

Browsers require very detailed instructions about what
we want them to do. Therefore, complex scripts can run
to hundreds (even thousands) of lines. Programmers use

functions, methods, and objects to organize their code.
This chapter is divided into three sections that introduce:

FUNCTIONS & OBJECTS BUILT-IN
METHODS OBJECTS

Functions consist of a In Chapter 1 you saw that The browser comes with
series of statements programmers use objects a set of objects that act
that have been grouped to create models of the like a toolkit for creating

together because they world using data, and that interactive web pages.
perform a specific task. objects are made up of This section introduces
A method is the same as a properties and methods. you to a number of built- in

function, except methods In this section, you learn objects, which you wi ll
are created inside (and are how to create your own then see used throughout
part of) an object. objects using JavaScript. the rest of the book.

@ FUNCTIONS, METHODS & OBJECTS

..

FUNCTIONS, METHODS & OBJECTS

WHAT IS A FUNCTION?

Functions let you group a series of statements together to perform a
specific task. If different parts of a script repeat the same task, you can
reuse the function (rather than repeating the same set of statements).

Grouping together the The steps that the function On the right, there is an example

statements that are required to needs to perform in order to of a function in the JavaScript

answer a question or perform a perform its task are packaged file. It is called updateMessage () .

task helps organize your code. up in a code block. You may

remember from the last chapter Don't worry if you do not

Furthermore, the statements in a that a code block consists of one understand the syntax of the

function are not always executed or more statements contained example on the right; you will

when a page loads, so functions within curly braces. (And you do take a closer look at how to wri te

also offer a way to store the steps not write a semicolon after the and use functions in the pages

needed to achieve a task. The closing curly brace - like you do that follow.

script can then ask the function after a statement.)

to perform all of those steps as Remember that programming

and when they are required. Some functions need to be languages often rely upon on

For example, you might have provided with information in name/value pairs. The function

a task that you only want to order to achieve a given task. For has a name, updateMessage,

perform if the user clicks on a example, a function to calculate and the value is the code block

specific element in the page. the area of a box would need (which consists of statements).

to know its width and height. When you call the function by its

If you are going to ask the Pieces of information passed name, those statements will run.

function to perform its task to a function are known as

later, you need to give your parameters. You can also have anonymous

function a name. That name functions. They do not have a

should describe the task it is When you write a function and name, so they cannot be called.

performing. When you ask it to you expect it to provide you Instead, they are executed as

perform its task, it is known as with an answer, the response is soon as the interpreter comes

calling the function. known as a return value. across them.

@ FUNCTIONS, METHODS & OBJECTS

...

...

A BASIC FUNCTION
In this example, the user is

shown a message at the top of

the page. The message is held

in an HTML element whose id

attribute has a value of message.
The message is going to be

changed using JavaScript.

+:ii.\11

<!DOCTYPE html>
<html>

<head>

Before the closing </body>

tag, you can see the link to the

JavaScript file. The JavaScript

fi le starts with a variable used

to hold a new message, and is

followed by a function called

updateMessage().

<ti t l e>Basic Function</title>
<l i nk rel ="stylesheet" href="css/ c03.css" / >

</head>
<body>

<hl>TravelWorthy</ hl>
<div id="message">We lcome to our site! </ div>
<script src="js/ basic-function .js"></ script>

</ body>
</ html>

JAVASCRIPT

You do not need to worry about

how this function works yet - you

will learn about that over the

next few pages. For the moment,

it is just worth noting that inside

the curly braces of the function

are two statements.

c03/basic-function .html

c03/js/basi c-function .js

var msg = 'Sign up to receive our newsletter for 10% off!';
function updateMessage() {

var el = document.getElementByld('message'};
el .textContent = msg;

}
updateMessage(};

l;IJiilil

Sign up to receive our
newsletter for 10% offl

. .JJl.'ft.711111/r

These statements update the

message at the top of the page.

The function acts like a store; it

holds the statements that are

contained in the curly braces

until you are ready to use them.

Those statements are not run

until the function is called. The

function is only called on the last

line of this script.

FUNCTIONS, METHODS & OBJECTS @

GETTING MULTIPLE VALUES
OUT OF A FUNCTION

Functions can return more than one value using an array.
For example, this function calculates the area and volume of a box.

First, a new function is created

called get Size() . The area of

the box is calculated and stored
in a variable called area.

The volume is calculated and
stored in a variable called

vo 1 ume. Both are then placed
into an array called shes.

This array is then returned to the

code that called the getSize()

funct ion, allowing the values to
be used.

function getSize (width, height, depth) {
var area = width * height;

}

var volume = width * height * depth;
var sizes= [area , volume];
return sizes;

var areaOne = getSize (3, 2, 3)[0];
var volumeOne = getSize (3, 2, 3)[1];

The ar eaOne variable holds

the area of a box that is 3 x 2.

The area is the first value in the
sizes array.

The vo 1 umeOne variable holds

the volume of a box that is 3 x
2 x 3. The volume is the second

value in the si zes array.

FUN CTIONS, METHODS & OBJECTS @

ANONYMOUS FUNCTIONS
& FUNCTION EXPRESSIONS

Expressions produce a value. They can be used where values are expected.

If a function is placed where a browser expects to see an expression,

(e.g., as an argument to a function), then it gets treated as an expression.

FUNCTION DECLARATION

A function declaration creates a function that you
can call later in your code. It is the type of function

you have seen so far in this book.

In order to call the function later in your code, you

must give it a name, so these are known as named

functions. Below, a function called area() is
declared, which can then be called using its name.

function area (width, height)
return width * height;

};

var size= area (3, 4) ;

As you will see on p456, the interpreter always

looks for variables and function declarations before
going through each section of a script, line-by-line.

This means that a function created with a function

declaration can be called before it has even been
declared.

For more information about how variables and
functions are processed first, see the discussion

about execution context and hoisting on
p452 - p457.

§ FUNCTIONS, METHODS & OBJECTS

FUNCTION EXPRESSION

If you put a function where the interpreter would

expect to see an expression, then it is treated as an
expression, and it is known as a function expression.
In function expressions, the name is usually omitted.

A function with no name is called an anonymous
function. Below, the function is stored in a variable

called area. It can be called like any function created

with a function declaration.

var ar ea = f unction(width, height) {

r eturn width * height;
} ;

var size = area (3, 4) ;

In a function expression, the function is not

processed until the interpreter gets to that
statement. This means you cannot cal l this function

before the interpreter has discovered it. It also means
that any code that appears up to that point could

potentially alter what goes on inside this function.

IMMEDIATELY INVOKED
FUNCTION EXPRESSIONS

This way of writing a function is used in several different situations.
Often functions are used to ensure that the variable names do not conflict
with each other (especially if the page uses more than one script).

IMMEDIATELY INVOKED FUNCTION
EXPRESSIONS (llFE)

Pronounced "iffy," these functions are not given
a name. Instead, they are executed once as the

interpreter comes across them.

Below, the variable called area will hold the value

returned from the function (rather than storing the

function itself so that it can be called later).

var area = (ltunct i on()
var wi dth = 3;

var height = 2;

return widt h * height;

}DI);

The final parentheses (shown on green) after

the closing curly brace of the code block tell the
interpreter to call the function immediately.

The grouping operators (shown on pink) are

parentheses there to ensure the intrepreter treats
this as an expression.

You may see the final parentheses in an llFE

placed after the closing grouping operator but it

is commonly considered better practice to place
the final parentheses before the closing grouping

operator, as shown in the code above.

