

8 EVENTS

W hen you browse the web, your browser registers different

types of events. It 's the browser's way of saying, "Hey, this

just happened." Your script can then respond to these events.

Scripts often respond to these events by updating the content of the web page (via the

Document Object Model) which makes the page feel more interactive. In this chapter, you
wil l learn how:

INTERACTIONS EVENTS TRIGGER CODE RESPONDS
CREATE EVENTS CODE TO USERS
Events occur when users When an event occurs, In the last chapter, you
click or tap on a link, hover or fires, it can be used saw how the DOM can
or swipe over an element, to trigger a particular be used to update a page.
t ype on the keyboard, funct ion. Different code The events can trigger the
resize the w indow, or can be tr iggered when -kinds of changes the DOM
when the page they users interact with is capable of. This is how a
requested has loaded. different parts of the page. web page reacts to users.

l
~

I

1
'

j
I
1

DIFFERENT EVENT TYPES

Here is a selection of the events that occur in the browser while you are

browsing the web. Any of these events can be used to trigger a function
in your JavaScript code.

UIEVENTS Occur when a user interacts with the browser's user interface (UI) rather than the web page

EVENT DESCRIPTION

load W eb page has finished loading

unload Web page is unloading (usually because a new page was requested)

error Browser encounters a JavaScript error or an asset doesn't exist

resize Browser window has been resized

scroll User has scrolled up or down the page

KEYBOARD EVENTS Occur when a user interacts with the keyboard (see also input event)

EVENT DESCRIPTION

keydown User first presses a key (repeats while key is depressed)

keyup User releases a key

keypress Character is being inserted (repeats while key is depressed)

MOUSE EVENTS Occur when a user interacts with a mouse. trackpad, or touchscreen

EVENT DESCRIPTION

click User presses and releases a button over the same element

dbl click User presses and releases a button twice over the same element

moused own User presses a mouse button while over an element

mouseup User releases a mouse button while over an element

mousemove User moves the mouse (not on a touchscreen)

mouseover User moves the mouse over an element (not on a touchscreen)

mouseout User moves the mouse off an element (not on a touchscreen)

8 EVENTS

..

..

TERMINOLOGY

EVENTS FIRE OR ARE RAISED

When an event has occurred, it is often described as having fir ed or

been raised . In the diagram on the right, if the user is tapping on a link, a

cl ick event would fire in the browser.

EVENTS TRIGGER SCRIPTS

Events are said to t rigger a function or script. When the click event

fires on the element in this diagram, it could trigger a script that enlarges

the selected item.

0

FOCUS EVENTS Occur when an element (e.g., a link or form field) gains or loses focus

EVENT

focus / focus in

blur / focusout

FORM EVENTS

EVENT

input

change

submit

reset

cut

copy

paste

select

MUTATION EVENTS*

EVENT

DOMSubtreeModified

DOMNodelnserted

DOMNodeRemoved

OOMNodelnsertedlntoDocument

DOMNodeRemovedFromOocument

DESCRIPTION

Element gains focus

Element loses focus

Occur when a user interacts with a form element

DESCRIPTION

Value in any <input> or <textarea> element has changed (IE9+)

or any element with the contented i table attribute

Value in select box, checkbox, or radio button changes (IE9+)

User submits a form (using a button or a key)

User clicks on a form's res~t button (rarely used these days)

User cuts content from a form fie ld

User copies content from a form fie ld

User pastes content into a form fie ld

User selects some text in a form field

Occur when the DOM structure has been changed by a script

• To be replaced by mutation observers (see p284)

DESCRIPTION

Change hc;is been made to document

Node has been inserted as a direct child of another node

Node has been removed from another node

Node has been inserted as a descendant of another node

Node has been removed as a descendant of another node

EVENTS 8

HOW EVENTS TRIGGER
JAVASCRIPT CODE

When the user interacts with the HTML on a web page, there are three

steps involved in getting it to trigger some JavaScript code.

Together these steps are known as event handling.

1
Select t he element
node(s) you want the
script to respond to.

For example, if you want to

trigger a function when a user

cl icks on a specific link, you need

to get the DOM node for that

link element. You do this using a

DOM query (see Chapter 5).

The UI events that relate to the

browser window (rather than the

HTML page loaded in it) work

with the window object rather

than an element node. Examples

include the events that occur

when a requested page has

f inished loading, or when the

user scrolls. You will learn about

using these on p272.

8 EVENTS

2
Indicate which event on
the selected node(s) will
trigger the response.

Programmers call this binding an

event to a DOM node.

The previous two pages showed

a selection of the popular events

that you can monitor for.

Some events work with most

element nodes, such as the

mouseover event, which is

triggered when the user rolls

over any element. Other events

only work w ith specific element

nodes, such as the submit event,

which only works w ith a form.

3
State the code you want
to run when the event
occurs.

W hen the event occurs, on a

specified element, it will trigger

a function. This may be a named

or an anonymous function.

Here you can see how event handling can be used to provide feedback to

users filling in a registration form. It will show an error message if their

username is too short.

1 2
SELECT ELEMENT SPEC! FY EVENT

The element that users are

interacting with is the text input
where they enter the username.

When users move out of the
text input, it loses focus, and the

blur event fires on this element.

e

0
Event : blur on username

FUNCTION: checkUsername()
Check the username is long enough

' I
Get username

+
I

Is username
less than five
characters? ' I Clear message Show error message

3
CALL CODE

When the blur event fires
on the username input, it

will trigger a function called
chec kUsername ().This function

checks if the username is less

than 5 characters.

If there are not enough
characters, it shows an error

message that prompts the user
to enter a longer username.

If there are enough characters,

the element that holds the error

message should be cleared.

This is because an error
message may have been shown

to the user already and they
subsequently corrected their

mistake. (If the error message
was still visible when they had

filled in the form correctly, it

would be confusing.)

EVENTS 8

THREE WAYS TO BIND AN
EVENT TO AN ELEM ENT

Event handlers let you indicate which event you
are waiting for on any particular element.
There are three types of event handlers.

HTML EVENT
HANDLERS

See p251

This is bad practice, but you

need to be aware of it because
you may see it in older code.

Early versions of HTML included

a set of attributes that could
respond to events on the

element they were added to.

The attribute names matched
the event names. Their values

called the function that was to
run when that event occurred.

For example, the following:

indicated that when a user

clicked on this <a> element, the
hi de () function would be called.

This method of event handling

is no longer used because it is
better to separate the JavaScript

from the HTML. You should use

one of the other approaches

shown on this page instead.

§ EVENTS

TRADITIONAL DOM
EVENT HANDLERS

See p252

DOM event handlers were

introduced in the original
specification for the DOM.

They are considered better than
HTML event handlers because

they let you separate the
JavaScript from the HTML.

Support in all major browsers is
very strong for this approach.

The main drawback is that you
can only attach a single function

to any event. For example, the
submit event of a form cannot

trigger one function that checks

the contents of a form, and a

second to submit the form data if
it passes the checks.

As a result of this limitation, if

more than one script is used on
the same page, and both scripts

respond to the same event, then
one or both of the scripts may

not work as intended.

DOM LEVEL 2 EVENT
LISTENERS

See p254

Event listeners were introduced

in an update to the DOM
specification (DOM level 2,

released in the year 2000).
They are now the favored way of

handling events.

The syntax is quite different and,

unlike traditional event handlers,
these newer event listeners allow

one event to trigger mult iple
functions. As a result, there

are less likely to be conflicts
between different scripts that

run on the same page.

This approach does not work

with IE8 (or earlier versions of
IE) but you meet a workaround

on p258. Differences in
browser support for the DOM

and events helped speed

adoption of jQuery (but you
need to know how events work

to understand how jQuery uses
them).

HTML EVENT HANDLER
ATTRIBUTES (DO NOT USE)
Please note: This approach is

now considered bad practice;

however, you need to be aware

of it because you may see it if

you are looking at older code.

(See previous page.)

In the HTML, the first <input>

element has an attribute called

onb l ur (triggered when the user

leaves the element). The value of

the attribute is the name of the

function that it should trigger.

