
TE
AM
FL
Y

Team-Fly®

Web Design:
The Complete Reference

Second Edition

About the Author
An Internet professional for numerous years
prior to the introduction of the Web, Thomas
Powell brings an interesting combination of
networking and technical expertise to the Web
design community. In 1994 he founded PINT,
Inc. (www.pint.com), a web development firm
with headquarters in San Diego, which serves
numerous corporate clients around the country.

Powell is also the author of numerous other
Web development books, including the
bestsellers: HTML: The Complete Reference,
JavaScript: The Complete Reference, and Web Site
Engineering. He also writes frequently about
Web technologies for Network World magazine.

Mr. Powell teaches Web design and
development classes for the University of
California, San Diego Computer Science and
Engineering Department, as well as the
Information Technologies program at the
UCSD Extension. He holds a B.S. from UCLA
and an M.S. in Computer Science from UCSD.

About the Technical Editor
Fritz Schneider is a software engineer at a
major Internet search engine. He is co-author
of JavaScript: The Complete Reference and
served as the technical editor for HTML: The
Complete Reference. Schneider holds a B.S.
in Computer Engineering from Columbia
University and an M.S. in Computer Science
from UC San Diego.

Web Design:
The Complete Reference

Second Edition

Thomas Powell

McGraw-Hill/Osborne
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2002 by The McGraw-HIll Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-222851-2

The material in this eBook also appears in the print version of this title: 0-07-222442-8

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072228512

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you d like

and websites, please click here.
more information about this book, its author, or related books

,

Contents at a Glance

Part I Foundation

1 What Is Web Design? . 3
2 User-Centered Design . 23
3 The Web Medium . 65
4 The Web Design Process . 107
5 Evaluating Web Sites . 133

Part II Site Organization and Navigation

6 Site Types and Architectures . 153
7 Navigation Theory . 187
8 Basic Navigation Practices . 221
9 Search . 275

10 Site Maps and Other Navigational Aids 313

v

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Part III Elements of Page Design

11 Pages and Layout . 351
12 Text . 417
13 Color . 477
14 Images . 505
15 GUI Widgets and Forms . 543

Part IV Technology and Web Design

16 Web Technology Best Practices . 621
17 Site Delivery and Management . 691

Part V Appendixes

A Core Web Site Design Principles . 743
B Site Evaluation Form . 767
C XHTML Chart . 793
D CSS Quick Reference . 811
E Fonts . 827
F Color Reference . 839
G HTTP . 851

vi W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Contents
Acknowledgments. xxi
Introduction . xxiii

Part I

Foundation

1 What Is Web Design? . 3
Defining Web Design . 4

The Web Design Pyramid . 5
The Medium of the Web . 6
Types of Web Sites . 8
A Clearer Definition of Web Design 14

Web Design Themes . 15
User-Focused Design . 16
Form and Function . 17
Execution: The Easy Part? . 18
Conformity versus Innovation . 19

Learning Web Design . 19
Summary . 21

vii

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 User-Centered Design . 23
Usability . 24
Who Are Web Users? . 27
Common User Characteristics . 29

Vision . 29
Memory . 31
Response and Reaction Times . 34
Dealing with Stimulus . 40

Thresholds . 40
Cocktail Party Effect . 41
Sensory Adaptation . 41

Movement Capabilities . 42
The User’s World . 44

User Environments . 45
General Types of Users . 47

GUI Conventions . 49
Web Conventions . 50
Accessibility . 53
Building a Usable Site . 57
Usability Above All Else . 61
Who’s in Control of the Experience? . 62
Summary . 63

3 The Web Medium . 65
Core Web Technologies . 66
Web Browsers . 66
Markup Languages . 74

HTML . 74
XHTML . 75
XML . 76

Style Sheet Technologies . 79
CSS . 79
XSL . 79

Images . 82
GIF . 83
JPEG . 83
PNG . 83
Flash . 84
SVG . 84
VML . 84
Other Image Formats . 85
Animation . 85

Sound . 85

viii W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Video . 86
Programming Technologies . 89
Client-side Programming . 90

Helpers . 90
Netscape Plug-Ins . 91
ActiveX . 93
Java . 94
JavaScript . 98
Document Object Model . 98

Server-Side Technologies . 99
Web Servers . 99
CGI . 99
Server-Side Scripting . 100
Server APIs . 102

Network and Related Protocols . 102
HTTP . 102
MIME . 103
Addressing: URL/URI/URNs/URCs 103
Meta Data . 104
Web Services . 104

Summary . 105

4 The Web Design Process . 107
The Need for Process . 108
Ad Hoc Web Process . 109
Basic Web Process Model . 110

Modified Waterfall . 111
Joint Application Development . 112

Approaching a Web Site Project . 114
Goals and Problems . 114
Audience . 116
Site Requirements . 118

The Site Plan . 118
Design Phase Dissected . 122

Block Composites . 122
Screen and Paper Comps . 122
The Mock Site . 126
Beta Site Implementation . 127

Testing . 127
User Acceptance Testing . 129
Release and Beyond . 129

Welcome to the Real World . 129
Summary . 130

C o n t e n t s ix

TE
AM
FL
Y

Team-Fly®

5 Evaluating Web Sites . 133
The Goals of Expert Evaluation . 134
Conducting an Evaluation . 135

First Impression . 135
Home Page Pretests . 136
Site Navigation Testing . 138
Task Analysis . 139
Execution Analysis . 140
The Final Question . 146

Evaluation Reports . 146
User Testing . 147
Summary . 149

Part II

Site Organization and Navigation

6 Site Types and Architectures . 153
Site Types . 154

Grouping by Interactivity . 155
Grouping by Frequency of Change . 156
Grouping by Size . 159
Grouping by Technology Usage . 159
Grouping by Look . 160

Grouping by Purpose . 161
Commercial Sites . 161
Informational . 163
Entertainment . 164
Navigational . 164
Community . 165
Artistic . 165
Personal . 165

Site Structure . 166
Site Organization Models . 167

Linear . 167
Grid . 170
Hierarchy . 171

Usability and Site Structures . 177
Porous and Solid Site Structure . 180
Deep vs. Shallow Sites . 182
Picking a Site Structure and Type . 184
Summary . 185

x W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

7 Navigation Theory . 187
Navigation . 188
Where Am I? . 189

Precise Location on the Web: URLs 189
Page and Site Labels . 190
Page and Site Style and Location . 195
Where Have I Been? . 196

Where Can I Go? . 199
Placing Navigation . 199

Top Navigation . 199
Bottom Navigation . 202
Left Navigation . 202
Right Navigation . 205
Center Navigation . 207

Consistency of Navigation . 208
Navigation Hierarchy . 210

Navigation and Scrolling . 211
Navigation and Mouse Travel . 211
Frames . 212
Subwindows . 215

Navigation Remotes . 216
Bookmarking . 217
Navigation No-No’s . 217
Summary . 219

8 Basic Navigation Practices . 221
Link Types . 222
A Taxonomy of Link Forms . 223

Text Links . 224
Graphic Text Links . 224
Buttons . 225
Icons . 227
Image Maps . 231
Other Link Forms . 234

Usable Links . 241
Link Conventions . 241
Rollovers . 248
Understanding User Expectations . 251

Using Scope Notes . 253
title Attribute . 254
Rollover Messages . 255
Status Bar Messages . 256

Keyboard Support for Links . 257

C o n t e n t s xi

Advanced Web Linking Models . 259
Link Maintenance . 259

Redirection Pages . 260
Frames . 262

Using Frames . 263
Multiple Windows and Navigation . 272
Summary . 274

9 Search . 275
How Users Search . 276
How Search Engines Work . 277

Gathering Pages . 278
Indexing Pages . 278

Adding a Search Facility . 282
Designing the Search Interface . 283

Accessing Search . 283
Designing a Basic Search Interface . 285

Advanced Search Form Design . 288
Result Page Design . 289

Negative Results Page . 294
Improving Local Search . 297

Public Searching . 302
Full Web Searching Overview . 302
Search Engine Promotion . 303

Adding to the Engines . 304
Robot Exclusion . 305
Robots.txt . 305
Robot Control with <meta> . 306

Optimizing for Search Engines . 307
<meta> Tags . 307
Titles and File Naming . 309
Relevant Text Content . 309
Links and Entry Points . 310
Tricky Business . 311

Summary . 312

10 Site Maps and Other Navigational Aids 313
Beyond Search . 314
Site Maps . 314

Textual Site Maps . 315
Graphical Site Maps . 319

Site Map Design . 324
Showing Scope and Destination Choices 325
“You Are Here” Indication . 326

xii W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

“Where You Were” Indicators . 326
Producing Site Maps . 327

Site Indexes . 329
Miscellaneous Site Navigation Aids . 335

Glossary . 336
“What’s New” Sections . 338

Keyword Jump Systems . 338
Site Tours . 339
Following Traveled-Path Systems . 340

Help Systems . 340
When to Use Help . 340
Complex Help Systems . 343

Navigation Aid Trends . 346
Summary . 348

Part III

Elements of Page Design

11 Pages and Layout . 351
What Is a Page? . 352
Page Sizes . 352

Dealing with Screen Size . 359
Page Margins . 371
Page Types . 372
Entrance Pages . 373

Splash Pages . 374
Home Pages . 375
Subpages: Navigation vs. Content . 378
Content Pages . 381
Task-Specific Pages . 386

Exit Pages . 392
Web Design Schools . 395

Text . 395
Metaphor and Thematic . 397
GUI Oriented . 398
Unconventional . 401

Layout Examples . 402
”TLB” . 403
Header-Footer . 406
Centered and Floating Window Style 408
Stretchable . 414

The Road to Common Site “Looks” . 415
Summary . 416

C o n t e n t s xiii

12 Text . 417
The Medium Matters . 418

Taking Control of Text . 418
Throwing Up Your Arms . 421
Modern-Day Baskerville . 423

Typography Terminology 101 . 423
Fonts . 425

Proportional versus Monospaced Fonts 426
Setting Fonts in Web Pages . 429

Using Downloadable Fonts . 430
Setting Font Styles . 432
Sizing Font . 436

Text Layout . 438
Text Alignment . 439
Line Length . 441
Line Spacing . 444
Letter Spacing and Word Spacing . 445

Setting Type Hierarchy . 448
Headings and Subheadings . 449
Formatting Paragraphs and Sections 450

Formatting Tables . 457
Text Details . 461
Fancy Text Layouts . 463

Special Text Effects . 465
Text Design Issues for the Web . 468

Font Usage . 468
Number of Fonts to Use . 470
Columns on the Web . 470
Is White Space Good or Bad? . 471

Print vs. Screen . 472
Writing for the Web . 473

Reading vs. Scanning . 473
Nonlinear Writing . 474
Danger Words . 475

Summary . 475

13 Color . 477
Color Basics . 478
Computer Color . 479
Web Color Basics . 480

HTML Color Use . 483
CSS1 Color Use . 486

xiv W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

CSS2 Color Use . 488
Possible CSS3 Color Use . 489

Practical Web Color . 490
Browser-Safe Color . 491

Hybrid Colors . 493
Color Detection . 494

Troublesome Color Reproduction Issues . 495
Color Shifting and the Reality of the Web Palette 495
Gamma Correction . 496
Monitor Types: CRT vs. LCD . 497

Using Color . 498
Color Harmony . 499
Color and Usability . 499
The Hidden Meaning of Colors . 501

Summary . 503

14 Images . 505
Image Formats . 506

GIF . 508
JPEG . 514
PNG . 518
Flash . 521
Other Image Formats . 522

HTML and Images . 523
Alternative Text . 523
Sizing Images in HTML . 525
Image Borders . 525
Image Toolbar . 526
Background Images in HTML . 527

Images and CSS . 532
CSS and Backgrounds . 533

Image Usage . 535
Usability and Images . 535
Delivery Image Distortion . 539
Image Management . 539
Protecting Images . 540

Summary . 542

15 GUI Widgets and Forms . 543
Web Sites vs. GUI Applications . 544
GUI Design Implications . 545
Windows . 549

Creating New Windows . 550

C o n t e n t s xv

Full-Screen Windows . 553
Sub-Windows . 554

Alerts . 555
Confirms . 559
Prompts . 561

Forms . 563
Labels . 563
Text Fields . 564

Password Fields . 566
Multi-Line Text Entry . 567
Check Boxes . 570
Radio Buttons . 572

Pull-Down Menus . 580
Using Pull-Downs for Navigation . 583

Scrolled Lists . 587
Push Buttons . 588

Reset Buttons . 589
Submit Buttons . 589
Image Buttons . 590
File Upload Controls . 591

Usable Forms . 593
Required Fields . 596
Tabbing Forms . 597
First Field Focus . 598
Keyboard Shortcuts . 599

Form Validation . 604
Field Masks . 606
Disabling Fields . 608
Read-Only Fields . 609
Default Data . 610
Internet Explorer AutoComplete . 610

Advanced Web GUI Widgets . 613
Tree Navigation . 614
Tabbed Dialogs . 615
Sliders . 615
Context Menus . 617

When Web Applications Are Just Applications 618
Summary . 618

Part IV

Technology and Web Design

16 Web Technology Best Practices . 621
Pragmatic Web Development . 622

xvi W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Browser Best Practices . 623
Browser Detection Basics . 624
Browser Capabilities Detection . 628
Browser Detection in Practice . 630

HTML Best Practices . 631
Doctypes . 632
Move to XHTML . 635
Avoid HTML/XHTML for Presentation 637
Miscellaneous HTML Best Practices 639

CSS Best Practices . 646
Consider HTML Usage . 649
Include CSS Carefully . 650
Address CSS Browser Issues . 652
Miscellaneous CSS Best Practices . 654

XML Best Practices . 657
Web Programming Best Practices . 663

Server-Side Programming Best Practices 663
Client-Side Programming . 666

JavaScript Best Practices . 667
Netscape Plug-in Best Practices . 680
ActiveX Best Practices . 682
Java Applets Best Practices . 685

Cookie Best Practices . 686
Multimedia Best Practices . 688
Summary . 689

17 Site Delivery and Management . 691
The Importance of Delivery . 692
The Web Request Cycle . 694

Request Formation and DNS Lookup 695
Request Transmission . 697

HTTP . 698
Web Servers . 702

Web Server Components . 703
Web Server Software . 704
Making the Choice . 708
Server Capacity Issues . 708
Server Location . 709
Outsourcing Web Hosting . 711

Delivering the Payload . 713
Networking, Protocols, and Web Design 713
Exploiting Expiration and Caches . 714
Dealing with State . 715

C o n t e n t s xvii

Browser Rendering . 717
Managing Web Servers . 717

Web Server Security . 717
Content Management . 721
Usage Analysis . 725

Analyzing Site Usage . 729
Privacy . 734
Content Concerns . 736
Summary . 739

Part V

Appendixes

A Core Web Site Design Principles 743
What Is Web Design? . 744
User-Centered Design . 744
The Web Medium . 746
The Web Design Process . 747
Evaluating Web Sites . 747
Site Types and Architectures . 748
Navigation Theory . 749
Basic Navigation Practices . 751
Search . 752
Site Maps and Other Navigational Aids . 753
Pages and Layout . 753
Text . 756
Color . 756
Images . 756
Forms and GUI . 757
Web Technology Best Practices . 760
Site Delivery . 764

B Site Evaluation Form . 767
GENERAL SITE CHARACTERISTICS . 769

Site Structure . 769
Visuals and Layout . 770
General Content Statistics . 773
TECHNOLOGY USAGE . 774
PROGRAMMING . 777
Server-side Technology . 777
Client-side Component Technology 779
BROWSER SUPPORT . 782

xviii W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

NAVIGATION . 783
Navigation Aids . 787
THE FINAL SCORE . 792

C XHTML Chart . 793
Basic Rules . 794
XHTML Tags and Attributes . 794
Attribute Reference . 809

Core Attributes . 810
International Attributes . 810
Event Attributes . 810

D CSS Quick Reference . 811

E Fonts . 827
Specifying Fonts . 828
Downloadable Fonts . 836

Microsoft’s Dynamic Fonts . 836

F Color Reference . 839
Browser-Safe Colors . 840
Color Names and Numerical Equivalents . 843
CSS Color Values . 848

Three-Digit Hexadecimal Color Values 849
RGB Color Values . 849
RGB Color Values Using Percentages 849

Color Practices . 849

G HTTP . 851
HTTP in Action . 852

Index. 873

C o n t e n t s xix

TE
AM
FL
Y

Team-Fly®

This page intentionally left blank.

Acknowledgments

When you take the time out of your life to write a doorstop-sized book like this
one, you tend to rely on a lot of people’s assistance. I’ll mention only a few of
them here to avoid adding any more pages to this already massive tome.

First, as always, the folks at Osborne were a pleasure to work with. Megg Morin
somehow puts up with me year after year and the books keep getting done. Without
Megg, I probably wouldn’t be a prolific author. Tana Allen also provided great
assistance in editing and project management, while Carl Wikander provided rigorous
copy editing. Finally, thanks to Julie Smith for enduring the ghastly long phone calls
necessary to help ferret out proof problems.

My technical editor Fritz Schneider did an excellent job. Having seen the other side
of the fence as my co-author on the JavaScript: The Complete Reference, he didn’t let me
get away with much.

My employees at PINT provided dozens of right hands for me and deserve special
mention. First, Mine Okano has helped run another book project and done an excellent
job at it. I am not sure she expected this when she came to work for me, but she’s done
a great job. Dan Whitworth also continues to tackle book projects, and probably wonders
what he did in a previous life to deserve fixing my poor grammar. Catrin Walsh and
Kim Smith lent some valuable assistance in the site production, usability, and site
testing content. Other PINT employees, including Jimmy Tam, Rob McFarlane, Maria

xxi
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Defante, Eric Raether, Cathleen Ryan, Meredith Hodge, Nigel Paxton, David Sanchez,
Dave Andrews, Melinda Serrato, Michele Bedard, Candice Fong, Cory Ducker, Anh
Gross, Kun Puparussanon, Huijuan Yin, Marcus Richard, Kevin Griffith, Christine
Lawson, and numerous others, helped out directly on edits or just kept the projects
rolling while I was busy. Joe Lima, Allan Pister, Christie Kennedy, and Jared Ashlock
deserve some praise for getting some of my outside software project duties taken care
of as well.

The students in my undergraduate and extension classes always make good points
and many of their ideas are incorporated into new editions. Daisy Bhonsle deserves to
be singled out for always helping with my books by catching errors and making
suggestions for improvements.

Somehow I find a way to have time outside of the Web for friends, family, and
home. My wife Sylvia made sure I didn’t work all day on the weekends, and our
Schnauzer puppy Tucker kept both of us very busy with his antics. However, now that
I’m finished with the book and the dog is housebroken, with any luck a restful Wakaya
visit or other trip will be up next.

Finally, the most thanks go to the thousands of readers around the world who have
purchased my various Web technology and design books. It is really a great pleasure to
get such positive feedback and see folks putting this information to good use.

xxii W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Introduction

Athick Web design book without glossy paper and pictures! Who would have
thought it would be published? That’s exactly what I set out to do a few years
back and it seemed to make sense to enough readers that now it has even been

massively updated. Why engage in such a fool’s errand? Simply because there are
plenty of Web design books out there that provide color snapshots of well-implemented
sites or short discussions of the cool features in today’s trendy sites. However, given
the fluid nature of the Web, the interesting sites have often changed by the time the ink
has dried on the pages, leaving only a paper record of what the site used to be like.
Worse yet, what is left only tells part of the story. It often hides the usability problems,
the technical execution problems, and the slow loading pages. Even so, I often turn to
such resources as they provide a great deal of visual inspiration. But they tell only half
the story—and I will try to tell the other half in this book.

The goal here is to talk about what makes sites work beyond the trends of the latest
font or visual treatment. Usability will certainly be a major concern, but so will correct
construction. I’ll try to speak from the experience I gained from building hundreds of
sites over the years with my firm. Some of the projects worked well and others didn’t,
and I found that I learned not only from my successes, but also from the failures of
both my own projects and those I have observed or rescued. Experience is truly the
best teacher in an industry as young as Web design. I’ll try to make sure to teach the

xxiii
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

fine balance between designer wants and user needs, between form and function, and
between uniqueness and consistency, all while respecting what is possible to execute in
the chaotic medium known as the Web.

After reading this book, you’ll truly appreciate how Web design is a fluid mixture
of art and science, inspiration and execution, and ultimately, of frustration and elation.
You may excel on the visual side of a site only to fail in the technology or delivery
aspects. Web design is all-encompassing and the investment in understanding deeper
medium and technical issues will pay huge dividends in future projects.

Yet as you read this book, you might not always agree with what I have to say.
You may even find that some of the rules and suggestions are not perfectly consistent.
However, that may be the point—to get you to think and not dismiss something out
of hand. Instead, ponder why such rules and suggestions were developed before you
throw caution to the wind. Great designers, regardless of medium, bend or break
established rules on purpose. Real breakthroughs rarely come due to ignorance or
arrogance.

Unfortunately, I won’t be able to guarantee a proven step-by-step process that
ensures a great Web site. Some things really do take practice. Building numerous sites
and browsing even more sites is required to excel at Web design. However, I can say
that if you do read this book, you’ll have at least half of what you need to make great
sites. The rest will be up to you and your creativity. So get out there and show the Web
what you can do!

Using This Book
The book is used as a textbook for a course in Web design theories and practices as well
as a reference book. The first section provides foundation information about common
Web design principles, usability issues, core Web technologies, and development
practices. The second section focuses primarily on site organization, navigation, and
usability concerns. The final section addresses execution issues with focus on best
practices. The appendices of the book provide compact reference material on HTML,
CSS, fonts, colors, and other Web issues. Such an organization should make this book
not only useful to understand major Web design issues, but to keep around for future
consultation. The Web site at www.webdesignref.com provides support for the book
including examples, reference materials, related links, and of course errata. More
novice Web designers should read the book sequentially as chapters build on one
another. However, experienced designers may find that single chapters or sections can
be read safely in isolation if they are familiarizing themselves with a particular topic or
attempting to fill in knowledge gaps.

The text does assume that readers are fairly fluent in core Web technologies
like HTML, CSS, and JavaScript and can use basic graphics manipulation tools like
PhotoShop or Fireworks. Readers interested in better understanding the core Web
technologies may find HTML: The Complete Reference (www.htmlref.com) and

xxiv W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

JavaScript: The Complete Reference (www.javascriptref.com) also useful. The three books
together provide a complete discussion of the theory and execution of the popular
client-side Web technologies that are not tied into the use of a particular Web tool.
Tutorial books on the various editors and other Web tools can of course be utilized in
conjunction with any of the books.

Good luck to you!
Thomas A. Powell
tpowell@pint.com

Summer 2002

I n t r o d u c t i o n xxv

This page intentionally left blank.

Part I
Foundation

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 1
What Is Web Design?

3

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

4 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Most discussions of Web design get off track in short order, because what
people mean by the expression varies so dramatically. While everyone has
some sense of what Web design is, few seem able to define it exactly. Certain

components, such as graphic design or programming, are a part of any discussion, but
their importance in the construction of sites varies from person to person and from site
to site. Some consider the creation and organization of content—or, more formally, the
information architecture—as the most important aspect of Web design. Other factors—ease
of use, the value and function of the site within an organization’s overall operations,
and site delivery, among many others—remain firmly within the realm of Web design.
With influences from library science, graphic design, programming, networking, user
interface design, usability, and a variety of other sources, Web design is truly a
multidisciplinary field.

Defining Web Design
There are five areas that cover the major facets of Web design:

■ Content This includes the form and organization of a site’s content. This
can range from the way text is written to how it is organized, presented, and
structured using a markup technology such as HTML.

■ Visuals This refers to the screen layout used in a site. The layout is usually
created using HTML, CSS, or even Flash and may include graphic elements
either as decoration or for navigation. The visual aspect of the site is the most
obvious aspect of Web design, but it is not the sole, or most important, aspect
of the discipline.

■ Technology While the use of various core Web technologies such as HTML
or CSS fall into this category, technology in this context more commonly refers
to the various interactive elements of a site, particularly those built using
programming techniques. Such elements range from client-side scripting
languages like JavaScript to server-side applications such as Java servlets.

■ Delivery The speed and reliability of a site’s delivery over the Internet or an
internal corporate network are related to the server hardware/software used and
to the network architecture employed.

■ Purpose The reason the site exists, often related to an economic issue, is
arguably the most important part of Web design. This element should be
considered in all decisions involving the other areas.

Of course, the amount each aspect of Web design influences a site may vary
according to the type of site being built. A personal home page generally doesn’t
have the economic considerations of a shopping site. An intranet for a manufacturing
company may not have the visual considerations of a public Web site promoting an

FO
U

N
D

A
TIO

N

action movie. Precisely what is meant by the expression “Web design” seems to be
fluid; our discussion must take this into account, but at the same time provide ideas
concise enough for the designer to keep in mind at all times. We’ll start first with
abstract definitions and get more concrete as we move on.

The Web Design Pyramid
One way to think of all the components of Web design is through the metaphor of the
Web pyramid shown in Figure 1-1. Content provides the bricks that build the pyramid,
but the foundation rests solidly on both visuals and technology, with a heavy reliance
on economics to make our project worth doing.

As Web designers, we try to plan our sites carefully, but construction is difficult.
The shifting sands of Web technology make it challenging to build our site; construction
requires teamwork and a firm understanding of the Web medium. Even if we are experts
able to construct a beautiful and functional Web site, our users may look at our beautiful
construction with puzzlement. Designers, or their employers, often spend more time
considering their own needs and wants than those of the site’s visitors. Our conceptual
Web pyramids may become too much like brick-and-mortar pyramids—impenetrable

C h a p t e r 1 : W h a t I s W e b D e s i g n ? 5

Figure 1-1. Web pyramids: the facets of Web design

6 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

tombs that leave us wondering if the users who strike out over the Web to reach our
monuments can even find the door. Do they even understand the point of the site?

While Web development challenges aren’t quite on the level of those faced by the
ancient Egyptians, building a functional, pleasing Web site that can stand the test of
Internet time is certainly not easy. The pyramid provides a simple way for designers
to think of all aspects of Web design in interplay, but does little to provide a deeper
understanding of the Web medium.

The Medium of the Web
While the Web pyramid analogy is a very abstract way of describing Web design, it is
a useful tool for showing the interplay of the various components of Web building. A
more practical way to discuss Web design is to think of the various components of the
Web medium, as shown in Figure 1-2.

Today’s Web sites are primarily a basic client-server network programming model
with three common elements:

The server-side This includes the Web server hardware and software as well as
programming elements and built in technologies. The technologies can range from
simple CGI programs written in PERL to complex multi-tier Java based applications and
include backend technologies such as database servers that may support the Web site.

The client-side The client-side is concerned with the Web browser and its supported
technologies, such as HTML, CSS, and JavaScript languages and ActiveX controls or
Netscape plug-ins, which are utilized to create the presentation of a page or provide
interactive features.

The network The network describes the various connectivity elements utilized to
deliver the Web site to a user. Such elements may be the various networks on the public
Internet or the private connections within a corporation—often dubbed an intranet.

Complete understanding of the technical aspects of the Web medium, including
the network component, is of paramount importance in becoming a great Web designer,
and much of this book will focus on these details. The Web pyramid diagram again
reminds us of the important user component, as Web design really is a networked
programming pursuit with certain user-focused issues.

Web sites are used as a communication mechanism between a site’s owners and its
users, and occasionally between its users and each other. Site owners usually set the
message and define the basic rules of interaction, while users are those who visit the
site and attempt to use the content or facilities presented there. The communication
path between site owner and visitor can vary. Site owners often set information for
users to consume, in somewhat of a one-way interaction. Other times users can post

C h a p t e r 1 : W h a t I s W e b D e s i g n ? 7
FO

U
N

D
A

TIO
N

Figure 1-2. Components of the Web Medium

information for site owners or even other users, creating more of a multi-way
communication path, as illustrated here:

During any communication, most users are generally unaware of the medium
when things are working correctly. While users are affected by the medium, they often
do not distinguish the individual components such as network, HTML, style sheets,
and JavaScript—unless something goes wrong. In the negative case of a slow site, or
one that causes visual or functional errors, the user may notice the medium but still
may not distinguish which aspect of it is causing the problem. Users tend to see not the
parts themselves, but the sum of them. This makes it important to think of sites as a
whole, in order to understand how users see them.

Types of Web Sites
Users tend to view Web sites, and thus Web site design, by the function of the site or
by its visual appearance. It is important to be able to describe sites this way; however,
there are many more ways to categorize them. While the possible categories of sites

8 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

FO
U

N
D

A
TIO

N
C h a p t e r 1 : W h a t I s W e b D e s i g n ? 9

may appear endless, we can safely group sites in a few general ways. We’ll start first
with the abstract and then move to visual categorizations.

Abstract Groupings
First, consider if a site is information focused or task focused. Sometimes we may
describe this distinction as one between a site that is document-centered and one that
is application-centered. Document-centered or informational sites provide information
for users, but they provide very limited interactivity (other than allowing the user to
browse, search, or sort the information presented). Sites that are task or applications
oriented allow the user to interact with information or accomplish some task, such as
transferring funds from a bank account or buying a new sweater. Hybrid sites do a little
of both; these are becoming more common as the line between information and application
blurs. Figure 1-3 plots the continuum from a simple static document-oriented site

Figure 1-3. The range of Web sites

(often called a “brochureware” site) to full-blown software applications. This abstract
grouping suggests that there is a transition from more document- or print-oriented
Web sites to more interactive programmatic Web sites. This is indeed true; the
intersection between the two philosophical camps is a source for much of the
contention—and innovation—in the Web design community.

Another way we might group sites is within the following broad categories:

■ Informational sites These sites provide information about a particular subject
or organization (the “brochureware” sites). These are the most common Web sites
on the Internet and often take on aspects of the other site categories over time.

■ Transactional sites This type of site can be used to conduct some transaction
or task. E-commerce sites fall into this category.

■ Community sites These provide information or transaction-related facilities,
but focus on the interaction between the visitors of the site. Community-based
sites tend to focus on a particular topic or type of person and encourage
interaction between likeminded individuals.

■ Entertainment sites These sites are for game playing or some form of
amusing interaction, which may include transactional, community, and
informational elements.

■ Other sites Included here are artistic or experimental sites, personal Web
spaces such as Web logs (also called blogs), and sites that may not follow
common Web conventions or have a well-defined economic purpose.

We might also group sites based upon the organization that is running, or in some
sense paying for, the site. Within this type of categorization we see five major groupings:

■ Commercial A site in this group is built and run by an organization or
individual for commercial gain, either directly through e-commerce
or indirectly through promotion for some off-line purchase of goods or services.

■ Government This site’s parent entity is ultimately a government organization,
and the purpose of the site is to satisfy some social or legal need.

■ Educational This type of site’s parent entity is some educational institution
(perhaps government related), and it is used to support learning or research goals.

■ Charitable A charitable site exists to promote the goals of a nonprofit
organization or the charitable activities of an individual or organization.

■ Personal The site exists at the sole discretion of some person or group for any
number of reasons, usually as a creative outlet or form of personal expression.

Categorization can be difficult. For example, educational sites might really fall
under the governmental category. Some sites in the personal category may arguably

10 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

belong in the charitable or commercial group, depending on the reason for the person
putting the site together. Now we turn to the more visual characteristics of sites, with a
few sample categories of sites commonly seen on the Web.

Visual Groupings
As we group sites visually, we may see a range from those which rely more heavily on
text and those which focus more on graphic presentation or imagery. The four most
common design schools on the Web are:

■ Text oriented These are sites designed with a focus on textual content. Such
sites, as shown in Figure 1-4, are relatively lightweight, download-wise, and
often somewhat minimalist in design.

■ GUI style These are sites that follow certain graphical user interface (GUI)
conventions from software design, such as top-oriented menu bars, icons, and
pop-up windows. GUI-oriented sites range from simple GUI devices added to a
primarily text-oriented site to full-blown Web applications with customized
user interface widgets. Figure 1-5 shows some examples of GUI style Web sites.

C h a p t e r 1 : W h a t I s W e b D e s i g n ? 11
FO

U
N

D
A

TIO
N

Figure 1-4. Text-oriented sites

12 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

■ Metaphorical Metaphor sites borrow ideas from “real life.” For example, a
site about cars might employ a dashboard and steering wheel in design and
navigation. A metaphor-designed site, as shown in Figure 1-6, tends to be
extremely visual or interactive. This may be frustrating to some users and
engaging to others.

■ Experimental Experimental designs attempt to do things a little differently
than the norm. Creativity, unpredictability, innovation and even randomness
are often employed in sites following the experimental design style, as shown
in Figure 1-7.

Figure 1-5. Web Designs with a little GUI or a lot of GUI

C h a p t e r 1 : W h a t I s W e b D e s i g n ? 13
FO

U
N

D
A

TIO
N

Figure 1-6. Metaphorical design

Figure 1-7. Experimental design

TE
AM
FL
Y

Team-Fly®

14 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Of course, on the Web we find mixtures of form or potential new categorization of
sites. For example, how would you categorize a portal site, such as the one shown in
Figure 1-8, that provides a wealth of content, navigation choices, and even community
related-facilities in a single page? This is certainly a design style that is used in a great
deal of sites. We see the potential rise of other design categories when we look at Web
site genres such as e-commerce sites, particularly strict “catalog and cart” sites, as well
as online personal journal sites called “Weblogs” or “blogs.” We’ll take a closer look at
these design ideas in later chapters.

A Clearer Definition of Web Design
So, after all this discussion, what exactly is Web design? It is obviously a very user-
centered multidisciplinary design pursuit that includes influences from visual arts,
technology, content, and business. A succinct definition follows.

Figure 1-8. Portal style design

Web Design: A multidisciplinary pursuit pertaining to the planning and
production of Web sites, including, but not limited to, technical development,
information structure, visual design, and networked delivery.

Because Web design is so multidisciplinary, it is often appropriate to pull ideas and
theories from related fields. Indeed, we’ve been doing that even in the very first pages
of this book. Some people, however, take this approach a little too far, developing their
sites in a manner similar to print pieces or adopting so many software GUI interface
conventions that the user becomes confused. While Web design borrows heavily from
other design pursuits, there are significant differences. For example, the medium is
very different than print because more function is provided—not unlike software. Delivery
issues and content effects make Web sites different from traditional software applications
as well. Web design isn’t just adoption of old ideas. It’s something altogether new.

We shouldn’t say the Web is totally different either. There are plenty of people who
do that as well. The Web is so revolutionary, they say, that none of the old rules hold.
This is complete nonsense. Despite the proclamations of pundits, new media forms
have always adopted conventions from other forms and invented new ones of their
own. Furthermore, no new form has completely eliminated any other. Radio, magazines,
newspapers, television, and other entertainment media all continue to exist in some
form or other despite emerging technologies and new media forms. The Web certainly
isn’t so new that we should throw out any valuable concepts we learned before. It
does, however, have its own principles. We should strive to understand other media
design concepts and modify them to fit the Web. The rest of the introduction will
present some of the themes of Web design and conclude with a “roadmap” for the
rest of the book.

Web Design Themes
When discussing Web design, we see similar themes come up over and over again.
Whether it’s the political struggle between a corporation’s marketing department and
information technology group over site ownership, or a graphic designer trying to
convince a client of the appropriateness of a particular look or multimedia technology,
these themes are at the heart of the matter. These issues often result in rather heated
discussions among designers, as well as between designers and their clients both inside
and outside corporate Web teams. While there is no simple answer to some of these
issues, they are relatively easy to describe.

Generally the major themes behind modern Web design include:

■ Designer needs versus user needs

■ The balance of form and function

■ The quality of execution

■ The interplay between convention and innovation

FO
U

N
D

A
TIO

N
C h a p t e r 1 : W h a t I s W e b D e s i g n ? 15

In the abstract sense, these themes are not at all unique to the Web medium. Artists
like Leonardo DaVinci certainly struggled at times to balance the desires of patrons and
even his viewing public with his own needs. Commercial artists producing something like
a magazine advertisement or billboard have to balance the demands of visual look
with successful and clear communication. Execution varies in any discipline, but in
one as young as Web design, the effects are more evident. Lastly, the rules of convention
and the desires of innovation are as common as the struggle of a young person rebelling
against convention, the middle age designer discovering the wisdom of the masters,
and the old designer trying to rediscover his or her innovative youth. Despite the
general nature of these themes, their specific details vary with each medium. It will be
valuable to introduce each here before we encounter them later on. We start with the
most important issue first: user-centered versus designer-centered site design.

User-Focused Design
A common theme of Web design is the focus on users. Unfortunately, a common
mistake made in Web development is that, far too often, sites are built more for designers
and their needs than for the site’s actual users. Always remember this important tenet
of Web design:

Rule: YOU are NOT the USER.

What you understand is not what a user will understand. As a designer, you have
intimate knowledge of a Web site. You understand where information is. You understand
how to install plug-ins. You have the optimal screen resolution, browser setup, and so
on. When you build your site around your own visual characteristics and skill levels,
you often will confuse the actual users of the site. You must accept the fact that many
users will not necessarily have intimate knowledge of the site you have so carefully
crafted. They may not even have the same interests as you.

Given the importance of the users’ interests and desires, it might seem appropriate
to simply ask the users to design the site the way they want. This seems to be a good
idea until you consider another basic Web design tenet:

Rule: USERS are NOT DESIGNERS.

Not everyone is or should be a Web designer. Just as it would seem foolish to let
moviegoers attempt to direct a major motion picture on the basis of their having
viewed numerous movies, we should not expect users to be able to design Web sites
just because they have browsed a multitude of sites. Users often have unrealistic
requirements and expectations for sites. Users will not think carefully about the
individual components of a Web site. In summary, users are not going to have the
sophisticated understanding of the Web that a designer will have.

That said, the key to successful, usable Web site design is always trying to think
from the point of view of the user. User-centered design is the term given to design that

16 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

always puts the user first. But what can we say about users? Is there a typical user?
Does a “Joe Average Internet” exist that we should design our sites for? Probably not,
but we certainly should consider certain traits, such as reaction times, memory, and
other cognitive or physical abilities, as we design sites. An overview of cognitive
science helps us understand basic user capabilities; we will discuss this topic further
in the next chapter. Remember, however, that while users may have similar basic
characteristics, they are also individuals. What may seem easy to one user will be hard
for another. Sites that are built for a “common” user may not meet the needs of all
users. Power users may find a site restrictive, while novice users find it too difficult.
Users are individuals with certain shared capacities and characteristics. Sites should
take account of the relevant differences while focusing on the commonalities, as stated
by the following Web design tenet:

Rule: Design for the common user, but account for differences.

Lastly, we can see that the differing needs of the user and the designer raise an
issue of control. Control over a visit to a site is an unwritten contract between the
designer and the visitor to how the experience will unfold. Often, sites provide little
user control, forcing the user to view content in a predetermined order with little
control over presentation or technology. Rarely do we find the exact opposite occurs,
where the site gives users ultimate control over visitation, allowing them to choose
what to see and how to see it and even allowing them to add to or modify the site’s
contents. However, most sites do allow the user some choices and the ability to control
experience, but always under the influence of the designer’s requirements. We’ll revisit
some of the general ideas of control and user experience throughout the book.

Form and Function
A key problem with Web design is that sites often do not balance form and function.
Under the influence of modernism, many designers have long held that the form of
something should follow its function. Consider that the form is one base of our Web
design pyramid analogy, while function is the other. Function without form would be
boring: while the site may work, it won’t inspire the user. Conversely, even if the form
is impressive, if the function is limited, the user will be disappointed. There needs to be
a clear and continuous relationship between form and function. Put simply, the form
of a site should directly relate to its purpose. If the site is marketing-driven, it might be
very visual and even incorporate heavy amounts of multimedia if it helps to accomplish
our goals. However, if the site is clearly a task-based one, such as an online banking
site, it might have a much more utilitarian form. Of course, determining the appropriate
form for a site requires that the function of the site be clearly defined. Unfortunately,
for many Web sites the ultimate function of the site isn’t always clearly conveyed. Even
worse, the relationship of form and function for the site is not always clearly established.

Rule: Make sure the visual form of a site relates to its function.

C h a p t e r 1 : W h a t I s W e b D e s i g n ? 17
FO

U
N

D
A

TIO
N

It is likely that there will be a continual struggle between form and function, despite
the fact that in nearly all cases the only side the designers should be on is that of their
users. In fact, there really need be no disagreement. Form and function do not always
have to fight; they complement each other nearly all of the time. A nice-looking design
makes a functional site much better, while great functionality will make up for a
deficiency in “look and feel” over time.

Seasoned designers understand this balance and practice the idea of holistic design
by following the rule that the correct execution and integration of all facets of the site
will outweigh the value of a single component. In fact, the real difference between a
Web designer and a mere Web builder is that the former is capable of not only
executing the individual parts of a site correctly but can also breathe extra “life” into
the project as a whole.

Execution: The Easy Part?
HTML, XML, CSS, JavaScript, Java, Flash, browser compatibility, server capacity, and
all the other components of Web development are the easy part of Web design. While
learning a new technology might take some time and effort, it is generally quite easy to
say whether some HTML or other technology is used correctly or not. However, today’s
sites are riddled with execution problems, ranging from simple typos to significant
technical compatibility, delivery, and usability problems.

A Web site should only be considered excellent if it is useful, usable, correct, and
pleasing. The meaning of each of these considerations is somewhat subjective, except in
the case of correctness. For a site to be well designed, its execution must be excellent.
This means that the site must not break in any way. The HTML must be correct and the
images saved properly so that the page renders itself as the designer intended. Any
interactive elements, whether in the form of client-side scripts in JavaScript or
server-executed CGI programs, must function properly and not result in error messages.
The navigation of the site must work at all times. Broken links accompanied by the all
too familiar “404: Not Found” message are not the sign of a well-executed site. Errors,
in fact, should be handled, and the site should fail gracefully, if at all. While execution
seems like an obvious requirement for excellence, too many sites exhibit execution
problems to let this consideration go unmentioned:

Rule: A site’s execution must be close to flawless.

Why are execution problems rampant in Web sites? Simple: this is a young
industry with changing standards. Consider state-of-the-art Web design from a
few years ago and you’ll see the difference. Further, most Web professionals often
didn’t have the background in computer science, networking, hypertext theory,
cognitive science, and all the other disciplines that might affect the quality of the
produced site. Some naïve designers even ignore the inherent differences in the
emerging Web medium by not addressing problems of varying resolutions, color
reproduction, bandwidth limitations, and so on. A Web designer who overlooks
these types of technical characteristics of the Web is like the print designer who

18 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

will not admit that ink bleeds on paper—great Web designers must know and
respect the medium, which includes everything from browsers and bandwidth
to programming and protocols.

Rule: Know and respect the Web and Internet medium constraints.

So, given the environment of Web design, we end up with today’s assortment of
sites, from those that are standards-compliant, lightweight, user-friendly, informational,
and task-rich to those that are browser-specific, unusable, or multimedia bandwidth
hogs touted as “next generation” designs. Yet does this comparison suggest that all
good sites are the same? Not necessarily.

Conformity versus Innovation
Many Web designers feel that design theories and site design categorization increase
conformity and stifle innovation. It is true that rigidly following design templates
such as “top-left-bottom” layout or adhering to such common practices as putting
organizational logos in the left corner of a Web page will limit some page design
choices; designers have misunderstood the reason for these conventions. Consider that,
while it might be possible to design books with triangular pages, few books are done
this way. The cost of production, the awkwardness, and the reader’s unfamiliarity with
such a shape could make a triangular book a risky proposition. Most books are square
or rectangular and have a distinct cover, title page, table of contents, chapter breaks,
and so on. Are these conventions stifling to the book designer? Few would say they
are; a great deal of creativity is still possible within the given constraints of a modern
book. The same should be said for Web design. Graphical User Interface (GUI) design
for software programs has influenced what is considered standard for Web user
interfaces, but new ideas have also emerged. Designers need to respect conventions of
navigation choices, navigation placement, colors, and so on. These ideas do not limit
design; they simply constrain sites to recognizable forms so that users do not find the
sites they visit to be completely different.

Rule: Appropriately respect GUI and Web interface conventions.

All these general “designing theories” set the stage for learning Web design, but when
you apply them to a real site the theories will become much more specific. In short, we
have a lot of ground to cover, so let’s get started.

Learning Web Design
Reading a book like this is useful in uncovering the theories and commonly held
practices of Web design, but more is required if you are to ever achieve mastery of Web
design. Always remember that learning the basics of Web site development is not
necessarily difficult, but do not underestimate the time and effort it will take to become

FO
U

N
D

A
TIO

N
C h a p t e r 1 : W h a t I s W e b D e s i g n ? 19

20 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

an accomplished designer. This is no different from carpentry, painting, writing,
illustration, or just about any skill you can think of. So make sure you set reasonable
expectations for yourself as you learn.

One useful approach to learning Web design is by evaluating the efforts of others.
We can look at what is done right and what is done wrong and try to emulate the good
and fix the bad. Beware, however: it is not always easy to evaluate and compare site
designs. Far too often people compare that which is not comparable. You would never
compare a video game with a word processor, yet both are software programs. Why,
then, do we compare experimental sites with corporate sites, or e-commerce sites with
Web design agency portfolio sites? Far too often, this type of comparison is done in
the Web design community. Sites and books put forward a variety of sites as absolute
yardsticks of great design. Yet, obviously, not all sites will have the same issues as those
that the “excellent design” rules were derived from. What is cool or clever for one site
may be an absolute disaster for another. A great example is the splash page shown in
Figure 1-9. A splash page is the term used to describe an entry page to a site—one that
comes before the actual home or core page of the site.

Figure 1-9. A splash page

Skip Intro

C h a p t e r 1 : W h a t I s W e b D e s i g n ? 21
FO

U
N

D
A

TIO
N

A splash page is often used to set the tone for the site and may consist of an interesting
animation, preloading sequence, or some form of “installation” information in regards
to what technology is required or what the user’s expectations should be. While splash
pages can be effective, very often they are not. The mere mention of the phrase “skip
intro” results in hearty chuckles among many designers. Yet the much maligned splash
page may just happen to have some uses. Some movie and entertainment sites have
found such sequences to be an integral aspect of their sites. Just like a movie without
opening credits, these sites would be incomplete without a splash page. This simple
example illustrates the most dangerous problem facing those learning Web design—
namely, assuming there is only one form of good Web design. Often, it seems that the
only absolute in a fluid discipline like Web design is that there is no absolute.

Rule: There is no form of “correct” Web design that fits every site.

As you read this book, you’ll notice that various rules and suggestions are presented.
These are fairly safe and well thought out, but their real value comes from understanding
the motivation for them, not from blindly applying them. The importance of this
distinction will become apparent once you see that many of the “rules” seem at odds
with other rules. Exhibiting good judgment that strikes a balance between conflicts is
a key attribute of a great Web designer.

A discussion of site evaluations that attempts to cover all aspects of Web design
from taste to technical implementation can be found in Chapter 5, and a checklist
useful during such site evaluations is presented in Appendix B. Yet do not fall into the
trap of becoming a professional critic. Certainly it is important to point out what not to
do by finding flaws in sites or criticizing what is bad, but spending too much time
discussing bad Web design may not be fruitful, particularly when you consider that
there is no accounting for poor taste. It is easy to criticize, but it is much more difficult
to take your acquired knowledge and apply it to a site of your own.

In the final analysis, the best approach to learning Web design is obviously by
doing. Reading about site design theory or reviewing sites simply isn’t a replacement
for building sites of your own. Yet before you set out constructing a site, learn the core
principles of Web design as well as the building and evaluation procedures that will
help you construct your Web sites well.

Summary
Pinning down exactly what is meant by the term Web design can be difficult. At best
we can see that Web design is a multidisciplinary pursuit that consists of five primary
components: content, visuals, technology, delivery, and purpose. However, theories of
exactly how these components should mix together vary from person to person as well
as project to project. Striking a fine balance between form and function, user and
designer, content and task, and convention and innovation is the lofty goal of the Web

designer. The good designer knows that scales should not tip too far one way or another
and tries to avoid the absolutisms of “correct” Web design. Yet not everything in the
field of Web design is so abstract—many specifics can be found. Correct mastery of the
technical medium and knowledge of various details and conventions are mandatory
for aspiring Web practitioners. We begin the discussion of the core aspects of Web
design in the next chapter, which focuses on user-centered design.

22 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Chapter 2
User-Centered Design

23

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

As discussed in Chapter 1, Web sites are often developed from one particular
philosophical reference point. Sometimes this point of reference is content
centered; other times, it is technology-centered. Even more frequently, it is

graphics-centered. However, the real emphasis when building sites should always be
the user. Keeping users in mind and always trying to meet their needs should be the
key focus of user-centered design.

Understanding users needs isn’t easy. While users may share common capabilities
such as memory or reaction time, each user is still a distinct individual. Sites should be
built for common user capabilities, rather than for the extreme novice or power user.
Sites should be accessible to all and be able to account for the differences exhibited by
individuals. Building a usable Web site is challenging, since what is usable to one
person may be problematic for another. The likelihood of building a user-centered site
is greatly improved through user interviews, testing, or even iterative design. Always
be wary, though, of falling into the “user trap.” While a site should always be built for
users, the desires of the site’s creators must also be met, even though these may be
somewhat at odds with the desires of the site’s users. The fine balance of power between
user and designer is not always easily achieved.

Usability
Everyone has a vague idea of what it means for something to be usable. People will talk
at length about how Web sites are supposedly user friendly, intuitive to use, or simply
“usable.” What, exactly, does it mean for something to be usable? First, consider the
concept of utility in connection with two e-commerce sites that sell books and offer the
same basic features. Both allow the user to search or browse for books, read information
on books, purchase books, and track their orders. If both sites have basically the same
features, they have the same utility—meaning they can do the same thing. Given that
the sites have a few basic functions, you may find it easier to perform the same task on
one site than the other. In this case, we can say that one site is more usable (has greater
utility) than the other. Unfortunately, it is difficult to agree on what is usable. Plenty of
people have attempted to characterize what usability is. Consider the following
definition adopted from an ISO standard definition of usability:

Definition: Usability is the extent to which a site can be used by a specified
group of users to achieve specified goals with effectiveness, efficiency, and
satisfaction in a specified context of use.

Consider each piece of the definition. First, note that we should limit the group of
users when talking about usability. Recall that usability will vary greatly depending
on the user.

Next, usability should be related to a task. You should not consider a site to be
usable in some general sense. Instead, discuss usability within the context of performing
some task, such as finding a telephone number for contact, purchasing a product, and

24 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

FO
U

N
D

A
TIO

N

so on. Usability is then judged by the effectiveness, efficiency, and satisfaction the user
experiences trying to achieve these goals.

Effectiveness describes whether or not users are able to actually achieve their goals.
If users are unable to, or only partially able to, complete a task they set out to perform
at a site, the site really isn’t usable. Next, usability is related to efficiency. If users make
a great number of mistakes or have to do things in a roundabout way when they visit a
site, the site isn’t terribly usable. Last, the user must be satisfied with the performance of
the task.

Many other definitions of usability exist. Some usability professionals suggest that
usability can be concretely defined. Maybe it could be computed as some combination
of the completion time for a typical visit and the number of errors made during the
visit. From the user’s point of view, that might not mean much. Users might just be
concerned with how satisfied they were after performing a task. Many usability experts,
such as Jakob Nielsen (http://www.useit.com), tend to have similar definitions more
in line with the ISO one. For example, Nielsen suggests that the following five ideas
determine the usability of a site:

■ Learnability

■ Rememberability

■ Efficiency of use

■ Reliability in use

■ User satisfaction

By this definition, a site is usable if it is easy to learn, easy to remember how to use,
efficient to use (doesn’t require a lot of work on the part of the user), reliable in that it
works correctly and helps users perform tasks correctly, and results in the user being
generally satisfied using the site. This still seems fuzzy in some ways, and conflicts
arise easily in the usability area. For example, a site that is easily learnable by a novice
user may be laborious to use for a power user. Because people are different and come
with different levels of capabilities and Web knowledge, not everyone is going to agree
on what is supposedly usable. A site that is easy to one user may be hard for another.

Rule: There is no absolute description of what constitutes a usable site.

Even without considering user differences, we may find that usability varies
according to how a single user interacts with a site. Usability also often depends on
the medium of consumption—textual content viewed on the screen may be more usable
in a large size, but when it is consumed on paper, it might be better smaller. If you have
tried to read large amounts of small-size content online, you know it can be difficult.
People tend to find that it is much easier to read it on paper. Some experts have suggested
that people read much slower onscreen and tend to scan more than read content online.
In this case, the medium of consumption—screen or print—has affected the usability
of the content. In the case of the Web, the medium, which includes networks, browsers,

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 25

26 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

screen sizes, and technologies like HTML, often contributes in a large way to usability
problems. Throughout this book, the mantra of “know thy medium” should be
repeated over and over.

Rule: Usability depends on the medium of consumption.

What is considered usable often varies between sites. An entertainment site would
have different usability constraints than a commercial one. Further, the user’s familiarity
with a site—as well as how often the user accesses the site and for what purpose—will
affect the site’s perceived user friendliness. Consider how people may feel about the
usability of a site that they have never been to before and are only marginally interested
in, as opposed to one that they frequently visit or must use. They may be much more
forgiving of errors in the site they need to use or have come to use than in the one they
are just casually interested in. In short, a “throwaway” single-time-visit site has different
usability constraints than a site a user relies on day to day.

Rule: Usability depends on the type of site as well as the user’s familiarity with it.

This idea might seem a tad unusual, but it shouldn’t. People often come to
believe inefficient ways of doing things are perfectly acceptable. Be careful about
getting too scientific when talking about usability (measuring page clicks, mouse
travel, errors rates, and the like). How users “feel” about the experience when they
come away—their satisfaction with the site or the task performed—is really the most
important thing. For some people, how they feel may not always be logical or even
totally related to what happened during the site visit. Consider how many people gain
satisfaction from performing difficult tasks; they may feel that way about some sites as
well. Also, people let organizations that they are familiar with outside the Web get
away with things at their sites that a new company can’t, simply because they trust the
name brand of the older firm. On the other hand, don’t assume that the occasionally
illogical user can be used as an excuse to produce a site that is hard to use. A site that
requires the user to learn a new way of doing things, is inflexible, results in errors, or
just doesn’t work will generally result in poor user satisfaction. Improve usability and
users will be happier.

Rule: Usability and user satisfaction are directly related.

To understand how to make something usable, you must understand users. The
next few sections will discuss usability in light of user capabilities and tendencies. The
conclusion of the chapter will revisit these subjects and present a few rules of thumb
that can be applied during Web site design to improve a site’s usability.

FO
U

N
D

A
TIO

N

Who Are Web Users?
Site designers often make the common mistake of oversimplifying or completely ignoring
the capabilities and desires of users. In some cases, concerns about designing the site
with a particular browser or bandwidth in mind replace any serious thought of the
user. Don’t design your site for Netscape—design for people who happen to use the
Netscape browser. Always remember the following very important Web design rule:

Rule: Browsers don’t use sites, people do.

Fortunately, most designers don’t go the extreme of completely forgetting the user,
but often they do oversimplify who the site’s users are. Far too often, sites are built for
some elusive stereotypical Web user—the modem user accessing via AOL, perhaps.
This user is just a nameless person surfing the Internet to be enticed into visiting the
site and performing whatever task the designer desires. The reality is that users are not
automatons with the same capabilities and desires, but individuals with a wide range
of physical capabilities, needs, wants, expectations, and goals. Real Web users have bad
days or can’t always figure things out sometimes, just like the rest of us.

Suggestion: There are no generic people. Always try to envision a real person
visiting your site.

While it may not be possible to create a perfect stereotypical user to design Web
sites for, there are some general things that can be said about users. The first thing is
to think about how today’s typical user interacts with a Web site. Until alternative
browsing environments such as cell phones or PDAs become much more commonplace,
a user of your site is almost certainly sitting at a desk or table with a computer. Users
sit at most a few feet from a monitor and generally use a keyboard and a mouse to
interact with a Web site shown on the monitor. Primarily, they are using their eyes to
access the information on the screen, though sound may also come into play. The
stimulus from the site is filtered, and choice items may be consumed or, more accurately,
committed to short- or long-term memory. The information they consume then may
cause them to react by, for instance, clicking a link or entering data into a form. This
simplified view of a user interacting with a site is shown in Figure 2-1.

Adding in the constraint of mobility, the user’s environment can really change usability.
If you consider a user who is walking while browsing on a PDA or cell phone, you can
see how the environment can affect usability.

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 27

28 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

You can describe how people tend to react to the world around them, including
Web sites, in the following way. First, they encounter some sensation that is stored in
memory. Then they try to understand the sensation, which is filtered both consciously
and unconsciously. Information from past experiences may be called into action,
influencing how they perceive things and possibly helping them decide what to do.
From this perception, they may perform an action—or possibly take no action—that
will later result in more sensations to be interpreted. This simplified action/reaction/
action loop is shown here:

Do not think that people can be simplified to a formula where a stimulus is provided
that results in an action. People are more complicated than that. People are capable of
learning things, and information they encounter is committed to memory that can be
used to modify what they do. Further, people aren’t perfect. Problems may occur, such

Figure 2-1. Typical environment of user interacting with a site

FO
U

N
D

A
TIO

N

as not remembering things properly. Different people perceive stimuli differently. Not
everyone sees color quite the same way, for instance. Despite its simplification, the
model does force designers to consider how people interact with the world—which
includes their Web site. Common user characteristics such as sensation and memory
need to be well considered, at least in a general sense, when building sites.

Common User Characteristics
There are no generic people, but people tend to have similar physical characteristics.
Most people tend see about the same, are capable of remembering things, and react to
stimuli in about the same way. However, remember that people are individuals. There
will be some users who will be able to see much better than others. There will be
people who can memorize hundreds of links and be able to quickly filter them, and
others who will be overwhelmed when presented with more than two choices. There
will also be a few users who react much faster or much slower to information than the
average user. However, as with all aspects of Web design, we should aim first for the
common user and make sure to account for differences. Let’s first consider common
user characteristics such as vision, memory, and stimulus reaction.

Vision
The first aspect to consider about users is how they receive information from a Web
site. The primary way most users consume data from Web sites is visually. They look
at a screen and consume information in the form of text, color, graphics, or animation.
The user’s ability to see is obviously very important. Consider, for example, users with
poor eyesight. Unless the text is very large and the contrast between foreground and
background elements very distinct, they may not be able to effectively interact with the
content of the site. Unfortunately, many sites seem to assume that users have nearly
superhuman vision, as text is sized very small, or a minor degree of contrast is used
between foreground and background elements. A simple example of some of contrast
and sizing problems can be found at http://www.webdesignref.com/visionissues.htm.

In order to avoid troublesome color combinations, designers should be aware of
how color is perceived by the human eye. Three factors affect how color is perceived:

■ Hue the degree to which a color is similar to the basic colors—red, green, and
blue—or some combination of these colors.

■ Saturation the degree to which a color differs from achromatic (white, gray,
or black).

■ Lightness the degree to which a color appears lighter or darker than another
under the same viewing conditions.

Users with vision that is somewhat color deficient are often unable to differentiate
between colors of similar hue when those colors are of the same lightness and saturation.
For example, someone with the most common color deficiency—red-green color

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 29

blindness—has trouble distinguishing between red and green when the red and green
are close in saturation and lightness. Such color vision issues can be troublesome when
you consider the difficulty in distinguishing between red and green traffic lights. Does
the color-deficient user really know when to stop or go? In the real world, probably so,
since the red light is always the top light— but on the Web, things aren’t always so cut
and dried. If links are similar in hue, lightness, and saturation, it might be difficult for
someone to determine which links have been clicked and which have not.

Web page designers can avoid vision issues for users if they follow a few simple
rules. First, make sure not to use text or graphic combinations that have a similar hue.
Instead of using light blue on dark blue, use blue on yellow or white instead.

Suggestion: Avoid using text, graphics, and backgrounds of similar hue.

It is possible to get in trouble when using colored text on backgrounds with similar
saturation. For example, instead of using a grayish blue text on a rose color background,
where both colors are close to achromatic gray, use white text on a rose background, or
vice versa.

Suggestion: Avoid combining text, graphics, and backgrounds of similar saturation.

The most obvious problem is when contrast is not great enough. Designers need to
consider that dark text on a dark background or bright text on a bright background just
may not be readable on all monitors or by people with color or vision deficiency. Instead of
using a light blue text on a pale yellow background, use blue text on a white background.
Or, black text on a white background is always a safe bet. Yellow and black contrast very
well, and, therefore, they are used on road signs that are very important to read. However,
before changing your Web site to this color combination, consider that design shouldn’t be
thrown completely out the window just because of usability concerns.

Rule: Keep contrast high. Avoid using text, graphics, and background of
similar lightness.

A very important use of color in a Web page is link color. In general, you should
really avoid modifying link colors in any way. However, if you do modify link colors,
make sure to avoid using link state colors of similar hue, similar saturation, or similar
lightness to the background or to one another. For example, avoid links that change
from red to pink. For some reason, designers seem to favor such types of combinations.
Instead, consider using links that change from dark blue to pink, similar to the normal
link state. Be careful with the background color, as it may interfere with link readability.
Because of this, white is a good background color. However, if a sacrifice has to be
made with color contrast, make the visited state color the one with the contrast problem,
since these are links the user would generally be less interested in.

Links, as well as normal text, often have problems with backgrounds. In particular,
avoid patterned backgrounds with multiple hues, saturations, or levels of lightness.

30 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Backgrounds like speckles or texture patterns tend to make poor backgrounds; instead,
choose a subtle pattern or simple color.

Suggestion: Avoid using busy background tiles.

To make pages more readable and to deal with users who might have some color or
vision deficiency, Web designers should make sure colors that are meant to distinguish
items are significantly different in two areas (for example, hue and lightness). By following
this rule, if the user is color deficient in one area (for example, red-green hue), he or she
can still distinguish the item by another attribute, such as its lightness or saturation.

Rule: Make sure colors that are meant to distinguish items like links are
significantly different in two ways, such as hue and lightness.

For more in-depth discussions of vision, color, and imagery on the Web, refer to
Chapters 12, 13, and 14.

Memory
Memory is critical to a user being able to utilize a site. If users are unable to remember
anything about a site as they browse it, they will become hopelessly lost, since they will
not be able to recall if they have been someplace before. However, any user’s memory
is far from perfect, and users don’t consciously spend time trying to memorize things.
Users tend to always follow a simple rule: try to do minimal work for maximal gain.
Simple human nature suggests that a user is not going to spend a great deal of time to
figure something out unless there is a potentially good payoff.

Rule: Users try to maximize gain and minimize work.

Of course, what is considered a good payoff will vary from person to person. Some
people like to solve complex puzzles just for personal satisfaction. For them, the payoff is
an intense feeling of accomplishment from solving a problem. However, let’s assume that
users are generally not going to exhibit such behavior; rather, they will only work hard if
they know they need to or if there is a really good payoff that will result. If you want a
blunt or somewhat negative way to remember this idea, just assume users are lazy! More
general rules of thumb about how users tend to act will be presented later in the chapter.
The previous rule is simply presented to tie in with a few ideas about memory.

Now, assuming users will not like or even avoid Web sites that require them to work
too hard, forcing them to memorize things is not a good idea. To illustrate this idea in
practice, consider the interface of an automated telephone banking system. When you
call the bank, you are prompted for your account number and then read a list of items
and corresponding keys to press—“Press 1 for balance, press 2 for transfer, press 3 for
payments... .” If you encounter such a system and are unfamiliar with all the choices,
using the system can be difficult. You may find that you will try to remember a choice

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 31

32 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

presented in your mind until all the choices have been presented. If too many choices
are presented, you might not be able to recall the range of choices or you might even
forget which item you chose and have to listen to the choices again. Now, if the same
information were presented on a small text menu, it would be much easier to find the
item. You would just look over the list and pick the appropriate one. The voice example
requires you to recall the choices, which is very difficult. In general, it is easier for users to
recognize choices than to recall them. Because users who make mistakes will then tend to
favor easier-to-use systems, we should always try to rely on recognition over recall.

Rule: Recognition is easier than recall.

There are plenty of examples of how recognition is easier than recall. Students
generally consider a multiple-choice test to be easier than a fill-in test. You must
study, of course, for each (assuming the tests are created correctly), but the amount
of memorization required is much higher for the fill-in test. The multiple-choice test
doesn’t require the depth of memory because you will see the answer and recognize
it (hopefully) with only a minimal amount of “recall effort.”

It turns out that many of the rules and suggestions presented in this book ultimately
are related to this idea of recognition being easier than recall. For example, consider the
idea of modifying link color. If we turn off link coloring so that links never look visited,
we are forcing users to recall whether they have selected a certain link before. If the
links do change color, users simply have to recognize the different color to know they
have been there before.

Rule: Do not make visited links the same style or color as unvisited ones.

Another important aspect of memory to consider is that it isn’t perfect. Users are
not going to memorize things easily and often will have only partial memory or a
flawed memory of something. Just as in real life, repetition will lead to improved
memory. For example, frequent users or power users may actually rely on memorization
of the location of objects on the screen, but most users will have only vague memories of
how link choices or pages are organized. However, when people are memorizing things,
it is known that image memory is one of our most robust forms of memory. It is far
easier to retrieve pictures or even words or ideas that evoke pictures than it is to
retrieve abstract ideas without visual cues from memory. It is often far easier to remember
a person’s face than it is to remember the person’s name. Given that users will generally
find it easier to remember visuals, it would be wise to make pages that should be
remembered visually different from the rest. For example, in site navigation, a home
page serves as a safe zone for a user. Using a distinct image or a different color is
important in making the home page memorable. However, do not assume the user to
have perfect memory—don’t make the home page only subtly different from the other
pages or expect the user to notice or memorize text items.

Suggestion: Make pages that should be remembered visually different from the rest.

FO
U

N
D

A
TIO

N

Another aspect of memory that is important to the usability of Web pages is the
amount of information a person can recall from short-term memory. Let’s return to the
automated phone banking system example. When users hear the choices, they have to
memorize them. If too many choices are presented, they might forget an item. This is
an example of short-term working memory. In a sense, we need a little scratch space in
our brain to remember something for a few moments. This memory does not hold a
great number of items and is highly volatile. Cognitive scientists have long been interested
in short-term memory and have conducted many experiments where participants are
presented random objects or words and asked to quickly look at them or to make
choices from them to test short-term memory. What is found is that participants are
able to recall a range of seven items, plus or minus two, from short-term memory.
What this means is that when given five to nine items, the user will be able to recall all
the items for a short period of time and have them equally present in mind for choosing
among them.

The implication of users being able to remember quickly 7 (±2) items on Web
design may or may not be profound. If you present a user with a set of links, shouldn’t
you limit the choices to from five to nine? It would seem you should—if you want the
user to choose from the choices “fairly.” For example, if you present a list of dozens of
what may appear to be randomly ordered links to a user, you will find that the user
will have a tough time picking from them. You may notice that users will tend to favor
extremes. In practice, the author has seen this happen on Web sites. For example, a
large music site faced a problem in that bands listed in the site having names beginning
with A or Z had a much higher download rate than anything else. What was happening
is that users had little knowledge of the bands, so they would scan the lists and—
unless something jumped out at them—they tended to choose the first or last items in
the list to see what happened. They really couldn’t remember all the names of the
bands that were interesting as they went along—there were just too many of them. If
you want users to easily choose from a list of things that are equally important, you
should limit your set of choices to between five and nine items.

Suggestion: Limit groups of similar choices such as links to between five and
nine items.

However, do not go overboard with the five to nine items idea. Some usability
experts, in fact, believe this rule has no place on the Web. This seems unwarranted,
given the support for the rule both from long-term human capabilities studies and
from GUI practices, which tend not to put 100+ choices on a single screen. However,
there is some merit to the idea of not putting too much stock in the 7 (±2) rule. Consider
that some designers might be tempted to use this rule to suggest that pages should
have only five to nine links on them. However, this could be rather limiting if you have
a lot of content. Users can focus on items progressively. Consider, for example, being
presented five to nine distinctly different clusters of links on a page. Maybe the clusters
are labeled and colored so the user chooses a cluster after looking at each. Once in the
cluster, there are five to nine links. In this sense, there might be as many as 81 links on
a screen, and the user will still be able to use them easily. When looking at well-designed

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 33

TE
AM
FL
Y

Team-Fly®

pages with numerous links, you hopefully will see fewer than 100 links and notice that
the clustering used an organization method, such as alphabetical, to avoid memorization.

Memory rules of thumb can also be applied to clicks. It appears that users are
able to remember about three pages presented sequentially. Anything more than that
and there tend to be gaps in memory. For example, as users click through dozens of
pages, they will probably remember a variety of pages but not all sequentially. The
memorable pages may be visually different enough to trigger recall. Usually, such
distinguishable pages are termed landmarks—the most obvious landmark page in a site
being, of course, the home page. However, if you want users to remember a path, they
tend to remember only about three page views sequentially—and maybe fewer if the
pages look nearly identical. Therefore, you should not expect a user to memorize a
sequence or path longer than three items without repeated use. The number of markers
showing location and path in today’s sites and the user’s continual reliance on the
Back button and browser’s history mechanism demonstrate how tenuous sequential
memory tends to be. Because of these memory constraints, we tend to see many sites
trying to reach content within three clicks or complete transactions in as few screens
as possible.

Suggestion: Aim for memorization of only three items or pages sequentially.

This is by no means a complete discussion of memory, but it does serve to remind
Web designers that, in order to make a site easy to use, we need to limit the amount of
memorization going on. The less effort the users expend trying to recall what sequence
of buttons they pressed or what choices they may have seen, the better.

Response and Reaction Times
If you have watched people browse around Web sites, it is obvious that some people
are faster than others. Some users appear to cut quickly through page content and make
choices rapidly, and are frustrated with even the slightest download delay. Others
struggle to keep up and seem to have the patience of Job when it comes to waiting for
pages to load. However, over time you’ll come to find that people’s patience for Web page
loading will go away, particularly as they become more frequent users. Consider, for
example, how long it takes for users to become annoyed at an automated teller machine
that has not returned their money to them. The entire transaction may only take a few
seconds, but customers are quickly annoyed. But when automated tellers first came
out, a wait of even 30 seconds to a minute seemed tolerable compared to waiting in a
long bank line.

Tip: Users tend to be more patient with something they are unfamiliar with or
that is a novelty.

34 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

We see this novelty/patience dynamic on the Web all the time. Sites that could be
considered single-visit sites, like movie promotion sites or designer portfolios, get away
with huge download times. These sites could be termed single-visit or “throwaway”
sites, since the user is unlikely to return. Splash pages, excessive animations, and long
downloads are less annoying to a user who hasn’t seen them before, but patience wears
thin on return visitation. Consider that even when a splash page has a “skip intro”
button, a return visitor will still be frustrated with having to even make such a choice.
The very fast loading design of successful, heavily frequented sites, such as portals or
e-commerce sites, shows that patience wears thin. The needs and desires of the first-time
visitor, who in some sense could be considered a novice user of the site, are different than
the frequent or expert user of a site. However, users do not have infinite patience, and they
are getting more and more impatient as they get used to what facilities the Web, or a
particular site, provides. In general, we find the following rule to hold true:

Rule: The amount of time a user will wait is proportional to the payoff.

The better the payoff, the longer the user will wait. Users who get something for
free or who are stealing some desirable piece of software or music seem to be willing
to wait an eternity. Consider users who illegally download software, songs, and
movies from the Internet with a modem. They’ll literally spend hours searching for and
downloading songs when they could have gone out, worked at a near-minimum-wage
job, and earned enough to purchase an entire CD in a similar period of time. Of course,
this imbalance will certainly change with the increase in bandwidth—much to the
annoyance of the music industry. But it remains true that if you are going to expect a
user to wait for a page to load, there better be something useful there.

The amount of time users will wait will vary based on the individual user, his or
her personality, and the potential benefit of waiting. However, there are some things
we can say about response and reaction times for users in general. Some usability experts
(for example, Jakob Nielsen, www.useit.com) relate that studies about response times
report similar results. Common response times and user reactions are summarized in
Table 2-1.

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 35

Time Elapsed Probable User Reaction

0.1 second When something operates this fast or faster, it appears
instantaneous or nearly instantaneous to the user.
Unfortunately, due to bandwidth and technology
constraints, few Web pages will exhibit this level of
responsiveness in the near future.

Table 2-1. Response Time and User Reactions

36 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

When it comes to the Web, there is generally little chance of going too fast for the user.
Most of the time, it takes more than a few seconds even on a broadband connection to
download something. However, be careful once something like a Flash file is downloaded.
If the user has a faster processor than you, the program may end up running much faster
on their system than expected, so much so that the user might not be able to keep up. On
occasion, you may notice how animations used in some Web pages appear to travel at a
rate only a superhuman could read.

Tip: Be careful with overly fast response times of downloaded objects.

In most cases, a Web site will probably not outpace the user; in fact, it may be much
too slow for the user’s liking. Because users may get impatient, you need to make sure
that they are given some indication of the progress being made. The browser itself
actually gives a great deal of feedback about the progress being made. When loading a
page, a browser will generally convert a cursor to a wait indicator (such as an hour
glass), spin or pulsate a logo (generally in the upper-right corner of the browser),
provide a progress meter towards the bottom of the screen, and display messages
about objects being loaded in the status bar at the bottom of the screen. The Web
designer will design pages to provide even more feedback. For example, the designer
may build pages so text loads first or pieces of the page are loaded one at a time. Often,
designers will cut images up into multiple pieces, so the user will see a little bit loaded at a

Time Elapsed Probable User Reaction

1.0 second When something reacts in around a second, there is no major
potential for interrupt. The user is relatively engaged and not
easily distracted from what is happening on the screen.

10 seconds This is suggested to be the limit for keeping the user’s
attention focused on the page. Some feedback showing that
progress is being made is required, though browser feedback
such as a progress bar may be adequate. However, do not
be surprised if the user becomes bored and decides to move
on to something else.

> 10 seconds With a delay this long, the user may actually go about other
business, look at sites in other windows, talk on the phone,
and so on. If you want users to continue to pay attention,
you will have to give them constant feedback about progress
made and some sense of when the page will be finished (as
when downloading software, the browser lets users know
how much time is left to complete the download).

Table 2-1. Response Time and User Reactions (continued)

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 37

time. Also, designers often use images that load in a progressive fashion from an
unclear one to a sharp one so that the user is able to get a general sense of a complete
fuzzy picture early on and watch its loading progress, if necessary. Figure 2-2
illustrates all these progress indicators in action.

For page loads that only take 10–20 seconds, the feedback given by the browser and
incremental loading of a page should be enough to let the user know something is going
on. However, when loading takes longer, you should give the user more information.
For example, many sites that use binary technologies like Flash use a special loading
page complete with a status bar showing progress. Such progress meters can also be
created using technologies like JavaScript. However, don’t bother with a progress bar

Figure 2-2. Browser and site feedback shows progress of download

Images in layout cut
up, load seperately

Hourglass icon
shows sownload
in progress

Progressive
images load
incrementally

Custom status bar
can be added to
display progress
of page loading

Browser status indicator shows percentage of
file currently being downloaded

Logo spins

or other forms of feedback unless load times are around 30 seconds or more. (With the
proliferation of broadband Internet access, this time will certainly diminish; even now,
many broadband users are likely to get impatient around 20 seconds or less, and in due
time even 10 seconds may seem like a long wait.)

Rule: When response times such as page loads take more than 30 seconds, try to
provide your own feedback to the user, such as a load-time progress bar.

If you are building a static site, there are some simple tricks to let the user know
about a longer wait for an object. For a very large image download, besides interlacing
the image or having it show up progressively sharper, it is also possible to use a trick
with the tag’s lowsrc attribute. You could load a low-resolution version of an
image first, or even a graphic message stating the image is loading, like so:

<img src="hirezpicture.jpg" lowsrc="lowrezpicture.jpg" height="1000"

width="1000" />

Or, you might have a message display instead. Some designers have even experimented
using the alt attribute of an image to show file size or a loading message, like so:

<img src="hirezpicture.jpg" alt="Loading picture of Mars (800K)"

height="1000" width="1000" />

Of course, it is probably better to reserve the alt text for its primary purpose—
providing an alternative rendering for users without images. Another HTML or CSS
trick that can be used to let a user know about a long download is to use a background
image with a message on it that says a page is loading, which is eventually covered up
by content that is being downloaded. Other forms of loading screens can be created in
both JavaScript and Flash. An example using these techniques is shown in Figure 2-3.

When attempting to create a site that appears responsive to a user, remember that
time is what matters the most. How users actually perceive a page loading will not
necessarily equate to the bytes delivered. A user who isn’t paying for bandwidth isn’t
going to care if 1K or 100MB is delivered, as long as it appears fast to them.

Rule: Time matters more to a user than bytes delivered.

Because time is so important to a user, it is important to take advantage of every
second. Consider that the general way users navigate the Web is to look at a page scan
to find an appropriate link, click, and then wait for the page. Once the page loads, they
then look at the page to find the next link or spend time consuming the content. Notice
the time is split between user “think time” and download time. The reality is that for
most users, the think time for navigation pages is pretty small compared to the wait

38 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

FO
U

N
D

A
TIO

N

time. For content pages, however, the user may spend a great deal of time looking at
the page. One way to improve responsiveness is to take advantage of the thinking time
by downloading information to be used later on. This is often called preloading or
precaching. Assuming you are able to preload most or all of the next thing to be looked
at by the user during the think time, the next page load time could be significantly
reduced. Somewhat like the magician who has the result of a trick set up in advances,
downloading during idle moments can produce a nearly mystical appearance of speed.

Suggestion: Improve Web page response time by taking advantage of user “think
time” with preloading.

A variety of browser accelerator tools have been built in an attempt to improve
Web responsiveness by preloading pages linked from the current page. The only
problem with this approach is that many pages have so many outbound links that
it is difficult for the browser to predict the page the user will load next. The best
way to improve the odds of caching the correct “next page” is to look at the common
paths users take through a site by examining a log file and then putting in code to
preload pages along these paths. However, this just improves the odds. The only time
you can really guarantee that preloading will improve things is when the user is
navigating a linear progression of pages.

The responsiveness of a Web site is a key aspect of a user’s feeling of the site’s usability.
Beyond loading of pages, consider that time is important to a user even after a page has

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 39

Figure 2-3. Let the user know a long download is in progress

Alt text or background image
showing status

loaded. For example, if a page loads quickly but users can’t figure out what is going on
in the page within about ten seconds, they can become just as frustrated as waiting for
a simple page to download. Aim for what might be called the “ten-second Web page.”
A ten-second Web page is one where the user gets the gist of the page in about one
minute and can decide after that whether to consume the content more seriously or not.

Tip: Aim for a ten-second limit for the user to determine the basic gist of a page’s
content or purpose after loading.

Dealing with Stimulus
Users are constantly being bombarded by stimuli from our sites. The text, the links, the
graphics, animation, even sound all create a cacophony of information that the user
tries to distill meaning from. Because of the continual stimulation, we need to filter out
some of the data, and we do this both unconsciously and consciously. Three primary
ways it is thought that people filter sensation data include thresholds, something dubbed
the “cocktail party effect,” and sensory adaptation.

Thresholds
Rather than deal with every minute change that happens, we tend to notice only
something that exceeds a particular threshold. For example, if on a Web page an object
moves very slowly—say a pixel every few seconds—we may not notice at first because
the speed of its movement is below our absolute threshold. However, over time we
may notice the movement. Thresholds are tough to predict. Depending on their
psychological state, users may be able to detect something under normal conditions;
but, if they are tired or distracted, they may not be able to notice the difference between
two similar but different colors or fonts that have been used to separate navigation forms.

When designing pages, designers should always consider thresholds. Thresholds
suggest making objects or pages noticeably different from each other so that users will
be easily able to understand their difference. For example, consider if link and text
color in a page are too similar. The user may have to carefully inspect underlined text
to make sure that it is a link and not just underlined text, because text colors are only
subtly different. In other words, they might not always be sure what’s a link and what
isn’t without putting in at least some degree of effort. Designers should strive not to
force the user to spend time and effort trying to interpret the differences between objects
on a page, since it both is frustrating and takes time away from the main goal of getting
the user to consume the content or perform a task. Consider the threshold effect when
trying to differentiate objects on a page.

Suggestion: Make page elements obviously different if they are different.

40 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Things need to be just different enough for the user to notice. If the designer is too
subtle, however, the user may not be able to tell. And if you go overboard, the design
may backfire. It would be easy enough to always put site buttons in bright colors and
content in dark colors, but this could be annoying to the user. The next two ideas show
how users tend to filter out information when being bombarded with excessive stimuli.

Cocktail Party Effect
The cocktail party effect describes how people are able to concentrate on important
data when being bombarded by nonessential stimuli. People at a cocktail party can
concentrate on their own conversation despite being in a room filled with numerous
other conversations. Don’t dismiss the other conversations as background noise. If the
listener stopped and focused on another conversation, he or she probably could hear
certain parts of it. However, the threshold effect is also in play during a cocktail party.
If the person you are trying to listen to speaks too softly, if the proximity of other
conversations is too close, or if the volume of other conversations is too loud, the
listener will be overwhelmed by the outside stimuli.

Web page designers should consider that, as in cocktail party conversations, the
user might want to concentrate on only a small portion of the information on a page.
The rest is background noise that has to be filtered out. If there is too much going on,
users will not be able to effectively concentrate on what they want and become frustrated.
Therefore, we should try to section things off just as in a cocktail party, so the user can
effectively concentrate. A good site has lots of choices but provides the visitors the
ability to focus on what they want to see. Toward this end, we might consider grouping
similar items together and separating groups of items with a lot of white space. Also,
within text, we might convey important points in a bullet list or a pull quote, or highlight
them with a background color. Always strive to limit noise—namely, competing
objects on a page. If you don’t, and the site is like the cocktail party that gets too loud,
users won’t be able to filter out information that isn’t important to them.

Suggestion: Limit page noise and segment page objects so that they don’t compete
so much visually that users are unable to focus on what they are interested in.

Thresholds and the cocktail party effect present a balance between having too
little of a difference and too much. Don’t become so concerned with trying to get an
absolutely perfect balance of stimuli—just try to get it about right. You may consider
erring in favor of a little too much, since people are very adaptable, as shown by the
next cognitive science idea.

Sensory Adaptation
Sensory adaptation occurs when users become so used to a particular stimulus that
they no longer respond to it—at least not consciously. Think of the watch on your
wrist. You probably don’t notice it normally. Take the watch and put it on your other

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 41

wrist and you’ll notice it for a while, but eventually you’ll get used to it. That’s sensory
adaptation. Life is filled with things that people adapt to: the ticking of an alarm clock,
the clothes you wear, the loudness of the music coming from your car stereo, and so
on. Life on the Web is no different. Users adapt to Web stimuli quickly. That continually
animated GIF that grabbed the user’s attention once or twice quickly fades into the
background.

Probably the most interesting sensory adaptation is the rise of so-called “banner
blindness.” People are becoming so used to the shape and location of banners that they
are just tuning them out. Experiments as well as click rate studies show that people
don’t look at banners terribly attentively. Animation added to the mix improved things,
but it, too, has succumbed to sensory adaptation. Rich banner ads complete with sound
and complex interaction are being experimented with to see if they can regain user
attention. And we have pop-ups that are quickly swatted away by users as fast as they
spawn. The bottom line is that users will decide what they want to focus on. Designers
may want users to focus on something such as a banner ad or a download button, but
in order to grab their attention, they will have to continue coming up with new tricks
as users adapt to stimuli over time.

Rule: Sensory adaptation does occur on the Web. If you want a user’s full attention,
you’ll have to vary things significantly and often.

Sensory adaptation suggests that the numerous fonts, animations, and colored regions
on a page may go unnoticed over time. This doesn’t mean that we should completely avoid
using things to stimulate the user, but we should not be as reliant on them, since they lose
strength with use. Sensory adaptation really suggests that, in order to get a user’s full
attention, we have to “wake them up” with something different. A little bit of surprise can
be useful to make the user pay attention. However, be careful with this idea. In general,
users will want to peacefully go about their business and will expect pages to look and act
consistently. We shouldn’t disturb them, but should let them focus on the task or content at
hand. If you bombard the user all the time, they will feel uncomfortable because of the lack
of consistency, and they may become so annoyed that they leave.

Movement Capabilities
Once the user has absorbed information they have been provided, they will
eventually react to it and make some choice. While someday voice interfaces may
become commonplace, today’s Web sites are generally manipulated using the
keyboard or mouse. Therefore, we should always attempt to minimize user efforts
using these devices. Few sites consider that users may prefer using the keyboard or
arrow keys, instead of a mouse, to move through choices in a page. While many form
pages are optimized for quick navigation via the keyboard, other pages may not be.

42 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Try to optimize keyboard access for all pages in a site, not just form pages.

Consider also the work users perform moving their mouse around the screen.
Moving the pointer around the screen takes effort, and a button or link press may take
up to a few seconds if a user has to move a long distance or focus on clicking a very
small button. In fact, the time it takes a user to press a button is governed by something
called Fitt’s law (Fitts, 1954). Fitt’s law basically states that the smaller the button to
press and the farther away it is, the longer it will take to perform the action. This seems
logical, since users tend either to overshoot small click targets because they moved too
fast or to take extra time to clock the button more carefully.

Fitt’s law would suggest that to improve speed of use and thus efficiency, we
should first bring things closer together. First, we might consider reducing the amount
of mouse travel between successive clicks. Notice how efficient a wizard-style interface
is, since after clicking “Next” the successive “Next” button tends to be directly under
or very close to the current mouse position. There is no reason we couldn’t apply this
to navigation elements. Try to keep successively clicked buttons close together. Navigation
bars tend to encourage following this plan, anyway.

Rule: Minimize mouse travel distance between successive choices.

However, with the Web, we can’t always be sure that the user will press another
button within the page as their next choice. In fact, quite often the user may move to
a browser button such as the Back button rather than rely on internal site navigation
nearby. Given some users’ preference for the browser Back button, designers should
try to minimize the mouse travel to the Back button. The question is, travel from
where? We should assume that the user will probably hover over the navigation bar
or near the scroll bars most of the time. While we can’t decrease the distance from the
scroll bars, which will tend to be far away from the Back button in the upper left of
the screen, there is no reason that we should not consider putting primary navigation
buttons on the left or top portions of the screen. Doing so will minimize the distance
from a primary selection area and the heavily used Back button, thus reducing mouse
travel and increasing the speed at which the site can be used.

Rule: Minimize mouse travel between primary page hover locations and the
browser’s Back button.

Fitt’s law would also suggest that we make clicking targets larger, particularly if they
are far away. Some designers find this design suggestion troublesome because it suggests
making big huge buttons, which would take up a great deal of screen real estate as well
as potentially making the site look like it was designed primarily for novice users. Big
buttons also bring too much attention to the interface. However, buttons should be made
big enough for users to mouse to them relatively quickly—and spaced out well enough
so they are able to click them without accidentally click an adjacent choice.

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 43

TE
AM
FL
Y

Team-Fly®

44 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Make clickable regions large enough for users to move to them quickly and
press them accurately.

General user capabilities are not all that we need to consider when discussing what
ideas affect usable Web design. We must also consider the world the user inhabits and
the user’s general and unique characteristics and experiences.

The User’s World
People truly are the centers of their own universe, in the sense that they perceive
everything initially from their own point of view. Consider the idea of how a user
might perceive the Web site shown in Figure 2-4. The user lives in the real world.

Users are affected by their environment: the physical conditions of their location,
the noise around them, the visual quality of the monitor they are using, and so on.
From their world, they access your Web site via the medium of the Internet and the
Web, which includes things like network connections, servers, browsers, and so on.
Once on the Web, they navigate about and visit sites. If they decide to actually interact
with a site, they finally begin to consume or react to the content presented.

The presentation and navigation layers in Figure 2-4 could be interchanged considering
that a user’s ability to navigate Web space is greatly affected by the way it is presented.

Suggestion: Always remember that you need to bring a site into the user’s world,
not the other way around.

The preceding suggestion is an important one. Designers will naturally believe that
they have set the rules for their sites and that users are just visitors. While this may be
true, users tend to interpret things from their own perspective. Each user will have his
or her own opinions, capabilities, environment, and experiences, all of which will
influence how the site is interpreted. A fine balance between what the user thinks and

Figure 2-4. The user’s universe

FO
U

N
D

A
TIO

N

wants and what the designer thinks and wants has to be struck. This will be discussed
in more depth later in this chapter.

User Environments
The user is heavily influenced by what could be called their environment of consumption.
For example, consider a user in a public place such as an airport using a public Internet
kiosk to remotely access their e-mail. The user is standing up—it might be crowded
and noisy—waiting to dash off to the plane. Because of this environment, the user may
not be tolerant of long waits, excessive menus, or anything that slows down the task at
hand. Further, due to the noise, the user may not be able to always hear sound cues.
Last, because the user is standing up, the amount of time they might spent during the
whole online session will certainly be significantly less than a normal session at the
office. When designing for users, always think about where the user is accessing the
site from. Table 2-2 details some of the possibilities.

The environment will greatly affect the user’s view of what is “usable.” For
example, color combinations that contrast acceptably indoors might be troublesome
outdoors. Designers must take into account the environment of consumption.

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 45

Location Characteristics

Office Generally computer-based access
Single user
Relatively quie
Should be primarily work or task focused, at least during primary
work hours
Often high speed

Home office or
bedroom

Generally computer-based access
Single user
Noise level variable, but often quiet
Purpose may be work or play
Access could be anytime
Speed of access varies dramatically from modem to high speed

Home living
room

Access may be from set-top box or video game console
Distance from device may be farther
Use may be less input oriented (reduced typing)
Noise level variable
May be group-oriented access or single user
Access probably more entertainment related
Printing may not be an end result

Table 2-2. Common User Environments Characteristics

46 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Location Characteristics

Cybercafe Probably computer-based access
Cost may influence usage
Noise level variable
Use is probably entertainment or research
Speed of access probably high
May be group-oriented access or single user
Security or privacy may be a concern

Public kiosk Cost may influence usage
Noise level variable
User may be standing
Use will be less input oriented (reduced typing)
Use is probably task oriented, focused on e-mail or access to very
important information
Access to location-related information may be a high priority
Security or privacy may be a concern

Car Probably noncomputer-based access (PDA or smart phone)
Use will be less input oriented (reduced typing)
Focus will not be primarily on the access if user is the driver
Use is probably task oriented or limited to very important information
Access to location-related information may be a high priority
Speed and quality of access is probably low

Mass transit or
plane

Probably either noncomputer-based access (PDA or smart phone)
or a laptop
User may be standing or sitting
Use could be entertainment or work
Access to location or time-sensitive information may be a high priority
Speed and quality of access is probably low
Security or privacy may be a concern

Outside Probably noncomputer-based access (PDA or smart phone)
Screen glare could be a significant problem
Use will be less input oriented (reduced typing)
User may be standing or moving
Noise level variable
Use is probably task oriented or limited to very important information
Access to location-related information may be a high priority
Speed and quality of access is probably low

Table 2-2. Common User Environments Characteristics (continued)

FO
U

N
D

A
TIO

N

Rule: Account for the characteristics of the probable environment in which the
user will access a site if possible.

General Types of Users
There are three levels into which users can be classified to reflect their knowledge of
how to use a Web site: novices, intermediates, and experts or power users.

A novice user is one who may have little knowledge of a site or even of how the
Web works. A novice user will need extra assistance and may prefer extra clicks with
extra feedback to accomplish a simple task. An example of an interface tuned to novices
would be a wizard that automates some common task.

At the other end, power users are those users who understand the Web or a site
very well. Power users should be considered in two distinct categories: frequent and
infrequent visitors to the site. A power user who frequently visits a site to utilize
advanced features such as sophisticated searching, may directly form their own
URLs, and memorize the position of objects within a page or the site. A power user
who is an infrequent visitor to a site may not be familiar with the site’s structure but
will expect certain facilities, such as search, to be available to navigate a site. Power
users will need relatively little handholding and will desire to click less and consume
more. Obviously, the distance between a power user and novice user is great. A site
geared too much toward one audience or the other will certainly annoy—the power
user if the site has been dumbed down, or the novice user if the site is geared mostly
toward power users.

The third group of users, the infrequent intermediate user, is actually the largest
category of users on the Web. Most users are infrequent intermediate users because
they pretty much understand how the Web works, but may not know how to navigate
a particular site in a very efficient manner. Infrequent intermediate users do not
continually revisit the site; if they do, they will probably eventually become a power
user. Because site usage tends to be dominated by intermediate users, you may
consider designing the site for the capabilities of these users. However, doing so may
lock out novice users and bore or restrict advanced users.

The best approach to building a site for basic user groups is to build a site that
provides features that cater to all users. Software applications do this, so there is no
reason a Web site cannot. A software application may provides keyboard shortcuts and
other features, such as customizable interfaces, for power users while also providing
icons and menu systems for intermediate and novice users. Help systems and wizards
are other features mostly geared toward the novice user. A Web site could provide
features like a clean URL system, advanced search facility, and personalization features
for an advanced user. A site with consistent navigation bars that have button labels
similar to other sites (About, Products, Careers, and so on) is very friendly to novice

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 47

and intermediate users, and it can also have dynamically built “bread crumb”–style
navigation lines, popular with advanced users. Last, a Web site could provide help
systems, maps, and alternative forms of access such as simple text links for the novice.

Suggestion: Aim to create an adaptive Web site that meets the requirements of
novices, intermediates, and advanced users.

In the perfect world, there is no reason that a Web site can’t be built to meet the
needs of all general user groups. However, time and cost constraints may limit the
number of features that can be added to some Web sites. In such cases, it is probably
best to aim for the largest group of users: the intermediate. This may lock out some
novice users unable to figure the site out. There is an argument to be made for aiming
at the lowest common denominator in a user. The problem with this is that if you
start building only for the complete novice, you can quickly alienate users who know
what they are doing.

Suggestion: Design for the intermediate user if an adaptive Web interface
is not possible.

Even if an adaptive interface is built, there is bound to be a user who doesn’t
understand or like the site we have built.

Tip: Remember there will always be users who don’t like or get a site, no matter
how good it is.

Users are individuals with different tastes and opinions. They will have different
experiences, capabilities, personalities, age, gender issues, and cultural issues. Some
individuals may have disabilities that prohibit them from using a Web site that most
users find easy to use. Users bring what they know from the real world and from other
Web sites to your site. They may expect to use symbols from the real world, such as
those for navigation. However, they may also bring knowledge of how Web sites work
that they gained from visits to many other sites. Knowledge of how traditional
software applications work may also be brought into play. Remember, as mentioned
early in the chapter, that users bring the site into their world—they don’t visit the
universe of your Web site. Your site is just a speck in an overall universe of Web sites.
In fact, it could be said that most of the time users are not at your site. Some call this
the 99 percent rule, since 99 percent of the time, users are probably not using your site.
You should, therefore, make sure that your site follows any conventions and meets
expectations set up by other sites.

Rule: Users bring past experiences with the world, software, and the Web to your
site. Make sure your site meets their expectations.

You need to make sure that your site acts like other sites or software users have used
and meets their general expectations. Remember the rule of consistency: if you do things
differently from how everybody else does, you can’t rely on a user’s past knowledge

48 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

and you force the user to learn something new. Of course, the challenge with real users
is that expectations will vary greatly based on their experience. However, try to understand
that there are some common conventions from GUI design or Web sites that users are
probably familiar with.

GUI Conventions
Graphical user interface (GUI) design has long followed a variety of standards
developed by operating system vendors such as Microsoft and Apple, or industry
groups like The Open Group (http://www.opengroup.org). These conventions are
obvious in most software applications. Consider the screen snapshot of Microsoft
Word shown in Figure 2-5.

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 49
FO

U
N

D
A

TIO
N

Figure 2-5. Software applications tend to support common interface conventions

Minimize box

Maximize box

Close box

Scroll Bar: Invariably
on right side

Main content area: Largest area of application interface; menus and other
interface minimized in order to focus on content

Filename/Application label

Common menus:
menus at trop
of screen

Notice that in the interface in Figrue 2-5 there are common menus like File, Edit,
View, and Help. Many applications have these menus. These primary menus are
always located at the top of the screen, and the Help menu is always the far-right
menu. The Close box is always in the upper-right corner, and other window
controls such as Minimize and Maximize are there as well. The primary toolbar in
software applications tends to be at the top of the application, and the bottom of the
screen is reserved for less important controls and status messages. The functions of the
application can generally be performed in multiple ways, such as using push button
icons, text menus, keyboard shortcuts, and wizards.

GUI conventions are very useful to know, particularly when designing forms and
other interactive elements of a site. In later chapters on implementation, we’ll discuss
the use of GUI widgets and the difference between Web and GUI interfaces. The Web
has not been able to develop conventions that are as well understood as those for software
applications. There are two main reasons for this. First, software applications are often
defined significantly by the operating system they are written for. Microsoft has great
influence on how applications written for Windows should work. Apple can dictate
conventions for Macintosh software. Second, the ability to author and distribute software
applications is restricted to a much smaller group of people than in Web design. Many
Web designers lack any formal understanding of GUI conventions and may actually
shun them in favor of artistic freedom. This struggle is fortunately changing, as the focus
on user-oriented site design becomes more popular.

Web Conventions
While Web sites may not exactly follow GUI usability conventions, they do have a
loose set of conventions. Straying from the way that most Web sites work is a dangerous
idea. Unless you happen to be running an important day-to-day use site like an internal
site, a heavily trafficked site like Amazon, or a portal like Yahoo!, you will probably not
be able to introduce any conventions of your own. In fact, if users come to expect that a
company logo in the upper left-hand corner of the screen will return them to the home
page, you had better do this in your site. If you don’t do this, you may surprise the user,
which could cause a negative reaction. Forcing the user to learn a new idea also could
cause a negative feeling.

Rule: Do not stray from the common interface conventions established by heavily
used sites.

Web conventions, unfortunately, are difficult to pinpoint. A few well-known ones
are summarized in Table 2-3.

50 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

FO
U

N
D

A
TIO

N

Figure 2-6 illustrates some of the common Web conventions used in a page within
the DemoCompany site.

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 51

Convention Description

Upper-left corner logo
signals home page return.

Users tend to expect a corporate logo to return them
to the home page. Most sites put this in the upper-left
corner. An explicit Home button, as well as a ToolTip,
is a good idea.

Text links are repeated
at the bottom of a page.

Most sites like to repeat text navigation at the bottom
of a page, particularly if top or side navigation is a
graphical form.

Back-to-top link used on
long pages.

While sites will provide text navigation to move to
the next page, a back-to-top link or arrow is generally
included at the bottom of the page to quickly jump
the user up the page.

Special print forms used
for heavily printed pages.

Increasingly, sites are providing special printer-friendly
versions either in a stripped HTML form or even in an
Acrobat form. This is most commonly found on sites
that distribute large volumes of content.

Shopping cart in the
upper right.

Typically, the shopping cart icon or link is found in
the upper-right corner of the screen.

Clickable items are blue
and underlined.

Fight it all you want, but most text links are blue and
underlined. While many users may be able to understand
nonunderlined links or different colors, the best way
to signify that something is pressable is making it
blue and underlined. Be careful with creating logos or
other content that are blue, as users may actually try
to click on it.

Secondary navigation
elements such as a site
map or search are
presented separately
from sectional navigation.

Because site maps, site indexes, help systems, and search
facilities are navigation aids, most sites have tended to
put less emphasis on links to them. However, given the
rise in popularity of search features, content-rich sites
may emphasize search facilities.

Table 2-3. Some Common Web Conventions

52 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 2-6. Web conventions in practice

Text links are blue and
underlined

Offer printer-friendly
version of page

Text links repeated
at bottom of page

Logo links to home page

Secondary navigation distinct
from primary navigation

FO
U

N
D

A
TIO

N

The problem with Web conventions is that they are moving targets. New conventions
may be invented and sweep across the Web like fads. For example, frames and splash
pages used to be popular, but they have somewhat fallen out of favor. Conventions are
not always well considered and may often have more to do with novelty than usability.
However, this shouldn’t lead you to invent new conventions or avoid those that are
current. The best way to keep up with current conventions is to simply browse the
well-trafficked e-commerce and content sites often and look for common features. If
users are exposed to features there, such as single-click ordering, it isn’t going to be
difficult to explain to them how it works on your site. Don’t assume that everyone
understands common conventions or that all users will be able to use current
conventions. Some users will have special needs.

Accessibility
There is no way to account for all the small differences between people. In fact, we only
aim to create sites that most people like. This may lead us to stereotype groups of users
(like casual female surfers under 18, and so on), but this may be an approach we have
to make. Yet, this does not mean that you should go out and build a site catering to
the largest demographic group of users hitting your site. Try to please as many distinct
groups as possible by making your site as accessible as possible. Don’t forget that some
people may have difficulty if you assume that all users have perfect physical and
technical capabilities.

Providing accessibility for people who may have deficiencies involving sight, hearing,
or other physical capabilities isn’t just a nice idea anymore—it may actually be required
for some organizations, particularly government agencies—and many companies could
incur serious liability if they do not account for all users. For example, Section 508 of
the 1986 Federal Rehabilitation Act requires that the federal government include solutions
for employees with disabilities when awarding contract proposals. This would also
eventually apply to systems such as intranets, extranets, and most likely public Web
sites. Also, the 1992 Americans with Disabilities Act (ADA) states that firms with 15 or
more employees provide reasonable accommodation for employees with disabilities.
This could apply to intranets or extranet creation!

But making a Web site accessible is something that should be done, not because of
some law or to avoid future litigation, but because doing so could result in a much
better Web site for everyone. Very often, creating systems that are accessible to all users
also creates benefits for all users, regardless of capability. For example, the so-called
talking books, initially considered for the blind, fostered books on tape. Also consider
that easy ramps to access buildings, and curb cutouts made for wheelchairs, make
walking easier for all and tend to reduce the number of people falling flat on their face
after crossing the street or severely twisting their ankles as they step off the curb.

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 53

TE
AM
FL
Y

Team-Fly®

The W3C (http://www.w3.org) has long advocated designing sites for maximum
accessibility and promotes the Web Accessibility Initiative (http://www.w3.org/wai). The
WAI is concerned not only with creating sites that are accessible to people with disabilities,
but also with making sites that are accessible by anyone who might be operating in a
different environment than what a designer considers “normal.” Remember that users will
not necessarily be using a fast connection and a large monitor like yours—or if you aren’t
using a fast connection with the latest and greatest, your users just might be! From the W3C
guides, you should always consider that users may have different operating constraints:

■ They may not be able to see, hear, or move easily, or may not be able to process
some types of information easily (or even at all).

■ They may have difficulty reading or comprehending text because of
language problems.

■ They may not be able to use a keyboard or mouse because of access method
(such as a cell phone) or physical disability.

■ They may have a less-than-ideal access environment, such as a text-only screen,
a small screen, a screen without color, or a slow Internet connection.

■ They may be accessing the site in a nonstandard environment where they may
be affected by environmental factors—accessing the Web in a noisy cybercafe or
as they drive a car, for instance.

■ They may have an older browser or a nonstandard browser or operating system
or use an alternative form of user interface, such as voice access.

To deal with these issues, the W3C has issued a few suggestions to improve the
accessibility of a site. These are summarized here:

■ Provide equivalent alternatives to auditory and visual content In other words,
don’t rely solely on one form of communication. If you use picture buttons, provide
text links. If audio is used, provide a text transcript of the message, and so on.

■ Don’t rely on color alone As discussed earlier in the chapter, not everyone
will be able to view colors properly; so if color alone is used to convey
information, such as what constitutes a link, people who cannot differentiate
between certain colors and users with devices that have noncolor or nonvisual
displays will not be able to figure out what is being presented. In general, you
need to consider avoiding color combinations with similar hues or not
enough contrast—particularly if they are likely to be viewed on monochrome
displays or by people with different types of color vision deficits.

■ Use markup and style sheets, and do so properly Basically, make sure to use
HTML for structure and CSS for presentation. Especially avoid using proprietary
markup or presentation elements and avoid using technology that may not render
the same way in different browsers.

54 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

■ Clarify natural language usage Make sure to define terms and use markup that
indicates acroymns, definitions, quotations, and so on. In other words, use more
logical markup. Further, make sure to clearly indicate the language being used in
the document so that a browser may be able to switch to another language.

■ Create tables that transform gracefully In short, don’t use tables for layout—
use them for presenting tabular data such as a spreadsheet. When tables are used,
provide a clear caption, column headings, and other indicators of the meaning
of cell contents.

■ Ensure that pages featuring new technologies transform gracefully This is a
key idea discussed throughout the book. Basically, make sure that, if you are
going to push the limit of design, any new technologies degrade gracefully
under older browsers. For example, if you are relying on JavaScript, does the
page still work without it on? Or at least evor gracefully?

■ Ensure user control of time-sensitive content changes Make sure that
moving, blinking, scrolling, or autoupdating objects or pages may be paused
or stopped by the user. Besides being highly annoying, such distractions may
actually make it difficult for users to focus on the site.

■ Ensure direct accessibility of embedded user interfaces If you use an interface
within the page—for example, a Java applet that has its own internal interface—
make sure that it, too, is accessible.

■ Design for device independence Try to build interfaces that can work in
multiple devices, including those with different screen sizes, different viewing
devices (cell phones as well as computers), and different manipulation devices
(keyboard or mouse and keyboard). A particularly important consideration is
just making sure that a site doesn’t rely solely on the mouse for navigation.
Some users may find mouse movement difficult, and power users may actually
prefer to use the keyboard for navigation.

■ Use interim solutions Because not all browsers will support the same
technologies or standards completely, make sure to provide alternatives in the
short term for noncompliant browsers.

■ Use W3C technologies and guidelines A somewhat self-evident but occasionally
troublesome suggestion. Of course you should always try to follow the W3C
guidelines, at least in spirit. However, be careful because many W3C guidelines
are no more than proposed ideas, and browsers may lack significant or
consistent support for a defined specification.

■ Provide context and orientation information In some sense, this just means
to explain things or provide instructions for complex areas. You should design
pages so that the meaning of links is clear through the use of ToolTips or scope
notes. Further, forms should be designed that explain what is required. In the
most basic way, a site should provide a help system.

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 55

■ Provide clear navigation mechanisms Basically, you should provide obvious
navigation that is easy to understand and at a consistent location on the screen.
Navigational aids such as search engines, site maps, and site indexes should
also be provided.

■ Ensure that documents are clear and simple Yet another fairly obvious
suggestion, but powerful nonetheless, is that simplicity will lead to greater
accessibility. Given that not everyone will be able to read a language well,
and usability is directly related to simplicity and consistency, try to make
your documents simple.

Besides manual inspection of a site, it is easy enough to evaluate it for accessibility
using a tool such as Bobby (http://www.cast.org/bobby), as shown in Figure 2-7. Bobby

56 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 2-7. Bobby can be used to check the accessibility of a Web site.

will analyze a Web page and see if it meets certain basic accessibility criteria, such as the
use of alt text.

Building a Usable Site
One of the keys to usable Web site development is to focus from the beginning on the
users of the application. Remember that the user’s goal is not to use computers or to use
your Web site. The user’s goal is to accomplish some task—purchase a product, find a
bill payment center, register a complaint, and so on. You should try to make direct
contact with users, and you must listen to them. Do not fall into the trap of thinking
that you should just simply ask users what they want and then they will design
your site for you. Users are not designers, and they make illogical or unrealistic requests.
Because of this, you may be tempted to implement your own idea of a great site instead,
without regard for user requests. However, the core idea of user-centered design is to
always remember we are designing for users and not ourselves. Recall again the following
very important Web design rules:

Rule: You are NOT the user.

Rule: Users are NOT designers.

Although not all user input will be valuable, you should solicit information from
your intended audience. You might consider interviewing them or giving a survey.
Whatever you do, make sure to let users talk—and listen to them. While this may seem
like JAD (Joint Application Design), which will be discussed in Chapter 4, we will not
let users control the project; rather, they will be used as a source of ideas and a way to
verify the execution of implemented features. From interviews, you should build a
profile of stereotypical types of users. While this may seem to be a bad idea, consider
that unless you have a very small audience, it is virtually impossible to build a site that
will conform perfectly to all the preferences and task requirements that all possible users
might have. Even if it were possible, it would be prohibitively expensive.

From your discussions with users, build a prototype site, or just a set of simple
diagrams on paper of how pages might look, and test it out with users. Make sure you
test your site with users as early as possible in the development cycle so as not to build
a site that users can’t figure out.

Suggestion: Perform user testing early and often.

There are many ways to verify usability. Tests might include

■ Casual observation of users

■ Surveys and interviews

■ Focus groups

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 57

■ Lab testing

■ Heuristic evaluations by developers or usability experts

The results of the tests can include more quantitative measurements, such as the
number of mistakes made during a task, the amount of mouse travel, the time it takes to
perform a task, and so on. Tests will certainly also have to include qualitative measures
of what feature the users liked or didn’t like. Before you don a white coat and rent lab
time in a room with a two-way mirror to observe users, consider that formal testing may
be overkill for most sites because of the cost and trouble of performing user tests in a
formal fashion. Simple observations might do the trick, and opinions tend to be free from
many users, though not always well founded. Collect a few users, or even your friends
and neighbors, and sit them down at the site, and have them perform a few tasks. What’s
interesting is that even an informal test will uncover the major problems with a site.
However, informal tests only work if you let them. Designers seem far too proud of their
sites and tend to act as co-pilots, showing a user the interesting aspects of a site. Talking
too much during a test or guiding the user in any way keeps the user from making his or
her own decisions and may actually steer the user away from mistakes.

Suggestion: When performing even an informal usability test, avoid talking too
much or guiding the user.

Before running off to round up your friends to ask them what they think, first
consider that far too often users will tell you what you want to hear or what they think
they would do in certain situations. Or they simply may not want to admit their
misunderstandings. It is better to observe users’ behavior than to rely on statements
from them. However, if this is not possible, user input is acceptable, particularly if it is
coupled with your own ad hoc usability analysis of a site. For instance, see whether the
site follows the basic usability criteria that have been described in this chapter. Table 2-4
presents some guidelines you should use for judging a site.

When evaluating a site, the rules of thumb here cover the basic aspects of usability.
However, don’t assume just because the site meets most of these basic ideas that it is a
good site. There are plenty of other ways for a site to fall down. For example, a site
might not contain excellent content, its technology may be unreliable, or its graphics
may be hideous to look at. Chapter 5 presents a more in-depth evaluation procedure
that accounts for many other aspects of Web design. Remember that usability isn’t the
only part of a positive Web experience.

58 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 59

Guideline Explanation

Be consistent Consistency is the key to an easy-to-use interface. If
something is consistent, the user only has to learn it
once. Within your own site, don’t change the position
of buttons or the way things act.

Don’t violate a user’s
expectations, and make
sure to follow Web and
GUI conventions

Consistency can go beyond the contents of a site. Users
will have expectations about how things work shaped
by visits to other sites. Make sure your site is consistent
with what they expect. In short, follow any conventions
used in GUI or site design that the user is familiar with.

Support the ways
people use Web pages

Users use the Web pages in a few basic ways. They
load a page, they unload a page, they print the page,
they save the page (either by bookmarking the address
or saving the file to a local drive), they read the page, or
they interact with the page (such as by filling in forms or
manipulating content objects within the page). As with
the previous guideline, make sure users can do all the
things they expect to be able to do. If users expect to
print or bookmark a page and they can’t, they may
consider the site unusable.

Use surprise properly
and sparingly

Occasionally, being inconsistent is useful. If you want
to “wake a user up,” it might be OK to dramatically
change the way a page looks or acts. Just make sure
you don’t do this often, since users may never become
comfortable with the site and may even become
frustrated with the ever-changing interface.

Simplify the site and
individual pages as
much as possible

Simplicity makes it easy for users to understand a site.
Try to pare a site or page down to its bare essentials.
Look at statistical logs to determine what pages are not
needed from a site. On a page level, remove clutter
from layouts and try to reduce visual noise.

Table 2-4. Common Web Usability Guidelines

60 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Guideline Explanation

Rely on recognition,
not recall

Memorization is difficult. Don’t expect the user to
memorize the structure of your site or the position of
your buttons. Minimize what the user has to remember
by exposing available choices. Even something as
simple as hiding a menu when it isn’t in use increases
the cognitive load on a user, since they have to memorize
what items are on what menus.

Do not assume users
will read instructions

You may not get a chance to hold a training class for
every user who visits your site. Generally, users will
read help files only when they are in trouble. Make
sure that they don’t need to be trained. Avoid introducing
features in a site that would require training or
documentation for proper use.

Prevent or correct
user errors

Don’t let users make mistakes that are unnecessary. For
example, validate form entries and limit users to doing
only what they should. Don’t provide a choice that is
not easily undone by the user. If errors do occur, let the
user know about the error and its possible solution.

Provide feedback Let users know what’s happening. Don’t be imprecise
with feedback. If there is going to be a delay, let them
how long it is going to take. If an error has occurred,
provide a clear error message.

Support different
interaction styles

Try to provide multiple ways of doing the same thing
to deal with different approaches to problems. For
example, some users may prefer to use a site map
rather than a search engine when looking for something.
Don’t limit users, but do account for a range of interaction
styles, from novice users to power users.

Minimize mouse travel
and keystrokes

Typing and moving the mouse around the screen is
work for the user, so try to minimize it. This means
successive button choices should be nearby. Try to
minimize the distance from primary navigation to the
Back button, which is certainly the most commonly
pressed button in a browser. Navigation should probably
be toward the top of the screen.

Table 2-4. Common Web Usability Guidelines (continued)

Usability Above All Else
One problem with usability discussions is that it is easy to use usability concerns as a
way to squash any other reasonable value. For example, some people have gone so far
as to discuss how banner ads contribute to poor site usability because they are animated
or increase the download time. However, consider that without the banner ads the site
may not be economically viable. Pleasing graphics also are a common target for usability
experts. It is interesting to note how boring most usability gurus’ sites actually are.
While a site without much graphics may be usable, it might not do much to improve
the brand identity of the organization running the site; in fact, without graphics, it may
undermine brand identity built through other mediums. In some situations, it may be
important to let the user endure a slightly longer download in order to see the corporate
logo and new advertising look.

Advanced technology also is a common enemy of good site usability. The truth is
that while advanced technology may lock out some users, what is provided may be
worth it. If we always designed for the lowest common denominator, we’d still have
text-only Web pages. Don’t let usability completely stifle innovation. Usability is
certainly very important, but there are often other considerations in a Web site’s
design. Always remember that while we design for users, we are ultimately in control
of our site.

Suggestion: Do not use usability concerns as a way to avoid or eliminate visual,
technological, or economic aspects of a site.

FO
U

N
D

A
TIO

N
C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 61

Guideline Explanation

Consider medium of
consumption.

Make sure to understand where the user will consume
the content—on screen or on paper. If users print pages
to consume them, shouldn’t the usability test be performed
on the paper document as well?

Consider environment
of use.

If known, consider where a user will interact with a
page. Where users interact with a page will affect how
usable they perceive it. For example, relying on sound
in a noisy environment isn’t a wise idea.

Focus on speed. Users dread slow-loading sites. Make sure pages are
fast-loading by practicing minimal design. This doesn’t
mean eliminating graphics, only that a page should be
no slower than it needs to be to deliver its message.

Table 2-4. Common Web Usability Guidelines (continued)

Who’s in Control of the Experience?
While it is true that we must give the people what they want, the masters of sites—
meaning those who pay for them—may have desires that are not congruent with the
desires of the site’s users. Do not become a slave to the user; remember that, in some
sense, we are the masters of our own sites. How we want to treat our visitors is going
to influence greatly how they feel about visiting our sites. Do you want to be a dictator,
forcing the user to download certain plug-ins or resize a window? Conversely, you
could be very democratic and let users pick their own path through your site. You may
even allow users to modify content on the site or influence other users with indicators
of link popularity. Last, you could aim for a middle ground and maybe act as a
benevolent dictator, trying to help users along the way and giving them freedom
within certain constraints, but always trying to guide them along.

The issue of control during a site visit is somewhat of an unwritten contract between
the site user and the developer. There is give and take in the relationship. While one
of the main tenets of user-centered design is to put the user in control, users are imperfect
like everyone else; if we give them complete control, they may make serious errors.
Developers will want to keep users from making mistakes. However, the role of the
benevolent dictator of the online experience is difficult. If you control things too much
and users notice that they can’t resize their window or press certain buttons, they may
become angry or frustrated. The key is to provide an illusion of control.

Users should be able to do everything they need to do and nothing more. People
need to feel like they are in control, but the control should have limits. Good interfaces
exhibit this control. Consider, for example, the famous adventure game Myst. In
Myst, the user can click objects onscreen and move in a direction simply by clicking in
the appropriate direction. The interface is very simple and also very restrictive,
though game players rarely notice this. In Myst, as in many well-designed video
games, the progression is very controlled by the game designer, but the illusion of
control is always preserved. A great Web site would follow the cue of a video game by
trying to guide someone to a conclusion like purchasing a product, but in a manner
that the user doesn’t really notice.

The best example of the balance of control in an experience is probably Las Vegas.
Casinos create a complete experience of visiting an ancient land, tropical paradise, or
foreign country. A gimmick outside the casino like an exploding volcano or pirate
battle attracts hordes of visitors. The intent is that some of these visitors will step onto
the nearby conveyor belt to be quickly whisked into the casino. Inside the casino,
temperature, lighting, and oxygen level are carefully controlled in an attempt to create
a pleasant environment. The passage of time becomes difficult to determine because
windows are few and tinted, and clocks are nonexistent. Assistance is plentiful from
dealers and waitresses who will provide free drinks. If you get hungry, cheap food is
nearby at an all-you-can-eat buffet. Want to stay overnight? Rooms are reasonably
priced—and if you spend enough, they might even be free. But when you come to your
senses as your wallet begins to empty, notice how difficult it is to find the exit! Good

62 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Las Vegas casinos practice the ultimate in experience design, second only (maybe) to
Disneyland. The experience is always controlled; the point is to maximize the money
the casino takes in. If you step out of line, get irate and loud when you lose, or try to do
something to win back control in gambling by card counting, you’ll find that you are
quickly escorted outside. The experience is fun and you can win, but the control is
there and the house always has the edge. It’s pure math. If you plan to run a
commercial site, learn from Las Vegas.

Suggestion: Practice “Las Vegas” Web design. Provide the user with a pleasant
experience, complete with perks and the illusion of unlimited choices, but
control the situation strictly at all times.

Summary
Usability is about the aspects of a site that aren’t always noticeable but yet seriously
influence the ease in which a user is able to accomplish a task using the site. Usable
sites should be easy to learn, easy to use, and easy to remember. They should also
result in few errors and be satisfying to the user. While some ways to improve usability,
such as consistency and simplicity of design, are easy to formulate, sometimes it is
difficult to satisfy the needs of every user. One reason is that users have different Web
skill levels—novice, intermediate, and advanced (power users)—that will affect site
usability. Another is that, while users generally share certain capabilities for accessing
a site, such as vision and memory, users are also individuals, with unique characteristics,
opinions, and experiences. They will also tend to view your site as a mere island in a
big ocean of sites, and it is best to assume that they won’t want to learn your special rules.

With so many varieties of users, you probably won’t be able to perfectly accommodate
every user’s unique tastes and requirements. However, if you create an adaptive interface
that can be used by the three broad categories of users and make sure to test your site
carefully with real users, you stand a good chance of making a site that is usable by most
users. Be particularly careful not to lock users out, particularly those who may be disabled
or slightly different from your average user.

Finally, a site should always be built to meet the needs of its users within the
constraints or the desires of its creators. However, never use the quest for a usable site
as a way to avoid difficult problems or as an excuse not to use graphics or technology
or introduce new features that a user might want. An overzealous Web professional
waving the usability banner can easily stifle innovation. Balance is always the key to
great Web design.

C h a p t e r 2 : U s e r - C e n t e r e d D e s i g n 63
FO

U
N

D
A

TIO
N

TE
AM
FL
Y

Team-Fly®

This page intentionally left blank.

Chapter 3
The Web Medium

65

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

While the human element may be the most critical aspect of Web-based
communication, effective Web design is also extremely dependent on correct
technical execution. If a site is poorly constructed or error ridden, visitors

may lose sight of its message or function. To excel at Web design, practitioners should
have a complete understanding of the elements of the Web medium.

The Web medium is composed of three major components: client, server, and network.
We will briefly overview each component and its subcomponents here in order to provide
designers with a complete vocabulary of modern Web technology—and possibly provoke
further study. We will also provide links about the activities of the various standards
bodies, particularly the World Wide Web Consortium (W3C), which defines Web
technologies, and the IETF, which sets many of the network, related protocols. Later
chapters will focus on correct site execution and the effects of Web technologies on
design decisions.

Core Web Technologies
As described in Chapter 1, the Web is implemented as a client-server system over a
vast public network called the Internet. The three components of any client-server
system are the client side, the server side, and the network. A visualization of the basic
components that make up the Web is shown in Figure 3-1. We will now survey each of
the primary components in turn, starting with the client side, which is primarily
defined by the browser.

Web Browsers
The Web browser is the interpreter of our Web sites. It is very important to understand
the Web browser being supported and what capabilities it has. The two most common
browsers at the time of this book’s publication are Microsoft’s Internet Explorer (which
accounts for the majority of browser users) and Netscape’s Communicator (Navigator).
While these two browsers account for most users accessing public Web sites, there are
numerous other versions of browsers in use.

The exact figures for browser usage at public Web sites are continually changing
and are tracked by various statistics sites as well as browser-related sites such as
http://www.upsdell.com/BrowserNews/.

The problem with published browser usage reports is that they don’t necessarily
reflect your browsing audience. Consider a site that publishes Macintosh software—its
browser usage pattern might actually show a fair number of users with OmniWeb, a
Macintosh-specific browser that has a notable number of rabid followers. However, most
sites probably wouldn’t consider OmniWeb something to even think about. Depending
on your users, the types of browsers will vary. From statistics showing that surveyed

66 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : T h e W e b M e d i u m 67
FO

U
N

D
A

TIO
N

Figure 3-1. Components of the Web medium

68 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

sites favor a particular browser, it does not necessarily follow that your site will exhibit
the same browser usage patterns—though it is pretty likely. Look at your own log files
to determine browser usage patterns. If you are building an intranet site, you might not
even have to look at your logs to understand what browsers are in use.

Rule: Beware of relying on published browser usage figures; track actual
browser usage on your site.

Given a mix of browsers made up of the top two vendors with a smattering of other
browsers, the question becomes how this information relates to site design and technology
use. One possibility is to look at the various browsers and their capabilities, and then
design for some common set of features. First, look at the browsers listed in Table 3-1.

Considering the variations among browsers, the common ground isn’t terribly
advanced. The safest design platform for some still seems to be what Netscape 3.x
supports, though more and more designers are embracing design for the 4.x and 5.x
generation browsers and using CSS, Flash, and JavaScript more often.

The only problem with moving to the next generation is that the gap between what
different generations of browsers support can be rather large. Because of this, sites (and
users) significantly favor Internet Explorer over Netscape. (The installed base for IE
browsers includes between 85% to 90% of all users at the time of this writing.) With the
advent of Netscape’s Mozilla-based browsers (Netscape 6 and 7, and Mozilla 1.0),
things may get more interesting because these browsers promise more support for
standards-based Web page development than Netscape’s 4.x generation browsers.
Even so, there will not be an overnight adoption of new, non-IE browsers around the
Web. As the installed base increases, the longer it will take for consumers to embrace
new technologies. Therefore, public sites should consider developing for at least one,
if not two, generations prior to the current release of a browser. Even more than six
years after the release of the 2.x generation browsers, some public sites still support
that generation of browsers perfectly.

Tip: Consider developing for at least the last two, if not three, versions of a
browser to account for slow upgrades.

It is easy to be overwhelmed with potential browser considerations, even if dealing
just with the major browsers’ most recent versions. At the time of this writing, there
were more than 20 major versions of the 4.x generation alone and more than 400 other
different potential Netscape variations—primarily older versions or beta releases—
floating around the Web, all with different capabilities and bugs. Of course, Netscape
isn’t the only browser vendor, and there are slight upgrades made to Internet Explorer
as well. The only point to make here is that browsers are moving targets. Every release
has new features and different bugs. Just because someone is using a 4.x generation
browser doesn’t guarantee a site will work the same under the same version on another
platform or under an interim release. Sorry, but Netscape 4 or Internet Explorer 4 on
Windows won’t work the same on Macintosh and NT. Even different interim releases
like 4.03 and 4.5 may have significant differences in page rendering and bugs. Add in

C h a p t e r 3 : T h e W e b M e d i u m 69
FO

U
N

D
A

TIO
N

B
ro

w
se

r
V
er

si
on

H
TM

L
V
er

si
on

S
up

po
rt

Ja
va

S
cr

ip
t

C
S
S

P
ro

gr
am

m
in

g
C

om
m

en
ts

In
te

rn
et

E
xp

lo
re

r
3

H
T

M
L

3.
2

+
ex

tr
as

Ja
va

Sc
ri

pt
1.

0
So

m
ew

ha
t

H
el

pe
r

ap
ps

,A
ct

iv
eX

co
nt

ro
ls

,N
et

sc
ap

e
pl

ug
-i

n
co

m
pa

ti
bi

lit
y,

Ja
va

,
V

B
Sc

ri
pt

So
m

e
co

rp
or

at
e

an
d

sl
ow

up
gr

ad
er

s
st

ill
us

e
th

is
ve

rs
io

n.
G

oo
d

po
ss

ib
ili

ty
to

ta
rg

et
th

is
br

ow
se

r
fo

r
a

fa
ll-

ba
ck

ve
rs

io
n

of
a

si
te

.

In
te

rn
et

E
xp

lo
re

r
4

H
T

M
L

4
+

ex
tr

as
Ja

va
Sc

ri
pt

1.
1

+
ex

tr
as

.N
ot

e
th

at
th

e
br

ow
se

r
su

pp
or

ts
m

or
e

ad
va

nc
ed

Ja
va

Sc
ri

pt
fe

at
ur

es
,b

ut
it

s
la

n
gu

ag
e

at
tr

ib
ut

e
su

pp
or

ti
nd

ic
at

es
1.

1
as

th
e

m
ax

im
um

su
pp

or
te

d
Ja

va
Sc

ri
pt

.

Pa
rt

ia
l

C
SS

1
H

el
pe

r
ap

ps
,A

ct
iv

eX
co

nt
ro

ls
,N

et
sc

ap
e

pl
ug

-i
n

co
m

pa
ti

bi
lit

y,
Ja

va
,

V
B

Sc
ri

pt

IE
4’

s
m

ai
n

ad
va

nc
es

w
er

e
in

C
SS

su
pp

or
ta

nd
im

pr
ov

ed
Ja

va
Sc

ri
pt

.I
E

4
w

as
th

e
fi

rs
tb

ro
w

se
r

to
su

pp
or

tp
ag

es
th

at
co

ul
d

be
si

gn
if

ic
an

tl
y

m
an

ip
ul

at
ed

af
te

r
pa

ge
-l

oa
d

us
in

g
Ja

va
Sc

ri
pt

an
d

re
ly

in
g

on
th

e
D

oc
um

en
tO

bj
ec

tM
od

el
(D

O
M

).

In
te

rn
et

E
xp

lo
re

r
5

H
T

M
L

4
+

ex
tr

as
Ja

va
Sc

ri
pt

1.
2

+
ex

tr
as

.N
ot

e
th

at
th

e
br

ow
se

r
su

pp
or

ts
m

or
e

ad
va

nc
ed

Ja
va

Sc
ri

pt
fe

at
ur

es
,b

ut
it

s
la

n
gu

ag
e

at
tr

ib
ut

e
su

pp
or

ti
nd

ic
at

es
1.

2
as

th
e

m
ax

im
um

su
pp

or
te

d
Ja

va
Sc

ri
pt

.

M
os

to
f

C
SS

1
+

so
m

e
ex

te
ns

io
ns

H
el

pe
r

ap
ps

,A
ct

iv
eX

co
nt

ro
ls

,N
et

sc
ap

e
pl

ug
-i

n
co

m
pa

ti
bi

lit
y,

Ja
va

,
V

B
Sc

ri
pt

IE
5

m
os

tl
y

re
fi

ne
s

th
e

fe
at

ur
es

pr
ov

id
ed

in
H

T
M

L
4,

th
ou

gh
it

d
oe

s
be

gi
n

th
e

us
e

of
cl

ie
nt

-s
id

e
X

M
L

.

Ta
bl

e
3
-1

.
C

om
m

on
B

ro
w

se
r

Ve
rs

io
ns

an
d

C
ha

ra
ct

er
is

tic
s

70 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

B
ro

w
se

r
V
er

si
on

H
TM

L
V
er

si
on

S
up

po
rt

Ja
va

S
cr

ip
t

C
S
S

P
ro

gr
am

m
in

g
C

om
m

en
ts

In
te

rn
et

E
xp

lo
re

r
5.

5
H

T
M

L
4

+
ex

tr
as

Ja
va

Sc
ri

pt
1.

2
+

ex
tr

as
.T

he
sa

m
e

co
nf

or
m

an
ce

is
su

e
as

pr
ev

io
us

br
ow

se
rs

ho
ld

;I
E

5.
5

su
pp

or
ts

m
or

e
ad

va
nc

ed
Ja

va
Sc

ri
pt

bu
t

m
ay

no
tr

ep
or

ti
tp

ro
pe

rl
y

us
in

g
so

m
e

sc
ri

pt
in

g
te

ch
ni

qu
es

.

M
os

to
f

C
SS

1
+

so
m

e
ex

te
ns

io
ns

H
el

pe
r

ap
ps

,A
ct

iv
eX

co
nt

ro
ls

,N
et

sc
ap

e
pl

ug
-i

n
co

m
pa

ti
bi

lit
y,

Ja
va

,
V

B
Sc

ri
pt

IE
5.

5
co

nt
in

ue
s

to
re

fi
ne

th
e

ba
si

c
id

ea
s

pr
es

en
te

d
in

IE
4

an
d

5
w

it
h

en
ha

nc
em

en
ts

to
st

yl
e

sh
ee

ts
up

po
rt

an
d

X
M

L
.

In
te

rn
et

E
xp

lo
re

r
6.

0
H

T
M

L
4

+
ex

tr
as

,
X

H
T

M
L

1.
0

Ja
va

Sc
ri

pt
1.

3
+

ex
tr

as
.N

ot
e

th
at

th
e

br
ow

se
r

su
pp

or
ts

m
or

e
ad

va
nc

ed
Ja

va
Sc

ri
pt

fe
at

ur
es

bu
ti

ts
la

n
gu

ag
e

at
tr

ib
ut

e
su

pp
or

ti
nd

ic
at

es
1.

3
as

th
e

m
ax

im
um

su
pp

or
te

d
Ja

va
Sc

ri
pt

.

C
SS

1
+

ex
te

ns
io

ns
H

el
pe

r
ap

ps
,A

ct
iv

eX
co

nt
ro

ls
,N

et
sc

ap
e

pl
ug

-i
n

co
m

pa
ti

bi
lit

y,
an

d
V

B
Sc

ri
pt

.N
ot

e
th

at
IE

6
d

oe
s

no
ti

ni
ti

al
ly

sh
ip

w
it

h
Ja

va
,t

ho
ug

h
m

an
y

us
er

s
ad

d
it

.

IE
6

co
nt

in
ue

s
to

re
fi

ne
th

e
ba

si
c

id
ea

s
pr

es
en

te
d

in
IE

4
an

d
5.

x
w

it
h

en
ha

nc
em

en
ts

to
st

an
d

ar
d

s
su

pp
or

ta
nd

X
M

L
.D

O
M

L
ev

el
1

co
m

pl
ia

nc
e

is
cl

os
e

to
fu

ll.

N
et

sc
ap

e
1.

x
H

T
M

L
2

+
ex

tr
as

N
o

N
o

H
el

pe
r

ap
ps

N
o

fr
am

es
(g

oo
d

ex
am

pl
e

of
a

w
or

st
-c

as
e

gr
ap

hi
ca

l
br

ow
se

r)
.G

en
er

al
ly

no
t

co
ns

id
er

ed
in

d
es

ig
n

d
ec

is
io

ns
.

N
et

sc
ap

e
2.

x
H

T
M

L
2

+
ex

tr
as

Ja
va

Sc
ri

pt
1.

0
N

o
H

el
pe

r
ap

ps
,p

lu
g-

in
s,

Ja
va

N
o

ba
ck

gr
ou

nd
co

lo
r

on
ta

bl
e

ce
lls

,J
av

a
im

pl
em

en
ta

ti
on

bu
gg

y,
Ja

va
Sc

ri
pt

lim
it

ed
to

si
m

pl
e

fo
rm

va
lid

at
io

n.
R

ar
el

y
co

ns
id

er
ed

in
d

es
ig

n
d

ec
is

io
ns

.

Ta
bl

e
3
-1

.
C

om
m

on
B

ro
w

se
r

Ve
rs

io
ns

an
d

C
ha

ra
ct

er
is

tic
s

(c
on

tin
ue

d)

C h a p t e r 3 : T h e W e b M e d i u m 71
FO

U
N

D
A

TIO
N

B
ro

w
se

r
V
er

si
on

H
TM

L
V
er

si
on

S
up

po
rt

Ja
va

S
cr

ip
t

C
S
S

P
ro

gr
am

m
in

g
C

om
m

en
ts

N
et

sc
ap

e
3.

x
H

T
M

L
3.

2
Ja

va
Sc

ri
pt

1.
1

N
o

H
el

pe
r

ap
ps

,p
lu

g-
in

s,
Ja

va
R

ol
lo

ve
r

bu
tt

on
s

be
co

m
e

po
ss

ib
le

,J
av

a
m

or
e

st
ab

le
.

O
cc

as
io

na
lly

co
ns

id
er

ed
as

a
fa

ll-
ba

ck
br

ow
se

r
in

d
es

ig
n

d
ec

is
io

ns
.

N
et

sc
ap

e
4.

x
H

T
M

L
4

+
ex

tr
as

Ja
va

Sc
ri

pt
1.

2,
1.

3
So

m
e

C
SS

1
+

C
SS

-P
H

el
pe

r
ap

ps
,p

lu
g-

in
s,

Ja
va

L
im

it
ed

D
H

T
M

L
su

pp
or

t,
pr

im
ar

ily
ob

je
ct

m
ov

em
en

t
an

d
vi

si
bi

lit
y;

C
SS

su
pp

or
t

bu
gg

y,
su

pp
re

ss
ed

Ja
va

Sc
ri

pt
er

ro
r

m
es

sa
ge

s,
au

to
m

at
ic

in
st

al
la

ti
on

of
pl

ug
-i

ns
in

tr
od

uc
ed

.S
ti

ll
co

ns
id

er
ed

by
so

m
e

d
es

ig
ne

rs
be

ca
us

e
of

sl
ow

N
et

sc
ap

e
up

gr
ad

es
.

M
oz

ill
a/

N
et

sc
ap

e
N

et
sc

ap
e

6.
x/

M
oz

ill
a

1.
x

H
T

M
L

4.
01

,
X

H
T

M
L

1.
0

Ja
va

Sc
ri

pt
1.

5
Fu

ll
C

SS
1,

pa
rt

ia
l

C
SS

2

H
el

pe
r

ap
ps

,p
lu

g-
in

s,
Ja

va
G

re
at

st
an

d
ar

d
s

su
pp

or
t

fo
r

X
H

T
M

L
,C

SS
,X

M
L

,
PN

G
,a

nd
ot

he
r

W
3C

ap
pr

ov
ed

st
an

d
ar

d
s.

N
ot

w
id

el
y

us
ed

at
ti

m
e

of
th

is
ed

it
io

n’
s

pu
bl

ic
at

io
n.

Ta
bl

e
3
-1

.
C

om
m

on
B

ro
w

se
r

Ve
rs

io
ns

an
d

C
ha

ra
ct

er
is

tic
s

(c
on

tin
ue

d)

the continual use of half-done beta browsers, and you have a recipe for disaster. Pages
often won’t render correctly, and errors will ensue. Users unfortunately won’t always
place blame correctly. A small layout problem may be interpreted as the designer
screwing up, not the browser vendor releasing a poorly tested product.

Rule: Users often don’t blame browsers for simple errors—they blame sites.

So what’s a developer to do? First, make sure you know what’s going on. Keep up
with the latest news in browsers at sites like http://www.upsdell.com/BrowserNews/.
In particular, watch out for beta and interim releases. They are often the most dangerous,
and users will not consider a 6.1 and 6.2 to be significantly different.

Tip: Be careful of features in beta and interim releases of browsers.

The next thing to consider is exactly what browsers you need to be aware of. This
requires that you know the browsers used by the site’s audience, so look to your log
files. In general, public sites should be as browser agnostic as possible, while private
sites like intranets may be designed specifically for a single browser. Designers should

72 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Browser URL Comments

Internet Explorer http://www.microsoft.com/ie Consider having the last
three versions of this
popular browser. Note that
this may require having
multiple systems or boot
options to run numerous
versions of IE.

Netscape http://browsers.netscape.com/
browsers

With so many versions
available, consider using the
last version of each major
release: 6.2, 6.1, 6.0, 4.7, 4.6,
4.5, 4.0x, 3.x, and 2.x

Mozilla http://www.mozilla.org The browser behind
Netscape’s project to build
a 6.x generation browser
should always be followed
as a preview to what’s
coming soon and to test
Web standards.

Table 3-2. Useful Browsers for Testing Purposes

C h a p t e r 3 : T h e W e b M e d i u m 73
FO

U
N

D
A

TIO
N

be aware of the browser families listed in Table 3-2. Users interested in development
for non-PC platforms may also find Palm (http://www.palmos.com/dev/), television
(http://www.developers.aoltv.com/ and http://developer.msntv.com/), and cell
phone simulators (http://developer.openwave.com/) very useful tools for testing sites.

Tip: Beyond the leading browsers, consider testing with standards-oriented
browsers as well as text-only or alternative-environment-access browsers.

Browser URL Comments

Opera http://www.opera.com This fast, standards-aware
browser is becoming very
popular and may be a
strong third choice for
some users.

America Online http://webmaster.info.aol.com/ Not a Web browser
per se, but the use of Web
browsers under AOL and
associated AOL TV is
often very troublesome.
Developers should look at
public sites under AOL
very carefully.

Lynx http://lynx.browser.org It is useful to test with
Lynx, a text-only browser,
to understand how a page
renders without any
graphics.

Amaya http://www.w3.org/Amaya/ Not a realistic browser for
users, but the W3C’s test
browser often implements
interesting standards-related
features before commercial
browsers. Useful for
experimenting with
specifications. Avoid for
realistic testing.

Table 3-2. Useful Browsers for Testing Purposes (continued)

TE
AM
FL
Y

Team-Fly®

74 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Given the number of browsers available and the significant difficulties involved in
testing dozens of different configurations just to ensure a site renders under common
viewing environments, some authors decide to write for a particular browser version
or indicate that a particular vendor’s browser is the preferred viewing platform. Many
sites that do this exhibit a browser badge on the site. If a particular browser is required,
do not blatantly advertise it on the home page as many sites do. It simply announces
that you practice exclusionary development.

Tip: Do not advertise favored browsers blatantly on a home page.

Markup Languages
The foundation of any Web page is markup. Markup technologies such as HTML,
XHTML, and XML define the structure and possible meaning of page content. Despite
the common belief that markup languages define the look of Web pages, and the equally
common use of HTML in this manner, page appearance should really be accomplished
using other technologies, particularly style sheets.

HTML
HTML (HyperText Markup Language) is the primary markup technology used in
Web pages. Traditional HTML is defined by a SGML (Standardized General Markup
Language) DTD (Document Type Definition—see the upcoming section “XML”) and
comes in three primary versions (HTML 2, HTML 3.2, and HTML 4). HTML 4 comes in
three varieties: transitional, strict, and frameset, with most document authors using the
transitional variant. HTML 4.01 is the most current and final version of HTML. An
example of an HTML document showing common structures is presented in Figure 3-2.

While the various tags and rules of HTML are fairly well defined, most browser
vendors provide extensions to the language beyond the W3C definition. Further, the
browsers themselves do little to enforce the markup language rules, leading to sloppy
usage of the technology. Also, while HTML should be used primarily for structuring a
document, many developers use it to format the document for display as well. HTML’s
formatting duties should eventually be completely supplanted by Cascading Style
Sheets (CSS). However, even with adequate style sheet support in browsers, many
developers continue to use HTML tables and even proprietary HTML tags in their page
design. There are no plans for further development of HTML by the W3C and browser
vendors, and developers are encouraged to embrace XHTML.

The HTML 4.0 specification is available at the following URL:

■ http://www.w3.org/TR/html401/

XHTML
XHTML is a reformulation of HTML using XML (extensible Markup Language) rather
than SGML. XHTML solves two primary problems with HTML. First, XHTML continues
to force designers to separate the look of the document from its structure, by putting more
emphasis on the use of style sheets. Second, XHTML brings much stricter enforcement
of markup rules to Web pages. For example, XHTML documents must contain only
lowercase tags, always have quotes on attributes, and basically follow all the rules as
defined in the specification. Figure 3-3 shows an example document in HTML and its
equivalent in XHTML.

A rigorous discussion of HTML and XHTML that covers all the requirements of
XHTML can be found in Appendix C as well as in the companion book, HTML: The
Complete Reference (www.htmlref.com).

C h a p t e r 3 : T h e W e b M e d i u m 75
FO

U
N

D
A

TIO
N

Figure 3-2. Sample Document with common HTML structures

XHTML’s syntactical strictness is both its biggest benefit and biggest weakness.
Well-formed pages may be easier to manipulate and exchange by a program but are
harder to create for a human. Uptake of XHTML has been slow because of this strictness.
XHTML’s extra rigor makes it less accessible than HTML, which is much more forgiving
to beginners. So, until more tools that generate correct XHTML become available, the
language will probably continue its slow uptake in the Web community at large.

The following URLs provide important information about XHTML:

■ XHTML 1.0 Specification: http://www.w3.org/TR/xhtml1/

■ XHTML Basic Specification: http://www.w3.org/TR/xhtml-basic/

■ XHTML 1.1 Module XHTML: http://www.w3.org/TR/xhtml11/

XML
Extensible Markup Language (XML) is being touted by many as a revolutionary markup
technology that will change the face of the Web. Yet, despite the hype, few understand
exactly what XML actually is. In short, XML is a form of SGML modified for the Web;

76 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 3-3. Moving from HTML to XHTML requires syntactical strictness

FO
U

N
D

A
TIO

N

thus, it allows developers to define their own markup language. So, if you want to
invent YML (Your Markup Language) with XML, you can. To do this we would define
the rules of our invented language by writing a document type definition, or DTD. A
DTD defines how a language can be used by indicating what elements can contain
what other elements, the values of attributes, and so on. A simple DTD to define a
grading language for elementary school children is defined here:

<!--Grades DTD-->

<!ELEMENT grades (student+)>

<!ELEMENT student (course+)>

<!ATTLIST student name CDATA #REQUIRED

sex (M|F) #REQUIRED

level (1|2|3|4|5|6) #REQUIRED>

<!ELEMENT course EMPTY>

<!ATTLIST course title CDATA #REQUIRED

grade (PASS|FAIL) #REQUIRED>

This DTD file named grades.dtd would be referenced by an XML file such as the
one shown here:

<?xml version="1.0"?>

<!DOCTYPE GRADES SYSTEM "grades.dtd">

<!-- the document instance -->

<grades>

<student name="Thomas" sex="M" level="3">

<course title="Math" grade="PASS" />

<course title="English" grade="FAIL" />

</student>

<student name="Sylvia" sex="F" level="1">

<course title="Math" grade="PASS" />

<course title="Art" grade="PASS" />

</student>

</grades>

The example would not only be syntactically checked, but we could check the validity
of the document against the DTD, a process known as validation. Yet, regardless of
correctness, without a defined presentation you will not see much of a result, as shown
in Figure 3-4. Presentation will eventually be handled by applying style rules to the
XML document using one of the technologies discussed in the next section.

C h a p t e r 3 : T h e W e b M e d i u m 77

78 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Many readers may now be wondering about the value of developers defining their
own individual markup languages. Why not just use XHTML or HTML? Wouldn’t
inventing new languages be the equivalent of creating a markup Tower of Babel on the
Internet? Maybe, or it just may enable a whole new range of possibilities for markup. So
far, the negative impact of inventing too many custom XML-based languages has been
limited, and most Web developers are content using a commonly defined language like
XHTML, WML (Wireless Markup Language), SVG (Scalable Vector Graphics), and
numerous other XML-based languages. The precision and self-description properties of
XML documents should enable a new class of Web technologies called Web Services that
really could change the Web by allowing sites and programs to talk with each other
more easily.

Figure 3-4. Rendering of XML example in Internet Explorer 5

C h a p t e r 3 : T h e W e b M e d i u m 79
FO

U
N

D
A

TIO
N

The XML Specification can be found online at http://www.w3.org/TR/REC-xml.

Style Sheet Technologies
Markup languages like HTML do not excel at presentation. This is not a shortcoming of
the technology, but simply that HTML was not designed for this task. In reality, the look
of the page should be controlled by the design elements provided by CSS (Cascading Style
Sheets). In some cases, particularly when using an XML language, markup transformation
may also be required to create the appropriate presentation format, so XSL (eXtensible
Style Language) will be used as well.

CSS
CSS (Cascading Style Sheets) is used to specify the look of a Web page. This technology
has been present at least partially in browsers as old as Internet Explorer 3.0, but it has
long been overlooked in favor of HTML-based layout for a variety of reasons, including
lack of consistent browser and tool support, as well as simple developer ignorance. With
the rise of the 6.x generations of browsers, CSS is finally becoming a viable prospect for
page layout.

CSS-based style sheets specify rules that define the presentation of a type of a type
(for example, <h1>)—a group or, more correctly, class of tags—or a single tag as indicated
by its id attribute. Style sheet rules can be used to define a variety of visual aspects of
page objects, including color, size, and position. The various style rules can be combined
depending on tag usage—thus the “cascading” moniker for the technology. An example
of CSS in use is shown in Figure 3-5.

These URLs provide more information about CSS:

■ CSS1 Specification: http://www.w3.org/TR/REC-CSS1/

■ CSS2 Specification: http://www.w3.org/TR/REC-CSS2/

XSL
XSL is another style sheet technology used on the Web. It is primarily used to style
XML languages. This is usually accomplished through XSL Transformation (XSLT),
which is often used to convert XML markup into other markup, often XHTML or HTML
plus CSS. It is possible to also use XSL Formatting Objects to style content, but, so far,
this does not seem to be a commonly employed aspect of XSL. Thus, when developers

80 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

speak of XSL, they often are speaking of XSLT. An example of XSL Transformation is
shown in Figure 3-6.

The relationship is set on the second line in the grades.xml file. The grades.xsl file
specifies the transformations that would result in the HTML output as shown in Figure 3-7.

Generally, the XSL transformation occurs on the server side, but XSL may become more
prevalent on the client side as browsers continue to advance.

Figure 3-5. An example of CSS

different style sheets can be used
for different situations

CSS rules also can be placed document wide in a <style> tag

tag rules

rule for a single tag named by id attribute

rule for group of tags named by a class

CSS files can
be linked
externally

CSS affrds pixel perfect layout

comments
ued to mask
CSS from
non-style
aware
browsers

inline style may also be used but does not
provide separation of structure and style

C h a p t e r 3 : T h e W e b M e d i u m 81
FO

U
N

D
A

TIO
N

Figure 3-6. XSLT in action

Information about XSL can be found at these URLs:

■ XSL Transformations 1.0 Specification: http://www.w3.org/TR/xslt

■ XSL Activity at W3C: http://www.w3.org/Style/XSL/

Images
Most Web browsers support either directly or through extension a variety of image
formats, such as GIF, JPEG, Flash, and PNG. The image formats can be separated into
two general categories: bitmap (or raster) images and vector images. Raster images
describe each individual pixel and its color, while vector images describe an image
generally as a collection of mathematical directions used to draw—or more precisely,
render—the image. Regardless of storage format, all images become bitmaps onscreen.
The fundamental difference between the two general image formats is shown here:

82 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : T h e W e b M e d i u m 83
FO

U
N

D
A

TIO
N

Some designers speak of the value of one general format over the other, but, in
reality, both have their problems. Vector images tend to be compact in description and
can be scaled mathematically, but they suffer in potential rendering time and realism.
Bitmap images can be very detailed but do not scale up well and tend to be very large
in terms of file size. We will examine the specific types of the images in the following
sections. A complete discussion of their usage is presented in Chapter 14.

GIF
GIF (Graphics Interchange Format) is a bitmap format that does not provide a great
degree of compression or color support, being limited to 8-bit or 256 simultaneous
colors. However, the GIF format is relatively versatile and supports transparency,
animation, and interlacing. It is commonly used in Web pages for logos, graphical
navigation elements, and photos that do not require high-quality reproduction.

Information about the GIF Specification can be found at this URL:

■ http://www.w3.org/Graphics/GIF/spec-gif89a.txt

JPEG
JPEG (Joint Photographic Experts Group) images support up to 24-bit color and are well
suited for reproduction of photographs. Despite being a raster format, JPEG images
allow designers to balance file size with image quality and support an impressive lossy
compression algorithm that can significantly shrink image size with little discernable
quality loss to the casual viewer. JPEG images do support progressive loading, but are not
quite as versatile as GIF images because they lack transparency and animation features.

Information about JPEGs can be found at these URLs:

■ JPEG Activity at the W3C: http://www.w3.org/Graphics/JPEG/

■ JPEG Specification: http://www.jpeg.org/

The JPEG 2000 standard aims to eliminate many of the problems with JPEG and provide
an even greater degree of quality and compression than standard JPEG files. However,
so far, JPEG 2000 is not available in Web browsers.

PNG
PNG (Portable Network Graphics) images provide an advanced image format designed
to replace GIF as the dominant form of graphics on the Web. PNG images provide
three primary advantages over GIF: alpha transparency, which provides variable
degrees of transparency (versus GIF, which has a single degree of transparency);
gamma correction to help improve image brightness across systems; and improved
interlacing and compression. While PNG provides numerous benefits, many of its
advanced features are not properly implemented in the latest browsers, so the rush to
embrace the format has yet to materialize.

