

Ajax is a technique for loading data into part of a page
without having to refresh the entire page. The data is often
sent in a format called JavaScript Object Notation (or JSON).

The ability to load new content into part of a page improves the user experience because

the user does not have to wait for an entire page to load if only part of it is being updated.

This has led to a rise in so-called single page web applications (web-based tools that feel

more like software applications, even though they run in the browser). This chapter covers:

WHAT AJAX IS

Ajax allows you to request

data from a server and

load it without having to

refresh the entire page.

8 AJAX&JSON

DATA FORMATS

Servers typically send

back HTML, XML, or

JSON, so you will learn

about these formats.

JQUERY & AJAX

jQuery makes it easier

to create Ajax requests

and process the data the

server returns.

WHAT IS AJAX?

You may have seen Ajax used on many websites,

even if you were not aware that it was being used.

multimoog

multimoog
multimoog for sale
multimodal

Live search (or autocomplete) commonly uses Ajax.

You may have seen it used on the Google website.

When you type into the search bar on the home

page, sometimes you w ill see results coming up

before you have finished typing.

esig ..

mm ~ 1 item added to cart
view cart

$4,995.

.._~~~~~~~~~~~~~~pg
odel D. Fat osc llators and warm Moog filters give it that

Sometimes when you are shopping online and add

items to your shopping cart, it is updated without

you leaving the page. At the same time, the site may

display a message confirming the item was added.

Moog Music Inc. @moogmusicinc

Born today in 1896: Leon Theremin,
physicist, spy & inventor of one of the
earliest electronic musical instruments.
pic.twitter.com/theremin

Websites with user-generated content (such

as Twitter and Flickr) may allow you to display

your information (such as your latest tweets or

photographs) on your own website. This involves

collecting data from their servers.

Choose your username

I minimoog

This username is taken. Try another?
Available: minimoog70

If you are registering for a website, a script may

check whether your username is available before

you have completed the rest of the form.

Sites may also use Ajax to load data behind the scenes so that they can use or show that data later on.

e AJAX&JSON

WHY USE AJAX?

Ajax uses an asynchronous processing model. This means the user can

do other things while the web browser is waiting for the data to load,

speeding up the user experience.

USING AJAX WH ILE
PAGES ARE LOADING

When a browser comes across a <script> tag, it will

typically stop processing the rest of the page until it

has loaded and processed that script. This is known

as a synchronous processing model.

When a page is loading, if a script needs to collect

data from a server (e.g., if it collects financial

exchange rates or status updates), then the browser

would not just wait for the script to be loaded and

processed; it would also have to wait for a server to

send the data that the script is going to display.

W ith Ajax, the browser can request some data from

a server and - once that data has been requested -

continue to load the rest of the page and process the

user's interactions with the page. It is known as an

asynchronous (or non-blocking) processing model.

The browser does not wait for the third party data in

order to show the page. When the server responds

w ith the data, an event is fired (like the load event

that f ires when a page has loaded). This event can

then call a function that processes the data.

USING AJAX WHEN
PAGES HAVE LOADED

Once a page has loaded, if you want to update what

the user sees in the browser window, typically you

would refresh the entire page. This means that the

user has to wait for a whole new page to download

and be rendered by the browser.

With Ajax, if you only want to update a part of

the page, you can just update the content of one

element. This is done by intercepting an event (such

as the user cl icking on a link or submitting a form)

and requesting the new content from the server
using an asynchronous request .

While that data is loading, the user can continue

to interact w ith the rest of the page. Then, once

the server has responded, a special Ajax event will

trigger another part of the script that reads the new

data from the server and updates just that one part

of the page.

Because you do not have to refresh the whole page,

the data will load faster and the user can still use the

rest of the page while they are waiting.

Historically, AJAX was an acronym for the technologies used in asynchronous requests like this. It stood for

Asynchronous JavaScript And XML. Since then, technologies have moved on and the term Ajax is now used to
refer to a group of technologies that offer asynchronous ·functionality in the browser.

AJAX&JSON@

·----·-----:==-

===-·-----

·----·----·--- -·-----
·----·----·-----

HANDLING AJAX
REQUESTS & RESPONSES

To create an Ajax request, browsers use the XMLHttpRequest object.

When the server responds to the browser's request, the same

XMLHt tpReques t object will process the result.

THE REQUEST

G) var xhr = new XMLHttpRequest () ;
@ xhr . open ('GET', 'datal test.json', true);

® xhr . send (' search=ardui no ');

1. An instance of the
XMLHttpRequest object is

created using object constructor
notation (which you met on
p106). It uses the new keyword

and stores the object in a
variable. The variable name xhr

is short for XMLHttpRequest (the

name of the object).

THE RESPONSE

G) xhr . onload = funct i on()
@ if (xhr.status === 200)

2. The XMLHttpRequest object's
open () method prepares the

request. It has three parameters
(which you meet on p379):
i) The HTTP method

ii) The url of the page that wil l
handle your request

iii) A Boolean indicating if if

should be asynchronous

II Code to process the resul ts from the server

1. When the browser has
received and loaded a response
from the server, the on l oad

event wi ll fire. This will trigger

a function (here, it is an
anonymous function).

2 . The function checks the
status property of the object.

This is used to make sure the

server's response was okay.
(If this property is blank, check

the setup of the server.)

3. The send() method is the one
that sends the prepared request

to the server. Extra information
can be passed to the server in

the parentheses. If no extra
information is sent, you may see

the keyword null used (although

it is not strictly needed):
xhr.send(null).

Note that IE9 was the first
version of IE to support this way

of dealing with Ajax responses.

To support older browsers, you

can use jQuery (see p388).

AJAX&JSON 8

DATA FORMATS

The response to an Ajax request usually comes in one of three formats:

HTML, XML, or JSON. Below is a comparison of these formats.

XML and JSON are introduced over the next three pages.

HTML XML JSON
You are probably most familiar XML looks similar to HTML, JavaScript Object Notation

with HTML, and, when you want but the tag names are different (JSON) uses a similar syntax

to update a section of a web because they describe the data to object literal notation (which

page, it is the simplest way to that they contain. The syntax is you met on p102) in order to

get data into a page. also more strict than HTML. represent data.

BENEFITS BENEFITS BENEFITS

• It is easy to write, request. • It is a flex ible data format • It can be called from any
and display. and can represent complex domain (see JSON-P/CORS).

• The data sent from the server structures. • It is more concise (less

goes straight into the page. • It works wel l with different verbose) than HTML/XML .

There's no need for the platforms and applications. • It is commonly used with

browser to process it (as with • It is processed using the same JavaScript (and is gaining wider

the other two methods). DOM methods as HTML. use across web applications).

DRAWBACKS DRAWBACKS DRAWBACKS

• The server must produce • It is considered a verbose • The syntax is not forgiving.

the HTML in a format that is language because the tags A missed quote, comma, or

ready for use on your page. add a lot of extra characters colon can break the file.

• It is not well-suited for use in to the data being sent. • Because it is JavaScript, it can

applications other than web • The request must come from contain malicious content

browsers. It does not have the same domain as the rest (see XSS on p228).

good data portability. of the page* (see below). Therefore, you should only

• The request must come from • It can require a lot of code to use JSON that has been

the same domain* (see below). process the result. produced by trusted sources.

