

If your pages contain a lot of data, there are tree techniques

that you can use to help your users to find the content they

are looking for.

FILTERING

Filtering lets you reduce a

set of values, by selecting

the ones that meet stated

criteria.

SEARCH

Search lets you show the

items that match one

or more words the user

specifies.

SORTING

Sorting lets you reorder a

set of items on the page

based on criteria (for

example, alphabetically).

Before you get to see how to deal with filtering, searching, and sorting, it is important to

consider how you are going to store the data that you are working with. In this chapter many

of the examples will use arrays to hold data stored in objects using literal notation.

§ FILTERING, SEARCHING & SORTING

•

JAVASCRIPT ARRAY
METHODS

An array is a kind of object. All arrays have the methods listed below;
their property names are index numbers. You will often see arrays used
to store complex data (including other objects).

Each item in an array is sometimes cal led an element. It does not mean that the array holds HTML elements;

element is just the name given to the pieces of information in the array. *Note some methods only work in IE9+.

ADDING ITEMS push() Adds one or more items to end of array and returns number of items in it

unsh i f t() Adds one or more items to start of array and returns new length of it

REM O VING ITEMS pop () Removes last element from array (and returns the element)

shift () Removes first element from array (and returns the element)

ITERATING forEach () Executes a function once for each element in array*

some() Checks if some elements in array pass a test specified by a function*

every() Checks if all elements in array pass a test specified by a function*

CO M BI NIN G concat () Creates new array containing this array and other arrays/values

FILTERING filter() Creates new array with elements that pass a test specified by a function*

REORDERING sort () Reorders items in array using a function (called a compare function)

reverse() Reverses order of items in array

MODIFYING map() Calls a function on each element in array & creates new array with results

§ FILTERING, SEARCHING & SORTING

,

..

JQUERY METHODS FOR
FILTERING & SORTING

jQuery collections are array-like objects representing DOM elements.
They have similar methods to an array for modifying the elements.

You can use other jQuery methods on the selection once they have run.

In addition to the jQuery methods shown below, you may see animation methods chained after fi ltering and

sorting methods to create animated transitions as the user makes a selection .

ADDI NG OR
COMBINING
ITEMS

• add() Adds elements to a set of matched elements

REMOVING ITEMS .not() Removes elements from a set of matched elements

ITERATI NG

FI LTERING

CONVERTING

. each () Applies same function to each element in matched set

• fi l ter() Reduces number of elements in matched set to those that either match

a selector or pass a test speCified by a function

. toArray () Converts a jQuery collect ion to an array of DOM elements, enabling the
use of the array methods shown on the left-hand page

F ILTERING, SEARCHING & SORTING @

SUPPORTING OLDER
BROWSERS

Older browsers do not support the latest methods of the Array object.
But a script called the ECMAScript 5 Shim can reproduce these methods.
ECMAScript is the standard that modern JavaScript is based upon.

A BRIEF HISTORY OF JAVASCRIPT

1996 Jan

Feb

Mar ····· Netscape Navigator 2 contains the

Apr first version of JavaScript written

May by Brendan Eich

Jun
Jul

Aug ····· Microsoft created a compatible

Sep scripting language called JScript

Oct

Nov ····· Netscape gave JavaScript to the

Dec ECMA standards body so that its

development could be standardized

1997 Jan

Feb

Mar

Apr

May

Jun ····· ECMAScript 1 was released

Jul

Aug

Sep

Nov

Dec

2014 May ····· Time of writing: ECMAScript 6 is

close to being finalized

8 FILTERING, SEARCHING & SORTING

ECMAScript is the official name for the standardized

version of JavaScript, although most people still call

it JavaScript unless they are discussing new features.

ECMA International is a standards body that looks

after the language, just like the W3C looks after

HTML and CSS. And, browser manufacturers often

add features beyond the ECMA specs (just as they

do with HTML & CSS).

In the same way that the latest features from the

HTML and CSS specifications are only supported

in the most rec_ent browsers, so the latest features

of ECMAScript are only found in recent browsers.

This wi ll not affect much of what you have learned

in this book (and jQuery helps iron out issues with

backwards compatibility), but it is worth noting for

the techniques you meet in this chapter.

The following methods of the Array object were

all introduced in ECMAScript version 5, and they

are not supported by Internet Explorer 8 (or older):

forEach(), some(), every(), filter() , map() .

For these methods to work in older browsers

you include the ECMAScript 5 Shim, a script that

reproduces their functionality for legacy browsers:

https: //github.com/es-shims/es5-shim

ARRAYS VS. O BJECTS
CHOOSING THE BEST

DATA STRUCTURE

In order to represent complex data you might need several objects.
Groups of objects can be stored in arrays or as properties of other objects.

When deciding wh ich approach to use, consider how you w ill use the data.

OBJECTS IN AN ARRAY

When the order of the objects is important, they

should be stored in an array because each item in
an array is given an index number. (Key-value pairs

in objects are not ordered.) But note that the index

number can change if objects are added/removed.
Arrays also have properties and methods that help

when working with a sequence of items, e.g.,

• The sort() method reorders items in an array.
• The 1 ength property counts the number of items.

var peopl e = [
{name : 'Casey ' , rate: 70, acti ve: true},
{name : 'Camille ', rate: 80, active: true},

{name: ' Gordon', r ate: 75, active : false},

{name : 'Nigel ' , rate : 120, active: true}

To retrieve data from an array of objects, you can
use the index number for the object:

II This retri eves Cami l l e's name and rate
person [1] . name ;

person [l] . rate ;

To add/remove objects in an array you use array
methods.

To iterate over the items in an array you can use

forEach().

OBJECTS AS PROPERTIES

When you want to access objects using their name,

they work well as properties of another object
(because you would not need to iterate through all

objects to find that object as you would in an array).

But note that each property must have a unique

name. For example, you could not have two
properties both called Casey or Cami 11 e within the

same object in the fol lowing code.

var peopl e = {

Casey= {rate: 70, active: true},

Camille = {rate : 80, act i ve : true},
Gordon= { rate: 75, active : false} ,

Nigel = {rate: 120, active : true }

To retrieve data from an object stored as a property
of another object, you can the object's name:

II Thi s retrieves Casey ' s r ate
people.Casey.rate;

To add/remove objects to an object you can use the

de 1 ete keyword or set it to a blank string.

To iterate over child objects you can use

Object. keys.

F ILTERING, SEARCHING & SORTING 0

FILTERING

Filtering lets you reduce a set of values.