TE
AM
FL
Y

Team-Fly®

84 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Information about PNG can be found at these URLs:

■ PNG Activity at the W3C: http://www.w3.org/Graphics/PNG/

■ PNG Resources and Specifications: http://www.libpng.org/pub/png/

Flash
Macromedia’s Flash is a vector image format that supports still images, animations, and
complex interactivity using a built-in scripting language similar to JavaScript, called
ActionScript. The format, defined in the form of an SWF file, is arguably the most popular
multimedia format on the Web. It is used for implementation of navigation systems,
animations, and presentations, as well as full-blown Web sites. The biggest complaint
made about the format is that it is proprietary; thus, Macromedia has opened the format
to the public, though it is not blessed by the W3C (which backs a rival standard called
SVG). It could be further said that Flash, which was first popularized as an alternative
to Macromedia’s complex and sometimes clunky CD-ROM development environment
Director, has become amost exactly what it sought to augment.

Information about Flash can be found at these URLs:

■ Macromedia’s Flash Homepage: http://www.flash.com

■ SWF File Format Page: http://www.openswf.org

SVG
SVG (Scalable Vector Graphics) is an XML language for describing simple two-
dimensional images. Because the language is XML based, scripting interaction is
straightforward using standard JavaScript in conjunction with the Document Object
Model. While the SVG format is an open standard, it has been slow to be adopted by the
Web development community and will be unlikely to overtake Flash in the near term.

Information about SVG can be found at these URLs:

■ SVG Activity at the W3C: http://www.w3.org/Graphics/SVG

■ SVG 1.0 Specification: http://www.w3.org/TR/SVG/

VML
VML (Vector Markup Language) is yet another vector image used in Web pages. It is
relatively unnoticed by most Web developers, despite the fact that it has been natively
supported in Microsoft Internet Explorer since the 5.0 version. It was briefly introduced
to the W3C for standardization, but SVG is being pushed over VML, and Flash is currently
the popular vector format for the masses. However, Microsoft-oriented developers should
be well aware of this format, since it is found in pages exported from Microsoft products.

Information about VML can be found at these URLs:

■ W3C VML Note: http://www.w3.org/TR/NOTE-VML

■ Microsoft VML Info:
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/vml/

Other Image Formats
The previously discussed image formats are the primary standard for well-supported
image formats on the Web. However, other images are supported in some browsers,
and, in theory, the tag does not discriminate among the type, of images included
in a Web page. The most important other format is probably BMP, which is supported
by Microsoft’s Internet Explorer. A variant called Wireless BMP (WBMP) is also
noteworthy and is supported in some wireless browsers. Many browsers, particularly
older browsers or those with a UNIX release, support Xbitmaps. Using plug-ins or helper
applications, everything from PostScript files to TIFFs can be viewed in a browser.

Animation
A little animation can spice up a Web page a great deal. Animation on the Web is used
for many things: active logos, animated icons, demonstrations, and short cartoons. There
are a variety of animation technologies available to Web designers. Some of the most
common animation approaches include animated GIFs, Flash and Shockwave, and
JavaScript animations (also called DHTML). Other animation possibilities also exist:
Java-based animations and older animation techniques such as “server push” are still
possible. However, the field has narrowed significantly, and very few older or propriety
animation formats are actually worth exploring. Table 3-3 details the animation choices
commonly used and provides some facts about each.

Sound
Audio technologies on the Internet cover a lot of ground, from traditional download-
and-play systems in a variety of formats such as WAV and MP3 to streaming audio,
which attempts to play data as it is downloaded over a connection. Surprisingly, the
most advanced technologies, and the most popular, may not be the best solution for
Web sites. For example, MP3 files, while of high quality, tend to take too long to download,
and streaming technologies might not provide reliable playback in all situations because
of the unpredictable delivery conditions on the Internet. Fortunately, much has improved
since the simple days of adding a WAV or MIDI file for background music, but there is
still a long way to go before sounds will become commonplace, primarily because of
the large size of audio files.

Audio files can be compressed to reduce the amount of data being sent. The software
on the serving side compresses the data, which is decompressed and played back on

C h a p t e r 3 : T h e W e b M e d i u m 85
FO

U
N

D
A

TIO
N

the receiving end. The compression/decompression software is known together as a
codec. Just like image formats, audio compression methods are either lossy or lossless.
Typically, audio codecs are lossy because of size considerations. Common audio delivery
approaches for Web pages are shown in Table 3-4.

Video
The holy grail of Internet multimedia is certainly high-quality, 30-frames-per-second,
real-time video. The main challenge to delivering video over the Internet is its extreme
size. Digital video is measured by the number of frames per second of video and by the
size and resolution of these frames. A 640 × 480 image with 24 bits color and a frame

86 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Animation Technology Comments

Animated GIFs Animated GIFs (GIF89a) are the simplest form of
animation and are supported natively by most
browsers. Looping and minimal timing information
can be set in an animated GIF, but complex
animation is beyond this format’s capabilities.

JavaScript/DHTML JavaScript can be used to move objects around the
screen. This type of use of JavaScript is often
described as dynamic HTML, or DHTML. Regardless
of the name, this form of animation tends to be
choppy and is not suggested for anything beyond
simple button rollover and scrolling text effects.

Flash Macromedia Flash, introduced earlier in the chapter,
is the leading format for sophisticated Web, based
animations. Flash files are very compact, and most
Web users have Flash preinstalled on their system.
Flash supports a growing programming facility
based upon JavaScript.

Shockwave Shockwave files are compressed Macromedia
Director files. Their main benefit over Flash is simply
that they support complex scripting. However, with
the growing features of Flash, Shockwave files are
falling quickly out of favor.

Table 3-3. Common Web Animation Choices

rate of 30 frames per second takes up a staggering 27MB per second—and that’s without
sound. Add CD-quality audio (705,600 bits of data for each second of data; for stereo,
double that amount to 1.4 Mbps) and the file size increases proportionately. Granted,
these are uncompressed frames and audio, but the point is that a lot of compression as
well as bandwidth is needed for high-quality, large-size video.

C h a p t e r 3 : T h e W e b M e d i u m 87
FO

U
N

D
A

TIO
N

File Format Description

WAV Waveform (or simply wave) files is the most common sound
format on Windows platforms. WAVs may also be played
on Macs and other systems with player software.

MPEG (MP3) Motion Pictures Experts Group format is a standard format
that has significant compression capabilities. MPEG Level 3
or MP3 files are very commonly used for distribution of
music on the Web. However, due to their size, MPEG files
can be unwieldy for direct Web page playback unless
streamed over a fast connection.

RealAudio (.rm) RealAudio (http://www.real.com) is the predominant
streaming technology currently in use on the Web. It
requires a proprietary player, but basic versions of the
player are available free.

MIDI Musical Instrument Digital Interface format is not a digitized
audio format. It represents notes and other information so
that music can be synthesized. MIDI is well supported and
files are very small, but it is useful for only certain
applications due to its sound quality on PC hardware.

Windows Media
Audio (WMA)

Windows Media Technologies (http://www.microsoft.com/
windows/windowsmedia) offers a suite of utilities for
creating, serving up, and viewing streamed multimedia,
including high-quality audio. This is a serious competitor
to the Real platform.

SWF While it is not a music format per se, many sites opt to
embed sound within Flash files. Flash files typically import
either WAV or MP3 files.

Table 3-4. Common Web Audio Choices

As with audio, numerous formats are supported for Web-based video, including
AVI, QuickTime, MPEG, RealVideo, and ASF. Table 3-5 presents a brief overview of
the various Web video formats.

Even with improvements in network and compression technology, audio and video
services have a long way to go on the Web if they are to approach the quality and
reliability that users are familiar with from radio and television. Until that time, developers
should always proceed with caution with real time media technologies. Further, just
because audio and video can be delivered over the Web doesn’t mean that it should be.
Always pick the best media format for the message to be delivered and remember that if
you have nothing to say, whether it is in Flash or not isn’t going to help. We now switch
gears and turn our attention to the programming aspects of the Web medium.

88 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Video Format Description

AVI Audio Video Interleave. The Video for Windows file format for
digital video and audio is very common and easy to specify.
AVI files tend to be too large for streaming directly but are
often used for small download-and-play clips.

MOV
(QuickTime)

MOV is the extension that indicates the use of Apple’s
QuickTime format (http://www.apple.com/quicktime/). A
very common digital video format, it continues its popularity
on the Internet.

Windows Media
Video (WMV)

The Windows Media platform (http://www.microsoft.com/
windows/windowsmedia) also supports streaming video,
and, because of the ubiquity of the Windows Media player,
this format has become one of the most popular video
platforms on the Web.

Real Platform
(RM)

The only major challenger to the Windows Media platform,
the Real platform delivers surprisingly reliable video at
various quality levels depending on end-user bandwidth
availability.

Flash (SWF) Like audio, some developers prefer to avoid the headache of
multiple technologies in a page and embed video in Flash or
even convert the individual video frames to Flash frames.
While not always the best solution for straight streaming, for
interactive video clips, Flash is hard to beat.

Table 3-5. Common Web Video Formats

Programming Technologies
Understanding the basic idea of adding programming to a site isn’t hard, but it’s easy
to get overwhelmed by the number of technologies to choose from, particularly if you
assume that each is very different. The reality is that Web programming technologies
can be placed into two basic groups: client side and server-side. Client side technologies
are those that are run on the client, generally within the context of the browser, though
some technologies like Java applets or ActiveX controls may actually appear to run, or
may truly run, beyond the browser, and Helper applications do so implicitly. Of course,
programs can and do run instead on the server and thus are appropriately termed
server-side programming. Table 3-6 presents the general programming choices available
to Web developers; Figure 3-7 shows the relationship of all programming technologies.

The challenge of Web-based programming is making sure to choose the right
technology for the job. More often than not, designers are quick to pick a favorite
technology, whether it is JavaScript, ColdFusion, or ASP and use it in all situations.
The reality is that each technology has its pros and cons. In general, client-side and
server-side programming technologies have characteristics that make them complimentary
rather than adversarial. For example, when adding a form to a Web site to collect data
to save in a database, it is obvious that it would make sense to check the form on the
client side to make sure that the user entered the correct information, since it would
not force a network round-trip to the server just to check the input data. Client-side
programming would make the form validation more responsive and frustrate the user
less. On the other hand, putting the data in the database would be best handled by a
server-side technology, given that the database would be located on the server side of
the equation. Each general type of programming has its place, and a mixture is often
the best solution.

C h a p t e r 3 : T h e W e b M e d i u m 89
FO

U
N

D
A

TIO
N

Client Side Server Side

Helper applications
Browser API programs
—Netscape plug-ins
—ActiveX Controls
—Java applets
Scripting languages
—JavaScript
—VBScript

CGI scripts and programs
Server API programs
—Apache modules
—ISAPI extensions and filters
—Java servlets
Server-side scripting
—Active Server Pages (ASP/ASP.NET)
—ColdFusion
—PHP

Table 3-6. Web Client-Side and Server-Side Programming Options

Rule: Consider using both client-side and server-side technologies in a site,
rather than one or the other.

Client-side Programming
The first group of programming facilities we discuss are client-side technologies. Client-
side programming technologies run the gamut from simple helper applications—
launched upon download of media types like Zip files or of Word documents—to
scripts built in browser-based scripting languages, such as JavaScript.

Helpers
One approach to client-side programming comes in the form of programmed solutions,
like helper applications. In the early days of the Web, around the time of Mosaic or
Netscape 1.x, browsers had limited functionality and support for media beyond HTML.
If new media types or binary forms were encountered, they had to be passed to an
external program called a “helper application.” Helper applications generally run outside
the browser window. An example of a helper application would be a compression or
archive tool like WinZip, which would be launched automatically when a compressed
file was downloaded from the Web. Helpers are often problematic because they are not
well integrated with the browser and lack methods to communicate back to the Web

90 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 3-7. Web Programming Technologies in context

browser. Because the helper was not integrated within the Web browser, external media
types and binaries could not be easily embedded within the Web page. Last, helper
applications generally had to be downloaded and installed by the user, which kept
many people from using them.

The idea of a helper application is rather simple: it is a program that the browser calls
upon for help. Any program can be a helper application for a Web browser, assuming
that a MIME type can be associated with the helper. When an object is delivered on the
Web, HTTP header information is added to the object, indicating its type. This information
is in the form of a MIME type. For example, every Acrobat file should have a content-type
of application/pdf associated with it. When a browser receives a file with such a MIME
type, it will look in its preferences to determine how to handle the file. These options
may include saving the file to disk, deleting the file, or handing the file off to another
program, such as a helper or browser plug-in. With MIME types and helpers, a developer
can put Microsoft Word files on their Web site; users may be able to download them
and read them automatically, assuming they have the appropriate helper application.
Figure 3-8 overviews the basic way helper applications operate.

Oddly, helper applications are not used as much as they could be. Consider, for
example, the use of HTML on an intranet. Within an organization, data may often be
created in Microsoft Word or Excel format. While it is possible to easily translate such
information into HTML, why would one want to? HTML is relatively expensive to create
and, often difficult to update, and may limit the quality of the document’s presentation.
The main reason that documents are put in HTML is that they can ubiquitously read,
meaning we don’t have to rely on users having a particular application to read our
document, other than a Web browser. However, in an intranet, this probably isn’t an
issue. In fact, it might be easier to create helper mappings on every system within a
corporation rather than to reformat documents in HTML.

Suggestion: Rely on helper applications when translation to a native Web
form is impractical.

Netscape Plug-Ins
Plug-ins were introduced by Netscape in Navigator 2 and have limited support in other
browsers, like Opera or Internet Explorer. Internet Explorer favors ActiveX controls,
which are described in the next section. Using plug-ins addresses the communication
and integration issues that plagued helper applications. Recall that helper applications
are not integrated into the design of a Web page, but rather appear in a separate window
and may not be able to communicate well with the browser. However, plug-ins are
components that run within the context of the browser itself and, thus, can easily be
integrated into the design of a page and can communicate with the browser through
technologies like JavaScript (which will be introduced in a moment).

The plug-in approach of extending a browser’s feature set has its drawbacks. Users
must locate and download plug-ins, install them, and even restart their browsers.
Many users find this rather complicated. Netscape 4 offers some installation relief with

C h a p t e r 3 : T h e W e b M e d i u m 91
FO

U
N

D
A

TIO
N

92 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 3-8. Overview of helper use

1. Browser
checks lookup
table mapping
MIME to action.

3. Pass to helper
application if set
up to do so.

2. If no cation,
browser prompts
user.

C h a p t e r 3 : T h e W e b M e d i u m 93
FO

U
N

D
A

TIO
N

self-installing (somewhat) plug-ins and other features, but plug-ins remain troublesome.
To further combat this problem, many of the most commonly requested plug-ins, such
as Macromedia’s Flash, are included as a standard feature with Netscape browsers. The
standard plug-ins are primarily geared towards media handling and include Macromedia
Flash and Shockwave, Adobe Acrobat, and Real player (audio and video). If plug-ins
are used, make sure to focus on the popular ones first, given the installation hassle
you’ll put the user through.

Suggestion: Focus on using only the more popular plug-in technologies unless
automatic installation can be performed.

Even if installation were not such a problem, plug-ins are not available on every
machine. An executable program, or binary, must be created for each particular
operating system; thus, most plug-ins work on Windows systems, though a few of the
more popular ones have versions that work on Macintosh and UNIX systems as well.

The main benefit of plug-ins is that they can be well integrated into Web pages.
They may be included by using the <embed> or <object> tags, though <embed> is
nearly always favored. For example, to embed a short Flash movie called welcome.swf
that can be viewed by a Flash player plug-in, you would use the following HTML
fragment:

<embed src="welcome.swf" quality="high"

type="application/x-shockwave-flash" scale="exactfit"

width="406" height="59" bgcolor="#FFFF00">

</embed>

The <embed> element displays the plug-in (in this case, a Flash animation) as part of
the HTML document. Of course, always remember that the main downside of plug-ins
is the barrier to entry they create because of installation and system requirements. If
installation can be improved, designers will be able to rely on the technologies provided
more and more.

ActiveX
ActiveX (http://www.microsoft.com/activex), which is the Internet portion of the
Component Object Model (COM), is Microsoft’s component technology for creating
small components, or controls, within a Web page. ActiveX distributes these controls
via the Internet, adding new functionality to Internet Explorer. Microsoft maintains that
ActiveX controls are more similar to generalized components than to plug-ins because
ActiveX controls can reside beyond the browser, even within container programs such
as Microsoft Office. ActiveX controls are similar to Netscape plug-ins in that they are
persistent and machine-specific. Although this makes resource use a problem, installation
is not an issue: the components download and install automatically.

TE
AM
FL
Y

Team-Fly®

Security is a big concern for ActiveX controls. Because these small pieces of code
potentially have full access to a user’s system, they could cause serious damage. This
capability, combined with automatic installation, creates a serious problem with ActiveX.
End users may be quick to click a button to install new functionality, only to have it do
something malicious, like erase an important system file. The potentially unrestricted
functionality of ActiveX controls creates a gaping security hole. To address this problem,
Microsoft provides authentication information to indicate who wrote a control, in the
form of code signed by a certificate, as shown by the various dialogs in Figure 3-9.

Certificates only provide some indication that the control creator is reputable; they
do nothing to prevent a control from actually doing something malicious—that’s up to
the user to prevent. Safe Web browsing should be practiced by accepting controls only
from reputable sources.

Adding an ActiveX control to a Web page requires the use of the <object> tag. For
example, this markup is used to add a Flash file to a page.

<object classid="clsid:D27CDB6E-AE6D-llcf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/

cabs/flash/swflash.cab#version=5,0,0,0"

width="406" height="59">

<param name="movie" value="welcome.swf" />

<param name="quality" value="high" />

<param name="scale" value="exactfit" />

Sorry, no ActiveX in this browser!

</object>

What appears in a browser with no ActiveX? Just a short message indicating the user
doesn’t have ActiveX. The reality is that the page should allow alternative technologies,
such as plug-ins using the <embed> tag or even images, before giving a failure message.

Suggestion: If ActiveX controls are used on a public site, make sure to provide
alternatives for Netscape or other browsers.

Java
The main downside of component technologies like Netscape plug-ins and Microsoft
ActiveX controls is that they are fairly operating system specific. Not every user runs
on Windows or even Macintosh, so how do you deal with such a heterogeneous world?
One solution is to create a common environment and port it to all systems—this is the
intent of Java.

Sun Microsystems’ Java technology (http://www.javasoft.com) is an attractive,
revolutionary approach to cross-platform, Internet-based development. Java promises
a platform-neutral development language, somewhat similar in syntax to C++, that
allows programs to be written once and deployed on any machine, browser, or operating

94 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : T h e W e b M e d i u m 95
FO

U
N

D
A

TIO
N

Figure 3-9. ActiveX signed-code certificate

system that supports the Java virtual machine (JVM). Web pages use small Java programs,
called applets, that are downloaded and run directly within a browser to provide new
functionality.

Applets are written in the Java language and compiled to a machine-independent
byte code in the form of a .class file, which is downloaded automatically to the Java-
capable browser and run within the browser environment. But even with a fast processor,
the end system may appear to run the byte code slowly compared to a natively compiled
application because the byte code must be interpreted by the JVM. This leads to the
common perception that Java is slow. The reality is that Java isn’t necessarily slow, but
its interpretation can be. Even with recent Just-In-Time (JIT) compilers in newer browsers,
Java often doesn’t deliver performance equal to natively compiled applications.

Rule: Consider end-user system performance carefully when using Java.

Even if compilation weren’t an issue, current Java applets generally aren’t
persistent; they may have to be downloaded again and again. Java-enabled browsers
act like thin-client applications because they add code only when they need it. In this
sense, the browser doesn’t become bloated with added features, but expands and
contracts upon use.

Adding a Java applet to a Web page is relatively easy and can be done using the
<applet> or <object> tag, though <applet> is preferred for backward compatibility.
If, for example, we had a .class file called helloworld, we might reference it with the
following markup:

<applet code="helloworld.class"

height="50"

width="175">

<h1>Hello World for you non-Java-aware browsers</h1>

</applet>

In the preceding code, between <applet> and </applet> is an alternative rendering
for browsers that do not support Java or that have Java support disabled.

The basic idea of how Java is utilized is shown in Figure 3-10.
Security in Java has been a serious concern from the outset. Because programs are

downloaded and run automatically, a malicious program could be downloaded and
run without the user being able to stop it. Under the first implementation of the technology,
Java applets had little access to resources outside the browser’s environment. Within
Web pages, applets can’t write to local disks or perform other potentially harmful
functions. This framework has been referred to as the Java sandbox. Developers who
want to provide Java functions outside of the sandbox must write Java applications that
run as separate applications from browsers. Other Internet programming technologies
(Netscape plug-ins and ActiveX) provide less safety from damaging programs.

96 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

The reality of Java, as far as a Web designer is concerned, is that it really isn’t useful
on public sites. There are so many different Java Virtual Machines in browsers that the idea
of “write once, run everywhere” has been turned into “write once, debug everywhere.”
The major benefit of Java applets just isn’t there. Designers should need no proof other
than the fact that major sites that relied on Java applets have in most cases long since
removed them. However, within intranets or on the server side in the form of Java
servlets, we have seen Java achieve significant success.

C h a p t e r 3 : T h e W e b M e d i u m 97
FO

U
N

D
A

TIO
N

Figure 3-10. Overview of Java use

JavaScript
JavaScript, which is of no relation to Java other than in name, is the premiere client-
side scripting language used in Web browsers. Originally developed by Netscape for
Navigator 2.0, the language has grown significantly over the years and is supported
by all major browsers in one form or another. For example, Microsoft, supports Jscript,
which is their take on the JavaScript language. Standardization of the language came
in the form of ECMAScript, but the name JavaScript continues to be used by most
developers.

JavaScript is a loosely typed scripting language that has simple uses for tasks like
form data validation or minor page embellishments, such as rollover buttons. The
inclusion of JavaScript in an HTML page is primarily handled by the <script> tag. For
example, in this short fragment,

<h1>About to leave HTML</h1>

<script type="text/javascript">

<!--

alert("Hello from JavaScript!");

//-->

</script>

<h1>Welcome back to HTML</h1>

we see a statement printed in an HTML document, then an alert dialog is created by
JavaScript, and finally another HTML statement in executed. The interaction between
HTML and JavaScript is significant, and mastery of markup is required to reap the
most benefits from this technology. JavaScript will be presented in this book in small,
hopefully palatable, doses to improve page usability. Some techniques for correct
JavaScript use will also be presented. For an in-depth discussion, readers should see
the links provided or the companion book, JavaScript: The Complete Reference.

Information about ECMAScript and JavaScript can be found at these URLs:

■ ECMAScript Spec: http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

■ Netscape JavaScript Information: http://developer.netscape.com/javascript/

■ Microsoft Scripting Information: http://msdn.microsoft.com/scripting

Document Object Model
With the rise of the standardized document object model, or DOM, JavaScript is poised
to become nearly as important as HTML or CSS for Web developers, because it will
provide the ability to manipulate any aspect of an HTML document. In the past, page
manipulations were possible using browser and document objects defined by each
browser vendor. Browser differences made all but the simplest scripts difficult to
implement. The W3C DOM specification promises to help ease cross-browser scripting

98 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : T h e W e b M e d i u m 99
FO

U
N

D
A

TIO
N

because it specifies a language-neutral interface that allows programs and scripts to
dynamically access and update the content, markup, and style of Web documents.

Since the DOM is used via JavaScript to manipulate HTML documents, this usage
is often referred to as dynamic HTML, or DHTML. However, the term really is deceptive
and its usage is not encouraged. The DOM comes in two primary variants at the moment:
DOM Level 1, which provides access and manipulation facilities for basic markup
elements and bindings to manipulate HTML tags, and DOM Level 2, which extends the
interface to allow manipulation of CSS properties and provides a richer event interface.

Online information about the DOM can be found at these URLs:

■ DOM Level 1 Spec: http://www.w3.org/TR/REC-DOM-Level-1/

■ DOM Level 2 Core Spec: http://www.w3.org/TR/DOM-Level-2-Core/

■ DOM Level 2 Events Spec: http://www.w3.org/TR/DOM-Level-2-Events/

■ DOM Level 2 Style Spec: http://www.w3.org/TR/DOM-Level-2-Style/

Server-Side Technologies
The Web server handles the server side of the Web communications medium, responding
to the various HTTP requests made to it. Servers may directly return various file objects,
such as HTML documents, images, multimedia files, scripts, or style sheets, or they may
run executable programs, which return a similar result. In this sense, the Web server acts
both as a file server and as an application server. We will survey the basic components of
the server side here before addressing the network components of the medium.

Web Servers
Like the Web browser, the Web server frames the environment of each Web transaction.
The term “Web server” is usually understood to mean both the hardware and software.
The major issue with hardware is whether the Web server is capable of handling the
memory, disk, and network input/output requirements resulting from site traffic.
The interplay of operating systems, such as UNIX or Windows 2000, and Web server
software also is closely related to performance, as is security.

From Apache to Zeus, all Web server software platforms handle basic HTTP
transactions, but all tend to offer more than basic file serving facilities. Most Web
server platforms provide basic security and authentication services, logging, and
programming facilities. An in-depth discussion of the popular servers and their
facilities is presented in Chapter 17; here, we will focus only on the programming
aspects of sites.

CGI
The oldest of the server-side programming technologies, CGI (Common Gateway
Interface) programs can be written in nearly any programming language, though

commonly Perl is associated with CGI applications. CGI is not a language or program,
but in fact just a way to program—unlike other server-side programming environments,
which define both language and style. CGI defines the basic input and output methods
for server-side programs launched by a Web server, as illustrated in Figure 3-12. While
assumed by some to be slow and insecure, CGI is adequate for many Web development
projects when correctly understood and used.

Online information about CGI can be found at these URLs:

■ CGI Overview and Documentation:
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

■ CGI Resource Index: http://cgi.resourceindex.com/

Server-Side Scripting
Server-side scripting technologies, such as Microsoft’s Active Server Pages (ASP) or
Macromedia’s ColdFusion, allow dynamic pages to be created easily. All server-side
scripting languages, including the popular ASP, ColdFusion, JSP, and PHP languages,
work fairly similarly. The idea is that script templates that contain a combination of
HTML and scripting language are executed server side to build a resulting Web page.
Usually, some form of server engine intercepts page requests, and when files with
certain extensions—such as .asp, .cfm, .jsp, .php, or .shtml—are encountered, the script
elements in the page are replaced with the resulting markup output. The process is
illustrated in Figure 3-13.

100 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 3-11. Overview of CGI

C h a p t e r 3 : T h e W e b M e d i u m 101
FO

U
N

D
A

TIO
N

Server-side scripting languages are often used to build dynamic pages from
databases, personalize content for users, or generate reusable components in pages.
The syntax for each language is different, and many developers are somewhat religious
about the merits of one language over the next, but the fact of the matter is that none of
them scales well for extremely high-volume sites. Such sites usually require server API
programs, which are discussed next.

Figure 3-12. Overview of server-side scripting

102 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Online information about server-side scripting can be found at these URLs:

■ ASP Information: http://msdn.microsoft.com/asp

■ ColdFusion Information: http://www.macromedia.com/software/coldfusion/

■ PHP Information: http://www.php.net/

■ JSP Information: http://java.sun.com/products/jsp

Server APIs
Server API (Application Programming Interfaces) programs are special server-side
programs built to interact closely with the Web server. A simple way to think of server
API programs is as plug-ins to a Web server. Common APIs include ISAPI for Microsoft’s
IIS server, NSAPI for the Netscape/IPlanet/Sun server, Apache Modules for Apache,
and Java servlets for Java-enabled Web servers. The benefit of server API programs is
that their close interaction with the Web server generally translates into high performance.
The downside, of course, is the complexity of writing such a program and the possibility
that an errant server module may actually crash the entire server.

Information about server APIs can be found at these URLs:

■ Apache Module Information: http://modules.apache.org/

■ ISAPI Filters/Extension Information: http://msdn.microsoft.com

■ Java Servlet Information: http://java.sun.com/products/servlet

Network and Related Protocols
The underlying protocols of the Web include the TCP/IP suite of networking protocols.
Not a single protocol but a group of protocols, TCP/IP is what makes all services on
the Internet possible. Individually, IP (Internet Protocol) provides the basic addressing
and routing information necessary to deliver data across the Internet. However, TCP
(Transport Control Protocol) provides the facilities that make communications reliable,
such as correction and retransmission. Together, in conjunction with the Domain Name
Service (or DNS), which is the process of translating fully qualified domain names like
www.webdesignref.com into their underlying IP addresses (66.45.42.235), we have the
ability to build higher-level services, such as e-mail or Web sites, on the Internet.
Knowledge of lower-level protocols may seem pointless to many Web designers, but
it is particularly helpful to understand networking details when designing extremely
scalable Web sites. However, regardless of site aims, the next protocol discussed
should be understood by every Web designer.

HTTP
HTTP (Hypertext Transport Protocol) is the application-level protocol that handles
the discussion between a user-agent, generally a Web browser, and a Web server. The

protocol is simple and defines eight basic commands (GET, POST, HEAD, PUT, DELETE,
OPTIONS, TRACE, and CONNECT) that can be made by a user-agent to request or
manipulate data. Responses may contain both numeric and textual codes (for example,
404 Not Found) and associated data.

The simplicity of the HTTP protocol is both a blessing and a curse. It is simple to
implement, but its lack of state management and its performance problems plague Web
developers. The HTTP 1.1 specification as defined in RFC 2616 addressed many of the
performance problems, but state management still has to be resolved using cookies, hidden
data variables, or extended URLs. An overview of HTTP can be found in Chapter 17,
while Appendix G details its request and response format.

Information about HTTP can be found at these URLs:

■ W3C HTTP Activity: http://www.w3.org/Protocols/

■ HTTP 1.1 Specification: ftp://ftp.isi.edu/in-notes/rfc2616.txt

MIME
MIME (Multipurpose Internet Mail Extensions), the unsung hero of Web protocols, is
used by browsers to determine what kind of data they have received from a server.
Specifically, an HTTP header called Content-type contains a MIME value, which is
looked up by a browser to understand what type of data it is receiving and what to do
with it. Servers append MIME types to HTTP headers either by generating them from a
program or by mapping a file extension (for example, .html) to an appropriate MIME
type (for example, text/html). MIME allows Web sites to deliver any type of data, not
just the common Web formats like HTML.

Information about MIME can be found at this URL:

■ MIME Specification: http://www.ietf.org/rfc/rfc2045.txt

Addressing: URL/URI/URNs/URCs
To request and link to Web pages, it is necessary to use an addressing scheme. Web users
are familiar with URLs (Uniform Resource Locator), like http://www.webdesignref.com/,
which specify protocol and location. In specifications, URI (Uniform Resource Identifier)
is the more commonly accepted term for short names or address strings that refer to a
resource on the Web. Yet, whatever the name, URI or URLs do not provide all that may
be required on the Web in the future, since they specify only location. Uniform Resource
Names (URNs) and Uniform Resource Characteristics (URCs) may eventually be implemented
to provide non-location-dependent addressing and extra information about resources,
respectively. However, resource characteristics are more commonly specified using a
form of meta data, as described next.

Online information about addressing can be found at this URL:

■ W3C Addressing Activity: http://www.w3.org/Addressing/

C h a p t e r 3 : T h e W e b M e d i u m 103
FO

U
N

D
A

TIO
N

TE
AM
FL
Y

Team-Fly®

Meta Data
Meta data is defined as data about data. Web developers may be familiar with putting
meta data in a Web page using the <meta> tag. Often, this is used to specify keywords
and descriptions for search engines. For example,

<meta name="keywords" content="robots,androids, bots">

<meta name="description" content="Demo Company makes the best

robots in the Solar System!">

Meta data is also used in Web pages to control page characteristics, particularly
those related to HTTP headers. For example,

<meta http-equiv="Expires" content="Wed, 15 May 2002 08:21:57 GMT" />

would set an expiration date for a Web page using the HTTP expires header.
The key to meta data is having a consistent and descriptive enough vocabulary for

describing data. The Resource Description Framework (RDF) provides a standard way
for using XML to represent meta data in the form of statements about properties and
relationships of items on the Web. However, RDF itself is just a framework and needs a
vocabulary. A popular vocabulary called Dublin Core initially has started to gain some
traction. However, at the time of this edition’s writing, the use of meta data vocabulary
beyond the simple <meta> tag for keywords and descriptions is not common practice on
the Web, though it is prevalent in many large sites and very common in large intranets.

Online information about meta data can be found at these URLs:

■ W3C RDF Information: http://www.w3.org/RDF/

■ Dublin Core Metadata Initiative: http://dublincore.org/

Web Services
Finally, the latest wrinkle in the Web medium is the rise of Web Services. The basic concept
of Web Services is that Web sites may interact directly with each other, exchanging
information or even running programs remotely. Web Services allow for complex
distributed applications to be built using the pieces of various Web sites. For example,
imagine running a small travel site and offering flight, hotel, and car rental booking
services directly from your site through a large travel partner’s Web site without the
user being aware. Web Services would provide the facilities for your site to talk to
others and seamlessly make such a service possible.

The key to Web Services is the use of standardized message formats, typically
specified in XML. A protocol called SOAP (Simple Object Access Protocol) appears to
be the leading candidate for Web Services. However, others do exist, and Web Services
are not prevalent enough yet to assume victory for SOAP. Beyond messaging protocols,

104 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : T h e W e b M e d i u m 105
FO

U
N

D
A

TIO
N

Web Services also require a facility for service providers to describe their offered
services, and for users to discover the services they require. So far, service description
is being handled by a protocol called WSDL (Web Service Description Language),
while service discovery is handled by UDDI (Universal Description, Discovery, and
Integration). As mentioned, these protocols may not necessarily become standard; but
regardless of what protocol is adopted, Web Services will provide for a much richer
Web experience, which is coming to be known as the semantic Web.

Information about Web Services can be found at these URLs:

■ W3C Web Services Activity: http://www.w3.org/2002/ws/

■ W3C Semantic Web Activity: http://www.w3.org/2001/sw/

A good portion of the activity in the Web Services space revolves around Microsoft’s
.NET technology, which also provides SOAP as well as a sophisticated Web programming
environment. However, what .NET actually means to Web Services and what it includes
are still very fluid. The best source of information on the Microsoft variant of Web
Services can be found at http://www.microsoft.com/net/.

Summary
Understanding the various aspects of the Web medium is mandatory for aspiring Web
designers. Even if the focus is only on front-end interface creation, designers should
have at least passing knowledge of the various components of the Web sites, ranging
from addressing systems to XML-based Web Services. While it might be said that
architects often make lousy carpenters, it can also be assumed that they generally have
some sense of the properties of the building materials their projects use, and so should
Web architects. Some of these “building materials,” such as Web browsers, HTML/
XHTML, CSS, JavaScript, and media formats, should already be very familiar, while
others, like XML and networking protocols, may seem of little use to visual designers.
However, with the transition away from simple print-oriented Web design to more
interactive software-focused Web sites, designers would be well advised to become
more proficient in programming and networking technologies. The next chapter
explores just how Web sites are built and provides a useful overview of the processes
that can be employed to guide complex Web projects.

This page intentionally left blank.

Chapter 4
The Web Design
Process

107

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

108 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Building a great Web site can be challenging. With so many different components,
ranging from visual design to database integration, there is plenty of room for
things to go wrong. In order to minimize the risk of a Web project failing, we

need a process to guide us. Unfortunately, some Web designers utilize what might
be called the “NIKE” method of Web development—they just do it, often with little
forethought or planning. Building a site this way is not methodical. The site’s goals
tend to be loosely defined, the process more intuitive than procedural, and the end
result highly unpredictable. Sites developed this way are like plants. They grow
organically—sometimes into a beautiful flower, but more often into a tangled mess.
Complex Web sites require careful planning. A process or methodology should always
be employed to help guide our Web design and development efforts.

The Need for Process
Today, Web development finds itself in a crisis similar to the “software crisis” of the
late 1960s. A few years ago most Web sites were little more than digital brochures, or
“brochureware.” Creating such a site didn’t require a great deal of planning—often, it
was sufficient simply to develop an interface and then to populate the site with content.
Since then, sites have become much larger and more complex. With the introduction
of interactivity and e-commerce, sites have clearly moved away from brochureware
to become full-fledged software applications. Despite this, many developers have
yet to adopt a robust site-building methodology, but continue to rely on ad hoc methods.

The “software crisis” refers to a time in the software development field when increasing
hardware capabilities allowed for significantly more complex programs to be built. It was
challenging to build and maintain such new programs because little methodology had
been used in the past, resulting in numerous project failures. Methodology such as
structured or top-down design was introduced to combat this crisis.

Evidence of the crisis in Web development practices is everywhere. Unlike the
in-house client/server software projects of the past, the dirty laundry of many failed
Web projects is often aired for all to see. The number of pages that seem to be forever
“under construction” or “coming soon” suggests that many Web sites are poorly
planned. Some sites have been in a state of construction for years, judging by their
content or date of last modification. These online ghost towns are cluttered with old
content, old-style HTML, dated technologies, broken links, and malfunctioning scripts.
Don’t discount some of these problems as mere typos or slight oversights. A broken
link is a catastrophic failure, like a software program with menus that just don’t go
anywhere!

The reason why sites exhibit problems certainly vary. Some sites may deteriorate
simply because their builders got bored or moved on. Other sites may fall apart because
the site wasn’t considered useful, or funding was withdrawn. Still other sites probably

just couldn’t be completed because the sites overwhelmed the developers—they may
not have understood the tools they were working with, or were not versed well enough
in the medium’s restrictions. The almost countless dead sites on the Web suggest that
Web development projects are risky and often fail.

Ad Hoc Web Process
Often the process to build a Web site is to simply implement the site, perform a brief
visual test in a browser, and then release it to the world. This is similar to the “by the
seat of your pants” code-and-test process used in small software projects. The numerous
problems in Web sites built using informal methods show the problem with this overly
simplistic approach. Today’s process for the Web is so fast that the process almost boils
down to two steps: implement and then release. Visual Web design tools encourage
this design-on-the-fly approach. Some tools encourage the developer to immediately
mock up an interface and later use wizards to add functionality, while others can create
huge amounts of code but have an interface added later on. There is no doubt that a
speedy approach to development, given the time demands of the Web, is important.
Releasing a shoddy, poorly thought-out site, however, may backfire when users
become frustrated with the site’s problems.

In the software industry, most professionals tend to agree that such informal or
“design as you go along” methods are only good for small projects, generally with only
one programmer, and where future maintenance is not expected to be great. Often,
programs built with such little planning exhibit convoluted programming logic—often
called “spaghetti code,” which is very difficult to maintain because nobody besides
the initial developer can untangle the mess. Even the initial developer may forget the
meaning of the code over time.

Web sites exhibit similar patterns. Small Web sites that have short expected life spans
are often built by one person using little methodology. Inspection of the site’s underlying
HTML, JavaScript, and navigation structure will frequently show that “spaghetti code” is
being served, complete with a side dish of “markup salad.”

Planning can help offset some of the problems that may be encountered during a
Web development project. Unfortunately, in the ad hoc Web process, planning is often
limited to a few brief meetings, a brief but incomplete collection of potential content,
and maybe a hastily conceived flow diagram. The amount of time spent planning is
generally negligible next to the amount of time spent during implementation. Of course,
it is always possible to plan too much and suffer from a form of “analysis paralysis,”
which keeps a site from ever getting built, but this is relatively uncommon. Always
have the amount of planning be proportional to the complexity of the project. The key
to dealing with project management challenges is to create a formal process by which to
plan, implement, test, and deploy a site in a structured manner.

FO
U

N
D

A
TIO

N
C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 109

Basic Web Process Model
To help reduce the difficulty in constructing sites, we should adopt a process model that
describes the various phases involved in Web site development. Each step can then be
carefully performed by the developer, using guidelines and documentation along the
way telling the developer how to do things and ensuring that each step is carried out
properly. An ideal process model for the Web would help the developer address the
complexity of the site, minimize the risk of project failure, deal with the near certainty
of change during the project, and deliver the site quickly with adequate feedback for
management during the process. Of course, the ideal process model would also have to
be easy to learn and execute. This is a pretty tall order, and it is unlikely that any single
process model is always going to fit all the particular requirements of every project.

The most basic process model used in Web site development should be familiar to
most people, as it is deductive. The basic model starts with the big picture and narrows
down to the specific steps necessary to complete the site. In software engineering, this
model is often called the waterfall model—or sometimes the software lifecycle model,
because it describes the phases in the lifetime of software. The stages in the waterfall
model proceed one after another until conclusion. The model starts first with a
planning stage, then a design phase, then implementation and testing, and ends with
a maintenance phase. The phases may appear to be distinct steps, and the progress
from one stage to another may not always be obvious. Further, progress isn’t always
toward a conclusion; on occasion, previous steps may be revisited if the project
encounters unforeseen changes. The actual number of steps and their names varies
from person to person, but a general idea of the waterfall model is shown in Figure 4-1.

While this model of Web development is probably the most common, many Web
designers seem to think they invented a special form of it; then they publish it on their
Web site as their patent-pending design process. There really isn’t anything new here,
whether there are five steps or seven steps or whether the names are complex sounding or
simple. Always remember that what matters is that the model helps the site’s production
and improves the final result.

The good thing about the pure waterfall approach is that it makes developers plan
everything up front. That is also its biggest weakness. There is often a great deal of
uncertainty as to what is required to accomplish a Web project, particularly if the
developer has not had a great deal of Web development experience. Another problem
with this process model is that each step is supposed to be distinct. The reality is that in
Web development, as in software, steps tend to overlap, influence previous and future
steps, and occasionally need to be repeated. Unfortunately, the waterfall approach can
be fairly rigid and may require the developer to stop the project and redo many steps if
too many changes occur. In short, the process doesn’t deal well with change. Even so,

110 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 111
FO

U
N

D
A

TIO
N

the waterfall model for site design continues to be very popular because it is both easy
to understand and easy to follow. Further, the distinct steps in the process appeal to
management, as they can be easily monitored and serve as project milestones.

Modified Waterfall
One important aspect of the waterfall model is that it forces developers to plan up
front. However, because of all the steps required in the process, many developers tend
to rush through the early stages and end up repeating them again later on or building
a site based upon flawed ideas. The process is so rigid that it doesn’t support much
exploration, and it may cause unnecessary risk. One possible improvement is to spend
more time in the first few stages of the waterfall and iterate a few times, exploring the
goals and requirements of the site before entering into the design and implementation
phase. Because of the cyclical nature of this process, it has been dubbed the “modified
waterfall with whirlpool” (similar to the small whirlpools that are often found near a
waterfall in nature). When approaching a project with a high degree of uncertainty, the
modified waterfall with whirlpool approach, as illustrated in Figure 4-2, is a good idea.

Figure 4-1. The waterfall model

Joint Application Development
The last software development process model that makes sense for Web site
development is called joint application design, or JAD. It is also called evolutionary
prototyping because it involves evolving a prototype site to its final form in a series
of steps. Rather than creating a mock site to test a theory, a prototype is built and
shown to the client or potentially the end user. The concerned party then provides
direct feedback that is used to guide the next version of the prototype, and so on until
the final form is developed. The basic concept of JAD is shown in Figure 4-3.

Many aspects of the JAD process model seem appropriate for Web development,
particularly when it is difficult to determine the specifics of a project. The process is
very incremental, as compared to the large release approach of the waterfall model,
so it also appears to be faster. However, JAD can have some serious drawbacks. First,
letting users see an unfinished site could harm the relationship between the users and
developer. Even when users want to actively participate in guiding the project, we
must always remember that users are not designers. This guiding Web design principle
should always be remembered, as users may steer development off course with

112 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 4-2. Modified waterfall with risk analysis whirlpool

unrealistic demands. Budgeting a project run in a JAD style is also difficult, since
the number of revisions can’t be predicted. If users are fickle, costs can quickly spiral
out of control. Remember that the core concept behind JAD is to build the wrong site
numerous times until the correct site falls out. Despite its drawbacks, JAD has its place
in Web development, particularly in maintenance projects. However, for initial project
development, JAD is best left to experienced developers—particularly those who are
capable of communicating with users well.

A few possible candidates for guiding a Web project have been discussed. Numerous
others exist and might serve a developer equally well. Remember that the act of building
a site is to clearly identify a problem to solve or a goal to reach and then attempt to
arrive at an outcome in a consistent and enlightened manner. Site development should
be approached critically and deliberately rather than casually or passively. A critical
approach doesn’t necessarily rule out chance or sudden inspiration, and it does offer
the opportunity to direct it. Designers should not look at the use of Web site engineering
concepts as limiting factors, but rather as something that can guide design.

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 113
FO

U
N

D
A

TIO
N

Figure 4-3. Joint application design in action

TE
AM
FL
Y

Team-Fly®

Approaching a Web Site Project
In theory, Web site engineering process models make sense, but do they work in
practice? The answer is a resounding Yes. However, site development rarely works in a
consistent manner, because of the newness of the field, the significant time constraints,
and the ever-changing nature of Web projects. Developers should always proceed with
caution. To guide development, a process model should be adopted at the start of the
project. If the site is brand new or the addition is very complex, the waterfall model or
the modified waterfall with whirlpool model should be adopted. If the project is an
extension maintenance project, is relatively simple or has many unknown factors, joint
application design may make sense. Regardless of the project, the first step is always
the same: set the overall goal for the project.

Goals and Problems
Many Web site projects ultimately fail because they lack clear goals. In the first few
years of Web design, many corporate sites were built purely to show that the firm had
a site. Somehow, without a site the firm would not be progressive or a market leader;
competitors with sites were considered a threat. Many times, the resulting site provided
of little benefit because it wasn’t really designed to provide anything other than a
presence for the company. As familiarity with the Web has grown, the reasons for
having Web sites have become clearer. Today, site goals have become important and
are usually clearly articulated up front. However, don’t assume that logic rules the
Web—a great number of site development projects continue to be driven by pure fancy
and are often more reactive to perceived threats than intended to solve real problems.

Coming up with a goal for a Web site isn’t difficult; the problem is refining it. Be
wary of vague goals like “provide better customer service” or “make more money
by opening up an online market.” These may serve as a good sound bite or mission
statement for a project, but details are required. Good goal statements might include
something like:

■ Build a customer support site that will improve customer satisfaction by
providing 24/7 access to common questions and result in a 25 percent
decrease in telephone support.

■ Create an online automobile parts store that will sell at least $10,000/month
of products directly to the consumer.

■ Develop a Japanese food restaurant site that will inform potential customers
of critical information such as hours, menu, atmosphere, and prices, as well as
encourage them to order by phone or visit the location.

Notice that two of the three goal statements have measurable goals. This is very
important, as it provides a way to easily determine success or failure, as well as assign
a realistic budget to the project. The third goal statement does not provide an obviously

114 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 115
FO

U
N

D
A

TIO
N

measurable goal. This can be dangerous because it is difficult to convince others that
the site is successful or to even place a value on the site. In the case of the restaurant
site, a goal for number of viewers of the site or a way to measure customer visits using
a coupon would help. Consider a revised goal statement like this:

■ Develop a Japanese food restaurant site that will inform at least 300 potential
customers per month of critical information such as hours, menu, atmosphere,
and prices as well as encourage them to order by phone or visit the location.

The simple addition of a particular number of visitors makes the goal statement
work. By stating a number of desired visitors, the restaurant owner could compare
the cost of placing advertisements in print or on the radio versus the cost of running the
site to provide the same effective inquiry rate.

Brainstorming
In general, coming up with a goal statement is fairly straightforward. The largest
problem is keeping the statement concise and realistic. In many Web projects there is
a desire to include everything in the site. Remember, the site can’t be everything to
everyone; there must be a specific audience and set of tasks in mind. To determine goals,
a brainstorming session is often required. The purpose of a brainstorming session is
simply to bring out as many potential ideas about the site as possible. A white board
and Post-it notes are useful during a brainstorming session to quickly write down or
modify any possible ideas for the site.

Oftentimes, brainstorming sessions get off track because participants jump ahead
or bring too much philosophy about site design to the table. In such cases, it is best to
focus the group by talking about site issues they should all agree on. Attempt to find a
common design philosophy by having people discuss what they don’t want to see in
the site. Getting meeting participants to agree they don’t want the site to be slow, difficult
to use, and so on is usually easy. Once you obtain a common goal in the group, even
if it is just that they all believe that the site shouldn’t be slow, future exploration and
statements of what the site should do seem to go smoother.

When conducting a project to redo a site, be careful not to run brainstorm meetings by
berating the existing site, unless no participant in the project has any ownership stake in
the site. A surefire way to derail a site overhaul project is to get the original designers on
the defensive because of criticism of their work. Remember, people have to build sites, so
building a positive team is very important.

Narrowing the Goal
During the brainstorming session, all ideas are great. The point of the session is to
develop what might be called the wish list. A wish list is a document that describes all
possible ideas for inclusion in a site regardless of price, feasibility, or applicability. It is
important not to stifle any ideas during brainstorming, lest this take away the creative

aspect of site development. However, eventually the wish list will have to be narrowed
down to what is reasonable and appropriate for the site. This can be a significant
challenge with a site that may have many possible goals. Consider a corporate site that
contains product information, investor information, press releases, job postings, and
technical support sections. Each person with ownership stakes in a particular section
will think his or her section is most important. Everyone literally wants a big link to his
or her section to be on the home page. Getting compromise with so many stakeholders
can be challenging!

One possibility for narrowing the goal is to use small sheets of papers or a deck
of 3 × 5 cards. Have each one of the ideas written on a card and put them in a large pile.
Now go around the room and have each person pull out one card at a time to include
in the site on the basis of importance. Of course, make sure to limit the number of cards
pulled from the pile. By performing a procedure like this, it’s more likely that all of the
most important ideas will surface. Unfortunately, this exercise may fail—particularly if
the participants place a great deal of ownership in their respective areas.

Audience
The best way to narrow a goal is to make sure that the audience is always considered.
What a brainstorming group wants and what a user wants don’t always correspond.
The first thing to do is to accurately describe the site’s audience and their reason for
visiting the site. However, don’t look for a generic Joe Enduser with a modem who
happened upon your site by chance. It is unlikely such a user could be identified for
most sites, and most users will probably have a particular goal in mind. First, think about
what kind of people your end users are. Consider asking some basic questions about the
site’s users, such as these:

■ Where are they located?

■ How old are they?

■ What is their gender?

■ What language do they speak?

■ How technically and Web proficient are they?

■ Are the users disabled (sight, movement, and so on) in any manner?

■ What kind of connection would they have to the Internet?

■ What kind of computer would they use?

■ What kind of browser would they probably use?

Next, consider what the users are doing at the site:

■ How did they get to the site?

■ What do they want to accomplish at the site?

116 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

FO
U

N
D

A
TIO

N

■ When will they visit the site?

■ How long will they stay during a particular visit?

■ From what page(s) will they leave the site?

■ When will they return to the site, if ever?

■ How often do they return?

While you might be able to describe the user from these questions, you should
quickly determine that your site would probably not have one single type of user
with a single goal. For most sites, there are many types of users, each with different
characteristics and goals.

Stats Logs
If the site has been running for some time, you have a gold mine of information about
your audience—your stats logs. Far too often designers don’t really look at logs for
anything other than basic trends such as number of page views. However, from looking
at logs you should be able to determine useful information, such as the types of browsers
commonly accessing the site, the general pattern of when and how visitors use the site, the
current delivery and server requirements, and a variety of other valuable ideas. Of course,
stats logs won’t tell you much about user satisfaction and specific details of site usage.

User Profiling
The best way to understand users is to actually talk to them. If at all possible, you should
interview users directly to resolve any questions you may have about their wants
and characteristics. A survey may also be appropriate, but live interviews provide
the possibility to explore ideas beyond predetermined questions. Unfortunately,
interviewing or even surveying users can be very time consuming and will not account
for every single type of user characteristic or desire. From user interviews and surveys
or even from just thinking about generic users, you should attempt to create stereotypical
but detailed profiles of common users.

Consider developing at least three named users. For most sites, the three stereotypical
users should correspond roughly to an inexperienced user, a user who has Web
experience but doesn’t visit your site often, and a power user who understands the
Web and may visit the site frequently. Most sites will have these classes of users, with
the intermediate infrequent visitor most often being the largest group. Make sure to
assign percentages to each of the generic groups so that you give each the appropriate
weight. Now name each person. You may want to name each after a particular real
user you interviewed, or use generic names like Bob Beginner, Irene Intermediate,
and Paul Poweruser.

Now work up very specific profiles for each stereotypical user using the questions
from the previous section. Try to make sure that the answers correspond roughly to the
average answers for each group. So, if there were a few intermediate users interviewed

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 117

who had fast connections, but most have slow connections, assume the more common
case. Chapter 2 discussed the concept of general user characteristics versus individual
traits in more detail.

Once your profiles for each generic site visitor are complete, you should begin to
create visit scenarios. What exactly would Bob Beginner do when he visits your site?
What are the tasks he wishes to perform? What is his goal? Scenario planning should
help you focus on what each user will actually want to do. From this exercise, you may
find that your goal statements are not in line with what the users are probably interested
in doing. If so, you are still in the risk analysis whirlpool. Return to the initial step and
modify the goal statement based on your new information.

Site Requirements
Based on the goals of the site and what the audience is like, the site’s requirements
should begin to present themselves. These requirements should be roughly broken up
along visual, technical, content, and delivery requirements. To determine requirements,
you might ask questions like these:

■ What kind of content will be required?

■ What kind of look should the site have?

■ What types of programs will have to be built?

■ How many servers will be required to service the site’s visitors?

■ What kind of restrictions will users place on the site with respect to bandwidth,
screen-size, the browser, and so on?

Requirements will begin to show site costs and potential implementation problems.
The requirements will suggest how many developers are required and show what
content is lacking. If the requirements seem excessive in view of the potential gain,
it is time to revisit the goal stage or question if the audience was accurately defined.
The first three steps of the process may be repeated numerous times until a site plan
or specification is thrown out of the whirlpool.

The Site Plan
Once a goal, audience, and site requirements have been discussed and documented, a
formal site plan should be drawn up. The site plan should contain the following sections:

■ Short goal statement This section would contain a brief discussion to explain
the overall purpose of the site and its basic success measurements.

■ Detailed goal discussion This section would discuss the site’s goals in detail
and provide measurable goals to verify the benefit of the site.

118 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 119
FO

U
N

D
A

TIO
N

■ Audience discussion This section would profile the users who would visit
the site. The section would describe both audience characteristics and the tasks
the audience would want to accomplish at the site.

■ Usage discussion This section discusses the various task/visit scenarios for
the site’s users. Start first with how the user will arrive at the site and then
follow the visit to its conclusion. This section may also include a discussion
of usage measurements, such as number of downloads, page accesses per visit,
form being filled out, and so on as they relate to the detailed goal discussion.

■ Content requirements The content requirements section should provide a
laundry list of all text, images, and other media required in the site. A matrix
showing the required content, form, existence, and potential owner or creator is
useful, as it shows how much content may be outstanding. A simple matrix is
shown in Table 4-1.

Content
Name Description

Content
Type

Content
Format Exists? Owner

Butler
Robot Press
Release

Press release for
new Butler 7
series robot that
ran in Robots
Today.

Text Microsoft
Word

Yes Jennifer
Tuggle

Software
Agreement
Form

Brief
description of
legal liability of
using trial robot
personality
software

Text Paper Yes John P.
Lawyer

Handheld
Super-
computer
Screen Shot

Picture of the
new Demo
Company
Cray-9000
handheld palm
size computer

Image GIF No Pascal
Wirth

Table 4-1. Content Matrix

■ Technical requirements This section should provide an overview of the
types of technology the site will employ, such as HTML, JavaScript, CGI,
Java, plug-ins, and so on. It should cover any technical constraints such as
performance requirements, security requirements, multi-device or multi-
platform considerations, and any other technical requirements that are related
to the visitor’s capabilities.

■ Visual requirements The visual requirements section should outline basic
considerations for interface design. The section should indicate in broad strokes
how the site should relate to any existing marketing materials and provide an
indication of user constraints for graphics and multimedia, such as screen size,
color depth, bandwidth, and so on. The section may outline some specifics,
such as organizational logo usage limitations, fonts required, or color use;
however, many of the details of the site’s visuals will be determined later in the
development process.

■ Delivery requirements This section should indicate the delivery requirements,
particularly any hosting considerations. A basic discussion of how many users
will visit the site, how many pages will be consumed on a typical day, and the
size of a typical page should be included in this section. Even if these are just
guesses, it is possible to provide a brief analysis of the server and bandwidth
required to deliver the site.

■ Miscellaneous requirements There may be other requirements that need to
be detailed in the site plan, such as language requirements, legal issues, industry
standards, and other similar considerations. They may not necessarily require
their own separate discussion, but instead may be addressed throughout the
other sections of the document.

■ Site structure diagram This section should provide a site structure or flow
diagram detailing the various sections within a site. Appropriate labels for

120 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Content
Name Description

Content
Type

Content
Format Exists? Owner

Welcome
from
President
Message

Brief
introduction
letter from
President to
welcome user
to site

Text Microsoft
Word

No President’s
Executive
Assistant

Table 4-2. Content Matrix (continued)

sections and general ideas for each section should be developed based on
the various user scenarios explored in earlier project phases. Organization of the
various sections of the site is important and may have to be refined over time.
Often a site diagram will look something like the one shown in Figure 4-4.

■ Staffing This section should detail the resources required to execute the site.
Measurements can be in simple man-hours and should relate to each of the four
staffing areas: content, technology, visual design, and management.

■ Time line The time line should show how the project would proceed using
the staffing estimates from the preceding section combined with the typical
waterfall process outlined earlier in the chapter.

■ Budget A budget is primarily determined from the staffing requirements and
the delivery requirements. However, marketing costs or other issues such as
content licensing could be addressed in the budget.

The actual organization and content of the site plan is up to the developer.
Remember, the purpose of the plan is to communicate the site’s goals to the various
people working on the project and help guide the project towards a positive conclusion.
Don’t skip writing the plan even though it may seem daunting, as without such
a document you can only develop a project in an evolutionary or JAD fashion.
Furthermore, it will be nearly impossible to obtain any realistic bids from outside
vendors on a Web site without a specification.

A finished plan doesn’t allow you to immediately proceed to implementation. Once
the specification is developed, it should be questioned one last time. The completed

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 121
FO

U
N

D
A

TIO
N

Figure 4-4. Typical site diagram

specification may reveal unrealistic estimates that will throw you back in the whirlpool
of questioning initial goals or audience. If it survives, it may be time to actually continue
the process and fall over the waterfall into the design and prototyping stage.

Design Phase Dissected
The design or prototyping stage is the most fun for most Web designers, as it starts
to bring form to the project. During this phase, both technical and visual prototypes
should be developed. However, before prototypes are built, consider collecting as
much content as possible. The content itself will influence the site and help guide its
form. If the content is written in a very serious tone but the visuals are fun and carefree,
the site will seem very strange to the user. Seeing the content up front would allow the
designer to integrate the design and content. Also, consider that content collection can
be one of the slowest aspects of site design. Many participants in a Web project are
quick to attend brainstorming meetings but are difficult to find once their content
contributions are required. Lack of content is by far the biggest problem in Web projects.
Deal with this potential problem early.

Suggestion: Always collect content as soon as possible.

Block Composites
Design should proceed top-down. Think first about how the user will enter the site and
conclude with about how they will leave. In most cases, this means designing the home
page first, followed by subsection pages, and finally form or content pages.

Rule: Visual design should proceed in a top-down fashion from home page to
subsection pages and finally to content pages.

First consider creating page mockups on paper in a block form, as shown in Figure 4-5.
Block comps (or more commonly wireframes) allow designers to focus on the types

of objects in the page and their organization without worrying too much about precise
placement and detail of the layout itself. The block sectioning approach will also help
the designer to consider making templates for pages, which will make it easier to
implement them later on. Make sure to create your block comps within the constraints
of a Web browser window. The influence of the browser’s borders can be a significant
factor. Once the home page block comp has been built, flesh out the other types of
pages in the site in a similar fashion. Once a complete scenario has been detailed in this
abstract sense, make sure that the path through the blocked screen is logical. If it is,
move on to the next phase.

Screen and Paper Comps
The next phase of design is the paper or screen prototyping phase. In this phase, the
designer can either sketch or create a digital composite that shows a much more

122 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 123
FO

U
N

D
A

TIO
N

detailed visual example of a typical page in the site. Make sure that, whether you
do the composite on paper or screen, a browser window is assumed and that screen
dimensions are considered. A piece of paper with a browser window outline as used
in the block comp stage can be used for sketches.

Suggestion: Always consider the bordering effect of the browser window when
developing visual composites.

Sketch the various buttons, headings, and features within the page. Make sure to
provide some indication of text in the page—either a form of “greeked” text or real
content, if possible.

Many designers appear to use only temporary “lorem ipsum” or greeking text within
screen composites. This approach does bring focus to the designed page elements, but if real
content is available—use it! This more closely simulates what the final result will be like.

The comping stage provides the most room for creativity, but designers are warned
to be creative within the constraints of what is possible on the Web and what visual

Figure 4-5. Home page wireframe or block composite

TE
AM
FL
Y

Team-Fly®

requirements were presented in the design specification. Thinking about file size, color
support, and browser capabilities may seem limiting, but doing so usually prevents
the designer from coming up with a page that looks visually stunning but is nearly
impossible to implement or download in a reasonable amount of time. In particular,
resist the urge to become so artistic as to reinvent an organization’s look in a Web site.
Remember, the site plan will have spelled out visual requirements, including marketing
constraints. The difficult balance between form, function, purpose, and content, as
discussed in Chapter 1, should become readily apparent as designers grapple with
satisfying their creative urges within the constraints of Web technology, user
capabilities, and site requirements. A typical paper comp is shown in Figure 4-6.

In the case of a digital prototype, create a single image that shows the entire
intended screen, including all buttons, images, and text. Save the image as a GIF or
JPEG and load it into the Web browser to test how it would look within a typical
environment. At this stage, resist the urge to fully implement your page design with
HTML. You may end up having to scrap the design, and it would be wasteful to fully
implement at this stage.

Once your paper or digital prototype is complete, it should be tested with users.
Ask a few users to indicate which sections on the screen are clickable and what buttons

124 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 4-6. Paper comp for Demo Company site home page

they would select in order to accomplish a particular task. Make sure to show the prototype
to more than one user, as individual taste may be a significant factor in prototype
acceptance. If the user has too many negative comments about the page, consider starting
over. During prototyping, you can’t get too attached to your children, so to speak. If
you do, the site will no longer be user focused, but developer focused. Remember the
following design rule:

Rule: Don’t marry your design prototypes. Listen to your users and refine
your designs.

Once you come up with an acceptable home page design, continue the process with
subpages and content pages. A typical subpage composite is shown in Figure 4-7.

In highly interactive sites, you may have to develop prototype pages for each step
within a particular task, such as purchasing or download. Prototype pages for such
steps may have to be more fully fleshed out and include form field labels and other
details to be truly useful. A sample paper composite for a more interactive page is
shown in Figure 4-8.

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 125
FO

U
N

D
A

TIO
N

Figure 4-7. Subpage paper composite for Demo Company

While not all sites will require technical prototypes, developers of highly interactive
sites should consider not only interface prototypes but also working proof of concept
prototypes, showing how technological aspects work, such as database query,
personalization, e-commerce, and so on. Unfortunately, what tends to happen is that
technical prototypes are not built until a nearly complete interface is put in place,
which may result in a heavy amount of rework.

The Mock Site
After all design prototypes have been finalized, it is time to create what might be called
the mock, or alpha, site. Implementation of the mock site starts first by cutting a digital
comp into its pieces, assembling the pages using HTML, and, potentially, cascading
style sheets. Try assembling the site with templates so that the entire site can be quickly
assembled. However, do not put the content in place during this phase. Use greeking
text on most pages unless real text is required for testing scenarios. Once the mock site
is assembled, the site should be fully navigable—but with no content and only canned
or basic interactivity.

126 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 4-8. E-commerce paper composite

2. Initial order
information
collected

3. Status of order

1. User views product detail and decides to purchase

It is important not to go through too much trouble implementing technical features
that may change. For example, in an e-commerce site, you may want to make only one
or two products purchasable. In that situation, it is a good idea to have a few users try
the mock site. Observe if the site is easy to navigate and responsive. Have users
attempt to complete real tasks with faked results in place. If the users have difficultly
performing the tasks, you may have to consider scrapping the design and returning to
a previous step in the development process. Generally, this won’t happen unless the
site was overdesigned or little user feedback was considered until that point.

Beta Site Implementation
Once the mock site is acceptable, it is time to actually implement the real site. Real
content should be placed in pages, and back-end components and interactive elements
should be integrated with the final visual design. Implementation and technology
considerations are too numerous to discuss here and are presented individually in
Chapters 11–17. While implementation would seem to be the most time-consuming
aspect of a project, in reality, if all the components have been collected and prototypes
built previous to this stage, the actual site implementation might occur relatively rapidly.

Testing
For most developers, testing is probably the least favorite aspect of the Web development
process. After all the hard work of specification, design, and implementation, most
people are ready to just launch the site. Resist the urge. Testing is key to a positive user
takeaway value. Don’t force your users to test your site after its release. If they encounter
bugs with what is considered a production site, they won’t be forgiving. Always
remember the following design rule:

Rule: Sites always have bugs, so test your site well.

Unfortunately, testing on the Web is generally relegated to a quick look at the site
using a few browsers and maybe checking the links in the site. Bugs will exist in Web
sites, no matter what. Unfortunately, most developers consider that if the site looks right,
it is right. Remember from Chapter 1 that site design doesn’t just include visual design:
you must test all the other aspects of site design as well, as expressed in the design rule
presented here:

Rule: Testing should address all aspects of a site, including content, visuals,
function, and purpose.

The next chapter will discuss evaluation and testing of sites in detail,
particularly when looking at a completed site, but the basic aspects of Web
testing are overviewed here.

FO
U

N
D

A
TIO

N
C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 127

128 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Visual Acceptance Testing
Visual acceptance testing ensures the site looks the way it was intended to look. View
each of the pages in the site and make sure that they are consistent in layout, color, and
style. Look at the site under different browsers, resolutions, and viewing environments
equivalent to those of a real user. Browse the site very quickly and see if the layouts jump
slightly. Consider looking at the pages while squinting to notice abstract irregularities
in layout. Visual acceptance testing may also require each page to be printed. Remember
not to focus on print testing pages that are designed for online consumption.

Functionality Testing
Functionality testing and visual testing do overlap in the sense that the most basic
function of a page is to simply render onscreen. However, most sites contain at least
basic functions such as navigation. Make sure to check every link in a site and rectify
any broken links. Broken links should be considered catastrophic functional errors.
Make sure to test all interactive elements such as forms, shopping carts, search engines,
and so on. Use both realistic test situations and extreme cases. Try to break your forms
by providing obviously bad data such as typing in a search query that would not
return a result or one that would return a very large number of matching pages.
Remember: users won’t think and act as you do, so prepare for the unexpected.

Content Proofing
The content details of a site are very important. Make sure content is all in place and
that grammar and word usage is consistent. Check details like product names, copyright
dates, and trademarks—and always remember to check the spelling! Clients and users
may often regard an entire site as being poor just on the basis of one small typo; the
importance of this cannot be stressed enough. The best way to perform this test is to
print each page and read literally every single word for accuracy.

System and Browser Compatibility Testing
Though system and browser restrictions should have been respected during
development, you should verify this during testing. Make sure to browse the site
with the same types of systems and browsers the site’s users will have. Unfortunately,
it often seems that designers check compatibility on systems far more powerful than
the typical user’s. The project plan should have detailed browser requirements, so
make sure the site works under the specified browsers.

Delivery Testing
Check to make sure the site is delivered adequately. Try browsing the site under real
user conditions. If the site was designed for modem users, set up a dial-up account to
test delivery speed. To simulate site traffic, consider using testing software to create
virtual users clicking on the site. This will simulate how the site will react under real

conditions. Make sure that you test the site on the actual production server to be used
or a system equivalent to it. Be careful not to underestimate delivery influences. The
whole project may be derailed if this was not adequately thought about during
specification. For further information on delivery conditions, see Chapter 17.

User Acceptance Testing
User acceptance testing should be performed after the site appears to work correctly. In
software, this form of testing is often called beta testing. Let the users actually try the
working site and comment on it one last time. Do not perform this type of testing until
the more obvious bugs have been rectified.

Rule: User testing is the most important form of testing.

User testing is the most important form of testing because it most closely simulates
real use. If problems are uncovered during this phase of testing, you may not be able to
correct them right away. If the problems are not dramatic, you may still release the site
and correct the problems later. However, if any significant issues are uncovered, it is
wise to delay release until they can be corrected.

Release and Beyond
Once the site is ready to be released, don’t relax—you are not done. In fact, your work
has just begun. It is now time to observe the site in action. Does the site meet user
expectations? Were the site development goals satisfied? Are any small corrections
required? The bottom line is that the site must live on. New features will be required.
Upgrades to deal with technology changes are inevitable. Visual changes to meet
marketing demands are very likely. The initial development signifies the start of a
continual development process most call maintenance. Once over the waterfall, it is time
to climb back to the top, as stated in the following design rule:

Rule: Site development is an ongoing process—plan, design, develop,
release, repeat.

Welcome to the Real World
While the site development process appears to be a very straightforward cycle, it
doesn’t always go so smoothly. There are just too many variables to account for in the
real world. For example, consider the effects of building a site for another person such
as boss or client. If someone else is paying for a site to be built, you may still need to
indulge their desire, whether or not the requests make sense or satisfy user wants.
Because of this possibility, make sure you attempt to persuade others that decisions
should always be made with the user in mind. Try showing the benefits of design

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 129
FO

U
N

D
A

TIO
N

130 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

theories rather than preaching rules. Be prepared to show examples of your ideas that
are fully fleshed out. However, accept that they often may be shot down.

Most Web projects tend to have political problems. Don’t expect everyone to agree.
Departments in a company will wrestle for control, often with battle lines being drawn
between the marketing department and the technology groups. To stir up even more
trouble, there may be numerous self-proclaimed Web experts nearby ready to give
advice. Don’t be surprised when someone’s brother’s friend turns out to be a Web
“expert” who claims you can build the whole site with the latest Web development
tool in one hour. The only way to combat political problems is to be patient and
attempt to educate. Not everyone will understand the purpose of the site; without a
clear specification in place, developers may find themselves in a precarious position
open to attack from all sides.

Another challenge in building Web sites is dealing with the degree of change in a
project. Quite often new stakeholders arrive during the middle of the project, new
technologies are adopted during development, features are added or removed at a
moment’s notice, visuals are changed to conform to new branding, and even the focus
of the project changes just before launch. The process model that we adopt will likely
help us bring order to a project, but it won’t solve every problem, particularly when the
scope changes too much. If there is too much change, a project will get off track and
you’ll have to revisit aspects of development you had thought were finished.

Finally, always remember that the purpose of following a process model like the
one discussed in this chapter is to minimize the problems that occur during a Web
project. However, no process model will account for every real-world problem,
particularly those involving people. Experience is the only teacher for dealing with
many problems. Developers lacking experience in Web projects are always encouraged
to roll with the punches and consider all obstacles as learning experiences.

Summary
Building a modern Web site can be challenging, so site builders should adopt a
methodology or process model. This process model should help guide the development
process, as well as minimize risk, manage complexity, and generally improve the end
result. Software engineering process models such as the modified waterfall can be
applied easily to most Web projects. However, when project management experience
is lacking or there are no clear goal statements, a prototype-driven or joint application
process should be employed. It will be difficult to plan for what is unknown, and, if
the process can’t be hammered down, it is probably best to try something quickly, fail,
and learn from it.

While iterative prototype-based development would seem to easily fit with the
organic nature of many sites, it can produce needless risk and result in building the
wrong site numerous times before building the right one. Planning during the early
stages of a site’s development minimizes risk and should improve the end result. A
design document that usually includes site goals, audience and task analysis, content

requirements, site structure, technical requirements, and management considerations
should always be developed. The design document guides the production of the Web
site. During the design phase of site production, use block diagrams, paper mock-ups,
storyboards, and even mock sites to reduce the likelihood of having to redesign the
site later on. If a plan is well thought out and the design phase prototypes are built,
implementation should proceed rapidly and require little rework. However, once
it’s finished, be careful not to rush the site online—adequate testing is required.
Maintenance and continued vigilance will be required, or your finely crafted site will
begin to degrade.

C h a p t e r 4 : T h e W e b D e s i g n P r o c e s s 131
FO

U
N

D
A

TIO
N

This page intentionally left blank.

Chapter 5
Evaluating Web Sites

133

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

Often, developers are faced with upgrading an existing Web site rather than
starting from scratch. Being able to fully evaluate the execution of a Web site
is an important skill that all developers should strive to master. Site evaluation

is also a great way to learn from others. Looking at sites that are well executed may
inspire designers, while evaluating those that are broken may show them how to avoid
errors. Yet site evaluations are not always easy to conduct. Often, developers focus on
what they are familiar with or focus only on surface aspects of sites, such as visual
design. As in building a site, an evaluation of a site must focus not only on visuals but
also on technology, content, purpose, and delivery. Even when keeping all aspects of
Web design in mind, a developer looking at a site may not understand either the initial
design considerations or the decisions made that result in what is being evaluated. In
this sense, evaluators may have to act as archeologists and try to uncover deeper meaning
from basic site characteristics.

The primary method for site evaluation we present in this chapter is often termed
expert evaluation. The goal is to study a site as informed developers and try to find
common execution and usability problems. However, the problem with this type of site
evaluation is that developers may not think like users and may assume that things are
usable when they are not. Expert evaluation is simply no substitute for real user interviews
and testing. Yet don’t quickly dismiss expert analysis in favor of usability studies. User
testing does little to uncover execution flaws, so we should make sure that sites pass
the execution part of our evaluation first before wasting valuable user testing time.
Further, many common usability problems are easily observable and user testing
simply verifies what a skilled developer may already know to be true through experience.
Given these considerations, we will proceed with an overview of expert evaluation
first, followed by a discussion of conducting user testing.

The Goals of Expert Evaluation
There are two goals when conducting expert evaluations of Web sites. The first is to
uncover obvious execution flaws with sites, such as poor HTML markup, error prone
JavaScript, broken links, and other problems (which should be caught during quality
assurance but often are not). The second goal is to find obvious usability problems with a
site before conducting user testing.

While the use of quality assurance tools and practical knowledge of the various
aspects of the Web medium will help us find execution gaffes, usability problems can
be more difficult to ferret out. We need to be mindful of how users think when conducting
this part of testing. We need to be particularly careful when making assumptions about
purpose, audience, creation method, and so on. If these assumptions are incorrect, the
associated conclusions could be equally incorrect.

134 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Conducting an Evaluation
When starting an evaluation, it is important to stop and record some basic information.
For example, note the URL of the site you are to evaluate, the date, the time, the person
conducting the evaluation, and the reason for the evaluation. When you begin the
evaluation, you should block out some time to do the evaluation continuously; otherwise,
your impressions could be adversely affected. Consider recording your end time to get
an idea of how long it took to reach your conclusions. In general, the evaluation will be
broken into the following steps:

1. First impression

2. Home page pretesting

3. Sub-page pretesting

4. Navigation pretesting

5. Task analysis

6. Execution Analysis

7. Final Impression

When we have finished with the evaluation, any required supplementary materials
should be prepared, and an evaluation summary developed. Appendix B provides a
sample form for conducting a site evaluation. Reading the following sections will help
you understand the motivation for the various tests and how to conduct them.

First Impression
The first thing to do before you start the detailed evaluation is to stop and write down
your first reaction to the site’s home page. Just load the home page and look at it for at
most five to ten seconds, and write down whatever comes to mind. Ideally, you will
not be too familiar with the site, so the first impression will not be tainted. (Be sure to
clear your browser’s temporary files and cookies to make certain that your results are
not skewed by the site already being cached.) If you are very familiar with the site,
you might want to get a few other people, show them the site, and ask what they think
on a scale from 1 to 5 (where 1 is a negative feeling and 5 is positive). The point here is
to gauge a user’s initial feeling for a site—remember, people aren’t always rational.
Unfortunately, a first impression is only just that if it is truly the first time you are looking
at a site. Don’t discount this part of the test. Even though a first impression may be an
emotional reaction heavily influenced by visuals or environment considerations, record
it and try to understand what causes your feeling. If users coming to a site have a very
positive or negative first impression, it could certainly affect their desire to go further.

C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 135
FO

U
N

D
A

TIO
N

Home Page Pretests
The first few pretests conducted will give you a basic sense of the usability of the home
page. Some of the pretests will require you to make some logical assumptions that you
will later verify to show usability of the site, so don’t start using the site yet or you’ll
spoil this part of the evaluation. Just keep the home page onscreen and your hands off
the mouse and keyboard.

Identity Pretest
The first pretest to be conducted could be called the identity test. To conduct this test,
look at the home page for between 30 seconds to a minute, and see if you can figure out
the organization’s name, the topic of the home page, and any sense of what the site
is about. It would seem obvious that a site should clearly communicate its goals
and purpose right away, but often that just isn’t the case. Consider the two home pages
in Figure 5-1—which passes the home page identity test for you?

Now ask yourself what users are supposed to accomplish at the site. More
important—who is the site actually built for? For some sites—particularly those that
you may not have much involvement in—performing a site evaluation may be much
like an archaeologist looking at an ancient civilization’s ruins. The purpose, use, and
users of a particular aspect of a Web site will be almost as difficult to discern by a site
evaluator as the significance of a few stones from a larger structure by an archaeologist.

Navigation Pretests
The next and probably the most telling is the navigation pretest. In this test, before you use
the site, look at the home page and attempt to guess which areas of the screen are clickable.
You may consider printing the page and circling the hot spots, conducting what is called a
paper test. However, given that many pages may not be designed for printing or will
remove navigation features in print, it is best just to do a screen test and run your finger,
not the mouse, around the screen trying to determine if something is clickable or not. Once
you have evaluated the whole page, go back and check your intuition. You will probably
find that some clickable areas of the page do not obviously look like they are for purposes
of navigation, while other things that look clickable actually aren’t. Common reasons
for failure include inconsistent color usage such as using blue text for labels and logos,
removing underlines on links, and trying to make images and supporting materials link
together. Note the number of believed links and actual links, determine an accuracy ratio,
and record any notable problems for your final report.

The second navigation pretest requires determining the purpose of each clickable
zone on the page. Once the links have been identified, record each and write a brief
statement about what will happen when the link is pressed. Once finished, check your
record by visiting each link and noting whether your guess was correct or not.
Surprisingly, this test fails quite often because of poor labels. Often, failed link labels
use a metaphor, jargon, or acronym, so make sure that your wording is plain and simple.

136 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 137
FO

U
N

D
A

TIO
N

Figure 5-1. Looks can be deceiving

What do
they do?

Once finished with these basic tests, you might want to scan link labels for style and
consistency. Make sure that the labels are of similar length, wording, and style, both
textually and visually. Observe the rules of the page for what is clickable and what is not,
and note any inconsistency in visual style in clickable regions, regardless of whether any
such region passed the initial clickable pretest.

Sub-Page Pretests
The primary sub-pages of the site—namely, those that are directly accessible from the
home page—should be tested using the same pretests described in the previous two
sections. However, for the identity pretest, focus more on the purpose of the page than
on the organization. The navigation pretests should proceed normally. While this may
seem like a lot of work for an average size site, it should proceed rather quickly if the
sub-pages follow a consistent design and navigation pattern. If they do vary greatly,
you are probably facing a site that has a high degree of design and navigation inconsistency
and deserves significant analysis.

Site Navigation Testing
Once the first layers of the site have been examined, it is time to perform simple tests
to probe the quality of the global site navigation. Good sites will provide consistent,
well-executed navigation and should provide alternative navigation schemes, such
as site maps, indexes, and search engines. First, look to make sure that placement of
navigation is consistent from page to page. Subtle shifting may occur, so try browsing
the site extremely fast and notice whether the menu items bounce or jump position
slightly from page to page. Even this minor variation can break the perceived stability
of a site. Next, look to see how robust the navigation is and whether multiple forms
of site navigation are supported. Numerous navigation execution questions should be
asked during this phase. Is the current location clearly indicated with labels or link
path indicators? Does the site have text links at the bottoms of pages? Is alternative text
used for graphical navigation buttons? Does the site require excessive scrolling? Are
back-to-top links used on longer pages? Does the site have a map or index? The
questionnaire in Appendix B presents many of the questions you should be asking
during the navigation analysis phase.

One form of navigation that deserves special attention, if present, is the search
facility. Very often, search is poorly implemented in a site, despite the fact that more
and more users are coming to rely on it. Chapter 9 presents a thorough discussion of
how search should be implemented in a site; but for now, focus on how the search is
accessed, how it deals with errors, and how both positive and negative results are
presented. Search facilities should be clearly marked and easily accessible from every
page. A well-implemented search should correct errors or at least clearly indicate them
when they occur. Once a positive query is returned, the results should be easy to navigate
and refine. All these issues are covered in the sample evaluation; but if you evaluate
sites on your own, make sure to enter nonsense queries and “extreme positive” queries,
like the organization name, in the search field, to see how the extreme cases are handled.

138 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Task Analysis
The testing so far has concentrated on general navigation of a site, but the goal of
navigation is to help a user accomplish some task. Generally, on the Web, users are
doing one of three general tasks:

1. Reading

2. Looking for something

3. Performing some interaction

The third task covers user activities like interacting with menus, filling out forms, or
other mechanical tasks. Our testing should make sure that the site supports all three of
these general task groups. Once we have verified that, we should consider the specific
tasks unique to a particular site.

Testing Readability
When thinking about reading Web content, you have to consider both when and how
the user will read the content. A user may read content immediately, may print it to
read offline, or may bookmark it to read or print at a later date. Web content should be
readable both onscreen and on paper.

Testing printing is easy: just print each page in the site. Be careful, though; some
pages may purposely not be designed for printing. Also, you may have special print
buttons or Adobe Acrobat files for printing. If this is the case, make sure to note the
approach and whether it is effective.

Testing the screen readability of content is a little more difficult. Of course, reading
content is the best test, but it tends to take a long time. You will almost certainly find,
as you perform this test, that content is too long or complex to be easily read onscreen.
Even when content is written for screen use, page layout and contrast may make it
difficult to read. One way to test page layouts and contrast is to perform what the
author dubs the “fuzzy eye” test. In this test, squint and look at the page. If you can
still discern the general sense of the page structure easily, the layout and contrast is
probably adequate; if you cannot, the items may be too close together or contrast may
not be strong enough.

Testing Findability
Of course, information is only useful if site visitors can find it. In order to test the
findability of information in a site, you first need to have at least some familiarity with
the content in the site before attempting to find an item likely to be there. The simplest
findability test would be to look for something required in just about any site—for
example, contact information. Once a generic item has been determined, try to find the
information from an arbitrary point in the site. You may find that even this test requires
numerous clicks once beyond the home page. You can also try the same test using the
site’s secondary navigation facilities, such as the site map and search facility.

FO
U

N
D

A
TIO

N
C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 139

The other findability tests are similar to the simple one just described, but they
require that you find a particular item that is very specific to the site. For example, if
products are sold, try to find the price of a particular product, the cheapest product,
and the most expensive product. If the organization is a corporation, try to find
information about the management team or, if it is publicly traded, its current stock
price or last reported revenue figure. There are many possible information tasks, and
you may want to record not only whether the task was successful or not, but also the
time it takes or the number of clicks required to find something—as well as your
feelings about the ease of use and adequacy of results.

Testing Interactivity
The final task-related test concerns the various interactive features of the site. This testing
is primarily related to filling out forms for performing tasks such as ordering products,
making contacts, creating memberships, and so on. Each primary feature of the site
should be tested in three ways: correct usage, extreme negative, and extreme positive.
Correct usage means following the steps—filling out a form and so on—to buy a product
in the basic, obviously correct manner. You may find that it is difficult to figure out what
to do during this test. If so, make sure to note down frustrations. Extreme negative and
extreme positive tests make mistakes on purpose during interactive tasks. In extreme
negative testing, obviously false or blank answers are provided to see if the site handles
these properly. Extreme positive testing goes in the opposite direction and tests for
out-of-range values and things that would be obviously beyond the capacity of the site.
Well-designed sites should limit errors, so, ideally, interactive tests will cause frustration
rather than raise execution issues. Unfortunately, given the state of Web development
procedures (as discussed in Chapter 4), many execution errors may exist in tested sites.
We will discuss a few things to look for in the next section.

Execution Analysis
Execution testing focuses on trying to make sure the site is built correctly. Execution
includes issues with content, visuals, technology, and delivery. For example, with
content, you might look to see if site content is up-to-date or if there are spelling and
grammar errors in pages. Technical execution would focus on whether the site follows
standards for HTML, CSS, XML, and other technologies. Visual execution would be
concerned with image quality and file size. Delivery would be focused on speed and
server capacity. The next few sections detail a few of the things to keep in mind as you
evaluate each area, with the Appendix B checklist providing a set of specific questions
to try to answer.

Content Execution
The quality of a site is heavily influenced by the freshness and quality of the content
presented. A site’s content should be appropriate in quantity—not too much that it is
difficult to find appropriate information easily, but not so little that the user is left
wanting more. The content should also be up-to-date and accurate. Execution issues,

140 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 141
FO

U
N

D
A

TIO
N

such as spelling, grammar, and tone, should also be well considered. Last, the details
of the site should be very carefully examined. Truly, with Web sites, the devil is in the
details. Copyright dates, trademarks, product names, and very small formatting errors
are often glaring to the user and may ruin an otherwise excellent experience.

A good way to evaluate content is to do a careful screen and paper walk-through.
Printing pages and going over each one very carefully is probably the best way to find
typos and consistency issues. However, many Web maintenance tools and even page
editors can be used to spell-check pages. When looking for details, it is tough to spot
everything; fortunately, some Web site maintenance tools can be used to evaluate
consistency of terminology through the use of custom rules that look for the inclusion
of certain key phrases.

Visual Execution
Evaluating the look and feel of a site can be difficult because doing so is, to a great
degree, a matter of personal taste. However, execution of images and layout should be
evaluated regardless of your personal take on a site’s aesthetics. Images may not be used
properly or optimized correctly. There may be color problems in the site, font sizing
issues, and page layout problems. In many cases, the page layout may not even fit the
screen resolution or print correctly. Pay particular attention to tests of the site under less
than ideal conditions, such as lower resolution. In many cases, a site layout will
completely fall apart when images are turned off or font sizes modified. When doing the
visual portion of a site evaluation, it is important to print out a screen capture of the
evaluated page, as it may change over time. Screen printouts can be marked up to draw
attention to problem areas as well as interesting features. Figure 5-2 shows an
example of a marked-up page with visual and navigation execution notes.

Technical Execution
Web design relies heavily on technology, ranging from simple markup languages to
complex programming approaches. When evaluating a site you have full access to, it
is possible not only to look at client-side technologies, such as HTML, but also to
examine server-side technologies, such as CGI programs or databases. Unfortunately,
when examining sites externally, you may be limited to looking only at technology
easily viewed at the browser or the effect of technology executed on a server. For
some evaluators, it may be appropriate to call in a professional programmer to
evaluate the quality of examined code, as glaring errors may escape those who know
CGI or JavaScript only just enough to use provided scripts. We overview a few of the
more common technologies here for evaluation and leave the rest for Appendix B.

HTML/XHTML Because HTML serves as the bedrock of a Web site, particular attention
should be paid to the accuracy and quality of HTML. With the rise of XHTML, use of the
doctype indicator and strict compliance are becoming particularly critical. Compliance with
the various HTML or XHTML standards should be examined by validating key pages in
the site. Online validators, such as http://validator.w3.org, can be used, but readers may

142 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

find stand alone validation tools like CSE Validator (http://www.htmlvalidator.com)
to be superior. Figure 5-3 shows this validator in action.

Proprietary tag usage or trick HTML should be carefully noted. Inspection <meta>
tags, comments, and other small signs such as consistent page formats should be noted
to help determine how HTML was created—such as with a tool or by hand. In some
cases, telltale signs like indentation patterns of markup may indicate creation by a
particular HTML editor; but if it is possible to directly query the developer, ask which
tools were used and what standards were followed if any.

CSS Cascading Style Sheets are rapidly becoming an important technology for
presenting Web pages. CSS use provides a major benefit in allowing separation of
document structure from presentation. However, unless the site uses external style
sheets, this benefit is reduced. Document-wide style sheets or inline styles are adequate,

Figure 5-2. Printed page marked up

Inconsistent line spacing,
text casing, sizing

Yellow not a good link color

Unconventional place for logo;
typically in upper left hand corner

Distracting background
makes text hard to read

Don’t restrict to specific screen size Move news into main content area

C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 143
FO

U
N

D
A

TIO
N

but their use should be considered less than ideal. Regardless of the method of
including style rules, extreme care must be taken with CSS because of all the browser
bugs and rendering differences. Compliance with the CSS1 and CSS2 standards may
not be as important as making sure the various CSS properties work under common
browsers. However, a CSS checker, such as http://jigsaw.w3.org/css-validator/,
should be used. Close attention should also be paid to the types of rules used and
whether or not there is any problem with browsers that do not support CSS. Testing
with an older browser or with the CSS facilities turned off should be performed.

JavaScript JavaScript is a very important part of many Web pages, but far too often
it is not used in a reliable manner. Well-executed JavaScript-laden pages will employ
the <noscript> tag to address scripting being turned off, and may even restrict usage
without script enabled. Scripts also should be able to address browser incompatibilities
and should not throw error messages like the one shown here:

Figure 5-3. Example of HTML validation

TE
AM
FL
Y

Team-Fly®

Fortunately for Web site visitors, most browsers are shipped with the default to
turn off JavaScript error notifications, since otherwise you would probably see a great
number of them. Set your browser’s preferences to show errors, as shown here in
Internet Explorer.

In Netscape, you should check the JavaScript console for the error message shown here:

Cookies For many, the use of cookies is an invasion of personal privacy. The reality
is that cookies are very useful to get around programming limitations caused mainly
by HTTP protocol limitations. However, regardless of your personal take on cookies,
it is important to know whether a site uses cookies and what they are used for. Some

144 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

To show errors,
make sure the
Disable Script
Debugging
check box is
unchecked and
Display Error
Notification is
checked.

FO
U

N
D

A
TIO

N

sites may even issue multiple cookies per visit, each with a different purpose. Careful
inspection of cookie data can yield valuable clues to how a site works. If cookies are used,
it is important to verify the site still works with cookies off. Also, if cookies are used, a
statement indicating what they are used for should be available on the site.

Browser Support Probably the most well-known aspect of site testing is browser
support. Many site testing protocols simply advise designers to test in as many browsers
as possible. The reality is that you should attempt to create a matrix of the various
browsers and perform the technology and layout tests within each browser individually.
Oddly, you may find that there are subtle rendering differences in each browser, as
well as numerous bugs. A large matrix showing all the different versions of each browser
and operating system is the best way to conduct a browser test. Unfortunately, you
may find that there are literally dozens of versions of just the 4.x generation of Netscape.
Because of the difficulty of testing so many combinations, you may want to focus on
those browsers that are known to use your site. In some cases, such as with an intranet,
the browser being used may be obvious; but before guessing what browsers a site’s users
commonly use, consider accessing the log files to make sure.

Delivery Execution
How the site is delivered is extremely important to understanding the site’s usability.
Users appreciate fast downloads, but, as will be discussed in Chapter 17, speed of
delivery is often influenced by many factors beyond the size of files being delivered.
It is important to understand the server resources used to deliver a site, including
both hardware and software used. It is also important to understand how the site is
hosted. How the site eventually connects to the Internet can impact performance
greatly. Using even simple network tools like “ping,” it is possible to determine the
responsiveness of a server. Many operating systems provide this tool; for example,
under Windows, access the DOS prompt and type ping and a host name. If you typed
ping www.webdesignref.com, you might see something like this:

C:\WINDOWS>ping www.webdesignref.com

Pinging www.webdesignref.com [66.45.42.235] with 32 bytes of data:

Reply from 66.45.42.235: bytes=32 time=32ms TTL=114

Reply from 66.45.42.235: bytes=32 time=66ms TTL=114

Reply from 66.45.42.235: bytes=32 time=27ms TTL=114

Reply from 66.45.42.235: bytes=32 time=95ms TTL=114

Ping statistics for 66.45.42.235:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 27ms, Maximum = 95ms, Average = 55ms

C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 145

The round-trip time of data can be used to get a general sense of the responsiveness
of the server. It is also possible to acquire other server and network information using
tools like WHOIS, traceroute, nslookup, and others. On Windows, most of these tools
are included in the operating system, can be found in the public domain, or are nicely
packaged in network tools like WS_Ping ProPack (http://www.ipswitch.com/).

After server and network issues, the size of the pages delivered should be
considered. Most site analysis tools will identify pages that are considered large. You
can set the threshold for what is considered large, byte-wise, in most of the programs,
but some consider anything over 30–50K (including any graphics in the page) as a large
page, despite the rising popularity of faster Internet access. Theoretical download times
under a variety of line speeds can also be determined with a site analysis tool, and
most Web page editors like Dreamweaver even provide facilities to determine page
weight and download speed. However, do not rely solely on theoretical times; test the
site under actual conditions, if possible. Since network conditions are always changing site
delivery, test results may vary greatly from moment to moment.

The Final Question
Now that you have evaluated many aspects of a site, consider what you would give the
site as a final score. You don’t have to be very scientific about your final rating. Given
how much you know now about the site, do you think it is a great site or not? Were you
able to accomplish the tests easily? Would you take away a positive, neutral, or negative
feeling about the site? Consider listing a few of the reasons that made you skew one
way or another.

Evaluation Reports
After finishing your evaluation, you should put together a report summarizing your
findings. Make sure to illustrate your findings with as many frame grabs and diagrams
as possible. Also, try to provide as many specific details as possible, as well as indications
of where the errors are in the site and how they might be fixed. Complete reports should
include a detailed analysis of a site, including the number of pages, the page weights,
broken links, technology usage, and so on. Because of the tedious nature of compiling such
information, we leave this part of the evaluation to tools. Consider using a maintenance
or quality assurance tool to analyze the basic characteristics of the site. Quality maintenance
tools such as Coast Webmaster (http://www.coast.com) can produce high-quality
reports like the one shown in Figure 5-4. However, do not substitute tool use for a real
expert evaluation because tools will miss many usability and execution errors.

146 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 147
FO

U
N

D
A

TIO
N

User Testing
While the evaluation process just described is useful to uncover many types of site
problems, it is important not to limit evaluations just to inspection. Developers may
focus on certain things and completely miss problems commonly encountered by users.
Further, this form of evaluation does not adequately reflect how users actually use a site.

Looking at log files can provide valuable insight into how a site is used. Log files
will show who is looking at a site (by IP address or domain name, mostly), what pages
users commonly look at, when they look at these pages, the paths users take through a

Figure 5-4. Site Quality Report from a maintenance tool

site, the links followed to get to a site, and even what kind of browsers are being used.
The log file really does show if content is popular and may provide a great deal of
information related to site usability. For example, a tremendous number of users leaving
the site from a certain page may indicate a problem. Log files can be used to verify
assumptions or even show places to look for problems.

While log files provide a great deal of useful information, they really say very little
about a user’s feelings about a site. An invaluable way to evaluate a site is to watch how
users actually use a site and try to solicit feedback from them. Conducting a user test
can be difficult. Be careful to focus more on what users do and not on what the say. Users
typically don’t want to look stupid and will often indicate that they understand
something when they don’t.

Rule: Pay attention more to what users do than to what they say.

The best way to deal with this problem is not to let users know that they are taking
a test; you might even try to casually watch them without their knowledge. If you ask
users to take a usability test, you may find that they pay more attention or try harder to
figure things out than they might usually. The assumption almost seems to be that test
administrators will be pleased at how proficient they are. At the opposite end of
spectrum, on occasion testers will purposefully look for errors. In either case, it should
be evident that testing conditions may not always be the same as user conditions.

A very important aspect of testing is making sure not to get too involved. For
example, if you ask users to evaluate a site, don’t guide them through it. If you co-pilot
the users’ browsing sessions, they will uncover only what you want them to and maybe
not use the site as they might normally. If you talk too much, showing off the features of
the site, you may not give users a chance to say what they think. User testing can be very
difficult for site designers who want to put their work in the best light possible, and they
may be very unwilling to listen to user criticisms.

Suggestion: Consider having a person not involved in the site design process
conduct a user test.

You can certainly be very scientific about user testing: using two-way mirrors,
recording mouse travel and keystrokes, and even monitoring pauses or mistakes made
by the user during a typical task. Some might go so far as to watch facial expressions or
even monitor the blood pressure of the test subject. However, the end result is often really
the most important aspect of the test. Remember that, in the final analysis, probably the
only real important things to users are whether they were successful in their mission
and enjoyed the visit. This does not mean that the study of usability lacks reasonably
measurable characteristics; it just suggests that, as imperfect creatures, humans may
not always act logically and may even quickly forget the difficulty of performing a task
if there is a wonderful reward at the end. Readers interested in understanding more about
user testing and usability, particularly the theory and practice of conducting usability
tests, should visit http://www.useit.com and http://www.usableweb.com.

148 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Summary
Site evaluations serve both to provide quality assurance and to increase the skills and
knowledge of developers. This chapter provided an overview of designer-directed
evaluation, while focusing on execution and usability. The tips provided here in
conjunction with the detailed checklist presented in Appendix B should uncover many
of the common problems in Web sites. However, users may uncover more, and user
evaluations should always be performed if possible because, in the end, the acceptability
of the site will be determined by the users. However, do not discount developer evaluation,
since it makes no sense to have users evaluate a site that is obviously built incorrectly or
that exhibits known usability problems.

C h a p t e r 5 : E v a l u a t i n g W e b S i t e s 149
FO

U
N

D
A

TIO
N

This page intentionally left blank.

Part II
Site Organization and Navigation

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 6
Site Types
and Architectures

153

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

Just as there are many types of software—from games to business applications—
there are many types of Web sites. Sites can be grouped generally in categories like
intranet or extranet sites, as well as specific-purpose sites like portals, entertainment
sites, or personal home pages. Each type of site will have different design constraints

related to the site’s purpose. Organizing the site appropriately will help the site achieve
its purpose. Numerous site structures—from simple linear organizations to complex
mixed hierarchies—exist. Conventions, as well as heuristics from cognitive science and
traditional GUI conventions, provide some clues as to which structures work well.
However, the structure of a well-designed site isn’t always apparent to the user—nor
should it be.

Site Types
We begin by breaking sites into various groupings to understand the specific
requirements of each group. Obviously there are numerous ways to categorize Web
sites. Possible groupings include audience, level of interactivity, frequency of change,
size, type of technology used, visual style applied, and of course the purpose of the
site. The following three general categories of Web sites are universally accepted:
public Web sites, extranets, and intranets.

Definition: A public Web site, an Internet Web site, an external Web site, or simply
a Web site is one that is not explicitly restricted to a particular class of users.

An external Web site is, in a sense, a public place available to anyone on the Internet
at large to visit. Not every user in the world may want to visit the site—the site shouldn’t
be designed for such a wide range of users—but there is no set limitation as to who can
visit the site. At the opposite end of the spectrum would be an intranet Web site, generally
called simply an intranet. An intranet site is generally very private, and is often available
only to users on a particular private network.

Definition: An intranet Web site is a site that is private to a particular organization,
generally run within a private network rather than on the Internet at large.

In between these extremes—an external Web site and intranet—would be a
semiprivate site. An extranet is the most common example of a semiprivate site. An
example of an extranet would be a site catering to company partners or resellers.

Definition: An extranet site is a Web site that is available to a limited class of
users, but is available via the public Internet.

The major difference between the three basic site categorizations is audience. Public
Web sites are completely open, while intranets and extranets are more exclusive. The
more private the site, the greater understanding the designer will have about its potential
users. As mentioned numerous times up to this point, understanding a site’s users is

154 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

crucial when designing a site. Consider that for a private intranet, a designer may
actually be able to physically meet each and every potential user of the site. The
designer may know the capabilities all the users, from their sophistication as computer
users to the equipment or browser they use. On the opposite end of the spectrum is the
public Web site. Designers of public sites often know relatively little about their users.
They may rarely get to interact with their users directly and often will have little
knowledge about the range of user capabilities. The design considerations will vary
dramatically between the general Web sites, as illustrated in the following table:

Intranets Extranets Public Sites

Info About Users High Medium Low

Capacity
Planning

Possible Usually possible Difficult to
impossible

Bandwidth High Varies Varies greatly

Ability to Set Technology Yes Sometimes Rarely

This grouping of sites is the most generic partitioning by audience. We could go
further and talk about sites geared for basic demographics like age groups (children,
teens, adults, or senior-citizens) or gender (male or female). We could even further talk
about specific characteristics such as ethnicity, socio-economic status, political orientation,
and so on. However, these groupings begin to cross over too much into purpose issues and
veer away from general characteristics common to all sites, so let’s continue the discussion
with more general groupings.

Grouping by Interactivity
Another way to classify sites is by how interactive they are. Many sites are not particularly
interactive, but consist primarily of static content that a user may browse or search
through. Such sites are often dubbed static sites because the user is unable to alter the
site in a direct manner.

Definition: A static site is one where content is relatively fixed, and users are
unable to affect the look or scope of the data they view. In short, the visitor has
minimal ability to interact with the site’s content other than choosing the order
in which to view content.

Accessing a static site is like reading a paper magazine. A user can choose to flip
back and forth between pages and read articles in a different order, but the presentation
is relatively rigid. There is really no ability to do anything with the content of a static
site other than read it onscreen, print it out to read on paper, or copy chunks of content
for use somewhere else.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 155
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

On the other hand many sites, particularly community related sites, allow users to
contribute or modify content to some degree—such sites might be dubbed interactive.
The degree of interaction the user may have with the site’s content may range from the
simple ability to comment to the creation of content either with or without further
editing by the site’s owner or other users.

Definition: An interactive site is one where the users of the site are able to
interact directly with the content on the site or with other users of the site.

Of course to some degree, all sites have some interactivity in that users can choose
how they want to browse content. However, truly interactive sites allow users to
manipulate the content itself, and in some cases even add their own content. A site
that allows a user to post technical support questions for other users to view would
be considered interactive, while a site that only allows users to browse preexisting
answers to questions would be considered static.

Grouping by Frequency of Change
Another dimension of site categorization is the frequency that content changes. Sites
that never change might again be dubbed static; those that do change could be thought
of as dynamic. “Dynamic” is used in this context in terms of page content and not page
generation, which is a separate issue we’ll discuss shortly. Most sites aren’t absolutely
static; changes are usually made to pages gradually over time. The more frequently the
site changes, the more dynamic it could be thought to be. Content may change on a
regular basis, like daily, weekly, and so on, or it may change in a less scheduled manner.

Sites may also change on a continual basis. For example, a personalized site is one
that changes per visitor, often in response to either current or past visitor activities. A
common example is an e-commerce site that may offer “specials” or suggest products
based upon previous buying habits of the visitor or even the buying habits of other
visitors to the page being accessed. Other examples of personalized pages are those for
portals (my.yahoo.com) that provide so-called “my” style pages configured by users to
suit their own particular interests.

Definition: A personalized site is one where content is directly geared towards a
particular user, and the user generally can explicitly determine the content, look,
or technology contained within a page.

Indicating to users when site content has changed is very important in dynamic sites.
Often a small statement with the date of the last change is put on a page to show how
fresh its content is. Often this is just a text line that is modified by the page maintainer or
is output from a small JavaScript. Users may also look to copyright information on a
page or other apparently trivial items to get a clue about page freshness.

156 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

While modification dates may vary from page to page, sites may also exhibit more
consistent update statements beyond just copyright information. For example, some
sites include statements about the current day, week, month, or year in the page design
to indicate how often the page is changing.

Grouping by Time of Page Creation
When considering time in site designs, it’s important to clearly state when pages are
actually built for visitors. In many cases pages are static, in that they are created ahead
of time for the user and change very little. In other cases pages may be built at a scheduled
time as their content is created or altered. Finally a page may be generated just as a
user requests them, often termed a dynamically generated page.

Definition: A dynamically generated page is created at request or view time
for the user.

There are numerous benefits to dynamically generated pages. First the content can
be customized to suit what the user may be looking for. Search result pages are a
common form of dynamic page. Dynamic pages can also be created to take into account

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 157
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

browsing conditions or technology restrictions. For example, a static site has only one
form of presentation that all users must deal with, while a dynamic site may have
multiple forms optimized for different browsers or bandwidth levels. The downside is
that dynamically generated sites are significantly more complicated to create and often
are very server intensive, as each page must be generated for users when they visit. Yet
another benefit is that dynamically generated pages are often easier to maintain. For
example, in dynamic sites, “page look” can be maintained in common templates,
footers can be added to all pages, navigation held in common files, and so on.

Dynamically generated sites often use a database to store site content. In these sites,
pages are constructed from content merged into page templates at request time to
create the final page for delivery. Given the complexity and potential serving costs,
pages should be dynamically generated only if necessary. For example, even if pages
are stored in a database, unless they change per visit, they should not be uniquely
created for each visitor. Doing so would be plainly wasteful, and caching such page
content in the form of static pages outputted from the database will result in a much
more responsive and scalable site. Conversely, though, if content does change often or
per visitor, there is no value to trying to pre-generate pages, so don’t try. More information
on site serving considerations will be given in Chapter 17. A comparison between static
and dynamically generated sites is shown in Figure 6-1.

158 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 6-1. A comparision between statically and dynamically generated sites

Grouping by Size
Another possible consideration when grouping Web sites is to consider their size. Size
doesn’t mean much in many sites, particularly when they are generated from database-
stored content; however, regardless of this fact, the number of pages continues to be
used as a classification metric. While there are no precise breakdowns of what constitutes
a large site or a small site, the following groupings seem useful:

< 10 pages Very small site

10–100 pages Small site

100–1000 pages Mid-size site

1000–10,000 pages Large site

> 10,000 pages Very large site

The value of these groupings is that they reflect the effort and people involved.
Very small and small sites are generally tended by very few people and often have
limited technological considerations. Mid-size and large sites may be maintained by a
small group of people and have more complex technology behind them. Finally, large
and very large sites may have a considerable number of individuals maintaining them,
given their complex technical and delivery requirements. Given the growing volume
of Web-based documents, we could certainly shift the previous groupings and add
breakdowns for sites in the hundreds of thousands and millions of documents range.

Grouping by Technology Usage
Grouping sites by their size or degree of interactivity often directly intersects with
technical considerations. In general, we might consider technology in sites when we
plot how document-centric or application-centric a site is. Recalling the discussion
from Chapter 1, we see that many sites are not much more than simply brochures and
thus are very document-centric. Other sites, such as online banking or shopping sites,
might provide a great deal of interactivity, making them more application-centric. The
continuum of sites grouped by their general technology use, from simple documents
to full-blown Web-based software applications, is shown in Figure 6-2.

We can further classify sites by the specific type of technology used, such as HTML
with presentation determined by tables or XHTML with presentation using style sheets.
In particular, we might want to group sites that embrace standard technologies defined
by the W3C versus those that continue to embrace older browser or vendor-specific
technologies. However, further grouping sites by whether they use Java, ASP, ColdFusion,
XML, or some other technology at this point adds little value to our discussion. We will
return to these ideas later on when we look at the execution of sites.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 159
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

160 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Grouping by Look
We may also group sites by the visual design style used. Simple grouping might discuss
how visual the site is. Does it rely on images or not? Are colors used? However, we
probably don’t have to be so simple—instead, we can categorize sites in four visual groups:

Figure 6-2. Technical range of web sites

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 161
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

■ Text-focused Focusing on text content with limited design and graphics

■ GUI style Following graphical interface conventions

■ Metaphorical Providing a rich interface often based upon a metaphor from
the real world

■ Experimental Breaking conventions and presenting content and site
navigation in a new or surprising manner

Examples of each style are presented in Figure 6-3.

Grouping by Purpose
As we have seen there are numerous ways to characterize sites, including their audience,
their frequency of change, their technology, or their look. However, these characterizations
may seem too abstract at times. There are numerous genres of sites that use these abstract
forms. We need to focus more on the reason for a site, namely its purpose. We’ll focus
in this discussion only on public Web sites, but characterizations of private intranet
sites could also be made. One very general way to categorize public sites would be as
commercial, entertainment, informational, navigational, artistic, or personal. The general
goals, audience, and features of each type of site vary dramatically. Because of this, be
cautious not to apply the same design philosophy to each form.

Commercial Sites
Commercial sites are those sites that are built primarily to support the business of some
organization. Generally, the primary audience of a commercial site is made up of potential
and current customers of the organization. A secondary audience often includes potential
and current investors, potential employees, and interested third parties such as the
news media or even competitors. Given such an audience mix, common purposes for
commercial sites include

■ Basic information distribution The site is used to disseminate information
about products and services provided by the organization. Other basic
information provided generally includes how to contact the firm via methods
other than the Web.

■ Support Portions of the site might be built to provide information to help existing
customers effectively use products or services provided by the organization.

162 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 6-3. Visual range of Web sites

More text focused

More graphical

■ Investor relations A public company or one seeking outside investment
might build a site or a section within a site to disseminate information about the
current financial situation of the company, as well as future opportunities for
investment.

■ Public relations Many firms use their Web sites to distribute information to
various news gathering organizations, as well as to provide general goodwill
information to the community.

■ Employee recruiting A Web site is often used to post information about
employment opportunities and benefits of working for a company.

■ E-commerce A growing number of commercial Web sites allow a visitor,
whether an end consumer or a business partner like a reseller, to conduct
business directly on the Web site. Common facilities supported by e-commerce
sites include transactions like ordering, order status inquiries, and account
balance inquiries. Therefore, we might break out e-commerce-focused commercial
sites. Such sites are usually termed transactional sites.

Look at all the potential purposes of a commercial site, and you’ll see that the
following premise follows directly:

Premise: The overriding purpose of any commercial site is to serve the user in a
way that will benefit the company either directly or indirectly.

Given this premise, consider that the purpose of information dissemination is to try
to get people to purchase a product or service from the company. Whether the method
is a direct approach trying to persuade the user or an indirect approach of providing
helpful information intended to foster a trusting relationship between the organization
and the potential customer, the purpose is always the same—try to encourage a business
transaction to take place.

Informational
Informational sites are different from commercial sites in that their main purpose is
information distribution. Informational sites often have to do with government, education,
news, nonprofit organizations, religious groups, or various social-oriented organizations.
While the sites may be driven by some commercial factors, the primary purpose is to
inform rather than cause a transaction to happen. Understanding the audience mix of
an informational site is difficult, since it depends highly on the type of information
being provided. About all that can be said is that the audience of the site is someone
who has an interest in or is required to view the information provided.

The purposes of informational sites vary dramatically. A site at a university for
a class might help educate visitors on a certain topic like American History. An
informational site for some particular religious, social, or political group might have a
primary purpose of convincing people to join or donate something to the organization.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 163
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

TE
AM
FL
Y

Team-Fly®

News sites might have a primary purpose of informing people of current events in a
helpful manner so that people rely on the resource enough to sell their attention to various
advertisers. A government site might have a purpose of informing citizens of various
law changes, convincing them to join civil or military service, or even getting them to
vote a particular way. The crossover between commercial and informational sites can
be great, but always remember that the main difference is that commercial sites are
much more economic-driven than informational sites. Informational sites may be built
to meet design criteria that may not make fiscal sense. A commercial site always has
an underlying goal of trying to increase the profits of the firm, and its purpose is often
more predictable.

Entertainment
Entertainment sites are generally commercial, but they have special considerations. The
purpose of an entertainment site is simply to entertain the site’s visitors—in some sense
they are selling entertainment. In other words, they are trying to sell an enjoyable
experience. While commercial sites such as e-commerce sites do want the site visitor
to have a positive or even entertaining experience, entertainment is really a secondary
objective. While a site selling clothes might have a jungle explorer theme and entertain
the visitor with tales of visiting far-off lands, the bottom line is that the experience is
to help sell clothes. If the clothes don’t sell, the site doesn’t work. In the case of an
entertainment site, the purpose is to sell the experience itself.

Creating an entertaining experience—whether it be visiting a Web site, playing a
video game, or watching a movie—isn’t something that is easily engineered. Keeping
the viewer occupied and happy can be difficult and isn’t always as formulaic a task as
people might believe. For example, Hollywood continually struggles to understand
why some blockbuster movies bomb while an unknown independent movie succeeds.
Novelty is about the only thing that seems to continually sell. If a story is too much like
something a person has experienced before, it often seems boring or formulaic. Web
sites that are built to entertain are often required to break with convention to be successful.

Premise: Entertainment sites may find novelty or surprise in design more useful
than structure or consistency.

Navigational
A navigational site is one whose focus is on helping people find their way on the
Internet. Oftentimes these sites are called portals, since the sites serve as major hubs
pointing to other destinations.

Definition: A portal is a site that is generally a primary starting point for a user’s
online journey and serves to help people find information. Portals often attempt
to provide as much information and serve as many tasks for the user as possible
in order to encourage them stay or to at least continually revisit the site.

164 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Navigational sites would also include search engines or site directories, which,
coincidentally, are often the backbone of many portal sites.

Community
A community site is one whose purpose is to create a central location for members or
a particular community to congregate and interact. Visitors come to the site, which is
often very informational in nature, not just to find content that is interesting to them
but also to interact with other like-minded individuals. Community sites are very
interactive and are often dynamically generated and personalized. The content of a
community site varies as greatly as with that of an informational site. Some communities
may be very general in their membership, focusing on a broad demographic, such as
women. Other communities may be very focused and target a select group of individuals,
such as Asian American college students in southern California.

Community sites and informational or commercial sites often cross over. The main
distinction between pure information or commercial sites and community sites is
simply the ability for a site’s visitors to interact with each other. If, over time, the ability
to interact with other site visitors becomes commonplace on commercial and informational
site, the special distinction of community sites will be lost.

Definition: A community site is any site that allows easy interaction between site
visitors and serves as a meeting area for site visitors rather than simply a viewing
area for visitors to view canned content.

Artistic
An artistic site is a site that is purely the expression of the individual or artist. The
purpose of the site would be to inspire, enlighten, or entertain its viewers. In some cases,
the site may simply be the product of the artist just trying to express his or her feelings.
The site’s creator may not really care what the viewer thinks of the site. As long as the
site makes the artist happy, it is successful. Artistic sites may be user driven only in that
they encourage thought and may go out of their way to avoid convention or logic.

Premise: The design of artistic sites may purposefully defy common Web
conventions.

Personal
Like an artistic site, a personal site—often called a personal home page or just a home page—
is often an expression of its creator. Personal pages may be built to inform friends or
family, or they might just be built as a way to learn a new skill, like knowing HTML.
Some personal pages appear to be literal shrines to their creators in some vain attempt
to become famous through the Web. Other personal pages are mere résumé sites, useful
to show to potential employers during job searches. A new form of personal page

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 165
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

serving as an online journal or diary, dubbed a blog, has also become popular. Like
artistic sites, personal sites will not be discussed to any major degree in this book,
because often their main purpose is simply to make their creators happy. However,
you would do well to consider that many personal sites could certainly improve their
look, structure, usability, or technology.

The social implications of personal Web sites warrant a short aside before we move
on. In some sense, the purpose of the personal page is to personify the individual on
the Web. Unfortunately, this can be a rather dangerous concept. While it would seem
obvious not to post your credit card number, social security number, bank account
numbers, and so on to your personal page, the degree of details posted on many
personal pages is frightening. Many people post intimate details of their lives, from
pictures of friends and family to literally their daily diary. While such online exhibitionism
might seem harmless, consider the possibility of stalking or profiling. Users should
consider that stating all your likes and dislikes online in the form of a personal page is
a direct marketer’s dream. Profiles are easy to build from such information and may
result in highly targeted and potentially intrusive junk email. Far worse might be the
possibility for stalking or even identity theft from personal Web site-related information.
Just remember that posting a personal Web page isn’t too different from posting
information on a local bulletin board in a town square. You never know who is going
to look at the information and what they might do with it.

Site Structure
Given the type of site and other information, we can begin to apply structure to it. We
find that there are two structural aspects to any Web site—logical structure and physical
structure. A logical structure will describe documents that are related to other documents.
The logical structure defines the links between documents. However, the logical location
of documents within a site may not relate to the actual physical location of a document.
A physical structure describes where a document actually lives, showing, for example,
the document’s directory path on a Web server or its location in a database.

Premise: A Web site’s logical structure is more important to a user than its
physical structure.

Users generally don’t care where information comes from as long as they can find
it. A user doesn’t need to know what disk drives contain what data and how you have
decided to organize your file tree. For example, a particular file might live in a deep
directory on a file system, with a path like D:\WebSite\DemoCompany\Assets\
Product\RobotButler\index.htm. However, from a user perspective, the URL might
appear as http://www.democompany.com/RobotButler/. Resist the urge to expose
paths to users. As the maintainer of the site, you will have to have explicit knowledge
of the site’s physical structure, but a user should not have to.

166 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Do not expose physical site file structure, if possible.

The benefit of not showing real paths should be clear. By abstracting away paths,
you are free to change the location of files freely as long as they map to the appropriate
URL known to users. Fortunately, all modern Web servers support mapping facilities
to create virtual paths, so there is no requirement to directly mimic your logical
structure in a physical file system.

Rule: A site’s logical document structure does not have to map to directly match
physical structure.

From a programming point of view, think of your site’s URLs as your public interface. Every
URL exposed is a potential address to access your site that will have to be maintained. If you
are able to avoid exposing all URLs, using anything from frames to dynamic pages, you
increase your ability to change the implementation of the site underneath.

Site Organization Models
There are four main organizational forms used in Web sites: linear, grid, hierarchy,
and web. Variations on some of the schemas are common, as are combinations of each
within a larger site. Choosing the correct site organization is important in making a site
usable. For example, an online sales pitch would benefit from a linear form where slide
two follows slide one. In some sense, the user is almost forced to see the content in the
order the designer wants. If the presentation were organized in another fashion, such
as a tree form, it might encourage users to access slides out of order, possibly reducing
the impact of the sales pitch. Other information, such as answers to technical support
questions, might be better suited to a non-sequential access form, because forcing the
user to wade through pages of needless information would be extremely frustrating.
The goal is to pick the most appropriate organization form for the content, so complex
content can be made clear.

Linear
A linear form is the most familiar of all site structures because traditional print media
tends to follow this style of organization. For example, books are generally written so
that one page follows another in a linear order. Presenting information in a linear
fashion is often very useful when discussing a step-by-step procedure or completing a
process such as checkout in an e-commerce site, but there are times when supplementary
information may be required. Linear forms can be modified slightly to provide more
flexibility, but will eventually result in a grid, hierarchical, or pure web form when
extended too much.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 167
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

168 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Pure Linear
A pure linear organization facilitates an orderly progression through a body of
information, as shown by the illustration here.

On the Web, this form might be good for a presentation like a “slide show” to give
new visitors an overview of a company and its products. By using a controlled sequential
organization like a linear form, the designer can ensure that the user receives the
information in the intended order.

The linear style of organization provides a great deal of predictability because the
designer knows exactly where the user will go next. Because of this knowledge, it
may be possible to preload or prefetch the next bit of information to improve perceived
performance of the site. For example, while the user is reading the information on one
screen, the images for the next screen can be loaded into the browser’s cache. When the
user advances to the next screen, the page is loaded from the cache, giving the user the
illusion that the page downloads very quickly. Preloading is not a viable solution unless
the user’s next path can be anticipated, as is the case with a linear organization.

Because there is really no choice but to move forward or back, a user may find a
linear form to be very restrictive. Because of this, it is often important to let a user
know how far they are in a linear structure, and what is previous and what is behind
the page being viewed. Indicating that a user is on a page in a series could be as simple
as putting a label on the page, like “Page X of Y” where X is the current page number
and Y is the total number of pages.

A pure forward linear form can be difficult to implement on a Web site because of
the browser’s backtrack feature, so it is generally assumed that all linear forms are
bidirectional unless the site is programmed to act otherwise.

Linear with Alternatives
While a linear organization is useful to present information in a predetermined order,
it may provide little room for the user to interact with the information. A linear with
alternatives organization simulates interactivity by providing two or more ways to leave
a page, which eventually ends up pointing the user back to another page within the
sequence, as illustrated here.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 169
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

The uses of this form are numerous. Imagine a quiz site that prompts the user for a
Yes or No answer to a question on each page and then advances the user to the next
page based on the answer. Though it might appear to the user that there is some
back-end technology at work, in reality the two tracks are already established, and the
user is just presented with an illusion of interactivity. A health care site might use a
general health quiz to attract people’s interest. The quiz might begin with a question
such as, “Do you smoke?” Users who answer “yes” advance to a page that describes the
hazards of smoking while users who answer “no” see a message congratulating them
on their to decision to abstain from cigarettes. Regardless of their answers the first
question, both users advance to question two. Though the pages are static and there is
no dynamic generation of pages, to the user it appears that there is some interactivity.
Despite its appearance of choice, the linear with alternatives structure preserves the
general linear path through a document collection.

Linear with Options
A linear with options structure is good when the general path must be preserved, but
slight variations must also be accommodated, such as skipping particular pages. This
type of hypertext organization might be useful for an online survey in which some
users might skip certain inapplicable questions. Given that the linear with options
structure generally provides a way to skip ahead in a linear structure, this organization
is often called linear with skip-aheads. An example of this structure in action might be a
bicycle presentation. While some core pages may be common to all bikes, certain pages
may be skipped based on a user’s particular interest in mountain bikes or road bikes. In
paper documentation, a survey that asks the taker to skip to a particular question based on
some criterion matches the linear with options form. The basic idea of this site structure
is shown here.

Again, this organization simulates an intelligent system even though it is often
nothing more than static files in a well-designed hypertext structure.

170 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Linear with Side Trips
A linear with side trips site organization allows controlled diversions. Although the user
might take a short side trip, the structure forces the user back to the main path, preserving
the original flow. Perhaps an article about frogs is presented in a linear fashion. A
hyperlink on a particular word such as lily pad would lead to a tangential page with
the definition of the word and maybe a short series of pages discussing how frogs and
lily pads are related. Eventually the side trip dead-ends or returns the viewer back to
the main path. A side trip to a linear progression is like a sidebar to a magazine article.
Rather than distracting the user too much from the main path, this bit of information
enhances the experience. Making the side note part of the main linear progression
would dilute the continuity of the primary message. However, when many side trips
are added into the linear progression, the structure begins to look like the common tree
or hierarchy form discussed later in the chapter.

Grid
A grid is a dual linear structure that presents both a horizontal and a vertical
relationship between items. Because a grid has a spatial organization, it is good for
collections of related items; however, a pure grid structure is (so far) uncommon on the
Web. When designed properly, a grid provides horizontal and vertical orientation so
the user will not feel lost within the site. For example, items in a clothing catalog might
be organized into categories like shirts, pants, and jackets. Another way to organize
information would be by price. A grid style would allow a user to look across a price
category, as well as within a particular line of clothing very easily.

While a grid structure is highly regular and may be easy for a user to navigate, not
many types of information are uniform enough to lend themselves well to this organization
style. One notable exception is product catalogs.

Hierarchy
The most common hypertext structure on the Web is the tree or hierarchy form. While
a hierarchy may not provide the spatial structure of a grid or the predictability and
control of a linear structure, the hierarchy is very important because it can be modified
to hide or expose as much information as is necessary. Hierarchies start with a root
page that is often the home page of the site or section. The home or root page of the site
tree serves as a “landmark” page and as such often looks much different than other pages
in the site. Site landmarks such as home pages are key to successful user navigation.
This is further discussed in the next chapter. From the home page, various choices are
presented. As the user clicks deeper into the site, the choices tend to get more and more
specific, until eventually a destination, or leaf page, in the tree is reached. Because of
this arrangement, trees tend to be described by their depth and breadth.

Narrow Trees
A narrow tree presents only a few choices but may require many mouse clicks to get to
the final destination; this organization emphasizes depth over breadth.

A narrow tree may require the user to make many choices to reach a leaf page, but
for some sites this is a very effective way of quickly funneling users into the correct
category. For example, a Web site for an employment service generally has two main
audiences: job seekers and employers looking to hire. Making this distinction obvious
on the home page and requiring the user to choose a category facilitates quick and easy
access to relevant sections of the site. Expanding the top-level choices to include the
specific options for job seekers and for employers could be distracting. Using a narrow
hierarchy as a means of progressive disclosure can help keep the user focused. However,
it may increase the number of clicks required for the user to get to the ultimate destination.
It is important to balance these two factors and to avoid putting up unnecessary barriers
between users and the information they desire. One indication that a site hierarchy is
too narrow is when there are many pages that are purely navigational beyond the

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 171
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

home page. Remember that users want “payoff”—clicking endlessly through pages
provides little more than frustration.

Wide Trees
A wide tree or wide hierarchy is based on a breadth of choices. Its main disadvantage is that
it may present too many options as pages have numerous choices emanating from them.

While the user only has to click once or twice to reach the content, the time spent
hunting through all the initial choices may be counterproductive. Many people think
that everything important must go on the home page. However, if everything gets a
link from the home page, then the hierarchy is not preserved and information may lose
its effectiveness—in some sense becoming lost in a crowd. Choosing the appropriate
balance between site depth and breadth will be discussed later in the chapter.

Web Trees
The reality of the Web is that the typical pure tree structures are rarely used. In a pure
tree, there are no cross-links, and backtracking is often required to reach other parts of
the tree. Imagine that a user is at page A in the structure shown here; to reach page B,
they have to back up two levels and then proceed forward.

While backtracking on the Web is possible using the browser’s Back button, links
going backward are often added to pages so that users who reach a page not through
its primary path can navigate the site. In many cases, pages are cross-linked by means
of a navigation bar or explicit back-links to help users quickly navigate the site
structure. Consider the site diagram shown in Figure 6-4.

172 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

It would be common to create a navigation bar for such a site that contained the
main sections of the site such as Home, About, Products, News, and Contact, like so.

With such a navigation bar, it would be much easier to jump from section to section
without a significant degree of backtracking. However, the site diagram would be
much more complex and look something like the one in Figure 6-5.

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N
C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 173

Figure 6-4. Simple site hierarchy

Figure 6-5. Site hierarchy with back-links shown

TE
AM
FL
Y

Team-Fly®

The back-links and cross-links within the site increase the complexity greatly. In
this case, keep in mind that only main section pages are cross-linked. Imagine if the
whole site were linked this way.

Full Mesh
A site that links every page to every other page could be considered to exhibit a structure
called a full mesh. The following illustration shows a full mesh for a site with five pages.

In a full mesh, the number of links is equal to the number of pages multiplied by
the number of pages minus one (links = p × p –1, where p is the number of pages). This
means for a 5-page site, there are 20 links. For a 10-page site, there are 90 links. For a
100-page site, there are 9,900 links (100 × 99), and for a 1,000-page site, there are nearly
one million links! A full mesh doesn’t really work out that well from a usability
perspective, especially considering the 7 +/– 2 discussion presented in Chapter 2, nor
from a visual design perspective. In practice, most sites tend to use a partial mesh style
with cross-links to only the most important pages.

Mixed Forms
While a wide tree may present too much, too narrow of a hierarchy will hide too much
information. A linear approach may provide too little user control, while a pure Web
approach provides too much.

In some cases, there will be a need to augment the hierarchy to allow choices to
bubble up to the top. This structure is called a mixed form or a mixed hierarchy, as the
tree is the dominant form of the structure. A mixed form is probably the most common
form of site organization used on the Web. Linear devices, skips, and even grids may
be contained within a mixed form. Consider a site that contains Download Now or
similar buttons that skip deep into a site structure. This is somewhat like a linear-with-
skips structure. Other sites may contain linear tours available only from certain pages
in the site. Though spatial organization is not as pronounced as in other site structures,
a hierarchy is still generally evident in most mixed sites.

174 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

One common mixed style is the use of a linear structure to enter a site with a tree
once the real home page is reached. Sites or sections of sites that have splash pages,
installation procedures, or other linear constructs leading up to a central page that a
user can explore from use this type of structure. A structural diagram of this form is
shown here:

Another style, which is not really unique, is termed the hub and spoke structure.
Many sites consist of main pages called hubs and then subpages that are reached via
spokes. To visit other pages in the site, the user is forced to return to the hub page.
Many portals use this style to encourage page revisits. However, there is really no
difference between the hub and spoke model and a typical tree as shown in Figure 6-6.

One benefit of hub and spoke is that it may provide an easy way to conceptualize a
site: central sections of content (the hub), with spokes of related content that the user
briefly visits before returning to the hub. Another, related reason that designers may
like to think in terms of hub and spoke designs rather than simple trees is that it may

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 175
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

provide a good way to visualize site content. For example, some site-mapping tools
present site diagrams in this style because they are easier to lay out than a tree
structure. See Figure 6-7 for an example of a hub-and-spoke visualization of a site.

176 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 6-6. Hub and spoke and tree structures are the same

Figure 6-7. Hub and spoke is good for site visualization

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 177
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Web Style
When too many cross-links, skip-aheads, and other augmentations are made to a
structured documentation collection, the form will become unclear to the user. When a
collection of documents appears to have no discernible structure, it is called a pure web,
as shown in the illustration here.

A pure web structure can be difficult to use because it lacks a clear spatial orientation.
Though information can be accessed quickly if the correct choice is made, it may be
difficult to orient oneself in a Web site with an unclear structure. If a site’s structure is
unclear or unfamiliar to the user, they may resort to a home-page-based navigation,
always returning to a top level when beginning a new task.

The benefit of a less structured form is that it provides a great deal of expressiveness.
For example, a technical paper might provide links to related diagrams, supporting
statements, and papers, and even excerpts from outside resources. The organization
of the site may not easily fit any one of the more structured forms. While some might
argue that the confusing pure web structure may cause the user to lose focus and make
it difficult for participants to form a mental map of the site, this may actually not be a
problem when the information or task is properly designed.

Usability and Site Structures
While a linear structure may be easier for users to comprehend than a mixed tree or
pure web, users do not necessarily memorize the layout of a site or visualize a flowchart
in their head of pages as they move around. In some sense, information structure may
not matter if the user’s focus can be retained. Whether something is back, next, or up
from a current page in the site should not be the user’s focus. The important things are
what the users are doing and what information they are accessing. If users are content
and accomplishing their goals, they really aren’t lost. When organizing a site, always
attempt to retain the perspective of the user visiting the site. Many, if not most, of the
visitors will be relatively unfamiliar with the site and its structure. Don’t assume that
the organization will be clear to them, and remember that underlying organization
may not have to be clear if the site is providing satisfactory utility to the user.

Consider that a user really goes through three phases upon reaching a site. Phase 1
is entry to the site. In phase 2, the user moves around the site, which could be termed
the “visit phase.” Phase 3 is the conclusion of the visit, in which the user exits from the
site either happy, having reached a successful conclusion, or unhappy or neutral, having
failed or given up on the task. Figure 6-8 shows a conceptual overview of how this
might work for a site with a single entry point and single primary conclusion page,
such as an order confirmation message in an e-commerce site.

In reality, sites are generally not so simple. Often there are many entry points to
a site, and many exit points as well. During the visit, users may make a variety of
moves both towards and away from their eventual conclusion. They are probably not
completely aware of the underlying site structure of the visit and are happy as long as
they feel they are making progress towards the goal state. Figure 6-9 shows a conceptual
overview of a site’s structure and possible user paths through the site structure.

Of course things aren’t really ever as simple as the structures we’ve described so far.
Another consideration that must be addressed is whether a visit is standalone or part of a
much larger continuous session that nearly seamlessly covers multiple different sites.
For example, consider a user trying to book a vacation online. Users may visit a single
site trying to accomplish their goal or they may visit a search engine or portal site and

178 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 6-8. Simple site structure from a user perspective

begin to bounce over numerous sites comparing prices and destinations, entering and
exiting numerous sites while trying to reach their final goal. How users perceive site
structures in these different navigation scenarios is important and is shown in Figure 6-10.

Even though users may not focus heavily on site structure, don’t throw out logical
information structuring like linear, grids, and hierarchies in favor of a pure web structure
that gives up spatial information. Remember that people are spatially oriented and

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 179
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 6-9. Actual site path can be complex

Figure 6-10. Site structure in the context of a complex user session

180 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

prefer to navigate in terms of location. Web sites are locations. People generally talk
about “visiting” sites, not about reading them. We’ll study navigation issues in depth
in the next chapter.

Porous and Solid Site Structure
The previous discussion suggests that entry and exit are really the key milestones for
the user. Therefore, another way to categorize Web sites would be on the number of
entry points to a site. Using exit points isn’t realistic because every page in a site can be
considered an exit if the user just decides to quit. When a site exposes all documents
with public URLs, it could be said to exhibit a “porous” structure. A porous site does
not force users to enter through common points such as the home page, major section
pages, and so on. Most users will probably enter through such pages, but theoretically
any URL, however deep in the site structure, could be an entry point. In contrast, a site
with a “solid” structure would be one that severely limits the entry points to the site to
a few URLs or even a single URL. Figure 6-11 presents a graphical representation of
porous and solid site structures.

The advantage of a solid site structure is that it does not expose all the inner
workings of the site. By hiding such information, the underlying site content can be
changed easily. Another advantage of a solid site is that by forcing users to enter
through known points, their experience can be controlled much better. Users entering
through known points can be exposed to important announcements, setup tasks can
be performed more easily, and they can be oriented to the site in a consistent manner.
However, the downside is that the user will not be able to directly enter any particular
URL in the site. Power users may be extremely frustrated by the inability to save their
place within a large structure.

The table below summarizes the basic pros and cons of the two site forms:

Site Type Pros Cons

Porous form +Puts user in control
+Allows the user to enter any URL
directly or enter by bookmark

–Decreases ability to change
deep pages without
addressing outside linking

–Does not easily provide a
common entry point for
announcement, setup, or
orientation information

Solid form +Does not expose site structure,
making modification and
maintenance easier
+Forces user to enter through
known points
+Makes tracking of users
more predictable

–Removes user from control.
–May limit the effectiveness
of outside search engines

Some readers may wonder why sites should be made solid or semisolid and how
this may be accomplished. First of all, understand that sections of sites have long been
made this way. Consider, for example, a shopping cart checkout procedure. Letting
users bookmark deep pages during a procedure does not make sense. While the user
may bookmark the location, the site will apply some form of session management to
expire pages or deny users from entering a process midstream. We could also check
page requests to see what the referring page is and limit access. Other examples of less
porous site structures include some types of dynamic content and secured sections of
sites that require login. Over time, the use of defined access points to site content will
have to take off if sites are to be easily changed.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 181
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 6-11. Porous and solid site structures

Deep vs. Shallow Sites
Another way to characterize sites would be the number of clicks required to reach a
destination. Consider the choice between a narrow tree and a wide tree structure. A
narrow tree would require the user to click numerous times to reach pages deep in the
site. A wide tree would require fewer clicks, but would require users to look among
numerous links for the one that interests them. Obviously, a balance between link
breadth and site depth is the best choice. Various Web studies suggest that users prefer
sites that require fewer clicks and are more satisfied with a wide selection of choices. A
good and highly advisable rule of thumb is to consider aiming for a depth of three clicks
to get users to the content they are looking for.

Suggestion: Aim for a site click depth of three.

The three-click suggestion makes sense when considering the limited number of
locations for different navigation bars on pages, traditional GUI conventions, and
memory limitations of users. Inspection of Web site access logs should back up the
three-click rule. In fact, many sites seem to exhibit bailouts in only one or two clicks.

Of course reducing a site’s depth to three clicks or fewer is not always possible.
Remember that progress towards an end goal must be made and shown to the user
within three clicks (and ideally every click).

Suggestion: Aim for positive feedback indicating progress towards a destination
with every click, with a maximum of three clicks without feedback.

Consider, however, that as a result of making a shallower site by putting numerous
links on the pages, the design may inadvertently favor extremes. When faced with many
choices, users may focus on extremes when making a choice.

The phone book serves as a good example of the attempt to stand out from many
competing choices. For example, in alphabetical listings of non-preferential choices,
observationally the letter A and Z sections are often selected. Notice how in the Plumbing
section of the phone book how many firms have names like AAA Plumbing or Z-1
plumbing. To combat the effects of first choice and last choice in a large listing such
as the phone book, boldfacing, color, and display-style advertisements are used to help
choices stand out from the crowd.

Similarly, Web designers try to call attention to certain areas with larger sizes,
bolder color, animation, or blinking—the digital equivalent of shouting. While at first
these persuasion techniques may work, they may also cancel each other out or leave
the user feeling annoyed. Over time a user will become accustomed to any extra
stimulation and the attention-grabbing techniques lose their power; this is what is
called sensory adaptation. Ideally, users should be given the ability to distinguish what is
important from what is not and to be able to easily find the choice they are looking for.

Given that a breadth-oriented site structure seems best to reduce clicks, would the
7 +/– 2 idea related to short-term memory recall of choices make sense? Probably not,

182 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

given that five to nine choices is far too few choices for many sites, consider instead
five to nine clusters. Each of the clusters of links will use a different attractive
technique like a color, animation, or graphic. With a maximum of five to nine clusters
and five to nine items per cluster, a page could hold anywhere from 25 to 81 links.

Suggestion: Even for wide site structures, consider a range of 25–81 links per
page when page links are ideally clustered.

Unfortunately, with dozens of links, users are bound to make mistakes, and
important links may be lost in the clutter. Because of this potential for user mistakes,
many sites favor a redundant link approach, in which numerous links lead to the same
conclusions. Convention suggests that the number of links to a particular page is
proportional to its importance.

Premise: The more important the page, the more redundant links should be
provided to it.

Consider how many links in a site point to a home page—or to software download
pages or a purchase page—and it becomes apparent that redundant links are
commonplace within many sites. Increasing the number of links pointing to successful
conclusions just increases the odds of the user hitting the right link. Be careful not to
add too many redundant links, though, lest the users feel they are being pushed towards
a particular page. Again, the control issue becomes apparent. If nearly every link in a
page pushes a user towards a particular conclusion, the user may feel frustrated with
the lack of control.

Suggestion: Redundant links in a site should be no more than 10 to 20 percent
of a page’s total exit links.

Despite the likelihood that users are better able to deal with flat site structures,
many sites completely avoid building sites this way. Certainly some of the reason
could be attributed to developers being unaware of the idea, but many times the rules
of thumb are avoided on purpose. Consider a site whose revenue is primarily from
banner advertisements. For such a site, the more banners viewed by the user per visit,
the better. In the mind of the owner of such a site, a design that gets users quickly to
their destinations is one that takes money out of the site’s own pocket. Many banner-
driven sites favor hub and spoke site design or deep tree structures as a way of forcing
the user to click through numerous pages and view more banners.

Of course, there is a limit to the “click more, view more ads” approach, in that
unsatisfied users won’t continue to click if they get frustrated. In some situations, site
designers will design to reduce clicks to the lowest tolerance level without overly confusing
a user with too many choices. In other situations, they will want to increase clicks to
the maximum tolerance level without frustrating the user. Oftentimes the specific type
of site being built drives the type structure used.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 183
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

TE
AM
FL
Y

Team-Fly®

184 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Picking a Site Structure and Type
The idea of picking the correct structure for a Web site by organizing information into a
collection of pages is often called information architecture. Choosing the correct structure
for a site is complex and can be influenced by many factors. For example, the data itself
may suggest a particular method of organization. This could be considered a bottom-up
approach. For example, a slide show really should be organized in a linear fashion,
since the logical order of the presentation would be lost if the information were presented
in another form, such as a tree.

Another way to consider organizing information would be more top-down, based
upon the use of the data. This approach would give priority to who is using the site
and how the data it provided is consumed. For example, linear structures will provide
little control for the user and limited expressiveness, but they will be very predictable.
Novice users will prefer simple structures such as linear structures or deep trees, since
the choices to be made in such structures are relatively easy.

Premise: Novice users prefer sites with predictable structure and may put up
with extra clicks or a lack of control to achieve a comfortable balance.

Of course, a power user will often find a site with a very rigid structure or one that
requires a large number of clicks to be very restrictive. Spatial feedback is not as important
to the power user as control or flexibility of navigation.

Premise: Power users or frequent site users want control and will favor structures
that provide more navigation choices.

Each site structure style has its own pros and cons. Figure 6-12 shows the relationship
between the expressiveness and predictability of the different site structures. While
linear is very predictable, it provides a limited relational view. While a pure web form
is very expressive, it can be confusing. The hierarchy and mixed structures share the
middle ground, allowing users to move progressively closer to end results in a
predictable manner. When building sites that are not dynamic, aiming for the middle
ground is the best bet. Given this observation, it is no wonder that most sites tend to
exhibit some form of hierarchy.

Proper information design is key to the development of a successful Web site. If a
site has great content and a great interface, but poor information architecture, it may
be relatively useless. If the user cannot easily find the information, the site loses its
effectiveness. Most sites now use a mixed hierarchy approach that is familiar to many
Web users. Depending on the goals of the site, several types of structures might be
combined. For example, while the overall structure of a site might be a hierarchy, a
pure linear structure could be used to provide an introduction to a company, and a
narrow hierarchy or even a grid could be used in the technical support section.

C h a p t e r 6 : S i t e T y p e s a n d A r c h i t e c t u r e s 185
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

The key point of site structure is to make the site easier for the user to navigate.
Always remember that users are not going to intimately understand the underlying
site structure—nor should they have to. Remember that from the user’s point of view,
they enter the site, move around the site trying to accomplish their goal, and then
eventually leave. Users will not care about structure as long as they achieve what they
want in a positive way. So, any structure that we choose for a site should help users
navigate around and improve their likelihood of success. The next chapter focuses on
site navigation and organization.

Summary
One way to categorize Web sites is by their audiences. Public Web sites tend to have
loosely defined audiences, while a private intranet’s audience may be very well known
to the site creator. Audience considerations greatly affect the design considerations of a
site. Sites can also be categorized by size, technology, and visual designs, but the most
important grouping is related to the purpose of the site. Obviously, all sites do not have
the same purpose and thus do not necessarily share the same design considerations.
Commerce pages have much different considerations than entertainment pages. Designers
should always be careful not to apply the same design criteria to a site regardless of
audience or purpose. However, despite audience or purpose, most sites share similar
organizations. Some sites have simple architectures, like a linear progression of pages,

Figure 6-12. Site structure: expressiveness versus predictability

while others exhibit complex hierarchies or mixed forms. When building the site’s
structure, always consider cognitive science issues and attempt to balance click depth
with link breadth. Designers should understand that the logical organization of the site
and the physical organization do not have to match. In fact, the structure of the site is
often more useful to the designer than to the user. While structure can improve a site’s
organization, users may not always be aware of a site’s form as they navigate toward
desired content or attempt to complete a particular task.

186 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Chapter 7
Navigation Theory

187

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

188 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Navigation is the art of getting people or things from one place to another. We
navigate the real world when we take a trip to a far-off land or walk down the
hall to get a glass of water. While the Web is not a physical place, users utilize

navigational cues to move around the information space. Many ideas from real-world
navigation can be adapted to the Web. However, site designers are cautioned to
remember that the Web is not the real world: direct translation doesn’t always work.
Web navigation should help users understand where they are, where they can go, and
how they can get somewhere else. The visibility, labeling, and placement of navigational
elements go a long way toward making things clear to the user. Since navigation is
such a complex subject, this chapter will focus primarily on the basic theory and core
practices such as navigation placement onscreen. The following chapters will focus on
implementation details such as link usage, frames, search engines, site maps, and other
navigation aids.

Navigation
In real life, we often need to get from point A to point B. Maybe we need to pick up a
package at the post office, drop off our dry cleaning, or just get out for some fresh air.
We want to reach our intended destination quickly and efficiently and not get lost
along the way. That’s the focus of navigation. Navigation is concerned with helping
people find their way.

When navigating, people often ask the following questions:

■ Where am I?

■ Where can I go?

■ How do I get where I want to go?

They also tend to ask secondary questions that are related to the primary questions.
For example, lost people often ask

■ Have I been here before?

■ How can I get back to where I was?

Sometimes, if a trip is long, or simply if the individual is a child in the back seat of a
car, the question is

■ How long will it take to get there?

All these questions are valid. Unfortunately, on the Web it isn’t always easy to
answer these questions with any precision. Always remember that, at least in its

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

current form, the Web lacks the physicality of the real world. In fact, given the lack of
physicality, the exact location on the Web may not be as important as you think; users
may be much more concerned about possible future directions and a general sense of
how to get where they are going.

Some experts suggest that users act somewhat like animals foraging for food
when navigating the Web. The users, as information omnivores, sniff the scent of the
information they are looking for or the task they are trying to complete. Once on
the trail, they keep on it until the scent dies. If they begin to get lost, they back up
until the scent is strong again. If they get completely lost, they may quickly retreat to
a known safe place such as a home page or move to another mode of navigation such
as searching for more specific content. The context switch between searching and
foraging can be blurry. The idea of information foraging suggests that the particular
navigation strategy may not be quite as important as the users’ sense that they are on
the right track and basically know where they are. Good navigation should always
try to answer users’ navigation questions by providing cues to show the users they
are on the right path. This is done with navigational aids such as URLs, page labels,
landmark pages, and navigation menus.

Where Am I?
It is often difficult for users to know where they are, since the Web lacks central points
of reference. In the world of naval navigation, longitude and latitude can be used to
chart a course. However, these concepts rely on a finite earth and the convention of
starting measurement from Greenwich, England, for longitude and the earth’s equator
for latitude. Does the Web contain an absolute center? Let’s say Yahoo! is the center
of the Web. How many clicks are we away from Yahoo! at any given moment? The
answer is, paradoxically, both one click and many. It really depends on if you allow
people to access something directly or if they must follow a path. URLs can give a
precise location, but may say little about a document’s physical location relative to
other documents (and users do not always understand URLs). Users may instead
come to rely not only on URLs, but page labels, colors, and even document styles to
understand where they are.

Precise Location on the Web: URLs
Today, the URL (Uniform Resource Locator) defines location on the Web. A user’s
browser may identify the current page as http://www.democompany.com/
products/trainer.htm. The URL precisely answers the user’s “Where am I?” question.
Unfortunately, the answer may not be useful or understood by the user. Consider the

C h a p t e r 7 : N a v i g a t i o n T h e o r y 189

190 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

previous URL. The address states that the user is accessing a page called trainer.htm
in the products directory on a machine named www.democompany.com. Of course,
this address may not tell us much as far as our location relative to other pages.
Relationships between pages, both within and outside a Web site, are not easy to
judge from a URL. This page may be a single click away from a page on a server
in a foreign country halfway around the world—for instance, there could be a link to
http://www.robotparts.co.nz/robots/bodyparts.htm, a fictitious robot parts vendor in
New Zealand. Users can glean some information from a URL like this link including
the basic physical location from a geographic domain (in this case, “nz”), a server
name, and maybe a directory or document name. However, don’t expect the URLs to
always show where people are. Many dynamically generated sites have URLs like

http://www.robotsforsale.com/store/showprod.cfm?&DID=7&User_ID=6185

1&st=1985&st2=-78872300&st3=211170630&CATID=3&ObjectGroup_ID=18

This is not exactly something users can easily use to tell where they are! While it won’t
always be possible, you should always strive to make URLs easy to understand.

Rule: Use simple and memorable URLs to improve navigation.

Because a URL specifies a location, you should not hide it or make it unclear unless
you are trying to prevent users from reusing the link, which may be appropriate if you
are trying to produce a site with a solid or semi-solid structure (see Chapter 6).
However, often designers will inadvertently remove URLs—for example, when using
frames or opening new windows without the location bar.

Rule: Do not hide or obscure URLs unless you are trying to keep people from
direct linking.

Page and Site Labels
Beyond the specificity of a URL, users may get a somewhat less precise location
through various labels on the page. Explicit labels that indicate the current site,
site section, and page are usually found toward the top of every page. The typical
convention in Web site design is to provide an organizational logo or label in the
upper-left corner to indicate a site, and then various textual or graphical labels below
or to the right to indicate a section or page.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 191
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Most pages contain a page label that may indicate the contents of the page as well
as provide some sense of location within a site. Generally, the page label is located at
the top of the page and is set off on its own. Designers should make sure to make page
labels look different from navigation or content. Generally, this means labels are larger,
are in a different font or color, or are grouped alone. The position of page labels should
also be consistent from page to page.

Rule: Use consistent and explicit page labels for all pages in a site.

It is not only important to indicate the particular page users are on, but sometimes
the site (or even sub-site or subsection) they are in as well. The most common way
to do this is to use the corporate or organization logo or name throughout the site.
The position of the site label varies, but probably the most common location is the
upper-left corner of the screen. Given that this is the primary scan path of the user,
it will reinforce to the user that they are indeed on the same site. Some sites put it
on the right, but Web conventions appear to favor the upper left, which is consistent

Indicates sections

Site label

Indicates current section

Indicates
current page

with the location of program icons in the title bar of most software applications.
Compare the title bar of this common word processing application to the Web site
shown here.

Notice that while the Web site does lack the typical Minimize, Maximize, and Close
boxes of a GUI application, it has an icon showing the current site, as well as a label
showing the current document. Of course, the Web site is highly stylized compared to
the application, but the labeling of Web sites tends to be consistent: navigation aids,
shopping cart icons, and help buttons to the right, with site, section, and page labels
generally to the left.

Regardless of the position of the site label, it should always return the user back to
the home page of the site. Think of this as a panic button for the lost user—an instant
way to get back to the main page. Though many users will know this Web convention,
you should also consider using the title attribute so that when the mouse passes over
the logo, it indicates that it will return them to the site’s home page. (This idea is
discussed in detail in the next chapter.) Also, remember that you do not have to limit
yourself to only a logo to return home. Many sites provide more explicit “Back to
Home” buttons within the page, particularly at the bottom.

Rule: Site-wide labeling icons or words such as the organization name or logo
should always return a user to the home page of the site when clicked.

While logo clicking to the home page is a common convention, you may want to consider
extremely explicit “home” button links in your site to address users who may be
unfamiliar with this convention.

