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Introduction

he aim of this book is to give you a broad understanding of the processes and techniques
used in object-oriented software development, the production of computer programs using
object-oriented techniques. The Unified Modeling Language (UML) comes into play as the
standard notation used in industry for software documentation.

You may be a student at a university or on a commercial training course. Or you may
be an experienced software developer, moving into object orientation for the sake of your
career. In either case, this book is for you. Little prior knowledge is required on your
part and there is no attempt to teach you everything there is to know. Instead, you will
be guided through the essential parts of the process, so that you can do your job more
effectively.

Although this book is broad, it only goes as deep as the point where you would normally
start writing lines of code. Describing how to write code would mean choosing a particular
programming language; the decision about the most appropriate language is for you to
make. You should consider this book as a generic front-end that will work for any pure,
object-oriented programming language.

The objectives of this first chapter are to describe the background to this book, to give
you an idea of the content and to describe how to navigate your way around.






Chapter Outline

1.1 Background
1.2 A Brief History of Programming
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Chapter 1

1.1 BACKGROUND

These days, new software is usually object-oriented. That is, the software is written using an
abstraction called an object. There is, naturally, much more to commercial software develop-
ment than simply writing lines of code: there is investigation of the business requirements,
analysis of the problem, design of the solution, and so on. Objects should be used at every
stage of the development because they reduce the amount of information that has to be

understood and improve the communication between members of the development team.

1.2 A BRIEF HISTORY OF PROGRAMMING

Commercial programming has had a number of generations, of which ‘object-oriented’ is
just the latest:

* Machine code: Programming using binary numbers.

* Assembly language: Programming using alphanumeric symbols, or mnemonics, as short-
hand for machine code. Assembly language is translated into machine code by a program
called an assembler.

* High-level languages: Programming using languages (such as Fortran and COBOL) that
have high-level constructs such as types, functions, loops and branches. High-level
languages (and later generations of programming languages) are translated into machine
code using a program called a compiler.

e Structured programming: Programming using cleaner high-level languages (such as Pascal,
Modula and Ada) that are characterized by fewer pitfalls for the programmer and more
discipline in the way a program is broken down into sub-tasks and sub-systems.

* Object-oriented programming: Programming using independent modules of data and
functions that correspond to concepts in the problem domain, such as Customer or
ScrollBar. This modularity leads to even fewer pitfalls for the programmer and encourages
the reuse of code across separate programs. Good object-oriented programming languages
include Java and FEiffel, because they’re well designed, pure and portable (available on
many platforms). Other examples include Smalltalk, C# and, in general, any language that
started life as a structured language and grew up with object-oriented extensions (C++
and various dialects of Pascal, for example).

You may also have heard of functional programming and logic programming. So far they
have had little commercial impact.

All the generations above survive today, to a greater or lesser extent. Which one we end
up using depends on the situation we walk into; personal preference; and the constraints of
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the problem that we’re trying to solve — for example, video games need every ounce of raw
speed, so they’re sometimes written in assembly language.

1.3 METHODOLOGIES

Around the time that structured programming was becoming popular, in the 1980s, experi-
enced programmers began trying to describe how the entire software development process
should be controlled, from mission statement through to maintenance of the finished prod-
uct. This led to structured methodologies such as SSADM [Weaver et al. 02]. A methodology
is a description of the steps a development team should go through in order to produce a
high-quality system. A methodology also describes what should be produced (documents,
diagrams, code, etc.) and what form the products should take (for example, content, icons,
coding style).

When object-oriented programming was catching on, in the 1990s, developers invented
object-oriented methodologies, better suited to an object-oriented programming style.
Early object-oriented methodologies included the Booch method [Booch 93], Objectory
[Jacobson et al. 92] and OMT [Rumbaugh et al. 91]. These days, one of the market leading
methodologies is the Rational Unified Process (RUP) [Jacobson et al. 99], owned by IBM
(www.rational.com). Roughly speaking, RUP is a convergence of Objectory, Booch and OMT.
Another methodology that is gaining in popularity is extreme programming (XP) [Beck
99], a so-called ‘agile’ methodology — in the context of software development, agile means
responsive to changes in software requirements or changes in our understanding of the
problem.

The methodology used in this book, Ripple (summarized in Appendix 1), is a simplified
one based on widely accepted theory and practice. As a result, you won’t have to learn the
complexities of a full industrial methodology. Nor will you be told exactly what to do at each
stage, which will allow you to be more creative as you learn.

1.4 ABOUT THIS BOOK

In order to avoid confusion, there is no detailed comparison between structured and object-
oriented methodologies in this book. Instead, you will be taken through object-oriented
software development, as if traditional methods had never existed. You will encounter
everything you need to know to start producing large amounts of good, object-oriented
software (you just have to add the effort and the experience yourself).

If you're already familiar with structured techniques, you may find yourself having to
un-learn things from time to time. But don’t worry, the object-oriented approach really does
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work: it’s been around in the research community since 1970, in the marketplace since 1990
and it’s used every day by millions of developers.

As ever, the goal of software development is code, code and more code. Whatever your
particular background, if you've got experience programming a computer, yowll be on safe
ground. On the other hand, if you don’t have much programming experience, you'll be
pleased to learn that this book is straightforward — there’s no attempt to make your head spin
with obscure jargon and magic tricks. However, before you start, you should make sure that
you're comfortable with basic computer concepts such as hardware, software and networks.
At the very least, you should have written a few hundred lines of code in a high-level

language.

1.4.1 Content Overview

Although the writing of code won’t be covered in any detail, from time to time there will
be a need to illustrate a point using code fragments. All the code fragments are written in
Java [Joy et al. 00] because it is popular, pure, simple and free. The meaning of each code
fragment is clearly explained in the text. If you’re not a great fan of Java, rest assured that the
code fragments can easily be translated into other languages such as C#, because the unique
elements of Java have been avoided. Everything you see here in Java can be accomplished in
any other language that you choose. Similarly, the discussion of system design is focussed
on Java technologies rather than .Net technologies — since Java and .Net provide similar
facilities, consider this simply a matter of personal preference. All the pieces of Java system
design that are presented can be implemented in a similar way using .Net.

A few words of warning, however: for illustrative purposes, classes (such as Iterator and
List) are described that don’t match those in the Java library exactly. Although you can
certainly use this book to see how Java works and get familiar with most of the syntax, it is no
substitute for a pure Java language text [Campione et al. 00]. In any case, it is good practice
always to have the library documentation to hand when writing in Java, since no-one could
keep the details of thousands of classes in their head.

Another major omission is project management (issues such as planning and scheduling).
Project management is omitted in order to focus on technical issues, rather than human
factors.

The notation used for illustrations, wherever possible, is the Unified Modeling Language
(UML) [OMG 03a]. This has become the accepted standard for software diagrams. UML
presentation conventions mean that some lines are thicker than others and that some
characters are in bold or italics. Some of these conventions are difficult to accomplish
when drawing by hand (on a piece of paper or on a whiteboard, for example), however
only the italicized text is really important, so the other conventions can be ignored when

hand-drawing. For italicized text, alternatives will be identified at the appropriate time.
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UML doesn’t satisfy all documentation needs, so some of the documentation ideas in this
book have been taken from RUP.

1.4.2 Case Studies

The case study used throughout is a rental and reservation system called Coot, developed
for a fictitious company called Nowhere Cars. Thus, many of the examples in the text will
use cars in one way or another. Using the same application area for most of the examples
means that you don’t have to keep adjusting to different areas from one page to the next. To
keep things simple, most of the discussion involves those parts of Coot that provide Internet
facilities to customers, a cut-down system called iCoot.

Because there are many concepts to illustrate, not all of which are relevant to the renting
of cars, some of the examples in the text do not make it into iCoot itself (they would be more
appropriate for car salespeople or car mechanics). However, every time you're presented
with a major diagram, it will be one that has been taken from the finished system.

Because newcomers to object orientation often ask for full case study documentation, the
finished documentation for iCoot has been included in Appendix B, for further study. The
iCoot documents have been designed to be understandable, despite representing a realistic
and useful piece of software.

If you want to try out the techniques described in this book with fellow students or
colleagues, a set of group exercises is available at www.wiley.com/go/odocherty for the
Automated Quiz System (AQS). AQS is an on-line tool for taking multiple-choice quizzes.
The exercises are organized according to the main chapters of this book, so that you can
complete them while you read. For lecturers and instructors wishing to use this book as
a course text at a University or commercial training organization, sample solutions are

available for the AQS exercises, subject to registration.

1.4.3 Navigation

After reading Chapter 1, you can take the straightforward approach to navigation and work
through all the chapters in order.

Alternatively, if you're already comfortable with object-oriented concepts and jargon, you
could skip Chapters 2, 3 and 4 and jump straight to Chapter 5. If you're completely new
to the field of object orientation, you should read Chapter 2, but you may like to leave
Chapters 3 and 4 until a second reading.

If you're not interested in an overview of Ripple and methodologies in general but would
prefer to get straight down to the details, you could skip Chapter 5 and go straight on to
Chapter 6.

The remaining chapters follow a strict sequence, the progress of a typical software
development, so jumping around is not recommended. It would be valuable to read
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Chapter 11 as part of the main sequence; however, since many of the issues are advanced,
you may wish to leave it until a later date.

You can use Appendix 1 as a reference whenever you need to check where you've got to
or if you're attempting the case study for yourself.

Appendix B contains the finished artifacts for the iCoot case study, organized according to
the progress of a typical development. Use these, along with the main development chapters,
to see how the iCoot artifacts turned out. Appendix B also includes the iCoot project glossary,
which was continually updated during iCoot development. Use this to see how a typical
glossary might look and to look up the definition of any iCoot term.

Whenever you need to remind yourself how to draw part of a UML diagram, you should
refer to Appendix 3.

Happy reading.
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Object Concepts

The concepts we'll look at in this chapter come out of object-oriented programming.
Typically, programming languages are invented before the methodologies that help us to
use them. You should find that object-oriented concepts make a lot of sense. This is because
object-oriented development allows you to think in real-world terms, rather than bending
your mind towards the needs of a computer.
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2.1 INTRODUCTION

The basic concepts of the object-oriented paradigm (way of doing things) are relatively easy
to understand and to apply. Alan Kay, the inventor of Smalltalk, had been working on ‘A
Personal Computer for Children of all Ages’ [Kay 72] as early as 1968: as his target was
children, it isn’t surprising that the basic concepts are simple.

So, why all the fuss about objects? Surely developers wouldn’t change the fundamentals
of software development without good reason? Some of the justifications for using objects
might seem rather obscure at this early stage, especially if you haven’t much experience with
the techniques that came before (structured programming and structured methodologies).
The object-oriented approach was invented (or, rather, it evolved) because of the difficulties
people were having trying to get good quality systems produced on time and within budget,
especially for large systems with many people involved.

Once you've worked your way through this book, the justifications given below should
make sense and you should agree with most of them. Here then, for the record, are some of
the justifications typically given for object orientation:

* Objects are easier for people to understand: This is because the objects are derived from
the business that we're trying to automate, rather than being influenced too early by
computer-based procedures or data storage requirements. For example, in a bank system,
we program in terms of bank accounts, bank tellers and customers, instead of diving
straight into account records, deposit and withdrawal procedures, and loan qualification
algorithms.

* Specialists can communicate better: Over time, the software industry has constructed
career ladders that newcomers are expected to climb gradually as their knowledge and
experience increases. Typically, the first rung is programmer: fixing faults (bugs) in the
code written by others. The second rung is senior programmer: writing the code itself.
The third is designer: deciding what code needs to be written. Finally comes the role
of analyst: talking to customers to discover what they need and then writing down a
specification of what the finished system must be able to do.

Such a career ladder may not be a bad idea in itself. The problem comes when you
realize that each specialist is expected to learn a whole new set of concepts and techniques,
depicting their conclusions using notations that are tailored to their specialty. This means
that there’s a big gap in understanding between the different roles, made worse by the
fact that the documents are being passed down the career ladder rather than up, so we
tend to have to read documents without understanding the techniques used to produce
them. This can lead to ‘throw it over the wall’ syndrome: the analyst produces a large
amount of documentation, throws it over the wall to the designer and walks away. The
designer, after weeks of effort, produces even more documentation, using completely



What Is an Object?

13

different techniques, and throws it over the wall to the programmers. The programmers
then start all over again . ..

With the object-oriented approach, everyone is dealing with the same concepts and
notations. Moreover, there are generally fewer concepts and fewer notations to deal with
in the first place.

* Data and processes are not artificially separated: In traditional methods, the data that needs
to be stored is separated early on from the algorithms that operate on that data and they are
then developed independently. This can result in the data being in inconvenient formats
or inconvenient locations, with respect to the processes that need access. With object-
oriented development, data and processes are kept together in small, easy-to-manage
packages; data is never separated from the algorithms. We also end up with less complex
code that is less sensitive to changes in customer requirements.

e Code can be reused more easily: With the traditional approach, we start with the problem
that needs to be solved and allow that problem to drive the entire development. We end
up with a monolithic solution to today’s problem. But tomorrow always brings a different
problem to solve; no matter how close the new problem is to the last one we dealt with,
we're unlikely to be able to break open our monolithic system and make it fit — we hamper
ourselves by allowing a single problem to influence every part of the system.

With object-oriented development, we're constantly looking for objects that would be
useful in similar systems. Even when a new system has minor differences, we're much
more likely to be able to change our existing code to fit, because objects are like the pieces
in a jigsaw puzzle: if one piece is changed, it might affect a few pieces next to it, but the
rest of the puzzle will remain intact.

When we build an object-oriented system, we try to find existing objects (written by us,
by our colleagues or by third parties), before we consider writing any code ourselves. As
one sage put it, ‘object-oriented programming is about not writing code’.

e Object orientation is mature and well proven: This is not a new fad. The programming
concepts emerged in the late 1960s while the methodologies have been around for at least
a decade. Applying objects in such areas as software, databases and networks is now well
understood.

Once you've read the whole of this book, try reviewing this list to see if you fully
understand, and agree with, the justifications.

2.2 WHAT IS AN OBJECT?

An object is a thing, an entity, a noun, something you can pick up or kick, anything you
can imagine that has its own identity. Some objects are living, some aren’t. Examples from
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the real world include a car, a person, a house, a table, a dog, a pot plant, a check book or a
raincoat.

All objects have attributes: for example, a car has a manufacturer, a model number, a
color and a price; a dog has a breed, an age, a color and a favorite toy. Objects also have
behavior: a car can move from one place to another and a dog can bark.

In object-oriented software, real world objects migrate into the code. In programming
terms, our objects become stand-alone modules with their own knowledge and behavior
(or, if you prefer, their own data and processes). It's common to think of a software object
as a robot, an animal, or a little person: each object has certain knowledge, in the form of
attributes, and it knows how to perform certain operations for the benefit of the rest of the
program. For example, a person object might know its title, first name, last name, date of
birth and address; it would be able to change its name, move to a new address, tell us how
old it is, and so on.

By concentrating on the characteristics of a person when we write the code for the Person
object, we can put the rest of the system out of our mind — this makes our programming
simpler than it would otherwise be (it also helps that we have a real-world concept to get us
started). If we decide later that our Person needs to know its height, we can add that extra
knowledge (and associated behavior) directly to the Person code. Only the code in the rest
of the system that needs to use the height attribute has to be modified; all other code would
remain unchanged. Simplicity and localization of change are important characteristics of
object-oriented software.

It's easy enough to think of a living thing as some kind of robot. It is a little strange,
though, when we try to think of a lifeless object as having behavior. We wouldn’t normally
consider a video capable of changing its price or giving itself a new advert. However, when
it comes to object-oriented software, that’s exactly what we need to do. The key is that if the
video didn’t do those jobs, some other part of the system would have to. This would lead to
video characteristics leaking into other parts of the code, so we'd start to lose the simplicity
and locality that we crave (we would be going back to ‘the old way of doing things’).
Don’t be put off by the anthropomorphism (the assignment of human characteristics to
inanimate objects or animals) that's common in object-oriented development, imagining
software objects as little people.

Figure 2.1 shows some real-world objects that would make good software objects. Can
you think of any others? Can you think of anything that wouldn’t make a good object? Well,
that's a trick question really: ‘thing’ at the end of ‘anything’ suggests that the answer has to be
no. It turns out that almost anything would make a good object in some context or another.
A bad object is one that merges several concepts, for example, a bank account object that has
been polluted with the knowledge and behavior that belongs to a bank clerk. Always keep in

mind that separate concepts in the real world suggest separate concepts in the program.
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aPerson

aNumber

Figure 2.1: Objects in the real world

Before we go any further, it's important to note that we’re not trying to simulate the real
world, that would be far too difficult. we’re simply trying to make sure that our software
is influenced by real-world concepts, so that it is easier to produce and easier to change.
The needs of the system and the needs of computers are important influences too. Some
developers are uncomfortable with the close proximity of the real world and software;
however, an object-oriented system developed for a hospital that didn’t include some kind of
Patient object would be of little use.

You shouldn’t think that it's possible to code the ideal Person object or any other kind of
perfect object. There are simply too many characteristics and capabilities that can be applied
to real-world objects — if we tried to capture them all, we’d never get as far as coding the
second object in our system.

Most aspects of a real-world object are not needed for a typical program, especially since
software systems tend to address a single problem area. For example, a bank system will
be interested in the age and salary of a customer, but not their shoe size or favorite color.
It’s quite reasonable to code an object that is useful for many systems, especially for well
understood areas of programming: for example, all systems with a user interface are likely to
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be able to make use of the same ‘scrollable list’ object. The trick is to start by considering the
business you're dealing with, to ask yourself ‘If I worked in this business area, what would
a “person” mean to me: a customer, an employee, a patient, or what?” All good software
developers start by modeling the business.

A model is a representation of a problem domain or a proposed solution that allows us to
talk, or reason, about the real thing. This allows us to increase our understanding and avoid
potential pitfalls. Think of an architect’s model of a new concert hall: it allows the architects
to say ‘This is what the finished concert hall will look like’ and it helps them to come up with
new ideas, such as ‘I think we're going to need a steeper roof’. A model allows us to learn a
lot without actually building anything. Much of software development involves creating and

refining models, rather than cutting lines of code.

~

Implementation Point 1

Let's consider how we can create a new object in an object-oriented programming
language. Pure object-oriented languages typically provide a creation expression.
Here’s how one looks in Java:

new Person("Sue Smith")

The effect of this expression is to create space for a new Person object and pass it the
string “Sue Smith”, so that it can initialize itself (presumably, in this case, the object
would record its name).

Once we've created an object, we can put it somewhere where we can find it later,

by assigning a name to it, as in:
aPerson = new Person("Sue Smith");

Now, whenever we write down aPerson, we will be referring to the object that we just

\ created. /

2.3 IDENTICAL OR EQUAL?

Objects have their own independent existence. Consider holding a blue pen in your left hand
and a blue pen in your right hand. You're holding separate pens: they exist independently
and each one has its own identity. But the pens can have similar attributes: blue ink,
half full, same manufacturer, same model, etc. In terms of their attributes, the pens are
interchangeable — if you wrote something down on a piece of paper, no-one would be able to
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tell which pen you'd used (unless they saw you do it). The pens are equal but not identical.
This is an important distinction in software, as well as in real life.

To take another example, consider the situation illustrated in Figure 2.2. In Acacia Avenue
there are two families, the Smiths and the Joneses: the Smiths live at number 4 and the
Joneses live at number 7. The families have similar tastes in lawn mowers; so similar, in fact,
that they both own a GrassMaster 75, purchased on the first day the new model became
available. The lawn mowers are so similar that if someone switched them round overnight,
the Smiths and the Joneses wouldn’t notice.

As well as a lawn mower, the Smiths have a cat called Tom. Tom is a round friendly
cat, three years old, whose favorite pastime is chasing mice around the local gardens. The
Joneses also have a cat, called Tiddles. Tiddles is a round, friendly cat, three years old, whose

Figure 2.2: Identical or equal?
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favorite pastime is chasing balls of wool. Anyone visiting the Smiths and the Joneses would
notice a remarkable similarity between Tom and Tiddles, not surprising when you realize
that Tom and Tiddles are the same cat, round on account of being fed so often.

In this situation, we have two lawn mowers and one cat. Although the lawn mowers have
a separate identity, recorded on the serial-number plates riveted to their bodies, they are
equal, because they have the same attributes. The cat also has an identity, it may even have a
name for itself (‘Me’ or ‘Hfrrr’, perhaps). The difference between the cat and the lawn mowers
is that the cat is shared and the lawn mowers aren’t. It’s rarely necessary for any person,
thing or animal to be concerned with its own identity: the cat doesn’t think about whether
it's separate from other cats; a lawn mower doesn’t need to know which lawn mower it is in
order to mow the lawn. The families don’t need to know that Hfrrr is fed twice as much as
other cats, as long as he purrs in their laps from time to time; nor do the families need to
know that the lawn mower in their shed is the one they actually purchased, as long as it’s
there when they need it.

Generally speaking, in an object-oriented system, if we use one software object to represent
each real world object, we won’t go far wrong. So, in the example that we've just seen, we
would expect to find in our system two lawn mower objects and a single cat object.

We may sometimes share objects. We may sometimes swap equal objects. But we rarely
need to worry about identity: we just tell an object what to do and it uses its knowledge and
capabilities to carry out the request.

Implementation Point 2 )
Object-oriented programming languages allow us to test whether objects are identical
or equal if necessary.

The following fragment of Java code does just that. There are two tests in it: if
(tom == tiddles) is a test of identity that evaluates to true if tom and tiddles both point
to the same object; tom.equals(tiddles) is an instruction that asks tom to perform the
equals operation, with tiddles as a parameter — it evaluates to true if tom and tiddles
are separate but equivalent to each other.

if (tom == tiddles) {

result = "The Smiths and the Joneses share one cat";
3
else if (tom.equals(tiddles)) {
result = "The Smiths and Joneses have equivalent cats";
}
else {
result = "The Smiths and the Joneses have different cats";
h
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2.4 DEPICTING OBJECTS

Once we've decided to work with objects, we need some way of showing them on a diagram
so that we can describe them and think about them. Figure 2.3 shows how we can draw an
object. The notation used here is a UML object diagram — you'll see more details of UML and
its history as you go through this book; for now, the notation will be introduced by example.

anObject
attribute1
attribute2
operat!0n1 0 standard notation
operat!onZ() but in non-standard
operation3() location

Figure 2.3: An object

The three parts of the box show the object’s name (which is underlined), its attributes
(its knowledge) and its operations (its behavior). (Showing operations on an object diagram
is not actually legal UML, but it suits our purposes for now.) The parentheses next to
the operation names indicate any parameters that are required: even though none of the
operations shown here have parameters, it's a good idea to keep the parentheses so that
operation names stand out from attribute names (this becomes even more important when
we omit one or more parts of the box).

The attributes are hidden inside the object; the only way to access them is via the
operations. This is reasonable from analogy with the real world: most of us are much more
interested in the fact that a television has a ‘change channel’ operation than we are in the
fancy electronics inside the box that actually perform the change.