It allows you to create a subset of data that meets certain criteria.

To look at filtering, we will start with data about
freelancers and their hourly rate. Each person is
represented by an object literal (in curly braces).

The group of objects is held in an array:

var people = [
{

name: 'Casey ',
rate: 60

},
{

name: 'Camille',
rate: 80

),
{

name: ' Gordon',
rate : 75

} .
{

name : 'Nigel',
rate: 120

}
] ;

NAME

camllle

Gordon

8 FILTERING, SEARCHING & SORTING

The data will be fi ltered before it is displayed. To do
this we wi ll loop through the objects that represent

each person. If their rate is more than $65 and less
than $90, they are put in a new array called results.

'
Is rate>= 65~

'
Is rate <= 90?

' I Add person to results array

t _____ GO TO NEXT PERSON _ _ __,J

HOURLY RATE ($)

80

75

DISPLAYING THE ARRAY

On the next two pages, you will see two different
approaches to filtering the data in the people array,

both of which involve using methods of the Array
object: • forEach () and . filter().

Both methods will be used to go through the data in
the people array, find the ones who charge between
$65 and $90 per hour and then add those people to

a new array called results.

Once the new results array has been created, a for

loop will go through it adding the people to an HTML

table (the result is shown on the left-hand page).

JAVASCRIPT

CD $(function() {

Below, you can see the code that displays the data

about the people who end up in the results array:
1. The entire example runs when the DOM is ready.

2. The data about people and their rates is included

in the page (this data is shown on left-hand page).
3. A function will filter the data in the people array

and create a new array called results (next page).
4. A <tbody> element is created.

5. A for loop goes through the array and uses
jQuery to create a new table row for each person
and their hourly rate.

6. The new content is added to the page after the

table heading.

c12/ js/filter-foreach.js + c12/ js/ f i lter-filter.js

~ II DATA ABOUT PEOPLE GOES HERE (shown on left-hand page)

Q) II FILTERING CODE (see p537) GOES HERE - CREATES A NEW ARRAY CALLED results

II LOOP THROUGH NEW ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
@) var $tableBody = $('<tbody><l tbody>'); II New content jQuery

for (var i = 0; i <results .l ength; i++) { II Loop through matches
var person= results[i]; II Store current person
var $row= $('<tr><l tr>'); II Create a row for them

s $row.append($('<td><ltd>').text(person.name)); II Add their name
$row.append($('<td><ltd>').text(person.rate)); II Add their rate
$tableBody .append($row); II Add row to new content

II Add the new content after the body of the page
@ $('thead ').after($tableBody); II Add t body after thead

}) ;

FILTERING, SEARCHING & SORTING 8

USING ARRAY METHODS
TO FILTER DATA

The array object has two methods that are very useful for filtering data.
Here you can see both used to filter the same set of data.

As they filter the data, the items that pass a test are added to a new array.

The two examples on the right both start with an
array of objects (shown on p534) and use a filter

to create a new array containing a subset of those
objects. The code then loops through the new array

to show the results (as you saw on the previous page).

• The first example uses the forEach() method.

• The second example uses the filter() method.

forEach ()
The forEach () method loops through the array and

applies the same function to every item in it.

forEach() is very flexible because the function can
perform any kind of processing with the items in an

array (not just filtering as shown in this example).
The anonymous function acts as a filter because

it checks if a person's rates are within a specified
range and, if so, adds them to a new array.

1. A new array is created to hold matching results.

2. The people array uses the forEach () method to
run the same anonymous funct ion on each object

(that represents a person) in the people array.
3. If they match the criteria, they are added to the

results array using the push () method.

8 FILTERING, SEARCHING & SORTING

Note how person is used as a parameter name and

acts as a variable inside the functions:

• In the forEach () example it is used as a
parameter of the anonymous function.

• In the filter() example it is used as a parameter

of the pri ceRange (} function.

It corresponds to the current object from the people
array and is used to access that object's properties.

filter()
The filter(} method also applies the same

function to each item in the array, but that function
only returns true or false. If it returns true, the

filter(} method adds that item to a new array.

The syntax is slightly simpler than forEach (), but is

only meant to be used to filter data.

1. A function called pri ceRange (} is declared; it

will return true if the person's wages are within the

specified range.
2. A new array is created to hold matching results.

3. The filter() method applies the pri ceRange(}
function to each item in the array. If pri ceRange ()

returns true, that item is added to the results array.

STATIC FILTERING OF DATA

JAVASCRIPT cl2/js/filter-foreach.js

$(function() {
II DATA ABOUT PEOPLE GOES HERE (shown on p534)

II CHECKS EACH PERSON AND ADDS THOSE IN RANGE TO ARRAY
var results= []; II Array for people in range
people.forEach(function(person) { II For each person

if (person . rate>= 65 && person.rate<= 90) { II Is rate in range

}
}) ;

resul t s.push{person); II If yes add to array

II LOOP THROUGH RESULTS ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
}) ;

JAVASCRIPT cl2/js/filter-filter.js

@
®

$(function() {
II DATA ABOUT PEOPLE GOES HERE (shown on p534)

II THE FUNCTION ACTS AS A FILTER
function priceRange(person) { II Declare priceRange()

return {person.rate>= 65) && (person.rate<= 90) ; II In range returns true
} ;
II FI LTER THE PEOPLE ARRAY & ADD MATCHES TO THE RESULTS ARRAY
var results= []; II Array for matching people
results= people.fi l ter(priceRange); II filter() calls priceRange()

II LOOP THROUGH RESULTS ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
}) ;

The code that you saw on the p535 to show the table results could live in the • forEach () method, but it is

separated out here to illustrate the different approaches to filtering and how they can create new arrays.

FILTERI NG, SEARCHING & SORTING e

DYNAMIC FILTERING

If you let users filter the contents of a page, you can build all of the HTML
content, and then show and hide the relevant parts as the user interacts

with the filters.

Imagine that you were going to provide the user with
a sl ider so that they could update the price that they

were prepared to pay per hour. That slider would
automatically update the contents of the table based

upon the price range the user had specified.

If you built a new table every time the user interacts

with the slider (like the previous two examples that
showed filtering), it would involve creating and
deleting a lot of elements. Too much of this type of

DOM manipulation can slow down your scripts.

A far more efficient solution would be to:

1. Create a table row for every person.

2. Show the rows for the people that are w ithin the

specified range, and hide the rows that are outside

the specified bounds.

