

The Document Object Model (DOM) specifies

how browsers should create a model of an HTML

page and how JavaScript can access and update the
contents of a web page while it is in the browser window.

The DOM is neither part of HTML, nor part of JavaScript; it is a separate set of rules.
It is implemented by all major browser makers, and covers two primary areas:

MAKING A MODEL OF THE
HTML PAGE

When the browser loads a web page, it
creates a model of the page in memory.

The DOM specifies the way in which the

browser should structure this model using
a DOM tree.

The DOM is called an object model
because the model (the DOM tree) is
made of objects.

Each object represents a different part of
the page loaded in the browser window.

DOCUMENT OBJECT MODEL

ACCESSING AND CHANGING
THE HTML PAGE

The DOM also defines methods and
properties to access and update each
object in this model, which in turn updates
what the user sees in the browser.

You will hear people call the DOM an

Application Programming Interface (API).

User interfaces let humans interact with
programs; APls let programs (and scripts)
talk to each other. The DOM states what
your script can ask the browser about the
current page, and how to tell the browser
to update what is being shown to the user.

vl b 4

In each example of this

chapter

the JavaScript

v

will amend the HTML list

shown here. Colors are used
to convey the priority and
status of each list item:

THE DOM TREE IS A
MODEL OF A WEB PAGE

As a browser loads a web page, it creates a model of that page.
The model is called a DOM tree, and it is stored in the browsers’ memory.

It consists of four main types of nodes.

BODY OF HTML PAGE

<html>
<body>
<div id="page">

<hl id="header">List</hl>
<h2>Buy groceries</h2>

<1i id="one" class="hot">fresh figs</1i>
<1i id="two" class="hot">pine nuts</1i>

<1i id="three" class="hot">honey</1i>

<1i id="four">balsamic vinegar</1i>

</u]>

<script src="js/list.js"></script>

</div>
</body>
</html>

THE DOCUMENT NODE

Above, you can see the HTML code for a shopping
list, and on the right hand page is its DOM tree.
Every element, attribute, and piece of text in the
HTML is represented by its own DOM node.

At the top of the tree a document node is added; it
represents the entire page (and also corresponds to
the document object, which you first met on p36).

When you access any element, attribute, or text
node, you navigate to it via the document node, It is
the starting point for all visits to the DOM tree.

DOCUMENT OBJECT MODEL

ELEMENT NODES

HTML elements describe the structure of an HTML
page. (The <hl> - <h6> elements describe what
parts are headings; the <p> tags indicate where

paragraphs of text start and finish; and so on.)

To access the DOM tree, you start by looking for
elements. Once you find the element you want, then
you can access its text and attribute nodes if you
want to. This is why you start by learning methods
that allow you to access element nodes, before
learning to access and alter text or attributes.

Note: We will continue to use this list example
throughout this chapter and the next two chapters
so that you can see how different techniques allow
you to access and update the web page (which is
represented by this DOM tree).

Relationships between the document and all of
the element nodes are described using the same
terms as a family tree: parents, children, siblings,
ancestors, and descendants. (Every node is a
descendant of the document node.)

Each node is an object with methods and properties.
Scripts access and update this DOM tree (not the source HTML file).
Any changes made to the DOM tree are reflected in the browser.

DOM TREE document
|
htm]
[
body
|
div - attribute
|
| . | | [
hl — attribute h2 ul script — attribute
: ;
text text
|] | 1
1i — attribute 1i — attribute 1i — attribute 1i = attribute
| | |) |
text text text
em text
|
text
- ATTRIBUTE NODES TEXT NODES

The opening tags of HTML elements can carry
attributes and these are represented by attribute
nodes in the DOM tree.

Attribute nodes are not children of the element that’
carries them; they are part of that element. Once
you access an element, there are specific JavaScript
methods and properties to read or change that
element's attributes. For example, it is common to
change the values of class attributes to trigger new
CSS rules that affect their presentation.

Once you have accessed an element node, you
can then reach the text within that element. This is
stored in its own text node.

Text nodes cannot have children. If an element
contains text and another child element, the child
element is not a child of the text node but rather

a child of the containing element. (See the
element on the first <11> item.) This illustrates how
the text node is always a new branch of the DOM
tree, and no further branches come off of it.

DOCUMENT OBJECT MODEL

WORKING WITH
THE DOM TREE

Accessing and updating the DOM tree involves two steps:
1: Locate the node that represents the element you want to work with.
2: Use its text content, child elements, and attributes.

STEP 1; ACCESS THE ELEMENTS

Here is an overview of the methods and properties that access elements covered on p192 - p211.
The first two columns are known as DOM queries. The last column is known as traversing the DOM.

SELECT AN INDIVIDUAL
ELEMENT NODE

Here are three common ways to
select an individual element:

getElementById()

Uses the value of an element'’s
id attribute (which should be
unique within the page).

See p195

querySelector()

Uses a CSS selector, and returns
the first matching element.

See p202

You can also select individual
elements by traversing from one
element to another within the
DOM tree (see third column).

DOCUMENT OBJECT MODEL

SELECT MULTIPLE
ELEMENTS (NODELISTS)

There are three common ways to
select multiple elements.

getElementsByClassName()
Selects all elements that have
a specific value for their class
attribute.

See p200

getElementsByTagName()
Selects all elements that have the
specified tag name.

See p201

querySelectorAll()

Uses a CSS selector to select all
matching elements.

See p202

TRAVERSING BETWEEN
ELEMENT NODES

You can move from one element
node to a related element node.

parentNode

Selects the parent of the current
element node (which will return
just one element).

See p208

previousSibling / nextSibling
Selects the previous or next
sibling from the DOM tree.

See p210

firstChild /TastChild

Select the first or last child of the
current element.

See p211

Throughout the chapter you will see notes where DOM methods only work in certain browsers or are buggy.
Inconsistent browser support for the DOM was a key reason why jQuery became so popular.

The terms elements and element nodes are used interchangeably
but when people say the DOM is working with an element,
it is actually working with a node that represents that element.

STEP 2: WORK WITH THOSE ELEMENTS

Here is an overview of methods and properties that work with the elements introduced on p186.

ACCESS / UPDATE
TEXT NODES

1i — attribute

Lo

The text inside any element is

stored inside a text node. To

access the text node above:

1. Select the <1i> element

2.Use the firstChild property
to get the text node

3. Use the text node's only
property (nodeValue) to get
the text from the element

nodeValue

This property lets you access or
update contents of a text node.
See p214

The text node does not include
text inside any child elements.

WORK WITH HTML
CONTENT

One property allows access to
child elements and text content:
innerHTML

See p220

Another just the text content:
textContent
See p216

Several methods let you create
new nodes, add nodes to a tree,
and remove nodes from a tree:
createElement ()
createTextNode()
appendChild() / removeChild()

This is called DOM manipulation.

See p222

ACCESS OR UPDATE
ATTRIBUTE VALUES

11 attribute

|
text

Here are some of the properties
and methods you can use to
work with attributes:
className / id

Lets you get or update the value
of the class and id attributes.
See p232

hasAttribute()
getAttribute()
setAttribute()
removeAttribute()

The first checks if an attribute
exists. The second gets its value,
The third updates the value.

The fourth removes an attribute.
See p232

DOCUMENT OBJECT MODEL

CACHING DOM QUERIES

Methods that find elements in the DOM tree are called DOM queries.
When you need to work with an element more than once, you should
use a variable to store the result of this query.

When a script selects an Below, the interpreter is told to Once it has found the node that
element to access or update, look through the DOM tree for represents the element(s), you
the interpreter must find the an element whose id attribute can work with that node, its
element(s) in the DOM tree. has a value of one. parent, or any children.

getElementById('one');

DOCUMENT OBJECT MODEL

When people talk about storing elements in variables, they are really
storing the location of the element(s) within the DOM tree in a variable.
The properties and methods of that element node work on the variable.

If your script needs to use the This saves the browser looking Programmers would say that the
the same element(s) more than through the DOM tree to find variable stores a reference to

once, you can store the location the same element(s) again. It is the object in the DOM tree. (It is
of the element(s) in a variable. known as caching the selection. storing the location of the node.)

var itemOne = getElementById('one');

N N I =

itemOne does not store the <1i> element, it stores a reference to where that node is in the DOM tree.
To access the text content of this element, you might use the variable name: itemOne.textContent

DOCUMENT OBJECT MODEL

ACCESSING ELEMENTS

DOM queries may return one element, or they may return a NodelList,
which is a collection of nodes.