• Browsers only let Ajax load HTML and XML from the same domain name as the rest of the page

(e.g., if the page is on www. example. com, the Ajax request must return data from www. example. com).

8 AJAX&JSON

-;

r

XML: EXTENSIBLE
MARKUP LANGUAGE

XML looks a lot like HTML, but the tags contain different words.

The purpose of the tags is to describe the kind of data that they hold.

<?xml version="l .O" encoding="utf-8" ?>
<events>

<event>

<location>San Francisco , CA</locat ion>

<date>May l </date>

<map>img/map-ca . png</map>
</ event>
<event>

<location>Austin, TX</ location>
<date>May 15</ date>

<map>img/ map-tx.png</ map>
</ event>
<event>

<location>New York, NY</location>
<date>May 30</ date>

<map>img/map-ny . png</ map>
</ event>

</events>

You can process an XM L file using the same DOM methods as HTML.
Because different browsers deal with whitespace in HTML/XML
documents in different ways, it is easier to process XML using jQuery

rather than plain JavaScript (just as it can be with HTML):

In the same way that HTML is
a markup language that can be

used to describe the structure

and semantics of a web page,
XML can be used to create

markup languages for other
types of data - anything from

stock reports to medical records.

The tags in an XML file should

describe the data they contain.

As a result, even if you have
never seen the code to the

left. you can see that the data

describes information about
several events. The <events>
element contains several

individual events. Each individual
event is represented in its own

<event> element.

XML works on any platform and

gained wide popularity in the
early 2000s because it made it

easy to transfer data between
different types of applications.

It is also a very flexible data
format because it is capable

of representing complex data

structures.

AJAX&JSON 8

JSON: JAVASCRIPT
OBJECT NOTATION

Data can be formatted using JSON (pronounced "Jason").
It looks very similar to object literal syntax, but it is not an object.

JSON data looks like the object

literal notation which you met on
p102; however, it is just plain

text data (not an object).

The distinction may sound small

but remember that HTML is
just plain text, and the browser

converts it into DOM objects.

You cannot transfer the actual
objects over a network. Rather,

you send text which is converted
into objects by the browser.

"location": "San Francisco, CA" ,
"capacity": 270 ,
11 booking 11

: true

KEY VALUE

(in double quotes)

KEYS
In JSON, the key should be

placed in double quotes (not

single quotes).

The key (or name) is separated

from its value by a colon.

Each key/ value pair is separated
by a comma. However, note that

there is no comma after the last

key/value pair.

s AJAX&JSON

VALUES
The value can be any of the following data types (some of these are

demonstrated above; others are shown on the right-hand page):

DATA TYPE DESCRIPTION

stri ng Text (must be written in quotes)

number Number

Boolean Either true or false

array Array of values - this can also be an array of objects

object JavaScript object - this can contain child objects or arrays

null This is when the value is empty or missing

WORKING W ITH
JSON DATA

JavaScript's JSON object can turn JSON data into a JavaScript object.

It can also convert a JavaScript object into a string.

"events": [

},

{

},

{

"location": "San Francisco, CA",
"date": "May 111

,

"map": "img/map-ca.png"

"locat ion": "Austin, TX",
"date": "May 15",
"map": "img/map-tx.png"

"location": "New York, NY",
"date": "May 30",
"map": "img/map-ny.png"

• OBJECT • ARRAY

An object can also be written on one line, as you can see here:

"events" : [

The object on the left represents
a series of three events, stored in
an array called events. The array
uses square bracket notation,
and it holds three objects (one
for each event).

JSON . stringify() converts
JavaScript objects into a string,
formatted using JSON. This
allows you to send JavaScript
objects from the browser to
another application.

JSON . parse() processes a
string containing JSON data. It
converts the JSON data into a
JavaScript objects ready for the
browser to use .

Browser s upport: Chrome 3,
Firefox 3.1, IE8, and Safari 4

"location": "San Francisco, CA", "date": "May l", "map": "img/map-ca.png" },

"location" : "Austin, TX", "date" : "May 15", "map": "img/map-tx.png" },

"location": "New York, NY ", "date": "May 30", "map": "img/ map-ny.png" }

AJAX&JSON @

LOADING HTML
WITH AJAX

HTML is the easiest type of data to add into a page using Ajax.

The browser renders it just like any other HTML.

The CSS rules for the rest of the page are applied to the new content.

Below, the example loads data
about three events using Ajax.
(The result will look the same for

the next four examples.)

THE MAKER BUS

The bus stops here.

Ausdr>. Tl(
May1S

The page users open does not
hold the event data (highlighted

in pink). Ajax is used to load it

into the page from another file.

NewYorl<,NY
May30

HIGHLIGHTED AREA LOADED USING AJAX

W hen a server responds to any request, it should send back a status

message, to indicate if it completed the request. The values can be:

200 The server has responded and all is ok
304 Not modified

404

500

Page not found
Internal error on the server

If you run the code locally, you will not get a server status property, so

this check must be commented out, and return true for the condition.

If a server fails to return a status property, check the server setup.

8 AJAX&JSON

Browsers wi ll only let you use
this technique to load HTML that

comes from the same domain
name as the rest of the page.

Whether HTML, XML, or JSON

is being returned from the
server, the process of setting up

the Ajax request and checking
whether the file is ready to be

worked with is the same. What
changes is how you deal with the

data that is returned.

In the example on the right-hand

page, the code to display the
new HTML is placed inside a

conditional statement.

Please note: These examples do

not work locally in Chrome.
They should work locally in

Firefox and Safari. IE support is
mixed until IE9.

Later in the chapter, you will see

that jQuery offers better cross
browser support for Ajax.

..

1. An XMLHttpRequest object is

stored in a variable called xhr.

2. The XMLHttpRequest object's

open() method prepares the
request. It has three parameters:
i) Either HTTP GET or POST to

specify how to send the request
ii) The path to the page that will

handle the request
iii) Whether or not the request is

asynchronous (this is a Boolean)

JAVASCRIPT

3. Up to this point, the browser
has not yet contacted the server

to request the new HTML.

This does not happen until
the script gets to the last line

that calls the XMLHttpRequest
object's send() method. The

send() method requires an
argument to be passed. If there

is no data to send, you can just
use null.

4 . The object's on load event wi ll

fire when the server responds. It

triggers an anonymous function.

5. Inside the function, a
conditional statement checks

if the status property of the
object is 200, indicating the
server responded successfully.

If the example is run locally,

there will be no response so you
cannot perform this check.

c08/js/data-html .js

CD var xhr = new XMLHttpRequest(); II Create XMLHttpRequest object

~ xhr.onload = function() { II When response has loaded
II The foll owing conditional check will not work locally - only on a server

® if(xhr.s t atus === 200) { // If server status was ok
@) document .getElementByid('content') . innerHTML = xhr. responseText ; //Update

}
} ;

~ xhr .open('GET', 'data/ data.html' , true);
(]) xhr .send(nul l);

II Prepare the request
II Send the request

6. Finally, the page is updated: document . get El ementByid ('content'). i nnerHTML = xhr. response Text;

'--------t@ ~ ©i--~

A) The element that will contain

the new HTML is selected.
(Here it is an element whose id

attribute has a value of content.)

8) The i nnerHTML property

replaces the content of that

element with the new HTML that
has been sent from the server.

C) The new HTML is retrieved

from the XMLHttpRequest
object's responseText property.

