._......,,~-

~ -
)s.1$/ lhc.~

CREATING A JQUERY PLUGIN

The final example revisits the accordion (the first

example) and turns it into a jQuery plugin.

CONTENT PANELS 8

SEPARATION
OF CONCERNS

As you saw in the introduction to this book, it is considered good practice
to separate your content (in HTML markup), presentation (in CSS rules),

and behaviors (in JavaScript).

In general, your code should reflect that:

• HTML is responsible for structuring content

• CSS is responsible for presentation

• JavaScript is responsible for behavior

Enforcing this separation produces code that is

easier to maintain and reuse. While this may already

be a familiar concept to you, it's important to

remember as it is very easy to mix these concerns in

w ith your JavaScript. As a rule, edit ing your HTML

templates or stylesheets should not necessitate

editing your scripts and vice versa.

9 CONTENT PANELS

You can also place event listeners and cal ls to

functions in JavaScript files rather than adding them

to the end of an HTML document.

If you need to change the styles associated with an

element, rather than having styles written in the

JavaScript, you can update the value of the cl ass

attributes for those elements. In turn, they can

trigger new rules from the CSS file that change the

appearance of those elements.

W hen your scripts access the DOM, you can

uncouple themJrom the HTML by using cl ass

selectors rather than tag selectors.

ACCESSIBILITY
& NO JAVASCRIPT

When writing any script, you should think about those who might be
using a web page in different situations than you.

ACCESSIBILITY

Whenever a user can interact with an element:
• If it is a link, use <a>

• If it acts like a button, use a button

Both can gain focus, so users can move between

them focusable elements using the Tab key (or other
non-mouse solution). And although any element can
become focusable by setting its tabi ndex attribute,

only <a> elements and some input elements fire a
click event when users press the Enter key on their

keyboard (the ARIA ro 1e= 11 button 11 attribute will
not simulate this event).

W:iilftll

<!DOCTYPE html><html class= 11 no-js"> •••
<body>

NO JAVASCRIPT

This chapter's accordion menu, tabbed panels,
and responsive slider all hide some of their content

by default. This content would be inaccessible to
visitors that do not have JavaScript enabled if we

didn't provide alternative styling. One way to solve

this is by adding a c 1 ass attribute whose value is
no-js to the opening <html> tag. This class is then
removed by JavaScript (using the repl ace() method

of the String object) if JavaScript is enabled.
The no-j s class can then be used to provide styles

targeted to visitors who do not have JavaScript
enabled.

cll/no-js.html

<div class= 11 js-warning 11 >You must enable JavaScript to buy from us</ div>

<!-- Turn off your JavaScript to see the di f f erence -->
<scri pt src="js/ no-js.js"></script>

</body>

</ html >

JAVASCRIPT

var el Oocument = document.documentElement;

cll/js/no-js. js

elDocument . className = el Document .c lassName.replace(/ (Al\s)no- js(\s l $) / , '$1');

CONTENT PANELS e

ACCORDION

When you click on the title of an accordion, its corresponding panel

expands to reveal the content.

An accordion is usually created
within an unordered list (in
a <u l >element). Each <l i >

element is a new item in the

accordion. The items contain:

• A visible label (in this
example, it is a <button>)

• A hidden panel holding the
content (a <div>)

Clicking a label prompts the
associated panel to be shown

(or to be hidden if it is in view).

To just hide or show a panel,
you could change the value

of the cl ass attribute on the
associated panel (triggering a
new CSS rule to show or hide it).

But, in this case, jQuery will be

used to animate the panel into

view or hide it.

HTMLS introduces <details>

and <sumary> elements to
create a similar effect. but (at the

time of writing) browser support
was not widespread. Therefore,

a script like this would still be

used for browsers that do not

support those features.

8 CONTENT PANELS

Other tabs scripts include liteAccordion and zAccordion.

They are also included in jQuery UI and Bootstrap.

ACCORDION WITH ALL PANELS CO LLAPSED

LABEL 1

LABEL 2

LABEL 3

COLLAPSED

COLLAPSED

COLLAPSED

ACCORDION WITH SECOND PANEL EXPANDED

LABEL 1 .

LABEL 3

COLLAPSED

CONTENT 2
EXPANDED

COLLAPSED

AN IMATING CONTENT WITH SHOW, HIDE, AND TOGGLE

jQuery's .show(}, .hide{}, and

• toggle () methods animate the

showing and hiding of elements.

jQuery calculates the size of the
box, including its content, and
any margins and padding. This

helps if you do not know what
content appears in a box.

(To use CSS animat ion, you

would need to calculate the box's

height, margin and padding.)

I BOX HEOGHT

• MARGIN • BORDER • PADDING

• togg 1 e () saves you writ ing
conditional code to tell whether

the box is already being shown

or not. (If a box is shown, it hides
it, and if hidden, ·it will show it.)

When the page loads, CSS rules

are used to hide the panels.

Clicking a label prompts the

hidden panel that follows it to
animate and reveal its full height.

This is done using jQuery.

Clicking on the label again would

hide the panel.

The three methods are all
shorthand for the animate ()

method. For example, the

show() method is shorthand for:

$(' . accor di on-panel ')
. animate({

}) ;

height : 'show ' ,
paddingTop: ' show ' ,
paddi ngBott om: 'show',
mar ginTop : 'show',
marginBottom: ' show '

CONTENT PANELS 8

CREATING AN ACCORDION

Below you can see a diagram, rather like a f lowchart.

These diagrams have two purposes. They help you:

i) Follow the code samples; the numbers on the
diagram correspond with the steps on the right,
and the script on the right-hand page. Together, the
diagrams, steps, and comments in the code should
help you understand how each example works.

ii) Learn how to plan a script before coding it.

This is not a "formal" diagram style, but it gives you

a visual idea of what is going on with the script.
The diagrams show how a collection of small,
individual instructions achieve a larger goal, and

if you follow the arrows you can see how the data
flows around the parts of the script.

0

e
e
0

Event: c 1 i ck on tab

J

ANONYMOUS FUNCTION:
Shows/hides the corresponding panel

Prevent default action of button

I
Get button user clicked on

I
Get accordion panel after that button

' l
' I Show panel

+
I

Is panel being
animated?

\

Is panel visible?

' I Hide panel

Some programmers use Unified Modeling Language

or class diagrams - but they have a steeper learning

curve, and these flowcharts are here to help you see
how the interpreter moves through the script.

0 CONTENT PANELS

Now let's take a look at how the diagram is

translated into code. The steps below correspond
to the numbers next to the JavaScript code on the
right-hand page and the diagram on the left.

1. A jQuery col lection is created to hold elements

whose cl ass attribute has a value of accordion.

In the HTML you can see that this corresponds to
the unordered list element (there could be several

lists on the page, each acting as an accordion).
An event listener waits for the user to click on one
of the buttons whose cl ass attribute has a value of

accordion-control . This triggers an anonymous
function.

2. The preventDefault () method prevents

browsers treating the the button like a submit

button. It can be a good idea to use the
preventDefaul t () method early in a function so

that anyone looking at your code knows that the
form element or link does not do what they might
expect it to.

3. Another jQuery selection is made using the

this keyword, which refers to the element the user

clicked upon. Three jQuery methods are applied to

that jQuery selection holding the element the user
clicked on.

4 •• next (' • accordion-panel ') selects the next

element with a class of accordion-panel .