Sometimes you will just want to access one Here, the DOM tree shows the body of the page of
individual element (or a fragment of the page that the list example. We focus on accessing elements
is stored within that one element). Other times you first so it only shows element nodes. The diagrams
may want to select a group of elements, for example, in the coming pages highlight which elements a
every <hl>element in the page or every <1i> DOM query would return. (Remember, element
element within a particular list. nodes are the DOM representation of an element.)
body
div
hl h2 ul script
] T : 1
1i 14 1i 14
GROUPS OF ELEMENT NODES FASTEST ROUTE
If a method can return more than one node, it will Finding the quickest way to access an element
always return a NodelList, which is a collection of within your web page will make the page seem
nodes (even if it only finds one matching element). faster and/or more responsive. This usually means
You then need to select the element you want from evaluating the minimum number of nodes on the
this list using an index number (which means the way to the element you want to work with. For
numbering starts at 0 like the items in an array). example, getElementById () will quickly return one
element (because no two elements on the same
For example, several elements can have the same page should have the same value for an id attribute),
tag name, so getElementsByTagName() will always but it can only be used when the element you want
return a NodeList. to access has an id attribute.

DOCUMENT OBJECT MODEL

METHODS THAT RETURN A SINGLE ELEMENT NODE:

getElementById('id")

Selects an individual element given the value of its id attribute.
The HTML must have an id attribute in order for it to be selectable. =

getElementBylId('one')

First supported: IE5.5, Opera 7, all versions of Chrome, Firefox, Safari.

querySelector('css selector')

Uses CSS selector syntax that would select one or more elements. i
This method returns only the first of the matching elements. [;

First supported: |IE8, Firefox 3.5, Safari 4, Chrome 4, Opera 10 querySelector('1i.hot")

METHODS THAT RETURN ONE OR MORE ELEMENTS (AS A NODELIST):

getElementsByClassName('class"')

Selects one or more elements given the value of their class attribute.

The HTML must have a c1ass attribute for it to be selectable. X I e
This method is faster than querySelectorAl1().

getElementsByClassName('hot')

First supported: IE9, Firefox 3, Safari 4, Chrome 4, Opera 10
(Several browsers had partial / buggy support in earlier versions)

getElementsByTagName('tagName')

-

Selects all elements on the page with the specified tag name.

This method is faster than querySelectorAl1(). o) e .

First supported: |E6+, Firefox 3, Safari 4, Chrome, Opera 10 getElementsByTagName('1i")
(Several browsers had partial / buggy support in earlier versions)

querySelectorAl1('css selector')

L
r T T 1

Uses CSS selector syntax to select one or more elements and returns all :

of those that match. D N S

First supported: IE8, Firefox 3.5, Safari 4, Chrome 4, Opera 10 querySelectorAl1('11.hot')

DOCUMENT OBJECT MODEL

METHODS THAT SELECT
INDIVIDUAL ELEMENTS

getElementById() and querySelector() can
both search an entire document and return
individual elements. Both use a similar syntax.

getElementByld() is the quickest and most efficient
way to access an element because no two elements
can share the same value for their id attribute.

The syntax for this method is shown below, and an
example of its use is on the page to the right.

document refers to the document
object. You always have to
access individual elements via
the document object.

OBJECT
]

querySelector() is a more recent addition to the
DOM, so it is not supported in older browsers.
But it is very flexible because its parameter is a
CSS selector, which means it can be used to
accurately target many more elements.

The getElementById() method
indicates that you want to find
an element based upon the
value of its id attribute.

METHOD
1

document.getElementById('one')

MEMBER OPERATOR

The dot notation indicates that
the method (on the right) is
being applied to the node on the
left of the period.

This code will return the element node for the
element whose id attribute has a value of one.

You often see element nodes stored in a variable for
use later in the script (as you saw on p190).

DOCUMENT OBJECT MODEL

I_]__.I

PARAMETER

The method needs to know
the value of the id attribute on
the element you want. It is the
parameter of the method.

Here the method is used on the document object so
it looks for that element anywhere within the page.
DOM methods can also be used on element nodes
within the page to find descendants of that node.

SELECTHING ELEMENTS
USING ID ATTRIBUTES

c05/get-element-by-id.html

<hl id="header">List King</h1l>
<h2>Buy groceries</h2>

<1i id="one" class="hot">fresh
figs</1i>
<1i id="two" class="hot">pine nuts</1i>
<1i id="three" class="hot">honey</1i>
<1i id="four">balsamic vinegar</1i>
</u]>

JAVASCRIPT c05/js/get-element-by-id.js

// Select the element and store it in a variable.
var el = document.getElementByld('one');

// Change the value of the class attribute.
el.className = 'cool';

freshfigs

pine nuts
honey

balsamic vinegar

This result window shows the example after the script has updated
the first list item. The original state, before the script ran, is shown on
p185.

getElementById() allows you
to select a single element node
by specifying the value of its
id attribute.

This method has one parameter:
the value of the id attribute on
the element you want to select.
This value is placed inside quote
marks because it is a string. The
quotes can be single or double
quotes, but they must match.

In the example on the left , the
first line of JavaScript code finds
the element whose id attribute
has a value of one, and stores
areference to that node ina
variable called el.

The code then uses a property
called className (which you
meet on p232) to update the
value of the class attribute

of the element stored in this
variable. Its value is cool, and
this triggers a new rule in the
CSS that sets the background
color of the element to aqua.

Note how the className
property is used on the variable
that stores the reference to the
element.

Browser Support: This is one of

the oldest and best supported
methods for accessing elements.

DOCUMENT OBJECT MODEL

NODELISTS: DOM QUERIES
THAT RETURN MORE THAN

ONE ELEMENT

When a DOM method can return more than one element, it returns a
NodelList (even if it only finds one matching element).

A Nodelist is a collection of element nodes. Each
node is given an index number (a number that starts
at zero, just like an array).

The order in which the element nodes are stored in a
Nodelist is the same order that they appeared in the
HTML page.

When a DOM query returns a NodelList, you may

want to:

® Select one element from the NodelList.

® Loop through each item in the NodeList and
perform the same statements on each of the
element nodes.

LIVE & STATIC NODELISTS

There are times when you will want to work with
the same selection of elements several times, so
the Nodelist can be stored in a variable and re-used
(rather than collecting the same elements again).

In a live NodelList, when your script updates the
page, the Nodelist is updated at the same time.
The methods beginning getElementsBy.. return live
NodelLists. They are also typically faster to generate
than static Nodelists.

DOCUMENT OBJECT MODEL

Nodelists look like arrays and are numbered like
arrays, but they are not actually arrays; they are a
type of object called a collection.

Like any other object, a NodeList has properties and

methods, notably:

® The length property tells you how many items
are in the Nodelist.

® The item() method returns a specific node from
the NodeList when you tell it the index number
of the item that you want (in the parentheses).
However, it is more common to use array syntax
(with square brackets) to retrieve an item from a
Nodelist (as you will see on p199).

In a static NodelList when your script updates the
page, the NodelList is not updated to reflect the
changes made by the script.

The new methods that begin querySelector...
(which use CSS selector syntax) return static
Nodelists. They reflect the document when the
query was made. If the script changes the content
of the page, the Nodelist is not updated to reflect
those changes.

Here you can see four different DOM queries that all return a NodelList.
For each query, you can see the elements and their index numbers in the
NodelList that is returned.

getElementsByTagName('hl')

Even though this query only INDEX NUMBER & ELEMENT

= returns one element, the method 0 <hl>
[: still returns a NodeList because
: ' ' of the potential for returning
more than one element.

getElementsByTagName('11")

This method returns four INDEX NUMBER & ELEMENT

elements, one for each of the 0 <1i id="one" class="hot">
<1i> elements on the page. <1i id="two" class="hot">

T T T 1 1
R) e) They appear in the same order 2 <li id="three" class="hot">
as they do in the HTML page. 3

<11 id="four">

getElementsByClassName('hot')

This NodelList contains only INDEX NUMBER & ELEMENT

three of the <1i> elements 0 <Ii id="one" class="hot">
; because we are searching for 1 <li id="two" class="hot">
D G elements by the value of their 2 <17 id="three" class="hot">

class attribute, not tag name.

querySelectorAl1('1i[id]")

This method returns four INDEX NUMBER & ELEMENT
elements, one for each of the 0 <1i id="one" class="hot"=>
<1i>elements on the page that 1 <1i id="two" class="hot"=>

() (i S have an id attribute (regardless 2 <1 id="three" class="hot">

of the values of the id attributes).

3 <1i id="four">

DOCUMENT OBJECT MODEL

SELECTING AN ELEMENT
FROM A NODELIST

There are two ways to select an element from a NodelList:
The item() method and array syntax.
Both require the index number of the element you want.

THE item() METHOD

Nodelists have a method
called item() which will return
an individual node from the
Nodelist.

You specify the index number

of the element you want as a
parameter of the method (inside
the parentheses).

Executing code when there are
no elements to work with wastes
resources. So programmers
often check that there is at least
one item in the NodelList before
running any code. To do this,

use the 1ength property of the
Nodelist - it tells you how many
items the NodelList contains.