Below, the range slider used is a jQuery plugin called

noUiSlider (written by Leon Gerson).

http://refreshless.com/nouis l ider/

Creath:eFolk find t<i 1enteo people for your cre~t1ve projects

Min: I Gs @I Max:l 9o @I

•
NAME HOURLY RATE ($)

Camille 80

Gordon 75

8 FILTERING, SEARCHING & SORTING

Before you see the code for this example, take a
moment to think about how to approach this script...

Here are the tasks that the script needs to perform:

i) It needs to go through each object in the array and

create a row for that person.

ii) Once the rows have been created, they need to be
added to the table.

iii) Each row needs to be shown I hidden depending
on whether that person is w ithin the price range

shown on the slider. (This task happens each time
the slider is updated.)

In order to decide which rows to show/ hide, the

code needs to cross-reference between:

• The person object in the people array
(to check how much that person charges)

• The row that corresponds to that person in the
table (which needs to be made visible or hidden)

To build this cross-reference we can create a new

array called rows. It will hold a series of objects with
two properties:

• person: a reference to the object for this person
in the people array

• $element: a jQuery collection containing the

corresponding row in the table

In the code, we create a function to represent each

of the tasks identified on the left. The new cross­
reference array will be created in the first function:

makeRows () will create a row in the table for each

person and add the new object into the rows array

append Rows() loops through the rows array and

adds each of the rows to the table

update () w ill determine which rows are shown or
hidden based on data taken from the sl ider

In addition, we will add a fourth function: i nit()
This function contains all of the information that

needs to run when the page first loads (including
creating the slider using the plugin).

i nit is short for initialize; you will often see

programmers using this name for functions or
scripts that run when the page first loads.

Before looking at the script in detail, the next two
pages are going to explain a little more about the

rows array and how it creates the cross-reference
between the objects and the rows that represent

each person.

FILTERING, SEARCHING & SORTING 8

STORING REFERENCES TO
OBJECTS & DOM NODES

The rows array contains objects with two properties, which associate:
1: References to the objects that represent people in the people array
2: References to the row for those people in the table (jQuery collections)

You have seen examples in this book where

variables were used to store a reference to a DOM
node or jQuery selection (rather than making the

same selection twice). This is known as caching.

ROWS ARRAY

INDEX: OBJECT:

0
person

$element <tr>

1
person people[1]

$element <tr>

2
person people[2]

$element <tr>

3
person people[3]

$element <tr>

0 rate

1
name

rate 80

2
name

rate

3
name

DYNAMIC FILTERING

1. Place the script in an llFE (not shown in flowchart).

The 11 FE starts with the peop 1 e array.

2. Next, four global variables are created as they are

used throughout the script:

rows holds the cross-referencing array .

$min holds the input to show the minimum rate.

$max holds the input to show the maximum rate.

$tab 1 e holds the table for the results.

3. makeRows () loops through each person in the

peop 1 e array calling an anonymous function for each

object in the array. Note how per son is used as a

parameter name. This means that within the function,

per son refers to the current object in the array.

4 . For each person, a new jQuery object called $r ow

is created containing a <tr> element.

5. The person's name and rate are added in <td>s.

6. A new object with two properties is added to the

rows array: person stores a reference to their object,

$e 1 ement stores a reference to their <tr> element.

7. appendRows () creates a new jQuery object called

$t body containing a <tbody> element.

8. It then loops through all of the objects in the rows

array and adds their <tr> element to $tbody.

9. The new $tbody selection is added to the <tab 1 e>.

10. update() goes through each of the objects in

the rows array and checks if the rate that the person

charges is more than the minimum and less than the

maximum rate shown on the slider.

11. If it is, jQuery's show() method shows the row.

12. If not, jQuery's hi de() method hides the row.

13. i nit () starts by creating the slide control.

14. Every time the slider is changed, the update()

function is called again.

15. Once the slider has been set up, the makeRows () ,

appendRows () , update() functions are called.

16. The i nit () function is called (which will in turn

call the other code).

e FILTERING, SEARCHING & SORTING

Creat e v ariables:
a rows: an array linking people with rows
V $min & $max: m inimum and maximum rate Inputs

$tab 1 e: stores the table that holds the results

e

0 e

FUNCTION: make Rows()
Creates table rows & populates t he rows array

LOOP THROUGH OBJECTS IN people ARRAY

A NONYMOUS FUNCTION

Create $row holds <tr> element
Add <td>s holding name & rate

• Add new object to rows arr$ay
V Add references to person & row

GO TO NEXT OBJECT IN peop 1 e ARRAY __)

FUNCTION: appendRows() adds rows to <tbody>

Create <tbody> to hold <tr> elements

rt·I.!111'-MIG:t+f!HH!IH.ltf f.fofi'!
Q L Add $row to $tbody element

GO TO NEXT OBJECT IN rows ARRAY _.J

Add <tbody> to <tab 1 e>

FUNCTION: update() updates t able contents

...

~!ow !',:~~·:::.;~ Sh!'°~
GO TO NEXT OBJECT IN rows ARRAY

FUNCTION: i nit() sets up the script

Set up slider
Call makeRows(), appendRows(), update()

4fb Call i ni t () when the DOM has loaded

FILTERING AN ARRAY
JAVASCRIPT cl2/j s/dynamic-f i l ter.js

G) (function(){ II PEOPLE ARRAY GOES HERE

~

@{
@{

@

var rows= [] , II rows array
$min= $(' #val ue-min'), II Minimum text input
$max= $(' #val ue-max'), II Maximum text input
$table = $('#rates'); II The tabl e that shows results

function makeRows() { II Create table rows and the array
people. forEach(function(person) II For each person object in people

var $row= $('<tr><ltr>'); II Create a row for them
$row.append($('<td><ltd> ').text(person.name)); II Add their name
$row.append($('<td><ltd>').text(person.rate)); II Add their rate
rows.push({ II Add object to cross -references between people and rows

person: person, II Reference t o the person object
$element: $row II Reference to row as jQuery selection

}) ;
}) ;

function appendRows() { II Adds rows to the table
II Create <tbody> element var $tbody = $('<tbody><ltbody>');

rows. forEach(function(row) {
$tbody .append(row.$element);

}) ;
$table.append($tbody);

II For each object in the rows array
II Add the HTML for the row

II Add the rows to the table

funct ion update(mi n, max) { II Update the table content
rows.forEach(function(row) II For each row in the rows array

if (row.person.rate>= mi n && row. person.rate<= max) { II If in range

}
}) ;

row.$element.show(); II Show the row
else { II Otherwise
row.$element.hide(); II Hide the row

function init() { II Tasks when script first runs

}

$(' #s l ider').noUiSlider({ II Set up the slide control
range: [O, 150], start: [65 , 90], handles: 2, margin: 20, connect: true,
serialization: { to: [$min,$max], resolution: 1 }

}).change(function() { update($min .val (), $max . val ());});
makeRows(); II Create table rows and rows array
appendRows(); II Add the rows to t he tabl e
update($min.val (), $max .val()); II Updat e table to show matches

@ $(init);
} ());

II Call in i t() when DOM is ready

FILTERING, SEARCHING & SORTING 8

FILTERED IMAGE GALLERY

In this example, a gallery of images are tagged.

