


Forms allow you to collect information from visitors, and 

JavaScript can help you get the right information from them. 

Since JavaScript was created, it has been used to enhance and validate forms. 

Enhancements make forms easier to use. Validation checks whether the user has provided 

the right information before submitting the form (if not, i t provides feedback to the user). 

This chapter is divided into the following three sections: 

FORM HTMLS FORM FORM 
ENHANCEMENT ELEMENTS VALIDATION 

This section features HTMLS contains validation The final, and longest, 

many examples of form features that do not use example in the book shows 

enhancement. Each one JavaScript. This section a script that validates (and 

introduces the different addresses ways in which enhances) the registration 

properties and methods you you can offer validation to form that you can see on the 

can use when working w ith old and new browsers in a right-hand page. It has over 

form elements. consistent way. 250 lines of code. 

The first section of this chapter also drops jQuery in favor of plain JavaScript, because you 
should not always rely upon jQuery (especially for scripts that use little of its functionality). 

8 FORM ENHANCEMENT & VALIDATION 

... 

J 
~ 

' 

', 
l 

• 

! .. 

' 4 
J 
I 





HELPER FUNCTIONS 

The first section of th is chapter uses plain JavaScript, no jQuery. 

We will create our own JavaScript file to handle cross-browser issues, 

it will contain one helper function to create events. 

Forms use a lot of event handlers and (as you saw 
in Chapter 6) IES-8 used a different event model 

than other browsers. You can use jQuery to deal 
with cross-browser event handling. But, if you do 

not want to include the entire jQuery script just to 

handle events in older version of IE, then you need to 
write your own fallback code to handle the events. 

Instead of writing the same tailback code every 
t ime you need an event handler, you can write the 

tailback code once in a helper function, and then call 

that function every time you need to add an event 
handler to a page. 

On the right-hand page you can see a function called 
add Event(). It lives in a fi le called utilities .j s. 

Once that file has been included in the HTML page, 
any scripts included after it wil l be able to use this 

function to create cross-browser event handler: 

addEvent(el, event, callback); 
CD ® ® 

The function takes three parameters: 

i) el is a DOM node representing the element that 
the event will be added to or removed from. 

ii) event is the type of event being listened for. 
iii) callback is the function that is to be run when 

the event is triggered on that element. 

The ut i 1 it i es. j s fi le on the website also has a 

method to remove events. 

@ FORM ENHANCEMENT & VALIDATION 

ff you look inside the add Event() method on the 
right-hand page, a conditional statement checks 

whether the browser supports addEventL i stener(). 
ff it does, a standard event listener will be added. 

If not, then the IE fallback will be created. 

The fallback addresses three points: 

• It uses I E's the a ttachEvent () method. 
• In IES-8, the event object is not automatically 

passed into the event-handling function (and is 

not available via the this keyword) see p264. 

Instead it is available on the window object. 
So the code must pass the event object 

into the event handler as a parameter. 

• When you pass parameters to an event-handling 
function, the call must be wrapped in an 

anonymous function see p256. 

To achieve this, the fallback adds two methods to the 
element the event handler will be placed upon (see 

steps 5 and 6 on the right-hand page). It then uses 

IE's attachEvent () method to add the event handler 

code to the element. 

The functions demonstrate two new techniques: 

• Adding new methods to DOM nodes: 
You can add methods to DOM nodes because 

they are just objects (that represent elements). 

• Creating method names using a variable: 
Square brackets can be used to set a property/ 

method, their content is evaluated into a string. 



Here, you can see the add Event() function that will 

be used to create all of the event handlers in this 

chapter. It lives in a fi le called uti l ities.js. 

JAVASCRIPT 

UTILITIES Fl LE 

These reusable functions are often referred to as 

helper functions. As you write more JavaScript, you 
are increasingly likely to create this type of function. 

cl3/ js/ utilities.js 

// Helper function to add an event l i stener 
G) function addEvent(el , event , callback) { 

@ if ('addEventlistener' in el) { II 
~ el . addEventlistener(event, cal lbac k, false); // 
© el se { 
~ el[' e ' + event+ cal l back] =cal l back; 
~ el [event + ca l l back] = f unc t i on() { 

If addEventli stener works 

Use it 

Ot herwise 
Make cal l back a method of el 
Add second method 

el [ ' e' +event+ cal l back](window. event); 

} ; 

II 
II 
II 
II Use i t to cal l prev func 

el . attachEvent ( 'on ' +event, el [ event + callback]) ; // Use at tachEven t () 

// to cal l t he second function, which t hen call s t he f i r st one 

1. The add Event() function is declared with three 
parameters: element, event type, callback function. 

2. A conditional statement checks if the element 
supports the addEventL i stener() method. 

3. If it does, then addEventL i stener() is used. 

4. If not, the fallback code will run instead. 

The tailback must add two methods to the element 
the event handler will be placed upon. It then uses 

Internet Explorer's attachEvent () method to call 
them when the event occurs on that element. 

5. The fi rst method added to the element is the 

code that should run when the event occurs on this 
element (it was the third parameter of the function). 

6. The second method calls the method from the 
previous step. It is needed in order to pass the event 

object to the function in step 5. 
7. The attachEvent () method is used to listen for 

the specified event, on the specified element. When 

the event fires, it calls the method that it added in 
step 6, which in turn calls the method in step 5 using 

the correct reference to the event object. 

In steps 5 and 6, square bracket notation is used to 
add a method name to an element: 

e] ['e' +event+ callback] 

i) The DOM node is stored in e 1. The square 
brackets add the method name to that node. That 
method name must be unique to that element, so it 

is created using three pieces of information. 
ii) The method names are made up of: 

• The letter e (used for the fi rst method in step 5 
but not used in step 6) 

• The eventtype (e.g., click, blur, mouseover) 

• The code from the callback function 

In the code on the right-hand page, the value of this 
method is the callback function. (This could lead to a 

long method name, but it serves the purpose.) This 

function is based on one by John Resig, who created 

jQuery(http : //ej ohn.org/ projects/flexible­

javascri pt-events/). 

FORM ENHANCEMENT & VALIDATION @ 



THE FORM ELEMENT 

DOM nodes for form controls have different properties, methods, and 
events than some of the other elements you have met so far. 
Here are some you should note for the <form> element. 

PROPERTY DESCRIPTION 

action The URL the form is submitted to 

method If it is to be sent via,GET or POST 

name Rarely used, more common to select a 
form by the value of its id attribute 

el ements A collection of the elements in the 
form that users can interact with. They 

can be accessed via index numbers or 

the values of their name attributes. 

The DOM methods you saw in Chapter 5, such as 
getElementByld(),getElementsByTagName(),and 

querySe l ector(), are the most popular techniques 
for accessing both the <form> element and the form 

contro.ls within any form. However, the document 

object also has something called the forms 

collection. The forms collection holds a reference to 
each of the <form> elements that appear on a page. 

Each item in a collection is given an index number 
(a number starting at 0, like an array). This would 

access the second form using its index number: 

document.forms[!]; 

You can also access a form using the value of its 

name attribute. The following would select a form 

whose name attribute has a value of login: 
document . forms.login 

§ FORM ENHANCEMENT & VALIDATION 

METHOD DESCRIPTION 

submit () This has the same effect as clicking the 

submit button on a form 

reset () Resets the form to the initial values it had 

when the page loaded 

EVENT DESCRIPTION 

submit Fires when the form is submitted 

reset Fires when the form is reset 

Each <form> element in the page also has an 
e 1 ements collection. It holds all of the form controls 
within that form. Each item in thee l ements 

col lection can also be accessed by index number or 

by the value of its name attribute. 

The following would access the second form on the 
page and then select the first form control within it: 
document.forms[l].el ements[O]; 

The following would access the second form on the 

page, then select the element whose name attribute 

had a value of password from that form: 
document.forms[ l ].elements.password; 

Note: index numbers in a collection of elements can 
change if the markup of a page is altered. So, use of 

index numbers ties a script to the HTML markup (-it 

does not achieve a separation of concerns). 



FORM CONTROLS 

Each type of form control uses a different combination of the properties, 
methods, and events shown below. Note that the methods can be used to 
simulate how a user would interact with the form controls. 

PROPERTY 

value 

type 

name 

DESCRIPTION 

In a text input, it is the text the user entered; otherwise, it is the value of the va 1 ue attribute 

When a form control has been created using the <input> element, this defines the type of the 
form element (e.g., text, password, radio, checkbox) 

Gets or sets the value of the name attribute 

default Val ue The initial value of a text box or text area when the page is rendered 

form The form that the control belongs to 

disabled Disables the <form> element 

checked Indicates which checkbox or radio buttons have been checked. 
This property is a Boolean; in JavaScript it will have a value of true if checked 

defaul tChecked Whether the checkbox or radio button was checked or not when the page loaded (Boolean) 

sel ected Indicates that an item from a select box has been selected (Boolean - true if selected) 

METHOD DESCRIPTION 

focus() Gives an element focus 

blur() Removes focus from an element 

sel ect() Selects and highlights text content of an element, (e.g., text inputs, text areas, and passwords) 

cl ick() Triggers a click event upon buttons, checkboxes, and file upload 
Also triggers a submit event on a submit button, and the reset event on a reset button 

EVENT DESCRIPTION 

blur When the user leaves a field 

focus When the user enters a fie ld 

click When the user clicks on an element 

change When the value of an element changes 

input When the value of an <input> or <texta rea> element changes 

keydown, keyup, key press When the user interacts with a keyboard 

FORM ENHANCEMENT & VALIDATION 8 



SUBMITTING FORMS 

In this example, a basic login form lets users enter a 
username and password. When the user submits the 
form, a welcome message will replace the form. 

On the right-hand page you can see both the HTML 
and the JavaScript for this example. 

1. Place the script in an Immediately Invoked 
Function Expression (ll FE see p97). (This is not 
shown in the flowchart.) 

2. A variable called form is created and it is set to 
hold the <form> element. It is used in the event 

listener in the next line of code. 
3. An event listener triggers an anonymous funct ion 

when the form is submitted. Note how this is set 

using the add Event() function that was created in 
the ut i 1 it i es. j s file that you saw on p571. 

4. To prevent the form being sent (and to allow 
this example to show a message to the user) the 

preventDefault() method is used on the form. 
5. The collection of elements in this form is stored in 

a variable cal led e 1 ements. 

6 . To get the username, first select the username 

input from the e 1 ements collect ion using the value 
of its name attribute. Then, to get the text the user 
entered, the va 1 ue property of that element is used. 

7. A welcome message is created and stored in a 

variable called msg; this message will incorporate the 
username that the visitor entered. 

8 . The message replaces the form within the HTML. 

8 FORM ENHANCEMENT & VALIDATION 

In the HTML page, the uti l ities . j s file you saw on 
p571 is included before the submit-event. j s script 
because its add Event() function is used to create 

the event handlers for this example. utilities . j s is 

included for all examples in this section. 

f) Create variable: fonn holds <fonn> element 

... 
I 

Event : submit on form 
I 

ANONYMOUS FUNCTION : 
Greets the user by username 

0 Prevent default action of form submitting 

I 

e 
0 
0 

0 

Create variables: 
e 1 ements: elements collection 
username: username 
msg: welcome message 

... 
I 

Replace form with welcome message 

The event listener wa its for the submit event on the 

form (rather than a click on the submit button) 

because the form can be submitted in other ways 

than clicking on the submit button. For example, the 
user might press the Enter key. 