5 .. not (':animated') checks that it is not in the
middle of being animated. (If the user repeatedly

clicks the same label, this stops the . s 1 i deToggl e ()
method from queuing multiple animations.)

6 . • s l i deToggl e() will show the panel if it is

currently hidden and will hide the panel if it is
currently visible.

1111$11

<ul class="accordion">

<button class="accordion-control">Classics<lbutton>
<div class="accordion-panel">Panel content goes here ... <ldiv>

<lli>

<button class="accordion-control">The Flower Series<lbutton>
<div class="accordion-panel">Panel content goes here ... <ldiv>

<lli>

<button class="accordion-control">Salt O' the Sea<lbutton>
<div class="accordion-panel">Panel content goes here ... <ldiv>

<lli>
<lul>

el l/accordion.html

cl l/css/accordion.css

.accordion-panel {
display: none; }

JAVASCRIPT

G) $(' .accordion ') . on('cl i ck',
@ e.preventDefault() ;
® $(this)

cll/js/accordi on.js

' .accordion-control', funct i on(e){ II When clicked
II Prevent def ault action of button

~ .next('. accordion-panel ')
II Get the element the user clicked on
II Select following panel

~ .not(' :animated ') II If it is not currently animating
© .sl ideToggl e() ; II Use slide toggle to show or hide it

}) ;

Note how steps 4, 5, and 6 are chained off the same jQuery selection.

You saw a screenshot of the accordion example on p492, at the start of this section.

CONTENT PANELS 8

TABBED PANEL

When you click on one of the tabs, its corresponding panel is shown.

Tabbed panels look a little like index cards.

You should be able to see all of

the tabs, but:

• Only one tab should look

active.

• Only the panel that

corresponds to the act ive tab

should be shown (all other

panels should be hidden).

The tabs are typically created

using an unordered list. Each

<l i > element represents a tab

and within each tab is a link.

The panels follow the unordered

list that holds the tabs, and each

panel is stored in a <div>.

To associate the tab to the panel:

• The link in the tab, like all

links, has an href attribute.

• The panel has an id attribute.

Both attributes share the same

value. (This is the same principle

as creating a link to another

location within an HTML page.)

8 CONTENT PANELS

Other tabs scripts include Tabslet and Tabulous.

They are also included in jQuery UI and Bootstrap.

FIRST TAB SELECTED

SECOND TAB SELECTED

- TAB 1 HIGHLIGHTED

CONTENT

PANELl

SHOWING

PANEL 2 HIDDEN
PANEL 3 HIDDEN

*H:fH *M='* - TAB 2 HIGHLIGHTED

PANEL 1 HIDDEN

CONTENT

PANEL 2
SHOWING

When the page loads, CSS is

used to make the tabs sit next to
each other and to indicate which
one is considered active.

CSS also hides the panels, except
for the one that corresponds

with the active tab.

When the user clicks on the
link inside a tab, the script uses

jQuery to get the value of the
href attribute from the link. This

corresponds to the id attribute

on the panel that should be
shown.

The script then updates the

values in the cl ass attribute
on that tab and panel, adding a

value of active. It also removes
that value from the tab and panel

that had previously been active.

If the user does not have
JavaScript enabled, the link in

the tab takes the user to the
appropriate part of the page.

CONTENT PANELS 8

CREATING TAB PAN ELS

0 Select all sets of tabs on page The flowchart shows the steps that are involved

• in creating tabs when they are found in the HTML.

'i·'·l!"'iMll§iil.ijifii'·JIU+I Below, you can see how these steps can be
(1 translated into code:

ANONYMOUS FUNCTION:
Setup this group of tabs 1. A jQuery selection picks all sets of tabs w ithin

Create variables:
the page. The . each () method calls an anonymous

$thi s: current list function that is run for each set of tabs (like a loop).

e $tab: current ly act ive tab The code in the anonymous function deals with
$1 ink: link element in act ive tab
$panel: value of href attribute on link one set of tabs at a time, and the steps would be

• repeated for each set of tabs on the page.
I

f) Event : cl i ck on tab control 2. Four variables hold details of the active tab:

I i) $this holds the current set of tabs.

ANONYMOUS FUNCTION
ii) $tab holds the currently active tab.

Show this tab and hide others The . find() method selects the active tab.

0
iii) $1 ink holds the <a> element within that tab.

Prevent default action of link
iv) $panel holds the value of the href attribute for

I
Create variables: the active tab (this variable will be used to hide the e $1 i nk: jQuery object containing link panel if the user selects a different one). e id: value of href attribute from tab

3. An event listener is set up to check for when the user just clicked

• user clicks on any tab w ithin that list. When they do,
I

it runs another anonymous function.

0 '
Is this item 4 . e. preventDef au 1 t () prevents the link that users

active? clicked upon taking them to that page.

l 5. Creates a variable called $1 ink to hold the current

~ link inside a jQuery object.
Remove active from cl ass on tab 6. Creates a variable called i d to hold the value of e I the href attribute from the tab that was clicked. It is

Remove active from cl ass on panel
called id because it is used to select the matching

I
Set tab user clicked on as active

content panel (using its id attribute).

0 I 7. An if statement checks whether the id variable

Set corresponding panel as active contains a value, and the current item is not active.

• If both conditions are met:
I

8 . The previously act ive tab and panel have the Update $panel & $t ab variables
cl ass of act i ve removed (which deactivates the tab

and hides the panel).

GO TO NEXT SET O F TABS
) 9. The tab that was clicked on and its corresponding

panel both have active added to their cl ass

attributes (which makes the tab look act ive and

displays its corresponding panel, which was hidden).

At the same time, references to these elements are

stored in the $pane 1 and $tab variables.

8 CONTENT PANELS

IHIMI ell/ tabs . html

<ul class="tab-list">
<li class="acti ve">Descri ption<la><lli>
Ingredients<la><lli>
Del i very<la><lli>

<l ul>
<div class="tab- panel active" id="tab-l">Content l . .. <ldiv>
<div class="tab-panel" id="tab-2">Content 2 . . . <ldiv>
<d iv class="tab-panel" id="tab-3">Content 3 . . . <ldiv>

.tab-panel
display: none;}

. tab-panel.active {
display: block;}

cl l/css/tabs . css

JAVASCRIPT cll/j s/tabs . j s

G) $(' . tab-1 ist') .each(function() { II Find l ists of t abs
II Store this l ist

®
@
®
©

(j)

@{

@{

var $this = $(this);
var $tab $this . find('li .active');
var $link $tab.find('a');
var $panel = $($link.attr('href'));

$thi s.on(' click ' , ' .tab-control', function(e)
e.preventDefault();
var $link $(this);
var id = this.hash;

if (id && !$link.is('. active'))
$panel . removeClass('active');
$tab.removeClass('active');

II Get the active list item
II Get link from active tab
II Get active panel

{ II When click on a tab
II Prevent li nk behavior
II Store the current link
II Get href of clicked tab

II If not currently active
II Ma ke panel i nact ive
II Make tab inactive

$panel = $(id).addClass(' active'); II Make new panel act ive

}
}) ;

}) ;

$tab = $l i nk . parent() .addClass('active '); II Make new tab active

CONTENT PANELS 9

MODAL WINDOW

A modal window is any type of content that appears "in front of" the rest
of the page's content. It must be "dosed" before the rest of the page can
be interacted with.

In this example, a modal window
is created when the user clicks

on the heart button in the top
left-hand corner of the page.

The modal window opens in

the center of the page, allowing
users to share the page on social

networks.