Here you can see thatan if
statement is used. The condition
for the if statement is whether
the Tength property of the
Nodelist is greater than zero.

If it is, then the statements inside
the if statement are executed.

If not, the code continues to run
after the second curly brace.

var elements = document.getElementsByClassName('hot')
if (elements.length >= 1) {

var firstltem

1

Select elements that have a
class attribute whose value is
hot and store the Nodelist in a
variable called elements.

DOCUMENT OBJECT MODEL

= elements.item(0);

2

Use the Tength property to
check how many elements were
found. If 1 or more are found, run
the code in the if statement.

3

Store the first element from the
Nodelist in a variable called
firstItem. (It says 0 because
index numbers start at zero.)

Lo

Array syntax is preferred over the item() method because it is faster.

Before selecting a node from a Nodelist, check that it contains nodes.
If you repeatedly use the Nodelist, store it in a variable.

ARRAY SYNTAX

You can access individual nodes
using a square bracket syntax
similar to that used to access
individual items from an array.

You specify the index number
of the element you want inside
square brackets that follow the
NodelList.

As with all DOM queries, if

you need to access the same
Nodelist several times, store
the result of the DOM query in a
variable.

‘In the examples on both of these

pages, the Nodelist is stored in
a variable called elements.

If you create a variable to hold a
Nodelist (as shown below) but
there are no matching elements,
the variable will be an empty
NodeList. When you check the
length property of the variable,
it will return the number 0
because it does not contain any
elements.

var elements = document.getElementsByClassName('hot');
if (elements.length >= 1) {
var firstItem

]

Create a NodeList containing
elements that have aclass

attribute whose value is hot, and
store it in the variable elements.

= elements[0];

2

If that number is greater than or

equal to one, run the code inside

the if statement.

@

Get the first element from the
Nodelist (it says 0 because
index numbers start at zero).

DOCUMENT OBJECT MODEL

SELECTHNG EEEMENTS
USING CLASS ATTRIBUTES

The getElementsByClassName() The method has one parameter: Because several elements can
method allows you to select the c1ass name which is given have the same value for their
elements whose class attribute in quotes within the parentheses class attribute, this method
contains a specific value. after the method name. always returns a Nodelist.

c05/js/get-elements-by-class-name. js JAVASCRIPT

var elements = document.getElementsByClassName('hot'); // Find hot items

if (elements.length > 2) { // 1f 3 or more are found
var el = elements[2]; // Select the third one from the Nodelist
el.className = 'cool’; // Change the value of its class attribute
}
This example starts by looking *

for elements whose class
attribute contains hot. (The value

of a class attribute can contain :
several class names, each fTGSh flgs
separated by a space.) The result]

of this DOM query is stored pine nuts
in a variable called elements T
because it is used more than V- -.ﬁl']"lley

once in the example.

An i f statement checks if the balsamic vinegar
query found more than two
elements. If so, the third one is
selected and stored in a variable
called el. The class attribute of
that element is then updated to
say class. (In turn, this triggers
a new CSS style, changing the -
presentation of that element.)

Browser Support: |E9, Firefox 3,
Chrome 4, Opera 9.5, Safari 3.1

DOCUMENT OBJECT MODEL

SEEEC HNGEEEMENTES
BY TAG NAME

The getElementsByTagName() The element name is specified Note that you do not include the

method allows you to select as a parameter, so it is placed angled brackets that surround

elements using their tag name. inside the parentheses and is the tag name in the HTML (just
contained by quote marks. the letters inside the brackets).

JAVASCRIPT c05/js/get-elements-by-tag-name.js

var elements = document.getElementsByTagName('1i'); // Find <1i> elements

if (elements.length > 0) { // 1f 1 or more are found
var el = elements[0]; // Select the first one using array syntax
el.className = 'cool'; // Change the value of the class attribute
)
This example looks for any <1i>

elements in the document. It
stores the result in a variable
called elements because the
result is used more than once in
this example.

pine nuts

An if statement checks if any
hUﬂBY <1i> elements were found. As
with any element that can return
a NodeList, you check that there
balsamicvinegar will be a suitable element before

you try to work with it.

If matching elements were
found, the first one is selected
and its class attribute is
updated. This changes the color
of the list item to make it aqua.

Browser Support: Very good - it
is safe to use in any scripts.

DOCUMENT OBJECT MODEL

SEEECTHING EEEMENTS
USING CSS SELECTORS

querySelector() returns Both methods take a CSS just specifying a class name
the first element node that selector as their only parameter. or a tag name, and should also
matches the CSS-style selector. The CSS selector syntax offers be familiar to front-end web
querySelectorAll() returns a more flexibility and accuracy developers who are used to
Nodelist of all of the matches. when selecting an element than targeting elements using CSS.

c05/js/query-selector. js JAVASCRIPT

// querySelector() only returns the first match
var el = document.querySelector('1i.hot');
el.className = 'cool';

// querySelectorAll returns a Nodelist

// The second matching element (the third list item) is selected and changed
var els = document.querySelectorAll('li.hot');

els[1].className = 'cool';

These two methods were

RESULT
introduced by browser -
manufacturers because a lot

of developers were including : :
scripts like jQuery in their freshfigs

pages so that they could select
elements using CSS selectors.
(You meet jQuery in Chapter 7.) e

honey

pine nuts

If you look at the final line of
code, array syntax is used to rh
select the second item from balsamic vinegar
the NodelList, even though that
Nodelist is stored in a variable.

Browser Support: The drawback IE8+ (released Mar 2009)

with these two methods is that Firefox 3.5+ (released Jun 2009)
they are only supported in more Chrome 1+ (released Sep 2008)
recent browsers. Opera 10+ (released Sep 2009)

Safari 3.2+ (released Nov 2008)

DOCUMENT OBJECT MODEL

JavaScript code runs one line at If a DOM query runs when a Below you can see how the

a time, and statements affect page loads, the same query example on the left-hand page
the content of a page as the could return different elements if (query-selector. js) changes
interpreter processes them. it is used again later in the page. the DOM tree as it runs.

1: WHEN THE PAGE FIRST LOADS

T D - 1. This is how the p'age starts.
There are three <11> elements
 that have a class attribute
<1i id="one" class="hot"> whose value is hot. The
fresh figs</1i> quer‘ySelector{) method finds
<1i id="two" class="hot">pine nl.l'tS<f-|'i> the first one, and updates the

<1i id="three" cl ass:uhotll>h0ney</1 i> value of its class attribute from

<1i id="four">balsamic vinegar</1i> hot to cool. This also updates
 the DOM tree stored in memory

so - after this line has run -
only the second and third <1i>
elements have a class attribute

with a value of hot.
2: AFTER THE FIRST SET OF STATEMENTS

S TR A 2. When the second selector
runs, there are now only two
<yl=> <1i>elements whose class
<17 id="one" class="cool"> attributes have a value of hot
fresh figs</1i> (see left), so it just selects these
<1i id="two" class="hot">pine nuts</1i> two. This time, aay syl
<1i id="three" class="hot">honey</1i> A T el
<11 id="four">balsamic vinegar . the matching elements (which
 is the third list item). Again the

value of its class attribute is
changed from hot to cool.

3. AFTER THE SECOND SET OF STATEMENTS

3. When the second selector has
HTML c05/query-selector.html done its job, the DOM tree now
only holds one <11> element

 whose class attribute has a
<1i id="one" class="cool"> value of hot. Any further code
fresh figs</1i> looking for <1i> elements whose
<11 id="two" class="hot">pine nuts</1i> class attribute has a value of
<1i id="three" class="cool">honey</1i> hot would find only this one.
<1i id="four">balsamic vinegar</1i> However, if they were looking
 for <1i> elements whose class

attribute has a value of cool,
they would find two matching
element nodes.

DOCUMENT OBJECT MODEL

REPEATING ACTIONS FOR
AN ENTIRE NODELIST

When you have a Nodelist, you can loop
through each node in the collection and
apply the same statements to each.

In this example, once a Nodelist
has been created, a for loop is
used to go through each element

All of the statements inside
the for loop's curly braces are
applied to each element in the

To indicate which item of the
Nodelist is currently being
worked with, the counter 1 is

in the NodeList. Nodelist one-by-one. used in the array-style syntax.

var hotItems = documéent.querySelectorAl1('1i.hot');
for (var i = 0; i < hotlItems.length; i++) {
hotItems[i].className = 'cool';

1 0. 2

The variable hotItems contains
a Nodelist. It contains all

list items whose class
attribute has a value of hot.
They are collected using the
querySelectorAll () method.

The 1ength property of the
Nodelist indicates how many
elements are in the NodeList.
The number of elements
dictates how many times the
loop should run.

Array syntax is used to indicate
which item in the Nodelist is
currently being worked with:
hotItems[i]

It uses the counter variable
inside the square brackets.