Users click on filters to show matching images.

IMAGES ARE TAGGED

In this example, a series of

photos are tagged. The tags are
stored in an HTML attribute

called data-tags on each of the
 elements. HTMLS allows

you to store any data with an

element using an attribute that
starts with the word data-. The

tags are comma-separated.
(See right-hand page)

TAGGED OBJECT

The script creates an object
cal led tagged. The script then

goes through each of the images

looking at its tags. Each tag
is added as a property of the

tagged object. The value of that
property is an array holding a

reference to each element
that uses that tag.
(See p546-p547)

FILTER BUTTONS

By looping through each of the
keys on the tagged object, the

buttons can automatically be

generated. The tag counts come
from the length of the array.

Each button is given an event
handler. When clicked, it filters

the images and only shows those
with the tag the user selected.
(See p548- p549)

EmJ Anlmetors (3) lllu1tntors (3} ~plMfs (3) Fllmm-. (2) OeslgM<S (3)

t -
\I II \ (/ :i-. f II \ I
'11:1II11\I . : /

'~ .. ., .

"
~--~ f ~

. ..
"•I\'(
\,/ ·\

. ~ -

8 FILTERING, SEARCHING & SORTING

TAGGED IMAGES

<body>
<header>

<hl>CreativeFolk</hl>
</ header>
<div id="buttons"></div>
<div i d="ga 11 ery">

cl2/filter-tags.html

</div>
<script src=" j s/ j query .j s 11 ></scri pt>
<script src="js/fi l ter-tags.js"></script>

</ body>

On the right, you can see the tagged object for the
HTML sample used in this example. For each new
tag in the images' data-tags attribute, a property
is created on the tagged object. Here it has five
properties: animators, designers, fi 1 mmakers,
illustrators, and photographers. The value is an
array of images that use that tag.

tagged = {
animators: [pl.jpg, p6.jpg, p9.jpg],
designers: [p4 . jpg, p6.jpg, p8.jpg]
filmmakers: [p2.jpg, p3.jpg, p5.jpg]
i l lustrators: [pl.jpg, p9.Jpg]
photographers: [p2.jpg, p3.jpg, pB.jpg]

FILTERING, SEARCHING & SORTING 8

PROCESSING THE TAGS

Here you can see how the script is set up. It loops

through the images and the tagged object is given

a new property for each tag. The value of each

property is an array holding the images with that tag.

1. Place the script in an llFE (not shown in flowchart).

2 . The $imgs variable holds a jQuery selection

containing the images.

3. The $buttons variable holds a jQuery selection

holding the container for the buttons.

4 . The tagged object is created.

5. Loop through each of the images stored in $ i mgs

using jQuery's . each() method. For each one, run

the same anonymous function:

6 . Store the current image in a variable called img.

7. Store the tags from the current image in a variable

called tags. (The tags are found in the image's

data-tags attribute.)

8. If the tags variable for this image has a value:

9. Use the String object's sp 1 it () method to create

an array of tags (split ting them at the comma).

Chaining the . forEach () method off the sp 1 it ()

method lets you run an anonymous function for each

of the elements in the array (in this case, each of the

tags on the current image). For each tag:

10. Check if the tag is already a property of the

tagged object.

11. If not, add it as a new property whose value is an

empty array.

12. Then get the property of the tagged object that

matches this tag and add the image to the array that

is stored as the value of that property.

Then move onto the next tag (go back to step 10).

When all of the tags for that image have been

processed, move to the next image (step 5).

8 FILTERING, SEARCHING & SORTING

A Creat e var iables:
v $1mgs: all images e $buttons: element with id of buttons

I
Create ob ject:

O tagged: array of tags & tagged images

+ ·--- LOOPTHROUGHEACHIMAGE

0
0

ANONYMOUS FUNCTION:
Processes Image

Create variables:
img: current image
tags: value of data-tags attribute

'
+ I

Does the tags
variable have

a value?

ANO NYMOUS FUNCTION:

'
Add tags & images to tagged object

' I
Is this tag

a property of the
tagged object?

Add tag name as a property
of the tagged object

'
Add image to array for this tag

'---- GO TO N EXT TAG ___ __.)

----- GO TO NEXT IMAGE -----

THE TAGGED OBJECT

JAVASCRIPT

CD (function() {

@ var $imgs =$('#gallery img ');
@ var $buttons = $ (' #buttons');
© var tagged = {};

~ $imgs.each(function ()
© var img = th i s;
<J) var tags= $(this).data('tags') ;

® if (t ags) {
~ tags.split(' , ').forEach(funct ion(tagName)
@ if (tagged [tag Name] == nu 11) {
® tagged [tagName] = [] ;

}
~ tagged [tagName] .push(img) ;

}
}) ;

}) ;

c12/ js/fi l t er-t ags.js

II Store al l images
II St ore buttons element
II Create tagged object

II Loop through imag es and
II Store img i n vari able
II Get this element's t ags

II If the element had t ags
II Split at comma and
II If object doesn ' t have t ag
II Add empt y array to object

II Add t he image to the array

II Buttons , event handl ers, and f i l ters go here (see p549)

} ());

F ILTERING, SEARCHING & SORTING 8

FILTERING THE GALLERY

The filter buttons are created and added by the 8 Create empty <button> element
script. When a button is clicked, it triggers an e Add text: Show A 11

anonymous function, which will hide and show the 0 Add class: active

+ appropriate images for that tag. I

e Event: c 1 i ck on button

1. The script lives in an l lFE (not shown in flowchart).

l
I

2. Create the button to show all images. The second A NONYMOUS FUNCTION:

parameter is an object literal that sets its properties:
Shows all images

3. The text on the button is set to say 'Show A 11 '. 0 Add active class to this b utton &

4. A value of active is added to the cl ass attribute. 0 remove active class from siblings

5. When the user clicks on the button, an +
I

anonymous function runs. When that happens: (i) Show all images

6. This button is stored in a jQuery object and is

given a c 1 ass of active. f) Add button to the filter buttons
7. Its siblings are selected, and the cl ass of active +
is removed from them.
8. The . show() method is called on all images. G>
9. The button is then appended to the button

container using the • appendTo () method. This is ANONYMOUS FUNCTION:
chained off the jQuery object that was just created. Makes button for tag

10. Next. the other filter buttons are created.
CD Create empty <button> element

jQuery's $.each () method is used to loop through I
each property (or each tag) in the tagged object. • Add tag name & count to the button
The same anonymous function runs for each tag: +
11. A button is created for the tag using the same I

G) - Event: c 1 i ck on button
technique you saw for the 'Show All' button.