Let’'s examine a coffee machine object. First, we should decide what operations a coffee

machine needs:

e display drinks
e select drink

* accept money

e dispense drink

Next, we should think about what the coffee machine needs to know in order to perform
these operations:
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e available drinks
* drink prices
e drink recipes

Having designed our coffee machine object, we can record our findings on an object
diagram, like the one shown in Figure 2.4.

aCoffeeMachine

drinkPrices
availableDrinks
drinkRecipes

displayDrinks()
selectDrink()
dispenseDrink()
acceptMoney()

Figure 2.4: A coffee machine object

2.5 ENCAPSULATION

Encapsulation refers to an object hiding its attributes behind its operations (it seals the
attributes in a capsule, with operations on the edge). Hidden attributes are said to be private.
Some programming languages (for example, Smalltalk) automatically make attributes private
and some languages (for example, Java) leave it to the programmer.

Encapsulation is one of the ways that a programming language protects programmers from
themselves: if programmers could bypass the operations, they would become dependent on
the attributes that were being used to represent the object’s knowledge. It would then be
much harder to change the internal representation of the object in the future, because we’d
have to find all the pieces of code that access the attributes directly and change those too.
Without encapsulation we would lose simplicity and locality.

As an example of why encapsulation is a good idea, consider an object representing a
circle. A circle would be likely to have operations allowing us to discover its radius, diameter,
area and perimeter. What attributes would we need to store in order to support this behavior?
Well, we could store the radius and calculate the other attributes on demand. Or, we could
store the diameter and calculate the other attributes from that. In fact, we could store any
one of the four attributes and calculate the other three on demand. (Our choice may depend
on personal preference or it may depend on predicting how the circle will normally be used.)
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Let’s say we choose to store the diameter. Any programmer who was allowed to access the
diameter might do so, rather than going via the ‘get diameter’ operation. If, for a later version
of our software, we decided that we wanted to store the radius instead, we would have to find
all the pieces of code in the system that used direct access to the diameter, so that we could
correct them (and we might introduce faults along the way). With encapsulation, there’s no
problem.

Another way to think of encapsulation is to imagine that objects are courteous to one
another. If you wanted to borrow some money from a colleague to buy food in the staff
canteen, you wouldn’t grab their wallet and look through it to see if they had enough cash.
Instead, you would ask them whether they could lend you some money and they would look
in their own wallet.

2.6 ASSOCIATION AND AGGREGATION

No object is an island. All objects are connected to other objects, directly or indirectly,
strongly or loosely. By connecting objects, we make them more powerful. Connections allow
us to navigate around to find extra information and behavior. For example, if we were
processing a Customer object representing Freda Bloggs and we wanted to send Freda a letter,
we would need to know that Freda lives at 42 Acer Road. We would expect the address
information to be stored in some kind of Address object, so we would look for a connection
from the Customer to the Address, to find out where to send the letter.

When we’re modeling with objects, we can connect them in two principal ways: association
or aggregation. It's sometimes hard to spot the difference between the two, but here are some
ideas.

* Association is a weak form of connection: the objects may be part of a group, or family,
of objects but they're not completely dependent on each other. For example, consider a
car, a driver, a passenger and another passenger. When the driver and the two passengers
are in the car, they’re associated: they all go in the same direction, they occupy the same
volume in space, and so on. But the association is loose: the driver can drop off one of
the passengers to go their separate way, so that the passenger is no longer associated
with the other objects. Figure 2.5 shows how we can draw an association on an object
diagram — the attributes and operations have been omitted here in order to emphasize the
structure.

e Aggregation means putting objects together to make a bigger object. Manufactured items
usually form aggregations: for example, a microwave is made up of a cabinet, a door, an
indicator panel, buttons, a motor, a glass plate, a magnetron, and so on. Aggregations
usually form a part—whole hierarchy. Aggregation implies close dependency, at least of
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aPassenger

aCar

aDriver

anotherPassenger

Figure 2.5: Association

the whole to the part; for example, a magnetron is still a magnetron if you take it out
of its microwave, but the microwave would be useless without the magnetron, because it
wouldn’t be able to cook anything.

Figure 2.6 shows how we can draw a house as an aggregation: in order to emphasize the
difference between this kind of connection and an association, we place a white diamond

on the ‘whole’ end.

diningRoom

livingRoom

frstFloor |

kitchen

aHouse

mainBedroom

secondFloor

kidsBedroom

N

bathroom

Figure 2.6: Aggregation
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As suggested, the distinction between association and aggregation can be subtle. The
‘What happens if you remove one of the objects?” test can be helpful, but it doesn’t always
solve the problem: hard thinking and experience are often needed.

We often need to choose between aggregation and association, because the choice can
affect the way we design our software. Here are some examples:

e Friends: We would expect friends to be an association: there is no sense in which we could
put the friends together to make a larger friend; friends come and go over time.

e Components in a television set: This is one of the easier ones to reason about because it’s
the classic part—whole hierarchy: you put the buttons and the knobs together to make the
control panel; you put the glass screen, the electron gun and the magnetic coils together
to make the tube; once the small parts have been assembled, then assembled into bigger
components, you put everything into the cabinet and screw the back on. The end users
see a single television object: if one of the components fails, they probably don’t think
they have a television set anymore, just a useless heap of junk.

* Books on a bookshelf: A bookshelf doesn’t need books to be a bookshelf, it’s just a place
to put the books that we own. Conversely, when a book is on a bookshelf, it is certainly
associated with it (if you move the bookshelf, the book moves too; if the bookshelf
collapses, the book falls). This is a classic association.

* Windows in an office block: The windows are part of the office block. Although we
could remove a broken window, leaving the office one window short, we would expect a
replacement to be provided soon afterwards. This is probably aggregation.

Now it’s your turn. Which of the following examples are association and

which are aggregation?

1. Houses on a street.

2. Pages in a book.

3. Notes in a symphony.

4. Components in a home entertainment system (television, VCR, tape
deck, amplifier, games console).

J

2.7 GRAPHS AND TREES

As well as associations and aggregations, you may hear about trees or graphs of objects. A
tree is another name for a hierarchy. If we redraw the object diagram from Figure 2.6, as we
have in Figure 2.7, you can see why aggregation is often referred to as a tree (it doesn’t have
a trunk, but it’s close enough). For reasons best known to themselves, programmers usually
draw trees upside down, as shown in Figure 2.8.
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Figure 2.7: Aggregation as a tree
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Figure 2.8: An upside-down tree
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A graph is an arbitrary set of connections between a group of objects. Objects in an
association often form a graph, as in the car example in Figure 2.5. Another example,
with more interesting connections, is the underground train system in London. Figure 2.9
represents part of the London Underground system: in this case it's possible to get from any
node (station) to any other node, usually via several routes.

Euston
Warren Street King's Cross St. Pancras
|
Goodge Street
|
Oxford Circus Tottenham Court Road

Leicester Square

Picadilly Circus |

Charing Cross

[

Embankment

Figure 2.9: An object graph showing connections between London Underground stations

A tree is a special case of a graph: each node in a tree has only one parent node, but
it can have any number of children. (A parent contains the children, in a part—whole
sense.) This corresponds well to the difference between aggregation and association: any
group of connected objects forms an association, but only associations which have the right
inter-dependencies and the right structure qualify as trees.

2.8 LINKS AND NAVIGABILITY

The connections that you've seen on object diagrams until now are called links. If we want
to show that one object knows where the other one is, we can add an arrowhead, as shown
in Figure 2.10. This shows a Customer linked to an Address and a String. (A string is a staple
value in programming that comprises a sequence of characters.)
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anAddress
address
aCustomer house = 10

street

county

postcode = "TL5 10R"

name
aString

Figure 2.10: Navigable links

Each link can be thought of as an attribute: the label, or role, indicates the attribute’s
name. Thus, we might say that aCustomer has an attribute, called address, that links it to
an Address object, and another attribute, called name, that links it to the String representing
its name. The arrowhead indicates navigability, knowing where the other object is. Because
there’s no arrowhead on the customer end, the implication is that String doesn’t know that
it’s associated with aCustomer. Navigable links often end up as pointers in object-oriented
programs. (A pointer is the address of an object in memory, so that we can find it when
we need to.)

The links in Figure 2.10 are more detailed than the connections you've seen until now
(which didn’t have any arrow-heads). One of the advantages of an object diagram is that
it allows us to show what’s going on in our model at an arbitrary level of detail — this can
increase our understanding and make us more confident that we're on the right track. Simple
values are shown as attributes; important objects are shown as linked boxes; intermediate
values are shown as attributes or linked boxes, as the need arises.

Figure 2.10 shows other information too, information that you probably understood and
accepted without too much trouble: names have been given to the linked objects and to the
attributes; some literal values are also shown — the number 10 and the string TL5 10R, for
example. The naming convention used here for objects, attributes and roles is a common
one: use one or two descriptive words and run them together, capitalizing each word after
the first. As for the literal values, we all know how to write down numbers and putting
characters inside double quotes shouldn’t be any surprise either.

In some places, objects have been expanded while, in other places, they haven’t. For
example, the name attribute on aCustomer has been shown as a separate object whereas the
street and county on anAddress haven’t even been given a value.

The key in all diagrams is to show as much detail as needed to achieve our goal.
Don't let anyone suggest that a diagram is wrong just because they would have drawn it
differently. In general, as we go through development, we will have to deal with more and
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more information, but we rarely show everything in one place (if we did, things would get
cluttered and tedious).

A final few words about values: although everything can be modeled as an object, for
trivial values we may not bother. For example, the number 10 can be thought of as an
object: it has internal data to represent its ten-ness and it has operations such as ‘add another
number’ and ‘multiply by another number’. However, in many object-oriented programming
languages, simple values such as numbers are treated differently: you can only use them as
attribute values; they have no identity; you can’t decompose them.

2.9 MESSAGES

Every object is connected to at least one other object: an isolated object wouldn’t be much
use to anyone. Once objects are connected, they can collaborate, to perform more complex
tasks than they could on their own. Objects collaborate by sending messages to each other,
as shown in Figure 2.11. The message is shown next to a solid arrow indicating the direction
in which the message is being sent; the reply is shown next to a ‘tadpole’ that indicates the
movement of data.

message()
—

sender receiver
<—0O reply

non-standard
notation

Figure 2.11: Collaboration using messages

Figure 2.11 is a UML communication diagram. Communication diagrams look rather
like object diagrams, except that the links have no direction and the object names are not
underlined. Officially, there is no way to show replies on a communication diagram, so a
long-standing convention, the tadpole, has been used instead. Ideally, we would also show
sequence numbers, but they've been omitted here, because the UML numbering scheme is
rather involved.

Some example messages are: ‘What's the time?’, ‘Start the engine’ and ‘What is your
name?’, as shown in Figure 2.12. As you can see, the receiving object may or may not need
to provide a reply: we would expect replies to ‘What's the time?” and ‘What is your name?’,
but not to ‘Start the engine’.

As mentioned earlier, objects are courteous: when an object receives a message, it carries

out the request without question. This way, the sending object doesn’t need to cope with
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What's the time?
<
aClock
14:40 O—> What is your name?
— )
aDriver
Start the engine <O "Liz"
S
aCar

Figure 2.12: Some example messages

the possibility of a message being refused. In practice, some requests can’t be carried out,
despite the best intentions of the receiver. Consider the reasons why requests can fail, listed
in Table 2.1.

Sometimes, we can’t allow things to fail: we would be rather disappointed if a fly-by-wire
plane crashed because of a software fault. Ensuring success under such circumstances is a
specialist area, software reliability. Just to give you an idea, here’s one strategy for reliability:
install three computers on the plane and get them to vote on what to do next; if one computer
says ‘fly to the left’ but the other two say ‘fly to the right’, the plane flies to the right.

Now that you've seen why messages can fail, you should put the problem out of your
mind for the time being and assume that messages always succeed. (This is actually good
practice, as explained in Chapter 12.)

2.10 INVOKING AN OPERATION

When a software object receives a message, it executes some code. As you've probably
guessed, each piece of code is an operation. To put it another way, a message invokes an
operation. In UML, we can show a message being sent from the sender to the receiver, or we
can show the operation on the receiver, or we can do both.

As well as replies, messages can have parameters (also called arguments). A parameter is
an object or a simple value that the receiver needs in order to fulfill the request. We might,
for example, send a person object the message ‘What is your height in meters’ one minute and
‘What is your height in feet and inches’ the next: in this case, ‘What is your height?” would
be the message, while ‘meters’ and ‘feet and inches’ would be the parameters. Parameters are
shown in parentheses, after the message, as in getHeight(meters) or getHeight(aUnit). If you
have several parameters, you can separate them with commas.

We also need a way of specifying which object should receive a message — here’s how to
do it in Java, using a full stop to separate the receiver and the message:

aPerson.getHeight(aUnit)
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Table 2.1: Reasons for request failure

Problem

The sender should
not have been
allowed to send the
message.

The sender makes a
mistake.

The receiver makes
a mistake.

The receiver
encounters a
predictable but rare
problem.

The computer fails
to do what it’s
supposed to do.

Human error.

Example
Sending a fly message to a
penguin.

Telling a microwave to start
cooking when there’s no food
inside.

Assuming that 2 + 2 = 5.

Telling a lift to ‘go up’ when
there are too many people
inside.

Knocking the computer off the
desk; a cosmic ray blasting
through the central processor;
changing an internal bit from 1
to 0; an operating system
fault; . ..

Removing a diskette while an
object is writing information
to it.

AN
Solution

The compiler should spot
most of these mistakes and
we expect to find the rest
during testing or
maintenance.

The compiler can help but
mostly we rely on good
design, good programming,
testing and maintenance.

The compiler can help but
mostly we rely on good
design, good programming,
testing and maintenance.

Exception handling uses the
programming language’s
facilities to separate normal
from abnormal activity.

The software developer can’t
do much apart from failing
gracefully by reporting the
problem to a user interface
or writing to a log file.

Exception handling uses the
programming language’s
facilities to separate normal
from abnormal activity.

Sometimes, yowll find yourself wondering whether a message that youre designing

should get the object to do something, or retrieve some information from the object, or some

combination of the two. A good guideline for message styles, one that helps us to avoid many

difficulties, is ‘A message should be a question or a command, but not both’.

A question message asks the object for some information, so it always has a reply. A

question should not alter the attributes of the object (or of any object that it’s connected

to). Examples of question messages are ‘What loaves do you have?’ or ‘What's the time’.

We wouldn’t expect more loaves to appear under the counter just because we'd asked the

question; similarly, we would be surprised (ignoring Quantum theory) if the time inside a

clock changed just because we had looked at it.
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A command message tells an object to do something — this time the object doesn’t need
to provide a reply. Examples of commands include telling a bank account to ‘Withdraw 100
Euros’ and telling a microwave to ‘Switch off’. If we've issued a reasonable command, we
expect the object to go ahead and do it, so we don’t need any information back. A command
alters the receiving object or some object that it'’s connected to.

Messages that are both questions and commands can be useful, but they're an advanced
technique, one that doesn’t warrant an example.

2.11 AN EXAMPLE COLLABORATION

To solidify the concept of collaboration let’s look at a bigger example, first from a human
perspective, then from a software perspective. The example is ‘Buying a loaf of bread from a
baker’s shop’. The human version is this:

A customer walks into a baker’s shop and asks the baker what kind of loaves she has
for sale. The baker looks under the counter and tells the customer that she has two
white loaves and one wholemeal loaf. The customer says that he would like to buy the
wholemeal loaf. Now the business transaction takes place: the baker wraps the loaf and
offers it up with a request for payment; the customer gives the baker some money; the
baker gives the customer some change. The customer leaves, satisfied.

We can show this collaboration on a communication diagram such as the one in Figure 2.13.
For simplicity, the bits about the customer entering and leaving the shop have been ignored;
also, message directions have been shown alongside each message, to make things more
compact.

We could code this kind of collaboration pretty much directly in a pure object-oriented
language. However, most object-oriented designers wouldn’t do it that way. If we consider
the customer and the baker for a moment, the main problem is that we have a complicated
two-way interaction — programming computers is hard enough without adding this kind of
real-world complexity. Also, we have a customer that depends on the interface of the baker
and a baker that depends on the interface of the customer — changing one object would mean
changing the other object too, a maintenance nightmare.

Contrast the design problems of our baker and customer objects with the way the baker
might interact with the counter: the baker would send a message to the counter and receive
a reply, but the counter wouldn’t send any messages to the baker — the counter is a passive
object that sits there waiting to be used. The counter still does its job, and the baker still gets
what she needs, but the interaction is one-way, making it less complex and easier to change.
We call this style of interaction client—supplier: the baker is the client and the counter
is supplying the services. A further advantage of supplier-style objects is that they’re more
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What do you have? —=>

<— Two white, one wholemeal

I'd like a wholemeal —=>

<— I'd like some money

customer baker

Here's some money —=
<— Here's the loaf

<— Here's your change

Figure 2.13: Buying a loaf of bread

getAvailableLoaves() —>

<—0O 2 white, 1 wholemeal

getPriceOf(wholemeal) —>
<O €1.75

customer baker

buy(wholemeal) —>

<—0O wholemeal

pay(€2.00) —>
<—0 €0.25

Figure 2.14: Buying a loaf, client-supplier style

likely to be useful in other contexts, because they're independent of the client — they’re more
reusable, one of the major goals of object-oriented development.

We can usually transform a two-way collaboration into a client and supplier interaction
with a little thought and a little practice. To help us with this, there are two mechanisms that
were not used in Figure 2.13: message replies and message parameters. Figure 2.14 shows the
interactions between the customer and the baker as a pure client—supplier implementation.
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Client—supplier is not the only way to go, but it is certainly the most common style, and
it works well in most cases.

2.12 HOW AN OBIJECT-ORIENTED
PROGRAM WORKS

An object-oriented program works by creating objects, connecting them together and getting
them to collaborate by sending messages to each other. But who gets the ball rolling? Who
creates the first object and who sends the first message? To solve this problem, all object-
oriented programs have an entry point. For example, Java expects to find an operation called
main on an object that the user names when they launch the program. All the instructions in
the main operation are executed, one after the other, and the program stops when main has
finished.

Every instruction in main can create an object, connect objects together or send a message
to an object. When an object sends a message, the object that receives the message executes
an operation. This operation can also create an object, connect objects together or send a
message to an object. Thus, you should appreciate that this mechanism allows us to do
anything we might want to do.

Figure 2.15 shows an object-oriented program in action. Typically, there is not much
code in a main operation — most of the behavior is inside operations on the other objects.
As shown in Figure 2.15, it’s quite valid for an object to send a message to itself: a human
equivalent would be asking yourself a question such as ‘What did I do yesterday?’

The idea of a main operation applies not just to programs executed from a console — it
works equally well for more exotic programs such as graphical user interfaces (GUIs), Web
servers and servlets. Here are some hints as to how these work:

* The main operation for a user interface creates the top-level window and tells it to show
itself.

* A Web server’s main operation has an infinite loop telling a socket object to listen for
incoming requests on some port.

* A servlet is an object hosted by a Web server that receives requests passed in from Web
browsers — again, the Web server has the main operation.

2.13 GARBAGE COLLECTION

Let’s consider what happens when an object is no longer needed by the program that created
it. This may seem like a trivial issue, but remember that objects in a program don’t come
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Figure 2.15: An object-oriented program at run time

for free: each new object occupies a small area of the computer’s memory; as the program
runs, it tends to create more and more objects, reducing the memory available to run other
programs. If we didn’t reclaim objects after we had finished with them, our computer might
run out of memory unnecessarily. (The memory used by a program is usually returned
to the computer when the program finishes, but we might have several programs running
simultaneously: some of them might be running for days, weeks or years.)

It's bad programming practice to allow more and more objects to be created by our
program without taking steps to clean them up at the end of their useful life. Traditionally,
programmers have had to decide for themselves when the last connection to an object
was about to be removed so that they could explicitly delete or free the object’s memory.
(Structured languages don’t have objects, but they do have records, structures and arrays
that might need to be freed.) Keeping track of object lifetimes is complicated. It’s very easy
for a programmer to forget about some of their unused objects, causing the program to keep
growing — a fault called a memory leak.

Languages such as Java have popularized the idea of a program that reclaims its objects
automatically, without the programmer having to do anything. The basic idea is that
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every program has an assistant called a garbage collector, wandering around, looking for
unconnected objects and sweeping them away. Sounds like magic? Well, not really. It is
common these days for every program to have a run-time system — a piece of software that’s
always present underneath the code that we write ourselves. It's the run-time system that
performs housekeeping tasks, such as garbage collection.

Without going into any detail about how a garbage collector might work, it's enough
to know that the garbage collector is prepared to delete any object that can’t be reached,
directly or indirectly, from any name that is active within the program. Any object that can’t
be reached can never be sent a message; if it can never be sent a message, it can never answer
a question or execute a command; therefore, it must be garbage.

Pure object-oriented languages — such as Smalltalk, Java and Eiffel — tend to have garbage
collectors. Hybrid object-oriented languages — such as Object Pascal — do sometimes have
garbage collectors, although the fact that the languages themselves are over-complicated
still means that they should be avoided if possible. C++ has no garbage collector; instead,
programmers have to remember to use ‘smart pointers’, which delete an object when it
appears that the last reference has gone.

2.14 CLASSES

A class encapsulates characteristics common to a group of objects. There are a number of
ways you could think of a class — some of them are illustrated in Figure 2.16. Putting this
picture into words:

* A factory manufactures objects according to some blueprint.

* A set specifies what features its member objects will have.

* A template allows us to produce any number of objects of a given shape.
* A dictionary definition describes an object as precisely as possible.

Figure 2.17 shows some example classes. In UML, classes are drawn as boxes on a class
diagram. So that we can easily tell the difference between classes and objects, class names
(on class diagrams) are not underlined, while object names (on object diagrams) are. Classes
and objects are rarely mixed on the same diagram: it turns out that we can do most of
our modeling in terms of classes, reserving object diagrams for illustration and verification
purposes. Object-oriented programmers are often heard to say ‘Every object is an instance of
a class’, hence the use of the term instance as a synonym for object.

By convention, class names start with a capital letter. On a class diagram, they’re shown in
bold, although, admittedly, that may be tricky when drawing by hand. In an object-oriented
context, class names tend to be short and in the singular.
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Dogs

category or set

template description or definition

Figure 2.16: Different ways of thinking about a class

Classification — grouping things into classes — is something that humans are rather good
at. We start doing it from the age of 12—18 months - ‘toy’, food’, ‘girl’, ‘boy’, ‘doggy’ — so
it’s nice to see it in programming, which is not otherwise known for its accessibility or its
closeness to nature. Object-oriented software development is meant to be natural: close to
the real world and close to the way that we reason about it. Since, in the real world, classes
are the next major step after objects, that should be justification enough for introducing
them into our programs. Another justification for having classes, from a software point of
view, is that they allow us to share the definition of elements between related objects, so that
we don’t have to repeat ourselves.

Looking at Figure 2.17 again, can you spot any similarity between the classes? You would
probably conclude that they’re all kinds of vehicle: some work on water, some on land and
so on. By drawing lines to show how the classes are related, we come up with the picture
shown in Figure 2.18.



36 Chapter 2

JetPlane
sl

]

Ferry

Figure 2.17: Some example classes

RowingBoat

JetPlane

Figure 2.18: Groups of classes

This picture shows a hierarchy of classes, a point that should be obvious when the

relationships are redrawn using the proper UML notation, as in Figure 2.19. Here, a white

arrow-head is used to point from each detailed concept to the less detailed one on its left.

Just like the aggregation hierarchy we saw earlier, with its common name ‘part—whole

hierarchy’, there are a few common names for this kind of hierarchy too:

e Inheritance: Trains inherit the characteristics of land vehicles.