DOCUMENT OBJECT MODEL

LOOPING THROUGH
A NODELIST

If you want to apply the same It involves finding out how many Each time the loop runs, the
code to numerous elements, items are in the Nodelist, and script checks that the counter
looping through a Nodelist is a then setting a counter to loop is less than the total number of
powerful technique, through them, one-by-one. items in the NodeList.

JAVASCRIPT c05/js/node-1ist.js

var hotItems = document.querySelectorAl1('1i.hot'); // Store NodeList in array
F (hotItems.length > 0) { // 1f it contains items

or (var i=0; i<hotItems.length; i++) { // Loop through each item
[= 'cool'; // Change value of class attribute

In this example, the

Nodelist is generated using
querySelectorAll (), anditis
looking for any <1i> elements

that have a class attribute
whose value is hot.

The Nodelist is stored in a
variable called hotItems, and the
number of elements in the listis
found using the 1ength property.

balsamic vinegar

For each of the elements in the
Nodelist, the value of the class
attribute is changed to cool.

DOCUMENT OBJECT MODEL

LOOPING THROUGH A
NODELIST: PLAY-BY-PLAY

@

LISTKING

BUY GROCERIES

START

At the start of this example, there
are three list items with a class
attribute whose value is hot so the
value of hotItems.length is 3.

DOCUMENT OBJECT MODEL

isO< 3> add‘ltoo

%

LISTKING

BUY GROCERIES

At first, the value of the counter
is set to 0, so the first item from
the Nodelist (which has an index
of 0) is targeted and the value of
its class attribute is set to cool.

for (var i = 0; i < hotItems.length; i++) {
hotItems[i].className = 'cool';

is3<3>

: —

add1to1 is2< 3>

add 1to p

%

LISTKING

BUY GROCERIES

%,.

LISTKING

BUY GROCERIES

When the value of the counter When the value of the counter When the value of the counter

is 1, the second item from the is 2, the third item from the is 3, the condition no longer
NodelList (which has an index of NodelList (which has an index of returns true, so the loops ends.
1) is targeted and the value of its 2) is targeted and the value of its The script then continues to the
class attribute is set to cool. class attribute is set to cool. first line of code after the loop.

DOCUMENT OBJECT MODEL

TRAVERSING THE DOM

When you have an element node, you can select
another element in relation to it using these five
properties. This is known as traversing the DOM.

parentNode

This property finds the element
node for the containing (or
parent) element in the HTML.

(1) If you started with the

first <11> element, then its
parent node would be the one
representing the element.

These are properties of the
current node (not methods to
select an element); therefore,
they do not end in parentheses.

DOCUMENT OBJECT MODEL

previousSibling
nextSibling

These properties find the
previous or next sibling of a node
if there are siblings.

If you started with the first <1i>
element, it would not have a
previous sibling. However, its next
sibling (2) would be the node
representing the second <1i>,

If you use these properties and

they do not have a previous/next

sibling, or a first/last child, the
result will be null,

firstChild
lastChild

These properties find the first or
last child of the current element.

If you started with the
element, the first child would be
the node representing the first
<1i> element, and (3) the last
child would be the last <11i>,

These properties are read-only;
they can only be used to select
a new node, not to update a
parent, sibling, or child.

WHITESPACE NODES

Most browsers, except IE, treat
whitespace between elements
(such as spaces or carriage
returns) as a text node, so the
properties below return different
elements in different browsers:

previousSibling
nextSibling
firstChild

lastChild

Traversing the DOM can be difficult because
some browsers add a text node whenever they
come across whitespace between elements.

Below, you can see all of the
whitespace nodes added to the
DOM tree for the list example.
Each one is represented by a
green square. You could strip
all the whitespace out of a page
before serving it to the browser.
This would also make the page

smaller and faster to serve/load.

However, it would also make the
code much harder to read.

Another way around this
problem is to avoid using these
DOM properties altogether.

One of the most popular ways to
address this kind of problem is
to use a JavaScript library such
as jQuery, which helps deal with
such problems. These types of
browser inconsistencies were a
big factor in jQuery's popularity.

11

1i

Internet Explorer (shown above) ignores whitespace and does not create extra text nodes.

m .

_u'I
1 - H

..

Chrome, Firefox, Safari, and Opera create text nodes from whitespace (spaces and carriage returns).

DOCUMENT OBJECT MODEL

PREVIOUS & NEXT SIBLING

You have just seen that For this example, all spaces From this element node, the
these properties can return between the HTML elements previousSibling property will
inconsistent results in different have been removed. In order to return the first <1i> element,
browsers. However, it is safe demonstrate these properties, and the nextSib1ing property
to use them when there is no the second list item is selected will return the third <1i>
whitespace between elements. using getElementById(). element.

c05/sibling.html HTML

<1i id="one" class="hot">fresh figs<li id="two"
class="hot">pine nuts</1i><1i id="three" class="hot">honey</1i><l1i
id="four">balsamic vinegar

c05/js/sibling.js JAVASCRIPT

// Select the starting point and find its siblings
var startItem = document.getElementByld('two');
var previtem = startItem.previousSibling;

var nextItem = startItem.nextSibling;

// Change the values of the siblings' class attributes
previtem.className = 'complete';
nextItem.className = 'cool';

ul
E m - freshfigs

@ START
@ PREVIOUS SIBLING
@ NEXT SIBLING

Note how references to sibling
nodes are stored in new
variables. This means properties
such as className can be used
on that node by adding the dot
notation between the variable
name and the property.

DOCUMENT OBJECT MODEL

balsamic vinegar

FIRST & LAST CHILD

These properties also return next to the opening tags of element from the page. From this
inconsistent results if there is the next element, making it element node, the firstChild
whitespace between elements. a little more readable. The property will return the first <1i>
In this example, a slightly example starts by using the element, and the TastChild
different solution is used in the getElementsByTagName () property will return the last <1i>
HTML - the closing tags are put method to select the element.

c05/child.html

<1i id="one" class="hot">fresh figs</1i
><1i id="two" class="hot">pine nuts</1i
><1i id="three" class="hot">honey</1i
><1i id="four">balsamic vinegar</1i
><fu1>

JAVASCRIPT c05/js/child.js

// Select the starting point and find its children

var startItem = document.getElementsByTagName('ul')[0];
var firstItem = startItem.firstChild;

var lastltem = startItem.lastChild;

// Change the values of the children's class attributes
firstItem.setAttribute('class', 'complete');
lastItem.setAttribute('class', ‘cool');

o

+ v
freshfigs m i B 1 ﬁ
: @ START
pine nuts @ FIRST CHILD

@ LASTCHILD

DOCUMENT OBJECT MODEL @

HOW TO GET/UPDATE
ELEMENT CONTENT

So far this chapter has focused on finding elements in the DOM tree.
The rest of this chapter shows how to access/update element content.
Your choice of techniques depends upon what the element contains.

Take a look at the three examples of <1i> elements
on the right. Each one adds some more markup and,
as a result, the fragment of the DOM tree for each
list item is very different.

@ The first (on this page) just contains text.
@ The second and third (on the right-hand page)
contain a mix of text and an element.

You can see that by adding something as simple as
an element, the DOM tree's structure changes
significantly. In turn, this affects how you might work
with that list item. When an element contains a mix
of text and other elements, you are more likely to
work with the containing element rather than the
individual nodes for each descendant.

<1i id="one">figs</1i>

attribute

Above, the <1i> element has:

® One child nade holding the word that you can see
in the list item: figs
® An attribute node holding the id attribute.

To work with the content of elements you can:

® Navigate to the text nodes. This works best
when the element contains only text, no other
elements.

® Work with the containing element. This allows
you to access its text nodes and child elements.
It works better when an element has text nodes
and child elements that are siblings.

@ DOCUMENT OBJECT MODEL

TEXT NODES

Once you have navigated from an element to its text
node, there is one property that you will commonly
find yourself using:

PROPERTY
nodeValue

DESCRIPTION
Accesses text from node (p214)

<1i id="one">fresh figs</1i>

1i — attribute

An element is added. It becomes the first child.

® The element node has its own child text
node which contains the word fresh.

® The original text node is now a sibling of the node
that represents the element.

<1i id="one">six fresh figs</1i>

1i — attribute
|
|]
em text:
| figs
text:
fresh

When text is added before the element:

@ The first child of the <11>element is a text node,
which contains the word six.

@ |t has a sibling which is an element node for the
 element. In turn, that element node
has a child text node containing the word fresh,

@ Finally, there is a text node holding the word
figs, which is a sibling of both the text node for
the word "six" and the element node, .

CONTAINING ELEMENT

When you are working with an element node (rather

than its text node), that element can contain markup.

You have to choose whether you want to retrieve
(get) or update (set) the markup as well as the text.