I
12. The text for the button is set to the tag name,

followed by the length of the array (which is the ANONYMOUS FUNCTION:
Shows images with selected tag

number of images that have that tag).

13. The c 1 i ck event on that button triggers an e Add active class to this button
& remove active class from

anonymous function: e siblings

14. This button is given a c 1 ass of active. +
15. active is removed from all of its siblings.

I

0 Hide all photos
16. Then all of the images are hidden. +
17. The jQuery . fi 1 ter() method is used to select I

the images that have the specified tag. It does a • Filter for images with this tag

+ similar job to the Array object's . fi 1 ter () method, I

but it returns a jQuery collection. It can also work G) Show the matching images

with an object or an element array (as shown here).

18. The . show() method is used to show the images G> Add button to the filter buttons
returned by the . fi 1 ter() method.

19. The new button is added to the other filter GO TO NEXT PROPERTY
)

buttons using the . appendTo () method.

8 FILTERING, SEARCHING & SORTING

THE FILTER BUTTONS

JAVASCRIPT c12/ js/ f i l t er-tags.js

Q) (function() {

@
®
©
®
@{
cv{
®

®

@
®
@
@

@{
@{
@{
®
@

/ /Create variables (see p547)
/I Create tagged object (see p547)

$ ('<button/> ' , {
text : 'Show All',
class: ' acti ve' ,
click: function()

$(thi s)
.addClass(' active ')
.s i bl ings()
. removeCl ass('active');

$i mgs.show();
}

}) .appendTo($buttons);

II Create empty button
II Add text 'show al l '
II Make it active
II Add onclick handler to it
//Get the clicked on button
II Add the class of active
//Get i ts siblings
//Remove act i ve from them
II Show all images

II Add to buttons

$.each(tagged, f unction(tagName){ II For each tag name
$('<button/> ' , { /I Create empty button

text : tagName + ' (' + tagged[tagName] . length + ')', II Add tag name
click: function() { II Add click handler

$(thi s) /I The button clicked on
.addClass('active') - II Make clicked i tem active
.sibl i ngs() II Get its siblings
.removeClass('active ') ; //Remove active from them

$i mgs I/ With all of the images
. hide() II Hide them
. fi l ter(tagged[tagName]) //Find ones with this tag
. show(); II Show just those images

}
~ }) .appendTo($but tons); II Add to the buttons

}) ;
} ());

FILTERING, SEARCHING & SORTING 8

SEARCH

Search is like filtering but you show only results that match a search term.

In this example, you will see a technique known as livesearch.

The alt text for the image is used for the search instead of tags.

SEARCH LOOKS IN ALT
TEXT OF IMAGES

This example will use the same
set of photos that you saw in the

last example, but will implement
a livesearch feature. As you type,

the images are narrowed down

to match the search criteria.

The search looks at the a 1 t text

oneachimageandshowson~

<i mg> elements whose a 1 t text

contains the search term.

IT USES INDEXOF() TO
FIND A MATCH

The i ndexOf () method of the
String object is used to check

for the search term. If it is not
found, i ndexOf () returns -1.
Since i ndexOf () is case­

sensitive, it is important to
convert all text (both the a 1 t
text and the search term)

to lowercase (which is done
using the String object's
tolowerCase () function).

SEARCH A CUSTOM
CACHE OBJECT

We do not want to do the case
conversion for each image every

time the search terms change, so
an object called cache is created

to store the text along with the

image that uses that text.

When the user enters something

into the search box, this object
is checked rather than looking

through each of the images.

Crcati\·eFol k ' '1j t •• '11 f d ~' upl" l,_,r J0'-1 <.r• I ·' P' .J• c•

9 FILTERING, SEARCHING & SORTING

\I\\ \<> 1 :~ l 11\ ;(:,.

,11:11 I \l\I' . I "
1

; 1/' ""i ..
a;. ' . ' .
~¥ ''~, :'

,:;~ ,

SEARCHABLE IMAGES

<body>
<header>

<hl>CreativeFolk</hl>
</header>
<div id="search">

c12/filter-search.html

<input type="text" placeholder="filter by search" id="filter-search" />
</d iv>
<div id="gall ery">

<i mg src="img/p5 . jpg" data-tags="Filmmakers" alt="Trumpet Player" />
<i mg src="i mg/p6. j pg" data-tags="Designers, Animators" alt="Logo Ident" />
<i mg src="img/p7.jpg" data -tags= ''Photographers" alt="Bicycl e Japan" />

</div>
<script src="js/jquery . js"></script>
<script src=" j s/filter- search. j s"></script>

</body>

For each of the images, the cache = [

cache array is given a new {element: img, text :
object. The array for the HTML {element: img, text:
above would look like the one {element : img , text:
shown on the right (except {element: img, text:
where it says i mg, it stores a {element: img, text:
reference to the corresponding {element: img, text:
 element). {element: img, text:

{element: img, text:
When the user types in the {element: img, text:
search box, the code will look in
the text property of each object,
and if it finds a match, it will
show the corresponding image.

'rabbi t'} ,
' sea'},
'deer ' },
'new york street map'},
'trumpet pl ayer'} ,
' 1 ogo i dent ' } ,
'bicycle japan'},
'aqua 1 ogo' } ,
' ghost'}

FILTERING, SEARCHING & SORTING @

SEARCH TEXT

This script can be divided into two key parts:

SETTING UP THE CACHE OBJECT

1. Place the script in an llFE (not shown in flowchart).
2. The $imgs variable holds a jQuery selection
containing the images.

3. $search holds search input.
4. The cache array is created.