The content for the modal

window will typically sit within
the page, but it is hidden when

the page loads using CSS.

JavaScript then takes that
content and displays it inside
<div> elements that create the

modal window on top of the
existing page.

Sometimes modal w indows

will dim out the rest of the
page behind them. They can

be designed to either appear
automatically when the page has

finished loading or they can be
triggered by the user interacting

with the page.

9 CONTENT PANELS

Other examples of modal window scripts include Colorbox (by Jack L.

Moore), Lightbox 2 (by Lokesh Dhakar), and Fancybox (by Fancy Apps).
They are also included in jQuery UI and Bootstrap.

A design pattern is a term

programmers use to describe a
common approach to solving a

range of programming tasks.

This script uses the module
pattern. It is a popular way to

write code that contains both
public and private logic.

<div class•"modal">

Once the script has been
included in the page, other

scripts can use its public
methods: open () , cl ose() , or

center() . But users do not need

to access the variables that
create the HTML, so they remain

private (on p505 the private
code is shown on green).

</div>

<button rol e•"button" class• "modal-c l ose ">close</button>

Users of this script only need to

know how the open() method

works because:

• c 1 ose () is called by an event
listener when the user clicks

on the close button.

• center() is called by the
open() method and also by

an event listener if the user

resizes the window.

When you call the open()

method, you specify the content

that you want the modal window
to contain as a parameter (you

can also specify its width and
height if you want).

In the diagram, you can see that

the script adds the content to the

page inside <div> elements.

Using modules to build parts of
an application has benefits:

• It helps organize your code.

• You can test and reuse the
individual parts of the app.

• It creates scope, preventing
variable /method names

clashing with other scripts.

This modal window script

creates an object (called moda 1),
which, in turn, provides three

new methods you can use to

create modal windows:

open () opens a modal window
cl ose() closes the window

center() centers it on the page

Another script would be used
to call the open() method and

specify what content should

appear in the modal window.

div .mod a 1 acts as a frame

around the modal window.

div. mod a I - content acts as a
container for the content being

added to the page.

button . mod a 1- cl ose allows the

user to close the modal window.

CONTENT PANELS 8

CREATING MODALS

The modal script needs to do two things:
1. Create the HTML for the modal window

2. Return the modal object itself, which consists of
the open(), close(), and center () methods

Including the script in the HTML page does not have

any visible effect (rather like including jQuery in your
page does not affect the appearance of the page).

But it does allow any other script you write to use the
functionality of the mod a 1 object and call its open ()

method to create a modal window (just like including
jQuery script includes the jQuery object in your
page and allows you to use its methods).

This means that people who use the script only need

to know how to call the open () method and tell it
what they want to appear in the modal window.

The mod a 1-i nit . j s fi le removes the share content
from the HTML page. It then adds an event handler

to call the modal object's open () method to open

a modal window containing the content it just
removed from the page. i nit is short for initialize

and is commonly used in the name of files and
functions that set up a page or other part of a script.

0 Create variable:
$content: part of page to appear In m odal

I
Hide that part of page by d etaching i t

+ I

Event: click o n share button
I

ANONYMOUS FUNCTION:
Show content in modal window

Call open () method of moda 1 object, then
pass it t he $content variable as a parameter,

alo ng w ith the modai's w idt h and height

@ CONTENT PANELS

In the example on the right, the modal window is
called by a script called mod a 1-i ni t.j s. You wi ll see

how to create the mod a 1 object and its methods on
the next double page spread, but for now consider
that including this script is the equivalent of adding

the following to your own script. It creates an object

called modal and adds three methods to the object:

var modal = {
center : function() {

II Code for center() goes here
},
open: function(sett ings) {

II Code for open() goes here
} .
close: function() {

}
} ;

II Code for close() goes here

1. First the script gets the contents of the element

that has an id attribute whose value is share-

opt ions. Note how the jQuery • detach () method
removes this content from the page.
2. Next an event handler is set to respond to when

the user clicks on the share button. When they do,
an anonymous function is run.

3. The anonymous function uses the open() method
of the moda 1 object. It takes parameters in the form

of an object literal:

• content: the content to be shown in the modal

window. Here it is the content of the element
whose id attribute has a value of share-options.

• width: the width of the modal window.
• height: the height of the modal window.

Step 1 uses the . detach() method because it keeps

the elements and event handlers in memory so they
can be used again later. jQuery also has a . remove ()
meth.od but it removes the items completely.

USING TH E MODAL SCRIPT

iiiiMI cll/moda 1-wi ndow. html

<D <di v i d="share-opt i ons ">
<!-- This i s where the message and sharing buttons go -->

</div>
<s cript s r e=" j s/ j que ry . j s 11 ></scri pt>

@ <s cript s r c="j s/modal-wi ndow. j s"></ sc r ipt>
@ <script src="js/moda l- in i t . j s "></sc r i pt>

</body>
</html>

In the HTML above, you should note three things:
1. A <div> that contains the sharing options.
2. A link to the script that creates the moda l object

(modal -window.js~

3. A link to the script that will open a modal window
using the modal object (moda 1-i nit. j s), using it
to display the sharing options.

JAVASCRIPT

(function() {

The modal - in it. j s fi le below opens the modal
window. Note how the open() method is passed
three pieces of information in JSON format:
i) content for modal (required)
ii) width of modal (optional - overrides default)
iii) height of modal (optional - overrides default)

cll/js/modal-init.js

<D
@
®

var $content= $('#share-options').detach(); //Remove modal from page

//Cli ck handler to open modal
height:300});

$('#share') .on('click' , function() {
modal .open({content : $content, width:340,

}); CD ®
} ()) ;

The z-i ndex of the modal window must be very high
so that it appears on top of any other content. . .,..

.modal
position: absolute;
z-index: 1000;}

@)

These styles ensure the modal window sits on top of
the page (there are more styles in the fu ll example).

cl l/css/modal-window.css

CONTENT PANELS 8

MODAL OBJECT

Create HTML for modal window:
$window: the window object

A $mod a 1: modal window element
V $content: modal window content

$close: close button

0

e
0

Add $content and $close to $modal

Event: click on close button

I

ANONYMOUS FUNCTION:
Used to close t he modal window

Prevent default action of link

Call close() function

FUNCTION: center()
Center the modal window

Get height of viewport & subtract
height of modal, halve that figure to get

distance modal should be from top of
window, then do same for widths

I
Set CSS for modal using these values

FUNCTION: open(settings)
Show/hide the modal window

Empty modal window & add new content

I
Use CSS to set height & width of modal

I
Add modal window to <body>

I
Center window using center()

+ I

Event: resize o n browser w indow

FUNCTION: close{)
Close the modal window

Remove content from modal window

I
Detach modal and its event handlers

@ CONTENT PANELS

Below are the steps for creating the mod a 1 object.
Its methods are used to create modal windows.

1. The moda 1 object is declared. The methods of

this object are created by an Immediately Involved
Function Expression or llFE (see p97). (This step

is not shown in the flowchart.)
2. Store the current window object in a jQuery

selection, then create the three HTML elements
needed for the modal window. Assemble the modal

window and store it in $modal .
3 . Add an event handler to the close button which

calls the moda 1 object's close() method.
4. Following the return keyword, there is a code

block in curly braces. It creates three public methods
of the modal object. Please note: This step is not

shown in the flowchart.
5. The center() method creates two variables:

i) top: takes the height of the browser window and

subtracts the height of the modal window. This
number is divided by two, giving the distance of the
modal from the top of the browser window.

ii) 1 eft: takes the width of the browser window and
subtracts the width of modal w indow. This number

is divided by twE>, giving the distance of the modal

from the left of the browser window.
6 . The jQuery . css () method uses these variables

to position the modal in the center of the page.
7. open () takes an object as a parameter; it is

referred to as settings (the data for this object was
shown on the previous page).