PROPERTY
innerHTML
textContent
innerText

DESCRIPTION

Gets/sets text & markup (p220)
Gets/sets text only (p216)
Gets/sets text only (p216)

When you use these properties to update the
content of an element, the new content will
overwrite the entire contents of the element (both
text and markup).

For example, if you used any of these properties to

update the content of the <body> element, it would
update the entire web page.

DOCUMENT OBJECT MODEL @

ACCESS & UPDATE A TEXT
NODE WITH NODEVALUE

When you select a text node, you can retrieve or amend the content of it
using the nodeValue property.

<1i id="one">fresh figs</1i>
14 — attribute

em

text:
fresh

The code below shows how you access the second text node. It will return the result: figs

document.getElementById('one').firstChild.nextSibling.nodeValue;

@ i @ P @ i i @
In order to use nodeValue, you 1. The <1i> element node is selected using the getElementByld() method.
must be on a text node, not the 2. The first child of <11> is the element.
element that contains the text. 3. The text node is the next sibling of that element.

4, You have the text node and can access its contents using nodeValue.
This example shows that
navigating from the element
node to a text node can be
complicated.

If you do not know whether there
will be element nodes alongside
text nodes, it is easier to work
with the containing element.

@ DOCUMENT OBJECT MODEL

ACCESSING & CHANGING

To work with text in an element,
first the element node is
accessed and then its text node.

JAVASCRIPT

var itemTwo

var elText

el Text

elText.replace('pine nuts', 'kale');

The text node has a property

A TEXT NODE

You can also use the nodeValue

called nodeValue which returns property to update the content
the text in that text node. of a text node.

itemTwo.firstChild.nodeValue =

freshfigs
kale

honey

balsamic vinegar

document.getElementById('two');

itemTwo.firstChild.nodeValue;

elText;

c05/js/node-value.js
// Get second list item
// Get its text content
// Change pine nuts to kale

// Update the list item

This example takes the text
content of the second list item
and changes it from pine nuts
to kale.

The first line collects the second
list item. It is stored in a variable
called itemTwo.

Next the text content of that
element is stored in a variable
called e1Text.

The third line of text replaces
the words 'pine nuts' with
'kale' using the String object's
replace() method.

The last line uses the nodeValue
property to update the content
of the text node with the
updated value.

DOCUMENT OBJECT MODEL @

ACCESS & UPDATE TEXT
WITH TEXTCONTENT
(& INNERTEXT)

The textContent property allows you to
collect or update just the text that is in the
containing element (and its children).

textContent <1i id="one">fresh figs</1i>

To collect the text from the
<1i>elements in our example
(and ignore any markup inside
the element) you can use the
textContent property on the
containing <1i> element. In this
case it would return the value:
fresh figs.

1 — attribute

You can also use this property document.getElementById('one').textContent;

to update the content of the
element; it replaces the entire

content of it (including any One issue with the textContent property is that Internet Explorer did
markup). not support it until IES. (All other major browsers support it.)
innerText

You may also come across a property called innerText, but you should generally avoid it for three key reasons:

SUPPORT OBEYS CSS PERFORMANCE

Although most browser It will not show any content Because the innerText property

manufacturers adopted the that has been hidden by CSS. takes into account layout rules

property, Firefox does not For example, if there were a CSS that specify whether the element

because innerText is not part of rule that hid the elements, is visible or not, it can be slower

any standard. the innerText property would to retrieve the content than the
return only the word figs. textContent property.

DOCUMENT OBJECT MODEL

ACCESSING TEXT ONLY

In order to demonstrate the The script starts off by getting Finally, the value of the first
difference between textContent the content of the first list item list item is then updated to say
and innerText, this example using both the textContent sourdough bread. This is done
features a CSS rule to hide the property and innerText. It then using the textContent property.
contents of the element. writes the values after the list.

JAVASCRIPT c05/js/inner-text-and-text-content.js

rstitem = document.getElementById('one'); // Find first list item
_ firstItem.textContent; // Get value of textContent
var showInnerText = firstItem.innerText; // Get value of innerText

// Show the content of these two properties at the end of the Tist
* msg = '<p>textContent: ' + showTextContent + '</p>';
msg += '<p=>innerText: ' + showlnnerText + '</p>';

var el = document.getElementById('scriptResults');

innerHTML = msg;

T

firstItem.textContent = 'sourdough bread'; // Update the first list item
In most browsers:
LT
® textContent collects
the words fresh figs.
® innerHTML just shows figs
suurduugh bread (because fresh was hidden
: by the CSS).
pine nuts
But:

® In|E8 or earlier, the
textContent property

_ _ 5 _ does not work,

ha‘IS?a'mi'c#inega‘r | @ InFirefox, the innerText

property will return

undefined because the it was

never implemented in Firefox.

textContent: fresh figs

innerText: figs

DOCUMENT OBJECT MODEL @

ADDING OR REMOVING
HTML CONTENT

There are two very different approaches to adding and removing content
from a DOM tree: the innerHTML property and DOM manipulation.

THE innerHTML PROPERTY

Note: there are security risks associated with using innerHTML - these issues are described on p228.

APPROACH ADDING CONTENT REMOVING CONTENT
innerHTML can be used on any To add new content: To remove all content from an
element node. It is used both to 1. Store new content (including element, you set innerHTML to
retrieve and replace content. markup) as a string in a variable. an empty string. To remove one
To update an element, new 2. Select the element whose element from a DOM fragment,
content is provided as a string. content you want to replace. e.g., one <1i>from a ,

It can contain markup for 3. Set the element's innerHTML you need to provide the entire
descendant elements. property to be the new string. fragment minus that element.

EXAMPLE: CHANGING A LIST ITEM

1: Create variable holding markup 2: Select element whose 3: Update content of selected
content you want to update element with new markup

var item;

item = 'Fresh figs";

You can have as much or as little
markup in the variable as you
want. It is a quick way to add a
lot of markup to the DOM tree.

DOCUMENT OBJECT MODEL

DOM manipulation easily targets individual nodes in the DOM tree,
whereas innerHTML is better suited to updating entire fragments.

DOM MANIPULATION METHODS

DOM manipulation can be safer than using innerHTML, but it requires more code and can be slower.

APPROACH ADDING CONTENT REMOVING CONTENT
DOM manipulation refers to a To add content, you use a DOM You can remove an element
set of DOM methods that allow method to create new content (along with any contents and
you to create element and text one node at a time and store it in child elements it may contain)
nodes, and then attach them to avariable. Then another DOM from the DOM tree using a
the DOM tree or remove them method is used to attach it to single method.

from the DOM tree. the right place in the DOM tree.

EXAMPLE: ADDING A LIST ITEM

1: Create new text node 4: Select element you want to 5: Append the new fragment to
- add the new fragment to the selected element

2: Create new element node m

3: Add text node to element node

DOCUMENT OBJECT MODEL

ACCESS & UPDATE TEXT &
MARKUP WITH INNERHTML

Using the innerHTML property, you can access
and amend the contents of an element,
including any child elements.

innerHTML <1i id="one">fresh figs</1i>
When getting HTML from an ,
element, the innerHTML property 11 TiARERe
will get the content of an
element and return it as one long em
string, including any markup that
the element contains.
When used to set new content
for an element, it will take a
string that can contain markup
and process that string, adding GET CONTENT .
any elements within it to the The following line of code collects the content of the list item and adds it
DOM tree. to a variable called e1Content:
var elContent = document.getElementById('one').innerHTML;
When adding new content using
innerHTML, be aware that one The el1Content variable would now hold the string:
missing closing tag could throw 'fresh figs'
out the design of the entire page.
Even worse, if innerHTML is used SET CONTENT
to add content that your users The following line of code adds the content of the e1Content variable
created to a page, they could add (including any markup) to the first list item:
malicious content, See p228. document.getElementById('one').innerHTML = elContent;

DOCUMENT OBJECT MODEL

UPDATE TEXT & MARKUP

This example starts by storing It then retrieves the content of
the first list item in a variable this list item and storesitin a
called firstItem. variable called itemContent.

JAVASCRIPT

// Store the first 1ist item in a variable
var firstItem = document.getElementById('one');

// Get the content of the first list item
var itemContent = firstltem.innerHTML;

Finally, the content of the list
item is placed inside a link. Note
how the quotes are escaped.

c05/js/inner-html.js

// Update the content of the first Tist item so it is a Tink
firstItem.innerHTML = '' + itemContent + '';

freshfigs &

pine nuts

honey

halsamic vinegar

As the content of the string

is added to the element using
the innerHTML property, the
browser will add any elements
in the string to the DOM. In
this example, an <a> element
has been added to the page.
(Any new elements will also be
available to other scripts in the
page.)

If you use attributes in your
HTML code, escaping the
quotation using the backslash
character \ can make it clearer
that those characters are not
part of the script.