5. Loop through each image in $imgs using .each() ,

and run an anonymous function on each one:

6. Use push() to add an object to the cache array
representing that image.

7. The object's element property holds a reference
to the element.

8 . Its text property holds the alt text. Note that
two methods process the text:

• trim() removes spaces from the start and end.

. tolowerCase () converts it all to lowercase.

FILTERING IMAGES WHEN USER TYPES IN

SEARCH BOX

9. Declare a function called filter() .

10. Store the search text in a variable called query.
Use . trim() and . tolowerCase () to clean the text.

11. Loop through each object in the cache array and

call the same anonymous function on each:

12. A variable called index is created and set to 0.
13. If query has a value:

14. Use i ndexOf () to check if the search term is in
the text property of this object.
The result is stored in the index variable. If found, it

will be a positive number. If not, it wi ll be -1.
15. If the value of index is -1, set the display
property of the image to none. Otherwise, set

display to a blank st ring (showing the image).

Move onto the next image (step 11).
16. Check if the browser supports the input event.

(It works well in modern browsers, but is not
supported in IE8 or earlier.)

17. If so, when it fires on the search box, call the
filter() function.

18. Otherwise, use the input event to trigger it.

0 FILTERING, SEARCHING & SORTING

A Create variables:
V $imgs: all Images e $search: searc h input
O cache: array of objects (text/ Images)

•
: r,..._A_d_d-ob~:1.:1·:m:1:1t:=11 .=;:1:1:1:1:•1:1:.=:·1.:1:1:m11ca_c_h_e _a-rr--.a}

element: reference to
text: processed alt text (see bottom p553)

'----- GO TO NEXT IMAGE -----

'
Does browser
support input

event?

Event: input on search Input

Event: keyup on search input
I

FUNCTION: filter{)
Checks a 1 t text & shows matching images

Create variable: query to hold the query

Create variable: index: position of text

have a value? Does query '

Search for query within text usL g l . i ndexOf () & store position In index

'I

'

ts value of ~ index - 1?

L dhployto" to •how lmoge I
Set display to none to hide image

'----- GO TO NEXT IMAGE ----

JAVASCRIPT

<D (function() {
@ var $imgs =$('#gallery img');
~ var $search= $(' #filter-search');
© var cache = [];

®
©
(j)
®

$imgs.each(function()
cache .push({

el ement: this,
text: this.alt.trim().tolowerCase()

}) ;
}) ;

LIVESEARCH

II Lives in an IIFE
II Get the images

cl2/js/filter-search.js

II Get the input element
II Create an array cal l ed cache

II For each image
II Add an object to the cache array
11 This image
II Its alt text (lowercase trimmed)

(2) function filter() { II Declare filter() function
~ var query= this.value.trim().tolowerCase(); II Get the query

QD cache.forEach(function(img) II For each entry in cache pass image
@ var index = O; II Set index to 0
~ if (query) { II If there is some query text
~ index= img . text.indexOf(query); II Find if query text is in there

@ img.element.style.display
}) ;

@ if ('oninput' in $search[O]) {
QZ) $search.on('input', filter);

else {
~ $search.on('keyup', filter);

}
} ());

index -1 ? 'none' ''.
' II Show I hide

II If browser supports i nput event
II Use input event to cal l filter()
II Otherwise
II Use keyup event to call filter()

The alt text of every image and

the text that the user enters into
the search input are cleaned

using two jQuery methods.

METHOD USE

Both are used on the same
selection and are chained after

each other.

trim() Removes whitespace from start or end of string

tolowerCase 0 Converts string to lowercase letters because

i ndexOf () is case-sensitive

FILTERING, SEARCHING & SORTING 0

SORTING

Sorting involves taking a set of values and reordering them.
Computers often need detailed instructions about in order to sort data.

In this section, you meet the Array object's sort() method.

When you sort an array using

the sort() method, you change

the order of the items it holds.

Remember that the elements in

an array have an index number,

so sorting can be compared to
changing the index numbers of
the items in the array.

SORTING STRINGS

Take a look at the array on the
right, which contains names.

When the sort() method is
used upon the array, it changes

the order of the names.

SORTING NUMBERS

By default, numbers are also
sorted lexicographically, and
you can get some unexpected

results. To get around this you
would need to create a compare

function (see next page).

By default, the sort () method
orders items lexicographically.

It is the same order dictionaries
use, and it can lead to interesting

results (see the numbers below).

To sort items in a different
way, you can write a compare

function (see right-hand page).

Lexicographic order is as follows:
1. Look at the first letter, and
order words by the first letter.

2 . If two words share the same
first letter, order those words by

the second letter.

3 . If two words share the same
first two letters, order those

words by the third letter, etc.

var names= [' Al ice ', ' Ann' , ' Andrew ' , ' Abe '] ;
names . sort () ;

The array is now ordered as follows:
['Abe' , 'A 1 ice' , 'Andrew' , ' Ann '] ;

var prices = [l , 2, 125, 19, 14, 156);
prices . sort() ;

The array is now ordered as follows:

(1, 125 , 14, 156, 19, 2]

9 FILTERING, SEARCHING & SORTING

CHANGING ORDER USING
COMPARE FUNCTIONS

If you want to change the order of the sort, you write a compare function .

It compares two values at a time and returns a number.
The number it returns is then used to rearrange the items in the array.

The sort () method only ever
compares two values at a time

(you will see these referred to
as a and b), and it determines

whether value a should appear
before or after value b.

Because only two values are
compared at a time, the sort()

method may need to compare
each value in the array with

several other values in the array
(see diagram on the next page).

COMPARE FUNCTIONS MUST RETURN NUMBERS -

A compare function should

return a number. That number
indicates which of the two items
should come first.

<O
Indicates that it should

·show a before b

The sort() method wi ll

determine which values it needs
to compare to ensure the array is
ordered correctly.

0
Indicates that the items should

remain in the same order

sort () can have an anonymous
or a named function as a

parameter. This function is called
a compare function and it lets

you create rules to determine

whether value a should come

before or after value b.

You just write the compare

function so that it returns a
number that reflects the order in
which you want items to appear.

>O
Indicates that it should

show b before a

To see the order in which the values are being compared, you can add the con so 1e. 1 og () method to the
compare function. For example: con so 1e. 1 og (a + ' - , · + b + ' = ' + (b - a)) ;

F ILTERING, SEARCHING & SORTING 8

SORTING NUMBERS

Here are some examples of compare functions that

can be used as a parameter of the sort () method.

ASCENDING
NUMERICAL ORDER

To sort numbers in an ascending
order, you subtract the value of
the second number b from the
first number a. In the table on
the right, you can see examples
of how two values from the array
are compared.