* Generalization/specialization: A train is more specialized than a land vehicle; a land

vehicle is more generalized than a train.
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RowingBoat

Sea Vehicle

Figure 2.19: A class hierarchy

e Parent/child: LandVehicle is the parent of Train; Train is a child of LandVehicle.
e Superclass/subclass: LandVehicle is the superclass of Train; Train is a subclass of LandVehicle.
* Base/derived: LandVehicle is the base from which Train is derived.

In this book, the terms base and derived won’t be used.

2.15 WHAT DOES A CLASS DEFINE?

Object-oriented developers use classes to describe the programming elements that particular
kinds of object will have. Without classes, we would have to add these elements to every
individual object.

For illustration, Figure 2.20 shows a complete class written in Java. Although this book is
not about the details of Java as such, this example is simple enough for us to see in it the six
essential elements of a class (see Table 2.2).

New objects are created by the Actor operation; this is a special operation called a
constructor that is only used when an instance of the class is created. In Java, we create an
object using an expression of the form:

new Actor("Charlie Chaplin");

In this case, the expression would result in a new instance of Actor with a stage name of
“Charlie Chaplin” and a name of “<None>". Operations such as getName() and setName() are
known as getter and setter operations, because they get and set pieces of information.
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1 // An actor with "name" and "stage name" attributes
2 public class Actor {

3

4 // Fields

5 private String name, stageName;

6

7 // Create a new actor with the given stage name
8 public Actor(String sn) {

9 name = "<None>";

10 stageName = sn;

11 }

12

13 // Get the name

14 public String getName() {

15 return name;

16 }

17

18 // Set the name

19 public void setName(String n) {

20 name = n;

21 }

22

23 // Get the stage name

24 public String getStageName() {

25 return stageName;

26 }

27

28 // Set the stage name

29 public void setStageName(String sn) {

30 stageName = sn;

31 }

32

33 // Reply a summary of this actor’s attributes, as a string
34 public String toString() {

35 return "I am known as " + getStageName() +
36 ", but my real name is " + getName();
37 }

38 %

Figure 2.20: A simple Java class
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Table 2.2: Information defined by a class \

Element Purpose Example in Figure 2.20
Class name Referring to the class elsewhere Actor, line 2
in our code.

Fields Describing the information name and stageName, line 5
stored by this kind of object.

Constructors Controlling initialization of the Actor(), line 8
objects.

Messages Providing other objects with a getName(), line 14;
way to use the objects. setName(), line 19;

getStageName(), line 24;
setStageName(), line 29; and
toString(), line 34

Operations Telling the objects how to lines 15, 20, 25, 30, 35
behave. and 36
Comments Telling programmers how to lines starting //, e.g. lines 1

use or maintain the class and 4
(ignored by the compiler).

In addition to the elements listed above, pure object-oriented programming languages

allow the programmer to specify which parts of a system can access the elements: we can
usually specify, at least, that elements are public (visible everywhere) or private (only available
to the objects themselves) — hence the public and private keywords in Java. Some languages
allow the programmer to add assertions — logical statements that must always be true, such
as ‘Objects of this class will always have a positive balance’ or ‘This message will always return
a nonempty string’. Assertions are useful for reliability, debugging and maintenance.

2.16 SHARED DATA AND SHARED
OPERATIONS

In an object-oriented program, all the information and services the program needs must
be available somewhere. If the program has been designed properly, the information and
services will be available in obvious places. Bearing this in mind, where would you place the
information and services listed below?

1. The current interest rate for savings accounts.
2. The number of days in January.
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3. The calculation of compound interest for a given number of years.
4. The calculation of whether the current year is a leap year.

You may have concluded that each of them should be associated with an object of
some kind — a SavingsAccount for cases 1 and 3 and a GregorianCalendar for cases 2 and 4.
However, none of these pieces of information or services are related to a particular Sav-
ingsAccount or GregorianCalendar. Rather, they're related to all savings accounts and all
calendars. It would seem inappropriate to place these elements on particular objects.
(If you prefer the practical argument, think of the waste of space if we had to place
an interestRate on every instance of SavingsAccount, or the waste of time having to cre-
ate a GregorianCalendar just so that we could find out whether the current year is a
leap year.)

Because information and services such as those listed above don’t seem to fit well with
objects, object-oriented languages usually allow the programmer to put elements onto the
class itself. So, as well as field, message and method, we have class field, class message and
class method. Java programmers, for example, can use the keyword static to indicate that an
element is associated with the whole class rather than any of its instances. Some languages
go so far as to treat the class as an object in its own right.

Class elements are not as easy to use as they could be, because some languages don’t
treat a class as a pure object — inheritance between class elements doesn’t work, for example.
Even languages that do treat classes as pure objects run into messy complications with
metaclasses. So you should expect to come across class fields, class messages and class
methods in other people’s designs and code and you may even find a reason to use them
yourself, but always try the following alternatives first:

* Find, or introduce, another kind of object. For example, rather than making interestRate
a class field, make it a field on a Bank object. (This would also help you to extend your
software to deal with more than one bank.)

e Use a Singleton, a class that is guaranteed, by careful programming, to have only one
instance: the singleton object (see Chapter 11 for more information). This is a good match
for the ‘Is it a leap year?’ case, because there is only one Gregorian calendar.

2.17 TYPES

In the pure object-oriented universe, everything is an object. Or, to put it in programming
terms, the type of every value is a class. Smalltalk and Eiffel are two languages that stick to
this fundamental rule. However, most object-oriented languages also have nonobject types,
called primitives. The reasons given for this impurity usually include brevity, performance
and ancestry. A cynic would suggest that laziness (on the part of the language designers)
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might also be a factor. Whichever argument you prefer, primitives are everywhere. Therefore,
you need to get used to them.

Taking Java as an example, we can declare that a field has a class type such as String — a
sequence of characters — or a primitive type such as int — a simple number. In Figure 2.21,
the age field of anActor is an integer primitive and the string object pointed to by name
contains primitive characters.

anActor name aString

age = 56 "Topol"

Figure 2.21: Object-oriented types

The main distinction between objects and primitives is that, although primitives can be
used as values in the same way that objects can, you can’t send a message to a primitive, or
give it a field, or treat it as an object in any other way. (At a deeper level, most of the time
objects are accessed via pointers while primitives aren’t.)

You might expect that treating some things as objects and others as primitives would
lead to all sorts of confusion, but it turns out not to be a major issue. Just remember that
primitives are good for simple values like numbers and individual characters, but everything
else should be an object. Most languages provide us with a handful of ready-made primitive
types. For example, Java gives us byte, short, int, long, float, double, char and boolean. Even if
your language does allow you to define your own primitives (for example, C++ and Eiffel),
you should consider this to be an advanced technique.

Arrays, denoted in Java with the [] operator, sit somewhere between objects and primitives:
they’re special objects that are known to the compiler and the run-time system for efficiency
reasons. However, if you wish to be pure, you can avoid arrays altogether and use classes
such as List instead.

UML contains a mechanism for defining language-independent primitives with names
such as Integer, Real and Boolean. However, Java primitives will be used in this book as all
the code fragments are in Java. Using language-dependent types is sanctioned by the UML
standard, as long as you're clear about what you're doing.

2.18 TERMINOLOGY

There are many terms available for the object concepts we've seen and different people use
different terms to refer to the same thing. To make matters worse, some people use terms
incorrectly. Figure 2.22 shows some of the terms, grouped to show how they can be used
interchangeably (the underlined words are used in this book).
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invocation  message

call execution

operation field

attribute

method

instance
variable

property

data
member

member
function

state

activation

composition

aggregation
association

delegation

Figure 2.22: Object-oriented terminology

Table 2.3: Terms used in this book \

Term
Attribute

Field
Operation
Method
Message
Invocation
Execution
Association
Aggregation

Composition

Interface

Protocol

Behavior

Definition

A small piece of information — such as color, height or
weight — that describes one characteristic of an object.

A named value inside an object.

A piece of code belonging to an object.

A synonym for ‘operation’.

A request sent from one object to another.

The carrying out of an operation in response to a message.
A synonym for invocation.

A direct or indirect connection between two objects.

A strong association implying some kind of part—whole hierarchy.

A strong aggregation, where the part is inside exactly one
whole — the part may also be created and destroyed by the whole.

A set of messages understood by an object.
An agreed way of passing messages over a network.

A collective term for all of an object’s operations.
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You may also come across collective terms such as behavior (a collection of operations),
interface (a collection of messages), object protocol (a synonym for interface) and data (a
collection of fields). In this book, only the terms listed in Table 2.3 will be used, in the
manner described.

An attribute can be stored (encapsulated) by an object, but it doesn’t have to be. For
example, a circle has radius and diameter attributes, but we need only store the radius because
the diameter can be calculated on demand. To avoid confusion, only stored attributes will be
shown in this book — if necessary, derived attributes will be implied by the addition of one
or more operations, such as getDiameter.

A field is not quite the same as an attribute. Firstly, a field represents a decision to store
something; secondly, a field can be used to store a connection to another object, as shown
by navigable links on our object diagrams. When we move into design, the attributes and
associations end up as fields.

In the early stages of object-oriented software development, we tend to use the terms
attribute and operation (because that's UML terminology). In the later stages, when dealing
with low-level design and source code, we tend to refer to fields and methods (because that’s
programming terminology).

2.19 REUSING CODE

The term reuse has been mentioned several times now, so let’s take a closer look at what it
means and what its implications are. To put it simply, reuse refers to using code more than
once, resulting in:

e Faster and simpler development.

¢ Easier maintenance (less code to harbor faults).

* More robust code (every time it is reused, it is retested and, over time, more and more
faults are squeezed out).

There are historical and technical reasons why reuse has taken a long time to emerge.
From a historical point of view, the software industry was initially preoccupied with the
problem of how to program computers at all (starting with machine code), then with how
to program them more efficiently and then with how to develop large systems in a reliable,
systematic way.

The potential of reusing code in different contexts became apparent as more and more
systems were constructed — millions upon millions of lines of code being written every year
over many decades. Surely there couldn’t be that many distinct systems that needed writing,
could there? Since most software was written in software departments behind the closed
doors of individual companies, using a variety of different programming languages, it’s easy
to see why reuse was rare. Even when packaged software started making it out through
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company doors, the source code, and even the binaries, were kept a closely guarded secret.
Even so, protecting a company’s commercial advantage and intellectual property doesn’t
justify failing to reuse code within the company itself.

From a technical point of view, reuse was difficult because of an attitude in development
teams and central to the development methodology that ‘We only need to solve today’s
problem’. This was exacerbated by the lack of facilities provided in programming languages
and methodologies to promote reuse: there was a tendency to scatter the data and operations
in small pieces throughout the system, making it difficult to collect related pieces into a
larger chunk that would be worth reusing.

Because object orientation is driven by the modeling of general concepts from an entire
domain, it’s much more likely that reuse opportunities will emerge. For example, developing
a payroll system would normally involve the development of an Employee class. Since the
development should be driven by ‘What does the employee concept mean to this company?’
rather than ‘What employee information does the payroll system need?’, the end result is
likely to be applicable to other systems developed by the same company. In addition, the
modularity of objects reduces the tendency to spread attributes and operations around the
system, making it easier to extract and refine the Employee code.

Gradually, the situation has improved, to the extent that, often, we will only need to write the
parts of the system that are unique to our problem — the rest of the system can be implemented
using prewritten code. This is especially true for common, well understood, application areas
such as: user interfaces; database access; distributed programming; input/output; network
access; e-commerce; access to legacy (pre-existing) systems; security (authentication, autho-
rization, privacy, integrity checking, origin checking); text processing; mathematics; games;
service look-up; sound synthesis and playback; 2D graphics; 3D graphics; e-mail; image pro-
cessing; multimedia encoding and decoding; messaging; transaction processing; telephony;
speech synthesis and recognition; and integration with digital TV broadcasts.

Reuse opportunities can be summarized into the categories listed below:

* Reusing functions within a system: The simplest form of reuse (used in traditional systems
development) involves writing utility functions that are called from various places. For
example, you may discover that various parts of your system need to search through a
list of customer names, so you write a general search function that can be called from
each context. Writing reusable functions is different from writing functions that break a
complex process into simpler steps.

* Reusing methods within an object: Methods encapsulated within an object can be invoked
from other methods. For example, a nonpublic drawFilledRectangle method inside a
GUIComponent class can be used by any GUIComponent method that needs to fill an area of
the screen with the current background color. You should aim to reuse methods within
an object whenever possible. Nonpublic methods within an object are often used to break
up a complicated process, in traditional fashion.
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e Reusing classes within a system: Many of the classes that we define can be used in different
parts of our system. For example, if you define a Customer class for use in a marketing
system, you expect the same Customer object to appear in many different pieces of system
code. This kind of reuse is fundamental to the object-oriented approach.

* Reusing functions across systems: General functions can be reused (in traditional systems
development as well as in object-oriented development) in other systems that you and your
colleagues produce. For example, you might write a function that extracts the year that an
employee joined the company from the employee’s payroll number. For such a function
to be reused by your colleagues, you would have to make them aware of it, preferably by
putting it in a reuse repository: a database of useful functions that developers are expected
to peruse when they’re writing new code.

e Reusing classes across systems: We can publish and reuse a whole class (with all its
attributes and operations) rather than just a single function. An example would be an
Employee object that encapsulates the employee attributes used throughout the company,
along with a useful set of operations. Object-orientation enthusiasts were the ones who
popularized the idea of a reuse repository containing classes rather than functions.

In order to get developers to put in the extra effort required to make their classes
reusable enough for a repository, it’s a good idea to offer some kind of reward (a mug with
a humorous logo on it is a common choice). Access to class repositories may be offered to
third parties, perhaps for a fee. Reusing classes across your own systems is not difficult,
once you have a little practice.

* Reusing classes across all systems: A software component is analogous to a hard-
ware component. Software components are designed to be reusable in any context;
are strongly encapsulated (clients can’t see the inner workings); come with a standard
style of interface; and are available from third parties, usually in return for payment.
Every object-oriented programming language has its own form of software component,
for example, Java has JavaBeans. There is no real equivalent of software components in
the traditional arena, because a handful of related functions would not be of much use
to third parties.

Examples of software components include a spreadsheet that can be dropped into any
office productivity suite and an income tax object that can be dropped into any home tax
package. A software component is really just an object that obeys sensible rules about its
style of interface (as in using naming conventions to identify getters and setters).

e Function libraries: Related, high quality functions can be grouped into a library, so that
they’re available all at once. An example would be the stdio function library, originating on
Unix systems, that provides input/output facilities for C programmers. Function libraries
are used in both traditional systems development and object-oriented development.
Well-designed libraries sometimes become standardized by bodies such as ISO or ANSIL.
Function libraries may be internal to a company, free, or sold for profit.
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e (Class libraries: An improvement on function libraries, class libraries offer whole classes
rather than mere functions. Writing a class library requires lots of experience. A good
example is the Java 2 Enterprise Edition (J2EE) library [Bodoff et al. 02], which provides
code for all of the well-understood reuse areas listed above. Just like function libraries,
class libraries may be internal to a company, free, or sold for profit.

* Design patterns: A design pattern is a description of how to create part of an object-oriented
system elegantly and effectively. Since their introduction, patterns have also been applied
to other areas such as system architectures. Each pattern has a short description, a detailed
description, advice on where to use it, and code samples (see Chapter 11). For example,
the description of the Adapter pattern is ‘An adapter translates the interface of one object
into another interface that clients expect’. Designing patterns requires a lot of experience,
but less than producing a class library.

e Frameworks: A framework, as its name suggests, is a pre-existing structure to which you
attach your own code. In the object-oriented case, a framework consists of a number of
prewritten classes, along with a document describing the construction rules that must be
followed by the developer. A large example is the Enterprise Java Beans (EJB) framework
[Bodoff et al. 02]: this consists of the J2EE library plus a document, hundreds of pages long,
that specifies how programmers should write reusable enterprise components and how
third parties should implement Java application servers. Most frameworks are designed by
gurus (a guru is an expert’s expert).

So, how should you design for reuse? We'll leave aside the issues of designing patterns
and frameworks, since such techniques are beyond the scope of this book, and concentrate
instead on writing reusable classes. Even a single reusable class will often have one or two
closely collaborating classes — thus, we might produce a small family of reusable classes
rather than just one. Here are some tips:

* Always follow style guidelines: Style guidelines are recommendations for how you should
write your classes. If you write your classes in an exotic or personal style, potential reusers
of your software will quickly move on to look at other code, rather than learn your personal
idiosyncrasies. Style guidelines may originate from your company, or they be more widely
accepted. For example, since Sun has control over the Java standard, whatever Sun says is
good style is normally accepted by the Java community. As well as having a plethora of
object-orientation gurus and experts of its own, Sun pays close attention to the opinions
of external experts and gurus.

* Be thorough with your documentation: Few programmers will be able to understand
how your classes should be reused just by reading the source code. At the very least,
your class should have an explanatory name, a short comment (one or two sentences)
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summing up the class, a longer comment (maybe several paragraphs) describing how
the class should be used and a short comment alongside each public message describ-
ing how the method should be used. Your comments should always describe the contract
between the object and its clients, setting out the obligations on both sides. Documenta-
tion that is separate from the classes, such as design or tutorial information, should also
be provided.

Be prepared to write more code than you need: Often, when you're implementing a class
for a particular system, you will find yourself thinking along the lines of ‘I bet a foo method
would come in handy here’. For example, even if you currently only need a getRadius
message for your Circle class, it would be a good idea to add a getDiameter message too,
making the class more useful in other systems.

Use patterns and frameworks: Patterns and frameworks reduce your workload, but they’re
also understood by other developers, which means that the other developers will have less
to learn before reusing your code.

Design client—supplier objects: If you have two-way, or even cyclical, collaborations
between your objects, you may end up with what is referred to in the trade as code spaghetti.
Things will be a lot simpler if you design your objects as a client—supplier hierarchy. For
example, a reusable Employee does not make any assumptions about its context; instead, it
provides public messages that are generally useful. Taking this idea further, the Employee
would be in control of its EmploymentHistory, but the EmploymentHistory would not know
about the Employee. Imagine that your objects are servants that do what theyre told,
without caring about who asked them to do it. To compensate for their servile lives, the
objects have servants of their own to control.

Make each object single-purpose: This is referred to as high cohesion. Avoid coding objects
that serve multiple purposes, such as maintaining an employee’s personal information as
well as their employment history.

Separate the interface from the business behavior: A reusable object should be usable in
any context. For example, the object might need to be used, directly or indirectly, in many
different kinds of interface (workstation, mobile phone, or Web server). If you pollute
the object with the details of a particular interface, you will run into problems. Therefore,
write business objects that contain only business behavior. You can also provide interface
objects to view your business objects, but that's optional. Such interface objects will
become reusable in their own right.

Design for questions and commands: Objects are simpler if their messages are either
questions — ‘What'’s the time?’ — or commands — ‘Set the time to ...’ Although messages
that are questions and commands at the same time are occasionally useful, you should
consider their use to be an advanced technique. Combined messages, such as ‘Set the time
to ... and tell me what the time was before I set it’, can be confusing.
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2.20 SUMMARY

In this chapter, we have looked at:

« Software objects, which represent real-world things, are described by attributes and
can carry out behavior (operations, usually called methods).

¢ Messages, which enable objects to communicate and collaborate to accomplish
some task.

 Garbage collection, which reclaims the space used by objects when they are no
longer needed by the program that created them.

e Classes, which enable us to group similar objects and share the definition of
elements between related objects, so that we don't have to repeat ourselves.

 Reusing code, which results in faster and simpler development, more robust code
and easier maintenance.

FURTHER READING

One of the original books on object concepts, and why they're a good thing, is by David
Taylor. [Taylor 97] is aimed at nontechnical readers, so it constitutes a gentle introduction
for those who won't end up producing the actual code.

In order to promote the use of Java, there is a huge amount of free information on Sun’s
web site at http://java.sun.com, including tutorials. Because Java is continually being updated
and improved, Sun’s web site is an essential resource for Java developers. If you need help
with the code fragments in this book, check out the on-line language tutorial, which is also
available as [Campione et al. 00].

REVIEW QUESTIONS

1. In a UML diagram, how are objects distinguished from classes? Choose only one option.

(a) Object labels are shown in italics.
(b) Class labels have a box drawn around them.
(c) Object labels are underlined.
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Figure 2.23: For use with Review Question 2

2. In Figure 2.23, what do Diagrams 1 and 2 illustrate? Choose only one option.

(a) 1: An aggregation, 2: A composition.
(b) 1: An attribute, 2: An aggregation.
(c) 1: An aggregation, 2: An attribute.
(d) 1: An attribute, 2: A composition.
(e) 1: A composition, 2: An attribute.

3. What is meant by ‘object identity’? Choose only one option.

(a) Two objects are identical if their attributes have the same value.

(b) Every object’s class has a unique serial number.

(c) All objects are the same as each other.

(d) Every object has a unique identity that distinguishes it from all other objects.

4. Which of the following terms best describes an object that is made up of other objects?
Choose only one option.

(a) Generalization.
(b) Inheritance.
(c) Association.
(d) Aggregation.
(e) Specialization.

5. What is ‘encapsulation’? Choose only one option.

(a) Depicting objects using doughnut diagrams.

(b) Ensuring that the data inside an object can only be accessed via operations.
(c) Sealing the state of an object so that it cannot be changed.

(d) Putting objects into a collection.
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ANSWERS TO ACTIVITY 1

1.

A street exists independently of its houses. Although the street and the houses may be
constructed at the same time, as time passes new houses will be added and old ones will
be knocked down. Even if there are no houses at all, the street is still a street. This must
be association.

If the book is a novel, we can’t tear out a page and still have a useful novel, so this is
probably aggregation. If, on the other hand, it is a reporter’s notebook with pages that
were designed to be torn out, it might be considered an association.

Notes in a symphony are similar to the pages in a novel, i.e. aggregation. If the symphony
is being performed and the orchestra accidentally drops a note, people are going to
notice — the orchestra members will be accused of not playing the whole symphony.

It may be tempting to think that components of the home entertainment system are
put together to form a whole (this is implied by the use of the word ‘components’).
However, if we move the games console into the kids’ bedroom, we're still left with a
home entertainment system, albeit a less entertaining one. Also, we could add a DVD
player: this wouldn’t suddenly transform what we already have into a home entertainment
system, it would just improve it. This looks like an association.

Aggregation is still involved: the television is an aggregation, as is each of the other
components. Therefore, we can have aggregations inside associations. We can also have
associations inside aggregations (consider a DVD being played by a DVD player). Whether
we view something as an aggregation or an association often depends on the scale we're
looking at.

ANSWERS TO REVIEW QUESTIONS

1.

In a UML diagram, objects are distinguished from classes because c. Object labels are
underlined.
In Figure 2.23, Diagrams 1 and 2 illustrate option d. 1: An attribute, 2: A composition.

. ‘Object identity’ means that d. Every object has a unique identity that distinguishes it

from all other objects.
An object that is made up of other objects is described as d. Aggregation.
‘Encapsulation’ means b. Ensuring that the data inside an object can only be accessed via

operations.






Although inheritance is widely considered essential, it’s rather more complicated than
what we've seen so far, so this chapter can be skipped on a first reading. It is quite reasonable
to develop software without the use of inheritance. However, if you do skip this chapter, you
will have to accept a certain lack of understanding of some of the topics later in this book.

