

The Document Object Model (DOM) specifies

how browsers should create a model of an HTML

page and how JavaScript can access and update the

contents of a web page while it is in the browser window.

The DOM is neither part of HTML, nor part of JavaScript; it is a separate set of rules.

It is implemented by all major browser makers, and covers two primary areas:

MAKING A MODEL OF THE
HTM L PAGE

When the browser loads a web page, it

creates a model of the page in memory.

The DOM specifies the way in which the
browser should structure this model using

a DOM tree.

The DOM is called an object model
because the model (the DOM tree) is

made of objects.

Each object represents a different part of

the page loaded in the browser window.

s DOCUMENT OBJECT MODEL

ACCESSING AND CHANG ING
THE HTML PAGE

The DOM also defines methods and
properties to access and update each

object in this model, which in turn updates
what the user sees in the browser.

You will hear people call the DOM an

Application Programming Interface (API).

User interfaces let humans interact with
programs; APls let programs (and scripts)

talk to each other. The DOM states what
your script can "ask the browser about the

current page, and how to tell the browser

to update what is being shown to the user.

1

I
I
~

In each example of this

chapter, the JavaScript

will amend the HTML list

THE DOM TREE IS A
MODEL OF A WEB PAGE

As a browser loads a web page, it creates a model of that page.

The model is called a DOM tree, and it is stored in the browsers' memory.

It consists of four main types of nodes.

BODY OF HTML PAGE

<html>
<body>

<di v id="page">
<hl id="header">List</hl>
<h2>Buy groceries</h2>

<li id="one" class="hot">fresh figs
<li id="two" class="hot">pine nuts</l i>
<l i id="three" class="hot">honey</l i >
<l i id="four">balsamic vinegar</l i>

</ ul >
<script src="js/l i st. js "></scri pt>

</ div>
</ body>

</ html >

THE DOCUMENT NODE

Above, you can see the HTML code for a shopping

list, and on the right hand page is its DOM tree.

Every element, attribute, and piece of text in the

HTML is represented by its own DOM node.

At the top of the tree a document node is added; it

represents the entire page (and also corresponds to

the document object, which you first met on p36).

When you access any element, attribute, or text

node, you navigate to it via the document node. It is
the starting point for al l visits to the DOM tree.

s DOCUMENT OBJECT MODEL

ELEMENT NODES

HTML elements describe the structure of an HTML

page. (The <h l > - <h6> elements describe what

parts are headings; the <p> tags indicate where

paragraphs of text start and finish; and so on.)

To access the DOM tree, you start by looking for

elements. Once you find the element you want, then
you can access its text and attribute nodes if you

want to. This is why you start by learning methods

that allow you to access element nodes, before

learning to access and alter text or attributes.

..

Note: We wi ll continue to use this list example

throughout t his chapter and the next two chapters

so that you can see how different techniques allow

you to access and update the web page (which is

represented by this DOM tree).

Relationships between the document and all of

the element nodes are described using the same

terms as a fami ly tree: parents, children, siblings,

ancestors, and descendants. (Every node is a

descendant of the document node.)

Each node is an object with methods and properties.
Scripts access and update this DOM tree (not the source HTML file).

Any changes made to the DOM tree are reflected in the browser.

DOM TREE document
I

html
I

body
I

di v - attribute

h 1 ~ attribute h2

t ext text

I
1 i - attribute

em text
I

text

ATTRIBUTE NODES

I
1 i - attribute
I

text

The opening tags of HTML elements can carry

attributes and these are represented by attribute

nodes in the DOM tree.

Attribute nodes are not children of the element thar

carr ies them; they are part of that element. Once

you access an element, there are specific JavaScript

methods and properties to read or change that

element's attributes. For example, it is common to

change the values of cl ass attributes to trigger new
CSS rules that affect their presentation.

ul

1 i
I

text

script - attribute

attribute
I

l i - attribute
I

text

TEXT NODES

Once you have accessed an element node, you

can then reach the text within that element. This is

stored in its own text node.

Text nodes cannot have children. If an element

contains text and another child element, the child

element is not a chi ld of the text node but rather

a child of the containing element. (See the

element on the first <l i > item.) This illustrates how

the text node is always a new branch of the DOM
tree, and no further branches come off of it.

DOCUMENT OBJECT MODEL 8

WORKING WITH
THE DOM TREE

Accessing and updating the DOM tree involves two steps:
1: Locate the node that represents the element you want to work with.
2: Use its text content, child elements, and attributes.

STEP 1: ACCESS THE ELEMENTS
Here is an overview of the methods and properties that access elements covered on p192 - p211.

The first two columns are known as DOM queries. The last column is known as traversing the DOM.

SELECT AN INDIVIDUAL
ELEMENT NODE

..
Here are three common ways to
select an individual element:

get El ement Byld ()

Uses the value of an element's

id attribute (which should be
unique within the page).

See p195

querySe 1 ector ()

Uses a CSS selector, and returns
the first matching element.

See p202

You can also select individual

elements by traversing from one
element to another within the
DOM tree (see third column).

s DOCUMENT OBJECT MODEL

SELECT MULTIPLE
ELEMENTS (NODELISTS)

.......
There are three common ways to
select multiple elements.

getElementsByClassName()

Selects all elements that have
a specific value for their cl ass

attribute.

See p200

getElementsByTagName()

Selects all elements that have the

specified tag name ..
See p201

querySelectorAll()

Uses a CSS selector to select all

matching elements.
See p202

TRAVERSING BETWEEN
ELEMENT NODES

You can move from one element

node to a related element node.

parentNode

Selects the parent of the current

element node (which will return

just one element).
See p208

previousSibl ing / nextSibl ing

Selects the previous or next
sibling from the DOM tree.

See p210

firstChild / lastChild

Select the first or last child of the
current element.

See p211

Throughout the chapter you will see notes where DOM methods only work in certain browsers or are buggy.

Inconsistent browser support for the DOM was a key reason why jQuery became so popular.

The terms elements and element nodes are used interchangeably

but when people say the DOM is working with an element,
it is actually working with a node that represents that element.

STEP 2: WORK W ITH THOSE ELEMENTS
Here is an overview of methods and properties that work with the elements introduced on p186.

ACCESS/ UPDATE
TEXT NODES

l i - attribute

The text inside any element is

stored inside a text node. To
access the text node above:

1. Select the <l i >element

2. Use the fi rstChi l d property
to get the text node

3. Use the text node's only

property (nodeVa l ue) to get

the text from the element

nodeValue
This property lets you access or

update contents of a text node.

See p214

The text node does not include
text inside any child elements.

WORK W ITH HTML
CONTENT

One property allows access to

child elements and text content:
innerHTML
See p220

Another just the text content: .

textContent
See p216

Several methods let you create

new nodes, add nodes to a t ree,
and remove nodes from a tree:

create Element()

createTextNode()

appendChi l d () / removeChi l d ()
This is called DOM manipulation.
See p222

ACCESS OR UPDATE
ATTRIBUTE VALUES

li +1&@§
I

text

Here are some of the properties

and methods you can use to
work with attributes:

className /id
Lets you get or update the value
of the cl ass and id attributes.

See p232

hasAttr i bute()
getAttribute()

setAttri bute()

removeAttribute()
The first checks if an attribute

exists. The second gets its value.
The third updates the value.

The fourth removes an attribute.

See p232

DOCUMENT OBJECT MODEL @

ACCESSING ELEMENTS

DOM queries may return one element, or they may return a Nodelist,
which is a collection of nodes.

Sometimes you will just want to access one

individual element (or a fragment of the page that

is stored within that one element). Other times you

may want to select a group of elements, for example,

every <hl> element in the page or every <1 i>

element within a particular list.

hl h2

l i l i

GROUPS OF ELEMENT NODES

If a method can return more than one node, it wil l

always return a Nodelist , which is a collection of

nodes (even if it only finds one matching element).

You then need to select the element you want from

this list using an index number (which means the

numbering starts at 0 like the items in an array).

For example, several elements can have the same

tag name, so get El ementsByTagName () will always

return a Nodel i st.