Remember that i nnerHTML should only be used when you know that the server will not return malicious content.
All content that has been created by users or third parties should be escaped on the server (see p228).

AJAX& JSON 8

LOADING XML
WITH AJAX

Requesting XML data is very similar to requesting HTML. However,
processing the data that is returned is more complicated because the

XML must be converted into HTML to be shown on the page.

On the right-hand page, you can 2. This is followed by the 4 . Inside the for loop, you

see that the code to request an declaration of a new variable w ill see the getNodeVa l ue ()

XM L file is almost identical to called events, which holds all of function is called several times.

the code to request an HTML the <event> elements from the Its purpose is to get the contents

file shown on the previous page. XML document. (You saw the from each of the XML elements.

What changes is the part inside XML file on p375.) It takes two parameters:

the conditional statement that

processes the response (points 3. The XML file is then i) obj is an XML fragment.

1- 4 on the right-hand page). The processed using the DOM ii) tag is the name of the tag you

XML must be turned into HTML. methods you learned about want to collect the information

The structure of the HTML for in Chapter 5. First, the for from.

each event is shown below. loop goes through each of the
<event> elements, collecting The function looks for the

1. When a server responds with the data stored in their child matching tag within the XML

XML, it can be obtained using elements, and placing it into new fragment (using the DOM's

the responseXML property of the HTML elements. getElementsByTagName()

XMLHttpRequest object. Here, method). It then gets the text

the XML returned is stored in a Each of those HTML elements is from the first matching element

variable cal led response. then added into the page. within that fragment.

The XML for each event is being transformed into the following HTML structure:

<div class="event">

<p>Location</ b><br / >Event date</ p>

</ div>

9 AJAX&JSON

....

..

JAVASCRIPT c08/js/data-xml . js

var xhr =new XMLHttpRequest(); II Create XMLHttpRequest object

xhr.onload = function() { II When response has l oaded
II The fo l lowing conditional check wi l l not work l ocal ly - only on a server
if (xhr.st atus === 200) { II If server status was ok

II THIS PART IS DIFFERENT BECAUSE IT IS PROCESSING XML NOT HTML
G) var response= xhr.responseXML; II Get XML from the server
~ var events = response.getElementsByTagName('event'); II Find <event> elements

for (var i = 0; i <events . l ength ; i++) {
var container, image, location , city, newline;
container= document.createElement('div ');
container.className = 'event';

II Loop through t hem
II Declare variables
II Create <div> container
II Add class attr ibute

image= document.createElement('i mg'); II Add map image
image . setAttribute('src', getNodeValue(events[i] , 'map '));
image.appendChi l d(document.createTextNode(getNodeValue(events[i], 'map')));
container.appendChild(image);

3 location = document .createElement('p'); II Add l ocat i on data
city = document .createElement('b') ;
newl ine= document.createElement('br') ;
city.appendChi ld(document.createTextNode(getNodeValue(events[i], 'location')));
location.appendChi l d(newline);
location .i nsertBefore(city, newline);
location.appendChild(document .createTextNode(getNodeValue(event s[i] , 'date')));
contai ner.appendChi ld(location);

document.getEl ementByid('content').appendChild(contai ner);
}

~function getNodeValue (obj, tag) { II Gets content
~}return obj .getElementsByTagName(tag)[O] .fi rstChild.nodeValue;

from XML

II THE FINAL PART IS THE SAME AS THE HTML EXAMPLE BUT IT REQUESTS AN XML FILE
}

} ;
xhr.open('GET', 'dataldata.xml ', true);
xhr.send(null);

II Prepare the request
II Send the request

AJAX& JSON@

LOADING JSON
WITH AJAX

The request for JSON data uses the same syntax you saw in the requests

for HTML and XML data. When the server responds, the JSON will be

converted into HTML.

When JSON data is sent from
a server to a web browser, it is

transmitted as a string.

When it reaches the browser,
your script must then convert

the string into a JavaScript
object. This is known as
deserializing an object.

This is done using the parse ()

method of a built-in object called

JSON. This is a global object, so
you can use it without creating

an instance of it first.

Once the string has been parsed,
your script can access the data
in the object and create HTML

that can be shown in the page.

The HTML is added to the page

using the i nnerHTML property.
Therefore, it should only be used

when you are confident that it
will not contain malicious code
(see XSS on p228).

This example will look the same
as the last two examples when

you view it in a web browser.

Here you can see the JSON data that is being processed again (it was

introduced on p377). Note how it is saved with the . j son fi le extension.

c08/data/data.j son

"events": [

The JSON object also has a
method called st ringify(),
which converts objects into a

string using JSON notation so

it can be sent from the browser
back to a server. This is also

known as serializing an object.

This method can be used when

the user has interacted with the
page in a way that has updated

the data held in the JavaScript

object (e.g., filling in a form),

so that it can then update the
information stored on the server.

JAVASCRIPT

"location" : "San Francisco, CA" , "date" : "May l ", "map" : " img/map- ca.png" } ,
"location": "Austin , TX", "date": "May 15", "map" : "img/ map-tx .png" } ,

"location" : "New York, NY", "date" : "May 30", "map" : "img/map-ny.png")

]

@ AJAX&JSON

...

1. The JSON data from the server

is stored in a variable called

responseObject. It is made

available by the XMLHttpRequest

object 's responseText property

When it comes from the server,

the JSON data is a string, so it

is converted into a JavaScript

object using the JSON object's

parse() method.

JAVASCRIPT

2. The newContent variable is

created to hold the new HTML

data. It is set to an empty string

outside the loop so that the code

in the loop can add to the string.

3. Loop through the objects that

represent each event using a for

loop. The data in the objects are

accessed using dot notation, just

like you access other objects.

Inside the loop, the contents

of the object are added to the

newContent variable, along

w ith their corresponding HTML

markup.

4 . When the loop has finished

running through the event

objects in responseObj ect, the

new HTML is added to the page

using the i nnerHTML property.

c08/js/data-json.js

var xhr =new XMLHttpRequest(); //Create XMLHttpRequest object

xhr.onload =function() { //When readystate changes
if(xhr.status === 200) { // If server status was ok

CD responseObject = JSON . parse(xhr. responseText);

// BUILD UP STRING WITH NEW CONTENT (could also use DOM manipulation)
G) var newContent = '';

3

for (var i = O; i < responseObject.events . l ength; i++) {//Loop through object
newContent += '<div class= 11 event 11 >1

;

newContent +=
newContent +=
newContent +=
newContent +=
newContent +=

' <img src=11
' + responseObject :events[i] .map + 111

';

' alt=" ' + responseObject.events[i] . location + 1 11 / >' ;
' <p>' + responseObject .events[i] .location+ '
';
responseObject.events[i] .date+ '</p>' ;
'</div>';

//Update the page with the new content
@) document. getElementByid('content ').innerHTML newContent ;

}
} ;

xhr.open('GET', 'data/data.json' , true);
xhr .send(null);

//Prepare the request
//Send the request

AJAX&JSON 8

WORKING WITH DATA
FROM OTHER SERVERS

Ajax works smoothly with data from your own server but - for security

reasons - browsers do not load Ajax responses from other domains
(known as cross-domain requests). There are three common workarounds.