Another way to indicate location is through an implied page label. When using
graphical buttons, the current button will be indicated with a different style.
Sometimes, designers will make the selected state of the button bright in order to let
users know they are on that particular page. However, this is the role of the page label
itself, not the selected button statement. In fact, such buttons should no longer be
selectable. Putting it in a bright color would suggest that it is more important than
other buttons, rather than less. This common mistake is illustrated in Figure 7-1.

192 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Also, recall that the convention of a typical graphical user interface is to gray out a
selection that is no longer selectable—users will expect buttons to act this way.

Suggestion: Button states should be considered a secondary form of page
labeling, and the selected state should always be subdued, not prominent.

A more advanced form of page labeling adds more information about location. This
style could often be called a depth gauge, since it shows the user’s depth in the site, as
shown here.

Notice in this case that the first three links in the label are selectable while the fourth is
bold, showing that it is the current page we are on. Some people like to use the pipe (|)
symbol rather than the greater than (>) sign.

The difference between the separators may seem subtle, but notice that the first
style suggests progression. In fact, many people mistakenly view this form of page
label as path information. While it is true that it shows a path from the home page, in
this case, to the Trainer robot, the path is not necessarily how the user ended up at this
page. This confusion leads some people to refer to this form of page labeling as a path
indicator, but depth gauge seems more accurate, since it really shows the distance from
the main page—not path.

The last way to label a page is not a common technique, but it is easy to implement.
The browser status bar normally does not display any information unless the user is
rolling over a link. During the default time, it could display the current page label as
well as URL information. Consider putting information about the current page as well

C h a p t e r 7 : N a v i g a t i o n T h e o r y 193
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 7-1. Selected buttons should be dimmed, not emphasized

Correct Incorrect

TE
AM
FL
Y

Team-Fly®

as its URL in the status bar so that users can see it when they are focusing towards the
bottom of the page. Using a short script within the <body> tag triggered by the onload
event is an easy way to set this up. If the browser doesn’t understand JavaScript, it will
simply ignore this statement:

<body onload="window.defaultStatus='Current page: Robot Trainer

(http://www.democompany.com/products/robot/trainer.htm)';return true;">

The only downsides to the default status bar message is that it may be overlooked by
the user or the user may not easily notice that it changes between the default message
and the URL destinations when the mouse passes over links. More information on such
specific usability practices with links is presented in the next chapter. All the forms of
page labeling, including the status bar message, are shown in action in Figure 7-2.

194 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 7-2. Page labels example

Explicit page
labels

Actual location (URL)

Site label

Grayed-out labels imply location.

Status
message

Depth gauge

C h a p t e r 7 : N a v i g a t i o n T h e o r y 195
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Page and Site Style and Location
Another way to let the users know where they are is by the look of the page relative to
other pages. This form of feedback is not exact, but it will give the user a relative idea
of where they are in a site.

Many sites use color-coding to imply location. With this method, each section of the
site has a different primary color for its buttons and graphic flourishes. For example,
the site may use red for products, green for investor relations, blue for technical
support, and so on. Each page in the section would use this primary color to reinforce
where the user is. The only limitation to the use of color to identify location is that the
colors of each section must be different enough to be noticeable to all users. Given
that people may perceive color differently or have limited color-viewing environments,
you may be limited to primary colors like black, red, yellow, green, cyan, blue, and
magenta. Even if you push it and add colors like orange, you may find that you are
limited to around 10 or 12 colors. Because of the significant difference between colors
needed to achieve the required distinctiveness, sites with many different sections may
find this approach limiting.

Suggestion: When using color-coding to imply section location, make sure the
colors used are significantly different from each other.

Some designers despise the color-coding approach to section identification because it
often results in a garish rainbow-style site, particularly if the buttons on the Navigation
palette are colored to represent their section. Despite this criticism, this design style is
very commonly used.

Another approach to implying location is through theme. Consider how, in the real
world, many neighborhoods may utilize a theme like trees (Elm St., Birch St., Pine St.)
or planets (Venus Ct., Neptune Way, Mars Place) for street names to bind the various
locations together. They may use common street sign designs or other flourishes to
distinguish the neighborhood from adjacent ones. Web sites can use themes as well.
Some sites may use certain forms of illustration or pictures on all pages within a
section as a device to let people know they are in the same section. For example, in
the products section, they may have a picture of a salesperson on all the pages; in the
investor relations area, a picture of a broker watching a stock ticker; in the tech support
area, a picture of a technical support operator, and so on. The theme concept works
well, but often designers go crazy with the theme and begin naming sections “Tech
Support Garage” or even “The Garage” instead of just “Technical Support.” If you’re
not careful, it is easy to take the theme so far that it becomes a metaphor-based design.
This may work out in some cases, but consider what happens if the user just doesn’t
get it. In general, metaphors tend to be difficult to pull off.

Suggestion: Do not go so overboard with theme-based location hints that you fall
into a designer-defined metaphor.

As with color, the key to using thematic hints to indicate location is making sure
that the hints or page styles are different enough for the user to notice. This can be
difficult because usability suggests that pages be consistent in form. Variation should
be just noticeably different, but not so different that each page appears unique. This is
particularly important if we are to take advantage of landmark pages, discussed
further on in the “Landmarks” section.

Where Have I Been?
When you get lost, you might worry about how to get back to where you once were.
Also, if you feel that you are traveling around in circles, you may wonder if you have
already seen this page or the current links. One important aspect of letting the users
know where they have been is changing link colors once a link has been visited. This is
often called breadcrumbing, after the famous fairy tale Hansel and Gretel, in which the
children drop bread crumbs to find their way back out of the forest. Typically, unvisited
links are blue while visited links are purple. Because a user may rely on the link colors to
determine if they have tried a choice or not in the past, it is unwise to modify link colors.
Doing so could be almost as detrimental to a site visitor as the forest animals eating all
the kids’ breadcrumbs.

History
Besides coloring links, a Web browser also keeps track of where users have been with
a mechanism called history. The reference to each page visited is stored in a browser’s
history list, and the user can use the Back and Forward buttons to traverse the entries
in the list. In this sense, Back and Forward are really temporal back and forward. Some
sites use link labels like “Back” on the site and utilize a JavaScript to provide the same
function as the history mechanism, as shown here:

Back

Using a script like this is not a good idea, since the page that the back link sends
users to will vary according to where they just came from. Users do not expect a site
link to act like a browser Back button. Despite the poor label, a user would expect a
link labeled “Back” to send the user one back in the site structure, not perform a back
as in the browser history—which may even send them outside the site. Except in a few
cases when using complex framed sites, designers should not use the history
mechanism with normal site links.

Suggestion: Do not attempt to mimic the browser history mechanism with links.

To avoid any unnecessary confusion about the meaning of back links, designers are
always encouraged to explicitly label their back links. For example, “Back to Products”
or “Back to Robot Butler” is always preferred to simply “Back.”

196 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : N a v i g a t i o n T h e o r y 197
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Rule: Avoid links named simply “Back.” Always explicitly indicate where a back
link will go.

Do not underestimate the user’s focus on the history. Certainly the favorite button
of novice users is the Back button. When some novice users become lost, they like to
click the Back button faster than a hungry monkey hitting a food dispenser bar in a
behavioral study. While users should certainly try to use the browser’s Go menu to
quickly traverse the history list, the reliance on the Back button should not be overlooked.
Some sites use redirection to send users to another page or site, perhaps to take them
to a browser-specific site version, or to deal with an outdated URL. Regardless of the
reason, the method employed often has no delay and creates a page that the user is
unable to back out of using the browser’s standard Back button. In this situation, when
the Back button is clicked, it takes the user back to the page with the redirect, which
promptly returns them to the page they are trying to back out of.

Rule: Do not hijack a user’s Back button unless the site’s functionality
requires it.

Such looped pages caused by redirection can be highly annoying to a user who has
to shut down his or her browser and open a new window, or figure out how to use the
Go menu to jump over the redirection page.

The reason for the loop often has to do with the misuse of the <meta> tag. Using a
script like the following can minimize this problem in JavaScript-aware browsers.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>

<script type= "text/javascript">

<!--

location.replace("redirectpage.html");

//-->

</script>

<noscript>

<meta http-equiv="Refresh" content="0; URL=redirectpage.html">

</noscript>

</head>

<body>

This page has moved to URL here.

</body>

</html>

Some programmed Web sites may purposefully try to disable Back buttons with
immediate redirects or quickly expire pages that users back into to avoid user errors.
Such practices, which may be considered bad in terms of usability, are often necessary.

Indicating Past Visits with Cookies
Probably the most advanced form of indicating to a user they have visited a site before
is using a cookie.

Definition: A cookie is a small bit of textual information handed out by a site
that is stored on the user’s system.

In some sense, a cookie is like a laundry ticket. When you visit a site, you are given
a cookie that is then saved on your system, assuming you allow it. Any preferences
you set could be stored to the cookie and reread every time you visit the same site. The
basic use of cookies is to save state information in order to provide advanced Web
facilities, such as site personalization. A full discussion of programming cookies for
user tracking is beyond the scope of this book. For now, just consider that a cookie can
be used to track a user and provide some assistance in navigation.

Beyond link color, there is really little information to let users know they have been
some place before. A user’s own memory—both short-term and long-term—is the main
way that the user will know whether he or she has been some place before. Given the
imprecise nature of human memory, users probably won’t be able to remember specifics,
such as a document’s URL or detailed contents, but they may remember general
characteristics of a page or site. For example, users may be able to remember the color
or even layout of a site or page, particularly if it is significantly different from that of
other sites or pages they have visited. Pages that are easily remembered in such ways
could be considered landmark pages.

Landmarks
In the offline world, we utilize many techniques to find our way—probably the most
basic is the landmark. A landmark is a prominent identifying feature of a landscape,
basically something unique enough that it is easily noticed and remembered. People
use landmarks as points of reference for navigation all the time. For example, when
giving someone directions, you might say “my house is just past the flag pole” or “turn
right when you get to the Burger Shack.” Since we use a landmark to fix our position
relative to other objects, a landmark must be easily identifiable and memorable.

On the Web, users tend to identify two major landmarks. The first is the page they
enter the Web with; this could be called the user’s home page or start page. Often, this
page is set to the user’s personal home page or company’s home page or to a portal
page such as Yahoo!. This landmark doesn’t change very often. However, the second
form of landmark on the Web is a little more transitory. When a user enters a site for
exploration, the home page of the site is often used as a temporary landmark. The key
to a landmark is that the page must look different enough from other pages visited for
the user to identify it is a landmark. If it looks too similar, the user may not be able to
recall whether the page he or she is currently on is the landmark or not.

However, don’t go overboard with the idea of using differences to improve
memorability. Consider an actual consumer goods site that used a randomization

198 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

script to make its home page look significantly different every time the page was
loaded. The idea was to make the site look dynamic. However, during a site visit, users
who became lost often returned to the home page to begin again, but, in this case, home
wasn’t how they left it. The randomization caused disorientation. The comfortable
landmark of the site’s home page changed, and the users were confused as to where
they were. Even worse, the URL bar in the browser had been hidden, and many users
truly had no idea where they were and just gave up. Landmarks must be different, but
they also must be stable if they are to be used as points of reference for the lost visitor.

Rule: Users remember their start page as a permanent landmark and the home
page of a visited Web site as a semi-permanent landmark. Therefore, these pages
should be stable in their presentation but look noticeably different than other
pages visited.

Where Can I Go?
Often, the most important question users have is about where they can go. The various
links and labels on a page indicate the places that the user can go. Users will generally
select a destination by the choices presented to them, unless they have some previous
knowledge of some potential destination or have been to the site before and bypass
what is shown. Presentation of the various choices available to the user is important.
The first thing to consider is to make sure the choices available are obvious. Some sites
aim to hide choices behind pull-down menus or place them offscreen with some
slide-off menu. Users may not notice such choices, so they are less likely to be selected.

Suggestion: Don’t hide a destination choice from a user unless the link is not
important or clutter would result.

Placing Navigation
The position of navigation elements is not only a question of taste; it also brings up
numerous usability issues. Looking at a screen, there are really only five general areas
for navigational elements in a Web page: top, bottom, left, right, and center. Each of
these locations has its pros and cons.

Top Navigation
Many sites put navigation choices toward the top of the screen. This makes sense given
that it is fairly likely that all the navigation choices will show up immediately. Also,
traditionally in graphical user interfaces, the top of the screen is home to the primary
menus of a program—so why not on a Web site? Given that the most common
scanning direction of a typical Web page is left to right and top to bottom, this is a
good location for navigation.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 199
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

An obvious navigation problem is that users may scroll the navigational elements
off the screen as they travel down the page. When users hit the bottom of the page,
they may be ready to move on; but with a top-only form of navigation, they would
have to scroll back up to the top of the page in order to continue. To combat this
problem, many sites adopt one or more of the following solutions.

Fix Navigational Elements in Top Portion of the Screen
Generally, this is accomplished with frames, which results in some usability problems
(discussed in the next chapter on navigation practices). It is also possible to use
JavaScript to create a floating navigation palette that sticks to the top of screens, but
this is only supported in the more recent browsers. Last, under CSS2, it is possible to
use the position property with a value of Fixed to peg information at a particular
location. Unfortunately, this extremely useful property is not commonly implemented
in browsers at the time of this book’s writing.

Use a Back-to-Top Link
Some sites use a back-to-top link that jumps the user back to the top of the page where
the Navigation palette is. This has the downside of requiring an extra click before the
user can navigate away from the page. The upside to a back-to-top link is that the user
may just simply want to return to the top of the page. This type of link avoids a great
deal of scrolling. The opposite, the go-to-bottom link, is not common, because the user
has no idea really of what is at the bottom—so why would one want to go there? In the
case of the top-of-page link, the user has been to the top or knows the navigation to be
there, so there is reason to select the link. One downside to the go-to-top link is that
some users may be surprised that the link scrolls the page up. Using a good label, like
“Return to top of page” or simply “Top of page,” is favored over the shorter “Top.”
Some designers prefer to use upward-pointing arrows. In such a case, make sure that
at least the alt or title text reveals the purpose of the link.

A few implementation points about back-to-top should be addressed now to get
them out of the way. The issues with back-to-top links concern when and where they
should appear. One thought is they should appear only at the very bottom of the page.
However, some people might argue that, for users who scroll half-way down a page

200 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

and want to return to the top, such link help doesn’t help. It would be possible to
address this by having a back-to-top link appear dynamically as a user scrolls, floating
in the bottom of the page. Another issue concerns on which side of the screen the
back-to-top link should appear. Some argue for the right since users may finish reading
text on the right. Some argue for the left since often there is a natural empty margin for
the link. No clear convention exists, so the choice will be left up to designers and what
feels right for a particular site.

Provide Text Links at Bottom of Page
Text links that mimic the top links are often added to the bottom of a page, usually
below a horizontal rule. Often, the text links are separated by brackets ([]) or pipe
symbols (|) to distinguish them as navigation links.

The style of navigation of mimicking top links on the bottom of a page is often
termed a header-footer design. This form is so common that many users tired of waiting
for a page’s graphical buttons to load will quickly scroll to the bottom of the page to
utilize the backup text links.

Prominence of Navigational Elements
Another aspect of top navigation that can be troublesome is that labeling and site
branding, such as a corporate logo, can be lost among the navigation elements. For
example, look at this navigation bar:

Notice how the logo, the page label indicating location, and the buttons all compete
for user attention. It has been exaggerated here purposely, but the point still holds—with
top navigation, make sure not to let your buttons drown out the rest of the information
presented at the top of the page. Consider the use of menu bars within typical software
applications—generally they are very thin and take up no more than 10 percent of the
vertical screen real estate. However, in many Web sites, the navigation bars can get quite
large, making it less likely that the user will see much content without having to scroll,
and potentially putting more focus on navigation than content.

When using top navigation, be careful not to overwhelm page labeling and site identity
information with navigational elements.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 201
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

202 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Bottom Navigation
In most cases, bottom navigation doesn’t seem to make much sense, as it would
probably force scrolling. This is because navigation elements would probably not show
up in the first screen region unless page content is limited or the user has a very tall
screen. Of course, with frames or other technologies, it is possible to fix navigation at
the bottom of the screen that appears onscreen. (This will be touched upon later in this
chapter with a complete implementation discussion in the following chapter.)
However, even without frames, an upside of placing navigation at the bottom of the
screen is that it leaves the top free for page labeling and corporate branding.

A potential problem with navigation placed at the bottom of a page is that the
navigation is not in the primary scan path of the user. However, if the user did scan
the whole page, he or she would eventually reach the bottom of the page where the
navigation resides, just as they were ready to move to the next page. Because of this
usage pattern, many sites provide text links on the bottom of the page (as mentioned
in the previous section). However, putting the primary navigation forms, such as a
graphical button, at the bottom of the screen is not suggested and does not fit with
where software traditionally places controls.

Avoid placing primary navigation at the bottom of the screen; instead, reserve this area
for secondary or reinforcement navigation.

Left Navigation
The left portion of a page is a very common position for navigation elements. Since
English and other Western language readers will scan information left to right, this
puts the navigation directly in the reading path of the user. Also, the left of the screen
is a common location for navigation in many programs and has also become somewhat
of a convention in Web design. Even in print design, left-side navigation is common—
for example, most tables of content feature content description to the left, with page
locations to the right.

A navigation bar on the left of the page creates a type of “navigation fence” that the
user must jump over to read content. This can serve as a distraction, or as a limiting
region for the page, which improves design. Consider also that left navigation creates a
margin for content that would be absent without a navigation bar. The main problem is
that the navigation bar consumes precious screen real estate that limits how much
content can be shown on a typical page. Say, for example, the user has a limited screen
resolution, like 640 pixels by 480 pixels. Given browser chrome and the fact that the
user may not immediately maximize the browser to take up the full screen, there may
be as little as 570–580 pixels available for content. Even with a liberal assumption of 600
pixels or more for content, there still may be little room for content once the buttons are
added in, as shown in Figure 7-3.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 203
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

When using left navigation, make sure to reformat content to fit a narrow screen.

Unfortunately, it may be impossible to reformat all content to deal with left
navigation screen limitations. There are only three approaches to this problem, as
discussed next.

Let User Scroll If Necessary
While the number of low-resolution systems is rapidly diminishing on the desktop,
with the rise of Web appliances and mobile access this may change dramatically in the

Figure 7-3. Screen layout issues with left navigation

Left
navigation Content

≤100 px 500+ px

Distinguish navigation
from content by color,
background, or style.

Be careful of wide layouts with
left navigation, particularly on
low-resolution monitors.

Skip over
navigation
to hit
content.

Left
navigation
can create
a page
margin.

TE
AM
FL
Y

Team-Fly®

204 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

future. Users are not comfortable with left-to-right scrolling, and site designers should
not format content so that it forces this.

Open New Window for Wide Content
Many sites opt to open a window without left navigation when users need to view wide
content such as a table that can’t be reformatted and requires the full screen width at
low resolution. Removing the navigation and letting content go full-screen is also
common with sites that format content for printing. While opening a new window does
have drawbacks, it may be a necessary workaround in a limited-resolution environment.
There are two ways to open a new window for the wide content. The first relies on
the use of the target attribute in HTML, while the other uses JavaScript. To open a new
window using HTML, simply set the target attribute on a link to _blank, as shown here:

Product Table (new

window)

Of course, it might be a good idea to let the user know you are about to open a
new window by explicitly stating this. The downside to the HTML approach is that
while it generally works, it does create a window with full browser controls. Many
designers prefer to open a special window to display wide content. For example,
the HTML here shows how a JavaScript could be used to create a link that opens a
special maximized window:

<script language="text/javascript">

<!--

function createWindow(filename, width, height)

{

var newWindow = window.open(filename, "","toolbar=0, location=0,

directories=0,status=0,menubar=0,scrollbars=1,

resizable=1,copyhistory=0,width="+width+",height="+height);

}

//-->

</script>

<a href="http://www.yahoo.com"

onclick="createWindow('http://www.yahoo.com', 640,460); return

false">Yahoo!

In this case, we pass the desired size of the window to the createWindow function.
We gave it something equivalent to about the maximum resolution under 640 × 480.
We use only 460 because the window taskbar may take up some room. It is also possible
to use JavaScript to sense for screen resolution and open up to the size of the screen.

It is even possible to go to full-screen and take over the entire desktop, but this is
not suggested.

The main downside to using new windows without browser chrome and
navigation is that some users may be confused by the new window and not know how
to use or close the window. Because of this potential confusion, an explicit Close button
or even a frameset should be used to indicate the use of an external window. Some
sites even use this approach when opening links to outside sites. Figure 7-4 shows
some examples of how this might work.

Hide Left Navigation
Some sites have begun to use JavaScript to hide left navigation and show it only if
required. This form of slide-out or pull-out navigation does save screen real estate, but
exchanges the space issue for usability problems related to hiding the navigation from
the user. Hiding the navigation limits the users’ awareness of the range of choices they
have (until they access the navigation). On the other hand, a slide-out navigation does
place the majority of the focus on the content. An example of a hidden menu in practice
is shown in Figure 7-5.

Right Navigation
Recently, placing navigational elements on the right has become popular. Some argue
that right navigation places the navigation out of the way of the content and allows the
user to immediately dive in and read the content. Right navigation supporters also note
that the navigation buttons will be near the scroll bar, thus limiting mouse travel for
the user.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 205
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 7-4. Window style should indicate secondary window.

Site branding

Explicit close box

Indication of subwindow

206 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Despite its potential upside, right navigation has some potentially serious
drawbacks. First, consider a simple question: Where exactly is the right? Depending on
a user’s monitor and browser size, the distance from the left to the right of the screen
may vary greatly. On a very large monitor, the navigation could be very far from the
left edge of the screen, and the mouse travel between the navigational elements and the
users’ favorite button—the Back button—could be extreme. Also, with such a flexible
right side, screen design has to be very flexible. Because of this, some designers opt to
create an artificial right margin for right-focused navigation. Generally, they tend to
make this margin somewhere between 600 and 700 pixels, so that the entire page ends
up being around 800 pixels wide, which is approximately equivalent to the width of
standard letter-size paper on most monitors. This would be acceptable, but it does not
really obtain the second benefit of right navigation on all monitors: being close to the
scroll bars. Sure, it is closer than left navigation, but it still may be a long way away on
a huge monitor. Figure 7-6 illustrates some of the basic problems and benefits of
right-oriented navigation.

Probably the biggest reason not to consider using right navigation is simple convention.
Graphical user interfaces tend not to favor right navigation, and most Web sites do not
either. While left-style navigation may not be optimal, right navigation is certainly not
standard. Consider this well before switching the position of a site’s doorknob! Does this
mean never use right navigation? Not quite, but certainly don’t put your primary site
navigation elements there unless convention changes. Some sites have already started to
put advertisements, cross-links, and secondary forms of the navigation on the right.

Suggestion: Avoid placing primary navigation on the far right of the screen.

Figure 7-5. Pull-out left navigation

Center Navigation
The last choice for navigational elements within a window is the center. Generally,
putting heavy navigational elements such as graphical buttons or image maps in the
center of the page is only done on the home page. Navigation-in-the-center designs
tend to be heavy and don’t leave much room for content, since the navigation is in the
user’s primary focus region. However, for home pages, this may not be a problem.
Considering that the main purpose of a home page is to help the user to decide where
to go, putting a site’s initial navigation in the middle makes sense. This design also
allows a home page to be visually different from subpages, making it easier to establish
it as a landmark page.

Suggestion: For home pages or other landmark pages, consider using
center-oriented navigation to distinguish them from other pages in a site.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 207
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 7-6. Right navigation can be both problematic and beneficial

Right navigation
increases the
distance between
the navigation and
the Back button

Focus on
content first

Close to scroll bar

208 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Subpages should stay away from using center-oriented navigation regions, other
than for simple text links. Content should appear in the center of the screen so that the
only navigational elements presented there would be cross-links within content.

There is one final choice for navigation elements, and that is outside the current
window. A discussion of frames and subwindows, often called remotes, is presented
later in this chapter (see the section “Subwindows”).

Consistency of Navigation
Regardless of which position is selected for navigation—or even if literally all the
positions are used, just with different types of navigation—everything must be
consistent. If primary navigation is on the top and secondary navigation is on the left,
then keep those there. Variation of navigation may be possible between landmark and
other pages, but the following Web design rule should always be considered.

Rule: Placement of navigation should be consistent within a page layout.

The importance of the stability of navigation cannot be overstated. It is known
from numerous studies that consistency is the key to usability, and navigation that
jumps around the screen may confuse or disorient the user. Even if the placement of
navigation is basically the same, subtle jumping may still occur. The easiest way to spot
this is to do a “fast browse” of a site. To perform a fast browse, quickly click between
screens and notice if the navigation moves or you have to move your mouse greatly to
reach the next choice in a navigation bar.

The number and position of elements within a navigation region should also be
stable from screen to screen. Many sites add and remove buttons from navigational
regions as the user moves around. Imagine if an application like your favorite word
processor suddenly added primary menu items or deleted them as you worked.
Do not even be tempted to remove a navigation choice just because it is the one the
user selected; instead, make it unselectable or gray it out. Simply removing it will
cause all the buttons to shift. Consider the menus choices shown in Figure 7-7. Notice
that removing an item as it is selected from the navigation changes the size of the
region, breaking the stability, and that the menu are obviously not the same.

Look carefully and you’ll see that one of the menus actually has a slight button
change in it. It is obvious in the picture, but if you try browsing a site that uses varying
buttons, it may be difficult to discern the difference from page to page. Understand
that users will find the movement of buttons and the addition of choices in this manner
highly disorienting.

Rule: Navigation should be consistent, and elements should exhibit stability in
position, order, and content.

The previous rule doesn’t preclude the addition of navigational elements.
However, if we do add them, we must certainly let the user know we are about to do

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

Nthat and make it obvious what was added. For example, in a tree navigational control,
the user can expand or contract navigation to show or hide navigational choices. This
type of control indicates that navigation will change and differentiates the added
navigational items. For example, in the unexpanded and expanded tree control shown
in Figure 7-8, the exposed navigational choices in the expanded tree are indicated by
indentation as well as a different style.

Tree controls are by no means perfect. Often, the tree control will expand too far
down or to the right. In fact, after expanding three or four levels, tree controls for most
sites get somewhat unwieldy.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 209

Figure 7-7. Menus with varying choices are confusing

Figure 7-8. Tree navigation allows navigation flexibility

Navigation Hierarchy
Besides using an expandable/collapsible style of navigation device, designers often opt
to show new navigational choices in other regions of the screen. For example, many
sites follow the convention of placing the primary site or section navigation across the
top of the screen, with backup text links across the bottom and secondary navigation
along the left. A third level of navigation can be added in a tree fashion on the left or,
to a limited degree, toward the center of the screen if it is limited in its scope and does
not interfere with the content. What’s interesting to see is that, while using the different
positions of the screen means adopting different forms of navigation, it is difficult to go
beyond three or four levels of site navigation.

Suggestion: When separating navigation choices by position onscreen, four
locations present a hard barrier to go beyond.

Usually, this common navigation form, which some designers refer to as TLB or
“top-left-bottom” navigation, includes text links backing up the primary navigation.
In this form, the primary navigation is laid across the top of the page, with secondary
navigation along the left side of the page. Generally, the subnavigation is also less
prominent than the primary navigation. A simple TLB block diagram is shown in
Figure 7-9.

210 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 7-9. TLB navigation template

Top

Left

Bottom

C h a p t e r 7 : N a v i g a t i o n T h e o r y 211
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

The TLB approach to setting navigation meaning by screen position makes good
sense if you consider the user’s scan path. If users look first to the top of the screen,
they will read across the primary navigation choices. Once they return to the left to
begin looking down the screen, they will see secondary choices. If they scroll the page
to look through the content or choices, they will eventually reach the bottom of the
page, where they are greeted with the text form of the main navigation. TLB design
may not seem creative to many designers, but it is a convention and it does work.

Navigation and Scrolling
A contentious issue for some is whether or not pages should scroll, particularly when
navigational elements are involved. No scrolling advocates feel that keeping pages a
fixed size makes things consistent, and thus more predictable for the user. This may be
true considering that with variable page sizes, users really don’t have any idea of the
volume of information they are about to receive after a typical button click. Of course,
there are numerous drawbacks to the fixed-page-length concept. The page size issue
is discussed thoroughly in Chapter 11. For now, consider that pages that are just used
to navigate to other pages probably shouldn’t scroll. You should always strive to
minimize the user’s effort in selecting the next page, and scrolling offscreen to see
choices both adds movement and forces the user to recall any choices not visible. This
idea leads to the following Web design suggestion.

Suggestion: Navigation-oriented pages should fit vertically within the screen
whenever possible, as should primary navigation in all other types of pages.

This rule suggests, in particular, that pages that simply lead to others should be
on the screen region that does not scroll or be, as they say, “above the fold.” It is
impossible to guess an exact height that is available because browsers have different
amounts of surrounding chrome and users may minimize their browser window at
their own discretion. However, using scripting, it is possible to determine screen height
on page load, as discussed in Chapter 11—although the user is always free to change
things at will. In all cases—particularly when dealing with low screen resolutions such
as 640 × 480—designers should always be conservative in their estimates. Many sites fit
the entire navigation within the first 300 or 400 pixels, regardless of screen resolution.
The first screen is considered the prime screen real estate, since any navigation outside
this region may require the user to scroll to activate it.

Navigation and Mouse Travel
Besides striving to limit scrolling to navigational elements, designers should always
attempt to limit mouse travel between navigational choices. First, always consider
the distance between the navigation elements and the Back button, which is the most
common browser button used by the user. While advanced users may use a right-click
or a similar navigational shortcut to avoid moving the pointer to the upper-left corner

212 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

of the screen, many users will not do this. Therefore, the distance between navigation
items and the Back button should be minimized when possible.

Suggestion: Minimize the distance between primary site navigation buttons and
the Back button.

The mouse-distance rule applies generally to mouse selections made navigating a
site. The selections may be either to the Back button or to another button within the
screen if the user is going to stay within the site. If users are moving away from the site,
they may move to invoke a window in which to type a new URL or move to the address
bar to do the same thing. It is advisable to limit the amount of mouse travel a user must
make between choices. If this distance is limited, with the next choice appearing close
to the button just pressed, navigation will appear effortless.

Suggestion: Always attempt to limit mouse movement between navigation items.

Limiting mouse distance isn’t just a common sense method to improve navigation.
Consider again Fitt’s law, as discussed in Chapter 2, which indicates that the time it takes
for a user to click a button is inversely proportional to the button’s size and distance from
the current mouse position. Basically, if the button is small, the user can’t get to it quickly
if it is far away. If you keep buttons big and right next to the previous selection, Fitt’s law
says the user will be able to use the interface quickly. If you consider how easy it would
be to press big red buttons that appear right next to each other, you can see that Fitt’s law
may state the obvious. Then why are small buttons jumping up all over Web pages? To
benefit from Fitt’s law, bring choices closer together and make choices that are farther
away larger. Notice that many interfaces, such as installers and Wizard-style interfaces,
already limit mouse travel by making the screens similar, with the next button to click
near the position of the last one clicked.

Frames
One navigation device that can be used to improve stability and possibly reduce
scrolling—and maybe even mouse travel—is the frame. Frames, unfortunately, have
somewhat of a bad name on the Web, primarily due to some early implementation problems
and some vocal critics, such as usability expert Jakob Nielsen (http://www.useit.com).
The reality is that frames are generally misused, but they actually do have some
redeeming features that should be considered before dismissing them out of hand.

The biggest problem with frames is a misunderstanding of their purpose. Many
designers accidentally use frames as a page layout tool. The truth is that frames are
navigation devices. The idea of a frame is to divide the screen into multiple regions,
panes, or windows. The benefit of breaking the browser window into multiple
independent regions is that doing so allows the viewer to see more than one document
at a time. In fact, even with a simple two-frame design, as shown in Figure 7-10, there
are actually three documents being used—a document setting up the frames, a document
for the left frame, and a document for the right frame.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 213
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 7-10. Overview of frames

TE
AM
FL
Y

Team-Fly®

The benefits of using frames can be great. First, frames make it possible to fix
navigation onscreen at all times. Whether navigation buttons are placed in a frame at the
top, left, bottom, or even right of the screen, the buttons can be fixed to never scroll away.

Another benefit of frames is that they can create an appearance of speed. Consider
the case of the fixed navigation shown in the previous example. If you click the various
links in the navigation bar, only the right portion of the screen updates while the left
stays onscreen. Because there is less screen repainting, the site appears fast to the user.
If the frameset is much larger, the illusion is more noticeable.

Frames also allow multiple documents to be shown within the window at once. For
example, if you want to compare various items, it might be possible to build a framed
environment so that the user could click buttons and bring up pages with products to
compare, as shown in Figure 7-11. This example also suggests that using frames can
result in very complex navigation.

However, despite their benefits, frames have numerous problems involving search
engines, printing, bookmarking, screen real-estate availability, and URL hiding. These
issues and their possible solutions will be discussed in the next chapter, on navigation
practices.

214 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 7-11. Frames are useful for comparison

Subwindows
Another navigation scheme—less popular than frames—is the use of pop-ups. Pop-up
windows are used for a variety of reasons, from navigation remote controls to banner
advertisements. Unfortunately, very often it is not obvious to users when pop-ups are
being launched, and, in some cases, they spring up unexpectedly. An example of the
particularly annoying “last chance” pop-up is shown in Figure 7-12. These annoying
pop-ups are so troubling that users may install software that kills windows of a certain
size, so be careful of using pop-ups for important information.

C h a p t e r 7 : N a v i g a t i o n T h e o r y 215
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 7-12. “Last chance” pop-ups should be avoided

216 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Navigation Remotes
A special type of pop-up window known as a “remote” may be valuable in some
instances. Basically, a remote is a small subwindow that is detached from the browser
and can be used to load content into the main window. An example of a remote is
shown in Figure 7-13.

In some sense, a remote is like a frame in that it is always available—though it isn’t
attached to the main window. Remotes could also be considered equivalent to a tear-off
menu or floating palette in a traditional software application.

The main problem with remotes is that they can get lost. Some people set their
operating environment to automatically lower windows. This could make it easy to
“lose” the remote behind the main window. Another problem is that the remote just
gets in the way. On a small screen, the remote might always be hovering over content,
since there would be no place to put it. Remotes are interesting for frequently used
sites, but other sites should consider using them in an only optional manner.

Suggestion: Do not make a remote the mandatory form of navigation.

Figure 7-13. A remote in use

Bookmarking
Bookmarking is an important aspect of navigation. Often, the user will bookmark a
page to return to it in the future. In some browsers, the user may even bookmark the
page so that it is downloaded for offline viewing or is checked on a regular basis
automatically for changes. Traditionally, designers could do little to affect
bookmarking other than make it difficult for a user to bookmark a page by using a
frame. However, under Internet Explorer 5 and beyond, it is possible to somewhat
customize bookmarks or, as they are called in Microsoft parlance, “favorites.”

The simplest customization is to create a custom icon to be associated with a bookmark.
First, create a small icon you wish users to see in a graphics tool. The icon file must be
saved as the .ico type and must have the dimensions 16 pixels by 16 pixels; otherwise,
the browser will ignore it. Next, copy the icon to the root directory of your Web server
handling pages for a particular domain (for example, http://www.democompany.com/
favicon.ico). Internet Explorer will automatically use this icon any time a user sets a
favorite or quick link for your site, as shown here.

Some people express concern that a potential privacy risk occurs with a standard
bookmark file. A request for a standard graphic like favicon.ico can be filtered from
a log file and used to indicate that the user has bookmarked the page.

One important consideration with bookmarking is making sure to deal with
dynamic data. For example, you may have a special URL where you store the latest
press release (http://www.democompany.com/latestnews). After a particular item is
no longer the latest item, it is moved to an archive and replaced by a new item. Imagine
a user’s frustration if the user bookmarks a particular piece of content only to have it
change—which leads us to a brief discussion on navigation practices to avoid.

Navigation No-No’s
Before concluding this chapter, let’s take a look at a brief list of navigational no-no’s,
some of which we have touched on already. None of these problems will necessarily
completely ruin a site’s navigation, but all can frustrate the user greatly.

Back-Button Hijacking
The user’s favorite browser button, particularly the novice user’s, is the Back button.
Unfortunately, some sites turn this off through the use of redirection. Be careful in
making special pages that just redirect a user to another page instantly. Often, this is
done to sense for a particular browser using JavaScript. It is much wiser instead to

C h a p t e r 7 : N a v i g a t i o n T h e o r y 217
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

218 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

sense the browser on the server side and build the page to fit. With this model, the user
will be able to back out of the page as if it were a regular page.

Link Color Tricks
Modifying link colors so users don’t know where they have been can be very confusing,
as can suggesting to users that they have been to certain places by setting a link color to
appear as though it had been clicked. Changing the link color away from the common
blue/red/purple scheme might be acceptable, but avoid doing so if you can.

Heavy Use of Pop-Up Windows
Many sites have begun to spawn windows as users begin to leave a site. Often, these
windows contain advertisements for other sites or attempt somehow to keep the user
from leaving. Very unscrupulous designers might even attempt to override the user
and send them back to the site they are trying to leave. Don’t beg. Just let users go if
they want to.

Unique Navigation
Users navigate the Web all day, and they don’t have a great deal of patience for sites
that deviate too much from the norm. Some designers bemoan the rise of navigation
sameness that results when people utilize existing conventions. They argue that site
navigation has begun to look so similar that users can’t tell the difference between
sites and that there is little room for creative flexibility. However, the consistency
of site navigation plays to usability. Users have come to understand designs like
Amazon or Yahoo!. Why deviate too far from such designs when you can reap the
benefit of previous user experience? People know how these sites work, just as they
understand basic Web conventions such as blue as a link color and standard GUI
conventions. Further, consider that most word processors and spreadsheets work the
same, so why shouldn’t most e-commerce sites follow suit? Remember, you aren’t
selling navigation to the user!

Heavily Branded Buttons
Overemphasis on navigation elements over content is often due to the designer’s attempt
to “brand with the buttons” and make the navigation be the design. The idea here is
to attempt to build brand through a visually distinctive navigation look. A distinctive-
looking button may be memorable to a user, but the odds are against it. Consider the
last time you really sat and admired buttons in an elevator. Well, maybe as a designer
you might, but ask the person in the elevator with you what they think and they may
consider you a little odd. Again, remember that users use navigation only to accomplish
a task they have set out to perform.

Reliance on Back Button
If you rely primarily on the Back button for navigation—particularly on content pages—
you may create an orphan page lacking outgoing links. If a user has followed a particular

C h a p t e r 7 : N a v i g a t i o n T h e o r y 219
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

path through the site, the Back button will work fine. However, users may not enter the
site the way you think. If the user bookmarks a page accessed from outside the site and
then returns another day—the Back button won’t get the user out.

Making Users Work Too Hard
Like it or not, people can be somewhat lazy and will generally prefer sites that don’t
require much effort to use. This becomes more and more important as the user
continues to use the site. The buttons should be placed obviously and be legible.
Don’t force the user to strain visually, mentally, or physically to use your navigation.
Users should not have to recall information about buttons to choose—they should
simply have to recognize the choices. Last, don’t make the user work physically to
move around the site. Navigation should always be as effortless as possible. Consider
checking the amount of mouse travel by focusing carefully on the distance between
subsequent choices.

Rule: Limit scrolling and mouse travel in navigation as much as possible.

Also, consider measuring the number of clicks it takes to reach a destination page.
We often consider three to be the maximum number of clicks, but you should not focus
solely on clicks. It may be more the page-load time, often due to the network round-
trip time, that frustrates the user. Consider limiting your navigation depth to three
page loads.

Rule: Consider a maximum of three page loads before a result.

It is easy to build bad navigation, but it is sometimes hard for designers to detect
what is bad. The reason is that, as a designer, you are probably going to know how
to navigate your own site. Take to heart any complaints you receive from users about
site navigation problems. If you suspect a problem, conduct a quick site evaluation
focusing on navigation, as discussed in Appendix B.

Summary
In the real world, people take different approaches to navigation, depending on the
circumstance. For example, people act differently during a museum visit than during
a park visit, or a store visit, or when looking for a friend’s house. Depending on the
task at hand, the navigation techniques vary. Regardless of the site type, the goal of
navigation should be simply to help users find their way. Good navigation should help
a user answer location questions, such as “Where am I?” or “Where can I go?” or “How
do I get where I want to go?” or “Have I been here before?” or “How can I get back to
someplace I was?” The use of page labels, URLs, landmark pages, page style, and color
can help users identify location. Navigation elements can be added to help users make
choices about future destinations.

The placement and stability of navigation items should be well thought out.
While advanced techniques such as hidden menus, frames, and remotes can address
some problems, they may also introduce problems that should be considered before
implementation. Last, always remember that navigation is a means to an end, not
the end itself. Generally, users are not going to marvel at the beauty of your navigation
system; in fact, they will probably consider your site a small stop on a much larger
journey they are taking on the Web. Sites should not focus on bringing undue attention
to their navigation. In fact, if the user notices it too much, we are probably not doing a
good job. The next chapters discuss the actual use of various navigational elements,
such as links, search engines, and navigational aids such as site maps.

220 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Chapter 8
Basic Navigation
Practices

221

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Now that we have covered basic navigation principles, it is time to examine how
to correctly build navigation systems in Web sites. Starting with basic links,
we will survey the use and styles of links in sites—including text links, buttons,

icons, and image maps. We will also look at the use of more complex navigational
devices, such as menu systems, frames, and external windows. Such related topics as
search systems, system maps, and indexes will be presented in following chapters.
Details and best practices for navigation are examined throughout, with a focus on
managing user expectations and helping users find their way to desired content.

Link Types
The core of Web-based navigation is the hypertext link. The Web’s linking model is
relatively simple, as links are traditionally unidirectional and, in the absence of special
programming, will cause a single page to load. Yet even with such simple links, we can
categorize links used in Web sites in a variety of ways.

The most common way to categorize links is by the address or URL of the document
to load. Internal links connect to another page or URL within a site. Internal links would
also include intrapage links. These are links that jump a user around a single file. An
example of an intrapage link is the “back to top” link that is frequently found in lengthy
pages. An external link points to a page outside the current site.

Another way to categorize links is by how predictable they are. For example, links
within a navigation bar tend to be fairly consistent in position, style, and even destination
from page to page. We could call these links structured links, because their use often aligns
very closely with the hierarchical structure common to most Web sites. Structured links
are beneficial to users who are on a planned mission to find something or accomplish a
particular task.

Unstructured links, on the other hand, are those that may appear somewhat random
to the user. For example, contextual links within the body of text could be considered
unstructured links. If I were suddenly to suggest in the middle of a sentence that you
see the Robot Butler at http://www.democompany.com/products/butler.htm (as
indeed I just did), you’d get a firsthand example of how baffling an unstructured link
might appear to a user who encounters one on a Web page. Why, exactly, did I give
you a link to the Robot Butler then and there, inviting you to drop the thread of my
argument entirely? Unstructured links do not necessarily follow the structure of a Web
site and may jump across a site structure or outside a site at any time. However, do not
assume that unstructured links should never be used. On the contrary: a site with only
consistent navigation links will feel stale. Consider adding a few contextual jumps and
“exploration” links to your pages—primarily to important words and phrases within
the body of text. These tangential links might just encourage a visitor to stay and look
around. Not everyone is going to be on a precise mission; letting people wander a bit
can be useful.

222 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Occasionally provide some unstructured links within document text
to promote exploration and thinking.

Be careful with unstructured links, however; as discussed in the previous chapter,
logical navigation within a site is central to its usability. Links that appear random to
the visitor may confuse users, as will too many cross-links.

Another way to categorize links on a Web site is in terms of how they are created. Are
the links permanently pointing to the same content, or are the links created dynamically
based upon content? We call these two link types static links and dynamic links.

Definition: A static link is one where the destination file is hard-coded into the
anchor by the document author.

Most Web sites use predominantly static links. A dynamic link that could change
based upon environment, time, or condition is usually best suited to interactive Web
sites. For example, a dynamic link might link to a site of the day or something that
changes all the time. A simple example of a dynamic link would be a link labeled “You
might also like” in an e-commerce site that takes users to a page or destination based
upon buying habits, sales promotions, and so on.

Definition: A dynamic link does not have a fixed destination. Instead,
the destination document is computed at page view time according to the
environment and needs of the viewer.

Dynamic links offer two significant advantages over static links. First, dynamic
links react to user conditions, so they may present different destinations based upon
user skill, browser capabilities, user preference, or other environment conditions.
Second, dynamic links provide the potential for improved maintenance. A common
problem with Web sites is an excess of broken links. A site where links are dynamically
determined could avoid this problem, since links can be automatically recalculated as
pages are added or removed. As discussed later in this chapter, dynamic links could
remove the major burden Web designers face in maintaining sites.

A Taxonomy of Link Forms
Given the basic types of links, their execution can come in many forms, ranging from
basic HTML text links to complex images with irregularly shaped hotspots (called
image maps). Each form of link has its uses and will be examined in turn. Designers are
strongly cautioned to make linked content obvious. Remember: running a mouse all
over the screen in an attempt to find the active click regions is a tedious and frustrating
task for users. After each form of link is discussed, the techniques for ensuring usable
links will be presented.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 223
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

TE
AM
FL
Y

Team-Fly®

224 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Text Links
The most basic form of link in a Web page is the text link, specified by plain text within
an <a> tag, as shown here:

Visit Demo Company --

Makers of the Robot Butler

These forms of links are very versatile; they are used both for primary navigation
links and as contextual links within large amounts of textual material.

A common position for text links within a site is at the bottom of a page. These
backup links are often used to mimic the links on top of a page or to provide alternative
link forms in place of heavy graphical links such as image maps. Many advanced users
instinctively scroll down to the bottom of slow-loading, graphics-laden pages, looking
for text links to use instead.

Suggestion: Always provide textual links at the bottom of pages when using long
pages or pages with graphical buttons.

Examples of all the previously discussed text link forms are shown in Figure 8-1.
Text links are very useful because their download time is minimal and it is easy

to update them or even make them completely dynamic. The major downside to text
links is that they are often difficult to spot, particularly when designers change link
feedback, such as color or underlining (discussed later in the chapter). While fixed
navigation links may be relatively easy to spot, text links buried within content will
become nearly invisible when link decoration is modified dramatically.

Graphic Text Links
Because text links are rather basic looking and may not support the marketing goals
of Web sites, some designers opt to use graphic text links. Up until the release of
4.0-generation browsers, the only way to accurately control text appearance on the Web
was to use graphics. For significant navigation links, designers would often create
graphical text buttons.

To ensure that these graphic text items appear pressable, designers often choose a
different font for the text buttons, change their color, increase their size, set the text
away from other content, or use an effect such as a drop shadow. Figure 8-2 shows a
variety of text treatments used to make graphic text buttons.

A major downside of graphic text buttons is that, even when optimized, they can
result in significant download times, particularly when combined with rollover states.
No matter how much optimization is employed, the word “About” in plain text will
always use fewer bytes than a GIF image containing the same word. Further, image
buttons may limit accessibility in many cases. Without alternative text, they cannot

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 225
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

be translated to nonvisual environments; even within a graphics environment, they
may not change to fit the resolution of the viewing environment. With the rise of style
sheets, graphically styled text should eventually become unnecessary.

Buttons
Stylizing a link to make it look like a button is a good way to improve the usability of
site links. It is possible to make custom buttons with graphics or utilize HTML form
buttons. For example, putting a stroke around a button and giving it some relief is
an easy way to make a region look pressable. There are a variety of button styles that
can be employed, as shown in Figure 8-3.

Figure 8-1. Text links examples

Text Links

226 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 8-2. Graphic text button examples

Figure 8-3. Examples of button styles

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Icons
An icon is a small picture used onscreen to represent some action or content. Icons can
be used alone or with words. By themselves, icons can save space. A very visual icon
can often say more in a few pixels than even a few words can. Consider the following
icons and their equivalent words.

An icon can easily become as decipherable as ancient Egyptian hieroglyphics.
Consider the meaning of the following common Windows system icons.

Icons Without
Labels Match with Meaning

Internet options World time

Add/Remove programs Tools

Regional settings Directory assistance

ODBC data sources (32 bit)

Without labels, it is very difficult to decipher the meanings of icons unless the idea
is very simple. Without their associated text labels, it is somewhat difficult to understand
some icons. The icon of the earth may be well understood, but its meaning within the
context of a page might vary from a button that accesses some multinational corpora-
tion’s global home page to a link about geography. A label brings clarity to the meaning
of an icon. Consider the same icons now with their labels. They are far easier to deal with.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 227

228 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Unfortunately, with their labels showing, icons lose their space advantage. By using
the title attribute like so,

it is possible to hide icon labels until a user puts the pointer over the icon.

While tool tips improve icon usability, site designers should try to show labels
wherever possible to avoid users having to hold their mouse over an icon to determine
what it means.

Regardless of label usage, icons may retain some advantages over text links. Icons
are often easier for users to recognize than words. Even when icons are difficult for
people to decipher, people may still be able to recall their meaning over time more
easily than words. Think how people often remember faces but not names. (This issue
relates to the discussion of recognition and recall and visual memory in Chapter 2.)
Consider the Paste icon common to many desktop applications:

Does the clipboard really say “paste,” when you think about it? Can you even
tell this is a clipboard at such a small size? Over time, it may not matter what icons
represent—users simply know that when they press the picture of the magnifying
glass over the paper, they get a print preview. In this sense, many common desktop
icons have become somewhat idiomatic for the user. As the Web grows, some icons
will certainly become commonplace and their meaning fairly well understood. Most of
these icons will probably owe some heritage to desktop applications, but some may be
new. Table 8-1 presents a few common icons used on the Web and their typical meanings.

The particular style for the icon is inconsequential. Consider the shape to be the primary
focus of the icon.

Be careful not to fall into the trap of assuming that icons make it possible to provide
perfectly transparent site navigation without having the user actually need to read
anything. While it may be true that users don’t have to be able to read to decipher an
icon, consider what happens next. If an illiterate user or non-native speaker can decipher
an icon’s meaning, they still will typically end up at content that they may not be able to
consume because of their language skills. In summary, don’t think that use of icons will
solve all localization issues.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 229
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Task Icon

Email / Contact

Print

Post (message to discussion board)

Download or save

Access shopping cart

Edit

Delete

Close

Attach

Navigation Icon

Home

Back

Forward

Table 8-1. Common Icons Found on Web Sites

230 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Navigation Icon (continued)

Scroll Up

Scroll Down

New Window

Help

Search

External link

Content Icon

Audio

Video

Picture blowup

Acrobat file

New information

Table 8-1. Common Icons Found on Web Sites (continued)

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 231
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Image Maps
Many visual Web interfaces use image maps or large images with clickable regions called
hotspots. Image maps are very popular because they allow designers to make arbitrary
click shapes. In the case of buttons or icons, the clicking region is square or rectangular.
With an image map, rectangles, circles, and arbitrary polygon shapes are possible.

Image maps as defined in HTML come in two forms: client-side and server-side.
Server-side image maps are defined by the inclusion of the ismap attribute and a link
to a map file on a remote server, as illustrated by this simple example:

The map file would contain coordinates indicating the hotspots as well as the URL
to fetch when a particular hotspot is selected. A sample map file might look like this:

rect rectangle.htm 6,50 140,143

circle circle.htm 195,100 144,86

poly polygon.htm 256,120 306,52 333,58 336,0 386,

73 372,119 322,172 256,120 256,119 256,119 258,118

default defaultreg.htm

The problem with server-side image maps is twofold. First, decoding where a user
should go based on where they clicked requires a visit to the server, where the server
interprets the map file. The network round-trip could slow the user down. Second, as
the user mouses over the various parts of the image, coordinates—rather than a URL—
are shown in the status bar.

Coordinates of the pointer position are less than ideal feedback for users who
often consult the URL for information about link destination. Fortunately, server-side
image maps are primarily a thing of the past. All modern browsers support client-
side image maps. A client-side image is defined using the usemap attribute for the
 element. The usemap is set to reference a <map> element somewhere else in

the file that indicates the hotspots in the image. The following simple example
illustrates the HTML markup required for a basic client-side image map:

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Client-side Image map</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"

/>

</head>

<body>

<h1 align="center">Client-side Image map Test</h1>

<div align="center">

<img src="shapes.gif" usemap="#shapes" alt="shapes test"

border="0" width="400" height="200" />

</div>

<map name="shapes" id="shapes">

<area shape="rect" coords="6,50,140,143"

href="rectangle.htm" alt="Rectangle" />

<area shape="circle" coords="195,100,50"

href="circle.htm" alt="Circle" />

<area shape="poly"

coords="255,122,306,53,334,62,338,0,388,

77,374,116,323,171,255,122"

href="polygon.htm" alt="Polygon" />

<area shape="default" href="defaultreg.htm" />

</map>

</body>

</html>

Despite the daunting markup involved in specifying active regions in an image,
creating an image map doesn’t have to be difficult. A variety of image-mapping tools
exist for creating maps. Popular editors such as Macromedia’s Dreamweaver provide
tools for simple editing of image maps, as shown in Figure 8-4.

Before defining an image map, make sure you are not going to modify the image.
If you resize an image or move things around, the hotspots will not be adjusted and
may not relate. Making an image map is generally the last part of a layout.

232 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 233
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

The primary benefit of image maps is that they allow irregular hotspots, which can be
used to create interesting interfaces, such as the one shown in Figure 8-5. In this example,
rolling over the various parts on the robot reveals information about its features.

A secondary benefit of image maps is that they may reduce the number of requests to
a server. Designers will often cut up menu bars into multiple images, particularly when
trying to create rollover images. Always remember that file size isn’t everything; with a
page laden with many small changes, the increased number of connections to a server
may slow page loading significantly. Because a single image map may include many
hotspots, a large navigation bar with multiple image requests can be reduced to a single
request—although the resulting image map may be quite large.

The main problem with image maps is that they tend to encourage very lush layouts
that may result in significant download time. Further, image maps tend to be less
accessible than standard link forms, particularly for nonvisual-rendering environments.

Figure 8-4. Drawing an image map using Dreamweaver

Map tools used to set hotspots

TE
AM
FL
Y

Team-Fly®

Therefore, designers are always encouraged to provide secondary navigation links for
image maps, as shown in Figure 8-6.

Suggestion: When using image maps, always provide a secondary navigation
form, such as text links.

Other Link Forms
Besides text links, buttons, and image maps, there are many other objects that can
trigger a page load or action. The most common are a special form of advertising
button called a banner ad and modified form elements. However, with HTML 4.0
and XHTML, it is possible to make anything trigger a page load.

234 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 8-5. Interactive interface using an image map

Rollover
reveals
scope note

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 235
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Banners
Given the commercial nature of many Web sites, banner ads are a common occurrence.
Banner ads come in many sizes and are often animated. Clicking the ad will generally
take the user to the advertiser’s site. The effectiveness of the advertisement is often
measured by its click-through rate, meaning the percentage of people who see the ad
who actually click it. Unfortunately, over the years, the click-through rate for banners
has plummeted. Some experts attribute this to a phenomenon dubbed “banner blindness.”
Basically, banner blindness suggests that users have become so accustomed to the size,
shape, and placement of banners that they can easily ignore them. Here we see sensory
adaptation at work. Because of this trend, advertisers have adopted a variety of new
shapes and sizes. The Internet Advertising Bureau (http://www.iab.net) specifies the
standard banner sizes shown in Figure 8-7.

Banner forms other than those shown in Figure 8-7 may be available, depending
on the site. Further, the size of the banner in kilobytes and the possibility for animation
may vary from site to site. For example, one banner network had a limit of 10KB for

Figure 8-6. Text links provide an image map alternative

Hotspots

Backup links

banner ads and seven seconds of animation without looping. Make sure to check the
specifications of your banner network before creating banners.

Even if you are not interested in designing or hosting advertisements, you should
be aware of these standards. If a user thinks something is a banner, it will be treated as
such. Designers are warned to avoid making non-advertising links in a similar style
as banner ads.

236 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 8-7. Common banner sizes

Full banner

Full banner with vertical
navigation bar

Half banner

Vertical banner

Button 1 Button 2

Micro bar (88 × 31)

SkyscraperWide skyscraper

Square button

Avoid making your buttons similar in size or style to banner advertisements.

Regardless of your particular take on the usefulness of banners, they are a common
link form and it is important to understand their conventions.

Using GUI Widgets for Link Triggering
Many sites have come to rely on using various form widgets for navigation in a site.
Probably the most common form element used to trigger links is the pull-down menu.
Many sites utilize a menu as a quick-jump facility to move from page to page, as
shown here.

The markup and JavaScript presented below illustrates how a pull-down could be
used to create a simple portal selection menu:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Menu Redirection</title>

<script type="text/javascript">

<!--

function redirect(menu)

{

var selected = menu.selectedIndex;

var destination = menu.options[selected].value;

if (destination.length > 0)

window.location = destination;

}

//-->

</script>

</head>

<body>

<form action="redirection.cgi">

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 237
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

238 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<select onchange="redirect(this)">

<option value="" selected>Select your destination</option>

<option value="">- - - - - - - - - - - - - - - - - - -</option>

<option value="http://www.yahoo.com">Yahoo!</option>

<option value="http://www.google.com">Google</option>

<option value="http://www.msn.com">MSN</option>

<option value="http://www.altavista.com">Alta Vista</option>

</select>

<noscript>

<input type="submit" value="go" />

</noscript>

</form>

</body>

</html>

Weblink: See this and other code online at http://www.webdesignref.com/.

To utilize this navigation device, simply copy the code, substitute the value attribute
for each <option> tag for your destination URL, and label the <option> appropriately.
For menu choices that don’t go anywhere, make sure to provide a blank value.

Before using pull-downs in a site, consider two issues. First, notice that the script
relies on JavaScript. In many versions of this code, if the script isn’t on, the onchange
attribute is ignored and thus the menu doesn’t work. The code in the previous example
instead puts in a submit button when script is off and sets the form action attribute to a
CGI program called redirection.cgi, which could be written to do the same things as the
short JavaScript. Site designers are encouraged either to avoid adding a pull-down if
JavaScript is disabled or to provide a backup CGI program.

While the pull-down has become commonplace and appears to be fairly well
understood by users, the use of other form elements for navigation purposes should
be avoided. In particular, neither radio buttons nor check boxes should ever be used
in this manner.

Menus
While it is easy enough to provide simple graphical button palettes that look like
menus, traditionally, a page reload was required to expand menu choices. Simple
GUI menus using the <select> tag improved upon that; and by using Flash or JavaScript
in conjunction with CSS, it is possible to create sophisticated navigation bars. It is even
possible to create cascading menus to allow for deep navigation into a site. A navigation
menu in use is shown in Figure 8-8.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 239
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

The form of the menu is arbitrary and may include standard GUI-style menus,
pop-up menus, outline style menus, or even tree controls. A few examples are shown
in Figure 8-9.

Given the amount of JavaScript logic necessary to make complex menus work in
most browsers, we avoid its presentation here and direct readers to the book’s support
site (http://www.webdesignref.com) for help. However, be aware that serious browser
compatibility problems may result from using complex menus, so proceed with caution.

Figure 8-8. Custom navigation menu

240 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 8-9. Other navigation menus

Hotspots Everywhere?
Finally, with the introduction of HTML 4 and XHTML, it is now possible to make
nearly every HTML element clickable using the onclick core event handler and
attaching it to JavaScript. For example, try the following HTML markup with a small
JavaScript attached to the onclick attribute:

<p onclick="window.location='http://www.yahoo.com';">

Is this a link? Maybe or maybe not.</p>

If you are using a standards-compliant browser (Internet Explorer 4+ or Netscape
6+), clicking the paragraph will actually load a new page. However, if your scripting
support is off or you are using an older browser, nothing will happen. Regardless of
browser support, the potential for problems should be obvious. With the ability to
make anything clickable, the possibility of confusing the user becomes great. The next
section deals with how to ensure it is obvious what is clickable in a page and what is not.

Usable Links
No matter what link form or combination of link forms a site employs, when it comes
to the actual implementation of links on a site, certain interface design considerations
will always apply: Links should enhance rather than detract from a site’s overall
usability. They should provide adequate feedback to the user about what they signify,
and they should be an adequately supported feature of the site rather than being left to
bear the entire burden of site navigation on their own. The next section addresses these
general implementation issues by taking up a series of specific topics that relate to
them: link usability; rollovers; user expectations; the use of scope notes; and, finally,
keyboard support for links.

Link Conventions
Like it or not, users expect links to be blue and underlined. Further, they expect buttons
to literally look pressable, which often means using hackneyed effects like bevels or
drop shadows. Unfortunately, some designers do not find these conventions conducive
to appealing layout and often just ignore them. Before deviating from such conventions
for some aesthetic reason, it is important to understand the usability of links. Always
remember that it won’t matter how good the site looks if the user can’t figure it out.

Link Colors
The default link colors on the Web are blue for non-visited links, red for links that are
being activated (pressed), and purple for visited links. It is also possible under the
CSS2 specification to modify the color of a link when a pointing device is hovering over

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 241
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

or about to select a link. There is no standard defined color for this, but it appears that
red is the most common color for the hover state.

Link colors can easily be overridden using HTML or CSS. Changing link colors in
HTML requires modifying attributes for the <body> element, while CSS relies on
pseudoclass rules for the <a> element. Table 8-2 shows the link types, colors, and
modification syntax.

Some consideration of the position of the CSS rules for link colors should be made.
The order of definition within a global or linked style sheet should be unvisited; visited;
hover; and, finally, active. Any other order may produce incorrect results, considering
that cascade will cause style rules to be potentially overriding.

Changing link colors significantly from their blue/red/purple settings is dangerous.
For better or worse, users have come to understand that blue is the color of links and
purple is the color of links they have already pressed. The differences in link color
are important because they show users where they have been. This is often called
breadcrumbing, in the spirit of the Hansel and Gretel story, where the children drop bread
crumbs to find their way out of the forest. Unfortunately, site designers occasionally
feel that it is useful to override breadcrumbing for marketing reasons. The idea might
be that if the user can’t tell they have been to a certain page before, they might be
encouraged to revisit. While it might seem a good idea at first to encourage multiple
page views, consider the frustration of a user going around in circles revisiting pages
they already saw before.

Rule: Never completely remove a visited-link indication.

242 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Link Type
Standard
Color HTML Tag CSS Pseudoclass Rule

Unvisited Blue <body link="colorvalue"> a:link {color: colorvalue;}

Visited Purple <body vlink="colorvalue"> a:visited {color: colorvalue;}

Hover N/A N/A a:hover {color: colorvalue;}

Active Red <body alink="colorvalue"> a:active {color: colorvalue;}

Table 8-2. Link Types and Colors

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 243
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Another reason for changing link colors might be for aesthetics. The blue or purple
color combination just might not fit with corporate colors. Of course, once changed, the
visited links may look better to some, but the end user might not recognize links or
know which links they have visited before.

Rule: Avoid changing link colors.

If link colors must be changed for some reason, always make sure there is a great
contrast between unvisited and visited links. Also, make sure that link colors contrast
enough with background colors to easily be seen. Poor color choices can make a site
difficult to use for most people and impossible for those with any vision impairment.
For a more in-depth discussion of color use on the Web, see Chapter 13.

Link Decoration
Under common browsers, links are often indicated not only by color but also by
underlining. The second form of feedback is useful particularly when users are not
sensitive to color changes. Therefore, designers should be sensitive to the use of
underlines in design. The HTML <u> tag and the CSS text-decoration property both
can be used to create underlines, like so:

<u>This looks like a link</u>

This also looks like a link

Unfortunately, this type of text can confuse a user who attempts to click it thinking that
it is a link, which inspires the following design rule:

Rule: Avoid underlining non-linked text in Web documents—use italics or
bold instead.

While underlining is useful to provide a second form of link feedback beyond color,
a page filled with underlined text often does not look terribly pleasing. Because of this,
many people opt to turn off link underlining in their browser preferences. Users who
do this should not be a primary concern, but they do provide an additional reason not
to alter link color significantly. However, with CSS, it is now possible for designers to
turn off text link decoration themselves with the text-decoration property, as shown by
the following rule:

a {text-decoration: none;}

TE
AM
FL
Y

Team-Fly®

Of course, this could make it very difficult for users to determine what is linked
text. Another form of feedback should be added to linked text, such as changing its
font family, size, style, or background color. For example, after turning underlines off,
linked text could be indicated by using slightly larger text, bold text, italic text, a varied
text style such as small caps, changing background colors, or even changing the font
family in use. Some designers believe that it will help to set the hover state like so:

a {text-decoration: none;}

a:hover {text-decoration: underline; color: red;}

However, it really doesn’t help. While links will change as users move around the
page, they will have to find what is hot and what is not.

As discussed in Chapter 12, when using text it is important to set up a clear type
hierarchy and provide enough of a difference between font size, style, and family for a
user to clearly distinguish differences. When the changes are subtle, the link text will
look too similar to the normal text and confuse the user.

Suggestion: Avoid automatically turning off link underlining. If you do, add
another link indicator form.

Link Feedback: Cursors
Often, browsers will indicate that something is a link or is pressable by changing the
cursor. In most GUI systems, the typical cursor is an arrow or pointer that changes to a
hand when something can be clicked or an I-beam when something can be typed into
(such as a form field). CSS2 introduced the ability to change the cursor for an element
using the cursor property.

For example, to set the cursor when a user moves over a tag to make it appear
pressable, you might use a style rule like the following:

<b style="cursor: hand">Can you press me?

CSS2 defines a variety of cursors, as shown in Table 8-3.

The common value hand is actually not CSS2 defined but is supported in
Internet Explorer.

The CSS3 specification proposes a variety of new cursor property values, as shown
in Table 8-4.

Typical renderings for CSS3 cursor values were not possible, since no browser supported
these values at the time of this edition’s writing.

244 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 245

CSS Cursor
Property Values Description

Typical
Rendering

auto The browser determines the cursor to display
based on the current context

N/A

crosshair A simple crosshair generally resembles a
plus symbol.

default The browser’s default cursor is generally
an arrow.

hand This displays the cursor as a hand (Not standard
but commonly supported).

move This indicates something is to be moved; usually
rendered as four arrows together.

e-resize This indicates resizing as a double arrow pointing
east–west (left–right).

ne-resize This indicates resizing as a double arrow pointing
northeast–southwest.

nw-resize This indicates resizing as a double arrow pointing
northwest-southeast.

n-resize This indicates resizing as a double arrow pointing
north–south.

se-resize This indicates resizing as a double arrow pointing
southeast–northwest.

sw-resize This indicates resizing as a double arrow pointing
southwest–northeast.

s-resize This indicates resizing as a double arrow pointing
north–south.

w-resize This indicates resizing as a double arrow pointing
west–east.

text This indicates text that may be selected or entered;
generally rendered as an I-bar.

wait This indicates that the page is busy; generally
rendered as an hourglass.

help This indicates that Help is available; the cursor is
generally rendered as an arrow and a question mark.

Table 8-3. CSS2 Cursors and Typical Renderings

246 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Custom Cursors
CSS2 defines the ability to define a custom cursor. On a Windows system, cursors
are defined using a .cur file, which is a 32 × 32 or smaller bitmap—generally with
16 colors. Cursors are also occasionally animated, and in such cases may have an .ani
file extension. According to the CSS2 specification, a browser should retrieve a cursor

CSS3 Cursor
Property Meaning

copy Indicates something is to be copied. Could be rendered as an
arrow with a small plus sign next to it.

alias Indicates an alias or shortcut to something. Often rendered
as an arrow with a small curved arrow next to it.

context menu This cursor shows a context menu, usually selected with a
secondary mouse button available for the object. Often
rendered as an arrow with a small menu graphic next to it.

cell Indicates that a cell or set of cells may be selected. Should be
rendered as a thick plus sign.

grab Indicates that the object could be grabbed. Should be
rendered as an open hand.

grabbing Indicates that the object has been grabbed. Should be
rendered as a closed hand.

spinning Indicates that the program is performing a task. Similar to
the wait property, but the user may still be able to interact
with the program. A variety of renderings, including a
spinning beach ball, are possible.

count-up Indicates that the system is performing a counting up
operation. Could be rendered as finger counting.

count-down Indicates that the program is performing a count down
operation. Like count up, could be rendered as fingers.

count-up-down Indicates that the program is alternately counting up and
then counting down.

Table 8-4. CSS3 Cursor Properties

file from a specified URL—similar to retrieving a font. The property takes a list of
cursor values separated by commas. So the CSS rule,

#specialcursor {cursor: url("robot.cur"),

url("robot.csr"), default;}

would specify to set the cursor to either robot.cur, robot.csr, or the default cursor when
the user’s mouse passes over the element whose id attribute is set to specialcursor.
Internet Explorer 6 supports custom cursors, as demonstrated here:

Comet Systems (http://www.cometsystems.com and http://www.cometzone.com)
supports both an ActiveX control as well as a Netscape plug-in that can provide
custom cursors for older browsers.

However, be aware that, as with changing link color, changing the cursor may
leave some users confused about the meaning of a pressable region.

Links and Ellipses
In graphical interfaces, ellipses (…) are often used to indicate that something more will
happen when a user selects a particular command—usually that more input is required.
However, this idea does not translate well to the Web. Consider that nearly all links have
something behind them, and the user expects this. Probably the only time you should use
ellipses is when the page will simply open another page that contains a large number of
choices and little content. Today, few sites use ellipses, except occasionally when using
teaser excerpts that lead to more information, as shown here.

Conventions may change, but for now ellipses should be avoided in most cases.

Suggestion: Avoid using ellipses in links, as they are generally redundant.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 247
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

248 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rollovers
A very common link feedback mechanism to show something is active is called the
rollover. A rollover link is a link that activates in some fashion, usually with a color or
shape change, when the user’s mouse is positioned over it. While the use of rollovers
is so common on the Web that they have become a cliché, they can be useful to provide
more feedback to a user, add a little spice to a page, and— in very well-done cases—
provide more information about a link’s purpose.

The simplest way to make a rollover link is to activate text links using the CSS2
a:hover pseudoclass in a <style> tag, as shown here:

<style type="text/css">

<!--

a:hover {color: #ff0000;}

-->

</style>

In this case, any text link will turn red when users place their mouse over the linked
text. Using a style sheet rule, it is possible to change the link to show a variety of
changes, such as text size or style. Designers are cautioned to avoid too dramatic of a
roll effect, as the browser may have to repaint the page in a very obvious way as the
user rolls on the link.

It is also possible to create basic text rollovers for graphical buttons using
JavaScript. These types of rollovers work basically in the following fashion.

1. Create a regular graphic button.

2. Next, create an activated version of the button about the same size.

3. Finally, add a JavaScript that swaps the normal image button for its activated
image when the user’s mouse passes over it and changes it back to the normal
state when the user passes off the button.

The JavaScript code is relatively simple to write, and requires only that the images be
loaded in first and that support for the JavaScript Image object be determined. The
following code illustrates the basic rollover:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Simple Rollover</title>

<script type="text/javascript">

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 249
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

<!--

/* Preload the images */

if (document.images)

{

abouton = new Image(85, 48);

abouton.src = "images/abouton.gif";

aboutoff = new Image(85, 48);

aboutoff.src = "images/about.gif";

}

function rollOn(imgName)

{

if (document.images)

document [imgName].src = eval(imgName + "on.src");

}

function rollOff(imgName)

{

if (document.images)

document [imgName].src = eval(imgName + "off.src");

}

// -->

</script>

</head>

<body>

<a href="about.htm"

onmouseover="rollOn('about')"

onmouseout="rollOff('about')">

<img src="images/about.gif" width="85" height="48"

border="0" alt="About" name="about" id="about" />

</body>

</html>

To use the code, simply add a new tag with proper height and width
attributes. Make sure to name your element. Then add the preloading code

to load the on state for the image. So, to add another button for a “products” button,
you would add

producton = new Image(85, 48);

producton.src = "images/producton.gif";

productoff = new Image(85, 48);

productoff.src = "images/product.gif";

in the preloading section of the JavaScript. Within the <body>, add another link to an
image, like this:

<a href="products.htm"

onmouseover="rollOn('products')"

onmouseout="rollOff('products')">

<img src="images/product.gif"

width="85" height="48" border="0" alt="Products"

name="products" id="products">

The script should work in Netscape 3.0 versions and beyond and Internet Explorer 4.0
versions and beyond. The only problem with using the script is making sure to name
the images properly. If you are not interested in adding this type of script by hand to
your document, many Web editors, including Macromedia Dreamweaver, support the
addition of such scripts, and it’s often just a matter of running a command like “Insert
Rollover Image” and selecting the appropriate image states. Figure 8-10 shows the
Dreamweaver dialog box using similar data from the previous example.

Graphic button states should be the same as text link states—unvisited, active,
visited, and the new state—hover. Despite this, many sites lack all the states for
their buttons. The main reason for this is that for graphical buttons, each extra state
causes more images to be downloaded. Because of this, consider the following
design suggestion:

Suggestion: Graphical buttons should have at a minimum an unselected
and a selected state. Mouseover states and active press states should be
considered optional.

When used properly, rollovers are useful because they further let the user know
that the object is active. Most of the time, rollovers are somewhat gimmicky—just
making text glow or a button change shape. However, in some situations, rollovers can

250 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 251
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

be used to let a user know what is about to load by revealing some descriptive text.
When used in this fashion, a rollover effect can actually make buttons more usable.

Understanding User Expectations
For users, possibly one of the most annoying aspects of using a Web site (beyond
slow-loading pages) is choosing a page and then not getting the information expected.
From a user’s perspective, each link represents a door, and the link label is supposed
to indicate what is beyond each door. When users aren’t sure what is behind a link,
they are forced to try the link—and potentially return back if it wasn’t what they were
looking for. At first, this might sound somewhat fun—almost like exploring, but after
a while it can become very frustrating.

Site designers should always strive to let the user know what they will see when
they press a link. When faced with a link, the user might ask the questions shown next.

Figure 8-10. Dreamweaver Rollover dialog box

252 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A few suggestions about how to deal with these questions are presented, along with
illustrated examples.

What kind of content does this link load?

Suggestion: Provide good labels indicating the form of the content.
Consider using icons to show content types.

Where will the link take me?

Suggestion: Make sure to indicate whether the link will jump them within
a page, within a site, or to an external site. Don’t hide the URL; the user may
deduce the answer from it.

Use up and down arrows for intrapage jumps.

Label external links as such or use an icon. Leave all other links alone so the
user assumes they are normal internal site links.

Will it mean a long download?

Suggestion: Indicate an external link by exposing the URL or using an icon.
Indicate file size if triggering a download.

Will it cost money?

Suggestion: Use an icon or symbols, or issue an Alert dialog before the link.

Is the linked content fresh?

Suggestion: Avoid changing visited link colors. Add the last modification date,
where necessary. Use a “New” icon.

Is the link going to take them to a secure or password-restricted area?

Is the content potentially offensive?

Suggestion: Use an alert, or warn with an obvious label.

The key to most of these questions is to label a link properly. While links themselves
sometimes have to be short—using the title attribute, a text rollover or extra scope
notes information can be provided to the user. The status bar also presents a place for
informing the user of a link’s destination. Each of these approaches will be discussed
in turn.

Using Scope Notes
One of the best ways to let users know about the meaning of a link, beyond good
labeling, is through the use of scope notes. Scope notes provide a description of what a
link means as well as other contextual information. Consider a link label like “About.”
We could add scope notes to clarify the meaning of the label, as shown here:

About

Information about Demo Company including corporate history,

press releases, and self congratulating biographies.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 253
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

TE
AM
FL
Y

Team-Fly®

Make sure to set your scope notes in a smaller font or a different style, so as not to
overwhelm the primary link.

It is possible to increase the benefits of scope notes by providing skip-ahead links
within the description text, like so:

About

Information about Demo Company including corporate history,

press releases, and self congratulating biographies.

The only major downside to scope notes is that they may clutter up a layout or take
focus away from important items on a page. In some sense, the scope notes are like
help information. They really are the most use to those who are looking for more
information. Because of the potential drawbacks, many designers decide to hide scope
notes and reveal them only when a user passes over or invokes a link.

In general, you should avoid putting skip-ahead links in scope notes that are
revealed. It is very annoying for a user to try to ensure their mouse does not make the
scope note disappear as the user moves to click the newly revealed link. So, if you are
including skip-ahead links in your rollovers, ensure that the scope note stays revealed
once users pass their mouse over it.

title Attribute
The simplest form of revealed scope note is the ToolTip information provided by the
title attribute. Set the title attribute for a link to any desired text, as shown here:

<a href="about.htm" title="Information about Demo Company including

corporate history, press releases, and self congratulating

biographies.">About

When the user holds his or her mouse over the link, the extra link information
should appear like so:

The link titles should provide more information about what the link will do,
but should not be so verbose as to be ignored. Try to make link titles short and
scannable—maybe 10 to 15 words, or around 60 to 80 characters maximum.

254 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Be careful with long link titles, as some older browsers will not wrap title information,
and scope information could be clipped.

When using graphical text buttons, there may be some question as to whether alt
or title attribute text will show. In a well-behaved browser, the alternative text defined
by alt is shown when images are loading or when the images are off, or while the
title is shown on mouseover. Of course, not all browsers may follow this specified
meaning, so you may consider making the title and alt attribute information the
same, if necessary.

Rollover Messages
It is possible using rollovers to reveal text or imagery someplace else on the screen as
the user mouses over a link. A script can be written to reveal a scope note as well as
change the state of the link, as shown in Figure 8-11.

Generally, designers are encouraged to use rollovers that reveal extra information;
but always remember that, like multiple state rollovers, rollover messages can be

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 255
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 8-11. Rollovers can reveal descriptive text

256 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

troublesome because they require numerous images. Fortunately, using style sheets,
lightweight rollover messages can be built.

Status Bar Messages
It is possible to show link results in the status bar at the bottom of the browser window.
Generally, a browser will display the destination URL in the status bar, but it is
possible to customize this using a short JavaScript to have a custom message when
a user passes his or her mouse over the link, as shown here.

A few sample links showing how to do this are given next; just change the string in
single quotes to the appropriate message:

<a href="http://www.democompany.com/"

onmouseover="window.status='Visit Demo Company, home of the

Robot Butler!'; return true;"

onMouseout="window.status='';return true;">Demo Company

<a href="http://www.yahoo.com/"

onmouseover="window.status='Have you been to Yahoo! today?';

return true;"

onmouseout="window.status='';return true;">Yahoo!

The onmouseover code must return a true value; otherwise, the status message will
not display.

Consider the potential downside to providing messages to the user in the status bar.
First, the user may not look in this location. Second, if the user does look here, they may
be expecting URL information in order to make a determination of link destination. Far
too often, the status information shown here repeats the basic text link information. This
could be particularly troublesome for outside links, where the user may want to know
the URL before they decide to click the link, or for links to other content forms. With
outside links, consider using a status message style, like the one shown here:

<a href="http://www.yahoo.com/"

onmouseover="window.status='Have you been to Yahoo! (www.yahoo.com)

today?'; return true;"

onmouseout="window.status='';return true;">Yahoo!

Suggestion: When using status bar messages, consider providing URL
information with the text when linking externally.

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

In many ways, providing status bar messages is redundant, because the same
information could be provided in a title attribute, as shown here:

<a href="http://www.yahoo.com/"

title="Have you been to Yahoo! (www.yahoo.com) today?">Yahoo!

In this particular example, the ToolTip will even show the destination URL directly
where the user’s mouse is focused, as well as in the user’s status bar. Of course, such
redundancy may become annoying to users. Probably the only real upside to the status
bar message is that it will work on older JavaScript-aware browsers that do not support
the title attribute.

Keyboard Support for Links
Designers should always strive to make sites usable and accessible by all. Remember
that some users may find the mouse difficult to use or prefer to use a keyboard. Links
should be easily invoked using keyboard commands. Most browsers support tabbing
of links, and some already support accelerator keys.

The HTML 4.0 specification adds the accesskey attribute to the <a> tag as well as
to various form elements. With this attribute, it is possible to set a key to invoke an
anchor without requiring a pointing device to select the link. The link is activated with
the combination of the accelerator key, usually ALT, and the key specified by the
attribute. Therefore,

Yahoo!

makes a link to Yahoo!, which can be activated by pressing ALT-Y under compliant
browsers like Internet Explorer 4.x and greater and Netscape 6.x and greater.

You may find that the primary browser window has to be selected before accelerator keys
become active.

While adding keyboard access to a Web page would seem a dramatic improvement,
HTML authors are cautioned to be aware of access key bindings in the browsing
environment. Assuming the major browsers support the accesskey attribute, page
authors would be cautioned to stay away from accelerators using the keys for the
common menus in browsers presented in Table 8-5.

One other problem with accelerator keys is how to show them in the page. Generally,
in software, the letter of the accelerator key is indicated by underlining. Of course, links
are generally underlined in browsers, so this approach is not feasible. It is possible with

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 257

258 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

style sheets to change link direction, so underlining the first letter is possible, but then
the user may be disoriented because they expect links to be fully underlined. Another
approach to indicating the accelerator key might be to set the access key letter of a text
link in bold or slightly larger size. Designers are encouraged to adopt whatever notation
becomes standard on Web pages.

It is possible to use the tabindex attribute of the <a> tag to define the order that
links will be tabbed through in a browser that supports keyboard navigation. The value
of tabindex is typically a positive number. A browser will tab through links with
increasing tabindex values, but will generally skip over those with negative values.
So, sets this link to be the first thing tabbed to.
If the tabindex attribute is undefined, the browser will tend to tab through links in
the order in which they are found within an HTML document.

Key Description

F File menu

E Edit menu

V View menu

N Navigation menu (Opera 6)

G Go menu (Netscape/Mozilla) Messaging menu (Opera 6)

B Bookmarks menu (Netscape/Mozilla only)

A Favorites menu (Internet Explorer Only)

T Tools or Tasks menu

M E-mail menu (Opera 6)

S Search menu (Netscape 6), News menu (Opera 6)

W Window menu (Netscape 7/Mozilla)

A Favorites menu (Internet Explorer Only)

H Help

Table 8-5. Browser Reserved Accelerator Keys

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 259
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Advanced Web Linking Models
Today, the Web exhibits a very simple linking model; however, that may change in the
future. HTML 4.0 introduces the <link> element, which can be used to define linking
relationships between documents. The most common way that the <link> element is
used is when associating a style sheet to a Web page, as shown in this example:

<link rel="stylesheet" href="corporate.css" />

A <link> element like this is found in the <head> of an HTML document.
It is possible, however, to specify any arbitrary relationship using the rel attributes.

For example, using <link>, we might define which document is likely to be clicked
next, like so:

<link rel="next" href="nextpage.htm" />

Some newer browsers, notably Mozilla, have begun to support <link> either
natively or through add-ons. However, until browsers support more link types, the
simple linking model will have to suffice.

Link Maintenance
Even when links are used correctly within a site and a user understands the meaning
of each link perfectly, links will require maintenance. One approach is not to let broken
links enter a site in the first place. A site that uses dynamic links can avoid broken links
because, as pages are added, all links are adjusted. However, most sites do not employ
dynamic links, so invariably, over time, content changes and internal links may break.
More commonly, links to external sites will break as other sites move their pages
without considering outside linkage.

Ferreting out the broken links within a site can be tedious, but doing so should be
a top priority. A broken link should be considered a serious problem. Users clicking
a broken link are on the road to nowhere, eventually to receive the now infamous “404
Not Found” message or something similar. Imagine if a menu on a software application
triggered a message saying “Sorry—spell check not found!” Such failures would not be
tolerated in software and should be considered as serious a problem in a site.

Rule: Broken links should be considered catastrophic failures.

Fortunately, identifying and fixing broken links isn’t terribly difficult. Armed with
a maintenance tool, finding broken links is a simple matter. However, if you have

external links within a site, even constant monitoring isn’t going to keep broken
links out of the site at all times. To account for the unforeseen broken link, consider
installing a custom 404 page. Then, put information such as a link to a site map or
a method to contact the site’s administrator in the custom error page. An example
custom 404 page is shown in Figure 8-12.

Installation of a custom 404 error page depends on the server being utilized and may
require special configuration.

Redirection Pages
Rather than show errors, many sites prefer to redirect users to new pages. If the content
at a URL has moved to a new location, it is best to install a page that points people to
the new page or even quickly redirects them there. Some site maintainers prefer to send
people directly to the new page while others will install a temporary page informing
visitors of the page change, like the one shown in Figure 8-13.

260 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 8-12. Custom 404 pages can fit with a site design

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 261
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Sending people directly to the new page may be seamless, but it does take some
control away from the user. For example, if the user requests a particular page on, say,
robotic dogs, and a redirect takes them to a different page, the user will become very
frustrated. Always make sure that the new page is related to the moved page.

Redirection and 404s
Some sites prefer to send users directly to the home page of the site if they request a
page that no longer exists. This is not a recommended approach, since it may confuse
users. Errors are inevitable, and users will make them. A goal of a site designer should
be to soften the blow and help users avoid making errors—not take control away from
them. Further, instant redirection for bad page requests will not encourage a site
maintainer to address the reason behind the errors.

Suggestion: Avoid automatic redirects for 404 errors.

Figure 8-13. “Page Moved” example

Maintaining site links can be a great deal of work. Custom error pages and
redirection pages can help, but Web managers will have to be ever vigilant in link
monitoring. Good Web sites should make sure to watch log files for referring sites.
Further, consider visiting a search engine and doing a reverse search. Specifically, search
for sites that link to yours and make sure they are up-to-date on any significant site
changes made. Making sure that other sites link to you correctly may be a great deal of
work, but it is all part of being a good Web citizen. Now that we have discussed basic
linking and its management fully, let’s turn to a wrinkle in Web navigation: frames.

Frames
The much-maligned frame can introduce trouble into site navigation, particularly if
not implemented correctly. While frames may reduce page refresh rates and provide
for complex navigation, they often have significant implementation difficulties. Also,
they fundamentally break the Web rule of a single URL being a single document. In
fact, in most framed environments, the URL will appear to stay the same. This can be
a serious problem when you consider that the user may use the URL to determine his
or her location.

Because the URL does not change in a framed environment, the user may find it
difficult to bookmark interior pages. This may be by design, but users generally feel
they should be able to bookmark a particular page rather than a framed parent. Even
advanced users who are able to open a framed page in a new window and bookmark
the deep URL will be annoyed that what they have bookmarked does not include
all the page elements, such as navigation.

Because the browser window is split, framed documents can be difficult to print. To
print a framed page, the user must know to click in the framed region before printing.
Many sites that use frames do not make the various regions of the frames obvious, so
the user may have problems knowing what region to click in order to print.

Last, many designers have found out the hard way that search engines do not
work well with frame designs and may not be able to index site contents or follow
links. Because of these limitations, some designers have abandoned frames altogether.
This is unfortunate, since it is possible to deal with most of the problems presented.
In fact, the real problem with frames is that they are difficult to implement properly,
particularly if you want to address all their shortcomings. When using frames, it is easy
to screw up your site.

While frames can be difficult for some users, people—both designers and users—
are becoming more used to frames, and common forms of frame have begun to appear.
Further, it is possible to get around many of the limitations of frames mentioned in
the preceding paragraphs, such as bookmarking and fixed URLs. Unfortunately, the
solution often comes at the loss of frame benefits, such as the decrease in screen
refreshes, or with an increased reliance on scripting. Improvement in Web browsers
will also solve some frame problems. Already, Internet Explorer provides much better

262 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

support for printing frames. However, despite all the potential advances in frame
technology, the main problem continues to be sloppy execution.

Using Frames
This section will discuss frame use as, well as some techniques to avoid problems.
However, for a full discussion of frame syntax, readers are directed to the companion
book, HTML: The Complete Reference. The first thing to consider is whether you even need
to use frames. Remember, frames are navigation devices, so you should only be using
them when you are trying to create regions such as control bars that load other portions
of the screen—not when you are attempting to create some sophisticated layout.

Suggestion: Avoid using frames for layout. Use them for navigation.

If it makes sense to use frames, stick to the styles shown in Figure 8-14. It is likely
that a user will have encountered one of these common styles; thus, many of the
negative effects of not knowing what will update when things are clicked will be
alleviated by plain experience.

The common feature of all these frame layouts is that the little regions control the
big regions. This makes sense, considering navigation should always be smaller than
the content presented. Also, the regions tend to control regions that are adjacent or
below them.

Suggestion: When using frames, make smaller frames control larger
adjacent frames.

Besides the two-, three-, and four-frame layouts, many designers opt for a fixed-
frame layout style similar to a picture frame, with the content fixed in the middle of the
screen. This is often done more for its dramatic layout than for navigation. Unfortunately,
despite its potential for a unique layout, such a design can be problematic—particularly
given subtle layout problems with frames under the various browsers. While future
browsers may solve such problems, do not underestimate the not-so-subtle frame-rendering
differences in browsers. In reality, frames should not be used for layout—CSS should be.

Printing Frames
The best suggestion with printing frames is to make a design obvious enough so a user
knows what region of the screen is in what frame. Users should be able to pick up on
the problem and click in the region when printing. It is also possible to add a print
button to a framed page.

Bookmarking Issues
Because frames show the URL of the frameset document and not the actual contents, it
is often difficult for the user to bookmark the page. First, consider that you may not
want people to bookmark some pages. Many complex e-commerce sites frame internal
pages on purpose because they are often dynamically generated and may have very
difficult URLs.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 263

TE
AM
FL
Y

Team-Fly®

264 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 8-14. Common frame designs

2 Frame

Navigation frame

Content frame

3 Frame
Identity frame

Navigation frame

Content frame

3 Frame
Primary navigation
frame with identity

Secondary
navigation frame

Content frame

Identity frame

Navigation frame

Content frame

This design tends
to focus more on
content with a
full-width screen

Content frame

Navigation frame

Navigation frame

Identity frame
4 Frame

3 Frame

However, users often will try to bookmark a framed page and the browser will not
show the correct page. For example, as shown in Figure 8-15, when users bookmark the
page on the left, leave, and then return, they see the initial frameset on the right. Notice
how the URL is the same in both the screens.

Fortunately, some of the newer browsers like Internet Explorer are able to deal with
frame bookmarking problems and will not exhibit this problem. Of course, a more
sophisticated user will figure out how to bookmark just the framed page. Unfortunately,
they will find that they lose any contextual information, such as navigation, when they
return, and that they have inadvertently created an orphan page where the user is unable
to navigate without splicing the URL, as shown in Figure 8-16.

There are two approaches to get around the frame bookmark problem. The first is to
create multiple framesets, each with a different URL that is bookmarkable. The problem
with this approach is that you lose the reduced screen refresh benefit of frames and you
are forced to create multiple documents. A better approach to the bookmarking problem
is to use a scripting language to detect whether if the user is entering in an unframed
page and dynamically rebuild the appropriate frameset, if necessary. For example, if
you define your frameset for a section of the site with the file frameset.htm, you can use
JavaScript to see if a page is within a frameset defined by that file. If it isn’t, you can then

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N
C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 265

Figure 8-15. Bookmarking framesets may be difficult

Notice URLs remain the same for
diffferent pages in a framed site.

266 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

set the location to be the initial frameset document. The script here shows how this might
be done. Just place it within the <head> tag of all the framed documents.

<script type="text/javascript">

<!--

var containingwindow =

top.location.pathname.substring((top.location.pathname.lastIndexOf("/"))+1).

toLowerCase();

if (containingwindow!="frameset.htm")

top.location.replace("frameset.htm");

//-->

</script>

Figure 8-16. Bookmarking frame contents will create virtual orphans

This script will not work if the user has gone deep into a frameset, since the
regenerated frameset will point to the initial document in the frameset. What we would
have to do instead is dynamically generate the frameset itself, based on the page that
was not within its frames. The following files illustrate how this is done. Make sure
that you run this example from a live Web server. If you don’t, it generally won’t work
because the URL will not be formed normally.

File: frameset.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Dynamic Frames Demo</title>

</head>

<script>

<!--

function getPage()

{

return unescape(window.location.search.substring(window.location.search.

indexOf("=")+1));

}

document.write('<frameset cols="100,*">');

document.write('<frame src="controls.htm" name="controls">');

if (window.location.search=="")

document.write('<frame name="display" src="page1.htm">');

else

document.write('<frame name="display" src="'+getPage()+' ">');

document.write("</frameset>");

// -->

</script>

</html>

File: controls.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Control Frame</title>

</head>

<body>

Page 1

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 267
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

268 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Page 2

Page 3

</body>

</html>

File: Page1.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Page 1</title>

<script>

<!--

var container = "frameset.htm";

var wname = top.location.pathname.substring((top.location.pathname.

lastIndexOf("/"))+1).toLowerCase();

if (wname!=container)

parent.location.replace(container +

"?display="+escape(this.location));

// -->

</script>

</head>

<body>

<h1 align="center">Page 1</h1>

</body>

</html>

The other files, page2.htm and page3.htm, are exactly the same as page1.htm.
Just change their titles and headings so you can tell the difference. The key to this
demonstration is bookmarking an individual framed page. Select a framed page like
page1.htm and directly bookmark it. Now, when you return to the page, it should
automatically generate the surrounding frameset, so the page is not orphaned. The
only downside to this technique, which can also be accomplished using a server-side
technology, is that it causes an extra round-trip to the server to rebuild the frameset.

Weblink: For a live example of the dynamic frameset, see the examples at
http://www.webdesignref.com/.

Layout Issues
When using frames for layout or for navigation, it is important not to be too restrictive.
Many designers turn off frame borders, turn off scrolling for all frames except the

content frame, and restrict resizing of the frames by the user. While doing all this
may create a nice-looking layout, consider what happens for a user whose screen isn’t
large enough to hold the frameset in its entirety. If you are not using screen resolution
sensing, you should be careful when turning off frame resizing and scrolling. About
the only time you should do this is when you set the size of a navigation frame exactly
equal to the minimum size of its buttons.

Suggestion: Do not turn off frame resizing and scrolling unless resolution is
very well accounted for.

Frame borders are another issue. Keeping the borders on a framed environment
may make it more obvious where the frames are, but could result in a less than optimal
layout, as shown by the examples in Figure 8-17. However, if the user will have to
resize frames, it is a good idea to keep the frame’s borders on.

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 269
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 8-17. Frame borders can be ugly

Frame borders
break up layout
though regions
are clear

270 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Frame Busting
A common problem with frames occurs when a frameset starts to appear within an
existing frameset. Sometimes this is done on purpose by outside sites trying to capture
the user. Other times, it is simply a mistake, and the frames begin to appear within
themselves. This developer’s mistake could be dubbed the “Russian dolls problem,”
after the famous Russian dolls that contain smaller and smaller identical dolls, as
shown in Figure 8-18.

While you can clearly deal with the problem when caused by designer error, you
might wonder how to keep users from framing your site. A simple way if you are not
using frames in your own site is just to write your HTML to make sure that every link
in your site has its target attribute set to _top, as shown here:

Robots

Figure 8-18. Frames within frames

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 271
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

With this approach, any time a user is within a frameset, the next link loaded
will load over the top of the existing frameset. This technique is often called “frame
busting.” Another approach is to use a short JavaScript to detect whether the page is
framed and then bust out of the frames. This could be used even within a frameset
document of your own, so you can use frames in your own site safely.

<script type="text/javascript">

<!--

if (window != top)

top.location.href = location.href;

//-->

</script>

However, be careful with frame busting. While it may be true that the extra real
estate gained will improve the layout, the user may want the framed environment.
Consider that maybe the user was just taking a side trip to your site and wanted to
keep the other site’s navigation around in order to return easily to the old site. Again,
the control issue rears its head. You could certainly write the script to check with the
user whether or not they want to kill the frames, but this may annoy the user.

<script type="text/javascript">

<!--

if (window != top)

if (confirm("Remove framing document?"))

top.location.href = location.href;

//-->

</script>

<noframes>
A potentially serious problem with frames is that not all browsers support frames.
Very old browsers, such as early versions of Netscape or Mosaic, as well as browsers
found on network appliances or handheld devices, generally have limitations
associated with frame pages. Further, many search engines will not index sites with
frames. This could severely limit the site’s ability to be listed with public search
engines, as discussed in Chapter 9. If frames are used, make sure that at least some
content is presented using the <noframes> tag within a frameset document. Users
without frame support, as well as search engines, will be able to see this content, while
typical users will see the framed site, as illustrated in Figure 8-19.

Of course, dealing with both frame-supporting browsers and browsers that don’t
support frames may mean creating two versions of every page. Though this can be done
dynamically, it may be expensive. However, before simply creating a <noframes> page
that tells users to upgrade their browser, consider that the numerous users who seem to
dislike frames with a serious passion might appreciate an unframed site.

Multiple Windows and Navigation
Using multiple windows onscreen can introduce some interesting navigation
considerations. For example, consider the following link, which spawns
another window:

<a href="http://www.yahoo.com"

onclick="newWindow=window.open('http://www.yahoo.com', 'subWindow1',

'height=200,width=300');return false;">Open Yahoo window

In the case where JavaScript is on, you will get a pop-up window like the one shown
in Figure 8-20.

Pop-ups can be useful for displaying status information, picture blow-ups, and a
variety of other useful items. It is even possible for multiple spawned windows to
load content into each other, as shown in Figure 8-21. In this case, we see that multiple
windows really are the same thing as frames; they even use the target attribute on
links. The only major difference is that bookmarking and printing might not be quite
as difficult.

272 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 8-19. Users who don’t support frames see a much different site

C h a p t e r 8 : B a s i c N a v i g a t i o n P r a c t i c e s 273
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 8-20. Spawned window example

Figure 8-21. Windows may control each other

TE
AM
FL
Y

Team-Fly®

The main issue to resolve is the role of extra windows in the flow of navigation.
When designed correctly, a pop-up window must be dismissed and will have no
further navigation options. However, it is possible that the spawned window may
allow for more navigation or may even include history; in either case, navigation
may become confusing.

Suggestion: Do not allow further navigation in spawned windows if at
all possible.

Beyond navigation considerations, spawned windows may also be frustrating
for users and should be avoided in most cases.

Summary
Making sure that users understand site navigation, particularly what the various
links do, is an integral part of developing a usable site. There are many ways to add
navigational links in a Web site, including text links, buttons, image maps, and even
arbitrary hotspots. Designers should respect common link conventions such as color,
underlining, and URL feedback. However, it is possible to change link styles in an
aesthetically pleasing manner using both images and style sheets. Rollovers and other
dynamic facilities can be added to links to further improve navigation and create
dynamic Web sites. Links can also be difficult to maintain, and site designers are
encouraged to account for broken links and moved pages. Frames and windows add
more complexity to the basic navigation model but, with careful implementation, can
be important parts of a Web designer’s arsenal. Yet, even when basic navigation is
approached correctly, there are sure to be users who will want to navigate content
differently or will be confused by predefined navigation. For those users, special
facilities such as search engines and site maps should be provided, and these are
discussed in the next two chapters.

274 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Chapter 9
Search

275

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Many users will find browser-oriented navigation systems an inefficient way to find
what they are looking for. Often, a user knows something exists and just needs to
find it within a site. Search functions appeal to power users, frequent visitors, and

the plain impatient, who are all looking to find a result quickly. A well-executed search
facility is one major advantage a Web site has over printed media, as it gives users greater
control over a site’s content, allowing them to filter it to just what they want to see. Larger
Web sites, especially those with complex data, must provide search facilities—and may
consider making it the central navigation method. Searching facilities, however, must be
designed with the user in mind. Before adding search to a site, give careful consideration to
how users expect a search to work, the type of search required, the design of the search
page, the help system, and the types of search-result listings.

How Users Search
Before getting into the theory of how search systems work and how to utilize both
external and local search engines to improve site design, consider first how people
actually use search facilities. People search for a variety of reasons. A big reason to search
is to look for something known to exist. An example of known-item searching is when
a user is looking for a particular part, like “RBA-4456.” In this case, it is usually easy
for the person to locate the item in question, assuming that the search facility has seen
it before and particularly if the item is fairly uncommon.

Oftentimes, however, users may not know if the item they are searching for exists
or not—in fact, they might just be searching to see if such an item exists. A query like
“Robot shops” might be used for a general search that could have as its object the
existence of a shop that repairs robots. Other times, a user may perform an exploratory
search to get a sense of the extent of something. For example, a query for “Robot Butler”
might be done not only for the existence of such a device, but to see the extent of sites
offering information on a metallic servant. It would seem that known-item searching is
what users would generally use search engines for, but, oddly, existence and exploratory
searching are commonly employed.

Regardless of the reason for a search, users go through four basic steps.

Formulate a Query Depending on the search facility being used, the query formed
by the user may vary greatly. A simple query might include only keywords, like “Robot
Butler.” More complex queries might include Boolean queries like “Robot AND Butler.”
Many search engines utilize queries filled with symbols, such as “+Robot +Butler –Jeeves.”
The search facility may even support a natural language interface where the user can
ask something like “Where can I buy a robot butler?” The query formulation might not
just include the selection of various search words, but also may offer refinements to
search criteria, such as indicating the areas to search, a date range to query, data types
to search, and so on. Users may also at this point specify how they would like their
results returned— say, for example, ten at a time, sorted by last update. However,

276 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

further criteria beyond keywords are usually part of an advanced search and are
usually performed only by more experienced users.

Execute the Search and Wait for the Result The second step of searching
usually consists of a simple button click, followed by a short wait for network round-
trip time plus time required for the search engine to run the query and list the result.
While there isn’t much going on interactively during this phase, don’t ignore it. The
user views this as a discrete step in the process and will not wait around forever for
results to appear.

Review the Results Once the results have been listed onscreen, the user will peruse
them to see if there is anything interesting in the list. During the review stage, the user
will rely greatly on supplementary information, such as relevancy ranking and a
description of the results including summaries, modification dates, and file sizes. During
the review stage, the user may sort or filter the results in order to help them determine
what to do. However, the actual decision concerning results will be influenced highly
by what is actually returned by the query. Results will vary from the so-called negative
result that contains no matches to the huge volumes of data when every document in a
collection is returned. Most cases will be somewhere in between these extremes.

Decide What to Do with the Result On the basis of the results, the user decides
what to do. For example, if there are no results, the user may search again with a new
query or may simply give up. If the search didn’t appear to provide the correct answer,
the user may also search again. When the search provides too many results, the user
may try to refine the search. Maybe the user selects a few of the choices in the search
results to examine. While there may be numerous variations, basically the user decides
to explore some of the results, redo or refine the search, or just quit.

This basic overview is important to keep in mind when designing a search facility.
Later in the chapter we’ll present theory and practical design suggestions that deal
with each step the user takes during the search process. However, before doing this
we’ll present an overview of how search engines function.

How Search Engines Work
So how do search engines work? First, a large number of pages are gathered off a Web
site (or the Web at large, in the case of public search engines) using a process often called
spidering. Next, the collected pages are indexed to determine what they are about.
Finally, a search page is built where users can enter queries in and get results related to
their queries. The best analogy for the process is that the search engine builds as big a
haystack as possible, then tries to organize the haystack somehow, and finally lets the
user try to find the proverbial needle in the resulting haystack of information by entering
a query on a search page.

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N
C h a p t e r 9 : S e a r c h 277

Gathering Pages
Every day the Web is growing by leaps and bounds. The true size of the Web is
unknown, and it will undoubtedly increase even as you read this sentence. At any
given moment numerous documents are added and others are removed. Gathering all
the pages and keeping things up-to-date is certainly a significant chore. Users always
want to know which search engine covers the most of the Web, but the truth is that
today even the largest search engines index maybe only a third of the documents
online. Some index only a few percent. This may change in the future, but for now
be happy that not everything is indexed. The resulting mess of information to wade
through would be even worse. In the case of local site search engines, the index might
also not cover the entire site nor be updated often.

Most search engines use programs called spiders, robots, or gathers to collect pages
of the Web for indexing. We’ll use the term “spider” to mean any program that is used
to gather Web pages. Spiders start their gathering process with a certain number of
starting point URLs and work from there by following links. In the case of a public
search engine, starting URLs are either submitted by people looking to get listed or
built by forming URLs from domain names listed in the domain name registry. Local
search engines work in the same way, but may be given a very small number of starting
points if the site is well connected.

As the spider visits the various addresses in the list, it saves the pages or portions
of the pages for analysis and looks for links to follow. For example, if a spider were
visiting the URL http://www.democompany.com, it might see links emanating from
this page and then decide to follow them. Not all search engines necessarily index
pages deeply into a site, but most tend to follow links—particularly from pages that
are well linked themselves or contain a great deal of content.

Indexing Pages
The next step search engines take is attempting to determine what a page is about. This
is usually called indexing. The method each search engine uses varies, but basically an
indexer looks at various components of a page, including possibly its <title>, the
contents of its <meta> tags, comment text, link titles, text in headings, and body text.
From this information it will try to distill the meaning of the page. Each aspect of a
page might have different relevance, and within the actual text, the position or frequency
of different words will be taken into account as well. However, not all content within a
page matters to a search engine. For example, stop words are words that a search engine
ignores, normally because they are assumed to be so common as to carry little useful
information. Examples of stop words might be “the,” “a,” “an,” and so on. Most search
engines have some stop words, but some engines like AltaVista claim to even index
common stop words like “the.”

While the use of stop words may improve a search engine by limiting the size of
the index file and focusing it on more content words, it may not match how users think
about queries. Novice users may feel “The Best Butler Robot” is a better query than

278 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

“Best Butler Robot.” Sometimes the stop word may be important to the search. Consider
searching for a song title like “Rock the Town.” “The” is an integral part of the term
and without it many other songs may come up. However, if the search were for “Rock
the Casbah,” it would be easier to throw out the noise word “the,” given that “Rock”
and “Casbah” rarely occur near each other. Deciding what stop words should be used
can be very problematic given the broad topic domain of many Web sites.

Once a page has been analyzed for the various keywords, it is ranked in relation to
other pages with similar keywords and stored in a database. Ranking is the very secret
part of search engine operation. How a particular search engine decides one page should
be ranked higher than another is what search engine promotion specialists are always
trying to figure out. A very popular way to rank pages today is based upon determined
site landmarks. Home pages and major section pages may be given higher weight than
other pages in a site. Pages that have numerous incoming links will also be given
extremely high ranking.

Providing a Search Mechanism
The final aspect of a search engine is the search page itself. A search page is the interface
the user makes their query from, and it generally contains a primary query text box as
well as other search fields for advanced users who may want to modify a query. The
degree of complexity of the search page varies greatly in public search engines. Consider
the difference in interfaces between basic and advanced search pages for various public
search engines shown in Figure 9-1.

Users can enter queries as simple natural language questions—like, “Why is the sky
blue?” (as encouraged by sites like www.ask.com)—or as complex Boolean expressions
using advanced filters. Once queried, the search engine will retrieve the pages that meet
the criteria and present them on a result page. Figure 9-2 shows a result page for the
search engine Google (www.google.com).

From the result page, users can pick some results to explore, further refine the
search with a new query, or just give up and try another method to locate what they
were hunting for. The general function of search engines is illustrated in Figure 9-3.

Understanding what people expect Web-wide search engines to do is important,
because users will bring their past experiences with searching to bear when using your
local site search. Labeling, form layout, and result pages should somewhat mimic what
users have come to expect from the public search engines. However, be careful not to
directly imitate what public engines do. Public search sites aim primarily to get users
to starting points for searching, while local search facilities on a site aim to provide a high
degree of search accuracy. In fact, public search engines aren’t always terribly accurate.
They are often geared towards the needs of advertisers and the demands of dealing
with the numerous tricks people employ to try to improve their site’s ranking.

Rule: Utilize past user experience with public search engines by using similar
layout and labeling in local search facility design, but avoid imitating aspects of
public search engines that deal with the uncontrollable nature of public Web sites.

C h a p t e r 9 : S e a r c h 279
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

280 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 9-1. Search interfaces may vary dramatically

SIMPLESIMPLE

ADVANCEDMIDDLE GROUND

C h a p t e r 9 : S e a r c h 281
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 9-2. Google’s result page is clean and simple

Figure 9-3. Overview of search engines

282 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Adding a Search Facility
The following eight steps can summarize the process of adding a search facility to a site.

Step 1: Decide what to index
Do you want to index every document in a site or only certain documents? Often, it is
only a parts catalog, technical support database, or other area that a user wants to
search. Don’t just index everything because you can.

Step 2: Decide how you want to index the information
Once you have determined what you should index, you will need to determine how it
will be indexed. Should the search engine just create a free text index of the document
set, where every non stop-word is recorded, or would it be better to create a special
search term vocabulary and relate search terms to particular pages in the site?

Step 3: Select a search engine
It is very important not to select the search engine until you’ve figured out the volume
and type of information you wish to search, as well as how it will be indexed. There are
numerous search engines available, both free and commercial. Search engines can be
installed locally on your system or outsourced to third parties, who will run the search
facility for you. For pointers to some search engines and services, see http://
www.searchtools.com.

Step 4: Design the search interface
Design the search screen to account for the types of searches the user may perform.
Often, searches are separated into basic and advanced forms. The search interface
should be integrated into the site, should meet the search needs of the users, and should
fit the type of data being searched.

Step 5: Design the results pages
Make sure to consider building pages that deal with positive results when a query is
successful, as well as negative results when nothing is returned.

Step 6: Index the data
During this step, the search engine is used to crawl all or part of the site and build an index.
You may actually be forced to manipulate the index by hand to create optimal queries.

Step 7: Integrate the search engine with the search interface
This step involves making the search interface access the index. Generally, this is
just a matter of setting the action attribute of the <form> tag used to implement the
search form. Integrating the result page is a little more difficult, but is often a matter
of taking the designed result page and making it into a special template the search
engine can read.

C h a p t e r 9 : S e a r c h 283
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Step 8: Test and monitor
A key aspect of implementing a search engine is making sure to test that it gives back
the correct results for important queries. Search engines should also be monitored
and common queries identified. Users also should be allowed to rate the value of the
individual search results so that refinements can be made.

It is also very important for dynamic sites to re-index their search features on a
regular basis. Such sites could be re-indexed manually by webmasters or editors when
new content is added to the site or be automatically set up for regularly scheduled
re-indexing.

The focus of the next few pages is not on how to actually create an index, which
will vary greatly by the data being indexed, as well as the search engine being used,
but to show how to design the various aspects of a search interface.

Designing the Search Interface
Assuming that a search facility is needed, a designer should first and foremost consider
what the user wants to search for. Far too often, search engines are added to a site and
set to index everything using a free text search. Similar to a Web-wide search, users
pound their heads as they search for a particular part number like KF-456 only to be
shown every single document the part number occurs in, ranging from press releases
to technical notes. To the user, the ordering of the documents from this type of search
may seem arbitrary, with the most important document not appearing first in the list.
What’s interesting is why this form of search was used. Designers assume that since
public search engines work like this, so should their local search engine. This seems
like a good idea—users are familiar with formulating search strings at public sites and
bring this knowledge with them to your site. However, global search engines are not
very accurate for a variety of reasons, including the fact that numerous sites try to fight
their way to the top of returned results. Public search engine results don’t always seem
to make sense, and the ordering often seems more random than systematic.

Consider that in your own site, if you want a particular page to be shown when a
user types in “Robot Butler,” you can cause that page to be shown. Remember, when
building a local search facility, to copy the style, syntax, and interface of public Web
search engines, but don’t imitate their imprecise functionality.

The main advantage of local searching is that you can utilize controlled vocabularies
to deal with what users will probably want to search for. Besides relating keywords
with certain pages in a more precise manner, you may even suggest common queries
for users to run. Remember, local search engines provide designers with a much greater
degree of control than public search engines.

Accessing Search
You should consider how your users will access the search facility. Some sites create a
special button labeled “Search” that, when selected, takes the user to a special search
page. Other sites utilize a search field within all pages. A visual comparison of the two
approaches is shown in Figure 9-4.

TE
AM
FL
Y

Team-Fly®

284 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

While putting the search directly on the page eliminates one click for the user, a
search field within a content page must be very basic. There still may be a need for

Figure 9-4. An in-page search and a special search page

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N
C h a p t e r 9 : S e a r c h 285

a special search page if more complex queries are to be formed. It really isn’t possible
to put advanced search mechanisms within every page, as it tends to make the search
facility too prominent and takes away from the page’s primary purpose of delivering
content. So the question is really to expose a simple search facility on content pages or
provide it on a special search page. Regardless of the choice, search should be easily
found from every page in a site.

Suggestion: When search is available in a site, include a search button or field
on all pages.

Designing a Basic Search Interface
The search facility of a site should look the same as the rest of the site. Often it is
not the same because it is added by technical staff, who may not be concerned when
setting up the search templates to match the site’s look and feel. Users who utilize such
search engines may feel they have left the site if the look changes greatly. Look at the
two search facilities shown in Figure 9-5; the need for integration should be obvious.

Rule: Search forms and result pages must match the look and feel of a site.

Also, the search form should fit the type of data being searched. For example, if users
are searching for objects that are colored, shouldn’t the search form provide a way to
specify by color? The example search interface in Figure 9-6 for searching for personal
space vehicles shows how search forms should match the content that is being searched.

Consider the golden rule of designing a search facility for a site—the more we
know about what users are looking for, the better able we’ll be to help them find it.
One way to do this is to analyze what people search for by looking at the queries they
enter. No matter how we figure out what users search for, we need to help users
narrow down their search properly. For example, if we are searching for names, try to
help people enter in last names or first names into individual text boxes rather than just
letting them type names into a single text box. If part numbers are being searched in
a range from 1 to 10,000, then let people know that that is the range, limit them to the
range, and alert them if they are out of range. A ToolTip set using the title attribute in
HTML or a simple JavaScript is an easy way to let people know about ranges without
explicitly printing them onscreen. A few search forms that fit the data being searched
are shown here:

286 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: A search form should match the content being searched.

The primary element of a search form is the actual search query field. A big
question is how long should the search field be. The query text field should be large
enough to hold at least a few search terms without scrolling. On average, users type
two keywords in search fields.

The size of the search field also is related to the emphasis of the search task for the
page. If search is the primary emphasis of the page and users are going to form complex
searches, an input size in the range of 30 to 40 characters is common. A survey of the
public search engines shows that most use a size of 30, 35, or 40 characters for their

Figure 9-5. Search pages should resemble other pages in a site

C h a p t e r 9 : S e a r c h 287
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

primary search field, though Google is much larger at 55 characters. This size makes
the search field a fairly large element, width-wise, on a typical page. When search is a
secondary aspect of a page, the size should be about half the size—usually from 15 to
18 characters, which should allow a few keywords for a simple query. Of course, the
size of the search box should always be designed with the search terms and the page
layout in mind.

Suggestion: Primary search text boxes should be about twice as big as secondary
search text boxes.

The second aspect of the search form is the button to execute the search. Sometimes
a form button is used, while other times a custom button is used. The use of a form
button is probably slightly more intuitive for users. The label of the button also varies.
Some favor “Search,” others “Find,” and some even something as simple as “Go.” A lot
of this depends on the context of the search. If the word “search” is used to label the
field, labeling the button “search” seems a little redundant.

Figure 9-6. Search forms vary based on content being searched

The search form should fit the types of users the site is designed for. For example, a
search facility for kids might be playful and have few instructions, while a search facility
for engineers might contain a variety of fields for visitors to tune their searching. Simple
search forms should be separated from advanced ones.

Advanced Search Form Design
Advanced search forms are more challenging to design, particularly if there are many
ways for the user to tune the search. First, if the search is to allow Boolean searching
using AND, OR, or NOT, the form must either be designed with pull-downs to separate
search terms or provide explicit instructions for users on how to build Boolean queries,
as shown in Figure 9-7. However, creating Boolean expressions can be a serious problem
for many users. Try to avoid suggesting their use in basic searches where possible.

288 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 9-7. Boolean search query interfaces

Advanced search forms often include various fields to limit the time of search. For
example, forms may allow users to specify a date range to search when looking for
time-sensitive information. They may also be able to limit the type of data to search by
format (image, PDF, sound, and so on), as well as by content type (for example, press
releases or specifications). Some search facilities allow the user to search only certain
parts of a site. This may be called a scoped search. Unfortunately, users may not
understand a site’s sectioning, so it may be better to allow limits on topics, categories,
or ideas rather than on sections of a site. A common way to do either form of scoped
search is using a pull-down as shown here:

Suggestion: It is generally better to limit a scoped search to a topic, category, or
idea rather than a section of a site.

Other possibilities for an advanced search facility include allowing users to limit
the number of results to be returned, to set the way results should be returned, and to
search for meta information, such as document authors. Figure 9-8 shows an example
of an advanced search form.

A very important part of advanced search forms is the instructions. Not all search
engines work alike, and you should provide explicit instructions for the user, either
directly on the search screen or using pop-up windows. Do not use a separate page for
your search instructions, as it forces the user to either print out the instructions or
quickly memorize the information. Besides instructions, example queries and field
usage should also be provided in an advanced search page.

Rule: Advanced search facilities must provide instructions and examples.

Result Page Design
Designing result pages must take into account two extreme possibilities: no results and
way too much information. Even when just about the right information is returned, a
well-designed result page should help the user discern what is relevant. The rule of
thumb for a result page: the more information the better—often people can’t determine
the value of one result over another. A well-designed result page should include the
items shown in Table 9-1.

Not all types of search engines are able to provide all of these items—particularly
advanced relevancy and matching indication. However, designers should strive to
include all elements in a result page.

Rule: Result pages should provide as much information as possible so users can
decide what items to peruse further.

C h a p t e r 9 : S e a r c h 289
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

290 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 9-8. Advanced search forms should be carefully designed

Result Page Element Description

Original query The original query string used should
be prominently displayed on all result
pages so the users don’t have to recall
what search string they used.

Table 9-1. Common Result Page Elements

C h a p t e r 9 : S e a r c h 291
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Result Page Element Description

The scope of the search and the
results found

The total number of documents
searched and returned should be
indicated (for example, 10,000
documents searched, 20 matches).

Context of current results There should be some indication as to
what part of the result list the user is
looking at (for example, page 2 out of
10, or items 30–40 out of 200).

Page or document titles Each item returned should be
clearly titled.

URL of returned page The actual URL of the individual
documents should be shown, as it may
provide useful information to the user.

Page summaries A brief summary of a returned page’s
contents should be shown. This is often
picked up either from the <meta
name=“DESCRIPTION”> element or
the first few lines of text in a document.
A user may have the option to show or
hide the page descriptions.

Date or time information of results Minimally, the create date or date of
last update of a returned document
should be shown. Some search facilities
also provide an indication of the time
the index was last built, the time it took
to search the index, and the time the
query was performed.

Size of returned pages The file size of the document returned
should be indicated. This is especially
important if the files being searched are
large binaries.

Type of result In some searches, other forms of data
such as Adobe Acrobat, Microsoft
Word, or multimedia data may be
returned. Make sure to indicate the
format of data with a label or icon.

Table 9-1. Common Result Page Elements (continued)

292 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Search result pages often lack any provision for site navigation. When users access
a results page, they are not just searching—they may also want to switch back to a
browsing mode to investigate results. Remember, users are just looking for an answer,
and they may move in and out of approaches in their hunt, so provide browsing
facilities on search results when possible in case the user wants to leave the result page
easily. Figure 9-9 presents a search results page that includes most of the elements
listed in Table 9-1.

Result Page Element Description

Relevancy of results A relevancy ranking should be clearly
indicated. Usually, search results are
ranked from highest to lowest. A
percentage score or bar should be used
to show the difference between items.

Keyword matches Since users are highly annoyed when
they are unable to figure out why a
particular page is returned for a query,
show the keywords matched and, if
possible, highlight these words in
context in the summary. If possible,
when the user selects a document, the
query terms should also be clearly
highlighted.

Navigation Navigation to move through the result
set should be provided. Common
buttons include “Next 10 documents”
or “Previous 10 documents,” where the
step value changes depending on the
user’s preference. Navigation to see the
first or last page in a result set is also
sometimes used.

Refinement options The ability to refine the query should
be present. Users may be able to search
against the result set or even perform a
brand-new query.

Help Help information explaining the format
of the results should be available.

Table 9-1. Common Result Page Elements (continued)

C h a p t e r 9 : S e a r c h 293
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 9-9. Example search result page

TE
AM
FL
Y

Team-Fly®

One aspect of search result pages that may appear obvious but is often overlooked
is that the format of data returned should be carefully considered. For example, just
listing a page title, URL, and description may not be enough for a user to make a
decision about one choice over another. For example, if a user performs a search of
products, it might be possible to output small thumbnails of the products that match
the user’s criteria, as shown in Figure 9-10.

Rule: The format of search results should fit the data that is being returned.

The key aspect of designing a positive search result page is helping the user find and
make a decision about which returned items to pursue further. However, in view of the
public Web search engines where far too much is often returned, designers should
carefully consider the negative result when nothing has met a user’s search criteria.

Negative Results Page
When a query results in no matches, the result page should try to help the user identify
what went wrong. In some cases, it may be just that there is nothing that matches the
search terms. In other cases, the user may have simply used the search facility incorrectly.
A good negative result page should indicate which of these two conditions is applicable
as well as perform the functions shown in Table 9-2.

294 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Feature Description

Clear failure
message

Make sure the user knows that the query failed and perhaps
why it failed. Indicate the number of documents searched and
provide a clear message indicating that the search failed.

Search again
mechanism

The query used should be shown, and the option to search
again should be directly available from the result page
(as with a positive results page).

Help information Probably the most important aspect of a negative results page
is to provide clear and useful help. First, provide tips that
might explain why the search failed. For example, often
search terms are misspelled. If the search engine doesn’t
provide spell checking, consider adding an option to spell
check the query string. If possible, show terms that are similar
to the term searched for. Consider showing the common
search terms. Finally, make sure that help information on
how to use the search facility is readily available.

Table 9-2. Features of a Negative Result Page

C h a p t e r 9 : S e a r c h 295
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 9-10. Search results vary based on the data searched

Figure 9-11 presents a negative result search page that provides all the features
useful to help the user get back on track. Notice that the negative result page also fits
with the design of the site.

Rule: Negative search result pages must include information on why a query
failed and potentially how to fix the query.

296 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 9-11. Negative result pages should provide a wealth of help information

Similar to broken link pages, negative result pages probably come up more than we
would like. Make sure to monitor the negative queries to determine the usefulness of a
search facility. Measure the percentage of negative queries and try to identify common
bad queries. If your site is missing something, the negative queries may reveal the items
that users are really looking for. Negative query monitoring is only one way to improve
search facilities, so let’s take a look at a few other strategies.

Improving Local Search
Despite our best efforts, local searching of Web site contents often fails. Why? Usually
it is due to one of the following four problems:

■ Search item not found on site

■ Keyword mismatch

■ Misspelled words and other near hits

■ Search interface problem

The first problem really isn’t solvable. If a user believes an item exists in the site
and it doesn’t, all we can really do is fail nicely. The other problems, however, can be
addressed.

Addressing Near Hits
Keyword mismatch often has to do with the fact that how a user searches for
something might not be exactly the way that the item is indexed. The basic problem
has to do with vocabulary. For example, a user may enter “automobile” as a search
term when the relevant pages were indexed under “car.” Obviously, the two words
are synonyms, so the search should not have failed. To solve this problem a site
designer should come up with a controlled vocabulary of search terms, including
related words. Generally termed a thesaurus, such a cross-reference of keywords can
be generated uniquely, or for certain knowledge domains, a predefined set of words
can be adopted.

Similar to keyword problems are searches that include misspelled words or words
that run together. Particular attention should be paid to alternative spellings of words
related to regional language differences—for example, color and colour. If possible, the
search system should provide a “Did you mean?” facility to get users to the items they
were actually looking for.

C h a p t e r 9 : S e a r c h 297
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

298 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Any search-fixing facility might also try to address run-together search terms, like
“spaceship” and “space ship.”

Show Common Queries
Local search engines obviously are not as user-focused as they could be, considering
that few of them address the fact that most users will enter the same simple one- or
two-word queries. Since this is the case, it is wise to ensure that such queries match up
with their intended result. Understanding what these special keywords are does not
require a detailed analysis of site contents; the search engine itself should be able to tell

you what people are searching for. You may then consider showing the popular
searches that have been fixed to return correct results right on the search interface,
as shown here.

Scope Properly
When advanced searching facilities are provided, scoped searches are one of the best
ways to improve the chances of search success. The first task is to limit the scoping. As
mentioned earlier in the chapter, avoid scoping sites by hierarchical sections of site
data but focus more on topics. Further scoping possibilities include limiting the search
to a particular file type (such as PDF, GIF, HTML), date range, author, and so on.

Regardless of the scoping method used, make sure to allow the user to broaden or
narrow the scope at will. For example, on the result page you might have a link that
allows the search to be expanded to the whole site or to research within the set of results.

C h a p t e r 9 : S e a r c h 299
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Add Polish
Search interfaces often suffer from a lack of usability and interface polish. For example,
most local search sites will allow a user to enter in a blank query, only to have the query
spit out an error message. If a blank search query is not allowed, try to address it right
away using a simple JavaScript error message.

300 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

In some cases a blank query might return all pages in a given search space, but if it
does not, allowing an obviously bad query is pointless.

Suggestion: Disallow blank search queries unless they return a complete page set.

Monitor and Maintain
Be as user-focused with search design and maintenance as with other areas of a site. Be
sure to track your search logs so you can see why and how your site visitors are having
problems with search. Watch searches that find zero matches and do your best to add
new synonyms, terms and information that address these issues. For common searches,
make sure the intended results come up.

Go Beyond Search
Finally, remember that users will move back and forth between browsing and searching.
It isn’t all-or-nothing when it comes to site navigation strategies. Try providing access
to topic categories and browse facilities within a search interface, if possible, as shown
in Figure 9-12.

C h a p t e r 9 : S e a r c h 301
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

Figure 9-12. Combine Search and Browse for Powerful Navigation

302 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

The next chapter will explore other navigation facilities beyond search, but before
we conclude let’s turn our attention to how designers try to utilize search engines and
other facilities to promote and drive traffic to their site.

Public Searching
As previously mentioned, site designers must be especially careful not to fall into the
familiar trap of exactly imitating search on the Web at large. The needs of Web-wide
searching are very different than those of a single site, or even a group of controlled
sites. Unfortunately, users often expect site-search facilities to act similarly to public
search engines like Google or Lycos. Public search engines have to deal with the
extremely difficult task of gathering and indexing the enormous and ever-changing
Web, which has numbers of documents that are purposely filled with misleading
information. Then, from all this information, the user is supposed to quickly and easily
retrieve a useful result using a simple query. In summary—finding a needle in a
haystack is a much easier task than searching the Web. Regardless of the difficulty,
users do rely on public search engines a great deal and their searches do work more
often than not. Designers should consider a user’s experience with Webwide search
engines, since users will generally understand the functionality of these engines and
apply that knowledge when they use a local search engine. Further, we need to
understand Web-wide searching to see how it fits into the task of driving users to our
Web site. The following sections will explore the components of Web searching and
explore some of the problems encountered.

Full Web Searching Overview
The requirements for Webwide searching are daunting. Users expect to be able to quickly
type in a simple search phrase at a global search engine like AltaVista or Google and
end up with a realistic result. Consider the chances of walking into a public library and
finding a particular passage in a book in a few seconds and you’ll understand the near
futility of the task. When searching, users are often overwhelmed with too much
information, are shown irrelevant information, or do not get anything at all. Despite
the resulting frustration, users keep pounding away at search engines, hoping to get a
good result in a matter of minutes.

Many of the problems with search engine usage have to do with users not searching
correctly. Searching really should be used only when looking for known items or for
very specific topics. Consider searching for a general term like “hamburgers.” Search
engines may not necessarily pull up sites about hamburgers or even large hamburger
restaurant chains. In fact, testing this query in some search engines resulted in numerous
links to pages about Hamburg, Germany, as well as recipe sites for personal home
pages and pages that appeared to have absolutely nothing to do with hamburgers. The
problem is that the search term isn’t specific enough. If you search for something like
“White Castle Slyders”—a regionally famous hamburger in the United States—you
may find a more useful list of results.

When looking for general information on a subject, users usually turn to a directory
rather than a search engine. The main difference between a search engine and a directory is
that a directory usually involves some human editing and usually contains a very limited
number of links. Yahoo! is probably the most famous directory around, but it now
provides search engine features as well. In fact, most of the search engines have begun
to offer directory links as well as searching. Many popular search engines now focus
more on delivering users to sites that focus on a particular topic rather than trying to get
users to a very specific site. Directories like www.about.com or www.dmoz.org are
organized by individuals who are responsible for a particular type of content. The
benefit of a directory is that having a site organized by people can result in limiting
content to just the “good sites.” While automatic gathering and categorization of content
can be a powerful tool, until Artificial Intelligence is vastly improved the value of
human editing and categorization should not be underestimated.

Definition: A Web directory is a human-edited and organized collection of site
links and associated information such as descriptions and reviews.

In comparison to a directory, a pure search engine is more like the phone book that
you can only search. This is similar to calling your information service and asking for a
phone number, except you ask for something related to a particular topic. Consider
using a phone information service such as 411 in the United States and asking for the
phone number of a “Chinese restaurant” rather than asking about a particular Chinese
restaurant. If you ask for a particular restaurant, chances are you’re going to get a good
result. However, when asking for general information you’ll be very lucky if the operator
actually spends some time to give you a particular restaurant they know about, or even
returns one that looks reputable based upon its ad in the print directory. In many cases,
directory assistance might just give you the first one or even a random one from a list.
Search engines tend to act the same way. They are good at returning specific answers,
but results vary otherwise.

Search engines always attempt to be comprehensive and may list numerous sites
without regard to content quality or freshness. Search engines are primarily automated
in the collection and organization of links, though today some human editing as well as
directory-oriented results are being used. This is due partly to the massive amount of
search engine trickery going on, as well as a desire to improve the result sets for users.
The reason for the trickery is a desire by Web site owners to use search sites to drive as
much traffic to their sites as possible.

Search Engine Promotion
Site owners always want to be number one in search engines. Consider if you are a
small travel agent. You probably would love it if people could go to a search engine,
type travel, and have a link to your site show up as the first one. You’d get a large
number of visits for sure. Unfortunately, there are probably a lot of other people who

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N
C h a p t e r 9 : S e a r c h 303

TE
AM
FL
Y

Team-Fly®

would like to be number one, and being ranked 4,036th isn’t going be worth much. In
fact, if you are outside the first 20 sites or so returned, you probably aren’t going to get
many clicks at all. Because of this, page designers are always trying to determine how
search engines categorize pages and then building their page with keywords in such a
way to get a high ranking. In some ways, this idea is similar to how people name their
company something like AAATravel in order to get listed first in the phone book.
Unfortunately, consider how many travel agents in the world want their site to be in
the top ten in search engines and you’ll see a potential problem. The Web is not as
geographically specific as the phone book. Imagine that there is only a single phone
book for the United States. There would probably be dozen of pages filled with
companies, all starting with AAA. The Web already has this problem, and that’s one of
the reasons you get so many results when you run a query for a competitive industry
like discount travel.

The war to be first in the search engine has an obvious result—the rise of “pay for
position.” Consider that the tricks to be at the top of the search engine list spread
rapidly. For common search phrases, it is nearly impossible to stay at the top of the list
for long since other sites use the same search engine promotion techniques. Already
search engines such as Overture (www.overture.com) are opting to push people to the
top of the list that are willing to pay for position. Priority placement is also being made
for banner ads triggered to correspond to particular search phrases. Just as with the
phone book, naming your company AAATravel might put you at the top of the line
listings, but readers may opt instead to look at the large display ads. Search engines
will eventually adopt the same model. Further, as end users become more sophisticated,
they will begin to rely more on directory listings for generic topics and use search
engines only for very specific or complex lookups. The eventual outcome of the search
engine war will almost certainly be a return to traditional models of information retrieval
methods used in other advertising forms where you pay for audience relevancy
and position. For now, designers should consider not taking advantage of search engine
positioning methods, regardless of their long-term viability.

Adding to the Engines
Getting a site’s pages gathered by a search engine is the first step in making a site
findable on the Web. The easiest way to do this is simply to tell search engines that
your site exists. Most search engines will allow you to add a URL to be indexed. For
example, Google allows you to add a site for gathering by using a simple form
(http://www.google.com/addurl.html). Of course, adding your site to every single
search engine could be a tedious task, so many vendors (http://www.submitit.com)
are eager to provide developers with a way to bulk-submit to numerous search
engines. Most Web site promotion software, such as WebPosition Gold (http://
www.webposition.com), also includes automated submission utilities. Today you
may find that the simple guaranteed submission to a search engine costs money.
Undoubtedly, this trend will continue.

304 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

You should consider how many search engines you’ll want to submit your site to.
Some people favor only adding few links to the important top ten engines, especially
Yahoo! Numerous studies, as well as this author’s experience, suggest that big search
sites, particularly Yahoo, account for most search engine traffic. However, some site
promotion experts feel this is not correct and believe it is best to create as many links
to sites as possible. In fact, a whole class of link sites—”Free For All” links or FFA sites
(not to be confused with anything related to the Future Farmers of America)—have
sprung up to service people who believe that “all links should lead to me” works. The
reality is that most of these link services are pretty much worthless and often generate
worthless Traffic and spam messages. Further, consider that even if you do get back
links and e-mail, it is mostly from people who are doing the same thing you’re doing—
trying to get links.

Robot Exclusion
Before getting too involved putting yourself in every search engine, remember that
it isn’t always a good idea to have a robot index your entire site, whether it is your
own internal search engine or a public search engine. First, some pages such as
programs in your cgi-bin directory don’t need to be indexed. Second, many pages
may be transitory, and having them indexed may result in users seeing 404 errors
if they enter from a search engine. Finally, you may just not want people to enter
on every single page—particularly those pages deep within a site. So-called “deep
linking” can be confusing for users entering from public search engines. Because
these users start out deep in a site, they are not exposed to the home or entry page
information that is often used to orient site visitors.

Probably the most troublesome aspect of search engines and automated site
gathering tools such as offline browsers is that they can be used to stage a denial of
service attack on a site. The basic idea of most spiders is to read pages and follow pages
as fast as they can. If you tell a spider to crawl a single site as fast as it possibly can, all
the requests to the crawled server may very quickly overwhelm it, causing the site to
be unable to fulfill requests—thus denying services to legitimate site visitors. Fortunately,
most people are not malicious in spidering, but it does happen inadvertently when a
spider keeps reindexing the same dynamically generated page.

Robots.txt
To deal with limiting robot access, the Robot Exclusion protocol was adopted. The basic
idea is to use a special file called robots.txt that should be found in the root directory of
a Web site. For example, if a spider was indexing http://www.democompany.com, it
would first look for a file at http://www.democompany.com/robots.txt. If it finds a
file, it would analyze the file first before proceeding to index the site.

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N
C h a p t e r 9 : S e a r c h 305

306 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

You will find that many spiders will ignore a robots.txt file with a URL like http://
www.bigfakehostingvendor.com/~customer/robots.txt, where the robots.txt file is not
located in the root directory. Unfortunately, you will have to ask the vendor to place an
entry for you in their robots.txt file.

The basic format of the robots.txt file is a listing of the particular spider or user
agent you are looking to limit and statements including which directory paths to
disallow. For example,

User-agent: *

Disallow: /cgi-bin/

Disallow: /temp/

Disallow: /archive/

In this case, we have denied access for all robots to the cgi-bin directory, the temp
directory, and an archive directory—possibly where we would move files that are very
old but still need to be online. You should be very careful with what you put in your
robots.txt. Consider this file:

User-agent: *

Disallow: /cgi-bin/

Disallow: /images/

Disallow: /subscribers-only/

Disallow: /resellers.html

In this file, a special subscribers-only and resellers file has been disallowed for indexing.
However, you have just let people know this is sensitive. If you have content that is
hidden unless someone pays to receive a URL via e-mail, you will certainly not want
to list it in the robots.txt file. Just letting people know the file or directory exists is a
problem. Consider that malicious visitors will actually look carefully at a robots.txt file
to see just what it is you don’t want people to see. That’s very easy to do: just type in
the URL like this: http://www.companytolookat.com/robots.txt.

Be aware that the robot exclusion standard assumes that spidering programs will
abide by it. A malicious spider will, of course, simply ignore this file, and you may be
forced to set up your server to block particular IP addresses or user agents if someone
has decided to attack your site.

Robot Control with <meta>
An alternative method to the robots.txt file that is useful particularly for those users
who have no access to the root directory of their domain is to use a <meta> tag to

control indexing. To disallow indexing of a particular page, use this <meta> tag in the
<head> section of the HTML document:

<meta name="robots" content="noindex" />

You can also inform a spider not to follow any links coming out of the page:

<meta name="robots" content="noindex, nofollow" />

When using this type of exclusion, just make sure not to confuse the robot with
contradictory information like

<meta name="robots" content="index, noindex" />

or

<meta name="robots" content="index, nofollow, follow " />

as the spider may either ignore the information entirely or maybe even index anyway.
The other downside to the <meta> tag approach is that fewer search engines support it
than do robots.txt.

Optimizing for Search Engines
Optimizing your site for a search engine is not difficult. The first thing to do is to start
to think like a search engine—in other words, don’t really think at all. Search engines
literally look at pages and make educated guesses about what pages are about by
following a set of rules to try to understand what the page is about. For example, search
engines look for word frequency, <meta> tags, and a variety of other things. However,
they really can’t tell the difference between a page about the Miami Dolphins football
team and a dolphin show in Miami. The reason is that search engines generally rely on
keyword matching in conjunction with some criterion such as the placement of words
in a page or the number of linking sites. So if a designer knows what a search engine is
looking for, it is easy enough to optimize a page for the search engine to rank it highly.
The next few sections provide a brief overview of some of the things search engines
look for as well as some tricks people have employed to improve their search ranking.

<meta> Tags
Many search engines look at the <meta> tags for keywords and descriptions of a page’s
content. A <meta> tag like

C h a p t e r 9 : S e a r c h 307
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

<meta name="Keywords" content=" Butler-1000, Robot butler, Robot butler

specifications, where to buy a robot butler, Metallic Man Servant, Demo

Company, robot, butler" />

could be used in our example page about robot butlers. Notice how the content started
with the most specific keywords and phrases and ended with generic keywords. This
should play into how most users approach search engines.

Once a search engine looks at the <meta> tag, it may rate one site higher than
another based upon the frequency of keywords in the content attribute. Because of this,
some designers load their <meta> tags with redundant keywords:

<meta name="Keywords" content=" Robot butler, Robot butler, Robot

butler, Robot butler, Robot butler, Robot butler, Robot butler,

Robot butler, Robot butler, Robot butler" />

However, many search engines consider this to be keyword loading and may drop
the page from their index. If the keyword loading is a little less obvious and
combinations of words and phrases are repeated,

<meta name="Keywords" content=" Robot butler, Butler-1000, Metallic

Man Servant, Robot butler, Butler-1000, Metallic Man Servant, Robot

butler, Butler-1000, Metallic Man Servant, Robot butler,

Butler-1000, Metallic Man Servant " />

the search engine may not consider this improper. An even better approach is to make
sure the pattern of repeating words isn’t quite as obvious, as shown here:

<meta name="Keywords" content=" Butler-1000, Robot butler, Metallic

Man Servant, Robot butler, Butler-1000, robot, Robot butler,

Democompany, Metallic Man Servant, Butler-1000, robot, butler,

Robot butler, Butler-1000" />

However, be aware that search engines may still notice the heavy use of certain
words or phrases and consider this spamming, potentially reducing the page’s ranking
or dropping it from the index completely.

Search engines also look at the description value for the <meta> tag. For example,

<meta name="Description" content="The DemoCompany Robot Butler is

the most outstanding metallic man servant on the market. The

Butler-1000 comes complete with multiple personalities and voice

modules including the ever-popular faux-British accent." />

308 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

would be included on the robot butler page and could be examined by the search
engine, as well as returned by the search engine on the result page. Because the <meta>
tag description may be output for the user to see, provide some valuable information in
the description that will help users determine if they want to visit your site. Preferably,
keep the description to a sentence or two and, at most, three or four sentences.

Titles and File Naming
One important aspect of search engine ranking is making sure your page has a very
good title. For example,

<title>Robot Butler</title>

is a bad title as far as search engine ranking goes. A better title might be:

<title>Butler-1000: Specification of Demo Company's Robot Butler,

the leading metallic man servant on the market</title>

Remember that people also look at page titles, and they are used for bookmarking, so a
really long title may be more appropriate for search engines than for users.

The name of a file can also be important for search engines. Rather than naming a
file “butler.htm,” use “butler1000robotbutler.htm.” If you have a good domain name
and directory structure, you may create a URL that almost makes sense. For example,
if we named our server democompany.com, as well as www.democompany.com, we
may have a URL like this:

http://democompany.com/products/robots/butler1000robotbutler.htm

Notice how this almost includes the same information as the title. This provides the
secondary benefit of letting users know where they are, rather than resorting to cryptic
URLs like this:

http://democompany.com/products.exe?prod=robots&mod=butler1000

Relevant Text Content
One of the best ways to get indexed is to have the keywords and phrases actually
within the content of the page. Many search engines will look at text within a page,
particularly if it is either towards the top of the page or within heading tags like <h1>
or <h2>. Search engines may also look at the contents of link text. Thus,

Specifications

S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N
C h a p t e r 9 : S e a r c h 309

is not as search engine friendly as

Robot Butler Specification

One problem with search engines focusing on page text is that designers often
create home pages that are primarily graphic. Search engines accessing such pages may
have little to go on besides the <meta> tag and page title and thus rank the page lower.
Consider using the alt attribute for the tag to provide some extra information;
for example,

<img src="robot.gif" alt="Butler-1000: Demo Company's industry

leading robot butler" />

Of course, putting the actual text in the page would be better. Some designers
resort to either making text very small, or in a color similar to the background, or both,
so that users won’t see it but search engines may pick it up; for example,

The Demo Company Butler1000 is the

best robot butler. The Demo Company Butler1000 is the best robot

butler. The Demo Company Butler1000 is the best robot butler.

Be careful with the small or invisible text trick. Many search engines will consider
this to be spamming and may drop the page from the search engine.

Links and Entry Points
Another aspect of search engine ranking has to do with the number of links leaving a page,
as well as the number of pages that link to a page. Landmark pages such as home
pages tend to have a lot of outgoing and incoming links. Search engines would prefer to
rank landmark pages highly, so it is important that key pages in your site have links
to them from nearly every page. Some search engines also favor sites that have many
sites pointing to them. Because of this, people are already starting to create sites solely
for the purpose of pointing to other sites.

Another approach to improving search engine ranking is to submit many pages
in a site, or even off a site, to a search engine. All of these entry pages, often called
doorway pages, point to important content within your site. Unfortunately, doorway
pages are more like decoy pages, as they can be loaded with false content to attract
the visitor and eventually deposit the user at a page they didn’t really want to see.
The problem with search engine promotion is that the distance from simple logical
keyword loading to various tricks is a short one—particularly if designers obsess with
top-ten ranking.

310 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Tricky Business
The tricks employed by search engine specialists are numerous and change all the time.
Many ideas are simple add-ons to normal Web design techniques. For example, many
designers rely on invisible pixel shims to force layout. Search engine promoters might
say, “Why not put alt attributes on these images to improve things.” Imagine, for
instance, having the following all over your page:

Pity the user who pauses on top of one of these invisible pixels only to have a
ToolTip pop up screaming about whatever the page is promoting. Spamming pages
with invisible text, small text, and multiple images, or just loading the <meta> or
<title> tags, are not the most sophisticated tricks, but they often work.

Other tricks include the infamous “bait and switch,” where a special search engine
page is created and then posted to a search engine. Once the ranking is high, the bait page
is replaced with a real page built for users. A more complicated version of this could
be dubbed “feeding the dogs”(or page or site cloaking). In this scenario, you write a
program that senses when a search engine hits the site, and then the program “feeds”
the engine the page that it wants to see. Like a ravenous dog, it gobbles up the food
with no idea it just ate the equivalent of informational pig snouts. As real users hit the
site, they aren’t served the dog food, but get the real site.

Distinguishing search engines from regular users isn’t terribly difficult, since the
engines identify themselves and come from consistent IP addresses. In reality, “feeding
the dogs” is just a modified form of browser detection. Search engines can do little to
combat this approach, since they would have to consider eliminating dynamically built
pages—which is impossible given their growing importance—or not informing sites
that they are search engines while indexing. A few search engines have already begun
to provide a link to a page that shows what was indexed, so users can determine if they
are being shown something different than what a search engine indexed. Others revisit
the page in multiple guises and see if things are dramatically different; if they are,
cloaking is considered to be in play and the page is dropped. Of course, this may just
be because the page is dynamically created; thus, many search robots will tend to exclude
pages with complex URLs, like www.democompany.com/products.cfm?robots=
army&cost=expensive. In order to address this, some site owners will rewrite page
URLs to make them more search engine friendly. We’ll address that in Chapter 17, on
site delivery.

The problem with all the search engine promotion ideas is that they tempt the
designer to stop building pages for users and start building them for search engines.
This is just another form of designing more for your own needs than for your users.

Rule: Do not design pages solely to attract search engines, as, ultimately, pages
are for people.

C h a p t e r 9 : S e a r c h 311
S
ITE

O
R

G
A

N
IZ

A
TIO

N
A

N
D

N
A

V
IG

A
TIO

N

One of the most interesting aspects about search engines is that many large
organizations don’t rely greatly on them for driving traffic. In fact, for many
corporations, unless you type their name in directly, you’ll be hard pressed to find
them in a search engine. However, despite what appears to be a major oversight on
their part, these sites continue to get huge amounts of traffic. According to studies
such as the GVU Internet Survey, people type in URLs directly quite often.

How are they finding out about sites? Search engines aren’t the only way to drive
traffic. There are many ways to get users to visit your site. Banner ads, link exchanges,
news group postings, mass e-mailings, and easily typed and remembered domain
names all are well-known approaches to traffic generation. However, one increasingly
popular way to attract visitors is to rely on things outside the Internet. Television,
radio, print, billboard, direct mail, and a variety of other venues are being used to
spread the address of the latest Web site.

This is by no means a complete discussion of search engine promotion, as the topic
literally changes on a weekly basis. Readers looking for more up-to-date information are
directed to the numerous site promotion sites that exist on the Web, especially Search
Engine Watch (www.searchenginewatch.com).

Summary
If browsing is about following predefined trails in a Web site, then searching is going
off-path, blazing your own direction through content. While it would seem that search
facilities appeal primarily to power users and frequent visitors, the fact is that novice
users are familiar with public search engines and rely more and more on sites like
Google for searching. Understanding how public search engines work and are used is
the first step in designing a local site search facility. Designers should also understand
how users move from public search sites to local sites and attempt to guide users to
what they are looking for. Search facilities must be designed with the user in mind. The
best way to do this is to consider what users would actually want to search for in a site.
Do not fall into the trap of blindly imitating the free text search qualities of global Web
search engines. When providing local search, make sure to provide both basic and
advanced search forms. Format the search form carefully and provide instructions.
This will help users form good queries, but in case things go wrong, make sure the
negative result page provides extra help to get users back on track. Once users do get a
positive result from a search engine, make sure that enough information is provided so
they can narrow down the potential choices. Having too much data is nearly as bad as
having none at all. However, always consider that searching isn’t everything. Like all
forms of navigation, searching is a means to an end, not the end itself. There are many
ways to help users find what they are looking for. The next chapter will present a
variety of other navigational aids, such as site maps, site indices, and help systems.

312 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Chapter 10
Site Maps and Other
Navigational Aids

313

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

314 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Even when a site is well structured and search tools are provided, users may still
have difficulty finding what they are looking for. Users may approach site
navigation differently. Even when advanced search facilities are available, some

users may prefer to browse or navigate by means of a site’s structure, while others may
prefer an alphabetized list. Still others might prefer a time-related aid, like a date-
ordered list of changes to the site, or visual aids like graphical site maps.

Given the diversity of navigation possibilities, site designers should strive to provide
as many navigational choices as possible—particularly site maps and site indexes. Even
with these navigation systems in place, however, we must contend with the fact that
some users may need additional assistance and turn to help systems or glossaries to
further their understanding of the site.

Beyond Search
One of the biggest drawbacks to a search is that it doesn’t provide a very accurate idea
of scope, nor does it typically give the user an idea of content that is related or nearby
the search in question. Consider how in a printed book like this one the sheer physical
size of the work can give the reader some idea of the range of content contained within.
The table of contents may also give an idea of the scope of the contents, as well as an
indication of how the elements of the book are related. The index in the back of the
book may indicate locations in the book where interesting content can be found. Even
the indication of page numbers in the index provides hints to the reader as to the
volume of information on a particular topic. Web sites should be able to provide all
these features and more, since they are not constrained to one particular mode of
presentation.

You may not need a search facility unless you have a very large site or very complex
data. Even if you do need a search facility, it will not address every user’s navigational
questions. Users do not always know exactly what they are looking for. There is a huge
range of possibilities—from a directed search for a known item to a casual browse
around a site to see what is there. Sometimes a user will have a specific object in mind
but will also be interested in seeing things that are somewhat similar. Looking through
a list of related items easily addresses this desire. While search engines can provide
alternative search queries as suggestions, sometimes the user just needs to browse to
understand the items available. In this chapter, the common navigation aids used on
Web sites beyond search, such as maps and indexes, are surveyed, with a discussion
about current best practices and thoughts on improvements to them.

Site Maps
A map graphically represents the location of various elements within a set region
or space. For example, a road map may represent the location of roads, cities, and

landmarks in a bird’s-eye style. A map provides both direction and distance information
that a driver can use to find and reach a destination. Of course, maps aren’t limited to
driving directions, and some present information such as demographic data, political
boundaries, animal migration patterns, weather, and just about anything else that
intersects with the mapped geography.

Given that maps tend to present information related to geography, do they have
any place on the Web, which does not exhibit such spatial characteristics? The answer
appears to be “Yes,” given the number of sites that do employ some form of navigational
aid dubbed a “site map.”

On the web, a site map is a structural overview of a site that shows pages generally
related by structural proximity or, more appropriately, topic similarity. While often the
physical and conceptual locations of pages are directly related, they do not have to be.
In this sense, site maps for Web sites are more like the table of contents for a book,
showing the organization of the book and providing a quick reference to major points
of interest, such as chapter or section starts.