DOCUMENT OBJECT MODEL

ADDING ELEMENTS USING
DOM MANIPULATION

DOM manipulation offers another technique
to add new content to a page (rather than
innerHTML). It involves three steps:

1

CREATE THE ELEMENT
createElement ()

You start by creating a new
element node using the
createElement () method.
This element node is stored
in a variable.

When the element node is
created, it is not yet part of the
DOM tree. It is not added to
the DOM tree until step 3.

In the example at the end of the
chapter, you will see another
method that can be used to
insert an element into the DOM
tree. The insertBefore()
method is used to add a new
element before the selected
DOM node.

@ DOCUMENT OBJECT MODEL

2

GIVE IT CONTENT
createTextNode()

createTextNode() creates a
new text node. Again, the node
is stored in a variable. It can be
added to the element node using
the appendChild() method.

This provides the content for the
element, although you can skip

this step if you want to attach an
empty element to the DOM tree.

5

ADD IT TO THE DOM
appendChild()

Now that you have your element
(optionally with some content

in a text node), you can add

it to the DOM tree using the
appendChild() method.

The appendChild() method
allows you to specify which

element you want this node
added to, as a child of it.

DOM manipulation and innerHTML both have uses. You will see a
discussion of when to choose each method on p226.

Note: You may see developers leave an empty element in their HTML
pages in order to attach new content to that element, but this practice is
best avoided unless absolutely necessary.

ADDING AN ELEMENT TO
THE-DOM. TREE

createElement () creates an This new element is stored createTextNode() allows you to
element that can be added to the inside a variable called newEl create a new text node to attach
DOM tree, in this case an empty until it is attached to the DOM to an element. It is stored in a
<1i> element for the list. tree later on. variable called newText.

JAVASCRIPT c05/js/add-element.js

// Create a new element and store it in a variable.
var newtl = document.createElement('1i');

// Create a text node and store it in a variable.
var newText = document.createTextNode('quinoa');

// Attach the new text node to the new element.
newkl.appendChild(newText);

// Find the position where the new element should be added.
var position = document.getElementsByTagName('ul')[0];

// Insert the new element into its position.
position.appendChild(newEl);

The text node is added to

the new element node using

appendChild().
freshﬁgs The getElementsByTagName()
: method selects the position in
pine nuts the DOM tree to insert the new
element (the first <u1> element
hﬂney in the page).

Finally, appendChild() is used
again - this time to insert the
new element and its content into
the DOM tree.

balsamic vinegar

quinoa

DOCUMENT OBJECT MODEL @

REMOVING ELEMENTS VIA
DOM MANIPULATION

DOM manipulation can be used to remove
elements from the DOM tree.

1

STORE THE ELEMENT
TO BE REMOVED IN A
VARIABLE

You start by selecting the
element that is going to be
removed and store that element
node in a variable.

You can use any of the methods
you saw in the section on DOM
queries to select the element.

When you remove an element
from the DOM, it will also
remove any child elements.

DOCUMENT OBJECT MODEL

2

STORE THE PARENT OF
THAT ELEMENT IN A
VARIABLE

Next, you find the parent element
that contains the element you
want to remove and store that
element node in a variable.

The simplest way to get this
element is to use the parentNode
property of this element.

The example on the right is quite
simple, but this technique can
significantly alter the DOM tree.

3

REMOVE THE ELEMENT
FROM ITS CONTAINING
ELEMENT

The removeChild() method is
used on the containing element
that you selected in step 2.

The removeChild() method
takes one parameter: the
reference to the element that
you no longer want.

Removing elements from the
DOM will affect the index
number of siblings in a NodelList.

REMOVING AN ELEMENT
FROM THE DOM- REE

This example uses the The first variable, removeET, The second variable,
removeChild() method to stores the actual element you containerkl, stores the
remove the fourth item from the want to remove from the page element that contains the

list (along with its contents). (the fourth list item). element you want to remove.

JAVASCRIPT c05/js/remove-element.js

var removeEl = document.getElementsByTagName('11')[3]; // The element to remove

var containerEl = removeEl.parentNode; // 1ts containing element
containerEl.removeChild(removeEl); // Removing the element
The removeChild() methodis

used on the variable that holds
the container node.

freshfigs

It requires one parameter: the
¥ element you want to remove
pine nuts (which is stored in the second
variable).

honey

I i 1
o s lIEIl
@ CONTAINER ELEMENT
@ ELEMENT TO BE REMOVED

DOCUMENT OBJECT MODEL @

COMPARING TECHNIQUES:
UPDATING HTML CONTENT

So far, you have seen three techniques for adding HTML to a web page.
It's time to compare when you should use each one.

In any programming language, there are often
several ways to achieve the same task. In fact, if you
asked ten programmers to write the same script, you
may well find ten different approaches.

Some programmers can be rather opinionated and
believe that their way is always the "right” way to do
things - when there are often several right ways. If
you understand why people prefer some approaches
over others, then you are in a strong position to
decide whether it meets the needs of your project.

DOCUMENT OBJECT MODEL

document.write()

The document object's write() method is a simple
way to add content that was not in the original
source code to the page, but its use is rarely advised.

ADVANTAGES

® |tis a quick and easy way to show beginners how
content can be added to a page.

DISADVANTAGES

® |t only works when the page initially loads.

® |[f you use it after the page has loaded it can:
1. Overwrite the whole page
2. Not add the content to the page
3. Create a new page

@ |t can cause problems with XHTML pages that
are strictly validated.

@ This method is very rarely used by programmers
these days and is generally frowned upon.

You can choose different techniques depending on the task (and keep in
mind how the site might be developed in the future).

element.innerHTML

The innerHTML property lets you get/update the
entire content of any element (including markup) as
a string.

ADVANTAGES

® You can use it to add a lot of new markup using
less code than DOM manipulation methods.

® [t can be faster than DOM manipulation when
adding a lot of new elements to a web page.

® |tisasimple way to remove all of the content

from one element (by assigning it a blank string).

DISADVANTAGES

@ |t should not be used to add content that has
come from a user (such as a username or blog
comment), as it can pose a significant security
risk which is discussed over the next four pages.

@ |t can be difficult to isolate single elements
that you want to update within a larger DOM
fragment.

@ Event handlers may no longer work as intended.

DOM MANIPULATION

DOM manipulation refers to using a set of methods
and properties to access, create, and update
elements and text nodes.

ADVANTAGES

@ |t is suited to changing one element from a DOM
fragment where there are many siblings.

@ |t does not affect event handlers.

® |t easily allows a script to add elements
incrementally (when you do not want to alter a lot
of code at once).

DISADVANTAGES

® [f you have to make a lot of changes to the
content of a page, it is slower than innerHTML.

® You need to write more code to achieve the same
thing compared with innerHTML.

DOCUMENT OBJECT MODEL @

CROSS-SITE SCRIPTING
(XSS) ATTACKS

If you add HTML to a page using innerHTML (or several jQuery methods),
you need to be aware of Cross-Site Scripting Attacks or XSS; otherwise,
an attacker could gain access to your users' accounts.

This book has several warnings about security issues The next four pages describe the issues you need
when you add HTML to a page using innerHTML. to be aware of, and how to make your site secure
(There are also notes about it when using jQuery.) against these kinds of attacks.
HOW XSS HAPPENS WHAT CAN THESE ATTACKS DO?
XSS involves an attacker placing malicious code into XSS can give the attacker access to information in:
a site. Websites often feature content created by
many different people. For example: ® The DOM (including form data)
® That website's cookies

@ Users can create profiles or add comments ® Session tokens: information that identifies you
® Multiple authors may contribute articles from other users when you log into a site
@ Data can come from third-party sites such as ”

Facebook, Twitter, news tickers, and other feeds This could let the attacker access a user account and:

@ Files such as images and video may be uploaded
® Make purchases with that account
Data you do not have complete control over is known ® Post defamatory content
as untrusted data; it must be handled with care. ® Spread their malicious code further / faster

EVEN SIMPLE CODE CAN CAUSE PROBLEMS:

Malicious code often mixes HTML and JavaScript (although URLs and CSS can be used to trigger XSS attacks).
The two examples below demonstrate how fairly simple code could help an attacker access a user's account.

This first example stores cookie data in a variable, which could then be sent to a third-party server:
<script>var adr='http://example.com/xss.php?cookie=' + escape(document.cookie);</script>

This code shows how a missing image can be used with an HTML attribute to trigger malicious code:

Any HTML from untrusted sources opens your site to XSS attacks. But the threat is only from certain characters.

DOCUMENT OBJECT MODEL

DEFENDING AGAINST
CROSS-SITE SCRIPTING

VALIDATE INPUT GOING TO THE SERVER

1. Only let visitors input the kind
of characters they need to when
supplying information. This is
known as validation. Do not
allow untrusted users to submit
HTML markup or JavaScript.

