

Looking at a flowchart (for all but the most basic scripts),
the code can take more than one path, which means the
browser runs different code in different situations. In this
chapter, you will learn how to create and control the flow of
data in your scripts to handle different situations.

Scripts often need to behave differently depending upon how the user interacts with the web
page and/or the browser window itself. To determine which path to take, programmers often
rely upon the following three concepts:

EVALUATIONS

You can analyze values in
your scripts to determine
whether or note they
match expected results.

DECISIONS & LOOPS

DECISIONS

Using the results of
evaluations, you can
decide which path your
script should go down.

LOOPS

There are also many
occasions where you will
want to perform the same
set of steps repeatedly.

mathia ¥ iy
- et { (T &

I——

- ——

EUWLLsEYIEL

TARGET FRACTICE FOH YOUR MING

0 0 3 R

1+
2
3.
LTS
5+
B
7+
L K2
R
1 3

DECISIONS & LOOPS

DECISION MAKING

There are often several places in a script where decisions are made that
determine which lines of code should be run next. Flowcharts can help
you plan for these occasions.

In a flowchart, the diamond shape represents a In order to determine which path to take, you set
point where a decision must be made and the code a condition. For example, you can check that one
can take one of two different paths. Each pathis value is equal to another, greater than another, or
made up of a different set of tasks, which means less than another. If the condition returns true, you
you have to write different code for each situation. take one path; if it is false, you take another path.

Is test score
greater than
507?

Message: Try again... Message: You passed!

[CONTINUE SCRIPT...

In the same way that there are operators to do basic Examples of comparison operators include the
math, or to join two strings, there are comparison greater than (=) and less than (<) symbols, and
operators that allow you to compare values and test double equals sign (==) which checks whether two
whether a condition is met or not. values are the same.

DECISIONS & LOOPS

EVALUATING CONDITIONS &
CONDITIONAL STATEMENTS

There are two components to a decision:
1: An expression is evaluated, which returns a value
2: A conditional statement says what to do in a given situation

EVALUATION OF A CONDITION CONDITIONAL STATEMENTS

In order to make a decision, your code checks A conditional statement is based on a concept of

the current status of the script. This is commonly if/then/else; if a condition is met, then your code

done by comparing two values using a comparison executes one or more statements, else your code

operator which returns a value of true or false. does something different (or just skips the step).
CONDITION

| ' , WHAT THIS IS SAYING:
1 f (score > 50) { if the condition returns true
document.wr.ite(1 YOU passed! 1) ; execute the statements between

the first set of curly brackets

} 91 se { otherwise
document wr.i te (1 Try aga.‘ n 1) . execute the statements between

s the second set of curly brackets

(You will also meet truthy and
falsy values on p167. They are
treated as if true or false.)

You can also multiple conditions by combining two Over the next few pages, you will meet several

or more comparison operators. For example, you permutations of the if. .. statements, and also a
can check whether two conditions are both met, statement called a switch statement. Collectively,
or if just one of several conditions is met. these are known as conditional statements.

DECISIONS & LOOPS

COMPARISON OPERATORS:
EVALUATING CONDITIONS

You can evaluate a situation by comparing one value in the script to what
you expect it might be. The result will be a Boolean: true or false.

IS EQUAL TO

This operator compares two values (numbers,
strings, or Booleans) to see if they are the same.

'Hello"' == 'Goodbye' returns false
because they are not the same string.
'Hello' == "Hello' returns true

because they are the same string.

It is usually preferable to use the strict method:
—— —— —
I .

STRICT EQUAL TO

This operator compares two values to check that
both the data type and value are the same.

'3" === Jreturns false

because they are not the same data type or value.
'3" === '3' returns true

because they are the same data type and value.

DECISIONS & LOOPS

IS NOT EQUAL TO

This operator compares two values (numbers,

strings, or Booleans) to see if they are not the same.

"Hello' != 'Goodbye' returns true
because they are not the same string.
'Hello' != 'Hello' returns false

because they are the same string.

It is usually preferable to use the strict method:

STRICT NOT EQUAL TO

This operator compares two values to check that
both the data type and value are not the same.

'3' I== 3returns true

because they are not the same data type or value.
'3" I== '3' returns false

because they are the same data type and value.

Programmers refer to the testing or checking of a
condition as evaluating the condition. Conditions
can be much more complex than those shown here,
but they usually result in a value of true or false.

>

GREATER THAN

This operator checks if the number on the left is
greater than the number on the right.

4 > 3returns true
3 > 4returns false

> =

GREATER THAN OR EQUAL TO

This operator checks if the number on the left is
greater than or equal to the number on the right.