DESCENDING
NUMERICAL ORDER

To order numbers in a
descending order, you subtract
the value of the first number a
from the second number b.

RANDOM ORDER

This will randomly return a value
between -1 and 1 creating a
random order for the items.

var prices = [l, 2, 125, 2, 19, 14];
prices.sort(function(a, b) {

return a - b;
}) ;

a OPERATOR b RESULT ORDER

1

2

2

2

2

l

- 1

0

a comes before b

leave in same order

b comes before a

var prices = [l, 2, 125, 2, 19, 14];
prices.sort(function(a, b) { ·

return b - a;
}) ;

b OPERATOR a RESULT ORDER

2

2

1

2

2

1

0

-1

b comes before a

leave in same order

a comes before b

var prices = [1, 2, 125, 2, 19, 14];
prices.sort(function() {

return 0.5 - Math.random();
}) ;

8 FILTERING, SEARCHING & SORTING

SORTING DATES

Dates need to be converted into a Date object so that
they can then be compared using< and >operators.

var holidays = [

' 2014- 12-25 ' '
' 2014-01-01',

] ;

I 2014-07-04 1
t

' 2014-11-28'

holidays.sort(function(a, b) {

var dateA = new Date(a);

var dateB =new Date(b);

return dateA - dateB

}) ;

The array is now ordered as follows:

holidays = [

' 2014-01-01 ' '
' 2014-07-04',
' 2014- 11-28 ' '
'2014-12-25 '

DATES IN ASCENDING
ORDER

If the dates are held as strings,

as they are in the array shown

on the left, the compare function

needs to create a Date object

from the string so that the two

dates can be compared.

Once they have been converted

into a Date object, JavaScript

stores the date as the number

of milliseconds since the 1st

January 1970.

With the date stored as a

number, two dates can be

compared in the same way that

numbers are compared on the

left-hand page.

FILTERING, SEARCHING & SORTING 9

SORTING A TABLE

In this example, the contents of a table can be reordered.

Each row of the table is stored in an array.

The array is then sorted when the user clicks on a header.

SORT BY HEADER

When users click on a heading, it
triggers an anonymous function

to sort the contents of the array
(which contains the table rows).

The rows are sorted in ascending
order using data in that column.

Clicking the same header again

will show the same column
sorted in descending order.

My Videos

GENII£

Fiim

Fiim

Anlm1tlon

Anlmetfon

Anlmetlon

DATA TYPES

Each column can contain one of
the fol lowing types of data:

• Strings
• Time durations (mins/secs)

• Dates

If you look at the <th> elements,
the type of data used is specified

in an attribute called data-sort.

-..mclN

Arll<Nlo 6!AO

n..o- 8:24

TlwGhott 11:40

WfCOnl 21:40

Wlldfood 3:47

e FILTERING, SEARCHING & SORTING

COMPARE FU NCTIONS

Each type of data needs a

different compare function.
The compare functions will be

stored as three methods of an
object called compare, which you

create on p563:

• name() sorts strings

• duration() sorts mins/secs
• date() sorts dates

l!I Camille Berger
9 Peri,Fteneo

DATE

2005-12-21

20M-02•2a

2012·04-IO

2007-04-12

20l4-o7·1e

HTML TABLE STRUCTURE

1. The <table> element needs

to carry a c 1 ass attribute whose
value contains sortable.

2. Table headers have an attribute

called data-sort. It reflects the
type data in that column.

<body>
© <tabl e class="sortable">

<thead>
<tr>

<th data-sort="name">Genre</th>
<th data-sort="name">Title</th>
<th data-sort="duration">Duration</th>
<th data-sort="date">Date</th>

</tr>
</thead>
<tbody>

<tr>
<td>Animation</td>
<td>Wildfood</td>
<td>3:47</td>
<td>2014-07-16</td>

</tr>
<tr>

<td>Film</td>
<td>The Oeer</td>
<td>6:24</td>
<td>2012-02-28</td>

</tr>
<tr>

<td>Animation</td>
<td>The Ghost</td>
<td>ll :40</td>
<td>2013-04-10</td>

</tr> .. .
</tbody>

</tabl e>
<script src="js/jquery.js"></script>
<script src="js/sort - table . js"></scri pt >

</body>

The value of the data-sort

attribute corresponds with the
methods of the compare object.

cl2/sort-table.html

FILTERING, SEARCHING & SORTING @

COMPARE FUNCTIONS

1. Declare the compare object. It has three methods

used to sort names, time durations, and dates.

THE name() METHOD

2. Add a method called name (). Like all compare

functions, it should take two parameters: a and b.

3. Use a regular expression to remove the word 'the'

from the beginning of both of the arguments that

have been passed into the function (for more on this

technique. see the bottom of the right-hand page).

4 . If the value of a is lower than that of b:

5. Return -1 (indicating that a should come before b).

6. Otherwise, if a is greater than b, return 1. Or, if

they are the same, return 0. (See bottom of page.)

THE duration() METHOD

7. Add a method called duration(). Like all compare

functions, it should take two parameters: a and b.

8. Duration is stored in minutes and seconds: mm: ss.

The String object's sp 1 it() method splits the

string at the colon, and creates an array with

minutes and seconds as separate entries.

9. To get the total duration in seconds. Number()

converts the strings in the arrays to numbers.

The minutes are multiplied by 60 and added to the

number of seconds.

10. The value of a - bis returned.

THE date() METHOD

11. Add a method called date(). Like all compare

functions, it should take two parameters: a and b.

12. Create a new Date object to represent each of

the arguments passed into the method.

13. Return the value of a minus b.

return a > b ? 1 : 0

A shorthand for a conditional operator is the ternary

operator. It evaluates a condition and returns one of

two values. The condition is shown to the left of the

question mark.

@ FILTERING, SEARCHING & SORTING

0

8

e

0

e

0

Create object: compare

+ I

DECLARE METHOD: name(a, b)

Replace any instances of the word the at
the start of the parameter with a blank

string using a regular expression

+
I

'
Is a less

' than b?

l I

'\ Return - 1

'
Is a greater

' than b?

I I

Return 0 Return 1

DECLARE METHOD: durat ion (a, b)

Convert both parameters into arrays

I
Convert both parameters to seconds

I
Return a - b

+
I

DECLARE METHOD: date(a , b)

Convert both parameters to Date objects

I
Return a - b

The two options are shown to the right separated by

a colon. If the condition returns a truthy value, the

first value is returned. If the value is falsy, the value

after the colon is returned.