Learning Objectives

Understand what we mean by Understand the difference between
inheritance. abstract and concrete classes.

Know when to use inheritance.
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3.1 INTRODUCTION

Inheritance allows us to specify that a class gets some of its characteristics from a parent class
and then adds unique features of its own — this leads to the description of whole families of
objects. Inheritance allows us to group classes into more and more general concepts, so that
we can reason about larger chunks of the world that we live in.

From a programming point of view, we want inheritance because:

e It supports richer, more powerful, modeling. This benefits both the development team
and other developers who might want to reuse code.

e It allows us to define information and behavior in one class and share the definitions in
related subclasses. This means that we have less code to write.

* It’s natural. This is one of the prime motivations for object orientation in the first place.

A subclass inherits all of the fields, messages, methods (and assertions) of its superclass.
For example, if we wanted to model land vehicles, we might come up with the hierarchy
shown in Figure 3.1.

Car

milesPerGallon:float

getMilesPerGallon():float
setMilesPerGallon(:float)

LandVehicle Bicycle

topSpeed:float 4 numberOfGears:int

getTopSpeed():float getNumberOfGears():float
setTopSpeed(:float) setNumberOfGears(:int)

Truck

axleWeight:float

getAxleWeight():float
setAxleWeight(:float)

Figure 3.1: What is inherited?



Designing a Class Hierarchy

55

In this diagram, the types of fields, message parameters and message replies have been
shown. In UML, types are shown after a colon, for example, :String. For brevity, parameter
names have been omitted from Figure 3.1: this is only reasonable because there are few
parameters and their meaning is obvious. It does, however, show the type of parameter
and we must still include the colon, otherwise the label is ambiguous; so :float indicates
a field or parameter of type float, whereas float indicates a field or parameter with the
name float. If parameter names had been included, they would have looked something like
newTopSpeed:float.

Using this class hierarchy, if we were to create a Car, it would have one field inherited from
LandVehicle — topSpeed — and another field introduced by the Car class itself — milesPerGallon.
It would also have four methods (getTopSpeed, setTopSpeed, getMilesPerGallon and setMiles-
PerGallon), two inherited and two introduced by Car. If we were to create a Bicycle, it would
have the TopSpeed elements, just the same as a Car, but it would have the numberOfCears
elements instead of the milesPerGallon elements.

So, the hierarchy shown, as well as allowing us to reason about general classes and specific
classes, reduces our programming effort (because all the TopSpeed elements from LandVehicle,
for example, appear automatically in its subclasses, without us having to repeat them).

3.2 DESIGNING A CLASS HIERARCHY

Let’s look at a larger example. We want to model collections, objects that can hold on to
other objects for later use. After some deliberation, we decide that we need four styles of
collection:

e List: A collection that keeps all of its objects in the order in which they were inserted.

e Bag: A collection that doesn’t keep its objects in order.

e LinkedList: A collection that keeps its objects in order using an implementation of a
sequence of objects in which each object points to the next in the sequence. A linked list
can be updated easily, but access is slow because we have to walk down the list.

* ArrayList: A collection that keeps its objects in order using an array, a sequence of adjacent
memory locations. Arrays have fast access but updating is slow because we may have to
shift elements around or create a new array on each update.

How could we place these four classes, along with Collection, into an inheritance hierarchy?
The key is to look for major similarities between the concepts. Clearly, they're all collections
in their own right, so Collection must go at the top. Next, we notice that most of the
collections keep their objects in order, but Bag doesn’t — this suggests that Bag should be
placed directly under Collection, in a separate branch from the other classes. Next, we notice
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Collection
Bag List
JAN
ArrayList LinkedList

Figure 3.2: A collection hierarchy

that List has no commitment to internal implementation, whereas LinkedList and ArrayList
do (the only difference between LinkedList and ArrayList is their time—space trade-off). So,
we decide that List must be a superclass of ArrayList and LinkedList. This logical process
leads to the hierarchy shown in Figure 3.2. The inheritance arrows have been drawn a little
differently to those in the previous chapter; this form, also an official part of UML, is neater
and more compact.

The process just described is somewhat artificial, because we had all the classes in the
hierarchy to begin with, and then built the result from the top down. In reality, it tends
to happen the other way round: first, we decide what classes we want at the bottom of the
hierarchy — ArrayList, LinkedList and Bag — then we look for more general concepts, so that
we can enrich our model and share element definitions. Thus, we might group ArrayList and
LinkedList into List and then group Bag and List into Collection.

While we're developing a hierarchy, we look for messages that we can share — the higher
up the hierarchy we can place the messages, the better. We tend to look for messages before
we look for any other class elements because the messages represent the interface that our
objects will present to the outside world, their most important feature.

Now consider the following three messages, which we’ve decided are good candidates for
placement in our collection hierarchy:

* contains(:Object):boolean searches for an object in the collection and returns true if the

receiver contains the parameter or false otherwise.
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e elementAt(iint):Object retrieves the object at the position indicated by the parameter.
* numberOfElements():int replies with the number of objects in the collection.

Where can we place these messages on the classes that we already have? Well, contains
is something that we should be able to ask any kind of collection, so we need to guarantee
that by putting it on Collection. Now, elementAt takes a position as parameter, so it must be
dealing with ordered objects (it wouldn’t make sense for Bag). So, we can’t put elementAt
on Collection; we could put it on ArrayList and repeat it on LinkedList, because both of these
classes keep their objects in order. However, we can avoid the repetition by putting it on List
instead. Finally, numberOfElements is something we might want to ask of any collection, so
the Collection class is the appropriate place to put it.

These deliberations lead us to the distribution of messages shown in Figure 3.3. Even
though attributes have not been shown in this class diagram, the attribute box has been
retained — this makes it easier to see that the list shows messages rather than fields. The
message names are in italics to emphasize that we are not yet considering methods.

Collection

contains(:Object):boolean
numberOfElements():int

I

Bag List

elementAt(:int):Object

I

ArrayList LinkedList

Figure 3.3: Placing messages in a hierarchy
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We now have a complete set of classes that would be valuable to other developers.
However, the classes don’t yet do anything: they have no implementation.

3.3 ADDING IMPLEMENTATIONS
TO A CLASS HIERARCHY

Okay, so we have our class hierarchy and we've decided where the messages should be
introduced. Now the implementation elements (fields, constructors and methods) must be
added. At this stage, let’s not worry about the fields that our hierarchy would need, because
that would be getting into detailed design. Similarly, let’s ignore the issue of constructors
for our classes — we can just assume that our finished classes will be furnished with a useful
and complete set of initialization choices. Instead, we’ll look at the issue of where to put the
methods, because that will lead us on to two important concepts: abstraction and redefinition.

We conclude that it’s impossible to write a contains method on the Collection class because
the search algorithm is going to be different for ordered and unordered collections. So we
must, at least, implement a contains method on Bag. But how about List and its subclasses?
With a little thought, using the other messages that we've introduced, we can write a contains
algorithm that works for any kind of List (see Implementation Point 3).

~

Implementation Point 3

1 boolean contains(Object o) {

2 for (int i = 0; i < numberOfElements(); ++i) {
3 if (elementAt(i) == o) {

4 return true;

5 }

6 }

7 return false;

8 1}

Notice that parameters in Java have their type followed by their name (see line 1),
unlike parameters in UML which are given as name:type. The for-loop (line 2) sets i
to every value from 0 up to, but not including, the number of elements in the list.
Inside the loop, the current object is retrieved and tested (line 3).

Writing aMessage without specifying the object that is to receive the message
means ‘send aMessage to the current object’ (some programmers prefer to write

this.aMessage() instead). For example, elementAt(i) means ‘find the value of the ith

element of the current List object’.
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Now we’re really reaping the benefits of inheritance: we’ve written a single method that
will work perfectly for any direct or indirect subclass of List, which could be many classes.

The elementAt message is going to have a different implementation for ArrayList and
LinkedList. So, we must add two separate elementAt methods: one to ArrayList, which will
access the elements directly; and one to LinkedList, which will walk down the list.

Last, but not least, we have to place numberOfElements. This implementation depends on
whether we store the value as a field or calculate it when asked. Let’s look at each alternative:

e Storing the number of elements as a field
The field has to be incremented whenever we add an object and decremented whenever
we remove an object. This approach allows us to report the number of objects quickly, at
the cost of extra storage and slightly slower operations to add and remove objects.

e Calculating the number of elements on demand
This is likely to be very slow for a LinkedList, involving walking down all the elements.
For ArrayList and Bag, the internal objects would probably store the number of elements
anyway, so the operation would be fast. Either way, with this approach, we don’t waste
storage and we don’t slow down the adding and removing of objects.

There is a time—space trade-off that the designer needs to resolve. On this occasion, for
example, we decide that neither option works well for all classes, nor even for all List objects.
Therefore, we decide to put a separate numberOfElements method on each of the three leaf
classes, Bag, ArrayList and LinkedList.

Having made our implementation decisions, we arrive at the hierarchy shown in
Figure 3.4. So that you can distinguish between them, we've shown messages in italics
and methods in roman text (which is also correct UML notation).

On our Collection classes, we now have two styles of message: those with an associated
method and those without. A message without a method is unfinished — we know that the
associated class has the message as part of its interface, but we have to look down the subclass
chain to find the actual method.

An unfinished method is called an abstract method (or abstract operation), because it’s
not real, it's not solid, you can’t kick it. The complement to an abstract method is a concrete
method (or concrete operation). A concrete method has real lines of code, it’s solid, you can
kick it. In UML, abstract methods are shown in italics and concrete methods are not — where
italics are impractical, you can put {abstract} to the right of the method instead.

3.4 ABSTRACT CLASSES

An abstract class is a class with at least one abstract method — the abstract method may be
introduced on the class itself, or it may be inherited from a superclass. Figure 3.5 shows
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Collection

contains(:Object):boolean
numberOfElements():int

I

Bag

List

contains(:Object):boolean
numberOfElements():int

contains(:Object):boolean
elementAt(:int):Object

I

ArrayList

LinkedList

elementAt(:int):Object
numberOfElements():int

elementAt(:int):Object
numberOfElements():int

Figure 3.4: Placing methods in a hierarchy

Collection

contains(:Object):boolean
numberOfElements():int

I

Bag

List

contains(:Object):boolean
numberOfElements():int

contains(:Object):boolean
elementAt(:int):Object

I

LinkedList

elementAt(:int):Object
numberOfElements():int

elementAt(:int):Object
numberOfElements():int

Figure 3.5: Abstract class names in italics
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our collection hierarchy again, with the names of the abstract classes in italics (this is also
correct UML). Again, if italics are impractical, you can write {abstract} above or to the left
of the class name.

Abstract classes have the following advantages:

e They permit richer and more flexible modeling; for example, our List class has all
three messages — contains, elementAt and numberOfElements — despite the fact that we can’t
provide concrete methods for all of them.

e They lead to more code sharing, because we can write concrete methods that use abstract
methods; for example, the contains method for List invokes abstract methods.

Once again, abstraction is a natural thing to want to do, so object orientation provides the
facility. Consider peeling a piece of fruit: we know that we can take the skin off any piece
of fruit, but we can’t describe how to do it in a way that will work well for every variety.
Therefore, peeling fruit must be an abstract method and fruit itself must be an abstract
concept.

With the abstraction facilities presented so far, we have a disaster waiting to happen:
what do you think would happen if we created a Fruit and then sent it the peel message?
How about if we created a Collection and sent it the contains message? We would be trying to
invoke an abstract method — a thing that doesn’t really exist — so the objects wouldn’t know
what to do.

Most object-oriented languages stop us creating instances of abstract classes. For example,
aJava compiler won’t compile any program containing the expression new List(). The compiler
is being paranoid in this case, because we might never invoke an abstract method on the new
object, but the compiler can’t check that for us.

The rule that instances of abstract classes can’t be created corresponds well to the real
world: if T give you some money and ask you to go to the shop to buy a piece of fruit,
you're likely to ask ‘What kind of fruit would you like?’, because you need a concrete
request.

When designing a class hierarchy, you should bear in mind that most superclasses are
abstract. This follows from the fact that inheritance hierarchies are naturally derived from
the bottom up:

1. We look for the concrete concepts that exist in our problem domain and reason about
their knowledge and behavior.

2. We look for commonalities between the concrete classes so that we can introduce more
general superclasses.

3. We group superclasses into more superclasses, until we arrive at our most general root
class (Fruit or Collection, for example).
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x

X1

usually ends up as Zﬁ

<
<

X2

Figure 3.6: Most superclasses are abstract

When we identify generalizations (superclasses), we expect them to be abstract — otherwise
it's likely that they would have been identified as concrete concepts in Step 1. Most of the
time, the observation that most superclasses are abstract is borne out by the discovery, sooner
or later, of abstract methods on the superclasses (possibly inherited). In order to help with
this, Java and UML allow us to mark a class as abstract even if we haven’t yet discovered any
abstract methods for it.

So, what do you do if you find yourself with a concrete class inheriting from another
concrete class? One thing you can try is the transformation shown in Figure 3.6. Here, we
have a concrete class called Y inheriting from another concrete class X; we can transform this
into an abstract superclass X1, with two concrete subclasses, X2 and Y.

If you try to work with the hierarchy on the left, you will tend to find that Y is not a true
subclass of X — it doesn’t quite work as a kind of X, leading you to change the meaning of
some methods, or even to disable them. Imagine if X were Fruit and Y were Orange; we would
expect an Orange to work exactly like a Fruit, with extra knowledge and behavior added on,
so the disabling of methods would be unacceptable.

For the hierarchy on the right, every piece of knowledge and behavior that is truly
common to X and Y has been put in XI; everything in X that is not common to Y has been
moved into X2. (The old X has been split in two.) We now have a much cleaner picture: X1
is likely to be abstract; X2 and Y behave exactly as kinds of X1; X2 and Y have their own extra
knowledge and behavior.

Sometimes, we're tempted to inherit from a concrete class, in order to tweak the elements
of something that already exists: for example, we may already have an ArrayList class imple-
mented by another developer, but it doesn’t quite do what we want it to do, so we introduce
a new subclass called MyArrayList and add minor modifications. Although this is sometimes
reasonable, it has one fundamental drawback: any existing code that creates instances of
ArrayList will still do so: there’s no way that we can force the existing code to create instances

of our improved class.
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3.5 REDEFINING METHODS

Object orientation allows us to redefine elements that we inherit. In its simplest form,
redefinition allows a subclass to change the implementation of an inherited method — the
message stays the same but the lines of code are replaced. Another form of redefinition allows
us to make a message more visible in a subclass: since we've only seen public and private
visibilities up to this point, this means that a subclass can turn a private message into a public
message. Yet another form of redefinition allows us to change the name or type of an attribute.

For the rest of this discussion, let’s concentrate on redefining the content of methods,
since that’s the most important reason for redefinition. There are three good reasons why we
would redefine a method:

e The inherited method was abstract and we want to make it concrete, by giving it some
code — for example, contains is abstract on Collection but we need it to be concrete on Bag
and List.

e The method needs to do some additional work in the subclass — for example, a toString
method would have to summarize any new attributes that were introduced by the subclass.

* We can provide a better (more efficient or more accurate) implementation for the sub-
class — for example, if we add an index to our LinkedList class, we can redefine contains to
be faster than the linear algorithm used by List.

When we are just doing additional work, we should make sure that the superclass
definition still does everything it used to — this increases code sharing and simplifies
maintenance (for example, if we modify the superclass definition, the subclass gets the new
behavior automatically). Every object-oriented language allows a redefined method to invoke
the one on its superclass (see Implementation Point 4).

\

Implementation Point 4
Here’s a Java example:

void initialize() {
// Invoke the inherited initialize method
super.initialize(Q);
// Now do the extra stuff

}

N J

When you redefine an element, do not change its meaning. When implementing a

subclass, you mustn’t forget your contract with users of the superclass: anyone has the right
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to assume that your subclass works exactly like the superclass, with additional knowledge
and behavior. For example, when redefining contains for LinkedList, it wouldn't be fair to
make it return true when the parameter is not in the list.

3.6 IMPLEMENTING A STACK CLASS

Let’s look more closely at the idea of reusing code by sharing. With a Stack (see Figure 3.7),
we can push an object onto the top, peek at the top object, see if the stack is empty, and pop
an object off the top.

So, what we need is a Stack class with the following four messages:

* push() to add an object to the top of the stack.

* peek():Object to return the object on the top of the stack.

* isEmpty():boolean to return true if there are no objects on the stack.

* pop():Object to remove an object from the top of the stack and return it.

T g bgbgbgbagbaia
|
|
|

Figure 3.7: A spring-loaded plate dispenser
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Now, object-oriented software development is supposed to be about not writing code, so
the first thing we should do is to look around for a similar class that already exists. During
our search, we come across the LinkedList class, part of which we developed earlier. We
discover that it has four messages that we ought to be able to reuse:

* addElement() which adds an object to the end of the list.

* lastElement():Object which returns the object at the end of the list.

* numberOfElements():int which returns the number of objects in the list.
* removelastElement() which removes the object at the end of the list.

If we view a stack as running from left to right, instead of bottom to top, it looks as though
all the methods we need are already written, but with the wrong messages. We must decide
how to incorporate the existing LinkedList behavior into our new Stack class. We could do it
by inheritance (see Figure 3.8) or by composition (see Figure 3.9).

Composition is a strong aggregation where the composed object is inside a single
composite; the composed object is usually created at the same time as the composite and
can be deleted at the same time. In UML, in order to emphasize that composition is stronger
than aggregation, we use a black diamond instead of a white one.

3.6.1 Implementing a Stack using Inheritance

Let’s say that we choose to make our new class a subclass of LinkedList, as shown in Figure 3.8.
Next, we define our stack messages in terms of the inherited messages. The following code

shows four such definitions (in Java, extends means ‘inherits from’):
public class Stack extends LinkedList {

public void push(Object o) {
addElement(0);

}

public Object peek() {
return lastElement();

}
public boolean isEmpty() {

return numberOfElements() == 0;
}

public Object pop() {
Object o = TastElement();
removelLastElement();
return o;
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LinkedList

Stack

Figure 3.8: Stack by inheritance

We can now create a stack object and use it:

Person aPerson = new Person();

Stack aStack = new Stack();
aStack.push(new Plate("Wedgwood"));
aStack.push(new Plate("Royal Doulton™));
aStack.push(new Plate("Domestic green"));
aPerson.take(aStack.pop());

However, we have a potentially serious problem with this way of implementing Stack.
Since Stack is a sublass of LinkedList, all other LinkedList messages are also available to stack
objects. That should be no surprise, since a subclass is expected to offer at least the same
services as its superclass. Our problem is that LinkedList has messages, such as firstElement,
that are inappropriate for stacks, but a client programmer would still be able to use them,

for example:

aPerson.take(aStack.firstElement());

This piece of code means that the client of aStack has just removed the element from the
bottom of the stack — something that they’re not supposed to be able to do.

3.6.2 Implementing a Stack using Composition

Figure 3.9 shows a Stack implemented with an internal reference to a LinkedList. The behavior
of the encapsulated LinkedList is used by Stack, but none of the extra LinkedList behavior
is exposed to Stack clients. Another way of describing this situation is to say that aStack
delegates its behavior to aLinkedList. Since aLinkedList is encapsulated, the only reference to
it is inside aStack. Therefore, if we're using a pure object-oriented language with a garbage

collector, aLinkedList is deleted as soon as aStack is deleted.
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Stack LinkedList
push(:Object) list add(:Object)
pop():Object * lastElement():Object
isEmpty():boolean removeLastElement()
peek():Object numberOfElements():int

list

aStack |[@——>| aLinkedList

Figure 3.9: Stack by composition

Using composition, Stack can be implemented like this:

public class Stack {
private LinkedList Tist;

public Stack( {
Tist = new LinkedList(Q);

}

public void push(Object o) {
Tist.addETement(o);

}

public Object peek() {
return list.lastElement();

}

public boolean isEmpty() {
return list.numberOfElements() == 0;

}

public Object pop() {
Object o = Tist.lastElement();
Tist.removelLastETement();
return o;

This class provides all the messages that a stack needs, but it does not work with:
aPerson.take(aStack.firstElement());

because there is no longer a firstElement message.



68

Chapter 3

To achieve this improved behavior only meant that the Stack class had to declare and create
a field and the methods had to reference that field. Although there may be a slight overhead in
creating the delegated field and forwarding messages to it, it shouldn’t be enough to concern
us, especially considering the sophistication of today’s compilers and run-time systems.

3.6.3 Inheritance versus Composition

Inheritance has some unique advantages:

* It’s natural.

* It’s elegant.

o It allows us to write generic code — for example, code written to work for Fruit will also
work for Apple and Pear.

However, inheritance suffers from the following problems:

e It’s difficult to do well.

It’s difficult to change when you discover deficiencies in your design.
* It’'s more difficult for client programmers to understand.
* The hierarchy ‘leaks’ into client code, making it more difficult to change too.

Composition achieves the same end result as inheritance (concrete classes, concrete messages
and reuse of existing code). However, it has the following advantages:

* It’s simpler to produce.

e It’s easier to change.

e It’s easier for clients to understand.
* It doesn’t leak into client code.

On the whole, especially for beginners, composition wins over inheritance: it’s reasonable
to implement a sizeable application with no inheritance at all. Inheritance is best left to
the experts, especially for when they're implementing large libraries of reusable code (even
then, inheritance works best for well-understood domains such as graphical user interfaces,
databases, networks and collections).

Some languages (such as Fiffel and C++) permit private inheritance, also called implemen-
tation inheritance. Private inheritance, as its name suggests, allows one class to inherit from
another without the inherited elements becoming part of the new interface. For example,
with such a facility, our Stack class could inherit privately from LinkedList: the Stack methods
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would have direct access to LinkedList methods, without having to introduce a delegate, so
there would be no arguments about convenience or efficiency; but, because the inheritance
would be private, we would not be allowing clients of Stack to use inappropriate LinkedList
messages, such as removeFirstElement, so the purists would be happy too.

Private inheritance is not available in all languages, so it’s another one of those features
that you should avoid during analysis and design, if you don’t want to tie yourself to
a particular language. Private inheritance is usually provided as a side effect of multiple
inheritance, which is also not supported by many languages.

3.7 MULTIPLE INHERITANCE

When we design an inheritance hierarchy, we generalize classes into higher-level abstractions
(when moving up the hierarchy) and specialize them into lower-level abstractions or concrete
classes (when moving down). As we move up or down, we often have to choose between
alternative generalizations and specializations, even though they may all seem equally valid.
For example, consider the two inheritance hierarchies in Figure 3.10.

In the first hierarchy, Vehicles have been classified as Powered or Unpowered; in the
second, they’ve been classified as Land, Air or Sea. So, we have alternative hierarchies, but
which do we choose? The answer may depend on what your problem domain is (engine
maker, globe-trotter or luggage manufacturer). Or, you may not be able to come up with
an answer at all until you've tried out one of the hierarchies and found whether or not it is
adequate.

This kind of dilemma is a side effect of single inheritance. With single inheritance, a class
is only allowed to have one parent. Single inheritance works well, which is why languages
like Smalltalk and Java have nothing else. But multiple inheritance, where each class has any
number of parents, is also possible. (Java does have a form of multiple inheritance, but only
for interfaces, explained in Chapter 8.) With multiple inheritance, we might be tempted to
combine the hierarchies in Figure 3.10 into the hierarchy shown in Figure 3.11, in the hope
of getting the best of both worlds.