The value of the event handler

attributes would be JavaScript.

Often it would cal l a function

that was written either in the

<head> element or a separate

JavaScript file (as shown below).

""*'' c06/ event-attributes.html

<form method="post" action="http://www.example.org/register">
<label for="username">Create a username: </l abel>
<input type="text" i d="username" onbl ur="checkUsername()" / >
<div id="feedback"></div>

<label for="password">Create a password: </label>
<input type="password" id="password" / >

<input type="submit" value="Sign up!" / >
</ fonn>

<script type="text/javascript" src="js/event-attributes .js "></script>

JAVASCRIPT c06/ js/ event-attributes.js

function checkUsername() { / / Dec lare funct ion
var elMsg = document .getElementByi d('feedback') ; // Get feedback element
var elUsername = document .getEl ementByld('username '); // Get username input
if (el Username .value . length < 5) { / / If username too short

elMsg.textContent ' Username must be 5 characters or more'; // Set msg
else { //Otherwise
elMsg.textContent = ''; //Clear message

For example:

• <a> elements can have one lick, onmouseover, onmouseout

• <form> elements can have onsubmi t

The names of the HTML event

handler attributes are identical

to the event names shown on

p246 - p247, preceded by • <input> elements for text can have onkeypress, on focus, onb l ur

the word "on."

EVENTS 0

TRADITIONAL DOM
EVENT HANDLERS

All modern browsers understand this way of creating an event handler,

but you can only attach one function to each event handler.

Here is the syntax to bind an event to an element using an event handler,

and to indicate which funct ion should execute when that event fires:

element .onevent functionName ;

ELEMENT EVENT CODE

DOM element Event bound to node(s) Name of function to cal l (with

node to target preceded by word "on" no parentheses following it)

Below, the event handler is on

the last line (after the function
has been defined and the DOM

element node(s) selected).

When a function is called, the

parentheses that fo llow its name
tell the JavaScript interpreter to
"run this code now."

We don't want the code to
run until the event fires, so the

parentheses are omitted from
the event handler on the last line.

function checkUsername() { I
A reference // code to check the length of username
to the DOM
element node -[var el = document. getElementByld('username') ;
isoftenstored el . onblur = checkUsername; -----------
in a variable.

The event name is preceded by the word "on."

An example of an anonymous function and a function with parameters is shown on p256.

§ EVENTS

The code starts
by defining the
named function.

The function
is called by the
event handler on
the last line, but
the parentheses
are omitted.

USING DOM EVENT
HANDLERS

In this example, the event

handler appears on the last line

of the JavaScript. Before the

DOM event handler, two things

are put in place:

JAVASCRIPT

function checkUsername() {

1. If you use a named function

when the event fires on your

chosen DOM node, write that

function first. (You could also

use an anonymous function.)

var elMsg = document .get El ementByld('feedback');
if (this .value .l ength< 5) {

elMsg . textContent 'Username mus t be 5 characters
else {
elMsg.textContent I I •

'

2. The DOM element node is

stored in a variable. Here the text

input (whose id attribute has a

value of username) is placed into

a variable called e 1 Username.

c06/ js/ event-handler.js

II Declare funct ion
II Get feedback element
II If username too short
or more'; II Set msg
II Otherwise
II Clear message

@) var elUsername = document. getElementByld('username') ; II Get username input
G) elUsername.onblur = checkUsername; II When it l oses focus call checkuserName()

When using event handlers, the

event name is preceded by the

word "on" (onsubmi t , on change,

onfocus, onbl ur, onmouseover,

onmouseout, etc).

3. On the last line of the code

sample above, the event handler

e 1 Username. onb 1 ur indicates

that the code is waiting for the

b 1 ur event to fire on the element

stored in the variable called

e 1 Username.

This is followed by an equal sign,

then the name of the function

that will run when the event

fires on that element. Note that

there are no parentheses on the

function name. This means you

cannot pass arguments to this

function. (If you want to pass

arguments to a function in an

event handler, see p256.)

The HTML is the same as that

shown on p251 but without

the onb 1 ur event attribute. This

means that. the event handler is

in the JavaScript, not the HTML.

Browser support: On line 3,

the checkUsername() function

uses the this keyword in the

conditional statement to check

the number of characters the

user entered. It works in most

browsers because they know

this refers to the element the

event happened on.

However, in Internet Explorer

8 or earlier, IE would treat this

as the wi ndow object. As a

result, it would not know which

element the event occurred on

and there would be no value

that it checked the length of, so

it would raise an error. You will

learn a solution for this issue on

p264.

EVENTS@

EVENT LISTENERS

Event listeners are a more recent approach to handling events.

They can deal with more than one function at a time
but they are not supported in older browsers.

Here is the syntax to bind an event to an element using an event listener,
and to indicate which function should execute when that event fires:

Adds an event listener to the DOM element node(s)

METHOD

element .addEventlistener('event', functionName [, Boolean]) ;

ELEMENT

DOM element

node to target

EVENT CODE

Event to bind node(s) Name of function
to in quote marks to call

EVENT FLOW

Indicates something called
capture, and is usually set

to f al se (see p260)

The code starts

II code to check the length of username named function.
function checkUsername() { }-- bydefiningthe

A reference
t th DOM The function

e~em:nt node -{var el = document . get El ementByld ('username') ; is caltlel~tby the
. even 1s ener on
1softenstored el. addEventlistener('blur', checkUsername, false) ; the lastline,but
in a variable. l...-..r--1

1 the parentheses
The event name is enclosed in quotation marks. are omitted.

An example of an anonymous function and a function with parameters is shown on p256.

8 EVENTS

USING EVENT LISTENERS

In this example, the event

listener appears on the last

line of the JavaScript. Before
you write an event listener, two

things are put in place:

JAVASCRIPT

function chec kUsername() {

1. If you use a named function
when the event fi res on your

chosen DOM node, write that
function first. (You could also

use an anonymous function.)

var elMsg = document .get ElementByld('feedback');
i f (t hi s .value.lengt h< 5) {

elMsg .textContent 'Username must be 5 characters
el se {
el Msg .textContent I I, ,

2. The DOM element node(s) is
stored in a variable. Here the text

input (whose id attribute has a

value of username) is placed into
a variable called el Username.

c06/ js/ event-l istener.js

II Declare function
II Get feedback element
II If username too short
or more'; II Set msg
II Otherwise
II Clear msg

~ var elUsername = document .get El ementByld(' username') ; II Get username i nput
II When i t loses focus call checkUsername()
elUsername.addEventlistener('blur' , checkUsername , false) ;

The addEventli stener ()

method takes three properties:

i) The event you want it to listen
for. In this case, the b 1 ur event.

ii) The code that you want it
to run when the event fires.
In this example, it is the
checkUsername (} function. Note
that the parentheses are omitted
where the function is called
because they would indicate that
the function should run as the
page loads (rather than when the
event fires).

iii) A Boolean indicating how
events flow, see p260. (This is
usually set to false.)

CD ® ®
BROWSER SUPPORT

Internet Explorer 8 and earfier
versions of IE do not support the

addEventli stener() method,
but they do support a method

called attachEvent(} and
you will see how to use this on

p258.

Also, as with the previous

example, IE8 and older versions
of IE would not know what this

referred to in the conditional
statement. ·An alternative

approach for dealing with it is
shown on p270.

EVENT NAMES

Unlike the HTML and traditional

DOM event handlers, when you
specify the name of the event
that you want to react to, the

event name is not preceded by

the word "on".

If you need to remove an event

listener, there is a function called
removeEventL i stener(} which
removes the event listener from

the specified element (it has the
same parameters).

EVENTS@

USING PARAMETERS WITH
EVENT HANDLERS
& LISTENERS

Because you cannot have parentheses after the

function names in event handlers or listeners,

passing arguments requires a workaround.

Usually, when a function needs
some information to do its job,

you pass arguments within the
parentheses that follow the

function name.

When the interpreter sees the
parentheses after a function call,

it runs the code straight away.
In an event handler, you want it

to wait until the event triggers it.

Therefore, if you need to pass
arguments to a function that is

called by an event handler or
listener, you wrap the function

call in an anonymous function.