THE COMPARE OBJECT

JAVASCRIPT

CD var compare = {
@ name; function(a, b) {

@{ a a.replace(IAthe Ii ,
b = b.replace(IAthe Ii ,

© if (a < b) {
~ return -1;

else {
© return a > b ? 1 O;

}
}.
du ration: function(a, b) {

a a.split(': ');
b b.split(':');

I I) ;

I I) ;

c12/js/sort-table .js

II Dec l are compare obj ect
II Add a method cal l ed name
II Remove The from start of parameter
II Remove The from start of parameter

II If value a is less than value b
II Return -1
II Otherwise
II If a is greater than b return 1 OR
II if they are the same return 0

II Add a method cal led duration
II Split the time at t he colon
II Split the time at the colon

a= Number(a[O]) * 60 + Number(a[l]); II Convert the time to seconds
b Number(b[O]) * 60 + Number(b[l]} ; II Convert the time to seconds

@)

®
@{
@

return a - b;
}.
date: function(a, b) {

a new Date(a};

}
} ;

b =new Date(b};

return a - b;

a . repl ace(/l\the /i , '');
The replace() method is used to remove any
instances of The from the start of a string. replace ()

works on any string and it takes one argument: a
regular expression (see p612). It is helpful when

The is not always used in a name, e.g., for band
names or film titles. The regular expression is the

first parameter of replace () method.

II Return a minus b

II Add a method called date
II New Date object to hold the date
II New·oate object to hol d the date

II Return a minus b

• The string you are looking for is shown between

the forward slash characters.

• The caret" indicates that the must be at the start
of the string.

• The space after the indicates there must be a
space after it.

• The ; indicates that the test is case insensitive.

When a match for the regular expression is found,
the second parameter specifies what should take its

place. In this case it is an empty string.

FILTERING, SEARCHING & SORTING @

SORTING COLUMNS

1. For each element that has a cl ass attribute with a
value of sortable, run the anonymous function.

2 . Store the current <table> in $table.
3. Store the table body in $tbody.

4 . Store the <th> elements in $controls.
5 . Put each row in $tbody into an array called rows.

6. Add an event handler for when users click on a
header. It should call an anonymous function.

7. $header stores that element in a jQuery object.

8. Store the value of that heading's data- sort
attribute in an variable called order.
9. Declare a variable called column.

10. In the header the user cl icked upon, if t he c l ass
att ribute has a value of ascending or descending,
then it is already sorted by this column.

11. Toggle the value of that cl ass attr ibute (so that it

shows the other value ascending/descending).
12. Reverse the rows (stored in the rows array) using

the reverse () method of the array.

13. Otherwise, if the row the user clicked on was not
selected, add a cl ass of ascending to the header.
14. Remove the class of ascending or descending

from all other <th> elements on this table.
15. If the compare object has a method that matches

the value of the data-type attribute for this column:

16. Get the column number using the index ()
method (it returns the index number of the element

within a jQuery matched set). That value is stored in
the column variable.

17. The sort () method is applied to the array of
rows and will compare two rows at a time. As it

compares these values:

18. The values a and bare stored in variables:
. find() gets the <td> elements for that row.

. eq () looks for the cell in the row whose index

number matches the column variable.
. text() gets the text from that cel l.
19. The compare object is used to compare a and b.

It will use the method specified in the type variable

(which was collected from the data-sort attribute
in step 6).

20. Append the rows (stored in the rows array) to
the table body.

8 FILTERING, SEARCHING & SORTING

0
e e

Create variables:
$table: <table> element
$tbody: <tbody> element
$controls: <th> elements
rows: array of <tr> elements

• '
Event: click on <th> element

ANONYMOUS FUNCTION:
Sorts data based on header clicked

Create variables (from clicked header):
header: the header that was clicked on
order: value of data-sort attribute
co 1 umn: will hold index of clicked header

• '

' I
Is cl ass ascending

or descendi ng? ' I Add class of
ascending to <th>

Toggle value of
cl ass attribute

I I
Remove ascending
or descending from e

all other headers

Reverse order
of rows In table

'
Does compare

have a value that matches
the order variable? ' I column set to store index number of

<th> element clicked on
I

Sort rows using compare function

I
a is text from first row being compared

& b is text from second row

Use compare object to compare a and b
using method specified in order variable

I
Append array to <tbody> element

- - -- GO TO NEXT SORTABLE TABLE ----

SORTABLE TABLE SCRIPT

JAVASCRIPT c12/ js/ sort- table .js

G) $('. sortable ').each(function() {
CY var $table = $(this); II This sortable table

II Store table body Q) var $tbody = $table . find('tbody');
~ var $controls= $table.find('th'); II Store table headers
~ var rows = $tbody.find('tr').toArray() ; II Store array containing rows

© $controls.on('click', function() { II When user clicks on a header
II Get t he header CZ) var $header = $(this) ;

@) var order = $header.data(' sort') ; II Get val ue of data-sort att r ibute
II Declare var iable call ed column <2) var column;

@)
®
@

@

@
@
@

®
@{
®

II If selected i tem has ascending or descendi ng cl ass , reverse contents
if ($header.is(' .ascending') I I $header.is('. descending')) {

$header.toggleClass('ascending descending') ; II Toggle to other class

}
}) ;

}) ;

$tbody.append(rows.reverse()); II Reverse the array
else { II Otherwise perform a sort
$header.addClass('ascending'); II Add class to header
II Remove asc or desc from all other headers
$header.siblings().removeClass('ascending descending ');
if (compare.hasOwnProperty(order)) { II If compare object has method

column = $controls.index(this); II Search for column' s index no

rows.sort(function(a, b) { -II Call sort() on rows array
a = $(a) . find('td').eq(column).text(); ll Get text of column in row a
b = $(b) . find('td') .eq(column) . text(); l l Get text of column in row b
return compare[order](a , b); II Call compare method

}) ;

$tbody.append(rows);

FILTERING, SEARCHING & SORTING 8

Arrays are commonly used to store a set of objects.

Arrays have helpful methods that allow you to add,

remove, filter, and sort the items they contain.

Filtering lets you remove items and only show a subset

of them based on selected criteria.

Filters often rely on custom functions to check whether

items match your criteria.

Search lets you filter based upon data the user enters.

Sorting allows you to reorder the items in an array.

If you want to control the order in which items are

sorted, you can use a compare function.

To support older browsers, you can use a shim script.

SEARCHING