WHEN TO USE ANONYMOUS
FUNCTIONS AND ll FES

You will see many ways in which anonymous
function expressions and llFEs are used throughout

the book.

They are used for code that only needs to run once

within a task, rather than repeatedly being called by
other parts of the script. For example:

• As an argument when a function is called
(to calculate a value for that function).

• To assign the value of a property to an object.

• In event handlers and listeners (see Chapter 6)

to perform a task when an event occurs.

• To prevent conflicts between two scripts that
might use the same variable names (see p99).

llFEs are commonly used as a wrapper around a

set of code. Any variables declared within that
anonymous function are effectively protected from

variables in other scripts that might have the same
name. This is due to a concept called scope, which

you meet on the next page. It is also a very popular

technique with jQuery.

FUNCTIONS, METHODS & OBJECTS 8

VARIABLE SCOPE

The location where you declare a variable will affect where it can be used

within your code. If you declare it within a function, it can only be used
within that function. This is known as the variable's scope.

LOCAL VARIABLES

When a variable is created inside a function using the

var keyword, it can only be used in that function.
It is called a local variable or function-level variable.
It is said to have local scope or function-level scope.

It cannot be accessed outside of the function in
which it was declared. Below, area is a local variable.

The interpreter creates local variables when the

function is run, and removes them as soon as the

function has finished its task. This means that:

• If the function runs twice, the variable can have

different values each time.

• Two different functions can use variables with the
same name without any kind of naming conflict.

GLOBAL VARIABLES

If you create a variable outside of a function, then it
can be used anywhere within the script. It is called a
global variable and has global scope. In the example

shown, wa 11 Size is a global variable.

Global variables are stored in memory for as long

as the web page is loaded into the web browser.
This means they take up more memory than local

variables, and it also increases the risk of naming
confl icts (see next page). For these reasons, you

should use local variables wherever possible.

If you forget to declare a variable using the var
keyword, the variable will work, but it will be treated

as a global variable (this is considered bad practice).

function getArea(width, height)

var area = width * height;
return area ;

var wallSize = getArea(3, 2);

document. write(wa 11 Si ze);

• LOCAL (OR FUNCTION-LEVEL) SCOPE

• GLOBAL SCOPE

@ FUNCTIONS, METHODS & OBJECTS

HOW MEMORY &
VARIABLES WORK

Global variables use more memory. The browser has to remember them
for as long as the web page using them is loaded. Local variables are only
remembered during the period of time that a function is being executed.

CREATING THE VARIABLES IN CODE

Each variable that you declare takes up memory.

The more variables a browser has to remember,
the more memory your script requires to run.
Scripts that require a lot of memory can perform

slower, which in turn makes your web page take
longer to respond to the user.

var wi dth = 15;

var height = 30;
var isWal l = true;
var canPaint = true;

A variable actually references a value that is stored

in memory. The same value can be used with more

than one variable:

var width= 15 ; ------~

var height = 30 ;--------7

var isWall = true ; 8
----~ true · var canPaint = true ;

Here the values for the width and height of the wall

are stored separately, but the same value of true
can be used for both i sWa 11 and can Pa int.

NAMING COLLISIONS

You might think you would avoid naming collisions;

after all you know which variables you are using.
But many sites use scripts written by several people.
If an HTML page uses two JavaScript files, and both

have a global variable with the same name, it can
cause errors. Imagine a page using these two scripts:

II Show size of the building plot
function showPlotSize(){

var width = 3;
var height = 2;

return ' Area: " + (width* height);

var msg = showArea()

II Show size of the garden
funct i on showGardenSize() {

var width = 12;

var height = 25;

return width * height;

var msg = showGardenSize();

e Variables in global scope: have naming conflicts.

e Variables in function scope: there is no conflict
between them.

FUNCTIONS, METHODS & OBJECTS 8

WHAT IS AN OBJECT?

Objects group together a set of variables and functions to create a model

of a something you would recognize from the real world. In an object,

variables and functions take on new names.

IN AN OBJECT: VARIABLES BECOME
KNOWN AS PROPERTIES

If a variable is part of an object, it is called a

property. Properties tell us about the object, such as

the name of a hotel or the number of rooms it has.

Each individual hotel might have a different name

and a different number of rooms.

@ FUNCT IONS, METHODS & OBJECTS

IN AN OBJECT: FUNCTIONS BECOME
KNOWN AS METHODS

If a function is part of an object, it is called a method.

Methods represent tasks that are associated with

the object. For example, you can check how many

rooms are available by subtracting the number of

booked rooms from the total number of rooms.

This object represents a hotel. It has five properties and one method.

The object is in curly braces. It is stored in a variable called hotel .

Like variables and named functions,

properties and methods have a

name and a value. In an object,

that name is called a key.

An object cannot have two keys

with the same name. This is

because keys are used to access

their corresponding values.

The value of a property can be a

st ring, number, Boolean, array, or

even another object. The value of a

method is always a function.

var hotel = { . KEY

• VALUE
...
~ name : 1 Quay 1

, ~
r······r:o·0·n;·5··~ · · · ··4"Q ·~··················· · ···················· ············· ··1

r••••••bo•o•k•e-ci•~•••••2•5 •~•••0•000•••••••••••••••••••••• U •• ••••••••••••• ••••••••••••••••••••••••••••ooooooooooooo•o• • >•• ••••••1
PROPERTIES

These are variables 1·······~iym·~·· · ··i·r:u ·e·~·· ... 1

r:::::·_~?.:?.:~t.Y.:P.:~:~::~::::::c::~~~::~:::·:;.::::::·::~:?.~:~:~: :~::::: ;.::::::·::~:~:~::!:~::·::r;.J

' :~::~~:~ ; ::~: '. ::::sf~~:~~~~'.::::~; i } METHOD

This is a funct ion

} ;

Above you can see a hotel object. The object

contains the following key/value pairs:

PROPERTIES: KEY VALUE

name string

rooms number

booked number

gym Boolean

room Types array

METHODS: checkAva i l ability function

As you will see over the next few pages, this is just

one of the ways you can create an object.

Programmers use a lot of name/value pairs:

• HTML uses attribute names and values.

• CSS uses property names and values.

In JavaScript:

• Variables have a name and you can assign them a

value of a string, number, or Boolean.

• Arrays have a name and a group of values. (Each

item in an array is a name/value pair because it

has an index number and a value.)

• Named functions have a name and value that is a

set of statements to run if the function is called.

• Objects consist of a set of name/value pairs

(but the names are referred to as keys).

FUNCTIONS, METHODS & OBJECTS 8

CREATING· OBJECTS USING
LITERAL NOTATION

This example starts by creating

an object using literal notation.

This object is called hotel which
represents a hotel called Quay

with 40 rooms (25 of which have
been booked).

Next, the content of the page

is updated with data from this
object. It shows the name of the

hotel by accessing the object's
name property and the number
of vacant rooms using the

checkAvail ability() method.

To access a property of this
object, the object name is

followed by a dot (the period

symbol) and the name of the
property that you want.

Similarly, to use the method,
you can use the object name

followed by the method name.

hotel .checkAvailability()

If the method needs parameters,

you can supply them in the
parentheses (just like you can

pass arguments to a funct ion).

8 FUNCTIONS, METHODS & OBJECTS

c3/ j s/obj ect-1itera1 . j s

var hote l = {
name: 'Quay',
rooms : 40,
booked : 25,
checkAvailability: function() {

return this.rooms - this.booked;
}

} ;

JAVASCRIPT

var el Name = document .getElementByld('hotelName');
elName.textContent =hotel .name;

var elRooms = document.getElementByid{'rooms');
elRooms .textContent = hotel .checkAvailability();

• .