Event name Start of anonymous function

The named function .-Li
includes parentheses el .add Event Listener(' blur' , function()

The anonymous
function is used

containing the -- chec kUsername (5) ;
parameter after the } f l) , a se ;
function name.

I ~nd of statement
End of addEventl i stener() method

Event flow Boolean (see p260)

End of anonymous function

The named funct ion that
requires the arguments lives

inside the anonymous function.

8 EVENTS

Although the anonymous
function has parentheses, it only

runs when the evenUs triggered.

as the second
argument. It "wraps
around" the named
function.

The named function can use
arguments as it only runs if the

anonymous function is called.

USING PARAMETERS WITH
EVENT LISTENERS

The first line of this example shows the updated

checkUsername() function. The mi nlength

parameter specifies the minimum number of

characters that the username should be.

JAVASCRI PT

The value that is passed into the checkUsername()

function is used in the conditional statement to

check if the name is long enough, and provide

feedback if the username name is too short.

c06/ js/ event-li st ener -with-parameters.js

var elUsername = document .getElementByid('username') ;
var el Msg = document .getElementByid('feedback') ;

II Get username i nput
II Get feedback element

function checkUsername(mi nleng t h) { II Declare function
II If username too short if (elUsername.val ue.length < minlength)

II Set the error message
elMsg . textContent = 'Username must be ' + minlength + ' characters or more';

II Otherwi se } else {
elMsg . innerHTML

}

I I • , II Clear msg

elUsername. addEventListener('bl ur ' , funct ion() {
checkUsername (S);

II When it loses focus
II Pass arguments here

}, false) ;

The event listener on the last three lines is longer

than the previous example because the call to the

checkUsername () function needs to include the

value for the mi nlength parameter.

To receive this information, the event listener uses

an anonymous function, which acts like a wrapper.

Inside that wrapper the checkUsername() function is

called, and passed an argument.

Browser support: On the next page you also see

how to deal with the lack of support for event

listeners in IE8 and earlier.

EVENTS 8

SUPPORTING OLDER
VERSIONS OF IE

IES-8 had a different event model and did not support
addEventL i stener() but you can provide fallback code
to make event listeners work with older versions of IE.

IE5-IE8 did not support the addEventL i stener()

method. Instead, it used its own method called
attachEvent () which did the same job, but was

only available in Internet Explorer. If you want to use
event listeners and need to support Internet Explorer
8 or earlier, you can use a conditional statement as

illustrated below.

Using an if ••• else statement, you can check if the
browser supports the addEventL i stener() method.

The condition in the if statement will return true

if the browser supports the addEventL i stener()
method, and you can use it. If the browser does not
support that method, it returns false, and the code

will try to use the attachEvent () method.

If the browser supports
addEventlistener() : if (el .addEventlistener) {

Run the code inside
these curly braces

If it doesn't, do
something else:

Run the code inside
these curly braces

el .addEventlistener('blur', function() {
checkUsername(5);

}, false);

} else {

}

el .attachEvent('onblur', function() {
checkUsername(5);

}) ;

When attachEvent () is used, the event name should be preceded by the word "on" (e.g., blur becomes onb l ur).
You will see another approach to supporting the older IE event model in Chapter 13 (using a utility file).

8 EVENTS

FALLBACK FOR USING
EVENT LISTENERS IN I E8

The event handling code builds on the last example,
but it is a lot longer this time because it contains the
fal lback for Internet Explorer 5-8.

After the checkUsername {) function, an if
statement checks whether addEventL i stener() is
supported or not; it returns true if the element node
supports this method, and fa 1 se if it does not.

JAVASCRIPT

If the browser supports the addEventL i stener()
method, the code inside the first set of curly braces
is run using add Event Listener() .

If it is not supported, then the browser will use the
attachEvent () method that older versions of IE will
understand. In the IE version, note that the event
name must be preceded by the word "on."

c06/ js/event-l istener-with-ie-fal lback.js

var el Username = document . getElementByld('username') ;
var e l Msg = document . getElementByl d('feedback');

// Get username in put
// Get feedback element

function checkUsername(minlength) { // Declare function
if (elUsername.value.length < minlength) // If username too short

II Set message
elMsg . innerHTML
else {

'Username must be ' + minlength + ' charact ers or more ' ;

el Msg . i nnerHTML ' ' ;

if (elUsername.addEventListener) {
elUsername . addEventlistener('bl ur' ,

checkUsername(S) ;
}, false);

// Otherwise
/ / Clear message

- // If event listener supported
function() {// When username loses focus

// Call checkUsername()
// Capture duri ng bubbl e phase
// Otherwise else {

elUsername . attachEvent('onblur' ,
checkUsername(S);

}) ;

function(){ // IE fal l back: onblur
// Cal l checkUsername()

If you need to support I E8 (or older), instead of
writing this fallback code for every event you are
responding to, it is better to write your own function
(known as a helper function) that creates the
appropriate event handler for you. You wi ll see a
demonstration of this in Chapter 13, which covers
form enhancement and validation.

It is, however, important to understand this syntax,
used by IE8 (and older) so that you know why the
helper function is used and what it is doing.

As you wi ll see in the next chapter, this is another
type of cross-browser inconsistency that jQuery can
take care of for you.

EVENTS 8

JavaScript

rr .. h ~gs

JavaScript

<.t id• 'llnk">fresh 'ig.s</~>

JavaScript

THE EVENT OBJECT

When an event occurs, the event object tells
you information about the event, and the

element it happened upon.

Every time an event fires, the The event object is passed to
event object contains helpful any function that is the event

data about the event, such as: handler or listener.

• Which element the event
happened on If you need to pass arguments

• Which key was pressed for a to a named function, the event

keypress event object will first be passed to the

• What part of the viewport the anonymous wrapper function

user clicked for a c 1 i ck event (this happens automatically);
(the viewport is the part of then you must specify it as a

the browser window that parameter of the named function

shows the web page) (as shown on the next page).

When the event object is

passed into a function, it is of ten
given the parameter name e

(for event). It is a widely used
shorthand (and you see it

adopted throughout this book).

Note, however, that some

programmers also use the
parameter name e to refer to the

error object; so e may mean
event or error in some script s.

Not only did IE8 have a different syntax for event listeners (as shown on p258), the event object in IES-8 also

had different names for the properties and methods shown in the tables below, and the example on p265.

PROPERTY

target

type

cancel able

METHOD

IES-8 EQUIVALENT PURPOSE

srcElement The target of the event (most specific element interacted with)

type Type of event that was fired

not supported Whether you.can cancel the default behavior of an element

IES-8 EQUIVALENT PURPOSE
PROPERTY

preventOefault() returnValue Cancel default behavior of the event (if it can be canceled)

stopPropagation() cancelBubble Stops the event from bubbling or capturing any further

@ EVENTS

1

..

EVENT LISTENER WITH NO PARAMETERS

function checkUsername(e) {
Q) var target = e. target ; //get target of event
}

var el = document.getElementByid('username');
el.addEventlistener('blur', checkUsername , false);

1. Without you doing anything,

a reference to the event object
is automatically passed from

the number 1, where the event
listener calls the function ...

2. To here, where the function

is defined. At this point, the
parameter must be named.

It Is often given the name e for
event.

EVENT LISTENER WITH PARAMETERS

3. This name can then be used
inside the function as a reference

to the event object. You can now

use the properties and methods
of the event object.

function checkUsername(e, minlength) {
@) var target = e . target ; //get target of event
}

var el = document.getElementByid('username ') ;
el .addEventlistener(1 blur 1

, function(e){ 1

checkUsername(e, 5);
} , false);

1. The reference to the event
object is automatically passed

to the anonymous function,

but it must be named in the
parentheses.

2. The reference to the event
object can then be passed onto

the named function. It is given as

the first parameter of the named
function.

3. The named function receives

the reference to the event object

as the first parameter of the
method. 4 . It can now be used by

this name in the named function.

EVENTS@

THE EVENT OBJECT
IN IES-8

Below you can see how you get the event object in IES-8.

It is not passed automatically to event handler/listener functions;

but it is available as a child of the window object.