THE SUBMIT EVENT & 
GETTING FORM VALUES 

M:iief.11 cl3/submit-event.html 

<form id="login" action="/ login" method="post">. .. 
<div class="two-thirds column" i d="main"> 

<fieldset> 
<legend>Login</ legend> 
<label for="username">Username: </ label> 
<input type="text" id=" username" name="username" I> 
<label for="pwd">Password: </ label> 
<input type="password" id="pwd" name="pwd" / > 
<input type="submit" value="Login" / > 

</ fieldset> 
</di v> <!-- .two-thirds --> 

</ form> 
<script src="js/utilities.js"><l script> 
<script src="js/ submit-event.js"></ script> 

JAVASCRIPT 

CD (function() { 

cl3/js/submit-event.js 

~ var form= document.getElementByld('login ' ); II Get form element 

® 
@ 

add Event (form, 'submit', function ( e) 
e.preventDefault(); 
var elements this.elements; 

//When user submits form 
II Stop it being sent 

® 
© 
0 
® 

var username = elements.username.value; 
II Get al l fo rm elements 
/I Sel ect username entered 
/I Create welcome message var msg = 'Welcome ' + username; 

document.getElementByld('main').textContent = msg; II Write welcome message 
} ) ; 

} ()); 

When selecting a DOM node, if you are likely to 
use it again, it should be cached. On the right, you 

can see a variation of the above code, where the 
username and the main element have both been 

stored in variables outside of the event listener. 
If the user had to resubmit the form, the browser 

would not have to make the same selections again . 

var form = document.getElementByid(' login') ; 

var el ements = form.elements; 
var el Username = elements.username ; 
var elMain = document .getElementByld('main'); 

addEvent (form, 'submit', function (e) { 
e.preventDefault(); 

var msg = ' Welcome ' + el Username.value; 

el Main.textContent = msg; 
} ) ; 

FORM ENHANCEMENT & VALIDATION 8 



CHANGING TYPE OF INPUT 

This example adds a checkbox under the password 

input. If the user checks that box, their password 
will become visible. It works by using JavaScript 
to change the type property of the input from 

password to text. (The type property in the DOM 
corresponds to type attribute in the HTML.) 

Changing the type property causes an error in IE8 
(and earlier), so this code is placed in a try •.• 

catch statement. If the browser detects an error, the 
script continues to run the second code block. 

1. Place the script in an llFE (not shown in flowchart). 
2. Put password input and checkbox in variables. 

3. An event listener triggers an anonymous function 
when the show password checkbox is changed. 

4. The target of the event (the checkbox) is stored in 
a variable called target. As you saw in Chapter 6, 

e. target wi ll retrieve this for most browsers. 

e. srcEl ement is only used for old versions of IE. 

5. A try ..• catch statement checks if an error is 
caused when the type attribute is updated. 
6. If the checkbox is selected: 

7. The value of the password input's type attribute is 

set to text. 
8 . Otherwise, it is set to password. 

9. If trying to change the type causes an error, the 

catch clause runs another code block instead. 
10. It shows a message to tell the user. 

8 FORM ENHANCEMENT & VALIDATION 

Create variables: 
8 pwd: password Input 

chk: checkbox 

e 

0 

e 

+ r 
Event: change on checkbox 

I 

ANONYMOUS FUNCTION: 
Changes value of password's type attribute 

Get element clicked on 

Try to process following code block 

+ 
I 

' lo 
Is it checked? 

' • I 
Set type to password Set type to text 

l..._~~~~--~~~~~--' 

Catch: 
Is there an error? ' I G Display message: <=IES can't switch types 

As you saw in Chapter 10, an error can stop a script 

from running. If you know something may cause 
an error for some browsers, placing that code in 

a try ... catch statement lets the interpreter 

continue with an alternative set of code. 



SHOWING A PASSWORD 

W:hif.11 

<fieldset> 
<legend>Login<l legend> 
<label for="username">Username: <ll abel> 

cl3/input-type . html 

<input type="text" id="username" name="username" I> 
<label for="pwd">Password :<l label> 
<input type="password" id="pwd" name="pwd" I> 
<input type="checkbox" id="showPwd"> 
<label for="showPwd">show password<llabel > 
<input type="submit" value="Login " I> 

<l fieldset> . . . 
<script src="jsl utilities .js"><lscript> 
<script src="jsl input-type.js"><lscript> 

JAVA SCRIPT 

CD (function() { 

cl3/ js/i nput-type.js 

var pwd = document.getElementByid('pwd'); II Get password input 
var chk = document .getElementByid('showPwd'); . ll Get checkbox 

Q) addEvent(chk, ' change', function(e) { 
© var target = e. t arget 11 e. srcElement; 
® t ry { 
(§) i f (target. checked) 
(2) pwd.type 'text ' ; 

else { 
(§:> pwd.type = 'password'; 

II When user clicks on checkbox 
II Get that element 
II Try the following code block 
II If the checkbox is checked 
II Set pwd type to text 
II Otherwise 
II Set pwd type to password 

(2) catch(error) II If this causes an error 
Q9> alert('This browser cannot switch type'); II Say 'cannot switch type' 

} 
} ) ; 

} ()); 

FORM ENHAN CEMENT & VALIDATION 8 



SUBMIT BUTTONS 

This script disables the submit button when: 

• The script first loads. The change event then 
checks when the password changes and enables 
submit if the password is given a value. 

• The form has been submitted (to prevent the 
form being sent multiple times). 

The button is disabled using the di sabled property. 

It corresponds with the HTML disabled attribute, 

and can be used to disable any form elements that a 
user can interact with. A value of t rue disables the 

button; fa 1 se lets the user cl ick on it. 

1. Place the script in an llFE (not shown in flowchart). 

2. Store the form, password input, and submit 
button in variables. 

3. The submi t t ed variable is known as a f lag; it 

remembers if the form has been submitted yet. 

4 . The submit button is disabled at the start of the 
script (rather than in the HTML) so that the form 
can still be used if a visitor has JavaScript disabled. 

5. An event listener waits for the input event on the 
password input; it triggers an anonymous function. 

6 . Store the target of the event in t arget . 

7. If the password input has a value, the submit 

button is enabled, and (8) its style updated. 
9. A second event listener checks for when the user 

submits the form (and runs an anonymous function). 
10. If the submit button is disabled, or the form has 

been submitted, the subsequent code block is run. 
11. The default action of the form (submitting) is 

prevented, and retur n leaves the function. 

12. If step 11 did not run, the form is submitted, the 
submit button disabled, the submi t ted variable 

updated with a value of true, and its cl ass updated. 

8 FORM ENHANCEMENT & VA LI DATION 

f) 

e 

Creat e variables: 
form: <form> element 
password: password input 
submit: submit button 
submitted: set to fa 1 se (form not yet submitted) 

I 
0 Disable submit button & set class to disabl ed 

• I 

9 Event : input on password input 

I 

A NONYMOUS FUNCTION: 
Checks if submit should be enabled 

0 Get target element (password input) 

0 ' I 
• I 

Has form been 
submitted? ' I Set di sab 1 ed 

property to fa 1 se 
Set di sab 1 ed 

property to t rue 
1... ________ _____ ) 

y 

Set class 
to di sabled 

Does target 
have a value? ' I Set class 

to enabled 

Event: submit on <form> input 

ANONYMOUS FUNCTIO N: 
Checks if form can be submitted 

Is submit disabled 
or has form been 

submi tted? 

Let form submit , then: 
• Disable form 
• Updat e variable that t racks 

if it has been submitted 
•Set cl ass to disabled 

Prevent 
form 

submitting 

l 



DISABLE SUBM IT BUTTON 

""·'·'' 
<label for="pwd">New password: <llabel> 
<input type="password" id="pwd" I> 

cl3/disable-submit.html 

<input type="submit" id="submit" value="submit" I> 

JAVASCRIPT cl3/ js/disable-submit.js 

G) (function() { 
var form = document.getElementByid('newPwd'); II The form 
var password 
var submit 

= document .getElementByid( ' pwd'); II Password input 
= document.getElementByid( ' submit'); II Submit button 

~ var submitted = false; II Has form been submitted? 

@) submit.disabled = true; 
submit.className = 'disabled'; 

II Disable submit button 
II Style submit button 

II On input: Check whether or not to enable the submit button 
® addEvent(password, 'input', function(e) { II On input of password 
© var target= e.target 11 e.srcElement; II Target of event 
0 submit.disabled = submitted II !target.value; II Set disabled property 

II If form has been submitted or pwd has no value set CSS to disabled 
~ submit.className = (!target.value I I submitted) ? 'disabled' : 'enabled ' ; 

® 
@) 

@{ 

} ) ; 

II On submit: Disable the form so it cannot 
addEvent(form, 'submit', function(e) { 

if (submit .disabled I I submitted) { 
e.preventDefault(); 
return; 

submit .disabled = true; 
submitted = true; 
submit.className = 'disabled'; 

be submitted again 
11 On submit 
II If disabled OR sent 
II Stop form submission 
II Stop processing function 
II Ot herwise continue ... 
II Disable submit button 
II Update submitted var 
II Update style 

II Demo purposes only: What would 
e.preventDefault(); 

have been sent & show submit is disab led 

alert('Password is ' +password.value); 
} ) ; 

} ()) ; 

II Stop form submitting 
II Show the text 

FORM ENHANCEMENT & VALIDATION 8 



CHECKBOXES 
This example asks users about their interests. It has 

an option to select or deselect all of the checkboxes. 

It has two event handlers: 

• The first fires when the all checkbox is selected; it 

loops through the options, updating them. 

• The second fi res when the options change; if one 

is deselected, the all option must be deselected. 

You can use the change event to detect when the 

value of a checkbox, radio button, or select box 

changes. Here, it is used to tel l when the user 

selects I deselects a checkbox. The checkboxes 

can be updated using the checked property, which 

corresponds with HTML's checked attribute. 

1. Place the script in an llFE (not shown in flowchart). 

2. The form, all of the form elements, the options, 

and the all checkbox are stored in variables. 

3. The updateAl 1 () function is declared. 

4. A loop runs through each of the options. 

5. For each one, the checked property is set to the 

same value as the checked property on the all option. 

6. An event listener waits for the user to click on the 

all checkbox, which fires a change event and calls the 

updateA 11 () function. 

7. The c 1earA1 1 Option() function is defined. 

8. It gets the target of the option the user clicked on. 

9. If that option is deselected, then the all option is 

also deselected (as they are no longer all selected). 

10. A loop runs through the options, adding an event 

listener. When the change event happens on any of 

them, c 1earA11 Option() is called. 

@ FORM ENHANCEMENT & VALIDATION 

Create variables: 
fonn: <fonn> element 

8 elements: elements contained in fonn 
options: array of genre checkboxes 
all: checkbox to turn all genres on/ off 

• I 

0 Event: change on element with id of a 11 

I 

e 
0 

G 

0 

FUNCTION: updateAl 1 () 
Checks or unchecks all checkboxes 

Set checked property to match 
checked property of select all 

GO TO NEXT CHECKBOX 

LOOP THROUGH EACH CHECKBOX 

Event: change on genre c heckboxes 

I 

FUNCTION: cl earAl lOption() 
Unchecks the 'all' option 

Get element user clicked on 

• I 

ls It not ft 
checked? T 

I 
Deselec t the 'all' option 

---- GO TO NEXT CHECKBOX -----



SELECT ALL CHECKBOXES 

M:iief.11 c13/al l -checkboxes .html 

<label><input type="checkbox" value="all" id="al l ">All <llabel> 
<label><input type="checkbox" name="genre" va l ue="ani mation">Animation<ll abel> 
<label><input type="checkbox" name="genre" value="docs">Documentary<l l abel> 
<label><input type="checkbox" name="genre" value="shorts">Shorts<llabel> 

JAVASCRIPT c13/js/al l-checkboxes.js 

CD (function() { 

2 

var form document.getElementByid( ' interests ' ); II Get form 
var elements 
var options 
var all 

form.elements; II Al l elements i n form 
el ements.genre; II Array: genre checkboxes 
document.getElementByid( ' al l '); II The 'al l ' checkbox 

@.) function updateAll{) { 
© for (var i = O; i <options . length; i++) { 
® options[i] .checked =all .checked; 

} 
® add Event (a 11 , 'change' , updateA 11); 

function clearAllOption(e) 
var target = e. target 11 e.srcElement; 
if (!target .checked) { 

all .checked = false; 

II Loop through checkboxes 
II Update checked property 

II Add event listener 

II Get target of event 
II If not checked 
II Uncheck 'All' checkbox 

for (var i = O; i <opt i ons.length; i++) { II Loop through checkboxes 
addEvent(options[i], 'change', clearAllOption); II Add event listener 

} ()); 

FORM ENHANCEMENT & VALIDATION 9 



RADIO BUTTONS 

This example lets users say how they heard about a 

website. Every time the user selects a radio button, 

the code checks if the user selected the option that 

says other, and one of two things happens: 

• If other is selected, a text input is shown so they 

can add further detail. 