2. Double-check validation on
the server before displaying user
content/storing it in a database.
This is important because users
could bypass validation in the

browser by turning JavaScript off.

3. The database may safely
contain markup and script

from trusted sources (e.g., your
content management system).
This is because it does not try to
process the code; it just stores it.

REQUESTS PAGES FROM
AND SENDS FORM DATA
TO WEB SERVER

1 —

BROWSER
PROCESSES HTML, CSS,

AND JAVASCRIPT FILES
SENT FROM WEB SERVER

P

COLLECTS INFORMATION
FROM BROWSER AND
PASSES IT TO DATABASE

| == |
| === |
== |

-]

WEB SERVER

GENERATES PAGES USING
DATA FROM DATABASE AND
INSERTS IT INTO TEMPLATES

4

STORES INFORMATION
CREATED BY WEBSITE
ADMINS AND USERS

DATABASE

RETURNS CONTENT NEEDED
TO CREATE WEB PAGES

ESCAPE DATA COMING FROM THE SERVER & DATABASE

6. Do not create DOM fragments
containing HTML from untrusted
sources. It should only be added

as text once it has been escaped.

5. Make sure that you are only
inserting content generated by
users into certain parts of the
template files (see p230).

4, As your data leaves the
database, all potentially
dangerous characters should be
escaped (see p231).

So, you can safely use innerHTML to add markup to a page if you have written the code - but content from any
untrusted sources should be escaped and added as text (not markup), using properties like textContent.

DOCUMENT OBJECT MODEL

XSS: VALIDATION

& TEMPLATES

Make sure that your users can only input characters they need to use
and limit where this content will be shown on the page.

FILTER OR VALIDATE INPUT

The most basic defense is to prevent users from
entering characters into form fields that they do not
need to use when providing that kind of information.

For example, users' names and email addresses
will not contain angled brackets, ampersands, or
parentheses, so you can validate data to prevent
characters like this being used.

This can be done in the browser, but must also be
done on the server (in case the user has JavaScript
turned off). You learn about validation in Chapter 13.

You may have seen that the comment sections on
websites rarely allow you to enter a lot of markup
(they sometimes allow a limited subset of HTML).
This is to prevent people from entering malicious
code such as <script>tags, or any other character
with an event handling attribute.

Even the HTML editors used in many content
management systems will limit the code that you are
allowed to use within them, and will automatically
try to correct any markup that looks malicious.

DOCUMENT OBJECT MODEL

LIMIT WHERE USER CONTENT GOES

Malicious users will not just use <script> tags to
try and create an XSS attack. As you saw on p228,
malicious code can live in an event handler attribute
without being wrapped in <script>tags. XSS can
also be triggered by malicious code in CSS or URLs.

Browsers process HTML, CSS, and JavaScript in
different ways (or execution contexts), and in each
language different characters can cause problems.
Therefore, you should only add content from
untrusted sources as text (not markup), and place
that text in elements that are visible in the viewport.

Never place any user's content in the following
places without detailed experience of the issues
involved (which are beyond the scope of this book):

Script tags: <script>not here</script>
HTML comments: <!-- not here -->

Tag names: <notHere href="/test" />
Attributes: <div notHere="norHere" />
CSS values: {color: not here}

XSS: ESCAPING &
CONTROLLING MARKUP

Any content generated by users that contain characters that are used
in code should be escaped on the server. You must control any markup

added to the page.

ESCAPING USER CONTENT

All data from untrusted sources should be escaped
on the server before it is shown on the page.

Most server-side languages offer helper functions
that will strip-out or escape malicious code.

HTML

Escape these characters so that they are displayed
as characters (not processed as code).

& & ! ' (not ')
&1t; " "
> / /
`

JAVASCRIPT

Never include data from untrusted sources in
JavaScript. It involves escaping all ASCII characters
with a value less than 256 that are not alphanumeric
characters (and can be a security risk).

URLS

If you have links containing user input (e.g., links to
a user profile or search queries), use the JavaScript
encodelURIComponent () method to encode the user
input. It encodes the following characters:

i f P e & = + § #

ADDING USER CONTENT

When you add untrusted content to an HTML page,
once it has been escaped on the server, it should still
be added to the page as text. JavaScript and jQuery
both offer tools for doing this:

JAVASCRIPT

DO use: textContent or innerText (see p216)
DO NOT use: innerHTML (see p220)

JQUERY

DO use: .text() (see p316)
DO NOT use: . htm1 () (see p316)

You can still use the innerHTML property and jQuery
.html () method to add HTML to the DOM, but you
must make sure that:

® You control all of the markup being generated
(do not allow user content that could contain
markup).

@ The user's content is escaped and added as text
using the approaches noted above, rather than
adding the user's content as HTML.

DOCUMENT OBJECT MODEL @

ATTRIBUTE NODES

Once you have an element node, you can use
other properties and methods on that element
node to access and change its attributes.

There are two steps to accessing First, select the element node Then, use one of the methods or
and updating attributes. that carries the attribute and properties below to work with
follow it with a period symbol. that element's attributes.
Finds the element node (works with any Gets the value of the attribute that was
technique covered in this chapter) given as a parameter of the method
DOM QUERY METHOD

| l
I LA |

document.getElementById('one').getAttribute('class');
|

MEMBER OPERATOR

Indicates that the Subsequent method will
be used on the node specified to the left

METHOD DESCRIPTION You have seen that the DOM
getAttribute() gets the value of an attribute treats each HTML element as
hasAttribute() checks if element node has a specified attribute its own Oble'_:t inthe DOM tree.
setAttribute() sets the value of an attribute The properties of the ‘?b}“t
removeAttribute() removes an attribute from an element node correspond to the attributes

that type of element can carry.
On the left, you can see the

PROPERTY DESCRIPTION ; ;

: className and id properties.
className gets or sets the value of the class attribute (Others include accessKey,
id gets or sets the value of the id attribute checked, href, 1ang, and title.)

@ DOCUMENT OBJECT MODEL

CHECK FOR AN ATTRIBUTE
AND GET ITS VALUES

Before you work with an The hasAttribute() method Using hasAttribute() inanif
attribute, it is good practice to of any element node lets you statement like this means that
check whether it exists. This will check if an attribute exists. The the code inside the curly braces
save resources if the attribute attribute name is given as an will run only if the attribute
cannot be found. argument in the parentheses. exists on the given element.

JAVASCRIPT c05/js/get-attribute.js

var firstItem = document.getElementById('one'); // Get first list item

if (firstItem.hasAttribute('class')) { // If it has class attribute
var attr = firstItem.getAttribute('class'); // Get the attribute

// Add the value of the attribute after the Tist
var el = document.getElementById('scriptResults');
el.innerHTML = '<p>The first item has a class name: ' + attr + '</p>';

In this example, the DOM query
getElementById() returns the

element whose 1d attribute has

freshﬁgs a value of one.
; The hasAttribute() method
pine nuts is used to check whether this

element has a class attribute,
and returns a Boolean. This

is used with an if statement
so that the code in the curly
braces will run only if the class
attribute does exist.

The first item has a class name: hot THe GEEALEFBUEE() micthod

returns the value of the class
attribute, which is then written
to the page.

balsamic vinegar

Browser Support: Both of these
methods have good support in
all major web browsers.

DOCUMENT OBJECT MODEL @

CREATING ATTRIBUTES &
CHANGING THEIR VALUES

The className property allows You have seen this property The setAttribute() method
you to change the value of the used throughout the chapter allows you to update the value
class attribute. If the attribute to update the status of the of any attribute. It takes two
does not exist, it will be created list items. Below, you can see parameters: the attribute name,
and given the specified value. another way to achieve the task. and the value for the attribute.

c05/js/set-attribute.js JAVASCRIPT

var firstItem = document.getElementByld('one'); // Get the first item
firstitem.className = 'complete'; // Change its class attribute

var fourthItem = document.getElementsByTagName('1i').item(3);// Get fourth item
el2.setAttribute('class', 'cool'); // Add an attribute to it

When there is a property (like
RESULT
the className or id properties), _

it is generally considered better
to update the properties rather freshfi

than use a method (because, gs
behind the scenes, the method)
would just be setting the pine nuts
properties anyway).

honey

When you update the value
of an attribute (especially the
class attribute) it can be used balsamic vinegar
to trigger new CSS rules, and
therefore change the appearance
of the elements.

Note: These techniques override the entire value of the class attribute.
They do not add a new value to the existing value of the class attribute.

If you wanted to add a new value onto the existing value of the class
attribute, you would need to read the content of the attribute first, then
add the new text to that existing value of the attribute (or use the
jQuery .addClass () method covered on p320).