§ DOCUMENT OBJECT MODEL

body

div

Here, the DOM tree shows the body of the page of

the list example. We focus on accessing elements

first so it only shows element nodes. The diagrams

in the coming pages highlight which elements a

DOM query would return. (Remember, element

nodes are the DOM representation of an element.)

ul script

1 i l i

FASTEST ROUTE

Finding the quickest way to access an element

w ithin your web page w ill make the page seem

faster and/or more responsive. This usually means

evaluating the minimum number of nodes on the

way to the element you want to work w ith. For

example, getEl ementByld () will quickly return one

element (because no two elements on the same

page should have the same value for an id attribute),

but it can only be used when the element you want

to access has an id attribute.

.,

..

METHODS THAT RETURN A SINGLE ELEMENT NODE:

getElementByld(1 id 1
)

Selects an individual element given the value of its i d attribute .
The HTML must have an id attribute in order for it to be selectable.

First supported: IE5.5, Opera 7, all versions of Chrome, Firefox, Safari.

querySel ector(1 css selector ')
Uses CSS selector syntax that would select one or more elements .
This method returns only the first of the matching elements.

First supported: IE8, Firefox 3.5, Safari 4 . Chrome 4, Opera 10

...
get ElementByld('one')

...
querySelector('l i . hot ')

METHODS THAT RETURN ONE OR MORE ELEMENTS (AS A NODELIST):

getEl ementsByClassName(1c lass 1
)

Selects one or more elements given the value of their cl ass attribute.

The HTML must have a cl ass attribute for it to be selectable.
This method is faster than querySe 1ectorA11 () .

First supported: IE9, Firefox 3, Safari 4 , Chrome 4, Opera 10
(Several browsers had partial I buggy support in earlier versions)

getEl ementsByTagName(1 tagName 1
)

Selects all elements on the page with the specified tag name.
This method is faster than querySe 1ectorA11 ().

First supported: IE6+, Firefox 3, Safari 4, Chrome, Opera 10
(Several browsers had partial I buggy support in earlier versions)

querySelectorAll (1 css select or •)
Uses CSS selector syntax to select one or more elements and returns all

of those that match.

First supported: IE8, Firefox 3.5, Safa ri 4, Chrome 4, Opera 10

...
getElementsByCl assName (' hot ')

...
getEl ementsByTagName(' l i ')

.........
querySelector Al l (' li . hot ')

DOCUMENT OBJ ECT MODEL ~

SELECTING ELEMENTS
USING ID ATTRIBUTES

llllifullll c05/get-element-by-id.htm1

<hl id="header">List King<lhl>
<h2>Buy groceries<lh2>

<li id="one" class="hot">fresh<lem>
figs<lli>

<li id="two" class="hot">pine nut s<lli>
<li id="three" class="hot">honey<lli>
<li id="four">balsamic vi negar<ll i>

JAVASCRIPT c05/js/get-element-by-id.js

II Select the element and store it in a variable.
var el = document.getElementByid('one');

II Change the value of the class attribute.
el.className ='cool ' ;

This result window shows the example after the script has updated
the first list item. The original state, before the script ran, is shown on

p185.

get El ementByi d () allows you
to select a single element node
by specifying the value of its
id attribute.

This method has one parameter:
the value of the id attribute on
the element you want to select.
This value is placed inside quote
marks because it is a string. The
quotes can be single or double
quotes, but they must match.

In the example on the left, the
first line of JavaScript code finds
the element whose id attribute
has a value of one, and stores
a reference to that node in a
variable called e 1.

The code then uses a property
called c l assName (which you
meet on p232) to update the
value of the cl ass attribute
of the element stored in this
variable. Its value is coo 1, and
this triggers a new rule in the
CSS that sets the background
color of the element to aqua.

Note how the c 1 assName
property is used on the variable
that stores the reference to the
element.

Browser Support: This is one of
the oldest and best supported
methods for accessing elements.

DOCUMENT OBJECT MODEL s

NODELISTS: DOM QUERIES
THAT RETURN MORE THAN
ONE ELEMENT

When a DOM method can return more than one element, it returns a
Nodelist (even if it only finds one matching element).

A Nodelist is a collection of element nodes. Each

node is given an index number (a number that starts
at zero, just like an array).

The order in which the element nodes are stored in a
Node List is the same order that they appeared in the

HTML page.

When a DOM query returns a Nodelist, you may
want to:

• Select one element from the NodeList.

• Loop through each item in the Nodelist and
perform the same statements on each of the
element nodes.

LIVE & STATIC NODELISTS

There are times when you wil l want to work with

the same selection of elements several times, so
the Nodelist can be stored in a variable and re-used

(rather than collecting the same elements again).

In a live Nodelist, when your script updates the

page, the Nodelist is updated at the same time.
The methods beginning getEl ementsBy_ return live

Node lists. They are also typically faster to generate
than static Nodelists.

s DOCUMENT OBJECT MODEL

Nodelists look like arrays and are numbered like

arrays, but they are not actually arrays; they are a
type of object called a collection.

Like any other object, a Nodelist has properties and
methods, notably:

• The l ength property tells you how many items
are in the Nodelist.

• The i tern() method returns a specific node from

the Nodelist when you tell it the index number
of the item that you want (in the parentheses).

However, it is more common to use array syntax
(with square_brackets) to retrieve an item from a
Nodelist (as you will see on p199).

In a static Nodelist when your script updates the
page, the NodeList is not updated to reflect the

changes made by the script.

The new methods that begin querySe 1 ector._

(which use CSS selector syntax) return static
Nodelists. They reflect the document when the

query was made. If the script changes the content
of the page, the Nodelist is not updated to reflect

those changes.

....

:

Here you can see four different DOM queries that all return a Nodelist.
For each query, you can see the elements and their index numbers in the

Nodelist that is returned.

millllill

millililil ...

millililil

getElementsByTagName('hl ')

Even though this query only
returns one element. the method

sti ll returns a Nodelist because
of the potential for returning
more than one element.

INDEX NUMBER & ELEMENT

0 <hl>

getElementsByTagName('li ')

This method returns four

elements, one for each of the
<l i> elements on the page.

They appear in the same order

as they do in the HTML page.

I NDEX NUMBER & ELEMENT

0 <li i d•"one" class="hot">

1 <1 i i d="two" cl ass="hot">

2 <l i id="three" class• "hot">

3 <li id="four">

getElementsByClassName('hot')

This Nodelist contains only
three of the <l i >elements

because we are searching for

elements by the value of their
cl ass attribute, not tag name.

INDEX NUMBER & ELEMENT

O <li id="one" cl ass="hot">

l <li id=" two" class="hot">

2 <l i id=" three" class="hot">

querySe l ectorA 11 (' l i [id] ')

This method returns four

elements, one for each of the
<l i> elements on the page that

have an id attribute (regardless
of the values of the id attributes).

INDEX NUMBER & ELEMENT

O <l i id="one" class="hot">

1 c] j id="two" class="hot">

2 <li id=" three" class="hot">

3 <li id•"four">

DOCUMENT OBJECT MODEL 8

SELECTING AN ELEMENT
FROM A NODELIST

There are two ways to select an element from a Nodelist:
The item() method and array syntax.
Both require the index number of the element you want.

THE ;tern{) METHOD

Nodelists have a method

called item() which will return
an individual node from the

Node list.

You specify the index number

of the element you want as a

parameter of the method (inside
the parentheses).

Executing code when there are
no elements to work with wastes
resources. So programmers

often check that there is at least

one item in the Nodelist before
running any code. To do this,

use the 1 ength property of the
Nodelist - it tells you how many

items the Nodelist contains.

Here you can see that an if
statement is used. The condition
for the if statement is whether

the 1 ength property of the

Nodelist is greater than zero.
If it is, then the statements inside

the if statement are executed.

If not, the code continues to run
after the second curly brace.

var elements = document.getElementsByClassName('hot')
if (elements.length>= 1) {

var firstltem = elements.item(O);
}

1
Select elements that have a

cl ass attribute whose value is

hot and store the Nodelist in a
variable called e 1 ements.