8 . Any existing content is cleared from the modal,
and the content property of the settings object is

added to the HTML created in steps 1 and 2.

9. The width and height of the modal are set using
values from the settings object. If none were given,

auto is used. Then the modal is added to the page
using the appendTo(} method.
10. center() is used to center the modal window.

11. If the window is resized, call center(} again.

12. close() empties the modal, detaches the HTML

from the page, and removes any event handlers.

In the code below, the lines that are highlighted in

green are considered private. These lines of code

When this script has been included in a page, the

center(), open(), and c 1 ose () methods in steps

5-12 are available on the modal object for other

scripts to use. They are referred to as public.

are only used within the object. (This code cannot be

accessed directly from outside the object.)

JAVASCRIPT cll/js/modal-window.js

G) var modal = (function() {
var $window= $(window);

II Decl are modal object

2

0
@

(@
®

var $modal =$('<div class="modal"I>'); II Create markup for modal
var $content = $('<div class="modal-content"I>');
var $close= $('<button role="button" class="modal-close">close<l button>');

$modal .append($content, $close};

$close.on('click ' , function(e)
e.preventDefault();
moda 1 . c 1 ose () ;

}) ;

II Add close button to modal

II If user clicks on close
II Prevent link behavior
II Close t he modal window

return 11 Add code to modal
center: function() { II Define center() method

}.

II Calculate distance from top and l eft of window to center the modal
var top = Math.max($window.height() - $modal .outerHeight(), O) I 2;
var left = Math.max($window.width{) - $modal.outerWidth(), 0) I 2;
$modal .css({ II Set CSS for the modal

top: top+ $window.scrol 1Top(), II Center vertical ly
l eft: l eft + $window .scrollleft() II Center horizontally

}) ;

open: function(settings) {
$content.empty(} .append(settings.content);

II Define open() method
II Set new content of modal

},

$modal .css({
width : settings.width 11 ' auto' ,
height: settings.height 11 'auto '

}).appendTo('body'};

modal . center();
$(window) .on('resize', modal .center);

close: function() {

}
} ;

} ()) ;

$content.empty();
$mod a 1 . detach() ;
$(window).off('resize', modal.center);

II Set modal dimensions
II Set width
II Set height
II Add it to the page

II Cal l center() method
II Call it if window resized

II Define close() method
II Remove content from modal
II Remove modal from page
II Remove event handler

CONTENT PANELS 8

PHOTO VIEWER

The photo viewer is an example of an image gallery. When you click on a

thumbnail, the main photograph is replaced with a new image.

In this example, you can see
one main image with three

thumbnails underneath it.

The HTML for the photo viewer

consists of:

• One large <div> element that
will hold the main picture.
The images that sit in the

<div> are centered and
scaled down if necessary to

fit within the allocated area.

• A second <div> element that
holds a set of thumbnails that
show the other images you

can view. These thumbnails
sit inside links. The href

attribute on those links point

to the larger versions of their

images.

8 CONTENT PANELS

r•~~'°'',...,..,......,...,,...,...... __ -,_ __ -w .. _ _.,,,,...,.
CllpbOIW.: 04~,ticny
a.y....c..._
-....i .. ~
........ . NJwllhwe,_.,..,.._..._
...-.i...~

U.1S IU°'p.a..

Other gallery scripts include Galleria, Gallerific, and TN3Gallery.

FIRST PHOTO SELECTED

PHOTO 1

SHOWING

. 1111- THUMBNAIL 1 HIGHLIGHTED

SECOND PHOTO SELECTED

PHOT02

SHOWING

111111- THUMBNAIL 2 HIGHLIGHTED

When you cl ick on a thumbnail,
an event listener triggers an

anonymous funct ion that:
1. Looks at the value of the href

attribute (which points to the
large image)

2 . Creates a new element

to hold that image
3. Makes it invisible
4. Adds it to the big <div>

element

Once the image has loaded, a

func tion cal led cross fade()

is used to fade between the
existing image and the new one
that has been requested.

CONTENT PANELS 8

USING THE PHOTO VIEWER
In order to use the photo viewer,
you create a <div> element to

hold the main image. It is empty,
and its id attribute has a value of

photo-v i ewer.

ell/photo-viewer.html

The thumbnails sit in another

<div>. Each one is in an <a>
element with three attributes:

• href points to the larger
version of the image

• cl ass always has a value of

thumb and the current main
image has a value of active

• title describes the image (it
will be used for al t text)

<div id="photo-viewer"></ div>
<div id="thumbnails">

</div>

The script comes before the
closing </body> tag. As you will
see, it simulates the user clicking

on the first thumbnail.

The <div> that holds the main
picture uses relative positioning.

This removes the element from

normal flow, so a height for the
viewer must be specified.

While images are loading, a

cl ass of i s-1 oadi ng is added
to them (it displays an animated

loading gif). When the image has

loaded, i s-1 oadi ng is removed.

If the images are larger than
the viewer the max-width and

max-height properties will scale
them to fit. To center the image

within the viewer a mix of CSS

and JavaScript will be used. See

p511 for detailed explanation.

8 CONTENT PANELS

cll/ css/photo-viewer.css

#photo-viewer {
position: relative;
height: 300px;
overflow: hidden; }

#photo-viewer. is-loading:after {
content: url (images/ load.gif);
position: absolute;
top: 0;
right: O; }

#photo-viewer img
posit ion: absolute;
max-widt h: 100%;
max-height : 100%;
top: 50%;
left : 50%;}

a.active {
opacity : 0.3; }

ASYNCHRONOUS LOADING
& CACH ING IMAGES

This script (shown on the next page) shows two interesting techniques:
1. Dealing with asynchronous loading of content

2. Creating a custom cache object

SHOWING THE RIGHT IMAGE WHEN
LOADING IMAGES ASYNCHRONOUSLY

PROBLEM:

The larger images are only loaded into the page

when the user clicks on a thumbnail, and the script

waits for the image to fully load before displaying it.

Because larger images take longer to load, if a user

cl icks on two different images in quick succession:

1. The second image could load faster than the first

one and be displayed in the browser.

2 . It would be replaced by the first image the user

cl icked on when that image had loaded. This could

make users think the wrong image has loaded.

SOLUTION:

When the user clicks on a thumbnail:

• A function- level variable called src stores the

path to this image.

• A global variable called request is also updated

w ith the path to this image.

• An event handler is set to call an anonymous

function when this image has loaded.

When the image loads, the event handler checks if

the src variable (which holds the path to this image)

matches the request variable. If the user had clicked

on another image since the one that just loaded, the

request variable would no longer match the src

variable and the image should not be shown.

CACHING IMAGES THAT HAVE
ALREADY LOADED IN THE BROWSER

PROBLEM:

When the user requests a big image (by clicking on

the thumbnail), a new element is created and

added to the frame.

If the user goes back to look at an image they have

already selected, you do not want to create a new

element and load the image all over again.

SOLUTION:

A simple object is created, and it is called cache.

Every time a new element is created, it will be

added to the cache object.