Looking at Figure 3.11, you might think that multiple inheritance is rather complicated
and not worth the bother. But there are many points for and against.

Advantages of multiple inheritance are that:

e It is powerful.

e It permits private inheritance.

L]

It is closer to the real world.

L]

It allows mix-in inheritance.
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Figure 3.10: Alternative inheritance hierarchies

Mix-in inheritance is a design style in which we maintain a single inheritance backbone
for our principal classes, while permitting individual classes to inherit from one or more
decorating classes, each of which adds a few simple elements. For example, Lorry may get
most of its important elements from LandVehicle but may inherit an engine attribute from a
simple Powered class.

Disadvantages of multiple inheritance are that:

* Itintroduces complexity (for the designer and the client programmer).
* It causes name clashes.
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Figure 3.11: Multiple inheritance - best of both worlds?

HouseProduct EuroProduct

isPolish():boolean isPolish():boolean

. =

WarsawPolish

isPolish():boolean | ?

Figure 3.12: Name clashes

e It causes repeated inheritance.
* It makes compilers more difficult to write.
* It makes (fast) run-time systems more difficult to write.

Name clashes occur when elements with the same name, but different implementations,
are inherited via different routes. For an example, consider the hierarchy in Figure 3.12.
Here we have two superclasses: HouseProduct is something bought for the house; EuroProduct
is something manufactured in Europe. On HouseProduct, we have a message isPolish that
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returns true if the associated product is used for polishing; in contrast, on EuroProduct, we
have an isPolish message that returns true if the associated product is manufactured in Poland.

Once we introduce the mutual subclass WarsawPolish, denoting polish manufactured in
Warsaw, we have a problem: we would like the new class to have two messages with
different meanings; however, they can’t both use the same name, because that would make
aWarsawPolish.isPolish() ambiguous. If we rename the two messages, clients of WarsawPolish
will be surprised to learn that it has no isPolish message at all, despite what it says on
HouseProduct and EuroProduct.

Employee
| |
UKEmployee USEmployee
Assignee

Figure 3.13: Repeated inheritance

Repeated inheritance means inheriting the same element from more than one route. For
example, if a getName method is defined on the Employee class in Figure 3.13, Assignee
inherits getName from both UKEmployee and USEmployee. In this simple case, it should be
easy for a compiler to work out that Assignee should end up with one getName method.
However, things get trickier if UKEmployee or USEmployee choose to redefine the getName
method; Assignee could end up with two getName methods (in which case, how do we deal
with the name clash?) or just one (in which case, how do we choose which one to have?).

The problems of writing efficient compilers and run-time systems to handle multiple
inheritance are difficult to overcome. However, any programmer that yearns for the power
of multiple inheritance is unlikely to be satisfied if these are the reasons given for dropping
the facility altogether. In support of multiple inheritance, it should be noted that all the
problems can be overcome with the help of clever designers and good programming style.

However, since it may not be available in your implementation language, you may well
choose to avoid multiple inheritance altogether, especially for analysis purposes. If you do
use multiple inheritance during design, restrict yourself to a single-inheritance backbone,
with the addition of simple mix-in classes when appropriate.
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For the record, here’s a summary of the multiple inheritance facilities available in common
languages:

Eiffel provides straightforward multiple inheritance, plus private inheritance and mix-in
inheritance. Eiffel has a rich set of facilities for dealing with name clashes and repeated
inheritance.

Smalltalk provides only single inheritance. Multiple inheritance facilities have been tried
with Smalltalk, with limited success.

C++ provides some multiple inheritance facilities. However, the facilities are incomplete,
poorly designed and poorly implemented, so they should be avoided.

Java provides single inheritance for classes but multiple inheritance for interfaces (abstract
classes that have no methods). This is a good compromise that allows some degree of
multiple inheritance modeling and mix-in inheritance (for messages only). Java has no
special facilities to deal with name clashes or repeated inheritance, but a simple form of
repeated inheritance is allowed.

3.8 GUIDELINES FOR USING INHERITANCE

Don’t overdo it: Don’t think that you have to use inheritance a lot, or even at all. Remember
that there are alternatives, such as composition and the use of attributes (for example, a
Car class with a color attribute is probably better than three classes called Car, RedCar and
BlueCar).

e A class should be ‘a kind of” its superclass(es): Whenever you subclass X to produce Y,
ask yourself Is Y a kind of X?" For example, Orange is a kind of Fruit and Truck is a kind of
LandVehicle, so they are valid; conversely, Potato is not a kind of Fruit and Airplane is not a
kind of LandVehicle, so these would not make good subclasses. (Some developers use the
terms subtyping to mean ‘I am following the guideline’ and subclassing to mean ‘I might
not be’.)

* A class should be an extension of its superclass(es): In a subclass, make sure that you only
add new features; don’t be tempted to break the superclass contract by deleting, disabling

or reinterpreting features.

3.9 SUMMARY

In this chapter, we examined inheritance, a tool for code sharing and higher-level
modeling:

* Classes can be grouped into more general concepts and a class can get (inherit)
some of its characteristics from a parent class.
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 An abstract class has at least one method without code (an abstract method); in a
concrete class, all the methods contain lines of code.

FURTHER READING

One of the best-known books on object-oriented design and programming theory is [Meyer
971, covering everything you should and shouldn’t do with objects. Meyer illustrates his
ideas using his own language, FEiffel, but Eiffel's syntax is simple and based entirely on
object-oriented concepts, so it makes a good complement to the main text. Apart, perhaps,
from the choice of programming language, even the most stringent theoretician would find
it difficult to disagree with anything Meyer has to say.

REVIEW QUESTIONS

1. Why is the ability to redefine a method important in object-oriented programming?
Choose all options that apply.

(a) Because it allows us to add extra work to a method.

(b) Because it allows us to introduce abstract methods that are redefined as concrete
methods.

(¢) Because it allows us to provide a more accurate or faster definition in a subclass.

(d) Because it allows us to disable a method in a subclass.

(e) Because it allows us to change the meaning of a method.

2. Which of the following statements about multiple inheritance are true? Choose all options
that apply.

(a) It offers more modeling choices.

(b) It makes it more difficult to write compilers and (fast) runtime systems.
(c) It simplifies inheritance hierarchies.

(d) Tt solves the problem of repeated inheritance.

3. Which of the following statements are true? Choose all options that apply.

(a) Most superclasses are abstract.
(b) Inheritance is preferable to composition.
(c) Most superclasses are concrete.
(d) Composition is preferable to inheritance.

4. In UML diagrams, how are abstract classes distinguished from concrete classes? Choose
only one option.
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(a) Concrete classes are shown as boxes with dashed outlines.
(b) Labels on abstract classes are shown in italics.
(c) Labels on concrete classes are shown in italics.
(d) Abstract classes are shown as boxes with dashed outlines.

5. What is an ‘abstract’ class? Choose only one option.

(a) An object.

(b) A class with no methods.

(¢) A class with no concrete subclasses.

(d) A class with at least one undefined message.
(e) An interface.

6. Which of the following terms best describes the case where a Stack class is implemented
using an internal instance of List? Choose only one option.

(a) Association.
(b) Specialization.
(¢) Genericity.
(d) Composition.
(e) Singularity.

7. With reference to Figure 3.14, what is the difference between the two diagrams? Choose
only one option.

(a) In Diagram 1, color is public but in Diagram 2 color is private.

(b) Diagram 2 indicates that the car’s color can be removed and replaced.

(c) Diagram 1 shows an abstract class and Diagram 2 shows a concrete class.
(d) None, they mean the same thing.

Car
color
color: Color Car - Color
Diagram 1 Diagram 2

Figure 3.14: For use with Review Question 7

ANSWERS TO REVIEW QUESTIONS

1. The ability to redefine a method is important in object-oriented programming:

(a) Because it allows us to add extra work to a method.
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(b) Because it allows us to introduce abstract methods that are redefined as concrete
methods.
(c) Because it allows us to provide a more accurate or faster definition in a subclass.

. Multiple inheritance a. offers more modeling choices and b. makes it more difficult to

write compilers and (fast) runtime systems.

. The following statements are true a. Most superclasses are abstract b. Composition is

preferable to inheritance.

. In UML diagrams, abstract classes are distinguished from concrete classes because b.

Labels on abstract classes are shown in italics.

. An ‘abstract’ class is d. A class with at least one undefined message.
. The term that best describes the case where a Stack class is implemented using an internal

instance of List is d. Composition.

. The difference between the two diagrams is d. None, they mean the same thing.






Type Systems

As with inheritance, type systems are widely considered essential but are rather
complicated, so this chapter could be skipped on a first reading. You can get away without a
detailed knowledge of type systems. However, if you do skip this chapter, you will have to

accept a certain lack of understanding of some of the topics later in this book.

Learning Objectives

Understand what we mean by a Understand implicit and explicit
type system. casting.
Understand polymorphism. Recognize that Java templates

provide genericity.
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4.1 INTRODUCTION

A type system is a simple concept: it’s a set of rules that stop us misusing values (primitives
and objects). Usually, this is done by forcing us to declare how we intend to use a value
before we actually use it — this allows compilers and run-time systems to spot potential
abuses before they happen.

A simple example of a type system in use is declaring that a variable will always hold a
value of a particular type:
int i;
Employee fred;

But why would we misuse a value in the first place? The most common reasons are:

* Not understanding how the value is supposed to be used.
* Because we have spelled something incorrectly.

As well as preventing the misuse of values, a type system can have a couple of other
benefits: it can ensure that we provide some documentation of the code (‘fred is an Employee’)
and it can improve run-time performance, because the compiler and run-time system have
more information about what the code intends to do (compiler) or what it actually is doing

(run-time system).

4.2 DYNAMIC AND STATIC TYPE SYSTEMS

Type systems can either be static (‘done by the compiler’) or dynamic (‘done by the run-time
system’). Both varieties of type system ensure that values are not misused by the programmer:
a static type system spots the abuse at compile time while a dynamic type system waits to
see if the abuse actually happens and then stops it.

Smalltalk is the archetypal dynamically-typed language. In Smalltalk, a programmer often
declares the expected type of a value using a naming convention. For example, to ensure
that a parameter for the addEmployee method always pointed to an Employee object, the
programmer might give it the name anEmployee. Anyone using addEmployee would assume
from the parameter name that they were supposed to pass in an Employee. (Similar naming
conventions can be applied to fields and local variables.)

But Smalltalk is dynamically typed, so the client programmer still has to make sure that
they don’t invoke addEmployee with, say, a Banana. Let’s assume that, inside the addEmployee
method, the getPayrollNumber message is sent to anEmployee. Therefore, if we pass in a
Banana, getPayrolINumber will be sent to the Banana, which is clearly nonsense. Smalltalk’s



Dynamic and Static Type Systems

81

reaction to this misuse of a Banana would be to generate a run-time error with the message
Banana doesn’t understand payrolINumber.

Smalltalk’s approach still constitutes a type system, albeit a rather simple one, because the
run-time system has prevented the client programmer from abusing the Banana — the object
hasn’t been forced to answer a question that it doesn’t understand. However, we have to wait
until the code is run before we discover the error. Worse still, if our test code only sends
messages to anEmployee that are also supported by Banana, we won't discover the error until
we write more code or run the system in a live setting.

If we write the addEmployee method in Java, we are forced to declare a type for the
parameter:

public void addEmployee(Employee anEmployee) {

pay = anEmpTloyee.getPayrol1Number()

Here, the programmer is telling the compiler that the parameter passed in by the client
must be an Employee (and that the message doesn’t return anything, using the void keyword).
Therefore, the compiler will refuse to compile the following code fragment:

aPayroll.addEmployee(new Banana());

So, in Java, the abuse of Banana is stopped by the compiler, rather than by the run-time
system.

A Smalltalk programmer would argue that dynamic typing is the better option, because:

* It makes compilation quick and simple.

* The programmer can work quickly —ideas flow easily from the programmer’s head into
the program, because they don’t have to keep stopping to think what kind of object they
must use in this context.

e The lack of a static compiler encourages thorough testing.

* Object-oriented code is continually being reused, so faults are always found eventually.

A Java programmer would argue that static typing is a good thing because:

e Compilation is still pretty quick and, anyway, programmers don’t care how difficult it is
to write a compiler.

e It can be used to improve run-time performance.

e It can be used to pick up spelling mistakes.

e It forces some documentation of the code.

In object-oriented terms, a static type system guarantees that it’s impossible to send a
message to an object unless that object has a corresponding method.
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4.3 POLYMORPHISM

Polymorphism is derived from the Greek word stems poly, meaning many, and morph,
meaning shape. Therefore, polymorphic means ‘having many shapes’. We can apply the term
separately to variables and to messages: a polymorphic variable refers to different types of
value at different times; a polymorphic message has more than one method associated with
it.

In a pure object-oriented language, all nonprimitive variables are polymorphic and all
messages are polymorphic. We'll take a look at each in turn.

4.3.1 Polymorphic Variables
The following Java declaration states that t will always point at an object of type Truck:
Truck t;

Therefore, the following assignment would be valid and would lead to the situation shown
in Figure 4.1:

t = new Truck(Q);

Truck t
UeKE=——_ | aTruck

Figure 4.1: Attaching a Truck variable to a Truck object

Now consider the class hierarchy shown in Figure 4.2, which tells us that a Truck is a kind
of LandVehicle. Given this hierarchy, we would expect to be able to treat a Truck just like a
LandVehicle. Therefore, the following statement would also be valid and would give us the
situation shown in Figure 4.3:

LandVehicle Tv = new Truck();

That may surprise you. But, consider this: we've just told the compiler that we will only
ever use lv as a LandVehicle, i.e. we will only ever send it LandVehicle messages; since all the
LandVehicle messages are on Truck too, everything will be fine.

In the same way that we can make Iv refer to a Truck, we can make it refer to a Train (see
Figure 4.4):

v = new Train(Q);
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Train

Vehicle K}———{LandVehicle

Truck

Figure 4.2: Truck inheritance

LandVehicle |
andveneile W =———_ I aTruck

Figure 4.3: Attaching a LandVehicle variable to a Truck object

LandVehicle Iv )
T aTrain

Figure 4.4: Attaching a LandVehicle variable to a Train object

Although Iv was pointing at a Truck, it's now pointing at a Train, so it must be a polymorphic
variable. This should be intuitive: Iv is a LandVehicle, so it can point at any kind of LandVehicle.

The polymorphism of variables is controlled by inheritance. For example, because Orange
is not a kind of LandVehicle, it wouldn’t be sensible to write

Tv = new Orange(Q);

So, polymorphism allows us to attach a variable to a subclass object. But we can’t go the
other way round. For example, because a Vehicle is not a kind of LandVehicle, it wouldn’t be
reasonable to write:

Tv = new Vehicle(Q);

If this was allowed, we could send any LandVehicle message to the Vehicle, even though some
of the LandVehicle messages won'’t be understood by Vehicle.

4.3.2 Polymorphic Messages

Any message, in a pure object-oriented language, can have more than one method associated
with it. This happens either because the methods appear independently on more than one
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class or because a method is redefined by subclasses. Redefined methods normally have similar
algorithms, but methods defined independently usually have completely different algorithms.
For example, consider the four classes in Figure 4.5, where any possible relationships
between humans and birds have been ignored. All of these classes have a message flyTo, which
means ‘Use flight to get to the given location’: the method is abstract on Bird and concrete on
the other three classes. Since flyTo has three implementations, it is a polymorphic message.

Bird
flyTo(:Location)
Human
flyTo(:Location) ?
Finch Eagle
flyTo(:Location) flyTo(:Location)

Figure 4.5: Polymorphic animal messages

Although flyTo on Human can be compared to flyTo on Bird, the meanings are really quite
different: for birds, flying involves flapping and gliding; for humans, it involves getting on a
plane.

Polymorphic messages are linked to inheritance, in the same way as polymorphic variables.
For example, in the following code fragment, we would expect the run-time system to execute
the flyTo method on Finch, not the one on Bird (which is abstract anyway, so there would be
nothing to execute):

Bird b = new Finch(Q);
b.flyTo(someLocation);

Here we see the full power of abstract methods: we've been able to state that ‘All birds have
a flyTo message’, even though we can’t define one at the level of Bird — the run-time system
has the job of picking the correct implementation. If we added the following code fragment
to the one above, we would be telling an Eagle to fly to somelLocation, which presumably
involves more of the gliding and less of the flapping.

b = new Eagle(Q);
b.flyTo(somelLocation);
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A polymorphic variable is just a place holder — the business end is the object it happens
to be pointing to. So, in the following code fragment, we have one Cat, but two references to

it (each reference is a separate name for the cat):

Cat tiddles, tom;
tiddles = new Cat("Hfrrr");
tom = tiddles;

4.4 DYNAMIC BINDING

Dynamic binding means attaching a message to a method at run time. This is the way that
object-oriented languages cope with polymorphic variables and redefined methods. Take a
look at Figure 4.6. Here, we have two abstract classes — Shape and Quadrilateral — and one
concrete class — Square. All three classes have a getPerimeter message: on Shape, it is abstract;
on Quadrilateral, it sums the length of all four sides; on Square, it multiplies the length of a
single side by four. The fact that aSquare is an instance of class Square has been shown as a
UML dependency, a dashed, open-ended arrow.

Shape

getPerimeter():int
getNumberOfCorners():int
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f £
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Quadrilateral \ Q. =
4 §

getPerimeter():int
getNumberOfCorners():int
aSquare

v
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v

t dependency
’

.
2

Square

getPerimeter():int

Figure 4.6: Dynamic binding and redefinition
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In the following code fragment, how does the run-time system know which of the three
methods to execute when the getPerimeter message is sent?

Shape sh = new Square();
int i = sh.getPerimeter();

Conceptually, what happens is this: the object that receives the message (a Square in this
case), knows its own class, so it goes there to look for the method; since Square defines a
getPerimeter method, it is executed.

Figure 4.6 also shows a getNumberOfCorners message, which is abstract on Shape and
concrete on Quadrilateral. In the following code fragment, the Square will again look to its
class for a getNumberOfCorners method.

int j = sh.getNumberOfCorners(Q);

This time, there is no matching method, so the search continues with the Quadrilateral
superclass. Quadrilateral does have a matching method, so that’s the one that is executed.
Although this dynamic binding algorithm looks a little slow, it is only a conceptual algorithm
and can be implemented much more efficiently, especially with the help of a static type system.

With static typing, we can be sure that dynamic binding will find a concrete method
somewhere in the superclass chain (because the type of every variable has to be declared
and we can’t create abstract objects). With a dynamic type system, we might encounter
an abstract method or fall off the top of the hierarchy altogether — this would result in a
run-time error message.

For multiple inheritance, dynamic binding is more complicated, but it is still feasible and
is not appreciably slower than with single inheritance.

Consider the following code fragment:

Shape sh;
Triangle tr = new Triangle(Q);
Square sq = new Square();

Which of the following assignments would be correct? (Remember to
think ‘Is it a kind of?’)

1. sh=tr;
2. sh =sq;
3. sq =1tr;
4. tr = sq;
5. tr = sh;
6.

\ sq = sh; /

( Figure 4.7 shows our Shape hierarchy with an additional class Triangle. m
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Shape

getPerimeter():int

|

Triangle Quadrilateral

etPerimeter():int . .
getHeight():irg getPerimeter():int

[

Square

getPerimeter():int

Figure 4.7: Polymorphism and type systems

m If we attach sh to the square with: \

sh = sq;

What do you think the effect of the following message sends would be
(assuming a static type system)?
. sh.getPerimeter();
. sq.getPerimeter();
. tr.getPerimeter();
. tr.getHeight();
. sq.getHeight();
sh.getHeight();

- ' J

O U1 A WIN —-

4.5 POLYMORPHISM GUIDELINE

Before we leave the subject of polymorphism, consider the following style guideline: ‘Always
program using as high a level of abstraction as you can’. That is, always declare the type of
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your fields, local variables and method parameters to be the highest class possible in the
inheritance hierarchy, then let polymorphism do the rest.

The reason for this guideline is that the higher the abstraction level you use, the more
reusable your code will be. For example, any code written in terms of Shape will work for
any kind of Shape — Square, Quadrilateral, Triangle, and any other subclasses that we might
add later. But code written for Square will only work for Square objects, code written for
Triangle will only work for Triangle objects, and so on.

Designers of class hierarchies have a complementary responsibility here: they should
make sure, wherever possible, that the specifics of each class are hidden behind general
messages that apply to all the related classes. For example, drawing a square on screen is
significantly different to drawing a triangle. Rather than exposing the difference to the client
programmer, we should design a message, or a group of messages, that can be placed on
Shape.

For example, we might provide a draw message on Shape, so that the client programmer
can tell a Shape to draw itself without knowing anything about how the drawing is done.
Alternatively, we could add a message called getLines to the Shape class, so that a client
programmer could retrieve the lines that make up the shape’s perimeter and draw them on
screen, without caring about how they were generated.

4.6 TYPE CASTING

In a statically typed language, when we pass a value from one context to another we need

to be sure that the new context is compatible with the old one (for example, we don’t want

to pass a Banana to a context that expects an Employee). Even when we're sure that the new

context is compatible with the old one, we may still need to convert the value to a different

type (for example, passing an Employee object from an Employee context to a Person context).
There are three situations in which a value changes context:

* Expression evaluation: In the expression 2 + 2, the compiler is being asked to add two
integers together to produce another integer. No problem, because the new context and
the old context are both integer.

On the other hand, if we code the expression 3.75 + 2, the compiler begins with
a real number and an integer, but it must produce a real number. In this case the
integer is compatible with the new context—because we can add any two types of
number together to produce another type of number — so the expression is valid. However,
computers represent integers and real numbers in different ways so, in order to perform the
arithmetic above, the compiler must first convert the integer into a real number (because

integers can be represented as real numbers, but not vice versa).
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Some languages allow objects to take part in expressions, as in the Java expression “The
date is " + aDate. These expressions must obey similar rules to the primitive examples
above. In this case, the compiler will translate the Date into a String by sending it the
toString message.

e Assignment: An assignment that doesn’t require a conversion is Person p = new Person(),
because the expression context and the variable context are both Person. However, the
assignment Person p = new Employee() requires a conversion from Employee to Person.
Person pointers are not represented differently from Employee pointers but the compiler
must be sure that an Employee can be used as a Person. If Person is a direct or indirect
superclass of Employee, the conversion will be safe, because the client programmer can
only use elements of the Person class.

An example of a primitive assignment that requires a conversion is float f = 2, in which
the integer 2 must be converted to a floating point number.

e Parameter passing: This is the same as assignment. The value of the actual parameter is
assigned to the declared parameter, for example, aUniversity.enrollPerson(new Employee()).
A primitive example is aliquid.setBoilingPoint(100), where the parameter is declared to
be float.

Converting a value from one type to another is called casting (because we cast the value
in a new light). The examples above are all implicit casts because the client programmer
doesn’t have to do anything special: the compiler can see that the conversions are valid and
just does them. In general, an implicit cast is possible if the new context is wider than the
old context. In terms of primitive values, wider means ‘the new context can accommodate
all possible values of the old context’; for object values, wider means ‘the new context is a
direct or indirect superclass of the old context’.

