

Looking at a flowchart (for all but the most basic scripts),

the code can take more than one path, which means the
browser runs different code in different situations. In this
chapter, you will learn how to create and control the flow of

data in your scripts to handle different situations.

Scripts often need to behave differently depending upon how the user interacts with the web

page and/or the browser window itself. To determine which path to take, programmers often
rely upon the following three concepts:

EVALUATIONS
You can analyze values in

your scripts to determine
whether or note they

match expected results.

9 DECISIONS & LOOPS

DECISIONS
Using the results of
evaluations, you can

decide which path your
script should go down.

LOOPS
There are also many

occasions where you will
want to perform the same

set of steps repeatedly.

..
j

ruP E

USING
COMPARISON OPERATORS

JAVASCRIPT c04/ js/ compar ison-operator.js

var pass = 50; II Pass mark
var score = 90; II Score

II Check if t he user has passed
var hasPassed = score >= pass ;

II Write the message i nt o the page
var el = document .getEl ementByld(' answer ');
e 1 . t extContent = 'Leve 1 passed: ' + has Passed;

Level passed: true

-

At the most basic level, you can

evaluate two variables using a

comparison operator to return a
t rue or f al se value.

In this example, a user is taking a

test, and the script tells the user
whether they have passed this
round of the test.

The example starts by setting
two variables:

1. pass to hold the pass mark
2 . score to hold the users score

To see if the user has passed,

a comparison operator checks
whether scor e is greater than or

equal to pass. The result wi ll be

true or false, and is stored in
a variable called has Passed. On
the next line, the result is written

to the screen.

The last two lines select the
element whose id attribute

has a value of answer, and then

updates its contents. You will
learn more about this technique

in the next chapter.

DECI SIONS & LOOPS s

COMPARI NG
TWO EXPRESSIONS

In this example, there are two

rounds to the test and the

code will check if the user has

achieved a new high score,

beating the previous record.

The script starts by storing the

user's scores for each round

in variables. Then the highest

scores for each round are stored

in two more variables.

The comparison operator checks

if the user's total score is greater

than the highest score for the

test and stores the result in a

variable cal led comparison.

JAVASCRIPT c04/js/comparison-operator-continued.js

var scorel = 90;
var score2 = 95;
var highScorel 75;
var highScore2 = 95;

II Round 1 score
II Round 2 score
II Round 1 high score
II Round 2 high score

II Check if scores are higher than current high scores
var comparison= (score!+ score2) > (highScorel + highScore2);

II Write the message into the page
var el = document.getElementByid('answer');
el . textContent =' New high score:'+ comparison;

New high score: true

In the comparison operator, the

operand on the left calculates

the user's total score. The

operand on the right adds

together the highest scores for

each round. The result is then

added to the page.

When you assign the result of

the comparison to a variable,

you do not strictly need the

containing parentheses (shown

in white on the left-hand page).

Some programmers use them

anyway to indicate that the code

evaluates into a single value.

Others only use containing

parentheses when they form

part of a condition.

DECISIONS & LOOPS @

USING LOGICAL AND

In this example, a math test

has tworounds.Foreach round

there are two variables: one

holds the user's score for that

round; the other holds the pass

mark for that round.

The logical AND is used to see

if the user's score is greater

than or equal to the pass mark

in both of the rounds of the test.

The result is stored in a variable

called passBoth.

The example fin ishes off by

letting the user know whether

or not they have passed both

rounds.

c04/js/ logical-and .js

var scorel = 8; II Round 1 score
var score2 = 8; II Round 2 score
var passl 6; II Round 1 pass mark
var pass2 = 6; II Round 2 pass mark

II Check whether user passed both rounds , store result in variable
var passBoth = (scorel >= passl) && (score2 >= pass2);

II Create message
var msg = 'Both rounds passed: ' + passBoth;

II Write the message i nto the page
var el = document.getElementBy!d('answer') ;
el.textContent = msg;

It is rare that you would ever

write the Boolean result into the

page (like we are doing here).

As you w ill see later in the

chapter, it is more likely that you

would check a condition, and if it

is true, run other statements.

s DECISIONS & LOOPS

r.

II

Both rounds passed:
true

I

JAVASCRIPT

i;IJiiJll

1
I

..

.
".

USING LOGICAL OR
& LOGICAL NOT

Here is the same test but this

time using the logical OR operator

to find out if the user has passed

at least one of the two rounds.

If they pass just one round, they

do not need to retake the test.