4 >= 3returns true
3 >= 4returns false
3 >= 3returns true

There are a couple of notable exceptions:

i) Every value can be treated as true or false even if it
is not a Boolean true or false value (see p167).

i) In short-circuit evaluation, a condition might not
need to run (see p169).

L

LESS THAN

This operator checks if the number on the left is less
than the number on the right.

4 < 3returns false
3 < 4returns true

-

LESS THAN OR EQUAL TO

This operator checks if the number on the left is less
than or equal to the number on the right.

4 <= 3returns false
3 <= 4returns true
3 <= 3returns true

DECISIONS & LOOPS @

STRUCTURING
COMPARISON OPERATORS

In any condition, there is usually one operator and two operands.
The operands are placed on each side of the operator. They can be
values or variables. You often see expressions enclosed in brackets.

ENCLOSING BRACKETS
l

(score >= pass)

OPERAND COMPARISON OPERAND

OPERATOR
If you remember back to Chapter 2, thisis an The enclosing brackets are important when the
example of an expression because the condition expression is used as a condition in a comparison
resolves into a single value: in this case it will be operator. But when you are assigning a value to a
either true or false. variable, they are not needed (see right-hand page).

@ DECISIONS & LOOPS

USING

COMPARISON OPERATORS

JAVASCRIPT c04/js/comparison-operator.js

var pass = 50; // Pass mark
var score = 90; // Score

// Check if the user has passed
var hasPassed = score >= pass;

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = 'Level passed: ' + hasPassed;

Level passed: true

At the most basic level, you can
evaluate two variables using a
comparison operator to return a
true or false value.

In this example, a user is taking a
test, and the script tells the user
whether they have passed this
round of the test.

The example starts by setting
two variables:

1. pass to hold the pass mark

2. score to hold the users score

To see if the user has passed,

a comparison operator checks
whether score is greater than or
equal to pass. The result will be
true or false, and is stored in

a variable called hasPassed. On
the next line, the result is written
to the screen.

The last two lines select the
element whose 1id attribute

has a value of answer, and then
updates its contents. You will
learn more about this technique
in the next chapter.

DECISIONS & LOOPS @

USING EXPRESSIONS WITH
COMPARISON OPERATORS

The operand does not have to be a single value or variable name.
An operand can be an expression (because each expression evaluates
into a single value).

ENCLOSING BRACKETS
|

((scorel + score2) > (highScorel + highScore2))

L] | L]
I I
OPERAND COMPARISON OPERAND
OPERATOR

DECISIONS & LOOPS

COMPARING
TWO EXPRESSIONS

In this example, there are two The script starts by storing the The comparison operator checks
rounds to the test and the user's scores for each round if the user's total score is greater
code will check if the user has in variables. Then the highest than the highest score for the
achieved a new high score, scores for each round are stored test and stores the resultin a
beating the previous record. in two more variables. variable called comparison.
c04/js/comparison-operator-continued.js
var scorel = 90; // Round 1 score
var score2 = 95; // Round 2 score

var highScorel
var highScore2

75; // Round 1 high score
95; // Round 2 high score

// Check if scores are higher than current high scores
var comparison = (scorel + score2) > (highScorel + highScore2);

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = 'New high score: ' + comparison;

RESULT In the comparison operator, the
operand on the left calculates

the user's total score. The
operand on the right adds
together the highest scores for
el T each round. The result is then
New hlghscore: true added to the page.

When you assign the result of
the comparison to a variable,
you do not strictly need the
containing parentheses (shown
in white on the left-hand page).

Some programmers use them
anyway to indicate that the code
evaluates into a single value.
Others only use containing
parentheses when they form
part of a condition.

DECISIONS & LOOPS @

LOGICAL OPERATORS

Comparison operators usually return single values of true or false.
Logical operators allow you to compare the results of more than one
comparison operator.

Do expression 1and expression 2 both evaluate to true?
false

EXPRESSION 3

((5 < 2) 88 (2 > 3))

| |
LOGICAL

EXPRESSION1 OPERATOR EXPRESSION 2
Is five less than two? Is two greater than or equal to three?
false false
In this one line of code are three expressions, each The third expression uses a logical operator (rather
of which will resolve to the value true or false. than a comparison operator). The logical AND
operator checks to see whether both expressions on
The expressions on the left and the right both use either side of it return true (in this case they do not,
comparison operators, and both return false. so it evaluates to false).

DECISIONS & LOOPS

&&

LOGICAL AND

This operator tests more than
one condition.