On the right, an if statement

checks if the event object has
been passed into the function.

As you saw on p168, the
existence of an object is

treated as a truthy value, so the
condition here is saying "if the
event object does not exist..."

In IE8 and less, e will not hold
an object, so the following code

block runs and e is set to be the
event object that is a child of the

wi ndow object.

GETTING PROPERTIES

Once you have a reference to

the event object you can get its

properties using the technique
on the right. This works on short

circuit evaluation (see p169).

function checkUsername(e)
if (! e) {

e = window.event ;

var target;
target = e.target I I e.srcElement;

A FUNCTION TO GET THE TARGET OF AN EVENT

lfyouneedtoassignevent function getEventTarget(e) {
listeners to several elements, i f (! e) {
here is a function that will return
a reference to the element the

event happened on.

9 EVENTS

e = window.event ;
}
return e .target I I e .srcElement;

USING EVENT LISTENERS
WITH THE EVENT OBJECT

Here is the example that has been used throughout

the chapter so far w ith some modifications:
1. The function is called check Length() rather than
checkUsername (). It can be used on any text input.

2. The event object is passed to the event listener.

The code includes fallbacks for IES-8(Chapter13
demonstrates using helper functions to do this).

3. In order to determine which element the user
was interacting with, the function uses the event
object's target property (and for IES-8 it uses the

equivalent s rcEl ement property).

JAVASCRIPT

function checklength(e, minlength) {
var el , elMsg ;
if (le) {

e = window.event;
}
el = e . target II e.srcElement;
elMsg =el .nextSibling;

if (el . va l ue . length< minlength)
elMsg . innerHTML 'Username must be '
else {
elMsg . innerHTML ' ';

This function is now far more flexible than the

previous code you have seen in this chapter because:
1. It can be used to check the length of any text

input so long as that input is directly followed by an

empty element that can hold a feedback message
for the user. (There should not be space or carriage

returns between the two elements; otherwise, some
browsers might return a whitespace node.)
2. The code will work with IES-8 because it tests

whether the browser supports the latest features (or
whether it needs to fal l back to use older techniques).

c06/ js/ event-1istener-with-event-object.js

II Declare function
II Declare variables
II If event object doesn't exist
II Use IE fallback

II Get target of event
II Get its next sibling

II If length is too short set msg
+ minlength + ' cha racters or more';

II Otherwise
II Clear message

var el Username = document .getEl ement Byid('username '); ll Get username input
if (el Username .addEventlistener) { II If event listener supported

elUsername.addEventlistener ('b l ur ', function(e) { II On blur event
checkUsername(e, 5); II Call checkUsername()

}, false); II Capture in bubble phase
el se { II Otherwise
elUsername . attachEvent('onblur', function(e){ II IE fallback onblur

checkUsername(e, 5); II Call checkUsername()
}) ;

EVENTS 8

EVENT DELEGATION

Creating event listeners for a lot of elements
can slow down a page, but event flow allows

you to listen for an event on a parent element.

If users can interact with a lot of

elements on the page, such as:

• a lot of buttons in the UI
• a long list

• every cell of a table

adding event listeners to each

element can use a lot of memory

and slow down performance.

Because events affect containing

(or ancestor) elements (due

to event flow - p260), you

can place event handlers on a

containing element and use the

event object's target property

to find which of its children the

event happened on.

By attaching an event listener

to a containing element, you are

only responding to one element

(rather than having an event

handler for each child element).

You are delegating the job of the

event listener to a parent of the

elements. In the list shown here,

if you place the event listener

on the <u 1 > element rather than

on links in each <1 i >element,

you only need one event listener.

This gives better performance,

and if you add or remove items

from the list it would still work

the same. (The code for this

example is shown on p269.)

ADDITIONAL BENEFITS OF EVENT DELEGATION

WORKS WITH NEW
ELEMENTS

If you add new elements to the

DOM tree, you do not have to

add event handlers to the new

elements because the job has

been delegated to an ancestor.

@ EVENTS

SOLVES LIM ITATIONS
WITH this KEYWORD

Earlier in the chapter, the this

keyword was used to identify an

event's target, but that technique

did not work in IE8, or when a

function needed parameters.

SIMPLIFIES YOUR
CODE

It requires fewer functions

to be written, and there are

fewer ties between the DOM

and your code, which helps

maintainability.

CHANGING DEFAULT
BEHAVIOR

preventDef au 1t ()

Some events, such as clicking on

links and submitting forms, take
the user to another page.

To prevent the default behavior
of such elements (e.g., to keep

the user on the same page
ra ther than following a link

or being taken to a new page
after submitting a form), you

can use the event object's
preventoefault() method.

IES- 8 have an equivalent
property called return Va 1 ue

which can be set to fa 1 se. A
conditional statement can check

if the prevent Def au 1t () method

is supported, and use IE8's

approach if it isn't:

if (event .preventDefault)

event.preventDefaul t ();

else {
event .returnVa l ue = false ;

The event object has methods that change:

the default behavior of an element and how

the element's ancestors respond to the event.

stopPropagation()

Once you have handled an
event using one element, you

may want to stop that event
from bubbling up to its ancestor

elements (especially if there
are separate event handlers

responding to the same events
on the containing elements).

To stop the event bubbling up,

you can use the event object's

stopPropogation() method.

The equivalent in IE8 and earlier
is the cance 1 Bubble property
which can be set to true. Again,

a conditional statement can

check if the stopPropogati on()

method is supported and use
IE8's approach if not:

if (event . stopPropogation)

event.stopPr opogation();
else {

event.cancel Bubbl e = t r ue;

USING BOTH METHODS

You will sometimes see the

following used in similar
situations that are in a function:
r eturn false;

It prevents the default behavior

of the element, and prevents
the event from bubbling up or

capturing further. It also works in

all browsers, so it is popular.

Note, however, when the
interpreter comes across the
return false statement, it stops

processing any subsequent code
within that function and moves

to the next statement after the

function was called.

Since this blocks any further

code within the function,
it is often better to use the
preventDefaul t () method of

the event object rather than

return false.

EVENTS @

USING EVENT DELEGATION

This example will put together a lot of what you have

learned in the chapter so far. Each list item contains
a link. When the user clicks on that link (to indicate
they have completed that task), the item will be

removed from the list.

• There is a screen grab of the example on p266.

• On the right there is a flowchart that helps
explain the order in which the code is processed.

• The right-hand page has the code for the example

1. The event listener will be added to the
element, so this needs to be selected.

2 . Check whether or not the browser supports

addEventListener() .
3 . If so, use it to call the i temOone() function when
the user clicks anywhere on that list.

4 . If not, use the attachEvent () method.
5. The i temDone () function will remove the item
from the list. It requires three pieces of information.

6 . Three variables are declared to hold the info.
7. t ar get holds the element the user clicked on.

To obtain this, the getTarget () function is called.

This is created at the start of the script, and shown

at the bottom of the flowchart.
8 . el Par ent holds that element's parent (the <l i >)

9. el Grandparent holds that element's grandparent

10. The <l i >element is removed from the

element.
11 . Check if the browser supports preventDefaul t ()
to prevent the link taking the user to a new page.

12. If so, use it.

13. If not, use the older IE return Value property.

In the HTML, the links would take you to
i temDone . php if the browser did not support

JavaScript. (The PHP file is not supplied with the

code download because server-side languages are
beyond the scope of this book.)