Dynamically-typed languages have a much easier time passing values between contexts.
For example, when executing the Smalltalk method addEmployee with a Banana as a
parameter, no compatibility testing or casting needs to be done: as long as addEmployee only
uses elements that are common to Employee and Banana, the method will run without error.
(We would still have a problem later if we attempted to transfer money to the Banana’s bank
account, but that would manifest itself as a run-time error.)

4.7 EXPLICIT CASTS

Implicit casts enrich statically-typed programming languages by allowing us to combine
different types of values in expressions and by allowing us to assign different types of values
to variables. But we can go one step further, by allowing the programmer to use an explicit

cast, to move from one context to a Compatible, but narrower, context.
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It turns out that the explicit casting of a value can cause problems, but the explicit casting
of a pointer is not nearly so bad. This is because, when we cast a value, we're modifying
the way the value is stored — storing the value using a narrower representation may lose
information. In contrast, if we cast a pointer, we're modifying the way we access the value,
but the value itself remains unchanged.

In a pure object-oriented language, primitives are always accessed as values and objects are
always accessed via pointers (efficiency versus polymorphism). In contrast, in a language like
C++, primitives and objects can be accessed either as values or via pointers: the programmer
has the choice. The upshot of this is that C++ programmers have to be much more careful.
For the rest of this discussion, let’s assume that we’re using a pure object-oriented language.
Let’s also assume that explicit casts are used only when necessary: turning an implicit cast
into an explicit one is allowed, but it has no effect.

Java allows a programmer to write
int i = (int) 3.75

(int) explicitly casts the real value 3.75 as an integer. The programmer, aware that an implicit
cast from float to int is impossible, is telling the compiler to force a square peg into a round
hole. In real life, forcing a square peg into a round hole tends to shear off the peg’s corners.
In programming, it's no different: the fractional part of the real number is sheared off.

The explicit cast above only works at all because int and float are compatible: boolean b
= (boolean) 3.75 would never make sense. In general, if there exists an implicit cast in one
direction, we can force an explicit cast in the other direction.

How about explicit casting for object pointers? Could the following example ever work?

Employee e = (Employee) new Person();

For pure object-oriented languages, the answer is no. Remember that casting a pointer
doesn’t change the representation of the value, it just changes the way we look at it. So, our
example is asking the compiler to let us treat a Person as an Employee. If the compiler allowed
this, we might try to use an Employee-only element which wasn’t there (getPayrollINumber, for
example).

How about the following pair of statements, could these ever work?

Person p = new Employee();
Employee e = (Employee) p;

In this case, the object we're trying to get e to point to really is an Employee, so the explicit
cast ought to be safe — we can’t abuse an Employee via an Employee pointer. But the compiler
is stuck. In order to work out that those statements are valid, the compiler would have to
analyze both statements. As already noted, compilers don’t do this kind of analysis because
it’s difficult and often impossible.
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However, occasionally this is a useful thing for the programmer to be able to do. Therefore,
the compiler enlists the help of the run-time system in order to allow the explicit cast, but
only because Employee is a subclass of Person. Subsequently, the run-time system needs to
check that the object pointed to by p is an instance of Employee at the time of the assignment
(or an instance of a direct or indirect subclass): if not, a run-time error will occur.

Because the explicit cast of an object pointer involves the run-time system, it is sometimes
referred to as a dynamic cast. Some people also use the terms upcast and downcast to refer to
implicit and explicit casting of object pointers, respectively, because an implicit cast moves
the type up the hierarchy and an explicit casts moves the type down.

Downcasts aren’t needed very often. You should only use them when retrieving an object
using a generic message — a message whose return type must be compatible with all possible
objects. For example, the Stack class we saw earlier has a generic message for popping an
object: it always returns a pointer of type Object, regardless of what’s actually on the top. (It
also has a generic message for pushing an object: the parameter’s type is Object, which might
require an upcast.)

Generic messages allow the stack to work for all kinds of object — cars, strings or whatever.
But they wouldn’t allow a client programmer to do the following:

aStack.push(new Plate("Domestic blue"));
PTate aPlate = aStack.pop();

The first line works, because it's an implicit upcast, but the second line doesn’t. However,
with the help of a downcast, the client programmer can do this:

aStack.push(new Plate("Domestic blue"));
PTate aPTlate = (PTlate) aStack.pop(Q);

4.8 GENERICITY WITH TEMPLATES

Some languages, such as Java, hardly need downcasts at all, because they have a facility
called genericity, which is better than downcasts. A generic class uses one or more class
parameters to refer to the types of objects that it expects to deal with. In Java, a generic class
is called a template. For example, the Java programmer can define a Stack class like this:

public class Stack<X> {
private List<X> Tlist;

public Stack<X>() {
Tist = new LinkedList<X>(Q);

}
public void push(X anX) {
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Tist.addETement(anX);
h
public X peek() {
return list.lastElement();

}
public boolean isEmpty() {

return Tist.numberOfElements() == 0;
}

public Object pop() {
X anX = Tist.TlastElement();
Tist.removelLastElement();
return anX;

Despite the new syntax, you should be able to pick out the important parts of this class.
The most important aspect is the class referred to throughout as X: this is a place-holder for
the actual kind of Stack created by the client programmer. Notice also that the type of the
field is more general than the implementation class (this is just good style for object-oriented
code in general).

Now, the client programmer can manipulate a stack using the following lines of code:

Stack<Plate> s = new Stack<Plate>();
s.push(new Plate("Hospital white"));
Plate p = s.popQ);

Because the programmer has declared that the Stack contains Plate objects, there’s no need
for an explicit cast before s.pop().
A programmer who wants a quick-trick-brick stack can write the following:

Stack<QuickTrickBrick> s = new Stack<QuickTrickBrick>(Q);

The Stack class is a relatively simple generic type, because none of its methods needs to
use the elements of the objects it contains. If we want to make assumptions about the class
of the stacked objects, we need something more. For example, we might decide that Stack
objects should only contain food — this would allow the Stack methods to treat the pushed
objects as Food, counting calories, for example.

If we want to make assumptions about the class parameters, we have to use constrained
genericity: adding constraints to the class parameters. Here’s part of a modified Stack class
written in Java, one that only works for different kinds of Food:

public class Stack<X extends Food> {

private int caloriesConsumed;
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}

public X pop() {
X anX = Tist.TlastElement();
Tist.removelLastETement();
// Now add anX’s calories to the total,
// only possible because X is always a Food
caloriesConsumed = caloriesConsumed + anX.getCalories();
return anX;

4.9 SUMMARY

In this chapter, we looked at:

Type systems, which stop us misusing values by forcing us to declare how we intend
to use a value. A static type system detects abuses at compile time while a dynamic
type system waits until run time.

Polymorphism, which enables a variable to hold different types of value and a
message to be associated with more than one method. The specific type of value or
method applicable in any case is determined at run time.

Casting between object types: with implicit casting, the compiler can automatically
convert between types of variable; with explicit casting, the programmer must specify
that an object is to be considered as a different type.

Templates in Java, in which a generic class uses parameters to refer to the types of
objects that it expects to deal with.

FURTHER READING

For more on Java templates, a relatively recent addition to the language, go to the Java web

site at java.sun.com.

REVIEW QUESTIONS

1.

With reference to Figure 4.8, which methods correspond to the following message sends
(in the order given)? Choose only one option.

tr.heightQ;
sh.perimeter(Q);
sq.height(Q;
sq.perimeter();
sh.height(Q);
tr.perimeter();
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(a) 3,1, none (error), 4, none (error), 5
(b) 3,5, none (error), 4, 3,5
(¢) 3,1, none (error), 4, 3,5
(d) 3, 5, none (error), 4, none (error), 5

Shape

1: perimeter()

Triangle

2: perimeter() Rectangle
4: perimeter() Square
Shape sh;

Triangle tr = new Triangle();
Square sq = new Square();

sh =tr;

3: height()
5: perimeter()

Figure 4.8: For use with Review Question 1

2. With reference to Figure 4.8, which of the following message sends would be allowed by

a compiler?

Choose all options that apply.

(a) sh.perimeter();

(b) tr.perimeter();
(¢) sh.height();
(d) sq.heightQ);
(e) sq.perimeter();
(0 tr.heightO;

3. With reference to Figure 4.8, which of the following assignments would be allowed by a
compiler? Choose all options that apply.

(a) sq=sh;
(b) sh=tr;
(c) tr=sq;
(d) tr=sh;
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(e) sh=sq;
0 sq=tr;

. What can an object-oriented type system be used for? Choose only one option.

(a) Improving runtime performance.

(b) Preventing misuse of a class.

(¢) Avoiding spelling mistakes.

(d) Making sure that all messages invoke a concrete method.
(e) Documentation.

() All of the above.

(g) None of the above.

. What does the term ‘polymorphism’ refer to? Choose all options that apply.

(a) The ability of a variable to point at different classes of object at different times.

(b) The fact that a message with the same signature can invoke different methods at
different times.

(c) All object-oriented programming languages are different.

(d) All object-oriented methodologies use a different notation.

. What is a generic class? Choose only one option.

(a) A class with no declared copyright.
(b) A class that represents all objects.
(¢) A class that has other classes as parameters.

ANSWERS TO ACTIVITY 2

1.

This is fine: a Shape variable must be able to point at a Triangle, because a Triangle is a
kind of Shape.

. This is fine: a Square is a kind of Shape.
. This is an attempt to point at a Triangle with a Square variable, so that must be wrong,

because a Triangle is not a kind of Square.

4. Similarly, a Square is not a kind of Triangle.

o Ut

. A Shape is not a kind of Triangle.
. A Shape is not a kind of Square.

ANSWERS TO ACTIVITY 3

1.

The getPerimeter message is introduced on Shape, so that is correct; since sh is pointing at
a Square, it’s the getPerimeter method on Square that is invoked.
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The getPerimeter method on Square is invoked.

The getPerimeter method on Triangle is invoked.

The compiler is happy and the getHeight method on Triangle is executed.

This is an error, because there is no getHeight message on Square, nor on its super-
classes — the compiler will reject this one.

We're trying to send getHeight to a Shape variable. If sh points at a Triangle, the message
would not be a problem; but sh could point at a Square, in which case the message would
be invalid. Compilers for static type systems tend to err on the side of caution: as the
message might arrive at an object that doesn’t know how to deal with it, the compiler
would reject the statement.

ANSWERS TO REVIEW QUESTIONS

1.

In Figure 4.8, the methods correspond to the message sends d. 3, 5, none (error), 4, none
(error), 5
In Figure 4.8, the following message sends would be allowed by a compiler:

(a) sh.perimeter();
(b) tr.perimeter();
(e) sq.perimeter();
(B tr.heightO;

With reference to Figure 4.8, the following assignments would be allowed by a compiler:

(b) sh=tr;
(e) sh=sq;

An object-oriented type system can be used for f. All of the above:

(a) Improving runtime performance.

(b) Preventing misuse of a class.

(¢) Avoiding spelling mistakes.

(d) Making sure that all messages invoke a concrete method.
(e) Documentation.

. The term ‘polymorphism’ refers to a. The ability of a variable to point at different classes

of object at different times and b. The fact that a message with the same signature can
invoke different methods at different times.
A generic class is c. A class that has other classes as parameters.






Software Development Methodologies

I n this chapter, we’re going to take a look at the software development process itself: the
steps we go through to write good software and the things that we produce along the way.
Collectively, the process, its steps and its products are referred to as a methodology.

Learning Objectives

Understand the classical phases of Understand the notation of Unified
software production. Modeling Language (UML).

Compare static (structural)
modeling with dynamic
(time-based) modeling.
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5.1 INTRODUCTION

All software, especially large pieces of software produced by many people, should be
produced using some kind of methodology. Even small pieces of software developed by one
person can be improved by keeping a methodology in mind.

A methodology is a systematic way of doing things. It is a repeatable process that we
can follow from the earliest stages of software development (the germ of an idea or a new
business opportunity) through to the maintenance of an installed system. As well as the
process, a methodology should specify what we're expected to produce as we follow the
process (and what form the products should take). A methodology will also include advice
or techniques for resource management, planning, scheduling and other management tasks.

Good, widely available methodologies are essential for a mature software industry — the
alternatives are highly unsatisfactory. The worst alternative is downright chaos, where
members of the development team run around in a panic, wondering how on earth they’re
going to come up with the latest system that they’ve been told to implement. Only slightly
better is the situation where an ad hoc development process is designed by amateur
methodologists within one organization — such in-house efforts need to be learnt by every
newcomer to the organization and they’re useless to anyone moving on.

Although most methodologies are designed to cope with teams of developers producing
large amounts of software, understanding the basics of a good methodology is essential for
those at the other end of the scale too (lone developers working on small problems) and at
all points in between. This is because:

* A methodology can help to impose discipline on the coding effort.

* Going through even the basic steps of a methodology increases our understanding of the
problem, improving the quality of our solution.

* Writing lines of code is only one of the many activities in software development: performing
some of the other activities helps us to spot conceptual and practical mistakes before we
commit them to source code.

* Atevery stage, a methodology specifies what we should do next, so we're not left scratching
our heads, thinking ‘Okay, what now?’

* A methodology helps us to produce code that is more extensible (easier to change),
more reusable (applicable to other problems) and easier to debug (because it has more
documentation).

Large development projects also benefit from:

* Documentation: All methodologies promote thorough documentation of every stage of
the development effort, so that the finished system is not an impenetrable monolith.



Introduction

101

e Reduced latency: Since the workflows, activities, roles and inter-dependencies are better
understood, there is less opportunity for human (and other) resources to lie idle for want
of something to do.

e Improved chances of delivery on time and within budget.

e Better communication between users, sales people, managers and developers: A good
methodology is based on logic and common sense, so it will be easy for all participants
to grasp the basics; thus, we have a more orderly development, with less scope for
misunderstanding and wasted effort.

e Repeatability: Since we have well-defined activities, similar projects should be delivered
to similar time-scales and with similar costs. If we produce similar systems over and over
again for different customers (e-commerce shop fronts, for example) we can streamline
the methodology in order to concentrate solely on the unique aspects of the latest
development; eventually we might automate parts of the development and even sell the
automations to third parties (think of a ‘shop front in a box’ product).

* More accurate costing: When asked ‘How much will it cost?’, there will be less temptation
to reply ‘How much have you got?’

A good methodology will address at least the following issues:

e Planning: Deciding what needs to be done.

¢ Scheduling: Mapping out when things will be done.

* Resourcing: Estimating and acquiring the human, software, hardware and other resources
that are needed.

* Workflows: The subprocesses within the wider development effort (for example, designing
the system architecture, modeling the problem domain and planning the development
effort).

 Activities: Individual tasks within a workflow, such as testing a component, drawing a
class diagram or detailing a use case, too small or indefinable to be a workflow in their
own right.

* Roles: The parts played by personnel within the methodology (developer, tester or sales
person).

e Artifacts: The products of the development effort: pieces of software, design documents,
training plans and manuals.

e Education: Deciding how to train personnel, if necessary, to fulfill their required roles;
deciding how end users (staff, customers, sales people) will learn how to use the new
system.

For the purposes of this book, we won’t be looking at the details of an industrial
methodology — that would require a book in its own right. Instead, we’ll use a special-
purpose methodology, called Ripple, which is derived from but is rather simpler than
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the Rational Unified Process. Before we examine Ripple, we need to have an idea of the
processes, activities and artifacts of software development in general.

5.2 CLASSICAL PHASES IN SOFTWARE
PRODUCTION

So, what does software development involve? There are a number of phases common to every
development, regardless of methodology, starting with requirements capture and ending with
maintenance. With the traditional approach, you're expected to move forward gracefully
from one phase to the other. With the modern approach, on the other hand, you're allowed
to perform each phase more than once and in any order.

The list below describes the common phases in software development — you may have
seen different names for some of these, but the essentials remain the same. At this stage, we're
interested in the intent of the phases rather than details of how you might actually go about
performing them. Be warned, though, that some methodologists combine requirements and
analysis, while others combine analysis and design.

5.2.1 Requirements

Requirements capture is about discovering what we’re going to achieve with our new piece
of software and has two aspects. Business modeling involves understanding the context
in which our software will operate —if we don’t understand the context, we have little
chance of producing something to enhance that context. The sort of question we ask
during the business modeling phase is ‘How does a customer purchase a television from
this shop?’

System requirements modeling (or functional specification) means deciding what capa-
bilities the new software will have and writing down those capabilities. We need to be clear
about what our software will do and what it won’t do, so that the development doesn’t veer
off into irrelevant areas and we know both when we've finished and whether we’ve been
successful. The sort of question we ask during the system requirements modeling phase is

‘How do we update the inventory system when a television has been purchased?’

5.2.2 Analysis

Analysis means understanding what we're dealing with. Before we can design a solution, we
need to be clear about the relevant entities, their properties and their inter-relationships. We
also need to be able to verify our understanding. This can involve customers and end users,

since they're likely to be subject-matter experts. The sorts of question we ask during the
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analysis phase are ‘What products do we sell in this shop? Where do they come from? How
much do they cost?’

5.2.3 Design

In the design phase, we work out how to solve the problem. In other words, we make
decisions, based on experience, estimation and intuition, about what software we will write
and how we will deploy it. System design breaks the system down into logical subsystems
(processes) and physical subsystems (computers and networks), decides how machines will
communicate, chooses the right technologies for the job, and so on. The sort of decision
we make during the system design phase is ‘We're going to use an intranet and the Java
Messaging Service for communicating sales results to head office.” In subsystem design we
decide how to cut each logical subsystem into effective, efficient and feasible code. The sort
of decision we make during the subsystem design phase is ‘Line items in an inventory are
implemented as a hash table, keyed by part number.’

5.2.4 Specification

Specification is an often-ignored, or at least often-neglected, phase. The term specification is
used in different ways by different developers. For example, the output of the requirements
phase is a specification of what the system must be able to do; the output of analysis is a
specification of what we're dealing with; and so on. In this book, the term is used to mean
‘describing the expected behavior of our programming components’. (Since the specification
techniques described are performed on classes of objects, some of the confusion can be
avoided by using the term class specification.) A class specification is a clear, unambiguous
description of the way the components of our software should be used and how they will
behave if used properly. The sort of statement we make during the specification phase is ‘If
the shop assistant object is logged on, it can ask the store object for today’s special offers; in
return, it receives a list of products, sorted in alphabetical order’.

This book gives special attention to specification, because of the crucial underlying
principle of Design by Contract. The idea behind a contract is that whenever one piece of
software calls upon the services of another, both the caller and the called have obligations to
fulfill. Bearing software contracts in mind is useful at all stages of development.

Specification can be used in the following ways:

* As a basis for designing test software to exercise the system.

* To demonstrate that our software is correct (this is desirable for life-critical applications).

* To document our software components to the extent that they could be implemented by
third parties.

e To describe how our code can be reused safely by other applications.
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5.2.5 Implementation

This is where we do the donkey work, writing pieces of code that work together to form
subsystems, which in turn collaborate to form the whole system. The sort of task we carry
out during the implementation phase is ‘Write the method bodies for the Inventory class, in
such a way that they conform to their specification’. Although we would expect most of the
difficult coding decisions to have been made before we reach this phase (during design),
there is still plenty of scope for creativity: although the public interfaces of our software
components will have been well designed, specified and documented, programmers have
free rein to decide on the inner workings. As long as the end result is effective and correct,
everyone will be happy.

5.2.6 Testing

When our software is complete, it must be tested against the system requirements to see
if it fits the original goals. The sort of question we ask during the testing phase is ‘Can a
shop assistant use the till interface to sell a toaster, decreasing the product’s inventory as
a side-effect?” As well as this kind of conformance testing, it's a good idea to see if our
software can be broken via its external interfaces — this helps to protect us against accidental
or malicious abuse of the system when it’s been deployed.

It is a good idea for programmers to perform small tests as they go along, to improve
the quality of the code that they deliver. Generally speaking, however, major tests should
not be designed, implemented or carried out by the developers who wrote the software.
To understand why, consider buying a new house and spending vast amounts of time and
money refurbishing it from top to bottom. It’s unlikely that you would want to whack the
structures and fixtures with a sledgehammer to see if they're durable, ask passing strangers
whether they think that you have good taste or pretend to be a burglar to see if you can break
in. These are exactly the kinds of things that we need to be doing during software testing. (It
helps if members of the test team have a cruel streak.)

5.2.7 Deployment

In the deployment phase, we're concerned with getting the hardware and software to the end
users, along with manuals and training materials. This may be a complex process, involving
a gradual, planned transition from the old way of working to the new. The sort of task we
carry out during the deployment phase is ‘Run the program setup.exe on each server machine
and follow the instructions that appear’.

5.2.8 Maintenance

When our system is deployed, it has only just been born. A long life stretches before it,
during which it has to stand up to everyday use — this is where the real testing happens.
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The sort of problem we discover during the maintenance phase is ‘When the log-on window
opens, it still contains the last password entered.’

As software developers, we're normally interested in maintenance because of the faults
(bugs) that are found in our software. We must find the faults and remove them as quickly
as possible, rolling out fixed versions of the software to keep the end users happy. As well
as faults, our users may discover deficiencies (things that the system should do but doesn’t)
and extra requirements (things that would improve the system). From the business point
of view, we would hope to fix and improve our software over time to maintain competitive
advantage.

5.2.9 Key Questions

These key questions will help you to remember the purpose of each of the software
development phases:

e Requirements phase:
‘What is our context?’
‘What are we trying to achieve?’
* Analysis phase:
‘What entities are we dealing with?’
‘How can we be sure we have the right ones?’
e System design phase:
‘How are we going to solve the problem?’
‘What hardware and software will we need in the finished system?’
e Subsystem design phase:
‘How are we going to implement the solution?’
‘What will the source code and supporting files look like?’
* Specification phase:
‘What rules govern the interfaces between the system components?’
‘Can we remove ambiguity and ensure correctness?’
e Implementation phase:
‘How can we code the components to meet the specification?’
‘How do we write stylish code?’
 Testing phase:
‘Does the finished system satisfy the requirements?’
‘Can we break the system?’
* Deployment phase:
‘What do the system administrators have to do?’
‘How can we educate the end users?’
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* Maintenance phase:
‘Can we find and fix the faults?’
‘Can we improve the system?’

5.3 SOFTWARE ENGINEERING AND THE
WATERFALL METHODOLOGY

During the 1970s, software gurus gave much thought to the problem of how best to write
software. How could they replace ad hoc, proprietary mechanisms with scalable, portable
methodologies? What the gurus came up with was software engineering. The idea was that
software production could be like building a real-world structure, such as a road bridge.
With the help of physics, engineering is systematic: if we follow the rules, we will deliver a
working product, complete with safety margins to protect against abnormal conditions.

There are some obvious drawbacks to this analogy. Most programming is done with
imperative programming languages that require the programmer to tell the computer exactly
what to do — statement by statement, branch by branch, function by function. This is
analogous to the bridge engineer having to tell a piece of steel exactly how to behave, rather
than relying on the laws of physics. And that’s not all: the programmer also has to assemble
the data piece by piece. Can you imagine a bridge builder having to assemble the bridge’s
road surface, stone by stone, and then telling each stone exactly which other stones it was
touching?

As well as requiring the programmer to be precise about behavior and structure, imperative
languages don’t cope well with imprecise data. Generally speaking, if a piece of data in the
system is slightly inaccurate, the system might not behave as expected. In contrast, a bridge
builder can happily connect girders using rivets that are all slightly different in size: the
engineer can count on tolerances and margins of error, but the programmer can’t.