Just as the table of contents of a book is invariably in the same place—somewhere
close to the front of the book—site maps should be easy to find. Typically, a site map
should be accessible from every page within a site, but generally should not be a primary
navigation choice. Often, a site map button or link is available within a global navigation
bar, but its appearance or location is less prominent than main section navigation. Some
site designs will cluster navigation aids like a site map and search facility together, as
shown in Figure 10-1. The position of this navigational aid cluster is usually the upper-
right corner or at the bottom, but the position of a site map, search facility, and index
links aren’t quite at the level of a Web convention. The most that can be said is that these
secondary navigation items are generally not placed in a prominent location on the page.

The name of the Web site map link should be well considered. While simply “map”
might seem appropriate, site designers must consider that if the site includes information
about physical locations in the real world, the simple word “map” may be confusing.
The term “site map” should be considered standard as the link name to access a
structural diagram of a Web site. Do not confuse this with “site index,” which will be
discussed later in this chapter.

Rule: Name the link to a site map simply “site map.”

In general, activating a site map link will load a page that provides a section-by-
section overview of a site with links to many pages in the site. The user will scan the
links in the map and then decide which page to access. The user could also use the site
map to get a quick overview of the range of content within a site.

Textual Site Maps
The representation of a site map comes in many forms. The simplest map is a textual
site map. A textual site map represents all links as basic HTML text with varying sizes,

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 315
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

316 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

colors, or indentation to show the importance of pages within a site. An example of
such a map is shown in Figure 10-2.

Figure 10-1. Example site map button position

Secondary position

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 317
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

The arrangement of the pages can aid in a user’s understanding of the site. Many
sites use colored boxes or columns to section various aspects of a site, as shown in
Figure 10-3.

Figure 10-2. Textual site map

318 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 10-3. Approaches to text map organization

In general, a column or downward-oriented approach to site mapping is better for
larger sites, given screen width constraints and the lack of rightward scrolling.

Textual site maps are efficient to download, as well as easy to build and update.
However, textual site maps may not be terribly memorable for the user. It may also
be difficult to present complex organizational relationships in text form. Adding
graphical icons to section heads may improve memorability and speed access by
providing obvious site landmarks within a text map. It is also possible to use icons
to indicate content types within the map or indicate password-restricted areas, page
weights, external links, or other features. Figure 10-4 illustrates some of these ideas in
practice. Yet even with added icons, some designers will find the aesthetic potential
and presentation options of a textual site map to be limiting, and they will turn to a
graphical site form.

Graphical Site Maps
While graphical site maps provide more possibility for visual design, they do have
many drawbacks. As discussed in Chapter 4, most designers use a structural diagram
or similar aid when organizing a site. It is not difficult to translate such a diagram into
a visual and use it as a site map by making the various page icons clickable. A simple
example of a graphical site map is shown in Figure 10-5.

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 319
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 10-4. Icons create good page markers or indicate content type

320 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Some site development products, like Macromedia Dreamweaver or Microsoft FrontPage,
provide an easy way to save out site map images directly. Unfortunately, the maps often
don’t work as well as actual user site maps. Other flowcharting tools such as Visio may
be useful in creating and exporting site maps to a Web-friendly format.

Like flow diagrams, many site maps are hierarchical in structure, starting with the
home page graphic at the top and proceeding down the page for deeper pages. Such
a style will usually work well only with a relatively deep site. A broader site would
probably not fit within a typical screen size. Thus, many designers opt for a circular
design or less structured site map, as shown in Figure 10-6.

Graphical site maps can also be used to provide more obvious clues to depth. Some
have found the use of 3-D–like maps (called an isometric style) appealing, as shown in
Figure 10-7. The concept here is that such a map allows viewers to quickly determine
depth and position. However, while such maps look sophisticated, they often provide
little value for larger sites, as they typically can only represent a few pages. Further,
they often are difficult to produce.

Figure 10-5. Flowchart-style site map

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 321

Figure 10-6. Circular and semistructured graphic site maps

Figure 10-7. Isometric site map

322 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Despite potential production costs, one huge benefit of graphic site maps is that
they can be extended to fit with the theme of the site, as shown by the example site
map in Figure 10-8.

An interesting possibility with graphical site maps is using thumbnails representing
the page linked to. An example of such a site map interface is shown in Figure 10-9. A
thumbnail map might be very useful in a graphically intensive site with very different
designs per section. However, in most cases, thumbnail maps will provide little in the
way of extra benefits and are generally difficult to create and maintain. In short, despite
looking sophisticated, they should probably be avoided.

Finally, some sites go so far as to create very sophisticated visual maps of sites,
complete with animations and transitions, as shown in Figure 10-10. While such maps
can show interrelationships between topics and pages that may be very complex—
particularly when produced automatically from site meta data, they also can be difficult
for users to figure out. So far, it appears that Web site visualization for navigation
seems of little value to most users. Consider as well that users will often turn to a site
map when they are lost or confused, so presenting them with an ingenious or
unfamiliar site map navigation system may just drive them away.

Suggestion: Avoid using a complex or unfamiliar navigation system in a
site map.

While graphical site maps may provide more design possibilities, they do so at the
expense of download time and updatability. Obviously, a visual site map will take
more time to download than a text one. For users lost on a site, this may add insult to
injury. Further, it will be difficult to keep the site map up-to-date, because any page
changes will require a graphic change. Because of their update limitations, graphic site
maps are reasonable only for relatively static sites, unless their detail is limited only to
the highest-level pages.

Figure 10-8. Metaphorical site map

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 323
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 10-9. Thumbnail map

TE
AM
FL
Y

Team-Fly®

Site Map Design
Before considering the issues of designing Web site maps, think about how maps are
used in the real world. Standard geographical maps help people orient themselves in
three basic ways:

■ They show users where they are.

■ They show users where they might go.

■ They give users an overview of their environment.

324 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 10-10. Visualization-oriented site map

Conceptually, a Web site map should serve the same purpose. In reality, they do
not always meet these goals.

Showing Scope and Destination Choices
Clues to the size and scope of a site are usually found in most site maps, thus giving
users a good overview of the site environment. A Web site map will provide links to
various pages in the site, but not to all. A site map will also show the major sections and
pages of a site, which should give the user an indication of the site’s content. Of course,
both of these map features are affected by the degree of detail provided in the map.

For all but the smallest sites, it may not be possible to show all the links in the site.
Few site maps, even textual maps, show more than 100 to 200 direct links, because
the map quickly becomes a tangle of links or icons. If you consider using a graphical
structure, you may be limited to only a few dozen pages, at most, onscreen.

In short, the site map should be created to meet the following criteria:

■ Provide the appropriate level of detail.

■ Show important pages or site landmarks.

Determining the appropriate level of detail to represent will depend on the
complexity of the site. For large sites, it is suggested to use pull-down menus
within a site map structure or a similar dynamic structure, such as the expanding
tree control shown here:

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 325
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

“You Are Here” Indication
Most site maps do not really show users where they are in the site. In some sense, this
really doesn’t matter, because most site maps load over the current page. However, it
might be more appropriate to show the site map in a secondary window and provide a
“you are here” marker within the page. This would be similar to location directories at
malls, museums, and amusement parks that provide a “you are here” indicator to help
the patrons find their way. The use of a similar construct on a Web site map would
certainly give users more spatial orientation as they browse a site. An indication of the
current document could be accomplished by distinguishing the page in the map by
color, a graphic, or by size. Unfortunately, since the user could access the site map from
any page on the site, adding this feature would require making the site map page
dynamic. An example of this concept in action is shown in Figure 10-11.

Using a technology like JavaScript, it is not terribly difficult to augment a site map
to provide such a feature. You can do this by looking at the referring page for a link
and then having the site map highlight which page the user was on.

“Where You Were” Indicators
An even more sophisticated idea would be to show a user not only where they are, but
where they have been during a site visit. You might augment a map automatically with
information showing the user’s trail through the site. While this can also be represented

326 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 10-11. Provide “you are here” markers

by the browser’s history mechanism, a site map could be built to show page visit time
or order. This may allow users to find pages they haven’t visited recently. An example
of one possibility of such a map is shown in Figure 10-12.

Producing Site Maps
For small sites, site maps are easy to produce manually, whether they take graphic or
text form. For large sites, particularly those that have a great deal of dynamic content,
developing a reasonably detailed map may be tedious. Automatic creation of a site
navigation map is possible, but not always optimal. Tools do exist that can be used to
produce textual or even graphical site maps. However, often these maps are geared
more to a site maintainer looking for broken links on the site or performing similar
structural maintenance.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 327

Figure 10-12. Site maps could show navigation history

While automatic mapping would seem a good route, particularly for larger sites,
showing the complete linking relationship of a site will often produce a tangled mess of
page links. Given limited screen real estate, there is little real-world evidence to suggest
that a graphical site map can show more than a few dozen pages without becoming
unwieldy for the user. Textual maps are better. In either case, different levels of zooming
could be useful—but potentially at the expense of showing content within the site.

Automatic mapping of a site may also fail to point out which pages are important
in a site and should be identified as “site landmarks.” It may be possible to use a
heuristic, such as the number of links pointing to a page, hierarchy depth, or the
amount of content in a page to determine which pages are important. However, these
heuristics frequently fail, just as they do in search engines. The bottom line is that
human guidance may be required for an automatic mapping tool to properly indicate
the importance of pages.

Depending on the size of your site, you will have to choose between a graphical
site map or a textual site map, as well as a hand-produced site map or a dynamically
create map. No matter what the form, there will always be the question of how much
detail should be shown in the map. Maps for larger sites may not be able to reasonably
link to every page. Site maps for larger sites may require multiple zoom levels. However,
in either large or small site maps, we will be concerned with how to show the importance
of various points within a site. We also may be concerned with showing the amount of
information at a particular location within a site. The basic site map design issues are
summarized in Table 10-1.

328 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Map form Graphical maps are useful for small sites,
particularly if they are static. Graphical maps
also provide opportunity for visual design.
Textual maps are useful for larger sites or those
that require frequent changes. Textual maps are
favored because of download speed and
adaptability.

Map production method Small maps and most graphical maps should be
produced by hand. Large maps or maps for sites
with frequent structure changes should be
produced dynamically.

Map detail Site maps for small sites should link to all pages.
Large site maps should provide primary page
links at a minimum and may provide zoom
capability to get to deeper pages. Page size or
content type may also be important to site maps.

Table 10-1. Site Map Design Considerations

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 329
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

While site maps can be useful, a survey of large sites shows that some have removed
site maps in favor of search engines or site indexes. Some claim this trend is due to a
lack of interest in site maps by users. Unfortunately, given common practices in site
map design, it really is no surprise that their usage is limited. However, it is the author’s
opinion that a well-executed site map does have some value and should be included
in every site.

Site maps can provide more than navigation assistance. Web quality assurance tools
may create maps to help developers find broken links or stale content. Further, a visual
representation of site data can be used to discern data patterns in a site.

Site Indexes
A site map may fail some users, particularly if they are scanning for a known item but
are forced to guess the appropriate category. Even textual site maps that often resemble
the table of contents of a book can be slow to scan if the user isn’t familiar with the
organization of the site. In the world of books, an index might be a more efficient way
to find the page that a known item is referenced on.

An index for a book like this one provides an alphabetically organized reference of
topics to page numbers. Thus, if a user wants to look up information on server logs
they scan alphabetically to letter S and find a reference like this one,

Server logs, 381,743-746, 801

which indicates that six pages have references to server logs and the pages from 743 to
746 contain the most information on the subject. Given some sense of the scope of the
book by its physical size, the discerning reader might think to look elsewhere for heavy

“Landmark” indication Site maps should indicate important pages with
graphic, text, color, size, or position cues.

Page characteristics Site map entries should show important page
characteristics, such as file size, access rights, or
other pertinent information.

Location indication Site maps should include a “you are here” feature
when possible and spawn a separate window.

Table 10-1. Site Map Design Considerations (continued)

details on logging, given that the book devotes only a few pages to the subject. In view
of the usefulness of an index in a book, many have tried to apply the idea to Web sites.

On the Web, a site index is an alphabetical listing of a site’s contents. The label to reach
a site index is typically called just that—a “site index”—but many sites unfortunately
seem to mislabel this tool, calling it a “map” (or calling a map an “index”). While the
simple label of just “index” might seem appropriate, site designers should consider
that the word “index” on the Web has multiple meanings and is often considered to be
a primary page of a section. Because of the inherent confusion with the label to this
structure, some sites have more explicitly named links to the index, including “A–Z Index,”
“A–Z Topic Index,” “Alphabetical Site Index,” or some similar type of link name.

Suggestion: Label links to a site index as just “site index” or “A–Z index” if that
is the only form of indexing provided.

A basic site index is shown in Figure 10-13. Notice how a lettering scheme with
links is used to make it easy to navigate an index and that many pages may link to a
particular topic.

330 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 10-13. A simple site index

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

As with a site map, access to a site index should be from every page within a site.
Similarly, the site index should not be made a primary navigation choice. Like the site
map, the site index link is often made available within a site-wide navigation bar, but
its appearance or location is less prominent than main section navigation and is often
clustered with other navigational aids.

Unlike site maps, the form of a site index is fairly regular and is nearly always text.
It is possible to provide some graphical elements, such as icons, within a site index to
indicate important index words or provide supplementary information such as content
or page type. However, a graphical site index is not practical for all but the simplest
sites; the only benefit would be stylizing the page to fit in aesthetically with the site.
Other visual cues like color, font size, or font weight might be useful to distinguish
more important concepts or pages within the index. A slightly more sophisticated-
looking site index is shown in Figure 10-14.

Generation of an alphabetical site index can take some effort. For small sites, it may
be possible to come up with topics and their associated pages quickly by hand; but as

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 331

Figure 10-14. A site index may show page details

the site grows, trouble may ensue both in volume and regularity of indexed terms. Two
solutions present themselves: automation and controlled vocabularies.

Automation involves using an indexing tool like a search engine to analyze page
content and determine word relevance on a per-page basis. Unfortunately, tool-created
indexes will contain words of little or no relevance and will probably incorrectly associate
some words and pages. The reason for this is obvious. Like search engine spiders, an index
tool determines word/page relationships based upon word frequency and a variety of
other criteria. This approach will not necessarily produce optimal results. Site designers
should use tool-based results as a guide and produce the final index by hand.

A better solution would be to develop a controlled vocabulary and then to index
pages to fit within the prescribed keywords in the defined vocabulary. Creation of the
keywords in the controlled vocabulary can occur either in a top-down or bottom-up
fashion. In top-down, you would come up with what are believed to be the keywords
for the site without looking at the pages first and then try to fit pages into the keywords,
making adjustments where required. A bottom-up approach would involve choosing
keywords when looking at pages and then conforming similar keywords as they are
encountered. Generally, those familiar with the subject area of a site and its contents
will find the top-down with adjustments easier, but bottom-up may be useful to get
started in the indexing process or to orient a new indexer to the site’s content.

Once keywords are defined, they are often placed within a page using a <meta> tag
or even in an RDF format. For example we might create our own simple <meta> tag
value called index-entry,

<meta name="index-entry" value="Butler Robot" />

and then create the index by automatically collecting these values and associating them
with the page URL. We may also store this information in a database and generate the
index directly, rather than spidering <meta> tag information in a page. The value, of
course, of the <meta> tag–based approach is that as static pages are added to the site,
the content will be picked up in the index. However, as more sites are produced from
an XML document, database, or content management system, the internal <meta>
information may not need to be exposed directly in the document.

You may wonder if there are other ways to organize index content than
alphabetically—the answer is a resounding “Yes!” (but alternatives have not yet been
widely embraced in Web design). For example, in a site that has many updates, you
may want to consider time-based indexing, as shown in Figure 10-15.

Time-based indexing (or temporal indexing) usually focuses on the time a page
was added to a site and may also include modification information. Return visitors in
particular may find such content sorting very useful to determine what exactly has
changed in the site since their last visit. Of course, you should always remember that a
temporal index would be of limited value in a site with few updates and may in fact
reduce the credibility of the presented content by making it appear to be stale.

332 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 333
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Interestingly enough, temporal indexing of site content was actually popular on the
Web in the early days in another form—the “What’s New” page. You might consider
keeping a “What’s New” page along with a time-based index—the page could provide
more details about additions or a summary of the more important additions to the Web
site. More discussion of this structure can be found later in the chapter.

Another possible index organization might be a popularity-based index. You could
show the pages ordered by how popular they are with visitors—how many unique
page visitors viewed a page or how many times a page was requested. Such an index
would help users determine which pages are deemed most important by the masses.
Unfortunately, this may reveal information about site traffic you may not care to share,
and it also may not help users find useful content that just isn’t considered popular. It
is also possible for such metrics to be manipulated by unscrupulous site visitors, and
there is the possibility of creating a negative feedback loop as people go to falsely

Figure 10-15. Temporal indexing is useful for sites that change continually

TE
AM
FL
Y

Team-Fly®

popular sections just because it is top on the list. Figure 10-16 shows a popularity-based
index slice.

Another possibility might be to show some satisfaction or quality ranking if users
provide feedback on a page, as shown in Figure 10-17.

Another indexing possibility includes showing landmark pages by indicating which
pages are heavily linked to and which pages have heavy outbound links. You might
even consider indexing by file size or type. There are certainly other possibilities, but
the value of adding more and more indexing schemes may diminish as users are
overwhelmed by the site sorting possibilities.

While a site index today is not a common structure on the Web, it is in many
ways preferable to a site map. A site index does not rely on a particular physical site
organization, so maintenance is not difficult even for a dynamically generated site.
A simple alphabetical site index is easy to use and is useful for known item searches,
while a more complex site index allows users to slice site contents in whatever way

334 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 10-16. Popularity-based indexing

suits them rather than with the predefined structure presented. A site index really
encourages content-based navigation rather than structural navigation, which should
fit user Web habits well.

Miscellaneous Site Navigation Aids
Beyond the site map and site index, numerous less popular navigation aids are being
used in Web sites. Some of these are very useful in particular types of sites, but certainly
many may become historical curiosities in the future. So, just because you can add them
to your site, consider well their value first. If you do end up using them, study their
usage in log files and solicit feedback from users about their usefulness to determine
whether they make sense for your site in the long run.

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 335
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 10-17. Satisfaction-based indexing

Glossary
Many Web sites, particularly those filled with industry-specific jargon, would benefit
from a little-used site aid—the glossary. A few sites that have complex jargon and
appeal to people who may not be familiar with all the terms—online trading sites, for
example—have employed glossaries successfully. However, there are relatively few
glossaries used on the Web. Of the Fortune 100 companies, only seven had an easily
identifiable glossary on their Web pages in the first half of 2002, up from two in the
summer of 1999. Other sites, including those dealing with technical or financial
material, also failed to show a heavy increase in glossary sections.

Suggestion: Provide a glossary in a site filled with complex jargon.

A glossary link may not necessarily be required on all pages, but should at least
be readily accessible from a help page. Such links are often found within secondary
navigation structures, like site indexes. Regardless of where it is found on a page, the
link label should be “Glossary,” “Site Glossary,” or “Common Word Glossary.”

A full-site glossary should be spawned as a separate smaller pop-up window.
Otherwise, it will be difficult for users to utilize it properly, as they will have to consult
word definitions without seeing the word in use. If the glossary is more than two-dozen
entries long, a letter-style link list should be provided. Very long word lists should
include a search feature. Like a site index, a glossary should be implemented in text
and should be easily updatable. Site designers should consider creating a print-friendly
version of a site glossary for users to print and have as a reference when they browse
the site. An example of a site glossary is shown in Figure 10-18.

Rather than have a general link to the glossary, it is possible to provide links close
to words that are often misunderstood.

It is also possible to provide ToolTip information rather than a glossary link via
the title attribute, which is a core attribute for nearly all HTML/XHTML elements.
Acronyms and first-word occurrences of complex ideas make perfect candidates for
this approach:

336 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<span class="word-with-glossary-entry"

title="Personal Space Vehicle-- a plutonium

powered space car for personal use">

PSV

If you use the ToolTip approach for word definition, make it obvious to the user
that the item is selectable. The previous example related a style sheet rule by setting the
class attribute to “word-with-glossary-entry.” This class value should relate to a style
entry to make the word look different from the common text.

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 337
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 10-18. Example site glossary

“What’s New” Sections
Sites that are consistently updated should include some form of “What’s New” section
in the site to aid return visitors. The use of “last updated” text along with a date on a
site’s home page or at the bottom of a page is not appropriate because it does not
indicate exactly what has changed on a site. Further, as many of these indications are
script generated, simply opening and saving a page may change the date of update
regardless of any actual changes made to the site.

Rather than forcing users to guess what has changed on a site, the site could employ a
“What’s New” section to alert return users to changes in site content. The section should
contain only site-update information, but, unfortunately, many such sections are loaded
with press releases and do not cover all forms of site updates. In the past, Web managers
created pages that listed all changes made to site pages, similar to a revision or update
list to the site. A survey of Fortune 500 sites at the time of this writing shows that the
“every update in the site” style of “What’s New” sections has fallen out of favor and
has been superseded by the press release style of “What’s New.” This change may be
due to either the difficulty of keeping such a list up to date or the heavy marketing
focus of many sites. Over time, it is likely that some form of “recently changed files”
section will become popular as WYSIWYW (What You See Is What You Want)–
oriented sites with heavy personalization become more commonplace.

Keyword Jump Systems
One navigation system popular with larger organizations running various forms of
offline and online promotions could be dubbed a “keyword jump system.” The concept
is that various keywords or codes are promoted in print advertisements, direct postal
and e-mail interactions, television spots, and so on. A user visiting the site should be
able to enter the keycode (often directly in a field off the home page) and then be
transported to the advertised page. This concept is illustrated in Figure 10-19.

338 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 10-19. Site keyword system in practice

The value of keyword jump systems is that it allows organizations to avoid promoting
long URLs in favor of easier ones to memorize keywords. These keywords can be used not
only for navigation but for tracking, since many organizations may have the keywords
indicate how the user found out about them. So far, such navigational systems are limited
primarily to e-commerce sites; but given that the AOL Keyword system is widely known
and browser vendors have been experimenting with keywords in the location bar, such
systems may become much more popular in the future.

Site Tours
First-time visitors to complex sites as well as novice Web users may have a difficult
time navigating, regardless of the site’s structure or navigation aids (such as site maps).
One way to help orient new users is the tour. A simple automatic or self-guiding linear
path of pages can be implemented in a site, showing the site’s most important pages
along with explanations of how to navigate the site. A theoretical conception of a guided
tour is shown in Figure 10-20.

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 339
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 10-20. Guided tours are useful for first-time visitors

340 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

As discussed in Chapter 6, a linear structure is very easy for new users to deal with.
They may welcome the loss of control in exchange for introductory site use lessons.
Theoretical support for tours as a navigation aid goes back to the earliest hypertext
ideas presented by Vannevar Bush, who described “trails” through document sets that
other users could follow. But despite anecdotal and theoretical support for the hypertext
trail idea, the use of site tours and similar devices to help users navigate has so far been
limited. They are primarily useful for novice or first-time users; advanced users will
find them limiting or even annoying.

Following Traveled-Path Systems
Beyond preplanned guided tours of a particular site, there has been some growth in
community-built tours or preplanned paths through the Web, the most prominent
example being a Web ring (www.webring.com). Page popularity indexes and various
voting systems that indicate site, page, or link popularity also show the possibility of
directing users where to go. Even the popular “Similar items purchased by others”
concept has been used successfully to guide people to likely purchases in e-commerce
sites. Unfortunately, navigation related to following traveled paths of other users does
have significant downsides. Consider that the unscrupulous site owner or even other
site visitors may create a “beaten grass” effect by clicking on links or rigging the site to
make it appear that users find a particular path appealing. Such manipulation certainly
breaks trust with users, and site owners should be wary of popularity-based navigation
systems that can be manipulated by unscrupulous visitors.

Help Systems
Regardless of the quality of implementation, some users will invariably be confused
by a site’s navigation or method of use. Unlike software, sites generally cannot rely on
print documentation to answer questions. Online documentation is really the only
approach to providing extra assistance for the user. Few sites actually have any help
systems at all. A survey of the Fortune 100 sites during the summer of 1999 shows that
only 11 had any form of help system. By 2002, the situation had vastly improved, with
23 having an obvious help system. However, considering that all had customer support
phone lines, it seems there is still a long way to go in customer service online. On a
more positive note, help systems were ubiquitous among the large e-commerce sites.

When to Use Help
While few sites employ fully developed online help systems, all sites should have
at least a basic help system explaining site labels, navigation facilities, technology

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 341
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

requirements, and contact information for technical support or bug reporting. Figure 10-21
shows an example of a very simple help page.

Figure 10-21. Demo Company’s help page

Help pages would eliminate the need for a splash or home page covered with
browser, plug-in, and technology requirement statements and buttons, as shown here:

The goal of the help system should be to help users figure out any site requirements,
orient themselves to the site, and determine how to accomplish their desired goal. Be
careful not to hide information in a help system. If a particular page needs help, put the
help information within the page rather than burying it behind a Help button. However,
if this gets too overwhelming, it is possible to resort to less obvious forms of help.

The most basic way to add a help item to an object is using the HTML core attribute
title. Consider the following markup:

<form>

<label style="font-weight: bold">Phone Number:

<input type="text"

name="phone" id="phone"

size="15"

title="Enter phone number of form (XXX) XXX-XXXX" />

</label>

</form>

When the user positions their pointer over the text field, a small ToolTip window
similar to a help balloon appears, indicating what to do with the field, as shown here:

Older browsers may not support the use of the title attribute; however, degradation is
graceful because nothing appears. While it is possible to simulate this type of help with
JavaScript, it is not recommended.

342 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rather than using a mouse-over, you could create a simple link, such as the word
“Help” or a simple Question Mark icon, and have it create a small Help window
explaining what to do with the field. The simple markup shown here,

<form>

<label style="font-weight: bold;">Phone Number:

<input type="text"

name="phone" id="phone"

size="15"

title="Enter phone number of form (XXX) XXX-XXXX" />

<a href="javascript:alert('Enter phone number of form (XXX)

XXX-XXXX')">Need help?;

</label>

</form>

can be used to create a simple JavaScript-style help system utilizing an alert box.

Complex Help Systems
Most Web sites should rely on help systems that are immediately apparent.
Instructions should be in place, ToolTips should always be on, and a Help button
should be prominent on every page. However, power users may find such a heavy
degree of help annoying. Within intranets and some extranets, it may be desirable to
follow more conventional Windows-style help forms. In most software environments,
the help system is invoked by the F1 key, which brings up a Help window like the
one shown next.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 343

TE
AM
FL
Y

Team-Fly®

344 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

The typical Help window provides a Contents tab that shows a collapsible/
expandable outline form of the various help subjects available, an index that provides
a quick lookup by a fixed vocabulary, and a free-text search query system. Setting
up a similar help system for a Web site is possible. Microsoft’s HTML Help (http://
msdn.microsoft.com/workshop/author/htmlhelp/default.asp) provides the ability
to add sophisticated help systems to Web sites. Unfortunately, the strict Microsoft
approach doesn’t work in all browsers, because it relies on an ActiveX control only
available to Internet Explorer 4.X and greater browsers. If you need cross-browser and
cross-platform help, you will also have to provide Java- or JavaScript-based help. Some
software vendors—notably, eHelp (www.ehelp.com)—offer systems to create cross-
browser help. WebHelp from eHelp creates a help system that works under a variety of
platforms and browsers. An example of this type of complex help system is shown in
Figure 10-22.

While complex online help systems provide a great deal of power, they can be
relatively time-consuming to create. However, if users (particularly intranet users) are

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 345
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

familiar with using standard help conventions, like the F1 key, it is important to
accommodate them. Microsoft has defined a special JavaScript event, onhelp, that
can be used with most HTML elements (particularly form fields) to associate actions
with the press of the F1 key. This simple example shows how it might be used with
a text field:

<form>

<label style="font-weight: bold;">Phone Number:

<input type="text"

name="phone"

id="phone"

Figure 10-22. Software-style help for Web sites

346 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

size="15"

onhelp="alert('Enter phone number of form (XXX) XXX-XXXX');return

false" / >

</label>

</form>

Notice that the code requires a false return value, since without this value the
browser’s help system will be invoked after the help information is presented. It turns
out that we could instead invoke a Windows help file, but again this is somewhat
Windows centric.

No matter how you do it, always remember that even if your help system is
crafted properly, you still will not completely remove confusion from your site.
Because users still might not understand everything, make sure to provide an e-mail
form (or at least an address) for users to ask questions. Commonly, this is in the form:
webmaster@domain.com. Unfortunately, beyond this simple e-mail, few Web sites
seem to provide any major degree of technical support, but this will certainly change
as sites become more complex and people become much more self-reliant.

Navigation Aid Trends
The future of navigation aids is unclear, but a few trends can be observed. First, site
assistance is becoming more important. Examination of large e-commerce sites puts
site maps, indexes, technical assistance, and other features clearly in the realm of
customer service. Already, some e-commerce sites have adopted an idea from real
world stores: a customer assistance section. Lost users are driven to this section to
receive help to get back on track and complete their transactions.

Another trend is an increased role of browser navigation assistance. Already, some
browser add-ons show page rankings, previous visitor paths, or even site overviews. In
the future, a Web browser might be able to provide a visualization of a site, or even
read an overview of a site’s topics and provide its own views for users. Yet, even if the
browser does the presentation, the content of such a map will still have to be developed
and provided to the browser.

Last, the reliance on meta data to form sophisticated navigation systems will
continue to increase. For example, in a facet map you could map all the site’s content by
its characteristics or facets. A common example might be to categorize types of beer by
brand and type (such as pilsner or ale), color (such as red or brown), country of origin
(such as Germany, New Zealand, or U.S.A.), and so on. You might then allow the user to
slice the information by the facets presented. Some sites do this using “finding systems,”
while others use a style of search breakdown. Both are shown in Figure 10-23.

C h a p t e r 1 0 : S i t e M a p s a n d O t h e r N a v i g a t i o n a l A i d s 347
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
NNote that faceted classification favors regular data that is fully categorized, but it

does enable a variety of interesting possibilities beyond the presented navigation
scheme, such as generating “Related Links” to a particular page.

Even more complex are topic maps that show interrelationships among subjects
through a variety of associations. For example, a subject like “Web Design” might have
an association with this book. This book, in turn, has an association with this author
and certain URLs online, while the author may have a variety of URLs related to the
work in the book. A topic map helps organize these relationships in a structured
manner. Once in such a form, topic maps may be exchanged or even combined when
they are in an XML format. While they sound exciting, the complexity of producing
and using topic maps has so far significantly hampered their use online.

Figure 10-23. Facet-mapped information can take many forms

Summary
Site maps provide a familiar construct for Web site visitors. Just as people use a map in
the real world to find their way, a site map provides a guide for users to find their way
to particular pieces of information on a site. Site maps may be graphical, textual, or a
combination of both, and they are organized in a variety of ways. There are limits to
the effectiveness of site maps. Users may not actually form mental models of site
structures like designers do. A site index often provides greater benefit to users than a
site map and can provide multiple ways to view data, including viewing data ranked
by popularity or by some temporal criterion. Other aids such as glossaries or site tours
may be useful in helping visitors figure sites out. A full-blown help system may even
be required, particularly if complex forms need to be filled out. Finally, no single site
aid meets all users’ needs. The differences between users suggest that designers should
strive to employ as many navigational aids as reasonable on a site.

348 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Part III
Elements of Page Design

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 11
Pages and Layout

351

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The fundamental unit of a Web site is a page. Unlike with printed material, the
characteristics of a Web page can vary dramatically between sites, as well as
within a single site. Inspection of numerous pages shows that there are common

page types—such as home pages, search pages, and content pages—that tend to have
similar characteristics. However, the similarities between page types across sites can be
slight. Even issues as basic as the width and height of pages can evoke contentious debate
among designers. Despite this debate, Web design conventions suggest that some page
layouts tend to work better than others. Designers should start exploring page layouts
with these basic layouts in mind and then modify them to fit the content being presented.
Extremely creative layout, while often visually inspiring, should be considered somewhat
dangerous, as the purpose of page layout is always to assist the user in page use.
Consistency in page layouts can go a long way towards improving page usability.

What Is a Page?
This concept of a page is at the very heart of a Web site. In the simplest sense, a page is
what appears in a browser window. One page equals one URL. A user types in a URL
and a document appears in the window. These days, things aren’t so simple. A URL might
load multiple documents in the browser window, and the so-called Web page might
be broken up into many smaller windows or frames. Today a “screen” may be a better
analogy, but “page” is the term we have and is unlikely to change.

In the print world, a page is a component of a document like a book or a press
release. A page is a “chunk” of the larger structure. Of course the page itself is broken
down into smaller chunks, such as paragraphs, sentences, headers, footers, illustrations,
and the like. The Web world is no different. A Web site may contain a large amount of
content on a particular subject, but it is divided up or “chunked” into different pages.
Each of the chunks should be a self-contained “idea” that contributes to the whole. Ideas
can span multiple pages in a coherent flow of steps, stages, or parts. The goal in setting
up Web sites is to take a body of content and spread it across a series of interrelated
pages for easy digestion by the user, as shown in Figure 11-1.

Chunking content is often more of an art than a science. A designer has to make some
chunks bigger and some chunks smaller than others. Unlike in print, the dimensions of
a Web page are not always fixed.

Page Sizes
The potential size of a Web page, in a theoretical sense, is both infinitely long and
infinitely wide. However, given that overly long or wide pages would be difficult for a
user to comprehend, use, or even print, there should be some consideration of appropriate
page size. The most obvious question to ask yourself is what the appropriate size of
a page should be. Even in paper, there are numerous sizes, but the Web certainly lacks
an equivalent for the ubiquitous 8½ x 11-inch letter size. This is both good and bad.

352 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Is it really a problem that the Web lacks a standard page size? In the world of print,
there are standard sizes rather than a single standard size. Printed materials might
range from something as small as a fortune cookie message to something as large as a
poster. Brochures, CD case liners, letters, business cards, paperback books, and so on
all have different sizes. The Web is the same. Just as with print, the key to a successful
Web page is whether the “size” is suited to the content. If the content is too little for
the dimensions selected, you may find that the page has excessive white space, which
may seem unusual to readers, particularly if they are accustomed to variable page
sizes. Conversely, if there is too much content, it may not fit within the user’s screen,
forcing the content to be split across multiple screens.

Rule: Set the size of the page to fit the purpose and the content at hand.

Despite the variations in sizes resulting from differences in content, there are many
reasons that standard sizes are a good idea. In the print world, if we didn’t settle on a
particular size of paper, such as standard letter size, it would be very difficult to buy
paper, create laser printers, and so on. On the Web, some designers struggle with a lack
of standardization. Numerous people have attempted to price Web site development
services on a per page basis, but what exactly constitutes the size of a page? Aren’t bigger
pages, regardless of complexity, at least slightly more costly to do than smaller ones?

The fixed-page way of thinking may occasionally lead to lessened readability. If
Web sites are priced on a “per page” basis, customers will try to cram as much data as
possible into a single page. It doesn’t really reduce production costs, and it may result

C h a p t e r 1 1 : P a g e s a n d L a y o u t 353
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 11-1. Designing sites involves chunking content into “bite-size” pages

TE
AM
FL
Y

Team-Fly®

in a long, dense, cluttered page that will lack both aesthetic appeal and onscreen
readability. Also, fixed-size pages may result in page breaks at odd moments in the
document, making it difficult to follow.

Fixed page sizes have definite advantages when trying to decide how to “chunk”
information. Like a physical sheet of paper, there is a finite number of characters that
will fit on the page. Further, a fixed size gives constructive boundaries for what may
appear on a given page. Finally, fixed page sizes can also increase readability, as users
know what to expect when viewing a page. They know it will be a certain size, with
reliable elements, and will print or can be e-mailed in a predictable manner.

Given all the potential benefits of fixed page sizes, what size makes sense? First
consider letter size paper. This is a standard 8½ x 11-inch paper size; on a system with
a typical resolution of 72dpi, this works out to be 612 pixels by 792 pixels. Consider
browser chrome in a browser like Internet Explorer and you’ll see that this works out
to be around three screens filled with content at 640 x 480, two screens or so at 800 x 600,
a screen and a half at 1024 x 768. The entire page fits finally at 1280 x 1024, as shown in
Figure 11-2.

What does this tell us? It lets us know that the user’s screen is really the problem.
The big question, then, is what is the user’s screen size? Considering computer systems
first, common screen sizes include 640 x 480, 800 x 600, 1024 x 768, 1280 x 1024, and
1600 x 1200. Numerous others sizes are important as well, such as MSNTV and Palm
screen sizes. Table 11-1 details the common screen resolutions found.

354 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-2. 8.5 x 11 inches on the Web

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

Screen size really doesn’t matter as much as designers might think. Even if users
have a particular resolution, they may not size their browser to fit the entire screen, nor
may they want to. The chrome of common browsers will take up screen space. Various
operating system features, such as the Windows system tray, always will take up some
room anyway. Even if you assume users have a 640 x 480 resolution, you may find as

C h a p t e r 1 1 : P a g e s a n d L a y o u t 355

Resolution Device Comments

Varies dramatically from
3 lines by 12 characters to
320 x 240 pixels or more
with cell-PDA hybrids

Cell phone Resolution often
measured in characters
across and lines up and
down rather than pixels.

320 x 240 Palm sized PDA Scrolling difficult in this
environment. Single
screen-full approach
common.

640 x 240 Windows CE “Breast
pocket” form factor

Half-height VGA

544 x 372 MSNTV/WebTV Rightward scrolling not
possible. See http://
developer.msntv.com for
useful information.

640 x 480 Computer (low
resolution)

Typical worst-case PC
resolution.

800 x 600 Computer (standard
resolution)

Probably a safe resolution
assumption.

1024 x 768 Computer (high
resolution)

About the limit of content
expansion before
significant usability
problems might ensue.

1152 x 864 Computer (high
resolution)

1200 x 1024 Computer (high
resolution)

1600 x 1200 Computer (high
resolution)

Table 11-1. Common Screen Resolutions

356 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

little as 570–580 usable pixels of screen width before scrolling, and 280–300 pixels of
usable screen height, depending on the browser version. Figure 11-3 illustrates the
screen region issues.

Designers often want a hard and fast screen height and width, but unfortunately
the amount of room consumed by browser chrome varies dramatically. Consider an
older browser like Netscape 3 under Windows with all options on. The browser chrome
shown here takes up a whopping 150 pixels of vertical space.

Newer browsers are generally more conservative in the amount of space they take
up. Browser chrome will vary not just by browser, but by user preference. Compare
standard Netscape and Internet Explorer browser chrome to their potentially minimized
sizes, as shown in Figure 11-4.

Figure 11-3. Available design region can be much smaller than the screen
resolution

Full screen browser window at
640 x 480 resolution

Browser window sized down by user at
640 x 480 resolution provides even less space.

150 pixels

C h a p t e r 1 1 : P a g e s a n d L a y o u t 357
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

The reason that designers need to be concerned about screen size is that Web pages
need to fit. It is well known that users will resist scrolling to the right, so pages need to
fit the width of the screen if possible. Also consider that very wide pages rarely print
well, especially if special printer style sheets are not employed.

Rule: Avoid wide pages, particularly those that cause rightward scrolling.

When it comes to page height, it is pretty obvious that users evaluate the first
screen and then decide if they want to scroll or choose something on the first screen.
Statistically, users will tend to pick items within the first screen over other items that
they can’t see yet. It is particularly important to make sure that important items like
primary navigation elements appear on the first screen. The breaking point before
something is off screen is termed the “fold,” after the same concept in print design.

Figure 11-4. Browser chrome in relation to browser window

and with chrome minimizedInternet Explorer and Netscape with full chrome

358 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Try to keep important items such as primary navigation in the first screen.

Screen height isn’t as troublesome as screen width. For example, pages can be printed
no matter how long, assuming the user wants to print a long page. Some special
considerations about printing pages are addressed in the section “Print-Specific Pages”
later on in the chapter. Limiting content to fit screen height isn’t a huge concern—while
it is true that users will tend to favor content in the first screen, it is also true that they
will scroll down. However, users will only scroll if they know they can. Occasionally
the way a page is laid out may not indicate clearly that the page contains downward
content, other than the scrollbar on the side of the screen. This is particularly problematic
if a large amount of white space is exactly at the bottom of the page and there is no
background tile or content that would suggest to the user that there is anything more.
This idea is illustrated in Figure 11-5.

Suggestion: Be aware of the screen “fold” and try to hint at content beyond the
first screen.

Figure 11-5. Beware of ending a design right at the fold

Don’t end design at “fold”—let users know there’s more to the page.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

Dealing with Screen Size
Designers have a variety of ways of dealing with screen size. Some designers have
taken a very anti-user stance by suggesting that users ought to have a certain size, such
as 800 x 600; therefore, their sites will be designed to that resolution whether visitors
like it or not. Sites practicing this philosophy often contain message like this:

While it may be written in a nice tone, messages like this basically say “go away”
to users who don’t have such a resolution. It is very difficult to use sites like this with
640 x 480 or less. Some sites with frames are completely unusable at lower resolutions
because the frames can’t even be resized! Such exclusionary design based on resolution
is a poor idea and really does not have a place in user-centered design.

Rule: Avoid resolution entry restrictions for sites if at all possible.

Resolution assumptions can really hurt non-PC based browsing. For example,
MSNTV (previously known as WebTV) sets size exactly at 544 x 372. Particularly
troublesome is that if a design goes beyond 544 pixels wide, it will not fit on a television
screen. Rightward scrolling is not an option here. This is a pretty serious example of how
a design approach restricting resolution to 800 x 600 would completely lock out users.

Rule: When designing for MSNTV/WebTV, consider a hard-and-fast page width
of 544 pixels.

While television-based browsing is fairly limited, other devices with smaller screen
sizes, like personal digital assistants, may also find the 800 x 600 fixed design style very
troubling as well.

Assuming Page Size
WebTV’s resolution restrictions play well to another crowd of designers, those who
always assume the worst display will be the one used. Some go so far as to limit pages
to be purely text-based and rely on percentage values to scale everything, while others
aim to please almost everybody by trying to aim for some reasonable lowest common
denominator, such as 640 x 480 resolution on a Windows system with a popular browser
like Netscape or Internet Explorer. If you make assumptions about such minimum
criteria, it may seem possible to figure out a typical screen size for the user. Consider
this carefully, though. Given that the user has 640 x 480 resolution, what is the largest

C h a p t e r 1 1 : P a g e s a n d L a y o u t 359

360 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

amount of screen area in the browser window? This is called the canvas space and is
measured like this:

Obviously, canvas size varies. Did the user full-screen the browser, or are there other
items taking up screen real estate? How much browser chrome do they have? If a user
full-screens and leaves the settings alone in the browser, this could be your best-case
possibility. On 640 x 480, this might equate to a width of 580 up to 620 pixels, depending
on browser version, operating system, and variables such as whether the scrollbar is on
or not. Vertical assumptions might range from as few as 290 pixels to up to 330 pixels or
more. Similar variations, of course, are found for higher resolutions. Erring on the safe
side is to assume 40 pixels off screen width and 190 off screen height. Given the common
resolutions of 640 x 480, 800 x 600, and 1024 x 768, you would have the canvas size
estimates in Table 11-2.

Alternatively, we could come up with a variety of measurements of the amount of
chrome in a browser and how it tends to size on launch, size for whether scrollbars are
on or off, and so on. This whole approach is very troublesome. What really is potential
screen region? What happens if the user doesn’t size their window up and just leaves it
as it is or even sizes it smaller? The actual available size of a browser varies as well, and
is often even less than what is presented in Table 11-2. Because of the uncertainty of

640 x 480 800 x 600 1024 x 768

Probable canvas size 600 x 290 760 x 410 984 x 578

Table 11-2. Potential Available Canvas Assumptions

C h a p t e r 1 1 : P a g e s a n d L a y o u t 361
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

screen size, you might want to consider a “slop” factor in layouts. For example, if the
available width is 600 pixels, you might want to provide 5% to 10% extra room for slop.
It is obvious that assumptions, even when conservative and with a slop factor built-in,
leave something to be desired.

Suggestion: If designing with assumed screen sizes, be conservative and give
yourself a slop factor of as much as 10% of the available region.

Detecting Page Size
Rather than guess, it is possible to detect the available resolution using JavaScript. This
simple script checks for screen size as well as available window size.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Resolution Checker</title>

</head>

<body>

<h2>Resize and reload</h2>

<hr />

<script type="text/javascript">

<!--

if (window.screen)

{

document.write("Screen: "+screen.width+"x"+screen.height+"
");

winWidth = (window.innerWidth) ? window.innerWidth :

document.body.clientWidth;

winHeight = (window.innerHeight) ? window.innerHeight :

document.body.clientHeight;

if (winWidth && winHeight)

document.write("Window: "+winWidth+"x"+winHeight+"
");

}

else

document.write("Requires 4.x generation browser or better");

//-->

</script>

<noscript>

JavaScript must be on and you must use a 4.x generation or

better browser to detect resolution and canvas area.

</noscript>

</body>

</html>

362 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

While this script does generate a message on page resolution requirements, it
would be better to sense for the available screen region and set content appropriately.
For example, consider writing out style sheets that deal with all the various screen
sizes. This next script example uses JavaScript available in the 4.x generation browsers
to sense for screen resolution and outputs the appropriate link to a suitable style sheet.
If an older browser views the page or the scripting support is off, the browser will
resort to a worst-case scenario of using the lowest resolution settings.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Style Based On Resolution </title>

<script type="text/javascript">

<!--

if (window.screen)

{

if (screen.width < 641)

document.write('<link rel="stylesheet" href="lowres.css" / >\n');

else if (screen.width < 801)

document.write('<link rel="stylesheet" href="mediumres.css" / >\n');

else if (screen.width < 1025)

document.write('<link rel="stylesheet" href="highres.css" / >\n');

else

document.write('<link rel="stylesheet" href="ultrahighres.css" / >\n');

}

else

document.write('<link rel="stylesheet" href="lowres.css" / >\n');

//-->

</script>

<noscript>

<link rel="stylesheet" href="lowres.css" / >

</noscript>

</head>

<body>

Add your page content here

</body>

</html>

C h a p t e r 1 1 : P a g e s a n d L a y o u t 363
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

The previous example will have a validation problem due to the <noscript> tag in the
<head> of the document. This is an oversight in the XHTML specification; the mistake
is intentional in that it makes the script perform adequately in all situations.

Obviously, the previous example could be adjusted to output different images
or background tiles or to set measurement sizes all based upon resolution or even
window size. However, this brings up a familiar issue. Just because users have a
2000 x 2000 screen, do they necessarily want the content of a page to expand to fit the
available screen? Consider that a 2000 x 2000 image will certainly take much longer to
download! Relative sizing and scaling issues improve the situation and can restore a
balance between users’ wants and designers’ need for control.

Relative Page Sizes
Another approach to dealing with page sizes relative to screen resolution is to not deal
with it exactly. Why not use a relative size? For example, imagine a table layout like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Stretch Me</title>

</head>

<body>

<table width="100%" bgcolor="yellow">

<tr>

<td>

<p>This table is 100% of the width of the screen. Notice if you

stretch the content will expand to fit the available space.

Stretching may not always help with readability, as you can have

very long lines of text.</p>

</td>

</tr>

</table>

</body>

</html>

TE
AM
FL
Y

Team-Fly®

The page will stretch and shrink to the available window space, as shown in
Figure 11-6. Notice that the content does not quite reach the top and left of the screen.
A Web page will have default margins on. To adjust margins, see the section on page
margins that follows this discussion.

Using CSS there are a variety of ways to implement the fluid or stretching design.
Here is a simple example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>CSS Stretch</title>

<style type="text/css">

<!--

364 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-6. Relative sizes expand or shrink to fit

Table set with relative (percentage) widths allows layout to reflow with browser sizing.

body {position: relative;

margin: 15px;

background: #ffffff;

font-family: Verdana, sans-serif;}

#links {position: absolute;

top: 26px; left: 0px;

width: 100px;}

#content {position: absolute;

top: 26px; left: 120px; right: 25px;

padding: 10px;

border: solid 5px #006699;

color: #ffffdc; background: #0076A8;}

#content p { margin: 0 1em 1em;}

-->

</style>

</head>

<body>

<!-- start nav div-->

<div id="links">

Link 1

Link 2

Link 3

Link 4

Link 5

</div>

<!--end nav links-->

<div id="content">

<p>Put some content here. It should stretch and act just like

the table design. Of course that assumes that Web

browsers have correct CSS implementations, which is simply not

true. Be careful, the older way may still be the safer way.</p>

</div>

<!-- end content div -->

</body>

</html>

C h a p t e r 1 1 : P a g e s a n d L a y o u t 365
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

366 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

The CSS example is deceptively easy—compatibility problems are numerous and
all sorts of hacks are required to make a fluid design in CSS work in all CSS-aware
browsers. For now, like it or not, using tables is still the safer way to go if you want
to do this design.

It would seem that relative sizing would meet the needs of any resolution, but be
careful, as relative sizing can distort a page layout greatly—and some things, like images,
just aren’t meant to scale. For example, if you set an image in HTML to have a percentage
height or width, like this,

it will often look distorted, and users will see this as a mistake. Also consider that, even
when you fix the size of some objects, layouts may become unreadable as the screen
increases. Allowing a paragraph of text to expand to fit a 1600 x 1200 pixel resolution
monitor will produce very long lines. Considering that optimal line length is around
12–15 words, allowing pages to stretch could actually result in significant usability
problems. Of course, these problems would be the user’s own doing rather than
attributable to the designer. However, there is no guarantee that the user will see the
problem from that perspective—the designer may still get blamed for creating a “bad”
page. Figure 11-7 shows many of the downsides of relative layouts in action.

Figure 11-7. Relative sizing can result in layout and usability problems

Images may
distort.

Content doesn’t
fill up screen
height well

Normal

Line length becomes
too long, causes
readability problems.

Stretched

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

As one can see, the message of the page could be ruined by such distortion, and
designers may therefore be unwilling to give up control of layout. A possible solution
would be to scale content with window size.

Scaling Content
With very large windows, more content may be viewable—but is this always a good
thing? Not necessarily, as page content may become too dense or too small to easily be
read. It might be preferable to scale content with window size.

Scaling content need not be tricky if using cascading style sheets with relative
measurement values, such as % or em, or using a JavaScript to adjust size on the fly. A
basic example using JavaScript to adjust font size as the screen is resized is provided
here; just add it to the previous examples or one of your own desire. Examples that are
more drawn out can be found at the support site.

<script type="text/javascript">

<!--

var scaleFactor = window.screen.width - 300;

function changeSize()

{

var windowWidth = (window.innerWidth) ? window.innerWidth :

document.body.clientWidth;

document.body.style.fontSize = (windowWidth / scaleFactor) + "em";

}

window.onload = changeSize;

window.onresize = changeSize;

//-->

</script>

The problem with scaling content is that users may not necessarily want content
to scale with window size, their view being that big monitors are made for showing
more content. Meanwhile, those with less than perfect vision might want content to
adjust in size. It seems that an option to toggle scaling on and off or at least to adjust
font size for nonscaled content is required. The worst approach would be to have
a stretchable design and use fixed point or pixel style sheets that cannot be easily
overridden by the user.

Page Size Reality Check
Before racing off to make stretchable pages or ones that fit a user’s resolution, carefully
consider that the point of setting the page to a particular size is to make the content
more presentable. Recall the discussion about paper sizes presented earlier. A fortune

C h a p t e r 1 1 : P a g e s a n d L a y o u t 367

cookie message doesn’t belong on a letter size sheet of paper, no more than every page
in your site has to stretch to fill some monster screen. Some pages ought to stretch and
take advantage of every available pixel, particularly those overflowing with content.
Notice that many portal sites or home pages for large e-commerce sites will stretch
content to fit the screen resolution. However, do these sites necessarily allow all pages
deeper in the site to stretch? Not often. The reality is that there is little benefit to letting
a simple text document fill up a screen.

Ask a simple question: why should something fill the screen? One reason might be
that a page doesn’t look right if it doesn’t fill up the screen. Some might complain that
a site design looks “too small” on their big monitor, but does it need to be expanded
to fit? Consider the pages shown in Figure 11-8. Both are a fixed size, but one is allowed
to float to the center, while the other is fixed.

Suggestion: When using fixed page sizes, make sure to center your page to
reduce the perception of empty space on larger displays.

Another good trick to avoid the perception of empty space in fixed width designs
is to utilize background tiles that set up boundaries for pages or fill up any extra space
with a nice pattern, as shown in Figure 11-9.

368 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-8. Centering fixed-size pages lessens the perception of empty space

Centered design looks more balancedEmpty space at right throws design off balance

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

Dealing with this last idea brings up an interesting question. Why do people full-
screen sites? Considering that many, if not most, pages do not actually stretch, what’s
the point? One possible reason is that it allows the user to focus on the window. Beyond
making the page look better, there are good reasons to allow layouts to grow. Sites that
have a great deal of content can take advantage of the extra screen real estate. This will
backfire if too little content is presented—particularly, if a single column is used. Notice
in Figure 11-10 how strange a site with a minimal amount of content looks when set to
full screen on a high-resolution monitor.

Suggestion: Avoid using stretchable designs on pages with little content.

Most of the discussion has focused on page width, but what about height? Recall
that unless you want to limit the content so that it doesn’t scroll up and down, this isn’t
as critical as width. While in some viewing environments, such as Palm Pilots, Kiosks,
and WebTV, scrolling is frowned on, most Web sites do scroll up and down. The
question, then, is how much scrolling should be allowed. Consider that if a page is
too long it will be difficult to use, and probably will take a long time to load. If a page

C h a p t e r 1 1 : P a g e s a n d L a y o u t 369

Figure 11-9. Creative use of background tiles to fill up empty space

must scroll up and down, a good limit is about three to five screenfulls. Of course what
constitutes a full screen will vary greatly, so this is just a rule of thumb.

Suggestion: Try to fit content vertically within three to five screens if possible.

If pages are longer and the content can easily be split, then do so; otherwise, let it
scroll. You do not want to break up a logical unit because of an arbitrary limit unless
the page has become unwieldy. Another argument against splitting is that today users
are getting used to scrolling; much effort, including improving mouse design, is being
made to ease the scrolling burden on the user.

In the final analysis, no matter whether you fix content, whether your page size is
640 x 480 or 2000 x 2000, there will always be someone who finds the content too big or
too small. Pages should be set not for monitors but for the needs of the content presented
and the people viewing it. Making sure content fits the viewing environment is very
important. An easy way to do this is to resize your browser window to simulate other
resolutions. A variety of tools exist to do this (see http://www.webdesignref.com/),
and most Web editors, including GoLive, HomeSite and Dreamweaver, also provide
utilities for browser sizes.

370 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-10. Stretchable designs make sense for heavy content pages

Page Margins
Besides considering the overall size of a page, designers should be very aware of the
margins. Browsers do have margins, and they vary from version to version. Background
images do not respect the margins, but foreground images do. If a page is not designed
to take into account margins or control them, it is very possible the layout may be ruined
in some browsers, as shown in Figure 11-11.

Under older browsers, margins varied and could not be controlled using HTML.
Today HTML and CSS provide facilities to turn off margins. If not controlled, margins
will be set to anywhere from 5 pixels to 16 pixels from the left and top of the screen.
Some UNIX variants of Netscape even have margin offsets to as much as 22 pixels!
Providing a slop factor of upwards of 10 pixels left to right and 20 pixels up and down
is about all that can be done if you aren’t going to control things or have a very old
browser audience to deal with—but now there are a variety of ways to remove margins.

Suggestion: Either control page margins or account for their variation with some
layout slop factor.

Turning off the margins in HTML is not part of the specification, but both leading
browser vendors have added propriety attributes to set page margins from the <body>
tag. In Internet Explorer 4.x or later, set leftmargin and topmargin attributes for the
<body> element to 0 or any desired pixel value. For Netscape 4.x or later, use marginwidth
and marginheight. A statement like this,

<body topmargin="0" leftmargin="0" marginwidth="0" marginheight="0">

should turn off the margins in a page completely.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 1 : P a g e s a n d L a y o u t 371

Figure 11-11. Margin problems can ruin layouts

Failing to account
for variances in
browser default
margins can
break designs

Unfortunately, some Netscape browsers may still render a 1-pixel margin at both top
and bottom despite any manipulation.

For backward support, the HTML approach is the only reasonable approach.
However, CSS is appropriate for layout control, so a rule like

body {margin: 0;}

would do the same thing as the previous HTML. Here is an example of some content in
a page set with and without margins to illustrate the effect:

CSS provides greater control for page margins, which can be set individually for
the left, top, right, and bottom.

One interesting margin workaround still employed on some sites attempting to preserve
layout on very old browsers is using frames. Frames have always had margin control, so
it would be possible to use some sort of frames markup to kill margins on older browsers.

Now that the basic layout characteristics of Web pages have been discussed, we should
turn our attention to the various specific types of pages that are found in Web sites.

Page Types
There are many ways to classify Web pages. One simple way is by the focus of the
page. Is the page primarily a content page, a navigation page, a task page, or some
mixture of types? Most pages tend to be some mixture, but certain pages, like site
maps, are purely navigational, and some deep content pages in a site may be nearly all
content based. Most pages—even home pages—will focus on content, navigation, and
tasks to varying degrees.

Within the broad category of navigation-oriented pages, there are further classifications
that can be made. As discussed in Chapter 7 on site navigation theory, users tend to

372 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

view entrance and exit from a site as important steps. Because of the focus on entering
and leaving a site, it is important to consider whether a page is an entrance page or an
exit page. Entry pages should make it clear to the user which site they’re on and what’s
available to them. A site’s home page is often the primary entrance page, but, depending
on how the site is used, many pages could serve as entry pages. Exit pages are less
obvious than entrance pages, but an exit page should provide some closure to a user’s
site visit. A sense of completion is an important aspect in creating a positive take-away
value for the user. Often, content pages serve as exit pages because users have found
what they want. However, in task-oriented sites, like a shopping site, a special exit or
order confirmation page may serve as a more explicit form of exit. In between would be
pages that serve as steps during a user’s visit. These intermediary pages range from
providing content to acting as navigation points on the user’s journey through the site.
A successful journey will have a definite start (entry page), exposure to information,
task and guidance (content and navigation pages), and, finally, a conclusion to the
journey (exit page). A key to good Web design is making certain users do not lose their
way between the start and the finish of the journey.

Content-oriented pages can be categorized by type. Content pages might include
things like press releases, product specifications, biographies, stories, white papers,
poems, frequently asked questions (FAQs), tutorials, release notes, and any other
category of content imaginable. Some of the pages are particularly associated with
the Web—FAQs, privacy pages, and so on, which will be discussed specifically in a
moment—and have common features, but the particular form or meaning of content
pages will vary with the organization running the sites. Navigation pages can also be
categorized by type. Home pages tend to have distinct functions and “looks” that
contrast with subsection navigation pages. Special navigation pages such as site maps,
search pages, and site indices are also found in many sites. Each of these navigation
pages has already been discussed in previous chapters.

There are a variety of other ways to categorize pages, such as how they are used,
printed, or viewed online, and how often they are updated, and whether they are
generated or are static—and if they are generated, whether they are unique for each
viewer (in other words, “personalized”). However, the purpose of a taxonomy of page
types is simply to allow designers to discuss things in a regular, organized way. Our
simple taxonomy of entrance, navigation, content and exit pages will serve this purpose
well enough.

Entrance Pages
Theoretically, any page in a site can serve as an entrance page if the user knows the
page’s URL. In Chapter 6, sites that did not limit entry to a particular set of pages were
considered porous, while sites that limited entry could be dubbed semiporous or solid,
depending on how limited entrance was. Regardless of any formal attempt to limit
users, most sites tend to have only a few entry points. The home page is the main entry
to a site, but certain important sectional pages or “sub-home” pages might also be

C h a p t e r 1 1 : P a g e s a n d L a y o u t 373

TE
AM
FL
Y

Team-Fly®

entry points into a site, particularly if they have special URLs or unique domains.
While most sites will focus traffic through a home page, some sites may have a special
entry page called a splash page.

Splash Pages
A splash page is a page that is used to introduce a site, to “make a splash” and leave a
strong impression. Often a splash page is used to set the tone of a site through the use
of graphic layout, animation, or even sound. Figure 11-12 shows an example splash
page. For some users, the often overly animated logos of a splash page serve as an
unwanted download and may encourage them to leave. However, for some sites a
splash page is very important to set the stage for the rest of the site experience. On such
sites, not having a splash page could be similar to not having an opening title sequence
for a movie, leaving the user confused or disoriented. Given that a splash page could
be annoying to the user, there should be an easy way to skip the page. Usually a small
text link labeled “skip intro” or simply “skip” is used towards the bottom of the page
for bypassing the splash page.

Suggestion: Provide an obvious link to quickly skip a splash page.

374 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-12. Splash page

Skip intro

C h a p t e r 1 1 : P a g e s a n d L a y o u t 375
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

When a splash page just orients users with spinning logos and other introductory
material, frequent visitors to a site may become highly annoyed, even if they can skip
the page. Skipping the intro itself becomes an annoyance. It need not be, as it is
possible instead to issue a cookie to the user to enable showing a splash page only
to a first-time visitor.

Tip: Consider showing splash pages only to initial visitors.

A splash page can be used for much more than just spinning a corporate logo. A
splash page can be used to assist setup or installation for the site, such as determining
if the user has the appropriate plug-ins installed. A splash page can also be used to
engage the user while items used elsewhere in the site are downloaded. For many
multimedia sites heavily using Flash, a splash page is used in the same manner as an
installer for traditional software.

Tip: Use splash pages for installation or preloading of site content.

Be careful to ensure that, for a splash page that provides important information,
installs software, or prefetches site information, the user actually enters through it.
If not, the value is lost.

Because of the perceived lack of value provided and the download delays caused
by splash pages in the eyes of some users, they should be used with caution. However,
when well executed and used infrequently for the appropriate type of site, a splash
page can be a useful way to grab the attention of users and orient them to a site.

Tip: Question the use of splash pages in a site.

Home Pages
A home page is generally the first page users see when they visit a site. The home page
acts as the main entry point of a site and should be a prominent landmark in a site. As
a landmark page, a home page’s appearance should be distinct from all other pages in a
site. Keep in mind that the home page is often the way people visually remember a site.
If it is not different, users may feel lost in a site, needing an obvious starting point.

Rule: A home page should look significantly different than other pages in a site.

In order to be distinct, home pages often are more visual than deeper pages in a site
and may more prominently display an organizational identity, such as a logo, than other
pages. Consider the abstract page layouts shown in Figure 11-13. Can you identify the
home pages?

A home page needs to set the tone for the site. The home page sets the basic design
elements of a site, such as color, graphic style, font style, and so on, that are used in
subpages. If a home page uses a particular font for buttons, users will probably expect
the rest of the site to continue using the same font for buttons. Also, the type of navigation

376 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

presented will be assumed to be consistent with that of the home page. If the home page
uses blue graphical push buttons and pull-down menus for navigation, these should
be used elsewhere in the site as well.

Rule: A home page should set the visual and navigational tone of a site.

Another aspect of a good home page is that it encourages people to look deeper in a
site. Often, users will come to a site not knowing for sure what is provided. If the home
page doesn’t interest them, they may just leave. Inspection of a site’s statistics logs will
probably reveal that the home page is not only the primary entry page, but it is also
one of the primary exit pages. Why is this? People may leave directly from the home
page for a variety of reasons. Maybe they just landed at the page by accident. However,
it is possible that the home page isn’t doing its job. As the entry point for a site, the home
page sets the user’s first impression of the site. If the page loads slowly or doesn’t look
interesting, there may seem to be no reason for the user to look further.

Rule: A home page should load fast, but be informative and dramatic enough to
encourage interest.

Figure 11-13. Home pages should be obvious in structure and layout

MaybeProbably notYes

Maybe Yes Could be

C h a p t e r 1 1 : P a g e s a n d L a y o u t 377
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

There are other reasons that a user might bail out from a home page. The home page
might not indicate clearly what is at the site. Many home pages don’t clearly present
the site’s purpose and the contents of the site. A home page is like a magazine cover.
Magazine covers have to be flashy enough to attract attention on a crowded newsstand.
They have to have a variety of cover blurbs indicating what’s inside the magazine.

Rule: A home page should clearly indicate what’s inside a site.

Like a magazine cover, the home page of a site must be “consistently different.”
What this means is that the page must be recognizable, but obviously changing and
“fresh.” Over time, the design of the site may have to change to keep the site fresh, but
a complete redesign should not occur too often. Consider how often a major magazine
changes its look. While it may not be a good idea to wait five years, it probably isn’t
a good idea to redesign your home page’s look every six months. How often do the
major Web sites like Yahoo! or Amazon significantly change their looks? The reality
is that these sites are actually changing subtly all the time, but dramatic shifts are few
and far between.

If return visitation is a key component of your site strategy, the home page is where
to convince users to come back. You can try to encourage users to return in a variety of
ways, but the most important is to provide informational value on the home page and
show them things are changing. Don’t expect users to come back day after day to a
page that it is just a big graphic with a few buttons near by. Isn’t this just a splash page
with more buttons? Try to provide some value with your home page. Indicate the key
changes made to the site directly on the home page. Remember—if the home page
doesn’t change over time, people may assume the site’s content doesn’t change either.
The main elements could stay the same, while having secondary elements change and
providing other clues to let people know the site has changed. A few ways to show
change are:

■ Putting the date somewhere on the page

■ Rotating a primary image or Flash piece either randomly or at a set interval
(daily, weekly, or monthly)

■ Putting small amounts of important changing information (press releases, and
so on) on the home page

■ A direct statement of the last time the page was updated

■ A link to a “What’s New” area

Suggestion: A home page should provide informational value and an obvious
indication of the site’s change if change is occurring.

Some sites, however, will not change terribly often, so their home page will not
look dynamic. Remember, if you aren’t going to update the site, don’t let people know
that. Don’t put press releases on the home page that are old or put dates on the home
page that changes—if nothing changes in a site. Don’t put ondated material on your
homepage, or in turn, date material that won’t be updated later on.

From this discussion, it is obvious that a home page has many roles to fill, as shown
in Figure 11-14. It is the entry point, the update indicator, the tone setter, and the primary
navigational landmark. Users will bookmark it or type in the URL directly; they might
visit it frequently, but they probably won’t do one thing common to other pages: print
it. Usually a home page provides only basic or teaser information for a user about what’s
in a site, not detailed information that would be useful to print. Printing should therefore
be considered a secondary requirement for home pages. This does give the designer
more flexibility in color and background usage, multimedia, and screen width than
with pages deeper in a site.

Tip: Consider printing a secondary design consideration for home pages.

Subpages: Navigation vs. Content
From the home page, the user will select a link to explore. At this point, users begin the
middle of their visit. They have set off to do something. Because users tend to be more
focused at this point, subpages don’t have to be quite as visual or distinct as home pages.
However, subpages generally must follow the lead of the home page, unless they are

378 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-14. Example of common home page features

Date shows
site freshness.

Information
about recent
site changes

Set
branding
focus

Promote
deeper
pages

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

attempting to act as a “sublandmark.” For example, a subpage for a large section of
a company such as Technical Support may be the entry page for many users. People
who don’t come through the “front door” of the site, so to speak, will need to orient
themselves from this page. In this sense, the subpage is a landmark for a particular
section. It is important that a subpage used this way be distinctly different from other
pages in the site. However, avoid the temptation of making it look like a home page. If
users did enter through the home page and then clicked to get to the technical support
page, they would see something that looks like another home page. That would be quite
confusing and could potentially ruin the landmark value of each page.

Suggestion: If a particular subpage is a landmark or common entry page, such
as a “section home page,” make it visually distinctive.

Most subpages, however, will probably not be visually distinctive. In fact, most
should take their design and navigation cues directly from the home page. While the
purpose of the home page is to make the user keenly aware of being on a particular
site, when a user journeys deeper into the site, the user’s awareness needs to shift to
the content. If subpages are presenting the user with new navigation, new logos, and
new color schemes all along the way, the user’s attention will be drawn away from
the content.

Consider the home page and subpage shown in Figure 11-15 and notice how it is
obvious they are related, but that the subpage is more content oriented.

Rule: Subpages should follow the style and navigation of the home page,
at least in spirit.

Subpages will often be more focused than home pages. A subpage is generally
either focused on navigation or on content. A few pages, such as site maps, might be
considered purely navigation. However, it is unlikely that a subpage is a pure content
page because if it lacks navigation or links, it would be an “orphan” page (one that has
no way for a user to exit from other than by the browser back button). Generally, there
is a balance between content and navigation in a subpage.

Navigation-Specific Pages
A variety of special navigation-focused pages, beyond home pages or main sectional
pages, can be found in many sites. These have been discussed in previous chapters so
will only be briefly described here. Two of the most common special navigation pages
are site maps and site indixes. A site map is used to provide a structural overview of a
Web site, while a site index provides a list of a site’s content organized alphabetically
rather than structurally. (The design of these navigational pages was discussed in depth
in Chapter 10.) A search page is the other common navigation-specific page. Search
facilities generally include a query page, result pages (both positive and negative), and,
ideally, a help page. These pages are very important for site navigation, particularly to
power users. Special care should be paid to their design. Chapter 9 discusses search

C h a p t e r 1 1 : P a g e s a n d L a y o u t 379

380 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

facilities in great depth. Given that the focus of site maps, search pages, and other
navigation pages is almost purely navigational, there should conversely be some pages
that are completely content focused.

Figure 11-15. Subpage designs generally relate to home page elements

Colors

Logo

Navigation
design

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

Content Pages
Content pages are those subpages that are very focused on content presentation. In
some sense, a content page is a destination page. Often they are the leaf pages in the
site tree and represent the “bottom” of a site. Like other subpages in a site, a content
page will probably have some navigational elements, lest it become an orphan page.
The layout of a content-focused page will vary with the content presented, but it tends to
take cues from ancestor pages, such as main section or home pages. Often, sites tend
to get less visual the deeper in, but this is not necessarily a hard and fast rule. Common
content pages found in commercial sites include things like press releases, product
specifications, biographies, customer testimonials, technical support documentation,
news articles, financial reports, legal information, and on and on. Personal Web sites
might have stories, resumes, poems, and family trees, while educational sites might
have syllabi, homework assignments, and presentations. Other forms of sites might have
document types completely unique to themselves. The reality is that there are potentially
as many types of content pages as there are people in the world. However, there are a
few types of content pages that are common on Web sites or that are so specific to the
Web as to warrant further discussion: FAQs, legal terms, and privacy pages.

FAQ Pages
Frequently Asked Question or FAQ pages are common types of documents on the
Internet. The basic idea of a FAQ page is to provide concise answers to common
questions in a single document, so that a user doesn’t have to hunt all over a site for
information. FAQs are often formatted as a single, long, scrolling document, with an
index of questions at the top with links from each question that jump the user down the
page to the appropriate answer. An example of a typical FAQ is shown in Figure 11-16.

There may be some question why FAQ files jump up and down a page rather than
link to individual files. The main reason is that users will want to print the entire
range of questions for future reference. However, if there are too many questions, the
document can become unwieldy. If an FAQ is more than a dozen or so printed pages,
it is probably wise to break it up into pieces that are linked together and to provide a
separate printable version for users who want the whole document.

Suggestion: If FAQ pages are of a reasonable length, make them a single
document for easy printing.

When users reads an FAQ, they will often look for the question they are interested
in, read the answer, and then want to return to the list of questions. To avoid users

C h a p t e r 1 1 : P a g e s a n d L a y o u t 381

382 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

having to scroll around, make sure to provide a link at the end of each question to
bring users back to the question index, which is usually at the top of the document.

Suggestion: Provide a link back to the top of the document or the list of the
questions at the end of every answer.

FAQs are only useful if the answers provided actually answer the user’s questions.
It is a very good idea to provide a link or mechanism for users to indicate if their
question was answered. Often links like

Figure 11-16. FAQs provide useful information in a concise manner

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

are included with each question. Other questions, such as rating of usefulness, can be
asked as well. Collected information can be used to indicate which questions users most
commonly read and whether they are satisfied with the answers. This information could
be useful to other users. Some sites actually provide a listing of the most popular
questions accessed.

Tip: Provide a feedback mechanism for users to rate the value of the FAQ
answers provided.

Some sites have extended the idea of rating the usefulness of an FAQ to every page
in the site. This does give great feedback to site designers about page use and user
satisfaction. However, don’t go overboard with user feedback and other popularity
measurements because some very useful pages may be infrequently accessed or
misunderstood by a few very vocal users but well understood by most others.

Legal Pages
Now that the Web is used for commerce, legal terms pages have become commonplace
within many sites. Often, the bottom of a Web page on a public site includes a corporate
statement of some kind. There may also be a short statement about site usage. Either of
these short statements will generally include a link to another page describing the legal
aspects of the site. The way legal information is linked to pages varies. Some examples
are shown here:

The actual legal page itself tends to lack much of the navigation or layout facilities
of other site pages. However, it should still at least minimally include a way to return
to the home page of the site, as well as a minimal amount of branding to associate it
with the site. An example of a legal page is shown in Figure 11-17. You’ll notice that the
example does not provide much in the way of legal verbiage, other than some basic
headings. Given that Web sites are software and, in the case of e-commerce or task-
based sites, some harm could result from their usage, site designers should not try to
use “boilerplate” legal pages modified from other sites. Designers should not attempt
to practice armchair law. There is already enough room for mistakes in site building
without adding in the potential for legal trouble.

Suggestion: Consult a legal professional for drafting pages with any legal terms.

Copyright pages can be particularly troublesome. Designers are quick to add
copyrights to pages. While the value of these statements is somewhat suspect and

C h a p t e r 1 1 : P a g e s a n d L a y o u t 383

TE
AM
FL
Y

Team-Fly®

384 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

while some statements do not truly indicate any intention to apply for a copyright, they
are important. Users often seem to look to copyright statements as an indication of content
freshness. This then raises the question of whether a copyright statement should be
changed every year to keep users thinking the site is up to date. In theory, if a change
was made to a page, even a minor one, this is okay to do.

Tip: Be careful with copyright statements; users may judge site freshness
by them.

Figure 11-17. Example of a legal page

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

However, utilizing the copyright statement as the only indication of a page’s
freshness isn’t a great idea. Consider instead putting some sort of last-modified
indicator on the page instead, like this:

Keeping freshness indicators up to date can be troublesome, but it is possible to
automatically insert them with a program, or even to use a simple JavaScript, like the
one shown here, at the bottom of every page:

<script type="text/javascript">

<!--

document.write('');

document.write('Last Modified: ');

document.write(document.lastModified);

document.write('');

//-->

</script>

Suggestion: Add a last-modification indicator to pages.

Be careful when adding automatic modification dates using JavaScript to dynamically
generated pages. They will show an update every time the page is generated!

Privacy Pages
A particular class of Web “legal” pages that has garnered much attention is the privacy
statement page. Many sites collect sensitive or personal data from users, and what sites
do with this data is of particular concern to many users. Because of this concern, which
is often well founded, sites should provide a privacy statement that indicates what any
collected data will be used for. Links to this statement should be available throughout
the site and be prominently displayed on any data collection pages. The design of this
page should be like other legal pages, with only basic navigation and graphics limited
to those, like logos or colors, that identify the organization. The privacy page may also
include icons associated with and links to various privacy organizations, particularly
if the site is built to follow some industry standard. Figure 11-18 displays a privacy
statement layout.

As with all legal documents, consulting a legal counsel is always suggested, but one
agency, TRUSTe (http://www.truste.org), has stepped in to provide assistance to site
designers looking to craft a privacy statement. Site designers are encouraged to use
sites like TRUSTe to build privacy statements. However, be careful not to just add in a

C h a p t e r 1 1 : P a g e s a n d L a y o u t 385

386 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

large privacy statement without considering both whether it truly addresses a user’s
privacy concerns in an easy-to-understand manner and whether it can be enforced.
The fallout of posting privacy statements only to break them is enormous. Some legal
experts believe a site is better off with no privacy statement than with one that is faulty
or is not enforced.

Rule: If sensitive or personal information is collected, provide an easily
accessible and understandable privacy statement.

Task-Specific Pages
Task-specific pages are pages that allow a user to do something, particularly provide
information through the interaction with various form elements. Some common task
pages found in sites include shopping cart management pages, database query pages,

Figure 11-18. Typical form of privacy statement

C h a p t e r 1 1 : P a g e s a n d L a y o u t 387
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

search pages, download pages, registration forms, guestbook pages, discussion
posting pages, and so on. As with content pages, there are too many possible task-
specific pages to provide a reasonably complete list of them. However, contact pages
and print pages are common enough that they should be discussed further.

Contact Pages
A contact page provides information for or even a form contacting the owners of a site.
Usually a contact page will provide numerous methods to contact the site’s owners,
ranging from a simple e-mail address or phone number to a form or even an instant
chat service. An example of a contact page is shown in Figure 11-19.

Figure 11-19. Contact forms should provide multiple contact methods

Phone number
E-mail link

E-mail
submission form

Mailing address

388 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Links to site contact pages should be placed prominently on all pages within a site.
Generally, the label for this link is simply “Contact.” However, some sites prefer to use
a more verbose link name, like “Contact Us” or “How to Contact Us.” A compromise
might be to provide the shortened label name, but then use a scope note or the title
attribute to provide a tooltip with more information about the forms of contact available.

The downside of having a separate contact page reachable from content pages within
a site is that it may not be associated closely enough with content, particularly if the user
eventually prints the page out and consumes it offline. Because of this potential problem,
some designers prefer to put full contact information on every page just in case a user
prints a page and later wants to contact the organization by phone, fax, postal mail, or
e-mail without revisiting the site. This might seem a little overboard, but some form of
minimal contact information, such as organization name, site URL, main phone number,
or e-mail address, probably should be on every page within a site. Companies with
toll-free numbers increasingly make that number part of the page’s visual design itself.

Rule: Full contact information should be available within one click of any page
on a site; minimal contact information such as a phone number and e-mail
address should be included on the bottom of every page.

Print-Specific Pages
Some pages are likely to be consumed offline and thus are geared for printing.
Occasionally, a site may be consumed both offline and online, and two forms of the
same page will exist. Notice the rise of “print version” buttons on many Web sites.
In fact, many sites are now including not only links to printable pages but special
saving and e-mail facilities to make it easier for users to use content they find. An
example of this is shown here.

At this point, let’s focus on printing pages. Many Web pages don’t print well
because the page is optimized for online consumption with larger text and narrow
columns. A direct print of such a page tends to waste a great deal of paper. Printed
pages should be generally set in smaller type and the layout modified to utilize
standard letter size paper effectively. Colored text may not be important on a printed
page, and backgrounds will burn more toner or ink than can be justified by any benefit
in most cases. Further, users probably do not need to see site navigation, other than
some indication of the site the page came from. This information may be as little as
putting the organizational logo and an indication of a page’s location in the site, such
as what section it is in and its URL on the print page. Advertisements may or may not
be a good idea to include in the print output.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 389
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

There are a variety of ways to provide print versions of pages. One possibility is to
create a special print version in HTML. This could be as simple as stripping most of the
HTML out or might be as involved as creating a special new HTML layout optimized
for print.

Another approach might be to utilize a secondary print-oriented layout using a
style sheet. The CSS specification indicates that it is possible to provide multiple style
sheets to apply to a page. To do this, two <link> elements would be included in the
<head> of a Web page, like so

<link rel="stylesheet" href="normal.css" />

<link rel="stylesheet" href="print.css" media="print" />

The second style sheet could be used to change text size, reduce line-height, change
color, remove navigation elements by setting their display property to none, and so on.
Using CSS2, it is even possible to indicate where printer page breaks would occur. For
example a CSS rule like,

.newpage {page-break-after: always;}

sets all elements in the class “newpage” to cause a printer page break when the page is
printed in a browser that supports this CSS2 property. Figure 11-20 shows an example

Figure 11-20. Printed versions can vary from online versions

390 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

of how these ideas could be applied and shows a Web page onscreen as well as the
resulting printed page.

Unfortunately, not all browsers support printer style sheets. A more degradable
approach would be to simply link to a page that was formatted for the printer using
either CSS or traditional HTML layout. Besides being downwardly compatible, this
approach doesn’t surprise the user. The user sees the page as it will print and is not
surprised with something different than what is seen onscreen. Consider that just
using a linked printer style could cause frustration for users. What happens if they
want to see the page exactly as it looks onscreen? Maybe they actually want to print
the advertisements.

Suggestion: Inform users that printed pages will be different from what is seen
onscreen, or show the print version directly.

Another approach to the printing issue is to utilize Adobe’s Acrobat technology
(http://www.adobe.com/acrobat) and provide a PDF (portable document format)
version of the page. Using PDF, it is possible to create a high-resolution, printer-
oriented version of the information in a page, just as it might appear in a brochure.
A common use of this format is for displaying highly complex information, such as
technical specifications or mathematical formulas. An example of a PDF file associated
with a Web page is shown in Figure 11-21.

Suggestion: Use Acrobat PDF files for highly complex information that needs to
print perfectly, such as data sheets, technical drawings, and complex financial or
mathematical information.

If a PDF is used, make sure to let users know what it is with an appropriately
named link or PDF icon. Given the larger size of PDF files, it is also probably a good
idea to indicate the file size of a linked PDF. The last time the document was modified
may be useful to the user. Finally, make sure to provide information on where to obtain
the Acrobat reader for users who may not have it. All these ideas are illustrated here:

Suggestion: Clearly indicate Acrobat files with text and an icon, and provide
information on using these files.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 391
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Restricted Printing Pages
Some designers may actually conclude that some pages are not made for printing at
all. An interesting possibility is limiting printing of a page with a small CSS trick. It is
simple to create a linked printer style sheet named noprint.css:

<link rel="stylesheet" href="noprint.css" media="print" />

The linked file contains a single rule:

body {display: none;}

Figure 11-21. Acrobat files make useful supplements to HTML-based information

If the browser supports a linked style, it will actually not print anything out at all.
Of course, while this will limit most people, the page can still be printed. A user could
easily screen-capture a page, save its contents and modify it, adjust the browser preferences
to ignore style sheets, or simply use a browser that doesn’t understand printer style sheets
to avoid this restriction. Generally, a designer would never want to limit the printing of
a page, since doing so takes a great deal of control away from the user. However, there
may be some instances—for example information changes so quickly that it should not
be saved, that the page is a sample of something purchased for viewing online only, or
some bug with printing exists—when limiting printing is a good idea.

Exit Pages
While it’s clear that the home page serves as the main entry point to a Web site, is there
a similarly defined exit point? For content-oriented sites, there may not be one, and
every page could be considered an obvious exit point. Ideally, in such cases the user
will have found some interesting content and then left from a content page.

Not all sites can afford to lack a point of closure. Sites that have definable tasks, such
as downloading software, buying a product, making a stock trade, and so on, should
have an obvious exit page. The exit page provides a sense of completion or closure to
a visit. Closure is very important to site usability, as it signifies to users that they have
completed the task properly.

Rule: Provide an obvious conclusion page for a task.

Probably the most common exit page seen on the Web is what might be termed
the “Thank You” page. A “Thank You” page comes after a user has filled in a form
for further information or completed some transaction, such as buying a product. A
“Thank You” page should not only thank a user, but also provide some information,
such as confirmation of success, what to expect next, a tracking number, or other
follow-up information, as in Figure 11-22. A very important aspect of an exit page is
that it should provide a way back in to the site. E-commerce sites have found that just
adding a link that states “Continue shopping,” as well as providing a link back to the
main home page, is a good way to get a few more sales.

Suggestion: Provide a way back to the site from an exit page.

Be careful with the idea of trying to get the user back into the site when they are
about to leave. Some designers have abused this idea, using a form of “last chance”
window to hit the user up one more time. With JavaScript it is fairly easy to perform
a task on a page as it is unloaded. Consider this modification to the <body> element
of an HTML page:

<body onunload="alert('Please visit again soon!');">

392 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Some sites use this idea to spawn a variety of advertisement windows, and a few
even use it to trap users within the site, by endlessly redirecting them to related sites.
Figure 11-23 shows a few examples of “last chance” pop-ups in action.

Hitting the user with numerous pop-up windows on exit is not a good way to leave
a positive feeling in a user’s mind. Each window has to be dismissed, so you have just
created work for the user.

Rule: Let users leave in peace. Avoid “please don’t go” or “last chance”
pop-up windows.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 393
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 11-22. Thank users properly and provide confirmation of success

TE
AM
FL
Y

Team-Fly®

394 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

If, for some reason, such as extreme marketing pressures, you decide to not pay attention
to the “last chance” rule, the least you could do is make the windows automatically
dismiss themselves after a few seconds of viewing.

The three major categories of pages—entrance, mid-visit, and exit pages—have all
been covered, along with the difference between content pages and navigation pages.
A few important page types like legal pages also have been discussed in depth.
However, little has been said about how these pages look. To begin a discussion of this
subject, let’s explore the general ways people tend to design pages by considering the
various Web design schools of thought.

Figure 11-23. Pop-ups spawn quicker than weeds

Web Design Schools
As in other fields of design, there are different schools of thought about Web design. At
this point in the history of Web design, these “schools” aren’t well established or even
clearly defined, but a few seem common on the Web.

Text
The simplest school of thought about Web pages suggests that text is the most important
design element in a page. Designers who follow the text first approach favor the content
over presentation and generally use minimal graphics, instead focusing on color or
type choice. In the past, because of the limitations of HTML and poor support of CSS,
people who took a text first approach to Web design tended to have somewhat dismal
looking pages, such as the one shown in Figure 11-24.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 395
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 11-24. Initial Web technology limited, text-oriented design

396 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Many designers instead turned to putting text in a graphic form to achieve
formatting, but did so at the expense of download time and scalability. Today,
however, things are much better for text-oriented designers. Using CSS and
downloadable fonts, it is possible to create nice pages with no imagery, as shown
by the example in Figure 11-25.

One potential downside of advanced text design is that it relies on a technology
that, so far, has been less than well supported by browsers. Second, text design—
particularly when implemented in a traditional hypertext fashion—tends to favor
somewhat unstructured or contextual links, interspersed within content, over regular
navigation bars. As discussed in Chapter 8, this type of link is a very powerful way to
create jumps to link-related ideas, but its lack of regularity can confuse novice users
who expect to see consistent navigation in a site.

Suggestion: When using text-oriented design, consider providing navigation
bars as well as contextual links.

Finally, text design can be difficult to do well. Many designers, particularly those
with limited typographic backgrounds, find that it is difficult to design a compelling
Web page without relying on fancy graphic effects. However, the major benefit of text
design is significant: the pages load very fast, and it is well known that responsiveness
is a key aspect of site usability. Further, text-oriented pages can be converted relatively
easily to different environments, such as much larger screens, very small screens like
PDAs or cell phones, and even speech-based browsers.

Figure 11-25. CSS provides text designers useful tools

Suggestion: Consider using a text design philosophy on sites where download
speed or display flexibility is of paramount importance.

Metaphor and Thematic
The metaphor and thematic design philosophy is interested in making Web pages look
similar to what they are about in real life. If a site is about cars, then structuring the
site’s interface as a steering wheel is a good example of this design approach. Metaphor
approaches tend to be highly visual, as shown by the example in Figure 11-26.

The metaphor design has two major benefits. First, given the heavy visuals and tie-in
with the real world, the site is often highly memorable. Second, relying on metaphors
based on real world objects may make the site seem familiar and easy to use. However,
these benefits do come with some serious downsides. First, some users might not “get”
the metaphor. For example, if you built your site interface to act like a Hewlett Packard
reverse-Polish notation (RPN) calculator, some users might find it amusing and very
intuitive, particularly if they are engineers. However, for others who blocked math
class out of their brain long ago and have no clue how to use a RPN calculator, the
metaphor-oriented interface may provide no benefit and even be a hindrance. Even
users who understand the metaphor might not find it useful after a while. Expert users
may find metaphor-oriented interfaces limiting, and frequent visitors to the site might
find that the interface becomes tiresome.

Suggestion: Avoid using a metaphor design on sites geared toward expert users
or heavy repeat use.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 397
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 11-26. Metaphor-based Web design

398 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Finally, because metaphor design tends to be so visually heavy, such sites often are
slower than other types of sites.

However, despite its downsides, on occasion metaphor design can be the best
choice of all. Simulators are the best of example of this. For example, when you are
trying to show how a car works, it is best to have a user click on the actual objects in
the car, such as a steering wheel, the brakes, and so on. Figure 11-27 shows an example
of this in the context of Demo Company. Here, clicking and rolling on objects will show
products in motion, as well as text describing key features.

GUI Oriented
A very popular school of Web design could be termed “sites that act like traditional
software applications.” Granted, few sites following this design pattern will forsake

Figure 11-27. Metaphor design works well with direct manipulation interfaces

color or graphics in favor of battleship gray menus and small icon-laden navigation
bars, but the overarching sense of acting as software is at the heart of software- oriented/
GUI-oriented design. Sites that use a lot of text buttons organized in palettes across the
top or left of the screen basically are imitating what software applications look like. The
upside of GUI design is hard to ignore. Users know how to use software. They’ve come
to understand what to expect from menus, text fields, buttons, and so on. This knowledge
the designer gets for free. GUI-oriented Web design is consistent with what people
already know, so in that sense GUI design is the safest design style to practice. Rarely
will a GUI style site inspire, but at the same time it rarely upsets users. Figure 11-28
illustrates the GUI design style that is so frequently shown throughout this book.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 399
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 11-28. Software-oriented site design focuses on GUI conventions and
usability

Sans-serif text improves legibility.Navigation design follows GUI “button” style.

Tip: GUI style site design is a safe bet, particularly when there is a range of user
sophistication.

Be careful, though, and do not embrace GUI design so closely that you attempt to
reinvent the user’s desktop or traditional window environment within the browser
window. This can confuse the user more than provide security through familiarity, as
shown in Figure 11-29. Consider how difficult it would be to explain to novice users

400 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-29. Don’t go too far with GUI-designed Web sites

Pulldown navigation Pop-upsScrolling Java applet

Plug-in useGimmicksBrowser exclusive design

C h a p t e r 1 1 : P a g e s a n d L a y o u t 401
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

that they use the Windows GUI to access a browser application to access a GUI within
a browser window over the Internet. Someday it’s surely going to be seamless, but for
now don’t take chances.

While the look of a GUI-oriented Web site might be more colorful than the typical
software application, the general sense of consistency is there. This consistency could
be the major downside of GUI design, as it doesn’t always leave as much room for
designers and limits their design possibilities to the choice of colors or the use of simple
thematic buttons. Even font choice on navigation might be limited to common sans-
serif fonts like Arial and Helvetica when GUI principles are subscribed to religiously.
GUI design can be limiting to designers who want to stretch their creative wings.

Unconventional
The unconventional school of design favors creativity, unpredictability, and even
randomness in design. Unconventional pages often damn the conventions and invent
their own. The interface is an artistic opportunity for the designers to express their
feelings. While these forms of designs can be the most powerful, they also can be the
most dangerous to use. Unconventional interface design directly counters the usability
idea of consistency. Why rely on what people already know? That’s boring. Give them
something new! Of course, a site following such practices forces the user to learn new
interfaces, and this could send many users packing. On the other hand, when the
experience is fun or provides a motivating payoff, users may stick around nonetheless.
Remember, users can be quite curious, and, when their curiosity is piqued, what is
considered usable may be not as important as what is considered new or unusual.

While the unconventional school of Web design is probably the most fun and
certainly tends to attract great interest in the design community, it is practical for
only a relatively small class of sites. Few corporations would be willing to risk their
site to an unconventional design. Heavy-use sites or task sites may find the use of an
unconventional design highly damaging. Imagine a user struggling with new bizarre
interface concepts when trying to find information about a business or pay bills.
Figure 11-30 suggests what a self-interested designer might have done with the Demo
Company site.

Suggestion: Avoid unconventional or very artistically oriented interface designs
on task-driven, heavy-content, or frequent-use sites.

Of course, sites meant to entertain users may find unconventional design the best
approach. Sites designed as art are an obvious place for unconventional design. Designer
portfolios, personal homes, and any site whose primary purpose is to provide a creative
outlet for the designer rather than serve the user will find unconventional design
appropriate. In short, any site where the main goal is to interact with a user on an
aesthetic or emotional level with no worry about leaving some people behind may find
unconventional or art-first designs appropriate. Designers are highly encouraged to
explore these boundaries of the Web and push the limits. It makes them better designers.

402 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A pet project is a great way to safely do this and lets the designer not worry about what
other people think or even if people understand the site. Of course, don’t try this kind
of design on a paying client unless they asked for it or you are willing to lose them!

Tip: Sites designed purposefully to be unconventional are a great way to explore
new ideas.

Layout Examples
This section provides some examples of the most common layouts used in Web sites.
While there are countless variations of layouts, most tend to be somewhat related to
the ones presented here. Of course, freestyle designs that seem to follow no pattern at
all may seem to be the most common of all, and they are particularly popular among

Figure 11-30. An interesting design, but Demo Company management might not
appreciate an unconventional design

C h a p t e r 1 1 : P a g e s a n d L a y o u t 403
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

personal home page builders. The examples presented speak only about general layout
and say nothing about the particular stylistic aspects of a particular layout. The use of
color, text, and imagery is closely related to personal taste and current social and visuals
trends. Some classical trends, such as the use of symmetry and white space, tend to
weather short-lived fads, but there are few other such principles, so the focus of this
discussion will be placed on general layout and leave the designers free to be as creative
as they like within the defined regions.

“TLB”
TLB, top-left-bottom or top-left-backup, is one of the most common design styles used
on the Web today. In this design, the top of the page is reserved for page labeling,
branding information, and often primary navigation, and the left side of the page usually
contains secondary navigation elements. If the site is small, the left side contains the
site’s primary navigation and the top contains solely labeling and branding information,
but more often the left is reserved for secondary navigation information. As the user
clicks through the main sections, the choices on the left change. This is really no different
than a traditional GUI application. In a GUI, the user selects menus that drop down to
present more specific choices. The only difference here is the position of the menu—
fixed to the left of the screen. The last location in a TLB design is the bottom of the screen,
which is generally reserved for text links to supplement or back up the other navigation
and supplementary information, such as copyright information, legal terms, or contact info.

TLB designs are so common that users should already be very familiar with how to
use sites with this layout. From a usability perspective, the major complaint about TLB
designs is that the left-hand navigation often takes up a great deal of screen real estate
that could be used for content, and the user in some sense has to “jump over” the
navigation to reach the content. When using fixed page widths to account for small
monitors, the column for content can be somewhat restrictive, so that some content,
such as tables, has to be reformatted or the page will scroll a great deal. However,
letting the content expand infinitely to the right is not always a good solution, as it may
make the page difficult to read. In fact, often TLB designs are restricted eventually on
the right by a third column of related information or a background color. This creates
a familiar page approach to design. Figure 11-31 illustrates a TLB design in practice.

Tip: Consider limiting the right-hand margin in TLB designs to create a
consistent page look.

TE
AM
FL
Y

Team-Fly®

An example layout in this familiar style is presented here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

404 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-31. Top-left-bottom design is a very common layout

<title>TLB Template</title>

<style type="text/css">

<!--

body {margin: 0px;}

-->

</style>

</head>

<body bgcolor="#ffffff" leftmargin="0" rightmargin="0" topmargin="0"

marginheight="0" marginwidth="0">

<!--BEGIN: Label or primary nav table -->

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td width="100%" bgcolor="yellow">

<h2 align="center">Site Heading and/or Navigation</h2>

</td>

</tr>

</table>

<!--END: Label of primary nav table-->

<!--BEGIN: Secondary nav and content -->

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td width="10" bgcolor="red"> </td>

<td width="90" valign="top" bgcolor="red">

Link

Link

Link

Link

Link

Link

</td>

<td width="10" bgcolor="white"> </td>

<td>

<h2>Page Heading</h2>

<hr />

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed

C h a p t e r 1 1 : P a g e s a n d L a y o u t 405
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

406 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam

erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci

tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat.</p>

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed

diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam

erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci

tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat.</p>

</td>

<td width="10" bgcolor="white"> </td>

</tr>

</table>

<!-- END: tert nav and content -->

<!--BEGIN: footer navigation and legal-->

<div align="center">

Link |

Link |

Link |

Link |

Link |

Link

©2002 DemoCompany Inc.

</div>

<!-- END: footer nav -->

</body>

</html>

The major downside of TLB layouts, besides their potentially limiting content
region, is that they generally focus on navigation rather than content and may not
provide as much design opportunity as some other forms of layout.

Header-Footer
A header-footer design provides navigation both on the top and bottom of the page,
with the entire width of the page used for content. This type of design is good for
content-oriented sites, though it does limit the amount of area used for navigation.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 407
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Generally, the top of the screen is used for branding, graphical navigation, and page
headings, while the bottom of the screen is used to repeat text links and to provide
supplementary text links, particularly if the top navigation can scroll off the page.
Using frames, it is possible to fix the position of the top and bottom navigation regions
so they don’t scroll offscreen. CSS should eventually provide this functionality as well,
but so far the required properties are not well enough supported to be relied upon.
However, if it is not possible to fix navigation, a redundant set of navigation is not as
necessary, and the bottom may be reserved instead solely for useful information like
legal terms, copyrights, or contact information. Figure 11-32 shows an example of
header-footer design.

Suggestion: Use header-footer design for content-focused sites, particularly
when wide content is common.

Figure 11-32. Header-footer design is useful in content-heavy sites

408 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A basic header-footer template is presented here using frames. In this example, you
would need to provide three more files to set the top navigation, contents, and bottom
information.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Header Footer Frameset</title>

</head>

<frameset rows="125,*,50">

<frame src="header.htm" id="header" name="header"

frameborder="0" scrolling="no" />

<frame src="content.htm" id="content" name="content"

frameborder="0" scrolling="auto" />

<frame src="footer.htm" id="footer" name="footer"

frameborder="0" scrolling="no" />

</frameset>

</html>

It will also eventually be possible to create this design using CSS. Absolute CSS
positioning would work, but a more appropriate choice would be fixed positioning.
Unfortunately, at the time of this edition’s writing, this method works only in Mozilla
1.0 browsers and is not predictable.

Centered and Floating Window Style
An increasingly popular page layout style could be termed the “floating card or window”
style. The basic idea is to create a region in the middle of the screen for content. The
region can be fixed in size from page to page, have a varying length, or be a scrolling
window. Generally, the fixed-card style won’t work unless a very limited amount of
content is presented. A full, fleshed-out example of a centered-style page with a
background or color is shown in Figure 11-33, while the following code provides
a simple framework for implementing a centered-style design.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Simple Centered Page</title>

</head>

<body bgcolor="#3399ff">

C h a p t e r 1 1 : P a g e s a n d L a y o u t 409
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

<table width="600" align="center" bgcolor="white">

<tr>

<td>Content here</td>

</tr>

</table>

</body>

</html>

Utilizing frames, it is possible to create a variation on this design with a central
region of content that scrolls. The benefit of this style of design is that it provides a
fixed region to design for but doesn’t look as unusual on varying screens, since it is
usually positioned within a lush background and floats in the center of a screen.
Of course, executing this design may require the use of frames, floating frames

Figure 11-33. Centered-page design looks like print

410 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

(defined by <iframe>), or style sheet-based positioning. The simplest way to execute a
scrolled window style design might be to do something like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>The Easy Way</title>

</head>

<body bgcolor="blue">

<div align="center">

<iframe src="http://www.democompany.com" height="90%" width="600"

border="0">

</iframe>

</div>

</body>

</html>

Since <iframe> is not supported in some older Netscape browsers, you might approach
this layout using a variety of normal frames, as shown by the markup here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Floating Window in Frames</title>

</head>

<frameset rows="71,*,34" border="0" frameborder="0" framespacing="0" >

<frame name="top" src="top.htm"

scrolling="no" frameborder="no"

framespacing="0" noresize marginwidth="0" marginheight="0" />

<frameset cols="170,423,*" frameborder="0" framespacing="0" />

<frame name="left" src="left.htm" scrolling="no"

frameborder="no" noresize framespacing="0"

bordercolor="#ffff00" marginwidth="0" marginheight="0" />

<frame name="center" src="contentpage.htm" scrolling="auto"

frameborder="no" noresize framespacing="0"

marginwidth="0" marginheight="0" />

<frame name="right" src="right.htm" scrolling="no"

frameborder="no" noresize framespacing="0"

marginwidth="0" marginheight="0" />

</frameset>

C h a p t e r 1 1 : P a g e s a n d L a y o u t 411
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

<frame name="bottom" src="bottom.htm" scrolling="no"

frameborder="no" framespacing="0" noresize

marginwidth="0" marginheight="0" />

<noframes>

<body>

This site heavily uses frames. If you do not have a

frames-compatible browser it is not possible to proceed

beyond this point. Please e-mail

gripes@democompany.com

to register a complaint.

</body>

</noframes>

</frameset>

</html>

This markup sets up a set of frames that define the top, bottom, and sides of the window
and leaves the middle for content. A final variation using CSS positioning in conjunction
with a scroll option for the content is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Centered and Scrolling with CSS</title>

<style type="text/css">

<!--

body {background-color: #33cccc;}

#content {width: 600px; height: 410px;

overflow: scroll;

padding: 10px;

margin-top: 20px;

margin-bottom: 20px;

margin-right: auto;

margin-left: auto;

background: white;

border: 5px solid #cccccc;}

-->

</style>

</head>

<body>

<div id="content">

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed

diam nonummy nibh euismod tincidunt ut laoreet dolore magna

aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud

exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea

commodo consequat. Duis autem vel eum iriure dolor in hendrerit

in vulputate velit esse molestie consequat, vel illum dolore eu

feugiat nulla facilisis at vero eros et accumsan et iusto odio

dignissim qui blandit praesent luptatum zzril delenit Lorem

ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

nonummy nibh euismod tincidunt ut laoreet dolore magna

aliquam erat volutpat.</p>

<p>Ut wisi enim ad minim veniam, quis nostrud exerci tation

ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat. Duis autem vel eum iriure dolor in hendrerit in

vulputate velit esse molestie consequat, vel illum dolore eu

feugiat nulla facilisis at vero eros et accumsan et iusto

odio dignissim qui blandit.</p>

<p>Ut wisi enim ad minim veniam, quis nostrud exerci tation

ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat. Duis autem vel eum iriure dolor in hendrerit in

vulputate velit esse molestie consequat, vel illum dolore

eu feugiat nulla facilisis at vero eros et accumsan et

iusto odio dignissim qui blandit.</p>

</div>

</body>

</html>

To avoid printing problems, if you use CSS to implement this approach, make sure
to have a special print style sheet. Also, be aware of CSS implementation problems.

An example of a floating design in action is shown in Figure 11-34.
The challenge of using the fixed-window approach is dealing with the CSS and the

frame rendering problems in browsers. Testing is very important with this type of layout.

412 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Tip: When building scrolling card style pages, be careful to make sure that frame
line-up is precise under all browsers.

As mentioned earlier in the chapter when discussing page sizes, fixed pages may
look rather small on large monitors. Unlike TLB layout, header-footer and scrolling
windows can be centered to reduce the perception of empty space. Of course, the only
way to truly deal with space issues is to create a stretchable page with relative sizing.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 413
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 11-34. Floating Window designs can be dramatic

TE
AM
FL
Y

Team-Fly®

414 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Stretchable
Stretchable pages are rising in popularity, particularly as more users access the Web
with high-resolution monitors. However, as discussed earlier, letting a page stretch is
dangerous, since things can distort. Some items should be fixed and others allowed
to stretch. Consider, for example, the situation in which the navigation column and
margins are fixed, while the center column is free to stretch however the user wants.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Stretch Me</title>

</head>

<body bgcolor="#006699">

<table border="0" width="100%" cellspacing="0" cellpadding="0">

<tr>

<!-- just a gap -->

<td width="20" bgcolor="#006699"> </td>

<!-- navigation column fixed size -->

<td width="80" bgcolor="#ffcc00" valign="top">

<h3>Navigation</h3>

Link

Link

Link

Link

</td>

<!-- just a gap -->

<td width="20" bgcolor="#ffffff"> </td>

<!-- content region variable size -->

<td width="100%" bgcolor="#ffffff" valign="top">

<h2 align="center">Stretch Demo</h2>

<hr />

<p>Content goes here. Content goes here. Content goes

here. Content goes here. Content goes here. Content

goes here. Content goes here. Content goes here.

Content goes here.</p>

</td>

<!--right column-->

<td width="80" bgcolor="#ffcc00">Some other text here </td>

<!--right margin gap-->

<td width="20" bgcolor="#006699"> </td>

</tr>

</table>

</body>

</html>

While a stretchable or fluid design does fit to whatever screen the user wants, it can
be rather limiting. Creating stretch points limits the design to simple colors or patterns,
since the relative areas are elastic and would distort an image placed there.

Tip: Avoid stretchable pages when content is minimal, or they may distort
when stretched.

The Road to Common Site “Looks”
Designers may feel that the previous discussion will stifle creativity. Yet consistency is
common even in the world of print. Consistency can be good. Users know what to expect.
They are faster and more efficient when they understand a site. The frame grabs of two
popular e-commerce sites are shown in Figure 11-35. They really are the same design,
and for good reason. Users will know how to shop right away.

Common layouts not only benefit the user, but the designer as well. Common
layouts can be implemented as templates that allow for the cost effective construction
of large sites. Even novices can easily apply common layouts with decent results.
Remember, not everyone who is building sites will need or want to go to art school.
Already, the W3 has issued core styles (http://www.w3.org/StyleSheets/Core/) that
they are encouraging people to use. Hopefully, this will improve the look of many sites.

Consistency between sites does, however, limit creativity to some degree. Rather
than be pessimistic about the design options open to you, it would be smarter to say
that consistent site designs allow creativity to operate within certain parameters. Within
a similar site, there may be many ways to do the same general design. Type choice,
color, artistic devices such as the treatment of illustrations or photos, all can make sites
with the same basic structure appear very different. This is not necessarily a limitation
any more than are the accepted practices for designing books, which tend not to be
triangular and usually have tables of contents. Truly great Web designers can stay
within convention and still stand out.

Rule: Strive always in Web design to be the same, but different.

C h a p t e r 1 1 : P a g e s a n d L a y o u t 415
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Summary
Web pages are not print pages. While certain characteristics like size and layout are
often similar, the dynamic nature of the Web environment can create design difficulties
that don’t exist for books. Users can view pages under a variety of resolutions, and
designs will literally break if designers aren’t careful. Even something as simple as the
user adjusting the font size can ruin a nice layout. The design of a page is influenced
both by the type of the page and by its content. Always remember that the beauty of
the Web is that pages can easily be changed to fit content. A few common schools of
Web design exist, and there are common layouts as well. Designers should consider
these designs, but also think about experimenting. So far, little has been said about the
actual components of a page, such as text, color, images, and form elements. The next
few chapters will investigate the proper use of these page elements.

416 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 11-35. Sites with similar functions start to look alike

Which site is which? Similar functionality can blur identity.

Chapter 12
Text

417

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The heart and soul of a Web page is text. Whatever anyone says about the future of
multimedia online, most Web pages today are dominated by textual information.
Assuming that your site relies heavily on text, the way that you use text may

significantly influence the user’s experience. The simple choice of a typeface could hurt
site usability just as much as it could improve site “memorability” by building brand.
Formatting text could also make the text easier or harder to deal with. The art or process
of using type is traditionally termed typography. In short, typography is concerned with
the aspects of text that make it readable—or if you prefer, simply usable—as well as
expressive. The use of words themselves and the style of writing employed might
affect the user’s experience just as much as how the text is presented.

The Medium Matters
Like print or television, the Web is a medium that has its own particular limitations.
While there is a great deal of knowledge concerning how type is used on paper, not all
of it maps well to the Web. Technologies like HTML and CSS are not always powerful
enough to do things that are feasible on paper, at least not easily. Even if we were provided
with absolute control over page layout, we still would have trouble. As discussed in
Chapter 11, the Web does not support any particular fixed page width or length. Even
if there were such conventions and they were followed, page designers do not have as
much control over the final presentation as they think. Users are always free to change
their screen size, increase or decrease their font size, change the font used, or even
change their browser’s colors. Designers have to get used to the fact that the Web is not
static—it’s a fluid medium where presentation varies greatly from user to user and
moment to moment. Nowhere is this lack of control more obvious than the use of text
within Web pages. Text flow is very dynamic: users simply have to increase their font
size, shrink their window, or expand their window to ruin a nicely formatted page, as
shown in Figure 12-1.

Many designers cannot accept the fact that Web technologies like HTML don’t
allow them common typographic facilities like adjustable line spacing. They become
very frustrated when they find that even simple things like relative text size are not
predictable online. Notice the dramatic potential difference between font sizes on a
Macintosh and PC screen shown in Figure 12-2.

Most newer Mac browsers attempt to rectify the cross-browser sizing difference, but
there is no guarantee such browsers are used or set correctly.

Taking Control of Text
What’s a designer to do? Some will invariably fight with the medium and attempt to
wrestle control back. Typically, these designers put all their text into image format.
Making their text graphic allows designers a degree of control over letter spacing,
font choice, and a variety of other facilities they have come to expect from print.

418 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : T e x t 419
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-1. Text layout challenges on the Web

Probable look

Look if user
modifies font
settings

This approach is flawed to the core. Putting textual content into an image form makes a
Web page load slower. No amount of graphic optimization is going to make the phrase
“Web pages need to be fast” in a graphic form quicker than ASCII text saying the same
thing, as shown in Figure 12-3.

Besides the problem of file size, graphic text must be formatted for a particular screen
size. A graphic text label using a 24-point font size may look quite nice at 640 × 480
resolution. Consider what it looks like at 1,024 × 768. The pixels don’t get any bigger,
so either it is small or distorted, as shown in Figure 12-4.

Users have no way of fixing the sizing issue. If, however, text is presented as
regular HTML text, it is possible for the browser to override any sizing. This enables
the user to improve the page’s readability. Other problems with using graphic text
include the following:

420 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-2. Screen fonts sizes aren’t always the same on PC and Mac

■ Difficulty updating You need to use an image manipulation tool to make a
simple text change. If you use alt text, you actually have to update both the
image and the text—doubling the work.

■ Accessibility limited Users with nonvisual browsers will have problems
with graphic text unless the alt attribute is used. As previously mentioned,
accessibility may be limited regardless of alt attributes if the images do not
size based on screen resolution.

■ Ignored by search engines Search engines will not index graphical content,
though they should be able to index alt text if it is provided.

Despite its problems, graphical text does have its place. Until downloadable font
technology is straightened out, graphical headings and buttons that must be rendered
with a particular effect will still have to be created as graphics. For most text, though,
it is better to use text itself rather than images.

Flash is another text control possibility—it should scale with screen size but has the
other two drawbacks.

Throwing Up Your Arms
On the other end of the spectrum are those who throw up their arms and don’t even try
to control text layout to any major degree. This is nearly as bad as the previous situation.
The reason we want to control layout is to improve the readability of text. If our text is

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 2 : T e x t 421

Figure 12-3. Graphic versus text

422 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-4. Absolute sizing of text backfires as graphic

easier to read, it is more likely the user will actually bother to read it and act upon any
message we are attempting to convey. The use of a particular typeface, size, and style
and the overall layout of text all affect how well or how poorly text conveys information
to the user. Traditional typographic conventions have striven to improve the legibility
or readability of text (the “usability” of the text). Take a look at the Web pages shown
in Figure 12-5. The page on the top is a typical page lacking any major typographic
improvements. The one on the bottom has had some basic techniques applied to improve
readability.

Modern-Day Baskerville
Should we strive to apply any and all typographic conventions from print to the Web
directly? No, because some type conventions just don’t make sense or need modification
for use on the Web. For example, the practice of copy fitting is well known in print
publishing. Copy fitting is the process of taking text and trying to fit it within a predefined
space, such as a piece of paper. Copy fitting requires the designer to literally count the
characters and determine how to fit them in the page by changing the type size, type
family, line spacing, or layout or even by editing the text. On the Web, we could limit
our pages to a particular size, as discussed in the previous chapter, but we could also
let things scroll. We are not confined by the same limitations as paper, and this can be a
blessing. We really can’t worry about things like widows in Web text. Because text can
reflow simply by the user resizing their screen or changing their font size, a paragraph
may have a widow (a short line of text that appears by itself at the top of a page) no
matter what we do. The concept of copy fitting just doesn’t work for the Web.

Get used to the fact that many longstanding ideas of print type layout do not make
sense for the Web. As a designer, you should strive to work with the medium, not
against it. Consider the history of print design. John Baskerville was an English type
designer in the mid-1700s who designed typefaces that took into account how the print
process worked, starting from the properties of the metal used to manufacture type.
Baskerville considered the whole process and the state of printing technology when he
designed his typeface. We should always remember that the Web, and its support for
text layout, is still very primitive. Be a modern-day Baskerville!

The rest of this chapter will provide a brief overview of typography and its terms.
We’ll follow with a discussion of many traditional tasks of type and how they may be
accomplished using standard Web technologies like HTML or CSS. The chapter will
conclude with a discussion of how to format text for usability.

Typography Terminology 101
Typography has a rich history, as well as many rules and terms. Web designers should
be familiar with the vocabulary and some of the basic tenets of text usage that have
been established in the print world. Don’t fall asleep as you read on. Remember, the

C h a p t e r 1 2 : T e x t 423
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

TE
AM
FL
Y

Team-Fly®

424 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-5. “Do nothing” versus “do something”

more we focus on the various aspects of letters and the use of type, the better we will
be able to fix subtle problems that the reader may not be consciously aware of.

Text is made up of characters. Characters can be letters, numbers, punctuation, and
a variety of special characters. With letters, we have both uppercase and lowercase letters.
We can also describe various parts of the individual letters. For example, ascenders are
the parts of lowercase letters that protrude upward away from the main part of the
letter. Descenders are the parts of letters that protrude downward and hang below the
baseline, which all characters sit on. The letters b, d, f, h, k, l, and t have ascenders, while
the letters g, j, p, q, and y have descenders. Ascenders and descenders are important
because they help readers to recognize words more easily by providing variation in
letter forms when combined in a word. The baseline is a line, usually unseen, that text
appears to sit on; descenders go below this line. The comparable line that marks the top
of lowercase letters that lack ascenders is called the meanline. Between these two lines,
characters may be measured by their x-height, which is the height of the body or main
part of a lowercase letter not including any descender or ascender. Basically, it is the
distance from the meanline to the baseline. It is simplest to think of x-height simply as
the height of a lowercase x character. Figure 12-6 provides a graphical overview of all
these type terms.

There are many more terms that help classify letter shapes. Some of these are
shown in Figure 12-7. The purpose of knowing all these terms is simply to be able to
understand the differences between different character styles.

Fonts
A “font” refers to the style of the type used on a computer. The term comes from the
print publishing industry, where it referred to a particular size of a particular typeface.
On the computer, this term is often interchangeable with the word “typeface.” On the
Web, typefaces are generally classified in only a few basic ways. First, by distinguishing
if the typeface is serif or sans serif. A serif font is one that has short starting or finish
strokes protruding from certain parts of letters, like T or h. In contrast, a sans-serif font

C h a p t e r 1 2 : T e x t 425
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-6. Some common type terms

426 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

lacks these extra strokes. Notice the difference between Arial, a common sans-serif font,
and Times, the most common serif font on the Web.

Beyond sans-serif and serif, some other common typefaces categories include script
and decorative. Some may refer to the decorative typefaces as novelty or display typefaces.
Other categories of type are possible, and many subcategories may also exist, but
typographers continue to debate exactly what categories exist and which font is in
which category. Table 12-1 should serve as a basic guide for Web designers to the
common categories of typefaces that exist.

Proportional versus Monospaced Fonts
While there are literally thousands of fonts that can be used, the use of different font
families within standard Web text is actually very limited. By default, Web browsers
support only two basic font types: proportional and monospace fonts. A proportional
font consists of characters that take up only as much space as they need within a

Figure 12-7. Anatomy of characters

C h a p t e r 1 2 : T e x t 427
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Kinds of
Typefaces Categories Within Each Typeface Examples

Serif
typefaces

Old Style
This type appeared between the
15th to 17th centuries.
Fonts have little contrast between thick and thin
strokes, bracketed serifs, and small x-height.
Transitional
This is a group that combines elements from both
the Old Style and Modern groups and appeared
in the 17th and 18th centuries.
The typical characteristics include a large x-height,
more contrast between thick and thin strokes than
is seen in Old Style faces, and thin, bracketed serifs.
Modern
This typeface originated in the 18th century and
was used in the 19th century as well.
Fonts in this category usually display a contrast
between thick and thin strokes, small x-height like
Old Style, and usually unbracketed serifs.
Slab serif
This typeface features heavy lines and curves of equal
width, with rectangular serifs the same width as the
strokes themselves. The x-height is generally large.
Some slab serifs have an “Egyptian” feel to them.

Sans-serif
typefaces

Geometric
The x-height of these tends to be small and the
strokes of the characters tend to be the same width.
Like their name, tend to be very mathematical in
their proportions.

Grotesque
These tend to have more stroke variation
than other sans-serif fonts.
Have a large x-height.
Are not as “geometric” in feeling.

Table 12-1. Common Typefaces

428 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

word or a line of type. By default, text in HTML is rendered in a proportional font
when not specified—typically, Times. With monospaced fonts (also called fixed-width or
nonproportional), each character occupies exactly the same amount of space regardless
of its actual width. Web browsers also support a single monospaced font—typically,
Courier. Setting Web text in a monospaced font is easy to do with HTML using the <tt>
element, as shown here:

<tt>This is now monospaced</tt>

A specific monospaced typeface such as Courier can be specified using CSS or
HTML’s tag. However, proportional fonts should be used for most text, as they
have the following two advantages:

■ You can include more characters in a given amount of space if they
can vary in width.

■ Text is easier to read because the words appear as a cohesive unit
within a sentence.

Note the readability and the amount of room taken up by the sample text shown in
Figure 12-8.

Kinds of
Typefaces Categories Within Each Typeface Examples

Sans-serif
typefaces

Humanist
Uses a small x-height, similar in proportion
to Old Style.

Script
typefaces

Brush script
This type looks as if it were lettered with a brush.
Calligraphic
In this kind of typeface, the designs appear to have
been drawn with a broad-edged pen.

Decorative
typefaces
(also called
Display or
Novelty
typefaces)

Many of these fonts are too intricate or irregular to
be useful for text unless in very large size or for a
few words.

Table 12-1. Common Typefaces (continued)

In general, you should consider using monospaced type within Web pages for
computer code, certain technical data, or to bring special emphasis to words or phrases.

Setting Fonts in Web Pages
While Web pages support two primary generic font types, proportional and monospaced,
it is possible to set the font itself. Use the face attribute for the tag to set the
name of the font used to render text in a Web page:

This is now monospaced

A Web browser will read this HTML fragment and render the text in the font named
in the face attribute—but only for users who have the font installed on their systems.
Multiple fonts can be listed using the face attribute:

This should be in a

different font

Here, the browser will read the comma-delimited list of fonts until it finds a font
it supports. Given the fragment shown above, the browser would try first Arial, then
Helvetica, and finally a sans-serif font before giving up and using whatever the current
browser font is.

When using CSS, specify the font-family property to set the font, either by
specifying a specific font such as Arial or a generic family such as sans-serif, which
should be built into the browser. Quote any font names that contain white space, and
be careful to note that font names may have to be capitalized. Like the tag, CSS

C h a p t e r 1 2 : T e x t 429
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-8. Monospace versus proportional text

supports a comma-delimited list to select fonts from. So, to set the font for all paragraph
tags, you would use a simple CSS rule like this:

p {font-family: Arial, Helvetica, sans-serif;}

A little guesswork can be applied when setting Web fonts so that the page has a
good chance of rendering correctly. Most Macintosh, Windows, and UNIX users have a
standard set of fonts, as shown in Appendix E. Further, CSS specifies one font face for
every category that should be built into the browser. If equivalent fonts are specified, it
may be possible to provide similar page renderings across platforms. Recommended
faces to use within Web pages are shown in Figure 12-9.

Because many of these fonts are specific to a particular operating system, you may
have to specify fallback equivalents unless you decide to use downloadable fonts, which
will be discussed in the next section. Traditionally, without relying on downloadable
fonts, the combinations listed below have been considered useful to specify within Web
sites because the fallback fonts are fairly similar and users generally have them installed:

Arial, Helvetica, sans-serif

Times New Roman, Times, serif

Courier New, Courier, Luxi mono, monospace

Georgia, Times New Roman, Times, serif

Verdana, Arial, Helvetica, sans-serif

Using Downloadable Fonts
With traditional HTML, and even basic CSS, font choice is very limited on the Web.
Designers often resort to putting text into an image form in order to use a nonstandard
font in a page. However, this solution is not optimal. Fortunately, the major browser

430 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-9. Common Web fonts

vendors have begun to support downloadable fonts. Microsoft’s solution is called
OpenType (www.microsoft.com/typography) and has been built-into Internet Explore
since version 4.0. Netscape’s 4.x browsers used Bitstream TrueDoc technology
(www.truedoc.com) natively. Unfortunately, Opera, Netscape 6/7, and Mozilla 1.0
browsers have not embraced downloadable fonts, so cross-platform font use can be
challenging.

Microsoft’s technology is the only reasonable way to embed fonts in a Web page.
To include a font, you must first build the page using the element or style sheet
rules that set fonts that you own. When creating your page, don’t worry about whether
or not the end user has the font installed; it will be downloaded. Next, use Microsoft’s
Web Embedding Font Tool (WEFT), available from www.microsoft.com/typography,
to analyze the font usage on the page. The program should create an .eot file that
contains the embedded fonts. Then, add the font use information to the page in the
form of cascading style sheets (CSS) style rules, which are basically those defined in
CSS2, as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Microsoft Font Test</title>

<style type="text/css" media="all">

<!--

@font-face {

font-family: Ransom;

font-style: normal;

font-weight: normal;

src: url(fonts/ransom.eot);}

.special {font-family: Ransom;

color: green;

font-size: 28pt;}

-->

</style>

</head>

<body>

Example Ransom Note Font

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 2 : T e x t 431

This is also in Ransom

</body>

</html>

Note in the example, how the @font-face selector allows you to bring any number
of fonts into a page. It may be useful to define a fonts directory within your Web site to
store font files, similar to storing image files for site use. Also, notice how it is possible
to use both typical style sheet rules like a class binding, as well as the normal
tag. A possible rendering of font embedding is shown in Figure 12-10.

For more information on embedded fonts under Internet Explorer and links to font
file creation tools like WEFT (Web Embedding Font Tool), see the Microsoft Typography
site (www.microsoft.com/typography).

While downloadable font technology is improving, you must be careful with browser
compatibility. Despite the fact that CSS2 defines the same syntax as Internet Explorer
uses, not all IE versions across platforms support the technology, and even when done
correctly, some minor screen flashing may occasionally occur, or the text may not work
properly with background colors and images. Once perfected, downloadable font
technology will drastically change type use on the Web, enabling users to create beautiful
pages as well as ones overloaded with font families. Experienced designers should
consider that a limited selection of fonts may be best for inexperienced page builders
who might pick illegible fonts to use online.

Setting Font Styles
The most common font style is when the characters are upright. This is the Roman style
(or simply normal, as is the case in CSS). By default, HTML uses Roman style, as does
CSS, if you don’t specify a particular style. To explicitly set font style to Roman, use a
style rule like the following:

This text is Roman.

432 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-10. Embedded fonts increase design choices

The other font style is italic, where the letters slant to the right. In print typography,
each font has its own particular italic style, but on the Web, italic style is generally just
a simple slanting. Setting text in italic in HTML is simple using the <i> element:

<i>This is italic text</i>

It is also possible to use the font-style rule in CSS to set the style rule, as shown here:

This is italic

Finally, you can specify to set text in a style called oblique. In print typography,
oblique text is just a slanted font, while italic is a specially created slanted font. On the
Web, oblique text appears identical to italic text, and so far Web browsers do not seem
to differentiate between the two forms. Text style can be set to oblique only by using CSS:

This is oblique

Remember, an italicized font isn’t necessarily one that is just tilted. If the font family
supports an italic or oblique style, the actual characters may be different when the
corresponding italic or oblique CSS rule is present. So far this is not commonplace,
but it can happen.

Setting Font Weight
The weight of a font refers to the thickness of its stroke. Changing the weight brings
emphasis to text. Many designers prefer to bring emphasis to text using italics rather
than bold, but the choice is up to you. However, note that text set bold tends to be less
readable the smaller the text is.

Setting text bold in HTML is easy using the tag. Given the trend towards logical
markup and style sheets, developers are encouraged to use the tag instead.

This is bold text

This is logically bold text

HTML does not afford any great control over the weight of text. Under CSS, you
can specify the weight using the font-weight property. Values for the property range
from 100 to 900, in increments of 100, with 100 being very light and 900 being very
bold. Normal text is set at 400 weight, and 700 corresponds to the use of the tag.
Keywords are also supported, including bold, bolder, and lighter, which are used to
set relative weights. Some browsers may also provide keywords such as extra-light,
light, demi-light, medium, demi-bold, bold, and extra-bold, which correspond to the
100 to 900 values.

C h a p t e r 1 2 : T e x t 433
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

TE
AM
FL
Y

Team-Fly®

Because font families also include bold values and the meaning within them varies,
the numeric scheme is preferred. A few examples are shown here:

strong {font-weight: bolder;}

.special-emphasis {font-weight: 900;}

h2 {font-weight: demi-bold;}

Unfortunately, many supposed CSS-compliant browsers do not support the various
weights well and default to just bold or not bold text.

Specifying Font Variants
Yet another way that a font can add emphasis to text is the use of small capitals (or
“small caps”). This style is often used in legal documents. In HTML, you will have to
manually size text down and type in all-capital letters:

<small>THIS IS MANUAL SMALL CAPS</small>

CSS provides the font-variant property, which can be set to small-caps to display
the current font as small uppercase letters:

em {font-variant: small-caps;}

Reversing Text
Using white letters on a black or another color background can create a striking effect,
but it may also be much harder to read. Reverse type appears smaller, and the color
may overpower the text. On the Web, we don’t have to worry about ink bleeding issues
with reversed type, but because of readability issues, you will probably still have to up
your font size 1 or 2 points when using reversed text. You should also avoid using very
thin typefaces in a reversed fashion. Setting text in reversed style is fairly easy by creating
a style sheet rule,

.reverse {background-color: black; color: white;}

and then accessing it whenever you want to reverse text—like so:

Reverse It!

Using only HTML, it is much harder to reverse text. You will have to rely on tables
and background colors to achieve the effect unless you want to resort to making an
image. The markup below achieves the same effect as the style rule:

434 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 2 : T e x t 435

<table cellpadding="0" cellspacing="0">

<tr>

<td bgcolor="black">

Reverse It!

</td>

</tr>

</table>

Not only is the HTML approach messy, it doesn’t necessarily work well in all
situations. Consider the following markup to reverse a single letter. It works, sort of,
but it’s awkward.

<table cellpadding="1" cellspacing="0" border="0">

<tr>

<td align="center" bgcolor="black">R</td>

<td>everse only the R</td>

</tr>

</table>

To effectively reverse a single character in a Web page without using style sheets,
you will probably have to resort to an image.

Text Casing
One last way to change the general appearance of text is to case it differently. As you
already know, text has both uppercase and lowercase. While uppercase letters set
emphasis, you should be cautious about using uppercase in Web pages, as TYPING IN
ALL UPPERCASE IS CONSIDERED THE EQUIVALENT OF SHOUTING ONLINE.
Also consider that when you TYPE IN ALL UPPERCASE IT IS MUCH MORE
DIFFICULT TO READ than when you type in mixed case because the letter forms are
much less distinct.

Last but not least, when type is set in all caps, it can be much longer than the same
type set in lower or mixed case. This can be very important if you are making buttons
or have a fixed region like a table or column to put text into. You may have to make the
size of the text smaller to fit into the defined area. This could make the text illegible.

Setting the case of text is generally a manual process, though CSS does define the
text-transform property that can be used to uppercase text automatically. The example
here shows how a class called “upper” is changed to uppercase automatically:

.upper {text-transform: uppercase;}

It is also possible to specify values of lowercase, capitalize, or none for the text-
transform property. Uppercase text should be used sparingly, but it may be useful
within navigation or within section labels or headings.

Sizing Font
Print text measurement tends to specify font size in points. A point is 1/72 of an inch.
The point size of text is measured from the top of the ascender to the bottom of a
descender. Even though text is set to a particular point size, two different fonts in the
same point size may not look the same size on screen or paper. The size of the characters
optically is determined greatly by their x-height measurement (see earlier in the chapter,
“Typography Terminology 101”). Since most text will be composed of lowercase letters,
a font with a small x-height will look smaller than one with a larger x-height, even though
both may be set to the same point size. Figure 12-11 illustrates the point measurement
system and shows the size variation between fonts.

Font Sizes in HTML
HTML does not provide a fine-grain measurement system for fonts. The tag
does provide a size attribute that sets the size of type. In a Web page, there are seven
sizes for text, numbered from 1 to 7, where 1 is the smallest text in a document and 7 is
the largest. To set some text into the largest size, use This is big.
By default, the typical size of text is 3; this can be overridden with the <basefont> tag.
While sizing is not exact in HTML, if a user has not modified the browser settings, the
size corresponds to the point sizes in Table 12-2. Designers are warned that these are
only guidelines. If more exact sizes are required, CSS should be used or the text made
into an image.

Relative sizing with HTML is possible. If the text should just be made one size
bigger, use a relative sizing value such as instead of specifying the

436 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-11. Font measurement in points and x-height

size directly. Using the plus (+) and minus (–) signs makes it possible to move the
font size up or down a specified number of settings. The values for this form of the size
attribute should range from +1 to +6 and –1 to –6. It is not possible to specify because there are only seven sizes. If the increase or decrease goes beyond
acceptable sizes, the font generally defaults to the largest or smallest size, respectively.
Finally, because under strict HTML and XHTML the tag is deprecated, it is
more appropriate to use the <big> and <small> tags, which correspond to and , respectively, or to focus only on CSS-based sizing.

Font Sizing Under CSS
CSS provides more control over font sizes than HTML. The font-size property sets the
relative or physical size of the font. Values may be mapped to a physical point size or
to a “relative” word describing the size. Physical point-size can be set in points (pt),
picas (pc), centimeters (cm), millimeters (mm), inches (in), pixels (px), x-height values
(ex) and em values (em). It is also possible to use keywords like xx-small, x-small,
small, medium, large, x-large, and xx-large that map to browser defined sizes, which
would probably be very similar to the HTML font sizes from 1 to 7. Relative sizing can
be accomplished using the keywords larger or smaller, as well as positive percentage
values like 50% or 200%. A few example rules are shown here:

p {font-size: 18pt;}

strong {font-size: larger;}

h1 {font-size: 200%;}

C h a p t e r 1 2 : T e x t 437
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

 Typical Point Size

1 8

2 10

3 12

4 14

5 18

6 24

7 36

Table 12-2. Typical size Attribute Values and Point Equivalents

This is a clear case where CSS provides more control options than HTML. While point
size may appear to provide the most control, unfortunately point size is not perfectly
equivalent across PC and Macintosh displays. Without adjustment the PC tends to display
text about 33 percent larger for the same point size as a Mac. Fortunately, most modern
Macintosh Web browsers have settings to avoid this problem, but it is an issue in
older Macintosh browsers.

Designers looking for extremely precise control may have to resort to units of measure,
such as pixels. Unfortunately, precise sizing raises the an issue of whether the user
should be allowed to adjust font size upward or downward to improve reliability.
Most browsers provide features to override set sizes, but relative sizes in percentages
or em values provide more flexibility. We’ll revisit the usability-related issues of text
again at the conclusion of the chapter.

Text Layout
Once you have selected your font to use and begun to set basic features such as size and
style, you may begin to experiment with formatting text in various ways. Traditionally,
Web page designers have relied heavily on tables to lay out text on a page. We will
provide only basic reminders of how this can be accomplished, as there is no doubt

438 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Setting to
map sizes to
PC standards

that over time this approach to text layout will be replaced with CSS. HTML tables are
far too complex and bind layout very closely to content. Readers looking to find more
information about table and CSS layout are encouraged to see the companion book
HTML: The Complete Reference 3rd edition (Osborne McGraw-Hill, 2001).

Text Alignment
The first question about text layout usually has to do with aligning text. The default
on the Web is to leave the text flush left with a ragged right side. In HTML you do not
have to do anything to force this alignment, but you can explicitly set it with the align
attribute on a common block tag like <p>.

<p align="left">This paragraph is aligned to the left</p>

This can also be done in CSS using the text-align property.

p {text-align: left;}

Setting the alignment in the opposite style, flush right with a ragged left side, is
possible simply by changing the value to right in the two examples. Making the text
flush both left and right, or justified, is possible by setting the value to justify. To
center text, you can use the <center> element, <div align="center">, or an align
attribute on some block elements like paragraph. This may not produce the desired
effect unless you manually add line breaks at the appropriate points, because the text
won’t really seemed centered except as a block relative to the whole page. CSS also
supports a center value for the text-align property. Finally, it is possible to format text
in more of a random or asymmetrical style. The easiest way to accomplish this is using
the <pre> element in HTML. Unfortunately, the <pre> element will also convert the
text to a monospace font like Courier. The following example illustrates the use of all
the formatting in both HTML and CSS. Notice that the CSS overrides the various align
attributes and forces the <pre> tag to render in the default style. This example would
work equally well in a CSS and a non-CSS supporting browser.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Text Alignment in HTML and CSS</title>

<style type="text/css" media="all">

<!--

.flushleft {text-align: left;}

.flushright {text-align: right;}

C h a p t e r 1 2 : T e x t 439
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

.centered {text-align: center;}

.justified {text-align: justify;}

.random {font-family: Serif;

font-size: 1em;}

-->

</style>

</head>

<body>

<p align="left" class="flushleft">

On the Web text is normally aligned to the left with a

ragged right side. This is the most common layout of

text and while it is highly readable with good variation

between lines, it can get somewhat boring.

Consider spicing up your layouts with other text layout

styles.</p>

<p align="right" class="flushright">

Aligning your text to the right is not always considered

the best thing to do because it may make it difficult to

read.

Readers may not be able to easily track the text because

of the uncommon layout style.

However, for effect you may find that flush right text

can be bring attention to the content.</p>

<p align="center" class="centered">

Centered text can be a real problem for large amounts of

copy.

The reader's eye will bounce back and forth across lines

of varying length.

In reality you are going to have to set all the lines of

centered text
one
by
one.

If you just center whole paragraphs at a time you aren't

going to get the effect you are looking for.</p>

<p align="justify" class="justified">

While justification seems like a good idea it really isn't.

Depending on how it is implemented in the browser and what

the text says, justification may result in rivers of

white space within your text. These rivers may break up

the layout of your text drawing undue attention to the

whitespace. Depending on your screen size the rivers may

440 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : T e x t 441
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

grow or shrink. If you really want to justify your

text on the Web you are going to have to put up with

them.</p>

<pre class="random">

Asymmetrical or

random

formatting

seems like a lot of fun.

It can be.

However,

this style of formatting

isn't appropriate for everything and should be

used sparingly for things like poetry.

Remember, it will be very

difficult for a browser to reflow

such random text and generally this

will force

RIGHT SCROLLING

for users

with smaller screens.

</pre>

</body>

</html>

The rendering for this example is shown in Figure 12-12. Notice that the flush right
and centered text is difficult to read. The asymmetrical text is also very difficult to
follow, but when used properly it can bring emphasis to text.

While justified text seems a good approach over the tried-and-true flush left,
ragged right style, “rivers” of white space can be created in the document. Depending
on the content and how the user resizes their browser, this may ruin the document’s
readability. Remember, justification works by inserting spaces between words to even
the lines up. The more words in the line, the less noticeable will be the inserted spaces.
If the text is in a small column or the browser window is resized dramatically, the gaps
between words will become more noticeable, as shown in Figure 12-13.

Suggestion: Avoid using justified text in Web pages.

Line Length
When laying out our text, we should strive to make the length of a line of text
somewhere between 50 and 70 characters, or roughly anywhere from 7 to 15 words.

442 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-12. Rendering of text formatting example

C h a p t e r 1 2 : T e x t 443
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

While the common print rule of thumb is to aim for a line length of 66 characters, you
usually don’t want to break words, thus the size variation. When setting the length of
lines in print, we often measure in picas. A pica is equal to 12 points and thus, given
that a point is 1/72 of an inch, there are 6 picas per inch. Optimal line length is calculated
by doubling the font’s point size and taking the result as the number of picas per line.
Thus, when using a 24pt font, we want to use line lengths of 48pc. If we set line lengths
too short, the reader may have trouble reading the text, as phrases are often broken
across lines. Lines that are very long will cause problems for the reader because it will
be difficult for them to track text. You have probably experienced such problems.

The length-of-line suggestions are related to the cognitive science and usability
concepts discussed in Chapter 2. Studies suggest that that the human eye can focus on
an area about 4 inches wide without the observer having to turn his or her head. This
space corresponds to around 24 picas for standard 12pt Times; thus we see the “double
the point size in picas” rule of thumb in action.

To set line length, we may consider setting regions off by using <div> tags to create
various line lengths, as shown here:

<div style="font-size: 12pt; width: 24pc;">

Insert your text here

</div>

Figure 12-13. Narrow columns of justified text can cause rivers

TE
AM
FL
Y

Team-Fly®

However, if we are using tables in HTML with a 12pt Times font standard, we should
be using columns of text somewhere between 350 and 400 pixels wide for optimum online
reading. You can certainly use longer lengths if you like, but you should increase your
font size and the space between lines as you increase line length. Otherwise, the text
will become unreadable. Given that text sizing may not be in fixed measurements, you
might end up using style rules with em measurements to set width.

p {width: 33em;

text-align: left;

font-family: Verdana, Arial, Helvetica, sans-serif;}

The line length rules of thumb suggested will result in wasted paper when printing. To
combat this problem, many sites using the suggested sizing provide a special button
to get a “printer friendly” version of the text or even to link to an Adobe Acrobat
equivalent of the text. As CSS matures and browsers begin to support media-based style
sheets, this may change, but for now, always consider that sizing for monitor display
may not be optimal for printing.

Line Spacing
Line spacing or leading is the term for the space between lines of text. The purpose of line
spacing is generally to provide space between the lines of type so that it is easy for a
reader to track which line they are on. Normal HTML text will render generally in
whatever style the browser decides, typically close to single spacing. If you want to
increase line spacing, you will have to manually insert
 tags at the end of every
line. Not only is this approach tedious, but text will reflow when a user sizes the screen
smaller than the longest line; this will ruin the layout unless the text is constrained by
a fixed-width table cell. Even then, if the user overrides the default font size, all the
spacing will be ruined.

CSS provides support for setting line spacing using the line-height property. The value
of the line height can be specified in a variety of forms, but it would most often be written
in points (pt), pixels (px), or relative values like percentage (%). We can set line-height for
the entire body of a document or for selected areas of text, as shown here:

body {line-height: 1.5em;}

p.double {line-height: 200%;}

The print rule of thumb is to set line spacing to around one-third to one-half above
the type size. So if you are using 12pt font, set line-height to 18pt or greater. If we don’t
know the current font size, it is easy to specify this as 2.5ex (1 ex corresponding to the
x-height of the current font). Some typefaces, particularly sans-serif fonts like Arial or
Helvetica, have very large x-heights, so they will need to have more line spacing to

444 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

make it easier to read. Given how hard it is to read online text, you might consider
using a line-height of 2em or 200%. If you plan on making very long lines, you should
increase the line-height accordingly to improve readability.

Rule: Increase line height to improve online text readability.

Figure 12-14 shows the effect of line-height on various forms of text.

The origin of the word “leading” has to do with the fact that in the days of mechanical
type setting the operator would actually place small strips of lead between the lines to
give them space.

Letter Spacing and Word Spacing
In addition to opening up the space between lines, we can modify the space between
words or even characters. The technique of adjusting spacing between characters to
improve readability is called kerning. Adjusting of letter spacing in HTML cannot be
done accurately. While it is possible to insert a single full space between letters just by
pressing the SPACEBAR between characters, HTML collapses multiple spaces, so any real
formatting of this kind has to be done with the non-breaking space entity ().

C h a p t e r 1 2 : T e x t 445
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-14. Line spacing should be adjusted to improve readability

While formatting with spacing is not terribly accurate, this entity is littered throughout
many Web pages.

CSS provides letter spacing control using the letter-spacing property. You can set
the value of this property to a positive value like 3pt or a negative value like –4pt to
enlarge or tighten up spacing between letters, respectively. Normally, we aren’t terribly
concerned with kerning HTML text unless the text is very large, such as in a headline.
In fact, you should avoid adjusting letter spacing in lowercase body text. It is considered
bad practice. However, in headlines we may notice large gaps between certain letter
combinations like Yo, Ya, Wa, We, Te, To, and numerous others. Reducing the space
between the characters is possible, but it can be tedious. However, in headlines, reducing
the spacing between lines, words, and letters can make the text more pleasing to look at
and easier to read.

CSS also provides control over intraword spacing using the word-spacing property.
You can set this to a positive value like 2em to open spaces between words or a negative
value like –5pt. In general, you should try to keep word spacing in your headlines and
body text fairly close. The general rule of thumb from the print world for word spacing
is to set the width of a lowercase l between words. Note that because the l character
changes size with font choice and size, the word spacing would also change according
to this rule. The following code illustrates adjusting a headline in various ways. The
colored text is used solely to show which characters are being kerned.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Kerning Is Here?</title>

<style type="text/css" media="all">

<!--

.style1 {font-size: 36pt;

color: red;

line-height: .9em;

letter-spacing: -2pt;

word-spacing: .5em;}

.style2 {font-size: 36pt;

color: green;

line-height: .9em;

letter-spacing: -1pt;}

.style3 {font-size: 36pt; color: green;}

/* kerning classes */

446 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

.tight {letter-spacing: -5pt; color: yellow;}

.tighter {letter-spacing: -6pt; color: purple;}

.tightest {letter-spacing: -8pt; color: orange;}

-->

</style>

</head>

<body>

Full Kerning

<h1 class="style1">Demo Company Incorporated

Warmly

Welcomes

You

To Our Homepage</h1>

Simple Letter Spacing and Line-height Reduction

<h1 class="style2">Demo Company Incorporated Warmly

Welcomes You To Our Homepage</h1>

Regular Style

<h1 class="style3">Demo Company Incorporated

Warmly Welcomes You To Our Homepage</h1>

</body>

</html>

The improvement when adjusting spacing in a headline can be dramatic. You often
find that you can fit much more type in the same area as well as create a more pleasing
looking headline if you take the time to adjust the layout, as shown by the rendering
in Figure 12-15. However, you will notice that certain characters, such as the lowercase
p and the uppercase Y on the line below it tend to run a bit too close to each other
for comfort.

While the support for character and word spacing is still pretty buggy in browsers,
over time it will certainly improve. However, any graphic text that you produce—such
as for buttons and labels, particularly if it is in larger text—should be kerned. If you are
going to avoid using HTML and CSS text and incur all the downside of graphical text,
you might as well enjoy the upside. Be aware that text manipulated in many programs
may be autokerned in such a way as to look odd to some designers. If you want to examine
your text, you should try to focus on the spaces between letters and look at the actual
letters themselves. Techniques that designers often use are to squint while looking at

C h a p t e r 1 2 : T e x t 447
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

text; to look at the text upside down, reversed, or backward; or to look at text in any
other way that focuses not on the word, but the actual characters and the spaces
between them.

Setting Type Hierarchy
Type hierarchy can be used to improve the organization of a page greatly and should
be considered when creating Web pages. The concept here is to create a size and level
of emphasis of text in a pattern that matches the importance of the page. Imagine
setting your headlines in large font and your footer information in small font. This is
the crudest type of example, but with simple sizing and style adjustments, we can give
importance to the elements on the page that should help back up any page structure
we may have come up with.

In order of importance, you should run your text objects from large to small, dark
to light, dense to spread out, and so on. Each font and style you use should have a
unique “voice,” so your hierarchy is obvious. The concept of type voice is simple if you
imagine the page being read aloud by a talking browser. You would probably want the
device to read the important things loudly and the less important things softly. You

448 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-15. Headline text often needs adjustment

C h a p t e r 1 2 : T e x t 449
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

might even consider that some things would be said with a different tone if they were a
form of aside. HTML implicitly provides a very simple type hierarchy through headlines,
body text, and links, but you could consider improving or extending this hierarchy.

Suggestion: Create a type hierarchy by varying text color, size, style, and position
to improve page usability.

Headings and Subheadings
Headings and subheadings can be used to draw a user into a page and also provide a
structure for your page. The main heading is often used to indicate what the page is
about, while the subheadings are used to indicate various sections of text. You should
be careful not to have just a simple heading followed by huge amounts of body text
broken into paragraphs and the occasional figure. Such text will look daunting for the
reader and provide no easy entry points other than starting at the first line and reading.

In HTML, we generally indicate a heading with a heading tag like <h1>, <h2>,
<h3>, <h4>, <h5>, or <h6>. The formatting provided by these tags is relatively simple.
The more important the heading, the larger or more distinctively the heading is rendered.
Headings in HTML are arranged from most important and largest (<h1>) to least
important and smallest (<h6>). It has been noted that designers rarely use headings
beyond <h3>. Mostly this has to do with the lack of visual distinction in standard
HTML of the smaller headings. However, now that more logical markup is being
employed, this should change.

Using style sheets, we can provide a greater distinction between our subheadings.
The first thing to do to improve headings in Web pages is to remove the implicit returns
from headings by setting their display property to inline. This improves headings by
more closely relating subheadings to their content. In normal HTML, there is often
quite a gap between headings and their related content. Next, we might consider
making the headlines much more visually distinctive, using color, size, spacing, or
even bars. The following markup illustrates a few possibilities:

<h2 style="display: inline; color: green;">Important Headline</h2>

<div id="section1" style="width: 24pc;">

Text here for section.</div>

<h2 style="display: inline; color: red;">

Important Headline</h2>

<div id="section1" style="margin-left: 1em; width: 24pc;">

Text here for section.</div>

<h2 style="border-bottom-style: double; border-color: black;

color:orange; font-size: 24pt; width: 9em;

display: inline;">Important Headline</h2>

<div id="section1" style="width: 24pc;">Text here for section.</div>

The rendering of this example is shown in Figure 12-16.
The basic technique of bringing the headings out could also be applied to text such

as frequently asked question (FAQ) pages. Consider making the questions visually
distinct from the answers. This will improve the user’s ability to quickly scan the page
for the content being sought.

Formatting Paragraphs and Sections
When presenting large bodies of text, it is useful to break them up into smaller units
such as paragraphs and sections (which may include multiple paragraphs). The most
basic way to format paragraphs in HTML is with the <p> tag.

As a block level element, the <p> tag usually receives the equivalent of two line
breaks after the element. In print, this style of paragraph is not indented. When
paragraphs are indented, they generally do not receive two line breaks; rather, they
receive only one. In plain HTML, a simple way to create this form of paragraph layout
is to forego using <p> tags and to separate the logical paragraphs with the
 tags
and to use multiple non-breaking spaces () or invisible images to indent the first

450 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-16. Vary headings to improve page hierarchy

line of each paragraph. In CSS, you might instead set margins, text-indent, and line
height properties to set this style, like this:

p {text-align: left;

width: 33em;

line-height: 2em;

margin-top: -1em;

text-indent: 2em;}

While in print you might never want to both double space paragraphs and indent
them, because of screen readability some designers seem perfectly happy to set text this
way online. Figure 12-17 shows all three forms of paragraph renderings together.

C h a p t e r 1 2 : T e x t 451
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-17. Paragraph indentation styles

452 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Initial Caps
Another way to mark the beginning of a paragraph or section is to set off the first letter,
or “initial cap.” This is generally used more for sections than for paragraphs.

Raised Initials One style of initial cap is the raised initial. In this case, the first letter
of the section lies on the same baseline as the rest of the first line, but is much larger
than the other text. This effect can be achieved using basic HTML, although, as shown
below, it tends to create extra space between the first line and the rest of the text.

Demo Company Robots are your best

investment in artificial intelligence...

A better effect can be achieved using graphics. A simple GIF of the letter D can be
added to the first line with the element.

<p><img src="bigD.gif" width="30" height="37" alt="D" border="0"

align="absbottom" />emo Company Robots are your best investment in

artificial intelligence...</p>

By using the non-standard absbottom attribute, it is possible to achieve an improved
effect in most browsers.

Style sheets offer another means to set initial caps using the first-letter pseudo-element.
For example, the rule here sets the first letter of every paragraph in a large font and bold.

p:first-letter {font-size: 48pt; font-weight: bold;}

C h a p t e r 1 2 : T e x t 453
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

However, while CSS provides the preferred standards-oriented solution, many
browsers still render such rules with gaps in the text.

Drop Initials Drop initials set the initial cap into the text, usually taking up the first
part of several lines of text. Graphics provide the most efficient means to do this in
Web pages, as shown here:

<p><img src="bigM.gif" width="35" height="35" alt="M" border="0"

align="left" />ixing drinks is just one of the many skills

available with our line of Robot Butlers....</p>

In this case, the image is aligned to the left of the text, which flows around it as shown here.

This is all very well and good using a letter like M with straight ascenders, but what if
the first letter has a different shape like the letter A?

The slope of a character like A creates a significant gap between the uppercase A and
other letters, which may make text difficult to read. Using CSS position rules, it is possible
though messy to solve such problems, as shown in the following markup fragment:

<div id="layer1" style="position:absolute; width:80px;

height:130px; top: 15px; z-index:1; font-family: Arial;

font-size: 100px; font-weight: bold;">A</div>

<div id="layer2" style="position:absolute; width:350px;

height:115px; z-index:2; left:12px; top: 32px;

font-family: Arial; font-size: 13px;">

TE
AM
FL
Y

Team-Fly®

454 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

ll Demo Company robots are

guaranteed against corrosion,

rust, and going berserk and

trying to take over the world.