@ EVENTS

0

8

e
0

Get element for shopping list

+
I

'
Is

addEventl istener()
supported? ' lo el

Use att achEvent () Use addEvent li stener()

+
I

Event: click on any llnk In llst

I

FUNCTION:; temDone()
Removes an Item when completed

Create varlables:
target: the element that was clicked on
e 1 Parent: the parent of that element
e 1 Grandparent: the grandparent of it

I

+
I

Get element clicked on; call getTarget()
I

Get its parent (the <1 i> element)

I
Get its grandparent (the element)

+
I

Remove <1 i> from element

+ I

ls preventDefault()
supported?

use return Va 1 ue pr eventDefaul t()

FUNCTION: get Target ()
Gets element user clicked on

' I Get target
of event

Is there
no

event object? ' I Get target of event using
old IE event object

lliiiMllll c06/event-delegation.htm1

<ul id="shoppinglist">
<li class="complete">fresh<lem> figs<la><lli>
<li class="complete">pine nuts<la><ll i>
<li class=" complete">honey<la><lli>
<li class="complete">balsamic vinegar<la><ll i>

<lul>

JAVASCRIPT c06/js/event-del egation.js

function get Target(e)
if (le) {
e = window.event;

}
return e. target I I e.srcEl ement;

® function itemDone(e) {
II Remove item from t he list

~ var target, elParent, elGrandparent;
0 target = getTarget(e);
~ elParent = target.parentNode;
~ elGrandparent = target.parentNode.parentNode;
Q9) el Grandparent.removeChi ld(elParent);

®
®

II Prevent the link from taking you elsewhere
i f (e.preventDefaul t) {

e.preventDefault();
else {
e.returnValue = false;

II Declare function
II If there i s no event object
II Use old IE event object

II Get the t arget of event

II Declare function

II Declare variabl es
II Get the item cli cked link
II Get its l ist item
I I Get its list
II Remove list item f rom list

II If prevent Defaul t() works
-II Use preventDefault()
II Otherwi se
II Use old IE version

II Set up event listeners to call itemDone() on click
G) var el = document.getElementByld('shoppinglist');ll Get shopping list
~ if (el .addEventlistener) { II If event listeners work
~ el .addEventlistener('click ' , funct i on(e) { II Add listener on click

itemDone(e); II It calls itemDone()
}, false); II Use bubbling phase for flow
else { 11 Otherwise

@) el.attachEvent('onclick' , function(e){ II Use old IE model : onclick
itemDone (e) ; II Call itemDone()

}) ;

EVENTS @

WH ICH ELEMENT DID AN
EVENT OCCUR ON?

When calling a function, the event object's target property is the best

way to determine which element the event occurred on. But you may see
the approach below used; it relies on the this keyword.

THE this KEYWORD

The this keyword refers to the
owner of a function. On the right,

this refers to the element that

the event is on.

This works when no parameters

are being passed to the function
(and therefore it is not called

from an anonymous function).

USING PARAMETERS

If you pass parameters to the

function, the this keyword no

longer works because the owner
of the function is no longer

the element that the event

listener was bound to, it is an
anonymous function.
You could pass the element the

event was called on as another

parameter of the function.

In both cases, the event object is

the preferred approach.

8 EVENTS

function checkUsername() {
var elMsg = document.getElementByld('feedback');
if (this .value.length< 5) {

elMsg.innerHTML = 'Not long enough';
else {
elMsg . innerHTML = '';

var el = document.getElementByld('username');
el .addEventlistener('blur', checkUsername, false);

It's like the function had been
written here rather than higher up

function checkUsername(el , minlength) {
var elMsg = document .getElementByld('feedback');
if (el .value.l ength< minlength) {

elMsg .innerHTML = 'Not long enough ' ;
else {
elMsg.innerHTML = '';

var el = document.getElementByld('username');
el.addEventlistener('blur', function() {

checkUsername(el , 5);
}, false);

Events are defined in:

• The W3C DOM specification
• The HTMLS specification

• In Browser Object Models

W3C DOM EVENTS

The DOM events speci fication is

managed by the W3C (who also
look after other specifications

including HTML, CSS, and XML).
Most of the events you will meet

in this chapter are part of this

DOM events specification.

Browsers implement all the
events using the same event

object that you already met.
It also provides feedback such

as which element the event

occurred on, which key a user

pressed, or where the cursor is
positioned).

There are, however, some events

that are not covered in the DOM
event model - in particular those

that deal with form elements.

(They used to be part of the

DOM, but got moved to the
HTMLS specification.)

DIFFERENT TYPES
OF EVENTS

In the rest of the chapter, you learn about the
different types of events you can respond to.

Most are a result of the user
interacting with the HTML, but

there are a few that react to the
browser or other DOM events.

HTM LS EVENTS

The HTMLS specification
(that is still being developed)

details events that browsers are

expected to support that are
specifically used with HTML.

For example, events that are
fired when a form is submitted

or form elements are changed
(which you will meet on p282):

submit
input

change

There are also new events

introduced with the HTMLS
specification that are only

supported ~Y more recent
browsers. Here are a few (which

you will meet on p286):

readystatechange

DOMContentloaded
hashchange

We do not show every event,
but the examples you see should

teach you enough so that you

can work with all types of events.

SOM EVENTS

Browser manufacturers also

implement some events as part

of their Browser Object Model
(or BOM). Typically these are
events not (yet) covered by

W3C specifications (although

some will be added to W3C
specifications in the future).

Several of these events dealt
with touchscreen devices:

touchstart

touchend
touchmove

orientationchange

Other events are being added

to capture gestures and take
advantage of accelerometers.

Care is needed using such
features, as different browsers

often create different

implementations of similar
functionality.

EVENTS 0

USER INTERFACE EVENTS

User interface CUI) events occur as a result of interaction with the

browser window rather than the HTML page contained within it,

e.g., a page having loaded or the browser window being resized.

The event handler I listener for
UI events should be attached to

the browser window.

In old HTML code, you may see these events used as attributes on the
opening <body> tag. (For example, older code used the on 1 oad attribute

to trigger code that would run when the page had loaded.)

EVENT TRIGGER

load Fires when the web page has finished loading.

lt can also fire on nodes of other elements that
load, such as images, scripts, or objects.

un 1 oad Fires when the web page is unloading (usually

because a new page has been requested).
See also the beforeun 1 oad event (on p286)

which fires before the user leaves a page.

BROWSER SUPPORT

The DOM Level 2 (Nov 2000) states that it fires

on the document object, but prior to this it fired
on the window object. Browsers support both for

backwards compatibility, and developers often
st ill attach 1 oad event handlers to the window (not

document) object.

The DOM Levei 2 states that it fires on the node
for the <body> element, but in older browsers it

fired on the window object (this is often used for
backwards compatibility).

error Fires when the browser encounters a JavaScript Support for this event is inconsistent across

error or an asset doesn't exist. browsers and so it is not reliable for error handling,

a topic you learn more about in Chapter 10.

resize Fires when the browser window has been resized. Browsers repeatedly fire the resize event as the

window is being resized, so avoid using this event
to trigger complicated code because this might

make the page appear less responsive.

scro 11 Fires when the user has scrolled up or down the

page. It can relate to the entire page or a specific

element on the page (such as a <textarea> that
has scrollbars).

@ EVENTS

Browsers repeatedly fire the event as the window is

scrolled, so avoid running complicated code as the
user scrolls.

The load event is commonly

used to trigger scripts that

access the contents of the page.

In this example, a function called

setup() gives focus to the text

input when the page has loaded.

JAVASCRIPT

function setup() {
var textlnput;

The event is automatically raised

by the window object when a

page has finished loading the

HTML and all of its resources:

images, CSS, scripts (even third

party content e.g .. banner ads).

LOAD

The setup() function would not

work before the page has loaded

because it relies on finding the

element whose id attribute has

a value of username, in order to

give it focus.

c06/js/load.js

II Declare function
II Create variable

textl nput = document .getEl ementByid('username');
text lnput.focus();

II Get username input
II Gi ve username focus

window.addEventli st ener('load' , setup , fal se); II When page loaded call setup{)

l;IJiiJil

Because the load event only

fires when everything else on the

page has loaded (images, scripts,

even ads), the user already have

started to use the page before the

script has started to run.

Users particularly notice when a

script changes the appearance

of the page, changes focus, or

selects form elements after they

have started to use it. (It can
make a site look slower to load.)

Note that the event listener is

attached to the window object

(not the document object - as

this can cause cross-browser

compatibility issues).

If the <script> element is at the

end of the HTML page, then the

DOM would have loaded the

form elements before the script

runs, and there would be no

need to wait for the load event.

(See also: the DOMContentloaded

event on p286 and jQuery's

document. r eady () method on

p312.)