198 DOCUMENT OBJECT MODEL

2
Use the 1 ength property to

check how many elements were

found. If 1 or more are found, run
the code in the if statement.

3
Store the first element from the

Node List in a variable called
fi rstitem. (It says 0 because

index numbers start at zero.)

SELECTI NG ELEMENTS
USING CLASS ATTRIBUTES
The get El ementsByCl ass Name()

method allows you to select

elements whose c 1 ass attribute

contains a specific value.

c05/js/get-elements-by-class-name . js

The method has one parameter:

the class name which is given

in quotes within the parentheses

after the method name.

Because several elements can

have the same value for their

cl ass attribute, this method

always returns a Nodelist.

JAVASCRIPT

var elements = document .getEl ementsByClassName('hot'); II Find hot items

if (e lements .l ength> 2) {

var el = elements[2];
el.className = 'cool';

This example starts by looking

for elements whose cl ass

attribute contains hot. (The value

of a c 1 ass attribute can contain

several class names, each

separated by a space.) The result

of this DOM query is stored
in a variable called element s

because it is used more than

once in the example.

An if statement checks if the

query found more than two

elements. If so, the third one is

selected and stored in a variable

called e 1. The cl ass attribute of

that element is then updated to

say c 1 ass. (In turn, this triggers

a new CSS style, changing the

presentation of that element.)

Browser Support: IE9, Firefox 3,

Chrome 4, Opera 9.5, Safari 3.1

8 DOCUMENT OBJECT MODEL

II If 3 or more are found

II Select the th i rd one from the Nodelist
II Change the value of its class attribute

...

•

SELECTING ELEMENTS
BY TAG NAME

The get El ementsByTagName ()

method allows you to select

elements using their tag name.

JAVASCRIPT

The element name is specified

as a parameter, so it is placed

inside the parentheses and is

contained by quote marks.

Note that you do not include the

angled brackets that surround

the tag name in the HTML (just
the letters inside the brackets).

c05/ js/get-elements-by-tag-name.js

var elements = document.getElementsByTagName('li '); /I Find elements

if (elements.length> O) {

l;IJiliii

var el = elements[O];
el.className = 'cool';

II If 1 or more are found

II Select the first one using array syntax
II Change the value of the class attribute

This example looks for any <1 i>
elements in the document. It

stores the result in a variable

called elements because the

result is used more than once in

this example.

An if statement checks if any

<1 i> elements were found. As

with any element that can return

a NodeL i st, you check that there

w ill be a suitable element before

you try to work with it.

If matching elements were

found, the first one is selected

and its cl ass attribute is

updated. This changes the color

of the list item to make it aqua.

Browser Support: Very good - it

is safe to use in any scripts.

DOCUMENT OBJECT MODEL 8

SELECTING ELEMENTS
USING CSS SELECTORS
querySe 1 ector() returns

the first element node that
matches the CSS-style selector.

querySe 1ectorA11 () returns a
Nodelist of all of the matches.

cOS/j s/ query-sel ector.j s

Both methods take a CSS
selector as their only parameter.

The CSS selector syntax offers

more flexibility and accuracy
when selecting an element than

II querySel ector() only retur ns the fi rst match
var el = document .querySel ector('li .hot ' };
el .cl assName = 'cool' ;

II querySel ectorAll returns a Nodeli st

just specifying a class name
or a tag name, and should also

be familiar to front-end web

developers who are used to
targeting elements using CSS.

JAVASCRIPT

II The second matching element (the t hird list item) i s selected and changed
var el s = document .querySelectorAll('li .hot') ;
els[l] .className = ' cool' ;

These two methods were

introduced by browser
manufacturers because a lot

of developers were including

scripts like jQuery in their
pages so that they could select
elements using CSS selectors.

(You meet jQuery in Chapter 7.)

If you look at the final line of

code, array syntax is used to

select the second item from
the Nodelist, even though that

Nodelist is stored in a variable.

8 DOCUMENT OBJECT MODEL

Browser Support: The drawback

with these two methods is that
they are only supported in more

recent browsers.

lijJj!ISI

IE8+ (released Mar 2009)
Firefox 3.5+ (released Jun 2009)
Chrome 1+ (released Sep 2008)

Opera 10+ (released Sep 2009)

Safari 3.2+ (released Nov 2008)

...

"

JavaScript code runs one line at

a time, and statements affect
the content of a page as the

interpreter processes them.

If a DOM query runs when a

page loads, the same query

could return different elements if
it is used again later in the page.

1: WHEN THE PAGE FIRST LOADS

W:ii1~il cOS/query-selector. html

<li id="one" class="hot">

fresh figs
<li id="two" class="hot">pine nuts
<li id="three" cl ass="hot">honey
<li id="four">balsamic vinegar

2: AFTER THE FIRST SET OF STATEMENTS

1111$11 c05/query-selector . html

<li id="one" class=" cool ">

fresh figs
<li id="two" class="hot">pine nuts
<li id="three" class="hot">honey</l i >
<li id="four">balsamic vinegar

3: AFTER THE SECOND SET OF STATEMENTS

W:iief.11 cOS/query-selector.html

<li id="one" cl ass=" cool ">

fresh figs
<li id="two" class="hot">pine nuts~/li>
<l i id="three" cl ass="cool ">honey</l i>
<l i id="four">bal samic vi negar</l i>

Below you can see how the
example on the left-hand page

(query- selector .js) changes

the DOM tree as it runs.

1. This is how the page starts.

There are three <l i >elements

that have a cl ass attribute

whose value is hot. The
querySe l ector() method finds
the first one, and updates the

value of its cl ass attribute from
hot to cool. This also updates

the DOM tree stored in memory
so - after this line has run -

only the second and third <l i >
elements have a cl ass attribute

with a value of hot.

2. When the second selector
runs, there are now only two

<l i > elements whose cl ass

attributes have a value of hot
(see left), so it just selects these

two. This time, array syntax is
used to work with the second of

the matching elements (which
is the third list item). Again the

value of its cl ass attribute is

changed from hot to coo 1.

3. When the second selector has
done its job, the DOM tree now

only holds one <l i> element
whose c 1 ass attribute has a

value of hot. Any further code
looking for <l i> elements whose

cl ass attribute has a value of
hot would find only this one.

However, if they were looking

for <l i >elements whose cl ass
attribute has a value of coo 1,

they would find two matching
element nodes.

DOCUMENT OBJECT MODEL 8

LOOPING THROUGH
A NODELIST

If you want to apply the same

code to numerous elements,

looping through a Nodelist is a

powerful technique.

JAVASCRIPT

It involves finding out how many
items are in the Nodelist, and

then setting a counter to loop

through them, one-by-one.

Each time the loop runs, the

script checks that the counter

is less than the total number of

items in the Nodelist.

c05/ js/ node- list.js

var hotl t ems = document .querySelectorAl l (' l i . hot') ; II Store Nodel i st i n ar ray

if (hot l tems.length > O) { II If it conta ins i t ems

for (var i=O; i<hotl tems.length; i++) { II Loop through each i t em
hotltems[i] .className = 'cool'; II Change val ue of class at tri bute

In this example, the

Nodelist is generated using
querySelectorAl l (),and it is

looking for any <l i >elements
that have a cl ass attribute

whose value is hot.

The Nodelist is stored in a
variable called hot Items, and the

number of elements in the list is

found using the length property.

For each of the elements in the
Nodelist, the value of the cl ass

attribute is changed to cool .

DOCUMENT OBJECT MODEL 8

TRAVERSING THE DOM

When you have an element node, you can select
another element in relation to it using these five
properties. This is known as traversing the DOM.

parentNode

This property finds the element

node for the containing (or
parent) element in the HTML.

(1) If you started with the
first <l i >element, then its

parent node would be the one

representing the element.

These are properties of the
current node (not methods to

select an element); therefore,
they do not end in parentheses.

8 DOCUMENT OBJECT MODEL

1 ;

previousSibling
nextSibling
These properties find the

previous or next sibling of a node
if there are siblings.