Tampering with your robot's

core programming may invalidate warranty.</div>

The outcome of the layout is shown here:

In this example, a layer is created for the letter A, which is set to a precise size of
100 pixels; using measurements that can vary between browsers and systems would
make this a very unstable approach. Another overlapping layer is created for the rest of
the text, which is set to a size of 13 pixels. Breaks were entered where needed with the

 tag, and an invisible pixel was used to adjust the indentation of each line. The
actual image is only 1 pixel by 1 pixel; its width is adjusted using the width attribute.
Non-breaking spaces could be used instead, but this approach offers more control. It
is also possible to achieve the effect using a positioned layer for each line of text.

Hung Initials The third variety of initial cap, the hung initial, places the initial in the
margin to the left of the text. In HTML, this can be simply done by using a graphic letter
and a table, as shown here:

<table width="400" cellspacing="0" cellpadding="0" border="1">

<tr>

<td valign="top" width="39"><img src="bigM.gif" width="35"

height="35" border="0" hspace="2" vspace="2" alt="M" /></td>

<td valign="top" width="361">ixing drinks is just one of the many

skills available with our line of Robot Butlers...</td>

</tr>

</table>

C h a p t e r 1 2 : T e x t 455
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

The graphic letter goes into one table cell, while the text goes into another; Figure 12-18
shows a rendering of this with the table border turned on. This effect could also be
achieved using style sheets, but for now many designers are sticking with tables when
creating grids.

Pull Quotes
In print, it is sometimes useful to enhance a page of text with one or two pull quotes. In
addition to varying the text flow, pull quotes are used to draw the reader’s attention by
highlighting a statement from the text. In Figure 12-19, most of the paragraphs are set
to a default font size and face with no further embellishment beyond a left margin of 10
pixels. The pull quote, which is drawn from later in the text, is distinguished from the
rest of the text by CSS rules:

<p style="background: #99ffff; width: 22pc; margin-left: 0;

padding: 12px; font-family: Arial; font-size: 12pt;

font-weight: bold; border-style: solid; border-width: thin;

border-color: #000000;">"I came up with the Robot Butler while

watching <i>Arthur</i> for the ninety-seventh time. That's when

it hit me: everyone wants a servant! Why not a robot?"...</p>

A similar effect achieved with HTML tables would work in many older browsers,
but otherwise CSS is always preferred.

<table width="400" border="0" cellspacing="0" cellpadding="15">

<tr>

<td>

HOME & ROBOT MONTHLY - January 2000

Insiders report that the latest models...</td>

</tr>

<tr>

<td bgcolor="#99ffff">

"I came up

with the Robot Butler...</td>

</tr>

<tr>

<td>Demo Company has done

well... </td>

</tr>

</table>

456 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-19. Pull quote created with CSS

Figure 12-18. Hung initial created with graphic and table

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

Sidebars
Like pull quotes, sidebars stand apart from the rest of the text on a page. Instead
of drawing attention to the main text, however, they serve to provide additional
information related to the subject at hand. Tables are commonly used to create
sidebars, as demonstrated here:

<table width="400" cellspacing="0" cellpadding="12" border="0">

<tr><td align="center" colspan="3">HOME & ROBOT MONTHLY -

January 2000</td></tr>

<tr>

<td width="200" valign="top">Insiders report...</td>

<td width="200" valign="top" bgcolor="#ccffff">

The history of Demo Company began in 1998...

</td>

</tr>

</table>

The result, shown in Figure 12-20, uses two side-by-side table cells, two different fonts,
and a background color in the right cell to create two columns. The cellpadding attribute
of the <table> element is used to create padding and prevent the two text areas from
butting up against each other.

Formatting Tables
As demonstrated throughout this chapter, <table> and its associated tags can be used
as a means to lay out text and graphics in a Web page. Tables were actually meant to be
used as tables—as a means of presenting information in an organized fashion. Financial
data, statistics, and concise summaries of information already covered in detail somewhere
else are all prime candidates for this sort of presentation. Consider this simple table
summarizing the selling points of a line of robots:

<table width="500" cellspacing="0" cellpadding="3" border="1">

<thead>

<tr>

<th width="170">Robot Model</th>

<th width="180">Standard Features</th>

<th width="150">Price</th>

</tr>

C h a p t e r 1 2 : T e x t 457

</thead>

<tbody>

<tr>

<td>Butler</td>

<td>Sarcasm, Drink Mixing</td>

<td>30,000 credits</td>

</tr>

<tr>

<td>Trainer</td>

<td>Enthusiasm, Gym Shorts</td>

<td>32,000 credits</td>

</tr>

<tr>

<td>Security (ToughGuy)</td>

<td>Limited vocabulary</td>

<td>40,000 credits</td>

</tr>

</tbody>

<tfoot></tfoot>

</table>

458 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-20. Sidebar created with HTML table

C h a p t e r 1 2 : T e x t 459
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

As shown in Figure 12-21, this isn’t formatted very well. The table header element <th>
has a default alignment of center, while the table data element <td> has a default
alignment of left. (Note that the content of <th> is automatically rendered as bold text.)

It is possible to use style sheet rules to control layout of table constructs:

th {font-family: Arial; font-size: 11pt; text-align: left;}

td {font-family: Arial; font-size: 9pt;}

As Figure 12-22 shows, even with the border set to zero in the HTML, this stylized table
is easier to follow. The larger text in the <th> cells clearly establishes the relationship
of the columns, which is further enhanced by consistent alignment of the text in each
column.

This table is clearly oriented along the horizontal axis; while a more vertical
organization is possible, horizontal orientation is more suitable for Web pages. Even
so, a larger table with more rows may tend to be harder to read. Figure 12-23 applies
a background color to every other table row in order to improve readability and
maintain the proper relationship between information.

In the code used to create Figure 12-23, the CSS information in the document head
includes a class rule:

.shaded {background: #ccffff;}

In this case, the rule is applied to alternating table rows.

<tr class="shaded">

Figure 12-21. Table with no text formatting

This will work in CSS-compliant browsers. For backward compatibility, background
color could be added to the table cells in alternating rows using the bgcolor attribute:

<tr bgcolor="#ccffff">

<td>Butler</td>

<td>Sarcasm, Drink Mixing</td>

<td>30,000 simoleons</td>

</tr>

Various design embellishments can also be added. Horizontal lines can be added to
separate all the rows or to separate the header row from the other rows as well as to

460 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-22. Basic text formatting enhances tables

Figure 12-23. Alternating colors in table rows

delineate the end of the table. In a three-column table like this one, the colspan attribute
can be used to make a cell that spans three columns:

<tr>

<td colspan="3"></td>

</tr>

As shown in Figure 12-24, graphics lines are used in this example. The same image
source was used for all the lines in this table; the thinner lines were created simply by
setting the height attribute to "1" instead of "3". (When working with solid colors, it is
feasible to resize images in this fashion, but it is not advisable when working with
more complicated images.)

There are many ways to lay out tables. In some cases, it is desirable to have the table
borders turned on. The essential thing to remember is that the information in the table
is more important than the look and feel of the table itself. Thick borders, excessive and
inconsistent coloring of table cells, and extraneous graphics will not enhance a table’s
usefulness. When presenting information in table form, keeping it simple is your best bet.

Text Details
In Web page design, the devil is truly in the details. Users will often notice a bad
copyright symbol or improper use of quotes before they notice that the navigation for
the site is illogical. Formatting text is all about the details. Especially careful consideration
should be paid to special characters and punctuation layout.

Adding special characters to Web pages is easy if you understand character entities.
It is possible to insert special symbols, such as the copyright character, by specifying a
character entity, like © or ©. Unfortunately, we may not always be happy
with the text layout of these characters because in many fonts they are oversized.

C h a p t e r 1 2 : T e x t 461
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-24. Table with horizontal lines for organization

462 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Consider reducing the point size on these characters either using the <small> element in
HTML or using a style rule like around the character
entity. You need to be particularly careful to check if the font you are using supports
the particular symbol you have selected. If necessary, you might even make your own
small GIF images to replace troublesome special characters.

Dashes can be particularly troublesome for layout. First, make sure you are using
the correct dash. A short dash (or en dash) is specified in HTML with –, while a
long dash (or em dash) is specified with —. The purpose of the em dash is to shift
to a new point in a sentence. A short dash is generally employed when specifying
ranges, like 4–7. A particularly troublesome problem with dashes is that, when used
with capital letters, they may not appear to line up vertically. The reason for this is that
the dash is aligned to the middle of the lowercase x. The dash may look low next to
some capital characters, particularly those in a font with a small x-height.

You should shift the text up using the vertical-align attribute, as shown here:

LOOK AT THE DASH—DOES IT SEEM LOW?

LOOK AT THE DASH NOW—

BETTER?

As with the problem with dashes, you should consider reducing the size of any
bullets that you use, even in lists. You may even consider setting their position relative
to text differently.

Quotes can also be troublesome. Be aware of the difference between prime marks
(" and ') and so-called smart or curly quotes (““ and ‘‘). The prime marks are used for
measurements in feet and inches and for basic quotes within code. If we want to use
smart quotes, we should resort to the entities “ and ” for opening and
closing smart quotes. Unfortunately, this isn’t always dealt with carefully—particularly
when importing text from word processing programs. In this situation, the smart quotes
may render on some systems as empty boxes or other strange characters.

It is also important to use an actual ellipsis (…) rather than three periods (. . .). HTML
does support a special entity … that can be used to insert real ellipses. Some designers
may not find this entity adequate, as it often looks as bad as three periods. If you want
such fine control, consider adjusting letter spacing between the three periods to create
your own style of ellipsis.

Finally, you may consider hanging your punctuation outside the current
paragraph, particularly when using headlines or large type that is justified. If you do
not, any punctuation characters starting or ending a line will cause small gaps in your
nicely laid-out text. An example of hung punctuation is shown in Figure 12-25.

Be careful with special characters and entities; if the wrong character set is in play, you
will not end up with the result you are looking for and may instead see gibberish or box
characters. In most cases, this problem can be avoided with a <meta> directive like <meta
http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> in the
head of your document, which specifically defines the character set for the document .

Fancy Text Layouts
Before finishing up the chapter with a Web text usability discussion, let’s experiment a
little with the layout power provided with CSS. For example consider the layout in
Figure 12-26. This would have been nearly impossible in traditional HTML documents
without resorting to graphics or Flash.

Unfortunately, laying a page out with such sophisticated runarounds can be a real
chore. This is the code just to create the simple pyramid of text shown in the example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Text Secrets of Ancient Egypt</title>

<style type="text/css" media="all">

<!--

body {background-color: #0035ff;

margin: 10px;}

-->

</style>

C h a p t e r 1 2 : T e x t 463
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-25. Hanging punctuation in large justified text

TE
AM
FL
Y

Team-Fly®

</head>

<body>

<div id="layer1" style="position:absolute; width:440px;

height:345px; z-index:1; top: 20px; left: 20px;">

</div>

<div id="layer2" style="position:absolute; width:320px;

height:250px; z-index:2; top: 75px; left: 80px;

font-family: Verdana; font-size: 13px; line-height: 160%;

text-align: center;">

In

ancient

Egypt, all

they wanted

was to live forever.

Their odds of success

were much better than a

Web designer's chances of creating

a truly creative layout guaranteed to

work correctly on all browsers, all the time.</div>

</body>

</html>

464 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 12-26. Sophisticated text layout is possible with CSS

C h a p t e r 1 2 : T e x t 465
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Given the lack of tools for creating style-sheet-based layouts, it is no wonder that
we don’t rush quickly back to image-based layouts. Not so fast—the hard work pays
off. These designs scale, are searchable and printable, and much faster than image
layouts on download.

Special Text Effects
The previous section suggested that it is possible to create sophisticated layouts using style
sheets—what about buttons and fancy text effects? Actually, basic 3-D text, drop shadows,
raised buttons, and just about anything you can come up with is possible in CSS.

Making drop-shadowed text, particularly if you can download a font, doesn’t
require you to go to PhotoShop. Making a button is just as easy. The button shown here
(as rendered by Internet Explorer),

was produced with the following markup:

<div name="Layer1" style="position: absolute; z-index: 1; width: 125px;

height: 50px; top: 52px; left: 52px; background: #0000cc;"> </div>

<div name="Layer2" style="position: absolute; z-index: 2; width: 125px;

height: 50px; top: 50px; left: 50px; background: #99ffff;"> </div>

<div name="Layer3" style="position: absolute; z-index: 3; top: 66px; left:

57px; font-family: Arial; font-size: 18px; font-weight: bold; color:

#ffffff;">HOME PAGE</div>

<div name="Layer4" style="position: absolute; z-index: 4; top: 65px; left:

56px; font-family: Arial; font-size: 18px; font-weight: bold; color:

#0000cc;">HOME PAGE</div>

Complex CSS rules such as the ones used in these examples are not always consistently
supported, even in browsers that claim compliance. This is yet another reason to fully
test your Web pages.

466 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Creating dramatic text effects like this:

no longer requires any fancy filter or illustration work. Of course, you have to know
CSS pretty well. The code that produces this effect is shown here, rendered in Internet
Explorer 5.0:

<div name="Layer1" style="position: absolute; z-index: 1; width: 300px;

height: 215px; top: 10px; left: 10ox; background-color: red;"></div>

<div name="Layer2" style="position: absolute; z-index: 2; width: 295px;

height: 380px; top: 25px; left: 11px; font-family: Arial Black;

font-size: 18pt; text-align: center; line-height: 90%;">

THE TIME HAS COME

FOR ALL BROWSERS

TO GET REAL WITH</div>

<div name="Layer4" style="position: absolute; z-index: 4; top: 80px;

left: 10px; font-family: Arial; font-size: 50pt; color: white;

text-align: center; letter-spacing: -15px;">CSS</div>

<div name="Layer5" style="position: absolute; z-index: 5; top: 80px;

left: 30px; font-family: Verdana; font-size: 70pt; font-style:

italic; text-align: center; letter-spacing: -15px;

color: yellow;">CSS</div>

<div name="Layer6" style="position: absolute; z-index: 6; top: 80px;

left: 70px; font-family: Arial Black; font-size: 90pt;

text-align: center; letter-spacing: -15px;">CSS</div>

The code is used positioned layers to overlap text. The next example uses the Wingdings
font to create a teardrop shape, then layers more text over it to create an initial cap effect:

<div name="Layer1" style="position: absolute; z-index:1;

width: 100; height: 100; left: 10px; top: 0px;

font-family: Wingdings; font-size: 202px;

color: black;">S</div>

<div name="Layer2" style="position: absolute; z-index:2;

width: 60; height: 100; left: 41px; top: 70px;

font-family: Verdana; font-size: 100px;

font-weight: bold; color: white;">S</div>

<div name="Layer3" style="position: absolute; z-index:3;

left: 116px; top: 148px; font-family: Verdana;

font-size: 20px; font-weight: bold; color:

black; letter-spacing: -2px;">omewhere on the Web...</div>

This last example uses Microsoft’s proprietary filter extensions to CSS to create a
glow around a section of text:

<html>

<head>

<title>Fuzzy Fonts Attack</title>

<style type="text/css">

<!--

.blur {height: 10px; width: 400px;

font-family: Arial Black;

font-size: 35pt; font-style:

bold; color: black;

filter: Glow(Color = lightblue, Strength = 15); }

-->

</style>

</head>

<body bgcolor="#ffffff">

<div name="Layer1" class="blur">GLOW FILTER</div>

</body>

</html>

C h a p t e r 1 2 : T e x t 467
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

468 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

You might wonder why correct XHTML wasn’t used in the last example. The reason
is that such Microsoft extensions are not standard; when you introduce a <!DOCTYPE>
statement that indicates Web standards usage, proprietary text filters and other non-
standard features will generally not render. We end on this point purposefully as a
reminder that fancy text effects often rely on nonstandard technologies that may not
be cross-browser safe, so proceed with caution.

Text Design Issues for the Web
As has been continually stressed in this chapter, the Web page simply isn’t like paper.
The actual resolution of screens is usually very low: around 72 pixels per inch. Compared
to even a typical laser printer, this is very low. Further, glare and refresh rate make reading
online difficult. Eyestrain is frequent, and many usability experts—such as Jakob Nielsen
(http://www.useit.com)—have suggested that people just don’t read online, they scan,
and when they do read carefully, it is much slower than with print. Designers should
always strive to make their Web pages more readable. Standard rules like keeping your
line lengths short and increasing your leading apply to the Web, as well as to paper.
However, print rules of thumb about font sizing often have to be adjusted upward to
deal with the lack of screen resolution. Some print practices don’t work as expected,
some are open to debate, and some just don’t make sense at all. As an example of the
latter, the precise text control with measurements in points or pixels that allows control
of the space between characters and is not available on the Web.

Font Usage
Some design experts consider serif typefaces more readable than sans-serif typefaces
because the serifs help define the characters, making them easier to recognize, and may
even lead the eye to easily move from letter to letter. Traditional print design rules
suggest that a legible serif font be used for body text, while a contrasting sans-serif font
be used for large titles and headings. The Web, not breaking with tradition, generally
uses Times as the default body copy for text; however, it does not change heading
styles to a sans-serif font.

There is some debate to whether or not serif text should be used onscreen,
particularly when small. Many Web designers opt for sans-serif fonts like Arial or
Verdana, claiming better screen readability at smaller sizes. The choice can become
particularly important if the text is graphic and anti-aliased. Aliased images are those
that have jagged edges, while anti-aliased images are those that have their edges
smoothed out. The problem with anti-aliased text is that when the text is small it tends
to look fuzzy, not smooth—particularly when anti-aliasing is done on crisp sans-serif
fonts like Arial.

Suggestion: Avoid anti-aliasing small text.

A demonstration of the readability problem with anti-aliasing is shown in Figure 12-27.

Because of the desire to make extremely small text crisp and easy to read, many
designers will employ special pixel fonts, drawn a single pixel at a time, for extreme
readability. Many of these fonts can be found at http://www.minifonts.com. An example
of a pixel font at 7pt is shown here, compared to common Web fonts at the same size.

Be careful, though: pixel-precise fonts will distort when scaled up, so don’t jump
on the bandwagon too quickly and keep in mind those users who do want to size text
upward. While small pixel fonts have some place in design, when sized up they also
will distort—so be extremely careful when using them.

C h a p t e r 1 2 : T e x t 469
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-27. Comparison of aliased and anti-aliased text at varying point sizes

Beyond the usability aspect of font choices, you need to consider the implied
feeling of the font. In the broadest terms, serif typefaces have a formal appearance,
while sans-serif typefaces have an informal appearance. Not just usability, but also
content should be considered when choosing a font, as demonstrated here:

Number of Fonts to Use
Traditionally, designers have held that you should use only two types of fonts in a
document, usually a sans-seriff or headlines and a serif for body text. Of course, the
styles and size of these may change, but using multiple fonts—particularly of the same
font type like sans serif—was considered to be poor style. Some designers think you can
go higher, particularly if the contrast between the fonts is obvious enough. Remember
that a user might not be able to tell the difference between Arial and Helvetica, although
you can. If you establish your type hierarchy on such subtle differences, it is bound to
fail. Worse, even if they do notice, they may consider such variations mistakes rather
than intentional. Using radically different fonts next to each other brings attention to
content and may aid greatly in setting up a type hierarchy.

However, while the “two fonts per document” rule works well in print, it might
need to be modified for the Web. Instead, you may consider three fonts: one for your
headlines, one for your body text, and one for your navigation.

Suggestion: Consider using three fonts per page: one for page labels and
headlines, one for body text, and one for navigation.

Columns on the Web
Traditional print design has relied extensively on columns when laying out text. Columns
on the Web are very different. Unless you have very sophisticated sensing, it is not
guaranteed that the user will be able to see your complete page at once. Columns that
wrap up and down make little sense on the Web unless fixed page sizes are used.
Remember, the text-read direction is not a top-left to bottom-right style, but more of a
top-left down the page to its bottom. Imagine having the user scroll up and down the
page just to follow text. When using columns, they should continue to run down the page
until the content is finished, as shown in Figure 12-28.

Rule: Columns of text in Web pages should never wrap up and down unless they
are all contained in a single screen.

470 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

The size of the columns should not be much more than around 300 pixels or so
(around 24pc for 12pt font) if it is heavy on body text. You may find that a design with
a main center column of around 300 to 400 pixels with a left navigation column and a
right pull quote or supplementary column works well. Many heavily used sites have
employed such a design successfully.

Is White Space Good or Bad?
Traditional type design suggests that judicious use of white space makes a page much
more readable. The white space can give readers a place to rest their eyes, or it may
direct a user’s focus, emphasize certain bits of text, and just provide an open airy look
to a page. Unfortunately, many Web designers tend to cram as much content into a
screen as possible. Some experts suggest that this is very much a bad idea and that
online is no different than print in this respect.

C h a p t e r 1 2 : T e x t 471
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 12-28. Column layout for the Web

White space is very good. In fact, Web pages may need even more white space—as
much as 40–60 percent white space on a page. However, some usability experts, notably
Jared Spool (Spool 1999), suggest that white space actually may not improve page
usability—and may even hinder it. This goes so far against conventional wisdom that it
is very hard to believe. The probable answer is that the user can “cover more ground”
quickly when looking through relatively dense text pages formatted for skimming.
However, this answer suggests that people are navigating content but not consuming
it. Maybe they are simply printing the content out for later use. Yet once they do, it is
certain they want it easy to read!

Rule: Navigation-focused pages generally require less white space than
consumption pages.

The white space issue is certainly troublesome; the concept that it may be bad
makes sense if users are skimming. As discussed in navigation chapters, you need to
balance clicking and scrolling. If you have a lot of white space, you may not be giving
people the amount of content they need at an adequate pace. Always consider what the
user is doing with data and where it will ultimately be consumed.

Rule: Always use white space to complement the use of information.

Print vs. Screen
Probably the most important thing to consider when discussing text layout on the Web
is where the information is actually consumed. Many designers put so much text within
pages that users invariably print the pages. Much of the time, these pages don’t print
terribly well. Other times, text is intended for online consumption. Often, this means much
less text per page with lots of links. If there is some reason the user would want to print the
content, it isn’t easy with this approach to collect the content together for printing.

When users read online, they generally want less text, large size, narrow columns,
and large line height. However, when printing, users may want a lot of content per page,
possibly expanding to fit the paper or even using a smaller font size and line height. If
printing becomes an issue, you may find it useful to provide a link to an Acrobat version
of your content (http://www.adobe.com/acrobat) or provide a link to a page that is
formatted for print output. Many sites now provide printable versions of text.

An article at an online magazine may be broken up into several pages for online
reading, complete with graphics, advertisements, and site navigation. While these
pages may be printable, the resulting printout may be too cluttered to be useful. And if
the pages use advanced layouts such as the pyramid text shown earlier in this chapter,
it may not be printable at all. This has led to the increased use of the already ubiquitous
“Click here for a printer-friendly version” and similar links. However, using special
style sheets for printing is a better approach. To define a different look for printing,
use a linked style sheet and indicate the media to apply it to, like this:

472 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 2 : T e x t 473

<link rel ="stylesheet" href="styles/printer.css" media="print" />

Regardless of the approach, if users are to print, make sure the level of legibility of the
print document is as high as that of the screen document.

Writing for the Web
As discussed in previous chapters, user involvement tends to be a mix of navigating
content, consuming content, or performing a task such as filling out a form. Up to now
we have focused a great deal on users navigating content—but what about when they
are ready to actually read a page?

Reading vs. Scanning
If you’re coming to the Web with a print-oriented mindset, you’re in for a rude shock:
studies have shown that reading on the Web generally takes a least 125 percent of the
time it takes to read the same text on paper. If that wasn’t bad enough, many users
won’t even read the page online. Web experts such as Jakob Nielsen have determined that
users tend to scan quickly over the content of Web pages, looking for something that
will catch their attention and lead them to click on a link, or back up and read the page
more closely. If something doesn’t grab them right away, they are highly likely to
move on to another page or site. Page length can be daunting, too; a person skimming
over a Web page hoping to be engaged probably won’t feel like scrolling down to read
more if the text in the initial screen hasn’t already done its job. A few key concepts will
help counter this trend:

■ Keep your text short and concise Experts suggest that you should write only
half as much text as you would when writing for print. This makes the online
reading process smoother by overcompensating for the slow reading rule
mentioned above. Keep paragraphs short as well; nothing scares users away
faster than long, unbroken columns of text that extend far below the bottom of
their browser window.

■ Get to the point right away Don’t preface your page with a long, rambling,
and circuitous opening. If your English professor taught you to start with the
general and work up to the specific, forget it. Cut to the chase and tell users
your conclusion in the very first sentence. Use the journalistic technique
known as the “inverted pyramid”—tell them what you’re going to tell them
immediately, then fill in the details, followed by whatever background material
seems appropriate.

■ Use headings to provide meaning Headlines aren’t much use if they’re clever
but don’t tell the user what the main content is about. Headers should let users
know why they should stop and read a Web page. Meaningful use of subheadings
adds structure and additional meaning to a page.

TE
AM
FL
Y

Team-Fly®

■ Highlight the ideas expressed in the page Pull quotes and highlighted text, if
selected well, will emphasize what the page is about and help users decide if
the page interests them. It’s better to have someone leave a page because the
topic leaves them cold than to have them leave simply because they can’t figure
out what the page is about. Don’t emphasize text with underlining, as this may
be confused with hyperlinks. If your hyperlinks are chosen well, the clickable
text should provide additional hints to your page’s meaning.

■ Use lists to summarize information When dealing with important information,
don’t embed it in a paragraph if it can be broken out into bulleted or numbered
lists instead. This places the information out in plain view of the skimming
reader, instead of forcing the reader to dig for it in a large block of text.

The inverted pyramid structure is just one of the tools that can make online writing
more user friendly. Applied to the Web, it can be used to get a basic point across and
motivate users to scroll down to the more detailed information lower in the page.
Hypertext adds even more variations to writing on the Web. On the simplest level, it
can be used to break a piece of writing up into smaller pages that are connected by
linear linking and read in sequence. This can keep page scrolling to a minimum and
make page content easier for readers to process quickly. Ending each page in a fashion
that will encourage readers to move on, and starting each page with writing that
reinforces the reader’s desire to continue can work wonders and keep users from
defecting to another site.

Nonlinear Writing
Of course, the Web offers more choices than a simple linear progression. The options
are many, but it is important not to go overboard. While it is possible to create an
incredibly complex hypertext document that branches off in multiple directions, it
would be wiser to provide short blocks of information to create a much larger whole.
Optimally, the basic information you are trying to convey could be organized in a
fairly linear fashion, while more detailed examinations of its implications could branch
out in many directions.

If, for instance, you were an expert in canine health concerns, you might be tempted
to create a huge Web page that imparts all your years of accumulated knowledge in
one huge lump, but dog owners would be more likely to read a simple site about
canine health. The main focus could be about nutrition and the basic care of dogs, with
additional pages that go into more detail on those topics, with well-placed hyperlinks
to pages discussing how to recognize the symptoms of canine diseases, and with even
deeper pages that might be of more interest to veterinarians than to laypeople. Such a
site could be a great resource for a wide variety of people, as long as it is written and
structured to draw them in and guide them to the level of information they require.

474 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Danger Words
It is important to remember that certain ordinary words have taken on extra meaning
on the Web. The word “links” could easily refer to sausages or to golf, but on the Web
those meanings may be secondary. Choice of vocabulary is an issue.

Suggestion: Be careful of using words that have alternative Web meanings.

For example, at a Web site about golf courses, it might be impossible to avoid using
“links” as it relates to the game, so it would be imperative to use the word “hyperlinks”
when referring to clickable text in the site in order to reduce any potential confusion.
The following table lists a few words to use carefully because of their online significance.

Home Page Browse/browser

Explore/explorer Navigate/navigator Robot

Stop Back Forward

Source Script Spider

Map Index Site

Summary
While HTML may not afford the designer much possibility to lay out text on a page,
CSS provides everything from leading to kerning. Perfect positioning is possible if you
want to spend the time. While font control isn’t perfect yet, downloadable fonts are on
the way. Spending the time to lay out pages well by increasing line height, reducing
line length, changing font size, and generally dealing with small details pays off in
highly readable pages more likely to invite the user to stay and read awhile. However,
now that we have better text control, we are armed and dangerous. If we’re not careful,
we can just as easily mess up our organized site and pages with poor type layout. More
damage can result if we blindly utilize technologies that are not consistently supported
in browsers and that can cause ruined layouts or pages that are difficult to read. With the
power of CSS, we can take display control back away from the user. Just remember
the lessons from previous chapters before you yank control from them—the user’s
experience should always be our number one concern.

C h a p t e r 1 2 : T e x t 475
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

This page intentionally left blank.

Chapter 13
Color

477

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Colors are used on the Web not only to make sites more interesting to look at, but
also to inform, entertain, or even evoke subliminal feelings in the user. Yet, using
color on the Web can be difficult because of the limitations of today’s browser

technology. Color reproduction is far from perfect, and the effect of Web colors on users
may not always be what was intended. Apart from correct reproduction, there are other
factors that affect the usability of color on the Web. For instance, a misunderstanding
of the cultural significance of certain colors may cause a negative feeling in the user. In
this chapter, color technology and usage on the Web will be covered, while the following
chapter will focus on the use of images online.

Color Basics
Before discussing the technology of Web color, let’s quickly review color terms and theory.
In traditional color theory, there are three primary colors: blue, red, and yellow. By mixing
the primary colors you get three secondary colors: green, orange, and purple. Finally, by
mixing these colors we get the tertiary colors: yellow-orange, red-orange, red-purple,
blue-purple, blue-green, and yellow-green. We now have a total of twelve colors, which are
generally arranged as a color wheel, as shown in Figure 13-1. It is more colorfully presented
at http://www.webdesignref.com/examples/colorwheel.htm.

We add to our basic color palette the neutrals: black, white, and gray. Recall that
black is the absence of color while white is the combination of all colors.

From the twelve basic colors and the neutrals all the rest of the colors are born. Given
a particular color, or more appropriately hue, we might modify the value or brightness of

478 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 13-1. Simple color wheel

the color to create variations. For example, we might take the color blue and vary it from
light blue to dark blue. It is also possible to modify the intensity. Intensity controls how
bright or dull a particular color appears. You might think of intensity as purity; the
higher the intensity, the more pure the color. Intensity is also described using the term
saturation. These basic terms and a few others are defined in Table 13-1.

Computer Color
Computer monitors display colors using varying amounts of red, green, and blue, called
RGB color. This is considered an additive form of color, because red, green, and blue light
in equal amounts “add” up to white light. All other colors are formed on screen by varying
the amounts of each color. For example, red and green are combined to form yellow, blue
and green to form cyan, and red and blue to form magenta. This is demonstrated at
www.webdesignref.com/examples/rgbcolor.htm.

RGB color is completely different from the way colors are set in print. In print, CMYK
(cyan, magenta, yellow, black) is the more common color scheme. The colors you see on a
printed piece are the parts of the spectrum reflected back to your eyes as white light hits
the ink. CMYK is considered subtractive color since, in theory, if you were to mix pure
cyan, magenta, and yellow, they should absorb all color to produce black (because of
impurities in all printing inks, however, these three don’t actually produce black, which
is why black (K) ink must be added).

C h a p t e r 1 3 : C o l o r 479
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Hue The color attribute identified by color names, such as “red”
or “yellow.”

Value The degree of lightness or darkness of a color.

Saturation The relative purity of a color; also referred to as “intensity.” The
“brighter” the intensity of a color, the more saturated it is.
New jeans are saturated with blue; faded ones are a less-
saturated blue.

Chromatic hues All colors other than black, white, and gray.

Neutral colors Black, white, or gray—otherwise known as
“non-chromatic hues.”

Monochromatic A color combination based on variations of value and
saturation of a single hue.

Table 13-1. Basic Color Terminology

480 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Each of the various dots or pixels (picture elements) on a computer monitor is set to
a particular color to create imagery on screen. Bit-depth, sometimes referred to as color depth,
is the term given to the number of bits used to describe color in an image or on a monitor.
The basic idea is simple: the more bits used to specify a color, the more possible colors are
available—more bits equals more colors. One bit can be used to specify two colors,
typically black and white, two bits can describe four colors, three bits can describe eight
colors, and so on. Notice that the number of colors specified by the bit-depth is simply 2
raised to the nth power, where n is the number of bits, as shown in Table 13-2.

A firm understanding of bit depth is important for a Web designer, as the bit depth
of a visitor’s monitor affects color reproduction, and the manipulation of bit-depth in
images can be used to significantly decrease file size. Put simply, the higher the bit depth,
the greater the number of colors; the greater the number of colors, the larger the file size.
Reducing the number of colors will aid in lowering the file size of images and improve the
download time of Web pages. Further consideration of this idea is given in Chapter 14.

Web Color Basics
Anyone familiar with Photoshop or similar programs will probably know the basics
of RGB color. In such a graphics program, each of the three color elements, red, green,
and blue, can have values from 0 to 255, generally expressed as three numbers separated
by commas. So, in the RGB triplet 102,153,204, the number 102 is the red value, 153 is

Bits Number of Possible Colors

32 16,777,216 (24 bits) plus 8 bits used for control information

24 16,777,216

16 65,536

8 256

7 128

6 64

5 32

4 16

3 8

2 4

1 2

Table 13-2. Bit Depth and Possible Colors

the green value, and 204 is the blue value. All this is very well and good when you’re
working in a graphics program, but Web technologies do not always measure color
with decimal values, but often rely on hexadecimal (base-16) values.

In HTML, color is specified by a hexadecimal RGB triplet preceded by the pound
sign (#). The color is six digits long, two hex digits for each byte. So, in the RGB triplet
#FF12AC,

■ The first two digits (FF) represent the intensity of the red component of the
pixel, which is at full strength because a byte cannot be greater than FF.

■ The next two digits (12) represent the intensity of the green component of the
pixel, which here is fairly low.

■ The last two digits (AC) represent the intensity of the blue part of the pixel,
and here it’s fairly high.

The end result is a bright pink color that might be used in markup like this:

Hot Pink!

In HTML and CSS, we measure color in a hexadecimal range of 00–FF, which is
equivalent to 0–255 in decimal. It’s relatively easy to translate RGB values to hexadecimal
values by referring to a translation chart, such as the one found in Appendix F. Given such
a chart, a mid-range blue like rgb (102,153,204) would be represented in hex as #6699CC.

It also is possible to reference the color by name in the code (for example, "black").
The 16 basic names originally defined by Microsoft are now part of the HTML
specification; these appear alongside their hexadecimal values in Table 13-3.

C h a p t e r 1 3 : C o l o r 481
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Color Name Hex value

Black #000000

White #ffffff

Gray #808080

Silver #c0c0c0

Green #008000

Lime #00ff00

Olive #808000

Yellow #ffff00

Table 13-3. HTML Specification Colors

482 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

These are just a few of the colors available. By using RGB triplets translated to a hex
value, it is possible to use 256 shades of red, green, and blue to create colors—somewhere
around 16.4 million colors! There are over one hundred more color names originally
introduced by Netscape and based upon the X11 windowing system colors. These colors
are largely supported by most Web browsers. Believe it or not, they include such varied
color names as “tomato,” “thistle,” and “lightcoral.”

Online: The full list of color names and their hexadecimal and RGB equivalents
can be seen online at http://www.htmlref.com/Reference/AppF/colorchart.htm

One could, of course, use any word, such as pineapplesherbet (not a real value),
as a color value; browsers will attempt to render them, but if they are not recognized
color names, the rendering will have no relation to the meaning of the word. Our
imaginary value pineapplesherbet renders as a shade of blue in Internet Explorer,
but as a completely different, much darker blue in Netscape. Either way, it doesn’t
look like pineapple sherbet. Therefore, it is important to specify the exact color you
wish to reproduce with its correct hexadecimal value in order to avoid different browser
interpretations. For example, the defined color name aquamarine is equivalent to an RGB
value of 127,255,212, which translates to a hexadecimal value of #7FFFD4. Unfortunately,
as with many of the other named colors, this is not a browser-safe color. In general, it is
preferable to use a hexadecimal code to indicate color. Doing so greatly reduces the
chance that the color will be rendered incorrectly.

Rule: To ensure that the appropriate color is produced, always use a hexadecimal
value over a named color, except in the case of basic VGA colors like white,
black, red, and so on.

Color Name Hex value

Aqua #00ffff

Teal #008080

Blue #0000ff

Navy #000080

Fuchsia #ff00ff

Purple #800080

Red #ff0000

Maroon #800000

Table 13-3. HTML Specification Colors (continued)

HTML Color Use
There are numerous ways to set colors in HTML. The elements (tags) that allow setting
the color as an option include the background color of the document body, the default
color of text in the document, the colors of links, the color of fonts used in the document,
and background colors in tables.

Two basic document-wide color settings can be defined using the body element:

<body bgcolor="#ffffff" text="#000000">

This will provide the document with a white background, and the default color for
text in the document will be black. In addition, the <body> tag has three attributes that
define the colors for three different text link states:

<body link="blue" alink="red" vlink="purple">

The link attribute defines the color of unvisited links in a document. For example, if
you’ve set your background color to black, it might be more useful to have a light link color
instead of the standard blue. The alink attribute defines the color of the link as it is being
clicked. This often happens too quickly to be noticed, but it can create a flash effect, if
desired. For a more subdued Web experience, it might be better to set the alink attribute to
match either the link attribute or the next one, vlink. The vlink attribute defines the color
of a link after it has been visited, which under many browsers is purple. Many authors
wish to set the value of the vlink attribute to red, which makes sense given standard color
interpretation. So, using the code above, creating a white page with green text, red links,
and fuchsia-colored visited links could be accomplished using the code presented here.

<body bgcolor="#ffffff" text="#008000" link="#ff0000"

vlink="#ff00ff" alink="#ff0000">

Try not to choose link colors that might confuse your viewers. For example,
reversing link colors so that visited links are blue and nonvisited links are red could
confuse a user. While it is unlikely that a page designer would do such a thing, it has
been seen more than once—particularly in situations where the look and feel is the
driving force of the site. Other common problems with link color changes include
setting all link values to blue in the belief that users will revisit sections, thinking they
haven’t been there before! While this may make sense from a marketing standpoint,
the frustration factor due to the lost navigation cues may override any potential benefit
from extra visits. As the last example showed, setting the link colors all to red could
have the similar effect of encouraging users to think they have seen the site already.

It is also important to make sure that you do not set your links to the same color as
the regular text on the page. Relying on underlining to be the definition of the link is

C h a p t e r 1 3 : C o l o r 483
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

TE
AM
FL
Y

Team-Fly®

484 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

extremely dangerous, since most browsers have the option to turn off underlining.
Make sure that your link color is going to contrast enough with the paragraph
containing it in order to avoid forcing your user to spend time figuring out if there
are any links on the page.

Font colors, as well as all other font values, are controlled under traditional HTML
through the tag. Focusing on colors exclusively, using is pretty simple.
The following,

Red text!

will produce red text, as will

Red text!

Tables also can be assigned background colors in several ways. The bgcolor attribute
is valid for <table>, <tr>, <th> and <td>.

<table border="1" cellspacing="0" cellpadding="8" bgcolor="green">

<tr>

<th bgcolor="lightblue">Lightblue</th>

<th bgcolor="lightblue">Lightblue</th>

<th bgcolor="lightblue">Lightblue</th>

</tr>

<tr bgcolor="orange">

<td>Orange</td>

<td>Orange</td>

<td>Orange</td>

</tr>

<tr>

<td bgcolor="red">Red</td>

<td bgcolor="white">White</td>

<td bgcolor="blue">Blue</td>

</tr>

<tr>

<td>Green</td>

<td>Green</td>

<td>Green</td>

</tr>

</table>

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

In this code, the header cells (th) in the first row will have a light blue background;
all three cells (td) in the second row will have an orange background, as defined for the
entire row (tr); the three cells in the third row will have different background colors, as
defined by the bgcolor attribute for each <td> tag; and the cells in the last row, which
have no background color defined for themselves or their row, will default to the green
background color defined in the <table> tag, as shown here:

Note that the cellspacing attribute for <table> is set to zero; if it is set to a higher value,
the background color will display in the areas between cells in Internet Explorer:

Don’t forget that if the cellspacing attribute is not included, most browsers will
render the table with several pixels of cell spacing by default. Be sure to set it to"0"
to prevent inadvertent spacing.

Some grouping elements associated with tables, like <thead> and <tfoot>, as
defined in the HTML 4.0 spec, also accept bgcolor, but make sure to test for browser
computability.

Additional proprietary attributes have also been defined for table elements.
Internet Explorer supports a bordercolor attribute for table. Under IE 4 and higher,
the following code,

<table bordercolor="#ff0000" border="1">

<tr>

<td>. . . content . . .</td>

</tr>

</table>

C h a p t e r 1 3 : C o l o r 485

will render a table with a red border around all the entire table and its cells. Netscape
may render a red outline only around the four sides of the table and the effect is
completely different from the IE rendering. Under IE, bordercolor can also be applied
to rows (tr), headers (th), and cells (td).

Internet Explorer also provides two more border color attributes: bordercolordark
and bordercolorlight.

<table bordercolordark="#ff0000" bordercolorlight="#0000ff"

border="4">

<tr>

<td>...content...</td>

</tr>

</table>

Under Internet Explorer, this will render a two-tone outer border for the table in
which the top and left outer borders are blue, while the lower and right outer borders
are red. It will have no effect in Netscape. Proprietary attributes are not recommended
but are commonly employed, given the heavy Internet Explorer penetration.

Finally, on certain browsers some other HTML elements may support color. A
common one is the horizontal rule (<hr>) tag. This is a proprietary use of the color
attribute defined by Microsoft, so while

<hr noshade="noshade" size="1" color="red" />

will render a solid red rule under Internet Explorer 3 and higher, other browsers will
ignore the color attribute and render the rule in default gray. Color setting for anything
other than page background, table, link, and text should be left to style sheets.

CSS1 Color Use
So far we have discussed applying color values to various HTML elements using
named values like red or hexadecimal values like #ff0000. The number of HTML
elements that support such attributes as color and bgcolor is rather limited. Using
CSS1 (Cascading Style Sheets, Level 1) opens up a whole new world of color possibilities,
both in terms of expressing color values and of the number of HTML elements to
which you can apply color.

First, CSS allows color to be applied both to the foreground and background of
almost any HTML element. For example, to make all text in a document red, use the
simple style rule:

body {color: red;}

486 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

You can also specify background color using the background-color property; so the
following rule would specify a black background for the page with red text:

body {background-color: black; color: red;}

The specification of colors can happen on single tags or groups of tags so that instead
of using <table> tags with background colors, you might resort to simple rules like,

em {background-color: orange; color: black;}

strong {background-color: yellow; color: purple;}

to accomplish the same look with far less markup. Consider what it would take to
implement the look here:

Without CSS, it would certainly take some careful table code—or you might just
give up and make it an image.

Color in CSS, as in HTML, can be specified using traditional hexadecimal color
values, for example:

body {background-color: #000000; color: #FF0000;}

However, you could also use this approach in this case for a red font:

body {background-color: #000; color: #F00;}

CSS1 andCSS2 support a sort of condensed hexadecimal code, where black would
be #000, blue would be #00F, and so on. Browser support is variable, so be careful
when applying these color values.

PhotoShop users will appreciate another CSS color value approach: RGB values. No
need to convert RGB values to hex with this technique.

span {color: rgb(0,0,255);}

Most CSS browsers support this approach, in which the color value is defined by the
letters rgb (lowercase) followed by three-comma-separated RGB values in parentheses.
It is also possible to use percentage values instead of decimal values, as for example:

span {color: rgb(100%,0%,0%);}

C h a p t e r 1 3 : C o l o r 487
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

CSS2 Color Use
The main change in CSS2 in regard to color is the ability to set color values that are
related to the user’s current graphical environment. The idea here is that we can now
specify colors in a relative manner so that the Web page integrates itself into the user’s
graphical environment. Imagine a user with a customized red desktop. We might want
our various page and GUI elements to match this desktop. Apart from aesthetics,
system settings may be adjusted to suit a user’s accessibility needs. If we adjust page
colors to suit, it may improve the accessibility of the page. The color values defined in
Table 13-4 can be applied to any color property, like color or background-color. They
should be cased as presented below for readability.

488 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

CSS2 Color Value Description of Color Relation

ActiveBorder Active window border

ActiveCaption Active window caption

AppWorkspace Background color of multiple document interface

Background Desktop background

ButtonFace Face color for 3-D display elements

ButtonHighlight Dark shadow for 3-D display elements

ButtonShadow Shadow color for 3-D display elements

ButtonText Text on push buttons

CaptionText Text in caption

GrayText Grayed (disabled) text

Highlight Item(s) selected in a control

HighlightText Text of item(s) selected in a control

InactiveBorder Inactive window border

InactiveCaption Inactive window caption

InactiveCaptionText Color of text in an inactive caption

InfoBackground Background color for tooltip controls

InfoText Text color for tooltip controls

Menu Menu background

Table 13-4. CSS2 System Color Values

C h a p t e r 1 3 : C o l o r 489
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
NYou use these values just as you would use any other color; for example, a simple

rule that sets the background of the page to match the desktop background would be

body {background-color: Background;}

The 6.x generation browsers have provided some support for these values. However,
page authors are encouraged to use them carefully, as the distinction between desktop
and Web application for now should be kept clear.

Possible CSS3 Color Use
While it is still early to state safely what browsers will support in the upcoming CSS3
specification, some aspects of color support deserve at least a brief mention so as to
point at future possibilities.

First, the CSS3 specification allows for opacity to be set for elements. This can also
be set via a modified color specification indicated by rgba, which adds alpha as a
fourth value. The alpha value ranges from 0.0 (fully transparent) to 1.0 (fully opaque).
Under CSS3, we might use rules like this:

em {color: rgba(255,0,0,1);} /* red fully opaque */

strong {color: rgba(0,0,255,0.5);} /* partially transparent green */

CSS2 Color Value Description of Color Relation

MenuText Text in menus

Scrollbar Scroll bar gray area

ThreeDDarkShadow Dark shadow for 3-D display elements

ThreeDFace Face color for 3-D display elements

ThreeDHighlight Highlight color for 3-D display elements

ThreeDLightShadow Light color for 3-D display elements

ThreeDShadow Dark shadow for 3-D display elements

Window Window background

WindowFrame Window frame

WindowText Text in windows

Table 13-4. CSS2 System Color Values (continued)

490 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Another improvement introduced in CSS3 is the ability to set color in Hue Saturation
Lightness (HSL) format. HSL colors are specified as a triple (hue, saturation, lightness).
Hue is represented as an angle of the color circle, where red is 0 or 360, green is 120,
blue is 240, and the other colors spread in between. Saturation is represented in a
percentage, so 0% is no saturation or a shade of gray, while 100% is full saturation of
the hue. Lightness is also represented as a percentage value, with 100% lightness being
white and 0% lightness being black. A lightness value of 50%, specifying a “normal”
value, would be commonly used. Given these specifications, the following CSS rules
make sense:

.red {color: hsl(0, 100%, 50%); }

.green {color: hsl(120,100%,50%);}

.darkgreen {color: hsl(120,100%,75%);}

.lightgreen {color: hsl(120,100%,25%);}

.blue {color: hsl(240,100%,50%);}

.white {color: hsl(0,0%,100%);}

.black {color: hsl(0,0%,0%);}

While this may seem to be just another way to specify color, the HSL color
specification is more intuitive to adjust, and it is generally easier to create variations
of colors by keeping the hue the same and adjusting saturation and tint.

Like the RGB color specification, HSL colors under CSS3 should also support alpha
values and are measured by HSLA (hue, saturation, lightness, alpha). For example,

.translightgreen {color: hsla(120,100%, 25%, 0.5);}

would specify a semitransparent light-green color.
Finally, CSS3 should introduce properties like color-profile, which will allow

the specification of an ICC (International Color Consortium) color profile (http://
www.color.org). For example, to correct colors for images in the page under CSS3,
a rule like

img {color-profile: url("http://example.com/profiles/eg.icm"); }

might be employed. The ability to improve color reproduction in browsers has been a
long time in coming. The real challenge we see with color on the Web is that, with such
a wide variety of viewing environments, the difference between what colors we specify
and what actually shows up can be quite large if we are not careful.

Practical Web Color
The reality is that color often does not reproduce correctly in Web pages. The most
common reason is related to bit-depth, as a color may be beyond the range of the
viewing display environment. Alternative colors may be employed, or color shifting

C h a p t e r 1 3 : C o l o r 491
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

may occur. Of course, even when a visitor’s system is capable of displaying a color,
technical features ranging from hardware age to Gamma control may cause that lovely
shade of brown to turn into onscreen mud. The improper reproduction of color isn’t
just an issue of aesthetic integrity, as such problems may result in such poor contrast as
to render pages all but unusable. Given today’s technology, color manipulation in the
Web environment can be challenging.

Browser-Safe Color
What are the browser safe colors, and why is it important to use them? The first step
in answering this question is to ask another question: What controls the colors that can
be displayed on a computer? These colors are controlled by the computer’s video card
and limited by the capacities of the monitor being used. The range of colors can vary
anywhere from 256 colors and below on the low end all the way up to millions (and
“true color”) on the high end. Some older systems may even support only 16 colors. In
order to be completely safe for all systems, Web design must concentrate on the lowest
common denominator, but how can we predict what that is going to be? We can’t,
really. Many of the newer systems available today are more than likely to have all the
colors needed to display all of your images, but we must play it safe and assure that
those who have only 256-color capability will not have a terrible experience.

So how do we figure what those 256 colors are? The 256 colors supported by a
PC are not the same as those supported by a Macintosh; most of them are the same,
but 40 are actually different. That leaves 216 colors that will be guaranteed to be “safe”
and display correctly, regardless of the platform or video card. What happens if you
use a color that is not one of the 216 Web-safe colors? Quite often, nothing; if a user’s
computer can display more colors, then it will not have any problems rendering the
color you chose, as long as the color is in that computer’s palette, but what happens if
they do have only 256? In these cases, their computer will try to re-create the color by
using a technique called dithering.

Dithering is a process through which the computer attempts to re-create the
desired color by using those it has available. It will do this by using two or more colors
in a dithered (speckled or dotted) pattern to try to match the color it doesn’t have, as
shown in Figure 13-2. You can see a better example of this in our dithering demo at
http://www.webdesignref.com/examples/dither.htm. Dithered images can look
terrible and reflect poorly on the designer. By paying attention to the Web safe palette,
it is possible to avoid most instances of dithering.

So how do we use the browser-safe colors? Well, it is pretty easy to make simple
hex colors. Given the normal hex color triplet, you have RRGGBB, where RR, GG, and
BB represent the hex values for red, green, and blue. Safe colors are those where RR,
GG, and BB are only the values 00, 33, 66, 99, CC, or FF. Thus #FF00CC is a safe color,
while #FFF5EE is not. You might wonder why these values? They represent exact 20%
increments in saturation that give us a wide range of colors. So converting from hex, we
see decimal values of 0, 51, 102, 153, 204, and 255 as the allowed values for rgb (R,G,B)
measurements. The percentages for the safe values are 0%, 20%, 40%, 60%, 80%, and 100%

respectively. Table 13-5 summarizes these basics rules, which you should commit to
memory if you plan on producing Web graphics frequently.

A complete palette in full color with both hex and RGB values is present in most
graphics programs and can also be found at http://www.htmlref.com/reference /
AppE/index.htm.

492 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 13-2. Dithering example

RGB Value Percentage Value Hexadecimal Value

255 100% FF

204 80% CC

153 60% 99

102 40% 66

51 20% 33

0 0% 00

Table 13-5. RGB/Hexadecimal Equivalents

Not safe—true color

Not safe—256 color

If you use colors outside the safety range in an 8-bit viewing environment, you should
see dithering or color shift. To ensure that colors reproduce correctly, particularly in GIF
images, you will want to use a graphics program like Adobe PhotoShop or Macromedia
Fireworks and make sure the palette used is “Web-safe” or that you “snap” to the safety
palette once you save out.

Given how quickly computer technology is advancing and how few people
probably use 8-bit displays, does any of this matter? As we discussed earlier, the
majority of newer systems today will have a much greater color capacity than 256.
So what do you design for? Or, to put it differently, why should you limit your designs
to the lowest common denominator? It’s very hard to say. If you have a specific
target audience and you know what they have, such as an internal company intranet,
then you can definitely design for that audience’s capability. Since the majority of the
time you don’t know what your users are going to have, you are either going to have
to assume some minimum platform or detect for user capabilities. However, if you
end up assuming a base platform, remember that some users might not see colors
properly—since it is possible to do exciting, high-quality design within the boundaries
of Web-safe color palettes, why take the risk at all? We will examine next a few
approaches for breaking the browser safety barrier. However, be sure to read the
section entitled “Color Shifting and the Reality of the Web Palette” to gain a proper
perspective on this issue.

Another interesting trend that seems to encourage the use of the browser-safe palette
regardless of monitor support is download time. With GIF images, color reduction is
the easiest way to reduce file size, so even though most Web users can see more than
256 colors, many sites continue to design around very restrictive color palettes.

Hybrid Colors
In their quest to beat the 216-color limitations of the Web-safe palette, designers have
come up with a simple workaround generally referred to as hybrid colors. Taking advantage
of the smallness of pixels and the human mind’s tendency to fill in the blanks in visual
information, hybrid colors simply take two or more Web-safe colors and combine them in
some pattern—usually a checkerboard, but sometimes stripes—to trick the eye into seeing
a different color. In a sense, this is a form of controlled dithering that, if done properly, the
end user will not notice.

Suggestion: To safely break the 216-color barrier, use pre-dithered patterns
(so-called “hybrid colors”).

In the next illustration, the area on the left that appears to be gray is actually a
checkerboard made up of single-pixel black and white squares, as shown on the right.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 3 : C o l o r 493

TE
AM
FL
Y

Team-Fly®

494 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Online: Demos of hybrid colors can be viewed at
http://www.webdesignref.com/examples/hybridcolor.htm.

Various tools, such as BoxTop’s ColorSafe plug-in for PhotoShop (http://
www.boxtopsoft.com), can aid designers in creating hybrid colors quite easily.
In the end, however, the real decision is whether you can design within the
constraints of the Web-safe palette. By remaining within that range as much as
possible, you maximize the usability of your Web site.

Color Detection
Another approach to dealing with the color variability issue is to detect for user
capabilities using JavaScript. In 4.x generation browsers and better, the JavaScript
Screen object can be used to determine the bit-depth of the user’s monitor by accessing
the colorDepth property. For example, this short script displays the current color
depth in an alert dialog:

<script type="text/javascript">

<!--

if (window.screen)

alert(window.screen.colorDepth+"bit");

//-->

</script>

The dialog box is shown here:

Normal view
of hybrid color

Close-up
of hybrid color

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

In view of the color detection capability, you might consider setting screen colors
based upon user screen conditions. A style sheet reference based upon the color support
could be written:

<script type="text/javascript">

<!--

var bitDepth;

if (window.screen)

bitDepth = window.screen.colorDepth;

else

bitDepth = 8;

if (bitDepth > 8)

document.write('<link rel="stylesheet" href="hicolor.css" media="screen" />');

else

document.write('<link rel="stylesheet" href="locolor.css" media="screen" />');

//-->

</script>

<noscript>

<link rel="stylesheet" href="locolor.css" media="screen" />

</noscript>

It might be a lot of work, but detection is a slight improvement over mere guesswork in
achieving accurate color reproduction. Unfortunately, so far, without color reproduction
profiles in Web browsers, there are many things that can derail our efforts.

Troublesome Color Reproduction Issues
There are many other issues that can affect the display of colors on the Web. This
section will discuss several of them, including color shifting, gamma correction, and
types of monitors. Remember, while you may develop your designs on a 21-inch
top-of-the-line monitor, your users will probably be viewing your creation on
something much different.

Color Shifting and the Reality of the Web Palette
Here’s the bad news: even the Web-safe palette isn’t Web-safe under many conditions. The
monitor does not really determine the number of colors that can be displayed. The number
of available colors is actually defined by the computer’s video card. In our lowest common
denominator scenario of 256 colors, 8 bits are employed to display colors. (Remember: 2 to
the 8th power is 256.) For more colors, the computer must allocate more memory to process
colors. High color (16-bit) produces over 65,000 colors, while 24-bit provides literally
millions of colors. This may really be overkill, as studies have shown that the average
person cannot tell 16-bit and 24-bit color apart. On the other hand, 8-bit and 16-bit are fairly
easy to distinguish.

C h a p t e r 1 3 : C o l o r 495

For reasons of simple mathematics, 16-bit displays have some problems with the
accurate display of the 216 Web-safe or browser-safe colors discussed earlier in this
chapter. High color monitors were originally intended for print designers, who work
with CMYK—a four-value system—rather than RGB—a three-value system. If you’re
working in CMYK, 16 divided by 4 yields a handy 4 bits per color channel. But if
you’re working in RGB, you run up against a troublesome issue. You can’t split a bit,
so in 16-bit RGB you wind up with 5 bits per color channel; the 16th bit either vanishes
into some electronic limbo or is assigned arbitrarily to one of the three channels,
depending on the system. A color channel with 5 bits can produce 32 different colors;
raise that to the power of 3, and you get 32,768 colors—not quite the 65,000+ you’d get
in CMYK. Ever get the feeling you’re being cheated?

The Web-safe palette, on the other hand, divides each color channel into six values.
Because 32 can’t be divided exactly by 6, the colors defined by the Web-safe palette
won’t necessarily match the colors defined by a 16-bit color setting. Thus, on some
systems, some of the Web-safe colors may shift their values slightly. It turns out that
only about 22 of the supposed Web-safe colors don’t shift at all. The Web-safe color
palette appears to be unsafe! To many Web designers, this is the equivalent of saying
the earth is flat, but it is true. See http://www.morecrayons.com for links to articles
that go into great detail on this issue.

Given this potentially earth-shattering information, should a designer even care
about the Web-safe colors anymore? The answer: probably not as much. An alternative
palette that is more 16-bit friendly contains 4096 colors and can also be found at
http://www.morecrayons.com. This certainly helps increase what we can design with
and addresses the majority of Web users—but you might wonder if color shifts occur
on a 24-bit display and how 8-bit folks will view your site? You might just want to stick
to primary colors, as many designers do. Other designers just completely ignore the
problem and design with the full 16-bit palette. Finally, you could use JavaScript to
detect for bit-depth and go from there, but that could get complex.

To add even more complexity to the color shifting issue, different components of a Web
page may be affected differently. Remember, a Web browser is a program; the part of that
program that processes GIF images may process a certain color one way, while the part of
that program that processes HTML may shift the same value somewhat differently when
rendering a background color. This can result in an image not matching a background,
even though you’ve taken great pains to keep that shade of red to the correct value. More
information on this issue can be found at http://www.macromedia.com/go/13901/. The
unpredictable nature of interactions between video cards and monitors is further
compounded by the rendering inconsistencies of the browsers themselves.

Gamma Correction
Gamma correction changes the overall brightness and color saturation of an image as it
is displayed on a monitor. If a display is gamma-corrected, the nonlinear relationship
between pixel value (the number assigned to a particular color tone) and displayed

496 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

intensity (the way it actually looks) has been adjusted for. To get an idea of what this
means visually, take a look at http://www.webdesignref.com/examples/gamma.htm.

To understand gamma, we need to delve a little deeper into the inner workings of
monitors. The purpose of gamma correction is to adjust a monitor so that it boosts the
voltage in a manner consistent with other monitors. Computers send a certain voltage
to monitors, which control the electron emissions that tell the pixels on the screen
which colors they should display. The monitor, in turn, boosts the signal by increasing
that voltage a certain amount, which may be as high as 2.5 times the original voltage.
But since the original voltage, which varies for different colors, is usually less than
1 volt, this may not account for much. Variations in the amount a monitor boosts this
voltage will cause different monitors to display the same color differently. Brightness
and contrast are both affected. Browsers with incorrect gamma correction will look
darker and have less contrast. This is not just a matter of brightness, as gamma settings
also affect the ratios between the levels of red, blue, and green.

Macintosh computers are generally regarded as better in this department, and
with good reason: they were meant to be used in the creation of graphics (originally
for print), while this has only become a recent concern for PCs. As it stands, Macs are
set to a gamma setting of 1.8, and PCs are set to 2.5. Macs default to “corrected” gamma,
which means the video signal is absolutely true to the source data—which is what a
print designer needs. Most Windows PCs display “uncorrected” gamma, just like
television, which skews midtones to be 10–15% darker and more saturated. For this
reason, many experts suggest that once Web designers get their gamma set up
correctly, they should work with an average gamma of 2.2 in mind. Gamma-correction
software can be implemented by technicians, or you can do it yourself. PhotoShop
allows designers to preview an image’s appearance under various gamma settings.
Recent Web-specialized graphics programs like Fireworks and ImageReady have the
ability to gamma-preview images, as well as to batch-process images to use a selected
gamma value. If you are working on low-contrast designs, understanding the lack
of gamma correction on the average PC monitor will help you avoid creating muddy,
indistinct imagery.

In theory, gamma issues should not affect CSS and HTML colors, but the reality is
that there are at times differences between colors in PC and Mac environments. Until
color profile information is included, it might be best to stick with common colors or
put up with imperfect color reproduction, as even the latest display technology seems
to make things more complicated.

Monitor Types: CRT vs. LCD
Most desktop computer monitors are CRT (Cathode Ray Tube) display devices, just
like a television monitor. The inside of a CRT monitor screen is covered with thousands
of phosphor dots. Three of these dots—one red, one green, one blue—make up a pixel.
The phosphor dots glow in response to charges emitted by an electron gun at the back
of the monitor. As noted above, however, color processing begins in a computer’s

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 3 : C o l o r 497

video card, not in the monitor. Using a Digital to Analog Converter (DAC), a computer
monitor translates the digital information from the video card into an analog signal
that controls the monitor’s electron gun. Sudden and erratic variations in a monitor’s
color display may be caused by problems with the DAC circuit. When encountering
serious color distortion, always test the monitor on a different computer before
blaming the wrong piece of hardware for the problem.

Other issues with CRT monitors include flicker; this occurs when the phosphor dots
inside the screen, which have been stimulated by electron streams, begin to lose their
charge before it is refreshed. Setting your monitor to a refresh rate above 70 Hz should
take care of this; although the Video Electronics Standards Association (VESA) defines
85 Hz as the standard, this may be more than is required. Setting the refresh rate too
high can cause damage to a monitor. There are several types of CRT monitors, such as
aperture-grille and shadow-mask, but this area is beyond the scope of this discussion.

LCD (Liquid Crystal Display) monitors, long used for laptop computers, are
becoming more commonly used as desktop monitors, as the technology has improved
sufficiently to make larger screens feasible and affordable. Since LCD monitors don’t
need room for an electron gun, they are “flat” and take up, on average, only a third of the
space needed for bulkier CRT monitors. Other factors in their favor include a complete
lack of cathode ray emissions, making them easier on the eyes, and significantly lower
power requirements. The upswing in LCD monitor use has several ramifications in terms
of color use.

First, many LCD screens, particularly smaller ones, may handle only thousands,
or even hundreds, of colors and also tend to support a narrower range of screen
resolutions. Larger and/or more expensive ones are more likely to handle millions
of colors, or true color. Brightness may also be a concern, as LCD monitors are
backlit, and their brightness levels may vary more than those of CRTs. The most
important color issue for LCD monitors has to do with the angle of view. They need
to be viewed head-on for best results, but even then, light variations caused by the
orientation of the screen surface may cause the same color to look somewhat darker
at the top of the screen and lighter at the bottom, or vice versa. Given this, LCD
screens are probably a poor choice for doing graphics design for Web sites (or any
other medium), unless your lighting conditions are very well controlled. From a
designer’s viewpoint, this reinforces the importance of choosing well-contrasted and
coordinated colors for Web pages.

Using Color
Even when color is reproduced properly, it isn’t difficult to abuse it. A few too many
drastically different colors in use at once might be so garish as to drive users away.
Color harmony attempts to find pleasing combinations of colors. Yet even when
harmonious, colors may not provide enough contrast and thereby affect usability.
Finally, colors have implied meanings that should be considered.

498 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Color Harmony
When using color, designers generally attempt to put things in balance. Too much
color can be over stimulating and chaotic, while too little color can be boring. When
using color, we strive for harmony—in other words, we use color in a pleasing way.
Of course, while this may seem to be more a matter of taste, color theory has long
shown how certain color combinations work well together, while others do not.

The most basic tips for good color use are

■ Use only a few different colors on a page.

■ Do not use an excessive amount of colors.

■ Use hot and cool colors together.

We can come up with some common schemes for finding pleasing color combinations
using the color wheel presented earlier in the chapter. The simplest way to do this is to
select colors near each other on the color wheel. The scheme is described as analogous.
Colors directly opposite on the color wheel also work well together and are considered
complementary. For variation, you can try nearly complementary colors or three colors that
form an equilateral triangle in the color wheel. Such a color scheme is called a triadic color
scheme. Color harmony diagrams illustrating the previous ideas are shown in Figure 13-3,
with examples found at www.webdesignref.com/examples/colorharmony.htm.

Finally, plain black and white plus a color is the easiest harmony. While a little
boring, it is safe and looks pleasing, particularly if the color used is vibrant so as to
show contrast with the neutral black and white.

Color and Usability
Page authors must also be extremely careful when setting text and background colors.
Readability must be preserved. Page designers are often tempted to use light colors on
light backgrounds or dark colors on dark backgrounds. For example, a gray text on a
black background might look great on your monitor, but if the gamma value of another
person’s monitor is much different than your monitor, it will be unreadable. An online
demonstration of contrast problems can be found at http://www.webdesignref.com/
examples/contrastandusability.htm.

The simple solution to the color usability problem is to make sure to never have
elements that require a precise rendering in order for the difference to be apparent.
A non-main element, one whose disappearance wouldn’t affect the overall look of
the page, might qualify as an exception to this rule, but if your design requires that
everything appear precisely rendered in order for the whole to not fall apart, then you
will need to modify your design.

To avoid color contrast problems, white and black always make a good pairing, and
red is certainly useful. The best color combination in terms of contrast is yellow and
black, but imagine the headache from reading a page that looks like a road sign!

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 3 : C o l o r 499

Despite the high contrast, designers should be careful of white text on a black
background when font sizes are very small, particularly on poor-resolution monitors.

Yet be careful also of exaggeratedly high contrast. Bright neon colors on a black
background offer a great deal of contrast, but is it an effective or usable design? As
mentioned in the previous section on color harmony, using color and contrast to call

500 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 13-3. Sample color harmony diagrams

attention to particular parts of a site is a balancing act. Making the navigation
colorfully obvious without making it obtrusive and at the same time highlighting a
special site feature can be challenging, because just as fast as you grab attention, you
may generate a negative response.

Another aspect of color and usability to consider is the variation of visual
capabilities in Web users. Human color perception simply does not adhere to
some exact standard (considering that the health and structure of each person’s eyes
varies greatly, this is somewhat to be expected). For example, it is estimated that
approximately eight percent of all men and one percent of women have color
vision deficiency to some degree or another. Users with vision that is somewhat
color-deficient are often unable to differentiate between colors of similar hue when
those colors are of the same lightness and saturation. Someone with the most common
color deficiency, red-green color blindness, would have trouble distinguishing between
red and green when the red and green are close in saturation and lightness. Such color
vision issues can be troublesome when you consider the difficultly in distinguishing
between red and green traffic lights. Does the color-deficient driver really know when
to stop or go? Probably yes, since position also provides meaning in a traffic signal.
However, on the Web, if links are similar in hue, lightness, and saturation, it might be
difficult for someone to determine which links have been visited and which have not.
If color is being used to draw something out, try to have something that also indicates
importance, just in case the user can’t perceive color properly.

Color perception problems may get worse with the proliferation of PDAs, cell
phones, and Palm devices. What do you do when you are not working with lots of
color? Can you design a site that works well in all conditions? Two-tone devices,
usually displaying with a greenish-gray background and grayish-black text, challenge
design ingenuity in a number of ways. The safest approach is probably to design a
separate site for each browsing platform so that you can design completely within a
particular visual environment. Browser-sensing then directs incoming users to the
version of the site appropriate to their display device.

The last point about color and usability on the Web is once again related to links.
Like it or not, on the Web blue equals go and purple equals stop or go away. Making
something blue will encourage a person to click on it, making it purple will probably
not. If you use lots of purple on the page, you might just be subliminally telling people
that this site is one they should pay less attention to. Color isn’t just for decoration; it
can have meaning.

The Hidden Meaning of Colors
On the Web, particularly when dealing with international visitors, it’s easy to get messed
up by a potentially tricky issue: the meaning of color. Artists, philosophers, scientists,
religious thinkers, and others from all walks of life have pondered this issue for centuries,
but no consensus has been reached. The nineteenth century German writer and thinker
Goethe spent a large portion of his life developing a theory of colors—most of which has

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 3 : C o l o r 501

been consigned to the dustbin of philosophy by modern thinkers. Even setting aside
highly codified color/concept schemas—such as those used in Tibetan religious art or
the changing colors of the liturgical seasons in Western churches—it is difficult to apply
specific meanings to specific colors. In the West, black is largely associated with death
and somber thoughts—while in Japan, the color associated with death is white, a complete
reversal of the Western viewpoint. Considering that the Web is an international medium
of communication, it may not be practical to take culturally accepted color meanings for
granted. Bearing in mind the Western cultural background of this book’s production,
Table 13-6 lists some common meanings people may associate with certain colors.

502 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

red hot
error
stop
warning

aggression
fire
lushness
daring

pink female
cute
cotton-candy

orange warm
autumnal
Halloween

yellow happy
caution
sunny

cheerful
slow down

brown warm
fall
dirty

green envy
pastoral
jealousy

inexperience
fertility
newness

blue peaceful
sadness
water
male

purple royalty
luxury

Table 13-6. Common Concepts Associated with Colors (Subject to Cultural Bias)

C h a p t e r 1 3 : C o l o r 503
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Even without the complications of cultural associations, Web conventions also
use color to convey meanings. The significance of hyperlink colors is brought up
throughout this book—people are used to clicking on blue text to go somewhere else,
and they know that purple text means they’ve already been there. Changing the color
of hyperlinks is always a questionable proposition, especially if the audience for the
site are not experienced users—they may see light blue text and never think to click,
because they know that regular links are blue. However the messages may be subtler
and more difficult to pin down. Reflect on what you think when you see a Web page
with red text on a black background. How often does this make you think “Amateur!”
in terms of the site’s designer? How do you respond to sites that do not have a white
background on text-heavy pages? Every Web user brings a host of unacknowledged
expectations about what colors, or combinations of colors, mean in the browser window.

Summary
Color is important to Web designers, as it makes pages both pleasing and meaningful to
visitors. Unfortunately, color use on the Web can be difficult. With the wide variability of
viewing environments, designers need to continue to rely on the 216-color browser-safe
palette. Hybrid colors and color depth detection can help us break the 216-color limit
safely, but even then things may not work. Without color correction technology that can
deal with differences in the user’s viewing environment, color reproduction on the Web
is far from an exact science. This is a rather unfortunate situation. Color preciseness is
important if we want to make sure that the blue shirt users buy online is exactly the
shade of blue they thought it was. Just think of the cost of returns due to a serious color
shift! With the eventual introduction of color profiles in CSS (and PNG images, discussed
in the next chapter), things should improve. Yet even when color is displayed properly, it
is easy to misuse color by not using harmonious colors, providing too little contrast, or
not considering the meaning of color.

black evil
death
mourning

ghostly cool
night
fear

gray overcast
gloom
old age

white virginal
clean
innocent

winter
cold

Table 13-6. Common Concepts Associated with Colors (Subject to Cultural Bias)
(continued)

TE
AM
FL
Y

Team-Fly®

This page intentionally left blank.

Chapter 14
Images

505

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Today, for most people, the Web is a visual medium. While the disabled or those
accessing the Web from a non-graphical environment can still interact with Web
pages, they often miss a great deal of information that only images can provide.

Graphics may not only enhance a user’s comprehension of material; when aesthetically
pleasing, they may even improve the user’s experience. At the same time, overuse of
graphics can have a negative effect and result in a slow and unusable site. Correct
image use on the Web is not just a matter of taste. It requires complete understanding
of the various file formats, such as GIF, JPEG, and PNG. A major goal of designers is to
balance image quality with download size. This chapter will present the technical issues
surrounding the use of images on the Web, with a focus on usability and cross-browser
compatibility. It will be up to you to determine what is pleasing and appropriate to
present to your users.

Image Formats
A computer monitor is composed of numerous small dots, or pixels (picture elements).
Images are formed onscreen by setting the colors of particular pixels. An image format
describes the color and position information necessary to create an onscreen image.
There are two basic image format varieties: vector images and bitmapped images.

In its raw form, a bitmap or raster image is simply a collection of pixels of different
color values. Because of the large number of pixels and color information in an image,
raw bitmaps can be very large. An uncompressed bitmap image at 800 × 600 pixels
with 24 bits of color information would take up over 1MB (800 × 600 × 24 = 11,520,000
bits / 8 bits per byte = 1,440,000 bytes). Given their potential size, bitmapped image
formats almost always employ some form of compression. In general, there are two
forms of image compression: lossless and lossy. Lossless image compression means that
the compressed image is identical to the uncompressed image. Because all the data in
the image must be preserved, the degree of compression, and the corresponding savings,
is relatively minor. Lossy compression, on the other hand, does not preserve the image
exactly, but can provide much higher degrees of compression. With lossy compression,
the loss in image quality achieves a smaller byte count. Because the human eye may
barely notice the loss, the trade-off may be acceptable.

A vector image stores image information in a much different manner, describing
the image as a collection of mathematical curves, points, and colors. Given the compact
manner in which vector images are described, the format has the advantage of being
very small in file size. Because the image is created or rendered mathematically, it can
easily be scaled, in comparison to bitmap formats, which tend to become distorted
during size changes. With all their advantages, vector images do have tradeoffs. First,
a vector image must go through an extra step, called rendering, where the image is
calculated and drawn onscreen. This process does take some time compared to bitmap
images, which simply decompress and display. The difference between the two basic
image formats is shown next.

506 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

In most cases—those in which the image is rather simple—the render time for a
vector image is negligible. As the image becomes more complex, the rendering process
can take an increasingly significant amount of time. Remember that, at the end of the
day, everything must become a bitmap in order to be displayed onscreen. Vector
formats do a good job on illustrative-style graphics, text, and logos, while bitmaps
handle photographs well. Interestingly enough, many vector formats will import
bitmap images for textures, and vectors are often rasterized for inclusion in bitmap
images. Both types of formats have their merits and work well together.

While the HTML standard says nothing about what image formats can be used
on the Web, browsers tend to support the same image types. On the Web, the primary
bitmap image formats are GIF (Graphics Interchange Format) and JPEG (Joint
Photographic Experts Group). The PNG (Portable Network Graphics) format is
now finally gaining some ground, but it is so far not that prevalent online. Where
vector graphics are concerned, the Flash format is dominant on the Web, but the
W3C-endorsed SVG (Scalable Vector Graphics) format is gaining some ground. Other
image formats, such as the various UNIX-related formats like XBM (X Bitmaps) and
XPM (X Pixelmaps) and the Windows format (.BMP), are often supported natively

C h a p t e r 1 4 : I m a g e s 507
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

by browsers, but are primarily of historical interest and are not to be used. Esoteric
formats, such as wavelet-based formats, will eventually emerge into the mainstream;
but at least for now, stick with the tried-and-true GIF and JPEG. We discuss the main
image formats and some of the important features directly.

GIF
GIF images are the most widely supported image format on the Web. Originally
introduced by CompuServe (and occasionally referred to as “CompuServe GIFs”),
the GIF format actually comes in two types: GIF 87 and GIF 89a. Both forms of GIF
support 8-bit color (256 colors), use the LZW (Lempel-Ziv-Welch) lossless compression
scheme, and generally have the .gif file extension. GIF 89a also supports transparency
and animation, both of which will be discussed later in this section. Today, when
speaking of GIF images, we always assume the GIF89a format is in use and make no
distinction between the formats, regardless of whether or not animation or transparency
is actually used in the image.

GIF images use a basic form of compression called run-length encoding. This lossless
compression works well with large areas of continuous color. Figure 14-1 shows the
GIF compression scheme in practice. (To see an extended online version of this, go to
http://www.webdesignref.com/examples/gifcompression.htm.) Notice how the test
images with large horizontal continuous areas of color compress a great deal, while
those with variation do not. As shown in the demo, simply taking a box filled with lines
and rotating it 90 degrees shows how dramatic the compression effect can be. Given
GIF’s difficulty in dealing with variability in images, it is obvious why the format is
good for illustrations and other images that contain large amounts of continuous color.

As mentioned earlier, GIF images only support 8-bit color for a maximum of
256 colors within the image. Consequently, some degree of loss is inevitable when
representing true-color images, such as photographs. Typically, when an image is
remapped from a large number of colors to a smaller color palette, dithering occurs.
As discussed in Chapter 13, the process of dithering attempts to create a color that is
outside of the palette. It does this by taking two or more colors from the palette and
placing them in some sort of checkered or speckled pattern as a way of visually creating
the illusion of the original color.

508 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 4 : I m a g e s 509

There is a fairly esoteric use of GIF images that allows them to exceed the 256-color
barrier by using multiple image blocks, each with its own color palette within the same
GIF file. The so-called true-color GIF could provide support for thousands of colors, but
with a much larger file size. Those looking to exceed the 256-color limitation of GIF
should look to JPEG or PNG files.

Ensuring that the appropriate file format is used for the right types of images and
that flat or illustrative type images use Web safe colors will help reduce the amount of
dithering that takes place.

While having only an 8-bit color depth seems problematic, sometimes designers
will further downward adjust the bit-depth of GIF files to reduce file size. Recall that
the higher the bit-depth in an image, the more colors and the greater amount of
information required. It would make sense then that, by limiting the number of colors
as much as possible without reducing the quality of the image, you could create some
extremely small files. The key to doing this is using just enough colors in the image to

Figure 14-1. Demonstration of GIF Compression

510 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

support what is there or what is reasonable to dither. Standard 8-bit GIFs will contain
up to 256 colors, 7-bit up to 128 colors, 6-bit up to 64 colors, 5-bit up to 32 colors, and so
on. Most graphics programs, such as Macromedia Fireworks or Adobe Photoshop with
ImageReady, support color reduction directly on image save. Figure 14-2 shows an
example of the file reduction possibilities using GIF color reduction. A complete demo
can be found online at http://www.webdesignref.com/example/gifcolorreduction.htm.

GIF images also support a concept called transparency. One bit of transparency is
allowed, which means that one color can be set to be transparent. Transparency allows
the background that an image is placed upon to show through, making a variety of
complex effects possible.

Figure 14-2. Color Reduction is useful in reducing GIF file size

without
transparency

with
transparency

C h a p t e r 1 4 : I m a g e s 511
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Online: For transparency examples, got to http://www.webdesignref.com/
examples/giftransparency.htm.

GIF transparency is far from ideal. Given that only a single color can be made
transparent, it can be difficult to avoid a halo effect when placing transparent GIF
images on backgrounds, as shown here:

The main problem with 1-bit transparency is that anti-aliasing uses variable colors to
blur the jagged edges of an image and smooth things out. A variety of issues related to
transparency are displayed at the online demo. Remember: everything that is displayed
onscreen is made up of pixels. Pixels are square. It should therefore be obvious that
creating an image that has rounded edges may pose some problems. Anti-aliasing
allows us to create the illusion of rounded or smooth edges by partially filling the
edge pixels in an attempt to blend the image into the background, as shown here:

Notice the halo

There are a variety of solutions to the anti-aliasing-transparency halo problem. First,
you could simply not anti-alias the image. This can produce unwanted “jagginess” in
the image. A second possibility might be to avoid setting the transparency image on a
complex background and instead prefill the image with the appropriate background.
This approach is seamless and completely avoids any trace of halo, but it limits what
we can put images over. For this reason, designers often will avoid transparency
in conjunction with complex backgrounds where this effect might be difficult to
accomplish. The final approach is to try to solve the transparency problem by creating
a mask. All of these approaches are illustrated online at http://www.webdesignref
.com/examples/giftransparency.htm.

When using small text in a graphic, it is often a good idea to leave the text aliased.
Anti-aliasing introduces an element of fuzziness, which may make smaller font sizes
very difficult to read.

GIF images also support a feature called interlacing. Interlacing allows an image to
load in a venetian-blind fashion rather than from top to bottom one line at a time. The
interlacing effect allows a user to get an idea of what an image looks like before the
entire image has downloaded, thus keeping users from being frustrated as images
download. The idea of interlacing is shown in Figure 14-3.

The previsualization benefit of interlacing is very useful on the Web, where
download speed is often an issue. While interlacing a GIF image is generally a good
idea, occasionally it comes with a downside: interlaced images may be larger than
non-interlaced images. It would also be a bad idea to use interlacing for images that

512 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 14-3. Interlaced GIF images show the gist of an image quickly

Time passing

have text on them, since it would be impossible for the text to be read easily until the
download was complete.

Online : For more on GIF interlacing visit http://www.webdesignref.com/
examples/interlacedgif.htm.

Finally, the GIF format also supports animation. This works by stacking GIF after
GIF to create the animation, in a manner similar to a flip book. The animation extension
also allows timing and looping information to be added to the image. Most popular
graphics programs, such as Fireworks, support animated GIFs. An example of the
interface to control GIF animation in Fireworks is shown in Figure 14-4.

C h a p t e r 1 4 : I m a g e s 513
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Figure 14-4. Animated GIFs provide only basic animation controls

Loop Play controls Tweening Frames

Time passing

TE
AM
FL
Y

Team-Fly®

514 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Animated GIFs are one of the most popular ways to add simple animation to a Web
page because nearly every browser supports them. Browsers that do not support the
animated GIF format generally display the first frame of the animation in its place.
Even though plug-ins or other browser facilities are not required, authors should not
rush out to use animation on their pages. Excessive animation can be distracting for the
user and makes for inefficient downloads. Since the animation is basically image after
image, the file size is the total of all the images within the animation combined; this
can result in a much larger image than the user is willing to wait for. Thus, it is very
important to make sure that every frame of the animation is compressed as much as
possible. One approach to combat file bloat is to optimize the image by replacing
only the moving parts of an individual animation frame. This is often called changing
rectangles optimization. By replacing only the portion of the frame that is changing, you
can use smaller images in some frames to help cut the file size down. Many of the GIF
animating applications have a feature built in that will go through and optimize the
images for you. Doing this may result in a dramatic saving of file size, as shown in
Figure 14-5.

Online: http://www.webdesignref.com/examples/animatedgif.htm

JPEG
The other common Web image format is JPEG, which is indicated by a filename ending
with .jpg or .jpeg. JPEG—which stands for the Joint Photographic Experts Group, the
name of the committee that wrote the standard—is a lossy image format designed for
compressing photographic images that may contain thousands, or even millions of
colors or shades of gray. Because JPEG is a lossy image format, there is some trade-off
between image quality and file size. However, the JPEG format stores high-quality
24-bit color images in a significantly smaller amount of space than does GIF, thus
saving precious disk space or download time on the Web. An example of the quality
versus file size tradeoff with JPEGs is shown in Figure 14-6. Notice the significant file
size savings obtained by sacrificing just a little quality.

The trick with JPEG’s lossy compression is that it focuses on slight smudging in
areas of heavy detail that a viewer is unlikely to notice. However, in a situation where
continuous color or text is used, JPEG’s compression scheme may quickly become
evident, as the artifacts introduced into the image will appear heavy in the flat color
and text regions. It is possible to avoid this issue by selectively compressing portions
of the image. These ideas are illustrated in Figure 14-7.

While the JPEG format may compress photographic images well, it is not well
suited to line drawings, flat color illustrations, or text. Notice the comparison between
GIF and JPEG file sizes in Figure 14-8.

Online: For comparison of GIF and JPEG formats, go to http://www
.webdesignref.com/examples/gifvsjpeg.htm

C h a p t e r 1 4 : I m a g e s 515
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Figure 14-5. Example of animated GIF frames and optimization

516 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 14-6. JPEG file size and quality comparison

C h a p t e r 1 4 : I m a g e s 517
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Figure 14-7. Distortions around flat color areas and text can be reduced with
selective compression

Figure 14-8. Comparison of GIF and JPEG file sizes

Choosing between GIF and JPEG is usually very straightforward: do photos with
JPEG and illustrations with GIF.

Rule: Use GIFs for illustrations and JPEGs for photos.

However, there are instances where developers may be willing to distort a photo
to put it in GIF to use the format’s features, since JPEG images do not support
animation or any form of transparency. However, JPEG images do support a feature
similar to GIF interlacing in a format called progressive JPEG. Progressive JPEGs fade
in from a low resolution to a high resolution, going from fuzzy to clear, as shown in
Figure 14-9. Like interlaced GIFs, progressive JPEG images are slightly larger than
their non-progressive counterparts.

Finally, some designers are aware of the fact that since JPEG images are heavily
compressed, decompression time can occasionally be a factor. With today’s more
powerful computers and higher-speed lines, the decompress time of a JPEG will not
be an issue much of the time. However, if you make an extremely large dimension
JPEG and compress it highly, you will notice a delay. Of course, if you used a GIF,
you’d have a worse-looking image that might be just as large.

PNG
The Portable Network Graphics (PNG) format is an emerging format that has all of the
features of GIF in addition to several other features. First, the compression algorithm
for PNG is not proprietary, unlike that of GIF’s, which is LZW (owned by Unisys).
Some designers have worried about the potential problems stemming from Unisys
patent claims on LZW compression, but so far this has been a nonissue. PNG’s

518 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 14-9. Progressive JPEGs become sharper as they download

Time passing

compression algorithm is also slightly better than GIF’s, as shown in Figure 14-10; but
this alone is probably not much of a reason to give up GIF images, given the browser
compatibility problems that still plague the format. PNG also supports slightly
improved interlacing.

C h a p t e r 1 4 : I m a g e s 519
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Figure 14-10. PNG compression vs. GIF compression

520 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

PNG images break the 8-bit color barrier normally found in GIF images; but with
the degree of compression available in PNGs today, it would not make sense to favor PNG
files over JPEGs, in all cases, though this examples shows that PNG is the best format:

A significant plus for PNG images is the improved transparency possibilities.
Rather than being limited to a single color for transparency masks, PNG files can use
up to 256 colors in a mask, thereby lending themselves to smooth transparent edges
and shadow effects.

Another problem addressed by PNG is the apparent color shifting in images that
are developed on a system with one Gamma or brightness value and then shown on a
system with a different Gamma value. Notice in Figure 14-11 how the images do not
quite look the same at different Gamma values. PNG avoids this problem.

Finally, PNG supports animation through MNG that is similar to what is provided
in GIF animations.

With all these great features, one wonders why PNG is not more common online.
The main reason is that the browser vendors still don’t consistently support PNG images.
Even when the image format is supported, many features like transparency are not fully
implemented. In fact, no browser other than Mozilla 1.0 supports PNG well enough to

C h a p t e r 1 4 : I m a g e s 521
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

rely on the format, so Web designers are warned to avoid using PNGs unless browser
sensing is utilized.

Suggestion: Limit bitmap graphics formats in Web pages to JPEG and GIF until
other formats become more widely supported.

Flash
One vector-based image format is becoming relatively common on the Web: Macromedia’s
Flash, which is indicated by the .swf file extension. The format is primarily known
for animations, but it can also be used to create static, scalable, still images (see http://
www.webdesignref.com/examples/staticflash.htm). The advantage is that the image
can scale easily to the screen size available, or it can show more detail, as shown in
Figure 14-12. In many cases, the images are as small as GIF images.

Figure 14-11. Different Gamma values can cause images to look different

Brighter Monitor (MAC) Darker Monitor (PC)

Figure 14-12. Flash images can scale

522 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Animation is what most people equate with Flash. A Flash animation is far superior
to an animated GIF in several ways. First, it can contain a great deal more information
than a GIF, allowing more sophisticated and complex effects. Second, Flash supports
complex scripting using a JavaScript-like language called ActionScript. Third, as a
vector format, Flash files are scalable and can expand or contract to fit a relative display
region, thus becoming larger on top-of-the-line monitors, yet are able to scale down to
fit reasonably comfortably within low-end displays. Finally, despite all these features,
Flash files are relatively compact files.

It might seem surprising, then, that Flash isn’t well regarded by many in the
usability community. The main reason is that designers abuse Flash by making huge
files which don’t take users into consideration. Plain and simple: if you make Flash
support mandatory, you are just asking for trouble. A certain portion of your audience
will not have the plug-in at all, another portion will have an outdated version and be
unwilling or unable to upgrade, others may have installation conflicts, and some users
may not want to see Flash-based content. The pragmatic designer wouldn’t either
ignore the usability folks or give up Flash, but should rather embrace the fact that
degradable solutions that do not rely on Flash should be employed, along with judicious
browser and Flash detection.

Other Image Formats
There are numerous other image formats out there that can be used in browsers but are
generally not appropriate for public Web site development. First is the BMP format.
While Internet Explorer supports this format, it lacks any major degree of compression,
and it is not supported in many other browsers. Second, there are numerous historical
image formats like XBM and XPM that were popular in the UNIX environment, but
today are simply historic holdouts from Web days past. Last, some sites do support a
variety of other image formats that might be considered exotic: ActiveX controls, Java
applets, or plug-ins. These formats, which generally provide some special feature like
zooming or support for extremely large file sizes, use extreme compression.

One potentially important format that deserves at least a brief mention is JPEG
2000. Though still in the works as far as browsers are concerned (despite its “2000”
sticker), this format promises developers a JPEG standard that will vastly improve the
display of photographic images on the Web. Regular JPEGs use a compression system,
known as DCT, that compresses visual information into blocks of 8 pixels by 8 pixels;
the blocks load in sequence as the image is rendered. The JPEG 2000 standard, in turn,
uses wavelet compression that converts images into a series of wavelets, rather than
square blocks of pixels, and that does not need to discard as much information as the
current JPEG approach. In addition to getting improved compression, designers will be
able to choose from a range of resolution levels for each JPEG 2000 image—and users
will be able to select how much of that resolution they want to display. JPEG 2000 will
also allow for possible CMYK display on the Web and correct color display for a variety
of systems and platforms.

Now that we have covered all the image formats and their basic features, it is time
to discuss how they are used within Web pages and to describe some of the nuances
of their usage that designers should be aware of. We will not, however, focus on
step-by-step image preparation, as we assume readers are either schooled in the
basics of graphic programs or will want to consult detailed tutorials on Photoshop
or Fireworks usage.

HTML and Images
To insert an image into a Web page, simply use the tag and set the src attribute
of the element equal to the URL of the image. The form of the URL may be either an
absolute URL or a relative URL. The best approach is to use a relative URL to an image
found in a centralized images directory, often just “/images” off the main Web site root
directory. So, to insert a GIF image called logo.gif residing in that directory, use

An absolute URL could also be used to reference an image on another server:

Although using absolute URLs for linking in your images works, it is going to
limit the mobility of your Web site. Imagine trying to make a copy on a CD-ROM
or switching your site to a new domain name. Therefore, using relative links will be
a better long-term solution. Using an external URL is not advised, since images may
move and cause the page to load at an uneven pace.

Besides src, there are numerous other attributes of the element. Some
commonly used attributes that have some important features are discussed briefly
next; a full list can be found in Appendix C, which covers HTML/XHTML. A detailed
examination of tag syntax can be found in Chapter 5 of the companion volume
HTML: The Complete Reference.

Alternative Text
The alt attribute provides alternative text for user agents that do not display images or
for graphical browsers where the user has turned off image rendering.

The alt attribute’s value may display in place of the image or be used as a tool tip or
placeholder information in image-based browsers. Any HTML markup found in the alt

C h a p t e r 1 4 : I m a g e s 523
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

TE
AM
FL
Y

Team-Fly®

524 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

element will be rendered as plain text. If the option to display images is turned off, the
browser will display the alternative text, as shown here:

A browser may also show the alt text as images load, giving the user something to
read as the page renders.

Many modern graphical browsers will also display the alt text as the tool tip for
the image once the pointer is positioned over the image for a period of time. However,
the core attribute title should override this and be displayed instead of the alt text in a
conforming browser.

While theoretically there is no limit to the alternative text that may be used,
anything more than a few hundred characters may become unwieldy. Some browsers
do not handle long tool tips and alt text properly, or they might not wrap the descriptive
text. Be warned that if you insert entities like  to format the alt or title text, you
may wreak havoc in voice browsers that read screen content, though the visual
presentation might be improved.

The alt attribute’s importance becomes clear when you consider how many people
might access the Web from a text-only environment. Unfortunately, much of the
alternative text set does not always provide a substantial benefit. Do the examples
above really help by backing up the Demo Company’s logo graphic with the actual
words “Demo Company logo”? Would simply “Demo Company logo” be sufficient? or
insufficient? Try to make alt text reflect the meaning of an image; if an image is merely
decorative, like a graphic bullet for a list item, setting it to no value (alt="") is perfectly
acceptable.

Suggestion: alt text should reinforce the meaning of significant images; if an
image does not convey essential meaning, leaving the alt value blank may be
better than adding noise information to screen readers or cluttering the page
with unnecessary alt text or tool tips.

C h a p t e r 1 4 : I m a g e s 525
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Sizing Images in HTML
One all-too-common sight on the Web is text that loads quickly, only to suddenly
reflow all over the place when the images pop in a few seconds later. This is caused
by designers neglecting to use the height and width attributes of the tag:

Using these attributes resolves the problem because, when visual browsers read these
attribute values, they reserve the space defined by those dimensions.

Rule: Always use the height and width attributes with the tag.

When these attributes are used in an HTML document, text will flow around where
the images are supposed to go, even if the images finish loading long after the text. For
more complicated layouts, where cut-up images may be assembled jigsaw-puzzle style
in a table, it is very important to use these attributes accurately and in a way that matches
the dimensions of the table cells holding the images. Using these attributes has the
additional benefit of improving the perceived download time, since users can begin
reading the page before the all of the images have finished loading.

Some designers misuse the height and width attributes to resize images with
HTML. It is usually easy to spot this mistake: whether they are shrunken or expanded
by decreasing or increasing the attribute values, images resized in HTML tend to look
distorted. For flat images or simple patterns, stretching may work; but in most cases, it
should be avoided.

Rule: Avoid using the height and width attributes to resize images with HTML
because distortion may occur.

Image Borders
Browsers tend to render images with an undefined border attribute as having no
border, with one notable exception. While the image

will render without a border, making it a link

<img src="images/robotfaq.gif"

height="150" width="40" alt="Robot FAQ" />

will render with a colored border, usually blue. This is the Web’s graphic equivalent of
underlining text links. In the early days, this was a good way to let users know that an
image was a link. Nowadays, with graphic navigation conventions fairly well established,
this is more of a nuisance than a boon. Setting all images to have a border of zero is a
good idea most of the time.

526 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Always set an image’s border attribute to zero unless you have a specific
design reason to do otherwise—and remember that linked images with no border
attribute will render with colored borders by default.

Image Toolbar
A special browser-specific feature for images that deserves some special comment is
Internet Explorer 6’s image toolbar. If you have ever held your mouse over a large
image in a Web page using IE6, you might have noticed a strange pop-up toolbar:

The toolbar supports quick saving-out of images to a special “My Images” folder.
The browser uses image size for determining which images to show this toolbar for,
and it does a pretty good job of not showing this feature of navigation buttons and
banner ads—for everything else, it depends on its size threshold. To turn off the image
toolbar on an individual image, just add the galleryimg attribute and set its value to
No, like so:

<img src="democompanylogo.gif" alt="Demo Company" galleryimg="no"

height="50" width="100" />

If you just want to be rid of the whole feature altogether in a page, either have your
server issue an HTTP response header of Imagetoolbar: no or, more easily, use a
<meta> tag in the <head> of each page.

<meta http-equiv="imagetoolbar" content="no" />

Of course, there are numerous other tag attributes to consider, but they should
already be familiar to readers and may be found in Appendix C.

Background Images in HTML
To set a background image for a Web page, simply use the background attribute with
the <body> tag and set the value just as you would with :

<body background="images/background.gif">

The image should be a GIF or a JPEG file. Internet Explorer also supports bitmap
files (.bmp), but this is not really a viable option unless users will be limited to a
Microsoft-exclusive environment. Images accessed in this fashion repeat, or tile, in
the background of a Web page. This can make or break a Web page design. Imagine
someone who used the background attribute to place a 200 × 300 pixel JPEG of a
favorite dog on his or her home page. The dog’s image would repeat, both vertically
and horizontally, in the background of the page. This would make the dog’s owner
very happy—and make the page very difficult to read. Figure 14-13 shows an example
of a bothersome repeating background.

In most situations, complex background images tend to be a poor design decision.
Taking a subtle approach can backfire as well. Some designers attempt to create a light
background, such as a texture or watermark, thinking that, as on paper, it will have a
sophisticated effect. The problem is that, under many monitors, the image may be

C h a p t e r 1 4 : I m a g e s 527
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Figure 14-13. Repeating background image

difficult to make out at all, or the texture may even blur the text on top of it slightly.
Just as with setting background colors, the most important consideration is the degree
of contrast. Always attempt to keep the foreground and background at a high level of
contrast so that users can read the information. Unless you are absolutely certain the
background image will not interfere with text readability, don’t use it.

If a background is desired, image manipulation programs such as PhotoShop can
be used to create seamless background tiles that are more pleasing to the eye and show
no seam. Figure 14-14 demonstrates the idea of a repeating background tile execution.

The best use of the background tile, however, is to enhance page layout by
framing certain zones on the page rather than filling the entire display area. Often
the backgrounds are kept outside of content areas or are limited to navigation or
labeling zones. A common design is to create backgrounds to show navigation areas
and leave the rest of the page for content. For example, a single GIF image 5 pixels
high by 1,600 pixels wide could be used to create a useful page layout. The first 200
horizontal pixels of the GIF could be black, while the rest could be white. Assuming
1,600 pixels as the maximum width of a browser, this tile would only repeat vertically,
thus creating the illusion of a two-tone background. This has become a very common
use of a background image on the Web. Many sites use the left-hand color for navigation
buttons, while the remaining area is used for text, as shown in Figure 14-15. To guarantee
that content appears on top of the appropriate section of the background image, you
may be forced to use tables so the tile won’t repeat, as shown in Figure 14-16.

The repeat issue is a problem if you aren’t aware of the width of the user’s screen.
Given today’s monitor technologies, it might be possible to assume a 1,600-pixel or
2,000-pixel-wide background will cover all but the most unusual cases. However, by
using CSS, even that won’t be required.

528 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 14-14. Background tiles without visible seam

Note seam

C h a p t e r 1 4 : I m a g e s 529
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Figure 14-15. Background tile used to section a page

Figure 14-16. Be aware of background tile widths

In plain HTML, background control can be a real issue. Consider that a vertical
section such as the one shown in Figure 14-17 is not safe to develop in HTML without
using frames or CSS. Unless pages are a fixed size, long pages, text sizing, or simple
page reflow due to width adjustment may cause content to flow over backgrounds.

A final variation of page backgrounds was introduced by Microsoft: the fixed
background. A fixed background is attached and doesn’t scroll with content; instead,
content scrolls over it. Some would call this a watermark style. It is easy to set such a
background: just set the bgproperties attribute of the <body> tag to a value of "fixed"
when specifying a background.

<body background="democompanylogo.gif" bgproperties="fixed">

530 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 14-17. Vertical tiles can be difficult to implement in plain HTML

Background Images in Tables
Using simple HTML, it is possible to apply background images to tables as well.
Defining a table with the code

<table width="220" border="1" cellpadding="0" cellspacing="0"

background="smalltabletile.gif">

.... other table elements...

</table>

would place a repeating background tile behind the table, as shown here:

The tables on the left and right, displayed in Internet Explorer and Netscape 6/
Mozilla, respectively, render the tile in a repeating background behind the entire
table. The table in the center, displayed in Netscape 4.7, applies the background to
each separate table cell. This is a radical cross-browser split that can really screw
things up.

The same attribute can be applied to table rows (<tr>), but this will not display
in Internet Explorer; and in Netscape 4, as in the preceding illustration, the tile applies
to each cell in the row, not to the row as a whole. It will work in a standards-focused
browser such as Mozilla 1.0/Netscape 6 and better. Interestingly, if you look at the
HTML specifications, you’ll discover that image backgrounds aren’t supposed to be
supported in tables at all, or so says the W3C.

Last, table cells as defined by the <td> tags often have their backgrounds set as
demonstrated here:

<table width="220" border="1" cellpadding="0" cellspacing="0">

<tr>

<td width="110" background="bigtabletile.gif"> </td>

<td width="110" background="smalltabletile.gif"> </td>

</tr>

</table>

C h a p t e r 1 4 : I m a g e s 531
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Internet Explorer Netscape 4.7 Mozilla

532 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Be careful with using table backgrounds. Content sizing and reflow may result in
interesting variations, just as they would as a document-wide background, as this
example shows:

Once again, these problems can be better controlled through the use of CSS, which
is the standards approach and is more future oriented.

Images and CSS
CSS itself is not used to insert foreground images into Web pages. This task is still
handled by the tag. However, it is used to control foreground images and to
insert and control background images. Consider the markup here to insert an image:

You could use CSS to size, position, and stroke the image. For example,

#demoimg {height: 100px; width: 100px;}

could be used instead of HTML height and width values. Of course, browsers will
probably continue to rely on the HTML attributes, so don’t dump them quite yet.

You could also avoid basic alignment settings in HTML and rely on CSS instead.

#demoimg {float: left;}

C h a p t e r 1 4 : I m a g e s 533
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

You could use margins or other features, but, for greater precision, you can position
the image on the page with more specific use of CSS:

#demoimg {position: absolute; left: 100px; top: 50px; z-index: 3;}

As you saw in the last rule, you can even set z-index values and stack images on
top of other page objects.

Last, some style effects like borders might make sense to set for some images:

#demoimg {border-style: double; border-width: 2px; color: orange;}

Most of these features can be accomplished with HTML, though less cleanly; it is
with background images that CSS really shines.

CSS and Backgrounds
CSS can be used to apply background images to any display tag in HTML. For
example, to set a background image for a page, just apply a rule to the <body> tag.

body {background: url(tile.gif);}

CSS isn’t limited to page backgrounds; you could set them on anything, even
paragraphs or tags surrounding a few words.

<p style="padding: 5px; background: url(spottedtile.gif);">

Talking over
a busy tile

can sure be
hard to read!

I wonder if

this text is any more readable

than the last section.

</p>

This markup would produce the following:

This still could be accomplished with tables, though in a very messy fashion.

TE
AM
FL
Y

Team-Fly®

CSS does have a very useful feature in that the repeat pattern of the background
can be controlled. Recall that misbehaving background tiles can ruin an otherwise
excellent design. For example, suppose you wished to use one large image in the
background of a page. Using only regular HTML, you would have to create an estimated
maximum size image and hope that no one would view it on a larger monitor or with a
larger browser window than you had estimated. There is no way to guarantee that no
one would use a larger monitor, and you would risk ruining the viewing experience of
users with smaller monitors. Luckily, CSS provides a way to limit background tiling in
Web pages:

<body bgcolor="#99ccff" style="background-image: url(sunnybeach.gif);

background-repeat: no-repeat;">

The background will only appear once:

Other values you can use instead of no-repeat are repeat-x and repeat-y, which
limit tiling to one axis only.

534 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Needless to say, this will only work in CSS-compliant browsers. If you want the
background image to display in older browsers, even though it will repeat, be sure to
include it using the background attribute:

<body bgcolor="#99ccff" background="images/sunnybeach.gif"

style="background: url(images/sunnybeach.gif) no-repeat;">

CSS1 also supports positioning of background images so that we don’t have to rely
on table cell backgrounds and background attachments to create the same effect as the
bgproperties="fixed" value does in Internet Explorer. Appendix D contains a summary
of the various CSS properties. Now we turn to a short discussion of image usage issues.

Image Usage
There are a number of issues associated with the use of images on the Web. Usability
issues top the list, but correct sizing is very important—not just for usability, but also
for simple economical reasons. Remember: images use bandwidth, and bandwidth
costs money. Now you know why the really high traffic sites are dumping complex
designs. We’ll also discuss issues of image management and a few “gotchas” with
image delivery, and end with a brief discussion of image usage concerns that designers
should be aware of.

Usability and Images
Images definitely improve the Web, but there are downsides to their use. First, there
are issues with color that was touched on in Chapter 13. When building a site that
relies heavily on color, it is important to consider those who, for physical reasons, will
perceive color in a dramatically different way than the average user. Many people
suffer from some form of color-vision deficiency, commonly known as color blindness.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 4 : I m a g e s 535

repeat-y repeat-x

The most common color-vision problem is red-green color blindness. A person
suffering from this form of color blindness lacks red cones in their eyes and thus confuses
red and green. Given the prevalent use of red as a danger color and green as a safe
color, this is a rather troublesome predicament.

Other forms of color blindness, such as blue-yellow color blindness—or even true
color blindness, where the person can see only in shades of gray—are less common
than red-green color-vision deficiency. Dealing with color-vision problems on the Web
boils down to the following when it comes to images:

Suggestion: Don’t rely solely on color, not only in links but also in informational
graphics.

When using color as a key in an informational graphic such as a pie chart, consider
using labels or patterns in case color cannot be seen, as shown in Figure 14-18.

Consider using colors in informational images with different lightness values.
While color perception is a problem for some, intensity is usually not. Even if some
users won’t be able to distinguish color, they will be able to distinguish intensity.

Then there is always the option to simply not use images. This is obviously not the
most visually pleasing solution. Using only text is going to be far less interesting, and

536 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 14-18. Use patterns and labels in informational graphics

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 4 : I m a g e s 537

there may be information that requires the use of images to make sense. It is possible
to have two versions of a site, one that is text-only and one with text and images. This
is a possible solution, but data maintenance efforts could create an enormous amount
of work to serve the needs of a small audience (if, for example, a database was not used
to populate content). How about alternative text? Writing really good alt text could be
extremely useful. If the user can’t see the images, then the alt text will take their place.
Speech-based browsers, once developed, might “speak” the alt text for the visually
impaired. Overall, judicious use of carefully selected and optimized imagery in
conjunction with thoughtful use of color will allow you to create powerful Web
pages that are usable for the large majority of users.

Download/File Size Issues
Another concern is the matter of images slowing page download speeds. In fighting
this problem, choosing the correct file format can make a huge difference. By choosing
the correct format, you will be able to greater compress the images, thereby reducing the
file size and allowing the page to download faster. It is important to be careful not to
over-optimize by cutting the image into smaller pieces. While this does work to a
certain extent, every image is a request to the server. Too many server requests can also
start to slow the page down. The key is to find a good balance between the number of
files and the overall page size.

Also remember that size really doesn’t matter. You really only need to make users
think they downloaded a large amount of data—by reusing the same images over and
over—as long as they don’t become bored. In short, you literally try to fool the user. An
obvious way to speed up pages is to reuse imagery across pages. If you use the same
navigational area across the top of all of your subpages, calling the same images on
multiple pages takes advantage of the browser’s cache. This means that the user
downloads an image once and then reuses it, speeding up the experience of the site.
Cutting things up appropriately so that images appearing on multiple pages can be
cached will save the browser from having to re-download the images on every page.

While not exactly an “image” issue, the importance of good underlying code cannot
be emphasized enough. The number of visually exciting sites brought to grief by poorly
executed code is a shame, especially when good code is more a matter of attention to
detail and good testing than anything else. The bottom line is that your images will
perform better when your HTML and CSS are at their best.

Compression Issues
Another way of improving the usability of images with respect to download is to reduce
the byte count in an image through compression. As discussed previously, image
compression is handled by the image file format, so choosing the correct format for a
particular image is integral to reducing byte count. A basic rule of thumb is to use GIF
images for illustrations and JPEGs for photographs. Also, by setting the degree of
compression when using a JPEG image, you can reduce file size with small sacrifice of
image quality. Because the human eye can’t often perceive the difference between an
image of high quality and one of medium quality, tuning the image can often result in
significant file size savings without a visual penalty.

538 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

While image size is certainly important to improving the loading time of Web pages,
designers shouldn’t get carried away with optimizing images without consideration
for the rest of the Web process. There are many more factors that affect Web page
performance, including the type and configuration of the Web server, the distance
“traveled” on the Internet between the server and the end user, the traffic levels on
the Internet at the time of site access, the software being used on the server to deliver
the site and on the user’s system to view the site, and even the processing speed of the
user’s computer. All of these factors affect the user’s experience. Chapter 17 discusses
this subject in depth.

Background Image Sizing Problems
Don’t get too aggressive with your bandwidth reduction techniques; they can often
backfire on you. For example, you might be tempted to minimize the file size of your
background tile in order to reduce download time. Sometimes you will encounter a
situation where you can see a screen “paint” the background image. This happens
because a designer made the background image a single pixel tall, causing the background
to tile as many times as the screen is high in pixels. With a slow video card, this may
produce an annoying sweeping effect as the image fills in, pixel by pixel, down the
screen. To avoid the background painting problem, balance physical file size and
download size. If colors are kept to a minimum, there is no harm in making the image
20 or 30 pixels high. It will still be only a few kilobytes in size and will not incur any
significant download penalty.

Suggestion: Do not make a background tile a very small height or width (for
example, 1 or 2 pixels), since an annoying monitor flashing effect may result
as the screen paints.

Preloading Images
Preloading images is a possible method for improving Web page performance.
You could selectively place an image or two for a successive page at the bottom of a
previous page, scaled to a 1 × 1 pixel size in the code, which renders it invisible on the
page where it preloads. Once it has been placed in the user’s browser cache, it will
render very quickly when the user requests the page where it is normally sized and is
supposed to display. There are limited uses for this trick. It works best when you have
a series of pages where the user will spend some time reviewing the visual materials
before moving in a linear fashion to the next page in the series. This way, each image
has been prepared for a guaranteed viewing session. This works well to a certain
extent, but don’t forget that it still has to download on whatever page you hide it on.
The first page of the series will always have a significantly longer download time than
the other pages, and this may cause users to exit before they get into the progression of
images. Make sure that you don’t try to preload too many images in this manner, and
make sure that it isn’t going to hurt the preloading page too much. You can also use
JavaScript to try to be more judicious in your preloading. Some site acceleration
services have begun to offer client-side preloading as a way to improve site usability.

C h a p t e r 1 4 : I m a g e s 539
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Delivery Image Distortion
Occasionally, your images can be ruined by the sheer act of Web delivery. For example,
America Online and some larger ISP users often encounter blurry images when viewing
Web pages, particularly pages off their network. The reason for this is that many large
networks, particularly AOL, use special proxy caches and acceleration systems that
may recompress graphics for further bandwidth savings. In the case of AOL, the browser
built into the client employs its own compression format, created by the Johnson-Grace
company (now owned by AOL), which converts GIF, JPEG, and even BMP files into
their own .ART format. On the consumer end, AOL users can deselect “User Compressed
Graphics” from their Web preferences menu. On the designers end, there aren’t many
things you can do to try to minimize display issues under AOL. Thumbnail information
in images has been known to mess up AOL compression, so don’t save with previews
or thumbnails when creating a Web image. However, there is really not much else that
is known, at least publicly, about what the AOL compression does, though it can severely
distort JPEG images at times.

Image distortion is not limited to AOL, since many Web caching and acceleration
products will recompress graphics to save bandwidth; generally, they re-JPEG images,
so it is quite easy for your graphics to be ruined in transit. So far, there is really no way
to tell such recompressing systems to leave certain images alone, and you frankly don’t
know what your pages go through before hitting their end users. As you will see in
Chapter 17, delivery really is important, since all your hard visual design work can be
ruined by speed, network issues, and a variety of other things!

Image Management
When preparing images for use on your Web site, there are several things to keep
in mind beyond file size, compression, and delivery. First, where do you store the
images? It is a good idea to keep your images in their own directory. For most sites,
you are going to end up with a lot of images, and it is much better, for organizational
reasons, if you have them separated from everything else. Create a directory named
“images” and keep all of the site images in it. It will dramatically improve maintenance
operations on the site if all images are in one location.

Rule: Always store your images in a separate directory (usually /images).

It is extremely important to name your images in a manner that makes sense. When
viewing the directory, they will be in alphabetical order, so you want to make related
images show up next to one another. For example, you could name your navigational
images HNabout.gif, HNproducts.gif, and HNcontact.gif (HN standing for Home
Navigation). That way, alphabetically, all the HNs will show up together in the
directory. If the images were to have rollovers, you could name those HNOabout.gif,
HNOproducts.gif, and HNOcontact.gif (HNO standing for Home Navigation On).
Again, they will always show up next to one another in the images directory. You could
continue this throughout the entire site by using names such as SN for Sub Navigation or
PI for Product Images. Create your own standards, but keep the names as short and to
the point as you can, while still making sure that you can figure out what they are.

540 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Name your images in a logical fashion that groups them by purpose or usage.

Some Web design tools will cut up images and name them by the rows and columns
in layout tables. While this seems logical, in practice, it often leads to confusion, so avoid
naming by location and instead focus on use.

Protecting Images
A frequent question is how to protect images on the Web from being stolen. A common
suggestion is to deny the user’s ability to right-click the image to use the Save Image As
feature of a browser. This is easily accomplished using JavaScript and the oncontextmenu
event. For example, to disable right-click in an entire page, use the following code:

<body oncontextmenu="return false;">

You could even add a message telling the user the situation:

<body oncontextmenu="alert('Images (c) 2002 Demo Company, Inc'); return false; ">

Of course, you have just denied users the use of their context menu on anything.
This can really annoy experienced users who like to right-click to navigate pages.
Instead, you could put the oncontextmenu handler on each individual image,

<img src="robot.gif" alt="robot" oncontextmenu=" alert('Images (c)

2002 Demo Company, Inc'); return false;" />

so that only if the user were trying to copy it would they see the message shown.

Of course, these approaches really only stop nonsavvy users. Everything will almost
always be in the user’s browser cache unless you’ve added special cache directives to
avoid local saving, and even then, many browsers ignore such directives. Using a
program to explore their cache or manually rummaging through their temporary files
will uncover what they are looking for, regardless of right-click disabling. The user can

C h a p t e r 1 4 : I m a g e s 541
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

also disable scripting and save images at will, or use an older browser that doesn’t
understand context-menu JavaScript directives. It’s also quite simple to enter an
image’s URL directly into the browser. At this point, the solution might seem to be to
put images in Flash or Java, but users can screen-grab the image if they really want it.
The main thing to do is try to protect images and then make sure to watermark them
in a graphics program for enforcement purposes later on. Some users think that image
appropriation, as they call it, is their right. Unfortunately, some designers do as well.

Image Legalities
So you see all the really cool sites out there, but where do you get the cool images?
There are a variety of ways in which to obtain great images. The first way would
be to buy them. You can go about this a couple of ways. You could commission a
photographer to take some pictures for you—in other words, pay for the photo shoot.
You could also buy images from a vendor. There are many vendors that do nothing but
sell images. As you might expect, good images cost significant amounts. There are also
usability rights that must get cleared. You may get charged depending on how you
plan to use the images—don’t assume that paying one price will always get you limitless
usage rights. The right to use an image might apply only on one page of your site, or
only on the Web, or not on related print materials, and so on. These issues will vary
from vendor to vendor. Obtaining images is actually relatively easy, but obtaining
good images on a relatively tight budget with unlimited usage rights can be challenging.
Finally, there are few images that can be used “as is,” even if they are of good quality.

The expense of licensing images and the ease with which images can be copied
have convinced many people that they can simply appropriate whatever images they
need. Unfortunately, this is stealing the work of others. While there are stiff penalties
for copyright infringement, it can be difficult to enforce these laws. Also, some page
designers tend to bend the rules, thanks to the legal concept called fair use, which
allows the use of someone else’s copyrighted work under certain circumstances.

There are four basic questions used to define the fair-use doctrine.
First, is the work in question being appropriated for a nonprofit or profit use? The

fair use defense is less likely to stand up if the “borrowed” work has been used to make
money for someone other than its copyright holder.

Second, is the work creative (for example, a speculative essay on the impact of a
recent congressional debate) or factual (a straightforward description of the debate
without commentary)? Fair use would tend to apply more to the use of the factual
work than to the use of the creative one.

Third, how much of the copyrighted work has been used? It is possible to use
someone else’s image if it is changed substantially from the original. The problem is
determining what constitutes enough change in the image to make it a new work.
Simply using a photo-editing tool to flip an image or change its colors is not enough.
There is a fine line between using portions of another person’s work and outright
stealing. Even if you don’t plan on using uncleared images, be careful of using images
from free Internet clip art libraries. These so-called free images may have been submitted
with the belief that they are free, but some of them may have been appropriated from
a commercial clip art library somewhere down the line. Be particularly careful with
high-quality images of famous individuals and commercial products. While such

542 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

groups may often appreciate people using their images, the usage is generally limited
to noncommercial purposes.

The third fair use question leads to the fourth. What impact does the image have on
the economic value of the work? This whole discussion begs many legal questions that
are far beyond the scope of this book. Suffice it to say that, in the long run, it’s always
safer to create original work, license images, or use material in the public domain. Just
because many Web designers skirt the law doesn’t mean that you should.

If you are artistically gifted, you can try creating the images yourself. You can use
programs such as Adobe PhotoShop to create entirely new and unique images. If you
are not an artist, you can hire a graphic designer or a design firm to create original
images for you. This can be an expensive proposition and usually means that you will
still have to purchase some stock imagery to use as the building blocks for your new
designs. At best, unless you wish to limit your visual expression to unaltered clip art,
you will need to invest part of your Web site budget into development of images.

Now that you are an image creator, you have to worry about controlling your
visual property. How do you prevent someone from stealing your images from your
Web site? You could try to use some advanced scripting or programming to prevent it,
you could create images that are multipart and difficult to collect, you could embed a
watermark within PhotoShop using Digimarc technology (http://www.digimarc.com),
and so on. The issue, however, comes down to determining how you will know if
someone takes images from your site and knowing what your legal options are if they
do. You could have a legal team to constantly check for illegal use and then decide if
you want to prosecute image thieves to stop them from using your images. Or, you
could limit the images you use on your site to those you are willing to lose control
over. You will always want to protect your logo and your brand name and images of
your products, for instance. However, after applying the tips of the preceding section
about watermarks and right-click limitations, you’ve done all you can without getting
into digital rights issues, which are not well supported in today’s browsers.

Summary
To recap, this chapter has examined various issues surrounding the use of images on
the Web. Without images, Web sites can become quite boring. However, images should
be properly optimized lest download time becomes a key concern. Choosing the correct
file type, either GIF or JPEG, and tuning color and quality are the best ways to reduce
image file size. New image formats such as PNG promise improved download support
and image use for the Web; but so far, their use is not advised. Flash files make a lot of
sense and will continue to be used, particularly when animation is required. Always be
aware of the numerous usage details—for example, the improper use of transparency
and anti-aliasing can ruin an image, and background tiles can be easily ruined when
seams are seen in the tile or when tiles are too small or too wide. Designers certainly
have their hands full with the images on the Web, even before considering how to
make something look pleasing. The next chapter will look at the relationship between
Web page design and graphical interface design and what Web designers can and
should learn from it.

Chapter 15
GUI Widgets and Forms

543

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

544 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

AWeb site is really a modified form of a traditional graphical user interface (GUI)
program. While not all conventions survived the translation to the environment of
the Web, such as double clicking, many conventions have. It is important for Web

designers to understand the traditions of GUI design so as not to utilize GUI widgets like
menus, fill-in fields, and so on, in ways that may confuse a user already familiar with how
software applications tend to use these items. However, never assume that the Web is
exactly the same as a GUI-driven software application. Differences do occur; some Web
technologies like HTML forms do not yet provide all the interactive elements commonly
found in software applications. This chapter presents the commonly used forms and GUI
widgets found in Web sites, with an emphasis on usage that can improve site usability.

Web Sites vs. GUI Applications
It is tempting to simply apply the rules of interface design used to build typical GUI
software applications to the Web. Considering that a Web site really is a form of software,
this makes a great deal of sense. However, Web design is not quite GUI design. It borrows
heavily from GUI design principles, but it has its own conventions as well.

What makes Web sites different from GUI applications? First, consider the delivery of
Web sites and the medium of the Web. Web sites generally are delivered incrementally,
often a page at a time. Software applications tend to be installed, either after downloading a
complete package from the Internet or by using a CD-ROM or diskette. The simple fact
that the software application is completely installed in most cases makes it much more
responsive than a Web-delivered one. However, the benefit of the Web’s incremental
delivery approach is that users do not have to actually install anything more than they
need. Web sites lack what could be called the “install-uninstall barrier” of a traditional
application. With most software, users have to have the initiative to find, download, or
purchase a piece of software and then install it—just to try it out. If the program isn’t
quite what they are looking for, they may even have to reverse the procedure with an
uninstaller. Because of the hassle of installation and removal, users may be hesitant to try
something new and slow to remove a less-than-ideal package. However, Web sites do
not have such an install-uninstall barrier. A simple click, and users are off to another site.

The install-uninstall barrier has interesting ramifications for Web design. Because
Web sites do not have this barrier, they often have to perform very well because the
user can easily move on to a competing site. Because of this, many sites strive to
become “sticky.” Sticky sites keep users coming back often by providing a valuable
service that is difficult to transfer to another site. Consider why sites offer free e-mail
accounts, a calendar, and massive customization. It makes users less likely to want to
move on, even if the site isn’t quite perfect.

Suggestion: Provide a useful service that is difficult to transfer between sites to
improve site “stickiness.”

Another interesting aspect of software design versus Web design is the heavy reliance
on documentation by software. Web site designers building public sites generally cannot

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

expect users to read a manual in order to use their site, whether the manual is provided
online in the form of a help section or offline in the form of a printed manual. The function
and use of sites must be obvious. Unfortunately, creating such a site can be difficult; there
are bound to be aspects or operations of the site that users will not understand, no matter
how well the site is designed. Documentation should still be provided. Public sites may
provide help in the form of online help pages. Internal Web projects such as intranet or
extranet sites may provide hard copy documentation or even training classes. However, as
with software applications, expecting users to access help documents or read the manual is
unrealistic. Given that users have come to expect Web sites to be easy to use, it is
problematic to rely on documentation to make up for site flaws.

Suggestion: Provide online documentation (or in some cases printed
documentation) for sites, but don’t rely on the user accessing it.

The degree of marketing influence on interface design is much greater with Web
sites than for most commercial software applications. Given two word processing
programs, it would be somewhat difficult to correctly identify the programs after only
a brief inspection. Most software applications only subtly brand with their interface.
Rarely do you see software programs with hot pink and oddly shaped buttons; most
tend to lay out the screen in about the same way and utilize similar icons. On the Web,
however, marketing is often directly integrated into the user interface. In some sense,
you could say that, with a Web site, the box and the application are one and the same.
In the case of software, often the branding is done mostly through the box, documentation
and other collateral material, the installation screen, a splash dialog shown on startup, and
subtle interface details in the program. Web sites are often more heavy handed in their
integration, with marketing demands a priority because they lack many of the outlets
for branding beyond the interface.

However, one of the biggest differences between GUI design and Web design is
that, with GUI design, there is a lack of recognized groups, such as operating system
vendors, to set a standard. While the World Wide Web Consortium (http://www.w3.org)
and browser vendors certainly try to influence how people approach Web design, they
do not wield the power of interface standards that Apple and Microsoft have with
application developers. The Web lacks recognized standards of interface design.
Instead, conventions of design have arisen online, influenced by the innovations of
browser vendors and individual site creators, as well as by previous GUI design ideas.
Understanding GUI design conventions is important for Web designers because many
of them can be quickly applied to Web sites.

GUI Design Implications
Graphical interface design has nearly 20 years of commercial experience. Many of the ideas
of Web design follow directly from early findings from Xerox and Apple and, later,
Microsoft. Apple, in particular, has been very influential in the field of interface design. In
fact, the Macintosh operating system was developed with ten interface principles in mind,

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 545

most of which relate directly to the usability ideas of Chapter 2. Given the great importance
of these principles in shaping modern interface design, it would be interesting to see how
they apply to the Web. As it turns out, most hold up quite well, and Web designers should
try to apply these principles to their sites. However, some of the rules should be modified
with the Web in mind, and a couple of new rules ought to be added, given the different
medium of the Web. Remember that network and content aspects of the Web are different
from those of traditional software. Table 15-1 presents the original Apple interface design
principles, along with commentary and possible modification for use on the Web.

While the preceding discussion shows just how much GUI conventions influence
Web conventions, new conventions are still emerging, and many designers seem

546 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

GUI Principle Commentary Web Principle Commentary

1. Metaphors from
the real world

Concrete metaphors from the
real world should be applied
so that users have expectations
to apply to the computer
environment.

1. Metaphors from the
real world, including
GUI metaphors.

Given the familiarity people
have with GUI systems, the
Web variation could be
“Metaphors from the real world
including existing software
metaphors.” The window, icon,
mouse, and pointer approach is
a metaphor of its own for many
users. Break with these
common metahors too much
within a Web page and you’ll
go against a user’s expectations
of how the site should act.

2. Direct
manipulation

Users want to
feel that they are
in control of the computer’s
activities.

2. Direct manipulation This is as true for a Web site as
for a software application. The
only downside is that direct
manipulation may be difficult
to sustain in a network delivery
environment with relatively slow
response times.

3. See-and-
point (instead
of remember-
and-type)

User interfaces should rely on
recognition rather than recall. In
practice, make sure to present
choices plainly onscreen so a
user can simply choose from
them.

3. See-and-point
(instead of
remember-and-
click)

No major difference here, except
that we do not have to deal with
the downsides of keyboard
command interfaces on the Web.
Given the amount of sites a user
may see, this becomes more
important within a sequence of
Web sites, as users will probably
not be able to memorize many
specific details from all the sites
they visit.

Table 15-1. General Principles of GUI Design Modified for the Web

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 547

GUI Principle Commentary Web Principle Commentary

4. Consistency Effective applications are both
consistent within themselves
and with one another.

4. Consistency This applies directly to the
Web. Web sites should be
consistent internally and follow
conventions set by other Web
sites. The only nuance in this
idea on the Web is that a
centralized body such as an
operating system vendor is
lacking to enforce conformance
to conventions.

5. WYSIWYG
(what you see is
what you get)

The users get exactly what
they see—no more, no less.
Secrets are not kept from the
user. A particularly important
aspect of this idea early on
was to make sure that what is
seen onscreen is what shows
up on paper when printed.

5. WYSIWYW
(what you see is what
you want)

For the Web, WYSIWYG should
be modified to WYSIWYW
(what you see is what you want).
Users may like to modify sites to
display information they are
interested in rather than what is
set out for them. In a diverse
environment like the Web—with
many ways to access information
(including cell phone, PDA,
and computing systems of all
shapes and sizes)—the idea of
WYSIWYG doesn’t work well.
The printing aspect may still
be somewhat important, but
for many users, exact printing
may be less important than
appropriate printing. Notice
all the print versions versus
Web version pages that exist
in content-rich sites.

6. User control The user, not the computer,
initiates and controls all
actions.

6. Balance of control Control should be given to the
user (Chapter 2), but the
appearance of control is more the
issue. Users should be guided in
many situations, depending on
the purpose of the site.

7. Feedback and
dialog

Keep the user engaged and
provide plenty of feedback,
such as messages and status
indicators, to let a user know
what is going on.

7. Feedback and dialog On the Web, this is more
important than ever, especially
considering the responsiveness
problem of the Web. Sites
should provide more feedback
to the user.

Table 15-1. General Principles of GUI Design Modified for the Web (continued)

548 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

GUI Principle Commentary Web Principle Commentary

8. Forgiveness Users will make mistakes, so
we have to forgive them and
allow them to undo things or
keep them from doing things
that could be very damaging.

8. Forgiveness This rule certainly applies to
Web sites. Not every site
provides adequate confirmation
of important actions, such as
order placement, that are difficult
to undo. As sites become more
software-like, this rule will
become more and more
important.

9. Perceived
stability

Users will find comfort in a
computer environment that
remains familiar rather than
changing randomly.

9. Perceived
stability

This rule is well applied in
GUI applications. Notice that
menus don’t jump around the
screen or change their ordering.
Unfortunately, Web sites often
do not give an appearance of
perceived stability and may
change button style or position or
even choices, seemingly
arbitrarily. Sites could be
improved dramatically just by
strict conformance to this
principle.

10. Aesthetic
integrity

An interface should be clear
and pleasing. Design should
be consistent, but objects that
are different should be
distinctly different.

10. Aesthetic integrity For the Web, this is very
important. Users will judge
sites severely if they have poor
appearances.

11. Quality content Web sites are heavily geared
toward content. Web sites should
provide high-quality content that
is well written, provides the
appropriate level of detail, is
clear and easy to comprehend,
and is—above all—accurate.

12. Time sensitive Web sites need to be sensitive to
time. Time of delivery is the
most important aspect of many
sites. Users will not stand for
inefficient delivery. Timeliness
of content and interface may
also be important. Sites tend
not to be as static as traditional
software.

Table 15-1. General Principles of GUI Design Modified for the Web (continued)

completely oblivious to useful GUI design ideas. The rest of the chapter will present
the various interface widgets used in interactive design and will explain how they are
used on the Web. Careful attention will be paid to widgets that are used slightly
differently than those in traditional software applications.

Windows
The first interface component to consider is the window. All Web pages are displayed
in a window—the browser window. The browser window serves as the frame for a
page. Without this framing device, site design may often look strange, as shown in
Figure 15-1.

The exact look of the browser window varies from browser to browser. In some
situations, the browser window may not be terribly evident. Television browsers, like
WebTV/MSNTV, and many embedded browsers, such as cellular phone browsers,
provide few framing features. A textual browser like Lynx running from a UNIX
prompt also does not provide much framing. Figure 15-2 shows a range of framing
effects for a browser.

It is even possible now to customize the look of browsers. Various Internet Explorer
browser extensions, such as HotBar (http://www.hotbar.com) and the core Mozilla

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 549

Figure 15-1. The browser window frames a Web page

550 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

browser, provide methods to offer custom skins for a browser. A few examples are
shown in Figure 15-3.

Creating New Windows
It is possible to customize windows in HTML and JavaScript. The simplest way to
create a new window is to use the target attribute modification of the anchor element.
For example,

Open window

would open a new browser window with the Demo Company site in it. Using JavaScript,
it is possible to modify the window that is opened. The window can be sized, and the
particular buttons shown can be limited as well. For example, consider the code shown
here, which opens up the Demo Company site in a chromeless window and sizes it to
600×500 pixels:

<a href="http://www.democompany.com"

onclick="newwindow=window.open('http://www.democompany.com','democompany',

'width=600,height=500'); return false";>

Open window

Figure 15-2. Browsers provide a range of framing

Internet Explorer 6

Opera 6

Lynx

Netscape 4.7

Mozilla

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 551

It is possible using JavaScript to turn on some buttons, status bars, and so on. It isn’t an
all-or-nothing situation when creating new windows. See JavaScript documentation on
the window.open() method for specific syntax on allowing buttons.

Figure 15-4 shows the rendering of the chromeless window. Notice in the figure
that much of the control has been taken away from the user. They aren’t sure where they
are, since the URL is hidden, browser buttons they may have come to rely on have been
hidden, and even scrolling the page seems difficult. It should be evident that browsing a
site within this type of window might be frustrating for some users, particularly novices.
Unfortunately, some designers use this technique to create a fixed page size, so they don’t
have to worry about their design stretching to fit a browser window. While the framing
effect of the perfectly sized chromeless window might improve the look, the usability

Figure 15-3. Browsers can now be “skinned”

Custom skins
for browsers

tradeoffs are significant. Designers are warned not to use this technique unless absolutely
necessary. Secondary windows that present a short message such as an alert can be
significantly modified, but the primary window the user will use to navigate your site
should not be modified in most situations.

Suggestion: Avoid modification of the appearance of the user’s primary
browser window.

When opening new windows, you have to be sure that the window is visible to the
user. Occasionally, it may move out of the way, or it may be positioned behind other
windows if it is automatically lowered. In order to combat these problems, you may

552 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 15-4. A chromeless window lacks expected surrounding browser “chrome”
and buttons

wish to position and raise created windows. To set the position in Netscape 4, set the
screenX and screenY parameters when creating the window. For Internet Explorer 4 and
beyond, set the top and left parameters. Mozilla 1.0 appears to support both forms of
syntax. Simply focusing the created window using its focus() method should bring it
back to the top. The following code shows how this would be accomplished, using a
link to trigger the new window:

<a href="http://www.democompany.com"

onclick="newwindow=window.open('http://www.democompany.com',

'democompany','width=600,height=500,screenX=100,screenY=100,

top=100,left=100'); newwindow.focus(); return false";>

Open window

Full-Screen Windows
Creating a window that fills up the screen and even removes browser chrome is possible in
many browsers. It is possible under 4.x generation browsers and beyond to figure out the
current screen size and then create a new window that fits most or all the available area. In
the case of Netscape, you may have difficulty covering the entire window because of the
way the height and width of the screen are calculated. However, the script presented here
should work to fill up the screen in both browsers.

<script type="text/javascript">

<!--

newwindow=window.open('http://www.democompany.com','main','height='+screen.height+

',width='+screen.width+',screenX=0,screenY=0,left=0,top=0,resizable=no');

//-->

</script>

The preceding “poor man’s” script does keep the browser chrome and may not quite
fill up the window. It is possible under many browsers to go into a full-screen mode that
completely fills the screen. Using Internet Explorer, it is quite easy using a JavaScript
statement like this:

newwindow=window.open('http://www.democompany.com', 'main',

'fullscreen=yes');

However, Netscape needs a much more complicated script and will even prompt
the user if a security privilege should be granted to go full-screen. A script that works
in both browsers is shown here:

<script type="text/javascript">

<!--

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 553

TE
AM
FL
Y

Team-Fly®

554 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

if (window.navigator.appName == "Netscape")

{

netscape.security.PrivilegeManager.enablePrivilege('UniversalBrowserWrite');

window.open('http://www.democompany.com','newwin','titlebar=no,width=' +

window.screen.availWidth+',height='+window.screen.availWidth+',screenX=0,screenY=0')

}

else if (window.navigator.appName == "Microsoft Internet Explorer")

{

window.open('http://www.democompany.com', 'newwin', 'fullscreen=yes');

}

else

{ /* do the best we can to go fullscreen */

newwindow=window.open('http://www.democompany.com','main','height='+screen.height+

',width='+screen.width+',screenX=0,screenY=0,left=0,top=0,resizable=no');

}

//-->

</script>

It is important to note that many users will not know how to get out of full-screen
mode. The key combination ALT-F4 should do the trick on a Windows system. However,
users may not know this, so you should provide a Close button or instructions on how
to get out of full-screen mode.

Rule: When using a full-screen window, inform the user how to exit or provide a
Close button.

While it seems annoying that Netscape prompts the user, it is probably a good idea
not to force a full screen on people. Users may want to keep another window open
while they browse your site or copy content from your site into another document.
Forcing full-screen mode takes their options away.

Suggestion: Do not go full screen without asking the user first.

Sub-Windows
Sub-windows are secondary windows that are presented to users to allow them to
perform a task on, or inform them about what’s going on in, the primary browser
window. In GUI parlance, these windows are generally called “dialog boxes,” since
they are used to carry on a dialog with a user. A common use of a dialog box on the
Web is to alert users about errors made during form fill-out, to warn them about
irreversible actions such as deleting content or making a payment, and to collect small
bits of information from them such as login or password information. Dialog boxes
can contain just about any amount of information and may be customized to look a
particular way. However, in the case of most Web sites, dialogs are created using
simple JavaScript and tend to have a standard look and feel, unless the designer has
gone specifically out of their way to customize their presentation.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 555

Alerts
In a GUI application, an alert is a small dialog box used to present an important
message to the user. Often, alerts are used to inform users of errors made—particularly
during form fill-out. Alerts can be created directly in JavaScript using the alert()
method of the Window object. For example, consider this markup:

<form>

<input type="button" value="Press Me"

onclick="window.alert('Red Alert!')" /;>

</form>

Pressing the form button creates a browser modal dialog with a short message saying
“Red Alert!” in a JavaScript-capable browser. The alert usually contains a special
icon, a message indicating that it is the browser issuing the alert and not some other
application on the user’s system, and an OK button used to dismiss the dialog.
However, the specific rendering of the alert box varies fairly significantly from browser
to browser. Figure 15-5 shows a variety of renderings for the alert.

It is important to consider the modal nature of an alert message. An application
modal window is one that blocks action within the application. In the case of the alert,
users must dismiss the dialog in the window before continuing on in the current browser
window, though in many modern operating systems they can switch to another
application before closing the alert. A system modal dialog would be one that blocks all
action on the user’s system until dismissed. While it may be possible to create a system
modal dialog in Internet Explorer, doing so would be in extremely poor taste. Even
though alerts are commonly just browser modal dialogs, they should be used sparingly.
Avoid welcoming people to your site or providing noncritical information to the user
by using an alert.

Suggestion: Use alerts to inform the user of important issues, not general
information.

The look and feel of JavaScript-generated alert boxes may leave something to be
desired. The size and style of the dialogs are not easily modified using the basic
window.alert() JavaScript method. However, it is possible to create custom alert
dialogs—complete with their look and feel and buttons. For example, consider the
custom alert shown here:

556 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

To create an alert of this style requires coding a custom piece of JavaScript that creates
a special modal window that acts like an alert, complete with an OK button to dismiss
the dialog. However, consider when custom alerts should really be used. While it may
be nice to create alerts that fit with the marketing aspects of a site, it may be more
important to do more than just make improvements to the meaning of the alerts. In
traditional GUI design, there are three forms of common alerts: informational alerts,
which provide important information; warning alerts, which warn the user about actions
taken or reversible mistakes made; and error alerts, which present very important
information, such as the occurrence of a serious error or failure. The typical icons for
each of these dialogs are shown in Figure 15-6.

Figure 15-5. Alert box in various browsers

Netscape 4.7 Netscape 6

Mozilla 1.0

Mozilla 1.0 with custom skin

Internet Explorer 6.0
Opera 6.0

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 557

A custom alert script to present informational, warning, and error alerts is
presented here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Custom Alerts</title>

<script type="text/javascript">

<!--

function customAlert(alerttype, title, msg)

{

var icon;

Figure 15-6. Icons should vary based upon alert meaning

Common dialog styles

Informational
dialogs

Warning
dialog

Error dialogs

558 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

if (alerttype == "error")

icon = "icons/stop.gif";

else if (alerttype == "info")

icon = "icons/info.gif";

else

icon = "icons/exclaim.gif";

if (window.navigator.appName == "Microsoft Internet Explorer")

newalert = window.open("", "alertwindow", "width=300,height=150,modal=yes");

else

newalert = window.open("", "alertwindow", "width=300,height=150");

newalert.document.writeln('<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">');

newalert.document.writeln('<html xmlns="http://www.w3.org/1999/xhtml">');

newalert.document.writeln('<head>');

newalert.document.writeln('<title>'+title+'</title>');

newalert.document.writeln('</head>');

newalert.document.writeln('<body bgcolor="#CCCCCC" onblur="self.focus()">');

newalert.document.writeln('<table cellpadding="10">');

newalert.document.writeln('<tr>');

newalert.document.writeln('<td width="50">');

newalert.document.writeln('<img src='+icon+' width="50" height="50" border="0"

alt="['+alerttype+']" align="left" />');

newalert.document.writeln('</td>');

newalert.document.writeln('<td width="150">');

newalert.document.writeln(msg);

newalert.document.writeln('</td></tr>');

newalert.document.writeln('<tr><td align="center" colspan="2"><form>');

newalert.document.writeln('<input type="button" value=" OK

 " onclick="window.close()" />');

newalert.document.writeln('</form></td></tr></table>');

newalert.document.writeln('</body></html>');

newalert.focus();

}

// -->

</script>

</head>

<body bgcolor="#cccccc">

<form>

<input type="button" value="Info Dialog" onclick="customAlert('info','Core

Breach', 'Demo Company Hyperdrive Software (c) 2000';)" />

<input type="button" value="Warning Dialog" onclick="customAlert('warn','Potential

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 559

Core Breach', 'If you keep accelarating your PSV will explode.');" />

<input type="button" value="Error Dialog" onclick="customAlert('error','Core

Breach', 'Your reactor has gone critical. Sorry! Have a nice afterlife.');" />

</form>

</body>

</html>

Online: http://www.webdesignref.com/examples/customalerts.htm

Note that the scripts presented here assume the user has the images locally for each
type of dialog. These icons can easily be saved from the working example online.

Confirms
In a GUI application, a confirm dialog box is presented when a confirmation is required
before performing some task. The confirm is often used as an “Are you sure?” question
for the user, and it is usually presented before the user performs a task that may not be
easily reversible, such as deleting a file or placing an order. Confirmation dialogs can be
created directly in JavaScript using the confirm() method of the Window object:

<form>

<input type="button" value="Press Me"

onclick="window.confirm('Do you really want to blow up the ship?');" />

</form>

The JavaScript confirm() method creates a browser modal dialog with a short
message asking the user a simple question and providing an OK and a CANCEL
button for making the response. As with the alert dialog, the specific rendering of a
confirmation dialog varies from browser to browser. Figure 15-7 shows a variety of
renderings of confirm dialogs generated from JavaScript.

The use of confirms should be limited to those situations where you want to warn
users of an action they are about to take or to have them answer a simple question.
Typical uses of the confirm dialog would be to ask the user if the contents of a form
should be cleared or submitted for processing, or if an irreversible task such as deleting
an online account should be allowed to take place.

Suggestion: Use a confirmation dialog to verify the execution of an irreversible
or important task, such as form submission.

When asking confirmation questions, consider the formation of the question
carefully, since the standard JavaScript confirmation dialog buttons are labeled OK and
CANCEL. Asking a “Yes or No” question like “Do You Want to Delete the File?” may

560 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

be confusing to a novice user faced with the JavaScript confirmation dialog buttons.
Instead, write a message like “Delete the file?”

The look and feel of JavaScript-generated confirmation dialogs, like that of alert
dialogs, may leave something to be desired. The size, style, and buttons cannot be
modified using the basic window.confirm() JavaScript method. As with alerts, it is, of
course, possible to create custom confirm dialogs that fit with the look and feel of the
site, as shown here:

Figure 15-7. Confirm dialog in various browsers

Web TV

Netscape 3 Netscape 4 Internet Explorer

Opera

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 561

However, besides controlling the look and feel of the window, designers should
provide different icons and button text for confirm dialogs, depending on the type of
confirmation. A custom confirmation dialog script could be created similar to the one
presented for alerts, but for full emulation we will have to require our routine to return
True or False depending upon the user’s choice.

Prompts
A prompt dialog box is presented when a small amount of information is needed from
the user to perform some task. Usually, a prompt dialog is used to collect a single line
of information in answer to some question. For example, the user may be prompted to
enter a special offer code. Prompt dialogs can be created directly in JavaScript using the
prompt() method of the Window object:

<form name="testform" id="testform">

Answer: <input type="text" value="" name="favcolor" id="favcolor" size="20" />

<input type="button" value="Ask Me"

onclick="document.testform.favcolor.value=window.prompt('What is your favorite

color?',' ');" />

</form>

The prompt() JavaScript method creates a browser modal dialog with a short
message asking the user a simple question. A default answer can also be provided.
When prompted, the user can press the OK button when done or CANCEL to not
respond. As with the alert and confirmation dialogs, the specific rendering of a
confirmation dialog varies from browser to browser. Figure 15-8 shows a variety of
renderings of prompt dialogs generated from JavaScript.

The use of prompts should be limited to those situations where you want to collect
a single line of text—usually a short answer to a simple question. Typically, the prompt
dialog is used to ask users for their name or for a value to put in a form field that
wasn’t filled in.

Suggestion: Use prompt dialogs only to ask a user to provide a short word or
numeric answer to a simple question. Do not ask questions that would result
in a multiple-line answer.

Make sure that you clearly indicate what type of information you are looking to
collect, such as number or text string.

The look and feel of JavaScript-generated prompt dialogs, like the previously
described dialogs, may leave something to be desired. The size, style, and buttons
cannot be modified using the basic window.prompt() JavaScript method. As with

alerts and confirms, it is obviously possible to create custom prompt dialogs that fit
with the look and feel of the site, as shown next.

562 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 15-8. Prompt dialog in various browsers

Netscape 4.7

Netscape 6

Mozilla 1.0

Internet Explorer 6.0

Opera 6.0

Forms
The primary way that a user interacts with a Web site besides selecting links is through the
various form elements, such as text fields, radio buttons, pull-down menus, and so
forth. GUI design theory has a great deal to say about how to use these elements properly;
but, unfortunately, given the limited capabilities of HTML form widgets, sometimes it
is difficult to implement a modern GUI from within a Web page. The next few sections
discuss each of the form elements and provide an overview of their proper use.

Labels
Form elements should be clearly labeled. A label should provide a description that
indicates what a form element does or what kind of data should be entered in the
element. Labels may include both text and graphics. Here are a few examples of labels:

The position of labels should be close to the field they are describing. Often, the
label is either to the left or above the field. Sometimes, a table may be used to associate
the label and the field together. All three ideas are shown here:

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 563

TE
AM
FL
Y

Team-Fly®

564 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

HTML 4.0 and XHTML define the <label> to be used to signify the label for a
particular field, but few developers seem to use it. However, the <label> tag can be used
in interesting ways. For example, consider having CSS rules like the ones shown here:

label {color: black; font-weight: bold;}

label.required {color: red;}

In the form, it would be easy enough to wrap the individual fields with <label> tags
and even indicate required fields, like so:

<label>Name:

<input type="text" name="name" id="name" />

</label>

<label class="required">E-mail:

<input type="text" name="email" id="email" />

</label>

Labels and Field Selection
In some browsers, the <label> contents can be clicked to select the field. The idea
is that when the label receives focus from the user, either by clicking it or using an
accelerator key, the focus should switch to the associated field. The reality is that, in
many browsers, this doesn’t work. This is a big reason not to use an accesskey attribute
on a label, but rather on the field, as discussed later in the chapter. However, the
click-select action of the label can easily be simulated using a little bit of JavaScript:

<form name="myform" id="myform">

<label onclick="document.myform.firstname.focus();">

First Name:

<input type="text" name="firstname" id="firstname" />

</label>

</form>

In this example, a modern browser will bring the cursor to the associated field when
the user clicks the label by using the focus() method on the field. Fortunately, older
browsers will just ignore the <label> tag, as well as the JavaScript on the associated
intrinsic event handler attribute.

Text Fields
HTML provides for single-line text fields using markup like this:

<input type="text" />

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 565

For eventual processing by server-side programs or validation by client-side scripts,
the fields should always be named with the name as well as id attribute.

<input type="text" name="age" id="age" />

In the future, the id attribute will be the only naming required, but the name attribute
should be used for backward compatibility and is still actually favored by some newer
browsers, notably Internet Explorer 6.0.

Setting the size of the text field will depend on the data being entered, but it is far
better to use HTML to limit the field size to a particular range than to permit the user
to enter more data than is allowed. For example, if you are asking for the user’s age,
two or perhaps three digits should be the maximum allowed. Two digits would allow a
range of 0–99. Setting the size of the text field is easy in HTML—it requires specifying
the size of the field in number of characters to show using the size attribute, like so:

<input type="text" name="age" id="age" size="2" />

Suggestion: Set the length of text fields to reasonably fit data being provided.

One troublesome aspect of the text input field in HTML is that the size of the field
doesn’t seem to always match the amount of data that can be input in the field visually.
Consider the fields and data shown in Figure 15-9. Without applying style sheet rules,
there isn’t necessarily any guarantee the data will not extend past the region provided
or not fill up the region itself. This is an annoying quirk that varies among browsers
and versions.

The visual size of a field doesn’t necessarily limit the amount of data that can be put
in the field under HTML. To limit the field, you would have to use the maxlength
attribute like so:

<input type="text" name="age" id="age" size="2" maxlength="2" />

Once the user hits the limit, the browser should not allow more data to be entered and
will probably sound the system beep or perform some other indication the limit has
been reached if the user continues to type.

If you do not set the maxlength attribute, the data will not be limited and the field
will scroll to the right as a user types in data. You should really always try to set
maxlength. A user maliciously pasting, say, 10,000 characters into a field may cause
problems for server-side processing. Hackers often utilize unconstrained fields that are
run on servers to try to run commands from the form. Of course, maxlength doesn’t
really provide much help, since it is easy enough to falsify the form and remove the

566 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

maxlength restriction. Improved security comes by checking the passed form data no
matter what, but don’t use that as an excuse not to set maxlength because not doing so
is just plain careless.

Rule: Always set a maxlength value for a text field.

Always attempt to make a text field large enough to hold the data without
scrolling. Users should be able to see all the text they have input in case they forget
what they entered. The only time the maxlength value should be larger than the actual
size of the text field is when the field is too big to fit the available screen real estate.

Rule: Allow a text field to scroll rightward only when there is a premium on screen
real estate and the data to be entered is larger than the available screen region.

Password Fields
A password field is a modified single-line text field that does not echo the characters
typed to the screen, instead showing an asterisk or similar character. The main purpose
of the password field is to provide limited security by making “shoulder surfing”—

Figure 15-9. Imprecise text field sizing in Internet Explorer and Netscape

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

where a person looks over your shoulder to see your password—more difficult. The
syntax for the password text field form is similar to a single-line text field:

<input type="password" name="secret" id="secret" size="10" maxlength="10" />

The rendering of the password field is fairly similar in browsers and should look
something like this:

Given that users will not be able to see what they are typing, it is very unwise to let
the field scroll. A user typing a very long password may suddenly forget what letter
was just typed as the field scrolls. The user will not be able to easily determine the number
of characters typed, so will probably be forced to reenter the entire password. To
combat this potential problem, set the maxlength and size the same to avoid scrolling.

Rule: Never allow password fields to scroll.

Another consideration with passwords is that they tend to have a maximum length.
Make sure to limit the password field to match the length.

Rule: Limit the length of password fields to match password sizes.

An obvious rule that should not have to be stated is not to use default values
with password fields. All the user has to do is view the source in order to see what the
password is!

Rule: Do not use default values with password fields.

Multi-Line Text Entry
A multi-line text area defined in HTML using the <textarea> tag is used to collect larger
amounts of data, such as comments. The text area size can be established by setting the
cols attribute to the number of characters across and the rows attribute to the number
of lines to show in the box before scrolling. For example, the HTML markup,

<textarea name="comments" id="comments" rows="8" cols="40">

</textarea>

creates a multi-line text entry region 40 characters across with 8 lines showing
at a time.