Imagine this form had more

inputs; the user may be fil ling

in the second or third box when

the script fi res - moving focus

back to the first box too late and

interrupting the user.

EVENTS@

FOCUS & BLUR EVENTS

The HTML elements you can interact with, such as links and form

elements, can gain focus. These events fire when they gain or lose focus.

If you can interact with an HTML element, then it
can gain (and lose) focus. You can also tab between

the elements that can gain focus (a technique often
used by those with visual impairments).

In older scripts, the focus and b 1 ur events were
often used to change the appearance of an element

as it gained focus, but now the CSS : focus pseudo
class is a better solution (unless you need to affect

an element other than the one that gained focus).

EVENT TRIGGER

The focus and b 1 ur events are most commonly used
on forms. They can be particularly helpful when:

• You want to show tips or feedback to users as
they interact with an individual element within a
form (the tips are usually shown in other elements

and not the one they are interacting with)

• You need to trigger form validation as a user
moves from one control to the next (rather than
waiting for them to submit the entire form first)

FLOW

focus When an element gains focus, the focus event fires for that DOM node. Capture

blur When an element loses focus, the b 1 ur event fires for that DOM node. Capture

focus in Same as focus (see above but not supported in Firefox at time of writing) Bubble & capture

focusout Same as b 1 ur (see above but not supported in Firefox at time of writing) Bubble & capture

8 EVENTS

In this example, as the text input

gains and loses focus, feedback

is shown to the user in the <div>

element under the text input.

The feedback is given using two

functions.

JAVASCRIPT

function checkUsername() {
var username =el.value;

FOCUS & BLUR

ti pUsername () is triggered

when the text input gains focus.

It changes the cl ass attribute

of the element containing the

message, and updates the

contents of the element.

checkUsername () is triggered

when the text input loses focus.

It adds a message and changes

the cl ass if the username is less

than 5 characters; otherwise, it

clears the message.

c06/js/focus-blur. js

// Declare function

if (username.length < 5) {
elMsg.className = 'warning';
elMsg . textContent ' Not l ong enough ,

// Store username in variable
// If username < 5 characters
//Change cl ass on message

yet .. . ' ;// Update message
//Otherwise
// Clear the message

else {
elMsg.textContent I I•

•

function tipUsername() {
el Msg.className 'tip' ;
elMsg.innerHTML = 'Username must be at least

//Declare funct i on
//Change class for message

5 characters ' ;// Add message

var el = document.getElementByld('username'); // Username input
var el Msg = document.getElementByid('feedback');- / /Element to hold message

//When the username input ga ins / loses focus cal l functions above :
el .addEventlistener(' focus', tipUsername, false) ; // focus call tipUsername()
el.addEventlistener('blur' , checkUsername, false) ;// blur call checkUsername()

l;IJi'li'

EVENTS 8

MOUSE EVENTS

The mouse events are fired when the mouse is moved and also when its

buttons are clicked.

All of the elements on a page support the mouse
events, and all of these bubble. Note that actions are

different on touchscreen devices.

EVENT TRIGGER

Preventing a default behavior can have unexpected

results. E.g., a click event only fires when both the
mousedown and mouseup event have fired.

TOUCH

click Fires when the user clicks on the primary mouse button A tap on the touchscreen will be

(usually the left button if there is more than one). The c 1 i ck treated like a single left-click.
event w ill fire for the element that the mouse is currently

over. It will also fire if the user presses the Enter key on the
keyboard when an element has focus.

db 1c1 i ck Fires when the user clicks the primary mouse button twice A double-tap wi ll be t reated as a

in quick succession. double left click.

mousedown Fires when the user clicks down on any mouse button.
(Cannot be triggered by keyboard.)

mouseup Fires when the user releases a mouse button. (Cannot be
triggered by keyboard.)

mouseover Fires when the cursor was outside an element and is then
moved inside it. (Cannot be triggered by keyboard.)

You can use the touchstart event.

You can use the touchend event.

Fires when the cursor is moved over
an element.

mouseout Fires when the cursor is over an element, and then moves Fires when the cursor is moved off an
onto another element - outside of the current element or a element.

child of it (Cannot be triggered by keyboard.)

mousemove Fires when the cursor is moved around an element. This Fires when the cursor is moved.
event is repeatedly fired. (Cannot be triggered by keyboard.)

WHEN TO USE CSS

The mouseover and mouseout events were often

used to change the appearance of boxes or to switch
images as the user rolls over them. To change the

appearance of the element, a preferable technique

would be to use the CSS : hover pseudo-class.

e EVENTS

WHY SEPARATE MOUSEDOWN & UP?

The mousedown and mouseup events separate

out the press and release of a mouse button.

They are commonly used for adding drag and

drop functionality, or to add controls in game
development.

The aim of this example is to use

the c 1 i ck event to remove the

big note that has been added to

the middle of the page. But first,

the script has to create that note.

JAVASCRIPT

Because the note is over the

top of the page, we only want

to show it to users who have

JavaScript enabled (otherwise

they could not hide it).

II Create the HTML fo r the message

CLICK

When the c 1 i ck event fires on

the close link the di smi ssNote()

function is called. This function

wi ll remove the note that was

added by the same script.

c06/js/cl ick . js

var msg = '<div class=\"header\">close X<ldiv>';
msg += '<div><h2>System Maintenance</h2>';
msg += 'Our servers are being updated between 3 and 4 a.m. ' ;
msg += 'Duri ng this t ime, there may be minor disrupt i ons to service.</div> ' ;

var elNote = document.createElement('div');
elNote.setAttribute('i d' , 'note');
elNote . innerHTML = msg;
document.body.appendChi l d{elNote);

function dismissNote() {
document.body. removeChi l d{elNote);

// Create a new el emen t
//Add an id of note
//Add the message
II Add it to the page

// Declare functi on
II Remove the note

var el Close = document.getElementByid('close '); // Get the close button
elClose .addEvent l istener(' click', dismissNote, false);// Cl ick cl ose-clear note

l;IJiiJil

SYSTEM MAINTENANCE

Our servers are being updated between
3 and 4 a.m. Ouringthis time, there may
be minor disruptions to service.

ACCESSIBILITY

The c 1 i ck event can be applied

to any element, but it is better

to only use it on items that are

usually clicked or it wi ll not be

accessible to people who rely

upon keyboard navigation.

You may also be tempted to use

the c 1 i ck event to run a script

when a user clicks on a form

element, but it is better to use

the focus event because that

fi res when the user accesses
that control using the tab key.

EVENTS@

DETERMINI NG POSITION

In this example, as you move
your mouse around the screen,
the text inputs across the top of
the page are updated with the
current mouse position.

This demonstrates the three
different positions you can
retrieve when the mouse is
moved or when one of the
buttons is clicked.

JAVASCRIPT

var sx document.getElementByid(' sx '); II
var sy document.getElementByid(' sy ' }; II
var px document.getElementByid(' px '); II
var py document.getElementByld ('py ') ; II
var ex document.getElementByid('cx') ; II
var cy document.getElementByid(' cy ') ; II

Element
Element
Element
Element
Element
Element

Note how showPosition() is
passed event as a parameter,
which refers to the event object.
The positions are all properties
of this event object.

c06/ js/ position .j s

to hold screenX
to hol d sc reenY
to hold pageX
to hold pageY
to hold cl ientX
to hold clientY

function showPosition(event) II Declare function
sx.value event.screenX; II Update element with screenX
sy.value event.screenY; II Update element with screenY
px.value event .pageX; II Update element with pageX
py.value event. pageY; II Update element with pageY
ex.val ue event.cl ientX; II Update element wi t h cli entX
cy.value event.c l i entY; II Update element wi t h cli entY

var el = document.getElementByid('body'} ; II Get body element
el.addEventlistener('mousemove'. showPosition, false}; II Move updates position

l ;IJiliil

EVENTS@

KEYBOARD EVENTS

The keyboard events are fired when a user interacts with the keyboard

(they fire on any kind of device with a keyboard).