.. ·

CREATING MORE
OBJECT LITERALS

JAVASCRIPT

var hotel = {
name: 'Park',
rooms : 120,
booked : 77,

c03/js/ object-l iteral2.js

checkAvailabi lity : function() {
return this . rooms - th i s.booked;

}
} ;

var elName = document .getElementByid('hotelName') ;
elName . textContent =hotel .name ;

var el Rooms = document .getElementByid(' rooms') ;
e 1 Rooms . text Content = hote 1 . checkAvai l abi lity();

l;IJiiJ51

Here you can see another object.

Again it is cal led hote 1, but this

time the model represents a

different hotel. For a moment,

imagine that this is a different

page of the same travel website.

The Park hotel is larger. It has

120 rooms and 77 of them are

booked.

The only things changing in the

code are the values of the hot e 1

object's properties:

• The name of the hotel

• How many rooms it has

• How many rooms are booked

The rest of the page works in

exactly the same way. The name

is shown using the same code.

The checkAvai 1 abi l ity()

method has not changed and is

cal led in the same way.

If this site had 1,000 hotels,

the only thing that would

need to change would be the

three properties of this object.

Because we created a model for

the hotel using data, the same

code can access and display the

details for any hotel that follows

the same data model.

If you had two objects on the

same page, you would create

each one using the same

notation but store them in

variables with different names.

FUNCTIONS, METHODS & OBJECTS 9

CREATING MANY OBJECTS:
CONSTRUCTOR NOTATION

Sometimes you will want several objects to represent similar things.
Object constructors can use a function as a template for creating objects.
First, create the template with the object's properties and methods.

A function called Hotel will be used as a template

for creating new objects that represent hotels. Like
all functions, it contains statements. In this case,
they add properties or methods to the object.

The function has three parameters. Each one sets

the value of a property in the object. The methods
will be the same for each object created using this
function.

function Hotel (name, rooms, booked) {
... }
l th i s . name = name ; l ..
~ th is. rooms = rooms; ~
~this . booked = booked; ~
: ... : .

... }
l this . checkAvailability = function() { l . .
l return this.rooms - this . booked; l . . . }
: ' :

}

PROPERTIES

METHOD

.KEY

• VALUE

The this keyword is used instead of the object
name to indicate that the property or method

belongs to the object that this function creates.

The name of a constructor function usually begins
with a capital letter (unlike other functions, which

tend to begin with a lowercase character).

Each statement that creates a new property or

method for this object ends in a semicolon (not a
comma, which is used in the literal syntax).

108 FUNCTIONS, METHODS & OBJECTS

The uppercase letter is supposed to help remind

developers to use the new keyword when they create
an object using that function (see next page).

CREATING OBJECTS USING
CONSTRUCTOR SYNTAX

On the right, an empty object

cal led hote 1 is created using the
constructor function.

Once it has been created, three

properties and a method are
then assigned to the object.

(If the object already had any

of these properties, this would

overwrite the values in those
properties.)

To access a property of this
object, you can use dot notation,

just as you can with any object.

For example, to get the hotel's

name you could use:
hotel .name

Similarly, to use the method,
you can use the object name

followed by the method name:

hotel.checkAvailability()

e FUNCTIONS, METHODS & OBJECTS

c3/js/object-constructor.js

var hotel = new Object();

hotel.name= 'Park';
hotel.rooms = 120;
hotel .booked = 77;
hotel .checkAvailability = function()

return this . rooms - this.booked;
} ;

JAVASCRIPT

var elName = document.getElementByid('hotelName');
elName.textContent = hotel . name;

var elRooms = document .getElementByid('rooms');
elRooms . textContent = hotel .checkAvailability(};

1;1Jiil51

"

:

..,

CREATE & ACCESS OBJECTS
CONSTRUCTOR NOTATION

JAVASCRIPT c03/js/mul tipl e-objects . js

function Hotel (name, rooms, booked) {
this .name = name;
this.rooms = rooms;
this.booked = booked;
this.checkAvailability = function()

return this.rooms - this.booked;
} ;

var quayHotel
var parkHotel

new Hotel('Quay', 40, 25);
new Hotel(' Park', 120, 77);

var details!= quayHotel .name + ' rooms : ';
detailsl += quayHotel.checkAvailability();

var elHotell = docurnent.getElementByid('hotell');
elHotell.textContent =details!;

var details2 = parkHotel .name+ ' rooms: ';
detai l s2 += parkHotel.checkAvailability();

var e1Hote l2 = document.getEl ementByid('hotel2');
elHotel2.textContent = details2;

l;IJiiJil

To get a better idea of why you
might want to create mult iple

objects on the same page, here

is an example that shows room
availability in two hotels.

First, a constructor function
defines a template for the hotels.

Next, two different instances

of this type of hotel object are
created. The first represents

a hotel called Quay and the
second a hotel called Park.

Having created instances of
these objects, you can then

access their properties and

methods using the same dot

notation that you use with all
other objects.

In this example, data from both
objects is accessed and written

into the page. (The HTML

for this example changes to
accommodate the extra hotel.)

For each hotel, a variable is
created to hold the hotel name,
followed by space, and the word

rooms.

The line after it adds to that

variable with the number of
available rooms in that hotel.

(The+= operator is used to add
content to an existing variable.)

FUNCTIONS, METHODS & OBJECTS 8

ADDING AND REMOVING
PROPERTIES

Once you have created an object

(using literal or constructor
notation), you can add new

properties to it.

You do this using the dot

notation that you saw for adding
properties to objects on pl03.

In this example, you can see that
an instance of the hotel object

is created using an object literal.

Immediately after this, the

hotel object is given two
extra properties that show the

facilities (whether or not it has

a gym and/or a pool). These
properties are given values that

are Booleans (true or false).

Having added these properties

to the object, you can access

them just like any of the objects
other properties. Here, they

update the value of the cl ass

attribute on their respective
elements to show either a check

mark or a cross mark.

To delete a property, you use

the keyword delete, and then
use dot notation to identify the

property or method you want to

remove from the object.

In this case, the booked property
is removed from the object.

@ FUNCTIONS, METHODS & OBJECTS

c3/ js/ adding-and-removing-properti es.js JAVASCRIPT

var hotel = {
name : 'Park' ,
rooms : 120,
booked : 77.

} ;

hotel .gym = t rue;
hotel .pool = fal se;
delete hotel .booked;

var elName = document .getEl ementByld('hotelName ');
elName.textContent = hotel . name;

var el Pool = document .getElementByid ('pool ') ;
elPool.c l assName = ' Pool: ' + hotel. pool ;

var elGym = document .getEl ementByld('gym ' };
elGym.className = 'Gym: ' + hotel .gym;

l;IJillii

If an object is created using a constructor function, this syntax only adds
or removes the properties from the one instance of the object (not all
objects created with that function).

RECAP: WAYS TO
CREATE OBJECTS

CREATE THE OBJECT, THEN ADD PROPERTIES & METHODS

In both of these examples, the object is created on
the first line of the code sample. The properties and
methods are then added to it afterwards.

LITERAL NOTATION

var hotel = {}

hotel .name= 'Quay';
hotel .rooms = 40;
hotel.booked = 25;
hotel.checkAvailabil ity =function()

return this . rooms - this .booked;
} ;

Once you have created an object, the syntax for
adding or removing any properties and methods
from that object is the same.