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 567

One interesting aspect to the <textarea> tag is that there is no obvious way to set the
maximum amount of content that can be entered in the field. For browsers that support
all the core events such as onkeypress, we could easily limit the field, for example,

<form name="myform" id="myform">

Comments:

<textarea name="comments" id="comments" rows="4" cols="40"

onkeypress='return (document.myform.comments.value.length < 100)'>

Will be limited to 100 characters in a compliant browser.

</textarea>

</form>

Of course, in many browsers, such as Netscape 4.x generation and Opera 6.0 or
before, the preceding script will not work, despite the fact that this is a standard event.
The only workaround to deal with the unlimited field length would be to sense the
field length when its contents change or at submit time and reduce it to the proper
number of characters. The following example illustrates one approach to this problem.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Limited Text Area</title>

<script type="text/javascript">

<!--

function checkLimit(field, limit)

{

if (field.value.length > limit)

{

alert("Field limited to "+limit+" characters");

// Change it to the limit

var revertfield = field.value.slice(0,limit-1);

field.value = revertfield;

field.focus();

}

568 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 569

}

//-->

</script>

</head>

<body>

<form name="myform" id="myform">

Comments:

<textarea name="comments" id="comments" rows="8" cols="40"

onchange='checkLimit(this, 100);>

Try entering 10 more characters to pass 100 characters

in this field. Then click outside.

</textarea>

</form>

</body>

</html>

Tip: Be careful with <textarea> fields, as they have no limit to the amount of
entered text without scripting.

A default value can be set for the element by including text information within the
tag. Be careful, though, because this area takes plain text, and all returns, tabs, spaces,
and even HTML markup will be shown onscreen, though character entities should be
interpreted.

<textarea name="comments" id="comments" rows="8" cols="40">

S P A C E S work here

so do

TABS and

RETURNS.

Watch out for HTML in here.

What about character entities like ©

</textarea>

Probably the most troublesome aspect of the <textarea> tag is that the wrapping
of text is not supported in a standard way between browsers. In fact, by default, older

versions of Netscape, such as Netscape 4, will not wrap text, while Internet Explorer
will, as shown here:

The solution to this is simply to define the wrap attribute to a value of “soft,” so that
both browsers will exhibit the same behavior:

<textarea name="comments" id="comments" rows="8" cols="40" wrap="SOFT">

Everything is fine with this field now that the wrapping

has been set.

</textarea>

Suggestion: Set text wrapping in multi-line text regions for backward
compatibility.

Check Boxes
Check boxes should be used to indicate optional values. The basic idea with a group
of check boxes is that the user may select as many or as few as they like of the set
values. Setting check boxes in HTML is easily done using <input type="checkbox">,
as shown here.

<form name="myform" id="myform">

PSV Options

<label>

570 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Asteroid Bumpers:

<input type="checkbox" name="bumpers" id="bumpers" />

</label>

<label>

Blackhole Detector:

<input type="checkbox" name="detector" id="detector" />

</label>

<label>

Autopilot:

<input type="checkbox" name="autopilot" id="autopilot" />

</label>

</form>

The rendering of the check box does vary under some browsers, but the major
browsers render the markup nearly identically, as shown in Figure 15-10. ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 571

Figure 15-10. Check box rendering under various browsers

Netscape Internet Explorer Opera

Lynx Netscape 6 preview WebTV

572 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

It is possible to modify the look and feel of a check box using a set of images to
represent the on and off stages. Radio buttons can be handled in much the same way,
and a script to customize the look of both will be presented in the section on radio
buttons, later on in this chapter.

When using check boxes, designers should think carefully about the amount of
mouse travel between choices. Notice, for example, how the check boxes here when
laid out horizontally incur more mouse travel:

Traditionally GUI design has tended to cluster items together; but Web pages do scroll,
so a vertical element might make more sense.

Suggestion: Consider vertical aligning of related check boxes to decrease
mouse travel.

Be careful when creating large groupings of check boxes, sine they may take up a great
deal of screen real estate. Further, consider that while check boxes may be easy to use,
when there are too many, a user may not be able to scan them effectively. Consider the
7 (+/–2) limit (discussed in Chapter 2) for the number of choices appropriate for a user’s
memory; it is probably wise to keep groups of related check boxes limited to about ten.

Setting a check box to be selected by default is very easy using HTML. Unfortunately,
very often, forms are designed with values that must be deselected by a user—for instance,
to opt out of receiving e-mail solicitations.

Some e-mail solicitation forms are even designed in a somewhat sneaky fashion, with
very small text near the label. Because users will not necessarily read check box labels
carefully, do not use default check boxes for follow-up information.

Tip: Let users opt in and not out of e-mailings. Do not preselect any such
check box—require users to select it themselves.

Radio Buttons
Radio buttons are used to select one item out of a group. Groups of radio buttons are
defined similarly to check boxes. The main difference syntax-wise, besides setting the

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 573

type attribute for the <input> tag to radio, is that all the fields must have the same value
for the name and id attributes to preserve the radio functionality between the fields.
Consider the markup here that demonstrates the problem as well as the correct approach:

<form>

<h2>Incorrect radio usage</h2>

<input type="radio" name="notequal" id="notequal" value="firstchoice" /> choice 1

<input type="radio" name="names" id="names" value="secondchoice" /> choice 2

<input type="radio" name="donotwork" id="donotwork" value="thirdchoice"

checked="checked" /> choice 3

<h2>Correct radio usage</h2>

<input type="radio" name="samename" id="samename" value="firstchoice" /> choice 1

<input type="radio" name="samename" id="samename" value="secondchoice" /> choice 2

<input type="radio" name="samename" id="samename" value="thirdchoice"

checked="checked" /> choice 3

</form>

Notice in the rendering shown here that it is possible to select all the choices in the first
example, while the second one preserves the one-of-many radio selection method:

Another small implementation problem with radio buttons under HTML is that a
value is not selected by default. This creates a mysterious state that users are unable to
return to, as shown here:

Setting the first field selected by inclusion of the checked attribute solves this
troublesome interface quirk.

Rule: Always select an initial radio button by default.

Another more potentially troublesome aspect of radios is determining when they
should be used. Some designers feel that radios should be used for “Yes or No” questions

TE
AM
FL
Y

Team-Fly®

574 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

rather than pull-downs. This makes sense when you consider that they show both
choices at once. The screen real estate saved by the pull-down is minimal. However,
some designers further suggest that maybe a check box with a different label makes
more sense, since it is only one control to manipulate rather than two. It makes some
sense until you consider that the wording of the label may get somewhat confusing.
Consider the example shown here, asking whether a user wants to receive e-mail
solicitations. Radio buttons provide the best way to present this information, since the
normal pull-down hides possible choices; the pull-down with all choices shown looks
nonstandard, and the check box is confusing.

Rule: Use radio buttons for “Yes or No” questions rather than pull-down menus
or check boxes.

The main advantage of radio buttons is that they are all exposed, allowing the user
to easily choose from them. However, since all choices must be looked at in a radio
group, the number of selections has to be limited enough for the user to consider all at
once to avoid making a mistake. This means the short-term memory rule of 7 (+/–2)
items should be strictly enforced.

Suggestion: Avoid more than ten items in a radio group.

Beyond memory considerations, when more than ten items are presented, screen
real estate may become an issue.

Suggestion: Use pull-downs if more than ten items are in a selection of
“one-choice-of-many” to save screen real estate.

If radios are to be used, the grouping of radio buttons isn’t quite as critical (unlike
with check boxes), since the user will make only one choice, but it is wise to consider
vertical alignment with radios as well—particularly when there are many choices.

Tip: Vertical alignment is useful for larger groups of radio buttons.

Like check boxes, the rendering of radio buttons is similar among the major browsers,
but there are differences in some viewing environments, as shown in Figure 15-11.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 575

Figure 15-11. Radio buttons are relatively consistent in appearance

Netscape

Internet
Explorer

Opera

Lynx

WebTV

576 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

As mentioned in the section on check boxes, it is possible to modify the appearance
of both GUI elements using JavaScript. The markup and script code presented here
show this in action. A rendering is shown in Figure 15-12.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Custom Checkboxes and Radios</title>

<script type="text/javascript">

<!--

/* needed for Netscape 4 hack */

ns4 = (document.layers)? true:false;

/* preload the images */

loadImage('button0','images/button0.gif');

loadImage('button1','images/button1.gif');

loadImage('radiobutton0','images/radiobutton0.gif');

loadImage('radiobutton1','images/radiobutton1.gif');

loadImage('checkbox0','images/checkbox0.gif');

loadImage('checkbox1','images/checkbox1.gif');

Figure 15-12. Custom radios and check boxes can be integrated into a site design

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 577

function initialize()

{

psv = new checkBox('DomeSelector','psvImg','yes','no');

tree = new checkBox('DomeSelector','treeImg','yes','no');

dome = new radio('DomeSelector','domeImg',3,'Land');

}

function loadImage(imgObj,imgSrc)

{

eval(imgObj+' = new Image()');

eval(imgObj+'.src = "'+imgSrc+'"');

}

function submitForm()

{

str = "You want a PSV port = " + psv.value + "\n";

str += "You want a Tree Oxygenation System = " + tree.value + "\n";

str += "You selected dome application is " + dome.value + "\n";

alert(str);

}

function changeImage(layer,imgName,imgObj)

{

if (ns4 && layer!=null)

eval('document.'+layer+'.document.images["'+imgName+'"].src = '+imgObj+'.src');

else document.images[imgName].src = eval(imgObj+".src");

}

function radio(layer,imgNames,length,defaultValue)

{

this.layer = layer;

this.imgNames = imgNames;

this.length = length;

this.change = radioChange;

this.value = (defaultValue)? defaultValue : "undefined";

}

function radioChange(index,value)

{

this.value = value;

for (var i=0; i<this.length; i++)

changeImage(this.layer,this.imgNames+i,'radiobutton0');

changeImage(this.layer,this.imgNames+index,'radiobutton1');

}

function checkBox(layer,imgName,trueValue,falseValue,defaultToTrue)

{

578 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

this.layer = layer;

this.imgName = imgName;

this.trueValue = trueValue;

this.falseValue = falseValue;

this.state = (defaultToTrue) ? 1 : 0;

this.value = (this.state) ? this.trueValue : this.falseValue;

this.change = checkBoxChange;

}

function checkBoxChange()

{

this.state = (this.state) ? 0 : 1;

this.value = (this.state) ? this.trueValue : this.falseValue;

changeImage(this.layer,this.imgName,'checkbox'+this.state);

}

//-->

</script>

<style type="text/css">

<!--

#DomeSelector {position: relative;}

body {font-family: Arial, Helvetica, sans-serif; color: black;

background-color: white;}

-->

</style>

</head>

<body onload="initialize()">

<div id="DomeSelector">

<table border="0" cellspacing="0" cellpadding="3">

<tr><td colspan="2" align="center">

<h2>Dome Selector</h2>

<hr />

</td></tr>

<tr><td colspan="2">

<h3>Applications</h3>

</td></tr>

<tr><td>

<img name="domeImg0"

src="images/radiobutton1.gif" width="20" height="20" border="0" alt="" />

</td>

<td>Land</td></tr>

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 579

<tr><td>

<img name="domeImg1"

src="images/radiobutton0.gif" width="20" height="20" border="0" alt="" />

</td>

<td>Underwater</td></tr>

<tr><td>

<img name="domeImg2"

src="images/radiobutton0.gif" width="20" height="20" border="0" alt="" />

</td>

<td>Space</td></tr>

<tr>

<td colspan="2">

<h3>Options</h3>

</td></tr>

<tr><td>

<img name="psvImg" src="images/checkbox0.gif"

width="20" height="20" border="0" alt="" />

</td>

<td>PSV Port</td></tr>

<tr><td><img name="treeImg"

src="images/checkbox0.gif" width="20" height="20" border="0" alt=""></td>

<td>Tree Oxygenation System</td>

</tr>

<tr><td colspan="2" align="right">

<a href="javascript:submitForm()"

onmousedown="changeImage('DomeSelector','submitImg','button1');"

onmouseup="changeImage('DomeSelector','submitImg','button0');"

onmouseout="changeImage('DomeSelector','submitImg','button0');"><img

name="submitImg" src="images/button0.gif" width="85" height="30" alt="Submit"

vspace="10" border="0">

</td></tr>

</table>

</div>

</body>

</html>

Online: http://www.webdesignref.com/examples/customradios.htm

580 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

One disturbing use of radio buttons that bears mentioning before moving to the
next GUI element is the use of radio buttons to navigate a site. This is a completely
nonstandard use of this widget and is highly confusing. While pull-downs have been
used successfully for navigation on the Web and offer the same “one-choice-of-many“
that radios do, users have tended to understand from software applications that a
menu selection will trigger an action while a radio button will not.

Rule: Do not use radio buttons for navigation.

Pull-Down Menus
Pull-down menus, as defined in HTML using the <select> tag, provide a simple
“one-of-many” selection capability similar to radio buttons. The main advantage of
pull-downs is that they save screen real estate. However, pull-downs do hide values
from the user, forcing them to expose the values—which takes effort as well as
potentially requiring memorization of the values shown (in case of second thoughts
later on). Certainly, pull-downs do not rely on recognition, but rather on recall, the
downsides of which have been discussed previously. However, the screen real estate
issue alone makes pull-downs worthy of consideration. Setting up a simple pull-down
can be done with the following code:

<form>

<select name="robotchooser" id="robotchooser">

<option value="Butler">Butler</option>

<option value="Security">Security</option>

<option value="Trainer">Trainer</option>

<option value="Friend">Friend</option>

</select>

</form>

Indicating a default choice isn’t as great of a problem as it is with radio buttons. A
pull-down menu will always start on the first choice presented. It might be a good idea
to utilize the selected attribute to preselect a choice, similar to setting the first radio
button rather than relying on the default action of the browser.

Tip: Do not rely on the browser’s default action with pull-down menus; always
set an initial state explicitly.

Designers occasionally create nonchoice items, which may in some sense ruin the
logic of the widget—which is “now choose one of the items but not the first one,” as
shown here:

<form>

<select name="robotchooser" id="robotchooser">

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 581

<option>Choose your robot</option>

<option>Butler</option>

<option>Security</option>

<option>Trainer</option>

<option>Friend</option>

</select>

</form>

The assumption would be that we would validate the form in the preceding situation
and alert users that they have to choose something. Another potential downside of
<select>-based menus is that they lack any form of separator or grouping facility.
Occasionally, designers will use an entry filled with dashes or a blank entry to simulate
a separator, like this:

<form>

<select name="robotchooser" id="robotchooser">

<option>Choose your robot</option>

<option>----------------------</option>

<option>Butler</option>

<option>Security</option>

<option>Trainer</option>

<option>Friend</option>

<option> Male</option>

<option> Female</option>

</select>

</form>

Tip: Be wary of using special characters in pull-downs—particularly non-breaking
spaces—as they often do not render properly.

HTML 4 introduced the <optgroup> tag, which should be used to segment choices
into groups, or even to create sub-menus. Consider the markup shown here:

<form>

<select name="robotchooser" id="robotchooser">

<option>Choose your robot</option>

<option>----------------------</option>

<option>Security</option>

<optgroup label="Security Models">

<option>Man</option>

<option>K-9</option>

</optgroup>

<optgroup label="Friend Models">

582 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<option>Female</option>

<option>Male</option>

</optgroup>

<option>Trainer</option>

</select>

</form>

In Netscape 6/7 or Mozilla browsers, this renders with a section name that cannot be
selected, as shown here:

However, browser support for <optgroup> is still spotty, so until the tag is more
commonly supported in browsers (it is currently supported by Internet Explorer 6), it
should be avoided and the workarounds with dashes or spaces considered.

The renderings of traditional pull-downs are fairly similar in the major browsers,
but there are, of course, differences in the appliance or text-only environments, as
shown in Figure 15-13. These environments may find radios a much better choice.

Tip: Consider radio buttons over pull-downs if you are dealing with alternative
access users.

One interesting aspect of the use of a pull-down menu is that when the size attribute
is added, it generally results in a window that acts like a pull-down, allowing only one
choice out of many, but looks like a scrolled list. Many users won’t understand that the
widgets shown here do the same thing.

The same? or Different?

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 583

Suggestion: Avoid changing the display of single-choice pull-down menus with
the size attribute.

It is possible, of course, through the use of style sheets, to significantly change the
look and feel of pull-downs and, in fact, to create your own. Many designers have
experimented with a variety of cascading menu scripts to create navigation systems
for sites. An example of this is presented in the section later in this chapter entitled
“Advanced Web GUI Widgets.” For now, let’s take a look at the use of pull-downs for
navigation in Web pages.

Using Pull-Downs for Navigation
A common use of pull-down menus in Web sites is for navigation. The basic idea is
that a selection of sites or pages is shown in a pull-down, and, when one is selected, the
user is instantly whisked to the page. The pull-down, like a typical application menu,
tends to be on the top of pages and uses a great deal less screen real estate than do
conventional navigation bars—of course, it does so by hiding the links. While this use
for the pull-down seems perfectly acceptable, it means there are two types of pull-downs:
one for navigation, the other for form elements. Some users may be confused with the
dual meaning if the context of use is not kept clear. A pull-down used for navigation
should not be used within a form. It should be clearly labeled—”quick links” is

Figure 15-13. Various browser renderings of a simple pull-down

Netscape Internet Explorer Opera Netscape 6 preview

Lynx
WebTV

TE
AM
FL
Y

Team-Fly®

584 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

popular—and probably should use some type of trigger button labeled “Go” or
something similar to indicate the purpose of the pull-down.

Rule: Make the purpose of a navigation pull-down clear by context, labels, and
possibly a trigger button.

Assuming that users understand the use of pull-downs for navigation, there are
numerous implementation issues to avoid. The first is the issue of a Go button to
trigger the page load. Many sites prefer to use pull-downs that trigger a page load
immediately. While this is very fast, it can be somewhat of a hair-trigger form of
navigation. It is very easy for a user to slip up on the mouse—particularly on a long
pull-down—and accidentally trigger a page load. To combat this problem, a button
often with a label of “Go” is used next to the menu to actually trigger the page load.
The two approaches are illustrated here:

A big problem of sites that don’t take the Go button approach is what to do when
the user has turned their JavaScript off. In many sites, without JavaScript, the navigation
completely breaks and the user is left pulling menus that don’t do anything. The use of
the Go can trigger a back-up call to a server-side program to redirect the page.

Rule: Make sure pull-down navigation degrades gracefully when JavaScript is off.

It is possible to have the Go button show up only when script is off, or it can be left
on the screen all the time. However, leaving it onscreen does result in a troublesome
usability problem, since the user is never able to click the button before a new page
loads, which could annoy the user greatly.

Rule: If a Go button is shown onscreen with pull-down navigation, make sure
the user can actually click it to trigger page load.

Having the Go button trigger the page load is probably a better way to go rather
than automatic selection, since it does give a sense of closure to the user’s action and
avoids the hair-trigger effect this form of navigation often exhibits.

This pull-down
form will trigger
as soon as the user
makes a selection

This pull-down menu will
not trigger until the user
clicks the go button

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 585

The last problem with pull-downs for navigation concerns the state the menu is left
in. For example, the user may pull the menu down and select a separator. Shouldn’t the
menu reset to the top like a traditional menu in an application? Most, for some reason,
do not. Or, for another example, a user does select a legitimate choice and is sent to a
new page. Once at that page, the user backs up, only to find the pull-down selecting
the choice they just made. Suddenly deciding that the page they had selected was
correct, they have to either reload the page to reset the pull-down or make some false
choice and try again. The basic problem is that, most of the time, the menu is not reset
when the user reloads the page or selects a nonactive item like a separator.

Rule: Reset a pull-down when users back out of a page or select separator items.

The best way to really understand these problems is by accessing the examples
located at http://www.webdesignref.com/examples/pulldownproblems.htm. A
complete script is presented here that deals with all the problems and provides
cosmetic improvements to the pull-down navigation style.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Select Navigation</title>

<style type="text/css">

<!--

.nochoice {color: black;}

.choice {color: blue; }

-->

</style>

<script type="text/javascript">

<!--

function redirect(pulldown)

{

newlocation = pulldown[pulldown.selectedIndex].value;

if (newlocation != "")

self.location = newlocation;

}

function resetIfBlank(pulldown)

{

possiblenewlocation = pulldown[pulldown.selectedIndex].value;

if (possiblenewlocation == "")

pulldown.selectedIndex = 0; // reset to start since no movement

}

//-->

</script>

</head>

586 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<body>

<form name="navForm" id="navForm" action="redirector.cgi" onsubmit="return false">

<label>Favorite Sites:

<select name="menu" id="menu" onchange="resetIfBlank(this)">

<option value="" class="nochoice" selected">Choose your site</option>

<option value="" class="nochoice"></option>

<option value="" class="nochoice">Search Sites</option>

<option value="" class="nochoice">---------------------------</option>

<option value="http://www.yahoo.com" class="choice">Yahoo! </option>

<option value="http://www.hotbot.com" class="choice">HotBot</option>

<option value="http://www.google.com" class="choice">Google</option>

<option value="" class="nochoice"></option>

<option value="" class="nochoice">E-commerce</option>

<option value="" class="nochoice">---------------------------</option>

<option value="http://www.amazon.com" class="choice">Amazon</option>

<option value="http://www.buy.com" class="choice">Buy.com</option>

<option value="" class="nochoice" class="choice"></option>

<option value="" class="nochoice">Demos</option>

<option value="" class="nochoice">---------------------------</option>

<option value="http://www.democompany.com" class="choice">Demo Company</option>

</select>

</label>

<input type="submit" value="go" onclick="redirect(document.navForm.menu); return

false;" />

</form>

<script type="text/javascript">

<!--

document.navForm.menu.selectedIndex = 0;

//-->

</script>

</body>

</html>

The preceding example relies on the use of a CGI program called redirect.cgi in the event
that JavaScript is off, which is not presented here. The execution of that script is simply
to take a passed URL and redirect the user’s browser to that page.

Online: http://www.webdesignref.com/examples/pulldownnavigation.htm.

Certainly, using pull-downs as a navigation device is a break from traditional GUI
conventions. Another interesting difference is that GUI conventions suggest that, when
there are over 15 items, designers should forego use of a pull-down in favor of a scrolled
list of some sort. Yet scrolled lists, which are discussed next, are relatively rare in Web sites.

Scrolled Lists
A scrolled list is one where the user can select multiple items from the choices presented.
Functionally they are equivalent to the check box, though they take up less screen real
estate. To create a scrolled list, simply change a <select> tag by adding the attribute
multiple and setting a size attribute equal to the number of choices that show at a
given moment. An example is shown here:

<form>

<label>Security Robot Extras:

<select name="extras" id="extras" size="3" multiple="multiple">

<option>Austrian accent</option>

<option>Flame thrower</option>

<option>One-liner catch phrase software upgrade</option>

<option>Permanent facial sneer</option>

<option>Rocket fists</option>

</select>

</label>

</form>

Browser rendering examples of a scrolled list are shown in Figure 15-14.
Note that in the alternative browsers, like TV browsers, phone browsers, or

text-only environments, scrolled lists are significantly modified or even changed into
check boxes.

Suggestion: Avoid scrolled lists if you expect alternative browsing environments;
use check boxes instead.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 587

Figure 15-14. Scrolled lists under various browsers

Netscape Internet Explorer Opera

Lynx WebTV

What’s interesting is that scrolled lists are actually relatively unused in large
public Web sites. Probably the main reason is that, for some users, they are confusing
compared to check boxes. Consider, how do you select multiple noncontiguous items
in the list? Which key is held down? CTRL? SHIFT? Now consider different operating
systems and browsers—is this method of selection performed in the same way? What
you’ll find if you actually watch novice users is that they often approach these form
elements in a trial-and-error fashion. Therefore, if scrolled lists must be employed,
always provide a statement about what keys should be held for multiple selections.

Rule: When using scrolled lists, make sure to provide some form of instructions
for novice users on how to select multiple items.

Push Buttons
HTML forms support simple push buttons using this syntax:

<form>

<input type="button" value="Push Me" />

</form>

The rendering of such buttons is very plain and tends to look something like this.

It is also possible to use the <button> tag to create a simple push button, but given
its limited support in older browsers, it is best to stick with the presented syntax.

However, without the use of a scripting language, a push button will do nothing.
With the use of scripts, push buttons can cause anything to happen—for example,
triggering an alert to fire or a page to load, as shown here:

<form>

<input type="button" value="Say Hello" onclick="alert('Hello');" />

<input type="button" value="Load a page"

onclick="window.location='http://www.democompany.com';" />

</form>

From experience with software applications, a user would expect a significant
action to happen when a form button is pushed—such as a document to print, an alert
to be dismissed, and so on. Users would not expect page loading; rather, normal links
or graphical buttons tend to be used for that action.

588 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 589

Suggestion: Do not use default form-style push buttons for navigation; instead,
reserve them to cause actions to take place.

Reset Buttons
A reset button may be useful to include on complex forms to reset values back to their
default state. The syntax for the reset button is one of the simpler forms of the <input>
element:

<input type="reset" value="Clear Fields" />

Web conventions seem to suggest that the reset button be placed near the form
submission and be labeled simply something like “Reset,” “Reset Fields,” or “Reset
Form.” If there are no default values used in the form, a more appropriate label might
be “Clear Form” or “Clear Fields.”

The main problem with the reset button is that it is often so close to the submit
button that the user might literally slip and press it accidentally, thus possibly losing a
great deal of entered information. To avoid a hair-trigger reset button, attach a
JavaScript to get confirmation from the user, as shown here:

<form onreset="return confirm('Clear form fields?');">

...other fields in the form...
<input type="reset" value="Clear Fields" />

</form>

Rule: Provide a confirmation on a form reset button to avoid accidents.

One might wonder why the reset button is so close to a form submission button.
While this is somewhat of a mystery, convention seems to place it there. You might
consider putting it at least a few pixels away from the submit button.

Suggestion: Consider moving your reset button away from the submit button.

Submit Buttons
A submit button is a special class of push button that triggers the contents of a form to
be sent to a server-side program, as specified by the value of the action attribute in the
<form> tag. For example,

<form action="saveit.pl" method="POST" name="testform" id="testform">

...form elements here...

<input type="submit" value="Submit" />

</form>

would trigger the execution of the program "saveit.pl," which would receive the
contents of the form. Because a submit button may cause an action that could be
irreversible, it is always a good idea to warn a user before they submit something by
using a confirmation dialog, as discussed previously in the chapter and as shown here:

<form action="saveit.pl" method="POST" name="testform" id="testform"

onsubmit="return confirm('Are you sure?');">

...form elements here...

<input type="submit" value="Submit" />

</form>

Rule: Provide a final chance to change a decision before submitting important
information or starting a difficult-to-reverse action.

The location of a submit button is generally at the bottom of a form. However,
unlike many form applications on the Web, it is not necessarily at the far right or the
center of the screen. On the contrary, it generally appears on the left or the center of the
bottom of the screen—generally near the reset button.

Suggestion: Keep the submit button at the bottom of the form, either center or
left side.

The look and feel of the submit button is usually the same as any normal push
button, though designers may wish to change the style of the button using an image, as
discussed in the next section.

Image Buttons
With script, it is possible to utilize an image instead of a typical HTML form field as a
push button. Unlike using plain HTML form controls, multiple states (including
animated states) are possible. One example of an image button is shown here:

Using the <input type="image"> element to make image buttons more visually
appealing is relatively straightforward. An example of this is presented here:

<form onsubmit="alert('The form would be submitted.'); return false;">

<input type="text">

590 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<input type="image" src="button.gif" width="85" height="30" border="0" />

</form>

Before designers quickly run out to change all form buttons, consider first the
download expense as well as the degradability of these buttons. Designers should
consider whether the visual improvement of the button is that important to the user
experience and whether the buttons will even be viewable under all browsing conditions.
A simpler idea might be just to apply some basic style sheet rules to color buttons to
match a site design.

Suggestion: Provide a degradable state for image buttons with scripting or
images off.

HTML 4 and XHTML 1 support the <button> tag, which is a much more flexible
approach to adding image buttons. However, this element is not well supported in newer
browsers and not at all in very old browsers, and should be avoided for the moment.

File Upload Controls
A special type of form control supported in HTML is the file upload control. This
control can be used to browse the user’s local system and attach a file for uploading.
The syntax of the field is relatively simple, as shown here:

<input type="file" name="upfile" id="upfile" />

File upload does not work on every browser; but on the ones that are supported,
it looks fairly similar, as shown in Figure 15-15. Notice that, as expected, this form
element does not work in alternative or restricted browsing environments.

Rule: Make sure to consider the environment of use before using a file upload
facility. This facility may not make sense for users that do not have file storage.

The file upload facility as implemented under HTML provides little room for
customization. The only possibility is that the size of the path field may be set. However,
designers should not modify or limit the size of the file field, given that they will have
no idea of the length of the directory path that may be required to attach a file on a
user’s system. Also, there is really no option to change the layout of the field or the
associated browse button.

It is possible to implement a file upload system using Java or JavaScript and
produce an interface similar to the one shown in Figure 15-16.

Now that we have covered all the various types of form widgets, it is time to
discuss how they can be used properly.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 591

592 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 15-16. Advanced technologies allow improved file upload interfaces

Figure 15-15. Rendering of the file upload control

Netscape

Internet Explorer

Opera

Lynx

Usable Forms
Creating a usable form need not be hard. The most common failing is that forms are
simply not well laid out. Consider the forms shown in Figure 15-17. The form with
well-aligned fields at least appears easier to fill out.

Forms will be laid out in an up-and-down fashion on a Web page, rather than a
left-to-right fashion, to fill up a fixed-sized dialog. However, the exact layout of the
form will depend greatly on the data presented. For example, consider the two possible
layouts for collecting a user’s name shown here:

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 593

Figure 15-17. Clean form layout improves usability

TE
AM
FL
Y

Team-Fly®

594 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Which field layout is easier to understand? Which is the more efficient use of screen
real estate? On the Web, fields tend to be filled out generally up to down, though it
might make sense to arrange fields left to right because of context.

Suggestion: Lay out form elements generally up to down, but consider left to
right based upon the context of the information being asked for.

Regardless of how forms are laid out, in most cases, HTML tables will be used. CSS
can be used to improve form layout, but things don’t often work properly when mixing
the two technologies. For the near term, consider using tables and CSS rather than just
plain CSS for form pages.

Suggestion: Consider keeping table borders on when formatting table elements,
since they help associate labels and fields.

To format text fields, you might try to use HTML markup like , <tt>, and
 around form elements. However, browsers will typically only interpret the
markup for the label and not for the field itself. Consider the example here:

<form>

<i>

Username: <input type="text" name="username" id="username" size="20" />

</i>

</form>

The label of the field will be rendered in red and italic in every browser; however, what
happens to the content in the text field varies. A few browsers, will actually render the
typed text in italic, but not red. However, in most browsers the text field is unaffected.

CSS provides much greater control over the look and feel of various form fields.
It is possible to set colors, background, width, borders, and a variety of other visual
characteristics of form fields in a CSS1-compliant browser. The following examples
illustrate some possible uses of CSS:

<form>

Username: <input type="text" name="username" id="username" size="20"

style="background-color: #ffcc66; border-width: 1px; border-color: black;" />

Code Number: <input type="text" name="code" id="code" size="20"

style="background-color: #333300; border-width: 1px; color: #00cc66; border-color:

black; font-variant: small-caps;" />

Offer Code: <input type="text" name="offercode" id="offercode" size="8"

style="width: 8em; background-color: #ffffcc; border-width: 1px; color: #006699;

font-family: Verdana; border-color: black; border-style: dashed;" />

</form>

Style can be applied to a field to indicate what state it is in. For example, as the user
tabs through a set of fields, consider having the background color of each field change
slightly. Under CSS2, it is possible to do this easily using the focus pseudo-class. For
example, the rule

input.textfields:focus {background-color: yellow;}

would set all <input> tags in class textfields to a background color of yellow when
selected. Using JavaScript, it is possible to color fields both as they are focused and
when they are in error.

As we can see, online forms provide interesting new possibilities. In fact, probably
one of the biggest mistakes designers make when working with forms online is directly
copying the look and feel of an existing paper form. When users are very familiar
with a particular type of form that they fill in everyday, such copying may be useful
in improving the users’ comfort level with the form and not requiring that people
be retrained to use the online version. However, in most cases, written forms have
differences from online ones that affect usability. It is important to gear the form to
how the user is going to be filling it out—using a keyboard and a mouse, probably.
To improve usability, make the form simpler to read and use online.

Suggestion: Imitate real world forms directly if users are very familiar with
them; otherwise, focus on reducing the amount of data entry.

Users will have to use the keyboard to enter in text data, and there may be a great
deal of keyboard-to-mouse and back movement in a form. Try to minimize this by
making the form keyboard friendly: encourage tabbing, use accelerator keys, and
provide default data values. How to implement each of these ideas is discussed later
in the chapter.

Rule: Make forms keyboard friendly.

Also, make sure to limit mouse travel between form elements. If users are going to
be moving from field to field with their mouse, try to limit the distance between fields.

Rule: Limit mouse travel between form elements.

In order to limit mouse travel, you often end up grouping associated items together.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 595

596 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Fields that are associated with each other should be grouped together. The easiest
way to do this is to put the fields within a table. The table may have a background
color to make the grouping more obvious. It is also possible using the HTML elements
<fieldset> and <legend> to quickly create form grouping. The two approaches are
illustrated here:

It is important, of course, to group items that make sense together, not just to limit
mouse travel or to create colored sections. Next, we discuss one of the most important
steps to take in improving forms: ensuring that fields that are required are clearly
noted to the user.

Required Fields
When a user is trying to fill in a form, it is very important to indicate which fields in the
form are required. Nothing can annoy a user more than trying to guess what fields are
required and being forced to keep resubmitting until all the mandatory fields are filled in.
The most common way that required fields are indicated on the Web is using an asterisk
next to the field. Despite the common use of the asterisk for required fields, it is a good idea
to explicitly indicate somewhere on the form that the asterisk indicates a required field.
Color is also used on the asterisk itself. However, avoid just coloring a field name to
indicate a required field, since a user may be unable to see the color. Last but not least, it
might just be best to indicate the required field by explicitly putting the word “required”
next to it. All these techniques for showing required fields are illustrated here:

Rule: Label all required fields carefully using an asterisk or the word “required.”

Occasionally, there is the opposite situation—all fields are required except one or
two. In such cases, use the marker “optional” on either the right or left of the field. Do
not attempt to reuse the asterisk and change its meaning with some label.

Tabbing Forms
One good way to improve form fill-out is to improve the movement between fields by
using the TAB key. Normally, a browser will tend to tab through fields left to right, top
to bottom. However, the basic tab movement is more an artifact of the order in which
fields are defined. If you want to explicitly set a tabbing order, HTML 4.0 introduced
the tabindex attribute for many elements.

Set the tabindex to a value between 0 and 32767. Hopefully, you don’t have 32,000
fields in your form, but the specification says you can set tab values that high! Tabbing
will proceed from the lowest positive value to the highest value. Fields with a tabindex
set to 0 will be tabbed in order of definition after all other fields have been navigated.
Fields with negative tabindex values are skipped in some browsers like Internet Explorer,
but in others they are treated normally. Disabled fields will not be tabbed at all. The
following example demonstrates the use of the tabbing index with form elements:

<form>

<input type="text" name="field1" id="field1" value="tabbed after set fields" />

<input tabindex="1" type="text" name="field2" id="field2" value="first field" />

Check me: <input type="checkbox" name="field3" id="field3" tabindex="4" />

<input disabled="disabled" type="text" name="field4" id="field4"

value="skip this field" />

<select tabindex="10" name="field5" id="field5">

<option>Choice 1</option>

<option>Choice 2</option>

</select>

<input type="text" name="field6" id="field6" tabindex="-5"

value="skip this field? maybe" />

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 597

598 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<input tabindex="3" type="submit" value="Submit" />

</form>

The tabindex attribute is supported in most browsers, and those that don’t support
it just default to their normal form of navigation, so it is fairly safe to use this attribute.

Suggestion: Add tabindex attributes to improve form navigation.

First Field Focus
For efficient form use, the user should be able to quickly use the keyboard to enter
data in the form. While the TAB key can be used to quickly move between fields, you
should notice that most browsers will not focus the first field by default, and the user
may be forced to click the field before starting keyboard entry. Using JavaScript, it is
fairly easy to focus the first field in a form. This should improve form fill-out in a subtle
but noticeable way.

Suggestion: Focus the first field of a form page immediately.

The example presented here shows a short JavaScript associated with the onload
event handler attribute for the <body> that focuses a form field. Just change the form
name and field name in the script and it should work without modification in nearly
any page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Focus First Field</title>

</head>

<body onload="window.document.testform.firstname.focus();">

<form name="testform" id="testform">

<label>First Name:

<input type="text" name="firstname" id="firstname" size="30" maxlength="30" />

</label>

<label>Last Name:

<input type="text" name="lastname" id="lastname" size="30" maxlength="30" />

</label>

</form>

</body>

</html>

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

Keyboard Shortcuts
HTML 4.0 introduces the use of the accesskey attribute for many elements, including
form elements. The access key can be used to set an accelerator for a field so that the
user can access the field using a key combination—usually ALT and the defined access
key. Note that the actual key combined with the defined accelerator may vary based on
the underlying system. For example, Macintosh users may use CMD instead of ALT to
activate accelerators. Regardless of the key combination, the syntax of the accelerator is
the same. For example,

<input type="text" size="40" accesskey="n" name="username" id="username" />

sets the letter n as the accelerator for the field. In a browser such as Internet Explorer
that recognizes this attribute, the key combination ALT-N will move the cursor to the
field immediately. All other browsers will just ignore the key combination.

Avoid using the accesskey attribute on the <label> element. In many browsers, it will
not focus the associated field.

One potential problem with access keys is users not knowing exactly what key
combinations are used to access fields. In traditional GUI interfaces, a particular letter
choice is underlined to indicate an accelerator key. For example in File the F key is used
to access the menu. While this approach could be used on the Web, the user might
consider the underlined letter a link. Given the context of the underline and the lack
of color, the user will not jump to this conclusion. However, because of this potential
concern, it may be okay to indicate accelerators in another fashion, such as reversing
them out.

The best approach to indicating accelerators is to use a style sheet. For example,
you might define a class accesskey in a style sheet using a rule like this:

.accesskey {text-decoration: underline;}

and then reference it later on in the form using a tag around the particular
letter being used as the accelerator:

Name:

Using style sheets will allow you to experiment easily with different styles and will
also allow easy removal of the key indications when a browser doesn’t support the
accesskey attribute. It is very important to turn off the key indication, since it would
frustrate a user greatly to see an indication of a keyboard shortcut and not have it work.
Many older browsers such as Netscape 4 do not support the accesskey attribute. Using
a little JavaScript to add the style sheet rule based upon the browser would fix the

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 599

problem, but doing so is actually a little involved, as shown here. There really is no
way to account for browser spoofing, so it isn’t foolproof.

<!- - Use this in the HEAD section of the document only -->

<script type="text/javascript">

<!--

var agent=navigator.userAgent.toLowerCase();

var version = parseInt(navigator.appVersion);

var is_gecko = (agent.indexOf('gecko') != -1);

var is_ie = ((agent.indexOf("msie") != -1) && (agent.indexOf("opera") == -1));

var is_ie4up = (is_ie && (version >= 4));

if (is_gecko || is_ie4up)

{

document.writeln('<style type="text/css">');

document.writeln('.accesskey {text-decoration: underline; font-weight: bold;}');

document.writeln('</style>');

}

//- ->

</script>

Another potential problem with accelerator keys besides browser support is
accidentally masking or even overriding browser accelerator keys. Normally, a
browser like Internet Explorer uses key shortcuts to access its primary menus. What
would happen if you were to assign one of these preassigned letters to a form field?
Well, either it wouldn’t work and the menu would pop down from the browser
instead, or you would kill the default action of the accelerator key in favor of your
form. The user may be used to pressing F to access the file menu on the browser and
become highly annoyed.

Rule: Do not override or mask browser accelerator keys.

Table 15-2 shows the current mappings for Internet Explorer and Netscape. Make
sure to look carefully in your browser to see if mappings have changed before using a
particular letter as an accelerator.

Given the potential problems with accelerators, one might wonder if there is really
any point to using them. The reality is that for a single-time visit form, the benefit of
accelerators is somewhat limited. A user will probably not be familiar enough with the
form to use the shortcuts. However, for forms that a user must fill in frequently—for
example, within an intranet or Web application—accelerators could really improve the

600 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

user’s ability to fill things out. Moving the hand from the keyboard to the mouse does
take time. For fast form fill-out, accelerators are very useful.

Suggestion: Use accelerator keys for forms that will be used repeatedly.

Tool Tips and Form Fields
A tool tip can be set to provide a small amount of information about the meaning of a
particular form field or even instructions on its use. Tool tips can be set most easily using
the title attribute for the various HTML form elements. For example, the HTML markup

<form>

Phone Number:

<input type="text" size="10" name="phone" id="phone"

title="Enter your phone number without dashes" />

</form>

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 601

Key Description

F File menu

E Edit menu

V View menu

N Navigation menu (Opera 6)

G Go menu (Netscape/Mozilla) Messaging menu (Opera 6)

B Bookmarks menu (Netscape/Mozilla only)

A Favorites menu (Internet Explorer only)

T Tools or Tasks menu

M E-mail menu (Opera 6)

S Search menu (Netscape 6), News menu (Opera 6)

W Window menu (Netscape 7/Mozilla)

H Help

Table 15-2. Common Browser Reserved Accelerator Keys

602 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

would render something like the image shown here when the user put the mouse over
the field.

Providing extra information about a field using a tool tip is an easy way to improve
form use. Be careful, however, not to put critical information in the tool tip, in case the
user has a browser that will not display them.

Suggestion: Use tool tips to provide extra information about field use and format.

It is possible to use some JavaScript to simulate a tool tip in other browsers or to
provide information in the browser’s status bar instead.

Status Messages
Besides using tool tips, it may be helpful to utilize the status bar to provide information
to the user on the meaning and use of various form fields. While the status bar may not
be in the primary area of focus for the user, unlike the tool tip, it is not transitory and
can be set to display as long as the field is in focus. For example, notice the status bar
message in the example here and how it relates to the field currently focused.

A sample script to use in any form is provided here; just alter the values passed to
the setStatus function in each form field and include the script in the <head> section of
your page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Field Status Messages</title>

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

<script type="text/javascript">

<!--

function setStatus(msg) { window.status = msg;}

//-->

</script>

<style type="text/css">

<!--

label {font-weight: bold;}

label.required {color: red;}

-->

</style>

</head>

<body>

<form>

<label class="required">

Name:

<input type="text" size="40" name="name" id="name"

title="Enter your full name (Required field)"

onfocus="setStatus('Enter your full name (required)');"

onblur="setStatus('');" /> *

</label>

<label>

Age:

<input type="text" size="2" name="age" id="age"

title="Enter your age in years"

onfocus="setStatus('Enter your age')"

onblur="setStatus('')" />

</label>

<label class="required">

E-mail:

<input type="text" size="40" name="email" id="email"

title="Enter a complete well formed email address

(required)"

onfocus="setStatus('Enter a complete well formed email

address (required)');"

onblur="setStatus('');" /> *

</label>

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 603

TE
AM
FL
Y

Team-Fly®

<input type="submit" value="submit" />

</form>

</body>

</html>

Suggestion: Use the status bar to provide messages about field use.

Form Field Help
Given all the problems with form fill-in, it is obviously just a plain good idea to provide
help wherever possible. While some browsers, notably Internet Explorer, do provide
online help integration associated with the onhelp attribute that can be triggered with
the F1 key, most users are unaware of this possibility. Besides tool tips and status
messages discussed previously, the easiest way to provide help is simply to write the
help information near the field in question or provide a link or icon indicating help is
available, as shown here:

Suggestion: Provide a help button near complex form fields for context-
sensitive help.

Form Validation
A key aspect of usable forms is helping people not to make mistakes. One of the easiest
ways to do this is to check the contents of the forms before the user submits them. This
is called form validation and can be performed both using a client-side technology like
JavaScript or a server-side technology. While a server-side technology may not rely on
any particular browser capability, designers should add client-side validation to pages,
since they will appear more responsive to a user and avoid the round trip time to the
server and back.

Rule: Validate forms client side when possible.

However, a user may not have JavaScript or similar technology useful for client-side
validation. In such cases, you must rely on server-side checks. In order to get the best of
both worlds, consider adding a hidden form field to a form that indicates the state of
validation. For example,

<input type="hidden" name="validated" value="false" />

604 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N

would be used to indicate the state of the form. If the form could be validated using
JavaScript, the last task to do before submission would be to change the value of the
hidden field to True. On the server-side, the program that deals with the form data
would then look at the field value to determine if validation were required or not. When
using this technique, we keep from doing double the work and always check whether a
page is really validated. However, the security implications of this approach are troubling.
If you do not perform a check on the server side, a potential hacker might figure this
out and set the hidden variable to show data to be okay even though it isn’t. For both
security and usability reasons, you should always perform server-side validation.

Rule: Always provide backup validation on the server side.

If you end up using server-side validation, make sure that you preserve form data
when the page is returned. Giving users a simple error page and then allowing them to
back up may clear the form out, but it will force users to fill out the entire form again.
This is very annoying and should be avoided.

Tip: Preserve filled-in form data when using server-side validation to allow for
easy correction.

A big question with form validation is when to actually validate the fields. Many
people wait until the very end, when the user has pressed the Submit button to check
for mistakes. An error is presented, the user corrects it and moves to press the Submit
button. The process repeats until all the errors are removed from the form. It would
actually be better to try to correct the errors either all at once or as the user moves from
field to field in the form, since it would reduce the amount of trial and error for the user.

Suggestion: Try to validate as people type using masking or as they move from
field to field.

The only downside to validating as users go along is that users doing a quick
heads-down fill-in of a form may prefer not to be interrupted until they have finished.
You may want to consider this when dealing with validation on frequently used forms.
Regardless of when errors are caught in a form, it is very important to provide a clear
indication of what the errors are and how to correct them.

Rule: During form validation, provide a clear indication of what fields are in
error and how to correct the error.

A subtle nuance that can greatly improve the validation experience for the user
is to bring focus to a field in error. This allows the user to quickly correct the error
instead of having to remember which field was in error and scroll back through the
form looking for it.

Rule: Bring immediate focus to fields in error.

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 605

Finally, make sure you always consider extreme cases in validation. Don’t just go
for the obvious mistakes; assume edge cases, like extremely small and extremely large
values, and pretend the user is trying to break your form on purpose. Given the range
of data that could be entered, it might be wisest to try to limit what the user can enter
rather than deal with it once they have.

Field Masks
Using JavaScript, it is possible to limit the type of data that is entered into a field as
it is typed. This goes along with the idea of catching errors as they happen rather than
waiting for validation later on. For example, the following script could be used in
Internet Explorer or Netscape 4.x or higher to limit a field to only numeric characters.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Numerics Only Demo</title>

<script type="text/javascript">

<!--

function numbersOnly(field, event)

{

var key,keychar;

if (window.event)

key = window.event.keyCode;

else if (event)

key = event.which;

else

return true;

keychar = String.fromCharCode(key);

if ((key==null) || (key==0) || (key==8) ||

(key==9) || (key==13) || (key==27))

{

window.status = "";

return true;

}

else if ((("0123456789").indexOf(keychar) > -1))

{

window.status = "";

606 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

return true;

}

else

{

window.status = "field accepts numbers only";

return false;

}

}

//-->

</script>

</head>

<body>

<form name="testform" id="testform">

Robot Serial Number:

<input type="text" name="serialnumber" id="serialnumber"

size="10" maxlength="10"

onkeypress="return numbersOnly(this, event);" />

</form>

</body>

</html>

The benefit of masking a field is, obviously, that it avoids having to do heavy
validation later on by preventing errors from happening.

Suggestion: Mask text fields to limit the type of characters entered.

This idea can be extended to account for formatting of data as well. For example,
you might let a user enter a credit card number or phone number without dashes and
format it to include them automatically using JavaScript. You should always aim to fix
things for users rather than to require them to enter things in a special way.

Another way to avoid errors is to modify form controls to not let users make errors.
For example, why let a user type in their state of residence when a simple pull-down
might work? While this may improve validation, it may actually slow down the filling
out of the form for keyboard users.

It is important to note that automatically masking or formatting form data may
cause confusion to international users. For example, a centered site may format dates in
a way that an international user might not be accustomed to. Make sure you consider
nuances like this before you start formatting data automatically.

Finally, another possible way to prevent users from making mistakes is not to let
them edit a field at all if it shouldn’t be modified. Through HTML or scripting, it is
possible to disable a field or set its value to read-only.

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 607
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

608 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Disabling Fields
A disabled form field should not accept input from the user; it is not part of the tabbing
order of a page and is not submitted with the rest of the form contents. The presence of
the disabled attribute, as shown here,

<input type="text" value="Can't Touch This" disabled="disabled" />

would be all that’s necessary to disable a field under an HTML 4.0-compliant browser.
A browser rendering of a disabled field is usually a “gray out” of the field. It is always
a good idea to disable labels as well, either manually with a style sheet or with the
disabled attribute.

A scripting language would have to be used to turn disabled fields on and off
depending on context. The following markup, which shows how this might be used,
works in most modern browsers.

<form name="myform" id="myform">

Color your robot?

Yes <input type="radio" name="colorrobot" id="colorrobot"

value="yes" checked="checked"

onclick="document.myform.robotcolor.disabled=false;robotcolorlabel.

style.color='black';" />

No <input type="radio" name="colorrobot" id="colorrobot" value="no"

onclick="document.myform.robotcolor.disabled=true;robotcolorlabel.

style.color='gray';" />

<label id="robotcolorlabel">

Color:

<select name="robotcolor" id="robotcolor">

<option>Silver</option>

<option>Green</option>

<option>Red</option>

<option>Blue</option>

<option>Orange</option>

</select>

</label>

</form>

Unfortunately, the preceding example does not work in Netscape 4 or other
browsers that lack full HTML 4 support and that vary in their scripting capabilities.
The use of this field does not degrade well, as shown in Figure 15-18.

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 609
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

If possible, it is better to redesign a form so it does not rely on a disable function,
but if required, disabling can be accomplished by use of the HTML 4 disabled
attributes and JavaScript that either hides a field or clears its value if it is disabled.

Suggestion: Disable or hide fields that are not necessary in a particular context.

Read-Only Fields
Text fields can also be set not only to a disabled state but also to read-only. A read-only text
field can be clicked but not changed. Unlike disabled fields, the values of a read-only field
are submitted to the server when a form is submitted. Under HTML 4, it is easy to set a text
field to this state by simply including the readonly attribute, like so:

<input type="text" value="Can't touch this!?" readonly="readonly" />

Like the disabled feature of HTML 4, read-only does not degrade well, as older
browsers will simply ignore the readonly attribute they don’t understand, leaving the
field modifiable. Using JavaScript, it is pretty easy to simulate the function of read-only
simply by blurring a read-only field as soon as a user tries to select it. The example
shown here demonstrates this in action.

<form name="myform" id="myform">

Change standard name of robot?

Yes <input type="radio" name="colorrobot" id="colorrobot" value="yes"

checked= "checked" onclick="robotnamereadonly=false;" />

No <input type="radio" name="colorrobot" id="colorrobot" value="no"

onclick="robotnamereadonly=true;document.myform.robotname.value='Robby';" />

Figure 15-18. Disabled fields do not degrade well

610 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<script type="text/javascript">

<!--

robotnamereadonly=false;

//-->

</script>

Name:

<input type="text" name="robotname" id="robotname" value="Robby"

size="20" maxsize="20"

onfocus="if (robotnamereadonly) this.blur();" />

</form>

If you plan to add your own form of read-only to deal with down-level browsers,
make sure to let the user know what is read-only with an alert or a visual change.
Fortunately, the need for this type of workaround will soon no longer be required, as
more browsers support the readonly attribute.

Default Data
Even after applying every usability improvement in this chapter, filling out a form can still
be an arduous process for a Web user. Before adding more questions, think of how many
forms and fields you are asked to fill out during a few hours of browsing. One simple thing
that can be done is to provide users with default data—data that are likely to be used. For
example, if most users order only a single item, why not fill out the quantity field this way
automatically? This is easily done using the value attribute for a field.

Quantity: <input type="text" name="quantity" id="quantity"

size="2" maxlength="2" value="1" />

Suggestion: Provide defaults and always set values to the most likely entry.

Of course, users will not always enter the same data, so defaults are not going to
help all the time. If data is stored about a user, it might be possible to populate fields
with data the user has entered before. Many e-commerce sites already remember
common data about a user, including address, shipping preferences, and credit card
number, and may fill out the form in advance for a user. Of course, the data storage
and complexity required for such personalization may be beyond some sites. Fortunately,
newer browsers, such as Internet Explorer 5 and beyond, provide auto-completion
facilities for form fields, which should speed up data entry significantly.

Internet Explorer AutoComplete
An important form-use improvement introduced in Internet Explorer 5 is called
AutoComplete. The concept of AutoComplete is to help users fill out forms by

providing a pick list of previously used values for similar form names or even by
relating the information in their personal data profile or vCard to form fields.

For users to fully enjoy AutoComplete features for forms, they must enable them.
In IE, select Internet Options on the Tools menu, select the Content tab, and then click
the AutoComplete button. Users might also want to fill out their personal information
by selecting the My Profile button in the same dialog. Once AutoComplete is enabled,
the browser should provide a pick list for text fields either when the user presses the
DOWN ARROW key or the characters they are typing match a previously entered value
for a similar field, as shown here:

From an HTML perspective, there are a few things that are important to know
about AutoComplete. First, on some fields, you may want to disable AutoComplete
for privacy reasons. You can set an attribute called autocomplete to off in either
the <form> or the <input> tag:

<form autocomplete="off"> ... </form>

or

<input type="password" autocomplete="off"

name="supersecret" id="supersecret" />

Turning the attribute on will provide no benefit, as the user must enable AutoComplete
in the first place. The key to using AutoComplete is to make sure to use similar field
names as other sites out there on the Internet. The browser first presents information
from previously completed form fields, and it also looks at a common name list
drawn from popular Web sites. In short, if you use the same field names, the user will
be prompted to reuse data. Therefore, make sure that you name fields with simple
common names, like firstname, lastname, address, city, state, zip, and so on.

Suggestion: Name your field names with simple common names to take
advantage of browser AutoComplete features.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 611

Besides using common values, AutoComplete may pull information automatically
from a user’s vCard schema as set in the Profile Assistant. Many users have begun
to use profiles such as those provided by a vCard to provide the equivalent of an
electronic business card. To focus on accessing the user’s profile information, use the
vcard_name attribute in the form fields. For example, to allow someone to automatically
fill in form data from their vCard profile, you might have an <input> tag like this:

<input type="text" size="40" name="company" id="company"

vcard_name="vCard.Company" />

Of course, it is important to associate the correct vCard field with each field in your
form. Table 15-3 provides the values for the vcard_name attribute categorized by the
type of information.

The Mozilla 1.0 browser also supports form completion, but it requires manual
intervention by the user and does not have a clearly defined interface for site designers.

612 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

General Info Home Info Business Info

vCard.FirstName vCard.Home.StreetAddress vCard.Company

vCard.MiddleName vCard.Home.City vCard.Department

vCard.LastName vCard.Home.State vCard.Office

vCard.DisplayName vCard.Home.Country vCard.JobTitle

vCard.Gender vCard.Home.Zipcode vCard.Business.StreetAddress

vCard.Email vCard.Home.Phone vCard.Business.City

vCard.Homepage vCard.Home.Fax vCard.Business.State

vCard.Notes vCard.Business.Zipcode

vCard.Business.Country

vCard.Business.Phone

vCard.Cellular

vCard.Pager

vCard.Business.Fax

vCard.Business.URL

Table 15-3. vcard_name Values by Category

Before concluding this chapter, let’s take a brief look at some of the very advanced
GUI ideas that are starting to be applied on Web sites.

Advanced Web GUI Widgets
With careful use of JavaScript, it is possible to create a variety of advanced GUI
widgets, many of which are used for navigation purposes. For example, a cascading
menu that triggers page loads could be used to create a site-wide navigation bar, as
shown in Figure 15-19.

The use of such a navigation bar flattens the site by reducing the number of clicks
made by users to a particular page. However, it also makes a site look more and more
like a typical GUI application. Adding a navigation bar to a site isn’t difficult, but the

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 613

Figure 15-19. DHTML menus are popular for navigation

TE
AM
FL
Y

Team-Fly®

code is far to complex too present here. Interested readers are directed to the
numerous online tutorials at http://www.hiermenuscentral.com/ to learn about
adding menus to their site. The code used in Figure 15-19 that shows the context of
how this menu might be used in the Demo Company site can be found at http://
www.webdesignref.com/examples/hiermenu.htm.

Tree Navigation
Another GUI navigation facility is the use of tree controls or expandable/collapsible
outlines for navigating a site, as shown here:

Sometimes, tree navigation controls use a folder/document icon pair, while other
times they use arrows or plus and minus signs. Regardless of the form, there should be
a distinction between an option that is open and one that is closed.

Rule: When using a tree control, make sure that open and close states are distinct.

Another consideration with tree-style navigation is making sure that it does not get
too deep. While this widget may tremendously reduce the number of clicks to navigate a
site, the amount of scrolling that may occur for a large number of items both left to right,
as well as up and down, could make the control difficult to use. Make sure to consider
how far the control could expand.

Tip: Beware of using tree or outline controls on very deep lists, as users may lose
their place or the control may scroll too far rightward.

Online: The tree style navigation can be found numerous places online, such as
http://www.webdesignref.com/examples/outline.htm.

614 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Tabbed Dialogs
With DHTML it is possible to create a tabbed dialog, as shown in Figure 15-20.

In GUI applications, a tabbed dialog is commonly used in very complex dialog
boxes, and thus its use isn’t always favored. However, on the Web, there may be some
use for this style of interface because, in some implementations, all the contents of each
tab are loaded before display, which makes the interface appear very responsive.

Online: The tabbed dialog example can be found at http://www.webdesignref.com/
examples/tabbeddialog.htm.

Sliders
A slider is a relatively rare GUI interface element found mostly in color adjustment
dialogs. It is possible, using JavaScript, to build a slider, as shown in the example in
Figure 15-21.

Online: The slider demo can be found at http://www.webdesignref.com/
examples/slider.htm

C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 615
ELEM

EN
TS

O
F

P
A

G
E

D
ES

IG
N

Figure 15-20. Tabbed dialog interface implemented in JavaScript

Often sliders are used to move through a large continuous range of values.
Therefore, it may be difficult for users to set exact values. Very often, a text field is
associated with a slider that can be filled in directly.

Tip: Add a text box near a slider to show a selected value and allow a user to set
the value of the slider directly.

Another potential downside to sliders is that it is often difficult to position them
directly to a particular value. The text box helps quite a bit, but often tick marks or
other labels are used to indicate increments or useful stopping points for the slider.

Tip: Use tickmarks to indicate major selection points.

616 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 15-21. Example of a slider in use

Context Menus
The last advanced GUI facility is the use of the context menu. Since the introduction
of Internet Explorer 5, the single mouse button barrier has been broken. Now, with
scripting, it is possible to sense the use of the right mouse button and perform some
actions, such as creating a context menu or even suppressing the use of the menu.
Some designers, hoping to make it difficult for people to steal their images, have
resorted to putting a line like this in their <body> tag:

<body oncontextmenu="return false;">

However, turning off JavaScript or using an older browser easily thwarts this approach.
An example of how a custom context menu could be created is shown in Figure 15-22.

Online: The context menu example can be found at http://www.webdesignref.com/
examples/contextmenu.htm.

ELEM
EN

TS
O

F
P

A
G

E
D

ES
IG

N
C h a p t e r 1 5 : G U I W i d g e t s a n d F o r m s 617

Figure 15-22. Right-click exposes a custom context menu

When Web Applications Are Just Applications
The preceding section indicates that the gap between what is possible in a Web site
using standard technology like JavaScript, CSS, and HTML and a desktop application
is narrowing all the time. In fact, using Java, ActiveX, or even Flash, it is pretty much
possible to simulate any GUI widget known. When compatibility problems become
less prominent, the difference between what is considered a Web application interface
and what is just a plain application will somewhat blur. Already, many Windows
applications are capable of accessing Internet facilities, and Web applications are acting
like desktop applications. Once the gap is closed, the need for designers to be more
aware of standard GUI interface conventions may become crucial. However, until the
time that the two meet, it is important to try to integrate conventions. When using
object technologies like JavaScript or Flash, avoid building an application interface
within a Web page, or you may end up with a confusing mess. For now, keep the
distinction between Web and desktop clear.

Summary
Web sites often do exhibit many common conventions from graphical user interface
(GUI) design theory. Some ideas, such as double-clicking or drag-and-drop, have yet
to really see much use on the Web, but more and more the Web is starting to look
like a GUI application—particularly when used within intranets. Web designers must
understand both the traditions of GUI design as well as what is reasonable to implement
using core HTML technologies like HTML, CSS, and JavaScript. Forms, in particular,
stand to benefit greatly from GUI principles. With some work and the use of a technology
like Java, designers could turn a Web site into something that looks just like a desktop
application—but should they? Web sites do have their own design aesthetics, as
discussed in previous chapters, and strictly applying GUI layout and conventions from
a Windows application might actually result in an unusable site.

618 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Part IV
Technology and Web Design

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 16
Web Technology
Best Practices

621

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

622 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Correct use of technology is not necessarily a given in today’s Web sites. Shifting
standards and browser problems are partially to blame, but there are many
other problems that are due simply to developers’ lack of knowledge of best

practices. In this chapter, many of the best practices that should be employed in Web
building are presented. The focus is mostly on core technologies, such as URLs, HTML,
CSS, JavaScript, and images, but suggestions are made for other technologies that are
relevant to site design and user interaction. This is by no means a complete discussion,
as each of these technologies warrants a large book of its own. Needless to say, what is
presented represents the most important issues, which should not be overlooked during
site construction.

Pragmatic Web Development
Before addressing specific site building best practices, we must acknowledge a few
golden rules of Web development that any pragmatic Web designer should follow.
First, users won’t always place blame correctly. While that little display problem
or error message might really be due to a non-standards–compliant browser, will
users blame the browser vendor or the site owners and designers? It is unlikely users
will blame the browser, unless they are savvy in Web development practices.

Rule: Users often don’t blame browsers for site errors—they blame sites.

Regardless of who made the mistake, users do not want to be impacted by problems.
They are at your site to accomplish a goal, not to fight with error dialogs or address
Web technology problems like JavaScript, HTML, CSS, and Flash incompatibilities.
This leads us to our second golden rule of Web best practices.

Rule: Users don’t care how sites are built, just if they work.

You might call this the “no exposed wiring” rule. Users don’t want or need to see
the behind-the-scenes operation. While some visitors schooled in Web design might
be impressed or curious to see your site’s plumbing, for everyone else, exposing such
things may cause users to be confused or to proceed with great trepidation. They are
leaving the correct construction and setup of the site to us; if we appear to break this
trust, they are unlikely to like the site.

However, don’t assume that just because users think a site works properly, that
it is necessarily a good one. Far too often Web designers are bending rules, creating
work-arounds, or just plain ignoring various Web specifications. Base cases are tested,
but extreme cases may be ignored or skipped. Something that looks right isn’t necessarily
right—you have to verify and test things. Know your site’s tolerances. If it is impossible
to build the site to fit all situations, define what situations it will fail under and make sure
everyone involved understands the limits Don’t wait to try to explain to a client or boss
why your site broke under some browser; address it up front. Finally, remember that
quite often people don’t necessarily notice a poorly constructed building until it topples
to the ground in an earthquake, and it is the same with Web sites.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 623

Rule: Site construction must be truly solid—follow standards and conventions,
verify correct execution, and openly indicate limitations.

When mistakes in site construction do happen—and inevitably they will in such an
emerging field—acknowledge the problem and figure out how to address it. Do not try
to shift blame to tools or the medium. Skilled painters don’t blame their brushes, nor
should you blame your WYSIWYG editor because it generated faulty code. Either stop
using the editor, learn how to use it correctly, or fix any mistakes it makes. Also avoid
blaming the medium. The Web, with all its delivery problems, is what we have. Again,
the painter does not blame his canvas or his paint. Last and most important of all, do
not blame the users. While the painter screaming at people who don’t understand him
might be put up with as a temperamental artist, an engineer who berated his customers
for not knowing how to use his product would probably just end up out of a job. Web
sites aren’t art projects; they marry engineering and design, so tread carefully before
you start blaming users for not having the appropriate browser, connection, or the
sophistication to use your site properly. Address the problem and fix it to their liking.
We work for our users, not the other way around. The customer (or, more appropriately,
visitor) is always right—or at least must always feel right!

Rule: Acknowledge site problems and avoid placing blame on tools, the Web
medium, or users.

Browser Best Practices
The first aspect of Web technology to consider is the browser. As it is the interpreter of
our site, it is very important to understand a user’s Web browser and what capabilities
it has. The two most common browsers at the time of this book’s publication are
Microsoft’s Internet Explorer and Netscape’s Communicator/Navigator product.
Other browsers, such as Opera, are used, but not to the degree of the two most popular
browsers, so browser compatibility doesn’t seem a big deal to some designers. However,
there are numerous versions of each of the common browsers as well as betas—not to
mention just plain vocal users who might use something outside the mainstream and
then complain about compatibility. To address the problem of browser compatibility,
designers tend to take one of the following approaches:

■ Ignore the problem and assume everybody has the most common browser.

■ Warn the user that the site requires a new browser, but leave it at that.

■ Allow the user to self-profile and choose a version of the site that suits his
or her browser or situation.

■ Automatically detect and update pages to suit the browser and technology
being used.

■ Degrade seamlessly to the user’s capabilities.

TE
AM
FL
Y

Team-Fly®

624 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

To ignore the problem is not reasonable, unless you are running in a closed
environment like an intranet, or possibly an extranet, where you can define what
browsers the end users must have in order to use the site. On a public site using this
approach, visitors outside the browser range may have a poor experience, so often
users are warned through a message indicating technical or browser requirements:

Warning users of browser requirements is not necessarily the best approach, but
if you take it, clearly indicate the requirements and help users to find out how to visit
the site properly. If the visit will be catastrophic using their browser, you really should
lock them out of the site.

Tip: If relying on browser compatibility warnings, make the warnings clear and
informative.

A slightly better version of the browser warning approach is to offer choices to the
user, rather than simply warning them. This might be called self-profiling, because you
ask users to make a choice based upon their particular browser version or technology,
as illustrated in Figure 16-1. However, be careful with self-profiling, since you are
asking the user to make a choice, and a wrong choice may result in a poor viewing
experience. Further, understand that self-profiling may require that parallel sites for
different browsers be created and maintained.

It is obviously better to sense or address user capabilities directly and to custom-
tailor error messages or pages to the user, but carefully consider the implications of
doing this. Browser sensing isn’t always easy, and it may require a great amount of
conditional logic or multiple versions of the same content. With browser sensing taken
to extremes, one could imagine a dozen different versions of a site, running in parallel.

Browser Detection Basics
If you decide to go down the browser detection route, you need to decide first what
you want to detect, what you plan on doing once you detect something, and finally
how you are going to perform the detection.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 625

The most basic detection indicates the particular browser and version being used.
Generally, this information is retrieved by looking at the user-agent string associated
with the browser. This information is transmitted by the HTTP User-Agent header for

Figure 16-1. Self-profiling is a dangerous game

626 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

reading server-side programming, or it can be accessed via client-side technologies
such as JavaScript. The following script demonstrates accessing browser information
with JavaScript.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Browser Detect Example</title>

</head>

<body>

<script language="JavaScript" type="text/javascript">

<!--

var browserName = navigator.appName;

var browserVersion = parseFloat(navigator.appVersion);

var userAgentString = navigator.userAgent;

document.write("Your browser is "+ browserName + " "+

browserVersion+ ".");

document.write("
The user agent string is "+userAgentString);

//-->

</script>

<noscript>

Sorry, I can't detect your browser without JavaScript on.

</noscript>

</body>

</html>

The example rendered under some common browsers is shown in Figure 16-2.

Be careful with relying on the User Agent data, as it is easily forged directly in some
browsers and in others using an add-on. Users change the string, for fun or occasionally
because of privacy concerns, but it often limits their access to some sites or results in a
different version of the site being delivered.

Once you have detected the browser, then what to do? One possibility would be to
deny users who don’t meet a particular base requirement and redirect them to a special
error page. Alternatively, you might send them to a different page built for their
browser, or you might conditionally include different markup, style sheets, or other
technology to suit their particular environment. For example, the page here detects to
see if the user has a Microsoft or Netscape browser of at least 4.0 and redirects them to

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 627

the appropriate site version; otherwise it prints an error message of some sort. You
could, of course, substitute an alternative page version instead.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Browser Detect Example 2</title>

</head>

<body>

<script language="JavaScript" type="text/javascript">

<!--

Figure 16-2. Browser detection results under Netscape, IE, and Opera

628 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

var browserName = navigator.appName;

if ((browserName == "Microsoft Internet Explorer") ||

(browserName == "Netscape"))

majorBrowser = true;

else

majorBrowser = false;

var version = parseFloat(navigator.appVersion);

if (majorBrowser && (version >= 4))

location = 'index.htm';

// -->

</script>

<h1>Browser Error</h1>

<hr />

<p>This site requires a 4.0 or better version of a

Microsoft or Netscape compatible browser.</p>

</body>

</html>

Instead of page redirection, you might have conditional page logic and output different
page contents or style sheets based upon the accessing browser.

Browser detection as presented here is commonly performed—but sometimes
incorrectly. The reason is that the check is performed only at the home page of the
site. However, since most sites are porous, the user may enter the site at any publicly
accessible URL. Browser detections should really occur at any possible point of entry.

Tip: Perform browser detection upon any point of entry, not just on the home page.

Browser Capabilities Detection
Detecting for browsers allows you to sort users into groups, such as standards-
supporting browsers, CSS-supporting browsers, and so on. However, most developers
want finer grain control than that. You can roughly divide the useful detectable
information into four categories:

■ Technical Issues (JavaScript support and Java, plug-ins)

■ Visual Issues (color depth and screen size)

■ Delivery Issues (connection speed or type)

■ User Issues (language spoken or previous visitor)

Out of these four categories, you will most often end up using JavaScript to obtain
at least some of the required information. Microsoft has done its part to promote
improved browser detection in JavaScript using its client capabilities facility introduced

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 629

in Internet Explorer 5. Using client capabilities detection, it is easy to check various user
capabilities, including connection speed, as demonstrated here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html xmlns:ie>

<head>

<title>IE Specific Browser Detect</title>

<style type="text/css">

<!--

@media all { IE\:clientCaps {behavior:url(#default#clientCaps)}}

-->

</style>

</head>

<body>

<ie:clientcaps id="oClientCaps" />

<script language="JSCRIPT" type="text/javascript">

<!--

document.write("<h2>Screen Capabilities</h2>");

document.write("Screen Height: " + oClientCaps.height + "< /br>");

document.write("Screen Width: " + oClientCaps.width + "< /br>");

document.write("Available Height: " + oClientCaps.availHeight + "< /br>");

document.write("Available Width: " + oClientCaps.availWidth + "< /br>");

document.write("Color Depth: " + oClientCaps.colorDepth + "bit< /br>");

document.write("<h2>Browser Capabilities</h2>");

document.write("Cookies On? " + oClientCaps.cookieEnabled + "< /br>");

document.write("Java Enabled? " + oClientCaps.javaEnabled + "< /br>");

document.write("<h2>System and Connection Characteristics</h2>");

document.write("Connection Type: " + oClientCaps.connectionType + "< /br>");

document.write("CPU: " + oClientCaps.cpuClass + "< /br>");

document.write("Platform: " + oClientCaps.platform + "< /br>");

document.write("<h2>Language Issues</h2>");

document.write("System Language: " + oClientCaps.systemLanguage + "< /br>");

document.write("User Language: " + oClientCaps.userLanguage + "< /br>");

//-->

</script>

</body>

</html>

A rendering of this example in Internet Explorer, which appears in Figure 16-3,
shows that nearly every bit of information necessary to customize a site for a user is
easily found.

Browser Detection in Practice
There are a few problems using browser detection in the way described. First, you have
to make sure JavaScript can even be executed. Therefore, you may want to do some
basic browser detection using server-side technologies, first looking at the user-agent
string sent and then probing more deeply using JavaScript, if it is on. The next problem
has to do with saving all the hard detection work performed. You should save this
information to a cookie and then detect only those features that have changed. You will

630 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 16-3. Explorer’s client capabilities in action

also have to make sure that your detection is fail proof by considering all the things
that could go wrong, like script being off, a new browser version coming out, and so
on. Finally, you’ll have to be a browser capabilities expert. Given the number of browsers
out there, this can be rather difficult. Just counting the major versions of the browsers,
you’ll find literally dozens. When you consider older browsers or the emerging device-
based browsers, like phones and PDAs, the information will quickly become a lot to
deal with. Fortunately, if you need to deal with all sorts of browser conditions, help
is out there. Consider looking into browser detection and control software such as
BrowserHawk (http://www.browserhawk.com).

HTML Best Practices
After the browser itself, developers are often very concerned with the various technical
aspects supported, the most fundamental technology being HTML. Despite being the
base technology on which Web pages are built, HTML is actually poorly understood
by a good number of its practitioners. Many commercial editors produce malformed
markup, and tutorials and books on the subject contain numerous and significant
falsehoods. The reason is that the rules of HTML are not enforced, which leads to
complacency on the part of developers. Web browsers are the root of the problem.
Traditionally, browsers have been permissive in what they allowed to render. In fact,
just about anything renders. Go ahead and invent a new element, like <bogus>:

<bogus>What happens?</bogus>

The browser isn’t going to complain when it sees this. Browsers typically aren’t
going to complain if you don’t follow the rules. Forgot to quote your attributes? No
problem. Close tags not used? No big deal. Syntax is not enforced, and when browsers
read pages that have errors, they will make assumptions on how to fix flawed markup
or just plain ignore things they don’t understand. This environment has led developers
to take a loose, browser-focused approach to building Web pages. Unfortunately, HTML
does have rules, and when they aren’t followed, bad things can and do happen. HTML
serves as the foundation of a Web page—if you build on top of shaky foundation, things
are bound to fall down sooner or later. This isn’t idle chatter—once you move to XHTML,
these rules really may be enforced by the browser!

Rule: Write pages using standard HTML 4 or XHTML 1.0 or as much as the
browser can support.

The various rules of HTML are described in Appendix C, as well as in the companion
text HTML: The Complete Reference.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 631

Doctypes
Regardless of how the browsers have interpreted things in the past, the syntax of
HTML and XHTML is now very well defined by a document type definition, or DTD.
In fact, all Web pages should begin with a <!DOCTYPE> declaration, which is used to
indicate the particular version of markup being employed in a page. Table 16-1 shows
the most common HTML DTD indicators. You might recall having noticed them at the
top of the source of many Web pages.

On occasion you may see other HTML doctype indicators, notably one for the 3.0
standard that was never really adopted in the Web community.

632 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Version <!DOCTYPE> Declaration Comments

2.0 <!DOCTYPE HTML PUBLIC
"-//IETF//DTD HTML//EN">

This version of HTML is
equivalent to what is
supported by early versions
of Netscape. Few sites use
strictly HTML 2.0, given its
limited capabilities.

3.2 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 3.2
Final//EN">

This version of HTML is
similar to what is supported
by 3.x generation browsers.
Many of the acceptable
browser-introduced
proprietary tags were adopted
for this version of HTML.

4.0 Transitional <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0
Transitional//EN"
"http://www.w3.org/TR/REC-
html40/loose.dtd">

The transitional version
of HTML 4.0 is roughly
equivalent to what 4.x
generation browsers support.
However, few browsers at the
time of this book’s writing are
fully HTML 4.0-compliant,
despite the specification
having been out for more than
three years. The transitional
form of HTML 4 preserves
most of the presentational
markup aspects commonly
employed by Web designers.

Table 16-1. Common HTML DOCTYPE Declarations

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 633

Version <!DOCTYPE> Declaration Comments

4.0 Frameset <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01
Frameset//EN"

The frameset DTD is an
auxiliary definition to deal
with the use of frames in a
document. It defines only the
frame syntax and otherwise
relies on the transitional DTD.

4.0 Strict <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML
4.0//EN">

The strict version of HTML 4
removes nearly all the
presentation-oriented markup
elements in favor of using CSS
for page formatting. This
greatly simplifies the language,
but it forces the developer to
rely on CSS, which is not
properly supported in 4.x or
even 5.x generation browsers.

4.01 Transitional <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01
Transitional//EN">

A minor update release of the
4.0 specification that addresses
errors and oversights in the
original release.

4.01 Frameset <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01
Frameset//EN">

The update release of the
frameset auxiliary DTD.

4.01 Strict <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML
4.01//EN">

A minor update release of
the 4.0 strict specification
that addresses errors and
oversights in the original
4.0 specification.

XHTML 1.0 Transitional <!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0
Transitional//EN" "DTD/
xhtml1-transitional.dtd">

The XHTML 1.0 version
of the HTML 4 transitional
specification.

XHTML 1.0 Strict <!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0
Strict//EN"
"DTD/xhtml1-strict.dtd">

The XHTML 1.0 version of the
HTML 4 strict specification.

XHTML 1.0 Frameset <!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0
Frameset//EN"
"DTD/xhtml1-frameset.dtd">

The XHTML 1.0 version
of the HTML 4 frameset
specification.

Table 16-1. Common HTML DOCTYPE Declarations (continued)

TE
AM
FL
Y

Team-Fly®

The doctype defines HTML syntax very carefully. Making sure that a document
complies with the indicated doctype—basically that it follows the rules—is called
validation. Producing valid markup is not a given, and more than a few Web tools
produce invalid markup. Fortunately, many popular Web editors also offer built-in
validation. Online validation is also possible using a site like http://validator.w3.org,
and stand alone validators such as the CSE Validator (http://www.htmlvalidator.com)
are also available. To understand the benefits of validation, consider the HTML shown
here. This example has numerous errors, including proprietary attribute usage, missing
quotes, bad nesting, tags used in inappropriate ways, and tags that aren’t closed.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Messed Up!</TITLE>

</HEAD>

<BODY BGPROPERTIES="fixed">

<H1 ALIGN="center">Broken HTML

<HR>

<P>Is this <I>correct</I>?

Visit DemoCompany

<PRE>

Should we do this?

How about entities © ?

</PRE>

</BODY>

<HTML>

Running the page through a validator catches the errors, as shown in Figure 16-4.
The benefit of validation can’t be overstated. Remember that HTML will serve as

the foundation of a Web page. Other technologies like JavaScript and CSS rely on
HTML to be well formed, so it is best to have it as error free as possible.

Rule: Validate all HTML pages.

The Doctype Switch
One new wrinkle to the use of the doctype declaration is known as the doctype switch.
The change from syntactically loose browsers to standards-focused browsers requires
the ability to provide both backward and forward compatibility for Web pages. This is

634 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

accomplished through the doctype. The 6.0 versions of the two main browsers now
support both a standards mode and what is known as a quirk mode. The quirk mode
allows for all the various HTML tricks and looseness commonly employed in Web
pages. The browser determines the mode for reading pages by the doctype. Generally,
if the doctype is missing, the browser will enter into quirk mode. Also, if the doctype
indicates an older version of HTML, such as 3.2, is in use, it enters into quirk mode.
However, if a more modern version of HTML is indicated, such as XHTML, the
browser will switch into standards mode. This switch between modes has caused more
than a few headaches for designers who didn’t pay extremely close attention to their
markup. In some instances, the entire box model of the page is disrupted, and visual
distortions can occur—so suddenly the rules really do matter!

Rule: If you use a doctype, specify it correctly and adhere to it.

Move to XHTML
The new version of HTML, called XHTML, became a W3C Recommendation in
January 2000. XHTML is a reformulation of HTML using XML, and it attempts to
change the direction and use of HTML to the way it ought to be. So what does that
mean? In short, rules now matter. In the past you could feed your browser just about
anything and it would render. XHTML ends all that. Now, if you make a mistake, it
matters significantly: the page may have problems or possibly not render at all. The

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 635

Figure 16-4. Validation catches HTML errors

rules are fortunately pretty simple and are covered in Appendix C. Briefly, they include
things like

■ You must have a doctype indicator and conform to its rules. For example:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">.

■ You must have <html>, <head>, and <body>.

■ <title> must come first in the <head> element.

■ You have to quote all your attributes, even simple ones like <p align=left>.

■ You must nest your tags properly, so <i>text</i> is ok, but
<i>text</i> is not.

■ You cannot omit optional close tags, so <p> cannot stand alone; you must
have <p> and </p>.

■ Empty tags must close, so tags like <hr> become <hr />.

■ You have to lowercase all tag and attribute names.

There’s more, but these are most of them. See the XHTML specification
(http://www.w3.org/TR/xhtml1/) for all the rules. Except for a few changes in
syntax, like the empty tag changes and the forced lowercase, just do your HTML
correctly as you should have done before.

While XHTML doesn’t appear to be a big deal, it is. Enforcing rules is going to
cause problems, and most pages will have to be restructured somewhat. So the big
question is will this really come to pass? If it does, XHTML will probably not sweep
the Web in a short period of time. In some sense, the technology should be a big deal,
since the payoff of well-formed HTML, actually XHTML, is huge—easier document
conversion, improved editors that can generate clean markup, a continued movement
towards the separation of Web page presentation from structure, and even automated
extraction of content, since pages can be precisely parsed. Yet what will happen when
the first XHTML-enforcing browser is released and it doesn’t render 99 percent of the
pages on the Net? Browsers already include a compatibility mode for some old markup
handled through the doctype switch, as discussed previously. Designers aren’t getting
away from old HTML anytime soon. You might call HTML the DOS of the Web,
always lurking around some place. However, moving to XHTML is not difficult, and
the benefit is great. With careful formatting, normal Web pages can be written to
conform to XHTML. Tools like HTML Tidy (http://tidy.sourceforge.net/) and editors
should make the job of creating new documents and migrating old ones easier.

Suggestion: Conform to XHTML today to “future-proof” Web pages.

636 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 637

Avoid HTML/XHTML for Presentation
Another concern for designers is that with the focus on standards-oriented HTML,
particularly XHTML, and the introduction of CSS, there really is a different way of
building pages. In the past, HTML has been used for laying out pages visually. This
was primarily accomplished using HTML tables. Unfortunately, HTML is not really
designed with layout in mind, and designers have struggled to force layouts. A variety
of techniques have been used to try to overcome HTML’s layout limitations, including

■ HTML tricks and misuse of invisible pixels and

■ Using proprietary browser-specific elements

■ Tables

■ Putting most layout and content in images

■ Using binary formats like Flash to avoid HTML entirely

All these approaches have significant problems. Using browser-specific elements
only works when the user has the appropriate browser. Putting layout and text entirely
within images is not download friendly, accessible for those who can’t see images, easy
to update, or scalable to different resolutions properly. While file formats like Flash
solve the scaling problem, they too are not accessible and are still unfriendly download-
wise. Further, updating a site with content in image format is not easy. The use of trick
HTML is very popular, but it requires extreme care on the designer’s part, since not all
browsers support the various work-arounds in the same manner. Layout using HTML
tables is probably the only reasonable solution, but it produces excessive markup that
can be difficult to update.

At its heart, HTML is supposed to be a logically oriented language to structure
documents. When using an element like <h1>, we aren’t saying make an object big;
we are saying make it a headline. How the browser decides to present things is
determined separately. Even a tag as simple as <p> that defines a paragraph says
nothing about whether blank lines should be used after paragraph, how many blank
lines should be used, or if the paragraph should be indented. Consider something as
simple as formatting a paragraph to be indented 100 pixels. Using traditional HTML
for presentation, you might have something like:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>

<title>HTML for presentation</title>

638 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

</head>

<body>

<table border="0" cellpadding="0" cellspacing="0">

<tr>

<td width="100"> </td>

<td><p>I am a paragraph

and I am indented around 100 pixels.</p></td>

</tr>

</table>

</body>

</html>

while using CSS in conjunction with XHTML you would have

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>CSS for layout</title>

<style type="text/css">

<!--

#para1 {position: absolute;

left: 100px;

font-size: 150%;

font-family: Arial, Helvetica, Sans-serif;}

-->

</style>

</head>

<body>

<p id="para1">I am a paragraph and I am indented around 100 pixels.</p>

</body>

</html>

Notice that the HTML in the second example is much simpler. The presentation
and the structure of the document have not been mixed together. This will provide
significant benefits when changing presentation later.

However, it should also be said that quickly embracing an all-CSS layout does
have some problems. First, the browsers are very quirky in their handling of complex
layouts. Second, users may turn off or override your CSS and ruin the layout. Of course,
this may be what they want. Last, there are still users who won’t have CSS-capable

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 639

browsers. Because of this, some designers still rely on at least basic HTML formatting
or continue to use layout for basic page structure and improve upon it using CSS. If
your audience allows it, you should move to CSS.

Suggestion: Try to separate visual layout from HTML structure using
CSS if possible.

Moving away from using HTML for presentation generally requires a shift to a
more logical tagging style for HTML documents. Instead of relying on headings like
<h1> to size things, think about making headings and styling them later. Use tags like
 or instead of or <i> to provide emphasis to text. Use <div> and
<p> tags liberally and try to set id and class attributes to associate meaning with the
markup. Finally, stay away from visual presentation attributes and tags such as
unless you are trying to provide backward compatibility.

Suggestion: Use logical markup elements (for example, vs. <bold>).

Miscellaneous HTML Best Practices
There are a variety of other best practices for markup beyond the themes presented
earlier in this section. We present a few of the more common ones here, with a brief
discussion of each, but be aware that the ultimate best practice for markup languages
like HTML or XHTML is to simply treat their syntax as seriously as you would a
programming language.

Even When Writing Traditional HTML, Lean Toward XHTML
In some cases, because of browser compatibility problems, you may need to avoid
creating documents with XHTML. For example, some sites avoid pure XHTML because
using the <?xml?> directive within an XHTML document will cause problems with
many 3.0 generation browsers. Most will write pages that do not use this directive.
If you are a conservative site builder not going to move to XHTML soon, consider at
least following its basic tenets, such as using lowercase, quoting, tag closing, and a
<!DOCTYPE> indicator. This should improve the situation with compatibility and
minimize the work necessary to convert markup in the future.

Watch Out for HTML Space Handling Quirks
Browsers will collapse white space between characters down to a single space.
Consider this markup:

T e s t o f s p a c e s

T e s t o f s p a c e s

T

640 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

e s

t o f s p a c e s

As shown below, all the spaces, tabs, and returns are collapsed to a single element:

In some situations, HTML doesn’t collapse white space characters. For example, in
the case of the <pre> tag, white space is not collapsed. Also, white space is preserved
within the <textarea> tag when setting default text for a multi-line text entry field.

Subtle errors tend to creep into HTML files where white space is concerned; be
especially careful with spacing around and <a> elements. For example, consider
the markup here:

<img src="democompany.gif" width="221" height="64"

border="0" alt="Demo Company" />

Notice the return character after the tag just before the closing tag. Under
some browsers, this will result in a small little “tail” to the image, often referred to as
a tick, as shown here:

Some browsers will fix the tick problem, and others won’t. What is interesting is
that the browsers with the tick are actually interpreting the HTML specification
properly. If you have a link like

Note tickmark

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 641

Visit Demo Company

you would expect the space between words to be underlined—so why wouldn’t other
white space characters be underlined as well? Many of the recent versions of browsers
eliminate ticks by making assumptions, but at what cost?

Avoid Using for Spacing
One troubling aspect of HTML spacing is the use of the nonbreaking space entity, or
 . Some might consider this the duct tape of the Web—useful in a bind when a
little bit of formatting is needed or an element has to be kept open. While the
entity can be used in many useful ways, such as keeping empty table cells from
collapsing, designers should avoid relying on it for significant formatting. While it is
true that markup like

 Look, I'm spaced!

w:// create space in some text, the question is, exactly how much? In print media,
using spaces to format is dangerous and things rarely line up. It is no different on
the Web.

Comment and Format for Readability
Given that HTML is not space sensitive, many developers will format their code for easy
readability and update and comment complex structures, such as tables. For example,

<!-- Sample Table -->

<table>

<!-- Row 1 -->

<tr>

<td>Lorem</td>

<td>ipsum</td>

</tr>

<!-- Row 2 -->

<tr>

<td>Lorem</td>

<td>ipsum</td>

</tr>

</table>

is obviously far more readable than

<table>

<tr><td>Lorem</td><td>ipsum</td>

</tr>

<tr>

<td>Lorem</td>

<td>ipsum</td></tr></table>

even though both are equivalent. However, be careful not to reveal information that
may be considered sensitive if you are not removing your comments before delivery.

Crunch for Delivery
The inverse of the comment-and-format approach is to remove white space and other
nonessential items like comments to reduce file size. This is often referred to as HTML
crunching. HTML crunching, as illustrated in Figure 16-5, can improve file size
significantly for complex files. However, when using tools to automatically crunch

642 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 16-5. Crunched HTML reduces file size

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

markup, always test carefully, as crunched files do not always render as intended.
Further, make sure to keep original readable source around for future editing.

Specify Character Set Usage Explicitly and Be Cautious of
Character Entities
Make sure that characters, particularly higher number character entities, render properly
in browsers by setting the language explicitly with a <meta> tag, as shown here:

<meta http-equiv="content-type" content="text/html;

charset=iso-8859-1" />

Failing to do this may result in some characters not being rendered properly, often
appearing as boxes. Further, be aware that many browsers, particularly older ones,
do not necessarily implement higher value character entities such as mathematical
operators, arrows, and various dingbats, despite their definition in the HTML 4
specification.

Use <meta> Tags Liberally
Use numerous <meta> tags to specify search information and related meta
information, like this,

<meta name="Keywords" content="Demo Company, Robots, Fake Example" />

<meta name="Description" content="Demo Company is a fake company that

is used to demo various Web design and technology ideas in books.">

<meta name="Author" content="Thomas A. Powell" />

and also to specify HTTP header information for cache control, page refresh, content
rating, and so on:

<meta http-equiv="expires" content="Wed, 5 June 2002 08:21:57 GMT" />

See Chapter 17 for more information on these delivery-related issues.

Use Consistent Naming Conventions
One aspect of HTML document construction that can be contentious for some designers
is whether to use an .htm or an .html file extension. There is some benefit to using .htm,
since it is slightly more transportable, but the reality is that it really doesn’t matter. The
only important thing is to be consistent. It is sad but somewhat amusing to watch

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 643

TE
AM
FL
Y

Team-Fly®

644 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

developers struggle with files called index.htm and index.html in the same directory
and not understand why changes are hot showing up. Save yourself the aggravation
and be consistent in whatever you choose. Note that naming conventions go beyond
simple file extensions; you should also consider the following:

■ Use common directories like /images, /styles, and /scripts; this helps to keep
sites organized and improves the possibility of caching site content.

■ Use lowercase filenames without special characters, including dashes or
underscores.

Some servers are case sensitive, so lowercasing everything makes sites a little
more portable. Many special characters will be encoded in an URL, and while
some characters, like dashes, may seem harmless, they make URLs slightly
harder to type. In the case of underscores, they are often mistaken for spaces.
The simple solution is just to run long URLs together without special characters,
but again, filenames should probably be short and easy to type and spell.

■ Come up with a naming scheme for HTML tags using name, id, and class
attributes.

The last naming suggestion could be taken further to state that naming schemes for
markup objects should be not only page-unique but also site-unique to make it easy to
move content from one document to another.

Use HTML Templates
Rather than make up markup for pages individually, consider using set templates. This
will both ease production and lead to a more maintainable and potentially usable Web
site. Why make ten different press releases, when a single press release template can be
created and modified? Unfortunately, many tools and design books alike tend to take a
page-at-a-time approach. Avoid doing this and instead create generic templates. Using
a template will speed up development and make resulting pages more consistent in
style and structure.

Consider putting in a particular doctype, style sheet links, comments, common
meta tags, and other sitewide items in your template, as illustrated in the following
example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>DemoCompany Template</title>

<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

<meta name="Keywords" content="" />

<meta name="Description" content="">

<meta name="Author" content="" />

<meta name="Create Date" content="5/15/99" />

<meta name="Last Modification" content="1/5/02" />

<!--

Specific Page Comments: Used SuperDuperEdit 7.0 to build the page.

-->

<link rel="stylesheet" href="styles/global.css" media="screen" />

<link rel="stylesheet" href="styles/printer.css" media="print" />

</head>

<body>

...

</body>

</html>

Use the Correct Authoring Tool for the Job
What’s interesting about HTML is that, quite often, Web designers are more concerned
with how they create HTML documents than with how well they do it or how
appropriate their method of creation is. There are pros and cons for every method of
page creation, from hand editing of markup to using the latest WYSIWYG editor. Each
of the basic methods with some pros and cons are presented in Table 16-2.

The reality is that there are probably occasions to use each of these approaches for
creating HTML documents. For example, making a quick change of a single tag is often
fastest in a pure text editor. Saving out large existing print documents might make
sense using a translator. Precision coding of an HTML template might best be performed
within a tagging editor. Building a modest site in a visual manner is easily done using
a WYSIYWG editor. Always consider the applicability of the tool to the job before
applying it.

The tools change all the time, but at the time this book was written the HTML tools
mentioned in Table 16-3 are popular. Certainly, many tools exist, all with their own
features and benefits, but given their use at large-scale Web firms, the combination of
Dreamweaver and a text editor is suggested for professional developers. An updated
short list of some of the popular tools is maintained online at http://www.webdesignref
.com/resources.

In the end, regardless of the tool used, always remember the following tip:

Tip: Don’t blame the tool; fix the markup.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 645

646 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

CSS Best Practices
Cascading style sheets (CSS) offer an alternative to HTML-based presentation and are
now being embraced by the Web design community. However, adoption of CSS does
require some changes from Web developers. Unlike traditional HTML, CSS is much
more syntax sensitive, and small mistakes can result in complete rule failure. Thus,
designers must be aware of CSS specifications and check their rules.

Rule: Follow CSS1 standards and validate rules.

Method Example Pros Cons

By hand Coding pages with
Notepad

+Great deal of control
over the HTML

+Can address bugs and
new HTML elements or
CSS properties
immediately

–Slow
–Error prone
–Requires
intimate
knowledge of
HTML elements
and CSS
properties

–No direct visual
representation

Translation Saving from another
tool, such as
Microsoft Word

+Quick
+Simplifies conversion
of existing documents

–Produced HTML
is often
problematic

–Still requires
editing to add
links and clean
up problems

Tagging Editor Using HomeSite +Great deal of control
+Faster than hand editing
+Provides help
addressing errors and
writing structured HTML
or correct CSS

–Can be slow
–Requires intimate
knowledge of
HTML and CSS

WYSIWYG
Editor

Using FrontPage +Works on visual
representation of page

+Requires no significant
knowledge of HTML
or CSS

+May be faster to develop
page layouts

-Often generates
incorrect HTML
or CSS

-Precise control
of layout often
requires direct
markup editing

Table 16-2. Methods of HTML and CSS Creation

An online validator for CSS can be found at http://jigsaw.w3.org/css-validator/.

Unfortunately, even when following the rules, significant bugs exist in modern
browser implementations, and rendering quirks abound. Note the vast rendering
differences under various browsers displayed in Figure 16-6. Sites like http://
style.webreview.com attempt to track the moving target of browser CSS support.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 647

Product Platform(s) URL Comments

Dreamweaver Windows
Macintosh

http://www
.macromedia.com/

A good visual design
tool that balances
WYSIWYG design
capabilities with code
editing. Strong CSS
and DHTML support.
Now includes the basic
code editing features
of the old Allaire/
Macromedia HomeSite
product.

GoLive Macintosh
Windows

http://www.adobe.com
/products/golive/

Very popular with the
Macintosh set, this tool
has a visual designer-
oriented interface.
Some generated
markup problems have
limited its popularity
with strict standards
developers.

FrontPage Windows http://www.microsoft.
com/frontpage

Popular with the
small developer
and internal corporate
development crowds.
It has improved
greatly, but still
has a reputation for
generating bad or
too Microsoft-specific
pages.

Table 16-3. A Selection of Popular HTML Development Tools

648 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

In the future, browsers should support CSS properly, but for now developers
should be aware of CSS implementation problems and test and track browser support
for CSS religiously.

Rule: Test CSS rules very carefully.

Figure 16-6. Significant bugs and rendering differences exist between browsers

Internet Explorer 6.0
Mozilla 1.0

Netscape 4.7

Opera 6.0

There is a great deal to know about CSS, and new features are being added all the
time. CSS1, the first style sheet specification, defines more than 50 properties, and CSS2
defines over 50 more. Very important, CSS2 incorporates the positioning facilities
known as CSS-P (supported in the 4.x generation of browsers and beyond). A new
version called CSS3 plans on further developing the presentation capabilities, as well as
integrating better with other technologies, including scripts and vector-based graphics.
Table 16-4 provides a quick summary of the various CSS specifications that can be found
at http://www.w3.org/style.

Consider HTML Usage
It is important to keep in mind that HTML is the underlying foundation of a Web page.
Style sheets, in fact, rely directly on the proper use of HTML/XHTML, or even XML
elements. CSS does not replace HTML; it is a separate technology that binds directly to
HTML tags. However, style sheets will not necessarily work predictably if bound to
malformed markup.

Rule: Bind style only to correct markup.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 649

Version Overview of Features

CSS1 * Text handling, including fonts, sizing, style, and spacing
* Background and colors
* Margins, borders, and padding control of objects
* List styles

CSS2 * Printing specific features
* Aural renderings
* Downloadable fonts
* Positioned elements (CSSP)
* Table support
* Support for CSS with XML
* Some interface control, such as cursor display
* Limited behaviors, such as hover effects on links

CSS3 * Support for vertical running text
* Multicolumn layout facilities
* Increased support for associating behaviors and styles
* Integration with graphics, color, and font technologies

Table 16-4. CSS Versions Overview

650 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

While it is obvious that we want to attach meaning to logical tags, be aware that
this does not give you license to use CSS to obfuscate HTML markup. Rules that
change the limited presentation of some tags should not be used. For example, here
we make tags act unusually and remove all forms of link decoration:

b {font-style: italic; font-weight: normal;}

a {text-decoration: none; color: black;}

If there is some overriding reason to use such rules, make sure they are commented.

Suggestion: Be careful when overriding default HTML tag renderings.

Because of the problem with default tag meanings in HTML, you may find the
<div> and tags particularly useful. Recall that the <div> tag is a block tag
that has no default rendering, so it is useful in styling large sections of a document:

<div style="background: lightblue; font-weight: bold; color: black;">

<p>This paragraph is highlighted in blue.</p>

<p>So is this one.</p>

<p>Not to mention this final paragraph...</p>

</div>

Similarly, the tag has no predetermined meaning or rendering, but as an
inline tag includes no carriage return, so it is useful when attaching style information
to just a few words or letters, like this:

<p>Calling out <span style="background-color: yellow; font-weight: bold;

color: black;">special sections of text isn't hard with SPAN</p>

Include CSS Carefully
There are a variety of ways to include CSS in an HTML document, and all have pros
and cons that should be carefully weighed before an approach is taken.

First, you can link to an outside style sheet by specifying a linking relationship to
an external style sheet in the head section of an HTML document:

<link rel="stylesheet" href="styles/global.css" media="screen" />

External style sheets can be linked from any location. When using local style sheets,
designers should set up a central directory to store style definitions.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 651

Tip: Keep all your style sheet documents in a central styles directory.

A remote style sheet could also be referenced using an URL, such as http://
www.democompany.com/styles/corpstyle.css. Designers should be careful not to
rely on remotely hosted style sheets that may move or incur a download delay. Web
designers should always try to use external style sheets, particularly if styles are going
to be similar from page to page. An external style sheet facilitates update and is more
bandwidth friendly than document-wide style (to be discussed next), since a browser
can cache an external CSS file.

Rule: Use external style sheets whenever possible.

The second way to include an external style sheet is to embed it. When you embed
a style sheet, you write the style rules directly within the HTML document. Document-
wide style is a very easy way to begin using style sheets. It involves using the <style>
tag placed within the head of an HTML document. Because multiple forms of style
sheets may be included (beyond the standard CSS format), you should still include
the type attribute to indicate which format of style sheet you are using, regardless
of the browser’s default support for style sheet technologies. You can have multiple
occurrences of the <style> element within the head of the document, and you may
even import some styles, link to some style rules, and specify some styles directly.

One concern with embedded style sheets is that not all browsers understand style
information. To avoid problems, comment out the style information by using an
HTML comment, such as <!-- -->, so that the comments aren’t displayed onscreen
or misinterpreted by older browsers.

Rule: Always comment out document-wide style blocks to avoid interpretation
by older browsers.

A simple example of a document-wide style is shown here:

<style type="text/css">

<!--

body {background-color: white; font-size: 16pt;}

h1 {color: red;}

/* other style rules here */

-->

</style>

Note that document-wide styles have a noticeable disadvantage in comparison to
linked styles in that they have to be copied into each page that uses them. This makes
updating sites that use document-wide styles a little harder and does not effectively
use the browser’s local cache. However, many designers continue to use document-
wide styles because they encounter bugs with linked style rules in some browsers.

The final way to use CSS is to apply inline style to specific elements using the
common style attribute:

<p style="color: red; font-size: 14pt;">This is red text at 14pt.</p>

This sort of style information doesn’t need to be hidden from a browser that isn’t
stylesheet–aware, because browsers ignore any attributes that they don’t understand.
However, it does not achieve many of the major benefits of using CSS, because the
style rules are closely bound to the tag. In fact, one would argue that this approach is
not much better than using new tags to describe page appearance. However, some
designers use CSS in this manner to provide a bridge from old HTML markup habits to
CSS. For example, using inline style, you might overload HTML presentation elements
like the tag. For example, try to set text size to around 22 points. You can come
close with HTML browsers—and get it just right in CSS browsers—like this:

HTML comes close; CSS hits it right

on!

A variety of CSS properties like font sizing can be used for CSS-oriented browsers,
and HTML can be used for older ones.

Suggestion: If backward compatibility is a concern, use CSS to overload HTML
presentation tags like .

Address CSS Browser Issues
Some designers use CSS just for minor page improvements, while others style their
whole page with it. However, if CSS is used aggressively and older browsers access the
site or users turn off style sheet support, the results can be catastrophic, as shown here:

652 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

CSS on CSS off

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 653

As you can see, when positioning and other advanced CSS rules aren’t supported,
the difference can be dramatic. Under older browsers, the layout completely fails;
even under some modern browsers, the layout is significantly altered. Because of the
problems with CSS support, designers should use script to detect the browser in use,
or they can rely on older technology like tables, unless only CSS compatible browsers
hitting the site can be guaranteed.

Suggestion: Avoid relying solely on style sheets for layout unless
non-CSS–compliant browsers can be limited or detected and dealt with.

Another way to include CSS in a page is to depend on it less. Consider setting
double spacing in a page using a CSS property. If the browser picks it up, great; if not,
users won’t know what they are missing. However, if you must rely on CSS for page
layout, then use either browser detection or clearly labeled error messages to account
for non-CSS–aware browsers and users who disable CSS. For example, consider using
the following HTML markup with an inline style rule:

<div style="display: none;">

<table width="100%" bgcolor="red" align="center">

<tr><td align="center">

CSS Required for proper site display

</td></tr>

</table>

</div>

This table will only show up when the user’s browser ignores the style directive.
We could clean this up with a class rule and provide links to more information about
CSS support, but as it is, the demonstration shows that it is possible to inform users
about CSS requirements easily. The example below shows our hack in place:

CSS on CSS off

TE
AM
FL
Y

Team-Fly®

654 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Account for CSS being off in browsers.

Finally, make sure that you address browser-CSS compatibility issues. Probably the
best way to do this is to insert style rules programmatically, either on the server side or
using JavaScript on the client side. For example,

<script type="text/javascript">

<!--

if (document.layers)

document.writeln('<link rel="stylesheet" href="nav4.css" />');

else

document.writeln('<link rel="stylesheet" href="standard.css"

/>');

//-->

</script>

<noscript>

<link rel="stylesheet" href="standard.css" />

</noscript>

will insert a different set of style rules for Netscape 4 users than for other site visitors. In
the case of being unable to run scripts, we would insert the standards-based sheet and
hope for the best.

Rule: Use technologies like JavaScript to account for CSS implementation
differences or provide different style sheets based upon browser.

Miscellaneous CSS Best Practices
Despite its age, CSS is still an emerging technology for many Web developers, and
many best practices should be second nature but simply are not at the time of this
book’s writing. We will quickly cover some obvious best CSS practices, as well as a
few that are rarely employed.

Consider Using Relative Measurements
Given that users may wish to increase their font size to improve readability, you
should consider using relative measurements in percent (%) or em measurements
rather than pixels (px) or points. This way, font may scale as users adjusts their
browser settings. It is even possible to scale font with window size if you like.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 655

Consider Using Alternative Style Sheets
Some browsers, such as Mozilla 1.0, allow users to easily select among many available
styles for a page. Specifying an alternative stylesheet is easy with the <link> tag. Just
set the rel attribute’s value to “alternate stylesheet” and make sure to set a title so the
user knows what the style is.

<link rel="alternate stylesheet" type="text/css" media="screen"

title="big fonts" href="/styles/bigfonts.css" />

<link rel="alternate stylesheet" type="text/css" media="screen"

title="fancy fonts" href="/styles/fancyfonts.css" />

The alternative style sheets will then be selectable under Mozilla 1.0’s View menu,
provided that the .css files are located where the code indicates.

Alternate style sheets might be used to provide different themes for a page or
improve usability for those users who may be visually impaired.

Provide Printer Style Sheets
CSS2-aware browsers can support printer style sheets, which allow designers to change
the look of the printed page as compared to what is shown on screen. Printer styles
might be referenced like this:

<link rel="stylesheet" type="text/css" media="print"

href="/styles/print.css" />

656 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

When using printer style sheets, since some browsers do not support them, you
might want to provide a link to a special print page. However, you should try to make
sure that what prints in a CSS2-aware browser is the same as what is on the special
printing page.

Match CSS Selector Cases
CSS is not specific, necessarily, to HTML and can be used with any arbitrary markup
language. The selectors used in a style sheet should match tags exactly. So if you are
using XHTML and case all tags lowercase, you should use lowercase selectors, even if
the browser will work using uppercase.

Use id and class Rules Properly
The value of a particular id attribute is supposed to be unique to the tag, while a class
value may be used on many tags. While this may seem obvious, many CSS developers
continually use id values multiple times or use class on a single unique tag because
browsers will render appropriately. This is just poor style and will cause problems
once scripting is used to access the tag object.

Comment, Format, and Organize CSS Rules
As with HTML, if you plan on hand-editing style sheets, they should be neatly formatted
and commented using the /* */ syntax. Matching the braces for rules can also help
improve readability. Be careful about organizing your CSS rules. Some document
authors may wish to group various selectors together or even alphabetize rules by
selector—be careful, as the cascade relationships of rules can spoil your organization
scheme.

Compress Style Sheets
CSS is also like HTML in not being terribly dependant on white space; thus, rule files
can be crunched by removing white space characters. CSS rules can be further reduced
by shorthand rules. For example, many rules for fonts, backgrounds, borders, and so
on have a master rule that can set many properties at once. So, instead of

p {font-weight: normal;

font-size: 16pt;

font-family: Arial, Helvetica, Sans-serif;

line-height: 150%;}

you might write

p {font: normal 16pt/150% Arial, Helvetica, Sans-Serif;}

The only downside to using shorthand rules is that it can be difficult to find syntax
errors in complex compound rules.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 657

XML Best Practices
As we already know, traditional HTML isn’t perfect, but it works pretty well, particularly
if you consider the millions of documents created by people all over the world with
varying markup knowledge levels. Yet, HTML does have two major weaknesses—it
does not enforce rules, and it is not extensible.

As mentioned earlier, browsers do not strictly enforce HTML rules. While this
makes it easy for mere mortals to create documents, it makes it difficult for programs
to read our inconsistent results. This could have serious ramifications if structure were
important. Imagine if you created an electronic invoice in HTML to send to a customer.
The customer might write a program to read the invoice and automatically submit the
appropriate information to their accounts payable system. However, their program
would have to assume a particular structure for the document. What happens if you or
your editor changes the structure of the HTML invoice? Obviously the client’s program
breaks. Even without changing structure, just the loose, imprecise nature of HTML
could make pulling apart the document a difficult chore.

The second problem with HTML, that it’s not extensible, means that we can’t
define our own elements. Consider again the idea of the electronic invoice. If a tag
were defined called <TOTAL>, it would be pretty easy to parse the document and find
the amount owed. A whole range of tags could be defined for the invoice language,
including <ADDRESS>, <RATE>, <DESCRIPTION>, <HOURS>, <TAX>, and so on.
We might get so excited about our language that we name it IML, for Invoice Markup
Language. We could even create a simple document in our language, like so:

<?xml version="1.0"?>

<INVOICE>

<TITLE>Invoice</TITLE>

<CUSTOMERINFO>

<NAME>Demo Company</NAME>

<ADDRESS>

<STREET>2105 Garnet Ave., Suite E</STREET>

<CITY>San Diego</CITY>

<STATE>CA</STATE>

<ZIP>92109</ZIP>

</ADDRESS>

</CUSTOMERINFO>

<SERVICES TYPE="CONSULTING">

<DESCRIPTION>Jabbering about things</DESCRIPTION>

<RATE>250.00</RATE>

<HOURS>3</HOURS>

<TOTAL>750.00</TOTAL>

</SERVICES>

</INVOICE>

and name it invoice1.xml. This document would actually render as something in
an XML-aware browser like Internet Explorer 6, as shown in Figure 16-7. Of course,
if mistakes are made, a conforming XML browser will display errors, as shown in
Figure 16-8.

A few questions probably arise after considering this last example. First, how
exactly do you define an XML language? Next, how do you provide a rendering for it?
Finally, what is the point of doing all this? Let’s begin with the technical issues and
address usage issues as we go.

658 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 16-7. Well-formed XML example rendering

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 659

Defining an XML language is rather easy: just make up some tags and follow
the basic syntax rules like nesting, quoting attributes, casing things the same, and so
on. Documents that follow such basic XML syntax are called well formed. Of course,
carefully following syntax is fine and good, but these tags don’t really have any
meaning. To make this a valid document, we have to define the rules of our particular
language by writing a document type definition (DTD). A DTD defines how a language
can be used, by indicating what elements can contain what other elements, the values
of attributes, and so on. A simple DTD to define a grading language for the invoice
example is defined here. Readers looking for basics on XML might find the W3C
(http://www.xmlfile.com/) site useful, and the various sections of the W3C site—
such as http://www.w3.org/XML/, as mentioned in Chapter 3—are also valuable,
though a little more technically dense.

<!-- INVOICE DTD -->

<!ELEMENT INVOICE (TITLE,CUSTOMERINFO,SERVICES)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT CUSTOMERINFO (NAME,ADDRESS)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT ADDRESS (STREET, CITY, STATE, ZIP)>

Figure 16-8. XML documents must be well formed

660 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

<!ELEMENT STREET (#PCDATA)>

<!ELEMENT CITY (#PCDATA)>

<!ELEMENT STATE (#PCDATA)>

<!ELEMENT ZIP (#PCDATA)>

<!ELEMENT SERVICES (DESCRIPTION,RATE,HOURS,TOTAL)>

<!ATTLIST SERVICES TYPE (CONSULTING | PLUMBING | HOUSEWORK)

#REQUIRED>

<!ELEMENT DESCRIPTION (#PCDATA)>

<!ELEMENT RATE (#PCDATA)>

<!ELEMENT HOURS (#PCDATA)>

<!ELEMENT TOTAL (#PCDATA)>

This DTD file, named invoice.dtd, would be referenced by the example XML file, such
as the one shown here:

<?xml version="1.0"?>

<!DOCTYPE INVOICE SYSTEM "invoice.dtd">

<!-- the document instance -->

<INVOICE>

<TITLE>Invoice</TITLE>

<CUSTOMERINFO>

<NAME>Fake Company</NAME>

<ADDRESS>

<STREET>123 Fake Street</STREET>

<CITY>San Diego</CITY>

<STATE>CA</STATE>

<ZIP>92117</ZIP>

</ADDRESS>

</CUSTOMERINFO>

<SERVICES TYPE="HOUSEWORK">

<DESCRIPTION>Fixing the hole in the ceiling</DESCRIPTION>

<RATE>25.00</RATE>

<HOURS>2</HOURS>

<TOTAL>50.00</TOTAL>

</SERVICES>

</INVOICE>

The example would not only be syntactically checked, but we could also validate
the document against the DTD. If this last example leaves you wondering why you

would ever want to define your own language, it should. There are certainly many
reasons to define a language, but there also many reasons not to. In fact, with everyone
going around defining languages, we could easily turn the Web into a modern day
equivalent of the Tower of Babel, with HTML cast aside in favor of languages that
many organizations don’t know or agree upon. There is no reason for everyone to be
writing DTDs. Most developers should be more concerned with using a language
rather than defining their own. Many useful languages—such as SMIL (Synchronized
Multimedia Interchange Language) used to create presentations (http://www.w3.org/
TR/REC-smil/); WML (Wireless Markup Language) the primary cellular language
(http://www.wapforum.org); and, of course, XHTML—are already in fairly
widespread use.

Suggestion: Rely on standard XML languages rather than in-house–developed
languages.

The fact of the matter is that XML from a designer’s point of view is like concrete in
the mind of an architect. You use it to build things, but you don’t play around in it or
wonder about its chemical composition.

What should be considered next is what can be done with XML. It doesn’t seem to
look like much in a browser. While that’s true, we could convert it into HTML or even
attach a style sheet to it. Consider the style sheet here, called invoice.css.

INVOICE {font-family: Arial; font-size: medium;}

TITLE {text-align: center; text-decoration: underline;

{display: block; font-size: x-large;}

CUSTOMERINFO {text-align: right; display: block;}

NAME {font-size: smaller; font-weight: bold;

display: block;}

ADDRESS, CITY {display: block;}

STATE, ZIP {display: inline;}

SERVICES {text-align: left; position: relative; top: 50px;

background-color: #EEE88A; display: block;

border: solid;}

DESCRIPTION {position: absolute; left: 20%; font-style: italic;}

RATE {position: absolute; left: 50%; font-family: Courier;}

TOTAL {position: absolute; left: 80%; color: green;

font-weight:bold}

This could be associated to the XML file invoice.xml with a simple statement like this:

<?xml-stylesheet href="invoice.css" type="text/css" ?>

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 661

In a browser supporting both CSS and XML, the page would begin to take shape as
shown in Figure 16-9.

This style sheet will have rendering issues. There are shortcomings in the approach taken
and the use of CSS in this fashion, but it does show that something could be rendered
without changing it into HTML.

This last example explicitly shows the idea of separation of logic and presentation.
However, what’s going to happen in older browsers? The answer is absolutely nothing.
For now, client-side XML doesn’t make sense, so you will need to convert XML tags
into HTML or XHTML with CSS to render safely in browsers.

Suggestion: Transform XML on the server side into something that can be
viewed on the client side.

662 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 16-9. XML can render with an attached style sheet

What XML will eventually bring is the power to make data more regular and
more specific to particular applications or industries. Migrating Web data to and from
databases, exchanging documents with other parties, and navigating large collections
of documents could get significantly easier because documents will follow a rigid
structure. XML’s rule enforcement should allow data interchange between many
organizations, making our example of an automated invoice exchange system a reality,
and it will signal a move away from just publishing documents, but writing programs
to handle them.

Suggestion: Use XML as a neutral storage format and for exchange.

Web Programming Best Practices
Sometimes a big challenge in Web-based programming is making sure to choose
the right technology for the job. More often than not, designers are quick to pick a
favorite technology, whether it is JavaScript, ASP, ColdFusion, or Java, and use it
in all situations. The reality is that each technology has its pros and cons. In general,
client-side and server-side programming technologies have characteristics that make
them complementary rather than adversarial.

Consider, for example, the situation of adding a form to a Web site to collect data
to save in a database. It is obvious that checking the form to make sure that the user
entered the correct information would make more sense to perform on the client side,
since it would not force a network round-trip to the server just to check the input data.
Client-side programming would make the form validation more responsive and
frustrate the user less. On the other hand, putting the data in the database would be
best handled by a server-side technology, given that the database would be located on
the server side of the equation. The reality is that each general type of programming
has its place, and a mixture is often the best solution.

Rule: Consider using both client-side and server-side technologies in a site,
rather than just one or the other.

Server-Side Programming Best Practices
Server-side programming comes in many flavors, including CGI scripts, server-API
programs like Apache Modules and ISAPI programs, Java servlets, and server-side
scripting environments such as Microsoft’s Active Server Pages (ASP/ASP.NET) and
Macromedia’s ColdFusion. Each technology has its pros and cons, but all forms of
server-side programming share one common quality: control.

The server is really the only part of the client-server equation that the developer
has real control over, and we can carefully dictate how a server-side program will run.
Server-side programs don’t rely to any major degree on client-side variations, so in
theory, a site using interactivity running on the server can deliver pages to any type of

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 663

TE
AM
FL
Y

Team-Fly®

browser. Despite a great deal of hype about client-side technologies, most web large
sites rely to a great degree solely on server-side technology to develop interactive
elements. Of course, the major downside of server-side programming is the negative
effect on speed. Because all the interactivity takes place on the server, the user may
perceive delays due to server response time limitations or network round-trip time.
The best practices presented here focus on performance, security, and maintainability,
which are core to any Web site server-side program, regardless of what it is written in.

Create a Capacity Plan When Using Server-Side Technologies
Capacity plans are not trivial, and they do reveal that it often takes a great deal
of hardware and bandwidth to service users. Numerous examples of sites faltering
under enormous user loads show how difficult it is to capacity plan sites. However,
it is possible to do. If you know that a typical page takes two seconds to build and is
50KB in size, you can actually calculate things like the number of simultaneous users
that can be handled with 1 Mbps of bandwidth.

Carefully Monitor Responsiveness of Server-Side Technologies
Even with a capacity plan in place, you should constantly monitor your server-side
programs to make sure they are responding quickly enough to user requests. Slow
pages will simply drive visitors away.

Use Compiled Languages or Server Modules to Improve
Server-Side Performance
Many server-side programs are written in interpreted scripting languages. Regardless
of your take on which scripting language is better, all will not fare well performance-
wise under heavy load. Consider using a compiled language like C for server-side
programming tasks when performance is key. If you want very high performance,
you may have to rewrite your application to utilize a Web-server API, such as Apache
Modules for Apache-based Web sites or ISAPI modules or filters for Microsoft IIS-
based systems. You also may find that, even if performance is not an issue, you still
want to separate out complex business logic into compiled binaries and leave server-
side scripting technologies for page generation.

Pregenerate or at Least Cache Server-Scripted
Pages if Possible
Many sites using server-side scripting needlessly regenerate page content over and
over again for visitors. If the press release is the same for every visitor, why query a
database and build it fresh each time? It might be better instead to build pages into
static HTML ahead of time, if they do not change from visitor to visitor. This can be
performed manually or by using some form of server-side cache that holds generated
page results.

664 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 665

Try to Separate HTML Markup from Script Logic
Many scripting environments and CGI programs intermix markup and script code
freely. While this may seem appealing, like mixing in CSS into HTML, it will make
maintenance difficult. Consider pulling HTML fragments or templates into scripts
rather than to hard-code markup information into scripts.

Use a Centralized Directory for Server-Scripts, Particularly
cgi-bin Programs
If you use server scripts, it is often a good idea to keep them in one directory.
Commonly, this is a cgi-bin directory if you are writing CGI programs. The value
of following this convention is that it not only organizes your site, but it also allows
security restrictions to be more easily placed on scripts. You do not necessarily have to
name such a directory cgi-bin, and you may want to name it something less revealing,
like /scripts or /programs.

Avoid Showing File Extensions of Server-Side Programs
Just because you use Perl to write CGI programs or use other server-side technologies,
your users shouldn’t care. Don’t expose such information inadvertently via file
extensions like .pl. Instead, try to use more generic extensions like .cgi or, in some
cases, no extension at all. While worrying about extensions might seem trivial, hackers
trying to compromise a server take note of such little bits of information.

Avoid Complex URLs if Possible
Along the same lines as the previous best practice suggestion, it is not a good idea to
use complex URLs, particularly if they are easily decipherable. The example here shows
a query string that might be manipulated.

http://www.democompany.com/scripts/prod.php?product_id=57&status=view

Guess what happens if you set the product_id value yourself or start playing with the
status value? Hackers will certainly try to play around with query strings to crack into
a system or get it to dump information via an error page. In many cases, this rule will
require you to use the POST method rather than the GET method, which may be
preferable from a usability point of view, as it keeps URLs very simple.

Avoid Exposing Back-End Information in Diagnostics and Errors
Often when a server-side program yields errors, it will dump out valuable diagnostic
information, such as the name of the server, the directory path used, the software being
used, and so on. This information is highly coveted by persons trying to crack a Web
server, so they will purposefully try to cause errors to reveal such information. Make
sure that you provide sanitized error messages to avoid such information leakage.

666 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Carefully Check Incoming Data
When running server-side programs, you need to be very careful to screen incoming
data. Very often potential hackers will attempt to send too much data via forms or GET
strings in hopes of causing some form of buffer overflow to reveal useful information.
In other cases, they may try to directly manipulate sent data to crack a site or cheat an
e-commerce system. Such “front door” attacks are increasingly common, and server-
side programs should carefully check data before doing anything with it.

Avoid Running Command Line Programs via a Script
An especially dangerous form of server-side program will run command-line programs
using submitted data. Generally, such server-side programs should be avoided, if possible;
if you must write such a script, you should be very careful to check incoming data.

As we have seen in this discussion, many of the best practices for server-side programming
are related to delivery—a more in-depth discussion of the various delivery requirements
can be found in Chapter 17.

Client-Side Programming
The major drawback of server-side programming is, of course, a lack of speed due to
the round-trip time over the network. Programs executed client side, however, appear
to be quite fast to a user in most cases. This makes sense, if you consider that no network
travel is required to show the result of some action. Of course, client-side programming
does come with one serious drawback—a lack of control. For example, when designing
public Web sites it is hard to say exactly what kind of users are going to hit a site. What
browser is being used, what features are turned on, what kind of processor the user has
are all questions that are not always easy to answer.

Even with browser sensing, client-side programming does leave things more up
to chance. There is always that one user who doesn’t want to play by the rules, who
wants to use a beta browser release, turn off their scripting support mid-visit, or modify
their browser in some unpredictable way, such as removing or modifying their user-
agent header. Client-side programming often won’t be able to recover from such
changes, because it relies on the browser for more than mere display of data. Therefore,
client-side programming doesn’t always work. The best approach is to assume that it
will work, but to account for it not working by providing some fallback state. Consider
the approach to form validation again: go ahead and check the form client side, but if it
needs to be checked once it reaches the server, perform the check again.

Rule: Provide a fallback state for all client-side programming technologies.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 667

The idea of always accounting for potential problems is a recurring theme of this
chapter. Now, let’s take a look at some best practices with client-side programming,
first with a special focus on using JavaScript, followed by a discussion of object
technologies, such as Netscape plug-ins, Microsoft ActiveX controls, and Java applets.

JavaScript Best Practices
JavaScript is certainly the premier client-side scripting language in use today on the Web
and is used for a variety of tasks such as form validation, implementing navigation
systems, and adding special page effects. Originally developed by Netscape and then
supported by Microsoft browsers in the form of JScript (a clone language used in Internet
Explorer), the language is now standardized as ECMAScript, a cross-platform Internet
standard for scripting. Browser vendors generally comply with the specification, but
vendors and developers alike will still use the commonly recognized JavaScript name.

While standards have improved the situation with JavaScript, compatibility
problems still abound, and very often it is used very sloppily. Little consideration is
given to browsers that have scripting off or do not support particular objects, and
errors are most often left unhandled. The majority of the best practices for JavaScript
address various contingency cases for that language, but a few also address other
issues, such as programming style or performance.

Consider Carefully How JavaScript Is Included in Pages
There are four standard ways to include script in an HTML document:

■ Within the <script> tag

■ As a linked file via the src attribute of the <script> tag

■ Within an HTML event handler attribute such as onclick

■ Via the pseudo-URL javascript: syntax referenced by a link

The following simple example shows each form of inclusion in action, including a
linked script that adds some support functions, a link triggered script, a <script> tag in
the head of the document, and finally an event handler on a button that triggers the
script in the head.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script language="JavaScript" type="text/javascript"

668 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

src="scripts/global.js"></script>

<script language="JavaScript" type="text/javascript">

<!--

function alertTest()

{

alert("Danger! Danger!");

}

//-->

</script>

</head>

<body>

<div align="center">

<form id="form1" name="form1">

<input type="button" value="Don't push me!"

id="button1" name="button1"

onclick="alertTest()" />

Push me

</form>

</div>

</body>

</html>

Use Linked Scripts
A very important way to include a script in an HTML document is by linking it via
the src attribute of the <script> tag. The example here shows how we might put the
function from the previous example in a linked JavaScript file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script language="JavaScript" type="text/javascript"

src="danger.js"></script>

</head>

<body>

<div align="center">

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 669

<form id="form1" name="form1;">

<input type="button" value="Don't push me!"

id="button1" name="button1"

onclick="alertTest()" />

</form>

</div>

</body>

</html>

Notice that the src attribute is set to the value "danger.js." This value is a URL path
to the external script. The linked file will contain only the JavaScript code to run, no
HTML or other Web technologies. So, in this example, the file danger.js should contain
the following script:

function alertTest()

{

alert("Danger! Danger!");

}

The benefit of script files that are external is that they separate the logic, structure,
and presentation of a page. With an external script, it is possible to easily reference the
script from many pages in a site and update only one file to affect many others.
Further, a browser can cache external scripts, so their use effectively speeds up Web
site access by avoiding extra download time spent refetching the same script.

While there are many benefits to using external scripts, they are often not used
because of some of their potential downsides. First, not all JavaScript-aware browsers
support linked scripts. Fortunately, this problem is mostly related to older browsers,
specifically Netscape 2 and some Internet Explorer 3 releases. Another challenge with
external scripts has to do with browser loading. If an external script contains certain
functions referenced later on, particularly those invoked by user activities, programmers
must be careful not to allow them to be invoked until they have been downloaded, or
else error dialogs may be displayed.

Tip: Be aware of script load order when using linked scripts.

Finally, there are just plain and simple bugs when using external scripts.
Fortunately, most of the problems with external scripts can be alleviated with good
defensive programming styles, as demonstrated throughout the book. However, if
stubborn errors won’t seem to go away and external scripts are in use, a good practice
is to include the code directly within the HTML file.

670 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Focus on Using Common Event Handlers
Under the HTML 4.0 specification, nearly every tag should have one of the core events,
such as onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, and onmouseout, associated with it.
For example, even though it might not make much sense, you should be able to specify
that a paragraph can be clicked using markup and script like this:

<p onclick="alert('Under HTML 4 you can!')">Can you click me</p>

Many older browsers, even from the 4.x generation, won’t recognize event handlers
for many HTML elements, such as paragraph. Most browsers, however, should
understand events such as the page loading and unloading, link presses, form fill-in,
and mouse movement. Unfortunately, the degree to which each browser supports
events and the ways in which they are handled vary significantly, and numerous
extended events have been introduced by Microsoft.

Avoid HTML Event Handlers if Possible
HTML event handlers should remind readers of the inline style attribute. Like inline
styles, scripts using HTML event handlers such as onclick are closely integrated with
markup. This can make pages messy and maintenance difficult. It is possible in many
scripts to register events in a different way to clear up this situation. Consider this
rewrite of the running example that removes the onclick handler.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script language="JavaScript" type="text/javascript"

src="danger.js"></script>

</head>

<body>

<div align="center">

<form id="form1" name="form1">

<input type="button" value="Don't push me!"

id="button1" name="button1" />

</form>

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 671

</div>

<script language="JavaScript" type="text/javascript" >

<!--

document.form1.button1.onclick=alertTest;

//-->

</script>

</body>

</html>

We could continue to clean the markup by using a linked script to register the
various event handlers. We see that separating logic in JavaScript from page markup
can be just as important as separating CSS from markup!

Avoid the javascript: pseudo-URL
The JavaScript pseudo-URL is often used in links, but it is not very degradable. In the
following, what will happen if script support is off or unsupported by the browser?

Click me

Most likely, a page load error would occur. If a link trigger is required, a better
approach is to use an onclick event handler for JavaScript and provide a link to
an alternative rendering or error page in case script is off, as demonstrated here:

<a href="javascriptoff.htm" onclick="alert('JavaScript

running');return false;">Click me

Note that the returned False value is used to kill the default action of a link, so the
backup page is not loaded.

Use HTML Comments to Hide JavaScript Code in the
<script> Tag
As with CSS, it is important to hide script code enclosed in the <script> tag from
nonsupporting browsers. This is accomplished either using a linked script or

672 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

commenting out the code. Notice that the comment structure is slightly different:
the HTML close comment --> is actually similar to JavaScript syntax.

<script type="text/javascript">

<!--

/* Insert JavaScript below */

// -->

</script>

Handle the JavaScript Off Situation with <noscript>
When a browser does not support JavaScript or JavaScript is turned off, you should
provide an alternative version or at least a warning message telling the user what
happened. The <noscript> element can be used to accomplish this very easily. All
JavaScript-aware browsers should ignore the contents of <noscript> unless scripting is
off. The following example illustrates a simple example of this versatile element’s use.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>noscript Demo</title>

</head>

<body>

<script type="text/javascript">

<!--

alert("Your JavaScript is on!");

//-->

</script>

<noscript>

Either your browser does not support JavaScript or it

is currently disabled.

</noscript>

</body>

</html>

Figure 16-10 shows a rendering in three situations: first a browser that does not
support JavaScript, then a browser that does support it but has JavaScript disabled,
and finally a modern browser with JavaScript turned on.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 673

Figure 16-10. Use <noscript> to handle browsers with no JavaScript

Non-Javascript
supporting
browser

Javascript off

Javascript on

TE
AM
FL
Y

Team-Fly®

One interesting use of the <noscript> element is to automatically redirect users to
a special error page if they do not have scripting enabled in the browser or are using a
very old browser. The next example shows how this might be done:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Needs JavaScript</title>

<noscript>

<meta http-equiv="Refresh" content="0;URL=noscript.htm" />

</noscript>

</head>

<body>

<script type="text/javascript">

<!--

document.write("Congratulations! If you see this you have

JavaScript.");

//-->

</script>

<noscript>

JavaScript required

<p>Read how to rectify this problem

</p>

</noscript>

</body>

</html>

Interestingly enough, the <noscript> tag is not defined in the XHTML specification as
being allowed in the <head> of a page, though <script> is. This specification oversight
will cause a validation error.

Address JavaScript Version Issues with the Language Attribute
Even if scripting is available, problems may occur. During its short lifetime, JavaScript
has undergone many changes. Not all browsers support it to the same degree, if at all.
JavaScript has a few major dialects, including JavaScript 1 (=Netscape 2.x), JavaScript
1.1 (=Netscape 3.x), and JavaScript 1.2 (=Netscape 4.x). JScript in Internet Explorer 3
is approximately equivalent to JavaScript 1; it doesn’t support JavaScript 1.1 features,
such as dynamic image replacement. Internet Explorer 4 appears to support JavaScript
1.1, but with a richer object model and is able to modify page elements at will. Finally,
there is the ECMAScript standard. Table 16-5 summarizes the versions of JavaScript.

674 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 675

The reason designers need to be aware of all these versions is that each varies in
what it can do. For example, if you code for Netscape 4, it probably won’t work in
older browsers, or maybe even Internet Explorer 4!

One way to deal with different versions of JavaScript is to utilize the language
attribute of the <script> tag. Script-aware browsers will ignore the contents of <script>
tags using language attributes they do not understand. Because browsers act this way,
it is possible to create multiple versions of a script for varying versions of the language,
as you would imagine here:

<script language="JavaScript">

Netscape 2.0 version here
</script>

<script language="JavaScript1.1">

Netscape 3.0 version here
</script>

<script language="JavaScript1.2">

Netscape 4.0 version here
</script>

Browser Version JavaScript Support

Netscape 2.x 1.0

Netscape 3.x 1.1

Netscape 4.0–4.05 1.2

Netscape 4.06–4.08, 4.5x, 4.6x, 4.7x 1.3

Netscape 6.x/7.x 1.5

Internet Explorer 3.0 JScript 1.0

Internet Explorer 4.0 JScript 3.0

Internet Explorer 5.0 JScript 5.0

Internet Explorer 5.5 JScript 5.5

Internet Explorer 6 JScript 5.6

Table 16-5. Browser Versions and JavaScript Support

676 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

It is probably a better idea to try to selectively insert the script required using a
server-side technology to cut down on potential problems and download size (just as
it’s better not to use multiple CSS rules at one time), but this technique is still often
employed.

The language attribute is not considered standard, but all JavaScript-aware browsers
use it, and it is more commonly found than the type attribute.

Practice JavaScript Defensive Coding, such as
Object Detection
Fall-through code isn’t the best way to do things. In some cases, it is just better to check
to see whether it is possible to do something. For example, you might be interested
in whether it is possible to do rollover buttons. Netscape 3 browsers and beyond, as
well as Internet Explorer 4 and beyond, can all do rollovers, so you might be tempted
to do a browser sensing to help determine whether rollovers should be activated.
Unfortunately, what happens if a new browser comes out, say, SuperBrowser 1.0, that
supports rollover capability but doesn’t match up in name or version with the other
rollover capable browsers? Well, your code simply won’t work.

Tip: Object detection is generally better than browser detection in scripting.

Rather than knowing everything about which browsers support what versions of
JavaScript, it is probably just better to detect for capabilities by checking if the appropriate
object is available. For example, a script here would check to see if your browser could
support rollover images by simply looking to see if the image object is defined.

<script type="text/javascript">

if (document.images)

alert("Rollovers possible")

else

alert("Sorry no rollovers");

</script>

Using conditional logic in this manner can be applied to the existence not only of
objects, but of methods as well. The goal is to never assume that something is available
but to test for it and then fail gracefully if necessary.

Handle or Suppress Script Errors
Even if we deal with different script versions and browsers that don’t support script,
there are bound to be errors that happen in a page. Users are probably all too familiar
with messages like the ones shown here popping up every second:

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 677

Script errors are so significant that by default some browsers suppress them to a
console. The only clue that something has gone wrong is a small message in the status
bar, like this one:

Of course, if you do actually access the JavaScript console, you’ll eventually see the
same errors.

The fact of the matter is that errors will occur. It is probably better to handle them
gracefully, rather than let the browser do so. You can even just suppress the error
messages if you like, but it is better to show the problem and then fix it.

Note that the browsers do things very differently in the case of error handling, so it
would be beyond this discussion to present their approaches here, but it is possible to
provide custom error messages like this,

or even collect information from users, as shown in Figure 16-11, with a custom handler.
More information on error handling practices in JavaScript can be found in the
companion volume JavaScript: The Complete Reference.

Comment and Format Scripts for Maintainability
JavaScript should be formatted for readability using tabs and white space. White space
can be used liberally, since like HTML and CSS, JavaScript is not extremely sensitive
to white space, though it does have issues with the return character, particularly with
semicolons. Nested structures should be indented, and comments indicated by // or /*
*/. Meaningful variable names like username should be used to improve readability.
In short, common coding techniques from languages like C should be employed.
However, such coding style can introduce significant bulk, which leads to the next best
practice.

Crunch Large Scripts for Delivery
The addition of JavaScript to HTML documents can result in very long documents.
Like HTML, it is possible to crunch JavaScript. For example, returns can be eliminated
from statements if semicolons are used. Consider that in JavaScript,

document.write("Hello ")

document.write("world!");

and

document.write("Hello);document.write("world");

are equivalent. Of course, if you don’t use semicolons, crunching can ruin a script.

Tip: Beware of semicolon problems if crunching JavaScript.

678 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

It is also possible to utilize shorthand notations to further crunch files. For example,
some JavaScript authors prefer this,

(quantity > 10) ? alert("You get a discount!") : alert("Sorry, no discount.");

to this,

if (quantity > 10)

alert("You get a discount!");

else

alert("Sorry, no discount.");

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 679

Figure 16-11. Error messages can be used to solicit feedback

though both are equivalent. Some coders may even begin to rename variables like
quantity to simple single letters like q, or even map common object names into variables.
For example, here we shorthand a common object name:

var d=document;

d.write("Much shorter huh? ");

d.write("Yes it is! ");

Such techniques do create unreadable code, so consider keeping original source around
and only crunch for delivery reasons.

Netscape Plug-in Best Practices
Object technologies such as Netscape plug-ins are used primarily to add more complex
features to Web pages than can be added via a scripting language like JavaScript.
Plug-ins were introduced by Netscape in Navigator 2 and have limited support in
Internet Explorer, which relies more on ActiveX controls. Using plug-ins addresses
the communication and integration issues that plagued helper applications. Recall
that helper applications are not integrated into the design of a Web page; rather, they
appear in a separate window and may not be able to communicate well with the
browser. However, plug-ins are components that run within the context of the browser
itself and thus can easily be integrated into the design of a page and communicate with
the browser through technologies like JavaScript.

Provide Help, Particularly with Installation
The plug-in approach of extending a browser’s feature set has its drawbacks, however.
Users lacking a particular plug-in must locate and download plug-ins, install them,
and even restart their browsers. Many users find this rather complicated. Netscape 4
offers some installation relief with somewhat self-installing plug-ins and other features,
but plug-ins remain troublesome. Scripting can improve things, and help pages are
certainly in order, but the problem should be avoided if possible.

Focus on Popular Plug-ins
Because of problems with installation and availability, many of the most commonly
requested plug-ins, such as Macromedia’s Flash, are being included as a standard
feature with Netscape browsers. The standard plug-ins are primarily geared toward
media handling and include Macromedia Flash and Shockwave, Adobe Acrobat,
RealVideo, RealAudio, and simple download and play multimedia technologies
supporting AVI movies or WAV sound files. If plug-ins are considered, focus on
providing the popular ones first to make it most likely that users will be spared
installation hassles.

680 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Detect for Plug-in Availability
It is possible using JavaScript to see if a plug-in is installed and enabled. A simple
detection scheme would be to check for a plug-in’s existence using the plugins[] array
found in JavaScript’s Navigator object. This array contains information about the
specific vendor and version of installed plug-ins. As an example, to look for a Flash
plug-in you might write:

<script type="text/javascript">

<!--

if (navigator.plugins["Shockwave Flash"])

alert("You have Flash!");

else

alert("Sorry no Flash");

//-->

</script>

You need to be careful to use the exact name of the particular plug-in that interests
you in order to access it. Also, be conscious of the fact that Internet Explorer defines a
faux plugins[] array as a property of Navigator. It does so in order to prevent poorly
written Netscape-specific scripts from throwing errors while they probe for plug-ins.
We would need to deal with this cross-browser nuance by first checking to make sure
we are not using Internet Explorer when doing the plugins[] array probe, and then
writing out the appropriate <embed> syntax if it’s found or giving an error or
alternative rendering if it’s not found, as shown here:

if (navigator.appName.indexOf('Microsoft')==-1 &&

(navigator.plugins && navigator.plugins.length))

{

if (navigator.plugins["Shockwave Flash"])

{

document.write('<embed src="Movie1.swf" quality=high bgcolor="#FFFFFF"

');

document.write(' swLiveConnect="false" width="550" height="400"');

document.write(' type="application/x-shockwave-flash"

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_

Version=ShockwaveFlash" />');

}

else

window.location ="noflash.htm";

}

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 681

682 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Fortunately, if Internet Explorer is in use, we can rely on the <object> tag to install the
appropriate object if the user allows it.

Use <noembed> to Support Browsers That Are Not
Plug-in–Aware
What should be done with browsers that do not support plug-ins at all? Use the
<noembed> tag as demonstrated here:

<embed src="welcome.avi" height="100" width="100" />

<noembed>

<img src="welcome.gif" alt="The history and philosophy of

Demo Company is both humorous and mysterious." />

</noembed>

When encountering this code, a browser not aware of the <embed> syntax will skip
the first element and utilize the tag. If the browser did not support images, it
would then display the alt attribute. With careful coding, it is possible to fall back to
an acceptable state in nearly every situation. We’ll see that this can be worked into
ActiveX deployment as well.

ActiveX Best Practices
ActiveX is the Internet portion of the Component Object Model (COM) and is Microsoft’s
component technology for creating small components, or controls, within a Web page.
ActiveX is intended to distribute these controls via the Internet as a way of adding new
functionality to Internet Explorer. Microsoft maintains that ActiveX controls are more
similar to generalized components than to plug-ins, because ActiveX controls can
reside beyond the browser even within container programs such as Microsoft Office.
ActiveX controls are similar to Netscape plug-ins in that they are persistent and machine-
specific. Although this makes resource use a problem, installation is not an issue: the
components download and install automatically. However, security is a big concern for
ActiveX controls. Because these small pieces of code can potentially have full access to
a user’s system, they can cause serious damage.

Consider Installation Time of ActiveX Objects
Adding an ActiveX control to a Web page requires the use of the <object> tag. For
example, this markup is used to add a Flash file to a page:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 683

swflash.cab#version=5,0,30,0"

id="Movie1" width="550" height="400" />

<param name="movie" value="Movie1.swf" />

<param name="quality" value="high" />

<param name="bgcolor" value="#FFFFFF" />

Sorry, you don't have ActiveX.

</object>

If the browser does not have this particular ActiveX component it will be
downloaded from the URL indicated in the codebase attribute. Installation can be
troublesome for users and may cause significant wait time, so as with plug-ins, try
to focus on using commonly found controls, if possible.

Address Browsers Lacking ActiveX
What appears in a browser without ActiveX? In the previous example the message
“Sorry you don’t have ActiveX” would be output. A better approach would be to
include alternative technologies in the page for other browsers to fall back to, such
as Netscape plug-ins or even images. The following example demonstrates how that
could be done for Flash. Notice how all issues are dealt with ActiveX: no plug-ins, no
scripting, and even no images on.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Flash Demo</title>

</head>

<body>

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase=""http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.c

ab#version=5,0,30,0"

id="Movie1" width="550" height="400">

<param name="movie" value="Movie1.swf" />

<param name="quality" value="high" />

<param name=bgcolor value="#FFFFFF" >

<!-- here is the detection for plug-in for Netscape -->

<script type="text/javascript">

<!--

var plugin = (navigator.mimeTypes && navigator.mimeTypes["application/x

shockwave-flash"]) ? navigator.mimeTypes["application/x-shockwave

TE
AM
FL
Y

Team-Fly®

flash"].enabledPlugin : 0;

if (plugin &&

parseInt(plugin.description.substring(plugin.description.indexOf(".")-1)) >=

4) {

// Check for Flash version 4 or greater in Netscape

document.write('<embed src="Movie1.swf" quality="high" bgcolor="#FFFFFF"

');

document.write(' swLiveConnect="false" width="550" height="400"');

document.write(' type="application/x-shockwave-flash"

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_

Version=ShockwaveFlash" />');

} else if (!(navigator.appName && navigator.appName.indexOf("Netscape")>=0

&& navigator.appVersion.indexOf("2.")>=0)){

// Netscape 2 will display the IMG tag below so don't write an extra one

document.write('<img src="Movie1.gif" width="550" height="400" border="0"

/>');

}

//-->

</script>

<noscript>

</noscript>

<noembed>

</noembed>

</object>

</body>

</html>

While this script may look complicated, it can be generated automatically using
editors like Dreamweaver; once a single detection script is written, it can be reused in
many situations.

Accept ActiveX’s Security Problems
Many users will be paranoid about the potential security hazards involved in using
ActiveX. Make sure that you provide information on changing security levels and
what exactly what your ActiveX control is doing. In short, be clear and honest with
users about security issues related to object technologies.

684 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Java Applets Best Practices
The main downside of component technologies like Netscape plug-ins and ActiveX
controls is that they are platform-specific. Unfortunately or fortunately (depending on
how you look at it), not every user runs on Windows or even Macintosh. How do we
deal with cross-platform issues? One way is to make a new platform that is common
to all systems. This is one of the core ideas of Java.

Java promises a platform-neutral development language, somewhat similar in
syntax to C++, that allows programs to be written once and deployed on any machine,
browser, or operating system that supports the Java virtual machine (JVM). Web pages
use small Java programs, called applets, that are downloaded and run directly within
a browser to provide new functionality. Applets are written in the Java language and
compiled to a machine-independent byte-code in the form of a .class file, which is
downloaded automatically to the Java-capable browser and run within the browser
environment.

Be Mindful of Java Performance Issues
Even with a fast processor, a user’s system may appear to run Java byte-code slowly
compared to a natively compiled application, because the byte code must be interpreted
by the JVM. This leads to the common perception that Java is slow. The reality is that
Java isn’t necessarily slow, but its interpretation can be. Even with recent Just-In-Time
(JIT) compilers in newer browsers, Java often doesn’t deliver performance equal to
natively compiled applications.

Address non-Java Supporting Browsers
Adding a Java applet to a Web page is relatively easy and can be done using the
<applet> or <object> element, though <applet> is preferred for backward compatibility.
If, for example, we had a .class file called helloworld, we might reference it with the
following markup:

<applet code="helloworld.class"

height="50"

width="175">

<h1>Hello World for you non-Java-aware browsers</h1>

</applet>

In the preceding code example, anything except for <param> tags found with the
<applet> element is considered an alternative rendering for browsers that don’t support
Java or the <applet> element or that have Java support disabled.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 685

686 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Java Detection
It is possible to detect for Java availability fairly easy using the method javaEnabled()
found in JavaScript’s Navigator object. This method returns True if Java is available
and turned on and False otherwise.

if (navigator.javaEnabled())

// do Java stuff or write out <applet> tag

else

alert("Sorry no Java");

You can find out more about Java once it is available by accessing a Java applet;
then you can even determine what type of virtual machine is supported. In order to
do this, you will have to access the public methods and properties of a Java applet.

Be Realistic About Java Support
Unfortunately, the reality of Java applets for a Web designer is that they really aren’t
useful on public sites. The truth is that there are so many different Java Virtual Machines
(VM) in browsers that the idea of “write once, run everywhere” has been turned into
“write once, debug everywhere.” The major benefit of Java applets just isn’t there.
Further, Microsoft’s latest Internet Explorer browsers do not even ship with a Java VM,
but that may change some time in the future, or maybe not. Because of this uncertainty,
Java isn’t a great choice for public sites. However, within intranets, on the server side
in the form of Java servlets, or with very careful coding, Java applets can be used.

Cookie Best Practices
An interesting programming topic that is often discussed is the use of cookies. Make
sure you understand the basics of cookies, even if you plan on avoiding programming
at all costs, since invariably you’ll have to explain more than a few times what cookies
are to concerned colleagues or clients.

A cookie is a small amount of information sent by a Web server that is stored on a
user’s system for later retrieval. The main purpose of a cookie is to save information for
later. The major use of cookies is to store user identification and passwords so they
don’t have to always retype them. Another common use of cookies is to store any
preferences you may set when you access a site. From a programming point of view,
cookies are used to solve the state management problem. Basically, the state problem
relates to the idea that servers don’t remember a user from one visit to a next, so
cookies are needed to create features such as shopping baskets that last across multiple
visits. Other state preservation forms, such as hidden data within forms or complex
URLs, can be used within visits, but between visits cookies are really the only possible
solution.

Many users are absolutely paranoid about cookies. The reality is that they really
aren’t anything more than a small string of information. If you look for cookies on

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 687

your hard drive you will probably come across a file called cookies.txt in your browser
folder or even a whole directory of cookie text files, generally in C:\Windows\Cookies.
Taking a look at a cookie, you might see something like

.google.com TRUE / FALSE 2147368374 ID 112005d255531c2c

This particular cookie is associated with the Google search engine. What it is used
for, one can’t be quite sure. It is likely being used to know how often users search,
when they search, what language they use and so on. However, in general the purpose
of a cookie is simply to act somewhat like a Web laundry ticket. It allows the user to
pick up the items in their shopping cart, keep their preferences set, and so on. In and
of itself, the cookie doesn’t say much about a user. Like a laundry ticket, it is just a code
number. However, when associated with user-provided information, it is possible to
build a profile about a user.

The fear of tracking through cookies has led to some pretty serious worries on the
part of users. In reality, cookies are relatively harmless if they can’t be associated with
personal information. Despite any claims to the contrary, a cookie cannot be used to
retrieve data from a user’s hard drive other than the value of the cookie itself. The cookie
can’t steal sensitive information such as user’s e-mail address or browser preferences.
However, a cookie can be used to track users. Often, this tracking capability can be used
in connection with the display of banner ads or other advertising directed to users based
upon their past browsing habits. Some users who do not like the fact they are so carefully
tracked will disable their cookies.

Inform Users of Cookie Usage
To avoid cookie problems and instill some trust in users of their sites, designers are
encouraged to be honest with users about cookie use within those sites. Make sure
that users can find out what cookies are used for in an easily accessed privacy policy
or usage statement.

Avoid Using Too Many Cookies
Because users may have their preferences set to warn about cookies being issued you
do not want to bug them too much. Consider trying to use a single cookie on your site
to track the user and provide state preservation features. Issuing multiple cookies can
be a nuisance for the user who has to accept each and every one.

Provide Alternatives for Cookie-Denying Visitors
Of course, some people are just going to reject cookies outright. If at all possible,
provide another way for users to access your site without cookies and, if you have to
use cookies, rely on session or memory cookies rather than disk or permanent cookies.
If this is not possible, at least gracefully fail and indicate to the user that they will not
be able to use your site if they are going to be so paranoid.