((2 < 5) 8& (3 >=2))
returns true

If both expressions evaluate to
true then the expression returns
true. If just one of these returns
false, then the expression will
return false.

true && true returns true
true 8& false returns false
false && true returns false
false && false returns false

LOGICAL OR

This operator tests at least one
condition.

((2<5) || (2<1))

returns true

If either expression evaluates
to true, then the expression
returns true. If both return
false, then the expression will
return false.

true || true returns true
true || false returns true
false || true returns true
false || false returns false

®
LOGICAL NOT

This operator takes a single
Boolean value and inverts it.

1(2 < 1)
returns true

This reverses the state of an
expression. If it was false
(without the ! before it) it would
return true. If the statement
was true, it would return false.

Itrue returns false
1false returns true

SHORT-CIRCUIT EVALUATION

Logical expressions are
evaluated left to right.

If the first condition can provide
enough information to get the
answer, then there is no need to
evaluate the second condition.

false && anything

~

it has found a false

There is no point continuing to
determine the other result.
They cannot both be true.

true || anything
it has found a true
There is no point continuing

because at least one of the
values is true.

DECISIONS & LOOPS @

USING LOGICAL AND

In this example, a math test The logical AND is used to see The example finishes off by
has two rounds. For each round if the user's score is greater letting the user know whether
there are two variables: one than or equal to the pass mark or not they have passed both
holds the user's scare for that in both of the rounds of the test. rounds.

round; the other holds the pass The result is stored in a variable

mark for that round. called passBoth.

c04/js/1ogical-and. js

var scorel = 8; // Round 1 score
var score2 = 8; // Round 2 score
var passl = 63 // Round 1 pass mark
var pass2 = 6; // Round 2 pass mark

// Check whether user passed both rounds, store result in variable
var passBoth = (scorel >= passl) && (score2 >= pass2);

// Create message
var msg = 'Both rounds passed: ' + passBoth;

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = msg;

It is rare that you would ever
RESULT
write the Boolean result into the -

page (like we are doing here).
As you will see later in the
chapter, it is more likely that you
would check a condition, and if it
is true, run other statements.

DECISIONS & LOOPS

USING LOGICAL OR
& LOGICAL NOT

Here is the same test but this Look at the numbers stored in Next, the message is stored
time using the logical OR operator the four variables at the start in a variable called msg. At the
to find out if the user has passed of the example. The user has end of the message, the logical
at least one of the two rounds. passed both rounds, so the NOT will invert the result of the
If they pass just one round, they minPass variable will hold the Boolean variable so it is false.
do not need to retake the test. Boolean value of true. It is then written into the page.

JAVASCRIPT c04/js/logical-or-logical-not.js

var scorel = 8 // Round 1 score
var score2 = 8; // Round 2 score
var passl = 6; // Round 1 pass mark
var pass2 = 6; // Round 2 pass mark

// Check whether user passed one of the two rounds, store result in variable
var minPass = ((scorel >= passl) || (score2 >= pass2));

// Create message
var msg = 'Resit required: ' + !(minPass);

// Write the message into the page
var el = document.getElementById('answer');
el.textContent = msg;

Resit required: false

DECISIONS & LOOPS

IF STATEMENTS

The i f statement evaluates (or checks) a condition. If the condition
evaluates to true, any statements in the subsequent code block are

executed.
OPENING
KEYWORD CONDITION CURLY BRACE
I I By : 1 |
if (score >= 50) {
congratulate();
9
1]
} |
CODE TO EXECUTE IF VALUE IS TRUE
CLOSING
CURLY BRACE
If the condition evaluates to true, the following If the condition resolves to false, the statements in
code block (the code in the next set of curly braces) that code block are not run. (The script continues to
is executed. run from the end of the next code block.)

DECISIONS & LOOPS

USING IF STATEMENTS

var score = 75;
var msg;

c04/js/if-statement.js

// Score
// Message

if (score >= 50) { // If score is 50 or higher
msg = 'Congratulations!';
msg += ' Proceed to the next round.';

}
var el = document.getElementById('answer');
el.textContent = msg;

Congratulations!
Proceed to the next
round.

JAVASCRIPT

var score = 75;
]

1

var msg = '';

c04/js/if-statement-with-function.js

// Score
// Message

function congratulate() {
msg += 'Congratulations! ';

}

if (score >= 50) { // If score is 50 or more
congratulate():
msg += 'Proceed to the next round.';
}
var el = document.getElementById('answer');
el.innerHTML = msg;

©O

In this example, the i f statement
is checking if the value currently
held in a variable called score is
50 or more.

In this case, the statement
evaluates to true (because the
score is 75, which is greater than
50). Therefore, the contents

of the statements within the
subsequent code block are

run, creating a message that
congratulates the user and tells
them to proceed.