If you started with the first <1 i >

element, it would not have a
previous sibling. However, its next
sibling (2) would be the node

representing the second <l i >.

1 ; 1 ;

If you use these properties and

they do not have a previous/next

sibling, or a f irst/last chi ld, the
result wi ll be nu 11.

1 ;

f i rstChil d
lastChild
These properties find the first or

last child of the current element.

If you started with the <u 1 >

element, the first child would be
the node representing the first
<l i> element, and (3) the last
child would be the last <1 i >.

These properties are read-only;

they can only be used to select
a new node, not to update a

parent, sibling, or chi ld.

WHITESPACE NODES

Most browsers, except IE, treat

whitespace between elements

(such as spaces or carriage

returns) as a text node, so the

properties below return different

elements in different browsers:

previousSibling

nextSiblfng

firstChild

lastChild

1 i

Traversing the DOM can be difficult because
some browsers add a text node whenever they
come across whitespace between elements.

Below, you can see all of the

whitespace nodes added to the

DOM tree for the list example.

Each one is represented by a

green square. You could strip

all the whitespace out of a page

before serving it to the browser.

This would also make the page

smaller and faster to serve/load.

However, it would also make the

code much harder to read.

ul

1 i 1 i

Another way around this

problem is to avoid using these

DOM properties altogether.

One of the most popular ways to

address this kind of problem is

to use a JavaScript library such

as jQuery, which helps deal with

such problems. These types of

browser inconsistencies were a

big factor in jQuery's popularity.

1 i

Internet Explorer (shown above) ignores whitespace and does not create extra text nodes.

ul

li • l i ii l i • l i •
Chrome, Firefox, Safari, and Opera create text nodes from whitespace (spaces and carriage returns).

DOCUMENT OBJECT MODEL 8

PREVIOUS & NEXT SIBLING

You have just seen that

these properties can return

inconsistent results in different

browsers. However, it is safe

to use them when there is no

whitespace between elements.

cos/sibling . html

For this example, all spaces

between the HTML elements

have been removed. In order to

demonstrate these properties,

the second list item is selected

using getEl ementByld ().

From this element node, the

previ ousSi b 1 i ng property will

return the first <1 i> element,

and the next Sib 1 i ng property

will return the third <1 i>

element.

""*'' <li id="one" class="hot">fresh<l em> figs<l li><li id="two"
class="hot">pine nuts<l li><li id="three" class="hot">honey<l li><li
id="four">balsamic vinegar<lli><lul>

c05/ js/sibling.js

II Select the starting point and find its siblings
var startltem = document.getElementByid('two');
var prevltem startltem.previousSibling;
var next l tem = startitem.nextSibling;

II Change the values of the siblings' class attributes
prevltem.className 'complete ' ;
nextltem.className 'cool';

JAVASCRIPT

u 1 i ;IJiiJll

H!' li
• START

• PREVIOUS SIBLING

• NEXT SIBLING

Note how references to sibling

nodes are stored in new

variables. This means properties

such as cl assName can be used

on that node by adding the dot

notation between the variable
name and the property.

8 DOCUMENT OBJECT MODEL

Fl RST & LAST CH I LD

These properties also return
inconsistent results if there is
whitespace between elements.
In this example, a slightly
different solution is used in the
HTML - the closing tags are put

""*''
<ul

next to the opening tags of
the next element, making it
a little more readable. The
example starts by using the
getElementsByTagName()
method to select the

><li id="one" class="hot">fresh<lem> figs <lli
><l i id="two" class="hot">pine nuts<lli
><li id="three" cl ass="hot">honey<lli
><li id="four">balsamic vinegar<lli

><l ul>

JAVASCRIPT

II Select the starting point and find its children
var startltem = document.getElementsByTagName('ul ') [OJ ;
var firstltem = startltem. firstChild;
var lastltem = startitem.lastCh i ld;

II Change the values of the children's class attributes
firstltem.setAttribute('class ' , 'complete');
lastitem.setAttribute('class', ' cool');

element from the page. From this
element node, the fi rstChi 1 d
property will return the first <1 i >
element, and the 1 as tChi 1 d
property will return the last <l i >
element.

c05/child.html

c05/js/child .j s

• I I

l i l i

• START

• FIRST CHILD

• LASTCHILD

DOCUMENT OBJECT MODEL e

HOW TO GET/UPDATE
ELEMENT CONTENT

So far this chapter has focused on finding elements in the DOM tree.

The rest of this chapter shows how to access/update element content.
Your choice of techniques depends upon what the element contains.

Take a look at the three examples of <1 i> elements

on the right. Each one adds some more markup and,

as a result, the fragment of the DOM tree for each
list item is very different.

• The first (on this page) just contains text.
• The second and third (on the right-hand page)

contain a mix of text and an element.

You can see that by adding something as simple as

an element, the DOM tree's structure changes
significantly. In turn, this affects how you might work

with that list item. When an element contains a mix
of text and other elements, you are more likely to

work with the containing element rather than the
individual nodes for each descendant.

To work with the content of elements you can:

• Navigate to the text nodes. This works best

when the element contains only text, no other

elements.
• Work with the containing element. This allows

you to access its text nodes and child elements.

It works better when an element has text nodes
and child elements that are siblings.

e DOCUMENT OBJECT MODEL

<li id="one">figs</ l i>

Above, the <l i > element has:

• One child node holding the word that you can see
in the list item: figs

• An attribute node holding the id attribute.

TEXT NODES

Once you have navigated from an element to its text
node, there is one property that you will commonly

find yourself using:

PROPERTY

nodeValue

DESCRIPTION

Accesses text from node (p214)

<l i i d="one">fresh</ em> figs</ li>

l i - at t ribute

text:
figs

An element is added. It becomes the first child.

• The element node has its own child text
node which contains the word fresh.

• The original text node is now a sibling of the node
that represents the element.

CONTAINING ELEMENT

When you are working wi th an element node (rather

than its text node), that element can contain markup.
You have to choose whether you want to retrieve

(get) or update (set) the markup as well as t he text.

PROPERTY

innerHTML
textContent
innerText

DESCRIPTION

Gets/sets text & markup (p220)
Gets/sets text only (p216)

Gets/sets text only (p216)

<l i id="one">six fresh figs</l i >

l i attribute

Ii em text:
I figs

text:
fresh

When text is added before the element:

• The first child of the <l i >element is a text node,

which contains the word six.
• It has a sibling which is an element node for the

 element. In turn, that element node

has a child text node containing the word fresh.

• Finally, there is a text node holding the word
figs, which is a sibling of both the text node for

the word "six" and the element node, .

When you use these properties to update the

content of an element, the new content w ill
overwrite the entire contents of the element (both

text and markup).

For example, if you used any of these properties to

update the content of the <body> element. it would

update the entire web page.

DOCUMENT OBJECT MODEL §

ACCESS & UPDATE A TEXT
NODE WITH NODEVALUE

When you select a text node, you can retrieve or amend the content of it

using the node Va 1 ue property.

<li id="one">fresh figs

l i - attribute

e~ ;n -
t ext:
fresh

The code below shows how you access the second text node. It will return the result: figs

document.getElementByid(1 one 1).firstChild.nextSibling. nodeValue ;
: {,\ " /::;'\ " @ :: © : ; 0 ······ .. ··············"'""'''"'""' '""••••"""0 ''""''"""""''"''""''"'•••"· 3 ·······;; 4 ;

In order to use node Va 1 ue, you
must be on a text node, not the
element that contains the text.

This example shows that
navigating from the element
node to a text node can be
complicated.

If you do not know whether there
will be element nodes alongside
text nodes, it is easier to work
with the containing element.

§ DOCUMENT OBJECT MODEL

1. The <1 i >element node is selected using the get El ementByid () method.
2. The first child of <1 i > is the element.
3. The text node is the next sibling of that element.
4. You have the text node and can access its contents using node Va 1 ue.

..

ACCESSING & CHANGI NG
A TEXT NODE

To work with text in an element,

first the element node is
accessed and then its text node.