OBJECT CONSTRUCTOR NOTATION

var hotel = new Object();

hotel.name = 'Quay';
hotel .rooms = 40 ;
hotel . booked= 25;
hotel.checkAvailability =function()

return this .rooms - this .booked;
} ;

CREATING AN OBJECT WITH PROPERTIES & METHODS

LITERAL NOTATION

A colon separates the key/value pairs.
There is a comma between each key/value pair.

var hotel = {
name: 'Quay' ,
rooms: 40,
booked: 25,
checkAvailability: function() {

return this.rooms - this .booked;
}

} ;

OBJECT CONSTRUCTOR NOTATION

The function can be used to create multiple objects.
The this keyword is used instead of the object name.

function Hotel(name, rooms, booked) {
this.name = name;
th i s.rooms = rooms;
this.booked = booked;
this.checkAvailability = function()

return this . rooms - this.booked;
} ;

var quayHotel =new Hotel('Quay', 40 , 25);
var parkHotel =new Hotel('Park', 120, 77);

FUNCTIONS, METHODS & OBJECTS @

THIS (IT IS A KEYWORD)

The keyword this is commonly used inside functions and objects.
Where the function is declared alters what this means. It always refers

to one object, usually the object in which the function operates.

A FUNCTION IN GLOBAL SCOPE

When a function is created at the top level of a script
(that is, not inside another object or function), then it

is in the global scope or global context.

The default object in this context is the window

object. so when this is used inside a function in the
global context it refers to the window object.

Below, this is being used to return properties of the

window object (you meet these properties on p124).

function windowSize() {
var width= this . innerWidth;

var height = this .innerHeight;

return [height, width];

Under the hood, the this keyword is a reference to
the object that the function is created inside.

e FUNCTIONS, METHODS & OBJECTS

GLOBAL VARIABLES

All global variables also become properties of the

window object. so when a function is in the global
context, you can access global variables using the
window object, as wel l as its other properties.

Here, the showWi dth () function is in global scope,

and this.width refers to the width variable:

var width = .~QQ; -----~

var shape = {width: 300};

var showWidth-= function()

document .write <.~.~.i .. ~.:.~j·~·~·~) ;
};

showWidth();

Here, the function would write a value of 600 into the
page (using the document object's write() method).

As you can see, the value of this changes in

different situations. But don't worry if you do not
follow these two pages on your first read through.

As you write more functions and objects. these

concepts will become more familiar, and if-thi s is
not returning the value you expected, these pages
will help you work out why.

A METHOD OF AN OBJECT

When a function is defined inside an object, it

becomes a method. In a method, this refers to the
containing object.

In the example below, the getArea () method

appears inside the shape object, so t his refers to

the shape object it is contained in:

var shape = {
width : .~9.9. • ~--------­

height : ~9.9 .• (-<----~1
getArea : function() -J.,

}
};

re turn .t. .h..~.~ .. :.~.~-~.!.~. * .t..h..~.~-=-~-~.~ .9.~.!. ;

Because the this keyword here refers to the shape

object, it would be the same as writing:

return shape .width * shape.height ;

If you were creating several objects using an

object constructor (and each shape had different
dimensions), this would refer to the individual

instance of the new object you are creating.

When you called getArea() , it would calculate the
dimensions of that particular instance of the object.

Another scenario to mention is when one function

is nested inside another function. It is only done in
more complicated scripts, but the value of this can

vary (depending on which browser you are using).
You could work around this by storing the value of
this in a variable in the first function and using the

variable name in child functions instead of this.

FUNCTION EXPRESSION AS METHOD

If a named function has been defined in global
scope, and it is then used as a method of an object,

this refers to the object it is contained within.

The next example uses the same showWi dth ()

function expression as the one on the left-hand

page, but it is assigned as a method of an object.

var width = 600;

var shape= {width : 19.Q};

var showWidth = function()

document .wri te Ct..h..i .. ~ .. :.~~-~.!N
} ;

shape.getWidth = showWidth;
shape .getWidth();

The last but one line indicates that the showWi dth ()

function is used as a method of the shape object.
The method is given a different name: getWi dth ().

When the getWidth() method is cal led, even though

it uses the showWi dth () function, this now refers to

the shape object, not the global context (and
this.width refers to the width property of the

shape object). So it writes a value of 300 to the page.

FUNCTIONS, METHODS & OBJECTS e

RECAP: STORING DATA

In JavaScript, data is represented using name/value pairs.

To organize your data, you can use an array or object to group a set of

related values. In arrays and objects the name is also known as a key.

VARIABLES

A variable has just one key (the variable name)

and one value.

Variable names are separated from their value by an

equals sign (the assignment operator):

var hotel= 'Quay' ;

To retrieve the value of a variable, use its name:

II This ret r i eves Quay:

hotel ;

W hen a variable has been declared but has not yet

been assigned a value, it is undefined.

If the var keyword is not used, the variable is

declared in global scope (you should always use it).

e FUNCTIONS, METHODS & OBJECTS

ARRAYS

Arrays can store multiple pieces of information.

Each piece of information is separated by a comma.

The order of the values is important because items

in an array are assigned a number (called an index).

Values in an array are put in square brackets,

separated by commas:

var hotel s = [

' Quay ' ,

' Park' ,

' Beach' ,

'Bloomsbury'

]

You can think of each item in the array as another

key/value pair, the key is the index number, and the

values are shown in the comma-separated list.

To retrieve an item, use its index number:

II Thi s retrieves Park:

hote 1 s [l] ;

If a key is a number, to retrieve the value you must

place the number in square brackets.

Generally speaking, arrays are the only times when

the key would be a number.

Note: This recap speci fically relate to storing data.

You cannot store rules to perform a task in an array.
They can only be stored in a function or method.

If you want to access items via a property name or key, use an object
(but note that each key in the object must be unique).
If the order of the items is important, use an array.

INDIVIDUAL OBJECTS

Objects store sets of name/value pairs. They can be
properties (variables) or methods (functions).

The order of them is not important (unlike the array).
You access each piece of data by its key.

In object literal notation, properties and methods of

an object are given in curly braces:

var hotel = {
name: ' Quay',
rooms: 40

};

Objects created with literal notation are good:

• W hen you are storing I t ransmitting data
between applications

• For global or configuration objects that set up
information for the page

To access the propert ies or methods of the object,

use dot notation:

II Thi s r et r i eves Quay:

hotel.name;

MULTIPLE OBJECTS

When you need to create multiple objects within the

same page, you should use an object constructor to
provide a template for the objects.

function Hotel (name, rooms)

this .name = name;

this.rooms = rooms;

You then create instances of the object using the new
keyword and then a call to the constructor function.

var hotell =new Hote l (' Quay', 40);
var hotel2 = new Hotel (' Park ' , 120);

Objects created with constructors are good when:

• You have lots of objects used with similar
functionality (e.g., multiple sl ideshows I media
players/ game characters) within a page

• A complex object might not be used in code

To access the properties or methods of the object,

use dot notation:

II Thi s ret r ieves Park :

hotel2.name;

FUNCTIONS, METHODS & OBJECTS 8

room2 items[460, 20, 20)

room3 items[230, 0, 0]

{accom: 460, food: 20, phone: 20}

2 {accom: 230, food: 0 , phone: 0}

WHAT ARE BUILT-IN
OBJECTS?

Browsers come with a set of built-in objects that represent things like the
browser window and the current web page shown in that window. These

built-in objects act like a toolkit for creating interactive web pages.