• If the first two options are selected, the text box 

is hidden and its value is emptied. 

1. Place the script in an ll FE (not shown in flowchart). 

2. The code starts out by setting up variables to hold 

the form, all radio buttons, the radio button for the 

other option, and the text input. 

3. The text input is hidden. This uses JavaScript 

to update the cl ass attribute so that the form still 

works if the user has JavaScript disabled. 

4. Using a for loop, an event listener is added to 

each of the radio buttons. When one of them is 

clicked, the radioChanged() function is called. 

5. The radi oChanged () function is declared. 

6. If other is checked, the value of the hi de variable 

is set to be a blank string, otherwise it is set to hi de. 

7. The hi de variable is, in turn, used to set the value 

of the cl ass at tribute on the text input. If it is blank, 

the other option is shown; if it has a value of hi de, 

the text input is hidden. 

8. If the hi de attribute has a value of hi de, then the 

contents of the text input are emptied (so that the 

text input is blank if it is shown). 

@ FORM ENHANCEMENT & VALIDATION 

Create variables: 
form: the form 

a options: all of the radio buttons 
V other: only the other radio button 

otherText: the other-text input 
hi de: will store if other-text is hidden or not 

• I 

E) Set class of other- text to hide 

0 

• 
Event: cl i ck on this radio element 

FUNCTION: radi oChanged () 
Shows/hides the hidden text Input 

' I 
Is the other 

option checked? ' I Set hi de variable 
to hide 

Clear hide 
variable 

l 
y 

) 

Set class to value of hide variable 

• I 

Is the hidden 
variable truthy? 

Clear text input ' I 
- - -- GO TO NEXT RADIO BUTTON ----



RADIO BUTTONS 

1:11,,,,, cl3/show-option.html 

<form id="how-heard" action="/heard" method="post"> 

<input type="radio" name="heard" value="search" id="search" / > 
<label for="search">Search engine</ label><br> 

<input type="radio" name="heard" val ue="print" id="print" / > 
<label for="print">Newspaper or magazine</label><br> 

<input type="radio" name="heard" value="other" id="other" / > 
<label for="other">Other</ label ><br> 
<input type="text" name="other-input" id="other-text" /> 

<input id="submit" type="submit" value="submit" /> 

</ form> 

JAVASCRIPT cl3/js/show-option.js 

CD (function() { 

, 
® 

® 
© 
0 

~ 

var form, options, other, otherText, hide; 
form = document.getElementByld( 'how-heard!) ; 
options = form .elements.heard; 
other = document.getElementByld( 'other ' ); 
otherText = document.getElementByld( 'other-text ' ); 
otherText.className = 'h i de'; 

for (var i = [0]; i <options . length ; i++) { 
addEvent(options[i], 'click', radioChanged); 

function radioChanged() { 
hide= other.checked? ' ' 'hide' ; 
otherText .className = hide; 
if (hide) { 

otherText.value = ' ' ; 

} 
} ()); 

//Declare variables 
/ / Get the form 
//Get the radio buttons 
// Other radio button 
// Other text input 
// Hide other text input 

//Loop through radios 
//Add event l istener 

// Is other checked? 
// Text input visibili ty 
// If text input hidden 
// Empty its contents 

FORM ENHANCEMENT & VALIDATION 8 



SELECT BOXES 

The <select> element is more complex than the other form controls. 

Its DOM node has a number of extra properties and methods. 
Its <option> elements contain the values a user can select. 

This example features two select boxes. 
W hen the user selects an option from the first 

select box, the contents of the second select box are 
updated with corresponding options. 

In the first select box, users can choose to rent a 

camera or a projector. When they make their choice, 

a list of options are shown in the second select box. 
Because this example is a bit more complex than the 
ones you have seen so far in this chapter, the HTML 

and screen shots are shown to the right. and the 
JavaScript file is discussed on p586-p587. 

PROPERTY DESCRIPTION 

When the user selects an option from the drop­

down list, the change event fi res. This event is often 
used to trigger scripts when the user changes the 

value of a select box. 

The <select> element also has some extra 

properties and methods that are specific to it; 
these are shown in the tables below. 

If you want to work w ith the individual options 
the user can select from, a collection of <option> 

elements is available. 

options A collection of all the <option> elements 

selected Index 

length 

multiple 

sel ectedOptions 

METHOD 

Index number of the option that is currently option 

Number of options 

A llows users to select multiple options from the select box 

(Rarely used because the user-experience is not very good) 

A collection of all the selected <option> elements 

DESCRIPTION 

add (opt ion, before) Adds an item to the list: 

remove (index) 

The first parameter is the new option; the second is the element it should go before 
If no value is given, the item wil l be added to the end of the options 

Removes an item from the list: 

Has only one parameter - the index number of the option to be removed 

8 FORM ENHANCEMENT & VALIDATION 

... 



SELECT BOXES 

W:ii$11 

<label for="equipmentType">type</ l abel> 
<select id="equipmentType" name="equipmentType"> 

<option value="choose">Please choose a type</option> 
<option value="cameras">camera</option> 
<option value="projectors">projector</ option> 

</ select><br> 

<label for="model ">model </ label> 
<select id="model" name="model"> 

<option>Please choose a type first</option> 
</select> 

<input id="submit" type="submit" value="submit" /> 

l;(J.iilii 

cl3/populate-selectbox.html 

FORM ENHANCEMENT & VALIDATION 8 



SELECT BOXES 

1. Place the script in an llFE (not shown in flowchart). 

2. Variables hold the two select boxes. 
3. Two objects are created; each one holds options 

used to populate the second select box (one has 
types of cameras, the other has types of projectors). 

4 . When the user changes the first select box, an 
event listener triggers an anonymous function. 
5. The anonymous function checks if the first select 

box has a value of choose. 

6. If so, the second select box is updated with just 
one option, which tells the user to select a type. 

7. No further processing is needed, and the return 
keyword exits the anonymous function (until the 
user changes the first select box again). 

8 . If a type of equipment has been selected, the 
anonymous funct ion continues to run, and a model s 

variable is created. It will store one of the objects 
defined in step 3 (cameras or projectors). 

This correct object is ret rieved using the 
getMode ls () function declared at the end of the 
script (9+10). The function takes one parameter 

t his.val ue, which corresponds to the value from 

the option that was selected in first select box. 
9. Inside the getMode ls () function, an if statement 

checks if the value passed in was cameras; if so, it 

returns the cameras object. 
10. If not, it continues to run, checking to see if 

the value was projector s, and if so, it returns the 
projectors object. 

11. A variable called options is created. It wi ll hold 
all the <option> elements for the second select box. 

When this variable is created the f irst <opt ion> is 

added to it; it tel ls users to choose a model. 
12. A for loop goes through the contents of the 

object that was placed in the models variable in step 
(8-10). Inside the loop, key refers to the individual 

items in the object. 

13. Another <opt i on> element is created for every 
item in the object. Its value attribute uses the 

property name from the object. The content that sits 
between the <option> tags is that property's value. 

14. The options are then added to the second select 

box using the i nnerHTML property. 

8 FORM ENHANCEMENT & VALIDATION 

8 
e 

0 

Cl) 

G 

G 

G 

e 

Creat e variables: 
type & model store the drop-down boxes 
Create objects: 
cameras & projectors store the equipment lists 

+ 
I 

Event: change on equipment type select box 

I 

A NONYMOUS FUNCTION: 
Populates t he drop-down box 

' 
Is the value 

' choose? 

0 1 I 
Call getMode 1 s () & Add <option> 

store matching object 'Please choose 
in models variable a type ... first' 

l 
8 

Create variable: options 
Add <option> 'Please choose a model' 

+ 

L Add <option> element 

GO TO NEXT KEY IN OBJECT 

After loop: update <select> box 

FUNCTION: getModel s() 
Get models for selected equipment type 

A Is user looking ft 
T fo r cameras? T 

L_,"""'" objeo" !,.,,., 

' 
Is user looking ft 
for projectors? T 

I 
Ret urn object: projectors 

., 



SELECT BOXES 

JAVASCRIPT cl3/js/populate-selectbox . js 

G) (function() { 
~ var type = document.getElementByid('equipmentType ') ; // Type select box 
~ var model = document .getElementByid('model '); //Model select box 

3 

© 
® 
® 
(J) 

® 

var cameras = { //Object stores cameras 

} ; 

bolex : ' Bolex Paillard H8', 
yashica : 'Yashica 30', 
pathescape: 'Pathescape Super-8 Relax', 
canon: 'Canon 512 ' 

var projectors = { 

} ; 

kodak: 'Kodak Instamat i c M55' , 
bolex: 'Bolex Sound 715', 
eumig: 'Eumig Mark S', 
sankyo: 'Sankyo Dualux' 

//WHEN THE USER CHANGES THE TYPE SELECT BOX 
add Event (type, 'change' , funct i on() { 

if (this.value === 'choose') { 
model . innerHTML = '<option>Please choose 
return; 

var models= getModels(this.value); 

//Store projectors 

//No selection made 
a type fi rst</ option> '; 

//No need to proceed further 

// Select the right object 

//LOOP THROUGH THE OPTIONS IN THE OBJECT TO CREATE OPTIONS 
(!j) var options = '<option>Please choose a model </option> '; 
@ for (var key in mode l s) { // Loop through models 
@ options+= '<option val ue= '"+ key+ 111 >1 + mode l s [key] +'</opt i on>'; 

} // If an option could contain a quote, key should be escaped 
Q1> model .innerHTML =options; //Update select box 

} ) ; 

function getModels(equipmentType) { 

} 

if (equipmentType === 'cameras') { 
return cameras; 
el se if (equipmentType === 'projectors') 
return projectors; 

} ()); 

// If type is cameras 
// Return cameras object 
// If type is projectors 
// Return projectors object 

FORM ENHANCEMENT & VALIDATION 8 



TEXTAREA 

In this example, users can enter a biography of up to 

140 characters. When the cursor is in the textarea, 

a <span> element will be shown with a count of how 
many characters the user has remaining. When the 

textarea loses focus, this message is hidden. 

1. Place the script in an l lFE (not shown in flowchart). 

2 . The script sets up two variables to hold: 
a reference to the <textarea> element and 

a reference to the <span> that holds the message. 
3. Two event listeners monitor the <textarea>. 

The first checks for when the element gains focus; 
the second checks for a input event. Both events 
trigger a function called updateCounter() (6-11) 

The input event does not work in IE8, but you can 

use keyup to support older browsers. 
4 . A third event listener triggers an anonymous 

function when the user leaves the <textarea>. 

5. If the number of characters is less than or equal 
to 140 characters, the length of the bio is okay, and 
it hides the message (because it is not needed when 

the user is not interacting with the element). 

6 . The updateCounter() function is declared. 
7. It gets a reference to the element that called it. 

8 . A variable called count holds the number of 

characters left to use (it does this by subtracting the 
number of characters used from 140). 

9. if. • • else statements are used to set the CSS 
class for the element that holds the message (these 

can also show the message if it was hidden). 

10. A variable called charMsg is created to store the 
message that will be shown to the user. 

11. The message is added to the page. 

@ FORM ENHANCEMENT & VALIDATION 

Create variables: 8 bio: <textarea> element for bio 
bioCount: element to show characters left 

+ 
I 

C) Event: focus & input on b lo <textarea> 

e 
f) 

0 

I 

FUNCTION: updateCounter () 
Updates the count and/or message 

Get target of event (<textarea>) 

I 
Create variable: count: result of 
calculation (140 minus the length of 
content In <textarea>) 

"' I 

' lscount<O? ' L Add<lm••L 

' 
Is count<= 15? 