JAVASCRIPT

Look at the numbers stored in

the four variables at the start

of the example. The user has

passed both rounds, so the

mi nPass variable will hold the

Boolean value of true.

var scorel = 8;
var score2 = 8;
var passl 6;
var pass2 = 6;

II Round 1 score
II Round 2 score
II Round 1 pass mark
II Round 2 pass mark

Next, the message is stored

in a variable called msg. At the

end of the message, the logical

NOT w ill invert the result of the

Boolean variable so it is false.

It is then written into the page.

c04/j s/logi cal -or-logical-not .j s

II Check wh ethe r user passed one of the two rounds. store result in vari able
var minPass = ((scorel >= passl) I I (score2 >= pass2));

II Create message
var msg = 'Resit required: ' + !(minPass);

II Write the message into the page
var el = document.getElementByld('answer');
el .textContent = msg;

1;1Ji1Jil

DECISIONS & LOOPS s

USING IF STATEMENTS

JAVASCRIPT c04/js/if-statement.js

var score 75; II Score
var msg; II Message

if (score>= 50) { II If score is 50 or higher
msg = 'Congratulations!';
msg += ' Proceed to the next round . ' ;

var el = document.getElementByld('answer ') ;
el .textContent = msg;

IQJiilil

Congratulations!
Proceed to the next

round.

JAVASCRIPT c04/js/if-statement-with-function . js

var score = 75;
var msg = ' ' ;

II Score
II Message

dfunction congratulate() { L} msg += ' Congratulations! ' ;

CD
®

if (score>= 50) { II If score is 50 or more
congratulate();
msg += 'Proceed to the next round . ' ;

var el = document.getElementByld('answer') ;
el . i nnerHTML = msg;

In this example, the i f statement
is checking if the value currently
held in a variable called score is
50 or more.

In this case, the statement
evaluates to true (because the
score is 75, which is greater than
50). Therefore, the contents
of the statements within the
subsequent code block are
run, creating a message that
congratulates the user and tells
them to proceed.

After the code block, the
message is written to the page.

If the value of the score variable
had been less than 50, the
statements in the code block
would not have run, and the code
would have continued on to the
next line after the code block.

On the left is an alternative
version of the same example
that demonstrates how lines of
code do not always run in the
order you expect them to. If the
condition is met then:
1. The first statement in the code
block calls the congratulate()
function.
2. The code within the
congratulate() function runs.
3. The second line within the if
statement's code block runs.

DECISIONS & LOOPS 8

USING IF ... ELSE
STATEMENTS

JAVASCRIPT c04/js/if-el se-statement.js

var pass = 50;
var score = 75;
var msg;

II Pass mark
II Current score
II Message

II Select message to write based on score
if (score >= pass) {

msg = 'Congratulations, you passed!';
} else {

msg = 'Have another go!';

var el = document .getElementByld('answer');
el . textContent = msg;

l;IJiilil

Congratulations!
Proceed to the next

round.

Here you can see that an

if ... e 1 se statement al lows you

to provide two sets of code:

1. one set if the condition

evaluates to true

2. another set if the condition is

false

In this test, there are two

possible outcomes: a user can

either get a score equal to or

greater than the pass mark

(which means they pass), or

they can score less than the pass

mark (which means they fail).

One response is required for

each eventuality. The response is

then written to the page.

Note that the statements inside

an if statement should be

followed by a semicolon, but

there is no need to place one

after the closing curly brace of

the code blocks.

An if statement only runs a set of statements if the

condition is true:

An if ... e 1 se statement runs one set of code if the

condition is true or a different set if it is fa 1 se:

'
Is score >= 50?

' '
Is score>= 50?

' I I I
You passed! Try again ... You passed!

continue script ... continue script ...

DECISIONS & LOOPS s

SWITCH STATEMENTS

A switch statement starts with a
variable called the switch value.
Each case indicates a possible
value for this variable and the
code that should run if the

variable matches that value.

Here, the variable named 1 eve l is the switch value.
If the value of the l eve 1 variable is the string One,

then the code for the first case is executed. If it is
Two, the second case is executed. If it is Three, the

third case is executed. If it is none of these, the code
for the defaul t case is executed.

The entire statement lives in one code block (set
of curly braces), and a colon separates the option
from the statements that are to be run if the case
matches the switch value.

At the end of each case is the break keyword. It tells

the JavaScript interpreter that it has finished with

this switch statement and to proceed to run any
subsequent code that appears after it.