JAVASCRIPT

The text node has a property

called node Value which returns

the text in that text node.

var itemTwo document.getElementByld('two');

var elText itemTwo.firstChild .nodeValue;

elText = elText.replace(' pine nuts', ' kal e ');

itemTwo . firstChi ld.nodeValue = elText;

19JilJ51

You can also use the node Va 1 ue

property to update the content

of a text node.

c05/js/node-value.js

/I Get second l ist item

II Get its text content

II Change pine nuts to ka le

II Update the li st item

This example takes the text

content of the second list item
and changes it from pine nuts

to kale.

The first line collects the second

list item. It is stored in a variable
called i tern Two.

Next the text content of that

element is stored in a variable

called elText.

The third line of text replaces
the words 'pine nuts' with
'kale' using the String object's

replace() method.

The last line uses the node Va 1 ue

property to update the content

of the text node with the
updated value.

DOCUMENT OBJECT MODEL §

ACCESS & UPDATE TEXT
WITH TEXTCONTENT
(& INN ERTEXT)

The textContent property allows you to
collect or update just the text that is in the
containing element (and its children).

textContent
To collect the text from the

<l i> elements in our example
(and ignore any markup inside
the element) you can use the

textContent property on the

containing <l i > element. In this
case it would return the value:

fresh figs.

You can also use this property
to update the content of the

element; it replaces the entire
content of it (including any

markup).

innerText

<li id="one">fresh</ em> figs</ l i>

l i - attribute

document .getElementByid('one') . textContent;

One issue with the textContent property is that Internet Explorer did
not support it until IE9. (All other major browsers support it.)

You may also come across a property called i nner Text, but you should generally avoid it for three key reasons:

SUPPORT

Although most browser

manufacturers adopted the

property, Firefox does not
because i nnerText is not part of

any standard.

e DOCUMENT OBJECT MODEL

OBEYS CSS

It will not show any content

that has been hidden by CSS.
For example, if there were a CSS
rule that hid the elements,

the i nnerText property would
return only the word figs.

PERFORMANCE

Because the i nnerText property

takes into account layout rules

that specify whether the element
is visible or not, it can be slower

to retrieve the content than the
textContent property.

ACCESSING TEXT ONLY

In order to demonstrate the
difference between textContent
and i nnerText, this example
features a CSS rule to hide the
contents of the element.

J AVASCRIPT

The script starts off by getting
the content of the first list item
using both the textContent
property and i nnerText. It then
writes the values after the list.

Finally, the value of the first
list item is then updated to say
sourdough bread. This is done
using the textContent property.

c05/ js/ inner- text-and-text-content.js

var firstltem = document.getElementByld('one');
var showTextContent = firstitem.textContent;
var showinnerText = firstitem.innerText;

II Find first list item
II Get value of textContent
II Get value of innerText

II Show the content of these two properties at the end of the list
var msg = '<p>textContent: ' + showTextContent + '<Ip>' ;

msg += '<p>innerText: ' + showinnerText + '<Ip>';
var el = document.getElementByid('scriptResults');
el .innerHTML = msg;

firstitem . textContent 'sourdough bread';

•;Iii"''

textContent: fresh figs

innerText: figs

II Update the first list item

In most browsers:
• textContent collects

the words fresh figs.
• i nnerHTML just shows figs

(because fresh was hidden
by the CSS).

But:
• In IE8 or earlier, the

textContent property
does not work.

• In Firefox, the innerText
property will return
undefined because the it was
never implemented in Firefox.

DOCUMENT OBJECT MODEL §

ACCESS & UPDATE TEXT &
MARKUP WITH INNERHTML

Using the i nnerHTML property, you can access

and amend the contents of an element,

including any child elements.

i nnerHTML
When getting HTML from an
element, the i nnerHTML property

will get the content of an
element and return it as one long
string, including any markup that

the element contains.

When used to set new content

for an element, it will take a
string that can contain markup

and process that string, adding

any elements within it to the
DOM tree.

When adding new content using

i nnerHTML, be aware that one
missing closing tag could throw

out the design of the entire page.

Even worse, if i nnerHTML is used

to add content that your users

created to a page, they could add
malicious content. See p228.

@ DOCUMENT OBJECT MODEL

<li id="one">fresh</ em> figs</ li>

1 i - attribute

GET CONTENT

The following line of code collects the content of the list item and adds it
to a variable called e 1 Content:
var elContent = document.getElementByld('one').innerHTML;

The e 1 Content variable would now hold the string:
' fresh</ em> figs'

SET CONTENT

The following line of code adds the content of the e 1 Content variable
(including any markup) to the f irst list item:
document .getElementByld('one').innerHTML = elContent;

..
1

UPDATE TEXT & MARKUP

This example starts by storing
the first list item in a variable

called fi rstltem.

JAVASCRIPT

It then retrieves the content of
this list item and stores it in a
variable called i temContent.

II Store the f i rst list item in a variable
var firstitem = document.getElementByid(' one');

II Get the content of the first list item
var itemContent = firstltem.innerHTML;

Finally, the content of the list
item is placed inside a link. Note

how the quotes are escaped.

c05/js/inner-html.js

II Update the content of the first list i tem so it is a link
firstitem.innerHTML = '' + i t emContent + '<la> ' ;

l;lii'll' As the content of the string
is added to the element using

the i nnerHTML property, the
browser wi ll add any elements

in the string to the DOM. In

this example, an <a> element
has been added to the page.

(Any new elements will also be
available to other scripts in the

page.)

If you use attributes in your
HTML code, escaping the

quotation using the backslash

character \ can make it clearer
that those characters are not

part of the script.

DOCUMENT OBJECT MODEL @

ADDING ELEMENTS USING
DOM MANIPULATION

DOM manipulation offers another technique

to add new content to a page (rather than

i nnerHTML). It involves three steps:

1
CREATE THE ELEMENT

createEl ement ()

You start by creating a new

element node using the

createElement() method.

This element node is stored

in a variable.

When the element node is

created, it is not yet part of the

DOM t ree. It is not added to

the DOM tree unti l step 3.

In the example at the end of the

chapter, you w ill see another

method that can be used to

insert an element into the DOM

tree. The i nsertBefore ()

method is used to add a new

element before the selected

DOM node.

@ DOCUMENT OBJECT MODEL

2 3
GIVE IT CONTENT ADD IT TO THE DOM

createTextNode() appendChild()

createTextNode() creates a Now that you have your element

new text node. Again, the node (optionally with some content

is stored in a variable. It can be in a text node), you can add

added to the element node using it to the DOM tree using the

the appendChi l d () method. appendChi 1 d () method.

This provides the content for the The appendChi 1 d () method

element, although you can skip allows you to specify which

this step if you want to attach an element you want this node

empty element to the DOM tree. added to, as a chi ld of it.

DOM manipulation and i nnerHTML both have uses. You will see a

discussion of when to choose each method on p226.

Note: You may see developers leave an empty element in their HTML

pages in order to attach new content to that element, but this practice is

best avoided unless absolutely necessary.

ADDING AN ELEMENT TO
THE DOM TREE

createEl ement () creates an

element that can be added to the

DOM tree, in this case an empty

<l i >element for the list.

JAVASCR I PT

This new element is stored

inside a variable called newEl

until it is at tached to the DOM

tree later on.

II Create a new element and st ore it in a variable.
var newEl document .createEl ement(' li ');

II Create a text node and store it in a variable.
var newText document.createTextNode('quinoa ');

II Attach the new t ext node to t he new element.
newEl .appendChi ld(newText);

createTextNode() allows you to

create a new text node to attach

to an element. It is stored in a

variable called newText.

c05/j s/ add-element . js

II Find t he pos i ti on where the new element shoul d be added.
var position = document.getElementsByTagName('ul ')[OJ;

II Inser t t he new element into its pos i t ion .
position .appendChi l d(newEl);

i;IJiiiSI The text node is added to

the new element node using

appendChi l d ().

The get El ementsByTagName ()

method selects the position in

the DOM tree to insert the new

element (the first <u l >element

in the page).