' I I 
Ad~ class: good Add class: warn 

\..._ ____ ______ ) 
y 

Create variable: charMsg: message 
containing number of characters left 

"' I 

Write message to screen 

Event: b 1 ur on blo <text area> 
I 

ANONYMOUS FUNCTION: 
Hides the counter 

Is count<= 140? 

' I Hide the counter 



CHARACTER COUNTER 

""·'·'' cl3/textarea-counter. html 

<label for="bio">Short Bio {up to 140 characters) <l label> 
<textarea name="bio" id="bio" rows="S" col s="30"><1textarea> 
<span id="bio-count" class="hide"><l span> 

<script src="jslutilities . js"><l scri pt > 
<script src="jsltextarea-counter .js"><l scri pt> 

JAVASCRIPT cl3/js/textarea-counter.js 

CD (fu nction () { 
~ var bio document.getElementByid('bio'); 
~ var bioCount document.getElementByid('bio-count'); 

II <textarea> element 
II Character count el 

r:;J addEvent(bio, 'focus', updateCounter); 
~ addEvent(bio, 'input', updateCounter); 

© 
(J) 
® 

9 

@) 
® 

addEvent(bio, 'blur', function() { 
i f (bio.value.length <= 140) { 

bioCount.className = 'hide'; 
} 

}) ; 

funct ion updateCounter(e) { 
var target = e.target I I e.srcElement; 
var count = 140 - target .value.length; 
if (count< O) { 

bioCount.className = 'error'; 
else if (count <= 15) { 
bioCount.class Name = 'warn'; 
else { 
bioCount .class Name = 'good '; 

var charMsg = '<b>' + count + '<lb>' + ' 
bioCount.innerHTML = charMsg; 

} ()); 

II Call updateCounter() on focus 
II Call updateCounter() on input 

II On leaving the element 
II If bio is not too long 
II Hide the counter 

II Get the target of the event 
II How many characters are left 
II If less than 0 chars free 
II Add class of error 
II If less than 15 chars free 
II Add class of warn 
II Otherwise 
II Add class of good 

characters'; II Message to displ ay 
II Update the counter element 

FORM ENHANCEMENT & VALIDATION s 



HTML5 ELEMENTS 
& ATTRIBUTES 

HTMLS adds form elements and attributes to perform tasks that had 

previously been performed by JavaScript. However, their appearance can 

vary a lot between different browsers (especially their error messages). 

SEARCH 

<input type="search " 

placehol der="Search ... " 
autofocus> 

SAFARI 

( she-epdog 

FIREFOX 

I sheepdog 

CHROME 

r sheepdog 

Safari rounds the corners of 

its search inputs to match the 

user interface of the operating 
system. W hen you enter text, 

Safari shows a cross icon which, 

when clicked or tapped, allows 
the user to clear the text from 

the field. Other browsers show 
an input like any other text input. 

EMAIL, URL, PHONE 

<input type="email "> 

<input type="url "> 

<input type="telephone"> 

SAFARI 

J hello@javascriptbook.com J 

FIREFOX 

I hello@javascriptbook.com 

CHROME 

I hello@javascri ptbook. J 

Email, URL, and phone inputs all 

look like text input fields, but the 

browser performs checks on the 
data entered into these inputs 

to see if it is in the right format 
to be an email address, URL, or 
phone number, then sl;iows a 

message if it is not. 

s FORM ENHANCEMENT & VALIDATION 

NUMBER 

<input type="number" 

min="O" 

max="lO" 

step="2" 
va l ue="6"> 

SAFARI 

FIREFOX 

CHROME 

16 

Number inputs sometimes add 

arrows to increase or decrease 
the number specified (also 

known as spinboxes). You 
can specify a minimum and 
a maximum value, a step (or 

increment), and an initial value. 

The browser checks that the 
user entered a number, and 

shows a message if a number 

was not entered. 



ATTRIBUTE DESCRIPTION 

autofocus Gives focus to this element when the page is loaded 

p 1aceho1 der Content of this att ribute is shown in the <input > element as a hint (see p594) 

required Checks that the fie ld has a value - could be text entered or an option selected (see p606) 

min Minimum permitted number 

max Maximum permitted number 

step Intervals by which numbers should increase or decrease 

value Default value for a number when the control fi rst loads on the page 

autocomp l ete On by default: shows list of past entries (disable for credit card numbers I sensit ive data) 

pattern Lets you to specify a regular expression to validate a value (see p612) 

novalidate Used on the <form> element to disable the HTMLS built-in form validation (see p604) 

RANGE 

<input type="range" 
min="O" 

max=" l O" 

step="2" 
value="6"> 

SAFA RI 

-0-

FI REFOX 

-----. 

CHROME 

===~o)!::· = =:) 

The range input offers another 

way to specify a number - this 

time the control shows a slider. 
As with the spinbox, you can 

specify a minimum and a 
maximum value, a step, and an 

initial value. 

COLOR PICKER 

<input type="color"> 

CHROME 

At the time of writ ing, Chrome 

and Opera are the only browsers 
to implement a color input. It 

allows users to specify a color. 
When they click on the control, 
the browser will usually show the 

operating system's default color 

picker (except for Linux, which 
offers a more basic palette). It 

inserts a hex color value based 

on the user's selection. 

DATE 

<input type="date "> (bel ow) 

<input type="month"> 

<i nput type="week "> 
<input type="time"> 

<i nput type="datetime"> 

CHROME 

11'/ 0412015 o~ · I 
April 2015 . n~GJ 
Mon Tue Wed Thu Fri Sat Sun 

~n l l 2 3 4 

6 7 8 9 10 ll 12 
l3 l4 15 16 17 18 19 

20 21 22 23 24 25 26 

I_ 
27 28 29 30 

There are several different date 

inputs available. At the time of 
writing, Chrome was the only 

browser to have implemented a 
date picker. 

FORM ENHANCEMENT & VALIDATION @ . 



SUPPORT & STYLING 

HTMLS form elements are not supported in all browsers and, when they 
are, the inputs and error messages can look very different. 

DESKTOP BROWSERS 

At the t ime of writing, many developers were st ill 

using JavaScript instead of these new HTMLS 

features because: 

• Older browsers do not support the new input 

types (they just show a text box in their place). 

• Different browsers present the elements and 

their error messages in very different ways 

(and designers often want to give users a 

consistent experience across browsers). 

Below, you can see how the error messages look 

very different in two of the main browsers. 

MOBILE 

On mobile devices the situation is very different, as 

most modern mobile browsers: 

• Support the main HTMLS elements 

• Show a keyboard that's adapted to the type: 

emai 1 brings up a keyboard w ith the @ sign 

number type brings up a number keyboard 

• Give helpful versions of the date picker 

Therefore, in mobile browsers, the new HTMLS 

types and elements make forms more accessible 

and usable for your visitors. 

ERROR MESSAGE FOR AN EMAIL INPUT IN CHROME: DATE INPUT IN IOS: 

javascriptbook.com C 

I D Please enter an email address. 
1 .......... Q 

ERROR MESSAGE FOR AN EMAIL INPUT IN FIREFOX: 
< > Clear Done 

hello 
20 November 2013 

21 December 2014 

Please enter an email address. 22 January 2015 
23 February 2016 
24 March 2017 

8 FORM ENHANCEMENT & VALIDATION 



CURRENT APPROACHES 

Until more visitors' browsers support these new features, and do so in a 
consistent way, developers will think carefully about how they use them. 

POLYFILLS 

A polyfill is a script that provides 

functionality you may expect a 
browser to support by default. 

For example, because older 

browsers do not support the new 
HTMLS elements, polyfi lls can 

be used to implement a similar 
experience I functionality in 
those older browsers. Typically 

this is achieved using JavaScript 
or a jQuery plugin. 

Polyfills often come with CSS 
files that are used to style the 

functionality the script adds. 

You can find a list of polyfills for 
various features here: 

http://html5please.com 

There is an example of how to 
use a polyfill on p594, where 

you see how to get the HTMLS 

p 1aceho1 der attribute to show 
up in older browsers. 

FEATURE DETECTION 

Feature detection means 
checking whether a browser 

supports a feature or not. 

You can then decide what to do if 
a feature is, or is not, supported. 

On p415 you learned about 
a script called moderni zr .js, 

which tests for browser features. 

Commonly, if a feature is not 
supported, a polyfill script wil l be 

loaded to emulate that featl.Jre. 

To save loading the polyfill script 
into browsers that do not need it, 

Modernizr includes a conditional 
loader; it w ill only load a script if 
the test indicates that the script 

is needed. 

Another popular conditional 

loader is Re qui re. j s (available 

from http: //requi rej s. org), 
but it is a bit more complex when 

you are first starting out because 
it offers many other features. 

CONSISTENCY 

Many designers and developers 

want to control the appearance 
of form controls and error 

messages to give a consistent 
experience across all browsers. 

(Consistency in error messages 

is considered important 
because different styles of error 

messages can confuse users.) 

Therefore, the long example 

used at the end of this chapter 

wil l disable HTMLS validation 

and try to use JavaScript 
validation as its first choice. 
(HTMLS validation is only 

shown if the user does not have 
JavaScript enabled; it is used as a 

tailback in modern browsers.) 

In that example, you also see 

jQuery UI used to ensure that 

the date picker is consistent 
across all devices, with as little 

code as possible. 

FORM ENHANCEMENT & VALIDATION s · 



PLACEHOLDER FALLBACK 

The HTMLS placehol der attribute lets you put 
words in text inputs (to replace labels or to add hints 
about what to enter). When the input gains focus 

and the user starts typing, the text disappears. But 

it only works in modern browsers, so this script 
ensures that the user sees placeholder text in older 

browsers too. It is a basic example of a polyfil l. 

1. Place the script in an llFE (not shown in flowchart). 

2. Check if the browser supports the HTMLS 

pl aceho 1 der attribute. If it does, t here is no need for 
the fa llback. Use return to exit the function. 
3. Find out how many forms are on the page using 

the length property of the forms collection. 
4. Loop through each <form> element on the page 

and call show Placeholder () for each one, passing it 

the collection of elements in that form. 
5. The showPl ace hol der() function is declared. 

6. A for loop runs through elements in the collection. 
7. An if statement checks each element to see if the 

element has a placeholder attribute with a value. 
8. If there is no placeholder attribute, continue 

tells it to go on to the next element. Otherwise, it: 

9. Changes the text color to gray, and sets the value 
of the element to be the placeholder text. 

10. An event listener triggers an anonymous 

function when the element gains focus. 
11. If the current value of the element matches the 

placeholder text, the value is cleared (and color 
changed to black). 

12. An event listener triggers an anonymous function 
when the element loses focus. 

13. If the input is empty, the placeholder text is 

added back in (and its color changed to gray). 