After the code block, the
message is written to the page.

If the value of the score variable
had been less than 50, the
statements in the code block
would not have run, and the code
would have continued on to the
next line after the code block.

On the left is an alternative
version of the same example
that demonstrates how lines of
code do not always run in the
order you expect them to. If the
condition is met then:

1. The first statement in the code
block calls the congratulate()
function.

2. The code within the
congratulate() function runs.
3. The second line within the i f
statement's code block runs.

DECISIONS & LOOPS

IF...ELSE STATEMENTS

The if...else statement checks a condition.
If it resolves to true the first code block is executed.
If the condition resolves to false the second code block is run instead.

if (score >= 50) {
congratulate();

I
} CODE TO EXECUTE IF VALUE IS TRUE

else {
encourage();

|
} CODE TO EXECUTE IF VALUE IS FALSE

@ CONDITIONAL STATEMENT @ CONDITION @ IFCODEBLOCK @ ELSE CODE BLOCK

DECISIONS & LOOPS

JAVASCRIPT

var pass = 50;
var score = 75; // Current score

var msg; // Message

// Select message to write based on score

if (score >= pass) {

}
}

var el = document.getElementById('answer');

msg = 'Congratulations, you passed!’;

else {
msg = 'Have another go!';

el.textContent = msg;

HSING I LBl E
STATEMENTS

Here you can see that an

c04/js/if-else-statement.js
f3s/ if...else statement allows you

// Pass mark to provide two sets of code:

1. one set if the condition
evaluates to true

2. another set if the condition is
false

In this test, there are two
possible outcomes: a user can
either get a score equal to or
greater than the pass mark
(which means they pass), or
they can score less than the pass
mark (which means they fail).
One response is required for
each eventuality. The response is
then written to the page.

Note that the statements inside
an if statement should be
followed by a semicolon, but

Congratulations! ;
Proceed to the next there is no need to place one
' : after the closing curly brace of
round. the code blocks.
An if statement only runs a set of statements if the Anif...else statement runs one set of code if the

condition is true:

? Is score >= 507 ?

I
{ You passed!

J

continue script...

condition is true or a different set if it is false:

? Is score >= 50? ?

I I
Try again... You passed!

{ J

DECISIONS & LOOPS

SWITCH STATEMENTS

A switch statement starts with a switch (Tevel) {
variable called the switch value.
= - - I Eia
Each case indicates a possible case 'One’:
- ; . = 7
value for this variable and the title Level 13
code that should run if the break;
variable matches that value. o,
case 'Two':
title = 'Level 2';
Here, the variable named 1evel is the switch value. break s
If the value of the 1evel variable is the string One,
then the code for the first case is executed. If it is
Two, the second case is executed. If it is Three, the case 'Three':
third case is executed. If it is none of these, the code : e 1.
for the default case is executed. title = 'Level 3 2
break;
The entire statement lives in one code block (set
of curly braces), and a colon separates the option
from the statements that are to be run if the case default:
matches the switch value. title = 'Test' -
At the end of each case is the break keyword. It tells break ’
the JavaScript interpreter that it has finished with
this switch statement and to proceed to run any }
subsequent code that appears after it.
IF... ELSE SWITCH
® There is no need to provide an else ® You have adefault option that is run if
option. (You can just use an i f none of the cases match,
statement.) VS ® |f a match is found, that code is run; then
® With a series of if statements, they are " the break statement stops the rest of
all checked even if a match has been found the switch statement running (providing
(so it performs more slowly than switch). better performance than multiple i f

statements).

DECISIONS & LOOPS

USING SWITCH
STATEMENTS

dOAf3s]switch-statenent.fs | o+ oiE kel e iRCe
of the switch statementis to

var msg; // Message present the user \h.vith a diff.erent
var level = 2; // Level message depending on which
* level they are at. The message is

// Determine message based on level stored in a variable called msg.

switch (level
) The variable called 1evel

case 1:
msg = 'Good Tuck on the first test's contains a number indicating
breaks which level the user is on. This

is then used as the switch value.
case 2: (The switch value could also be

msg = 'Second of three - keep going!'; an expression.)

break;
In the following code block
case 3: (inside the curly braces), there
msg = 'Final round, almost there!'; are three options for what the
break: value of the Tevel variable might
be: the numbers 1, 2, or 3.
default:
msq = 'Good Tuck!'; If the value of the 1evel variable
break; ’ is the number 1, the value of the

} msg variable is set to ‘Good Tuck
on the first test'.

var el = document.getElementById('answer');

el.textContent = msg; If the value is 2, it will read:

‘Second of three - keep going!’