A PROXY FILE ON THE
W EB SERVER

The first way to load data from

a remote server is to create a

file on your server that collects

the data from the remote server

(using a server-side language

such as ASP.net, PHP, NodeJS, or

Ruby). The other pages on your

site then request the data from

the file on your server (which

in turn gets it from the remote

server). This is called a proxy,

because it acts on behal f of the

other page.

Because this rel ies upon creating

pages in server-side languages, it

is beyond the scope of this book.

9 AJAX&JSON

JSONP (JSON WITH
PADDING)

JSONP (sometimes written

JSON-P) involves adding a

<scr ipt> element into the page,

which loads the JSON data

from another server. This works

because there are no rest rict ions

on the source of script in a

<script> element.

The script contains a call to

a function, and the JSON-
formatted data is provided as an

argument to that function. The

function that is called is defined

in the page that requests the

data, and is used to process and

display the data. See next page.

ALTERNATIVES

Many people use jQuery when

making requests for remote data,

as it simplifies the process and

handles backward compat ibility

for older browsers. As you can

see in the next column, support

for new approaches is an Issue.

CROSS-ORIGIN
RESOURCE SHARI NG

Every t ime a browser and

server communicate, they

send information to each other

using HTTP headers. Cross-

Origin Resource Sharing or

CORS involves adding extra

information to the HTTP headers

to let the browser and server

know that they should be

communicating with each other.

CORS is a W 3C speci fication,

but is only supported by the

most recent browsers and -

because it requires setting up of

HTTP headers on the server - is

beyond the scope of this book.

CORS SUPPORT

Standard support is as follows:

Chrome 4, FF 3.5, IE10, Safari 4

Android 2.1, iOS 3.2

IE8+9 used a non-standard

XDomai nRequest object to
handle cross-origin requests.

HOW JSONP WORKS

First, the page must include a
function to process the JSON data.

It then requests the data from the
server using a <script> element.

BROWSER

The HTML page wil l use two pieces of JavaScript:

1. A function that will process the JSON data that the

server sends. In the example on the next page, the
function is called showEvents () .

2. A <script> element whose src attribute will
request the JSON data from the remote server.

<script>
function showEvents(data)

// Code to process data and

// display it in t he page here

</ script>

<script sr c="http : //example.or g/jsonp">

</ script>

The server returns a file that calls
the function that processes the

data. The JSON data is provided
as an argument to that function.

SERVER

When the server responds, the script contains a
call to the named function that will process the data

(that function was defined in step 1). This function
call is the "padding" in JSONP. The JSON-formatted

data is sent as an argument to this function.

So, in this case, the JSON data sits inside the call to
the showEvents () function.

showEvents({

"events" : [

]
}) ;

{ .

" l ocation " : " San Franc i sco , CA",

"date": "May 1",
"map" : 11 i mg/ map- ca . png"

} ...

It is important to note that there is no need to use the JSON object's parse() or stri ngi fy () methods when
working with JSONP. Because the data is being sent as a script file (not as a string), it will be treated as an object.

The file on the server is often written so that you can specify the name of the function that will process the data

that is returned. The name of the function is usually given in the query string of a URL:

http://example.org/upcomingEvents.php?cal l back=showEvents

AJAX&JSON 8

USING JSONP

This example looks the same as

the JSON example, but the event

details come from a remote
server. Therefore, the HTML
uses two <script> elements.

c08/data-jsonp.html

The first <script> element loads
a JavaScript file that contains the

the showEvents () function. This
will be used to display the deals

information.

<script src="js/ data-jsonp.js"></ script>

The second <script> element

loads the information from a
remote server. The name of the
function that processes the data

is given in the query string.

""*''
<script src="http ://deciphered.com/ js/jsonp .js?callback=showEvents"></script>

</body>
</ html>

c08/js/data-jsonp.js

function showEvents(data)
var newContent = '';

JAVASCRIPT

//Callback when JSON loads
II Variable to hold HTML

// BUILD UP STRING WITH NEW CONTENT (could also use DOM man ipulation)
for (var i = O; i <data.events . length; i++) { //Loop through data

newContent += '<div cl ass="event"> ' ;
newContent += '<img src="' + data.events[i].map + '"';
newContent +=
newContent +=
newContent +=

' alt="' + data .events[i].location + '" />';
' <p> ' + data .events[i].location + -,
';
data.events[i].date + '</p>';

newContent += '</div>';

//Update the page with the new content
document.getElementByid('content') . innerHTML newContent; }

1. The code in the for loop
(which is used to process the

JSON data and create the
HTML) and the line that writes it

into the page are the same as the
code that processed the JSON

data from the same server.

8 AJAX&JSON

There are three key differences:
i) It is wrapped in a function

cal led showEvents ().
ii) The JSON data comes in as an

argument of the function call.
iii) The data does not need to be

parsed with JSON.parse(). In

the for loop, it is just referred to
by the parameter name d(!ta.

Instead of using a second
<script> element in the HTML

pages, you can use JavaScript
to write that <script> element
into the page (just like you would

add any other element into the

page). That would place all the

functional ity for the external
data in the one JavaScript file.

JSONP loads JavaScript, and

any JavaScript data may contain

malicious code. For this reason,

you should load data only from

trusted sources.

Since JSONP is loading data from

a different server, you might add

timer to check if the server has

replied within a fixed time (and,

if not, show an error message).

You will see more about handling

errors in Chapter 10, and there is

an example of a timer in Chapter

11 (where you create a content

slider).

JAVASCRIPT http://htmlandcssbook.com/js/jsonp.j s

showEvents({
"events" : [

]
}) ;

l;IJjiHI

{

},
{

},
{

"location": "San Francisco, CA",
"date": "May 1",
"map": "irng/map-ca.png"

"location": "Austin, TX",
"date": "May 15",
"map": "img/map-tx.png"

"location" : "New York, NY",
"date": "May 30",
"map": "img/map-ny . png"

The bus stops here.

\ ~-:.\' ·.· ""'-. -
~ · I ,.., ';
~ ·

t ;, '

San frllndfcO. CA ...,., Austin. TX
MlylS

The file that is returned from

the server wraps the JSON

formatted data inside the call

to the showEvents () function.

So the showEvents () function

is only called when the browser

has loaded this remote data.

AJAX&JSON s

JQUERY & AJAX:
REQUESTS

jQuery provides several methods that handle Ajax requests.

Just like other examples in this chapter, the process involves two steps:

making a request and handling the response.

Here you can see the six ways

jQuery lets you make Ajax

requests. The first five are all

shortcuts for the $. aj ax ()

method, which you meet last.

The • 1 oad () method operates

on a jQuery selection (like most

jQuery methods). It loads new

HTML content into the selected

element(s).

You can see that the other five

methods are written differently.

They are methods of the global

jQuery object, which is why

they start with $. They only

request data from a server; they

do not automatically use that

data to update the elements of

a matched set, which is why the

$ symbol is not fo llowed by a

selector.

When the server returns data,

the script needs to indicate what

to do with it.

e AJAX&JSON

METHOD/ SYNTAX DESCRIPTION

• 1 oad () Loads HTML fragments into an element

$.get()

$.post()

$.getJSON()

$. getScri pt()

$. ajax()

It is the simplest method for retrieving data

Loads data using the HTTP GET method

Used to request data from the server

Loads data using the HTTP POST method

Used to send data that updates data on server

Loads JSON data using a GET request

Used for JSON data

Loads and executes JavaScript data using GET

Used for JavaScript (e.g., JSONP) data

This method is used to perform all requests

The above methods all use this under the hood

JQUERY & AJAX:
RESPONSES

When using the • load() method, the HTML returned from the server is
inserted into a jQuery selection. For the other methods, you specify what

should be done when the data that is returned using the j qXHR object.