8 FORM ENHANCEMENT & VALIDATION 

0 

' I 
Is p 1aceho1 der 

supported? ' Create variable: 1 ength: number of forms 

+ 

t 
1 

Call function: showPl aceho l der{) 

~ GOTONEXTFORM ------

e 

• 
0 

0 

0 

FUNCTION: showPl ace holder() 
add placeholder to elements without one 

Create variable: el: current element 

+ I 

Does it use ft 
placeholder? T 

I 
Set color to gray 

I 
Set placehold er text 

Event: focus on t h is element 

ANONYMOUS FUNCTION: 

If p laceholder text is in the 
input, empty it & make text 
black 

Event: b 1 ur on t h is elem ent 

I 

ANONYMOUS FUNCTION: 

If the input is empty, show the 
placeholder text in gray 

+ 
I 

"----- GO TO NEXT ELEMENT ----



PLACEHOLDER POLYFILL 

JAVASCRIPT c13/js/pl acehol der-polyfi l l . js 

G) (function() { //Pl ace code in an IIFE 
// Test: Creat e an input element, and see if t he placehol der i s supported 

~ if ('placeholder' in document.createElement('input')) { 

® 
® 

0 
® 

return; 

var length = document.forms.length; 
for (var i = 0, l = length; i < l; i++) 

showPl aceholder(document.forms[i] .elements); 

// Get number of forms 
// Loop t hrough each one 
// Call showPl aceholder() 

II Dec l are function function showPlaceholder(elements) { 
for (var i = 0, 1 =elements.length; 

var el = elements[i]; 
< l; i++) { // For each el ement 

// Store that el ement 

} 
} ()); 

if (!el.placeholder) { 
continue; 

el.style.color= 1 #666666 1
; 

el.value= el .placeholder; 

addEvent(el, 'focus', function () { 
if (this.value === this .placeholder) 

this.value= ''; 
this .style.color = '#000000'; 

} 
} ) ; 

addEvent(el, 'blur', function () { 
if (this .val ue === 11

) { 

} 
} ) ; 

this.value = this.placeholder; 
this.style.color= '#666666'; 

/ / If no placehol der set 
II Go to next element 
// Otherwise 
// Set text t o gray 
// Add placeholder t ext 

// If it gains focus 
// If va l ue=pl aceholder 
// Empty text i nput 
// Make t ext bl ack 

// On bl ur event 
// If the input i s empty 
// Make val ue pl acehol der 
// Make t ext gray 

//End of for l oop 
// End showPlacehol der() 

There are a few differences from the HTMLS"s placeholder attribute: e.g., if the user deletes their text, the 

placeholder only returns when the user leaves the input (not immediately - as with some browsers). It wi ll not 

submit text that has the same value as the placeholder."Placeholder values may be saved by autocomplete. 

FORM ENHANCEMENT & VALIDATION 8 A 



POLYFILL USING 
MODERNIZR & YEPNOPE 

You met Modernizr in Chapter 9, here you can see it used with a 
conditional loader so that it only loads a fallback script if one is needed. 

Modernizr lets you test whether or not a browser 
and device support certain features; this is known 

as feature detection. You can then take different 
courses of action depending on whether or not the 

features were supported. For example, if an older 
browser does not support a feature, you might 

decide to use a polyfill. 

Modernizr is sometimes included in the <head> of an 
HTML page when it needs to perform checks before 

the page has loaded (for example, some HTMLS I 
CSS3 polyfills must be loaded before the page). 

MODERNIZR ON ITS OWN 

Each feature you test using Modernizr becomes 
a property of the Moderni zr object. If the feature 
is supported, the property contains true; if not, it 

contains false. You then use the properties of the 

Moder ni zr object in a conditional statement as 

shown below. Here, if Moderni zr's cssanimati ons 

property does not return true the code in the curly 
braces runs. 

if (!Modernizr.cssanimations) 

II CSS animations are not supported 

II Use jQuery animation instead 

8 FORM ENHANCEMENT & VALIDATION 

Rather than loading a polyfill script for everyone who 
visi ts your site (even if they do not need to use it), 

you can use something called a conditional loader, 
which will let you load different files depending on 

whether a condition returns true or false. Modernizr 

is commonly used with a conditional loader called 
YepNope. j s, so polyfills are only loaded if needed. 

Once you have included the Yep Nope script in your 

page, you can call the yepnope() function. It uses 
object literal syntax to indicate a condition to test, 

and then what files to load depending on whether 
the condition returned true or false. 

MODERNIZR + YEPNOPE 

YepNope is passed an object literal, which usually 
contains a minimum of three properties: 

• test is the a condit ion being checked. 
Here Modernizr is used to check if 

cssanimati ons are supported. 

• yep is the file to load if the condition returns true. 

• nope is the file to load if the condition returns 
false (here it loads two files using array syntax). 

yepnope({ 

test: Modernizr.cssanimations, 

yep: 'cssl animations.css', 
nope: ('jsl jquery.js' , 'jsl animate.js'] 

} ) ; . 



CONDITIONAL LOADING 
OF A POLYFILL 

""Ml' c13/ number-pol yfi l l . html 

<head> 

<script src =" js/ moderni zr.js"></script> 
<script src="js/yepnope .js"></script> 
<script src="js/number-polyfil l -eg.js"></script> 

</head> 
<body> 

<label for="age">Enter your age:</label> 
<input type="number" id="age" /> 

</body> 

JAVASCRI PT c13/ js/ number-polyfi l l-eg.js 

yepnope({ 
test: Modernizr. i nputtypes.number, 
nope: ['js/numPolyfill .js ' , ' css/number.css'], 
compl ete: function() { 

} 
} ) ; 

l:IJiQil 

consol e .l og( ' YepNope + Modernizr are done'); 

This example tests if the browser 

supports the <input> element 
using a type attribute with a 

value of number. Both Modernizr 
and YepNope are included in the 

<head> of the page so that the 
fal lback is shown correctly. 

The yepnope () function takes an 

object literal as a parameter. It's 
properties include: 

• test: the feature you are 
checking fo r. In this case it 

is checking Modernizr to 

see if the number input is 
supported. 

• yep: not used in this example 
can load files if the feature is 
supported. 

• nope: what to do if feature is 
not supported (you can load 

multiple fi les in an array). 

• comp 1 ete: can run a function 

when the checks are 
complete, and any necessary 

files have loaded. Here it adds 
a message to the console to 
demonstrate how it works. 

Note that Modernizr stores the 
value of the <input> element 's 

type attribute, in a child object 

called i nputtypes. E.g., to check 
if the HTMLS date selector is 
supported, you use: 

Modernizr.inputtypes.date 
(not Moderni zr. date). 

FORM ENHANCEMENT & VALIDATION 0 



FORM VALIDATION 

The final section of this chapter uses one big script to discuss the topic of 

form validation. It helps users give you responses in the format you need. 

(The example also has some form enhancements, too.) 

Validation is the process of checking whether a value 

meets certain rules (for example, that a password 

has a minimum number of characters). It lets you 

tell users if there is a problem with the values they 

entered so that they can correct the form before 

they resubmit it. This has three key advantages: 

• You are more likely to get the information you 

need in a format you can use. 

• It is faster to check values in the browser than it 

is to send data to the server to be checked . 

• It saves resources on the server. 

s FORM ENHANCEMENT & VALIDATION 

In this section you see how to check the values a 

user enters into a form. These checks happen when 

the form is submitted. To do this users could press 

submit or use the Enter on the keyboard, so the 

validation process wi ll be tr iggered by the submi t 
event (not the c 1 i ck event of a submit but ton). 

W e will look at val idation using one long example. 

You can see the form below, and the HTML is shown 

on the right. It uses HTMLS form controls, but the 

validation is going to be done using JavaScript to 

make sure that the experience is consistent across 

all browsers (ev.en if they do support HTMLS). 



FORM HTML 
This example uses HTMLS markup, but validation is 
performed using JavaScript (not HTMLS validation). 

Due to limited space, the code below only shows the 
form inputs (not the markup for the columns). 

""*'' 
<form method="post" action="/register"> 

<!- - Column 1 --> 
<div class="name"> 

<label for="name" class="required">Name: </label> 

cl3/va11dation.html 

<input type="text" placeholder="Enter your name" name="name" id="name" 
required title="Please enter your name"> 

</div> 
<div class="email"> 

<label for="email" class="required">Email: </label> 
<input type="email" placeholder="you@example.com" name="email " id="emai l " 

required> 
</div> 
<div class="password"> 

<label for="password" class="required">Password :</label> 
<input type="password" name="password" id="password" required> 

</div> 
<div class="password"> 

<label for="conf-password" class="required">Confirm password:</label> 
<input type="password" name="conf-password" id="conf-password" required> 

</div> 
<!-- Column 2 --> 
<div class="birthday"> 

<label for="birthday" class="required">Birthday:</label> 
<input type="date" name="birthday" id="birthday" placeholder="yyyy-mn-dd" 

required> 
<div id="consent-container" class="hide"> 

<label for="parents-consent"> You need a parent's permission to join . 
Tick here if your child can join:</label> 

<input type="checkbox" narne="parents-consent" id="parents-consent"> 
</div> 

</div> 
<div class="bio"> 

<label for="bio">Short Bio (max 140 characters) :</label> 
<textarea narne="bio" id="bio" rows="S" cols="30"></textarea> 
<span id="bio-count" class="hide">l40</span> 

</div> 
<div class="submit"><input type="submit"></div> 

</form> 

FORM ENHANCEMENT & VALIDATION 8 



VALIDATION OVERVIEW 

This example has over 250 lines of code and will take 22 pages to explain. 

The script starts by looping through each element on the page 
performing two generic checks on every form control. 

GENERIC CHECKS 

First, the code loops through every element in the 
form and performs two types of generic checks. 

They are generic checks because they would work 

on any element, and would work with any form. 
1. Does the element have the requi r ed attribute? 

If so, does it have a value? 
2. Does the value match with the type attribute? 

E.g., Does an email input hold an email address? 

CHECKING EACH ELEMENT 

To work through each element in the form, the 

script makes use the form's e 1 ements col lection 
(which holds a reference to each form control). The 

collection is stored in a variable called e 1 ements. In 

this example, the e l ements collection will hold the 
following form controls. The right-hand column tells 

you which elements are required to have a value: 

INDEX ELEMENT REQUIRED 

0 elements.name Yes 

elements. email Yes 

2 elements.password Yes 

3 elements.conf-password Yes 

4 elements.birthday Yes 

5 elements .parents- consent lfunder13 

6 elements .bio No 

8 FORM ENHANCEMENT & VALIDATION 



Some developers proactively cache form elements in 

variables in case validation fai ls. This is a good idea, 

but to keep this (already very long) example simpler, 

the nodes for the form elements are not cached. 

If you have not already done so, it would be helpful 

to download the code for this example from the 

website, javascriptbook.com, and have it ready when 

you are reading through the following pages. 

Once the generic checks have been performed, the script then makes 

some checks that apply to individual elements on the form. 

Some of these checks apply only to this specific form. 

CUSTOM VALIDATION TASKS 

Next the code performs checks that correspond w ith 

specific elements in the form (not all elements): 

• Do the passwords match? 

• Is the bio in the textarea under 140 characters? 

• If the user is less than 13 years old, is the parental 

consent checkbox selected? 

These checks are specific to this form and only apply 

to selected elements in the form (not all of them). 

TRACKING VALID ELEMENTS 

To keep track of errors, an object called va 1 id is 

created.- As the code loops through each element 

performing the generic checks, a property is added 

to the va 1 id object for each element: 

• The property name is the value of its id attribute. 

• The value is a Boolean. Whenever an error is 

found on an element, this value is set to fa 1 se. 

PROPERTIES OF THE VALID OBJECT 

val id.name 

valid.email 

valid . passwor d 

valid.cont-password 

valid .birthday 

valid.parents-consent 

valid .bio 

FORM ENHANCEMENT & VALIDATION 8 



DEALING WITH ERRORS 

If there are errors, the script needs to prevent the form being submitted 
and tell the user what they need to do in order to correct their answers. 

As the script checks each element, if an error is 
found, two things happen: 

• The corresponding property of the valid object 
is updated to indicate the content is not valid. 

• A function called setErrorMessage () is called. 

This function uses jQuery's • data() method, 
which allows you to store data with the element. 

So the error message is stored in memory along 
with the form element that has the problem. 

After each element has been checked, then error 
messages can be shown using showErrorMessage(). 

It retrieves the error message and puts it in a <span> 
element, which is added after the form control. 

form 

Each time the user tries to submit the form, if an 
error was not found on an element it is important 

to remove any error messages from that element. 
Consider the following scenario: 

a) A user filled out a form with more than one error. 

b) This triggered multiple error messages. 
c) The user fixes one problem, so its corresponding 

message must be removed, while error message(s) 
for problems that have not been fixed must remain 
visible. 

Therefore, when each of the elements is looped 

through, either an error message is set, or the error 

message is removed. 

I 

elements 

email password conf-password 
I 

key/value 

Above you can see a representation of the form and 
its elements collection. There was a problem with 

the email input, so the . data() method has stored a 

key/value pair with that element. 