That way, each time an image is requested, the code

can check if the corresponding <i mg> element is

already in the cache (rather than creating it again).

CONTENT PANELS @

PHOTO VIEWER SCRIPT (1)

This script introduces some new concepts, so it will

be spread over four pages. On these two pages you

see the global variables and cross fade() function.

Store In variables:
request: last Image that was requested

0 $current: Image currently being shown
cache: object to remember loaded Images

e

0

e
e

$frame: container for image
$thumbs: container for thumbnails

FUNCTION: crossfade($img)
Fades to new image (passed as a parameter)

'
Is there a

current image?

Stop animation
& fade out old

image

Center new image using CSS
I

Fade in new image
I

Store new image in $current

THE CACHE OBJECT

The idea of a cache object might sound complicated,

but all objects are just sets of key/value pairs. You

can see what the cache object might look like on

the right. When an image is requested by cl icking

on a new thumbnail, a new property is added to the

cache object:

• The key added to the cache object is the path to
the image (below this is referred to as s re).
Its value is another object w ith two properties.

• src. $ i mg holds a reference to a jQuery object that

contains the newly created element.
• src. i sloadi ng is a property indicating whether or

not it is currently loading (its value is a Boolean).

@ CONTENT PANELS

1. A set of global variables is created. They can

be used throughout the script - both in the

cross fade () function (on this page) and the event

handlers (on p512).

2. The crossfade() function will be called when the

user has clicked on a thumbnail. It is used to fade

between the old image and the new one.

3. An if statement checks to see if there is an image

loaded at the moment. If there is, two things happen:

the • stop () method will stop any current animation

and then • fadeout() will fade the image out.

4 . To center the image in the viewer element, you

set two CSS properties on the image. Combined

w ith the CSS rules you saw on p508, these CSS

properties will center the image in its container.

(See the diagrams on the bottom of p511 .)

i) margin 1 eft: gets the width of the image using the

• width () method, divides it by two, and uses that

number as a negative margin.

ii) margi nTop: gets the height of the image, using the

• height () method, divides it by two, and makes that

number a negative margin.

5. If the new image is currently being animated, the

animation is stopped and the image is faded in.

6. Finally, the new image becomes the current image

and is stored in the $current variable.

var cache = {
"cll/img/photo- 1. j pg " :

" $i mg " : jQuery object,
" isload i ng" : f al se

} .
" cll/img/photo-2 . jpg" :

"$img": jQuery object,
"isloading" : false

},

"cll/ img/ photo-3 . jpg" :

"$img" : jQuery object ,
" isloading" : f al se

).

JAVASCRIPT

,

var request;
var $current;
var cache = {};
var $frame =$('#photo-viewer ') ;
var $t humbs = $(' .thumb ');

@ function crossfade($img)

if ($current) {
$current.stop() . fade0ut('slow ') ;

$img.css({
marginleft: -$i mg.width() I 2,
marginTop : -$ img.height() I 2

}) ;

G) $img . stop().fadeTo('slow', 1) ;

(§) $current = $img;

CENTERING THE IMAGE

cll/js/photo-viewer.js

II Latest image to be requested
II Image currently being shown
II Cache object
II Container for image
II Container for image

II Function to fade between images
II Pass in new image as parameter
II If there is currently an image showing
II Stop animation and fade it out

II Set the CSS margins for the image
II Negati ve ma rgi n of half image ' s width
II Negat ive margin of half image's he ight

II Stop ani mation on new i mage & fade in

II New image becomes current image

_J
i) Centering the image involves
three steps. In the style sheet,
absolute positioning is used to
place it in the top-left corner of
the containing element.

ii) In the style sheet, the image is
moved down and right by 50% of
the container's width and height:
width: 800px + 2 = 400 px
height: 500px + 2 = 250 px

i
iii) In the script, negative margins
move the image up and left by
half the image's width and height:
width: 500 px + 2 = 250 px
height: 400px + 2 = 200 px

CONTENT PANELS @

PHOTO VIEWER SCRIPT (2)
e
0

8
e
0

0

•
0

G>

e

Event: c 1 i ck on thumbnail

• I

Simulate user clicking on first thumbnail

ANONYMOUS FUNCTION

Create variables: Simg: to load Image, src:
path to image, request: path to latest image
Prevent default action of link

I
Update active thumbnail

• I

' In the cache?
Is this Image~

'
Is this image
still loading?

I
Call function: cross fade()

Create element & store in Si mg

I
Update cache & set isloading to true

• I

Event: load on new image

• I

Add i s-1 oadi ng class to frame
I

Update src & alt of Image

ANONYMOUS FUNCTION

Hide image
I

Remove 'loading' & add image
I

Update cache & set is Loading to fa 1 se

• I

'
is Image still

latest wanted?

Call function: cross fade(} ' I

'

9 CONTENT PANELS

1. The thumbnails are wrapped in links. Every time

users click on one, the anonymous function will run .

2 . Three variables are created:

i) $img will be used to create new elements

that will hold the larger images when they load.

ii) src (a function-level variable) holds the path to

the new image (it was in the href attribute of the link).

iii) request (a global variable) holds the same path.

3. The link is prevented from loading the image.

4 . The active class is removed from all the thumbs

and is added to the thumb that was clicked on.

5. If the image is in the cache object and it has

finished loading, the script calls cross fade().

6 . If the image has not yet loaded, the script creates

a new element.

7. It is added to the cache. is Loading is set to true.

8 . At this point, the image has not loaded yet (only

an empty element was created). When the

image loads, the 1 oad event triggers a function

(which needs to be written before the image loads).

9. First, the function hides the image that just loaded.

10. It then removes the i s-1 oadi ng class from the

frame and adds the new image to the frame.

11. In the cache object, is Loading is set to fa 1 se (as

it w ill have loaded when this function runs).

12. An if statemei:it checks if the image that just

loaded is the one the user last requested. To see how

this is done, look back at step 2 again:

• The src variable holds the path to the image that
just loaded. It has function-level scope.

• The request variable is updated each time the

user clicks on an image. It has global scope.

So, if the user has clicked on an image since this one,

the request and src variables will not be the same

and nothing should be done. If they do match, then:

cross fade() is called to show the image.

13. Having set all of this in place, it is time to load the

image. The i s-1 oadi ng class is added to the frame.

14. Finally, by adding a value to the src attribute on

the image, the image will start to load. Its alt text is

retrieved from the title attribute on the link.

15. The last line of the script simulates the user

clicking on the first thumbnail. This will load the first

image ·into the viewer when the script first runs.

JAVASCRIPT cll/js/photo-viewer.js

CD $(document} .on('click ' , '.thumb', function(e}{ II When a thumb is clicked on
II Create local variable called $img
II Store path to image 2

var $img;
var src = this.href;
request = src; II Store path again in request

(]) e.preventDefault(); II Stop default link behavior

®
®

@)
®

@

$thumbs.removeClass('active'};
$(this).addClass('active');

II Remove active from al l thumbs
II Add active to clicked thumb

i f (cache.hasOwnProperty(src)) { II If cache contains this image

}) ;

if (cache[src] .is loading ===false) { II And if isloading is false
crossfade(cache[src].$img); II Call crossfade() function

}
else {
$img = $('<imgl>');
cache[src] = {

$img: $img,
isloading: true

} ;

II Otherwise it is not in cache
II Store empty <imgl> element in $img
II Store this image in cache
II Add the path to the image
II Set isloading property to true

II Next few lines will run when image has loaded but are prepared first
$img.on('load', function() { II When image has loaded

$img.hide(); II Hide it
II Remove is-loading class from frame & append new image to it
$frame.removeClass('is-loading').append($img);
cache[src] . isloading =false; II Update isloading in cache
II If still most recently requested image then
i f (request === src) {

crossfade($img);
}

}) ;

$frame.addClass('is-loading');

$img.attr({
'src': src,
'alt': this.tit le I I ''

}) ;

II Call crossfade(} function
II Solves asynchronous loading issue

II Add is-loading class to frame

II Set attributes on element
II Add src attribute to load image
II Add title if one was given in link

II Last line runs once (when rest of script has loaded) to show the first image
<!§> $(' . thumb').eq(O}.click(}; · II Simulate click on first thumbnail

CONTENT PANELS e

RESPONSIVE SLIDER

A slider positions a series of items next to each other, but only shows one
at a time. The images then slide from one to the next.