688 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Multimedia Best Practices
Finally, we consider the best use of multimedia technology on Web pages, which is
becoming increasingly important as the Web moves away from a print design style.
Many sites use animation, and audio and video usage is becoming popular as well.
However, while multimedia may improve the presentation of a site, it often comes
with significant bandwidth and technology restrictions. Designers should first consider
if the addition of multimedia elements would actually improve the user’s ability to
understand information or will make the experience of visiting the site more pleasing.
If it will not, it really shouldn’t be included. Designers should then determine how the
multimedia elements should be added, which is a very important consideration.
Designers should stick to common technologies, lest they create a barrier to entry to a
site. A few simple best practices for animation, audio, and video follow.

When Trying to Draw Attention, Avoid Competing Animations
Consider, for example, two very animated banner advertisements on the same page.
How will the user be able to focus on one banner ad if another one continues to signal
them? While the user’s ability to tune sensory input (as discussed in Chapter 2) is great,
competing animations will likely distract users and cause their eyeballs to bounce like
ping-pong balls.

Avoid Continuously Running Animation Loops
While it may be possible to get a user to notice animations by running loops, after
awhile they will probably tune them out or get annoyed. Therefore, continuously
looped animation should be avoided.

Inform Users of Formats and Download Sizes
Given that multimedia files tend to be large and that compatibility problems with
various audio and video plug-ins are common, we need to let users know what they
should expect with a link “price” indicating the size and nature of the download.
Consider, for example, this simple link to an audio file in WAV format:

Demo Company's Corporate Jingle

(7 second WAV - 180K)

We have indicated not only the format, but also the length of the clip and the file size.
Always try to let users know such information before the access a multimedia element.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 6 : W e b T e c h n o l o g y B e s t P r a c t i c e s 689

Don’t Assume or Require Audio Support
Accessing sound in a Web site shouldn’t be an infuriating experience for Web users.
The first thing to do is not put something very important only in audio form. Remember:
not all users will have speakers on their computers or be in an environment where
sound can or should be heard. Always provide alternative forms of access for important
audio-based content, such as a text transcript. Even when a user can hear audio, do
they necessarily want to? Consider the business user hitting a site, only to have some
theme music play in the background letting everyone know what he or she is doing.

Allow Sound to Be Turned Off
When sound is used, make sure you provide an easy way for the user to turn it
off—particularly if it is continuous. A common sound toggle button should be used
and would look something like this:

Make Sure Multimedia Adds to the Message
Once again, the most important best practice for multimedia is just to question its
value. Even with heavy compression and increased user bandwidth, multimedia is
going to require more user wait time. Thus audio, video, and animation should really
only be used in situations where it adds to the presentation of content. One such
situation would be teaching someone to dance via a Web page. While dance moves
could be described in text, they would certainly work better as a picture, animation,
or even movie. Unfortunately, far too often it seems that multimedia content is not
significantly better than text content, just fancier in appearance. The user will notice
this sooner than later.

Summary
Any designer who has tried to build a Web site has occasionally been doused by a
bucket of cold water known as Web technology problems. Even ten years after its
inception, Web technologies are immature and ever changing. Designers are encouraged
to fully investigate the strengths and weaknesses of any technology before using it
online and to follow the best practices presented in this chapter.

While the tips presented here go a long way to improving Web site construction, at
the end of the day the most important point is once again to understand that the use of
technology is to support the users and address their needs. However, do not take some
of the cautionary points presented as an excuse to avoid pushing the limits of Web
technology. If we are too conservative, we might create a site that takes no chances
with technologies, a site that is limited to simple HTML and server-side programming—
one that users may not find to be motivating. If a new technology can be implemented
properly, and provides an exciting enough new technology, users will probably deal
with the downsides. However, only use emerging technologies when there is a very
good reason to.

Pragmatic designers know that execution challenges will always exist, even with
the emergence of standards-based browsers, and will continue to strive to address such
issues rather than bury their head in the sand and pretend that such problems don’t
exist. Unfortunately, errors on the Web happen more often than we’d like, and it is our
job to try to correct this. The next chapter addresses one of the most challenging and
underappreciated aspects of Web design: consistent and reliable delivery.

690 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Chapter 17
Site Delivery
and Management

691

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

692 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Delivering a site to a user is just as important as building the site. A site’s
usability is heavily influenced by its responsiveness, which has a direct impact
on the end user’s overall feeling about the site. Most designers are painfully

aware of the need for speed. Although designers often focus on image file size or
end-user connection rate, to explain why a site is slow, the actual cause may not be so
obvious. Speed may be dictated by a multitude of things, including network effects
like traffic, protocol issues, server issues, and site content. Designers will have to
address all aspects of delivery, because the end user is not going to evaluate the
individual components of transmission, but will consider the site as a single system.

Even when a Web site is delivered properly, running it can be challenging and
time consuming. There is always something for the Webmaster to do: content must
be maintained, broken links repaired, and the site monitored for availability. One
interesting aspect of site maintenance is usage analysis. On the Web, it is possible to
understand what users do when they visit our sites by analyzing log files. We can use
this information to better design our sites, but collecting such usage data brings up
concerns of privacy. This chapter will provide an overview of the delivery and
maintenance of Web sites, with a focus on how these issues influence site design.

The Importance of Delivery
Unfortunately, delivery issues are often contemplated only after a Web site has been
designed and built. In many cases, the budget for the site doesn’t adequately consider
delivery costs, and so corners are cut. This is like spending significant money to design
and print a corporate brochure, only to have it delivered via third-class postal mail
because no funds were left after design and printing. The effect of the brochure would
be severely diminished by its slow arrival. Delivery of Web sites is even more critical,
particularly given the rise of task-oriented Web sites or e-commerce sites, where any
delay may be the difference between a successful sale and a lost one. It is well known
that shopping cart abandonment increases with download time as users become
frustrated with site browsing or checkout delays.

While designers may admit that users don’t like slow sites, they tend to focus only
on a few aspects of what makes a site slow. Consider that users will not be able to
distinguish which aspect of site delivery is causing a page to load slowly. They are
going to view it as a slow site, whether or not the graphics were optimized properly.
Web site designers often place too much emphasis on optimizing file size and not
enough on servers, network choice, and even the characteristics of the medium itself.
Consider all the possible reasons a site may be slow, as illustrated in Figure 17-1.

While there are numerous potential problems to consider when delivering a site,
the one inescapable fact is that, eventually, data will have to be transferred. Whether
you download now or download later, you eventually have to do it. From the user’s
perspective, how much data is downloaded doesn’t really matter; it only matters how

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 693

responsive the site is. The user typically only notices the seconds going by, not the
number of bytes delivered. Simply put, how much data comes down doesn’t matter to
the end user.

Rule: The amount of bytes delivered to create a page is not as important as
how fast the user perceives the page to be delivered.

If you are using huge graphics by downloading them during the idle moments, the
user certainly won’t care. Time is everything, and the bottom line is simply keeping
the user happy. If your design requires a great deal of bandwidth, has many individual
requests, or requires real-time delivery, you may have to shelve it. Once again, always
respect the medium of the Web. Just as a print designer understands that ink may bleed
on paper, the Web designer should understand the nature of the network and servers
used to deliver their creations. We start first with a brief overview of an individual
Web process and isolate each step for its effect on site performance.

Figure 17-1. User does not see components affecting Web site deliver speedTE
AM
FL
Y

Team-Fly®

694 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

The Web Request Cycle
Looking at each portion of a Web page request we see room for error, as well as
improvement. Roughly, the process of requesting a page is as follows:

1. User types a URL.

2. HTTP request is formed.

3. Domain name resolution occurs.

4. If name is resolved, an HTTP request is transported via TCP/IP to server.

5. Server receives request and eventually responds.

6. Either success (for example, 200) or failure (for example, 404) response is built
and returned to browser.

7. Browser examines incoming response and displays or saves data.

8. Process repeats if response contains other objects.

This process is illustrated graphically in Figure 17-2.

If we were to abstract the request-response process, we see five distinct phases:

1. Request Formation and Lookup

2. Request Transmission

3. Server Execution of Request

4. Result Transmission

5. Browser Processing of Result

We discuss each phase in turn in the following sections, both to improve
understanding of the Web medium and to illustrate areas for improved execution.

Figure 17-2. Web request cycle

Request Formation and DNS Lookup
When looking to improve the Web site request process, the first step is to make
addresses easy to type and remember. Never underestimate the power of a good
domain name. Many sites have an easy to remember (and type) domain name to at
least partially thank for their success. Some sites have even found that having a domain
name like “cheaptickets” or some generic expression is a good way to attract customers.
However, beyond the marketing aspects, domain names should be well thought out,
as some Web users can become confused on how to actually address a site.

Contingency Domains
Given a domain name such as democompany.com, domain name servers should be
configured to map all the following fully qualified domains to the same place:

democompany.com

ww.democompany.com

www.democompany.com

wwww.democompany.com

Here we have mapped typos with two and four w characters (instead of three) as
well as the omission of the www machine name altogether. Extra machine names are
easily added to DNS, and you may also consider adding others, such as w and “web,”
as they really only act as backups for mistakes. If at all possible, consider registering
slight typo domain names, particularly if the domain is long, difficult to spell, or hard
to type.

Suggestion: Provide numerous domain name forms for a site.

In the future, domain names may change. We may see a rise in popularity of both
new domain name forms and unique addresses, often generically referred to as
Uniform Resource Names, or even keyword-based navigation directly from within a
browser. Whatever the form of address, it is important that it get the user to find and
continue to use a site.

URL Fixes
Similar to domain name fixes is the setting of special entry points for your
Web site. For example, for easy access to the employment section of your site,
you may opt for domains with synonymous terms—like jobs.democompany.com,
careers.democompany.com, employment.democompany.com, and
hr.democompany.com—that all map to the same place. The same could be said of
directory paths, so www.democompany.com/hr, www.democompany.com/jobs,
www.democompany.com/careers, and so on would also map to the employment
page for the site.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 695

696 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Add multiple guessable URLs for common site sections.

Beyond static mappings, you should consider the robustness of the directory
and filenames in the URLs themselves. Be cautious with using cased filenames because
UNIX systems will treat these files differently than Windows systems, which are not
case-sensitive. If your site is hosted on a UNIX system, make sure to enable both
lowercase and uppercase URLs. Also consider adding a spell-checking feature for
URLs, so that if a page is requested with a typo, the server will fix the request. The
Apache Web server supports the extension mod_speling, which can correct simple
URL mistakes. Similar systems can be found for popular Web servers like IIS.

Suggestion: Try to fix simple user URL typos and casing problems at the
server level.

Web Address Trickery
Some sites utilize Internet Protocol (IP) addresses or encoded URLs rather than domain
names, often to mask their identity. For example, notice that URLs are often displayed
in a special form called “URL encoded,” where special or problematic characters such
as spaces and even slashes are translated into special codes. This translation is often
seen in the URL of a CGI program using the GET method or a search engine. For example,
try running a query for “Robert O’Reilly’s Robot Repair Shop.” Many search engines
will show a query string in the URL like this:

http://www.fakesearchengine.com/run-search.cgi?query=

Robert+O%27Reilly%27s+Robot+Repair+Shop

Notice that, in the encoding, spaces were converted to plus signs, and special
characters were translated to a value (the apostrophes became %27). This format,
which may appear cryptic, is the highly regular format of URL encoded. The basic
idea is to encode characters that would be unsafe as part of a URL in another format,
such as hex values or plus signs. Because browsers should have no problem decoding
URL-encoded addresses, some less scrupulous Web users—particularly people who
send a great deal of junk mail—attempt to mask their identity with an encoded URL.
For example, www.democompany.com would appear as

http://%77%77%77.%64%65%6D%6F%63%6F%6D%70%61%6E%79.%63%6F%6D

Some sites instead might just utilize a simple IP address like

http://206.252.142.209

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 697
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Some newer browsers will not allow this type of trickery in the URL, which is a
welcome change.

While valid, neither of these address forms is as good as a real domain name, particularly
since the mysterious encoding may suggest to the end user that some sort of funny
business is going on. So don’t use things like this in links or play other encoding
games—and be very wary of those people who do.

Running DNS
The Web’s reliance on the domain name service cannot be overstated. When a user types
in a URL like http://www.democompany.com, the address www.democompany.com
must first be translated into the underlying IP address before a request can be made.
The first time a user accesses a particular site, there can be a substantial delay (on the
order of a few seconds) to perform the name translation. Users notice this delay by
the messages shown in the browser status bar, like the one shown here:

For slow connections or infrequently accessed hosts, the initial lookup may
time-out and force the user to look up the host again. If the domain name server that
does the translation is down, the site will be effectively down unless the user somehow
knows the underlying IP address of the site. Because of the heavy reliance on domain
name service, a site should have multiple domain name servers that are geographically
and network dispersed to improve the likelihood that at least one server is available and
responsive. Although domain name translation requests are small in terms of data, the
servers should also be designed for responsiveness.

Suggestion: Make sure that domain name service for a Web site is fast and robust.

While the Web server may be a critical component in the delivery of a Web site,
don’t forget: if users can’t get to the server, they won’t care how fast it is.

Request Transmission
Once a URL is selected either by manually entering it or following a link, a request is
formed and sent to a Web server. The request is made in Hypertext Transfer Protocol
(HTTP), the basic application-level network protocol used to coordinate the exchange
of data to and from a Web server and a browser. However, the request itself is
transported using the lower level network protocols of TCP/IP. The basics of how
HTTP works is presented next as a groundwork for discussing its limitations and
impact on design.

698 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

HTTP
The HTTP protocol is a very simple request/response protocol designed primarily to
deliver static content. The basic idea of the protocol is that a browser will request a
page from a server, using a request such as

GET /products/index.htm HTTP/1.1

and then provide any parameters, if required. A complete request from a browser
tells all sorts of interesting information, such as the type of browser being used, the
language being used, the character sets supported, and so on. An example of a complete
request is shown here:

GET /products/index.htm HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)

Accept: application/x-comet, image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg, */*

Accept-Language: en-us

Note that header information can be used to determine a user’s environment and
dynamically configure a page to match the user’s native language or browser. This
concept is usually termed browser sniffing or browser detection.

Most of the header data passed by a browser is completely harmless, but some users may
actually go through the trouble of hiding their request headers, particularly the user
agent value. This does nothing but limit their ability to receive customized pages.

Once a complete request has been made to the server, it will then answer with its
own code. 404 Not Found is a common server response seen when a requested page
does not exist. If things are going well, a response like

HTTP/1.1 200 OK

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 699
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

with a bunch of other header information following is returned, as shown here:

HTTP/1.1 200 OK

Date: Tue, 18 June 2002 02:37:58 GMT

Server: Apache/1.3.4 (Unix)

Last-Modified: Tue, 12 Oct 2001 21:04:18 GMT

Content-Length: 7947

Connection: close

Content-Type: text/html

<html>

... HTML document follows...

</html>

One particular header to pay attention to is the Content-Type header. This header
indicates the MIME type of the data to be passed back. A MIME type is comprised of
two parts: a data type and subtype separated by a slash, as shown here:

Content-Type: type/subtype

The type is set to a general data type such as image, audio, text, video, application,
multipart, message, or extension-token. The subtype gives more specific detail about
the type of data, such as whether it is a GIF image or an HTML file. A few sample
MIME types are listed here:

text/html image/gif

text/xml audio/x-wav

video/quicktime application/x-shockwave-flash

video/x-msvideo application/x-zip-compressed

Once a browser receives the reply, it will look at the Content-Type header to
determine how to handle the request. For example, the lookup table for Netscape
Communicator 4.x–generation browsers is shown here.

Notice that, in the example, the type is text/html and the actual HTML document
is passed back after all the headers are finished. The dialog indicates that the browser
itself will handle the file internally. Also notice that the browser indicates that it
recognizes the file extensions .html, .htm, .stm, and .shtml as HTML files. However,
other file extensions seem to appear as normal HTML when they are viewed online.
The MIME type returned by the browser in the Content-Type header is the key to why
a file with an extension like .cfm, .asp, .jsp, and so on is treated as HTML by a Web
browser when delivered over a network, but may not be read if opened from a local
disk drive. The reason is that these extensions often are associated with dynamically
generated pages that are stamped with the HTML MIME type by the server; when
reading off the local drive, the browser relies instead on the file extension like .htm to
determine the contents of a file. If a browser attempts to read a file that it is unsure
about, either because of file extension or MIME type, it should respond with a dialog
like the one shown here, as Netscape does:

700 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

What’s very interesting is how Internet Explorer prompts the user to immediately
save data if the MIME type is not understood, as shown by this dialog:

Normally, Web pages are delivered properly, so these dialogs are not seen. The
browser would first read the HTML being delivered and then retrieve any other
objects—GIF images, sound files, Flash files, Java applets, and so on— that are
associated with the page. Each object would result in another request to the server.
If the browser encountered something like

<img src="images/logo.gif" height="100" width="200"

alt="Demo Company" />

it would then form a request like

GET /images/logo.gif HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)

Accept: application/x-comet, image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg, */*

Accept-Language: en-us

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 701
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

702 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

The server would then respond with a similar answer as before, but this time
indicating that a MIME type of image/gif is being returned, followed by the
appropriate form of binary data to make up an image, as demonstrated here:

HTTP/1.1 200 OK

Date: Tue, 18 Jan 2000 04:41:15 GMT

Server: Apache/1.3.4 (Unix)

Last-Modified: Wed, 13 Oct 1999 23:37:38 GMT

Content-Length: 28531

Connection: close

Content-Type: image/gif

GIF87a— æ÷ÿïÿÿÆï÷÷òÒÖ÷ïïõñî½Öïïïèñ½ïèóÆçã¿Æçõ½çç÷áß´µçÞï−çÝç½

Þñ¥çß÷´Þï−ÞÞÖä¥Ü÷œÞÖï°Õç"ÞÏ®ŒÞÕï™×÷"ÖÇµŒÖÆ−„ÖÆ−{ÖÅÓsÖ½−½½¥À½œsÎ½

¥¿¹ZkÎÌµ¥¬−zyµÏ©¨‹¥¥¥ ¡–œ›Œ¥Ã{""‡'<<Unicode: 90>>

X

‹ ˆŒŒ{„Œ{j<<Unicode: 90>>¢„„s‚<<Unicode: 81>><<Unicode:

84>>'}l<<Unicode: 81>><<Unicode:

81>>{„{s¸fT{{s zjq|~¦eUmogKvŠ<<Unicode: 90>>]QljZckZoe

PfegccZccRZcRX

… binary file continues …

With the MIME type set properly, it is possible to serve literally any object.
Designers often avoid serving custom forms of data beyond HTML or common
media types like GIF, JPEG, or WAV because of unfamiliarity with the MIME-type
configuration possibilities on client and server.

Consider adding a MIME type to handle a proprietary information format rather than
convert it to HTML, particularly on an intranet.

That’s really all there is to HTTP. First, the browser makes an HTTP request, and
the server responds in the appropriate fashion with a MIME type attached. This cycle
repeats as each of the individual elements that make up a page is requested. A full
discussion of HTTP headers and methods can be found in Appendix G. Even with all
the extra details added in, the HTTP protocol is really quite simple, and that’s what
causes many of its problems. Fortunately, during the request phase the size and
number of requests made are generally not significant, so there are few possibilities
for improvement, except reducing the latency between browser and server. It is once
we hit the server that we run into potential bottlenecks.

Web Servers
To many, Web servers seem mystical. In reality, a Web server is just a computer
running a piece of software that fulfills HTTP requests made by browsers. In the

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 703
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

simplest sense, a Web server is just a file server—and a slow one at times. However,
a Web server isn’t just a file server, because it can also run programs and deliver
results. In this sense, Web servers could also be considered application servers—if,
occasionally, simple or slow ones.

Recall from earlier in the chapter that the user will not be able to single out the
individual components of Web delivery. If a site is slow, users often don’t know why.
It could be the network, it could be the server, or it might even be their own machine.
Designers should always try to improve the user’s perception of a site and thus should
strive to control what can be controlled—namely, the server and its connection out to
the Internet. Let’s consider each in turn.

Web Server Components
A Web server is composed of both hardware and software. The primary operation of a
Web server is to copy the many (generally small) files making up a Web page from disk
to network as fast as possible for numerous simultaneous users. A secondary mission
is to run programs for numerous individuals and deliver the results as fast as possible.
Given these requirements, consider the hardware requirements of a Web server shown
in Table 17-1.

Suggestion: Don’t skimp on Web server hardware—focus on systems with
high-speed hard drives, a great deal of memory, and good network interfaces.

Beyond getting the best hardware you can afford, it is important to consider that
the operating system running on the hardware and the available server and development
software options are going to have a great effect on the speed of the Web server. In
general, given that Web servers have to deal with multiple requests simultaneously
and need a rich set of development options, most developers tend to use either
Windows NT or some variant of UNIX, including Linux, for their operating system.
Table 17-2 presents the major operating system choices, as well as some of the issues
in using them for Web serving.

While Table 17-2 presents a good overview of some of the issues faced when
choosing one operating system over another for a Web server, the decision may
often be based on familiarity or personal taste. While one person may argue about
the merits of UNIX, introducing a UNIX server into an environment with heavy
Windows investment would be foolish. The bottom line is to always remember
suitability and total cost over time. A relatively low-traffic site for a school might
do well on a Macintosh. A Windows system might make a great departmental server
in a corporation that favors Windows systems. A Linux system might appeal to a
technical-minded individual looking to avoid spending money on hardware and
software, and a high-end Sun server running Solaris might be appropriate for a large
e-commerce venture. Some sites may find that a server-appliance that does not
obviously expose operating system issues may also be appropriate if maintenance is
a significant concern. The point is always to choose an operating system for a server
based on the practicality of performance, development, and long-term maintenance
characteristics of the OS.

TE
AM
FL
Y

Team-Fly®

704 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Don’t choose an operating system for a Web server solely based on
popularity; consider total cost of ownership and suitability for development and
long-term maintenance.

Web Server Software
Once the hardware and operating system are selected, it is time to consider which Web
server package to use. Only a few years ago, there were only two major Web servers
available: NCSA’s httpd server for UNIX and CERN’s httpd server for UNIX, both free
servers that required a fairly substantial knowledge of UNIX and programming to use
and for development. Today, there are dozens of different Web servers—both commercial
and freeware—available on a variety of machines. Rather than considering all Web

Hardware Component Considerations

Processor While a fast processor seems key to a fast Web
server, the reality is that computational requirements
of a Web server are limited. Multiple processors may
be more useful than a single fast processor when
dealing with numerous requests made on a server.

Memory A Web server may need a large amount of RAM to
hold numerous individual processes running CGI
programs for users or fulfilling file requests.

Bus Web data will constantly move from disk to memory
to network. Don’t limit the data path with a slow bus.

Disk drive Since a Web server’s primary task is delivering files
to a user, a high-speed disk drive that is kept optimized
is a primary goal. Spend extra on drives with high-
speed adapters such as SCSI-3.

Network interface Once files are retrieved from disk, they are delivered
back to the user via the network. Don’t limit a server
by its network interface card. Consider Fast Ethernet
or better. For high-volume servers, multiple network
interfaces may be mandatory.

Other Most other aspects of a Web server have little
bearing on the delivery of a site. However, some
peripherals such as tape drives or other backup
storage facilities are mandatory for site maintenance.

Table 17-1. Web Server Hardware Issues

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 705

Operating
System Pros Cons

UNIX +Tends to run on
fast hardware such
as UltraSparc and
Alpha systems.
+Very flexible development
environment.
+High-end applications and
servers are available.

–Can be complicated to use and
difficult to set up and maintain.

–Labor costs may be high.
–Buy-in costs for hardware and
software are relatively high.

Windows NT/
2000/XP

+Runs on both high- and
low-end hardware.
+Many servers and
development tools available.
+Basic administration
is simple.

–May require multiple servers
for high-volume sites.

–Advanced administration may
rival UNIX in difficulty.

–Guaranteeing server stability
can be troublesome.

Linux +Available on
low-end equipment.
+Cost is low.
+Many servers and
development tools available.

–Can be complicated to use
and difficult to maintain.

–Lacks some commercial soft-
ware support found with main-
stream UNIX systems like Solaris.

Windows
98/ME

+Easy to run.
+Low equipment costs.
+Inexpensive software.

–Not a multiuser environment.
–Not as robust as NT or UNIX
for server applications.

–Selection of Web software is
limited, compared to Windows
NT or UNIX variants.

–Security concerns can be
significant.

Macintosh +Easy to run and administer.
+Low equipment costs.
+Inexpensive software.

–Traditional Macintosh OS is not
suitable for Web serving, though
the UNIX based OSX is.

–Selection of Web software is
limited compared to Windows
or straight UNIX.

–Often not as robust as NT or
UNIX for serving.

Table 17-2. Operating Systems and Web Serving Considerations

servers in your decision, it might be wise to look at the most common Web servers used.
On the basis of surveys and analysis of reachable servers on the Internet (http://
www.netcraft.com), the following are considered to be some of the most common Web
servers used, though their exact market percentage is a topic of hot debate.

Apache Zeus

Microsoft’s IIS WebStar

IPlanet servers (formerly Netscape) Domino

Each of the popular Web servers is discussed next. This should by no means be
considered as approval of these products, but rather just a synopsis of each product
highlighting some of its known characteristics.

Serverwatch (http://www.serverwatch.com) provides links and reviews of most of the
popular Web servers available.

Apache (http://www.apache.org/)
A descendant of NCSA’s httpd server, Apache is probably the most popular Web server
on the Internet, at least as far as public Web sites are concerned. Apache’s popularity
stems from the fact that it is free and fast. It is also very powerful, supporting features
like HTTP 1.1, extended server-side includes (SSIs), a module architecture similar to
NSAPI/ISAPI, and numerous free modules that perform functions such as content
negotiation, text compression, spell checking, and much more. However, Apache is
not for everyone. The main issue with Apache is that it isn’t a commercial package.
Some firms are hesitant to run their mission-critical systems on a user-supported
product. However, as with operating systems like Linux, various third parties offer
commercial implementations of Apache or sell support for the free version. Another
potential limiting factor for Apache is that the system currently is mainly for UNIX.
Although there is a port of Apache to Windows 32-bit systems, as well as one for the
Macintosh OS X environment, the server was initially built for popular UNIX and
Linux variants. The lack of heavy NT support may limit the use of Apache within
many Windows-centric enterprises, but the Apache 2.0 release aims to change that.
However, given the development integration Microsoft IIS provides, it may be a hard
sell to the Windows crowd. Probably the most troublesome aspect of Apache for
some developers is that it might require modification of configuration files or even
compilation in order to install properly. If you like to tinker or desire speed, have a
UNIX system, or don’t have a lot of money, then Apache might just be for you. You’ll
be in good company; some of the largest Web sites on the Internet swear by this product.

For Web trivia buffs, the name “Apache” is derived from the description of the software
as a patched version of NCSA. Think “a patchy NCSA server.”

706 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Microsoft Internet Information Services
(http://www.microsoft.com/iis/)
IIS is Microsoft’s server for Windows NT/2000/XP. Other Windows variants also
support a similar but much less powerful version of IIS called the Personal Web Server
(PWS). While PWS is certainly popular, of the two, most organizations favor IIS. One
very important aspect of IIS is that it is very tightly integrated with the Windows
environment. In fact, today it is hard to distinguish IIS as a stands–alone service within
Windows 2000. Unfortunately, being so Windows specific is also one of the problems
with IIS. Because of hardware and clustering issues, IIS initially isn’t quite as scalable
as some UNIX-based servers. With new Microsoft clustering technologies and integration
with a transaction processor, this scalability problem is likely to change. For an intranet
environment—particularly one with heavy Microsoft investment—it is difficult to beat
the features offered by IIS, particularly its Active Server Pages development platform
and its integration with other Microsoft technologies and products. The price for IIS
is currently a major positive point for the software—it’s freely bundled with the
operating system.

Sun (Servers formerly known as iPlanet or Netscape)
(http://www.sun.com/software/)
Sun servers born from the iPlanet joint venture between Sun and Netscape after the
merger between Netscape and AOL, constitute a large number of Web servers. These
servers continue a long history started by Netscape of supporting high-end Web and
application servers running on most major variants of UNIX (Solaris, SunOS, AIX,
HP-UX, Digital UNIX, and IRIX), as well as Windows 2000. The servers are well
developed, as they represent more than four generations of software releases. The
servers are also very developer friendly and powerful, with support for databases
and directory services, content management, HTTP 1.1, and a variety of other features.
Given Sun’s involvement, a focus on Java is core to the server offering. If you are in
a cross-platform or UNIX environment and you are looking for commercial-quality
Web serving solutions, then consider using these servers.

4D WebStar (http://www.starnine.com/)
Initially a popular Web server for the Macintosh originally based on MacHTTPD,
WebStar integrates well with the traditional Macintosh interface. The server has solid
security features and supports native Macintosh technologies, as well as UNIX-style
CGI programs, PHP, a Java virtual machine for server-side Java, and extended SSI. The
performance of most Macintosh Web servers has often left much to be desired, though
it is improving and is probably more than adequate for intranets or small Web sites.
Apache on OSX tends to be a better choice for larger Macintosh-powered sites.

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 707
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Lotus Domino (http://www.lotus.com/domino)
Domino is an example of the collision between traditional Web serving and messaging
and groupware. Domino runs on Windows servers, variants of UNIX, and even large
IBM systems such as AS/400s. It is often used in corporate intranet and extranet
environments where workflow and integration with messaging and backend systems
may be more important than raw Web serving performance.

Zeus (http://www.zeus.com)
Finally, we have Zeus as a contender for the fastest Web server. This server is
becoming popular with extremely high volume Web sites. The Zeus server does
not lack development capabilities, as it provides not only Java compatibility but
supports both IIS’s ISAPI interface and the NSAPI interface introduced on Netscape
Enterprise servers.

Making the Choice
There are numerous Web server software choices. Remember that different packages
will have different performance characteristics. Using the same hardware, one Web
server software package may far outperform another. When planning to build a Web
server, start either from the hardware and build up or from the particular software
and build down, picking the best possible hardware. If you make good software and
hardware choices, the performance of the site can be significantly improved. Always
try to base your choices on usage requirements, such as a target number of
simultaneous users or requests per minute or second. However, don’t forget that you
will have to maintain the site. If you are unfamiliar with UNIX systems and your
company uses only Windows servers, your decision is probably already made for you.
Once all the requirements of the site have been carefully determined, it is possible to
best choose how to serve a site.

Server Capacity Issues
The first thing to determine when building a Web server is exactly what kind of load
the machine will come under. Exactly how many users does the site need to serve,
worst case? For public Web sites, this is hard to predict, but educated guesses can be
made, and over time your serving requirements will become clearer by looking at
usage logs. The simultaneous user requirement suggests not only how much hardware
may be needed but how much bandwidth. Consider 100 users simultaneously looking
at pages that are 50KB in size and it is easy to calculate the amount of bandwidth needed.
It also shows why it is so important to consider the size of pages not only from a usability
point of view, but a cost point of view. The incremental costs of serving heavy Flash-
laden pages are significantly higher than using a lightweight XHTML with CSS page.
Now you understand why so many e-commerce sites skimp on any visual design
beyond pictures of products—it just doesn’t pay!

708 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 709
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Server load calculations for capacity are not always very simple. Normal Web sites will
have bursty load, and we may find that peak load may be much higher than simply
dividing the number of users a day by the amount of time in the day.

When considering server capacity, you will begin to see that one machine just isn’t
going to be able to handle infinite load. To address this, you may create a server farm—a
collection of Web servers all serving the same information. A server-farm is diagrammed
in Figure 17-3. Incoming users will be distributed across all the servers in the farm,
hopefully improving both uptime and performance. The distribution of users can be
performed simply by using a modified form of DNS, called DNS round-robin, that
allocates users one-by-one in a round-robin fashion to different IP addresses or in a
more complicated fashion using a load balancer. A load balancer may have more
sophisticated distribution schemes, such as least busy or closest geographically, which
leads us to our next issue. Even if you have capacity, the actual location of the server
plays a big role in responsiveness.

Server Location
Server location influences both site response time and maintenance costs. The basic
choice boils down to whether to have a server at your own location or at another
location(s) offsite, such as at an Internet service provider or hosting vendor. Choosing
whether to run your own server or outsource the server and maintenance to a third
party can be a complex question, but you should always try to put the server close to
users. The reason for this is that by minimizing the network path between a server and
a user, you minimize the possibility of problems caused by the network.

Figure 17-3. Server farms are built to scale Web sites

710 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: Always strive to minimize network distance between a site and its users.

For an intranet, it is pretty obvious that the server should be on your local network.
But what about for an external site? Many people prefer to host their own site, which
requires a full-time connection to the Internet. However, is the server as close as it could
be to the end users? Further, will a locally hosted site provide enough bandwidth for
users? Having enough bandwidth available can be important for mission-critical Web
sites. Regardless of server bottlenecks, a mere fractional-T1 or full-T1 leased line might
not provide enough bandwidth to deal with the bursty nature of Web access. However,
installing multiple T3 leased lines just to deal with the occasional flash crowd that may
swamp a site seems wasteful, given the significant investment required. Rather than
bringing bandwidth to the server, why not move the server to the bandwidth? Even
if bandwidth is not an issue, there may be other reasons for network closeness. It is
unlikely that you’ll be able to install leased lines to multiple connectivity providers.
Even if you can, your site will still be more hops away from central exchange points
than the providers you may purchase bandwidth from.

Another motivation for not placing an external Web server locally is the security
implications. Many companies are still very afraid of the security problems associated
with the Internet. Firewalls and security policies can help, but if a public Web server
is located on the firm’s LAN, allowing Web viewers to access it is similar to asking
potential robbers to come knock on your door. Putting public use information on
outsourced Web servers keeps casual intruders away from a firm’s network access
point and allows stronger security policies to be put into place at the corporate firewall.

The actual facility housing the server is often an overlooked aspect of locating a
Web server. Does your own location provide a safe environment for a server? Are
power systems highly reliable, with backups in place? Is the building secure and
staffed twenty-four hours a day, seven days a week? Is there a computer-safe fire
suppression system? The cost of providing the physical and personnel facilities
necessary for a high-end Web site should not be underestimated.

Finally, outsourced hosting does provide the possibility of moving away from a
single point of serving to multiple locations. In fact, large-scale hosting vendors, often
dubbed content distribution networks or CDNs, attempt to serve the bulk of Web content
not from one server or one server farm but a distributed set of servers or caches at the
edge of the Internet. The goal here is once again to minimize the distance to the end
user. While edge delivery makes a great deal of sense, it does fundamentally change
Web site serving to more of a broadcast model and introduces some expense and
complexity that may be inappropriate for all but the highest traffic Web sites.

Don’t automatically assume that placing a Web server at another location such
as a Web hosting vendor is the only way to go. Certainly, the network and services
provided by hosting vendors can exceed local hosting, but you give up security and
control. If you need to provide access to highly sensitive data, you may find that
outside vendors do not provide the comfort level you desire. Further, outside vendors
are by their nature outside. They may promise to do their best to protect your system
from harm and provide high-quality support, but some people want the control of

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 711
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

doing things themselves. Finally, if the requirements for a site are minimal and the
infrastructure is in place, it just may not be cost effective to outsource site delivery.

Suggestion: Choose to host your own Web site when security or control is a
primary concern.

Outsourcing Web Hosting
As Web sites become more critical to the information infrastructure of companies, there
is a growing need to provide high-quality, high-availability solutions. For example, a
business selling something only online can’t afford to have its site go down at all. The
serving of a site to an e-business is as critical as power and telephone services would
be to a traditional business. This trend might be termed the “utilization” of the Web,
as some may consider the health and delivery of their Web site as important as other
utilities like water and power. However, given that the site must be run in a very
efficient and reliable manner, firms quickly discover that it is in fact quite expensive
for companies to develop in-house the talents and facilities to run a mission-critical
Web site. Therefore, many firms have decided to outsource their Web facilities. Web
server outsourcing comes in many flavors, but many of the differences revolve around
two factors. The first differentiating factor is whether your site is sharing a machine
with other sites. The second is whether or not the machine being used is owned and
managed by you or the outsource vendor. Each type of service will be discussed in
turn, with special focus on their pros and cons.

Shared Hosting
The most basic form of hosting, shared hosting, ranges from free Web space added
to other services or in exchange for advertisement placement to high-end application
service providers (ASPs). At the low end, many Internet service providers will provide a
directory on one of their Web servers with a few megabytes of disk space and possibly
access to a few shared tools that can be used on your Web site, such as simple form-
handling scripts, counters, or message boards. Usually, the URL for a site like this is of
the form http://www.isp.net/~enduser or http://www.isp.net/enduser. The hosting
service lacks any customization like your domain name (yourname.com), and it may
impose limits on traffic delivered or programming tools that can be used. The upside
to these types of services is that they are often free or may be included in the cost of
your Internet connection. There are also many vendors who will provide free Web
serving in exchange for personal information for marketing purposes, or if you agree
to show banner advertisements, they book on your Web site. While these services are
appealing to home users or those looking to put up a site for fun, most will prefer other
forms of shared hosting.

Shared hosting services that provide a domain name (www.yourname.com), often
called a virtual server, generally are not free. These services also provide improved

712 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

development facilities, like your own cgi-bin directory, statistical reports on site traffic,
shopping cart facilities, and other useful features. The costs for virtual server accounts
on a shared system usually start around $20 or more per month. However, costs vary
greatly and the more bandwidth your site consumes or the more special requests you
have, the higher it may cost—even if the machine is not dedicated to you. In fact, with
complex shared hosting services, where you may have access to content management
systems or e-commerce facilities, the cost can literally skyrocket to hundreds or even
thousands of dollars per month.

The major downside of shared Web hosting is that it involves using the shared server
facilities of a hosting vendor. This means that the site will share Web server resources
and bandwidth with other hosted sites. Server responsiveness may be significantly
affected because of other hosted Web sites, particularly if those sites become popular.
Further, many customers are wary of sharing a server with others, because security often
cannot be guaranteed on these shared systems. Despite its drawbacks, shared hosting is
very popular—mainly due to price.

Dedicated Hosting
Because of the downside of sharing a server with others—most notably security and
control—many people opt to use a dedicated server. Dedicated servers are advantageous
because you can customize your server with whatever tools or programs you like, and
you are not affected by other sites as much. However, the trade-off is cost. Dedicated
servers tend to be more expensive.

There are two forms of dedicated server hosting. The first is where the outsource
vendor owns and maintains the equipment. This may be called fully managed or dedicated
hosting. The other is where you own and may even be responsible for maintaining your
server. This is usually called co-location. With co-location, the vendor provides space at
their facility, electrical power, a network connection, a certain amount of bandwidth,
and very limited system management for your server (like rebooting it if it crashes
or maybe doing tape backups). Co-location is generally cheaper than fully managed
services, but for those who don’t want to be bothered with the details of Web site
delivery, co-location is not as great of a deal as it might seem.

Dedicated hosting solutions are very attractive to those who want control, security,
and power, but don’t want to deal with many of the day-to-day issues of running a
Web server. The major downside of these solutions is price. Services provided by
top-tier vendors might run many thousands of dollars per month—the amount
dependent on the equipment and bandwidth required, as well as any services added,
such as security monitoring or sophisticated hosting requirements like mirroring a
site at multiple locations. However, if a business really relies on robust fast Web site
delivery, many of these vendors are a bargain, even at what appears to be a high price.
Think of the actual cost of maintaining a telephone company-grade equipment room
filled with servers connected to numerous Internet providers being monitored twenty-four
hours a day, seven days a week by capable system and network administrators— you’ll
see that the cost may be well worth it. When you consider that some of the largest sites

for content, search engines, and e-commerce don’t run their own servers, it will seem
more plausible that an outside hosting vendor is a good idea.

Companies looking to save money on Web delivery may find outsourcing very
attractive, but some flexibility and security may have to be sacrificed. With less-
experienced hosting companies, this lack of control can be disastrous, resulting in
hidden costs or problems with reliability. Those who want more control over their
Web services should consider co-location or running their own servers locally.

Links to commercial hosting vendors can be found at http://www.webhostlist.com.

Delivering the Payload
Once a page is built it is time to consider finally delivering it and its associated
components, like images and other multimedia files, back to the user. Obviously the
size of the payload in proportion to the user’s bandwidth will increase user wait time.
However, don’t go overboard with size reduction for speed improvements; things
aren’t always what they seem when you consider network interactions. Remember
time matters more than bytes!

Networking, Protocols, and Web Design
While HTTP isn’t really the most sophisticated or fastest network protocol, it is well
understood by all browsers in use. The simplicity of this request/response application
causes some potential problems, particularly when mixed with other protocols such
as Transmission Control Protocol (TCP). The first thing to consider is that the HTTP
protocol requests each object within a Web page separately. Consider an HTML page
with eight images. There is one request first, for the HTML, followed by eight more
requests for the images. There may even be an extra request at the beginning if the URL
is partially formed, like http://www.democompany.com/products, and a trailing slash
would have to be added and be directed to an index file.

With nine or ten separate requests, there is bound to be some extra overhead added,
as opposed to a single request for all the objects at once. Consider this carefully when
building a page. Say that one page has a single large image nearly 75KB in size, while
another has ten images totaling 70KB. While the total bytes to be delivered would
suggest that the second page should be faster, the first page may actually download
more quickly as far as the user is concerned.

Suggestion: Try to keep the number of unique individual objects in a page small
to reduce the number of HTTP requests.

The HTTP 1.1 protocol does attempt to address performance problems with HTTP and
multiple requests, but generally the rule of “fewer connections is better” holds.

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 713
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

TE
AM
FL
Y

Team-Fly®

714 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

While there will always be overhead associated with individual requests, HTTP
protocol is notorious for its inefficiency at times—particularly when paired with the
congestion avoidance features of the lower-level TCP used to control the transmission
of data from browser to Web server. TCP uses a variety of techniques, such as slow
start and backoff once traffic is encountered, to keep networks from clogging up. Users
certainly notice the slow-start facility of TCP when downloading large files, since the
download speeds keep increasing until reaching a plateau.

The problem with congestion avoidance is significant when considering the size
of typical Web objects, which are often less than 20KB. Given the small size of Web
objects, most connections never reach the full potential of the connection given the
slow-start facility. This is one of the reasons that a single image at 100KB may beat a
few images totaling 80KB, particularly on a fast connection. Browsers may try to address
this issue by requesting numerous objects at once, but this only serves to create bursts on
servers that may already be overwhelmed servicing many requests.

The effect of network protocols on Web page delivery is obvious even to the casual
Web user. Notice when using a high-speed connection, such as a cable modem or
leased line, that the improved bandwidth doesn’t make as much of a difference on
typical sites as it does when downloading large files or accessing sites that use large
binary formats, like Macromedia Flash. The reason is partly the network protocols
being used and partly the way that sites are designed. Typically, users accessing sites
with slow connections find splitting up files into multiple pieces better than delivering
large files. It goes back to usability: keep the users happy with a little bit at a time.
However, a high-speed user may find sites with a few large images to be more
responsive. Designing for high-speed connections and low-speed ones is not just
about the size of the objects that can be delivered, so always design with the type
of connection in mind—not just the amount of data to transfer.

Suggestion: Match data types, number of items, and size of data items to be
delivered to the speed of the user’s connection.

Exploiting Expiration and Caches
In an effort to improve Web usability, it is best not to re-request unchanging contents.

Users are generally familiar with the concept of the browser cache. The browser cache
stores images, HTML files, style sheets, and other items so that they do not have to be
downloaded over and over. Other forms of network caches also are used at both the
corporate LAN and the Internet provider level to avoid retransmission of the same
data. While caches may be commonplace, the number of site designers taking advantage
of them is relatively uncommon.

Simply re-referencing the same image files over and over from a common directory
may appear to improve site access speeds, but it does not go as far as it could. In fact,
even if the image is the same, a browser will issue a request to a server to see if the item
has been modified recently. If unchanged, the server will respond with a 304 code
indicating the cached resource can be used, as the requested item is unchanged.
Unfortunately, all these 304 requests do add up. It would be smarter to indicate which

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 715
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

items in a Web site do not need to be looked at and which do, as well as how frequently.
You can accomplish this using expiration and cache directives. For HTML files, you
can use a <meta> tag like <meta name="Expires" content="Tue, 01 Jun 1999 19:58:02
GMT" /> to indicate expiration date. Needless to say, images change far less often
and should be cached locally more often. To set expiration times on such objects, you
typically need to access the Web server and selectively set expiration headers per item.
A good way to accomplish this is to put unchanging graphics like navigation items and
section labels in a special directory, say /images/cache, and then set a long expiration
time for all these items.

Suggestion: Consider setting expiration dates for unchanging items such as site
graphics.

One downside of using expirations is that you can’t clear remotely cached items easily and
you generally will be required to change filenames to force a re-request of information.

Dealing with State
HTTP is considered a stateless protocol because it doesn’t maintain a constant

connection between the browser and server. As discussed in previous chapters, the
stateless nature of HTTP also presents significant challenges—particularly to interactive
Web sites—since it can be difficult to preserve information from page load to page
load. Cookies, extended path information, and hidden form fields are all used to deal
with this limitation. By its nature, HTTP does not make this easy; designers should
make sure to implement complex interactive sites carefully and in such a way that they
are not overly optimistic about the presence of a particular technology such as cookies.
However, don’t consider the stateless nature to be a serious flaw with HTTP; it is exactly
these characteristics that allow Web servers to service numerous users simultaneously,
because the overhead of a connection does not have to be maintained.

Real-Time Data and the Web
An interesting aspect of the TCP protocol that is not well considered by many Web
designers is the protocol’s inability to efficiently deal with real-time data. If you’ve
used the Internet for any period of time, you’ve encountered occasional delays. The
network is “bursty” by nature. The TCP/IP protocols used on the Internet were
designed this way for robustness and scalability. The Internet is a packet-switched
network that breaks data up into little chunks and sends them separately, to be
reassembled at the other end, because these packets may be lost along their journey or
arrive out of order. However, the Transmission Control Protocol, or TCP, solves this
problem with retransmission and proper assembly of data packets that guarantees the
integrity of the data. This way, many users can share a fixed circuit, which allows for
economies of scale.

Packet-switched networks have distinct advantages over circuit-switched networks
like the telephone system. If your connection is cut off during a phone call, you have to
redial. If there are already too many calls going across a circuit, you get a busy signal.

716 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

When a packet-switched network like the Internet faces increased traffic and failing
connections, it just slows down and reroutes (although servers and overloaded Internet
providers can create the equivalent of a busy signal). However, most packet-switched
networks like the Internet have one serious problem—they cannot guarantee delivery
time without special modifications. This makes streamed audio, video, and other
“real-time” applications difficult on packet-switched networks.

Packet-switched networks can be augmented with protocols like RTP (Real Time
Transport Protocol), RTSP (Real Time Streaming Protocol), and RSVP (Resource
Reservation Protocol), which help format or even control the delivery of time-sensitive
data over the Internet. However, some of these ideas—particularly the idea of being
able to reserve bandwidth—are not well supported yet and, additionally, introduce
economic considerations. For example, how would you charge or limit bandwidth
reservations? Wouldn’t a user always want maximum bandwidth? True real-time
delivery protocols are still in development, so another approach to real-time data on
the Internet is necessary.

The current approach to real-time data on the Internet is really just an assumption—
you hope the end user has the end-to-end bandwidth to receive the file in real time. For
example, consider a user with a 14.4 Kbps modem. On average, we predict the user can
receive about 1KB per second. If we can compress one second of audio down to 1KB,
we could deliver it to the end user and have the sound play in real time. Whatever the
bandwidth, from 14.4 Kbps to T1, an assumption like this is made. When the assumption
holds, the sound can be streamed effectively. However, when the assumption doesn’t hold,
there are glitches and the sound may drop out. If you get too much dropout, the user
turns off the audio stream. One way to avoid dropout is to buffer data. This process
gives you a head start by preloading a certain amount of data in a buffer so that rough
spots can be overcome. An initial buffering delay of 10 or 15 seconds is acceptable for
long audio clips; buffering short sounds is counterproductive. Many Internet audio
solutions use a combination of major compression, buffering, and the bandwidth
assumption to achieve streaming.

The bottom line is that there is really no way to guarantee that bandwidth will be
available. Traffic conditions on the Internet are unpredictable. Even worse, the base
Internet protocols like TCP were never designed to provide the guarantee of delivery
time in the first place. About the only thing to do is to make conservative estimates of
available bandwidth, minimize the path between server and client so latency is reduced
and there are fewer points of failure, and hope for the best. Today’s Web content
distribution networks do this, and various new protocols are being adopted to try
to “fast track” real-time data. However, assuming that radio- or television-quality
delivery of audio or video over today’s Internet is possible, is a naïve assumption that
does not consider the medium. Will reliable, high-quality real-time data transmission
be possible in the future? Probably, particularly with new protocols and improved
network infrastructure, but for now designers should consider the limitations of
real-time data before relying too greatly on it.

Rule: Predictable and error-free delivery of real-time data on the Internet cannot
be reliably guaranteed with today’s protocols and usage.

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 717
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Browser Rendering
Once site content finally reaches the browser, it is time to decode the data. As mentioned
earlier, browsers should look at the Content-Type HTTP header and examine it before
rendering the content; passing it to a plug-in, control, or helper application; or simply
prompting the user to save or delete the information. Note that some browsers like
Internet Explorer seem to even look beyond the MIME type or even file extension and
will aggressively assume HTML is the data type once tags are seen. After content is
rendered, it may be examined for further requests. In the case of an HTML file, it
would be parsed and then any images, applets, movies, sounds, style sheets, scripts,
and so on would be requested individually, unless they were already in local browser
cache—thus repeating the browser the cycle mentioned at the beginning of the chapter.
That’s all there is to Web delivery.

Managing Web Servers
Once a Web server is installed and successfully delivering content to users, there are a
great number of maintenance tasks that should take place. Servers must be continually
monitored for availability, performance, and security. Checking availability might be
simply a matter of utilizing a tool to “ping” the server every few minutes by sending it
a small data packet to see if it is alive. However, such simple checking doesn’t ensure
that the server is working—just that it is reachable on the network. More sophisticated
server monitoring actually requests a page on a site and may even look for some key
phrase or element to make sure that the page is completely formed. Make sure your
hosting vendor provides such monitoring facilities for your site. If not, consider
purchasing a tool that includes site monitors and alarms.

A monitoring tool shows availability of your server only from a particular location.
You may want to test the reliability and availability of your network connection to
other locations on the Internet. The best way to do this is to employ a site-monitoring
service that can test your site from multiple locations online.

Suggestion: Utilize a monitoring tool or service to ensure that your site is
constantly available to users.

The responsiveness of the server should also be carefully monitored. While a server
may not necessarily crash, it can become so overloaded that it is effectively unusable.
Make sure that the load on a server is carefully monitored as well.

Web Server Security
With the rise of e-commerce on the Web, monitoring site security has become of
paramount importance. A lax attitude towards security leads to intrusion by hackers
or crackers—or whatever term, probably derogatory, that you wish to use to describe

718 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

an unsavory character who compromises your site. Why people decide to intrude into
other people’s sites ranges from simple curiosity to a malicious or criminal purpose.
People do attempt to enter into a site to steal credit cards or other valuable information,
as well as to try to ruin the reputation of a firm by posting profane or incorrect
information to the site. A great number of people point to the fact that many intrusions
do not result in significant damage as some indication not to worry too much about it.
However, that is a naïve viewpoint that will be less tolerated as more and more
businesses begin to do business on the net and damaging intrusions continue to
happen. In the “real world,” casual intrusion into a store in the middle of the night by
an individual who claims they are doing this just to see if they can is just plain illegal.
It is unlikely that a defense like “the locks should have been stronger” or even “they
should have locked the door” will satisfy any sane jury. Regardless of your take on the
hacking/cracking issue, site owners should still take precautions and attempt to fortify
their site against unauthorized access. In order to do so, you must first consider the
methods of intrusion employed. A few of the common intrusion techniques are briefly
summarized in Table 17-3.

To combat some of these attacks consider employing all the methods described in
Table 17-4.

What’s interesting about these rules is that they must all be considered together
in order to create a complete security policy. The strongest firewall in the world isn’t
going to keep someone out of your network if they can look through your garbage
to find configuration information or simply call up and pretend to be an important
executive. In some ways, security is somewhat an all-or-nothing venture if you are
serious about it. Many people plug the obvious holes and then don’t worry about
security, but when money is exchanging hands, as in the case of an e-commerce site,
that is a dangerous approach.

Rule: Create, implement, and test a full-site security policy that goes beyond a
simple firewall.

Keeping up with security matters can be a full-time task. Numerous sites like
http://www.cert.org issue warnings literally weekly, and other sites post any and all
exploits for all to see. So, consider that any person interested in cracking a system will
have little problem finding sites that detail how to exploit common system holes. Thus,
it should be no surprise that many of the most common intrusions and worm attacks
that plague sites are due to “cookbook hacking” of the common holes and can be easily
prevented just by patching systems. Because of the constant vigilance required to
maintain secure systems, you may consider hiring an outside firm that specializes
solely in security to audit your site and plug any exploitable holes.

Other Web Server Management Duties
Beyond ensuring the performance, availability, and security of a server, a Webmaster
must often perform tasks such as upgrading hardware and software as well as backing
up the server software and site on a regular basis. Backups may be performed both to

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 719
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Method Discussion

Password guessing A common way sites are exploited is through easily
guessable system passwords. Cracking tools can be
employed that try common passwords or even try
every word in the English dictionary.

Operating system
exploitation

The underlying operating system may be open to
exploitation because of bugs or known flaws. Once the
operating system is compromised, the intruder will have
the run of the site.

Spoofing Not necessarily used for intrusion, spoofing
is a technique where an intruder appears to be someone
else. This may be used for intrusion when the intruder
spoofs a trusted site. Spoofing can also allow an intruder
to pretend to be the site when a user is conducting a
transaction.

Network sniffing Monitor network traffic to grab passwords and other
data useful to gain entry to servers. In some cases there
may be no need to actually enter a server, as valuable
data may be transmitted around the network and
scooped up directly.

Denial of service A denial of service attack is not necessarily performed
to gain access to a site. Denial of service is generally
employed to cause damage or ruin reputation. Typical
denial of service includes crashing the system, using up
all server resources and thus locking out legitimate
users, or flooding a network with bogus requests.

Social engineering Social engineering is when an intruder attempts to trick
unsuspecting site owners or associated staff members
into divulging important information, such as system
passwords. Typically, the intruder will attempt to
impersonate a trusted or important individual over the
phone or via e-mail, since physical deception can be
difficult.

Physical compromise Probably the least common attack form, but still
important to consider, is physical intrusion of a site
location, including actually stealing a system.

Table 17-3. Typical Site Attack Methods

720 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Method Discussion

Use and rotate
strong passwords

Use longer, difficult to guess passwords. Make sure there
is a limit to the life of passwords. Consider using
hardware-generated passwords.

Maintain your OS Keep operating system software up-to-date by applying all
patches and upgrades.

Limit access points Remove services that are not in common use. Limit Web
servers to only providing Web services and consider
removing any form of network protocol access to a server
except HTTP.

Set up a firewall Configure a firewall so as to limit network traffic. Consider
using both packet filtering and application protocol
limitations.

Use strong
encryption

When transmitting sensitive data, either via e-mail or
HTTP, encrypt the information using the strongest possible
ciphers allowed.

Use digital
certificates

Install digital certificates from organizations like VeriSign
(http://www.verisign.com) so that identity can be verified.

Reduce information
leakage

Don’t freely expose information that a hacker could utilize
to find a hole to exploit on your system. Don’t allow a
remote login, even with a prompt. If you do allow remote
login, at least modify any prompts returned to not indicate
the variant of the software or operating system in use.
Modify your HTTP server headers to not reveal the type
of Web server in use. Don’t reveal the type of technology
used in programmed Web pages, like Perl. Consider using
generic file extensions like .cgi instead of language specific
ones like .pl. Avoid exposing information about your
network through domain name services. Avoid naming
systems in such a way as to reveal their operating system
(like solaris1.democompany.com). Modify your WHOIS
record to not include personnel information that can be
used in social engineering attacks.

Employ physical
security

Limit physical access to important servers. Destroy
sensitive documents, including documents that detail
network or server configurations.

Table 17-4. Common Site Protection Methods

offline storage like a DAT tape and to hot spare servers when any downtime could be
detrimental. What’s interesting is that, given the focus on availability, on security, and
on routine system tasks, a Webmaster may spend much of his or her time acting as a
traditional system or network administrator—only with a focus on Web services. Of
course, other organizations may consider the Webmaster the individual responsible
less for the maintenance of the Web server itself than for the content of the site. Content
management is a key aspect to Web site management, but it does intersect with traditional
system administration duties once usage analysis is considered. Certainly the lines
between system, network, and content management blur on occasion.

Content Management
Maintaining content is just as important as maintaining the server itself. Large sites
or those with numerous contributors will quickly degrade if special care is not taken.
First, make sure there is a set policy for naming files. For example, consider avoiding
special characters such as underscores (_) in filenames, because it will be difficult for
users to notice them in the address line of a browser. Instead of robot_butler.htm,
consider robot-butler.htm or just robotbutler.htm.

Suggestion: Avoid using underscores in filenames. Consider using dashes or no
space between words.

However, be careful with using filenames like RobotButler.htm or even capitalizing
directory names. The domain aspect of a URL is not case-sensitive, and the user may
not be consistent in the use of case. Although some servers such as UNIX systems have
case-sensitive filenames, Windows systems don’t, so moving sites between the systems
could be troublesome. You can use a server configuration to address this, but it is
easiest just to always use lowercase to avoid such problems.

Suggestion: Do not use mixed or uppercase letters in file or directory names.

Set a file extension policy and stick to it. Shorter extensions are generally better if
you consider the extra characters to type as well as the fact that some older systems
prefer three-character extensions. However, regardless of your take on .htm vs. .html,
pick one and be consistent.

Rule: Pick either .htm or .html as a file extension and stick with it.

Consider limiting filename length, or even using consistent naming schemes. For
example, some files may include dates in them, such as press releases. Filenames of
pr021299.htm and pr010500.htm could reference press releases on 2/12/1999 and
01/05/2000, respectively.

Make sure to use the same care with directories as you do with files. Pick short,
easy to type and spell directories in all lowercase letters that lack special characters.

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 721
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

722 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Also, consider using common directory names to hold site assets. Table 17-5 details a
few common directory names and their usual contents.

What probably causes the most difficulty in dealing with site content are all the
changes that are made. When many people are working on a site, it is easy for
conventions to be overlooked and for simple errors to be introduced. To reduce the
possibility that content degrades, first carefully limit who can make changes to a site.
Second, resist the desire to fix site problems or add content on a moment’s notice. It is
far better to make regular updates, such as once a day or once a week. This allows
backups to be made and provides a stable base to roll back to in case problems are
introduced.

Suggestion: Try not to update on demand; instead create a regular update
schedule.

If a site is heavily updated, consider employing a content management tool. A
simple source code control system can be used that will provide an audit trail and
rollback facilities and will force site contributors to check out pages to make changes to

Directory Name Contents

/cgi-bin The traditional location for executable programs on a
Web server, particularly CGI programs.

/scripts Contains scripts for the site, including JavaScripts, CGI
scripts, and server-parsed languages like Cold Fusion or
Active Server pages. Occasionally, the directory may be
named after the type of script stored—for example, /js or
/javascripts for linked JavaScript files.

/styles or /css Contains any linked style sheets used on a site.

/images Contains all site images, including GIFs, JPEGs, and
PNG files.

/video Contains video assets—primarily nonstreamed video clips.

/audio Contains audio assets—primarily nonstreamed audio files.

/pdfs Contains PDF files such as a library of datasheets.

/download
or /binaries

A central location for any programs or software
distributions that are to be downloaded from the site.

Table 17-5. Common Site Directory Names

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 723
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

them. More powerful content management systems with easy-to-use browser-based
front ends, including form-based page editing, can be built or purchased. The
DemoCompany site (www.democompany.com) itself uses such a tool, as shown in
Figure 17-4.

Interested readers who have not experienced content management systems are
encouraged to try this system. More advanced systems provide even more advanced
capabilities and are used to run complex Web sites, particularly heavily updated sites
like news sites. The point here is simply to illustrate the concept of content
management.

Regardless of the methodology used to control the update of a site, one rule cannot
be stressed enough: Never work directly on a live site. Be aware that users may see your
changes as they happen and even see pages in half-finished form. Further, any serious
blunder may be difficult to recover from if the live site is being edited directly.

Rule: Do not work directly on a live site!

Figure 17-4. DemoCompany’s homegrown content management system

TE
AM
FL
Y

Team-Fly®

Rather than working on a live site, consider using a three-site architecture, as
illustrated in Figure 17-5. First, set aside a development server where a copy of the site
is kept and major changes and programming features can be added and tested. Second,
create a staging server with an exact duplicate of the published site. The staging server
is where changes are made and tested. Last, a production server should be utilized to
actually hold the site being delivered. Changes should be made only on the
development or staging site, which is later synchronized with the production server.

Even with careful planning, errors are bound to creep in. In fact, some things may
even be beyond your control, such as the availability of external servers you link to.
Because of the potential for broken links, a link-checking tool should be utilized often.
However, beware of just running link checking on a huge site and then trying to
correct all the errors at once. It may be wiser to check sections of the site on a rotating
basis. For example, every day a different part of the site tree might be examined and
any broken links repaired.

Rule: Check site links constantly.

Besides link checking, it is important to continually check the quality of site content.
Tools can be used, such as Coast (www.coast.com), that look for common site-quality
problems such as slow-loading pages, spelling errors, or poor HTML, but nothing beats
the human eye for spotting content problems. Focus particularly on page details such

724 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 17-5. Three Web sites are better than one

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 725
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

as copyright information, page titles, and text sizing. Subtle variations can mean the
difference between a positive user visit and a negative one. One good way of finding
problems is to actually print pages and look them over carefully.

Suggestion: Check regularly for page details including spelling, legal terms,
and font usage. Perform a print test if necessary.

While careful checking will ferret out many problems, errors will still occur in most
sites. Make sure that users have a form or e-mail address to use to send in any found
errors. Sites should always consider the address webmaster@yourdomainname.com
as a default address published for users to send problems to.

Suggestion: Provide the address webmaster@yourdomainname.com for users to
contact you with suggestions and error reports.

Even if users don’t tell you where your errors are, looking at the way users browse
a site by examining access logs may provide valuable clues to sections that should be
examined further.

Usage Analysis
A very important task in managing a Web site is analyzing site traffic. Many sites use
very simple measurements, such as page counters showing the number of visitors, to
monitor usage. The true benefit of these counters is unknown. One possibility is that a
visitor to the site may make a determination to stay or go based on the counter. If the
counter shows only a few visitors have ever been to the site, they may assume there is
nothing there and just leave. The counter, of course, is under complete control of the
designer, and the number of visitors showing can be adjusted. If you decide to roll
your counter to a much higher number, you may still have problems, as the user may
believe the counter to be misleading—which could cast suspicion on the accuracy of
the site’s content. The bottom line is the user doesn’t need to know how many people
are visiting your site. Further, visitor counters are not found on most high-quality sites,
and many users may feel that a site with one is amateurish.

Suggestion: Do not put a visible page counter on your site.

Rather than counters to indicate site usage, you should rely on server log files, as
they show what users actually look at in a site and can be used to glean important
information about site usage and success. For example, by analyzing a log file, you
can see which files users read and which they do not. From this information, you might
decide to promote heavily used pages closer to the top of the site or prune lesser-used
pages from the site. Managing log files is not difficult, but it does require some planning
to deal with them properly, and they must be analyzed carefully so as not to jump to
false conclusions about a site. If you decide you’d rather not keep statistics, there are
numerous services that will monitor your site traffic for you—for example, HitBox
(www.hitbox.com).

Regardless of who does the collection or what kind of server is used, log files are
fairly similar. Web servers generally provide two basic logs: the access log and the
error log. There may also be a referrer log, which records users following links from
other sites to your site, and an agent log, which records information about the user
agents (usually browsers) that are accessing the site. Often, the referrer information
and user-agent information is recorded in the access log as well. The most common
format of access log is called, appropriately, the common log format. The format of the
common log format is

Host identd authenticated-user [Time of request]
"request made" result-code bytes-transferred

Each field in a typical common log is explained in Table 17-6.
A few examples entries from an access log are shown here:

206.251.142.45 - - [22/Jan/2000:19:29:09 -0800]

"GET /badfile.htm HTTP/1.0" 404 222

sj.ix.netcom.com - - [22/Jan/2000:19:29:12 -0800]

"GET / HTTP/1.1" 200 7947

sj.ix.netcom.com - - [22/Jan/2000:19:29:13 -0800]

"GET /images/about.gif HTTP/1.1" 200 506

sj.ix.netcom.com - - [22/Jan/2000:19:29:14 -0800]

"GET /images/staff.gif HTTP/1.1" 200 580

sj.ix.netcom.com - - [22/Jan/2000:19:29:14 -0800]

"GET /images/products.gif HTTP/1.1" 200 620

phoenix.goodnet.com - lsw [22/Jan/2000:19:40:50 -0800]

"GET /images/whatsnewtop.gif HTTP/1.1" 200 874

The example entries show bad requests, a series of requests that constitute a full
page, and an entry that was authenticated. Given that every single individual object
requested on a site is recorded, log files become enormous relatively quickly. Log file
information should be cut into manageable chunks for analysis.

Split logs on a regular basis such as daily, weekly, or monthly to avoid log files getting
unwieldy and rotate or back up older logs to avoid filling up your drive with mountains
of usage data.

Once a log file is generated, it should be periodically analyzed. Many software
packages exists that can be used to batch analyze Web server logs. Many of these packages
can be automated to fetch log files and run reports at a specified time. For example,
WebTrends (www.webtrends.com) Log Analyzer, as shown in Figure 17-6, is a particularly
popular log analysis package.

726 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 727

Field Description Examples

Host The address of the client
making the request. Often,
this is just an IP address,
since domains may not be
resolved until later on.

192.102.249.5
pc1.fakedomain.com

Identd The information returned
by identd. If this is not used,
a dash is recorded instead.

-

Authenticated user This field indicates any
username sent for
authentication. A dash is
found if no user challenge
was issued.

-
bigboss

Time of request This field indicates the time
the request was made. It
should be in the form
DD/Mon/YYYY:hh:mm:ss
–GMT
where DD is the day, Mon
the month, YYYY the year,
hh the hour on a 24-hour
clock, mm minutes, ss
seconds, and –GMT the
offset from Greenwich
mean time.

[22/Jan/2000:13:52:54 -0800]

Request made This is the actual HTTP
request made by the client.

"GET
/products/robotbutler.htm
HTTP/1.0"

Result code This is the HTTP numeric
status code returned by the
server indicating the success
or failure of the request
made.

200
404

Bytes transferred This field records the
number of bytes sent back
to the requesting client.

2358

Table 17-6. Access Log Fields

One important consideration when choosing a log file program is whether or not
the usage data is stored in a database. Some lower-end analysis programs will simply
read a log file and create a report. If you desire to see a different report, the entire log
file must be reread. For quick and dirty analysis, such batch log file analysis is probably
adequate, but many designers will want to investigate results dynamically and may
want to run comparisons over long time periods. Sites with more than a few thousand
visitors per month should consider using a database-enabled log analyzer and save
statistical data over time in a data warehouse. However, the amount of usage data a
site collects grows quickly, so think carefully about how much data is really necessary
to save. Also, if your site gets a reasonable amount of traffic, you should consider
dedicating a machine solely to process and analyze log files. Sites with large volumes
of traffic find that keeping up with usage is very difficult, and they are forced to try to
process log data in real time because of the time that will be mandatory to offload the
server—particularly if usage analysis is going to be performed in real time.

728 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure 17-6. WebTrends presents an easy-to-use log file analyzer

Analyzing Site Usage
The ultimate purpose of saving log files is to process them and create reports to reveal
site usage. Statistical analysis programs can generate fancy reports showing various
aspects of site use. An example report is shown in Figure 17-7.

While log analysis reports often contain pretty graphs and charts that look useful,
a significant problem is that there is often only little meaning that can be distilled from
the reports. In fact, far too often Web site managers focus too much on gross usage
statistics, such as total page views, or concentrate on general trends rather than on
what is actually happening on the site. Often, without close inspection, such metrics
can be misleading. For example, are all the visits to a site a single visitor or multiple
visitors? Are pages being reloaded? Are the page views coming from your own
organization being filtered out? There is much more to measuring the use of a site
than looking at the number of pages viewed. Consider performing the tasks listed
in Table 17-7 when looking at log analysis reports.

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 729
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Figure 17-7. Sample report from WebTrends

730 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Task Purpose of Task

Look for entry points Determine where users enter a site. If users are not
entering through the home page, then how are they
entering the site? The users may have bookmarked the
site or are entering through search engines deep-linking
to pages within the site.

Look for exit points Which pages are users commonly viewing last? Are these
pages valid exit points at the conclusion of a typical task,
or are users bailing out of a site visit midstream?

Find common paths What paths did users take through a site? Did these
paths lead to valid conclusion pages? Are these paths
efficient, or could the number of clicks be reduced?

Look at average
visit length

While the time of the visit may be difficult to determine
exactly, at least look at the numbers of pages viewed
and the time estimate. Make sure to consider if the
length of time is reasonable. Don’t assume the longer
the visit, the better. A visitor may just want to get a
particular piece of information and leave.

Look for domain
and user spikes

Look to see which domains and users visit the site
frequently. Take particular note of surges of domains or
users. It may be related to a particular event. Be careful
to filter out local users, as an organization tends to be its
own heaviest visitor.

Look for single visit
or multivisit trends

Determine if site users are inclined to visit the site
frequently or not by looking for return visits. If the site
is geared towards heavy return visitation, attempt to
track individual users with cookies.

Watch for day and
time patterns

When do users visit the site? Is the site a night or day
site? Is it heavily used during the week or on the
weekend? Business sites often find their logs closely
match business hours, while entertainment sites may
show heavier use at night. Look for the heaviest traffic
periods and try to understand the reason. It may be just
that it is the time of day or week that the most users are
likely to use the site, or it may be related to events that
happened on the site, such as a new software release or
the posting of an earnings report.

Table 17-7. Common Tasks to Perform During Log Report Inspection

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 731
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

Remember, one of the major reasons to look at a log file is to study how users
actually use a site—these are real users with real goals, so try to determine what they
are trying to accomplish at the site. Measuring the success or failure of visits is particularly
important. It may be better to first focus on the number of software demos downloaded,
forms submitted, products purchased, and so on, rather than to focus on the number of
pages viewed.

Rule: Analyze your log files carefully and use them to improve a site or measure
its effectiveness.

Log analysis can also be used to show the economic effectiveness of a site. For
example, an e-commerce site might measure the number of visitors per sale, the
number of page views per sale, the number of bytes delivered per sale, and so on.
In fact, for e-commerce sites it is wise to consider visitation costs as related to sales.
Remember, delivery of sites is not free, so it is important to try to understand the cost
of each visit.

When used carefully, site promotion techniques can also be evaluated to determine
their effectiveness. For example, consider the placement of a magazine advertisement
for a new product. Rather than promoting the standard URL for an organization, like

Task Purpose of Task

Look for language and
geography patterns

Look to see if users from foreign countries are using the
site. Consider language changes or localization if heavy
usage is found.

Look at browser usage Look at the types of browsers using the site. Optimize
the site for use by the most common browsers, but
account for limitations of uncommon browsers seen in
the log file.

Look for referring sites Determine how users reach the site. If referring links are
followed, backtrack and see what sites are pointing to
yours. Keep a database of referring sites, particularly if
links are paid for, to judge cost per visit.

Look at search engine
keywords

If users are utilizing search engines to reach the site,
make sure to monitor which keywords they are using
to find the site.

Look for errors Make sure to look at the error log and look for “404”
page requests, server response problems, and any other
errors that might have occurred.

Table 17-7. Common Tasks to Perform During Log Report Inspection (continued)

732 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

www.democompany.com, use a special URL—for example, www.democompany.com/
robot/magad or something less obvious, like www.democompany.com/robot4.html—
so that each advertisement has a URL with a different number at the end. Some
organizations even create special URLs like robot.democompany.com, or even full
sites like www.robotbutler.com (often termed microsites) that can be associated with
a particular site promotion. Whether using just a special URL or creating a whole
new site, a unique entry point can be monitored in the log files to determine the
effectiveness of the advertisement. Further, the entry page can be created to be more
contextually appropriate to the advertisement, as shown in Figure 17-8.

When providing site addresses to the public, set up special entry URLs to track usage
and provide more focused information to users.

While log files can be used very effectively to understand site use, don’t fall into
the trap of thinking the logs tell the whole story. A log file isn’t going to say if a user
enjoyed a visit to a site or found it confusing. For example, a user may get to a
particular page in the shortest number of clicks, but may have guessed or been forced
to very carefully read information in order to do so. Analyzing log files does not
remove the need to communicate with users. You should still solicit comments from
users and even hold surveys to determine user satisfaction.

Rule: Do not rely solely on log files to understand a site’s effectiveness. You still
have to talk to the site’s users.

Figure 17-8. It is often better to push users to specific URLs or sites

Leads to special URL

Customized
based on lead-in “Welcome HTML Ref Visitor”

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 733

Also, because of assumptions made by log analysis software, as well as the people
analyzing the files, it is very easy to jump to incorrect conclusions. This is further
compounded by network and protocol effects, which may taint log data.

Accuracy of Logs
Be careful when looking at log files not to infer too much. For example, the domain
name or IP address of a user requesting a page is recorded in the log files. Some people
are tempted to relate the domain name to the physical location of the organization that
holds the domain name. This could then be used to determine what geographical
regions people are coming from. However, the Internet isn’t as geographically sensitive
as many people might think. For example, if a user is coming from aol.com, that says
nothing about where they are physically located. In fact, relating domain names to
geographical locations will make you believe that California and Virginia account
for the majority of a public site’s traffic. The problem here is that many large Internet
connectivity vendors are based in these regions and their domain names show this.
Further, don’t assume that just because a user comes from a .com domain that they
are in the United States. Many foreign firms use the shorter domain names as well.

Another problem with log accuracy is related to network and protocol issues.
Remember that HTTP is a stateless protocol. Because of this, it is very difficult to
tell how long a user visit lasts. For example, a user may request the home page at a
particular moment in time and, a minute later, click on a link to visit a subpage, and
then leave by shutting down the system or entering a URL of another site directly in
the browser. Question: how long was the visit? You can’t really tell. The user may
have lingered on the subpage for 10 seconds, 10 minutes, or even 10 hours. You can’t
see them leave. You just know they didn’t view any more pages in your site. Most
statistics analysis packages make an assumption to end a particular visit after so many
minutes of inactivity. Tune the package to use a longer amount of time and your reports
will suddenly show longer visitation times.

It is important to consider how aspects of the network, such as dynamic IP addresses
and proxy servers, will affect log accuracy. Many users access the Internet from a
machine that is given a new IP address dynamically each time it connects to the
Internet. If you measure visitors by their IP address, you may easily over-report the
number of unique visitors if dynamic IP addresses are issued. Further, when a proxy
cache is used, you may see only a single visitor rather than numerous ones, because
all users appear to come from a single IP address. It is possible to get around some of
these issues by handing out a cookie to the user. The cookie can be used to identify the
user, and will identify users uniquely regardless of what IP address they are coming
from. Unfortunately, users may not accept cookies and may become suspicious of the
amount of tracking going on. While it is important to track users to understand their
likes and dislikes, it is also important not to appear to be monitoring them too closely.
Privacy is a growing concern for users and is discussed in the next section. First,
however, we’ll consider the implication of site usage accuracy.

Some readers may be familiar with the expression, “There are lies, damn lies, and
then there are statistics.” It is true that it is easy to be misled by site usage statistics,

TE
AM
FL
Y

Team-Fly®

734 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

particularly when making assumptions such as one IP address equals one user. As long
as the assumptions are kept the same, useful patterns can be determined. The only real
danger with site usage analysis is when the unscrupulous designer learns that it is easy
to modify or even create results. Far too often, it seems sites strive to show heavy
usage, and in some cases may misrepresent the usage level. Some sites play word
games, talking about “hits” rather than “page views.” A hit is simply a request for an
object in a page. If a page has nine images in it, it produces ten hits or more—one for
the page itself and nine for the images. If you want to look like you have a lot of traffic,
put many small objects in every page and talk about your hits.

Some sites have even gone so far as to create results by either writing a program to
browse the site or by paying people to click on the site. In fact, creating realistic-looking
usage data complete with unique IP addresses is far easier than you think. It is no
wonder that advertisers are hesitant to pay for mere banner views and prefer paying
for clicks or results. Usage data trickery does nothing but hurt the industry. Legitimate
sites already have begun relying on third-party auditing to verify usage for advertisers
and other concerned parties. The “fake it until you make it” strategy is a dangerous
game that no site should play.

Privacy
What is done with data collected from a user visit can be just as important as the
delivery of the site itself. As more and more users rely on the Web for day-to-day
business and personal tasks, the issue of privacy grows in importance. Many users,
particularly novice users, are worried about being tracked by sites and may not want
to transmit a credit card number over the Web for fear of interception. While some of
these fears are certainly not warranted, Web designers should never quickly dismiss
user concerns, as this would go against the very nature of user-centered design.

First, consider the user’s fear of privacy as it relates to tracking their online
movements. Indeed, sites do track users both openly and legitimately through log files,
and occasionally they do so surreptitiously using cookies or even HTML tricks. While
cookies may be useful to rectify various environment problems, such as the stateless
nature of HTTP or dynamically assigned IP addresses, they are indeed used to track
the user to some degree. Now, how you decide to utilize the information collected will
vary, but it is important to inform the user of what is collected and what it is used for.
A privacy policy should be written that explains the policy for collecting and using
sensitive information. Organizations like TRUSTe (http://www.truste.org) will help sites
create a privacy policy. However, enforcement of policy is problematic, and users are still
wary of sites—even those that may have been audited by organizations such as TRUSTe.

TEC
H

N
O

LO
G

Y
A

N
D

W
EB

D
ES

IG
N

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 735

Rule: If you are collecting sensitive data online, post a privacy policy or
statement in an obvious place on the site and abide by it.

The crux of online privacy really gets back to control. Should users be in control
of their online personal information and know what is being collected about them and
what is stored in various databases? Or should Web sites be able to freely collect and
trade information about users? Unfortunately, at least in the United States, the power to
regulate personal information is not truly in the hands of users. Even when it comes
to credit reports, think how difficult it can be to obtain and correct your own credit
report. Now consider how damaging incorrect entries can be on your report when
trying to apply for a home loan. The Web brings this to a whole new level.

Sites can and do develop profiles on users and use these profiles to market more
selectively to them. In some situations, sites may even sell or trade user profile
information with others. In fact, the degree of personal information that can be
obtained online is quite scary. One recent news story detailed how a boy with a high
school crush gone wrong used the Web to obtain and post information about the
whereabouts of his obsession. He eventually found and murdered the girl. However,
don’t leap to conclusions about the evils of the Internet. The medium itself does
nothing. There are few stories run about how people used the telephone to plan a
crime, which is certainly done frequently. The key to improving the Web is to make
sure to apply common sense to its usage and consider or even monitor carefully what
is consumed.

Because privacy policies are typically hard to find and filled with legalese, it is not
surprising that most users rarely (if ever) take the time to read and understand them
in their entirety. To address this problem, the W3C has developed the Platform for
Privacy Preferences (P3P), which provides an automated way for Web sites to publish
and users to retrieve privacy information for a given site. The Webmaster runs a
program that asks a series of questions in order to determine how to characterize the
nature of the site’s usage of user data. Once this short interview has been completed,
the program places a special file that contains a summary of this information at a
predetermined place on the Web server. Then, when a user wishes to retrieve privacy
information on the site the browser fetches the summary and presents it to the user,
as shown in Figure 17-9.

The truth of the matter is that P3P has not yet been widely adopted and has some
critics in the privacy community. However, it probably cannot hurt to employ this
technology or at least keep abreast of the developments in this area—especially in light
of the fact that Microsoft is heavily behind the initiative. You can learn more about P3P
and find programs such as the one just mentioned at www.w3.org/P3P/.

736 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Content Concerns
Like privacy, the delivery of data and interaction with a user are not just technical
matters. These aspects of the online experience raise feelings and beliefs about the
acceptability of content. Many parents, and now even employers, are concerned with
the content that is easily available online. It seems that far too often children are able
to easily find less than desirable material online, such as hateful sites or hardcore
pornographic material, without their parent’s knowledge. Of course, much of the
blame can be placed on parents who do not carefully monitor what their children
are doing and interact with them in a positive way to warn them about such sites.

While what constitutes “unacceptable” will certainly vary from individual to
individual, few will argue that there are not at least a few sites that should be kept

Figure 17-9. Sample site privacy information dialog defined by P3P

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 737
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

away from children, if possible. Of course, deciding what is acceptable and what is
not should not be strictly determined and enforced by a third party—particularly the
government—since this would inhibit freedom of speech and introduce censorship.
However, parents, teachers, and even employers should have the tools to help monitor
and control content usage where acceptable. Site filtering is probably the most common
technique employed. The basic method of site filtering involves the use of special filtering
software that looks first for a content rating before allowing a page to be loaded. If the
content is deemed acceptable, it is presented to the user; if not, it is rejected. From a site
delivery perspective, the key concern about content acceptability is the accuracy in
labeling content as acceptable or unacceptable.

The W3C has proposed the Platform for Internet Content Selection, or PICS
(http://www.w3.org/pub/WWW/PICS/), as a way to address the problem of content
filtering on the Web. The idea behind PICS is relatively simple. A rated page or site will
include a <meta> tag within the head of an HTML document. This <meta> tag
indicates the rating of the particular item. A rating service, which can be any group,
organization, or company that provides content ratings, assigns the rating. Rating
services include independent, nonprofit groups such as the Internet Content Rating
Association (ICRA) (http://www.icra.org/). The rating label used by a particular
rating service must be based on a well-defined set of rules that describes the criteria for
rating, the scale of values for each aspect of the rating, and a description of the criteria
used in setting a value.

To add rating information to a site or document, a PICS label in the form of a
<meta> tag must be added to the head of an HTML file. This <meta> tag must include
the URL of the rating service that produced the rating, some information about the
rating itself (such as its version, submitter, or date of creation), and the rating itself.
Many rating services allow free self-rating. Filling out a form and answering a few
questions about a site’s content is all that is required to generate a PICS label. After you
complete and submit the questionnaire, you receive a page or e-mail containing the
appropriate meta information, which can then be placed in the head of your HTML
documents. An example of a PICS label in the form of a <meta> tag using the RSACi
rating is shown here:

<meta http-equiv="pics-label" content='(pics-1.1

"http://www.icra.org/ratingsv02.html" l gen true for

"http://www.democompany.com" r (cz 1 lz 1 nz 1 oz 1 vz 1)

"http://www.rsac.org/ratingsv01.html" l gen true for

"http://www.democompany.com" r (n 0 s 0 v 0 l 0))' />

Under the ICRA rating system, information is rated based on nudity, sex, violence,
and language on a scale of 0 to 4, with 0 being harmless and 4 being the most extreme
form of each criterion. In the previous case, nothing was offensive, so the site received
0 on all counts. Remember that, when filtering, software reads a file that contains a
rating, and then it determines whether the information should be allowed or denied.

738 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Very strict filtering environments may deny all sites that have no rating, so sites with
a broad audience are encouraged to use ratings to avoid restricting readership.

Filtering technology that supports PICS is beginning to achieve widespread
acceptance and use. For example, Internet Explorer already includes PICS-based rating
filtering, as shown in Figure 17-10.

Of course, the technology itself can’t cure the problem. Lack of trust in a particular
ratings system is a major stumbling block in adoption of the filtering idea. Even when
trust is gained, if the rating system seems confusing or arbitrary, its value is lowered.
In the real world, Hollywood’s MPAA movie rating system assigns a single value of G,
PG, PG-13, R, or NC-17 for each movie. The assignment of a particular movie rating is
based on many factors that often seem arbitrary to casual observers. When considering
movies, parents may wonder how scenes of a dinosaur ripping a person to shreds
merits a PG or PG-13 rating, while the use of certain four-letter words indicates an R
rating. Certainly, similar situations occur on the Internet. Because of the imprecise
nature of ratings, the topic is a loaded one, both off and on the Internet. Be careful not
to inadvertently cause problems for your site by not rating it, particularly if some users
could construe the content as unacceptable.

Rule: If your content is in any way questionable, have it rated.

Figure 17-10. PICS rating support under Internet Explorer

Summary
Speedy site delivery is very important because the user’s feeling about a site is heavily
influenced by its responsiveness. When optimizing sites for speed, make sure to
consider all aspects of delivery, including the protocols, the servers, and network
location. When building a Web server, make sure to first consider the site’s delivery
requirements and then choose the hardware, operating system, and server software to
match. Hosting choices should also be carefully evaluated, and outsourcing should be
considered a viable option for many sites. Once the site is being delivered, make sure
to monitor it carefully. Site maintenance will have to be performed not only on server
hardware and software, but on the content itself. Analyzing log files and checking for
broken links is an important aspect of proper site maintenance. However, always
consider that delivering sites to users is akin to having a conversation with them, and
the issue of security, privacy, and acceptability of the content will certainly come up.

C h a p t e r 1 7 : S i t e D e l i v e r y a n d M a n a g e m e n t 739
TEC

H
N

O
LO

G
Y

A
N

D
W

EB
D

ES
IG

N

This page intentionally left blank.

Part V
Appendixes

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Appendix A
Core Web Site
Design Principles

743

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

Throughout Web Design: The Complete Reference, key concepts have been
summarized as Rules, Suggestions, and Premises. Useful Definitions have also
been provided when necessary. This appendix collects all of these in one place,

grouped by chapter, to give the reader the chance to quickly review the basic ideas of
this book.

What Is Web Design?
These rules from Chapter 1 summarize some essential concepts for effective Web
design.

Rule: YOU are NOT the USER.

Rule: USERS are NOT DESIGNERS.

Rule: Design for the common user, but account for differences.

Rule: Make sure the visual form of a site relates to its function.

Rule: A site’s execution must be close to flawless.

Rule: Know and respect the Web and Internet medium constraints.

Rule: Appropriately respect GUI and Web interface conventions.

Rule: There is no form of “correct” Web design that fits every site.

User-Centered Design
These rules, suggestions, and definitions from Chapter 2 emphasize the importance
of considering your target audience—the actual users of the site—when designing
for the Web.

Definition: Usability is the extent to which a site can be used by a specified
group of users to achieve specified goals with effectiveness, efficiency, and
satisfaction in a specified context of use.

Rule: There is no absolute description of what constitutes a usable site.

Rule: Usability depends on the medium of consumption.

Rule: Usability depends on the type of site, as well as the user’s familiarity with it.

Rule: Usability and user satisfaction are directly related.

744 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 745
A

P
P

EN
D

IX
ES

Rule: Browsers don’t use sites, people do.

Suggestion: There are no generic people. Always try to envision a real person
visiting your site.

Suggestion: Avoid using text, graphics, and backgrounds of similar hue.

Suggestion: Avoid combining text, graphics, and backgrounds of similar saturation.

Rule: Keep contrast high. Avoid using text, graphics, and backgrounds of similar
lightness.

Suggestion: Avoid using busy background tiles.

Rule: Make sure colors that are meant to distinguish items like links are
significantly different in two ways, such as hue and lightness.

Rule: Users try to maximize gain and minimize work.

Rule: Recognition is easier than recall.

Rule: Do not make visited links the same style or color as unvisited ones.

Suggestion: Make pages that will be remembered visually different from the rest.

Suggestion: Limit groups of similar choices, such as links, to between five to
nine items.

Suggestion: Aim for memorization of only three items or pages sequentially.

Rule: The amount of time a user will wait is proportional to the payoff.

Rule: When response times such as page loads take more than 30 seconds, try to
provide your own feedback to the user, such as a load-time progress bar.

Suggestion: Make page elements obviously different if they are different.

Suggestion: Limit page noise, and segment page objects so that they don’t
compete so much visually that users are unable to focus on what they are
interested in.

Rule: Sensory adaptation does occur on the Web. If you want a user’s full
attention, you’ll have to vary things significantly and often.

Rule: Try to optimize keyboard access for all pages in a site, not just form pages.

Rule: Minimize mouse travel distance between successive choices.

Rule: Minimize mouse travel between primary page hover locations and the
browser’s Back button.

Rule: Make clickable regions large enough for users to move to them quickly and
press them accurately.

Suggestion: Always remember that you need to bring a site into the user’s world,
not the other way around.

Rule: Account for the characteristics of the probable environment in which the
user will access a site.

Suggestion: Aim to create an adaptive Web site that meets the requirements of
novices, intermediates, and advanced users.

Suggestion: Design for the intermediate user if an adaptive Web interface is
not possible.

Rule: Users bring past experiences with the world, software, and the Web to your
site. Make sure your site meets their expectations.

Rule: Do not stray from the common interface conventions established by
heavily used sites.

Suggestion: Perform user testing early and often.

Suggestion: When performing even an informal usability test, avoid talking too
much or guiding the user.

Suggestion: Do not use usability concerns as a way to avoid or eliminate visual,
technological, or economic aspects of a site.

Suggestion: Practice “Las Vegas” Web design. Provide the user with a pleasant
experience complete with perks and the illusion of unlimited choices, but control
the situation strictly at all times.

The Web Medium
These rules and suggestions from Chapter 3 emphasize correct approaches to the
capabilities and limitations of the Web medium.

Rule: Beware of relying on published browser usage figures; track actual
browser usage on your site.

Rule: Users often don’t blame browsers for simple errors—they blame sites.

746 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 747
A

P
P

EN
D

IX
ES

Rule: Consider using both client-side and server-side technologies in a site,
rather than one or the other.

Suggestion: Rely on helper applications when translation to a native Web
format is impractical.

Suggestion: Focus on using only the more popular plug-in technologies unless
automatic installation can be performed.

Suggestion: If ActiveX controls are used on a public site, make sure to provide
alternatives for Netscape or other browsers.

Rule: Consider end-user system performance carefully when using Java applets.

The Web Design Process
These rules and suggestions from Chapter 4 focus on the importance of developing and
sticking to a process when approaching Web design.

Suggestion: Always collect content as soon as possible.

Rule: Visual design should proceed in a top-down fashion, from home page to
subsection pages and finally to content pages.

Suggestion: Always consider the bordering effect of the browser window when
developing visual composites.

Rule: Don’t marry your design prototypes. Listen to your users and refine
your designs.

Rule: Sites always have bugs, so test your site well.

Rule: Testing should address all aspects of a site, including content, visuals,
function, and purpose.

Rule: User testing is the most important form of testing and should always be
performed last.

Rule: Site development is an ongoing process—plan, design, develop, release, repeat.

Evaluating Web Sites
These rules and suggestions from Chapter 5 concern approaches to evaluating existing
Web sites.

Rule: Pay attention more to what users do than to what they say.

748 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Consider having a person not involved in the site design process
conduct a user test.

Site Types and Architectures
These rules, suggestions, definitions, and premises from Chapter 6 are concerned with
defining and understanding the many types of Web sites and site structures.

Definition: A public Web site, an Internet Web site, an external Web site, or simply
a Web site is one that is not explicitly restricted to a particular class of users.

Definition: An intranet Web site is a site that is private to a particular organization,
generally run within a private network, rather than on the Internet at large.

Definition: An extranet site is a Web site that is available to a limited class of
users, but is available via the public Internet.

Definition: A static site is one where content is relatively fixed, and users are
unable to affect the look or scope of the data they view. In short, the visitor has
minimal ability to interact with the site’s content other than choosing the order
in which to view content.

Definition: An interactive site is one where the users of the site are able to
interact directly with the content on the site or with other users of the site.

Definition: A personalized site is one where content is directly geared towards a
particular user, and the user generally can explicitly determine the content, look,
or technology contained within a page.

Definition: A dynamically generated page is created at request or view time
for the user.

Premise: The overriding purpose of any commercial site is to serve the user in a
way that will benefit the company either directly or indirectly.

Premise: Entertainment sites may find novelty or surprise in design more useful
than structure or consistency.

Definition: A portal is a site that is generally a primary starting point for a user’s
online journey and serves to help people find information. Portals often attempt
to provide as much information and serve as many tasks for the user as possible
in order to encourage them to stay or to at least continually revisit the site.

Definition: A community site is any site that allows easy interaction between site
visitors and serves as a meeting area for site visitors, rather than simply a
viewing area for visitors to view canned content.

Premise: The design of artistic sites may purposefully defy common Web
conventions.

Premise: A Web site’s logical structure is more important to a user than its
physical structure.

Rule: Do not expose physical site file structure, if possible.

Rule: A site’s logical document structure does not have to directly match
physical structure.

Suggestion: Aim for a site click depth of three.

Suggestion: Aim for positive feedback indicating progress toward a destination
for every click, with a maximum of three clicks without feedback.

Suggestion: Even for wide site structures, consider a range of 25–81 links per
page when page links are ideally clustered.

Premise: The more important the page, the more redundant links should be
provided to it.

Suggestion: Redundant links in a site should be no more than 10 to 20 percent of
a page’s total exit links.

Premise: Novice users prefer sites with predictable structure and may put up
with extra clicks or a lack of control to achieve a comfortable balance.

Premise: Power users or frequent site users want control and will favor structures
that provide more navigation choices.

Navigation Theory
These rules, suggestions, and definitions from Chapter 7 approach the important issue
of Web site navigation both from a theoretical and a practical standpoint.

Rule: Use simple and memorable URLs to improve navigation.

Rule: Do not hide or obscure URLs unless you are trying to keep people from
direct linking.

Rule: Use consistent and explicit page labels for all pages in a site.

Rule: Site-wide labeling of icons or words, such as the organization name or
logo, should always return a user to the home page of the site when clicked.

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 749
A

P
P

EN
D

IX
ES

750 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Button states should be considered a secondary form of page
labeling, and the selected state should always be subdued, not prominent.

Suggestion: When using color-coding to imply section location, make sure the
colors used are significantly different from each other.

Suggestion: Do not go so overboard with theme-based location hints that you fall
into a designer-defined metaphor.

Suggestion: Do not attempt to mimic the browser history mechanism with links.

Rule: Avoid links named simply “Back.” Always explicitly indicate where a back
link will go.

Rule: Do not hijack a user’s back button unless the site’s functionality requires it.

Definition: A cookie is a small bit of textual information handed out by a site
that is stored on the user's system.

Rule: Users remember their start page as a permanent landmark and the home
page of a visited Web site as a semipermanent landmark. Because of this, these
pages should be stable in their presentation but look noticeably different than
other pages visited.

Suggestion: Don’t hide a destination choice from a user unless the link is less
important or clutter forces sacrifices.

Suggestion: Avoid placing primary navigation on the far right of the screen.

Suggestion: Home pages or other landmark pages should consider using
center-oriented navigation to distinguish themselves from other pages in a site.

Rule: Placement of navigation should be consistent within a page layout.

Rule: Navigation should be consistent and elements should exhibit stability in
position, order, and contents.

Suggestion: When separating navigation choices by position onscreen,
understand that four locations is a hard barrier.

Suggestion: Navigation-oriented pages should fit vertically within the screen
whenever possible, as should primary navigation in all other types of pages.

Suggestion: Minimize the distance between primary site navigation buttons and
the Back button.

Suggestion: Always attempt to limit mouse movement between subsequent
navigation items.

Suggestion: Do not make a remote the mandatory form of navigation.

Rule: Limit scrolling and mouse travel in navigation as much as possible.

Rule: Consider a maximum of three page loads before a result.

Basic Navigation Practices
These rules, suggestions, and definitions from Chapter 8 examine the many ways to
create links in a Web site.

Suggestion: Occasionally provide some unstructured links within document text
to promote exploration and thought.

Definition: A static link is one where the destination file is hard-coded into the
anchor by the document author.

Definition: A dynamic link does not have a fixed destination. Instead, the
destination document is computed at page view time according to the
environment and needs of the viewer.

Suggestion: Always provide textual links at the bottom of pages when using long
pages or pages with graphical buttons.

Suggestion: When using image maps, always provide a secondary navigation
form such as text links.

Rule: Never completely remove visited link indication.

Rule: Avoid changing link colors.

Rule: Avoid underlining non-linked text in Web documents—use italics
or bold instead.

Suggestion: Avoid automatically turning off link underlining. If you do, add
another link indicator form.

Suggestion: Avoid using ellipses in links, as they are generally redundant.

Suggestion: Graphical buttons should have at a minimum an unselected and a
selected state. Mouseover states and active press states should be considered
optional.

Suggestion: Provide good labels indicating the form of the content. Consider
using icons to show content types.

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 751
A

P
P

EN
D

IX
ES

Suggestion: Make sure to indicate if the link will jump them within a page,
within a site, or to an external site. Don’t hide the URL, in case the user can
deduce the answer from it.

Suggestion: Indicate an external link by exposing the URL or using an icon.
Indicate file size if triggering a download.

Suggestion: Use an icon or symbols, or issue an Alert dialog before the link.

Suggestion: Avoid changing visited link colors. Add the last modification date,
where necessary. Use a “New” icon.

Suggestion: Use an Alert dialog, or warn with an obvious label.

Suggestion: When using status bar messages, consider providing URL
information with the text when linking externally.

Rule: Broken links should be considered catastrophic failure.

Suggestion: Avoid automatic redirects for 404 errors.

Suggestion: Avoid using frames for layout. Use them for navigation.

Suggestion: When using frames, make smaller frames control larger adjacent frames.

Suggestion: Do not turn off frame resizing and scrolling unless resolution is very
well accounted for.

Suggestion: Do not allow further navigation in spawned windows if at all possible.

Search
These rules and suggestions from Chapter 9 examine the concept of designing a site in
a way that optimizes search functions.

Rule: Utilize past user experience with public search engines by using similar
layout and labeling in local search facility design, but avoid imitating aspects of
public search engines that deal with the uncontrollable nature of public Web sites.

Suggestion: When search is available in a site, include a search button or field
on all pages.

Rule: Search forms and result pages must match the look and feel of a site.

Rule: A search form should match the content being searched.

752 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 753
A

P
P

EN
D

IX
ES

Suggestion: Primary search text boxes should be about twice as big as secondary
search text boxes.

Suggestion: It is generally better to limit a scoped search to a topic, category, or
idea rather than a section of a site.

Rule: Advanced search facilities must provide instructions and examples.

Rule: Result pages should provide as much information as possible so users can
decide what items to peruse further.

Rule: The format of search results should fit the data that is being returned.

Rule: Negative search result pages must include information on why a query
failed and potentially how to fix the query.

Suggestion: Disallow blank queries unless they return a complete page set.

Definition: A Web directory is a human-edited and organized collection of site
links and associated information such as descriptions and reviews.

Rule: Do not design pages solely to attract search engines, as, ultimately, pages
are for people.

Site Maps and Other Navigational Aids
These rules and suggestions from Chapter 10 concern best practices for Web site
navigation aids.

Rule: Name your link to a site map simply “site map.”

Suggestion: Avoid using a complex or unfamiliar navigation system in a site map.

Suggestion: Label links to a site index as just “site index” or “A-Z index” if that
is the only form of indexing provided.

Suggestion: Provide a glossary in a site filled with complex jargon.

Pages and Layout
These rules and suggestions from Chapter 11 concern aspects of pages and page
layouts, from screen size to function-specific pages.

Rule: Set the size of the page to fit the purpose and the content at hand.

Rule: Avoid wide pages, particularly those that cause rightward scrolling.

TE
AM
FL
Y

Team-Fly®

Rule: Try to keep important items such as primary navigation in the first screen.

Suggestion: Be aware of the screen “fold” and try to hint at content beyond the
first screen.

Rule: Avoid resolution entry restrictions for sites if at all possible.

Rule: When designing for MSNTV/WebTV, consider a hard and fast page width of
544 pixels.

Suggestion: If designing with assumed screen sizes, be conservative and give
yourself a slop factor of as much as 10 percent of the available region.

Suggestion: When using fixed page sizes, make sure to center your page to
reduce perception of empty space on larger displays.

Suggestion: Avoid using stretchable designs on pages with little content.

Suggestion: Try to fit content vertically within 3–5 screens if possible.

Suggestion: Either control page margins or account for their variation with some
layout slop factor.

Suggestion: Provide an obvious link to quickly skip a splash page.

Rule: A home page should look significantly different than other pages in a site.

Rule: A home page should set the visual and navigational tone of a site.

Rule: A home page should load quickly, but be informative and dramatic enough
to encourage interest.

Rule: A home page should clearly indicate what’s inside a site.

Suggestion: A home page should provide informational value and an obvious
indication of site change if change is occurring.

Suggestion: If a particular subpage is a landmark or common entry page,
such as a “section home page,” make it visually distinctive.

Rule: Subpages should follow the style and navigation of the home page,
at least in spirit.

Suggestion: If FAQ pages are a reasonable length, make them a single document
for easy printing.

Suggestion: Provide a link back to the top of the document or a list of the
questions at the end of every answer.

754 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Consult a legal professional for drafting or inspection of any legal
terms page used to cover Web site usage.

Rule: If sensitive or personal information is collected, provide an easily
accessible and understandable privacy statement.

Rule: Full contact information should be available within one click of any page
on a site; minimal contact information such as a phone number and e-mail
address should be included on the bottom of every page.

Suggestion: Inform users that printed pages will be different than what is seen
on screen, or show the print version directly.

Suggestion: Use Acrobat PDF files for highly complex information that needs to
print perfectly such as data sheets, technical drawings, and complex financial or
mathematical information.

Suggestion: Clearly indicate Acrobat files with text and an icon, and provide
information on using these files.

Rule: Provide an obvious conclusion page for a task.

Suggestion: Provide a way back to the site from an exit page.

Rule: Let users leave in peace. Avoid “please don’t go” or “last chance”
pop-up windows.

Suggestion: When using text-oriented design, consider providing navigation bars
as well as contextual links.

Suggestion: Consider using a text design philosophy on sites where download
speed or display flexibility is paramount.

Suggestion: Avoid using metaphor design on sites geared towards expert users or
heavy repeat use.

Suggestion: Avoid unconventional or very artistically oriented interface designs
on task-driven, heavy-content, or frequent-use sites.

Suggestion: Use header-footer design for content focused sites, particularly when
wide content is common.

Rule: Strive always in Web design to be the same, but different.

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 755
A

P
P

EN
D

IX
ES

Text
These rules and suggestions from Chapter 12 offer ideas to guide your usage of text,
typography, and writing on the Web.

Suggestion: Avoid using justified text in Web pages.

Rule: Increase line height to improve online text readability.

Suggestion: Create a type hierarchy by varying text color, size, style, and position
to improve page usability.

Suggestion: Avoid anti-aliasing small text.

Suggestion: Consider three fonts per page: one for page labels and headlines, one
for body text, and one for navigation.

Rule: Columns of text in Web pages should never wrap up and down unless all
contained in a single screen.

Rule: Navigation-focused pages generally require less text white space than
consumption pages.

Rule: Always use white space to complement the use of information.

Suggestion: Be careful of using words that have alternative Web meanings.

Color
These rules and suggestions from Chapter 13 focus on the use of color on the Web,
from basic font coloring to advanced uses of CSS with colors.

Rule: To ensure the appropriate color is produced, always use a hexadecimal
value over a named color except in the case of basic VGA colors like white,
black, red, and so on.

Suggestion: To safely break the 216-color barrier, use pre-dithered patterns or
so-called hybrid colors.

Images
These rules and suggestions from Chapter 14 focus on the use of images on the Web.

Rule: Use GIFs for illustrations and JPEGs for photos.

756 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Limit bitmap graphics formats in Web pages to JPEG and GIF until
other formats become more widely supported.

Suggestion: Alt text should reinforce the meaning of significant images; if an
image does not convey essential meaning, leaving the alt value blank may be
better than adding noise information to screen readers or cluttering the page
with unnecessary alt text or tool tips.

Rule: Always use the height and width attributes with the tag.

Rule: Avoid using the height and width attributes to resize images with HTML,
as distortion may occur.

Rule: Always set an image’s border attribute to zero unless you have a specific
design reason to do otherwise—and remember that linked images with no border
attribute will render with colored borders by default.

Suggestion: Don’t rely solely on color not only in links but informational graphics.

Suggestion: Do not make a background tile have a very small height or width (e.g.
1-2 pixels), as an annoying monitor flashing effect may result on screen paint.

Rule: Always store your images in a separate directory (usually /images).

Rule: Name your images in a logical fashion that groups them by purpose or usage.

Forms and GUI
These rules and suggestions from Chapter 15 consider Web design and form creation in
the light of GUI (Graphical User Interface) principles that have been long established
in the field of software design.

Suggestion: Provide online documentation (or in some cases printed
documentation) for sites, but don’t rely on the user accessing it.

Suggestion: Avoid modification of the appearance of the user’s primary
browser window.

Rule: When using a full-screen window, inform the user how to exit or provide
a close button.

Suggestion: Do not go full-screen without asking the user first.

Suggestion: Use alerts to inform the user of important issues, not general
information.

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 757
A

P
P

EN
D

IX
ES

Suggestion: Use prompt dialogs only to ask a user to provide a short word or
numeric answer to a simple question. Do not ask questions that would result in a
multiple line answer.

Suggestion: Set length of text fields to reasonably fit data being provided.

Rule: Always set the maxlength for a text field.

Rule: Only allow a text field to scroll rightward when there is a premium on screen
real estate and the data to be entered is larger than the available screen region.

Rule: Never allow password fields to scroll.

Rule: Limit the length of password fields to match password sizes.

Rule: Do not use default values with password fields.

Suggestion: Set text wrapping in multiline text regions for backward
compatibility.

Suggestion: Consider vertically aligning related checkboxes to decrease
mouse travel.

Rule: Always check an initial radio button by default.

Rule: Use radio buttons for yes/no questions rather than pull-down menus or
check-boxes.

Suggestion: Avoid more than ten items in a radio group.

Suggestion: Use pull-downs if more than ten items are in a selection of
one-choice-of-many to save screen real estate.

Rule: Do not use radio buttons for navigation.

Suggestion: Avoid changing the display of single choice pull-down menus with
the size attribute.

Rule: Make the result of pull-down navigation clear by context, labels, and
possibly a trigger button.

Rule: Make sure pull-down navigation degrades gracefully when JavaScript is off.

Rule: If a “Go” button is shown on screen with pull-down navigation, make sure
the user can actually click it to trigger page load.

Rule: Reset a pull-down when users back out of a page, as well as select
separator items.

758 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Avoid scrolled lists if you expect alternative browsing environments;
use check boxes instead.

Rule: When using scrolled lists, make sure to provide some form of instructions
on how to select multiple items for novice users.

Suggestion: Do not use default form-style push buttons for navigation; instead,
reserve them to cause actions.

Rule: Provide a confirmation on a form reset to avoid accidents.

Suggestion: Consider moving your reset button away from the submit button.

Rule: Provide a final chance before submitting important information or starting
a difficult-to-reverse action.

Suggestion: Keep the submit button at the bottom of the form, either center or
left side.

Suggestion: Provide a degradable state for image buttons with scripting or
images off.

Rule: Make sure to consider the environment of use before using a file upload
facility. This may not make sense for users who do not have file storage.

Suggestion: Lay out form elements generally up to down, but consider left to
right based upon the context of the information being asked for.

Suggestion: Consider keeping table borders on when formatting table elements,
as they help associate labels and fields.

Suggestion: Imitate real-world forms directly if users are very used to filling
them out; otherwise, focus on reducing the amount of data entry.

Rule: Make forms keyboard friendly.

Rule: Limit mouse travel between form elements.

Rule: Label all required fields carefully using an asterisk or the word required.

Suggestion: Add tabindex attributes to improve form navigation.

Suggestion: Focus the first field of a form page immediately.

Rule: Do not override or mask browser accelerator keys.

Suggestion: Use accelerator keys for forms that will be used repeatedly.

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 759
A

P
P

EN
D

IX
ES

Suggestion: Use tool tips to provide extra information about field use and format.

Suggestion: Use the status bar to provide messages about field use.

Rule: Validate forms client-side when possible.

Rule: Always provide backup validation on the server-side.

Suggestion: Try to validate as people type using masking or as they move from
field to field.

Rule: During form validation provide a clear indication of what fields are in
error and how to correct the error.

Rule: Bring immediate focus to fields in error.

Suggestion: Mask text fields to limit the type of characters entered.

Suggestion: Disable or hide fields that are not necessary in a particular context.

Suggestion: Provide defaults and always set values to the most likely entry.

Suggestion: Name your fields with simple common names to take advantage of
browser AutoComplete features.

Rule: When using a tree control, make sure that open and close states are distinct.

Web Technology Best Practices
These rules and suggestions from Chapter 16 take a closer look at the underlying
technologies of the Web and how they impact design considerations.

Rule: Users often don’t blame browsers for site errors—they blame sites.

Rule: Users don’t care how sites are built, just if they work.

Rule: Site construction must be truly solid—follow standards and conventions,
verify correct execution, and openly indicate limitations.

Rule: Acknowledge site problems and avoid placing blame on tools, the Web
medium, or users.

Rule: Write pages using standard HTML 4 or XHTML 1.0, or as much as the
browser can support.

Rule: Validate all HTML pages.

760 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Rule: If you use a doctype, specify it correctly and adhere to it.

Suggestion: Conform to XHTML today to future-proof Web pages.

Suggestion: Try to separate visual layout from HTML structure using
CSS if possible.

Suggestion: Use logical markup elements (e.g. vs. <bold>).

Suggestion: Even when creating traditional HTML, lean toward XHTML.

Suggestion: Watch out for HTML space-handling quirks.

Suggestion: Comment and format for readability.

Suggestion: Crunch for delivery.

Suggestion: Specify character set usage explicitly and be cautious of character
entities.

Suggestion: Use <meta> tags liberally.

Rule: Use consistent naming conventions.

Rule: Use HTML templates.

Suggestion: Use the correct authoring tool for the job.

Rule: Follow CSS1 standards and validate rules.

Rule: Test CSS rules very carefully.

Rule: Bind style only to correct markup.

Suggestion: Be careful when overriding default HTML tag renderings.

Rule: Use external style sheets whenever possible.

Rule: Always comment out document-wide style blocks to avoid interpretation
by older browsers.

Suggestion: If backward compatibility is a concern, use CSS to overload HTML
presentation tags like .

Suggestion: Avoid relying solely on style sheets for layout unless non-CSS
compliant browsers can be limited or detected and dealt with.

Rule: Account for CSS being off in browsers.

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 761
A

P
P

EN
D

IX
ES

Rule: Use technologies like JavaScript to account for CSS implementation
differences or provide different style sheets based upon browser.

Suggestion: Consider using relative measurements.

Suggestion: Consider using alternative style sheets.

Suggestion: Provide printer style sheets.

Rule: Match CSS selector cases.

Rule: Use id and class rules properly.

Suggestion: Comment, format, and organize CSS rules.

Suggestion: Compress style sheets.

Suggestion: Rely on standard XML languages, rather than in-house developed
languages.

Suggestion: Transform XML on the server side into something that can be
viewed on the client side.

Suggestion: Use XML as a neutral storage format and for exchange.

Rule: Consider using both client and server-side technologies in a site rather
than one or the other.

Rule: Create a capacity plan when using server-side technologies.

Suggestion: Carefully monitor responsiveness of server-side technologies.

Suggestion: Use compiled languages or server modules to improve server-side
performance.

Suggestion: Pre generate or at least cache server-scripted pages if possible.

Suggestion: Try to separate out HTML markup from script logic.

Suggestion: Use a centralized directory for server-scripts, particularly cgi-bin
programs.

Suggestion: Avoid showing file extensions of server-side programs.

Suggestion: Avoid complex URLs if possible.

Suggestion: Avoid exposing back-end information in diagnostics and errors.

762 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Suggestion: Carefully check incoming data.

Suggestion: Avoid running command-line programs via a script.

Rule: Provide a fallback state for all client-side programming technologies.

Rule: Consider carefully how JavaScript is included in pages.

Suggestion: Use linked scripts.

Suggestion: Focus on using common event handlers.

Suggestion: Consider avoiding HTML event handlers if possible.

Suggestion: Avoid the javascript: pseudo-URL.

Suggestion: Use HTML comments to hide JavaScript code in the <script> tag.

Suggestion: Handle the JavaScript off situation with <noscript>.

Suggestion: Address JavaScript version issues with the language attribute.

Suggestion: Practice JavaScript defensive coding such as object detection.

Rule: Handle or suppress script errors.

Suggestion: Comment and format scripts for maintainability.

Suggestion: Crunch large scripts for delivery.

Suggestion: Provide help for plug-ins, particularly with installation.

Suggestion: Focus on popular plug-ins.

Rule: Detect for plug-in availability.

Suggestion: Use <noembed> to support non-plug-in aware browsers.

Suggestion: Consider installation time of ActiveX objects.

Rule: Address browsers lacking ActiveX.

Suggestion: Accept ActiveX’s security problems.

Suggestion: Be mindful of Java applet performance issues.

Rule: Address non-Java supporting browsers.

Suggestion: Be realistic about Java support.

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 763
A

P
P

EN
D

IX
ES

TE
AM
FL
Y

Team-Fly®

Suggestion: Inform users of cookie usage.

Suggestion: Avoid using too many cookies.

Suggestion: Provide alternatives for cookie-denying visitors.

Rule: When trying to draw attention, avoid competing animations.

Rule: Avoid continuously running animation loops.

Suggestion: Inform users of formats and download sizes.

Suggestion: Don’t assume or require audio support.

Rule: Allow sound to be turned off.

Suggestion: Make sure multimedia adds to the message.

Site Delivery
These rules and suggestions from Chapter 17 provide an overview of site delivery
issues as they impact Web design and the importance of designing sites with future site
management concerns in mind.

Rule: The amount of bytes delivered to create a page is not as important as how
fast the user perceives the page to be delivered.

Suggestion: Provide numerous domain name forms for a site.

Suggestion: Add multiple guessable URLs for common site sections.

Suggestion: Try to fix simple user URL typos and casing problems at the
server level.

Suggestion: Make sure that domain name service for a Web site is fast and robust.

Suggestion: Don’t skimp on Web server hardware—focus on systems with
high-speed hard drives, a great deal of memory, and good network interfaces.

Suggestion: Don't choose an operating system for a Web server solely based on
popularity; consider total cost of ownership and suitability for development and
long-term maintenance.

Rule: Always strive to minimize network distance between a site and its users.

Suggestion: Choose to host your own Web site when security or control is a
primary concern.

764 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : C o r e W e b S i t e D e s i g n P r i n c i p l e s 765
A

P
P

EN
D

IX
ES

Suggestion: Try to keep the number of unique individual objects in a page small
to reduce the number of HTTP requests.

Suggestion: Match data types, number of items, and size of data items to be
delivered to the speed of the user’s connection.

Suggestion: Consider setting expiration dates for unchanging items such as
site graphics.

Rule: Predictable and error-free delivery of real-time data on the Internet cannot
be reliably guaranteed with today’s protocols and usage.

Suggestion: Utilize a monitoring tool or service to ensure that your site is
constantly available to users.

Rule: Create, implement, and test a full-site security policy that goes beyond a
simple firewall.

Suggestion: Avoid using underscores in filenames. Consider using dashes or no
spaces between words.

Suggestion: Do not use mixed or uppercase letters in file or directory names.

Rule: Pick either .htm or .html as a file extension and stick with it.

Suggestion: Try not to update on demand; instead create a regular update schedule.

Rule: Do not work directly on a live site!

Rule: Check site links constantly.

Suggestion: Check regularly for page details including spelling, legal terms, and
font usage. Perform a print test if necessary.

Suggestion: Provide the address webmaster@yourdomainname.com for users to
contact you with suggestions and error reports.

Suggestion: Do not put a visible page counter on your site.

Rule: Analyze your log files carefully and use them to improve a site or measure
its effectiveness.

Rule: Do not rely solely on log files to understand a site’s effectiveness. You still
have to talk to the site’s users.

Rule: If you are collecting sensitive data online, post a privacy policy or
statement in an obvious place on the site and abide by it.

Rule: If your content is in any way questionable, have it rated.

This page intentionally left blank.

Appendix B
Site Evaluation Form

767

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

768 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

This appendix presents a sample site evaluation worksheet based upon the
procedure outlined in Chapter 5. The purpose of this type of site evaluation is to
determine the basic characteristics of a Web site to identify obvious usability and

execution problems. Tools will be useful to uncover site execution flaws beyond what
can be spotted by a competent evaluator. Site delivery and capacity will also require
rigorous testing using a tool or server. Finally, further evaluations using actual site
users may be required in order to fully understand the real usability of the site.

Electronic copies of the worksheet are available in Adobe Acrobat, Microsoft Word, and
RTF format on the book support site at http://www.webdesignref.com/evaluation.
Readers are encouraged to adapt the evaluation form to their own needs. Any useful
modifications should be forwarded to the author at tpowell@pint.com for potential
future inclusion.

■ Site Evaluation Worksheet: Preliminary Information

Site name: __

URL: __

Purpose of evaluation: __

Evaluated by: __

Date: __

Time: __

First Impression:—[1 (poor) – 5 (excellent)] __________________________

General Comments: __

After the first impression, you should perform a few pretests.

■ Navigation Pretest Print the page or do not touch anything. Identify
clickable areas on the screen by inspection:

Number of believed clickable areas: ______________________________________

Actual number of clickable areas: __

Accuracy: __

Comments: __

■ Identity Pretest Based solely on information presented, identify site owner
and describe general type of site.

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 769
A

P
P

EN
D

IX
ES

■ Purpose Pretest Based upon quick inspection, identify the basic points of
the site. What basic functions would it likely provide?

■ Audience Pretest Based upon quick inspection, consider who the audience
for the site would be.

GENERAL SITE CHARACTERISTICS

Site Structure
Is a site diagram provided?
Are there any broken links in the site? (use a tool)

❒ Yes
❒ No

If yes, are they broken links to external sites or internal pages?

❒ External
� Internal
❒ Both

What is the maximum page depth in the site (clicks from the home page)?

Are there orphaned files in the site?

❒ Yes
❒ No

Are there clear entrance and exit pages to the site?

❒ Yes
� No
❒ Describe: ____________________________________

Does the site use pop-ups?

❒ Yes
❒ No

If yes, in what situations?

770 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Visuals and Layout
Describe the visuals used in the site:

Do you like the visuals?

❒ Yes
❒ No

Why or why not?

Are the visuals purely decorative, or do they add to the site’s function or information?

❒ Only decoration
❒ Improve function

Print out the home page, as well as a subpage and content page. Mark up the
printouts to illustrate previous answers and attach to report.

How is the screen contrast [(poor) 1–5 (excellent)]?

If poor, describe why:

Describe text size:

❒ Too small
� Just right
❒ Too large

Make browser text size larger or smaller using the browser.
Does the text change size?

❒ Yes
❒ No

Does the layout still work with text modifications?

❒ Yes
❒ No

Resize the browser very large or very small.
Does the layout still work?

❒ Yes
❒ No

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 771
A

P
P

EN
D

IX
ES

Do the text or images scale with the window size?

❒ Yes
❒ No

Is the layout width static (stays the same size), or does it grow with the screen size?

❒ Static
❒ Stretchable

If the site has a static width, does the page fit, or is there rightward scrolling at:
640 × 480?

❒ Fits
❒ Scrolls right

800 × 600?

❒ Fits
❒ Scrolls right

1024 × 768 and greater?

❒ Fits
❒ Scrolls right

With respect to vertical screen size, does the primary navigation fit on screen at:
640 × 480?

❒ Fits
❒ Scrolls off

800 × 600?

❒ Fits
❒ Scrolls off

1024 × 768 and greater?

❒ Fits
❒ Scrolls off

You may want to perform this test at resolutions other than those mentioned, depending
on your target platform.

Do pages print correctly as is, or is a special print feature provided?

❒ Prints correctly without special print page
� Prints correctly with special print page
❒ Doesn’t print correctly

772 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

If a special print feature is provided, describe:

❒ Special printer page
� Printer style sheet
� Adobe Acrobat file
❒ Other: ____________________________

What kind of images are used in the site?

❒ GIF
� JPEG
� PNG
❒ Other: ____________________________

Are the images generally used correctly (e.g., GIF for illustrations, JPEG for photos)?

❒ Yes
❒ No

Are the images optimized properly (e.g., small file size, safe colors)?

❒ Yes
❒ No

Are there image execution problems (e.g., color matching, seams showing in
background tiles, etc.)?

❒ Yes
� No
❒ Describe: ____________________________

Is ALT text used for images?

❒ Yes
� No
❒ Partially

Is the site usable without images on?

❒ Yes
� No
❒ Partially

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 773
A

P
P

EN
D

IX
ES

General Content Statistics
Approximate number of content pages in the site:

Percentage of content pages in site (content pages/total pages):
Content Quality:

Is there enough detail to answer simple user questions?

❒ Yes
❒ No

Is there enough content detail to answer complex user questions?

❒ Yes
❒ No

Does content appear accurate and truthful?

❒ Yes
❒ No

If no, describe what suggests this belief:

Are there obvious misspellings in the site?

❒ Yes
❒ No

Are there egregious spelling errors such as misspellings in buttons or headlines?

❒ Yes
❒ No

Are there obvious grammar or usage errors in the site?

❒ Yes
❒ No

If yes, describe these errors: (e.g., fragments, run-ons, heavy use of acronyms
without explanation)

Describe the tone of content in the site (e.g., playful, business like, serious, humorous):

TE
AM
FL
Y

Team-Fly®

774 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Does the tone of content fit what is presented?

❒ Yes
❒ No

If no, describe why not:

Is content updated on the site?

❒ Yes
❒ No

Is update necessary?

❒ Yes
❒ No

Answer the following questions only if content is being actively updated:
If content requires update, is it fresh?

❒ Yes
� No
❒ Partially

On average how often does it appear the content is updated?

❒ Daily
� Weekly
� Monthly
� Yearly
❒ Other

How was freshness determined? (copyright, label of last update, etc.)

TECHNOLOGY USAGE
HTML
Version(s) used:

❒ HTML 2.0
� HTML 3.2
� HTML 4.0 Transitional
� HTML 4.0 Strict

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 775
A

P
P

EN
D

IX
ES

� XHTML Transitional
� XHTML Strict
❒ No consistent compliance

Proprietary tag use:

❒ Yes
❒ No

Home page validation:

❒ Pass
� Fail
� Comments
❒ ____________________

Subpage validation:

❒ Pass
� Fail
� Comments
❒ ____________________

Style of HTML: (e.g., tag case, formatting, comments, etc. [(poor) 1–5 (excellent)]

HTML style consistency [(poor – many styles) 1–5 (excellent – strict guidelines)] :

Method of creation:

❒ By hand
� Editor/editor(s) used: ____________________
� Translator (e.g., Save as…) From what: ____________________
❒ Dynamically created/Method: ___________________________

CSS
Version(s) used:

❒ CSS1
� CSSP (Positioning features)
� CSS2
❒ CSS3

776 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Proprietary properties:

❒ Yes
❒ No

If yes, provide examples:

Do all CSS rules work correctly?

❒ Yes
❒ No

CSS rules inclusion method(s):

❒ Linked style sheet
� Document-wide style sheet
❒ Inline style

Quality of rules (e.g., simplicity, style, naming) [1 (poor)–5 (excellent)]:

CSS use consistency [1 (poor, many styles)–5 (excellent, strict guidelines)]:

Method of creation:

❒ By hand
� Editor/editor(s) used:____________________
� Translator (e.g., Save as…) From what:____________________
❒ Dynamically created/Method:___________________________

Compatibility: (CSS compatibility with browsers)

❒ Site works only in the latest CSS browsers
� Site uses CSS conservatively
❒ Site uses browser-specific CSS based upon viewer

Degradability: (works without CSS)

❒ Perfect degradation
� Degradation with cosmetic or subtle differences
� Degradation with serious differences in appearance
❒ Significant layout problems without CSS

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 777
A

P
P

EN
D

IX
ES

XML
Is XML Used?

❒ Yes
❒ No

If yes, where is it used (client side or server side)?

If present, what is it used for?

❒ Data storage
� Document structure
� Data exchange
❒ For presentation using CSS or XSL

Is the name of XML language used? If not indicate “unknown” or “proprietary”.

Is DTD available?

❒ Yes
❒ No

DTD clarity [1 (complex and confusing)–5 (simple and commented)]:

Is the site usable with non-XML aware browsers?

❒ Yes
❒ No

If no, describe how dealt with:

PROGRAMMING

Server-side Technology
Are server-side programming facilities used?

❒ Yes
� No

778 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

If yes, which ones?

❒ CGI (using Perl, C, etc.)
� Cold Fusion (.cfm)
� Traditional Active Server Pages (.asp)
� ASP.NET (.aspx)
� PHP (.php)
� Java Server Pages (.jsp)
� Server-APIs (ISAPI, NSAPI)
❒ Other

Describe usage of server-side technologies: (e.g., form processing, dynamic page
generation, etc.)

Describe the performance of the server application:

Describe any errors encountered:

Is a database used in the site?

❒ Yes
❒ No

If yes, describe how the database is used:

Client-side Scripting: JavaScript
Is JavaScript used?

❒ Yes
❒ No

If yes, describe uses:

How are scripts included?

❒ Directly in document
❒ Linked to external .js file

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 779
A

P
P

EN
D

IX
ES

Do the scripts function properly?

❒ Yes
❒ No

JavaScript version(s):

❒ 1.0
� 1.1
� 1.2
� 1.3
❒ Other

JavaScript style [(convoluted and not commented) 1–5 (clear and well commented)]:

Is the JavaScript degradable (works on older browsers or without scripting)?

❒ Yes
❒ No

Client-side Component Technology

Java
Are Java applets used?

❒ Yes
❒ No

If yes, describe how they are used and applet(s) name:

Is the Java degradable (warning messages or alternate for no Java)?

❒ Yes
❒ No

Are there functionality problems (e.g., errors)?

❒ Yes
❒ No

If yes, describe how they are used:

780 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Are there performance problems?

❒ Yes
❒ No

If yes, describe:

Are there security problems?

❒ Yes
❒ No

If yes, describe:

ActiveX
Are ActiveX controls used? (e.g., Flash)

❒ Yes
❒ No

If yes, describe:

Does the site work properly without ActiveX controls?

❒ Yes
❒ No

Are there functionality problems? (e.g., errors)

❒ Yes
❒ No

If yes, describe:

Are there performance problems?

❒ Yes
❒ No

If yes, describe:

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 781
A

P
P

EN
D

IX
ES

Are there security problems?

❒ Yes
❒ No

If yes, describe:

Netscape Plug-ins
Are Netscape plug-ins used? (e.g., Flash)

❒ Yes
❒ No

If yes, describe how they are used and the plug-in(s) name:

If a plug-in is not present, is assistance provided to obtain it?

❒ Yes
❒ No

Does the site work properly without plug-ins?

❒ Yes
❒ No

Are there functionality problems? (e.g., errors)

❒ Yes
❒ No

If yes, describe:

Are there performance problems?

❒ Yes
❒ No

If yes, describe:

Are there security problems?

❒ Yes
❒ No

782 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

If yes, describe:

Cookies
Are cookies used on the site?

❒ Yes
❒ No

If yes, describe:

If cookies are used, does the site work with cookie support off?

❒ Yes
❒ No

If yes, describe:

Is a privacy policy used on the site explaining cookie use?

❒ Yes
❒ No

BROWSER SUPPORT
Does the site work in Netscape or Mozilla? What versions?

Does the site work in Internet Explorer? What versions?

Does the site works in Opera? What versions?

Are there other browsers supported?

Does the site identify a browser that it does not work in?

❒ Yes
❒ No

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 783
A

P
P

EN
D

IX
ES

If compatibility problems exist, are they explained in the site?

❒ Yes
❒ No

NAVIGATION
Placement of navigation elements:
Primary Navigation (select one or more):

❒ Top
� Bottom
� Left
❒ Right

Secondary Navigation (select one or more):

❒ Top
� Bottom
� Left
❒ Right

Tertiary Navigation (select one or more):

❒ Top
� Bottom
� Left
❒ Right

Does the site use assistance links (breadcrumbs)?

❒ Yes
❒ No

Consistency of navigation placement [1 (random)–5 (very stable)]:

Comments on navigation placement:

Is a navigation hierarchy used? Describe:

Average number of navigation items per page:

TE
AM
FL
Y

Team-Fly®

784 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

What is the average number of navigation items per navigation cluster?

Are alternative forms of navigation provided? Describe:

Does navigation in the site rely on the Back button?

❒ Yes
❒ No

Is a “Back-to-top” button used on longer pages, which requires the user to scroll?

❒ Yes
❒ No

Navigation label clarity: [1 (unclear)–5 (very clear)]

Are scope notes used for labels?

❒ Yes
❒ No

Are tool tips used?

❒ Yes
❒ No

What is the organization of navigation labels?

❒ Alphabetical importance
� Random
❒ Other

What forms of navigation feedback are employed?

❒ Font type
� Font size
� Color
� Position
� Looks pressable
� Underlined
� Rollovers*
� Sound
❒ Other

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 785
A

P
P

EN
D

IX
ES

Is the navigation feedback useful?

❒ Yes
❒ No

Discuss:

If a link results in a download (e.g., PDF), is the size of the download clearly indicated?

Are link colors modified from the blue, red, and purple defaults?

❒ Yes
❒ No

If yes, is the color combination logical?

Are link colors used consistently throughout the site?

❒ Yes
❒ No

How is location indicated?

❒ URL
� Page label
� Deselected labels
� Depth gauge/breadcrumbs
� Color
❒ Design style

Are frames used?

❒ Yes
❒ No

If yes, are they for navigation or layout?

Can pages be bookmarked?

❒ Yes
❒ No

Search
Does site have an internal search system?

❒ Yes
❒ No

786 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

If No should one be included?

❒ Yes
❒ No

Why?

How is search accessed?

❒ Within page
� Separate page
❒ Both

Search integrated with design?
Type of search:

❒ Free text
� Parametric
❒ Both

If parametric is used, describe search parameters:

❒ Search forms
� Simple
� Advanced
❒ Both

Clarity of search form—[(poor) 1–5 (excellent)]

Are instructions for search form included?

❒ Yes
❒ No

Do negative queries provide reasonable result and help?

❒ Yes
❒ No

Do positive queries provide reasonable results?

❒ Yes
❒ No

Is refinement of queries easily performed?

❒ Yes
❒ No

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 787
A

P
P

EN
D

IX
ES

Known item searching accuracy [(poor – not found) 1–5 (excellent - #1 position)]:

Is meta information provided (for internal and external search engines) on all pages?

❒ Yes
❒ No

If yes, what meta tags are used?

❒ Title
� Description
� Keywords
❒ Others

Navigation Aids

Site map
Is the site map included?

❒ Yes
❒ No

If no, should a site map be included?

❒ Yes
❒ No

Reason:

What is the method to access the site map?

❒ Link on all pages
� Link on one or few pages
❒ Help system or search engine

What is the scope of the site map?

❒ Whole site
� Most pages
� Main sections
❒ Unknown scope

788 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

What is the format of the site map?

❒ Graphical
❒ Text

Is the site map static or dynamic?

❒ Static
❒ Dynamic

If static, is it up to date?

❒ Yes
❒ No

Comments on site map:

Site Index
Is a site index used?

❒ Yes
❒ No

If no, should a site index be included?

❒ Yes
❒ No

Reason:

What is method to access the site index?

❒ Link on all pages
� Link on one or few pages
❒ Help system or search engine

What is the scope of the index?

❒ All topics
� Main topics
❒ Unknown selection of topics

Is the index static or dynamic?

❒ Static
❒ Dynamic

A p p e n d i x B : S i t e E v a l u a t i o n F o r m 789
A

P
P

EN
D

IX
ES

If static, is the index up to date?

❒ Yes
❒ No

Comments on site index:

Glossary
Is the glossary included?

❒ Yes
❒ No

If no, should a site term glossary be included?

❒ Yes
❒ No

Reason:

What is the method to access the glossary?

❒ Link on all pages
� Link on one or few pages
❒ From the help page

Number of terms in glossary:

Comments on glossary:

Form Usage
Are required fields clearly indicated in the form?

❒ Yes
❒ No

Are clear messages and indicators used to show form errors?

❒ Yes
❒ No

790 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Is the first field focused on the form?

❒ Yes
❒ No

Does the form use accelerator/access keys?

❒ Yes
❒ No

Does the form support tabbing well?

❒ Yes
❒ No

Does the form support browser auto-fill in?

❒ Yes
❒ No

Is an adequate confirmation page provided upon form submit?

❒ Yes
❒ No

Help and General Site Error Handling
Does the site deal with common DNS typos? (e.g., ww.xyz.com, wwww.xyz.com)

❒ Yes
❒ No

Is there helpful information with broken links (404 errors)?

❒ Yes
❒ No

If yes, describe:

Is there helpful information when a page has been moved?

❒ Yes
❒ No

If yes, describe:

A
P

P
EN

D
IX

ES
A p p e n d i x B : S i t e E v a l u a t i o n F o r m 791

Does the site deal with browsers, technology, or screen characteristics outside its
optimal range?

❒ Yes
❒ No

If yes, how? (clear error message, alternate site, adapted pages, reasonable
degradation of pages)

Does the site provide an online help page?

❒ Yes
❒ No

If yes, describe:

Does the site provide basic contact information?

❒ Yes
❒ No

Does the site provide contact for Web-specific problems?

❒ Yes
❒ No

Does the site provide an Online help system?

❒ Yes
❒ No

If yes, describe:

Delivery
What operating system is used on the Web server?

What Web server software with version number is being used?

792 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Where is the site being hosted?

❒ Internal
❒ Externally

Who is the closest “upstream” Internet Service Provider from the server?

What is the amount of bandwidth available for the server if known or determinable?

Rate the responsiveness of the server [1 (very slow)–5 (very fast)]:

What is the largest page in the site, byte wise?

What is the average page size in the site?

What are the theoretical download times for the average and largest pages at:
Modem speeds (56 Kbps) ______________
ISDN (128 Kbps) ______________
Cable (600 Kbps +) ______________
DSL/T1/Ethernet (1 Mbps +) ______________

Are real download times similar?

❒ Yes
❒ No

If no, provide times for tested speeds:

THE FINAL SCORE
Final Score [(Dislike) 1–5 (Like a lot)]:

Key reasons for final score:

Appendix C
XHTML Chart

793

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

794 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

This appendix provides a quick guide to XHTML rules.

Basic Rules
When using XHTML, one should always follow these basic rules:

■ Always include the correct DOCtype declaration at the beginning of the file.

■ Add the attribute xmlns="http://www.w3.org/1999/xhtml" to the <html> tag.

■ Tags must be all lowercase.

■ Tags must nest properly.

■ End tags are required (for example, omitting </p> is not valid anymore).

■ Empty tags must have an end tag, or the start tag must end with /> (for
example, <hr> becomes <hr />).

■ Attribute values must be quoted (for example, <p align=“right”>).

■ Attribute values cannot be minimized (for example, <ul compact=“compact”>).

■ id attribute replaces the name attribute.

■ Script and style characters such as “<” and “&” are treated as markup
characters, so use & instead of & and < instead of <.

■ Use all mandatory elements: html, doctype, head, title, body.

Document Type Namespace Description

Transitional <!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0
Transitional//EN”>

The more forgiving, more
backwards-compatible
version of XHTML

Strict <!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0
Strict//EN”>

The more rigorous, more
XML-style version of XHTML

Frameset <!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0
Frameset//EN”>

DTD for frames

XHTML Tags and Attributes
These conventions apply in the following table:

■ The attribute entries Core, International, and Event refer to attribute groups
listed in more detail under “Core Attributes,” “International Attributes” and
“Events Attributes.”

A p p e n d i x C : X H T M L C h a r t 795
A

P
P

EN
D

IX
ES

■ An asterisk following an attribute indicates a deprecated tag.

Name Attributes Description

a accesskey = character
charset = charset
coords = Coords
href = url
lang = language code
name = cdata
onblur = script
onfocus = script
rel = link type
rev = link type
shape = Shape
tabindex = number
target = frame target
type = content type
Core
International
Event

Note: Cannot contain other a elements.

anchor

abbr Core International Event abbreviation (e.g.
WDVL)

acronym Core International Event acronym (e.g. WWW)

address Core
International
Event

information on author

applet height = length*
width = length*
align = Ialign*
alt = text*
archive = cdata*
code = cdata*
hspace = pixels*
name = cdata*
vspace = pixels*
Core

Java applet

Name Attributes Description

area alt = text
accesskey = character
coords = Coords
href = url
nohref
onblur = script
onfocus = script
shape = Shape
tabindex = number
target = frame target
Core
International
Event

client-side image
map area

b Core
International
Event

bold text style

base href = url
target = frame target

document base URI

basefont size = cdata*
color = color*
face = cdata*
id = id

base font size

bdo dir = ltr | rtl
id = id
style = Style Sheet
title = text
International

I18N BiDi over-ride

big Core
International
Event

large text style

blockquote cite = url
Core
International
Event

long quotation

796 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Name Attributes Description

body alink = color*
background = url*
bgcolor = color*
link = color*
onload = script
onunload = script
text = color*
vlink = color*
Core
International
Event

document body

br clear = left | all | right | none*
Core

forced line break

button accesskey = character
disabled
name = cdata
onblur = script
onfocus = script
tabindex = number
type = button | submit | reset
value = cdata
Core
International
Event

Note: Cannot contain input, select, textarea,
label, button, form, fieldset, iframe, isindex

push button

caption align = calign*
Core
International
Event

table caption

center Core
International
Event

shorthand for div
align = center

cite Core
International
Event

citation

A p p e n d i x C : X H T M L C h a r t 797
A

P
P

EN
D

IX
ES

798 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Name Attributes Description

code Core
International
Event

computer code
fragment

col align = left | center | right | justify | char
char = character
charoff = length
span= number
valign = top | middle | bottom | baseline
width = multi length
Core
International
Event

table column

colgroup align = left | center | right | justify | char
char = character
charoff = length
span= number
valign = top | middle | bottom | baseline
width = multi length
Core
International
Event

table column group

dd Core
International
Event

definition description

del cite = url
datetime = datetime
Core
International
Event

deleted text

dfn Core
International
Event

instance definition

dir compact*
Core
International
Event

directory list

A p p e n d i x C : X H T M L C h a r t 799
A

P
P

EN
D

IX
ES

Name Attributes Description

div align = left | center | right | justify*
Core
International
Event

generic language/
style container

dl compact*
Core
International
Event

definition list

dt Core
International
Event

definition term

em Core
International
Event

emphasis

fieldset Core
International
Event

form control group

font color = color*
face = cdata*
size = cdata*
Core
International

local change to font

form action= url
accept=charset = charset
enctype = content type
method = get | post
onreset = script
onsubmit = script
target = frame target
Core
International
Event

Note: Cannot contain other form elements.

interactive form

Name Attributes Description

frame frameborder = 1 | 0
longdesc = url
marginheight = pixels
marginwidth = pixels
noresize
scrolling = yes | no | auto
src = url
Core

subwindow

frameset cols = multilengths
onload = script
onunload = script
rows = multilengths
Core

window subdivision

h1, h2, h3,
h4, h5, h6

align = left | center | right | justify*
Core
International
Event

heading

head profile= url
International

document head,
contains BASE, link,
meta, SCRIPT, style,
title.

hr align = left | right | center
noshade*
size = pixels*
width = length*
Core
Event

horizontal rule

html version = cdata*
International

document root
element

i Core
international
Event

italic text style

800 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Name Attributes Description

iframe align = ialign*
frameborder = 1 | 0
height= length
longdesc = url
marginheight = pixels
marginwidth = pixels
name = cdata
scrolling = yes | no | auto
src = url
width = length
Core

inline subwindow

img alt = text
src = url
align = ialign*
border = length*
height = length
hspace = pixels*
ismap
longdesc = url
usemap = url
vspace = pixels*
width = length
Core
International
Event

Embedded image

A p p e n d i x C : X H T M L C h a r t 801
A

P
P

EN
D

IX
ES

Name Attributes Description

input accept = ContentText
accesskey = character
align = ialign*
alt = cdata
checked
disabled
maxlength= number
name = cdata
onblur = script
onchange = script
onfocus = script
onselect = script
readonly
size = cdata
src = url
tabindex = number
type = input type
usemap = url
value = cdata
Core
International
Event

form control

ins cite = url
datetime = date time
Core
International
Event

inserted text

isindex prompt = txt*
Core
International

single line prompt

kdb Core
International
Event

text to be entered by
the user

802 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Name Attributes Description

label accesskey = character
for = idref
onblur = script
onfocus = script
Core
International
Event

Note: Cannot contain other label elements.

form field label text

legend accesskey = character
align = lalign*
Core
International
Event

fieldset legend

li type = li style*
value = number*
Core
International
Event

list item

link charset = charset
href = url
hreflang = language code
media = media desc
rel = link type
rev = link type
target = frame target
type = content type
Core
International
Event

a media-independent
link

map name = cdata
Core
International
Event

client-side image
map area

menu compact*
Core
International
Event

menu list

A p p e n d i x C : X H T M L C h a r t 803
A

P
P

EN
D

IX
ES

TE
AM
FL
Y

Team-Fly®

Name Attributes Description

meta content = cdata
generic meta information*
name = name
scheme = cdata
International

HTTP-EQUIV = name

noframes Core
International
Event

alternate content
container for
non-frame–based
rendering

noscript Core
International
Event

alternate content
container for when a
script is not executed

object align = ialign*
archive = url
border = length*
classid= url
codebase = url
codetype = content type
data = url
declare
height= length
hspace = pixels*
name = cdata
standby= text
tabindex = number
type = content type
usemap = url
vspace = pixels*
width = length
Core
International
Event

generic embedded
object

ol compact*
start = number*
type = ol type*
Core
International
Event

ordered list

804 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Name Attributes Description

optgroup label = text
disabled
Core
International
Event

option group

option disabled
label = text
selected
value = cdata
Core
International
Event

selectable choice

p align = left | center | right | justify*
Core
International
Event

paragraph

param name = cdata
id = id
type = content type
value = cdata
valuetype = dat | ref | object

named property value

pre width = number*
Core
International
Event

Note: Cannot contain img, object, big,
small, sub, sup

preformatted text

q cite = url
Core
International
Event

short inline quotation

s Core
International
Event

strike-through
text style

samp Core
International
Event

sample program
output, scripts, etc.

A p p e n d i x C : X H T M L C h a r t 805
A

P
P

EN
D

IX
ES

Name Attributes Description

script type = content type
charset = charset
defer
language = cdata*
src = url
title = text

script statements

select disabled
multiple
name = cdata
onblur = script
onchange = script
onfocus = script
size = number
tabindex = number
Core
International
Event

option selector

small Core
International
Event

small text style

span Core
International
Event

generic
language/style
container

strike Core
International
Event

strike-through text

strong Core
International
Event

strong emphasis

style type = content type
media = MediaDesc
title = text
International

style info

sub Core
International
Event

subscript

806 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Name Attributes Description

sup Core
International
Event

superscript

table align = talign*
bgcolor = color*
border = pixels
cellpadding = length
cellspacing = length
frame = tframe
summary = text
width = length
Core
International
Event

table

tbody align = left | center | right | justify | char
char = charset
charoff = length
valign = top | middle | bottom | baseline
Core
International
Event

table body

td abbr = text
align = left | center | right | justify | char
axis = cdata
bgcolor = color*
char = character
charoff = length
colspan= number
headers = idrefs
height = pixels*
nowrap*
rowspan= number
scope = scope
valign = top | middle | bottom | baseline
width = pixels*
Core
International
Event

table data cell

A p p e n d i x C : X H T M L C h a r t 807
A

P
P

EN
D

IX
ES

Name Attributes Description

textarea cols = number
rows = number
accesskey = character
disabled
name = cdata
onblur = script
onchange = script
onfocus = script
onselect = script
readonly
tabindex = number
Core
International
Event

multi-line text field

tfoot align = left | center | right | justify | char
char = character
charoff = length
valign = top | middle | bottom | baseline
Core
International
Event

table footer

th abbr = text
align = left | center | right | justify | char
axis = cdata
bgcolor = color*
char = character
charoff = length
colspan= number
headers = idref
height = pixels*
nowrap*
rowspan= number
scope = scope
valign = top | middle | bottom | baseline
width = pixels*
Core
International
Event

table header cell

808 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Name Attributes Description

thead align = left | center | right | justify | char
char = character
charoff = length
valign = top | middle | bottom | baseline
Core
International
Event

table header

title International document title

tr align = left | center | right | justify | char
bgcolor = color*
char = character
charoff = length
valign = top | middle | bottom | baseline
Core
International
Event

table row

tt Core
International
Event

teletype or
monospaced text style

u underlined text style

ul compact*
type = ul style*
Core
International
Event

unordered list

var Core
International
Event

instance of a variable
or program argument

Attribute Reference
The following three tables list the attributes referenced by the Core, International, and
Event notations in the table above.

A p p e n d i x C : X H T M L C h a r t 809
A

P
P

EN
D

IX
ES

Core Attributes
The following table lists the “core” XHTML attributes.

Attribute Data Type Description

class cdata Space-separated list of classes

id id Document-wide unique id

style style sheet Associated style information

title text Advisory title/amplification

International Attributes
The following table lists the International XHTML attributes.

Attribute Data Type Description

dir ltr | rtl Direction of weak/neutral text

lang language code Language used on the page

Event Attributes
The following table lists the “Event” XHTML attributes.

Attribute Data Type Description

onclick Script A pointer button was clicked

ondblclick Script A pointer button was double-clicked

onkeydown Script A key was pressed down

onkeypress Script A key was pressed and released

onkeyup Script A key was released

onmousedown Script A pointer button was pressed down

onmousemove Script A pointer was moved within

onmouseout Script A pointer was moved away

onmouseover Script A pointer was moved onto

onmouseup Script A pointer button was released

810 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Appendix D
CSS Quick Reference

811

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix provides quick reference charts for CSS properties, grouped by
category.

Text or Font Properties Table D-1 lists CSS properties associated with text display.

Background, Border, Margin, and Padding Properties Table D-2 lists CSS
properties associated with backgrounds, borders, margins, and padding. Properties
with the prefix “-moz-” are not part of the official CSS specification, but are adaptations
for recent Netscape and Mozilla browsers of styles that may eventually be part of the
CSS3 spec.

Page Layout Properties Table D-3 lists CSS properties associated with page layout.

Element Type (Classification) Properties Table D-4 lists CSS properties used to
define and classify elements.

User Interface Properties Table D-5 lists CSS properties associated with user
interface display.

Generated Content Table D-6 lists CSS properties associated with generated content.

Printing Table D-7 lists CSS properties associated with printing content.

812 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x D : C S S Q u i c k R e f e r e n c e 813

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

co
lo

r
U

se
d

to
d

es
cr

ib
e

th
e

te
xt

(f
or

eg
ro

un
d

)c
ol

or
of

an
el

em
en

t.
N

am
e:

aq
ua

,b
la

ck
,b

lu
e,

fu
ch

si
a,

gr
ay

,g
re

en
,l

im
e,

m
ar

oo
n,

na
vy

,
ol

iv
e,

pu
rp

le
,r

ed
,s

ilv
er

,t
ea

l,
w

hi
te

,y
el

lo
w

R
G

B
:c

ol
or

:#
00

00
FF

;
co

lo
r:

#0
0F

;c
ol

or
:r

gb
(0

,0
,2

55
);

co
lo

r:
rg

b(
0%

,0
%

,1
00

%
)

h1
{c

ol
or

:#
66

66
33

;}

fo
nt

-w
ei

gh
t

Sp
ec

if
ie

s
th

e
w

ei
gh

t,
or

bo
ld

ne
ss

,
of

th
e

ty
pe

.
D

es
cr

ip
ti

ve
:n

or
m

al
,b

ol
d

,b
ol

d
er

,
lig

ht
er

N
um

er
ic

:1
00

,2
00

..
.9

00
st

ro
ng

{f
on

t-
w

ei
gh

t:
70

0;
}

fo
nt

-f
am

ily
Fo

nt
fa

m
ili

es
m

ay
be

as
si

gn
ed

by
a

sp
ec

if
ic

fo
nt

na
m

e
or

a
ge

ne
ri

c
fo

nt
fa

m
ily

.A
ny

fo
nt

na
m

e
co

nt
ai

ni
ng

w
hi

te
sp

ac
e

m
us

tb
e

qu
ot

ed
,w

it
h

ei
th

er
si

ng
le

or
d

ou
bl

e
qu

ot
es

.

Fa
m

ily
na

m
e

(t
he

fo
nt

ne
ed

s
to

be
pr

es
en

to
n

th
e

us
er

’s
m

ac
hi

ne
in

or
d

er
to

d
is

pl
ay

).
G

en
er

ic
fa

m
ily

na
m

e
(s

er
if

,s
an

s-
se

ri
f,

m
on

os
pa

ce
d,

cu
rs

iv
e,

fa
nt

as
y)

p
{f

on
t-

fa
m

ily
:“

T
re

bu
ch

et
M

S”
,V

er
d

an
a,

sa
ns

-s
er

if
;}

fo
nt

-s
iz

e
Sp

ec
ifi

es
th

e
si

ze
of

th
e

te
xt

el
em

en
t.

Th
er

e
ar

e
fo

ur
m

et
ho

ds
fo

r
sp

ec
ify

in
g

fo
nt

si
ze

.

A
bs

ol
ut

e:
xx

-s
m

al
l,

x-
sm

al
l,

sm
al

l,
m

ed
iu

m
,l

ar
ge

,x
-l

ar
ge

,x
x-

la
rg

e
R

el
at

iv
e:

la
rg

er
,s

m
al

le
r

L
en

gt
h:

nu
m

be
r

+
em

,e
x,

px
,p

t,
pc

,m
m

,
cm

,i
n

Pe
rc

en
ta

ge
:n

%

h1
{f

on
t-

si
ze

:l
ar

ge
;}

h1
{f

on
t-

si
ze

:l
ar

ge
r;

}
h1

{f
on

t-
si

ze
:2

4p
t;}

h1
{f

on
t-

si
ze

:1
25

%
;}

X
fo

nt
-s

iz
e-

ad
ju

st
A

llo
w

s
au

th
or

s
to

sp
ec

if
y

th
e

“a
sp

ec
tv

al
ue

”
th

at
th

ey
w

is
h

to
m

ai
nt

ai
n.