If the value is 3, the message
will read: 'Final round, almost

there!’

If no match is found, then the
value of the msg variable is set to

Second of three - 'Good Tuck!"

keep going!
Each case ends with the break
keyword which will tell the
JavaScript interpreter to skip
the rest of this code block and
continue onto the next.

DECISIONS & LOOPS

TYPE COERCION
& WEAK TYPING

If you use a data type JavaScript did not expect,
it tries to make sense of the operation rather
than report an error.

JavaScript can convert data DATA TYPE PURPOSE

types behind the scenes to string Text

complete an operation. This is

known as type coercion. For number Number

example, a string '1' could be Boolean true or false

converted to a number 1 in the

following expression: ('1' > 0). null Empty value

As a result, the above expression undefined Variable has been declared but not yet assigned a value

would evaluate to true.

JavaScript is said to use weak NaN is a value that is counted as a number. You may see it when a
typing because the data type number is expected, but is not returned, e.g., ('ten'/2) results in NaN.
for a value can change. Some

other languages require that you

specify what data type

each variable will be. They are

said to use strong typing.

Type coercion can lead to
unexpected values in your

code (and also cause errors).
Therefore, when checking if two
values are equal, it is considered
better to use strict equals
operators === and !==

rather than == and != as these
strict operators check that the
value and data types match.

DECISIONS & LOOPS

TRUTHY & FALSY

VALUES

Due to type coercion, every value in JavaScript
can be treated as if it were true or false; and
this has some interesting side effects.

FALSY VALUES

VALUE DESCRIPTION

var highScore = false; The traditional Boolean false

var highScore = 0; " The number zero

var h']ghSc.(.).;'.'.F:-""= by NaN (Not a Num r){

var highScore = 10/'score'; Empty valuai S

var highScore;

A variable with no value assigned to it

Almost everything else evaluates to truthy...

TRUTHY VALUES

VALUE DESCRIPTION

var highScore = true; The traditional Boolean true

var higﬁgcore = 1; Numbers other than zero
.\.'r.a.i';mb;%ghScoré. = Yearvotty Strings with C{;r.'n.tent

var highScore - 10/5; Number calculations

.\;‘ar highScore ;..“.;‘rue', tlr'ue wrsttenasastnng
var highScore = '0'; Zerowrittenasasting
var highScore = 'false's falsewrittenasastring

Falsy values are treated as if they
are false. The table to the left
shows a highScore variable with
a series of values, all of which
are falsy.

Falsy values can also be treated
as the number 0.

Truthy values are treated as if
they are true, Almost everything
that is not in the falsy table can
be treated as if it were true.

Truthy values can also be treated
as the number 1.

In addition, the presence of an
object or an array is usually
considered truthy, too. This is
commonly used when checking
for the presence of an element
in a page.

The next page will explain more
about why these concepts are
important. '

DECISIONS & LOOPS

CHECKING EQUALITY
& EXISTENCE

Because the presence of an object or array can
be considered truthy, it is often used to check
for the existence of an element within a page.

A unary operator returns a
result with just one operand.
Here youcanseean if
statement checking for the
presence of an element. If the
element is found, the result is
truthy, so the first set of code is
run. If it is not found, the second
set is run instead.

if (document.getElementById('header')) {

// Found: do something
} else {

// Not found: do something else

}

Those new to JavaScript often think the following would do the same:
if (document.getElementById('header') == true)

but document.getElementById('header') would return an object
which is a truthy value but it is not equal to a Boolean value of true.

Because of type coercion, the strict equality operators === and ! == result
in fewer unexpected values than == and ! = do.

If you use == the following values
can be considered equal:

false, 0,and '' (empty string).
However, they are not equivalent
when using the strict operators.

Although nul1 and undefined are
both falsy, they are not equal to
anything other than themselves.
Again, they are not equivalent
when using strict operators.

Although NaN is considered falsy,
it is not equivalent to anything;

it is not even equivalent to itself
(since NaN is an undefinable
number, two cannot be equal).

EXPRESSION RESULT EXPRESSION RESULT EXPRESSION RESULT
(false == 0) true (undefined == null) true (Nan == null) false
=== false T ==
(false 0) alse F——— yiti (NaN NaN) false
(false == '') true (undefined == false) false
(false === '') false (null == 0) false
(0 == ') —— (undefined == 0) false
(0 === "") false (undefined === null) false

DECISIONS & LOOPS

SHORT CIRCUIT VALUES

Logical operators are processed left to right.
They short-circuit (stop) as soon as they have a
result - but they return the value that stopped
the processing (not necessarily true or false).