JQXHR PROPERTIES DESCRIPTION

response Text

responseXML

status

status Text

JQXHR METHODS

.done()

. fail()

.al ways()

. abort()

RELATIVE URLS

Text-based data returned

XML data returned

Status code

Status description (typically used to display
information about an error if one occurs)

DESCRIPTION

Code to run if request was successful

Code to run if request was unsuccessful _

Code to run if request succeeded or failed

Halt the communication

If the content you load via Ajax 1. This HTML fi le uses Ajax to

contains relative URLs (e.g., load content from a page in the
images and links) those URLs folder shown in step 2.

get treated as if they are relative 2. The page in the this fo lder has
to the original page that was an image whose path is a relative

loaded. link to the second fo lder:

If the new HTML is in a different 3. The HTML fi le cannot find the

folder from the original page, the image as the path is no longer

relative paths could be broken. correct - it is not in a child folder.

jQuery has an object called
jqXHR, which makes it easier to

handle the data that is returned
from the server. You wil l see its

properties and methods (shown

in the tables on the left) used
over the next few pages.

Because jQuery lets you
chain methods, you can use

the .done(), . fail(}, and
. al ways() methods to run

different code depending on the

outcome of loading the data .

[i CD
.

0

®

AJAX&JSON s

LOADING HTML INTO A
PAGE WITH JQUERY

The • 1 oad () method is the simplest of the jQuery Ajax methods.
It can only be used to load HTML from the server, but when the server
responds, the HTML is then loaded into the jQuery Selection for you .

JQUERY SELECTOR

You start by selecting the

element that you want the

HTML code to appear inside.

URL OF THE PAGE

Then you use the . 1 oad ()

method to specify the URL of the

HTML page to load.

SELECTOR

You can specify that you want to

load only part of the page (rather

than the whole page).

$(1 #content 1) . load(1 jq-ajax3 . html #content');
~ @ ~

1. This creates a jQuery object

with the element whose id
attribute has a value of content.

Here, links in the top right corner

take the user to other pages. If

the user has JavaScript enabled,

when they click on a link, code

inside the • on () event method

stops it from loading a whole

new page. Instead, the . 1 oad ()

method will replace the area

highlighted in pink (whose i d
attribute has a value of content)

with the equivalent area from

the page that the user just

requested. Only the pink area is

refreshed - not the whole page.

8 AJAX&JSON

2. This is the URL of the page

you want to load the HTML from.

There must be a space between

the URL and the selector in step 3.

3. This is the fragment of the

HTML page to show. Again, it is

the section whose id at tribute

has a value of content.

-·~............. --..---...... ---~ _..,._...,_
_......,____ _ _ _,_ ___ _ -------· ,,_,,,,,.,. -____,_ ~--....

_ _,,...._ ____ _
............. __ ...,.., ___ __
==:--.:=.:.-.
--~ __ ___ -.. ..--....--·--------------- ..,_,..._ .. ,,...._ _.,.,__ ::-.:n-::4·:": _ "" __ .., ___ . _.... --................,.,.. ,.. _....,,______ _.,._ .. ___ _
............ - --..-

-- -

__ .,, ... "',,.._,..._, _____ ..., __
----...-· ~--....... -.._ _____ _

LOADING CONTENT
When users dick on any of the
links in the <nav> element, one

of two things will occur:

If they have JavaScript enabled,

a click event will trigger an

anonymous function that loads
new content into the page.

If they do not have JavaScript

enabled, they will move from
page to page as normal.

JAVASCRIPT

Inside the anonymous function,
five things happen:

1. e.preventDefault() stops

the link taking users to a new
page.

2. A variable called url holds the

URL of the page to load. This is

collected from the href attribute
of the link the user clicked on. It
indicates which page to load.

$(' nav a').on('click ' , funct ion(e) {
CD e.preventOefault();
@ var u r 1 = th i s . h ref ;

@{ $('nav a.current').removeClass(' current');
$(this).addClass('current');

3. The cl ass attributes on the
links are updated to indicate

which page is the current page.

4 . The element holding the

content is removed.

5. The container element is

selected and . load () fetches

new the new content. It is hidden
straight away using . hi de() so
that fade In() can fade it in.

c08/js/jq-load.js

II User clicks nav link
II Stop loading new link
II Get va l ue of href

II Clear current indicator
/I New current indicator

©
®

$('#container').remove();
$('#content'). load(url + '

}) ;

II Remove old content
#content').hide().fadein('s low '); II New content

""*''
<nav>

Home
Route<la>
Toys

</nav>
<section id="content">

<div id="container">
<!-- Page content li ves here -->

</ div>
</section>

c08/jq-load.html

The links still work if JavaScript is not enabled. If JavaScript is enabled, jQuery w ill load content into the <div>
whose id has a value of content from the target URL. The rest of the page does not need to be reloaded.

AJAX&JSON@

JQUERY'S AJAX
SHORTHAND METHODS

jQuery provides four shorthand methods to

handle specific types of Ajax requests.

The methods below are all

shorthand methods. If you

looked at the source code for

jQuery, you would see that they

all use the $.ajax() method.

You will meet each one over the

next few pages because they

introduce key aspects of the

$. aj ax() method.

These methods do not work on

a selection like other jQuery

methods, which is why you prefix

them with only the$ symbol

rather than a jQuery selection.

They are usually triggered by an

event, such as the page having

loaded or the user interacting

with the page (e.g., clicking on a

link, or submitting a form).

METHOD/ SYNTAX DESCRIPTION

$.get(urZ [, data][, callback][, type]) HTTPGETrequestfordata-

With an Ajax request, you wil l

often want to send data to the

server, which will in turn affect

what the server sends back to

the browser.

As with HTML forms (and the

Ajax requests you met earlier in

the chapter), you can send the

data using HTTP GET or POST.

$.post (url [, data] [, callback] [, type]) HTTP POST to update data on the server

$. getJSON(urZ [, data][, callback]) Loads JSON data using a GET request

$.getScript(urZ [, callback]) Loads and executes JavaScript (e.g., JSONP) using a GET request

The parameters in square brackets are optional.

$ shows that this is a method of the jQuery object.

url specifies where the data is fetched from.

data provides any extra information to send to the server.

callback indicates that the function should be called when data is returned (can be named or anonymous).

type shows the type of data to expect from the server.

Note: The examples in this section only work on a web server (and not on local fi le systems). Server-side

languages and server setup are beyond the scope of this book, but you can try out the examples on our website.

PHP files have been included with the download code, but they are for demonstration purposes only.

8 AJAX&JSON

REQUESTING DATA

Here, users vote for their favorite
t-shirt without leaving the page.
1. If users click on a t-shirt an
anonymous function is triggered.
2. e.PreventDefault() stops
the link opening a new page.
3. The user's choice is the value
of the id attribute on the image.
It is stored in a variable called
queryStri ng in the format of a
query string, e.g .. vote=gray

JAVASCRIPT

4 . The $.get() method is called
using three parameters:
i) The page that will handle the
request (on the same server).
ii) The data being sent to the
server (here it is a query string,
but it could be JSON).
iii) The function that handles
the result the server sends back;
in this case it is an anonymous
function.