Finally, appendChi 1 d () is used

again - this time to insert the

new element and its content into

the DOM tree.

DOCUMENT OBJ ECT MODEL @

REMOVING ELEMENTS VIA
DOM MANIPULATION

DOM manipulation can be used to remove
elements from the DOM tree.

1
STORE THE ELEMENT
TO BE REMOVED IN A
VARIABLE

You start by selecting the

element that is going to be
removed and store that element

node in a variable.

You can use any of the methods
you saw in the section on DOM

queries to select the element.

When you remove an element

from the DOM, it will also

remove any child elements.

8 DOCUMENT OBJECT MODEL

2
STORE THE PARENT OF
THAT ELEMENT IN A
VARIABLE

Next, you find the parent element
that contains the element you

want to remove and store that
element node in a variable.

The simplest way to get this
element is to use the parentNode
property of this element.

The example on the right is quite

simple, but this technique can
significantly alter the DOM tree.

3
REMOVE THE ELEMENT
FROM ITS CONTA INING
ELEMENT

The removeChi ld() method is

used on the containing element

that you selected in step 2.

The removeChi ld() method

takes one parameter: the
reference to the element that
you no longer want.

Removing elements from the

DOM will affect the index

number of siblings in a Nodelist.

REMOVING AN ELEMENT
FROM THE DOM TREE

This example uses the
removeCh i 1 d () method to

remove the fourth item from the
list (along with its contents).

JAVASCRIPT

The first variable, removeEl,

stores the actual element you

want to remove from the page
(the fourth list item).

The second variable,

cont a i nerEl, stores the <u 1 >

element that contains the
element you want to remove.

c05/js/remove-element.js

var removeEl = document.getElementsByTagName('li ')[3]; II The element to remove

var containerEl = removeEl .parentNode;

containerEl.removeChild(removeEl);

l;IJi'Jii

II Its containing element

II Removing t he element

The removeChild() method is
used on the variable that holds

the container node.

It requires one parameter: the

element you want to remove
(which is stored in the second

variable) .

• I I

l i l i l i

• CONTAINER ELEMENT

• ELEMENT TO BE REMOVED

DOCUMENT OBJECT MODEL @

COMPARING TECHNIQUES:
UPDATING HTML CONTENT

So far, you have seen three techniques for adding HTML to a web page.

It's time to compare when you should use each one.

In any programming language, there are often

several ways to achieve the same task. In fact, if you

asked ten programmers to write the same script, you

may well find ten different approaches.

Some programmers can be rather opinionated and

believe that their way is always the "right" way to do

things - when there are often several right ways. If

you understand why people prefer some approaches

over others, then you are in a strong position to

decide whether it meets the needs of your project.

8 DOCUMENT OBJECT MODEL

document.write()
The document object's write () method is a simple

way to add content that was not in the original

source code to the page, but its use is rarely advised.

ADVANTAGES

• It is a quick and easy way to show beginners how

content can be added to a page.

DISADVANTAGES

• It only works when the page initially loads.

• If you use it after the page has loaded it can:

1. Overwrite the whole page

2. Not add the content to the page

3. Create a new page

• It can cause problems with XHTML pages that

are strictly validated.

• This method is very rarely used by programmers

these days and is generally frowned upon.

You can choose different techniques depending on the task (and keep in
mind how the site might be developed in the future).

eZement.innerHTML

The i nnerHTML property lets you get/update the

entire content of any element (including markup) as

a string.

ADVANTAGES

• You can use it to add a lot of new markup using

less code than DOM manipulation methods.

• It can be faster than DOM manipulation when

adding a lot of new elements to a web page.

• It is a simple way to remove all of the content

from one element (by assigning it a blank string).

DISADVANTAGES

• It should not be used to add content that has

come from a user (such as a username or blog

comment), as it can pose a significant security

risk which is discussed over the next four pages.

• It can be difficult to isolate single elements

that you want to update within a larger DOM
fragment.

• Event handlers may no longer work as intended.

DOM MANIPULATION

DOM manipulation refers to using a set of methods

and properties to access, create, and update

elements and text nodes.

ADVANTAGES

• It is suited to changing one element from a DOM
fragment where there are many siblings.

• It does not affect event handlers.

• It easily allows a script to add elements

incrementally (when you do not want to alter a lot

of code at once).

DISADVANTAGES

• If you have to make a lot of changes to the

content of a page, it is slower than i nnerHTML.

• You need to write more code to achieve the same

thing compared with i nnerHTML.

DOCUMENT OBJECT MODEL @

CROSS-SITE SCRIPTING
(XSS) ATTACKS

If you add HTML to a page using i nnerHTML (or several jQuery methods),

you need to be aware of Cross-Site Scripting Attacks or XSS; otherwise,
an attacker could gain access to your users' accounts.

This book has several warnings about security issues

when you add HTML to a page using i nnerHTML.
(There are also notes about it when using jQuery.)

HOW XSS HAPPENS

XSS involves an attacker placing malicious code into
a site. Websites often feature content created by
many different people. For example:

• Users can create profiles or add comments
• Multiple authors may contribute articles

• Data can come from third-party sites such as
Facebook, Twitter, news tickers, and other feeds

• Files such as images and video may be uploaded

Data you do not have complete control over is known
as untrusted data; it must be handled with care.

The next four pages describe the issues you need

to be aware of, and how to make your site secure

against these kinds of attacks.

WHAT CAN THESE ATTACKS DO?

XSS can give the attacker access to information in:

• The DOM (including form data)

• That website's cookies

• Session tokens: information that identifies you
from other users when you log into a site

This could let the attacker access a user account and:

• Make purchases with that account

• Post defamatory content
• Spread their malicious code further I faster

EVEN SIMPLE CODE CAN CAUSE PROBLEMS:

Malicious code often mixes HTML and JavaScript (although URLs and CSS can be used to trigger XSS attacks).

The two examples below demonstrate how fairly simple code could help an attacker access a user's account.

This first example stores cookie data in a variable, which could then be sent to a third-party server:

<script>var adr= 'http : //example .com/xss .php?cookie=' + escape(document .cookie);</script>

This code shows how a missing image can be used with an HTML attribute to trigger malicious code:

Any HTML from untrusted sources opens your site to XSS attacks. But the threat is only from certain characters.

@ DOCUMENT OBJECT MODEL

DEFENDING AGAINST
CROSS-SITE SCRIPTING

VALIDATE INPUT GOING TO THE SERVER

1. Only let visitors input the kind

of characters they need to when

supplying information. This is

known as validation. Do not

allow untrusted users to submit

HTML markup or JavaScript.

REQUESTS PAGES FROM
AND SENDS FORM DATA
TO WEB SERVER

•• c

BROWSER

PROCESSES HTML, CSS,
AND JAVASCRIPT FILES
SENT FROM WEB SERVER

2. Double-check val idation on

the server before displaying user

content/storing it in a database.

This is important because users

could bypass validation in the

browser by turning JavaScript off.

COLLECTS INFORMATION
FROM BROWSER AND
PASSES IT TO DATABASE

WEB SERVER

GENERATES PAGES USING
DATA FROM DATABASE AND
INSERTS IT INTO TEMPLATES

3. The database may safely

contain markup and script
from trusted sources (e.g., your

content management system).

This is because it does not t ry to

process the code; it just stores it.

STORES INFORMATION
CREATED BY WEBSITE
ADMINS AND USERS

DATABASE

RETURNS CONTENT NEEDED
TO CREATE WEB PAGES

ESCAPE DATA COMING FROM THE SERVER & DATABASE

6. Do not create DOM fragments

containing HTML from untrusted

sources. It should only be added

as text once it has been escaped.

5. Make sure that you are only

inserting content generated by

users into certain parts of the

template files (see p230).

4 . As your data leaves the

database, all potentially

dangerous characters should be

escaped (see p231).

So, you can safely use i nnerHTML to add markup to a page if you have written the code - but content from any

untrusted sources should be escaped and added as text (not markup), using properties like textContent.