On line 1, the variable artist is given a value of Rembrandt.

On line 2, if the variable artist has a value, then artistA will be

given the same value as artist (because a non-empty string is truthy).
var artist = 'Rembrandt’;

var artistA = (artist || 'Unknown');

If the string is empty (see below), artistA becomes a string 'Unknown'.
var artist = '';
var artistA = (artist || 'Unknown');

You could even create an empty object if artist does not have a value:

var artist = :
var artistA = (artist || {});

Here are three values. If any one of them is considered truthy, the code
inside the if statement will execute. When the script encounters valueB
in the logical operator, it will short circuit because the number 1is
considered truthy and the subsequent code block is executed.

valueA = 0;
valueB = 1;
valueC = 2;

if (valueA || valueB || valueC) {
// Do something here

}

This technique could also be used to check for the existence of elements
within a page, as shown on p168.

Logical operators will not always
return true or false, because:

@ They return the value that
stopped processing.

@ That value might have been
treated as truthy or falsy
although it was not a Boolean.

Programmers use this creatively
(for example, to set values for
variables or even create objects).

As soon as a truthy value is
found, the remaining options

are not checked. Therefore,
experienced programmers often:

® Put the code most likely
to return true first in OR
operations, and false answers
first in AND operations.

® Place the options requiring
the most processing power
last, just in case another
value returns true and they
do not need to be run.

DECISIONS & LOOPS

LOOPS

Loops check a condition. If it returns true, a code block will run.

Then the condition will be checked again and if it still returns true,

the code block will run again. It repeats until the condition returns false.
There are three common types of loops:

FOR

If you need to run code a specific
number of times, use a for loop.
(It is the most common loop.)

In a for loop, the condition is
usually a counter which is used
to tell how many times the loop
should run.

KEYWORD
|

WHILE

If you do not know how many
times the code should run, you
canuse a while loop. Here the
condition can be something
other than a counter, and the
code will continue to loop for as
long as the condition is true.

CONDITION (COUNTER)

DO WHILE

The do...while loopis very
similar to the while loop, but
has one key difference: it will
always run the statements
inside the curly braces at |east
once, even if the condition
evaluates to false.

OPENING
CURLY BRACE

1

for (var i

=0;

i< I
document.write(i):

} CODE TO EXECUTE DURING LOOP

CLOSING
CURLY BRACE

This is a for loop. The condition
is a counter that counts to ten.
The result would write
"0123456789" to the page.

DECISIONS & LOOPS

If the variable i is less than ten,
the code inside the curly braces
is executed. Then the counter is
incremented.

1++j E

The condition is checked again,
if 1 is less than ten it runs again.
The next three pages show how
this loop works in greater detail.

A for loop uses a counter as a condition.
This instructs the code to run a specified number of times.
Here you can see the condition is made up of three statements:

INITIALIZATION

Create a variable and set it to 0.
This variable is commonly called
i, and it acts as the counter.

var i = 03

The variable is only created the
first time the loop is run.

(You may also see the variable
called index, rather than just i.)

You will sometimes see this
variable declared before the
condition. The following is
the same and it is mainly a
preference of the coder.

var i;

for (i = 0; i < 10; i++) {
/! Code goes here

¥

CONDITION

The loop should continue to
run until the counter reaches a
specified number.

=< M

The value of i was initially set to
0, so in this case the loop will run
10 times before stopping.

The condition may also use a
variable that holds a number.
If a variable called rounds held
the number of rounds in a test
and the loop ran once for each
round, the condition would be:

var rounds = 3;
i < (rounds);

LOOP COUNTERS

UPDATE

Every time the loop has run the
statements in the curly braces, it
adds one to the counter.

i++

One is added to the counter
using the increment (++)
operator.

Another way of reading this is
that it says, "Take the variable
i, and add one using the ++
operator.”

Itis also possible for loops to
count downwards using the
decrement operator (--).

DECISIONS & LOOPS @

LOOPING

isO<]0? addﬂ:oo is1<10? add1to1

-‘

write to page:

write to page:

START i=0 i=1 i=2
The first time the loop is run, Every time the loop is run, the Then the code inside the loop

the variable i (the counter) is condition is checked. Is the (the statements between the

assigned a value of zero. variable i less than 107 curly brackets) is run.

@ DECISIONS & LOOPS

for (var i = 0; i < 10; i++) {
document.write(i);

is 8 < 10> is9 <107 add1to 9 is 10 < 105

write to page: write to page:

The variable i can be used When the statements have When the condition is no longer
inside the loop. Here it is used to finished, the variable i is true, the loop ends. The script
write a number to the page. incremented by 1. moves to the next line of code.