It
be

co
m

es
he

lp
fu

lw
he

n
a

sp
ec

if
ie

d
fo

nt
is

un
av

ai
la

bl
e

an
d

th
e

sy
st

em
ne

ed
s

hi
nt

s
to

d
et

er
m

in
e

th
e

m
os

ts
ui

ta
bl

e
su

bs
ti

tu
te

.

in
he

ri
t,

no
ne

,n
um

be
r

h5
.m

ed
{f

on
t-

si
ze

-
ad

ju
st

:0
.5

8;
}

Ta
bl

e
D

-1
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Te

xt
D

is
pl

ay

TE
AM
FL
Y

Team-Fly®

814 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

fo
nt

-v
ar

ia
nt

D
et

er
m

in
es

if
th

e
fo

nt
is

to
d

is
pl

ay
in

n
or

m
al

fo
nt

or
S

M
A

L
L

-C
A

P
S

.
no

rm
al

,s
m

al
l-

ca
ps

p
{f

on
t-

va
ri

an
t:

sm
al

l-
ca

ps
;}

fo
nt

-s
ty

le
Sp

ec
if

ie
s

th
at

th
e

fo
nt

be
d

is
pl

ay
ed

in
on

e
of

th
re

e
w

ay
s:

n
or

m
al

,
it

al
ic

, o
r

ob
li

qu
e

(s
la

nt
ed

).

no
rm

al
,i

ta
lic

,o
bl

iq
ue

h1
{f

on
t-

st
yl

e:
it

al
ic

;}

X
fo

nt
-s

tr
et

ch
T

hi
s

is
th

e
C

SS
in

d
ic

at
io

n
of

th
e

co
nd

en
se

d
or

ex
pa

nd
ed

na
tu

re
of

th
e

fa
ce

re
la

ti
ve

to
ot

he
rs

in
th

e
sa

m
e

fo
nt

fa
m

ily
.

co
nd

en
se

d
,n

or
m

al
,e

xp
an

d
ed

h2
{f

on
t-

st
re

tc
h:

ex
pa

nd
ed

;}

te
xt

-
d

ec
or

at
io

n
A

llo
w

s
te

xt
to

be
d

ec
or

at
ed

th
ro

ug
h

on
e

of
fi

ve
pr

op
er

ti
es

.
no

ne
(d

ef
au

lt
),

un
d

er
lin

e,
ov

er
lin

e,
lin

e-
th

ro
ug

h,
bl

in
k

a:
lin

k
{t

ex
t-

d
ec

or
at

io
n:

un
d

er
lin

e;
}

te
xt

-
tr

an
sf

or
m

A
ff

ec
ts

th
e

ca
pi

ta
liz

at
io

n
of

th
e

el
em

en
t.

no
ne

,c
ap

it
al

iz
e,

lo
w

er
ca

se
,

up
pe

rc
as

e
h1

.ti
tl

e
{t

ex
t-

tr
an

sf
or

m
:

ca
pi

ta
liz

e;
}

X
te

xt
-

sh
ad

ow
Sp

ec
if

ie
s

on
e

or
m

or
e

co
m

m
a-

se
pa

ra
te

d
sh

ad
ow

ef
fe

ct
s

to
be

ap
pl

ie
d

to
th

e
te

xt
co

nt
en

to
ft

he
cu

rr
en

te
le

m
en

t.

in
he

ri
t,

no
ne

,[
sh

ad
ow

ef
fe

ct
s]

bl
oc

kq
uo

te
{t

ex
t-

sh
ad

ow
:

bl
ac

k
3p

x
3p

x,
ye

llo
w

-3
px

-3
px

;}

le
tt

er
-

sp
ac

in
g

Sp
ec

if
ie

s
an

am
ou

nt
of

sp
ac

e
to

be
ad

d
ed

be
tw

ee
n

ch
ar

ac
te

rs
.

no
rm

al
,l

en
gt

h
h5

.c
lo

se
{l

et
te

r-
sp

ac
in

g:
0.

1c
m

;}

w
or

d
-

sp
ac

in
g

Sp
ec

if
ie

s
an

ad
d

it
io

na
la

m
ou

nt
of

sp
ac

e
to

be
pl

ac
ed

be
tw

ee
n

w
or

d
s

of
th

e
te

xt
el

em
en

t.

no
rm

al
,l

en
gt

h
h3

{w
or

d
-s

pa
ci

ng
:.

5e
m

;}

Ta
bl

e
D

-1
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Te

xt
D

is
pl

ay
(c

on
tin

ue
d)

A p p e n d i x D : C S S Q u i c k R e f e r e n c e 815
A

P
P

EN
D

IX
ES

N
ew

in
C

S
S

2
P

ro
pe

rt
y

D
es

cr
ip

ti
on

V
al

ue
Ex

am
pl

e

lin
e-

he
ig

ht
W

ill
ac

ce
pt

a
va

lu
e

to
co

nt
ro

lt
he

sp
ac

in
g

be
tw

ee
n

ba
se

lin
es

of
te

xt
.

no
rm

al
,n

um
be

r,
le

ng
th

,p
er

ce
nt

ag
e

p
{l

in
e-

he
ig

ht
:2

00
%

}
p

{l
in

e-
he

ig
ht

:1
.2

em
;}

ve
rt

ic
al

-
al

ig
n

A
ff

ec
ts

th
e

ve
rt

ic
al

al
ig

nm
en

to
fa

n
el

em
en

t.
ba

se
lin

e
(d

ef
au

lt
),

bo
tt

om
,m

id
d

le
,

su
b,

su
pe

r,
te

xt
-b

ot
to

m
,t

ex
t-

to
p,

to
p,

pe
rc

en
ta

ge

p.
op

en
er

{v
er

ti
ca

l-
al

ig
n:

te
xt

-t
op

;}

te
xt

-i
nd

en
t

Sp
ec

if
ie

s
an

am
ou

nt
of

in
d

en
ta

ti
on

(f
ro

m
th

e
le

ft
m

ar
gi

n)
to

ap
pe

ar
in

th
e

fi
rs

tl
in

e
of

te
xt

in
an

el
em

en
t.

le
ng

th
,p

er
ce

nt
ag

e
p.

fi
rs

t{
te

xt
-i

nd
en

t:
3e

m
;}

te
xt

-a
lig

n
A

ff
ec

ts
th

e
ho

ri
zo

nt
al

al
ig

nm
en

to
f

th
e

co
nt

ai
ne

d
te

xt
el

em
en

ts
.

ce
nt

er
,j

us
ti

fy
,l

ef
t,

ri
gh

t
d

iv
.c

en
te

r
{t

ex
t-

al
ig

n:
ce

nt
er

;}

X
d

ir
ec

ti
on

Sp
ec

if
ie

s
th

e
d

ir
ec

ti
on

of
te

xt
.

lt
r,

rt
l,

in
he

ri
t

d
iv

{u
ni

co
d

e-
bi

d
i:

em
be

d
;

d
ir

ec
ti

on
:r

tl
;}

X
un

ic
od

e-
bi

d
i

D
ef

in
es

le
ve

ls
of

em
be

d
d

in
g

w
it

h
re

ga
rd

to
U

ni
co

d
e

bi
d

ir
ec

ti
on

al
al

go
ri

th
m

.

in
he

ri
t,

no
rm

al
,e

m
be

d
,

bi
d

i-
ov

er
ri

d
e

d
iv

{u
ni

co
d

e-
bi

d
i:

em
be

d
;

d
ir

ec
ti

on
:r

tl
}

Ta
bl

e
D

-1
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Te

xt
D

is
pl

ay
(c

on
tin

ue
d)

816 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

ba
ck

gr
ou

nd
-

co
lo

r
Se

ts
th

e
ba

ck
gr

ou
nd

co
lo

r
of

an
el

em
en

t.
co

lo
r

na
m

e
or

tr
an

sp
ar

en
t

p.
w

ar
ni

ng
{b

ac
kg

ro
un

d
-

co
lo

r:
re

d
;}

ba
ck

gr
ou

nd
-

im
ag

e
Se

ts
a

ba
ck

gr
ou

nd
im

ag
e

fo
r

th
e

el
em

en
t.

U
R

L
,n

on
e

bo
d

y
{b

ac
kg

ro
un

d
-i

m
ag

e:
ur

l(
st

ri
pe

s.
gi

f)
;}

ba
ck

gr
ou

nd
-

at
ta

ch
m

en
t

D
et

er
m

in
es

w
he

th
er

th
e

ba
ck

gr
ou

nd
im

ag
e

sc
ro

lls
al

on
g

w
it

h
th

e
d

oc
u

m
en

to
r

re
m

ai
ns

in
a

fi
xe

d
p

os
it

io
n.

sc
ro

ll
(d

ef
au

lt
),

fi
xe

d
bo

d
y

{b
ac

kg
ro

un
d

-i
m

ag
e:

ur
l(

st
ri

pe
s.

gi
f)

;b
ac

kg
ro

un
d

-
at

ta
ch

m
en

t:
sc

ro
ll;

}

ba
ck

gr
ou

nd
-

re
pe

at
W

he
n

a
ba

ck
gr

ou
nd

im
ag

e
is

sp
ec

ifi
ed

,t
hi

s
pr

op
er

ty
sp

ec
ifi

es
w

he
th

er
an

d
ho

w
th

e
im

ag
e

is
re

pe
at

ed
.

re
pe

at
,r

ep
ea

t-
x,

re
pe

at
-y

,n
o-

re
pe

at
bo

d
y

{b
ac

kg
ro

un
d

-i
m

ag
e:

ur
l(

st
ri

pe
s.

gi
f)

;b
ac

kg
ro

un
d

-
re

pe
at

:n
o-

re
pe

at
;}

ba
ck

gr
ou

nd
-

po
si

ti
on

W
he

n
a

ba
ck

gr
ou

nd
im

ag
e

ha
s

be
en

sp
ec

ifi
ed

,t
hi

s
pr

op
er

ty
sp

ec
ifi

es
its

in
iti

al
po

si
tio

n
re

la
tiv

e
to

th
e

bo
x

th
at

su
rr

ou
nd

s
th

e
co

nt
en

to
ft

he
el

em
en

t
(n

ot
in

cl
ud

in
g

its
pa

dd
in

g,
bo

rd
er

,o
r

m
ar

gi
n)

.

pe
rc

en
ta

ge
,l

en
gt

h,
to

p/
ce

nt
er

/b
ot

to
m

,
le

ft
/

ce
nt

er
/

ri
gh

t

bo
d

y
{b

ac
kg

ro
un

d
-i

m
ag

e:
ur

l(
st

ri
pe

s.
gi

f)
;b

ac
kg

ro
un

d
-

po
si

ti
on

:b
ot

to
m

le
ft

;}

ba
ck

gr
ou

nd
Sh

or
th

an
d

pr
op

er
ty

fo
r

sp
ec

if
yi

ng
al

lt
he

in
d

iv
id

ua
lb

ac
kg

ro
un

d
pr

op
er

ti
es

in
a

si
ng

le
d

ec
la

ra
ti

on
.

ba
ck

gr
ou

nd
-c

ol
or

,
ba

ck
gr

ou
nd

-im
ag

e,
ba

ck
gr

ou
nd

-r
ep

ea
t,

ba
ck

gr
ou

nd
-a

tt
ac

hm
en

t,
ba

ck
gr

ou
nd

-p
os

it
io

n

bo
d

y
{b

ac
kg

ro
un

d
:a

qu
a

ur
l(

st
ar

s.
gi

f)
no

-r
ep

ea
tf

ix
ed

;}

Ta
bl

e
D

-2
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
B

ac
kg

ro
un

ds
,
B

or
de

rs
,
M

ar
gi

ns
,
an

d
Pa

dd
in

g

A p p e n d i x D : C S S Q u i c k R e f e r e n c e 817
A

P
P

EN
D

IX
ES

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

bo
rd

er
-w

id
th

Sh
or

th
an

d
pr

op
er

ty
fo

r
sp

ec
if

yi
ng

th
e

w
id

th
of

th
e

bo
rd

er
fo

r
al

lf
ou

r
si

d
es

of
th

e
el

em
en

tb
ox

.

th
in

,m
ed

iu
m

,t
hi

ck
,

le
ng

th
p.

he
ad

er
{b

or
d

er
-w

id
th

:t
hi

n}

bo
rd

er
-t

op
-

w
id

th
,b

or
d

er
-

le
ft

-w
id

th
,

bo
rd

er
-

bo
tt

om
-w

id
th

,
bo

rd
er

-r
ig

ht
-

w
id

th

Sp
ec

if
ie

s
th

e
bo

rd
er

w
id

th
s

of
th

e
re

sp
ec

ti
ve

si
d

es
of

an
el

em
en

t’s
bo

x.
th

in
,m

ed
iu

m
,t

hi
ck

,
le

ng
th

p.
si

d
eb

ar
{b

or
d

er
-r

ig
ht

-w
id

th
:

m
ed

iu
m

;b
or

d
er

-b
ot

to
m

-w
id

th
:

th
ic

k}

bo
rd

er
-c

ol
or

Se
ts

th
e

bo
rd

er
co

lo
r

fo
r

ea
ch

of
th

e
fo

ur
si

d
es

of
an

el
em

en
tb

ox
.

co
lo

r
na

m
e,

R
G

B
va

lu
e

bl
oc

kq
uo

te
{b

or
d

er
-c

ol
or

:r
ed

bl
ue

gr
ee

n
ye

llo
w

}

X
bo

rd
er

-t
op

-
co

lo
r,

bo
rd

er
-

ri
gh

t-
co

lo
r,

bo
rd

er
-b

ot
to

m
-c

ol
or

,b
or

d
er

-
le

ft
-c

ol
or

Sp
ec

if
ie

s
th

e
bo

rd
er

co
lo

rs
of

th
e

re
sp

ec
ti

ve
si

d
es

of
an

el
em

en
t’s

bo
x.

in
he

ri
t,

tr
an

sp
ar

en
t,

co
lo

r,
-m

oz
-u

se
-t

ex
t-

co
lo

r
d

iv
{b

or
d

er
-t

op
-c

ol
or

:g
re

en
}

bo
rd

er
-s

ty
le

Se
ts

th
e

st
yl

e
of

bo
rd

er
fo

r
an

el
em

en
t’s

bo
x.

in
he

ri
t,

no
ne

,d
ot

te
d

,
d

as
he

d
,s

ol
id

,d
ou

bl
e,

gr
oo

ve
,r

id
ge

,i
ns

et
,

ou
ts

et
,-

m
oz

-b
g-

in
se

t,
-m

oz
-b

g-
ou

ts
et

,

p.
ex

am
pl

e
{b

or
d

er
-s

ty
le

:s
ol

id
d

as
he

d
}

Ta
bl

e
D

-2
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
B

ac
kg

ro
un

ds
,
B

or
de

rs
,
M

ar
gi

ns
,
an

d
Pa

dd
in

g
(c

on
tin

ue
d)

818 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

X
bo

rd
er

-t
op

-
st

yl
e,

bo
rd

er
-

ri
gh

t-
st

yl
e,

bo
rd

er
-b

ot
to

m
-

st
yl

e,
bo

rd
er

-
le

ft
-s

ty
le

Sp
ec

if
ie

s
th

e
bo

rd
er

st
yl

e
of

th
e

re
sp

ec
ti

ve
si

d
es

of
an

el
em

en
t’s

bo
x.

in
he

ri
t,

no
ne

,d
ot

te
d

,
d

as
he

d
,h

id
d

en
,s

ol
id

,
gr

oo
ve

,r
id

ge
,i

ns
et

,
ou

ts
et

,d
ou

bl
e,

-m
oz

-b
g-

in
se

t,
-m

oz
-b

g-
ou

ts
et

,

st
ro

ng
{b

or
d

er
-t

op
-s

ty
le

:g
ro

ov
e}

bo
rd

er
-t

op
,

bo
rd

er
-l

ef
t,

bo
rd

er
-b

ot
to

m
,

bo
rd

er
-r

ig
ht

E
ac

h
of

th
es

e
is

a
sh

or
th

an
d

pr
op

er
ty

fo
r

se
tt

in
g

th
e

w
id

th
,s

ty
le

,
an

d
co

lo
r

of
a

sp
ec

if
ic

si
d

e
of

a
bo

x.

bo
rd

er
-t

op
-w

id
th

,
bo

rd
er

-s
ty

le
,b

or
de

r-
co

lo
r

h1
{b

or
d

er
-l

ef
t:

.5
em

so
lid

bl
ue

}

bo
rd

er
Sh

or
th

an
d

pr
op

er
ty

fo
r

se
tt

in
g

th
e

bo
rd

er
w

id
th

,s
ty

le
,a

nd
co

lo
r

fo
r

al
l

fo
ur

si
de

s
of

an
el

em
en

tb
ox

.

bo
rd

er
-w

id
th

,b
or

de
r-

st
yl

e,
bo

rd
er

-c
ol

or
p.

ex
am

pl
e

{b
or

d
er

:2
px

d
ot

te
d

#6
63

33
3}

m
ar

gi
n

Sh
or

th
an

d
pr

op
er

ty
fo

r
sp

ec
if

yi
ng

al
lt

he
m

ar
gi

ns
of

an
el

em
en

t.
le

ng
th

,p
er

ce
nt

ag
e,

au
to

im
g

{m
ar

gi
n:

0p
x

12
px

0p
x

12
px

}

m
ar

gi
n-

to
p,

m
ar

gi
n-

le
ft

,
m

ar
gi

n-
bo

tto
m

,
m

ar
gi

n-
ri

gh
t

T
he

se
pr

op
er

ti
es

sp
ec

if
y

th
e

am
ou

nt
of

m
ar

gi
n

on
sp

ec
if

ic
si

d
es

of
th

e
el

em
en

t.

le
ng

th
,p

er
ce

nt
ag

e,
au

to
im

g
{m

ar
gi

n-
to

p:
0p

x}

pa
d

d
in

g
Sh

or
th

an
d

pr
op

er
ty

fo
r

sp
ec

ify
in

g
th

e
pa

dd
in

g
fo

r
al

ls
id

es
of

an
el

em
en

t.
le

ng
th

,p
er

ce
nt

ag
e

p.
si

d
eb

ar
{p

ad
d

in
g:

1e
m

}

pa
d

d
in

g-
to

p,
pa

d
d

in
g-

le
ft

,
pa

d
d

in
g-

bo
tt

om
,

pa
d

d
in

g-
ri

gh
t

T
he

se
pr

op
er

ti
es

sp
ec

if
y

an
am

ou
nt

of
pa

d
d

in
g

to
be

ad
d

ed
ar

ou
nd

th
e

re
sp

ec
ti

ve
si

d
es

of
an

el
em

en
t’s

co
nt

en
ts

.

le
ng

th
,p

er
ce

nt
ag

e
p.

si
d

eb
ar

{p
ad

d
in

g-
to

p:
1e

m
}

Ta
bl

e
D

-2
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
B

ac
kg

ro
un

ds
,
B

or
de

rs
,
M

ar
gi

ns
,
an

d
Pa

dd
in

g
(c

on
tin

ue
d)

A p p e n d i x D : C S S Q u i c k R e f e r e n c e 819
A

P
P

EN
D

IX
ES

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

X
po

si
ti

on
D

et
er

m
in

es
w

he
th

er
no

rm
al

,r
el

at
iv

e,
or

ab
so

lu
te

po
si

ti
on

in
g

m
et

ho
d

s
ar

e
us

ed
to

re
nd

er
th

e
cu

rr
en

t
el

em
en

tb
ox

.

in
he

ri
t,

st
at

ic
,

re
la

ti
ve

,
ab

so
lu

te
,f

ix
ed

h2
{p

os
it

io
n:

ab
so

lu
te

;t
op

:
20

px
;r

ig
ht

:5
0p

x;
bo

tt
om

:
20

px
;l

ef
t:

50
px

;}

X
d

ir
ec

ti
on

Sp
ec

if
ie

s
th

e
ba

se
d

ir
ec

ti
on

(r
ea

d
in

g
or

d
er

)f
or

te
xt

co
nt

en
ti

n
an

el
em

en
t.

It
is

al
so

m
ea

nt
to

co
nt

ro
lt

he
d

ir
ec

ti
on

al
it

y
of

ta
bl

e
co

lu
m

ns
,t

ex
to

ve
rf

lo
w

,a
nd

po
si

ti
on

in
g

of
ju

st
if

ie
d

te
xt

.

in
he

ri
t,

lt
r,

rt
l

d
iv

{d
ir

ec
ti

on
:l

tr
;}

X
to

p
D

es
cr

ib
es

th
e

ve
rt

ic
al

of
fs

et
fo

r
th

e
to

p
ed

ge
of

th
e

ab
so

lu
te

ly
po

si
ti

on
ed

el
em

en
tb

ox
fr

om
th

e
to

p
ed

ge
of

th
e

el
em

en
t’s

co
nt

ai
ni

ng
bl

oc
k.

in
he

ri
t,

au
to

,
le

ng
th

,
pe

rc
en

ta
ge

h2
{t

op
:2

0p
x;

ri
gh

t:
50

px
;

bo
tt

om
:2

0p
x;

le
ft

:5
0p

x;
}

X
le

ft
D

es
cr

ib
es

th
e

ho
ri

zo
nt

al
of

fs
et

fo
r

th
e

le
ft

ed
ge

of
th

e
ab

so
lu

te
ly

po
si

ti
on

ed
el

em
en

tb
ox

fr
om

th
e

le
ft

ed
ge

of
th

e
el

em
en

t’s
co

nt
ai

ni
ng

bl
oc

k.

in
he

ri
t,

au
to

,
le

ng
th

,
pe

rc
en

ta
ge

h2
{t

op
:2

0p
x;

ri
gh

t:
50

px
;

bo
tt

om
:2

0p
x;

le
ft

:5
0p

x;
}

X
bo

tt
om

D
es

cr
ib

es
th

e
ve

rt
ic

al
of

fs
et

fo
r

th
e

bo
tt

om
ed

ge
of

th
e

ab
so

lu
te

ly
po

si
ti

on
ed

el
em

en
tb

ox
fr

om
th

e
bo

tt
om

ed
ge

of
th

e
el

em
en

t’s
co

nt
ai

ni
ng

bl
oc

k.

in
he

ri
t,

au
to

,
le

ng
th

,
pe

rc
en

ta
ge

h2
{t

op
:2

0p
x;

ri
gh

t:
50

px
;

bo
tt

om
:2

0p
x;

le
ft

:5
0p

x;
}

X
ri

gh
t

D
es

cr
ib

es
th

e
ho

ri
zo

nt
al

of
fs

et
fo

r
th

e
ri

gh
te

d
ge

of
th

e
ab

so
lu

te
ly

po
si

ti
on

ed
el

em
en

tb
ox

fr
om

th
e

ri
gh

te
d

ge
of

th
e

el
em

en
t’s

co
nt

ai
ni

ng
bl

oc
k.

in
he

ri
t,

au
to

,
le

ng
th

,
pe

rc
en

ta
ge

h2
{t

op
:2

0p
x;

ri
gh

t:
50

px
;

bo
tt

om
:2

0p
x;

le
ft

:5
0p

x;
}

w
id

th
Se

ts
th

e
w

id
th

of
th

e
el

em
en

t.
It

ca
n

be
ap

pl
ie

d
to

te
xt

el
em

en
ts

or
as

a
w

ay
to

re
si

ze
im

ag
es

.
le

ng
th

,
pe

rc
en

ta
ge

,a
ut

o
im

g.
ph

ot
o

{w
id

th
:7

5%
;}

Ta
bl

e
D

-3
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Pa

ge
La

yo
ut

820 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

X
m

in
-w

id
th

A
llo

w
s

a
m

in
im

um
w

id
th

to
be

se
tf

or
an

el
em

en
tb

ox
.

in
he

ri
t,

le
ng

th
,

pe
rc

en
ta

ge
h5

{m
in

-w
id

th
:1

00
px

;}

X
m

ax
-w

id
th

A
llo

w
s

a
m

ax
im

um
w

id
th

to
be

se
tf

or
an

el
em

en
tb

ox
.

in
he

ri
t,

no
ne

,
le

ng
th

,
pe

rc
en

ta
ge

h5
{m

ax
-w

id
th

:1
50

px
;}

he
ig

ht
Se

ts
th

e
he

ig
ht

of
th

e
el

em
en

t.
le

ng
th

,
pe

rc
en

ta
ge

,a
ut

o
im

g.
ph

ot
o

{h
ei

gh
t:

75
%

;}

X
m

in
-h

ei
gh

t
A

llo
w

s
a

m
in

im
um

he
ig

ht
to

be
se

tf
or

an
el

em
en

tb
ox

.
in

he
ri

t,
le

ng
th

,
pe

rc
en

ta
ge

h5
{m

in
-h

ei
gh

t:
10

0p
x;

}

X
m

ax
-h

ei
gh

t
A

llo
w

s
a

m
ax

im
um

he
ig

ht
to

be
se

tf
or

an
el

em
en

tb
ox

.
in

he
ri

t,
no

ne
,

le
ng

th
,

pe
rc

en
ta

ge

h5
{m

ax
-h

ei
gh

t:
15

0p
x;

}

X
z-

in
d

ex
C

on
tr

ol
s

th
e

pl
ac

em
en

to
fe

le
m

en
ts

al
on

g
th

e
z-

ax
is

.
in

he
ri

t,
au

to
,

in
te

ge
r

h2
{p

os
it

io
n:

ab
so

lu
te

;t
op

:
20

px
;r

ig
ht

:5
0p

x;
bo

tt
om

:
20

px
;l

ef
t:

50
px

;z
-i

nd
ex

:3
;}

X
vi

si
bi

lit
y

C
on

tr
ol

s
w

he
th

er
th

e
co

nt
en

to
fa

n
el

em
en

tb
ox

is
re

nd
er

ed
(i

nc
lu

d
in

g
th

e
bo

rd
er

s
an

d
ba

ck
gr

ou
nd

s)
.

in
he

ri
t,

vi
si

bl
e,

hi
dd

en
,c

ol
la

ps
e,

hi
de

,s
ho

w

p
{v

is
ib

ili
ty

:h
id

d
en

;}

Ta
bl

e
D

-3
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Pa

ge
La

yo
ut

(c
on

tin
ue

d)

A p p e n d i x D : C S S Q u i c k R e f e r e n c e 821
A

P
P

EN
D

IX
ES

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

X
ov

er
fl

ow
In

ca
se

s
w

he
re

co
nt

en
ti

n
an

el
em

en
tf

al
ls

ou
ts

id
e

th
e

el
em

en
t’s

re
nd

er
in

g
bo

x
(d

ue
to

ne
ga

ti
ve

m
ar

gi
ns

,
ab

so
lu

te
po

si
ti

on
in

g,
co

nt
en

te
xc

ee
d

in
g

th
e

w
id

th
/

he
ig

ht
se

tf
or

an
el

em
en

t,
et

c.
),

th
e

ov
er

fl
ow

pr
op

er
ty

d
es

cr
ib

es
w

ha
tt

o
d

o.

in
he

ri
t,

vi
si

bl
e,

hi
d

d
en

,s
cr

ol
l,

au
to

,-
m

oz
-

sc
ro

llb
ar

s-
no

ne
,

-m
oz

-s
cr

ol
lb

ar
s-

ho
ri

zo
nt

al
,

-m
oz

-s
cr

ol
lb

ar
s-

ve
rt

ic
al

bl
oc

kq
uo

te
{w

id
th

:5
0p

x;
he

ig
ht

:5
0p

x;
ov

er
fl

ow
:

sc
ro

ll;
}

fl
oa

t
Po

si
ti

on
s

an
el

em
en

ta
ga

in
st

th
e

le
ft

or
ri

gh
tb

or
d

er
an

d
al

lo
w

s
te

xt
to

fl
ow

ar
ou

nd
it

.
le

ft
,r

ig
ht

,n
on

e
p.

si
d

eb
ar

{f
lo

at
:r

ig
ht

}

cl
ea

r
Sp

ec
if

ie
s

w
he

th
er

to
al

lo
w

fl
oa

ti
ng

el
em

en
ts

on
an

im
ag

e’
s

si
d

es
.

no
ne

,l
ef

t,
ri

gh
t,

bo
th

h1
,h

2,
h3

{c
le

ar
:l

ef
t;}

X
cl

ip
A

cl
ip

pi
ng

ar
ea

d
es

cr
ib

es
th

e
po

rt
io

ns
of

an
el

em
en

t’s
re

nd
er

in
g

bo
x

th
at

ar
e

vi
si

bl
e

(w
he

n
an

el
em

en
t’s

“o
ve

rf
lo

w
”

pr
op

er
ty

is
no

ts
et

to
“v

is
ib

le
”)

.

in
he

ri
t,

au
to

,
sh

ap
e

p
{o

ve
rf

lo
w

:s
cr

ol
l;

po
si

ti
on

:a
bs

ol
ut

e;
w

id
th

:
50

px
;h

ei
gh

t:
50

px
;c

lip
:

re
ct

(5
px

40
px

40
px

5p
x)

;}

Ta
bl

e
D

-3
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Pa

ge
La

yo
ut

(c
on

tin
ue

d)

822 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

d
is

pl
ay

D
ef

in
es

ho
w

an
d

sp
ec

if
ie

s
if

an
el

em
en

t
is

d
is

pl
ay

ed
.

bl
oc

k,
in

lin
e,

lis
t-

it
em

,
no

ne
p

{d
is

pl
ay

:b
lo

ck
;}

w
hi

te
-s

pa
ce

D
ef

in
es

ho
w

w
hi

te
sp

ac
e

in
th

e
so

ur
ce

fo
r

th
e

el
em

en
ti

s
ha

nd
le

d
.

no
rm

al
,p

re
,n

ow
ra

p
p.

ha
ik

u
{w

hi
te

-
sp

ac
e:

pr
e;

}

lis
t-

st
yl

e-
ty

pe
Sp

ec
if

ie
s

th
e

ap
pe

ar
an

ce
of

th
e

au
to

m
at

ic
nu

m
be

ri
ng

or
bu

lle
ti

ng
of

lis
ts

.
d

is
c,

ci
rc

le
,s

qu
ar

e,
d

ec
im

al
,l

ow
er

-r
om

an
,

up
pe

r-
ro

m
an

,l
ow

er
-a

lp
ha

,
up

pe
r-

al
ph

a,
no

ne

ol
{l

is
t-

st
yl

e-
ty

pe
:

up
pe

r-
ro

m
an

;}
(A

.,
B

.,
C

.,
D

.,
et

c)

lis
t-

st
yl

e-
im

ag
e

Sp
ec

if
ie

s
a

gr
ap

hi
c

to
be

us
ed

as
a

lis
t-

it
em

m
ar

ke
r

(b
ul

le
t)

.
ur

l,
no

ne
ul

{l
is

t-
st

yl
e-

im
ag

e:
ur

l(
3d

ba
ll.

gi
f)

;}

lis
t-

st
yl

e-
po

si
ti

on
Sp

ec
if

ie
s

w
he

th
er

lis
ti

te
m

s
sh

ou
ld

be
se

tw
it

h
a

ha
ng

in
g

in
d

en
t.

in
si

d
e,

ou
ts

id
e

ol
{l

is
t-

st
yl

e-
po

si
ti

on
:

ou
ts

id
e;

}

lis
t-

st
yl

e
Sh

or
th

an
d

pr
op

er
ty

fo
r

se
tt

in
g

th
e

lis
t-

st
yl

e
ty

pe
,i

m
ag

e,
an

d
po

si
ti

on
(i

ns
id

e,
ou

ts
id

e)
in

on
e

d
ec

la
ra

ti
on

.

lis
t-

st
yl

e-
ty

pe
,

lis
t-

st
yl

e-
im

ag
e,

lis
t-

st
yl

e-
po

si
ti

on

ul
{l

is
t-

st
yl

e:
lis

t-
it

em
ur

l(
3d

ba
ll.

gi
f)

d
is

c
in

si
d

e;
}

X
ta

bl
e-

la
yo

ut
C

on
tr

ol
s

th
e

la
yo

ut
al

go
ri

th
m

us
ed

to
re

nd
er

ta
bl

e
st

ru
ct

ur
es

.
in

he
ri

t,
au

to
,f

ix
ed

ta
bl

e
{t

ab
le

-l
ay

ou
t:

fi
xe

d
;}

X
bo

rd
er

-c
ol

la
ps

e
T

he
re

nd
er

in
g

of
ta

bl
e

bo
rd

er
s

is
d

iv
id

ed
in

to
tw

o
ca

te
go

ri
es

in
C

SS
2—

co
lla

ps
ed

an
d

se
pa

ra
te

d
.T

hi
s

pr
op

er
ty

sp
ec

if
ie

s
w

hi
ch

bo
rd

er
re

nd
er

in
g

m
od

e
to

us
e.

in
he

ri
t,

co
lla

ps
e,

se
pa

ra
te

ta
bl

e
{b

or
d

er
-c

ol
la

ps
e:

se
pa

ra
te

;}

X
bo

rd
er

-s
pa

ci
ng

Sp
ec

ifi
es

th
e

di
st

an
ce

be
tw

ee
n

th
e

bo
rd

er
s

of
ad

ja
ce

nt
ta

bl
e

ce
lls

in
th

e
“s

ep
ar

at
ed

bo
rd

er
s”

m
od

el
.

in
he

ri
t,

le
ng

th
ta

bl
e

{b
or

d
er

-s
pa

ci
ng

:
10

pt
5p

t;}

Ta
bl

e
D

-4
.

C
S

S
Pr

op
er

tie
s

U
se

d
to

D
ef

in
e

an
d

C
la

ss
ify

El
em

en
ts

A p p e n d i x D : C S S Q u i c k R e f e r e n c e 823
A

P
P

EN
D

IX
ES

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

X
cu

rs
or

C
on

tr
ol

s
th

e
ty

p
e

of
cu

rs
or

th
at

is
u

se
d

w
he

n
a

p
oi

nt
in

g
d

ev
ic

e
is

ov
er

an
el

em
en

t

in
he

ri
t,

de
fa

ul
t,

au
to

,u
rl

, n
-r

es
iz

e,
ne

-r
es

iz
e,

e-
re

si
ze

,s
e-

re
si

ze
,s

-r
es

iz
e,

sw
-r

es
iz

e,
w

-r
es

iz
e,

nw
-r

es
iz

e,
cr

os
sh

ai
r,

po
in

te
r,

m
ov

e,
te

xt
,w

ai
t,

he
lp

,h
an

d,
al

l-s
cr

ol
l,

co
l-r

es
iz

e,
ro

w
-r

es
iz

e,
no

-d
ro

p,
no

t-
al

lo
w

ed
,p

ro
gr

es
s,

ve
rt

ic
al

-t
ex

t,
al

ia
s,

ce
ll,

co
py

,c
ou

nt
-d

ow
n,

co
un

t-
up

,
co

un
t-

up
-d

ow
n,

gr
ab

,g
ra

bb
in

g,
sp

in
ni

ng

bl
oc

kq
uo

te
{c

ur
so

r:
he

lp
;}

X
ou

tli
ne

Sh
or

th
an

d
m

et
ho

d
fo

r
sp

ec
if

yi
ng

th
e

ou
tli

ne
-c

ol
or

,o
ut

lin
e-

st
yl

e,
an

d
ou

tli
ne

-w
id

th
pr

op
er

tie
s

us
in

g
a

si
ng

le
pr

op
er

ty
no

ta
tio

n

in
he

ri
t,

ou
tl

in
e-

co
lo

r,
ou

tl
in

e-
st

yl
e,

ou
tl

in
e-

w
id

th
bu

tt
on

{o
ut

lin
e:

re
d

so
lid

th
ic

k;
}

X
ou

tl
in

e-
w

id
th

Sp
ec

if
ie

s
th

e
w

id
th

fo
r

th
e

ou
tl

in
e

of
an

el
em

en
t

in
he

ri
t,

th
in

,m
ed

iu
m

,t
hi

ck
, l

en
gt

h
in

pu
t{

ou
tl

in
e-

w
id

th
:t

hi
n;

}

X
ou

tl
in

e-
co

lo
r

Sp
ec

if
ie

s
a

co
lo

r
fo

r
th

e
ou

tl
in

e
fo

r
an

el
em

en
t

in
he

ri
t,

in
ve

rt
,c

ol
or

im
g

{o
ut

lin
e-

co
lo

r:
bl

ac
k;

}

X
ou

tl
in

e-
st

yl
e

Sp
ec

if
ie

s
an

ou
tl

in
e

lin
e

st
yl

e
fo

r
th

e
cu

rr
en

te
le

m
en

t
in

he
ri

t,
no

ne
,d

ot
te

d
,d

as
he

d
,s

ol
id

,
gr

oo
ve

,r
id

ge
,i

ns
et

,o
ut

se
t,

d
ou

bl
e

bu
tt

on
{o

ut
lin

e-
st

yl
e:

gr
oo

ve
;}

Ta
bl

e
D

-5
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
us

er
In

te
rf

ac
e

D
is

pl
ay

TE
AM
FL
Y

Team-Fly®

824 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

X
co

nt
en

t
A

ut
om

at
ic

al
ly

ge
ne

ra
te

s
co

nt
en

tt
o

at
ta

ch
be

fo
re

/
af

te
r

a
C

SS
se

le
ct

or
(u

si
ng

th
e

:b
ef

or
e

an
d

:a
ft

er
ps

eu
d

o-
el

em
en

ts
.)

in
he

ri
t,

st
ri

ng
,u

rl
,c

ou
nt

er
()

,
op

en
-q

uo
te

,c
lo

se
-q

uo
te

,
no

-o
pe

n-
qu

ot
e,

no
-c

lo
se

-
qu

ot
e,

at
tr

(x
)

em
:b

ef
or

e
{c

on
te

nt
:

ur
l(

"h
ea

d
.g

if
")

;}

X
qu

ot
es

T
hi

s
pr

op
er

ty
d

et
er

m
in

es
th

e
ty

pe
of

qu
ot

at
io

n
m

ar
ks

th
at

w
ill

be
us

ed
in

a
d

oc
um

en
t.

in
he

ri
t,

no
ne

,(
[s

tr
in

g]
[s

tr
in

g]
)

bl
oc

kq
uo

te
:b

ef
or

e
{c

on
te

nt
:

op
en

-q
uo

te
}b

lo
ck

qu
ot

e:
af

te
r

{c
on

te
nt

:c
lo

se
-q

uo
te

}

X
co

un
te

r-
re

se
t

T
he

co
u

nt
er

-r
es

et
p

ro
p

er
ty

ac
ts

li
ke

a
va

ri
ab

le
as

si
gn

m
en

t
in

a
pr

og
ra

m
m

in
g

la
ng

ua
ge

—
it

se
ts

a
ne

w
va

lu
e

fo
r

th
e

sp
ec

if
ie

d
co

un
te

r
w

he
ne

ve
r

th
e

cu
rr

en
tC

SS
se

le
ct

or
is

en
co

un
te

re
d

.

in
he

ri
t,

no
ne

,[
id

en
ti

fie
r

in
te

ge
r]

h1
:b

ef
or

e
{c

ou
nt

er
-i

nc
re

m
en

t:
m

ai
n-

he
ad

in
g;

co
un

te
r-

re
se

t:
su

b-
he

ad
in

g;
}

X
co

un
te

r-
in

cr
em

en
t

T
he

co
un

te
r-

in
cr

em
en

tp
ro

pe
rt

y
ac

ts
lik

e
an

in
cr

em
en

te
d

va
ri

ab
le

in
a

pr
og

ra
m

m
in

g
la

ng
ua

ge
—

it
sp

ec
if

ie
s

th
e

am
ou

nt
to

in
cr

em
en

t
th

e
sp

ec
if

ie
d

co
un

te
r

by
w

he
n

th
e

cu
rr

en
tC

SS
se

le
ct

or
is

en
co

un
te

re
d

.

in
he

ri
t,

no
ne

,[
id

en
ti

fie
r

in
te

ge
r]

h1
:b

ef
or

e
{c

ou
nt

er
-i

nc
re

m
en

t:
m

ai
n-

he
ad

in
g;

co
un

te
r-

re
se

t:
su

b-
he

ad
in

g}

Ta
bl

e
D

-6
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
G

en
er

at
ed

C
on

te
nt

A p p e n d i x D : C S S Q u i c k R e f e r e n c e 825
A

P
P

EN
D

IX
ES

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

@
pa

ge
Se

ts
pa

ge
ru

le
s.

@
pa

ge
d

ou
bl

ep
ag

e
{s

iz
e:

8.
5i

n
11

in
;

pa
ge

-b
re

ak
-a

ft
er

:l
ef

t;}

X
pa

ge
U

se
d

to
sp

ec
if

y
a

sp
ec

if
ic

pa
ge

ty
pe

to
us

e
w

he
n

d
is

pl
ay

in
g

an
el

em
en

tb
ox

.
au

to
,i

de
nt

ifi
er

bo
d

y
{p

ag
e:

d
ou

bl
ep

ag
e;

pa
ge

-b
re

ak
-a

ft
er

:r
ig

ht
;}

X
si

ze
D

es
cr

ib
es

th
e

or
ie

nt
at

io
n

or
d

im
en

si
on

s
of

th
e

pa
ge

bo
x.

in
he

ri
t,

au
to

,p
or

tr
ai

t,
la

nd
sc

ap
e,

le
ng

th
bo

d
y

{s
iz

e
8.

5i
n

11
in

;}

X
m

ar
ks

Pr
in

te
d

d
oc

um
en

ts
in

th
e

pr
in

ti
ng

in
d

us
tr

y
of

te
n

ca
rr

y
m

ar
ks

on
th

e
pa

ge
ou

ts
id

e
th

e
co

nt
en

ta
re

a.
T

he
se

m
ar

ks
ar

e
us

ed
to

al
ig

n
an

d
tr

im
gr

ou
ps

of
pa

pe
rs

.T
hi

s
pr

op
er

ty
sp

ec
if

ie
s

w
ha

ts
or

to
fm

ar
ks

sh
ou

ld
be

re
nd

er
ed

ju
st

ou
ts

id
e

th
e

re
nd

er
ed

pa
ge

bo
x.

in
he

ri
t,

no
ne

,c
ro

p,
cr

os
s

bo
d

y
{m

ar
ks

:
cr

op
cr

os
s;

}

m
ar

gi
n

Sh
or

th
an

d
pr

op
er

ty
w

hi
ch

al
lo

w
s

an
au

th
or

to
sp

ec
if

y
m

ar
gi

n-
to

p,
m

ar
gi

n-
ri

gh
t,

m
ar

gi
n-

bo
tt

om
,a

nd
m

ar
gi

n-
le

ft
,p

ro
pe

rt
ie

s
us

in
g

a
si

ng
le

pr
op

er
ty

an
d

va
lu

e
no

ta
ti

on
.

in
he

ri
t,

au
to

,l
en

gt
h,

pe
rc

en
ta

ge
bo

d
y

{m
ar

gi
n:

5p
x

0p
x

2p
x

25
px

;}

m
ar

gi
n-

to
p,

m
ar

gi
n-

le
ft

,
m

ar
gi

n-
bo

tt
om

,
m

ar
gi

n-
ri

gh
t

Sp
ec

if
ie

s
th

e
m

ar
gi

n
pr

op
er

ti
es

of
th

e
re

sp
ec

ti
ve

si
d

es
of

an
el

em
en

t’s
bo

x.
in

he
ri

t,
au

to
,l

en
gt

h,
pe

rc
en

ta
ge

ad
d

re
ss

{m
ar

gi
n-

to
p:

33
%

;}

X
pa

ge
-b

re
ak

-
be

fo
re

Sp
ec

if
ie

s
th

e
pa

ge
-b

re
ak

in
g

be
ha

vi
or

th
at

sh
ou

ld
oc

cu
r

be
fo

re
an

el
em

en
tb

ox
an

d
on

w
ha

ts
id

e
of

th
e

pa
ge

th
e

co
nt

en
tt

ha
tf

ol
lo

w
s

sh
ou

ld
re

su
m

e
on

.

in
he

ri
t,

au
to

,a
vo

id
,

le
ft

,r
ig

ht
,a

lw
ay

s,
em

pt
y

st
ri

ng

p
{p

ag
e-

br
ea

k-
be

fo
re

:
al

w
ay

s;
}

Ta
bl

e
D

-7
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Pr

in
tin

g
C

on
te

nt

826 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

N
ew

in
C

S
S
2

P
ro

pe
rt

y
D

es
cr

ip
ti

on
V
al

ue
Ex

am
pl

e

X
pa

ge
-b

re
ak

-
af

te
r

Sp
ec

if
ie

s
th

e
pa

ge
-b

re
ak

in
g

be
ha

vi
or

th
at

sh
ou

ld
oc

cu
r

af
te

r
an

el
em

en
tb

ox
an

d
on

w
ha

ts
id

e
of

th
e

pa
ge

th
e

co
nt

en
tt

ha
tf

ol
lo

w
s

sh
ou

ld
re

su
m

e
on

.

in
he

ri
t,

au
to

,a
vo

id
,

le
ft

,r
ig

ht
,a

lw
ay

s,
em

pt
y

st
ri

ng

p
{p

ag
e-

br
ea

k-
af

te
r:

al
w

ay
s;

}

X
pa

ge
-b

re
ak

-
in

si
d

e
Sp

ec
if

ie
s

th
e

p
ag

e-
br

ea
ki

ng
be

ha
vi

or
th

at
sh

ou
ld

oc
cu

r
in

si
d

e
an

el
em

en
t’

s
re

nd
er

in
g

bo
x.

in
he

ri
t,

au
to

,a
vo

id
p

{p
ag

e-
br

ea
k-

in
si

d
e:

av
oi

d
;}

X
or

ph
an

s
Sp

ec
if

ie
s

th
e

m
in

im
um

nu
m

be
r

of
lin

es
of

co
nt

en
tf

or
th

e
cu

rr
en

te
le

m
en

tt
ha

tm
us

tb
e

le
ft

at
th

e
bo

tt
om

of
a

pa
ge

in
a

pa
ge

d
d

is
pl

ay
en

vi
ro

nm
en

t.

in
he

ri
t,

in
te

ge
r

p
{o

rp
ha

ns
:4

;}

X
w

id
ow

s
Sp

ec
if

ie
s

th
e

m
in

im
um

nu
m

be
r

of
lin

es
of

co
nt

en
tf

or
th

e
cu

rr
en

te
le

m
en

tt
ha

tm
us

tb
e

le
ft

at
th

e
to

p
of

a
pa

ge
in

a
pa

ge
d

d
is

pl
ay

en
vi

ro
nm

en
t.

in
he

ri
t,

in
te

ge
r

p
{w

id
ow

s:
1;

}

Ta
bl

e
D

-7
.

C
S

S
Pr

op
er

tie
s

As
so

ci
at

ed
w

ith
Pr

in
tin

g
C

on
te

nt
(c

on
tin

ue
d)

Appendix E
Fonts

827

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix contains a quick reference for the commonly available fonts and a
brief discussion of downloadable fonts.

Specifying Fonts
Under HTML 4.01 and transitional XHTML 1.0, the tag can be used to set a font
in a page by setting the face attribute:

This is important

The Web browser will read this HTML fragment and render the text in the font named
in the face attribute—but only for users who have the font installed on their systems.
Multiple fonts can be listed using the face attribute:

This should be in a different font

Here, the browser will read the comma-delimited list of fonts until it finds a font it
supports. Given the preceding fragment, the browser would try first Arial and then
Helvetica and, finally, a sans-serif font, before giving up and using whatever the
current browser font is.

CSS supports the same approach to setting fonts using font-family and font
properties. For example, to set the font to Arial for all text in paragraph tags, we
would use a rule like

p {font-family: Arial;}

Of course, the same restriction of fonts available on the local system applies, so a
comma-delimited list of fonts should be specified like so:

p {font-family: Verdana, Arial, Helvetica, sans-serif;}

Regardless of the approach, a little guesswork can be applied to use fonts properly
if you consider that most Macintosh, Windows, and UNIX users have a standard set
of fonts. If equivalent fonts are specified, it may be possible to provide similar page
renderings across platforms.

828 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Fonts for Microsoft Platforms and Browsers
The following fonts are available for Microsoft browsers and systems; they are
displayed in Figure E-1.

Font Systems

Andale Mono Internet Explorer 4.5 & 5

Arial Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x, Internet Explorer 4.5 & 5

Arial Bold Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Arial Italic Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Arial Bold Italic Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Arial Black Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, & 5

Comic Sans MS Windows XP, Windows 2000, Windows ME,
Internet Explorer 3, 4, & 5

Comic Sans MS Bold Windows XP, Windows 2000, Windows ME,
Internet Explorer 3, 4, & 5

Courier New Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Courier New Bold Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Courier New Italic Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Courier New
Bold Italic

Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

A
P

P
EN

D
IX

ES
A p p e n d i x E : F o n t s 829

830 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Font Systems

Georgia Windows XP, Windows 2000, IE 4 & IE5 (add-on)

Georgia Bold Windows XP, Windows 2000, IE 4 & IE5 (add-on)

Georgia Italic Windows XP, Windows 2000, IE 4 & IE5 (add-on)

Georgia Bold Italic Windows XP, Windows 2000, IE 4 & IE5 (add-on)

Impact Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, & 5

Lucida Console Windows XP, Windows 2000, Windows ME, Windows 98,
Windows NT 3.x (except NT 3.0), Windows NT 4.x

Lucida Sans Unicode Windows XP, Windows 2000, Windows 98,
Windows NT 3.x (except NT 3.0), Windows NT 4.x

Marlett Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows NT 4.x

Minion Web (Adobe) Microsoft lists this as one of their “core fonts,” but
it seems to be available (for sale) only from Adobe
(http://www.adobe.com).

Monotype.com Old version of Andale Mono, still available for
Windows 3.1 and 3.11 (add-on)

Symbol Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Times New Roman Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Times New Roman
Bold

Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Times New Roman
Italic

Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

Times New Roman
Bold Italic

Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

A p p e n d i x E : F o n t s 831
A

P
P

EN
D

IX
ES

Font Systems

Tahoma Windows XP, Windows 2000, Windows ME, Windows 98

Trebuchet MS Windows XP, Windows 2000, IE 4 & IE5 (add-on)

Trebuchet MS Bold Windows XP, Windows 2000, Windows 2000, IE 4 & IE5
(add-on)

Trebuchet MS Italic Windows XP, Windows 2000, IE 4 & IE5 (add-on)

Trebuchet MS
Bold Italic

Windows XP, Windows 2000, IE 4 & IE5 (add-on)

Verdana Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, & 5

Verdana Bold Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, & 5

Verdana Italic Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, & 5

Verdana Bold Italic Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, & 5

Webdings Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 4 & 5

Wingdings Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x,
Windows NT 4.x

More information about these fonts can be found at http://www.microsoft.com/
typography/fontpack/.

Fonts for Apple Macintosh System 7
The following fonts are available for Macintosh System 7; they are displayed in Figure E-2.

Chicago Courier Regular Geneva

Helvetica Monaco New York

Palatino Symbol Times

832 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure E-1. Font families available for Microsoft browsers and systems

A p p e n d i x E : F o n t s 833
A

P
P

EN
D

IX
ES

Additional Fonts for Apple Macintosh System 8 and Higher
In addition to the fonts shown in Figure E-2 for System 7, Macintosh System 8 offers
the following fonts; they are displayed in Figure E-3.

Apple Chancery Hoefler Text Hoefler Text Ornaments

Skia

Additional Fonts for Apple Macintosh System 8.5 and Higher
In addition to the fonts shown in Figure E-3 for System 8, Macintosh System 8.x offers
the following fonts; they are displayed in Figure E-4.

Capitals Charcoal Gadget

Sand Techno Textile

Figure E-2. Font families available with Macintosh System 7

Figure E-3. Additional font families available with Macintosh System 8

TE
AM
FL
Y

Team-Fly®

Additional Fonts for Apple Macintosh System X
In addition to the fonts shown in Figure E-4 for System 8.5, Macintosh System X offers
the following fonts; they are displayed in Figure E-5.

American Typewriter Andale Mono Arial

Arial Black Brush Script Baskerville

Big Caslon Comic Sans MS Copperplate

Courier New Didot Georgia

Gill Sans Futura Herculanum

Impact Lucida Grande Marker Felt

Optima Osaka Papyrus

Times New Roman Trebuchet MS Verdana

Webdings Zapf Dingbats Zapfino

Fonts for UNIX Systems
The following fonts are available for most UNIX systems; they are displayed in Figure E-6.

Charter Clean Courier

Fixed Helvetica Lucida

Lucidabright Lucida Typewriter New Century
Schoolbook

Symbol Terminal Times

Utopia

834 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure E-4. Additional font families available with Macintosh System 8.5

A p p e n d i x E : F o n t s 835
A

P
P

EN
D

IX
ES

Most users may have many other fonts beyond the ones shown in the tables.
Users of Microsoft’s Office will probably also have access to fonts like Algerian, Book
Antiqua, Bookman Old Style, Britannic Bold, Desdemona, Garamond, Century Gothic,
Haettenschweiller, and many others. The various browsers are also trying to make new
fonts available. Microsoft’s Webdings font provides many common icons for use on
Web pages viewed in Internet Explore 4.0 or higher. Some of these icons may be useful
for navigation, like arrows, while others look like audio or video symbols that could
provide an indication of link content.

Figure E-5. Additional fonts for Apple Macintosh System X

836 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Downloadable Fonts
The best solution for fonts on the Web would be to come up with a cross-platform
font that could be downloaded to the browser on-the-fly. Both of the major browser
vendors have developed their own versions of downloadable fonts. Microsoft’s
solution is called OpenType (http://www.microsoft.com/typography). Netscape’s
solution, called Dynamic Fonts, is based on TrueDoc (http://www.truedoc.com)—but
unfortunately, this technology is present only in the 4.x generation of the browser and
it should be avoided. A cross-platform solution to the font issue using Flash or another
binary format is possible but rather involved. Some have tried to address this issue by
performing font substitutions on the server side (http://www.em2-solutions.com);
but, so far, such an approach is not commonplace. The next section will briefly discuss
the only viable downloadable font technology in use at the time of the edition’s writing:
Microsoft Embedded fonts.

Microsoft’s Dynamic Fonts
Microsoft Internet Explorer for Windows provides a fairly robust way to embed fonts
in a Web page. To include a font, you must first build the page using the
element or style sheet rules that set fonts. When creating your page, don’t worry about

Figure E-6. Font families available on common UNIX systems

A
P

P
EN

D
IX

ES
A p p e n d i x E : F o n t s 837

whether or not the end user has the font installed; it will be downloaded. Next, use
Microsoft’s Web Embedding Fonts Tool or a similar facility to analyze the font usage
on the page. The program should create an .eot file that contains the embedded fonts.
Then, add the font usage information to the page in the form of cascading style sheets
(CSS) style rules, as shown here:

<html>

<head>

<title>Microsoft Font Test</title>

<style type="text/css">

<!--

@font-face {

font-family: Ransom;

font-style: normal;

font-weight: normal;

src: url(fonts/ransom.eot); }

.special {font-family: Ransom; color: green; font-size: 28pt;}

-->

</style>

</head>

<body>

Example Ransom Note Font

This is also in Ransom

</body>

</html>

Notice how it is possible to use both typical style sheet rules like a class binding as well as
the normal tag. A possible rendering of font embedding is shown in Figure E-7.

You must first create a font file and reference it from the file that uses the font. It
may be useful to define a font’s directory within your Web site to store font files,
similar to storing image files for site use.

The use of the @font-face acts as a pseudo element that allows you to bring any
number of fonts into a page. For more information on embedded fonts under Internet
Explorer as well as links to font file creation tools like Web Embedding Font Tool
(WEFT), see the Microsoft Typography site (http://www.microsoft.com/typography).

It is possible to provide links to both Microsoft and Netscape font technology in the same
page. This really adds only one line or a few style rules, since the rest of the document
would continue to use the same statements. TrueDoc technology also
supports an ActiveX control to allow Internet Explorer users to view their style of
embedded fonts. Netscape 6 does not support embedded fonts on any platform, so
TrueDoc works only in Netscape 4.x.

838 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Figure E-7. Embedded fonts increase design choices.

Appendix F
Color Reference

839

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix provides basic information about the use of colors on the Web,
including how to calculate browser-safe colors, adjust unsafe colors, and form
hybrid colors. It will also cover the use of color names and their numerical

equivalents as used in HTML and CSS, and identify browser support of color names.

Browser-Safe Colors
While 8-bit GIF images support 256 colors, cross-platform issues leave a palette of only
216 colors that are completely safe to use on the Web. This group of Web-safe colors is
often called the browser-safe palette. It is difficult to present this information visually in
a black-and-white book, but the palette can be viewed online at http://www
.webdesignref.com/chapter11/designdemos/safepalette.htm. Use of other colors
beyond this safe set can lead to poor-looking images when viewed under limited color
conditions, such as 8-bit (256-color) VGA. Selecting a set of colors from the safe color
palette and mixing them together in a process called dithering will approximate colors
outside the safe range. This process, which attempts to imitate colors by placing similar
colors near them, generally creates irregularities that render the image unappealing.

The selection of the 216 safe colors is fairly obvious if you consider the additive
nature of RGB color. Think of a color as being made up of varying amounts of red, green,
or blue that could be set by adjusting an imaginary color dial—from the extremes of no
color to maximum color saturation. The safe colors suggest six possible intensity settings
for each value of red, green, or blue. The settings are 0%, 20%, 40%, 60%, 80%, and 100%.
A value of 0%, 0%, 0% on the imaginary color dial would be equivalent to black. A value
of 100%, 100%, 100% would indicate pure white, while a value of 100%, 0%, 0% is pure
red, and so on. The safe colors are those that have an RGB value set only at one of the
safe intensity settings. The hex conversions for saturation are shown in Table F-1.

Setting a safe color is simply a matter of selecting a combination of safe hex values.
In this case, #9966FF is a safe hex color; #9370DB is not. Most Web design tools like
Macromedia Dreamweaver or HomeSite contain safe color pickers; so do imaging tools
like Macromedia Fireworks or recent versions of Adobe PhotoShop. Designers looking
for color palettes, including improved color pickers and swatches, should visit http://
www.visibone.com/colorlab/.

Setting an unsafe color to its nearest safe color is fairly easy—just round each particular
red, green, or blue value up or down to the nearest safe value. A complete conversion
of hex to decimal values is shown in Table F-2. Safe values are indicated in bold.

Although mathematically translating to the closest browser-safe color seems
appropriate, the result might not look correct to many people. Consider creating a
hybrid color by combining multiple safe colors together. This is done simply by creating
a checkerboard effect with a GIF image, in which two or more non-dithering colors are
placed side by side to give the appearance of a third color. A variety of PhotoShop
plug-ins, such as Colorsafe (http://www.boxtopsoft.com), exist for mixing colors.

840 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x F : C o l o r R e f e r e n c e 841
A

P
P

EN
D

IX
ES

00=00 01=01 02=02 03=03 04=04 05=05

06=06 07=07 08=08 09=09 10=0A 11=0B

12=0C 13=0D 14=0E 15=0F 16=10 17=11

18=12 19=13 20=14 21=15 22=16 23=17

24=18 25=19 26=1A 27=1B 28=1C 29=1D

30=1E 31=1F 32=20 33=21 34=22 35=23

36=24 37=25 38=26 39=27 40=28 41=29

42=2A 43=2B 44=2C 45=2D 46=2E 47=2F

48=30 49=31 50=32 51=33 52=34 53=35

54=36 55=37 56=38 57=39 58=3A 59=3B

60=3C 61=3D 62=3E 63=3F 64=40 65=41

66=42 67=43 68=44 69=45 70=46 71=47

72=48 73=49 74=4A 75=4B 76=4C 77=4D

78=4E 79=4F 80=50 81=51 82=52 83=53

84=54 85=55 86=56 87=57 88=58 89=59

Table F-2. RGB to Hexadecimal Color Conversion Chart

Color Intensity Hex Value Decimal Value

100% FF 255

80% CC 204

60% 99 153

40% 66 102

20% 33 51

0% 00 0

Table F-1. Color Intensity Conversion Table

842 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

90=5A 91=5B 92=5C 93=5D 94=5E 95=5F

96=60 97=61 98=62 99=63 100=64 101=65

102=66 103=67 104=68 105=69 106=6A 107=6B

108=6C 109=6D 110=6E 111=6F 112=70 113=71

114=72 115=73 116=74 117=75 118=76 119=77

120=78 121=79 122=7A 123=7B 124=7C 125=7D

126=7E 127=7F 128=80 129=81 130=82 131=83

132=84 133=85 134=86 135=87 136=88 137=89

138=8A 139=8B 140=8C 141=8D 142=8E 143=8F

144=90 145=91 146=92 147=93 148=94 149=95

150=96 151=97 152=98 153=99 154=9A 155=9B

156=9C 157=9D 158=9E 159=9F 160=A0 161=A1

162=A2 163=A3 164=A4 165=A5 166=A6 167=A7

168=A8 169=A9 170=AA 171=AB 172=AC 173=AD

174=AE 175=AF 176=B0 177=B1 178=B2 179=B3

180=B4 181=B5 182=B6 183=B7 184=B8 185=B9

186=BA 187=BB 188=BC 189=BD 190=BE 191=BF

192=C0 193=C1 194=C2 195=C3 196=C4 197=C5

198=C6 199=C7 200=C8 201=C9 202=CA 203=CB

204=CC 205=CD 206=CE 207=CF 208=D0 209=D1

210=D2 211=D3 212=D4 213=D5 214=D6 215=D7

216=D8 217=D9 218=DA 219=DB 220=DC 221=DD

222=DE 223=DF 224=E0 225=E1 226=E2 227=E3

228=E4 229=E5 230=E6 231=E7 232=E8 233=E9

234=EA 235=EB 236=EC 237=ED 238=EE 239=EF

240=F0 241=F1 242=F2 243=F3 244=F4 245=F5

246=F6 247=F7 248=F8 249=F9 250=FA 251=FB

252=FC 253=FD 254=FE 255=FF

Table F-2. RGB to Hexadecimal Color Conversion Chart (continued)

A
P

P
EN

D
IX

ES

Color Names and Numerical Equivalents
Table F-3 lists all the color names commonly supported by the major browsers. The
HTML specification defines 16 named colors (aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, and yellow). Of these colors, only 7 are
considered safe in the reproduction sense discussed previously. Many other color names
have been introduced by the browser vendorsparticularly Netscapeand are in fairly
common use. Color names are easier to remember than numerical codes, but they might
cause trouble when used with old or uncommon browsers. It is advisable to stick with the
hexadecimal approach to colors, since it is generally safer. The corresponding hexadecimal
code is shown next to each color name shown in Table F-3, and the code and name are
generally interchangeable. Thus, the code <body bgcolor="lightsteelblue"> would
produce the same result as <body bgcolor="#B0C4DE"> under any browser that
supported these color names. Identical colors might be reproducible with different names.
For example, “magenta” and “fuchsia” are both equivalent to #FF00FF. Regardless of
named color support, keep in mind that not all numeric values are completely
browser-safe. Although these names and numbers probably won’t be an issue for users
with high-resolution monitors and higher degrees of color support, don’t forget that these
users are not the only people on the Web. Browser-safe colors in Table F-3 appear in bold;
RGB equivalents are also included which are useful in graphics programs or CSS rules.

A p p e n d i x F : C o l o r R e f e r e n c e 843

Hexadecimal Code Name RGB Equivalent

#F0F8FF aliceblue 240,248,255

#FAEBD7 antique white 250,235,215

#00FFFF aqua 0,255,255

#7FFFD4 aquamarine 127,255,212

#F0FFFF azure 240,255,255

#F5F5DC beige 245,245,220

#FFE4C4 bisque 255,228,196

#000000 black 0,0,0

#FFEBCD blanchedalmond 255,235,205

#0000FF blue 0, 0,255

#8A2BE2 blueviolet 138, 43,226

#A52A2A brown 165, 42, 42

Table F-3. Color Names and Their Numerical Equivalents

TE
AM
FL
Y

Team-Fly®

844 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Hexadecimal Code Name RGB Equivalent

#DEB887 burlywood 222,184,135

#5F9EA0 cadetblue 95,158,160

#7FFF00 chartreuse 127,255, 0

#D2691E chocolate 210,105, 30

#FF7F50 coral 255,127, 80

#6495ED cornflowerblue 100,149,237

#FFF8DC cornsilk 255,248,220

#DC143C crimson 220,20,60

#00FFFF cyan 0,255,255

#00008B darkblue 0,0,139

#008B8B darkcyan 0,139,139

#B8860B darkgoldenrod 184,134, 11

#A9A9A9 darkgray 169,169,169

#006400 darkgreen 0,100, 0

#BDB76B darkkhaki 189,183,107

#8B008B darkmagenta 139, 0,139

#556B2F darkolivegreen 85,107, 47

#FF8C00 darkorange 255,140, 0

#9932CC darkorchid 153, 50,204

#8B0000 darkred 139, 0, 0

#E9967A darksalmon 233,150,122

#8FBC8F darkseagreen 143,188,143

#483D8B darkslateblue 72, 61,139

#2F4F4F darkslategray 47, 79, 79

#00CED1 darkturquoise 0,206,209

#9400D3 darkviolet 148, 0,211

#FF1493 deeppink 255, 20,147

Table F-3. Color Names and Their Numerical Equivalents (continued)

A p p e n d i x F : C o l o r R e f e r e n c e 845
A

P
P

EN
D

IX
ES

Hexadecimal Code Name RGB Equivalent

#00BFFF deepskyblue 0,191,255

#696969 dimgray 105,105,105

#1E90FF dodgerblue 30,144,255

#B22222 firebrick 178, 34, 34

#FFFAF0 floralwhite 255,250,240

#228B22 forestgreen 34,139, 34

#FF00FF fuchsia 255,0,255

#DCDCDC gainsboro 220,220,220

#F8F8FF ghostwhite 248,248,255

#FFD700 gold 255,215, 0

#DAA520 goldenrod 218,165, 32

#808080 gray 127,127,127

#008000 green 0,128,0

#ADFF2F greenyellow 173,255, 47

#F0FFF0 honeydew 240,255,240

#FF69B4 hotpink 255,105,180

#CD5C5C indianred 205, 92, 92

#4B0082 indigo 75,0,130

#FFFFF0 ivory 255,255,240

#F0E68C khaki 240,230,140

#E6E6FA lavender 230,230,250

#FFF0F5 lavenderblush 255,240,245

#7CFC00 lawngreen 124,252, 0

#FFFACD lemonchiffon 255,250,205

#ADD8E6 lightblue 173,216,230

#F08080 lightcoral 240,128,128

#E0FFFF lightcyan 224,255,255

Table F-3. Color Names and Their Numerical Equivalents (continued)

846 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Hexadecimal Code Name RGB Equivalent

#FAFAD2 lightgoldenrodyellow 250,250,210

#90EE90 lightgreen 144,238,144

#D3D3D3 lightgray 211,211,211

#FFB6C1 lightpink 255,182,193

#FFA07A lightsalmon 255,160,122

#20B2AA lightseagreen 32,178,170

#87CEFA lightskyblue 135,206,250

#778899 lightslategray 119,136,153

#B0C4DE lightsteelblue 176,196,222

#FFFFE0 lightyellow 255,255,224

#00FF00 lime 0,255,0

#32CD32 limegreen 50,205, 50

#FAF0E6 linen 250,240,230

#FF00FF magenta 255, 0,255

#800000 maroon 128,0,0

#66CDAA mediumaquamarine 102,205,170

#0000CD mediumblue 0,0,205

#BA55D3 mediumorchid 186, 85,211

#9370DB mediumpurple 147,112,219

#3CB371 mediumseagreen 60,179,113

#7B68EE mediumslateblue 123,104,238

#00FA9A mediumspringgreen 0,250,154

#48D1CC mediumturquoise 72,209,204

#C71585 mediumvioletred 199, 21,133

#191970 midnightblue 25, 25,112

#F5FFFA mintcream 245,255,250

#FFE4E1 mistyrose 255,228,225

Table F-3. Color Names and Their Numerical Equivalents (continued)

A p p e n d i x F : C o l o r R e f e r e n c e 847
A

P
P

EN
D

IX
ES

Hexadecimal Code Name RGB Equivalent

#FFE4B5 moccasin 255,228,181

#FFDEAD navajowhite 255,222,173

#000080 navy 0, 0,128

#9FAFDF navyblue 159,175,223

#FDF5E6 oldlace 253,245,230

#808000 olive 128,128,0

#6B8E23 olivedrab 107,142, 35

#FFA500 orange 255,165, 0

#FF4500 orangered 255, 69, 0

#DA70D6 orchid 218,112,214

#EEE8AA palegoldenrod 238,232,170

#98FB98 palegreen 152,251,152

#AFEEEE paleturquoise 175,238,238

#DB7093 palevioletred 219,112,147

#FFEFD5 papayawhip 255,239,213

#FFDAB9 peachpuff 255,218,185

#CD853F peru 205,133, 63

#FFC0CB pink 255,192,203

#DDA0DD plum 221,160,221

#B0E0E6 powderblue 176,224,230

#800080 purple 128,0,128

#FF0000 red 255, 0, 0

#BC8F8F rosybrown 188,143,143

#4169E1 royalblue 65,105,225

#8B4513 saddlebrown 139,69,19

#FA8072 salmon 250,128,114

#F4A460 sandybrown 244,164, 96

Table F-3. Color Names and Their Numerical Equivalents (continued)

848 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

CSS Color Values
Cascading style sheets (CSS) support the color names and values listed above and also
offer a number of other formats not available in HTML.

Hexadecimal Code Name RGB Equivalent

#2E8B57 seagreen 46,139, 87

#FFF5EE seashell 255,245,238

#A0522D sienna 160, 82, 45

#C0C0C0 silver 192,192,192

#87CEEB skyblue 135,206,235

#6A5ACD slateblue 106, 90,205

#708090 slategray 112,128,144

#FFFAFA snow 255,250,250

#00FF7F springgreen 0,255,127

#4682B4 steelblue 70,130,180

#D2B48C tan 210,180,140

#008080 teal 0,128,128

#D8BFD8 thistle 216,191,216

#FF6347 tomato 255, 99, 71

#40E0D0 turquoise 64,224,208

#EE82EE violet 238,130,238

#F5DEB3 wheat 245,222,179

#FFFFFF white 255,255,255

#F5F5F5 whitesmoke 245,245,245

#FFFF00 yellow 255,255, 0

#9ACD32 yellowgreen 139,205,50

Table F-3. Color Names and Their Numerical Equivalents (continued)

A
P

P
EN

D
IX

ES

Three-Digit Hexadecimal Color Values
Under CSS, color values can be defined using three-digit hexadecimal color values, a
concise version of the six-digit values just noted. This approach is supported by Internet
Explorer 3 and higher and Netscape Navigator 4 and higher.

span {font-family: Helvetica; font-size: 14pt; color: #0CF;}

RGB Color Values
Under CSS, color values can be defined using RGB values. Colors are defined by the
letters rgb, followed by three numbers between 0 and 255 that are contained in parentheses,
separated by commas, and with no spaces between them. This approach is supported
by Internet Explorer 4 and higher and Netscape Navigator 4 and higher.

p {color: rgb(204,0,51);}

RGB Color Values Using Percentages
Under CSS, RGB color values can also be defined using percentages. The format is the
same, except that the numbers are replaced by percentage values between 0% and 100%.
This approach is supported by Internet Explorer 4 and higher and Netscape Navigator 4
and higher.

p {color: rgb(75%,10%,50%);}

Color Practices
Certain limitations of color use on the Web are rapidly being eclipsed by improvements
in technology. One thing to consider is whether the 216-color palette actually matters
any more. Back in the early days of the Web, most end users had systems that were
limited to 8-bit color—the very limitation the 216-color limit was devised to work with.
These days, however, monitors with thousands or millions of colors are common, as
more and more users gear up their computers for improved gaming or graphics
manipulation, and the baseline color capacity of new computer products generally
exceeds 8-bit technology. (On the other hand, the rise of wireless handheld devices is
bringing the old color issues back into focus in another corner of the Web.)

The bottom line, as always, is to carefully consider who you are trying to reach with
your site. If you have a compelling reason to keep your site usable for people with older,
more limited systems, do so. More general usability issues, such as concerns about users
with poor vision or color blindness, may make the proper contrast of colors more
important than aesthetic concerns. For more on these issues, see Chapter 13.

A p p e n d i x F : C o l o r R e f e r e n c e 849

This page intentionally left blank.

Appendix G
HTTP

851

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The Hypertext Transfer Protocol (HTTP) is the basic, underlying, application-level
protocol used to facilitate the transmission of data to and from a Web server. HTTP
provides a simple, fast way to specify the interaction between client and server. The

protocol actually defines how a client must ask for data from the server and how the
server returns it. HTTP does not specify how the data actually is transferred; that
is up to lower-level network protocols such as TCP.

The first version of HTTP, known as version 0.9, was used as early as 1990.
HTTP version 1.0, as defined by RFC 1945, is supported by most servers and clients
(Web browsers). However, HTTP 1.0 does not properly handle the effects of hierarchical
proxies and caching or provide features to facilitate virtual hosts. More important,
HTTP 1.0 has significant performance problems due to the opening and closing of
many connections for a single Web page. The current version, HTTP 1.1, defined in
RFC 2616, solves many of the past problems of the protocol. It has been supported
since the 4.x generation Web browsers, and most servers use it as well.

HTTP in Action
The process of a Web browser or other user agent, such as Web spider or Robot,
requesting a document from a Web server (more correctly, HTTP server) is simple
and has been discussed throughout the book.

First, a user requests a document from a Web server by specifying the URL of
the document desired. During this step, a domain name lookup might occur, which
translates a machine name such as www.democompany.com to an underlying IP
address such as 206.251.142.3. If the domain name lookup fails, an error message such
as “No Such Host” or “The server does not have a DNS entry” will be returned. Certain
assumptions, such as the default service port to access for HTTP requests (80), also might
be made. This is transparent to the user, who simply uses a URL to access a page.
Once the server has been located, the browser forms the proper HTTP request and
sends the request to the server residing at the address specified by the URL. A typical
HTTP request might be

HTTP-Method Identifier HTTP-version

<Optional additional request headers>

In this example, the HTTP-Method would be GET or POST. An identifier might
correspond to the file desired (for example, /documents/report.htm), and the HTTP-
version indicates the dialect of HTTP being used, such as HTTP/1.1.

If a user requests a document with the URL http://www.webdesignref.com/
examples/report.htm, the browser might generate a request such as the one shown
here to retrieve the object from the server:

GET /examples/report.htm HTTP/1.1

If-Modified-Since: Tuesday, 30-Apr-02 01:39:39 GMT;

852 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Connection: Keep-Alive

User-Agent: Mozilla/4.02 [en] (X11; I; SunOS 5.4 sun4m)

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

People often ask why the complete URL is not shown in the request. It isn’t necessary
in most cases, except when using a proxy server. The use of a relative URL in the header
is adequate. The server knows where it is; it just needs to know what document to get
from its own file tree. In the case of using a proxy server, which requests a document
on behalf of a browser, a full URL is passed to it that later is made relative by the proxy.
Aside from the simple GET method, there are various other methods specified in
HTTP. Not all are commonly used. Table G-1 provides a summary of the HTTP 1.1
request methods.

A
P

P
EN

D
IX

ES
A p p e n d i x G : H T T P 853

Method Description

GET Returns the object specified by the identifier. It is also one of
the values of the method attribute for the <form> element.

HEAD Returns information about the object specified by the
identifier, such as last modification data, but does not
return the actual object.

OPTIONS Returns information about the capabilities supported by a
server if no location is specified or the possible methods
that can be applied to the specified object.

POST Sends information to the address indicated by the identifier;
generally used to transmit information from a form using
the method="POST" attribute of the <form> element to a
server-based CGI program.

PUT Sends data to the server and writes it to the address
specified by the identifier, overwriting previous content; in
basic form, can be used for file upload.

DELETE Removes the file specified by the identifier; generally
disallowed.

TRACE Provides diagnostic information by allowing the client to
see what is being received on the server.

Table G-1. Summary of HTTP 1.1 Request Methods

TE
AM
FL
Y

Team-Fly®

It is interesting to note that two of the methods (GET and POST) supported by HTTP
are the values of the <form> element’s method attribute. Recall that this attribute
indicates the method in which data is passed from the form to the server-side program.
In the case of GET, it is passed through the URL because another page is simply being
fetched, as a normal GET request would do. In the case of a POST value, the data of the
form is passed behind the scenes to the server program, which should return a result
page to the browser as well. As shown by the <form> element, it should become clear
that HTML and HTTP do interact in more than a casual way.

Within an HTTP request, there are a variety of optional fields for creating a complete
request. These are shown in Table G-2.

The header information is extremely valuable—you can detect things such as the browser
being used, the particular types of images supported by the browser, the language of the
browser (such as French, English, or Japanese), and so on.

854 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Field Description Example

Accept:
MIME-type/MIME-subtype

This field indicates the
data types accepted by
the browser. An entry
of */* indicates
anything is accepted;
however, it is possible
to indicate particular
content types, such as
image/jpeg, so the
server can make a
decision on what to
return. This facility
could be used to
introduce a form of
content negotiation so
that a browser could be
served only data it
understands or prefers,
although this approach
is not widely
understood or
implemented.

Accept: image/gif,
image/x-xbitmap,
image/jpeg, image/
pjpeg, */*

Table G-2. HTTP request headers

A p p e n d i x G : H T T P 855
A

P
P

EN
D

IX
ES

Field Description Example

Accept-Charset: charset This field indicates the
character set that is
accepted by the
browser, such as ASCII
or foreign character
encodings.

Accept-Charset:
iso-8859-1,*,
utf-8

Accept-Encoding:
encoding-type

This field instructs the
server on what type of
encoding the browser
understands. Typically,
this field is used to
indicate to the server
that compressed data
can be handled.

Accept-Encoding:
x-compress

Accept-Language: language This field lists the
languages preferred
by the browser and
could be used by the
server to pass back
the appropriate
language data.

Accept-Language: en

Authorization:
authorization-scheme
authorization-data

This field typically is
used to indicate the
userid and encrypted
password if the user is
returning authorization
information.
Generally, the
password is
transmitted
unencrypted, thus the
need for security
protocols such as SSL.

Authorization:
user joeblow:
testpass

Table G-2. HTTP request headers (continued)

856 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Field Description Example

Content-length: bytes This field gives the
length in bytes of the
message being sent to
the server, if any.
Remember that the
browser can upload or
pass data using the
PUT or POST method.

Content-length:
1805

Content-type:
MIME-type/MIME-subtype

This field indicates the
MIME-type of a
message being sent
to a server, if any. The
value of this field
would be particularly
important in the case of
file upload.

Content-type:
text/plain

Date: date-time This field indicates the
date and time that a
request was made in
Greenwich Mean Time
(GMT). GMT time is
mandatory for time
consistency, given the
worldwide nature of
the Web.

Date: Thursday,
15-Jan-98 01:
39:39 GMT

Host This field indicates the
host and port of the
server to which the
request is being made.

Host: www.
democompany.com

Table G-2. HTTP request headers (continued)

A p p e n d i x G : H T T P 857
A

P
P

EN
D

IX
ES

Field Description Example

If-Modified-Since: date-time This field indicates file
freshness to improve
the efficiency of the
GET method. When
used in conjunction
with a GET request for
a particular file, the
requested file is
checked to see if it has
been modified since the
time specified in the
field. If the file has not
been modified, a “not
modified” code (304) is
sent to the client so a
cached version of the
document can be used;
otherwise, the file is
returned normally.

If-Modified-Since:
Thursday,
15-Jan-98 01:39:
39 GMT

If-Match: "selector-string" This field makes a
request conditionally
only if the items match
some selector value
passed in. Consider
using POST only to
add data once it has
been moved to a file
called olddata.

If-Match:
"olddata"

Table G-2. HTTP request headers (continued)

858 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Field Description Example

If-None-Match: "selector-string" This field does the
opposite of If-Match.
The method is
conditional only if the
selector does not match
anything. This might
be useful for
preventing overwrites
of existing files.

If-None-Match:
"newfile"

If-Range: selector If a client has a partial
copy of an object in its
cache and wishes to
have an up-to-date
copy of the entire
object there, it could
use the Range request
header with this
conditional If-Range
modifier to update the
file. Modification
selection can take place
on time as well.

If-Range:
Thursday,
15-Jan-98 01:39:
39 GMT;

If-Unmodified-Since This field makes a
conditional method. If
the requested file has
not been modified
since the specified time,
the server should
perform the requested
method; otherwise, the
method should fail.

If-Unmodified-
Since: Thursday,
15-Jan-98 01:39:
39 GMT

Table G-2. HTTP request headers (continued)

A p p e n d i x G : H T T P 859
A

P
P

EN
D

IX
ES

Field Description Example

Max-Forwards: integer This field is used with
the TRACE method to
limit the number of
proxies or gateways
that can forward the
request. This would be
useful in determining
failures if a request
moves through many
proxies before reaching
the final server.

Max-Forwards: 6

MIME-version: version-number This field indicates the
MIME protocol
version, understood by
the browser, that the
server should use when
fulfilling requests.

MIME-Version: 1.0

Proxy-Authorization:
authorization information

This field allows the
client to identify itself
or the user to a proxy
that requires
authentication.

Proxy-
Authorization:
joeblow: testpass;
Realm: All

Pragma: server-directive This field passes
information to a server;
for example, this field
can be used to inform
a caching proxy server
to fetch a fresh copy
of a page.

Pragma: no-cache

Table G-2. HTTP request headers (continued)

860 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Once again, note that all of these request headers seem very familiar. They constitute
the same environment variables that you can access from within a CGI program. Now
it should be clear how this information is obtained.

After receiving a request, the Web server attempts to process the request. The
result of the request is indicated by a server status line that contains a response code;
for example, the ever popular “404 Not Found.” The server response status line takes
this form:

HTTP-version Status-code Reason-String

For a successful query, a status line might read

HTTP/1.0 200 OK

Field Description Example

Range: byte-range This field requests a
particular range of a
file, such as a certain
number of bytes. The
example shows a
request for the last 500
bytes of a file.

Range: bytes=-500

Referer: URL This field indicates the
URL of the document
from which the request
originates (in other
words, the linking
document). This value
might be empty if
the user has entered
the URL directly, rather
than by following
a link.

Referer: http://
www.democompany.
com/reports/index.
html

User-Agent: Agent-code This field indicates the
type of browser
making the request.

User-Agent:
Mozilla/4.0
(compatible; MSIE
5.5; Windows 98)

Table G-2. HTTP request headers (continued)

A p p e n d i x G : H T T P 861
A

P
P

EN
D

IX
ES

whereas in the case of an error, the status line might read

HTTP/1.0 404 Not Found

The status codes for the emerging HTTP 1.1 standard are shown in Table G-3.
After the status line, the server responds with information about itself and the data

being returned. There are various selected response headers, but the most important
indicate the type of data in the form of a MIME-type and subtype that will be returned.
Like request headers, many of these codes are optional and depend on the status of
the request.

Status-Code Reason-String Description

Informational Codes (Process Continues After This)

100 Continue An interim response
issued by the server that
indicates the request is in
progress but has not been
rejected or accepted.
This status code is in
support of the persistent
connection idea introduced
in HTTP 1.1

101 Switching Protocols Can be returned by the
server to indicate that a
different protocol should
be used to improve
communication. This
could be used to initiate a
real-time protocol.

Success Codes (Request Understood and Accepted)

200 OK Indicates the successful
completion of a request.

201 Created Indicates the successful
completion of a PUT
request and the creation
of the file specified.

Table G-3. HTTP 1.1 Status Codes

862 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Status-Code Reason-String Description

202 Accepted Indicates that the request
has been accepted for
processing, but that the
processing has not been
completed and the
request might or might
not actually finish
properly.

203 Non-Authoritative
Information

Indicates a successful
request, except that
returned information,
particularly meta-
information about a
document, comes from
a third source and is
unverifiable.

204 No Content Indicates a successful
request, but there is
no new data to send to
the client.

205 Reset Content Indicates that the client
should reset the page
that sent the request
(potentially for more
input). This could be used
on a form page that needs
consistent refreshing,
rather than reloading
as might be used in a
chat system.

Table G-3. HTTP 1.1 Status Codes (continued)

A p p e n d i x G : H T T P 863
A

P
P

EN
D

IX
ES

Status-Code Reason-String Description

206 Partial Content Indicates a successful
request for a piece of a
larger document or set of
documents. This response
typically is encountered
when media is sent out in
a particular order, or
byte-served, as with
streaming Acrobat files.

Redirection Codes (Further Action Necessary to Complete Request)

300 Multiple Choices Indicates that there are
many possible
representations for the
requested information, so
the client should use the
preferred representation,
which might be in the
form of a closer server or
different data format.

301 Moved Permanently Requested resource has
been assigned a new
permanent address, and
any future references to
this resource should be
made using one of the
returned addresses.

302 Moved Temporarily Requested resource
temporarily resides at a
different address. For
future requests, the
original address should
still be used.

Table G-3. HTTP 1.1 Status Codes (continued)

TE
AM
FL
Y

Team-Fly®

864 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Status-Code Reason-String Description

303 See Other Indicates that the requested
object can be found at a
different address and
should be retrieved using
a GET method on that
resource.

304 Not Modified Issued in response to a
conditional GET; indicates
to the agent to use a local
copy from cache or similar
action as the request
object has not changed.

305 Use Proxy Indicates that the
requested resource must
be accessed through the
proxy given by the URL
in the Location field.

Client Error Codes (Syntax Error or Other Problem Causing Failure)

400 Bad Request Indicates that the request
could not be understood
by the server due to
malformed syntax.

401 Unauthorized Request requires user
authentication. The
authorization has failed
for some reason, so this
code is returned.

402 Payment Required Obviously in support of
commerce, this code is
currently not well defined.

Table G-3. HTTP 1.1 Status Codes (continued)

A p p e n d i x G : H T T P 865
A

P
P

EN
D

IX
ES

Status-Code Reason-String Description

403 Forbidden Request is understood
but disallowed and
should not be reattempted
(the 401 code, by contrast,
might suggest a
reauthentication). A
typical response code in
response to a query for
a directory listing when
such requests are
disallowed.

404 Not Found Usually issued in
response to a typo by the
user or a moved resource,
as the server can’t find
anything that matches
the request, nor is there
any indication that the
requested item has
been moved.

405 Method Not Allowed Issued in response to a
method request, such as
GET, POST, or PUT, on
an object where such a
method is not supported.
Generally an indication
of what methods that
are supported will be
returned.

Table G-3. HTTP 1.1 Status Codes (continued)

866 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Status-Code Reason-String Description

406 Not Acceptable Indicates that the
response to the request
will not be in one of the
content types acceptable
by the browser—so why
bother doing the request?
This is an unlikely
response given the */*
acceptance issued by
most, if not all, browsers.

407 Proxy Authentication
Required

Indicates that the proxy
server requires some
form of authentication to
continue. This code is
similar to the 401 code.

408 Request Time-out Indicates that the client
did not produce or finish
a request within the time
that the server was
prepared to wait.

409 Conflict The request could not be
completed because of a
conflict with the requested
resource; for example, the
file might be locked.

410 Gone Indicates that the
requested object is no
longer available at the
server and no forwarding
address is known. Search
engines might want to
add remote references to
objects that return this
value, since it is a
permanent condition.

Table G-3. HTTP 1.1 Status Codes (continued)

A p p e n d i x G : H T T P 867
A

P
P

EN
D

IX
ES

Status-Code Reason-String Description

411 Length Required Indicates that the server
refuses to accept the
request without a defined
Content-Length. This
might happen when a
file is posted without
a length.

412 Precondition Failed Indicates that a
precondition given in
one or more of the request
header fields, such as
If-Unmodified-Since,
evaluated to False.

413 Request Entity Too Large Indicates that the server is
refusing to return data
because the object might
be too large or the server
might be too loaded to
handle the request. The
server also might provide
information indicating
when to try again, if
possible, but just as well
might terminate any
open connections.

414 Request-URI Too Large Indicates that the
Uniform Resource
Identifier (URI), generally
a URL, in the request field
is too long for the server
to handle. This is unlikely
to occur, as browsers
probably will not allow
such transmissions.

Table G-3. HTTP 1.1 Status Codes (continued)

868 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Status-Code Reason-String Description

415 Unsupported Media Type Indicates the server will
not perform the request
because the media type
specified in the message
is not supported. This
code might be returned
when a server receives
a file that it is not
configured to accept with
the PUT method.

Server Error Codes (Server Can’t Fulfill a Potentially Valid Request)

500 Internal Server Error A serious error message
indicating that the server
encountered an internal
error that keeps it from
fulfilling the request.

501 Not Implemented This response is to a
request that the server
does not support or that
might be understood but
is not implemented.

502 Bad Gateway Indicates that the server
acting as a proxy
encountered an error
from some other gateway
and is passing the
message along.

503 Service Unavailable Indicates the server
currently is overloaded
or is undergoing
maintenance. Headers
can be sent to indicate
when the server will
be available.

Table G-3. HTTP 1.1 Status Codes (continued)

Here is an example server response for the request shown earlier:

HTTP/1.1 200 OK

Date: Mon, 29 Apr 2002 18:59:54 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Fri, 25 Aug 2000 22:19:12 GMT

Accept-Ranges: bytes

Content-Length: 205

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>Report 1</title>

</head>

<body>

<h1>Report about Important Things</h1>

<hr>

<p>Here is some information about important things. </p>

</body>

</html>

A p p e n d i x G : H T T P 869
A

P
P

EN
D

IX
ES

Status-Code Reason-String Description

504 Gateway Time-out Indicates that the server,
when acting as a gateway
or proxy, encountered too
long a delay from an
upstream proxy and
decided to time out.

505 HTTP Version not
supported

Indicates that the server
does not support the
HTTP version specified
in the request.

Table G-3. HTTP 1.1 Status Codes (continued)

A list of the common server response headers for HTTP 1.1, as well as examples of
each, can be found in Table G-4.

870 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Response Header Description Example

Age Shows the sender’s
estimate of the amount of
time since the response
was generated at the
origin server. Age values
are nonnegative decimal
integers, representing
time in seconds.

Age: 10

Content-encoding Indicates the encoding the
data returned is in.

Content-encoding:
x-compress

Content-language Indicates the language
used for the data returned
by the server.

Content-language: en

Content-length Indicates the number
of bytes returned by
the server.

Content-length: 205

Content-range Indicates the range of the
data being sent back by
the server.

Content-range: -500

Content-type This probably is the most
important field and
indicates what type of
content is being returned
by the server in the form
of a MIME-type.

Content-type: text/html

Expires Gives the date/time after
which the returned data
should be considered stale
and should not be
returned from a cache.

Expires: Thu, 04 Dec 1997
16:00:00 GMT

Table G-4. Common HTTP 1.1 Server Response Headers

A
P

P
EN

D
IX

ES
A p p e n d i x G : H T T P 871

Response Header Description Example

Last-modified The Last-modified
response-header field is
used to indicate the date
the content returned was
last modified. This can be
used by caches to decide
to keep local copies of
objects.

Last-modified: Thursday,
01-Aug-96 10:09:00 GMT

Location Used to redirect the
browser to another page.
Occasionally scripts will
use this method for
browser redirection based
on capability.

Location: http://
www.democompany.com/
products/index.htm

Proxy-authenticate Included with a 407
(Proxy Authentication
Required) response.
The value of the field
consists of a challenge
that indicates the
authentication scheme
and parameters applicable
to the proxy for the
request.

Proxy-authenticate:
GreenDecoderRing: 0124.

Public Lists the set of methods
supported by the server.
The purpose of this field
is strictly to inform the
browser of the capabilities
of the server when new or
unusual methods are
encountered.

Public: OPTIONS,
MGET, MHEAD, GET,
HEAD

Table G-4. Common HTTP 1.1 Server Response Headers (continued)

The most important header response field is the Content-type field. The MIME-type
indicated by this field is a device by which the browser is able to figure out what to do
with the data being returned.

872 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

Response Header Description Example

Retry-after Can be used in
conjunction with a 503
(Service Unavailable)
response to indicate how
long the service is
expected to be unavailable
to the requesting client.
The value of this field
can be either an HTTP
date or an integer number
of seconds after which
to retry.

Retry-after: Fri, 31 Dec
1999 23:59:59 GMT
Retry-after: 60

Server Contains information
about the Web
software used.

Server: Apache/1.3.12
(Unix)

Warning Used to carry additional
information about the
status of a response that
might not be found in the
status code.

Warning: 10 Response
is stale

WWW-authenticate Included with a 401
(Unauthorized) response
message. The field
consists of at least one
challenge that indicates
the authentication scheme
and parameters applicable
to the request made by
the client.

WWW-authenticate:
Magic-Key-Challenge=
555121, DecoderRing=
Green

Table G-4. Common HTTP 1.1 Server Response Headers (continued)

Index
Symbols and Numbers
- (minus sign), 437
 (non-breaking space entity), 445,

450-451, 641-642
(...) ellipses, 247, 462
* (asterisk), 597, 810
/**/ syntax, 656
; (semicolon), 678
[] (brackets), 201
_ (underscores), 721
| (pipe symbol), 201
+ (plus sign), 437
404 error pages, 259-262
4D Webstar server, 707

A
<a> tag, HTML

CSS link colors and, 242
keyboard link support, 257-258

spacing, 640
text links, 224

absbottom attribute, 452
absolute URLs, 523
abstract groupings, site design, 9-11
accelerator keys, 257-258
access logs, 726-727
access points, 720
accessibility, user-centered designs, 53-57
accesskey attribute, 257-258, 599
action attribute, 589-590
ActiveX, 93-95, 682-684
ad hoc Web process, 109
addressing, 102-103
Adobe Acrobat files, printing, 390-391,

444, 472
alerts, 555-559
aliased images, 468-469
align attribute, 439
alignment, text layout, 439-441
alpha site implementation, 126-127

873
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

alt attribute, HTML
download progress and, 38
overview of, 523-524
visually impaired users and, 537

alternative style sheets, CSS, 655
alternative text, 523-524
Amaya, 73
America Online (AOL)

browser testing, 73
image distortion, 539

.ani file extension, 246-247
animation

best practices for, 688
common Web choices, 85-86
cursor, 246-247
Flash, 521-522
GIF, 513-515
PNG, 520
sensory adaptation to, 42

anti-aliasing
readability of, 468-469
transparent GIFs and, 511-512

AOL (America Online)
browser testing and, 73
image distortion, 539

Apache, 706
Apple Macintosh Systems

fonts for, 831-835
impact on Web, 545

applets, Java, 94-97, 685-686
application-centered Web sites, 9, 159
application service providers (ASPs), 711
architecture. See site structure
Arial font, 426
artistic Web sites, 165
ascenders, 425
ASPs (application service providers), 711
asterisk (*), 597, 810
attribute reference, XHTML, 794-809
audience. See also users

commercial Web sites, 161-162
community Web sites, 165
informational Web sites, 163-164

planning requirements, 119
site design process and, 116-118
Web site categories and, 154-155

audio, 85-86, 689
Audio Video Interleaved (AVI) format, 88
AutoComplete, Internet Explorer, 610-613
automation

site index, 332
site mapping, 328

AVI (Audio Video Interleaved) format, 88

B
Back button

distance between primary buttons
and, 211-212

hijacking, 197, 218
navigation with, 196-197, 219

back-links, 172-174
back-to-top navigation links, 200-201
background attribute, HTML, 527-532
backgrounds

CSS images, 533-535
CSS properties, 816-818
GIF transparent, 510-511
HTML images, 527-532
image sizing problems, 538
page size, 368-369
sectioning page with, 528-529
visually impaired users and, 30-31

backups
server-side validation, 605
Web server management and,

718, 721
bandwidth, real-time data, 716
banners, 42, 235-237
baselines, 425
Baskerville, John, 423
beta sites, 127
beta testing, 129
bgcolor attribute, CSS, 460
bgproperties attribute, HTML, 530
<big> tag, HTML fonts, 437

874 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

I n d e x 875

bit (color) depth, 480, 508-510
bitmapped images, 82, 506-507
block comps, 122
blog, defined, 166
BMP format

defined, 507-508
overview of, 522
Wireless BMP, 85

Bobby, 56-57
<body> element, HTML, 242, 483
bookmarks

frames and, 263-268
navigation and, 217-218

Boolean searches, 288-289
border attribute, HTML, 525-526
bordercolor attribute, HTML, 485-486
borders

CSS properties, 816-818
developing composites, 123
frame, 269
HTML and, 525-526

bottom navigation, 202

 tags, HTML, 444, 450-451
brackets ([]), 201
brainstorming sessions, Web design,

115-116
breadcrumbing, 196, 242
brightness, 478-479
broken links, 259-260
browser caches, 714-715
browser detection, 624-631

applying, 630-631
capabilities, 628-630
defined, 698
overview of, 624-628
user capabilities and, 628-630

browser rendering, 717
browser-safe colors, 491-495

color detection, 494-495
color intensity conversion table, 841
hybrid colors, 493-494
overview of, 491-493, 840
RGB to hexadecimal color

conversion chart, 841-842

browser sniffing. See browser detection
browser windows, 549-563

alerts sub-window, 555-559
confirms sub-window, 559-561
full-screen, 553-554
overview of, 549-553
prompts sub-window, 561-563

browsers
Active-X support and, 683-684
chrome vs. window, 356-357
compatibility warnings, 623-624
CSS and, 652-654
downloadable font support and, 432
frame support and, 271
helper applications, 90-92
HTML and, 631
improving responsiveness, 39
indicating download progress,

36-38
Java support and, 685-686
JavaScript support and, 98
plug-ins and, 91-92
PNG image support and, 520-521
resizing to simulate other

resolutions, 370
site evaluation form for, 782-783
site testing for, 128, 145
tests and, 72-73
title attribute support and, 342
usage analysis, 66-68
version issues, 68-72
Web technology and, 66-74

budgets
JAD development and, 113
site planning and, 121

bugs, testing for, 127-128
bullets, text, 462, 474
bus, Web servers, 704
<button> tag, HTML/XHTML, 588, 591
buttons

banner ads and, 237
consistency of, 208-209
graphical text, 224-226, 255
heavily branded, 219

876 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

image, 590-591
mouse travel and, 43-44
overview of, 225-226
page labeling with, 192-193
push, 588-589
radio, 572-580
reset, 589
search form, 288
special effects for, 465
submit, 589-590

C
caching

directives for, 714-715
server-scripted pages, 664

canvas space, 360-361
capacity

technology planning and, 664
Web server issues, 708-709

Cascading Style Sheets. See CSS
(Cascading Style Sheets)

case-sensitivity
CSS, 656
filenames, 721
HTML, 644

Cathode Ray Tube (CRT) monitor,
497-498

CDNs (content distribution networks), 710
cellspacing attribute, HTML, 485
center navigation, 207-208
centered window layout style, 408-413
cgi-bin directories, 665
CGI (Common Gateway Interface)

programs, 99-100
changing rectangles, optimization, 514
characters

adjusting space between, 445-448
anatomy of, 425-426
avoiding underscores in

filenames, 721
HTML best practices, 643

line length and, 441
special, 461-463, 581

charitable Web sites, 10
check boxes, 570-572
checked attribute, 163
chunking content, 352-353
circuit-switched networks, 715-716
circular, semistructured site map, 320-321
class values, CSS, 656
clicks

deep vs. shallow sites approach,
182-183

limiting in navigation, 219-220
client error codes, HTTP, 864-868
client-side technologies, 666-686

ActiveX, 93-95, 682-684
components, 67
defining, 6
DOM, 98-99
helper applications, 90-92
image maps and, 231-232
Java, 94-97
Java applets, 685-686
JavaScript, 98, 667-680
Netscape plug-ins, 91-93, 680-682
options, 89
overview of, 666-667
site evaluation form for, 779-782

CMYK color, 479
Coast Webmaster, 146
cocktail party effect, 41
color links

navigation tricks and, 218
overview of, 501
users with vision issues and, 30-31
visited vs. unvisited, 32

color reference guide, 839-850
browser-safe colors, 840-842
color names and numerical

equivalents, 843-848
color practices, 849
CSS color values, 848-849

colorblindness, 535-537
colorDepth property, 494-495
colors

basics of, 480-490
browser-safe, 491-495
coding location hints with, 195
computers and, 479-480
CSS values, 848-849
gamma correction of, 496-497
GIFs and, 508-509
harmony, 499-500
hidden meanings of, 501-503
intensity conversion table for, 841
links and, 241-243
monitor types and, 497-498
numerical equivalents, 843-848
practices, 849
rules and suggestions, 756
site accessibility and, 54
table rows and, 460-461
theory of, 478-479
usability problems with, 499-501,

535-537
users perception of, 29-30
Web challenges for, 490-491
Web palette, 495-496

colspan attribute, CSS, 461
column layout, 470-471
Comet Systems, 247
command lines, 666
comments

CSS rules and, 656
CSS with HTML and, 650
document wide styles and, 651
JavaScript, 671, 678
readability of HTML, 641-642

commercial Web sites, 10, 161-162
Common Gateway Interface (CGI)

programs, 99-100
common log format, 726
community Web sites, 10, 165
compiled languages, 664
compression, images, 537-538

computer monitors
CRT vs. LCD, 497-498
display of color on, 479-480

confirm() JavaScript method, 559
confirmations

form reset buttons, 589
GUI applications, 559-561

conformity, vs. innovation, 19
contact pages, 387-388
content

acceptability of, 736-738
CSS properties, 824
evaluation form, 773-774
execution analysis, 140-141
labeling, 252-253
managing, 721-725
page size and, 352-353
planning requirements for, 119-120
scaling, 367
search forms and, 287
testing site for, 128
user control of time-sensitive, 55
Web design and, 4

content distribution networks (CDNs), 710
content-oriented sites, 406-408
content pages, 381-386

FAQ pages, 381-383
legal pages, 383-385
overview of, 373
privacy pages, 385-386

Content-type response header, HTTP
browser rendering and, 717
description of, 870
overview of, 699-700

context menus, 617
controlled vocabularies, 332
conventions

GUI, 49-50
useable link, 241-247
Web, 50-53

cookies
best practices, 686-687
evaluating, 144-145

I n d e x 877

878 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

indicating past visits with, 198
overview of, 686
privacy and, 734

copy fitting, 423
copyrights, 383-385, 541
core attributes, XHTML, 810
costs, labeling, 252-253
CRT (Cathode Ray Tube) monitor, 497-498
crunching HTML, 642
crunching JavaScript, 678-680
CSS (Cascading Style Sheets)

alternative style sheets, 655
browser issues, 652-654
case-sensitivity, 656
compress style sheets, 656
HTML usage, 638-639, 649-652
id and class rules, 656
images, 532-535
overview of, 646-649
page margin control, 371-372
presentation control, 79-80
printer style sheets, 655-656
printing, 389-391
relative measurements, 654
rules, 656
site evaluation, 143
stretching pages, 364-366
usable forms, 594-595
versions, 621

CSS color
CSS1, 486-487
CSS2, 488-489
CSS3, 489-490
specifying, 481
values, 848-849

CSS navigation links, 242-248
color of, 242
cursor property, 244-246
custom cursors, 246-247
rollover, 248
text-decoration property, 243

CSS reference charts, 811-826
backgrounds, borders, margins,

padding properties, 816-818

element type (classification)
properties, 822

generated content, 824
page layout properties, 819-821
printing content, 825-826
text or font properties, 813-815
user interface properties, 823

CSS text
adjusting letter spacing, 446-448
alignment, 439-441
font settings, 429-430
font sizes, 437-438
formatting paragraphs, 451
formatting tables, 459-461
headings, 449-450
layout, 463-465
line spacing, 444-445
pull quotes, 455
raised initials, 452-453
special effects, 465-468
useful tools, 396

curly quotes, 462
cursors, CSS

custom, 246-247
link feedback and, 244-246

D
dashes, layout and, 462
dates, last-modified indicators, 385
decorative typefaces, 426, 428
dedicated server hosting, 712-713
defensive coding, JavaScript, 676
DELETE method, HTTP, 853
delivery. See site delivery
Denial of Service (DOS) attacks, 306, 718
depth gauge, 193
descenders, 425
design. See Web design
design implications, GUI

widgets/forms, 545-549
design phase, 122-127

beta site implementation, 127
block comps, 122

mock site creation, 126-127
screen and paper comps, 122-126

destinations
site map design and, 325
users and, 199

dialog boxes. See sub-windows
digital certificates

ActiveX security and, 94-95
site protection with, 720

directories
image management and, 539
naming, 721-722
vs. search engines, 304
server-side programs and, 665

disabilities, site accessibility and, 53
disabled attribute, 608
disk drives, Web servers, 704
display typefaces. See decorative

typefaces
distortion, images, 539
dithering, 491, 508-509
<div> tag, HTML, 650
DNS (Domain Name Service),

697-698, 709
doctype switch, HTML, 634-635
doctypes, HTML, 632-635
document-centered Web sites, 9-10, 159
Document Object Model (DOM), 98-99
document type definitions (DTDs)

HTML, 632-635
overview of, 77
XML, 659-661

documentation, online, 545
DOM (Document Object Model), 98-99
Domain Name Service (DNS),

697-698, 709
domain names

log accuracy and, 733
shared hosting services and,

711-712
Web site request process and,

695-698
Domino server, 708

doorway pages, 311
DoS (Denial of Service) attacks, 306, 718
down arrows, 252
download time

GIF interlacing and, 512-513
graphical site maps and, 322
image maps and, 233
image usability and, 537
informing users of, 688
user response/reaction to, 34-40

downloadable fonts, 430-432
Dreamweaver

HTML development, 647
image maps, 232-233
rollover links, 250-251

drop initials, 453-454
drop-shadowed text, 465
DTDs (document type definitions)

HTML and, 632-635
overview of, 77
XML and, 659-661

dynamic links, 223
dynamic sites

dynamically generated pages and,
157-158

home page indicating, 377
overview of, 156-157

E
e-commerce site, 731
elements, CSS, 822
ellipses (...), 247, 462
em dashes, 462
<embed> tag, 93, 681
en dashes, 462
encoded URL, 696-697
encryption, 720
entertainment Web sites, 10, 164
entrance pages, 373-378

browser detection on, 628
content pages, 381-386
home page, 375-378

I n d e x 879

880 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

overview of, 373-374
splash page, 374-375
subpages, 378-380
task-specific pages, 386-392

environments, user
effect of, 27-28
overview of, 44-47
site accessibility and, 54

errors
404 error pages, 259-262
alerts, 555-559
browser versions, 72
JavaScript, 676-678
logs, 726
server-side, 665
site evaluation and, 790-791
users notification of, 725

evaluation. See site evaluation
event attributes, XHTML, 810
event handlers, JavaScript, 670-671
evolutionary prototyping, 112-113
execution analysis, 140-146

content, 140-141
delivery, 145-146
technical, 141-145
visual, 141

execution, need for excellence in, 18-19
exit pages

defined, 373
home pages used as, 376
overview of, 392-394

experimental Web sites, 12-13
expert evaluation, 134
expiration date, 715
extensible Markup Language. See XML

(extensible Markup Language)
external links, 222, 252
external sites, servers, 710
extranet Web sites, 154-155

F
F1 key, Help system, 343-346
face attribute, CSS fonts, 429, 828

fair use laws, images, 541-542
FAQ (Frequently Asked Questions)

pages, 381-383
favorites, bookmarking, 216
feedback, FAQ pages, 383
field masks, form validation, 606-607
fields. See form fields; password fields
file extensions, 665, 721
file upload form controls, 591-592
filenames, 721
findability on Web, testing, 139-140
firewalls, 720
first-letter pseudoelement, CSS, 452-453
Fitt's law, 43, 212
fixed backgrounds, 530
fixed page sizes, 353-354
Flash format

animation using, 86
image formats and, 84
overview of, 521-522
page loads in, 37
SWF video, 88

floating window designs, 408-413
focus() method, Mozilla, 553
font-family property, CSS, 429, 828
font property, CSS, 828
font-size property, CSS, 437-438
 tag

color use, 484-485
font sizes, 436-437
Web fonts, 429, 828

font-variant property, CSS, 434
fonts

common typefaces, 425-427
CSS font-variant property, 434
CSS properties for, 813-815
downloadable, 430-432
number to use in document, 470
proportional vs. monospaced,

426-429
readability and, 468-470
relative measurements and, 654
reverse type effect, 434-435
setting in Web pages, 429-430

setting styles, 432-433
sizing, 420, 436-438
upper/lower case, 435-436
weight of, 433-434

fonts reference, 827-838
Apple Macintosh System 7, 831-833
Apple Macintosh System 8 and

higher, 833
Apple Macintosh System X, 834-835
Microsoft platforms and browsers,

829-831
overview of, 828
UNIX systems, 834

footers. See header-footer layout style
form fields

disabling, 608-609
focusing first field, 598
HTTP requests, 854-860
masks, 606-607
read-only, 609-610
required, 596-597
selecting via labels, 564
tool tips and, 601-602

<form> tag, 589-590
form validation, 604-613

AutoComplete and, 610-613
default data and, 610
disabling fields, 608-609
field masks, 606-607
overview, 604-606
read-only fields, 609-610

formats, image, 506-523
animation, 85-86
compression issues, 537-538
Flash, 84, 521-522
GIF, 83, 508-514
informing users of, 688
JPEG, 83, 514-518
other, 85, 522-523
overview, 506-508
PNG, 83-84, 518-521
SVG, 84
VML, 84-85

formats, video, 88
formatting

paragraphs/sections, 450-457
tables, 457-461
text, 461-463

forms, 593-604. See also GUI (Graphical
User Interface); site evaluation form

advanced searches, 288-291
creating, 593-596
first field focus, 598
keyboard shortcuts, 599-601
required fields, 596-597
searches, 287
status messages, 602-604
tabbing, 597-598
tool tips and form fields, 601-602

Forward button, 196
frame busting, 270-272
frames, 262-272

bookmarking, 263-268
floating window designs, 408-413
frame busting, 270-272
layout, 268-269
navigation and, 212-214
overview, 262-264
page margins, 372
printing, 263

FrontPage, 647
full mesh site structure, 174
full-screen windows, GUI, 553-554
functionality testing, Web sites, 128

G
galleryimg attribute, 526
gamma correction, 496-497
gatherers. See spiders
generated content, CSS, 824
GET method, HTTP, 853
GIF (Graphics Interchange Format)

animation using, 86
Flash animation vs., 522
image formats and, 83

I n d e x 881

JPEGs vs., 514, 516-518
overview of, 508-514
PNGs vs., 83, 519
using for illustrations, 517-518

glossary, 336-338, 789
"Go" button, 584
Go menu, 197
goals

evaluation, 134
site planning, 118
Web design, 114-118

Goethe, 501-502
GoLive, 647
government Web sites, 10
graphic text

challenges of, 419-420
drop initials, 453-454
kerning, 447-448
links, 224-226
raised initials, 452

graphical maps, 319-324, 328
Graphics Interchange Format. See GIF

(Graphics Interchange Format)
greeking text, 123, 126
grid site structure, 170-171, 174-176
GUI (Graphical User Interface)

advanced widgets, 613-617
browser windows, 549-553
check boxes, 570-572
conventions, 19, 49-50
file upload form controls, 591-592
form validation. see form validation
forms, 563-566
full-screen windows, 553-554
image buttons, 590-591
link triggering, 237-238
modifying for Web, 545-549
multi-line text entry, 567-570
password fields, 566-567
pull-down menus, 580-586
push buttons, 588-589
radio buttons, 572-580
reset buttons, 589

scrolled lists, 587-588
sub-windows. see sub-windows
submit buttons, 589-590
useable forms. see useable forms
Web design and, 398-401
Web site style and, 11-12
Web sites vs. GUI applications,

544-545

H
hardware

Web components, 67
Web servers, 99, 703-705

harmony, color, 499-500
HEAD method, HTTP, 853
header-footer layout style, 201, 406-408
headings

text spacing in, 446-448
type hierarchy, 449-450
writing for Web, 473

height attribute, HTML, 525
Help

form field, 604
overview of, 340-346
site evaluation form for, 790-791

helper applications, 90-92
hierarchy

navigation, 210-211
type hierarchy. see type hierarchy

hierarchy structures, Web sites, 171-177
full mesh, 174
mixed form, 174-176
narrow trees, 171-172
Web trees, 172-174
wide trees, 172

highlights, writing, 474
history mechanism, 196-197, 327
Hitbox, 725
home page

block composite prototype of,
122-123

center navigation and, 207-208

882 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

I n d e x 883

clicking logos and, 192
evaluating, 135
hierarchical site structure and, 171
as landmark, 198-199
layout of, 375-378
overview of, 165-166
pre-testing, 136-138
subpages relating to, 378-380

hosting. See Web hosting
hotspots, 231-233, 241
HSL (Hue Saturation Lightness)

format, 490
HTML (HyperText Markup Language),

631-646. See also XHTML
authoring tools, 645-646
avoiding use, 641-642
browser windows, 550-553
character sets, 643
color, 481-486
crunching, 642
CSS and, 649-652
doctypes, 632-635
evaluating site for, 141
hotspots, 241
markup logic, separating from

script logic, 665
<meta> tags, 643
naming conventions, 643-644
opening new window, 204
overview of, 74-75, 631
page margins, 371-372
presentation problems, 637-639
print-specific pages, 389-390
space handling, 639-641
templates, 644-645

HTML images, 523-532
alternative text, 523-524
backgrounds, 527-532
borders, 525-526
image toolbar, 526
sizing, 525

HTML links
advanced, 259
color changes, 242

keyboard support for, 257
underlining, 243

HTML text
alignment, 439
fields, 564-566
font sizes, 436-437
formatting paragraphs, 450-451
formatting tables, 457-459
headings, 449
hung initials, 454-456
letter spacing, 445
line length, 444
pull quotes, 455
raised initials, 452
sidebars, 457-458
spacing, 444

HTML: The Complete Reference, 75,
263, 439

HTTP (Hypertext Transfer Protocol)
applying, 852-853
history of, 852
information on, 728-729
overview of, 698-702
performance problems in, 713-714
request fields, 854-860
request methods, 853
server response headers, 870-872
as stateless protocol, 715
status codes, 861-869

hub and spoke site structure, 175-176
hue, 29, 30-31
Hue Saturation Lightness (HSL) format,

490
hung initials, 454-456
hung punctuation, 462-463
hybrid colors, 493-494
hypertext links, 222
HyperText Markup Language. See

HTML (HyperText Markup
Language)

Hypertext Transfer Protocol. See HTTP
(Hypertext Transfer Protocol)

TE
AM
FL
Y

Team-Fly®

884 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

I
icons

adding to site maps, 319
alert, 557
bookmark, 216-217
commonly found, 229-230
overview of, 227-228

ICRA (Internet Content Rating
Association), 737

id attribute, 565, 656
identity pretest, 136
IE (Internet Explorer)

accelerator keys, 600-601
AutoComplete, 610-613
browser testing, 72
as favored Web browser, 68
full-screen windows, 553-554
image toolbar, 526
multi-line text entries in, 570
plug-in availability, 681-682
positioning and raising

windows, 553
version issues, 68-70

IIS (Internet Information Services)
server, 707

image buttons, 590-591
image formats. See formats, image
image maps, 231-234
image toolbar, 526
images

background sizing problems, 538
compression, 537-538
CSS, 532-535
delivery distortion, 539
downloading, 537
formats. see formats, image
managing, 539-540
preloading, 538
protecting, 540-542
rules and suggestions, 756-757
useability and, 535-537

images, HTML
alternative text, 523-524
backgrounds, 527-532

borders, 525-526
image toolbar, 526
sizing, 525

 tag
inserting images, 523
lowsrc attribute, 38
rollovers, 249-250
sizing images, 525
spacing quirks and, 640

implied page labels, 192-193
indexing

keyword mismatchs, 298-299
search engines, 278-279
search facility, 282-283
site indexes, 329-334

information architecture, 184-185
informational alerts, 556-557
informational status codes, HTTP, 861
informational Web sites, 10, 163-164
initial cap, setting off, 452-455
innovation, vs. conformity, 19
<input> element, 589
<input type="checkbox"> element,

570-571
<input type="image"> element, 590-591
installation, plug-ins and, 93
instructions

advanced search forms, 290-291
scrolled lists, 588

intensity, 479
interactivity

classifying sites by, 155-156
testing, 140

interlacing, GIF, 512-513
intermediate users, 47-49
internal links, 222
international attributes, XHTML, 810
Internet Advertising Bureau, 235
Internet Content Rating Association

(ICRA), 737
Internet Explorer. See IE (Internet

Explorer)
Internet Information Services (IIS)

server, 707

Internet Protocol (IP) addresses, 102, 696
intranet Web sites, 154-155
intrapage links, 222
IP addresses, 102, 696
iPlanet server, 707
ismap attribute, 231
isometric site map, 320-321
italic font style, 433

J
JAD (Joint Application Design) process

model, 112-113
Java applets, 94-97, 685-686
Java virtual machines (JVMs), 96-97
javaEnabled() method, 686
JavaScript, 667-680

accesskey attribute, 599-600
animation, 86
automatic modification dates, 385
browser detection, 628-631
browser windows, 550-553
color detection, 494-495
comments, 678
crunching, 678-680
CSS browsers and, 654
defensive coding, 676
evaluating site for, 143-144
event handlers, 670-671
frame busting and, 271
linked scripts, 668-669
navigation, 205
<noscript> tag, 672-674
opening new windows, 204
overview of, 98, 667-668
page sizes, 361-363
pseudo-URLs and, 671
pull-downs, 238
radio buttons, 576-579
rollover links, 248-251
script errors, 676-678
<script> tag, 671-672
version issues, 674-676

JavaScript: The Complete Reference, 98
Joint Application Design (JAD) process

model, 112-113
JPEG (Joint Photographic Experts

Group) format
compression issues, 537
image formats and, 83
JPEG 2000, 708
overview of, 514-518
PNG compared to, 520

jump systems, 338-339
justified text, 441, 443
JVMs (Java virtual machines), 96-97

K
kerning, 445-448
keyboard

forms using, 595, 599-601
links using, 257-258
movement, 42-43

keywords
jump systems and, 338-339
local searches, 298
search engine rankings, 308-310
site indexes, 332

L
<label> tag, 564, 599
labels

back link, 196-197
form element, 563-564
form field, 597
icon meaning and, 227-228
site locations and, 190-194
top navigation and, 201

landmarks
center navigation and, 207-208
navigating with, 198-199
search engine rankings, 311

language attribute, JavaScript, 674-676
last-modification indicators, 385

I n d e x 885

law. See legal issues
layout lines

baselines/meanlines, 425
length, 441-444
spacing, 444-445

layout styles, 403-416
centered and floating window,

408-413
header-footer, 406-408
stretchable, 414-415
"TLB", 403-406

layouts. See also text layout; Web design
schools

background tiles, 527-529
consistency vs. creativity in,

415-416
CSS, 79-80, 819-821
evaluation form for, 770-772
frames and, 268-269
HTML, 637-639
rules and suggestions, 753-756
screen size. see screen size
usable form, 593-594

LCD (Liquid Crystal Display)
monitor, 498

leading, text, 444
left navigation, 202-205
legal issues

images, 541
legal pages, 383-385
privacy pages, 385-386

Lempel-Ziv-Welch (LZW) lossless
compression

GIF and, 508
PNG and, 518

letter spacing
CSS property for, 446-448
layout and, 445-448

lightness, 29-31
line-height property, CSS, 444-445
linear site structures

with alternatives, 168-169
mixed forms, 174-176

with options, 169
overview of, 167-170
pure, 168
with side trips, 170

lines. See layout lines
link attribute, HTML color, 483
<link> element

CSS, 655
HTML, 259

linked scripts, JavaScript, 668-669
links

advanced Web, 259
back-to-top links, 200-201
banner links, 235-237
breadcrumbing, 196
button links, 225-226
checking, 724
color and, 501
conventions for, 241-247
deep vs. shallow sites, 182-183
graphic text links, 224-226
GUI link triggering, 237-238
icon links, 227-230
image map links, 231-235
keyboard support for, 257-258
labeling to site index, 330
menu links, 238-240
naming, 315
navigation tricks and, 218
number of, 33-34
onclick attribute links, 241
pretesting, 136
rollover links, 248-251
scope notes and, 253-255
search engine rankings and, 311
text links, 201, 224
types of, 222-223
user expectations of, 251-253
users with vision issues and, 30-31
visited vs. unvisited, 32

Linux, 703, 705
Liquid Crystal Display (LCD)

monitor, 498

886 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

I n d e x 887

load balancers, 709
load calculations, server, 708-709
location, Web servers, 709-711
location, Web sites

overview, 189
page/site labels, 190-194
page/site style, 195-196
URLs, 189-190
where user can go, 199
where user has been, 196-199

logical document structure, 166-167
logos

placement of, 190-194
top navigation vs., 201

logs
accuracy of, 733-734
browser testing, 72
inspecting, 729-733
stats, 117
use analysis, 147-148, 725-729

lorem ipsum, 123
lossless compression

GIF, 508
PNG, 518

Lotus Domino Web server, 708
lowercase text, 435-436
lowsrc attribute, 38
Lynx browser, 73
LZW (Lempel-Ziv-Welch) lossless

compression
GIF, 508
PNG, 518

M
Macintosh systems

4D Webstar server and, 707
fonts, 831-835
Web servers, 703, 705

maintenance
link, 259-262
site, 129

margins
CSS properties for, 816-818
removing page, 371-372
TLB designs and, 403

markup languages, 74-79
HTML, 74-75
XHTML, 75-76
XML, 76-79

maxlength attribute, text, 565-566
meanlines, 425
memory, user

radio buttons and, 574
user-centered designs and, 31-34

memory, Web server, 704
menus

context, 617
Go, 197
navigation, 238-240
oncontextmenu handler, 540
pull-down, 237-238, 580-586

meta data, 104
<meta> tag

liberally using, 643
looped pages, 197
robot control and, 307-308
search engine rankings, 308-310
setting characters, 643
site indexes, 332

metaphorical Web sites, 12-13, 397-398
method attribute, 854
Microsoft. See also ActiveX

.NET technology, 105
fonts for platforms and browsers,

829-831
Open Type, 431

Microsoft Internet Information Services
(IIS) server, 707

Microsoft Windows Web servers, 703, 705
MIME (Multipurpose Internet Mail

Extensions), 103, 699-702
minus sign (-), 437
mixed form site structure, 174-176
mock site implementation, 126-127

modal windows, 555-556
monitoring search design, 302
monitoring search engines, 283
monitoring search results, 298
monitoring server-side technologies, 664
monospaced fonts, 426-429
mouse travel

check box design and, 162
limiting between form elements, 595
minimizing distance, 43-44
navigation and, 211-212, 219

MOV (QuickTime) video format, 88
movement capabilities, user-centered

design, 42-44
Mozilla-based browsers

browser testing and, 72
defined, 68
version issues, 71

MSNTV, page widths, 359
multi-line text entry, 567-570
multimedia, 688-689
multiple attribute, 587
Multipurpose Internet Mail Extensions

(MIME), 103, 699-702

N
naming conventions

AutoComplete and, 611
files and directories, 721-722
HTML, 643-644
images, 539-540
site map links, 315

narrow trees, 171-172
navigation

accessibility and, 56
advanced Web models for links, 259
banner links, 235-237
button links, 225-226
conventions, 241-247
graphic text links, 224-225
home page, 376
icon links, 227-230

image map links, 231-234
keyboard support for, 257-258
legal page, 383
link maintenance, 259-262
link triggering widgets, 237-238
link types, 222-223
menu links, 238-240
mouse travel and, 42-44
movement capability design, 42-44
multiple windows and, 272-274
onclick attribute, 241
pull-down menus, 583-586
push buttons, 580, 589
rollovers, 248-251
rules and suggestions, 751-752
scope notes and, 253-257
text links, 224
tree, 614
user expectations, 251-253

navigation evaluation, 783-792
delivery, 792
ease of, 185
form usage, 789-790
glossary, 789
help and error handling, 790-791
multiple windows and, 272-274
placement of elements, 783-785
searches, 293, 785-787
site indexes, 788-789
site maps, 787-788
testing, 136, 138

navigation frames
bookmarking, 263-268
frame busting, 270-272
layout, 268-269
overview of, 262-264
printing, 263

navigation-specific pages, 373, 379-380
navigation theory

bookmarking, 217-218
bottom elements, 202
center elements, 207-208
consistency, 208-209

888 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

I n d e x 889

elements, first to appear, 357-358
frames, 212-214
hierarchy, 210-211
left elements, 202-205
mouse travel, 42-44, 211-212
no-no's of, 218-220
overview of, 188-189
page/site labels, 190-194
page/site style, 195-196
remotes, 216
right elements, 205-207
rules and suggestions, 749-751
scrolling, 211
subwindows, 215-216
top elements, 199-201
URLs, 189-190
user location, 189, 196-199

navigational aids
glossary, 336-338
graphical site maps, 319-324
Help systems, 340-346
site indexes, 329-335
site maps, 314-315, 324-329
textual site maps, 315-319
trends in, 346-347
"What's New" sections, 338-340

navigational Web sites, 164-165
negative results search page, 295-298
.NET technology, 105
Netscape

accelerator keys, 600-601
best practices, 680-682
browser testing, 72
full-screen windows, 553-554
multi-line text entries, 570
overview of, 707
plug-ins, 91-93
positioning and raising

windows, 553
version issues, 68, 70-71
Web browsers and, 66

network
defining, 6
evaluating delivery, 146

interfaces, 704
log accuracy problems, 733
protocols, 102-105
sniffing, 718

Nielsen, Jakob, 25, 212
<noembed> tag, 682
<noframes> tag, 271-272
non-breaking space entity (), 445,

450-451, 641-642
nonlinear writing, Web, 474
<noscript> tag, JavaScript, 363, 672-674
novelty typefaces. See decorative

typefaces
novice users, 47-49

O
object detection, JavaScript, 676
<object> tag, 94, 682-683
onclick attribute, 241
oncontextmenu handler, 540
onhelp attribute, 604
Opera browser, 73
operating systems

attacks, 718
protection, 720
Web servers and, 705

<optgroup> tag, pull-down menus,
580-581

OPTIONS method, HTTP, 853
organizational site structures, 167-177

defined, 10
grid, 170-171
hierarchy, 171-176
linear, 167-170
pure web, 177

outsourcing, Web hosting, 711-713

P
<p> tag, HTML, 450
P3P (Platform for Privacy Preferences),

734-735

packet-switched networks, 715-716
padding, CSS, 816-818
page counters, 725
page loads

home page and, 376
navigation depth, 220
progress of, 36-40
pull-down navigation, 584

page size, 146, 350-358. See also screen size
pages. See also Web design schools

background tiles, 527-529
CSS advantages for, 79-80
defining, 350
dynamically generated, 157-158
entrance pages. see entrance pages
exit pages, 392-394
layouts. see layout styles
location via color and themes,

195-196
location via labeling, 190-194
margins, 371-372
navigational elements, 201
redirecting, 260-262
rules and suggestions, 753-756
screen size. see screen size
search engine indexing, 278-279
size, 350-358
stimulus on, 40-44
types, 372-373
visuals for emphasis, 32

paper comps, 122-126
paper tests, 136
paragraphs

formatting, 450-452, 637-638
initial caps, 452-455
pull quotes, 455-456
sidebars, 457
writing for Web, 473

password fields, 566-567
passwords

attacks and, 718
protection, 720

PDF (portable document format), 390-391

performance
Java, 685
server-side, 664

personal home page, 165-166. See also
home page

personal Web sites, 10, 165-166
personalized sites, commercial, 156-157
photographs

JPEG format, 517-518
legalities, 541-542

physical point sizing, CSS, 437-438
physical security, 719, 720
physical structure, 166-167
picas, 443
PICS (Platform for Internet Content

Selection), 737-738
pipe symbol (|), 201
pixel fonts, 469
planning. See Web design process
Platform for Internet Content Selection

(PICS), 737-738
Platform for Privacy Preferences (P3P),

734-735
plug-ins

availability, 681
Netscape, 91-93, 680
<noembed> tag, 682

plus sign (+), 437
PNG (Portable Network Graphics)

format, 83-84, 518-521
pop-up windows

annoyance of, 215
exit pages and, 392-393
overview of, 272-274
remote, 216
sensory adaptation to, 42

popularity-based site index, 333-334
porous site structure, 180-181
portable document format (PDF), 390-391
Portable Network Graphics (PNG)

format, 83-84, 518-521
portals, 164-165
POST method, HTTP, 853

890 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

power users, 47-49
precaching, 39
preloading images, 538
preloading pages, 39
pricing, site design, 353-354
prime marks, 462
print layout, text, 472-473
print-specific pages, 388-390, 391-392
printer style sheets, CSS2, 655-656
printing

Adobe Acrobat files, 390-391,
444, 472

CSS properties, 825-826
frames, 263
paper tests, 136
screen width and, 358
sizing for, 444
testing, 139, 141

privacy pages, 385-386
privacy, site, 734-736
processors, Web server, 704
programming

client-side. see client-side
technologies

overview of, 89-90
server-side. see server-side

technologies
progressive JPEGs, 518
promotion

log file effectiveness, 731-732
search engine positioning, 304-306

prompt() JavaScript method, 561
prompts, GUI applications, 561-563
proportional fonts, 426-429
prototypes, design phase, 122-126
pseudo-URL, JavaScript, 671
public search facilities, 279, 282, 303
public Web sites, 94, 154-155
pull-down menus

navigating with, 237-238, 583-586
overview of, 580-583
radio buttons vs., 574

pull quotes, 455-456, 474

punctuation, 462-463
pure web site structure, 177
purpose

grouping sites by, 161-166
testing site for, 127
Web design and, 4

push buttons, 588-592
PUT method, HTTP, 853

Q
queries

analysis of, 286-287
local searches, 299-300
negative results pages and, 295-298
users formulation, 276-277

QuickTime (MOV) format, 88
quirk mode, HTML, 635
quotes, text, 462

R
radio attribute, 163
radio buttons, 572-580
raised initials, 452-453
raster images, 82, 506-507
rating sites, 146, 737
read-only fields, forms, 609-610
readability

color and, 499
comment and format approach to,

641-642
fonts and, 468-470
justified text and, 441
print vs. screen, 472-473
testing site for, 139

readonly attribute, 609
Real Platform (RM) format, 88
redirection pages, 260-262
redirection status codes, HTTP, 863-864
redundant links, deep vs. shallow

sites, 183
relative page sizes, 363-367

I n d e x 891

remotes, navigation, 216
rendering vector images, 506-507
reports

evaluation, 146-147
site usage, 729

request headers, HTTP, 854-860
request methods, HTTP, 853
request transmission, 698-702
required fields, forms, 596-597
requirements, Web sites, 118-122
reset buttons, 589
resolution, 141, 359
response times, 34-40
results pages. See search results

page design
reverse type effect, 434-435
review stage, searches, 277
RGB color

browser-safe color, 491-493
color values, 849
computers and, 479
hexadecimal color conversion

chart, 841-842
overview of, 480-482

right navigation, 205-207
RM (Real Platform) video format, 88
robots. See spiders
robots.txt files, 306-308
rollovers, 248-251, 255-256
Roman font style, 432
rows attribute, 567
rules

colors, 756
CSS, 646-648, 656
HTML, 74, 631
images, 756-757
layouts and pages, 753-756
navigation, 749-752
searches, 752-753
shorthand rules, 656, 679-680
site delivery, 764-765
site evaluation, 747-748
site maps, 753

site types, 748-749
text, 756
XHTML, 76, 635-636, 794-809
XML, 659

run-lenth encoding, GIF, 508

S
sans serif fonts

categories, 426-427
defined, 425-426
readability, 468-470

satisfaction-based site index, 334-335
saturation, 29, 30, 479
Scalable Vector Graphics (SVG), 84, 507
scaling Flash images, 521-522
scaling screen content with, 367
scope notes, 253-257, 255-256
scope, site map design, 325
scoped searches, 289, 300-301
screen comps, 122-126
screen size, 359-370

assuming, 359-361
detecting, 361-363
reality checks, 367-370
relative sizes, 363-367
resolution vs. available design

region, 355-356
scaling content, 367

screens
bottom navigation, 202
center navigation, 207-208
left navigation, 202-205
right navigation, 205-206
testing, 139, 141
text layout and, 472-473
TLB navigation, 210-211
top navigation, 199-201

script errors, JavaScript, 676-678
<script> tag

hiding JavaScript, 671-672
including JavaScript, 98
language attribute, 674-676

892 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

script typefaces, 426, 428
scrolled lists, 587-588
scrolling

back-to-top links and, 200-201
beyond first screen and, 358
left navigation design and, 203-204
limiting in navigation, 219
overview of, 211
page height and, 369-370
password fields and, 567
text fields and, 566
wide pages and, 357

search engines
directory comparisons, 304
optimizing, 308-313
overview of, 277-282
promotion via, 304-308
search facility design and, 282
tricky designs for, 312-313

search facility
adding, 282-283
advanced form design, 288-291
evaluating, 138, 785-787
full Web searching, 303-304
interface, 283-288
local searches, 298-303
negative results page, 295-298
public searching, 303
result page design, 291-295
rules and suggestions, 752-753
search engines. see search engines
search mechanisms, 279-282
users and, 276-277

search query fields, 287-288
search results page design, 291-303

defined, 282
example of, 281
local searches, 298-303
negative results page, 295-298
overview of, 291-295

security
ActiveX, 94-95, 684
attacks and, 719

image protection, 540-541
Java, 96
password fields, 566-567
physical, 720
server-side programs and, 665-666
Web server, 717-720

<select> tag, HTML
pull-down menus, 580-581
scrolled lists, 587

self-profiling, 696-697
semantic sites, 105
semicolon (;), 678
sensory adaptation, 41-42
serif fonts

categories, 427
defined, 425
legibility of, 468-470

server APIs, 102
server-error codes, HTTP, 868-869
server farms, 709
server modules, 664
server response headers, HTTP, 870-872
server-side scripting, 100-102
server-side technologies, 99-102

best practices for, 663-666
CGI, 99-100
components, 67
defining, 6
evaluation form for, 777-779
image maps and, 231
programming options, 89
server APIs, 102
server-side scripting, 100-102
Web servers, 99

servers. See Web servers
shared server hosting, 711-712
Shockwave, 86
shorthand rules, 656, 679-680
sidebars, 457
site delivery

browser rendering, 717
content concerns, 736-738
content management, 721-725

I n d e x 893

TE
AM
FL
Y

Team-Fly®

894 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

evaluation form, 792
execution analysis, 145-146
image distortion, 539
importance of, 692-693
payload, 713-716
planning requirements, 120
privacy issues, 734-736
request transmissions, 698-702
rules and suggestions, 764-765
testing, 128
usage analysis, 725-733
usage logs, 733-734
Web design and, 4
Web request cycle and, 694-698

site delivery, Web servers
capacity issues, 708-709
components, 703-704
location, 709-711
managing, 717-721
outsourcing Web hosting, 711-713
overview of, 702-703
software, 704-708

site evaluation
execution analysis, 140-146
first impression of home page, 135
goals of, 134
home page pretests, 136-138
navigation testing, 138
overview of, 135
ratings, 146
rules and suggestions, 747-748
task analysis, 139-140
usability, 57-61
user testing, 147-148

site evaluation form
browser support, 782-783
client-side components, 779-782
content statistics, 773-774
delivery, 792
element placement, 783-785
form usage, 789-790
glossary, 789
help and error handling, 790-791
overview of, 768-769

reports, 146-147
scoring, 793
search capacity, 785-787
server-side technology, 777-779
site index, 788-789
site map, 787-788
site structure, 769
technology usage, 774-777
visuals and layout, 770-772

site indexes, 329-335
controlled vocabularies and, 332
evaluation form for, 788-789
overview of, 329-331
popularity-based, 333-334
satisfaction-based, 334-335
temporal, 332-333

site maps
design, 324-329
evaluation form for, 787-788
functions of, 329
graphical, 319-324
overview of, 314-315
rules and suggestions, 753
site indexes vs., 334
textual, 315-319

site plan, Web design, 118-122
site structure, 166-183

choosing types, 184-185
deep vs. shallow, 182-183
evaluation form for, 769
grid model, 170-171
hierarchy model, 171-176
linear model, 167-170
overview of, 166-167
porous and solid, 180-181
pure web model, 177
site plan diagram, 120-121
usability and, 177-180

site tours, 339-340
site traffic. See usage analysis
site types

abstract groupings, 9-11
grouping by frequency of change,

156-158

grouping by interactivity, 155-156
grouping by purpose, 161-166
grouping by size, 159
grouping by technology, 154-155,

159-160
grouping by visuals, 11-14, 161
overview, 154-155
rules and suggestions, 748-749
site structure and, 184-185

size attribute
pull-down menus, 582-583
scrolled lists, 587

size, banners, 235
size, images, 525, 537, 538
size, pages, 350-358
size, screen. See screen size
size, search fields, 287-288
size, text, 420-422
size, text fields, 565-566
size, Web sites, 159
size, Web video, 86-87
skip-ahead links, 254
sliders, building, 615-616
<small> tag, HMTL, 437
social engineering, 718
software

crisis, 108
Help, 344-345
interface conventions, 49
lifecycle model, 110-111
log file analyzer, 726-728
Web components, 67
Web servers, 704-708

solid site structure, 180-181
sound, 85-86, 689
spacing

 and, 641-642
HTML, 639-641
letter/word, 445-448
line, 444-445

spamming, 309, 311
 tag, HTML, 533, 650
spawned windows, navigating, 272-274

speed, frames, 214
speed, sites. See site delivery
spelling, local searches, 298
spiders

gathering search engine pages,
277-278

limiting access of, 306
Robot Exclusion protocol and,

306-308
splash page, 20-21, 374-375
spoofing, 718
staffing, site plan, 121
standards, Web vs. GUI, 545
static links, 223
static sites

download progress and, 38
dynamic vs., 156-158
overview of, 155

stats logs, 117
status bar messages, 193-194, 256-257
status codes, HTTP 1.1, 861-869
status messages, 602-604
stimulus, users and, 40-42
stop words, search engines, 279
stretchable layout style

overview of, 414-415
pages with little content and, 369
relative page sizing and, 363-366

structured links, 222
style sheets

alternative, 655
CSS, 79-80
XSL, 79-82

<style> tag, 248
sub headings, 448-449
sub-page pretests, 138
sub-windows, 554-563. See also pop-up

windows
alerts, 555-559
confirms, 559-561
overview of, 554
prompts, 561-563

submit buttons, 589-590

I n d e x 895

subpages
center navigation and, 208
layout of, 378-380

success status codes, HTTP, 861-863
Sun server, 707
SVG (Scalable Vector Graphics), 84, 507
SWF video format, 88, 521
system modal dialog box, 555

T
TAB key, forms, 597-598
tabbed dialog, 615
tabbing, forms, 597-598
tabindex attribute, 258
<table> tag, 457-458
tables

accessibility and, 55
background images, 531-532
formatting, 457-461
forms, 594-596
sidebars, 457-458

tag reference, XHTML, 794-809
target attribute, 204, 270
task-specific pages, 386-392

contact pages, 387-388
overview of, 386-387
print-specific pages, 388-390
restricted printing pages, 391-392

tasks
analysis, 139-140
useability and, 24-25

TCP/IP (Transport Control
Protocol/Internet Protocol), 102

TCP (Transmission Control Protocol),
713-716

technology
accessibility and, 55
best practices, 760-764
browser detection. see browser

detection
client-side. see client-side

technologies

color practices and, 849
cookies, 686-687
CSS, 646-656
evaluation form for, 774-777
execution analysis, 141-145
HTML, 631-646
multimedia, 688-689
planning requirements for, 120
server-side. see server-side

technologies
site classification, 159-160
usability and, 61
Web design and, 4
Web development and, 622-623
Web programming and, 663-666
XML, 657-663

templates, HTML, 644-645
temporal indexing, 332-333
testing browsers, 72-74, 128, 145
testing design, 127-129

beta testing, 129
browsers, 128
content, 128
site delivery, 128
site functionality, 128
user acceptance, 129
visuals, 128

testing sites, 136-140
findability on Web, 139-140
home page pretests, 136-138
identity pretest, 136
interactivity, 140
link pretests, 136
navigation, 136, 138
printing, 136, 139
readability, 139
search facility, 138, 283
sub-page pretests, 138
task analysis, 139-140
usability, 57-61

text
aliasing, 512
alternative, 523-524

896 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

casing, 435-436
CSS properties, 813-815
design issues, 468-472
fields, 564-566
format tables, 457-461
formatting, 461-463
formatting paragraphs/sections,

450-457
graphic challenges, 419-422
greeking, 123, 126
headings/subheadings, 449-450
images and, 523-524
multi-line entries, 567-570
print vs. screen layout, 472-473
rollover links, 248-251
rules and suggestions, 756
search engine rankings and, 310-311
type hierarchy, 448-449
typography terminology, 423-425
users with vision issues and, 30-31
Web design and, 11, 395-397
as Web medium, 418-423
writing for Web, 473-475

text-align property, CSS, 439-441
text-decoration property, CSS, 243-244
text fonts. See fonts
text layout, 438-448

alignment, 439-441
fancy, 463-468
letter/word spacing, 445-448
line length, 441-444
line spacing, 444-445
overview of, 438-439

text links. See also links
applying, 224
graphic, 224-226
icons vs., 228
as image map alternative, 234-235
placing at bottom of page, 201
unstructured, 222-223

text-transform property, CSS, 436
<textarea> tag, HTML, 567-570
textual site maps, 315-319, 328

Thank you pages, 392-393
themes

graphical site maps, 322
location hints based on, 195-196
Web design and, 15-19, 397-398

thesaurus, local searches, 298
three-digit hexadecimal color values, 849
thresholds, 40-41
thumbnail map, 322-323
time based indexing, 332-333
time line requirement planning, 121
Times font, 426
title attribute

Help items, 342
scope notes, 254-255
status bar messages vs., 257
tool tips, 601

titles, search engine rankings and, 310
"TLB" (top-left-bottom), 210-211, 403-406
ToolTips, 336-337, 601-602
top-left-bottom (TLB) navigation,

210-211, 403-406
top navigation, 199-201
tours, site, 339-340
TRACE method, HTTP, 853
transactional Web sites, 10
Transmission Control Protocol (TCP),

713-716
transparency

GIF, 510-512
PNG, 520

Transport Control Protocol/Internet
Protocol (TCP/IP), 102

tree navigation, 209, 614
tree structure. See hierarchy structures,

Web sites
TRUSTe, 385-386, 734
type hierarchy, 448-457

headings/subheadings, 449-450
overview, 448-449
paragraphs/sections, 450-457

type voice, 448-449

I n d e x 897

typefaces. See also fonts
decorative, 428
script, 426

typography, 423-425
typos, 695

U
<u> tag, HTML, 243
underlining links, 243-244
underscores (_), 721
Uniform Resource Characteristics

(URCs), 103
Uniform Resource Identifiers (URIs), 103
Uniform Resource Locators. See URLs

(Uniform Resource Locators)
Uniform Resource Names (URNs), 103,

695-696
UNIX systems

fonts, 834
Web servers, 703, 705

unstructured links, 222-223
up arrows, page jumps, 252
updates, managing, 722-724
uppercase text, 435-436
URCs (Uniform Resource

Characteristics), 103
URIs (Uniform Resource Identifiers), 103
URLs (Uniform Resource Locators)

avoiding pseudo-URLs, 671
bookmarks and, 217, 263-268
encoded, 696-697
multiple, 695-696
navigation with, 189-190
server-side programs and, 665
special entry, 731-732
status bar messages and, 256-257
user view of, 252

URNs (Uniform Resource Names), 103,
695-696

usability
defining, 24-26
images and, 535-538

usage analysis, 725-734
browsers, 68
log accuracy and, 733-734
log files and, 725-729
site usage, 729-733

useable forms. See forms
usemap attribute, 231-232
user interface, CSS properties, 823
user profiling, 117-118
user testing

design acceptance, 129
paper or digital prototypes,

124-125
Web, 27-29
Web sites, 134, 147-148

users. See also audience
cookies and, 687
deep vs. shallow sites and, 182-183
general types of, 47-50
JAD development style and, 112-113
link expectations of, 251-253
planning requirements for, 119
search methods, 276-277, 303-304
site delivery speed, 692-693
site structures and, 176-180
technology and, 622-623

V
validation

CSS, 647
defined, 77
forms. see form validation
HTML, 634

value, 478-479
value attribute, 610
variants, font, 434
vCards, 612
vector images

formats, 82, 84-85
overview of, 506-507

Vector Markup Language (VML), 84-85
version issues

898 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

I n d e x 899

browsers, 68-72
JavaScript, 674-676

vertical-align attribute, 462
video

formats, 88
Web and, 86-88

virtual servers, 711-712
vision. See visually impaired users
visualization-oriented site map, 322-324
visually impaired users

accessibility features for, 499-501,
535-537

receiving information, 29-31
visuals

classifying sites by, 11-14, 161-162
evaluation form for, 770-772
execution analysis of, 141
home page, 375-378
memory requirement for, 32
metaphorical and thematic Web

sites, 397-398
planning requirements for, 120
relating to function, 17-18
search pages, 283-286
testing site for, 128
useability and color, 499-501
Web design and, 4

VML (Vector Markup Language), 84-85
vocabulary

site indexes and, 332
words with alternate Web

meanings, 475

W
warning alerts, 556-557
waterfall model, software engineering,

110-112
watermark style backgrounds, 530
wavelet compression, 708
WBMP (Wireless BMP) format, 85
Web

browsers, 66-74
color, 480-491

components of, 66-67
image formats, 82-85
models for linking, 259
network and related protocols,

102-105
programming technologies, 89-90
ring, 339-340
sound, 85-86
style sheet technologies, 79-82
text, 418-423, 468-472
trees, 172-174
useability and, 25-26
video, 86-88
writing for, 473-475

Web Accessibility Initiative, 54
Web browsers. See browsers
Web, client-side programming

ActiveX, 93-95
DOM, 98-99
helpers, 90-91
Java, 94-97
JavaScript, 98
Netscape plug-ins, 91-93

Web design
color and, 756
components, 6-8
defining, 4-5, 14-15, 744
forms and GUI, 757-760
GUI applications vs., 544-545
images, 756-757
learning, 19-21
navigation practices, 751-752
navigation theory, 749-751
navigational aids, 753
organization models, 167-177
pages and layout, 753-756
process, 747
pyramid, 5-6, 474
searches, 752-753
site delivery, 764-765
site evaluation, 747-748
site types and, 8-14, 748-749
technologies, 760-764
text and, 756

themes, 15-19
unconventional, 401-402
user-centered, 744-746
Web medium and, 746-747

Web design process
as ad hoc process, 109
dissecting design phase, 122-127
model for, 110-113
need for, 108-109
problems in, 129-130
project approach, 114-118
site planning, 118-122
testing, 127-129

Web design schools, 395-402
GUI oriented, 398-401
metaphor and thematic oriented,

397-398
text oriented, 395-397
unconventionally oriented, 401-402

Web design, user-centered
accessibility and, 53-57
audiences, 116-117
balancing power in, 62-63
conventions for, 50-53
core principles of, 744-746
memory and, 31-34
movement capabilities, 42-44
other aspects of, 61
overview of, 16-17
response and reaction times, 34-40
stimulus and, 40-42
usability and, 24-26
useable sites, 57-61
user environments and, 44-47
user types, 27-31, 47-50

Web Embedding Font Tool (WEFT), 431
Web hosting, 710-713
Web markup languages

HTML, 74-75
XHTML, 75-76
XML, 76-79

Web request cycle, 694-698
Web-safe palette, 495-496

Web, server-side technologies
CGI, 99-100
server APIs, 102
server-side scripting, 100-102
Web servers, 99

Web servers, 702-713
capacity issues, 708-709
components, 703-704
evaluating delivery, 146
location, 709-711
managing, 717-721
outsourcing Web hosting, 711-713
overview, 702-703
server-side technology and, 99
software, 704-708

Web services, 78, 104-105
Web sites

application-centered, 9, 159
artistic, 165
charitable, 10
commercial, 10, 161-162
community, 10, 165
delivery. see site delivery
document-centered, 9-10, 159
entertainment, 10, 164
evaluation. see site evaluation
experimental, 12-13
extranet, 154-155
government, 10
indexing. see site indexes
informational, 10, 163-164
intranet, 154-155
location. see location, Web sites
maps. see site maps
metaphorical, 397-398
navigational, 164-165
personal, 10, 165-166
public, 94, 154-155
structure. see site structure
transactional, 10
types. see site types
user testing, 134, 147-148

WebHelp, 344-345

900 W e b D e s i g n : T h e C o m p l e t e R e f e r e n c e

I n d e x 901

Webstar server, 707
WebTrends log file analyzer, 726-729
WebTV, 359
WEFT (Web Embedding Font Tool), 431
weight, fonts, 433-434
"What's New" page, 333, 338-340
"Where You Were" markers, 326-327
white space, 471-472, 639-641
wide trees site structure, 172, 183
widows, text, 423
width attribute, HTML, 525
window.alert() JavaScript method, 555
window.confirm() JavaScript method, 560
window.open() method, JavaScript, 551
window.prompt() JavaScript method, 561
windows. See also browser windows;

pop-up windows
centered and floating, 408-413
multiple, 272-274
scaling screen content with, 367
wide content and, 204-205

Windows Media Video (WMV) format, 88
Windows Web servers, 703, 705
wireframes, design phase, 122
Wireless BMP (WBMP) format, 85
WMV (Windows Media Video) format, 88
word spacing, layout, 445-448
word-spacing property, CSS, 446-448
writing, for Web, 473-475

X
x-height, 425
XBM format, 522
XHTML

attribute reference, 794-809
core attributes, 810
event attributes, 810
HTML and, 639
international attributes, 810
layout problems, 637-639
overview of, 75-76, 635-636
presentation liabilities, 637-639
rule syntax, 76
rules, 635-636, 794
site evaluation, 141
tag reference, 794-809
using basics, 639

XML (extensible Markup Language)
best practices, 657-663
markup languages and, 76-79
XHTML and, 75
XSLT and, 79-82

XPM format, 522
XSL, 79-82
XSLT (XSL Transformation), 79-82

Y
"You Are Here" markers, 326

Z
Zeus server, 708