8 FORM ENHANCEMENT & VALIDATION 

birthday parents-consent 

This is how the setErrorMessage() function will 
store the error messages to show to the user. 

If the error is fixed, then the error value is cleared 

(and the element with the error message removed). 



SUBM ITTING THE FORM 

Before sending the form, the script checks whether there were any errors. 
If there were, the script stops the file from being submitted. 

In order to check whether any errors were found, a 
variable cal led i sFormVa lid is created and is given 

a value of true. The script then loops through each 
property of the valid object, and if there was an 
error (if any property of that object has a value of 

false), then there is an error in the form and the 

isFormValid variable is also set to false. 

So, i sFormVa lid is being used as a flag (you can 
think of it being like a master switch) if an error is 
found, it is turned off. At the end of the script, if 

is FormV a 1 i d is fa 1 se then an error must have been 
found and the form should not be submitted (using 

the pr eventOefau 1t () method). 

It is important to check and process all of the 

elements before deciding whether to submit the 
form so that you can show all of the relevant error 

messages in one go. 

If every value has been checked, the user can be 

shown all of the things they have to amend before 
re-submitting the form. 

If the form only showed the first error it came 
across, and stopped, the user would only see one 

error each time they submitted the form. This could 

soon become frustrating for the user if they were to 
keep trying to submit the form and see new errors . 