DECISIONS & LOOPS @

KEY LOOP CONCEPTS

Here are three points to consider when you
are working with loops. Each is illustrated in
examples on the following three pages.

KEYWORDS

You will commonly see these
two keywords used with loops:

break

This keyword causes the
termination of the loop and tells
the interpreter to go onto the
next statement of code outside
of the loop. (You may also see it
used in functions.)

continue

This keyword tells the interpreter
to continue with the current
iteration, and then check the
condition again. (If it is true, the
code runs again.)

DECISIONS & LOOPS

LOOPS & ARRAYS

Loops are very helpful when
dealing with arrays if you want to
run the same code for each item
in the array.

For example, you might want
to write the value of each item
stored in an array into the page.

You may not know how many
items will be in an array when
writing a script, but, when the
code runs, it can check the total
number of items in a loop. That
figure can then be used in the
counter to control how many
times a set of statements is run.

Once the loop has run the right
number of times, the loop stops.

PERFORMANCE ISSUES

It is important to remember
that when a browser comes
across JavaScript, it will stop
doing anything else until it has
processed that script.

If your loop is dealing with only
a small number of items, this
will not be an issue. If, however,
your loop contains a lot of items,
it can make the page slower to
load.

If the condition never returns
false, you get what is commonly
referred to as an infinite loop.
The code will not stop running
until your browser runs out of
memory (breaking your script).

Any variable you can define
outside of the loop and that
does not change within the loop
should be defined outside of it.
If it were declared inside the
loop, it would be recalculated
every time the loop ran,
needlessly using resources.

JAVASCRIPT

USING FOR LOOPS

c04/js/for-loop.js

var scores = [24, 32, 17]; // Array of scores
var arraylLength = scores.length;// Items in array
var roundNumber = 0; // Current round
var msg = ''; // Message

var i; // Counter

// Loop through the items in the array

for (i =

}

0; i < arraylLength; i++) {

// Arrays are zero based (so 0 is round 1)
// Add 1 to the current round

roundNumber = (i + 1);

// Write the current round to message
msg += 'Round ' + roundNumber + ': ';

// Get the score from the scores array
msg += scores[i] + '
';

document.getETementById('answer').innerHTML = msg;

Round 1: 24
Round 2: 32
Round 3: 17

The counter and array both start from 0 (rather than 1). So, within the loop,
to select the current item from the array, you use the counter variable i to
specify the item from the array, e.g., scores[i]. But remember that it is a
number lower then you might expect (e.g., first iteration is 0, second is 1).

A for loop is often used to loop
through the items in an array.

In this example, the scores for
each round of a test are stored in
an array called scores.

The total number of items in
the array is stored in a variable
called arrayLength. This
number is obtained using the
length property of the array.

There are three more variables:
roundNumber holds the round of
the test; msg holds the message
to display; i is the counter
(declared outside the loop).

The loop starts with the for
keyword, then contains the
condition inside the parentheses.
As long as the counter is less
than the total number of items

in the array, the contents of the
curly braces will continue to

run. Each time the loop runs, the
round number is increased by 1.

Inside the curly braces are rules
that write the round number and
the score to the msg variable. The
variables declared outside of the
loop are used within the loop.

The msg variable is then written
into the page. It contains HTML
so the innerHTML property is
used to do this. Remember,
p228 will talk about security
issues relating to this property.

DECISIONS & LOOPS @

USING WHILE LOOPS

Here is an example of awhile
loop. It writes out the 5 times
table. Each time the loop is run,
another calculation is written
into the variable called msg.

This loop will continue to run
for as long as the condition in
the parentheses is true. That
condition is a counter indicating
that, as long as the variable

i remains less than 10, the
statements in the subsequent
code block should run.

Inside the code block there are
two statements:

The first statement uses the +=
operator, which is used to add
new content to the msg variable.
Each time the loop runs, a new
calculation and line break is
added to the end of the message
being stored in it. So += works as
a shorthand for writing:

msg = msg + 'new msg'

(See bottom of the next page for
a breakdown of this statement.)

The second statement
increments the counter variable
by one. (This is done inside

the loop rather than with the
condition.)

When the loop has finished, the
interpreter goes to the next line
of code, which writes the msg
variable to the page.