These drawbacks did not prevent the growth in popularity of software engineering and
methodologies grew up around the assumption that software production could be systematic
and predictable. This led to the so-called waterfall methodology (see Figure 5.1).

Development flows smoothly over the classical phases (requirements, analysis, system
design, etc.), with each phase being completed satisfactorily before the next phase is
attempted. It’s easy to plan (because the plan is similar every time) and it’s easy to schedule
(use the complexity of the problem and the number of developers to work out how long the
development will take, then divide the result by the total number of phases...). The waterfall
methodology allows us to have developers with different kinds of expertise at each stage
(hence the classical roles of business analyst, systems analyst, designer, programmer, tester

and system administrator). Each team of specialists slogs away during their own phase, until
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Figure 5.1: Waterfall development

they’re sure that they have solved their part of the problem; then they document their work,
using their own jargon and notation, and pass the baton to the next team of specialists.

The waterfall methodology is a nice idea, but unrealistic. Even if we're clever enough
to work out how long the development might take, before we've looked in detail at the
problem, we can’t tell what difficulties we will encounter along the way (bad design decisions,
pernicious faults, inadequate technology, or earthquakes). So, any individual phase may take
longer than expected. Also, work tends to expand to fill the time available, so the phases that
precede a problem are likely to have used up all the time available to them. The net effect
is that the whole project is delivered late. In practice, this is exactly what happens in the
majority of cases.

The waterfall methodology may fail for other reasons too, such as analysis paralysis — the
analysts are reluctant to sign off their documentation because they can’t decide whether
they've understood and documented the system entities well enough to allow the designers to
do their job. To be fair, this kind of problem is not restricted to analysts: the designers might
be worried that their design is inadequate; the specifiers might worry that their specification
is too ambiguous to be coded; and so on, leading to even more delays. In practice, it’s not
possible to complete each phase perfectly. Throughout the development, members of the
team will discover problems with the work that’s gone before. Whenever this happens, we
have a tricky choice: we can return to the earlier documentation and fix it, but that would
mean climbing back up the waterfall (which we’re not supposed to do); or we could make
a note of the problems, with the intention of repairing the documentation at the end of the
project (which rarely happens, so the final documentation doesn’t match the final system).

And what about the end users? Are they going to get what they want or need? The
potential users of the system will be colleagues or third parties, probably paying us real
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money. These customers will presumably have been consulted during the requirements
phase: we will have asked them how they currently work; we will have brainstormed the
kind of system functions that could be delivered; we will have reached an understanding
about what is going to be delivered and what isn’t. But what if we find that we can’t deliver
some of the functions, because they're too difficult or we run out of time? The customers
won't find out until testing or maybe even deployment — far too late to change anything.
What if the project takes two years to complete? End users’ requirements will normally
change significantly in two years. Are we going to deliver a system that’s no longer relevant?
What we need is a way of involving users throughout the development, so that we don’t
deliver something that’s a nasty surprise. We also need to reduce the time between the
promised functionality and the point where we can demonstrate that functionality. But the
waterfall model is too rigid to allow us to incorporate user feedback and take corrective
action.

And these aren’t the only problems. For example, the waterfall methodology will always
suffer from being focussed on solving one particular problem — this makes it more difficult
to produce reusable code. Eating an elephant is a daunting task (see Figure 5.2); if you were
told to eat one, would you prefer to open wide and swallow the beast whole or to eat a
manageable portion, have a rest, eat another portion, have a rest, and so on, until the whole
elephant had been consumed? Waterfall development uses the first approach and attempts to
produce a complete solution in one go. As we'll see, it’s possible to use the second approach,
delivering the solution piece by piece.

Given the large number of problems with the waterfall methodology, some of which should
have been obvious at the outset, you may find it hard to believe that any software development
was ever done this way. Well, it was and in some places it still is. Some corporations have
been quite happy to base large developments on the waterfall methodology, integrate it into
their software departments as best practice and base entire career ladders on it (start as
programmer, get promoted to designer, then systems analyst, and so on). However, most
object-oriented enthusiasts and, shall we say, enlightened corporations, prefer something
rather more flexible.

Having debunked the waterfall methodology, it’s only fair to point out that it is still useful
in the following cases:

* Whenrepeating a particular kind of development with only minor differences (for example,
an e-commerce shop front for a particular company may only differ from the previous one
in terms of product descriptions, prices, company name and logo).

* As a framework for learning the different techniques used in software development:
although the waterfall methodology is too simplistic for real-world development, it does
contain the classical phases in a logical order, so it's good for learning.

* As a single pass around a spiral methodology.
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Figure 5.2: Eating an elephant

* As a framework to support an iterative methodology.

e For the quick development of small projects with small numbers of developers, as in
prototyping, production prototyping, proof-of-concept or Rapid Application Develop-
ment (RAD).

Four new styles of programming have been developed as a result of the simplicity and

power of objects, the reuse of code in new applications, and the advent of application
builders:

e A software prototype, just like an engineering prototype, is something that we build in
order to try out some of the functions of the finished product. A prototype doesn’t need
to be elegant, or industrial strength, because it’s just an experiment. We should set aside a
prototype once it has served its purpose and start afresh.

e A production prototype is similar to a prototype, except that we retain some or all of the
code through to completion of the project.

A proof-of-concept is a project or a piece of software designed to demonstrate the feasibility
of some technology, or group of technologies. For example, we might need to convince a



110

Chapter 5

customer that we're qualified to take on a particular project or we might need to convince
management to adopt a new approach to software production.

e The phrase Rapid Application Development (RAD) was coined by enthusiasts of object
orientation to mean building a system more quickly than with traditional techniques.
As object-oriented systems became practical in the 1980s, object enthusiasts were able
to impress traditional developers (and managers) with how quickly they could assemble
small systems.

An application builder is a tool that allows the programmer to assemble software in the
same way that a computer manufacturer assembles hardware. As time has passed, application
builders have employed larger and larger components so that systems can be constructed
more quickly than before. In most cases, objects destined for an application builder need to
have a particular kind of interface in order to work properly. This means that the programmer
needs to follow predefined style guidelines rather than designing their objects any way they
see fit. For example, Java application builders expect to work with objects that follow the
JavaBeans guidelines [Campione et al. 98].

5.4 NEW METHODOLOGIES

Before we can replace the waterfall methodology with something better, we need to accept
that it is impossible to develop a piece of software in one pass. However hard we try, the first
time around our software will be incomplete or imperfect or both. Therefore, we need to
perform the classical phases of software development several times, adding to and perfecting
the system as we go.

5.4.1 Spiral Methodology

One way to look at this is as a spiral methodology (see Figure 5.3). We start, as ever, with
requirements capture, which may be relatively complete or rather vague at this stage; next,
we perform some exploratory analysis to increase our understanding of what it is that we’re
dealing with; then we sketch out a system design that we feel will fit the requirements and
design part of the system,; then, despite the fact that all the preceding phases are incomplete,
we write some code. Once we've finished our initial coding effort we can try out what we
have so far, perhaps by running some informal tests or by showing what we have to our
sponsors (end users, managers and customers paying for the system).

By the time we've been through the cycle once, we've increased our understanding of the
problem domain and our understanding of the proposed solution. We've also involved our
sponsors, so that they can correct any misunderstanding of the business or the functionality
that they expect to see in the final system. Armed with our new body of knowledge, we
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Figure 5.3: Spiral development methodology

can go around the spiral again: now we flesh out the requirements; we're more thorough
(and correct) with our analysis; we reinforce the system design; we add detail to the
subsystems; and then we write some more code, code that stands more chance of meeting
the requirements.

Once our system is complete, perhaps after three or four spirals, we can perform rigorous
testing and deploy the system. Compared to the waterfall methodology, we’re now working
more like a sculptor creating a statue: we put together a basic framework of chicken-wire,
then we add clay, layer by layer, until we achieve the desired effect. As we work: it becomes
clearer and clearer how long our project will take; all our sponsors can see that progress is
being made; and our confidence that we can deliver a good result grows. We finish when
everyone is happy.

It looks as though the spiral methodology has fewer problems than the waterfall method-
ology: it involves our sponsors throughout the life cycle; everyone can see that we're on
track; it’s less rigid (we can tune the number of revolutions and how long each one takes).
Altogether, it’s a better fit to the creative nature of software development, as opposed to the
engineering nature of building a bridge.

The spiral methodology isn’t perfect though. The trouble is that we’ve simply attacked the
waterfall by doing everything three or four times, which means that, although the problems
have got smaller, they haven’t gone away altogether. We still have some inflexibility, because
we're supposed to proceed in an orderly manner through the classical phases; if we find
mistakes, we can’t fix them until the next revolution. Therefore, the spiral methodology on

its own is not much use — we need to combine it with something else.

5.4.2 Iterative Methodology

So how do we improve the spiral methodology? To extend our sculpture analogy, the spiral
methodology forces us to complete each layer of clay before we go on to the next. For
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Figure 5.4: Iterative development methodology

example, let’s say that our sculpture is going to be of a person. Having put the first layer of
clay on the head, what if we decide that we want to work on the nose for a while before
moving on to the rest of the body? What if, having added the torso, we decide that the
forehead is now too narrow and warrants some immediate attention?

What we need is a methodology that allows us to iterate over the phases, moving
backwards and forwards, or round and round, as the need arises. This leads to the iterative
methodology depicted in Figure 5.4. (Here, iterations are shown taking place within a spiral,
but they could also be applied to a waterfall.) Now, we have a much more natural way of
massaging our software from its early stages into a well-formed, elegant whole that satisfies
all the sponsors. But, you're probably wondering, how do we avoid chaos? We have at least
three life-savers here:

* The classical phases remind us what we should be doing at each stage and in which general
direction we should be moving.

* The artifacts (diagrams, descriptions, code, etc.) that we produce as we work within the
classical phases do not get thrown away but are gradually improved as we move towards
deployment.

e The software production tools that support our chosen methodology and the notations
help us to ensure that the artifacts are consistent and kept in one place.

But we still have a problem. With the iterative and spiral methodologies, we're still trying
to eat the elephant: we're still trying to deliver a complete system for deployment. So, we
need to add a final element: increments.

5.4.3 Incremental Methodology

Let’s return to our sculpture analogy one last time. If we're asked to produce a family of
sculptures — the parents, the kids, the cat, the dog — it’s a good idea to deliver one sculpture
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at a time, so that our sponsors can see our progress as each piece is delivered; we get to sign
off each piece of work and concentrate on the next; we can ask for incremental payment. In
software development, this is the incremental methodology (see Figure 5.5).

release 1.0 1.1 2.0 2.1

\4

time

Figure 5.5: Incremental development

With the incremental methodology, we aim to deliver version 1.0 of our system with
basic, critical functionality. Then, some time later, we deliver version 1.1 with additional
functionality (as a replacement for version 1.0). Next, we might deliver version 2.0 with a
whole raft of changes. And so on, throughout the lifetime of the system. Not only do we
acknowledge from the start that we need several bites at the elephant, but we're keeping up
with changing requirements and a shifting marketplace. As you probably know from your
own experience as a software purchaser, incremental delivery is what tends to happen in
practice anyway, whether or not we plan for it. In other words, if we try to swallow the
elephant whole, we fail. By planning for incremental delivery, we turn the perception of
failure into a perception of wisdom.

However, we must avoid at all costs the nightmare scenario of rewriting all our code for
each new increment — this would be like an endless series of separate waterfalls. Thus, good
analysis, good design, reusable code and extensibility become critical.

5.4.4 Combining the Methodologies

So, the waterfall methodology is inadequate in most cases —although it does have the
phases in the correct logical order — and the alternative methodologies (spiral, iterative and
incremental) all have desirable properties but none of them is good enough on its own. So,
we must combine all four in some way, but how?

At the highest level, we know from the incremental methodology that we must plan
a succession of increments. Within each increment, the spiral methodology suggests that
we should have at least two attempts to produce each increment. Within each spiral, the
waterfall methodology specifies the phases and the order in which they occur. Within each
mini-waterfall, the iterative methodology allows us to repeat phases, or combinations of
phases, as we see fit (for example, several cycles of requirements and analysis); the iterative
methodology also allows us to fix a problem as soon as we discover it (for example, we might
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discover during subsystem design that the system design makes some piece of functionality
impossible, so we fix the system design before we carry on). The combination of the

methodologies is shown in Figure 5.6.
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Figure 5.6: Combining spiral, iterative and incremental development

None of this discussion indicates how we should plan and schedule a particular project,
which depends on the size of the project, the number of developers, the experience of
the developers, the experience of the managers in planning and scheduling this kind of
development, and so on. As far as this book is concerned, detailed planning and scheduling
are management issues rather than software issues, so they’re not covered. Suffice to say that,
in object orientation, there should be no absolutes: it's quite reasonable for the managers,
mentors and experienced developers to decide on the increments, spirals, iterations and
artifacts that are appropriate for each new development. Then, the planning must be adapted
in the light of increasing knowledge and changing requirements.

Although most theorists agree on the nature of the waterfall methodology, there is some
disagreement about the terminology used for the others. In this book, you've seen particular
definitions of the spiral, iterative and incremental methodologies but you should be aware
that other people use these terms differently or even as synonyms. In particular, ‘spiral’
is sometimes referred to as ‘iterative’. However, the ideas discussed here are equally valid
whatever name you give them.

5.5 OBJECT-ORIENTED METHODOLOGIES

All object-orientation experts agree that a good methodology is essential for software
development, especially when working in teams. Thus, quite a few methodologies have
been invented over the last decade. Broadly speaking, all object-oriented methodologies are
alike — they have similar phases and similar artifacts — but there are many small differences.

Object-oriented methodologies tend not to be too prescriptive: the developers are given
some choice about whether they use a particular type of diagram, for example. Therefore, the
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development team must select a methodology and agree which artifacts are to be produced,
before they do any detailed planning or scheduling.
In general, each methodology addresses:

e The philosophy behind each of the phases.

e The workflows and the individual activities within each phase.

e The artifacts that should be produced (diagrams, textual descriptions and code).
e Dependencies between the artifacts.

e Notations for the different kinds of artifact.

e The need to model static structure and dynamic behavior.

Static modeling involves deciding what the logical or physical parts of the system should
be and how they should be connected together. Dynamic modeling is about deciding how
the static parts should collaborate. Roughly speaking, static modeling describes how we
construct and initialize the system, while dynamic modeling describes how the system
should behave when it’s running. Typically, we produce at least one static model and one
dynamic model during each phase of the development.

Some methodologies, especially the more comprehensive ones, have alternative develop-
ment paths, geared to different types and sizes of development. The methodology used in
this book, Ripple, is geared towards learning what’s involved in all software development,
large or small, but it is applicable to the real world as well.

5.5.1 UML, RUP and XP

By the mid-1990s, the best-known methodologies were those invented by Ivar Jacobson
[Jacobson et al. 92], James Rumbaugh [Rumbaugh et al. 91] and Grady Booch [Booch 93].
Each had his own consulting company using his own methodology and his own notation.
By 1996, Jacobson and Rumbaugh had joined Rational Corporation (founded by Booch),
and they had developed a set of notations which became known as the Unified Modeling
Language (UML) [OMG 03a]. The ‘three amigos’, as they have become known, donated
UML to the Object Management Group (OMG) for safekeeping and improvement. OMG
(www.omg.org) is a not-for-profit industry consortium, founded in 1989 to promote open
standards for enterprise-level object technology; their other well-known work is CORBA
[OMG 04].

Some developers consider UML simply as a notation to be used for brainstorming and
high-level documentation. Others consider UML to be a pictorial programming language,
generating code from it or synthesizing it from existing code. UML was used as a notation
during brainstorming of the case study for this book. At the end, the main diagrams were
made to match the finished code exactly — thus, the end result looks the same as it would
have done if UML had been used as a pictorial programming language.
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Once UML was in safe hands, the three amigos set about designing a methodology that
drew on the best aspects of their individual work. Within a couple of years, they had come up
with their own spiral, iterative and incremental method called the Rational Unified Process
(RUP) [Jacobson et al. 99]. As you might expect, RUP is not the only methodology available,
nor even the only one that uses UML as the notation.

Another popular methodology is extreme programming (XP) [Beck 99]. XP is referred
to as an agile methodology because it is responsive to change. XP is distinguished by two
radical ideas: pair programming and test-driven development. With pair programming,
all development is carried out by two people sitting in front of the screen rather than
one — the idea is that, rather than improving the speed at which software is produced, pair
programming improves the quality of the software (it also helps developers to accelerate their
growth by the sharing of ideas). According to fans of test-driven development, continuous
testing is so important that not only should it be done by the developers themselves, but the
tests should be written before the code.

5.5.2 The Need for Development Tools

To be effective, any spiral, iterative and incremental methodology requires an end-to-end
development tool. The need to amend project artifacts iteratively is a strong justification for
the use of a software tool. Such a tool should allow members of the project team to produce
the artifacts and then to store them. More specifically, it should support:

* Traceability: Recording the connections between an artifact and the artifacts derived from
it, for example, recording which particular subsystem gave rise to a group of implemented
classes. Most traceability information will be entered by developers rather than inferred
by the tool.

* Change history: Recording the changes that were made to artifacts, who made the changes
and when. Where feasible (that is, with textual artifacts) the tool should be able to provide
a summary of the differences between one edition of the artifact and another.

* Multiuser access control: Making sure that simultaneous access to artifacts doesn’t cause
problems. There are three mechanisms relevant here: authorization (controlling who can
read the artifacts and who can edit them); multiuser read—single-user edit (only allowing
one developer at a time to edit an artifact or group of artifacts, but allowing all authorized
users to see the unedited version); versioning (allowing any number of developers to edit
an artifact, each producing a distinct version of the artifact — at any time, only one version
will be the official one).

* Reduced redundancy: Ensuring that we never have to update anything in more than one
place. Typically, information will appear in several artifacts at once. If we have a tool, it
can treat the artifacts as alternative projections on a single model.
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 Consistency checking: Ensuring that an artifact is consistent with related artifacts. It’s not
always possible to enforce consistency. For example, in an ideal world, a tool would be
able to check that the code written for a method conforms to its specification, but modern
computers simply can’t do that (it’s just too difficult, or even impossible). Even in cases
where the tool can enforce consistency (or traceability for that matter), the developer must
be allowed to disable the check. For example, one developer might want to carry analysis
classes through to the design phase, while another might prefer to start design with a new
set of classes altogether: any tool that requires every analysis class to appear in the design
model would be a help to the first kind of developer and a hindrance to the second.

e Networked operation: Providing access to all artifacts from any machine on the project
network. These days, the best foundation for networked operation is TCP/IP, the basis of
all protocols that operate over the Internet and individual intranets.

e Testing the artifacts that we produce, as we go along. The most obvious case is where
implementation code is tested for effectiveness and correctness, but the principle can be
applied to other artifacts too (as in the case of recording the results of design review).

Rational Corporation developed a tool called Rose, based on RUP and UML. Rose became
probably the best-known object-oriented development tool. In 2003, Rational was bought by
IBM and the tool has been reworked as a set of modular products (and is now called Rational
Application Developer). Of course, there are many development tools available — Rational
products are only mentioned here because of the historical perspective.

5.6 RIPPLE OVERVIEW

In this book, you will find object-oriented versions of all the classical phases of software
development and you will see how they fit into an object-oriented methodology. Because
object orientation is so accessible, developers can be involved in all of the phases; customers
can be involved in the early stages, which helps developers to do their job; and managers are
not shut out of the developers’ world, so communication is improved.

We have seen how the classical phases fit into the ideal object-oriented methodology — one
that draws on the best aspects of the spiral, iterative and incremental approaches. In
subsequent chapters, we’ll look at each of the major phases that are carried out before the
release of code: requirements, analysis, system design, subsystem design, specification and
testing. Implementation won'’t be covered extensively, because that would require detailed
knowledge of a particular programming language. Design patterns will be discussed, because
they allow us to take implementation ideas off the shelf.

By the end of this book, you will find that you have traveled around one spiral of an
initial increment (version 1.0, after an iterative spiral, if you like). Although this may look
suspiciously like the waterfall methodology dressed up as something more elegant, it’s simply
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the nature of a book: content laid out end to end with no repetition. It can’t be emphasized
enough that, when you come to try these techniques for yourself, you must be prepared to
spiral, iterate and deliver incrementally.

The case study used from here on, iCoot, was certainly not developed in a waterfall
fashion. The artifacts included in Appendix B resulted from two increments, each comprising
a number of iterative spirals.

Since UML, the de facto standard notation, is used throughout this book, you can be sure
that the diagrams that you see will be similar to the ones that youw'll encounter in the real
world. For Ripple, UML notation is employed whenever possible.

UML has 13 types of diagram. The UML specification doesn’t say where these diagrams
should be used in any particular methodology — we're free to use whichever we think is
appropriate at any stage.

* Use case diagrams categorize the ways in which a system is used.

* Class diagrams show classes and how they can be fitted together (they can also show
objects).

* Object diagrams show only objects and how they can be fitted together.

* Activity diagrams show activity by humans or objects in a similar way to a flow chart.

 State machine diagrams show the various states of any object with an interesting or
complicated life cycle.

* Communication diagrams show the messages sent between objects in some scenario.

* Sequence diagrams show similar information to communication diagrams, but emphasizing
sequences rather than connections.

e Package diagrams show how related classes are grouped together, for the benefit of
developers.

* Deployment diagrams show machines, processes and deployed artifacts for a finished
system.

e Component diagrams show reusable components (objects or subsystems) and their
interfaces.

* Interaction overview diagrams show individual steps of an activity using sequence dia-
grams.

* Timing diagrams show precise timing constraints for messages and object states.

e Composite structure diagrams show how objects fit together in an aggregation or compo-
sition, showing interfaces and collaborating objects.

Table 5.1 summarizes the artifacts of Ripple, organized by phase. As you can see, some of
these artifacts are found in UML and some are not. This is simply because UML doesn’t cover
everything; to a large extent, it just allows us to draw pictures of our code. For the Ripple
artifacts that are not covered by UML, alternative notation is used. Despite the fact that this
notation is nonstandard, its content is based on widely accepted theory and practice.
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Table 5.1: Ripple artifacts by phase

Phase Artifacts UML
Genesis Mission statement or informal requirements No
Roles No
Responsibilities No
Project plan No
Workbook No
Glossary (update throughout) No
Test plan No
Requirements Business Actor list (with descriptions) No
Use case list (with descriptions) No
Use case details No
Activity diagrams (optional) Yes
Communication diagrams (optional) Yes
System Actor list (with descriptions) No
Use case list (with descriptions) No
Use case details No
Use case diagram Yes
Use case survey No
User interface sketches No
Analysis Class diagram Yes
Communication diagrams Yes
Design System Deployment diagram Yes
Layer diagram No
Subsystem Class diagrams Yes
Sequence diagrams Yes
Database schema No
Class Specification Comments No
Implementation Source code No
Testing Test reports No
Deployment Shrink wrapped solution No
Manuals No
Training material No
Maintenance Fault reports No
Increment plans No

-




120

Chapter 5

Ripple is described progressively as we go through the chapters, but if you would
like to read a quick summary at any point, go to Appendix 1. Since this book has an
emphasis on software-related artifacts, the focus is on requirements, analysis, design and
specification. Glossaries, test plans and mission statements are also discussed. Other issues,
such as management, implementation, deployment and maintenance won'’t be covered in
any detail.