EVENT TRIGGER

input Fires when the value of an <input> or <textarea> element changes. First supported in IE9 (although

it does not fire when deleting text in IE9). For older browsers, you can use keydown as a fallback.

keydown Fires when the user presses any key on the keyboard. If the user holds down a key, the event

continues to fire repeatedly. This is important because it mimics what would happen in a text input

if the user holds down a key (the same character would be added repeatedly while the key is held

down).

keypress Fires when the user presses a key that would result in a character being shown on the screen. For

example, this event would not fire when the user presses the arrow keys, whereas the keydown event

would. If the user holds down a key, the event continues to fire repeatedly.

keyup Fires when the user releases a key on the keyboard. The keydown and keypress events fire before a

character shows on screen, whereas keyup fires after it appears.

The three events that begin key ... fire in this order:

1. keydown - user presses key down

2 . keypress - user has pressed or is holding a key

that adds a character into the page

3. keyup - user releases key

@ EVENTS

WHICH KEY WAS PRESSED?

When you use the keydown or keypress events, the

event object has a property cal led keyCode, which

can be used to tell which key was pressed. However,

it does not return the letter for that key (as you might

expect); it returns an ASCII code that represents the

lowercase character for that key. You can see a table

of the characters and their ASCII codes in an online

· extra on the website accompanying this book.

If you want to get the letter or number as it would

be displayed on the keyboard (rather than an ASCII

equivalent), the String object has a built-in method

called fromCharCode() which will do the conversion

foryou: String.fromCharCode(event.keycode} ;

WHICH KEY WAS PRESSED

In this example, the <textarea>
element should only have 180
characters. When the user

enters text, the script will show

them how many characters they
have left available to use.

JAVASCRIPT

var el ;

function charCount(e) {

The event listener checks for
the keypr ess event on the
<textarea> element. Each time

it fires, the charCount () function

updates the character count and
shows the last character used.

The input event would work wel l

to update the count when the
user pastes in text or uses keys

like backspace, but it does not
tell you which key was the last to

be pressed.

c06/js/ keypress.js

II Decl are variabl es

var textEntered, charDisplay, counter, lastKey;
textEntered = document.getElementByld('message').value;
charDisplay = document.getElementByld('charactersleft');
counter = (180 - (textEntered.length));
charDisplay.textContent = counter;

II Decl are function
II Decl are variables
II User's text
II Counter element
II Num of chars left
II Show chars left

lastkey = document .getElementByid ('lastkey');
lastkey.textContent = 'Last key in ASCII code :

II Get last key used
' + e.keyCode; II Create msg

el = document.getElementByld('message');
el.addEventlistener('keypress', charCount, false);

l;li.Jllli

II Get msg element
II keypress event

EVENTS @

FORM EVENTS

There are two events that are commonly used with forms.
In particular you are likely to see submit used in form validation.

EVENT TRIGGER

submit When a form is submitted, the submit

event fires on the node representing the
<form> element. It is most commonly

used when checking the values a user has
entered into a form before sending it to the

server.

change Fires when the status of several form
elements change. For example, when:

• a selection is made from a drop-down
select box

• a radio button is selected
• a checkbox is selected or deselected

It is often better to use the change event

rather than the c 1 i ck event because
clicking is not the only way users interact
with form elements (for example, they

might use the tab, arrow, or Enter keys).

input The i nput event. which you saw on the

previous page is commonly used with
<input> and <textarea> elements.

FOCUS AND BLUR

The focus and b 1 ur events (which you met on
p274) are often used with forms, but they can also

be used in conjunction with other elements, such as

links (so they are not specifically related to forms).

@ EVENTS

VALIDATION

Checking form values is known as validation.
If users miss required information or enter incorrect

information, checking it using JavaScript is faster

than sending the data to the server for it to be
checked. Validation is covered in Chapter 13.

USING FORM EVENTS

When a user interacts w ith
the drop-down select box, the
change event will trigger the

packageHi nt () function. This

shows messages below the
select box that reflect the choice.

JAVASCRIPT

When the form is submitted, the
checkTer ms () function is called.

This tests to see if the user has
checked the box that indicates

they agree to the terms and

conditions.

var elForm, elSelectPackage, elPackageHint, elTerms;

If not, the script will prevent

the default behavior of the
form element (and stop it from

submitting the form data to the
server) and it will show an error

message to the user.

c06/js/fonn.js

el Form document .getElementByld('formSignup');
/I Declare variables
/ /Store elements

elSelectPackage document.getElementByid{'package');
el PackageHin t document.getElementByld('packageHint');
el Terms document.getElementByid('terms');
elTermsHint document.getElementByid('termsHint');

function packageHint() {
var package = this.options[this.selectedindex] .value;
if (package == 'monthly') {

elPackageHint. i nnerHTML = 'Save $10 if you pay for
else {
elPackageHint.innerHTML = 'Wise choice!';

II Declare function
II Get selected option
II If monthly package

1 year! ';//Show this msg
II Otherwise
II Show this message

function checkTerms(event) {
if (!elTerms.checked) {

elTermsHint.innerHTML = 'You must agree to the
event.preventDefault();

II Declare function
II If checkbox ticked

terms.'; II Show message
II Don't submit form

//Create event l isteners: submit calls checkTerms(), change calls packageHint()
elForm.addEventlistener(' submit ' , checkTerms, false);
elSelectPackage.addEventlistener('change', packageHint, false);

EVENTS @

MUTATION EVENTS &
OBSERVERS

Whenever elements are added to or removed from the DOM, its

structure changes. This change triggers a mutation event.

When your script adds or removes content from a

page it is updating the DOM tree. There are many

reasons why you might want to respond to the DOM

tree being updated, for example, you might want to

tell the user that the page had changed.

EVENT TRIGGER

Below are some events that are triggered when

the DOM changes. These mutation events were

introduced in Firefox 3, IE9, Safari 3, and all versions

of Chrome. But they are already scheduled to be

replaced by an alternative called mutation observers.

DOMNodelnserted Fires when a node is inserted into the DOM tree.

e.g. using appendChi 1 d (), rep 1aceChi1 d (}, or i nsertBefore (} .

DOMNodeRemoved Fires when a node is removed from the DOM tree.

e.g. using removeChi 1 d (} or rep l aceChil d (}.

DOMSubtreeModified Fires when the DOM structure changes.

It fires after the two events listed above occur.

DOMNodelnsertedlntoDocument Fires when a node is inserted into the DOM tree as a descendant of another

node that is already in the document.

DOMNodeRemovedFromDocument Fires when a node is removed from the DOM tree as a descendant of another

node that is already in the document.

PROBLEMS WITH MUTATION EVENTS

If your script makes a lot of changes to a page, you

end up with a lot of mutation events firing. This can

make a page feel slow or unresponsive. They can

also trigger other event listeners as they propagate

through the DOM, which modify other parts of the

DOM, triggering more mutation events. Therefore

they are being replaced by mutation observers.

Browser support: Chrome, Firefox 3, IE 9, Opera 9,

Safari 3

9 EVENTS

NEW MUTATION OBSERVERS

M utation observers are designed to wait until a

script has finished its task before reacting, then

report the changes as a batch (rather than one at

a time). You can also specify the type of changes

.to the DOM that you want them to react to. But at

the time of writing, the browser support was not

widespread enough to use them on public websites.

Browser support: IE 11, Firefox 14, Chrome 27

(or 18 with webkit prefix), Safari 6.1, Opera 15

On mobile: Android 4.4, Safari on iOS 7.

..

USING MUTATION EVENTS
In this example, two event listeners each trigger

their own function. The first is on the last but one
line, and it listens for when the user clicks the link to

add a new list item. It then uses DOM manipulation
events to add a new element (changing the DOM
structure and triggering mutation events).