IF ... ELSE

• There is no need to provide an el se
option. (You can just use an if
statement.)

• With a series of if statements, they are

all checked even if a match has been found
(so it performs more slowly than switch).

164 DECISIONS & LOOP_S

vs.

0

switch (level) {

case 'One ':
title= 'Level 1 ' ;
break;

case 'Two':
tit 1 e = ' Level 2 ' ;
break;

case ' Three' :
title = 'Level 3' ;
break ;

default :
title= 'Test';
break;

SWITCH

• You have a default option that is run if

none of the cases match.

• If a match is found, that code is run; then
the break statement stops the rest of

the switch statement running (providing
better performance than multiple i f
statements).

USING SWITCH
STATEMENTS

JAVASCRIPT

var msg;
var level = 2;

II Message
11 Level

c04/js/switch-statement .js

/I Determine message based on level
switch (level) {
case 1:

msg = 'Good luck on the first test ' ;
break;

case 2:
msg = 'Second of three - keep going!';
break;

case 3:
msg = ' Final round, al most there!';
break;

default :
msg = 'Good l uck!';
break;

var el = document.getEl ementByld('answer ');
el . textContent = msg;

•0•11151

Second of thre~­
keep going!

~

In this example, the purpose

of the switch statement is to

present the user with a different
message depending on which

level they are at. The message is
stored in a variable called msg.

The variable called l eve 1
contains a number indicating

which level the user is on. This

is then used as the switch value.
(The switch value could also be

an expression.)

In the following code block

(inside the curly braces), there
are three options for what the

value of the 1eve1 variable might

be: the numbers 1, 2, or 3.

If the value of the 1eve1 variable
is the number 1, the value of the
msg variable is set to 'Good luck

on the first test'.

If the value is 2, it will read:

'Second of three - keep going! ·

If the value is 3, the message
will read: 'Final round, almost

t here! '

If no match is found, then the
value of the msg variable is set to

'Good l uck! '

Each case ends with the break

keyword which will tell the
JavaScript interpreter to skip

the rest of this code block and
continue onto the next.

DECISIONS & LOOPS s

TYPE COERCION
& WEAK TYPING

If you use a data type JavaScript did not expect,
it tries to make sense of the operation rather
than report an error.

JavaScript can convert data

types behind the scenes to
complete an operation. This is

known as type coercion. For
example, a string 'l ' could be
converted to a number 1 in the

following expression:(' 1' > 0).

As a result, the above expression
would evaluate to true.

JavaScript is said to use weak

typing because the data type
for a value can change. Some

other languages require that you
specify what data type

each variable will be. They are
said to use strong typing.

Type coercion can lead to
unexpected values in your

code (and also cause errors).
Therefore, when checking if two

values are equal, it is considered

better to use strict equals
operators ===and ! ==
rather than == and ! = as these

strict operators check that the
value and data types match.

8 DECISIONS & LOOPS

DATA TYPE PURPOSE

string Text

number Number

Boolean true or false

nul 1 Empty value

undefined Variable has been declared but not yet assigned a value

NaN is a value that is counted as a number. You may see it when a

number is expected, but is not returned, e.g .. ('ten' /2) results in NaN.

..

FALSY VALUES

VALUE

var highScore = f alse ;

TRUTHY & FALSY
VALUES

Due to type coercion, every value in JavaScript

can be treated as if it were true or false; and

this has some interesting side effects.

DESCRIPTION

The traditional Boolean fa 1 se

Falsy values are treated as if they

are fa 1 se. The table to the left

shows a hi ghScore variable with
a series of values, all of which

are falsy.
var hi ghScore = O; The number zero

~-~;··h·~ -~i;$·~·~;~···~·· ·;·;·;·· ··· ···· · · · · · · ···· ·· ···N~N-(N~·~·~· ·N·~~-~······~)·· ··:· '"······ ······· ···· · ··· ···· ·
.. ••ljij;

var highScore = 10/'score ' ; Empty value~

var highScore; A variable with no value assigned to it

Almost everything else evaluates to truthy ...

TRUTHY VALUES

VALUE DESCRIPTION

var hi ghScore = true ; The traditional Boolean true

var highScore = l; Numbers other than zero

var highScore = 'carr ot ' ; Strings with content

var highScore = 10/5; Number calculations

var highScore = 'true'; true written as a string

var hi ghScor e = ' O' ; Zero written as a string

var highScore = ' fa l se'; fa 1 se written as a string

Falsy values can also be treated

as the number 0 .