The objects you create w ill usually be specifical ly

written to suit your needs. They model the data

used within, or contain functionali ty needed by,
your script. Whereas, the built-in objects contain

functional ity commonly needed by many scripts.

As soon as a web page has loaded into the browser,

these objects are available to use in your scripts.

@ FUNCTIONS, METHODS & OBJECTS

These built-in objects help you get a wide range

of information such as the width of the browser
window, the content of the main heading in the page,

or the length of text a user entered into a form fie ld.

You access their properties or methods using dot
notation, just like you would access the properties or
methods of an object you had written yourself.

The first thing you need to do is get to know what tools are available.
You can imagine that your new toolkit has three compartments:

1
BROWSER OBJECT

MODEL

The Browser Object Model contains

objects that represent the current

browser window or tab. It contains

objects that model things like

browser history and the

device's screen. 2

3
GLOBAL JAVASCRIPT

OBJECTS

The global JavaScript objects

represent things that the JavaScript

language needs to create a model

of. For example, there is an

object that deals only with

dates and times.

DOCUMENT OBJECT
MODEL

The Document Object Model uses

objects to create a representation of

the current page. It creates a new

object for each element (and each

individual section of text)

within the page.

WHAT DOES THIS SECTION COVER?

You have already seen how to access the properties

and methods of an object, so the purpose of this

section is to let you know:

• What built-in objects are available to you

• What their main properties and methods do

There will be a few examples in the remaining part

of this chapter to ensure you know how to use them.

Then, throughout the rest of the entire book, you will

see many practical examples of how they are used in

a range of situations.

WHAT IS AN OBJECT MODEL?

You have seen that an object can be used to create a

model of something from the real world using data.

An object model is a group of objects, each of

which represent re lated things from the real world.

Together they form a model of something larger.

Two pages back, it was noted that an array can hold

a set of objects, or that the property of an object

could be an array. It is also possible for the property

of an object to be another object. When an object

is nested inside another object, you may hear it

referred to as a child object.

FUNCTIONS, METHODS & OBJECTS @

THE BROWSER
OBJECT MODEL:
THE WINDOW OBJECT

The window object represents the current
browser window or tab. It is the topmost object
in the Browser Object Model, and it contains

other objects that tell you about the browser.

Here are a selection of the
window object's properties and

methods. You can also see
some properties of the screen
and hi story objects (which are

children of the window object).

PROPERTY

window . innerHeight

window.innerWidth

window.pageXOffset

window . pageYOffset

window.screenX

window . screenY

window.location

window.document

window.history

DESCRIPTION

Height of window (excluding browser chrome/user interface) (in pixels)

Width of window (excluding browser chrome/user interface) (in pixels)

Distance document has been scrolled horizontally (in pixels)

Distance document has been scrolled vertically (in pixels)

X-coordinate of pointer, relative to top left corner of screen (in pixels)

Y-coordinate of pointer, relative to top left corner of screen (in pixels)

Current URL of window object (or local file path)

Reference to document object, which is used to represent the current page
contained in window

Reference to history object for browser window or tab, which contains details
of the pages that have been viewed in that window or tab ...

window. hi story . length Number of items in hi story object for browser window or tab

window.screen Reference to screen object

window.screen .width Accesses screen object and f inds value of its width property (in pixels)

window. screen.height Accesses screen object and finds value of its height property (in pixels)

METHOD DESCRIPTION

window . a 1 ert () Creates dialog box with message (user must cl ick OK button to close it)

window. open () Opens new browser window with URL specified as parameter (if browser has

.. ~?P..:.~.~-~-1?.~~i-~.?-~.~.!.!~~.~=--~~.:~a..~.1.:~'. .. ~~~.: .. ~.:.!.~.?~ .. ~~t.~.~~.~.?.~.~L
window.print() Tells browser that user wants to print contents of current page (acts like user has

clicked a print option in the browser's user interface)

8 FUNCTIONS, METHODS & OBJECTS

USING THE BROWSER
OBJECT MODEL

Here, data about the browser is
col lected from the window object

and its children, stored in the msg
variable, and shown in the page.

The+= operator adds data onto
the end of the msg variable.

1. Two of the window object's
properties, i nnerWi dth and

i nnerHei ght, show width and

height of the browser window.

JAVASCRIPT

2. Child objects are stored as

properties of t heir parent object.
So dot notation is used to access
them, just like you would access
any other property of that object.

In turn, to access the properties

of the child object, another dot is

used between the chi ld object's
name and its properties,

e.g., window. history . length

3. The element whose id
attribute has a value of info is

selected, and the message that
has been built up to this point is
written into the page.

See p228 for notes on using

i nnerHTML because it can be
a security risk if it is not used

correctly.

c03/ js/window-obj ect .js

~var msg = '<h2>browser window</h2><p>wi dth : ' + window. innerWi dth + ' </p>' ;

~msg += '<p>height: ' + wi ndow. i nnerHeight + '</p>';

msg += ' <h2>hi story</h2><p>items : ' + window.h i story. l ength+ 1 </p> 1
;

msg += ' <h2>screen</h2><p>width : ' +window. screen . width+ 1 </ p> ' ;
msg += ' <p>heigh t : ' + wi ndow . screen . height+ '</p>';

~var el = document.getElementByld(' i nfo ');
~el .i nnerHTML = msg;

© al ert (' Current page : ' +wi ndow. locati on);

4 . The window object's alert()

method is used to create a dialog
box shown on top of the page.

It is known as an alert box.
Although this is a method of the
window object, you may see it

used on its own (as shown here)

because the window object is
treated as the default object if

none is specified. (Historically,
the alert () method was used to

display warnings to users. These
days there are better ways to

provide feedback.)

FUNCTION S, METHODS & OBJ ECTS @

THE DOCUMENT
OBJECT MODEL:
THE DOCUMENT OBJ ECT

The topmost object in the Document Object Model (or DOM) is the
document object. It represents the web page loaded into the current
browser window or tab. You meet its child objects in Chapter 5.

Here are some properties of the
document object, which tel l you

about the current page.

PROPERTY

document.title

document. l astModified

document .URL

document.domain

The DOM is vital to accessing
and amending the contents of

the current web page.

METHOD

document.write()

document . getElementByld()

As you will see in Chapter 5, the
DOM also creates an object for

each element on the page.

DESCRIPTION

Title of current document

Date on which document was last modified

Returns string containing URL of current document

Returns domain of current document

The following are a few of the
methods that select content or

update the content of a page.

DESCRIPTION

Writes text to document (see restrictions on p226)

Returns element, if there is an element with the value of the id attribute
that matches (fu ll description see p195)

document. querySe 1ectorA11 () Returns list of elements that match a CSS selector, which is specified as
a parameter (see p202)

•••••"•••••••••••••••••••••o•••-•• .. "'''"-''''"''''"''''''''"'''''''"'''''''''' '''''' ·•••••••••"'''''""*''''' ' '''''''''' ' ''''''''''''''''''''''''''''' .. '''' ' '''''''''' ' '''' ' '''''''"' ' ' ''' ' ' ' ' ''' ' ' ' ' ' '''''''''' '"'''''''''''''''''''''''''''_.,_,,_.,,,,, ,,.,,,,,,,.,,.,,,,,,,,,

document.createElement() Creates new element (see p222)

document.createTextNode() Creates new text node (see p222)

s FUNCTIONS, METHODS & OBJECTS

'

USING THE DOCUMENT
OBJECT

This example gets information

about the page, and then adds

that information to the footer.