DECISIONS & LOOPS

c04/js/while-Toop.js JAVASCRIPT

var i = 1; // Set counter to 1

(B}

var msg 5 // Message

// Store 5 times table in a variable

while (i < 10) {
msg ¥= i ¥ " x 5=t g (1 *86) » "abr 5%
i+t

}

document.getElementBylId('answer').innerHTML = msg;

1x5=5
2x5=10
3x 5elS
4x5=20
S5x85=25
6x5=30
1%x5=35
8x5=40
9x5=45

In this example, the condition specifies that the code should run nine
times. A more typical use of awhile loop would be when you do not
know how many times you want the code to run. It should continue to
run as long as a condition is met.

USING DO WHILE LOOPS

con/ix /o Te-Toop:ds The ?(ey difference betwe'en
awhileloop and adowhile
var i = 13 // Set counter to 1 loop is that the statements in
var msg = ''; // Message the code block come before the

condition. This means that those

// Store 5 times table in a variable “ateme”tsa’er”"?“GEWhether
do { or not the condition is met.

msg 4= 1 + ' x5=" 4 (i *5) + '<sbr [>';s

i+4s If you take a look at the
} while (i < 1); condition, it is checking that the
value of the variable called i is
less than 1, but that variable has
already been set to a value of 1.

// Note how this is already 1 and it still runs

document.getElementById('answer').innerHTML = msg;

Therefore, in this example the

result is that the 5 times table is
written out once, even though

the counter is not less than 1.

Some people like to write while
on a separate line from the
closing curly brace before it.

1x85=5

Breaking down the first statement in these examples:

4 5 6

: x5 = l+(1 * 5) %+?§'€br />,,

1. Take variable called msg 4. Write out the string x5 =
2. Add to the following to its value 5. The counter multiplied by 5
3. The number in the counter 6. Add a line break

DECISIONS & LOOPS @

e
=

~ W
-
i

TARGET PRACTICE FOR YOUR MIND

l+3=4
2+3=5
3+3=6
4+3=7
5+3=8
6+3=9
7+3=10
8+3=11
9+3=12
10+3=13

DECISIONS & LOOPS

EXAMPLE

DECISIONS & LOOPS

In this example, the user can either be shown
addition or multiplication of a given number.
The script demonstrates the use of both
conditional logic and loops.

The example starts with two variables:

1. number holds the number that the calculations will be performed with
(in this case it is the number 3)

2.operator indicates whether it should be addition or multiplication
(in this case it is performing addition)

Anif...elsestatement is used to decide whether to perform addition
or multiplication with the number. If the variable called operator has the
value addition, the numbers will be added together; otherwise they will
be multiplied.

Inside the conditional statement, a while loop is used to calculate the

results. It will run 10 times because the condition is checking whether
the value of the counter is less than 11.

DECISIONS & LOOPS

EXAMPLE

DECISIONS & LOOPS

c04/example.htm]

<!DOCTYPE html>
<html>
<head>
<title>Bullseye! Tutoring</title>
<link rel="stylesheet" href="css/c04.css" />
</head>
<body>
<section id="page2">
<h1>Bullseye</hl>

<section id="blackboard"></section>

</section>
<script src="js/example.js"></script>
</body>
</html>
The HTML for this example is very slightly different You can see the script is added to the page just
than the other examples in this chapter because before the closing </body> tag.

there is a blackboard which the table is written onto.

DECISIONS & LOOPS

EXAMPLE

DECISIONS & LOOPS

JAVASCRIPT c04/js/example.js

var table = 3; // Unit of table

var operator = 'addition'; // Type of calculation (defaults to addition)
var i = 1; // Set counter to 1

var msg = ''; // Message

if (operator 'addition') { // If the operator variable says addition

while (i < 11) { // While counter is less than 11
msg += i + ' + ' + table + ' = ' + (i + table) + '
'; // Calculation
by // Add 1 to the counter

}

} else { // Otherwise

while (i < 11) { // While counter is less than 11
msg += i + ' x ' + table + ' = ' + (i * table) + '
'; // Calculation
bt // Add 1 to the counter

}

}

// Write the message into the page
var el = document.getElementById('blackboard');
el.innerHTML = msg;

If you read the comments in the code, you can If you change the value of the operator variable

see how this example works. The script starts by to anything other than addition, the conditional

declaring four variables and setting values for them. statement will select the second set of statements.
These also contain a while loop, but this time it will

Then, an i f statement checks whether the value of perform multiplication (rather than addition).

the variable called operatoris addition. If itis, it

uses a while loop to perform the calculations and When one of the loops has finished running, the last

store the results in a variable called msg. two lines of the script select the element whose id

attribute has a value of blackboard, and updates the
the page with the content of the msg variable.

DECISIONS & LOOPS

SUMMARY

DECISIONS & LOOPS

DECISIONS & LOOPS