DOCUMENT OBJECT MODEL @

XSS: VALIDATION
& TEMPLATES

Make sure that your users can only input characters they need to use
and limit where this content will be shown on the page.

FILTER OR VALIDATE INPUT

The most basic defense is to prevent users from

entering characters into form fie lds that they do not
need to use when providing that kind of information.

For example, users' names and email addresses
will not contain angled brackets, ampersands, or

parentheses, so you can validate data to prevent
characters like this being used.

This can be done in the browser, but must also be
done on the server (in case the user has JavaScript

turned off). You learn about validation in Chapter 13.

You may have seen that the comment sections on

websites rarely allow you to enter a lot of markup
(they sometimes allow a limited subset of HTML).

This is to prevent people from entering malicious
code such as <script> tags, or any other character

with an event handling attribute.

Even the HTML editors used in many content

management systems will limit the code that you are

allowed to use within them, and will automatically
try to correct any markup that looks malicious.

§ DOCUMENT OBJECT MODEL

LIMIT WHERE USER CONTENT GOES

Malicious users wil l not just use <script> tags to

try and create an XSS attack. As you saw on p228,

malicious code can live in an event handler attribute
without being wrapped in <script> tags. XSS can
also be tr iggered by malicious code in CSS or URLs.

Browsers process HTML, CSS, and JavaScript in

different ways (or execution contexts), and in each

language different characters can cause problems.
Therefore, you should only add content from

untrusted sources as text (not markup), and place
that text in elem·ents that are visible in the viewport.

Never place any user's content in the fol lowing

places without detailed experience of the issues

involved (which are beyond the scope of this book):

Script tags:
HTML comments:

Tag names:
Attributes:

CSSvalues:

<scr ipt>not here</script>

<!-- not here -->

<notHere href=" / test" / >
<div notHere="norHere" / >

{color: not here}

XSS: ESCAPING &
CONTROLLING MARKUP

Any content generated by users that contain characters that are used

in code should be escaped on the server. You must control any markup

added to the page.

ESCAPING USER CONTENT

All data from untrusted sources should be escaped

on the server before it is shown on the page.

Most server-side languages offer helper funct ions

that will strip-out or escape malicious code.

HTML

Escape these characters so that they are displayed

as characters (not processed as code).

& & ; ' (not ')

< < ; "
> > ; I / ;

` ;

JAVASCRIPT

Never include data from untrusted sources in

JavaScript. It involves escaping all ASCII characters

with a value less than 256 that are not alphanumeric

characters (and can be a security risk).

URLS

If you have links containing user input (e.g., links to

a user profile or search queries), use the JavaScript

encodeURIComponent () method to encode the user

input. It encodes the following characters:

, I ? : @ & = + $ #

ADDING USER CONTENT

When you add untrusted content to an HTML page,

once it has been escaped on the server, it should still

be added to the page as text. JavaScript and jQuery

both offer tools for doing this:

JAVASCRIPT

DO use: textContent or i nnerText (see p216)

DO NOT use: i nnerHTML (see p220)

JQUERY

DO use: . text () (see p316)

DO NOT use: . html() (see p316)

You can sti ll use the i nnerHTML property and jQuery

• html() method to add HTML to the DOM, but you

must make sure that:

• You control all of the markup being generated

(do not allow user content that could contain

markup).

• The user's content is escaped and added as text

using t he approaches noted above, rather than

adding the user's content as HTML.

DOCUMENT OBJECT MODEL @

CHECK FOR AN ATTRIBUTE
AND GET ITS VALUES

Before you work with an
attribute, it is good practice to

check whether it exists. This will
save resources if the attribute

cannot be found.

JAVASCRIPT

The hasAttri bute() method

of any element node lets you
check if an attribute exists. The

attribute name is given as an

argument in the parentheses.

var firstitem = document.getElementByid('one');

if (firstitem.hasAttribute('class')) {
var attr = firstltem.getAttribute(' class');

Using hasAttribute() in an if
statement like this means that

the code inside the curly braces
will run only if the attribute

exists on the given element.

c05/js/get-attribute . js

II Get fi rst l is t item

II If it has class attri bute
II Get the att ri but e

I I Add the value of the attribute after the l ist
var el = document .getElementByid(' scriptResults');

iijJiiJil

el .innerHTML = '<p>The firs t i tem has a class name : ' + attr + '<Ip>';

In this example, the DOM query
getEl ementByld () returns the

element whose id attribute has

a value of one.

The hasAtt ribute() method

is used to check whether this

element has a class attribute,
and returns a Boolean. This

is used with an if statement
so that the code in the curly

braces will run only if the cl ass

attribute does exist.

ThegetAttribute() method

returns the value of the cl ass
attribute, which is then written

to the page.

Browser Support: Both of these

methods have good support in
all major web browsers.

DOCUMENT OBJECT MODEL 8

CREATING ATTRIBUTES &
CHANGING THEIR VALUES
The cl assName property allows

you to change the value of the

cl ass attribute. If the attribute

does not exist, it wil l be created

and given the specified value.

cOS/js/set-attribute. js

You have seen this property

used throughout the chapter

to update the status of the

list items. Below, you can see

another way to achieve the task.

The setAttri bute() method

allows you to update the value

of any attribute. It takes two

parameters: the attribute name,

and the value for the attribute.

JAVASCRIPT

var firs tltem = document.getElementByld('one'); II Get the first item
firstltem .className = 'complete '; II Change its class attribute

var fourthlt em = document.getElementsByTagName('li ').item(3);ll Get fourth item
el2.setAttribute('class' , ' cool'); II Add an attribute to it

When there is a property (like

the c 1 ass Name or id properties),

it is generally considered better

to update the properties rather

than use a method (because,

behind the scenes, the method

would just be sett ing the

properties anyway).

When you update the value

of an attribute (especially the

c 1 ass attribute) it can be used

to trigger new CSS rules, and

therefore change the appearance

of the elements.

@ DOCUMENT OBJECT MODEL

i;jJiij§I

Note: These techniques override the entire value of the cl ass attribute.

They do not add a new value to the existing value of the cl ass attribute.

If you wanted to add a new value onto the existing value of the c 1 ass

attribute, you would need to read the content of the attribute first, then

add the new text to that existing value of the attribute (or use the

jQuery . addCl ass () method covered on p320).

REMOVING ATTRI BUTES

To remove an attribute from an

element, first select the element,
then cal l removeAtt r i bute () .

It has one parameter: the name

of the attribute to remove.

JAVASCRIPT

Trying to remove an attribute

that does not exist w ill not cause
an error, but it is good practice

to check for its existence before
attempting to remove it.

In this example, the
get El ementByld () method is

used to retrieve the first item
from this list, which has an id

attribute with a value of one.

c05/ j s/ remove-at tri bute.js

var firstltem = document .getElementByld{'one ') ; // Get the first i tem
if (firstltem.hasAttribute('class ')) { //

firstl t em. removeAttri bute(' cl ass') ; //
If it has a class attri bute
Remove its cl ass attribute

The script checks to see if the

selected element has a c 1 ass
attribute and, if so, it is removed.

DOCUMENT OBJECT MODEL @

EXAM INING THE DOM
IN CHROME

Modern browsers come with tools that help
you inspect the page loaded in the browser
and understand the structure of the DOM tree.

In the screenshot to the right, the

<l i> element is highlighted and
the Properties panel (1) indicates

that this is an:

• 1 i element with an id
attribute whose value is one
and cl ass whose value is hot

• an HTMLLIElement

• an HTMLElement

• an element

• a node
• an object

Each of these object names has

an arrow next to it which you can
use to expand that section.

It will tell you what properties
are available to that kind of node.

They are separated because
some properties are specific

to list item elements, others

to element nodes, others to all
nodes, and others to all objects,

and the different properties are
listed under the corresponding

type of node. But they do remind

you of which properties you can

access through the DOM node
for that element.