1. The details about the page are

collected from properties of the

document object.

JAVASCRIPT

These details are stored inside

a variable called msg, along

with HTML markup to display

the information. Again, the +=

operator adds the new value

onto the existing content of the

msg variable.

2. You have seen the document
object's get El ementByid ()

method in several examples so

far. It selects an element from

the page using the value of its

id attribute. You will see this

method in more depth on p195.

c03/ j s/document -obj ect . js

var msg = '<p>page ti t l e: ' + document.title + '
 ' ;
msg += 'page address: ' +document.URL+ '
';
msg += 'last modifi ed : ' + document. l astModified + ' </p>' ;

~var el = document .getElementByld('footer');
~el . i nnerHTML = msg ;

l;IJjiJSI

page title: TravelWorthy
page address: http://javascriptbook.com/code/co3/document-object.html
last modified: 03'10/2014 14:46:23

See p228 tor notes on using

i nnerHTML because it can be

a security risk if it is not used
correctly.

The URL w ill look very different

if you run this page locally rather

than on a web server. It wi ll likely

begin with fi 1 e: ///rather than

w ith ht tp: I/.

FUN CTIONS, METHODS & OBJECTS @

GLOBAL OBJECTS:
STRING O BJECT

Whenever you have a value that is a string, you can use the properties

and methods of the String object on that value. This example stores the

phrase "Home sweet home " in a variable.

. var saying

These properties and methods

are often used to work with text
stored in variables or objects.

On the right-hand page, note
how the variable name (saying)

is followed by a dot, then the
property or method that is being

demonstrated (like the name of
an object is fo llowed by a dot

and its properties or methods).

This is why the String object is

known as both a global object ,

because it works anywhere
within your script, and a wrapper

object because it acts like a

wrapper around any value that
is a string - you can use this

object's properties and methods

on any value that is a string.

The length property counts
the number of "code units" in a

string. In the majority of cases,

one character uses one code
unit, and most programmers use

it like this. But some of the rarely
used characters take up two

code units.

e FUNCTIONS, METHODS & OBJECTS

'Home sweet home •
'

PROPERTY

length

DESCRIPTION

Returns number of characters in the string
in most cases (see note bottom-left)

METHOD DESCRIPTION

toUpperCase () Changes string to uppercase characters

tolowerCase () Changes string to lowercase characters

charAt ()

i ndexOf()

lastlndexOf()

substring()

split()

trim()

replace()

Takes an index number as a parameter, and returns
the character found at that position

Returns index number of the first time a character or
set of characters is found within the string

Returns index number of the last time a character or
set of characters is found within the string

Returns characters found between two index
numbers where the character for the first index
number is included and the character for the last
index number is not included

When a character is specified, it spli ts the string
each t ime it is found, then stores each individual part
ih an array

Removes whitespace from start and end of string

Like find and replace, it takes one value that should
be found, and another to replace it (by default, it only
replaces the fi rst match it finds)

Each character in a string is automatically given a number, called an index
number. Index numbers always start at zero and not one (just like for
items in an array).

Home sweet home
eoeeoooeoeeeeeoe

EXAMPLE RESULT

saying. 1 ength; Home sweet home 16

EXAMPLE RESULT

saying . toUpperCase(); Home s weet home 'HOME SWEET HOME I

saying . tolowerCase(); Home s weet home 'home sweet home '

saying.charAt(12); Home sweet h o me 'o'

saying.indexOf('ee'); H o m e s w e e t h o m e 7

saying.lastlndexOf('e'); Home sweet hom e 14

saying.substring(8,14); Home swe et h om e 'et horn '

saying.split(' ') ; H om e s w·e e t h om e ['Home' , 'sweet' , 'home' , ' ']

saying.trim(); H o m e s w e e t h o m e 'Home sweet home'

saying.replace('me','w'); Ho me sweet home 'How sweet home '

FUNCTIONS, METHODS & OBJECTS 8

WORKING WITH STRINGS

This example demonstrates the
1 ength property and many of the
st ring object's methods shown

on the previous page.

1. This example starts by storing
the phrase "Home sweet home "
in a variable called saying.

JAVASCRIPT

2. The next line tells you how

many characters are in the string
using the 1 ength property of the

String object and stores the

result in a variable called msg.
3. This is followed by examples
showing several of the Stri ng
object's methods.

G) var saying= 'Home sweet home ';
~ var msg = '<h2>length</h2><p> ' +saying.length+ '</p>';

The name of the variable

(saying) is followed by a dot,

then the property or method that
is being demonstrated (in the

same way that the other objects

in this chapter used the dot
notation to indicate a property or
method of an object).

c03/ js/string-object .js

msg += '<h2>uppercase</ h2><p>' + saying .toUpperCase() + '</ p>';
msg += ' <h2>l owercase</ h2><p>' + saying.tolowerCase() + '</ p>';
msg += ' <h2>character index : 12</h2><p>' + saying.charAt(l2) + '</p>';

3 msg += '<h2>first ee</h2><p>' + saying.indexOf(' ee ') + '</p> ';
msg += '<h2>last e</h2><p>' + saying.lastlndexOf('e') + '</ p>';
msg += '<h2>character index: 8-14</ h2><p>' + saying.substring(8, 14) + '</ p>';
msg += '<h2>replace</ h2><p>' + saying.replace('me', 'w') + '</ p>' ;

~var el = document .getElement Byld('info') ;
~el .innerHTML = msg;

@ FUNCTIONS, METHODS & OBJECTS

4. The final two lines select the

element with an id attribute
whose value is info and then

add the value of the msg variable

inside that element.

(Remember, security issues with

using the i nnerHTML property
are discussed on p228.)

DATA TYPES REVISITED

In JavaScript there are six data types:

Five of them are described as simple (or primitive) data types.

The sixth is the object (and is referred to as a complex data type).

SIMPLE OR PRIMITIVE DATA TYPES

JavaScript has five simple (or primitive) data types:

1. String

2. Number

3. Boolean

4 . Undefined (a variable that has been declared, but

no value has been assigned to it yet)

5. Null (a variable with no value - it may have had

one at some point, but no longer has a value)

As you have seen, both the web browser and the

current document can be modeled using objects

(and objects can have methods and properties).

But it can be confusing to discover that a simple

value (like a string, a number, or a Boolean) can have

methods and properties. Under the hood, JavaScript

treats every variable as an object in its own right.

St ring: If a variable, or the property of an object,

contains a string, you can use the properties and

methods of the String object on it.

Number: If a variable, or property of an object,

stores a number, you can use the properties and

methods of the Number object on it (see next page).

Boolean: There is a Boo 1 ean object. It is rarely used.

(Undefined and null values do not have objects.)

COMPLEX DATA TYPE

JavaScript also defines a complex data type:

6 .0bject

Under the hood, arrays and functions are considered

types of objects.

ARRAYS ARE OBJECTS

As you saw on p118, an array is a set of key/value

pairs (just like any other object). But you do not

specify the name in the key/value pair of an array - it

is an index number.

like other objects, arrays have properties and

methods. On p72 you saw that arrays have a

property called 1 ength, which tells you how many

items are in that array. There is also a set of methods

you can use with any array to add items to it, remove

items from it, or reorder its contents. You wil l meet

those methods in Chapter 12.

FUNCTIONS ARE OBJECTS

Technically, functions are also objects. But they

have an additional feature: they are callable, which

means you can tell the interpreter when you want to

execute the statements that it contains.