Truthy values are treated as if
they are true. Almost everything
that is not in the falsy table can

be treated as if it were true.

Truthy values can also be treated

as the number 1.

In addition, the presence of an
object or an array is usually

considered truthy, too. This is
commonly used when checking

for the presence of an element
in a page.

The next page will explain more

about why these concepts are

important.

DECISIONS & LOOPS 8

CHECKING EQUALITY
& EXISTENCE

Because the presence of an object or array can

be considered truthy, it is often used to check

for the existence of an element within a page.

A unary operator returns a
result with just one operand.

Here you can see an if
statement checking for the
presence of an element. If the

element is found, the result is
truthy, so the first set of code is

run. If it is not found, the second
set is run instead.

if (document .getElementByid('header'))

II Found: do something
else {

II Not found: do somethi ng else

Those new to JavaScript often think the fol lowing would do the same:
if (document .getElementByld('header') ==true)

but document.getEl ementByld ('header ') would return an object

which is a truthy value but it is not equal to a Boolean value of true.

Because of type coercion, the strict equality operators ===and ! == result

in fewer unexpected values than ==and ! = do.

If you use == the fo llowing values
can be considered equal:

false, 0, and ' ' (empty string).

However, they are not equivalent
when using the strict operators.

EXPRESSION

(false == 0)

(false === 0)

RESULT

true

false

(false== ") true

(false === ' ') false

(0 :: I I)

(O === II)

8 DECISIONS & LOOPS

true
false

Although null and undefined are

both falsy, they are not equal to

anything other than themselves.
Again, they are not equivalent

when using strict operators.

EXPRESSION RESULT

(undefined ==null) true

(null == false) false

(undefi ned == false) fa l se
(null == 0) false

(undefined == O) false

(undefined === null) false

Although NaN is considered falsy,
it is not equivalent to anything;

it is not even equivalent to itself

(since NaN is an undefinable
number, two cannot be equal).

EXPRESSION

(Nan == null)

(NaN == NaN)

RESULT

false

false

SHORT CIRCUIT VALUES

Logical operators are processed left to right.
They short-circuit (stop) as soon as they have a
result - but they return the value that stopped
the processing (not necessarily true or fa 1 se).

On line 1, the variable artist is given a value of Rembrandt.

On line 2, if the variable a rt i st has a value, then art i stA will be
given the same value as artist (because a non-empty string is truthy).

var art i st = 'Rembrandt ' ;
var art i stA = (artist 11 ' Unknown') ;

If the string is empty (see below), arti stA becomes a string 'Unknown' .

var artist = ' ' ;

varartistA= (ar tist I I ' Un known');

You could even create an empty object if artist does not have a value:
var artist= '';

var artistA = (arti st I I {}) ;

Here are three values. If any one of them is considered truthy, the code

inside the if statement will execute. When the script encounters val ueB

in the logical operator, it will short circuit because the number 1 is
considered truthy and the subsequent code block is executed.

valueA = O;
valueB = 1;

valueC = 2;

if (valueA I I valueB II valueC) {
// Do somet hi ng here

This technique could also be used to check for the existence of elements

within a page, as shown on p168.

Logical operators will not always

return true or false, because:

• They return the value that
stopped processing.

• That value might have been
treated as truthy or fa lsy

although it was not a Boolean.

Programmers use this creatively

(for example, to set values for
variables or even create objects).

As soon as a truthy value is

found, the remaining options
are not checked. Therefore,

experienced programmers often:

• Put the code most likely
to return true first in OR

operations, and false answers
first in AND operations.

• Place the options requiring

the most processing powe.r

last, just in case another
value returns true and they

do not need to be run.

DECISIONS & LOOPS s

KEY LOOP CONCEPTS

Here are three points to consider when you

are working with loops. Each is illustrated in

examples on the following three pages.

KEYWORDS

You will commonly see these
two keywords used with loops:

break
This keyword causes the

termination of the loop and tells
the interpreter to go onto the

next statement of code outside
of the loop. (You may also see it

used in functions.)

continue
This keyword tells the interpreter

to continue with the current

iteration, and then check the
condition again. (If it is true, the

code runs again.)

8 DECISIONS & LOOPS

LOOPS & ARRAYS

Loops are very helpful when
dealing with arrays if you want to

run the same code for each item
in the array.

For example, you might want

to write the value of each item
stored in an array into the page.