8 DOCUMENT OBJECT MODEL

e e e / D i.vaScrlp< , JQutry - Ch• x '\u
~ ~ c D file:/ I/initial- page.html

01 - 1 Resources N- SOUf CC:S Timtlln<

v•• .
T<ht1tl>

... <head>-</he•d>
• <body>

• <div id="pagt">
<hl id="l'leader">List King</hl>
<h2>8uy grocer ies</h2>

• <ut>

<e1a>f resh</ttt>
.. figs"

</\1>
<\i i d•"two" c l ass• "hot">pine nuts</\i>
<li i d="three'' c\ass•"hot '">l\oney</U>
<\i id•'•four .. >batsamic vinegar</ti>

</u\>
</div>

</body>
</ht.ml> -
~ >:: Q. html body divl~~ ul ll!!'lml!!!I

To get the developer tools in

Chrome on a Mac, go to the
View menu, select Developer and

then Developer Tools. On a PC,
go to Tools (or M ore Tools) and

select Developer Tools.

Or right-click on any element

and select Inspect Element.

Select Elements from the menu

that runs across the top of this
tool. The source of the page will

be shown on the left and several
other options to the right.

.,.•
~

~

- -
't[_, =

Profiles Audiu Consol•

.-Computed Style O Show inheritec

.,Styles + •i;; 0·
,. Metrics

!i"Propenles \. 1 .I
• \itlone. hot

• KTMLl.lE te11ent

• KTMLEte11ent

• E\nent
•Node

!.- Obje<t

.- DOM Breakpoints
,. Event Listeners

-

Any element that has child

elements has an arrow next

to it that lets you expand and
collapse the item to show and

hide its content.

'il·

0

The Properties panel (on the
right) tells you the type of object

the selected element is. (In some
versions of Chrome this is shown

as a tab.) When you highlight

different elements in the main
left-hand window, you can see

the values in the Properties panel

on the right reflect that element.

EXAMINING THE DOM
IN FIREFOX

Firefox has similar built-in tools, but you can
also download a DOM inspector tool that

shows the text nodes.

(} 0 0 ~pc & jQ;nty .. Chap< t r S; Ooa.mtnt Obj~t Modet • l'*iti.af P*9f: If you search online for "DOM

Inspector", you will find the tool

designed for Firefox shown on

the left. In the screen shot, you

can see a similar tree view to

the one shown in Chrome, but

it also shows you where there

are whitespace nodes (they are

shown as # text). In the panel to

the right, you can see the value

in the nodes; whitespace nodes

have no value in this panel.

Q A Ofk./11~·~ --
• HM. . """ -• IOOV

. "' -. "'
. "'

• u
• u

....

.. ..

Firefox also has a 3D view of

the DOM, where a box is drawn

around each element, and you

can change the angle of the

page to show which parts of it

stick out more than others. The

further they protrude the further

into chi ld elements they appear.

This can give you an interesting

(and quick) glimpse into the

complexity of the markup used

on a page and the depth to which
elements are nested.

-............

Another Firefox extension worth

trying is called Firebug.

DOCUMENT OBJECT MODEL @

EXAMPLE
DOCUMENT OBJECT MODEL

This example brings together a selection of
the techniques you have seen throughout the

chapter to update the contents of the list.
It has three main aims:

1: Add a new item to the start and end of the list
Adding an item to the start of a list requires the use of a different method

than adding an element to the end of the list.

2: Set a cl ass attribute on all items
This involves looping through each of the <l i >elements and updating

the value of the c 1 ass attribute to coo 1.

3: Add the number of list items to the heading
This involves four steps:

1. Reading the content of the heading

2 . Counting the number of <:l i >elements in the page

3. Adding the number of items to the content of the heading

4 . Updating the heading with this new content

DOCUMENT OBJECT MODEL §

EXAMPLE
DOCUMENT OBJECT MODEL

c05/ js/ example. js JAVASCR IPT

II ADDING ITEMS TO START AND ENO OF LIST
var list = document .get El ementsByTagName(' ul ')[OJ; II Get the <u l > el ement

II ADD NEW ITEM TO END OF LIST
var newitemLast = document . createElement('li '); II Create element

II Create text node var newTextLast = document .createTextNode{'cream');
newitemLast.appendChild(newTextLast);
list.appendChild(newitemLast);

II Add text node to element
II Add element end of lis t

II ADD NEW ITEM START OF LIST
var newitemFirst = document . createElement('li ') ;
var newTextFirst = document.createTextNode('kale');
newitemFirst.appendChild(newTextFirst);
list . insertBefore(newitemFirst, list . firstChild);

II Create element
II Create text node
II Add text node t o element
II Add element to list

This part of the example adds two new list items to

the element: one to the end of the list and one
to the start of it. The technique used here is DOM

manipulation and there are four steps to creating a

new element node and adding it to the DOM tree:

1. Create the element node
2. Create the text node

3. Add the text node to the element node
4 . Add the element to the DOM tree

To achieve step four, you must first specify the

parent that will contain the new node. In both cases,
this is the element. The node for this element

is stored in a variable called 1 i st because it is used
many times.

8 DOCUMENT OBJECT MODEL

The append Child () method adds new nodes as a

child of the parent element. It has one parameter:
the new content to be added to the DOM tree. If the

parent element already has child elements, it will be

added after the tast of these (and will therefore be
the last child of the parent element).

paren t .appendChild(newltem) ;

(You have seen this method used several times both

to add new elements to the tree and to add text

nodes to element nodes.)

To add the item to the start of the list, the
i nsertBefore () method is used. This requires one

extra piece of information: the element you want to
add the new content before (the target element).

parent . insertBefore(newltem, target) ;
..

EXAMPLE
DOCUMENT OBJECT MODEL

JAVASCRIPT c05/js/example.js

var list Items = document.querySelectorAl l (' l i '); /!All <l i> elements

//ADD A CLASS OF COOL TO ALL LIST ITEMS
var i;
for (i = 0; i < listltems . length; i++) {
listltems[i] .className = 'cool';

}

//Counter variable
// Loop through elements
//Change class to cool

// ADD NUMBER OF ITEMS IN THE LIST TO THE HEADING
var heading = document .querySelector('h2'); // h2 element

// h2 text var headingText = heading.firstChild.nodeValue;
var totalltems = listitems. l ength ; //No. of elements

+ ''; // Con tent
//Update h2

var newHeading = headingText + '' + totalitems
heading.textContent = newHeading;

The next step of this example is to loop through all of

the elements in the list and update the value of their
c 1 ass attributes, setting them to coo 1.

This is achieved by fi rst collecting all of the list
item elements and storing them in a variable called

1 i st I t ems. A for loop is then used to go through
each of them in turn. In order to tell how many times

the loop should run, you use the length property.

Finally, the code updates the heading to include

the number of list items. It updates it using the

i nnerHTML property as opposed to the DOM
manipulation techniques used earlier in the script.

This demonstrates how you can add to the content

of an existing element by reading its current value ·

and adding to it. You could use a similar technique if
you needed to add a value to an attribute - without

overwriting its existing value.

To update the heading with the number of items in

the list, you need two pieces of information:

1. The orig inal content of the heading so that
you can add the number of list items to it. It is

collected using the node Value property (although

i nnerHTML or text Content would do the same).
2. The number of list items, which can be found

using the l ength property on the l ist Items

variable.

W ith this information ready, there are two steps to

updating the content of the <h2> element:

1. Creating the new heading and storing it in a
variable - the new heading wi ll be made up of the

original heading content, followed by the number

of items in the list.
2. Updating the heading, which is done by updating

the content of the heading element using the

i nnerText property of that node.

DOCUMENT OBJECT MODEL @

The browser represents the page using a DOM tree.

DOM trees have four types of nodes: document nodes,

element nodes, attribute nodes, and text nodes.

You can select element nodes by their id or cl ass

attributes, by tag name, or using CSS selector syntax.

Whenever a DOM query can return more than one

node, it will always return a Nadel i st.

From an element node, you can access and update its

content using properties such as textContent and

i nnerHTML or using DOM manipulation techniques.

An element node can contain multiple text nodes and

child elements that are siblings of each other.

In older browsers, implementation of the DOM is

inconsistent (and is a popular reason for using jQuery).

Browsers offer tools for viewing the DOM tree .

••