FUNCTIONS, METHODS & OBJECTS @

GLOBAL OBJECTS:
NUMBER OBJECT

Whenever you have a value that is a number,

you can use the methods and properties of the
Number object on it.

These methods are helpful

when dealing with a range of
applications from financial

calculations to animations.

METHOD

i sNaN ()

M any calculat ions involving

currency (such as tax rates) will

need to be rounded to a specific
number of decimal places.

DESCRIPTION

Checks if the value is not a number

Or, in an animation, you might
want to specify that certain

elements. should be evenly
spaced out across the page.

toFi xed() Rounds to specified number of decimal places (returns a string)

toPreci s i on() Rounds to total number of places (returns a st ring)

toExponen ti a 1 () Returns a string representing the number in exponential notation

COMMONLY USED TERMS:

• An integer is a whole number (not a fraction).
• A real number is a number that can contain a fractional part.

• A floating point number is a real number that uses decimals to represent a fraction. The term floating point

refers to the decimal point.

• Scientific notation is a way of writing numbers that are too big or too small to be convenient ly written in
decimal form. For example: 3,750,000,000 can be represented as 3.75 x109 or 3.75e+12.

§ FUNCTIONS, METHODS & OBJECTS

'

'

WORKING WITH
DECIMAL NUMBERS

As with the String object the

properties and methods of the
Number object can be used with
with any value that is a number.

JAVASCRIPT

1. In this example, a number
is stored in a variable called

ori ginalNumber, and it isthen
rounded up or down using two
different techniques.

G) var originalNumber = 10.23456;
3 ~<..~mo-.\ ~\...,C:.C.S

In both cases, you need to
indicate how many digits
you want to round to. This is

provided as a parameter in the
parentheses for that method.

c03/ js/ number-object.js

var msg = '<h2>original number</h2><p> ' + ori ginalNumber + ' </p>';
~ msg += '<h2> ()</h2><p>' + origina1Number.toFixed(3); + '</p> ' ;
~ msg += '<h2> ()</h2><p> ' + original Number.toPrecision(3) + ' </p>';

var el = document.getElementByld('i nfo'};
el . innerHTML = msg ; 3 di~i~s

i;IJiiJ51 2.originalNumber.toFixed(3)

wi ll round the number stored
in the variable ori gi na l Number
to three decimal places. (The

number of decimal places is
specified in the parentheses.)

It will return the number as a

string. It returns a string because
fractions cannot always be

accurately represented using
floating point numbers.

2.toPrecision(3) uses the

number in parentheses to
indicate the total number of

digits the number should have.

It wi ll also return the number
as a string. (It may return a
scientific notation if there are

more digits than the specified
number of positions.)

FUNCTIONS, METHODS & OBJECTS @

GLOBAL OBJECTS:
MATH OBJECT

The Math object has properties and methods

for mathematical constants and functions.

PROPERTY DESCRIPTION

Math.PI Returns pi (approximately 3.14159265359)

METHOD DESCRIPTION

Math. round() Rounds number to the nearest integer

Mat h. sqrt (n) Returns square root of positive number, e.g., Math. sqrt (9) returns 3
... ······ ·························
Math. cei 1 () Rounds number up to the nearest integer

Ma th. floor()

Math. random()

Because it is known as a global
object, you can just use the

name of the Math object followed

by the property or method you

want to access.

Rounds number down to the nearest integer

Generates a random number between 0 (inclusive) and 1 (not inclusive)

Typically you will then store the
resulting number in a variable.

This object also has many

trigonometric functions such as
si n(), cos () , and tan().

The trigonometric functions
return angles in radians which

can then be converted into

degrees if you divide the number
by (pi/ 180).

9 FUNCTIONS, METHODS & OBJECTS

MATH OBJECT TO CREATE
RANDOM NUMBERS

This example is designed to

generate a random whole
number between 1 and 10.

The Math object's random()
method generates a random

number between 0 and 1 (with

many decimal places).

JAVASCRIPT

To get a random whole number
between 1 and 10, you need to
multiply the randomly generated

number by 10.

This number wi ll still have many
decimal places, so you can round

it down to the nearest integer.

The floor() method is used
to specifically round a number
down (rather than up or down).

This will give you a value

between 0 and 9. You then add
1 to make it a number between 1

and 10.

c03/js/math-object.js

var randomNum = Math.floor((Math.random() * 10) + l);

var el = document.getElementByid('info');
el .innerHTML = '<h2>random number</h2><p>' + randomNum + 1 </p>';

l:jJiiJSI If you used the round () method
instead of the floor() method,
the numbers 1 and 10 would

be chosen around half of the

number of times that 2-9 would
be chosen.

Anything between 1.5 and 1.999
would get rounded up to 2, and

anything between 9 and 9.5
would be rounded down to 9.

Using the floor () method

ensures that the number is
always rounded down to the

nearest integer, and you can

then add 1 to ensure the number
is between 1and10.

FUNCTIONS, METHODS & OBJECTS @

GLOBAL OBJECTS:
DATE OBJECT (AND TIME)

Once you have created a Date object, the following methods let you set

and retrieve the time and date that it represents.

METHOD DESCRIPTION

getDate() setDate() Returns I sets the day of the month (1-31)
··•··· .. .
getDay () Returns the day of the week (0-6)

getFul 1 Year() setFul 1 Year () Returns I sets the year (4 digits)

getHours () setHours () Returns I sets the hour (0-23)

getMi 11 i seconds () setMi 11 i seconds () Returns I sets the milliseconds (0-999)
oooo .. OoOOoOOOOOOOOOOOOOOoO OOo-+o oooo+o .. + .. ooo·• ·ooo o+ooooOoo00000000>00000+0000000000000000000000000000000-0000-0000 .. 00000HOOOO+O>Ooo·Ooo ooooooooooo 00000000000000 , •• _,,, - •• 00000000 0*000 ... 000 .. 0 .. 0000 .. 00 .. 000000•0•>+ooo ooooo ooooo+oo+ o o

getMi nutes () setMi nutes () Returns I sets the minutes (0-59)
............................. u -

getMonth () setMonth () Returns/ sets the month (0-11)

getSeconds() setSeconds() Returns I sets the seconds (0-59)

Number of milliseconds since January 1, 1970,
get Ti me() setTi me() 00:00:00 UTC (Coordinated Universal Time)

and a negative number for any t ime before
getTi mezoneOffset () Returns time zone offset in mins for locale
...
toDateStri ng () Returns "date" as a human-readable string

to Ti meStri ng () Returns "time" as a human-readable string
... -... .
to String() Returns a string representing the specified date

The toDateStri ng () method

will display the date in the

fo llowing format:
Wed Apr 16 1975.

If you want to display the date in
another way, you can construct

a different date format using the
individual methods listed above

to represent the individual parts:
day, date, month, year.

toTimeStri ng () shows the time.

Several programming languages
specify dates in milliseconds

since midnight on Jan 1, 1970.
This is known as Unix time.

A visitor's location may affect
time zones and language spoken.

Programmers use the term
locale to refer to this kind of

location-based information.

The Date object does not store
the names of days or months as

they vary between languages.

Instead, it uses a number from

0 to 6 for the days of the week
and 0to11 for the months.

To show their names, you need

to create an array to hold them
(see p143).

FUNCTIONS, METHODS & OBJECTS 8

CREATING A DATE OBJ ECT

1. In this example, a new Date

object is created using the

Date {) object constructor

It is called today.

JAVASCRIPT

CD var t oday = new Date();

If you do not specify a date
when creating a Date object, it

w ill contain the date and t ime
when the JavaScript interpreter

encounters that line of code.