G) $('#sel ect or a ').on('click ', function (e) {
@ e . preventDef au lt () ;
~ var queryString = 'vote=' +event . target . id;
@) $.get('votes.php' , queryString , function(data)
(ID $(' #selector') . html(data) ;

}) ;
}) ;

When the server responds, the
anonymous callback funct ion
handles the data. In this case,
the code in that function selects
the element that the held the
t-shirts and replaces it with the
HTML sent back from the server.
This is done using jQuery's
.html() method.

c08/js/jq-get .j s

""·'·'' (Thi s HTM~ is created by code inside the JS fi l e.)

<d i v class="third">
</ a></ div>

<di v class="th i rd">
<i mg src="img/ t-yell ow. png " i d="ye 11 ow" a lt="ye 11 ow" / ></ a></ div>

<div class="third">
</ a></ div>

l;IJilJii The t-shirt links are created
in the JavaScript file to ensure
they only show if the browser
supports JavaScript (the
resulting HTML structure is
shown above). When the server
responds, it does not have to
send back HTML; it can return
any kind of data that the browser
can process and use.

AJAX& JSON s

SENDING FORMS
USING AJAX

To send data to the server, you are likely to use the . pos t() method.
jQuery also provides the • seriali ze () method to collect form data.

SENDING FORM DATA

The HTTP POST method is often used when sending

form data to a server and it has a corresponding

function, the . post() method. It takes the same

three parameters as the . get() method:

i) The name of the file on the (same) server that will

process the data from the form

ii) The form data that you are sending

iii) The callback function that will handle the

response from the server

On the right-hand page you can see the $.post ()

method used with a method called • seri a 1 i ze (),

which is very helpful when working with forms.

Together they send the form data to the server.

SERVER-SIDE

When a server-side page handles a form, you might

want the same page to work whether:

• It was a normal request for a web page (in which

case you would send the whole page); or

• It was an Ajax request (where you might respond

with just a fragment of the page)

8 AJAX&JSON

COLLECTING FORM DATA

jQuery's • seri a 1 i ze () method:

• Selects all of the information from the form

• Puts it into a string ready to send to the server

• Encodes characters that cannot be used in a

query string

Typically it will be used on a selection containing

a <fonn> element (although it can be used on

individual elements or a subsection of a form).

It wi ll only send successful form controls, which

means it will nol send:

• Controls that have been disabled
• Controls where no option has been selected

• The submit button

On the server. you can check whether a page is

being requested by an Ajax call using the

X-Requested-Wi th header.

If i t is set and has a value of XMLHttpRequest, you

know that the request was an Ajax request.

SUBMITTING FORMS
1. When users submit the form,
an anonymous function runs.

2. e. Preventoef au 1t () stops
the form from submitting.

3. The form data is col lected by
the . seri a 1 i ze () method and

stored in the details variable.

JAVASCRIPT

4. The $.post () method is
called using all three parameters:

i) The url of the page that the

data is being sent to
ii) The data that was just

collected from the form
iii) A callback function that will

display the results to the user

5. When the server responds,
the content of the element

whose id attribute has a value
of register is overwritten with
new HTML sent from the server.

c08/ js/ jq-post .js

G) $('#register') .on('submit', function(e) {
~ e.preventOefault();
~ var details = $(' #register ').serial ize();

// When form i s submi t t ed
/ / Prevent it being sent
// Serial ize form data

~ $.post('register.php', details, function(data)
([) $('#register').html(data);

}) ;
}) ;

+:HMM

{ // Use $.post() to send i t
//Where to di splay result

c08/ jq-post .html

<form id="register" action="register.php" method="post">
<h2>Register</h2>
<label for="name">Username</label><input type="text" id="name" name="name" />
<label for="pwd"> Password</ label><input type="password" id="pwd" name="pwd" / >
<l abel for="emai 1">Emai1</ label><input type="email" id="emai 1" name="emai l" / >
<input type="submit" va l ue="Join" / >

</ form>

Register

-

This example needs to be run

on a web server. The server-side
page wil l return a confirmation

message (but it does not
validate the data submitted nor
send a confirmation email).

AJAX&JSON@

LOADING JSON &
HANDLING AJAX ERRORS

You can load JSON data using the$. getJSON () method.
There are also methods that help you deal with the response if it fails.

LOADING JSON

If you want to load JSON data, there is a method
cal led$. getJSON () which will retrieve JSON from

the same server that the page is from. To use JSONP
you should use the method called $. getScri pt ().

AJAX AND ERRORS

Occasionally a request for a web page will fail
and Ajax requests are no exception. Therefore,

jQuery provides two methods that can trigger code
depending on whether the request was successful or

unsuccessful, along with a third method that w ill be

triggered in both cases (successful or not).

Below is an example that will demonstrate these
concepts. It loads fictional exchange rates.

Exchange Rates

a UK: 20.00
US:35.99

a AU:39.99

Last update: 15:34

9 AJAX&JSON

SUCCESS/ FAILURE

There are three methods you can chain after

$.get(), $.post() , $.getJSON(), and $.ajax() to

handle success I failure. These methods are:

.done() - an event method that fires when the

request has successfully completed

. fai 1 () - an event method that fires when the
request did not complete successfully
. al ways () - an event method that fires when the

request has completed (whether it was successful or
not)

Older scripts may use the • success() , • error(),
and . comp 1 ete () methods instead of these methods.

They do the same thing, but these newer methods
have been the preferred option since jQuery 1.8.

Exchange Rates

Sorry, we cannot load rates.

JSON & ERRORS

1. In this example, JSON data

representing currency exchange

rates is loaded into the page by a

function called l oadRates ().

2. On the first line of the script

an element is added to the page

to hold the exchange rate data.

3. The function is called on the

last line of the script.

JAVASCRIPT

4. Inside loadRates(), the

$.getJSON method tries to load

some JSON data. There are

three methods chained after this

method. They do not all run.

5 .. done() only runs if the

data is retrieved successfully. It

contains an anonymous function

that shows exchange rates and

the time they were displayed.

6 .• fail () only runs if the server

cannot return the data. Its job is

to display an error message to

the user.

7 .• al ways() will run whether

or not the answer was returned.

It adds a refresh button to

the page, along with an event

handler that triggers the

l oadRates () function again.

c08/js/jq-getJSON.js

@ $ ('#exchangerates') . append ('<div id=" rates 11 ></d i v><di v id= "rel oad"></di v> ');

CD function l oadRates () {
~ $.getJSON('data/rates .json')
~ .done(function(data){

var d =new Date();
var hrs= d.getHours();
var mins = d.getMinutes();
var msg = '<h2>Exchange Rates</h2> ' ;
$.each(data, function(key, val) {

msg +='<div class="'+ key+ 111>1 +key +-•:
}) ;

//SERVER RETURNS DATA
//Create date object
//Get hours
//Get mins
//Start message
// Add each rate

' +val + '</div>';

msg += '
Last update: ' + hrs + ':' + mins + '
 ' ; // Show update time
$('#rates').html (msg); //Add rates to page

@ }).fail(function() { //THERE IS AN ERROR
$('aside').append('Sor ry, we cannot load rates. '); //Show error message

CZ) }) .always(function() { //ALWAYS RUNS
var reload"' '' ; //Add refresh link
reload+= '' ;
$('#reload ').html (re load); //Add refresh link
$('#refresh ').on('click ' , function(e) //Add click handler

e.preventDefault(); //Stop link
l oadRates (); // Ca 11 l oadRates ()

}) ;
}) ;

® l oadRates (); //Call loadRates()

AJAX&JSON s

AJAX REQUESTS WITH
FINE-GRAIN ED CONTROL

The $. aj ax () method gives you greater control over Ajax requests.