....... ·· 
~~~ ............. ···" PROPERTIES OF val id OBJECT 

Create variable: i sFonnVa lid 

+ 

T ' Is value fa l se? ' 

~ GOTONEXTPROPERTY -+-----

·· .... 

Set isFonnValid to false 

Prevent default action of form submitting 

·. ·· ... 
·· ... 

··. 

······· ............. . 

valid.name true 

valid.email true 

valid.password true 

valid.conf-password true 

valid.birthday false 

valid .parents-consent false 

valid.bio true 

The loop stops when the first error is found. 

(Note that error messages are already visible.) 

FORM ENHANCEMENT & VALIDATION @ 



CODE OVERVIEW 

On the right is an outline of the validation code, spl it into four sections. 
On line 3, an anonymous function is called when the form is submitted. 
It orchestrates the validation, in turn calling other functions (not all of 
which are shown on the right-hand page, see fu rther pages for more). 

A: SET UP THE SCRIPT 

1. The code lives inside an llFE (creat ing function­

level scope). 
2. This script uses JavaScript validation to ensure 

that error messages look the same on all browsers, 
so HTMLS validat ion is turned off by set ting the 

no Va 1 i date property of the form to true. 
3. When the user submits the form, an anonymous 
function is run (this contains the validation code). 

4. e 1 ements holds a collection of all form elements. 

5. va 1 id is the object that keeps track of whether or 

not each form control is valid. Each form control is 
added as a property of the valid object. 
6. i s Valid is a flag that is re-used to check whether 

individual elements are valid. 
7. i sFonnVa lid is a flag that is used as a master 
switch to check whether the entire form is valid. 

C: PERFORM CUSTOM VALIDATION 

14. After the code has looped through every element 

on the form, the custom validat ion can occur. There 
are three types of custom validat ion occurring (each 

one uses its own function): 

i) Is the bio too long? See p61 5. 

ii) Do passwords match? 
iii) ls user old enough to join on own? If not, is the 

parental approval checkbox selected? See p617. 
15. If an element fails one of the custom validation 

checks, showErrorMessage() will be called, and the 
corresponding property in the valid object will be 

set to fal se. 

16. If the element passes the check, 
r emoveErrorMessage () is called for that element. 

8 FORM ENHANCEMENT & VALIDATION 

B: PERFORM GENERIC CHECKS 

8. The code loops through each form control. 
9. It performs two generic checks on each one: 
i) Is the element required? If so, does it have a 

value? Uses va 1 i dateRequi red() . See p606. 
ii) Does the value correspond with the type of data it 

should hold? Uses validate Types() . See p610. 
If either of these functions does not return t r ue, 

then is Val id is set to f alse. 
10. An if • • • e 1 se statement checks if that element 

passed the tests (by checking if is Val id is false). 

11. If the control is not valid, showErrorMessage () 
shows an error message to the user. See p609. 
12. If it is valid, r emoveErrorMessage() removes any 

errors associated with that element. 

13. The value of the element's id att ribute is added 
as a property val i d object; it s value is whether or 

not the element was valid. 

D: DID THE FORM PASS VALIDATION? 

The val id object now has a property for each 
element, and the value of that property states 

whether or not the element was valid or not. 
17. The code loops through each property in the 

va 1 id object. 

18. An i f statement checks to see if the element 
was not valid. 

19. If it was not valid, set i sFormVa lid to false and 
stop the loop. 

20. Otherwise, is FormVa l i d is set to true. 
21. Finally, having looped through the valid object, 

if i sFormVa l id is not true, the preventDefault () 

met~od prevents the form being submitted. 
Otherwise, it is sent. 



JAVASCRIPT c13/js/validation.js 

II SET UP THE SCRIPT 
G) (function () { 
~ document. forms. register .noVal idat e = true; 
@ $( ' form ') .on( 'submit' , function(e) { 

II Disable HTML5 validation 
II When form is submitted 

© 
® 
© 
0 

@ 

® 
@) 
® 

@ 

@ 

@ 

@{ 

® 
@ 

® 

var elements = t his .element s; 
var va l id ={} ; 

II Collection of form controls 
II Custom valid object 

var i sVal i d; II isValid : checks form controls 
II isFormValid : checks entire form var i sFormValid ; 

II PERFORM GENERIC CHECKS (calls funct i ons outside the event handler) 
for (var i = 0, l = (elements. lengt h - l) ; i < l ; i++) { 

II Next line calls validateRequired() see p606 & validateTypes() p610 
isValid = validateRequi red (el ements[i]) && val idateTypes(elements[i]); 
i f ( !i sValid) { II If it does not pass these two tests 

showErrorMessage (el ements[i]); II Show error messages (see p608) 
else { II Otherwise 
removeErrorMessage (el ements[i]); II Remove error messages 

} II End if statement 
val id[elements[i] . id] = isVali d; II Add element to the valid object 

II End for loop 

II PERFORM CUSTOM VALIDATION (just 1 of 3 functions - see p614-p617) 
if (!validateBio()) { II Call validateBio(), if not valid 

showEr rorMessage(document.getEl ementBy ld( 'bi o' )); II Show error 
valid. bio = false ; II Update valid object-not valid 
el se { II Otherwise 
removeErrorMessage (document.getElement By ld('b io')); II Remove error 
II two more functions follow here (see p614-p617) 

II DID IT PASS I CAN IT SUBMIT THE FORM? 
II Loop through va l i d object, if there are errors set isFormVal i d to false 
for (var fie ld in valid) { II Check properties of the va li d obj ect 

} 

if (!valid[field]) { II If it is not valid 
i sFormVal i d = false ; II Set isFormValid variable to false 
break; II Stop the for loop, error was found 

II Otherwise 
isFormValid = true; II The form is valid and OK to submit 

II If the form did not 
if (!i sFormValid) { 

validate, prevent it being submitted 
II If isFormValid is not true 

} 
} ) ; 

} ()) ; 

e.preventDefault() ; II Prevent the form being submitted 

II End event handler 
II Functions called above are here 
JI End of IIFE 

FORM ENHANCEMENT & VALIDATION 9 



REQUIRED FORM 
ELEMENTS 

The HTMLS required attribute indicates a field must have a value. 
Our val i dateRequi red () function will first check for the attribute. 

If present, it then checks whether or not it has a value . 

val i dateRequi red () is cal led for 

each element individually (see 
step 9, p605). Its one parameter 

is the element it is checking. 

function validateRequired(el) 

if (isRequired(el)) { 
var valid = !isEmpty(el); 
if (!val id) { 

In turn, it calls upon three other 

named functions. 
i) i sRequ ired() checks for the 
required attribute. 

ii) i sEmpty() can check if the 
element has a value. 
iii) setErrorMessage() sets error 

messages if there are problems. 

// Is this element required 

setErrorMessage(el, 'Field is required'); 

// Is value not empty (true/false) 
// If val id variable holds false 

//Set the error message 

return valid; //Return valid variable (true/false) 

return true; // If not required, all is okay 

A: DOES IT HAVE A B: IF SO, DOES IT HAVE C: SHOULD AN ERROR 
REQUIRED ATTRIBUTE? A VALUE? MESSAGE BE SET? 

1. An if statement uses a If the field is required, the next 3. An i f statement checks if the 
function called i sRequi red() step is to check whether or not va 1 id variable is not true. 
to check whether the element it has a value. This is done using 
carries the required attribute. a function cal led i sEmpty (),also 4. If it is not true, an error 
You can see the i sRequi red() shown on the right-hand page. message is set using the 
function on the right-hand page. setErrorMessage () function, 
If the attribute is present, the 2. The result from is Empty() is which you meet on p608. 
subsequent code block is run. stored in a variable called va 1 id. 

If it is not empty, the valid 5. The va 1 id variable is returned 
6. If not, the code skips to step to variable will hold a value of true. on the next line, and that is 
step 6 to say this element is OK. If it is empty, it holds false. where this function ends. 

e FORM ENHANCEMENT & VALIDATION 



va 1 i dateRequi red() uses two functions to perform checks: 
1: i sRequi red() checks whether the element has a required attribute. 

2: i sEmpty () checks whether the element has a value. 

i sRequ i red() 

The i sRequ ired() function 

takes an element as a parameter 
and checks if the required 

attribute is present on that 
element. It returns a Boolean. 

function i sRequired(el) { 

There are two types of check: 

The first, in blue, is for browsers 
that support the HTMLS 

required attribute. The one in 
orange is for older browsers. 

return ( (typeof el .required === ' boolean') && el . requ ired ) I I 
(typeof el .required === 'string') ; 

MODERN BROWSERS 

Modern browsers know the 
required property is a Boolean, 

so the fi rst part of this check 
tells us if it is a modern browser. 
The second part checks if it is 

present on this element. 
If the attribute is present, it will 

evaluate to true. If not, it returns 
undefined, which is considered 

a falsy value. 

i sEmpty() 

The i sEmpty() function (below) 

takes an element as a parameter 
and checks to see if it has a 

value. As with i sRequi red(), 
two checks are used to handle 

both new and older browsers. 

function isEmpty(el) { 

OLDER BROWSERS 

Browsers that do not know 

HTMLS can still tell whether 

or not an HTMLS attribute 
is present on an element. In 
those browsers, if the requi red 

attribute is present, it gets 
treated as a string, so the 

condition would evaluate t9 

true. If not, the type would be 
undefined, which is falsy. 

ALL BROWSERS 

The first check looks to see if the 
element does not have a value. 

If it has a value, the function 
should return fa 1 se. If it is 

empty, it will return true. 

return !el.val ue I I el . value === el . placeholder ; 

To check if the required 

attribute is present, the typeof 
operator is used. It checks what 
datatype the browser thinks the 

required attribute is. 

WHAT IS VALIDATED 

It is important to note that the 

required attribute only indicates 
that a value is required. It doesn't 

stipulate how long the value 
should be, nor does it perform 

any other kind of validation. 
Specific checks, such as these, 
would have to be added in the 

va 1 i date Types() function or 

the script's custom validation 

section. 

OLDER BROWSERS 

If older browsers use a polyfill 

for placeholder text, the value 
would be the same as the 
placeholder, so it is considered 

empty if those values match. 

FORM ENHANCEMENT & VALIDATION 8 



CREATING ERROR 
MESSAGES 

The validation code processes elements one by one; 

any error messages are stored using jQuery's • data() method. 

HOW ERRORS ARE SET 

Throughout the validation code, whenever an 
error is found, you will see calls to a function called 
setErrorMessage(), which takes two parameters: 

i) e 1: the element that the error message is for 

ii) message: the text the error message will display 

For example, the following would add the message 
'Fie 1 d is required' to the element that is stored in 

the el variable: 

setErrorMessage(el, 'Field is required'); 

set ErrorMessage() 

function setErrorMessage(el, message) { 

$(el ) .data('errorMessage', message); 

8 FORM ENHANCEMENT & VALIDATION 

HOW DATA IS STORED WITH NODES 

Each error message is going to be stored with the 
element node that it relates to using the jQuery 

.data() method. When you have elements in a 
jQuery matched set, the .data() method allows 

you to store information in key/value pairs for each 

individual element. 

The . data() method has two parameters: 

i) The key, which is always going to be errorMessage 
ii) The value, which is the text that the error 

message will display 

II Store error message with element 



DISPLAYING ERROR 
MESSAGES 

After each element has been checked, if one or more were not valid, 

showErrorMessage () will display the error messages on the page. 

HOW ERRORS ARE DISPLAYED 

If an error message needs to be shown, first a 
<span> e lement will be added to the page directly 
after the form field with the error. 

Next, the message is added into the <span> element. 
To get the text for the error message, the same 
jQuery . data() method that set the message is 
used again. This t ime, it only takes one parameter: 
the key (which is always errorMessage). 

This al l happens within the function called 
showErrorMessage() which is shown below. 

showErrorMessage() 

fu nct i on showErrorMessage(el) 
var $el = $(el ) ; 
var $errorContainer = $el .sibl i ngs( ' . er ror'); 

1. $el holds a jQuery selection containing the 
element that the error message relates to. 
2. $errorConta i ner looks for any existing errors 
on this element by checking if it has any sibling 
elements that have a class of error. 
3. If the element does not have an error message 
associated with it, the code in the curly braces runs. 
4 . $errorContai ner is set to hold a <span> element. 
Then . i nsertA fter () adds the <span> element into 
the page after the element causing the error. 
5. The content of the <span> element is populated 
with the error message fo r that element, which is 
retrieved using the .data() method of the element. 

II Fi nd e l ement with the error 
II Does i t have err or s already 

if (! $errorContainer. l ength) { II If no errors found 
II Creat e a <span> to hold t he error and add it after the element with the err or 
$errorContainer = $( ' <span class="error"><ls pan>') . insertAfter($el ); 

$errorConta i ner . text($(el) . dat a( ' errorMessage ' )); II Add error message 

FORM ENHANCEMENT & VALIDATION @ . 



VALIDATING DIFFERENT 
TYPES OF INPUT 

HTMLS's new types of input come with built-in validation. 
This example uses HTMLS inputs, but validates them with JavaScript 
to ensure that the experience is consistent across all browsers. 

The va 1 i date Types() function 
is going to perform the validation 

just like modern browsers do 
with HTMLS elements, but it will 

do it for all browsers. It needs to: 

• Check what type of data the 
form element should hold 

• Ensure the contents of the 
element matches that type 

function validateTypes(el) { 

if (!el.value) return true; 

1. The first line in the function 
checks if the element has 

a value. If the user has not 
entered any information, you 

cannot validate the type of data. 

Furthermore, it is not the wrong 
type of data. So, if there is no 
value, the function returns true 
(and the rest of the function 
does not need to run). 

2. If there is a value, a variable 
called type is created to hold the 

value of the type attribute. First, 
the code checks to see if jQuery 

stored info about the type using 

its .data() method (see why on 
p618). If not, it gets the value 

of the type attribute. 

var type= $(el) .data( ' type') II 
if (typeof validateType[type] 

return validateType[type](el); 

else { 

II If element has no value, return true 

II Otherwise get the value from .data() 
el.getAttribute('type'); II or get the type of input 

'function ' ) { II Is type a method of validate object? 

II If yes, check i f the value validates 

11 If not 
return true; 

The getAttri bute() method 

is used rather than the DOM 
property for type because all 
browsers can return the value 

of the type attribute, whereas 
browsers that don·t recognize 

a new HTMLS DOM property 

types would just return text. 

II Return true as it cannot be tested 

3. This function uses an object 
called val idateType (shown 

on the next page) to check the 
content of the element. The 

if statement checks if the 
va 1 i date Type object has a 

method whose name matches 

the value of the type attribute. 

If it has a method name that 
matches the type of form control: 

4. The element is passed to the 
object; it returns true or fa 1 se. 

5. If there is no matching 
method, the object is not able to 

val idate the form control and no 

error message should be set. 

8 FORM ENHANCEMENT & VALIDATION 



CREATING AN OBJECT TO 
VALIDATE DATA TYPES 

The validate Type object 

(outlined below) has three 
methods: 

var validateType = { 
email: function(el) 

II Check email address 
}, 
number: function(el) { 

II Check it is a number 
}, 

date: function(el) { 

II Check date format 
} 

The code inside each method 

is virtually identical. You can 
see the format of the ema i l () 

method below. Each method 
validates the data using 

something called a regular 
expression. The regular 

expression is the only thing that 
changes in each method to test 

the different data types. 

Regular expressions allow you 
to check for patterns in strings, 

and here they are used with a 
method called test () . 

You can learn more about 
regular expressions and their 

syntax on the next two pages. 
For now, you just need to know 

that they are used to check the 
data contains a specific pattern 

of characters. 

Storing these checks as methods 
of an object makes it easy to 

access each of the the different 
checks when it comes time to 

validate the different types of 

input in a form. 

/[A@J+@[A@]+/ .test(el . value); 
.__ __ _,CD II @t----~ 

i) The regular expression is 
["@] +@["@]+(it is between the 

I and I characters). It states a 
pattern of characters that are 

found in a typical email address. 

email: function (el) { 

ii) The test () method takes one 
parameter (a string), and checks 

whether t he regular expression 
can be found within the string. 

It returns a Boolean. 

iii) In this example, the test() 

method is passed the value of 
the element you want to check. 

Below you can see the method to 
test email addresses. 

II Create email method 
var val id= l["©]+@["@]+l.test(el.value); 

if (!valid) { 
II Store result of test in valid 

II If the value of valid is not true 
II Set error message setErrorMessage(el, 'Please enter a valid emai l '); 

return valid; 
}, 

1. A variable called valid holds 

the result of the test using the 
regular expression. 

II Return the valid variable 

2. If the string does not contain a 

match for the regular expression, 

3. an error message is set. 

4. The function returns the value 

of the valid variable (which is 

true or false). 

FORM ENHANCEMENT & VALIDATION e · 



REGULAR EXPRESSIONS 

Regular expressions search for characters that 