You may not know how many

items will be in an array when

writing a script, but. when the
code runs, it can check the total

number of items in a loop. That
figure can then be used in the

counter to control how many

times a set of statements is run.

Once the loop has run the right
number of t imes, the loop stops.

PERFORMANCE ISSUES

It is important to remember
that when a browser comes

across JavaScript, it will stop
doing anything else until it has

processed that script.

If your loop is dealing with only
a small number of items, this

will not be an issue. If, however,

your loop contains a lot of items,
it can make the page slower to

load.

If the condition never returns
fa 1 se, you get what is commonly

referred to as an infinite loop.
The code will not stop running

until your browser runs out of
memory (breaking your script).

Any variable you can define
outside of the loop and that

does not change within the loop
should be defined outside of it.

If it were declared inside the

loop, it would be recalculated
every time the loop ran,

needlessly using resources.

USING FOR LOOPS

JAVASCRI PT c04/js/for-loop .js

var scores= [24. 32, 17]; //Array of scores
var arraylength scores .l ength; // Items in array
var roundNumber = O; //Current round
var msg ''; //Message
var i ; // Counter

//Loop through the items in the array
for (i = O; i < arraylength; i++) {

//Arrays are zero based (so 0 is round 1)
//Add 1 to the current round
roundNumber = (i + l);

// Write the current round to message
msg += 'Round ' + roundNumber + ' : ';

//Get the score from the scores array
msg += scores[i] + '<br / >' ;

document .getElementByid('answer') .i nnerHTML msg;

i;ff>iiiil

Round 1: 24
Round 2: 32
Round 3: 17

The counter and array both start from 0 (rather than 1). So, within the loop,

to select the current item from the array, you use the counter variable i to
specify the item from the array, e.g., scores [i]. But remember that it is a
number lower then you might expect (e.g., f irst iteration is 0, second is 1).

A for loop is often used to loop

through the items in an array.

In this example, the scores for

each round of a test are stored in
an array called scores.

The total number of items in
the array is stored in a variable

cal led arrayl ength. This

number is obtained using the
l ength property of the array.

There are three more variables:
roundNumber holds the round of

the test; msg holds the message

to display; i is the counter
(declared outside the loop).

The loop starts with the for

keyword, then contains the
condition inside the parentheses.

As long as the counter is less
than the total number of items

in the array, the contents of the

curly braces will continue to
run. Each time the loop runs, the

round number is increased by 1.

Inside the curly braces are rules
that write the round number and

the score to the msg variable. The
variables declared outside of the

loop are used within the loop.

The msg variable is then written

into the page. It contains HTML
so the i nnerHTML property is

used to do this. Remember,
p228 will talk about security

issues relat ing to this property.

DECISIONS & LOOPS e

USING WHILE LOOPS

Here is an example of awhil e

loop. It writes out the 5 times

table. Each time the loop is run,

another calculation is written
into the variable cal led msg.

This loop will continue to run
for as long as the condition in

the parentheses is true. That
condition is a counter indicating

that, as long as the variable
i remains less than 10, the

statements in the subsequent
code block should run.

Inside the code block there are
two statements:

The first statement uses the+=
operator, which is used to add

new content to the msg variable.
Each time the loop runs, a new

calculation and line break is
added to the end of the message

being stored in it. So+" works as
a shorthand for writing:

msg = msg + 'new msg'

(See bottom of the next page for
a breakdown of this statement.)

The second statement
increments the counter variable

by one. (This is done inside
the loop rather than with the

condition.)

When the loop has finished, the

interpreter goes to the next line
of code, which writes the msg

variable to the page.

8 DECISIONS & LOOPS

c04/ j s/while-1oop.js JAVASCRIPT

var i = l ;

var msg = ' ' ;
I I Set counter to 1

II Message

II Store 5 times tabl e in a variable
while (i < 10) {

msg += i + ' x 5 = ' + (i * 5) + '<br I >';
i++;

document .getE l ementByid(' answer') . innerHTML = msg;

lxS=S
2 x s = 10
3 x 5 = 15 .
4 x 5 = 20
s x s = 25
6 x s = 30
7 x 5 = 35
8 x s = 40
9 x 5 = 45

l ;IJjiJll

In this example, the condition specifies that the code should run nine

times. A more typical use of awhi le loop would be when you do not
know how many times you want the code to run. It should continue to

run as long as a condition is met.

'\

...