This slider loads several panels,
but only shows one at a time. It

also provides buttons that allow
users to navigate between each

of the slides and a timer to move
them automatically after a set

interval.

In the HTML, the entire sl ider
is contained within a <div>
element whose cl ass attribute

has value of s 1 i der-vi ewer. In
turn, the slider needs two further

<div> elements:

• A container for the slides.
Its cl ass attribute has a value
of s 1 i de-group. Inside this

container, each individual
slide is in another <div>

element.

• A container for the buttons.
Its c 1 ass attribute has a
value of slide- buttons. The
buttons are added by the
script.

If the HTML contains markup for
more than one slider, the script

will automatically transform all

of them into separate sliders.

8 CONTENT PANELS

THEY SAY NO TWO
MARSHMALLOWS

ARE THE SAME ...

At least our cheb at Monsieur
P~ do. Th1t's lo«ause they
tflft elth deUdOUt batch
tndMifo•lly 'r h.tnd Wint
&Ll"ftttural ln,redtitnU.

Other sl ider scripts include Unslider, Anything Slider, Nivo Slider, and

WOW Slider. Sliders are also included in jQuery UI and Bootstrap.

1

..

When the page first loads, the CSS hides all of the

slides, which takes them out of normal flow.

The CSS then sets the di sp 1 ay property of the first

slide block to make it visible.

The script then goes through each slide and:

• Assigns an index number to that slide

• Adds a button for it under the slide group

For example, if there are four slides, when the page

first loads, the first slide will be shown by default,

and four buttons will be added underneath it.

••••

The index numbers allow the script to identify

each individual slide. To keep track of which slide

is currently being shown, the script uses a variable

called current Index (holding the index number of

the current slide). When the page loads, this is 0, so

it shows the first slide. It also needs to know which

slide it is moving to, which is stored in a variable

called newSl i de.

When it comes to moving between the slides (and

creating the sliding effect), if the index number of

the new slide is higher than the index number of the

current slide, then the new slide is placed to the right
of the group. As the visible slide is animated to the

left, the new slide automatically starts to come into

view, taking its place.

••••
If the index number of the new slide is lower than the

current index, then the new slide is placed to the left
of the current slide, and as it is animated to the right,

the new slide starts to come into view.

••••
After the animation, the hidden sl ides are placed

behind the one that is currently active.

CONTENT PANELS §

USING THE SLIDER

As long as you include the script w ithin your page,

any HTML that uses the structure shown here will

get transformed into a slider.

ell/ slider.html

<div class="sl ide-viewer">
<div class="s lide-group">

<div class="slide slide-1"><!-
<div class="slide slide-2"><!-
<div class="slide slide-3"><!-
<div class="slide slide-4"><! - -

</div>
</div>
<div class="slide-buttons"></div>

slide
slide
slide
slide

The width of the s 1 i de-vi ewer is not fixed, so it

works in a responsive design. But a height does need

to be specified because the slides have an absolute

position (this removes them from the document flow

and without it they could only be 1px tall).

cl l/ css/ slider.css

slide-viewer {
position: relative;
overflow: hidden ;
height: 300px;}

.slide-group {
width: 100%;
height: 100%;
position: relative;}

.slide {
width: 100%;
height: 100%;
display: none;
position : absolute;}

.slide:first-child
display : block; }

8 CONTENT PA N ELS

There could be several sliders on the page and each

one wil l be transformed using the same script that

you see on the next double-page spread.

content --></ div>
content --></ div>
content --></div>
content --></div>

Each slide is shown at the same width and height as

the viewer. If the content of a slide is larger than the

viewer, the overflow property on the s 1 i de- vi ewer

hides the parts of the sl ides that extend beyond the

frame. If it is smaller it is positioned to the top-left.

. .

SLIDER SCRIPT OVERVIEW

A jQuery selector finds the sliders within the HTML markup.
An anonymous function then runs for each one to create the slider.

There are four key parts to the function.

1: SETUP

Each slider needs some variables, they are in

function-level scope so they:

• Can have different values for each slider

• Do not conflict with variables outside of the script

3: A TIMER TO SHOW THE NEXT SLIDE
AFTER 4 SECONDS: advance()

A timer will call move () after 4 seconds.

To create a timer, JavaScript's window object has a

setTimeout () method. It executes a function after a

number of milliseconds. The timer is often assigned
to a variable, and it uses the following syntax:

var timeout = setTimeout(function, delay);

• timeout is a variable name that will be used to

identify the timer.

• function can be a named function or an

anonymous function.
• delay is the number of milliseconds before the

function should run.

To stop the timer, cal l cl earTimeout ().It takes one

parameter: the variable used to identify the timer:

clearTimeout(timeout);

2: CHANGING SLIDE: move()

move() is used to move from one slide to another,
and to update the buttons that indicate which sl ide

is currently being shown. It is cal led when the user
clicks on a button, and by the advance() function.

4: PROCESSING EACH OF THE SLIDES
THAT APPEAR WITHIN A SLIDER

The code loops through each of the slides to:

• Create the slider
• Add a button for each slide with an event handler

that calls the move() function when users clicks it

CONTENT PANELS e

SLIDER SCRIPT

0 - - LOOP THROUGH EACH SLIDER

0

0

0

0

ANONYMOUS FUNCTION:
Create slider for this set of markup

Store In varlab lH: Sthi s: current slider,
$group: slides container, $slides: all slides,
buttonArray: buttons, currentindex:
current slide, timeout: stores the timer

ANONYMOUS FUNCTION:
Create button for each slide

Create a button for this item

+
I

'
Is this the

' current slide?

l
I

Add class:
active

)
y

Event: click on this radio element

+
I

Add button to
container & array

Cali move()
(see p520)

---- GO TO NEXT SLIDE ----

Call advance() function

FUNCTION: advance()
Clear and reset the timer

Call clearTimeout() & setTimeout()

+

' I Cali move()
to next slide

I

Is this the
last slide? ' I Call move()

to first slide

3 CONTENT PANELS

1. There may be several sliders on a page, so the

script starts by looking for every element whose
cl ass attribute has a value of s 11 der. For each one,

an anonymous function is run to process that slider.
2. Variables are created to hold:
i) The current slider

ii) The element that wraps around the slides
iii) All of the slides in this slider

iv) An array of buttons (one for each slide)
v) The current slide
vi) The timer

3. The move() function appears next; see p520.

Please note: This is not shown in the flowchart.
4 . The advance() function creates the timer.

5. It starts by clearing the current timer. A new timer
is set and when the t ime has elapsed it will run an
anonymous function.