Behind the scenes, this method is used by all of jQuery's Ajax

shorthand methods.

Inside the jQuery file, the$:ajax () method is used
by the other Ajax helper methods that you have seen

so far (which are offered as a simpler way of making
Ajax requests).

This method offers greater control over the entire
process, with over 30 different settings that you

can use to control the Ajax request. You can see a
selection of these settings in the table below. These
settings are provided using object literal notation

(the object is referred to as the settings object).

SETTING DESCRIPTION

The example on the right-hand page looks and works

like the one that demonstrated the • 1 oad () method
on p390. But it uses the$. aj ax () method instead.

• The settings can appear in any order, as long as
they use valid JavaScript literal notation.

• The settings that take a function can use a named
function or an anonymous function written inline.

• $. aj ax () does not let you load just one part of
the page so the jQuery . find() method is used
to select the required part of the page.

type Can take values GET or POST depending on whether the request is made using HTTP GET or POST

url The page the request is being sent to

data The data that is being sent to the server with the request

success A function that runs if the Ajax request completes successfully (similar to the • done () method)

error A function that runs if there is an error with the Ajax request (similar to the . fa i 1 () method)

befor eSend A function (anonymous or named) that is run before the Ajax request starts

In the example on the right, this is used to trigger a loading icon

compl ete Runs after success/error events
In the example on the right, this removes a loading icon

t i meout The number of milliseconds to wait before the event should fail

s AJAX&JSON

CONTROLLING AJAX

When the user clicks on a link in
the <nav> element, new content
is loaded into the page. This is
very similar to the example on
p390 for the . load () method,
but that shorthand method only
required one line.

1. Here the click event handler
triggers the $. aj ax() method.

JAVASCRIPT

This example sets seven settings
for the $.ajax() method.
The first three are properties,
the final four are anonymous
'functions triggered at different
points in the Ajax request.

2. This example sets the timeout
property to wait two seconds for
the Ajax response.

CD $('nav a').on(' click', function(e) {
e.preventDefault();
var url = this.href;
var $content = $('#content');

$('nav a.current').removeClass('current');
$(this).addClass('current');
$('#container').remove();

$. aj ax ({
type: "POST",
url: url,
timeout: 2000,
beforeSend: funct i on()

$content.append('<div id="load">Loading<ldi v>');
},
compl ete: funct i on() {

$('#loading').remove();
} ,

3. The code also adds elements
into the page to show that data
is loading. You may not see them
appear if the request is handled
quickly, but you will see them if
the page is slower to load.

4 . If the Ajax request fai ls, then
an error message will be shown
to the user.

c08/ js/ jq-aj ax. j s

II URL to load
II Cache sel ection

II Update links

II Remove content

II GET or POST
II Pat h to fi l e
II Waiting time
11 Before Ajax
II Load message

II Once finished
II Clear mes sage

success : function(data) { II Show content
$content.html($(data).find(' #cont ainer')).hide() . fadeln(400);

},
fail: funct i on() { II Show e r ror msg

}
}) ;

}) ;

$(' #panel ').html('<div class="loading">Please try again soon.<l div> ');

A JAX&JSON s

- IGU1! llJ!S 0111.1111

,_-...... ---~ ... 'Iii'#'

>n '""'''··~·-- ,-.. ~ ,,~--·
--....-~-..,.......-'
~-WO ____

w---...irne-.:1
~......__:c.~4' .. _, "''"" U~tllO----· ,...,,.,...,,UM~P'O'~\.<~~ _.,...........,_ .. """',.,_
(.. -IQ .. 1..Ctl'l<e.>IMll~lllllhr'""'"'
~·•u~\~nn.uvlt""""•'
-~111\IOll(~,

•

EXAMPLE
AJAX & JSON

This example shows information about three

events. The data used comes from three

different sources.

1) When the page loads, event locations are coded
into the HTML. Users click on an event in the left-hand
co lumn; it updates the timetable in the middle co lumn.

In the left column, the links have an id attribute whose value is a two

letter identifier for the state the event is in:

 ... Austin , TX

2) The timetables are stored in a JSON object, in an
external fi le collected when the DOM has loaded.
When users click on a session in the middle column, its
description is shown in the right-hand column.

In the middle column showing timetables, the tit le of each session is

used inside a link that will show the description for the session.

Circuit Hacki ng</ a>

3) Descriptions of all sessions are stored in one HTML
file. Individual descriptions are selected using jQuery's
• 1 oad () method (and the # selector shown on p390).

In the right column, the session description is taken from an HTML file.
Each session is stored in an element whose id attribute contains the title

of the session (with spaces replaced by dashes).

<div id="Intro- to-30-Modeling">

<h3>Intro to 30 Modeling</h3>
<p>Come learn hm~ to create 30 models of ... </ p>

</ div>

Because links are added and removed, event delegation is used.

AJAX&JSON 8

EXAMPLE
AJAX & JSON

This example uses data from three separate

sources to demonstrate Ajax techniques.

In the left-hand column you can

see three locations for an event.

These are written into the HTML

for the timetable page. Each one

is a link.

1. Clicking on an event loads the

session times for that event.

They are stored in a file cal led

ex amp 1 e . j son, which is collected

when the DOM has loaded.

2. Clicking on a session w ill load

it s description. They are stored

in descriptions .ht ml, which is

loaded when a user clicks on a

session ti tle.

/!)~ HOME ROUTE TOYS TIMETABLE

THE MAKER BUS

Roll up! Roll up! Ifs the maker bus ...

• SAHllAHCISCO,CA I 9:00

CD
Arduino Antics

·Mnn~U
10:00 Brain Hacking

11:30 Intro to 30 Modeling

1, NEWYORUl

1:00 The Printed lunch

2:00 Droning On

3:00 Circuit Hacking

4:30 Make The Future

8 AJAX&JSON

Arduino Antics
Learn how to program and use an
Arduino! This easy-to-learn open source
microcontroller board takes all sorts of
sensor inputs, follows user-generated
programs, and outputs data and power.
Ardulnos are commonly used ln
robotics, mechatronics, and all manners
of electronics projects around the world .
Taught by Elsie Denney, professional
software developer with a long previous
career as a technical artist in the video
game industry, electronics enthusiast
and instructor.

EXAMPLE
AJAX & JSON

W:H,•.11 c08/example . html

<body>
<header>

<hl>THE MAKER BUS</hl>
<nav>

HOME
ROUTE
TOYS
TIMETABLE

</nav>
</header>

<section id="content">
<div id="container">

<div class="third">
<div id="event">

San Francisco, CA

Austin, TX

New York, NY

</div>
</div>
<div class="third">

<div id="sessions">Select an event from the left</div>
</div>
<div class="third">

<div id= "details>Detai ls</div>
</div>

</div><!-- #container -->
</section><!-- #content -->

<script src="js/jquery-1.11.0 .min.js"></scri pt>
<script src="js/example.js"></script>

</body>

Left column: list of the events Here you can see the HTML page. It has a header,

followed by three columns. Two scripts appear

before the closing </body> tag.