USI NG DO WHILE LOOPS

JAVASCR I PT c04/ js/ do-while-loop. j s

var i = l;
var msg : I I •

•
II Set counter to 1
II Message

II Store 5 ti mes table in a variable
do {

msg += i + ' x 5 = ' + (i * 5) + '<br I>' ;s
i++ ;

} wh il e (i < 1) ;

II Note how this is already 1 and it still runs

document .getEl ementByld(' answer').innerHTML = msg;

lijJiiJ51

lxS=S

Breaking down the first statement in these examples:

1 2 3 4 5 6

1. Take variable called msg 4. Write out the string x 5 =
2. Add to the following to its value 5. The counter multiplied by 5

3. The number in the counter 6 . Add a line break

The key difference between

a whi 1 e loop and a do whi 1 e

loop is that the statements in

the code block come before the

condition. This means that those

statements are run once whether

or not the condition is met.

If you take a look at the

condition, it is checking that the

value of the variable cal led i is

less than 1, but that variable has

already been set to a value of 1.

Therefore, in this example the

result is that the 5 times table is

written out once, even though

the counter is not less than 1.

Some people like to write while

on a separate line from the

closing curly brace before it.

DECISIONS & LOOPS e

EXAMPLE
DECISIONS & LOOPS

In this example, the user can either be shown
addition or multiplication of a given number.

The script demonstrates the use of both
conditional logic and loops.

The example starts with two variables:

1. number holds the number that the calculations will be performed with

(in this case it is the number 3)
2. operator indicates whether it should be addition or multiplication

(in this case it is performing addition)

An if ... else statement is used to decide whether to perform addition

or multiplication with the number. If the variable called operator has the
value addition, the numbers will be added together; otherwise they will

be multiplied.

Inside the conditional statement, a whi 1 e loop is used to calculate the

results. It will run 10 times because the condition is checking whether

the value of the counter is less than 11.

DECISIONS & LOOPS 8

EXAMPLE
DECISI ONS & LOOPS

c04/ example .html

<!DOCTYPE html>
<html>

<head>
<title>Bullseye! Tutoring</title>
<link rel ="stylesheet" href="css/c04.css" / >

</ head>
<body>

<section id="page2">
<hl>Bullseye</ hl>

<section id="blackboard"></ section>

</ section>
<script src="js/ example . js"></script>

</body>
</html>

The HTML for this example is very slightly different

than the other examples in this chapter because

there is a blackboard which the table is written onto.

s DECISIONS & LOOPS

You can see the script is added to the page just

before the closing </body> tag.

JAVASCRIPT

var table = 3;
var operator= 'addition';
var i = 1;
var msg = ' ' ;

if (operator=== 'addition')
whi l e (i < 11) {

msg += i + ' + ' + table + '
i++;

}
else {
while (i < 11) {

msg += i + ' x ' + table + '
i++;

EXAMPLE
DECISIONS & LOOPS

c04/js/ example.js

II Unit of table
II Type of calculation (defaults to addition)
II Set counter to 1
II Message

II If the operator variable says addition
II While counter is less than 11

= ' + (i +table)+ '<br I>'; II Calculation
II Add 1 to the counter

II Otherwise
II Whi le counter is less than 11

= ' + (i *table) + '<br I> '; II Calculation
II Add 1 to the counter

II Write the message into the page
var el = document.getElementByid{'bl ackboard');
el .innerHTML = msg;

If you read the comments in the code, you can

see how this example works. The script starts by
declaring four variables and setting values for them.

Then, an if statement checks whether the value of
the variable called operator is addition. If it is, it

uses awhile loop to perform the calculations and
store the results in a variable called msg.

If you change the value of the operator variable

to anything other than addition, the conditional

statement will select the second set of statements.
These also contain awhile loop, but this time it will

perform multiplication (rather than addition).

When one of the loops has finished running, the last

two lines of the script select the element whose id
attribute has a value of blackboard, and updates the

the page with the content of the msg variable.

DECISIONS & LOOPS 8

Conditional statements allow your code to make

decisions about what to do next.

Comparison operators (===, ! ==, ==, ! =, <, >, <=, =>)

are used to compare two operands.

Logical operators allow you to combine more than one

set of comparison operators.

if ... else statements allow you to run one set of code

if a condition is true, and another if it is false.

switch statements allow you to compare a value

against possible outcomes (and also provides a default

option if none match).

Data types can be coerced from one type to another.

All values evaluate to either truthy or falsy.

There are three types of loop: for, while, and

do ... while. Each repeats a set of statements.