6 . An i f statement checks whether or not the

current slide is the last one.

If it is not the last slide then it calls move() with a
parameter that tells it to go to the next slide.
Otherwise it tells move() to go to the first slide.

7. Each slide is processed by an anonymous function.
8 . A <button> element is created for each slide.

9. If the index nurriber of that slide is the same as the

number held in the current Index variable, then a
class of active is added to that button.

10. An event handler is added to each button. When
clicked it calls the move() function. The slide"s index
number indicates which slide to move to.

11. The buttons are then added to the button
container, and to the array of buttons.

This array is used by the move () function to indicate

which slide is currently being shown.
12. advance() is called to start the timer.

...

JAVASCRIPT ell/ j s/s 11 der . j s

<D $('.slider') .each(functi on(){
var $this =$(this),

II For every slider
II Get the current slider

2

®

©

~
,
(j)

®

@{
@{
@{

@

var $group =$thi s.find (' .slide-group '),
var $slides = $thi s.find('.slide'),

II Get the slide-group (container)
II jQuery object to hold all slides
II Create array to hold nav buttons
II Index number of current slide

var buttonArray = [],
var currentlndex = 0,
var ti meout; II Used to store the timer

II move() - The function to move the slides goes here (see next page)

function advance() {
clearTimeout(timeout) ;

II Sets a timer between slides
II Clear timer stored in timeout

function every 4 seconds II Start timer to run an anonymous
timeout= setTimeout(functi on (){

if (currentlndex < ($slides . length -
move(currentlndex + l);
else {
move(O);

}
}, 4000);

II
1)) { II If not the last slide
II Move to next slide
II Otherwise
II Move to the first slide

II Milliseconds timer will wait

$.each($slides, funct i on(index){
II Create a button element for the button
var $button= $('<button type="button'' class="sl i de-btn">&bul l ;<lbutton>');
if (index === currentlndex) { II If index is the current item

$button .addCl ass('active') ; II Add the active class
}
$button.on('click ' , funct i on(){

move(index);
}) . appendTo (' . sl ide-buttons');
buttonArray .push($butt on);

II Create event handler for the button
II It calls the move() function
II Add to the buttons holder
II Add it to the button array

}) ;

advance();

}) ;

PROBLEM: GETTING THE RIGHT GAP

BETWEEN SLIDES USING A TIMER

SOLUTION: RESET THE TIMER WHENEVER A

BUTTON IS CLICKED

Each slide should show for four seconds (before the

timer moves it on to the next slide). But if the user
clicks a button after two seconds, then the new slide

might not show for four seconds because the timer

is already counting down.

The advance() function clears the timer before
setting it off again. Every t ime the user clicks on a

button the move () function (shown on the next two

pages) it calls advance() to ensure the new slide is

shown for four seconds.

CONTENT PANELS 8

SLIDER MOVE() FUNCTION

0

0

FUNCTION: move{ index)
Slides to the image specified

Create variables:
animateleft: animate from left/ right
s l i del eft: position new slide to left/right

+ I

Call advance() funct ion

• I

' l
Is sllder moving
OR is new image
current image? '

Update buttons to show which Is active

• I

' I
Is Index number
of new image >
current image? ' I Set variable:

sl i deleft: position
new sl ide to left

I
Set variable:
ani mateleft:

animate current
slide to right

Set variable:
s 1 i del eft: position
new slide to right

I
Set variable:
ani mateleft:

animate current
slide to lef t

Update CSS of new slide to posit ion it
to right or left of current slide

I
Animate current slide to position set in
variable above (t his reveals new slide)

I
Hide sllde that Just moved out of view

I
Posit ion new item Cl eft prope.rty set to 0>

I
Reposit ion all items Cleft property set to 0)

I
Set $currentlndex to index no. of new slide

9 CONTENT PANELS

1. The move() function will create the animated
sliding movement between two slides. W hen it is

called, it needs to be told which slide to move to.

2. Two variables are created that are used to control

whether the slider is moving to the left or right.

3. advance () is called to reset the timer.

4 . The script checks if the slider is currently

animating or if the user selected the current slide. In
either case, nothing should be done, and the r eturn

statement stops the rest of the code from running.

5 . References to each of the buttons were stored in

an array in step 11 of the script on the previous page.
The array is used to update which button is act ive.

6 . If the new item has a higher index number, then
the slider will need to move from right to left. If the

item has a lower index number, the slider wi ll need
to move from left to right. These variable values are
set first and are then used in step 7.

s 1 i de left posit ions the new slide in relation to the
current slide. (100% sits the new slide to the right of

it and - 100% si ts the new slide to the left of it.)

animat elef t indicates whether the current slide
should move to the left or the right, letting the new

slide take its place. (- 100% moves the current slide to
the left, 100% moves the current slide to the right.)

7. The new slide is positioned to the right or the left

of the current slide using the value in the s 1 i deleft
variable and its di sp 1 ay property is set to b 1 ock so
that it becomes visible. That new slide is identified

using new Index, which was passed into the funct ion.

8. The current sl ide is then moved to the left or right

using the value stored in the animatel eft variable.
That slide is selected using the cur rentlndex

variable, which was defined at the start of the script.

JAVASCRIPT cll/js/slider.js

II Setup of the script shown on the previous page

G) function move(newindex) {
~ var animateleft, slideleft;

Q) advance();

II Creates the slide from old to new one
II Declare variables

II When slide moves, call advance() again

II If current slide is showing or a slide is animating, then do nothing
if ($group. is (':animated') II currentindex === new Index) {

return;

buttonArray[currentindex] .removeClass('active'); II Remove class from item
buttonArray[newindex] .addClass('active'); II Add class to new item

6

if (newindex > currentindex)
slideleft = '100%';
animateleft = '-100%';
else {
slideleft = '-100%';
animateleft = '100%';

II If new item> current
II Sit the new slide to the right
II Animate the current group to the left
II Otherwise
II Sit the new slide to the left
II Animate the current group to the right

II Position new slide to left (if less) or right {if more) of current
(J) $slides.eq(newindex).css({left: slideleft, display: 'block'});
® $group.animate({left: animateleft} , function() { I I Animate slides and
(2) $slides.eq(currentindex) .css({display: 'none'}); II Hide previous slide
Q9> $slides.eq(newindex).css({l eft: O}); II Set position of the new item
QD $group.css({left : O}); /I Set position of group of slides
~ current index = newindex; /I Set currentindex to new image

}) ;

II Hand ling the sl ides shown on p519

Once the slide has finished animating, an
anonymous function performs housekeeping tasks:

9. The slide that was the current Index is hidden.

10. The position of the left-hand side of the new slide
is set to 0 (left-aligning it).

11. The position of all of the other slides is set so the
left-hand side is 0 (left-aligning them).

12. At this point, the new slide will be visible, and
the transition is complete, so it is time to update the
current Index variable to hold the index number
of the slide that has just been shown. This is easily
done by giving it the value that was stored in the
newlndex variable.

Now that this function has been defined, as you saw
on the p519, the code creates a timer and goes
through each slide adding a button and an event
handler for it. (Steps 4-12 on the page p519.)