(3) var year = today .getFullYear();

~var el = document .getElementByld('footer');
~el .innerHTML = '<p>Copyright ©' +year+ '</p>';

•ati•H•
j

Copyright © 2014

@ FUNCTIONS, METHODS & OBJECTS

Once you have an instance of the

Date object (holding the current
date and time), you can use any

of its properties or methods.

c03/js/date-object . js

2. In this example, you can see
that getFull Year() is used to

return the year of the date being

stored in the Date object.

3. In this case, it is being used
to write the current year in a
copyright statement.

'

.,

WORKING WITH
DATES & TIMES

To specify a date and time, you
can use this format:

YYYY, MM, OD, HH, MM, SS
1996, 04, 16, 15, 45 , 55

This represents 3:45pm and 55
seconds on Apri l 16, 1996.

JAVASCRIPT

var today= new Date();

The order and syntax for this is:

Year four digits
Month 0-11 (Jan is 0)

Day 1-31
Hour 0-23

M inutes 0-59
Seconds 0-59
Milliseconds 0-999

var year= today.getFullYear();
var est= new Oate('Apr 16, 1996 15:45:55 ');

11) var difference= today.getTime() - est.getTime();
Q) difference= (difference/ 31556900000);

var elMsg = document.getElementByid('message');

Another way to format the date

and time is like this:

MMM 00, YYYY HH:MM:SS
Apr 16, 1996 15 :45:55

You can omit the time portion if

you do not need it.

c03/js/date-object-difference.js

elMsg.textContent = Math.floor(difference) + ' years of online travel advice';

•4!i'l5' 1. In this example, you can see a

date being set in the past.

2. If you try to find the difference
between two dates, you will end

up with a result in milliseconds.

3. To get the difference in

days/weeks/years, you divide
this number by the number of

milliseconds in a day/week/year.

Here the number is divided by
31,556,900,000 - the number

of milliseconds in a year (that is
not a leap year).

FUNCTIONS, METHODS & OBJECTS @

METHODS & OBJECTS

EXAMPLE
FUNCTIONS,

METHODS & OBJECTS

This example is split into two parts. The first

shows you the detai ls about the hotel, room

rate, and offer rate. The second part indicates
when the offer expires.

All of the code is placed inside an immediately invoked function
expression (llFE) to ensure any variable names used in the script do not

clash with variable names used in other scripts.

The first part of the script creates a hot el object; it has three properties
(the hotel name, room rate, and percentage discount being offered), plus
a method to calculate the offer price which is shown to the user.

The details of the discount are written into the page using information

from this hote 1 object. To ensure that the discounted rate is shown with
two decimal places (like most prices are shown) the . to Fixed () method

of the Number object is used.

The second part of the script shows that the offer will expire in seven

days. It does this using a function called offerExpi res(). The date
currently set on the user's computer is passed as an argument to the
offerExpi res() function so that it can calculate when the offer ends.

Inside the function, a new Date object is created; and seven days is

added to today's date. The Date object represents the days and months
as numbers (starting at 0) so - to show the name of the day and month -
two arrays are created storing all possible day and month names. When

the message is written, it retrieves the appropriate day/month from

those arrays.

The message to show the expiry date is built up inside a variable called

ex pi ryMsg.The code that calls the offerExpi res () function and

displays the message is at the end of the script. It selects the element

where the message should appear and updates its content using the
i nnerHTML propert y, which you will meet in Chapter 5.

FUNCTIONS, METHODS & OBJECTS 8

EXAMPLE
FUNCTIONS, METHODS & OBJECTS

c03/j s/example.js JAVA SC RIPT

I* The scr i pt is placed i nside an immediately invoked function expression
which helps prot ect the scope of variab les *I

-(function() {

II PART ONE : CREATE HOTEL OBJECT AND WRITE OUT THE OFFER DETAILS

II Create a hotel obj ect using object l i t eral syntax
var hotel = {

name: 'Park',
roomRate: 240, II Amount in dollars
discount : 15, II Percentage di scount
offerPrice : function() {

var offerRate = this . roomRate * ((100 - this .discount) I 100);
return offerRate;

II Wri te out the hotel name , standard rate, and the special rat e
var hotel Name, roomRate, specialRate ; I I Declare variables

hotelName = document .getElementByid('hotelName');
roomRate = document.getElementByid('roomRate');
specialRate = document .getElementByld('specialRate');

II Get el ement s

hotelName.textContent = hotel .name; I I Write hotel name
roomRate.textContent = '$ ' + hotel . roomRate . toFixed(2) ; II Write room rate
specialRate . textContent = '$' +hotel .offerPrice(); II Write offer pri ce

If you read the comments in the code, you can see how this example works.

8 FUNCTIONS, METHODS & OBJECTS

'

EXAMPLE
FUNCTIONS, METHODS & OBJECTS

JAVASCRIPT c03/j s/example. j s

II PART TWO: CALCULAT E ANO WRITE OUT THE EX PIRY DETAILS FOR THE OFFER
var expiryMsg; II Message displ ayed t o users
var today ; II Today's dat e
var el Ends ; II The element that shows the message about the offer endi ng

function of ferExpires (today) {
II Decl are variables within the functi on for l ocal scope
var weekFromToday, day, date, month, year, dayNames , monthNames;
II Add 7 days time (added i n mi l li seconds)
weekFromToday =new Dat e(today .getTi me () + 7 * 24 * 60 * 60 * 1000) ;
I I Create arrays to hol d t he names of days I months
dayNames = [' Sunday' , ' Monday' , 'Tuesday ' , 'Wednesday ', 'Thursday' ,

0 ' Friday', 'Saturday '] ;
mont hNames =[' January', ' February', 'March', 'Apri l ', 'May ' , ' June ' ,

0 ' Jul y' , 'August ' , 'September' , 'October' , ' November' , 'December '] ;
II Collect the parts of the dat e t o show on t he page
day = dayNames [weekFromToday . getOay ()];
date= weekFromToday .getOate();
month= mont hNames[wee kFromToday.getMonth()] ;
year= weekFromToday .getFullYear() ;
I I Create the message
expi ryMsg = 'Offer expires next ' ;
expi ryMsg += day + ' <br I>(' +date+ ' ' +month+ ' ' +year + ')';
retu rn expiryMsg;

today= new Date() ;
elEnds = document .getEl ementByid('off erEnds');
elEnds .i nnerHTML = offerExpires(today) ;

II Put t oday's date in vari able
II Get t he offerEnds el ement
II Add t he expi ry message

II Finish the immediately i nvoked functi on exp ression
} ()) ;

0 This symbol indicates that
the code is wrapping from the

previous line and should not
contain line breaks.

This is a good demonstration of several concepts relating to date, but if
the user has the wrong date on their computer (perhaps their clock is set

incorrectly), it wi ll not show a date seven days from now - it wil l show a
date seven days from the time the computer thinks it is.

FUNCTIONS, METHODS & OBJECTS 8

Functions allow you to group a set of related

statements together that represent a single task.

Functions can take parameters (informatio rJ required

to do their job) and may return a value.

An object is a series of variables and functions that

represent something from the world around you .

In an object, variables are known as properties of the

object; functions are known as methods of the object.

Web browsers implement objects that represent both

the browser window and the document loaded into the

browser window.

JavaScript also has several built-in objects such as

String, Number, Math, and Date. Their properties and

methods offer functionality that help you write scripts.

Arrays and objects can be used to create complex data

sets (and both can contain the other).