DOCUMENT OBJECT MODEL

REMOVING ATTRIBUTES

To remove an attribute from an Trying to remove an attribute In this example, the

element, first select the element, that does not exist will not cause getElementByld() method is
then call removeAttribute(). an error, but it is good practice used to retrieve the first item
It has one parameter: the name to check for its existence before from this list, which has an id
of the attribute to remove. attempting to remove it. attribute with a value of one.

JAVASCRIPT c05/js/remove-attribute.js

var firstItem = document.getElementById('one'); // Get the first item

if (firstItem.hasAttribute('class')) { // 1f it has a class attribute
firstItem.removeAttribute('class'); // Remove its class attribute
}
The script checks to see if the

selected element has a class
attribute and, if so, it is removed.

freshfigs
pine nuts

honey

balsamic vinegar

DOCUMENT OBJECT MODEL @

EXAMINING THE DOM
IN CHROME

Modern browsers come with tools that help
you inspect the page loaded in the browser
and understand the structure of the DOM tree.

In the screenshot to the right, the
<11i>element is highlighted and
the Properties panel (1) indicates
that this is an:

® 11 element with an id
attribute whose value is one
and class whose value is hot
an HTMLLIElement

an HTMLElement

an element

anode

an object

Each of these object names has
an arrow next to it which you can
use to expand that section.

It will tell you what properties

are available to that kind of node.

They are separated because
some properties are specific

to list item elements, others

to element nodes, others to all
nodes, and others to all objects,
and the different properties are
listed under the corresponding
type of node. But they do remind
you of which properties you can
access through the DOM node
for that element.

DOCUMENT OBJECT MODEL

e_ 6 e J . JavaScript HQturv—Er;:;- '\:; A

.." {

= == @ [file:/{ finitial-page.html

ésj

€3 | Elements | Resources Network Sources Timeline Profiles Audits Console |
» Computed Style (I Show in heriled»!’
¥<htal> e |
D » Styles + B & |
¥ <body> P Metrics /"\1 |
Y<div id="page"> " Pr Y s) M SEE——
<hl id="header"»List King</hl> | P EE—— St)
<hZ=Buy groceries</hZ» .
s » HTHLLIElement
¥<1i id="one" class="hot"=> * HTHLELement
<exrfreshe/en» |
" figs" * Element |
</1i> > Node |
<li ide"two" class="hot"»pine nuts</li= Object |
<li id="three" class="hot">honey</li» b |
=11 id="four">balsamic vinegar</li» » DOM Breakpoints
<ful=> » Event Listeners =
<fdivs> | |
</body> |
</html>
D,)5 Q hml body divepage ul & J

To get the developer tools in
Chrome on a Mac, go to the
View menu, select Developer and
then Developer Tools. On a PC,
go to Tools (or More Tools) and
select Developer Tools.

Or right-click on any element
and select Inspect Element.

Select Elements from the menu
that runs across the top of this
tool. The source of the page will
be shown on the left and several
other options to the right.

Any element that has child
elements has an arrow next
to it that lets you expand and
collapse the item to show and
hide its content.

The Properties panel (on the
right) tells you the type of object
the selected element is. (In some
versions of Chrome this is shown
as a tab.) When you highlight
different elements in the main
left-hand window, you can see
the values in the Properties panel
on the right reflect that element.

EXAMINING THE DOM
IN FIREFOX

Firefox has similar built-in tools, but you can
also download a DOM inspector tool that
shows the text nodes.

[:N:X:] JavaSeripe & jQuery - Chapter 5: Docurment Object Moded - Initial Page

If you search online for "DOM
Inspector”, you will find the tool
designed for Firefox shown on
the left. In the screen shot, you
can see a similar tree view to
the one shown in Chrome, but
it also shows you where there
are whitespace nodes (they are
shown as #text). In the panel to
T A . the right, you can see the value
gy in the nodes; whitespace nodes
o ; have no value in this panel.

: e Another Flrefox extension worth
trying is called Firebug.

Firefox also has a 3D view of

the DOM, where a box is drawn
around each element, and you
can change the angle of the
page to show which parts of it
stick out more than others. The
further they protrude the further
into child elements they appear.

This can give you an interesting
(and quick) glimpse into the
complexity of the markup used
on a page and the depth to which
elements are nested.

DOCUMENT OBJECT MODEL @

LISTKING
BUY GROCERIES ©

EXAMPLE

DOCUMENT OBJECT MODEL

This example brings together a selection of
the technigues you have seen throughout the
chapter to update the contents of the list.

It has three main aims:

1: Add a new item to the start and end of the list
Adding an item to the start of a list requires the use of a different method
than adding an element to the end of the list.

2: Set a class attribute on all items
This involves looping through each of the <1i> elements and updating
the value of the class attribute to cool.

3: Add the number of list items to the heading
This involves four steps:

1. Reading the content of the heading

2. Counting the number of <1i> elements in the page

3. Adding the number of items to the content of the heading
4.Updating the heading with this new content

DOCUMENT OBJECT MODEL

EXAMPLE

DOCUMENT OBJECT MODEL

c05/js/example.js

JAVASCRIPT

// ADDING ITEMS TO START AND END OF LIST

var list = document.getElementsByTagName('ul')[0]; // Get the element

// ADD NEW ITEM TO END OF LIST

var newltemLast = document.createElement('1i');

// Create element

var newTextlLast = document.createTextNode('cream'); // Create text node

newltemLast.appendChild(newTextLast);

list.appendChild(newlItemLast);

// ADD NEW ITEM START OF LIST

var newItemFirst = document.createElement('1i');

// Add text node to element
// Add element end of 1ist

// Create element

var newTextFirst = document.createTextNode('kale'); // Create text node

newltemFirst.appendChild(newTextFirst);
1list.insertBefore(newItemFirst, list.firstChild);

This part of the example adds two new list items to
the element: one to the end of the list and one
to the start of it. The technique used here is DOM
manipulation and there are four steps to creating a
new element node and adding it to the DOM tree:

1. Create the element node

2. Create the text node

3. Add the text node to the element node
4. Add the element to the DOM tree

To achieve step four, you must first specify the
parent that will contain the new node. In both cases,
this is the element. The node for this element
is stored in a variable called 1ist because it is used
many times.

DOCUMENT OBJECT MODEL

// Add text node to element
// Add element to list

The appendChild() method adds new nodes as a
child of the parent element. It has one parameter:
the new content to be added to the DOM tree. If the
parent element already has child elements, it will be
added after the fast of these (and will therefore be
the last child of the parent element).

parent .appendChild(newItem) ;

(You have seen this method used several times both
to add new elements to the tree and to add text
nodes to element nodes.)

To add the item to the start of the list, the
insertBefore() method is used. This requires one
extra piece of information: the element you want to
add the new content before (the target element).

parent.insertBefore(newItem, target);

EXAMPLE

DOCUMENT OB JECT MODEL

JAVASCRIPT

var listItems = document.querySelectorAl1('1i');

// ADD A CLASS OF COOL TO ALL LIST ITEMS

var i;

for (i = 0; i < listItems.length; i++) {

listItems[i].className = 'cool';

}

c05/js/example.js
//. A1l <1i> elements
// Counter variable

// Loop through elements
// Change class to cool

// ADD NUMBER OF ITEMS IN THE LIST TO THE HEADING

var heading = document.querySelector('h2');
var headingText = heading.firstChild.nodeValue;

var totallItems = TistItems.length;

// h2 element
// h2 text
// No. of <1i> elements

var newHeading = headingText + ‘' + totalltems + ''; // Content

heading.textContent = newHeading;

The next step of this example is to loop through all of
the elements in the list and update the value of their
class attributes, setting them to cool.

This is achieved by first collecting all of the list

item elements and storing them in a variable called
listItems. A for loop is then used to go through
each of them in turn. In order to tell how many times
the loop should run, you use the 1ength property.

Finally, the code updates the heading to include
the number of list items. It updates it using the
innerHTML property as opposed to the DOM
manipulation techniques used earlier in the script.

This demonstrates how you can add to the content
of an existing element by reading its current value -
and adding to it. You could use a similar technigue if
you needed to add a value to an attribute - without
overwriting its existing value.

// Update h2

To update the heading with the number of items in
the list, you need two pieces of information:
1. The original content of the heading so that
you can add the number of list items toit. It is
collected using the nodeValue property (although
innerHTML or textContent would do the same).
2.The number of list items, which can be found
using the 1ength property on the 1istItems
variable.

With this information ready, there are two steps to

updating the content of the <h2> element:

1. Creating the new heading and storingitin a
variable - the new heading will be made up of the
original heading content, followed by the number
of items in the list.

2.Updating the heading, which is done by updating
the content of the heading element using the
innerText property of that node.

DOCUMENT OBJECT MODEL

SUMMARY

DOCUMENT OBJECT MODEL

DOCUMENT OBJECT MODEL