form a pattern. They can also replace those 
characters with new ones. 

Regular expressions do not just 
search for matching letters; 
they can check for sequences 

of upper/lowercase characters, 
numbers, punctuation, and 

other symbols. 

• [ J 

The idea is similar to the 
functionality of find and replace 

features in text editors, but it 
makes it possible to create far 

more complicated searches for 
combinations of characters . 

[A J 
any single single character single character 

Below you can see the building 
blocks of regular expressions. 

On the right-hand page, you can 
see some examples of how they 

are combined to create powerful 

pattern-matching tools. 

$ 
the starting the ending position 

character (except contained within not contained position in any line in any line 
newline) brackets within brackets 

( ) \n {m,n} \d 
sub expressions preceding element nth marked preceding element digit 

(sometimes called zero or more times subexpression at least m, but no 

a block or capturing (n is digit 1-9) more than n, times 
group) 

\D \s \S \w \W . 
non-digit character whitespace anything but alphanumeric non-alphanumeric 

character whitespace character character 
(A-Z, a-z, 0-9) (except_) 

612 FORM ENHANCEMENT & VALIDATION 





CUSTOM VALIDATION 

The final part of the script performs three checks that apply to individual 

form elements; each check lives in a named function. 

On the next pages, you will see 

these three functions. Each is 

called in the same manner as 

the va 1 i dateBi o() function 

shown below. (The full code that 

cal ls them is available from the 

website, along with the code for 

all examples from the book.) 

FUNCTION PURPOSE 

va l idateBio() Check bio is 140 characters or less 

validatePassword() Check password is at least 8 characters 

va 1 i datePa rentsConsent () If user is under 13, test if parental consent 

box is checked 

Each of these functions will return a value of true or fa 1 se. 

1 if (!val i dateBio()) { 

showErrorMessage(document.getElementByld( ' bio')); 

va l id .bio = f alse ; 

II Call validateBio(), if not valid 

II Show error message 

II Update valid object - not valid 

II Otherwise remove error message else { 

removeErrorMessage(document .getElementByld('bio')); 

1. The function is called as a 

condition in an if. . . e 1 se 

statement. This was shown in 

steps 14-16 on p605. 

2. If the function returns fa 1 se, 

an error message is shown and 

the corresponding property of 

the va 1 id object is set to fa 1 se. 

3. If the function returns true, 

the error message is removed 
from the corresponding element. 

8 FORM ENHANCEMENT & VALIDATION 

0 

Call function, 
does it return 

true? ' I• Call function: 
showErrorMessage() 
& set corresponding 

property of val id 
object 

Call function: 
removeErrorMessage() 

-
' 

-. 

: 

..: 

' . 



The val i dateBi o () function: 
1. Stores the form element 
containing the user's biography 
in a variable called bi o. 

JAVASCRIPT 

function validateBio() { 

BIO & PASSWORD 
VALIDATION 

2. If the length of the bio is less 
than or equal to 140 characters, 
the va 1 id variable is set tot rue 
(otherwise, it is set to false) . 
3. If valid is not true, then ... 

4. The setErrorMessage() 
function is called (see p608). 
5. The val id attribute is 
returned to the calling code, 
which will show or hide the error. 

c13/js/validation.js 

CD var bio document.getElementByid ( ' bio'); II Store ref to bio text area 
~ var valid= bio.value.length <= 140; II Is bio <= 140 characters? 
@ if (!valid) { II If not, set an error message 
@) setErrorMessage(bio, 'Your bio should not exceed 140 characters'); 

® return valid; 

The va 1 i datePassword () 
function starts by: 
1. Storing the element containing 
the password in a variable called 
password. 

JAVASCRIPT 

II Return Boolean va l ue 

2. If the length of the value il'l the 
password input is greater than or 
equal to 8, val id is set to true 
(otherwise, it is set to false). 
3. If valid is not true, then ... 

4. The setErrorMessage() 
function is called. 
5. The val id attribute is 
returned to the calling code, 
which will show or hide the error. 

c13/js/validati on . js 

funct i on validatePassword() { 
CD var password= document.getElementByid( ' password'); l l St ore ref to element 
~ var valid =password.value. l ength>= 8; I I Is its value>= 8 chars 
@ if ( ! va 1 id) { 11 If not, set error msg 
@) setErrorMessage(password, 'Password must be at least 8 characters'); 

® return va l id; I I Return t r ue I f alse 

FORM ENHANCEMENT & VALIDATION s • 



CODE DEPENDENCIES 
& REUSE 

In any project, avoid writing two sets of code that perform the same task. 
You can also try to reuse code across projects (for example, using utility 
scripts or jQuery plugins). If you do, note any dependencies in your code. 

DEPENDENCIES 

Sometimes one script will 

require another script to be 

included in the page in order to 

work. When you write a script 

that rel ies on another script, 

the other script is known as a 

dependency. 

For example, if you are writing 

a script that uses jQuery, then 

your script depends upon jQuery 

being included in the page in 

order to work; otherwise, you 

would not be able to use its 

selectors or methods. 

CODE REUSE VS. DUPLICATION 

When you have two sets of code 

that do the same job, it is referred 

to as code duplication. This is 

usually considered bad practice. 

The opposite is code reuse where 

the same lines of code are used 

in more than one part of a script 

(functions are a good example of 

code reuse). 

You may hear programmers 

refer to this as the DRY 

principle: don't repeat yourself. 

"Every piece of knowledge must 

have a single, unambiguous, 

authoritative representation 

within a system." It was 

formulated by Andrew Hunt 

and Dave Thomas in a book 

called The Pragmatic Programmer 
(Addison-Wesley, 1999). 

8 FORM ENHANCEMENT & VALIDATION 

It is a good idea to note 

dependencies in a comment at 

the top of the script so that they 

are clear to others. The final 

custom function in this example 

depends on another script that 

checks the user's age. 

To encourage reuse, 

programmers sometimes create 

a set of smaller scripts (instead 

of one big script). Therefore, 

code reuse can lead to more 

code dependencies. You have 

already seen an example of this 

with the helper functions for 

event handling. You are about to 

see another example ... 



VALIDATING 
PARENTAL CONSENT 

When the validation script was 
introduced, it was noted that 

the form would use a couple of 
scripts to enhance the page. 

You start to see those scripts on 

the next page, but one of them 
needs to be noted now because 

it hides the parental consent 
checkbox when the page loads. 

ThevalidateParentsConsent() 

function is called in the same 
way as the other two custom 
validation checks (see p614). 

Inside the function: 
1. It stores the checkbox 

for parental consent and its 
containing element in variables. 

2. Sets a val id variable to true. 

JAVASCRI PT 

That parental consent checkbox 

is only shown again if the user 
indicates that they are 13 years 

old or younger. 

The val idation code to check 
whether the parent has given 

their consent will only run if that 
checkbox is showing. 

3. An if statement checks 
whether the container for the 

checkbox is not hidden. It does 
this by fetching the value of 

its cl ass attribute and using 
the i ndexOf () function (which 
you saw on p128) to check 

if it contains a value of hi de .. 

If the value is not found, then 
i ndexOf () will return -1. 

So the code to check whether 
the parent has given consent 
depends upon (reuses) the 

same code that checked if the 

checkbox should be shown. 

This works well as long as the 
other script (to show/hide the 
checkbox) is included in the 

page before the validation script. 

4. If it is not hidden, the user is 

under 13. So, if the checkbox is 
selected, the va 1 id variable is 

set to the t rue, and if it was not 
selected, it will be set to fa 1 se. 
5. If it is not valid, an error 

message is added to the element. 
6. The function returns the value 

of the va 1 id variable to indicate 

whether the consent was given. 

cl3/ js/ vali dati on . js 

functi on validateParentsConsent() { 

~ var parentsCon sent document . getEl emen t Byid('parents - consent'); 
\..!.11_ var consentContainer = document.getElementByid('consent-container'); 

@ va r vali d = true ; / /Variable : valid set to true 

~ if (consentContainer . c l as sName.indexOf( ' hide') === - 1) { / /If ch eckbox shown 

va l id = parentsConsent . checked; // Update valid: i s i t checked/ not 
© if ( ! va 1 i d) { / / If not, set the error message 
~ setErrorMessage(paren t sConsent, 'You need your parents\' consent'); 

return valid; / / Return whet her val id or not 

FORM ENHANCEMENT & VALIDATION 8 . 



HIDE PARENTAL CONSENT 

As you saw on the previous page, the subscription 

form uses two extra scripts to enhance the user 

experience. Here is the first; it does two things: 

• Uses the jQuery UI date picker to show a 

consistent date picker across browsers 

• Checks whether the parental consent checkbox 
should be shown when the user leaves the date 

input (it does this if they are under 13) 

1. Place the script in an llFE (not shown in flowchart). 

2. Three jQuery select ions store the input where 

users enter their birthday, the consent checkbox, 

and the container for the consent checkbox. 

3. The jQuery selection for the date of birth input 

is converted from a date input to a text input so 

that it does not conflict with HTMLS date picker 

functionality (done using the jQuery • prop () 

method to alter the value of its type attribute). The 

selection uses • data() to note that it is a date input 

and jQuery Ul's . datepi cker() method to create 

the jQuery UI date picker. 

4 . When the user leaves the date input, the 

checkDate () function is called. 

5. The checkDate () function is declared. 

6. A variable called dob is created to hold the date 

the user selected. The date is converted into an array 

of three values (month, day, and year) using the 

split () method of the String object. 

7. togg l eParentsConsent () is called. It has one 

parameter: the date of birth. It is passed into the 

function as a Date object. 

8. togg 1 ePa rentsConsent () is declared. 

9. Inside the function, it checks the date is a number. 

If not, return indicates the function should stop. 

10. The current time is obtained by creating a new 

Date object (the current time is the default value of a 

new Date object). It is stored in a variable called now. 

11. To find the user's age, the date of birth is 

subtracted from the current date. For simplicity, leap 

years are ignored. If that is less than 13 years: 

12. Show the container for the parental consent. 

13. Otherwise, the container of the consent box is 

hidden, and the checkbox is unchecked. 

@ FORM ENHANCEMENT & VALIDATION 

Create variables: 
A $birth: birthday text input 
V $parentsConsent: age consent checkbox 

$consentContai ner: age consent container 
I 

Q Create date picker using )Query 

+ 
I 

0 Event: blur or change on birthday 

I 

FU NCTION: checkDate() 
Checks user's date of birth 

Create var iable: dob: the date of birth as 
an array (split into year, month, & day at '·' 
characters) 

Call funct ion: toggleParentsConsent() & 
pass it a Date object created using dob array 

FUNCTION: toggl eParentsConsent () 
Shows/hides parental consent based on age 

Is date a 
number? ' I Create a new Date object called now 

(sub!racting dob from now gives age) 

+ 
I 

Was birthday 
< 13 years ago? 

Add hide class 
to consent 
container 

I 
Set checked on 

consentcheckbox 
to false 

Remove hide class 
from consent 
container 

I 
Give focus 

to consent 
checkbox 



AGE CONFIRMATION 

JAVASCRIPT cl3/js/birthday.js 

CD (function() { 
var $birth $('#birthday'); 
var $parentsConsent $('#parents-consent'); 
var $consentContainer $( '#consent-container'); 
II Create the date picker using jQuery UI 

II D-0-B input 
II Consent checkbox 
II Checkbox container 

@ $birth .prop{'type', 'text') .data('type', 'date').datepicker({ 

© 
® 
© 

® 
® 
@ 

@ 

@{ 

dateFormat: 'yy-mm-dd' II Set date format 
} ) ; 
$birth.on('blur change ' , checkDate); II D-0-B loses focus 
function checkOate() { II Declare checkDate() 

} 

var dob =this.value . split('-'); II Array from date 
II Pass toggleParentsConsent() the date of birth as a date object 
toggleParentsConsent(new Oate(dob[O], dob[l] - 1, dob[2])); 

function toggleParentsConsent(date) II Declare function 

} 

if (isNaN(date)) return; II Stop if date inval id 
var now= new Date(); II New date obj: today 
II If difference (now minus date of birth, is less than 13 years 
II show parents consent checkbox (does not account for leap years) 
II To get 13 yrs ms* secs* mins *hrs* days* years 
if ((now - date) < (1000 * 60 * 60 * 24 * 365 * 13)) { 

$consentContainer.removeClass('hide'); II Remove hide class 
$parentsConsent.focus(); II Give it focus 
else { II Otherwise 
$consentContainer.addClass('hide'); II Add hide to class 
$parentsConsent.prop('checked', false); II Set checked to false 

} ()); 

When creating a date picker using jQuery UI, you 

can specify the format in which you want the date to 

be written. On the right you can see several options 
for the format of the date and what this would look 
like if the date were the 20th December 1995. In 

particular note that y gives you two digits for the 
year, and yy gives you four digits for the year. 

FORMAT 

rrm/dd/yy 

yy-nvn-dd 

d m, y 

mm d, yy 

RESULT 

12/20/1995 

1995·12-20 

20 Dec, 95 

December 20, 1995 

00, d rmn, yy Saturday, 20 December, 1995 

FORM ENHANCEMENT & VALIDATION @ A 



PASSWORD FEEDBACK 

The second script designed to enhance the form 

provides feedback to the users as they leave either 
of the password inputs. It changes the value of the 

cl ass attribute for the password inputs. offering 
feedback to show whether or not the password is 
long enough and whether or not the value of the 

password and its confirmation box match. 

1. Place the script in an l lFE (not shown in flowchart). 

2. Variables store references to the password input 
and the password confirmation input. 

3. setErrorHi gh lighter() function is declared. 
4. It retrieves the target of the event that called it. 

5. An if statement checks the value of that element. 
If it is less than 8 characters, that element's class 
attribute is given a value of fai l . Otherwise, it is 
given a value of pass. 

6. removeErrorHighl ighter () is declared. 

7. It retrieves the target of the event that called it. 

8. If the value of the c 1 ass attribute is fa i 1, then the 
value of the cl ass attribute is set to a blank string 
(clearing the error). 

9. passwordsMatch () is declared (it is only called by 
the password confirm box). 

10. It retrieves the target of the event that called it. 

11. If the value of that element is the same as the first 

password input, its cl ass attribute is given a value of 

pass; otherwise, it is given a value of fai 1. 
12. Event listeners are set up: 

ELEMENT EVENT METHOD 

password focus removeErrorH ighl i ghter ( ) 

password blur setErrorHi ghlighter ( ) 

conf-password focus removeErrorHi gh 1 i ghter() 

conf-password b 1 ur passwordsMatch () 

This demonstrates how scripts often group all of the 
functions and the event handlers together. 

§ FORM ENHANCEMENT & VALIDATION 

Create variables: 
f) password: password input 

passwordConfi nn: confirmation input 

+ 
I 

G> Event: b 1 ur on password 

e 
0 

I 

FUNCTION: setErrorHi gh 1 i ghter() 
Sets error highlight ing 

' I 
Get t arget element 

+ 
I 

Is it< 8 
characters? ' I Add class: pass Add class: fai 1 

G> Event: focus on password or password confirm 

I 

0 

0 

FUNCTION: removeErrorHighl ighter() 
Removes error highlighting 

Get target element 

+ I 

Does class 
indicate an 

error? ' I Set cl ass attribute to '' 

Event: b 1 ur on password confirm 

I 

FUNCTION: passwordsMatch () 
Checks both passwords match 

Get target element 

+ 
I 

' 
Do password & 

passwordConfinn 
match? ' I I 

Add class: fail Add class: pass 



PASSWORD SCRIPT 

' JAVASCRIPT c13/js/password-signup.js 

G) (function () { 
~ var password= document.getElementByld('password'); II Store password 
~ var passwordConfirm = document.getElementByid('conf-password ' ); 

inputs 

Q) function setErrorHighlighter(e) { 
@) var target= e.target I I e.srcElement; II Get target element 

II If its length i s< 8 
II Set class to fail 

, 

if (target.value.length< 8) { 
target.className ='fail'; 
else { 
target.className = 'pass'; 

II Otherwise 
II Set class to pass 

® 
®> 

, 

function removeErrorHighlighter(e) { 
var target= e.target I I e.srcElement; 
if (target.className ' fail ' ) { 

target.className = ''; 

II Get target element 
II If class is f ail 
II Clear class 

function passwordsMatch(e) { 
var target= e.target I I e.srcElement; II Get target element 
II If value matches pwd and it is l onger t han 8 characters 
if ((password.value=== target.value) && target.val ue.length>= 8){ 

target.className 'pass'; II Set class to pass 
else { II Otherwise 
target.className 'fail'; II Set class to fail 

} 
addEvent(password, ' focus', removeErrorHighlighter); 
addEvent(password, 'blur', setErrorHi ghlighter); 

12 add Event ( passwordConf i rm, 'focus' , removeErrorHi gh 1 i ghter); 
addEvent(passwordConfirm, ' blur', passwordsMatch); 

} ()); 

FORM ENHANCEMENT & VALIDATION s • 



Form enhancements make your form easier to use. 

Validation lets you give users feedback before the form 

data is sent to the server. 

HTMLS introduced new form contro ls which feature 

validation (but they only work in modern or mobile 

browsers). 

HTM LS inputs and their validation messages look 

different in various browsers. 

You can use JavaScript to offer the same functionality 

as the new HTMLS elements in all browsers (and 

control how they appear in all browsers). 

Libraries like jQuery UI help create forms that look the 

same across different browsers. 

Regular expressions help you find patterns of 

characters in a string. 