JAVASCRIPT

The second event listener waits for the DOM tree
within the element to change. When the
DOMNodelnserted event fires, it calls a function

called updateCount ().This function counts how
many items there are in the list, and then updates

the list count at the top of the page accordingly.

c06/js/mutation.js

var ellist. addlink, newEl, newText, counter, listltems; II Declare variables

ellist document .getElementByid('list '); II Get list
addlink document.querySelector('a'); II Get add item button
counter document .getElementByid('counter'); II Get item counter

function addltem(e) {
e.preventDefault();
newEl = document.createElement('li ');
newText = document.createTextNode('New list item');
newEl .appendChild{newText);
elList .appendChild(newEl);

function updateCount() {
listitems = list.getElementsByTagName(' l i').len_gth;
counter .innerHTML = listitems;

II Declare function
II Prevent link action
II New element
II New text node
II Add text to
II Add to list

II Declare function
II Get total of <l i>s
II Update counter

addlink.addEventlistener('click'. addltem. false); II Click on button
ellist.addEventlistener('DOMNodeinserted ', updateCount, false); II DOM updated

i;IJiii§i

EVENTS @

HTM LS EVENTS

Here are three page-level events that have been

included in versions of the HTMLS spec that

have become popular very quickly.

EVENT TRIGGER BROWSER SUPPORT

DOMContentLoaded Event fires when the DOM tree is formed (images, CSS, and Chrome 0 .2, Firefox 1,

hashchange

beforeun load

JavaScript might sti ll be loading). Scripts start to run earlier than IE9, Safari 3.1, Opera 9

using the load event which waits for other resources such as

images and advertisements to load. This makes the page seem

faster to load. However, because it does not wait for scripts to

load, the DOM tree w ill not contain any HTML that would have

been generated by those scripts. It can be attached to the window

or document objects.

Event fires when the URL hash changes (without the entire

window refreshing). Hashes are used on links to specific parts

(sometimes known as anchors) within a page and also on pages

that use AJAX to load content. The hashchange event handler

works on the window object, and after firing, the event object will

have o 1 dURL and newURL properties that hold the url before and

after the hashchange.

Event fires on the window object before the page is unloaded. It

should only be used to help the user (not to encourage them to

stay on a website if they are trying to leave). For example, it can be

helpful to let a user know that changes on a form they completed

have not been saved. You can add a message to the dialog box

that is shown by the browser, but you do not have control over the

text shown before it or on the buttons the user can press (which

can vary slightly between browsers and operating systems).

IE8, Firefox 20, Safari

5.1, Chrome 26, and

Opera 12.1

Chrome 1, Firefox 1,

IE4, Safari 3, Opera 12

There are also several other events that are being introduced to support more recent devices (such as phones

and tablets). They respond to events such as gestures and movements that are based upon an accelerometer

(which detects the angle at which a device is being held).

8 EVENTS

USING HTMLS EVENTS

In this example, as soon as the

DOM tree has been formed,

focus is given to the text input

with an id of username.

, JAVASCRIPT

function setup() {
var textlnput;

The OOMContentloaded event

fires before the load event

(because the latter waits for all

of the page's resources to load).

textlnput = document .getElementByld('message ');
textlnput . focus();

If users try to leave the page

before they press the submit

button, the beforeun load event

checks that they want to leave.

06/ j s/html5-event s . j s

window.addEventlistener('DOMContentloaded' , setup, false);

window.addEventlistener('beforeunload', function(event){
return ' You have changes that have not been saved •.• ' ;

}. false);

i;IJiiJll

JavaScript

Are you sure you want to INve this page?

You have changes that have not been saved •.•

(Stay on Page] ~ 1' z!!llP • II! J

On the left, you can see the

dialog box that is shown when

you try to navigate away from

the page.

The text before your message

and on the buttons may change

from browser to browser (you

have no control over this).

EVENTS 8

EXAMPLE
EVENTS

This example shows an interface for a user to

record voice notes. The user can enter a name

which is displayed in the heading, and they can

press record (which changes the image that is

shown).

When the user starts typing a name into the text box, the keyup event

will trigger a function called wri telabe 1 () which copies the text from
the form input and writes it into the main heading under the logo for List

King, replacing the words 'AUDIO NOTE'.

The record/ pause button is a bit more interesting. The button has an

attribute called data-state. When the page loads, its value is record.
When the user presses the button, the value of this attribute changes to
pause (this triggers a new CSS rule to indicate that it is now recording).

If you have not used HTMLS's data- attributes, they allow you to store
custom data on any HTML element. (The name of the attribute can be

anything starting with data- as long as the name is lowercase.)

This demonstrates a new technique based upon event delegation.
The event listener is placed upon the containing element whose i d

is buttons. The event object is used to determine the value of the id
attribute on the element that was used. The value from that id attribute

is then used in a switch statement to decide which function to call

(depending on whether the button is in record state or pause state).

This is a good way to handle many buttons because it reduces the
number of event listeners in your code.

The event listeners are written at the bottom of the page, and they have

fallbacks for users who are running IE8 or less (which has a different

event model).

EVENTS @

EXAMPLE
EVENTS

The script starts by defining the
variables that it will need to use,

and then collecting the element

nodes that are needed.

The player functions (shown
on the right-hand page) would

appear next, and at the bottom

of this page you can see the
event listeners.

The event listeners live inside
a conditional statement so that
the attachEvent () method can

be used for visitors who have IE8

or less.

c06/ js/exampl e.js

var username, noteName, textEntered, target;

noteName = document.getElementByld('noteName');

function writelabel(e)
if (le) {

e = window .event;

target =event . target I I event . srcElement;
textEntered = e.target .value;
noteName.textContent = textEntered ;

JAVASCRIPT

II Declare variables

II Elemen t that holds note

II Declare function
II If event object not present
II Use IES-8 fallback

II Get target of event
II Value of that el ement
II Update note text

II This is where the record I pause controls and functions go ...
II See right hand page

II If event listener support ed if (document .addEventlistener)
document.addEventlistener('click', function(e){ ll For any click document

recorderControls(e);
}, false) ;
II If input event fi res on username i nput call
username .addEventlistener('input', writelabel,

II Call recorderControl s()
II Capture during bubbl e phase
wr itelabel ()
false);
II Otherwi se else {

document .attachEvent('onclick' ,
recorderControls(e);

}) ;

function(e){ II IE fall back: any cl ick
II Calls recorderControl s()

II If keyup event f ires on username input call wr itelabel()
username.attachEvent('onkeyup', writelabel, false);

8 EVENTS

...

j
I ,
1
~
t

The recorderContro 1 s () function is automatically
passed the event object. Not only does this offer

code to support older versions of IE, but also stops

the link from performing its default behavior (of
taking the user to a new page).

JAVASCRIPT

function recorderControls(e)
if (!e) {

e = window.event;

EXAMPLE
EVENTS

The switch statement is used to indicate which
function to run depending on whether the user

is trying to record or stop the audio note. This
technique of delegation is a good way to cope with

multiple buttons in the UI.

c06/ js/ exampl e .j s

II Declare recorderControls()
II If event object not present
II Use IE5-8 fallback

target = event .target I I event.srcElement;ll Get the t arget el ement
if (event.preventDefault) { II If preventDefault() supported

e.preventDefault(); II Stop default action
else { II Otherwise
event.returnValue = false; II IE fa l lback: stop default act i on

switch(target .getAttribute('data-state'))
case ' record' :

record(target);
break;

case 'stop':
stop(target);
break;

}
} ;

II More buttons coul d go here ...

{ II Get the data-state attribute
II If its val ue is record
II Cal l the record() funct i on
II Exit function to where called
II If i ts value i s stop
II Cal l t he stop () fun ction
II Exit function to where called

function record(target) { II Declare function
target.setAttribute('data-state'. ' stop') ; II Set data-st ate attr to stop
target . textContent = 'stop'; II Set text to 'stop'

function stop(target) {
target . setAttribute('data-state ' . ' record '); llSet data-stat e attr to record
target . textContent = 'record'; II Set text t o 'record'

EVENTS s

Events are the browser's way of indicating when

something has happened (such as when a page has

finished loading or a button has been clicked).

Binding is the process of stating which event you are

waiting to happen, and which element you are waiting

for that event to happen upon.

When an event occurs on an element, it can trigger a

JavaScript function. When this function then changes

the web page in some way, it feels interactive because

it has responded to the user.

You can use event delegation to monitor for events

that happen on all of the children of an element.

The most commonly used events are W3C DOM

events, although there are others in the HTMLS

specification as well as browser-specific events.