CONTENT PANELS @

CREATING A
JQUERY PLUGIN

jQuery plugins allow you to add new methods
to jQuery without customizing the library itself.

jQuery plugins have benefits over plain scripts: You can turn any function into a plugin if it:

• You can perform the same task on any elements
that match jQuery's flexible selector syntax

• Once the plugin has done its job, you can chain

other methods after it (on the same selection)

• They faci litate re-use of code (either within one
project or across multiple projects)

• They are commonly shared within the JavaScript
and jQuery community

• Namespace collisions (problems when two
scripts use the same variable name) are

prevented by placing the script is placed in an llFE
(immediately invoked function expression, which

you met on p97)

• Manipulates a jQuery selection

• Can return a jQuery selection

The basic concept is that you:

• Pass it a set of DOM elements in a jQuery
selection

• Manipulate the DOM elements using the jQuery
plugin code

• Return the jQuery object so that other functions
can be chained off it

This final example shows you
how to create a jQuery plugin.

It takes the accordion example
you saw at the start of the
chapter and turns it into a plugin.

The earlier version applied to all
matching markup on the page;

the plugin version requires that
users call the accordion(}
method on a jQuery selection.

Here a jQuery selection is made
collecting elements with a class
of menu.The .accordion()

method is called; once that has
run, . fade In(} is called.

$(' .menu').accordion(500).fadeln();
'--~~~~---'" · ~· ~~~~~~

Cb ct ®
1. A jQuery selection is made

containing any elements which

have the class of menu.

@ CONTENT PANELS

2. The . accordion() method

is called on those elements. It
has one parameter; the speed of

animation (in milliseconds).

3. The . fadeln() method is
applied to the same selection of

elements once . accordion(}

has done its job.

BASIC PLUGIN STRUCTURE

1) ADDING A METHOD TO JQUERY

jQuery has an object called • fn
which helps you extend the

functionality of jQuery.

$.fn .accordion = function{speed)
II Plugin will go here

Plugins are written as methods
that are added to the • fn object.

Parameters that can be passed

to the function are placed inside
the parentheses on the first line:

2) RETURNING THE JQUERY SELECTION TO CHAIN METHODS

jQuery works by collecting a set

of elements and storing them
in a jQuery object. The jQuery

object's methods can be used to
alter the selected elements.

Because jQuery lets you chain
multiple methods to the same

selection, once the plugin has

done its job it should return the
selection for the next method.

$.fn.accordion = function(speed)
II Plugin will go here
return this;

3) PROTECTING THE NAMESPACE

jQuery is not the only JavaScript
library to use $ as a shorthand,

so the plugin code lives in an
llFE, which creates function-level

scope for the code in the plugin.

(function($){

On the first line below, the llFE
has one named parameter: $. On

the last line, you can see that the
jQuery selection is passed into

the function.

$. fn.accordion = function(speed)
II Pl ugin code will go here

}
}) (jQuery);

If you want to pass in more

values, it is typically done using a
single parameter called options.

When the function is called, the

options parameter contains an
object literal. ·

The selection is returned using:
1. The return keyword (sends a

value back from a funct ion)

2. this (refers to the selection
that was passed in)

Inside the plugin, $ acts like a
variable name. It references the

j Query object containing the set
of elements that the plugin is

supposed to be working with.

The object can contain a set of
key/value pairs for the different

options.

CONTENT PANELS @

THE ACCORDION PLUG IN

0
0

e

e
0

e
0

0

llFE:
Pass in the jQuery selection ($)

FUNCTION: accordion()
Created on fn object

Event: click on tab

ANONYMOUS FUNCTION:
Shows/hides corresponding panel

Prevent default action of button

Get button user clicked on

I
Get corresponding panel

• I

'
Is panel being

animated?

~
'\

'
Is panel visible?

I ' I Show panel Hide panel

Return jQuery object

To use the plugin, you create a jQuery selection that

contains any elements that hold an accordion.
In the example on the right, the accordion is in a

element that has a class name of menu (but

you could use any name you wish). You then call the

. accordion() method on that selection, like so:

$(' .menu') . accordion(500);

This code could be placed in the HTML document
(as shown on the right-hand page), but it would

be better placed in a separate JavaScript file that

runs when the page loads (to keep the JavaScript
separate from the HTML).

8 CONTENT PANELS

You can see the full code for the accordion plugin

on the right. The parts in orange are identical to the
accordion script at the start of the chapter.

1. The plugin is wrapped in an llFE to create function
level scope. On the first line, the function is given

one named parameter: $ (which means you can use
the $ shortcut for jQuery in the function).

10. On the last line of code, the jQuery object is
passed into the function (using its full name jQuery

rather than its shortcut $). This jQuery object

contains the selection of elements that the plugin is
working with. Together, points 1and10 mean that in
the llFE, $ refers to the jQuery object and it will not

be affected if other scripts use $ as a shorthand, too.

2. Inside the llFE, the new . accordion() method is

created by extending the fn object. It takes the one
parameter of speed.

3. The this keyword refers to the jQuery selection
that was passed into the plugin. It is used to create

an event handler that will listen for when the user
clicks on an element w ith a c 1 ass attribute whose

value is accordi an-contra 1. When the user does,

the anonymous function runs to animate the
corresponding panel into or out of view.

4 . The default action of the link is prevented.

5. In the anonymous function, $ (this} refers to a
jQuery object containing the element that the user

clicked upon.
6. 7. 8. The only difference between this anonymous

function and the one used in the example at the start

of the chapter is that the • s 1 i deToggl e () method
takes a parameter of speed to indicate how fast the

panel should be shown or hidden. (It is specified
when the • accordion() method is called.)

9. When the anonymous function has done its work,

the jQuery object containing the selected elements

is returned from the function, allowing the same set

of elements to be passed to another jQuery method.

JAVASCRIPT cll/js/accordion-plugin.js

<D (function($){ II Use$ as variable name
~ $.fn.accordion = function(speed) {
@ this .on('click', ' .accordi on-control',

II Return the jQuery selection
function(e){

~ e.preventDefault();
® $(this)
© . next (' . accordion-panel ')
0 .not(':animated')
(ID . slideToggle(speed);

}) ;

® return this ; II Return the jQuery selection
}

@) }}(jQuery) ; II Pass in jQuery object

Note how the filename for

the jQuery plugin starts with
jquery. to indicate that this

script relies upon jQuery.

W:HMI

<ul class="menu">
<l i>

After the accordion plugin

script has been included, the

accordion() method can be
used on any jQuery selection.

Below you can see the HTML
for the accordion. This time it

includes both the jQuery script
and the jQuery accordion script.

cll/accordi on-p 1 ugi n. html

<h3>Classics</h3>
<div class="accordion-panel">If you like your flavors traditional . . . <ldiv>

<l li>

<h3>The Fl ower Series<lh3><1a>
<div class="accordion-panel">Take your tastebuds for a gentle ... <ldiv>

<lli>

<h3>Salt o' the Sea</h3><1a>
<div class="accordion-panel">Ahoy! If you long for a taste of ... </div>

<l li>

<script src="js/ jquery.js"></ script>
<script src="js/ jquery.accordion. js"></ scri pt>
<script>

$(' .menu').accordion(SOO);
</ script>

CONTENT PANELS ~

Content panels offer ways to show more content

within a limited area.

Popular types of content panels include accordions,

tabs, photo viewers, modal windows, and sliders .

As with all website code, it is advisable to separate

content (HTML), presentation (CSS), and behavior

(JavaScript) into different files.

You can create objects to represent the functionality

you want (as with the modal window).

You can turn functions into jQuery plugins that allow

you to re-use code and share it with others.

Immediately invoked function expressions (llFEs) are

used to contain scope and prevent naming collisions.