Middle column: timetable of the sessions

Right column: description of the sessions

AJAX&JSON 8

EXAMPLE
AJAX & JSON

cNN/data/example.json JAVASCRIPT

"CA": [

} '
{

} '
{

} ...

"ti me": "09 .00",
"title": "Intro to 30 Model ing "

"time": "10.00",
"title": "Circuit Hacking"

"time": "11 .30",
"title": "Arduino Antics"

c08/descri ptions.html

<div id=" Intro-to-30-Modeling">
<h3>Intro to 30 Modeling</h3>
<p>Come learn how to create 30 models of parts you can then make ... </ p>

</ div>
<div id="Circuit-Hacking">

<h3>Circuit Hacking</h3>
<p>Head to the Electro-Tent for a free introductory so ldering ... </p>

</div>
<div i d="Arduino-Antics">

<h3>Arduino Antics</ h3>
<p>Learn how to program and use an Arduino! This easy-to-learn ... </ p>

</div>

""*''

When the script is run, the 1oadTimetab1 e () function

loads the timetables for all three events from a file

formatted using JSON, stored in example. j son.

The data is cached in a variable called ti mes.

Events are identified by a two-letter code for the

state. You can see a sample of the JSON-formatted

data above and a sample of the HTML that will be

created using that data.

8 AJAX&JSON

..

JAVASCRIPT

G) $(function()

var times;
$.ajax({

beforeSend : function(xh r){

EXAMPLE
AJAX & JSON

c08/js/example. js

II When the DOM is ready

II Declare global variable
II Setup request

if (xhr.overrideMimeType) {
xhr.overrideMimeType("applicat i onl json");

II Before requesting data
II If supported
II set MIME to prevent errors

}
}) ;

©
II FUNCTION THAT COLLECTS DATA FROM THE JSON
function loadTimet able() {

$.getJSON('datal example.json')

FILE
II Declare function
II Try to collect JSON data
II If successful .done(function(data){

times = data; II Store it in a variable
}) . fai 1 (function() {

$('#event').html ('Sorry!
}) ;

We could not
II If a problem: show message

load t he timetable at the moment');

(i) loadTimetable();

1. The script that does all the work is in example. j s.

It runs when the DOM has loaded.

2. The ti mes variable will be used to store the

session timetables for all of the events.

3. Before the browser requests the JSON data,

the script checks if the browser supports the

overrideMimeType() method. This is used to

indicate that the response from the server should be

treated as JSON data. This method can be used in

case the server is accidentally set up to indicate that

the data being returned is in any other format.

II Call the function

4. Next you can see a function called

l oadTi met able(), which is used to load the

timetable data from a f ile called example . json.

5. If the data loads successfully, the data for the

timetables w ill be stored in a variable called times.

6. If it fails to load, an error message will be shown

to the users.

7. The l oadTimetab 1 e () function is then called to

load the data.

AJAX & JSON 8 .

EXAMPLE
AJAX & JSON

c08/js/example.js JAVASCRIPT

//CLICK ON THE EVENT TO LOAD A TIMETABLE
G) $('#content') . on('click', '#event a', function(e) // User cl icks on place

(]) e.preventDefault{);
® var loc = this. id . toUpperCase();

// Prevent loading page
//Get value of id attr

© var newContent = '' ; //To build up timetable
for (var i = O; i < times[loc] . length; i++) { // loop th rough sessions

® newContent += '' + times[loc][i].time +'';
@ newContent += '<a href="descriptions . html#';
0 newContent += times[loc][i].title.replace(/ /g , '-') + 111> 1

;

@ newContent += times[loc][i].tit l e + ' ';

(2) $('#sessions').html('' + newContent + 1 ') ; //Display t i me

$('#event a.current') . removeClass(' current');
$(this).addClass('current');

//Update selected l i nk

® $ (' #details') . text (' ') ;
}) ;

1. A jQuery event helper method waits for users

to click on the name of an event. It w ill load the
timetable for that event into the middle column.

2. The preventDefaul t () method prevents the link

from opening a page (because it is w ill show the
AJAX data instead).

3. A variable called l oc is created to hold the name

of the event location. It is collected from the id
attribute of the link that was clicked.

4. The HTML for the timetables will be stored in a
variable cal led newContent. It is set to a blank string.

5. Each session is stored inside an <l i> element,

which starts by displaying the time of the session.

8 AJAX&JSON

//Clear third column

6. A link is added to the timetable, which will be

used to load the description. The link points to the
descriptions . html file. It is followed by a# symbol
so it links to the correct part of the page.

7. The session title is added after the I symbol.

The • rep 1 ace () method replaces spaces in the title

with a dash to match the value of the id attribute in

the descriptions. html file for each session.

8. Inside the link you can see the title of the session.

9. The new content is added into the middle column.

10. The cl ass attributes on the event links are
updated to shows which event is the current event.

11. The third column is emptied if it had content.

"

..

EXAMPLE

JAVASCRIPT

CD
@
®

@
®

7

II CLICK ON A SESSION TO LOAD THE DESCRIPTION
$(' #content') .on('click', '#sessions li a' , function(e)

e.preventDefault();
var f ragment = this.href;

fragment= fragment.replace('#', ' #');
$(' #details').load(fragment);

$('#sessions a.current').removeClass('current ');
$(this).addClass('current');

}) ;

II CLICK ON PRIMARY NAVIGATION
$('nav a').on(' click', function(e)

e.preventDefault();
var url = this.href;

$('nav a . current ').removeCl ass('current');
$(this).addClass('current');

AJAX & JSON

c08/js/example.js

(II Click on session
II Prevent loading
II Title is in href

II Add space after#
II To l oad info

II Updat e selected

II Cli ck on nav
II Prevent loadi ng
II Get URL to load

II Update nav

$('#container').remove() ;
$(' #content'). load(url + '

}) ;

II Remove old
#container') .hide().fadeln('slow'); II Add new

}) ;

1. Another jQuery event helper method is set up
to respond when a user clicks on a session in the
middle column. It loads a description of the session.

2. preventoefaul t () stops the link opening.

3. A variable called fragment is created to hold the
link to the session. This is collected from the href
attribute of the link that was clicked.

4. A space is added before the # symbol so that it is
the correct format for the jQuery 1 oad () method to
collect part (not all) of the HTML page, e.g.,
description.html #Arduino-Antics

5. A jQuery selector is used to find the element
whose id attribute has a value of deta i 1 s in the third
column. The . 1 oad () method is then used to load
the session description into that element.

6. The links are updated so that they highlight the
appropriate session in the middle column.

7. The main navigation is set up as shown on p391.

AJAX&JSON 8

Ajax refers to a group of technologies that allow you to

update just one part of the page (rather than reload a

whole page).

You can incorporate HTML, XML, or JSON data into

your pages. (JSON is becoming increasingly popular.)

To load JSON from a different domain, you can use

JSONP but only if the code is from a trusted source.

jQuery has methods that make it easier to use Ajax .

. load() is the simplest way to load HTML into your

pages and allows you to update just a part of the page .

. aj ax () is more powerful and more complex. (Several

shorthand methods are also offered.)

It is important to consider how the site will work if the

user does not have JavaScript enabled, or if the page is

not able to access the data from a server.