Although you will see an example of an activity diagram and a state machine diagram,
they’re not used widely here and are generally considered optional. Also, not all of the
UML diagram types are used. Component diagrams, interaction overview diagrams, timing
diagrams and composite structure diagrams are simply not necessary for the purposes of
this book. Most of these types of diagram can be expressed using the other diagrams,
apart from timing diagrams, which are more useful for the design of real-time software and
hardware.

As well as the diagrams, UML has a class specification language called Object Constraint
Language (OCL). OCL won’t be covered, because it would require an entire book in its own
right; however, in Chapter 12, you will find a small example, to give you a taster. Most of
the specification discussion is informal, relating to comments in code and design artifacts.

In the next few sections, youw'll see examples of some of the UML diagrams that are used
for Ripple. You should bear in mind, though, that UML, like most comprehensive standards,
is rather large. Therefore, for practical reasons, you will be shown only the fundamentals of
the notation, with some of the finer detail left out.

Whenever you look at one of the diagrams in this book, bear in mind that UML allows us
to suppress information that is not relevant to the discussion. For example, just because you
only see labeled boxes when a class is being discussed, don’t assume that the class has no

attributes or operations.

5.6.1 Use Case Diagram

A use case is a static description of some way in which a system or a business is used, by its
customers, its users or by other systems. A use case diagram shows how system use cases
are related to each other and how the users can get at them. Each bubble on a use case
diagram represents a use case and each stick person represents a user. Use case diagrams
(static artifacts) are described in Chapter 6.

Figure 5.7 depicts a car rental store accessible over the Internet. From this picture, we can
extract a lot of information quite easily. For example, an Assistant can make a reservation; a
Customer can look for car models; Members can log on; users must be logged on before they
can make reservations; and so on.

Each use case is more than just a title such as U7:Make Reservation or U13:Look for Car

Models; it must include the actual steps involved in using the system or business. Although



Ripple Overview

121

iCoot

U13: Look for
I _Car Models

X
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Figure 5.7: A use case diagram

UML specifies a notation for use case diagrams, it doesn’t do so for the steps of the use case
itself. RUP refers to the steps of a use case, and a few other bits and pieces, as use case details.

The details for U3:View Car Model Details are shown in Figure 5.8. It should be easy for
you to appreciate that viewing car model details involves a customer selecting a car model,
requesting its details, and then receiving specific information about the car model in return.
Use case details (dynamic artifacts) are described in Chapter 6.

5.6.2 Class Diagram (Analysis Level)

A class diagram shows which classes exist in the business (during analysis) or in the system
itself (during subsystem design). Figure 5.9 shows an example of an analysis-level class
diagram, with each class represented as a labeled box. Class diagrams (static artifacts) are
introduced in Chapter 7.

As well as the classes themselves, a class diagram shows how objects of these classes
can be connected together. For example, Figure 5.9 shows that a CarModel has inside it a
CarModelDetails, referred to as its details.
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U3: View Car Model Details. (Extends U2, extended by U7.)
Preconditions: None.
1. Customer selects one of the matching Car Models.
2. Customer requests details of the selected Car Model.
3. iCoot displays details of the selected Car Model
(make, engine size, price, description, advert and poster).
4. If Customer 1is a logged-on Member, extend with U7.
Postconditions: iCoot has displayed details of selected Car Models.
NonFunctional Requirements:
rl. Adverts should be displayed using a streaming protocol
rather than requiring a download.

Figure 5.8: Details of a system use case

1.% rented under 0..1 *
Car Rental
detevlils * taken out
1 | by
v
Car 1
Details
example of Car * Customer
P Model
Details
Make 1 | lr
1 A
1.% details
makes > Car >— 1

* Model " : Member _I
Fl '

. 1.* 1.% .
classified  sold with
as b'V guargnteed Iiv?s Internet
| y a 1| Account
1 1
1 1
Category Vendor .
Credit Address
Card

Figure 5.9: A class diagram at the analysis level

5.6.3 Communication Diagram

A communication diagram, as its name suggests, shows collaborations between objects. The
one shown in Figure 5.10 describes the process of reserving a car model over the Internet: A
Member tells the MemberUl to reserve a CarModel; the MemberUl tells the ReservationHome to
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m:Member Q

c:CarModel

1:reserve(c) —>

<— 1.1:fineWarning()
1.1.1:confirmReserve() —> @
<— 1.1.1.3:reservationNumber(n)

:MemberUI

Member

r:Reservation

:Reservation
Home

Figure 5.10: A communication diagram

create a Reservation for the given CarModel and the current Member; the MemberUl then asks
the new Reservation for its number and returns this to the Member. Communication diagrams

(dynamic artifacts) are described in Chapter 7.

5.6.4 Deployment Diagram

A deployment diagram (see Figure 5.11) shows how the finished system will be deployed
on one or more machines. A deployment diagram can include all sorts of features such as
machines, processes, files and dependencies.

Figure 5.11 shows that any number of HTMLClient nodes (each hosting a WebBrowser)
and GUIClient nodes communicate with two server machines, each hosting a WebServer and
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* *
<<device>> CootHTMLClient
<<device>>
CootGUI
Client
<<ExecutionEnvironment>>
WebBrowser
HTTP JRMP
2
<<device>> CootServer
<<ExecutionEnvironment>> <<ExecutionEnvironment>>
WebServer CootBusinessServer
2
<<device>>
DBServer

<<ExecutionEnvironment>>
DBMS

Figure 5.11: A deployment diagram

a CootBusinessServer; each WebServer communicates with a CootBusinessServer; and each
CootBusinessServer communicates with a DBMS running on one of two DBServer nodes.
Deployment diagrams (static artifacts) are described in Chapter 8.

5.6.5 Class Diagram (Design Level)

The class diagram shown in Figure 5.12 uses the same notation as the one introduced in
Figure 5.9. The only difference is that design-level class diagrams tend to use more of the
available notation, because they’re more detailed. This one expands on part of the analysis
class diagram to show methods, constructors and navigability. Design-level class diagrams
(static artifacts) are described in Chapter 10.
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-address
1 ;b 1
Store Address
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+addCar(:Car) +getHouse():String

+getCounty():String
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~Category(:String) <<create>>
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Figure 5.12: A design-level class diagram

5.6.6 Sequence Diagram

A sequence diagram shows interactions between objects. Communication diagrams also
show interactions between objects, but in a way that emphasizes links rather than sequence.
In this book, sequence diagrams are used during subsystem design, but theyre equally
applicable to dynamic modeling during analysis, system design and even requirements
capture.

The diagram in Figure 5.13 specifies how a Member can log off from the system. Messages
are shown as arrows flowing between vertical bars that represent objects (each object is
named at the top of its bar).

Time flows down the page on a sequence diagram. So, Figure 5.13 specifies, in brief: a
Member asks the AuthenticationServlet to logoff; the AuthenticationServlet passes the request on
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sd U12

% :Authentication :Authentication :Member . ‘Internet
Member Servlet Server Home m:Member Account

| | | | |

logoff) | : : : :

logoff(id) : : : |

! m=findBySessionld(id) ' '

i 41 1 1

id retrieved | . ,

from browser setSessionld(0) ! !

. ' "T| setSessionld(0)

session ! -

home page i i

i | | | | |

to the AuthenticationServer, reading the id from the browser session; the AuthenticationServer
finds the corresponding Member object and tells it to set its session id to 0; the Member passes
this request on to its InternetAccount; finally, the Member is presented with the home page.
Sequence diagrams (dynamic artifacts) are described in detail in Chapter 10.

Figure 5.13: A sequence diagram from the design phase

5.7 SUMMARY

In this chapter, we looked at:

* The classical phases of software production — requirements, analysis, system design,
subsystem design, specification, implementation, testing, deployment and main-
tenance — and how they can be used in a combination of spiral, iterative and

incremental methodologies.

e Static modeling, which describes how we construct a system, and dynamic modeling,
which describes how the system should behave when it's running.

e The UML notation and the Ripple methodology that is used in the rest of this book.

FURTHER READING

Steve McConnell provides a good overview of managing a successful software project
[McConnell 98], from planning through to testing. It is an easy read because of its high-level

approach and conversational style.
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The original book on Rational’s Unified Process [Jacobson et al. 99] provides a good
overview of the theory underlying RUP. For the current status of RUP, take a look at the
Rational web site, www.rational.com.

For more information on XP, see [Beck 99] by one of its inventors or the following
web sites: www.extremeprogramming.org and www.xprogramming.com. To find out more
about agile development in general, see [Cockburn 01] and the Manifesto of Agile Software
Development at www.agileManifesto.org.

The best-known introduction to UML is [Fowler 03]. Although Martin Fowler doesn’t
cover the whole of UML, his book is a good stepping-stone between the book you're
currently reading and the UML Specification itself [OMG 03a]. For the serious UML user,
the specification is still an essential tool for answering questions about obscure pieces of
notation and the semantics of the language itself, so that you can ensure that your diagrams
are correct. Specifications are hard to read at the best of times; with the UML Specification
it can be a shock to find that UML is defined using UML, but it turns out to be a good idea:
it means that the descriptions are precise; it is a good opportunity to see how UML can be
used to document a large and complicated object-oriented model; and it allows you to see
what is and is not legal according to the model.

REVIEW QUESTIONS

1. Which of the following UML artifacts are used to show the distribution of processes,
resources and objects in a system? Choose only one option.

(a) Interaction diagrams.

(b) Sequence diagrams.

(¢) Deployment diagrams.

(d) Communication diagrams.
(e) State machine diagrams.
(B Class diagrams.

(g) Glossaries.

2. What are the traditional steps in software production? Choose all options that apply.

(a) Maintenance.

(b) Design.

(¢) Iteration.

(d) Incrementation.

(e) Deployment.

(0 Analysis.

(g) Requirements Capture.
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(h) Testing.

(i) Reuse.

() Implementation.
(k) Specification.

ANSWERS TO REVIEW QUESTIONS

1. The UML artifacts used to show the distribution of processes, resources and objects in a
system are c. Deployment diagrams.
2. The traditional steps in software production are:

(a) Maintenance.

(b) Design.

(e) Deployment.

() Analysis.

(g) Requirements Capture.
(h) Testing.

() Implementation.

(k) Specification.
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Gathering Requirements

I n this chapter we’ll look at the requirements phase of software development, detailing
the starting points and introducing use cases. We also look at how to model the business
into which our system will fit by identifying and validating business use cases.

Learning Objectives

Understand the purpose of the Record the system requirements on
requirements phase. a complete use case model.

Model the business context and
system functionality.
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6.1 INTRODUCTION

The aim of the requirements phase is twofold:

e Examine the business context: We need to clarify the reasons for wanting the software to
be developed in the first place — if we can’t come up with good reasons, we shouldn’t write
the software at all. When we’ve decided that we do want to produce a software system, we
need to make sure that we understand the business and that our understanding matches
that of our sponsors — this is also a good opportunity to clarify just who the sponsors are.

* Describe the system requirements: This involves not only deciding on the functionality of
the system but also detecting any constraints — performance, development cost, resources

and so on.

We would expect system requirements to form part of the requirements phase, but why
do we model the business? Figure 6.1 shows the alternative to a well-defined requirements
phase. These two developers start with some vague idea of the kind of system that they
believe ought to be produced, while paying only grudging attention to their sponsors. This
blinkered approach is common among novice programmers who don’t yet know what they’re
doing, but we would hope that little of this attitude remains by the time we have become

serious professionals.

I'll start coding, you go and
see what the customers want

Figure 6.1: Self-taught developers
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The tendency to dive into coding is not only born of arrogance. It can come from fear:
‘We're not sure we can produce what the sponsors need, but we know what we can produce:
hopefully, once we've finished, we can persuade everyone that what we have is what they
really needed in the first place’. Difficult as it may be to stay away from our keyboards, we
must first make sure that we understand the business context for the new system, then work
with our sponsors to agree what the system will do. The term ‘sponsor’ is used to mean
anyone who has an interest in seeing the final system delivered: for example, the internal
or external customer commissioning the system, the potential end users, the managers, and
even the shareholders.

Before we even consider writing a piece of software, we must investigate the business
in which the software will operate — without a thorough understanding of the business, we
could hardly expect to produce something that would enhance that business. (We must
be aiming to enhance what’s already there, otherwise why would we go to the trouble of
writing software in the first place?) The term business is used here in its loosest sense:
although, admittedly, this book has a bias towards business systems in the sense of banking,
administration, e-commerce and the like, most of what is presented applies equally well to
scientific systems, home systems, or anything else that requires software. If you prefer, think
of ‘business’ as ‘problem domain’.

Once we have understood the business and documented our understanding as business
requirements, we need to think about what our software will do for the users. Deciding what
the system needs to be able to do and, just as importantly, what it should not do, will help
us to focus on producing only the necessary code. Without a thorough understanding of the
system requirements, we would risk wasting time on developing code that we’re not being
paid to produce. (Again, ‘being paid’ shouldn’t be taken too literally — you may be writing a
small system purely for your own benefit, in which case you'll be more concerned with not
wasting your time.)

System requirements are commonly separated into two categories: functional and non-
functional. Functional requirements are the things the system must be able to do, i.e. the
services that it must provide in response to external stimuli, such as ‘browsing the catalog’
and ‘reserving a car model’. Nonfunctional requirements are everything else that needs to be
specified. Nonfunctional requirements might include the client Web browsers that must be
supported, the use of streaming video (as opposed to downloadable files) for adverts, a user
interface that can be used easily by novice Internet surfers, and so on.

6.2 THE BIRTH OF A SYSTEM

Every system starts somewhere. We may be lucky enough to get a detailed document from
the customer, usually with proprietary layout and content. Or, we may simply be presented
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with something like a mission statement, a short statement of some new, desirable, business
direction.

As developers, we must transform the customer’s requirements document or mission
statement into a complete, unambiguous description of the system to be developed, in a
standard format that the customer can understand and ratify. Admittedly, ‘complete’ and
‘unambiguous’ are impossible to achieve in practice. We shouldn’t expect to come close to
these goals the first time round. However, it's still useful to know that eventually we will
have a document that describes everything the system will do (and, by omission, everything
that it won’t do), with little room for misinterpretation.

\

Case Study
Nowhere Cars mission statement

Since we automated the tracking of cars at our stores — using bar codes, counter-
top terminals and laser readers — we have seen many benefits: the productivity of
our rental assistants has increased 20%, cars rarely go missing and our customer
base has grown strongly (according to our market research, this is at least partly
due to the improved perception of professionalism and efficiency).

The management feels that the Internet offers further exciting opportunities
for increasing efficiency and reducing costs. For example, rather than printing
catalogs of available cars, we could make the catalog available to every Internet
surfer for browsing on-line. For privileged customers, we could provide extra
services, such as reservations, at the click of a button. Our target saving in this
area is a reduction of 15% in the cost of running each store.

Within two years, using the full power of e-commerce, we aim to offer all
of our services via a Web browser, with delivery and pick-up at the customer’s
home, thus achieving our ultimate goal of the virtual rental company, with

minimal running costs relative to walk-in stores.

Even this three-paragraph mission statement contains a lot of information: history
of automation at the company; customer satisfaction to date; on-line catalogs and
reservations; privileged and non-privileged customers; savings history and savings
targets; company end-game (the ‘virtual rental company’). Admittedly, some of the
management’s dreams are a long way off (it may be more than two years before
customers are comfortable with virtual rental stores), but at least we have two good
starting points for our investigation: What services do the company’s stores currently

offer? Which of those services are appropriate for Internet delivery?
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Case Study (cont'd)

The mission statement above is the basis for the case study used in the rest of this
book. The fictitious company’s new system is referred to as Coot, with the Internet
facilities available to customers referred to as iCoot.

The unique selling point of Nowhere Cars is that they rent specialist cars to
wealthy enthusiasts for extended periods. Since the supply of each kind of car is
limited, customers must turn up at a store when they actually want to rent. Cars are
rented on a first-come, first-served basis and customers can take their pick from what
is currently available. Alternatively, customers who are keen to rent a model of car
which is not available can make a reservation. An assistant will contact the customer
directly when a matching car becomes available; the customer must collect it within
two days (or pay a levy for depriving other customers of the car). As yet, there are no
home delivery or home pick-up services (partly for insurance reasons). For members,
who must register, reservations can be made by telephone.

6.3 USE CASES

Ivar Jacobson invented use cases to define the way in which part of a business or a system
is used [Jacobson et al. 92]. Although, at first sight, use cases appear more process-oriented
than object-oriented, they're widely considered to be the most effective tool for describing
a system’s functional requirements. Most nonfunctional requirements can be recorded
alongside a closely-related use case (any others can be listed separately).

The use cases in this book contain all the essential elements in a format which is
convenient for learning. In this book, use cases are used to document our understanding of
the way a business operates — business requirements modeling — and to specify what our
new software system should be able to do — system requirements modeling. The business
use cases in this book use an informal, descriptive style: they describe, for the benefit of
nonexperts, something that already exists. The system use cases, on the other hand, will be
more prescriptive: they specify, mainly for the benefit of software developers, exactly what
functionality needs to be implemented.

A use case starts with a participant called an actor; it then descends into the business,
or the system, and eventually returns to the actor. The effect of each use case should be of
value to the actor (otherwise, why would they initiate it in the first place?). Of course, value
can mean different things to different people: it could be some information that the actor
wishes to retrieve, some effect that the actor wishes to have on the system, some money, a
purchase, or pretty much anything else that might motivate them. Being driven by use cases,
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far from sending us down the traditional path, actually helps us to find objects, attributes
and operations.

~

Case Study

Nowhere Cars use cases

* Member Reserves Car Model is a business use case that describes how, according to
current practice, a member makes a reservation. It may be couched in terms that
would apply to any car-rental business or it may bring in details specific to the
way that Nowhere Cars operates. We look for business use cases during business
modeling, the first step of requirements capture.

A business use case may refer to existing software systems, or it may not involve
computers at all — for example, the last time you telephoned a car-rental shop and
asked them to reserve a particular car model, were you able to tell if the assistant
at the other end of the line, in the course of performing the transaction, used a
computer or a pad and paper? More to the point, did you care?

* Make Reservation is a system use case that describes how the system that we intend
to produce will allow Nowhere Cars to conduct reservations over the Internet.

A system use case describes a service that the new, or replacement, system will
provide: in this example, the member definitely does use some software —a Web
browser and a back end server. Part of our job is to specify exactly what input the

user should provide and what they should expect to get in return.

N /

For the sake of simplicity, use cases, especially system use cases, should not overlap. A

use case is written in natural language, broken up into a sequence of steps. Diagrams can
accompany the use case if more explanation is needed.

6.4 BUSINESS PERSPECTIVE

In this section, we’ll see how to put together a model of the business, as a precursor to mod-
eling the functionality of the proposed system. A business model can be as simple as a class
diagram, showing the relationships between business entities — this is sometimes referred to
as a domain model. A domain model may be sufficient for small projects, however, for most
projects, we would want to produce an entire business model representing how the business
operates, or at least that part of the business that surrounds the system we expect to develop.

Use cases are not the only way of modeling a business, but they’re simple. More complex
alternatives include business process modeling and workflow analysis. Use cases are simple
because producing one doesn’t require specialist knowledge, just common sense and a
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certain amount of logic. The use case model that we produce here will contain the use cases
themselves plus some other bits and pieces:

e Actor list (with descriptions).

e Glossary.

e Use cases (with descriptions and details).
e (Optional) Communication diagrams.

* (Optional) Activity diagrams.

UML defines the notation and semantics for activity diagrams and communication diagrams.
The other artifacts are recommended by Jacobson.

We'll look at the business model components one by one, in the order in which you
would typically create them in real life. However, bear in mind at all times that this is not a
rigid workflow: as with any aspect of object-oriented development, we can iterate forwards,
backwards, or round and round, until we have a complete picture.

6.4.1 Identifying Business Actors

The first thing we need to do is to identify the business actors. An actor is either a person
playing some role within the business (as you might expect from the name), a department,
or a separate software system.

The reason for identifying departments and systems as actors is that, in logical terms, they
interact as if they were people themselves: we're interested in who (or what) initiates inter-
actions and the sequence of steps. We don’t care whether a particular actor is ‘implemented’
as a person, a department or a piece of software. Identifying actors helps us to identify the
ways in which the business is used, which will, in turn, indicate what the use cases are.

Just as in real life, an actor can play different business roles at different times. For
example, Fred Bloggs might be an assistant within the Nowhere Cars store until he clocks
off; if he decides to rent a car before going home, he becomes a customer. At this stage of
the development, you will be working with the other sponsors (principally the customers)
to find out how the business operates — the actors should fall out of your discussions easily.

4 )

Case Study

Nowhere Cars business actor list

* Assistant: An employee at one of our stores who helps Customers to rent Cars and
reserve Car Models.

* Customer: A person who pays us money in return for one of our standard services.
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Case Study (cont'd)

K which a rented Car has been involved.

\

* Member: A Customer whose identity and credit-worthiness have been validated
and who, therefore, has access to special services (such as making Reservations by
phone or over the Internet).

* NonMember: A Customer whose identity and credit-worthiness have not been
checked and who, therefore, must provide a deposit to make a Reservation or
surrender a copy of their license to rent a Car.

* Auk: The pre-existing system that handles Customer details, Reservations, Rentals
and the catalog of available Car Models.

* DebtDepartment: The department of Nowhere Cars that deals with unpaid fees.

* LegalDepartment: The department of Nowhere Cars that deals with accidents in

J

6.4.2 Writing the Project Glossary

Even at this early stage, it'sa good idea to start maintaining a glossary — the modern alternative

to a data dictionary. The phrase ‘data dictionary’ includes the word ‘data’, the kind of thing

that object-oriented theoreticians are uncomfortable with, because it implies that data is being

modeled in isolation. Separating data from processes was the old way of doing things: it’s

much better to keep data and process together, hence the less emotive term ‘glossary’.

A glossary de-mystifies the jargon for anyone examining our software development

artifacts. It also allows us to file away groups of synonyms, leaving us free to use one of each

throughout the rest of the documentation.

-

Case Study

Nowhere Cars Glossary

~N

Term

Car (Business object)
CarModel (Business
object)

Customer (Business
actor, business object)
Member (Business
object)

Definition

Instance of a CarModel kept by a Store for Rental purposes.
A model in our Catalog, available for Reservation.

A person who pays us money in return for one of our
standard services.

A Customer whose identity and credit-worthiness have been
validated and who, therefore, has access to special services
(such as making Reservations by phone, or over the

Internet). /
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Each entry in the glossary defines a term — the definition can be short or long, as
appropriate. The actor descriptions that we've seen so far are good starting points as glossary
definitions, but the glossary definitions will often end up being more general, because most
of the terms will apply in several contexts.

As you can see from the case study glossary, you can record the relationships that each
term has to the development phases (business actor, system actor, and so on). Below is a list
of relationships that you can use (each entry may qualify as more than one of these):

* Business actor: An actor appearing in the business requirements.

* Business object: An object appearing in the business requirements.

e System actor: An actor appearing in the system requirements.

e System object: An object appearing (inside the system) in the system requirements.
* Analysis object: An object appearing in the analysis model.

e Deployment artifact: Something deployed in the system, such as a file.

* Design object: An object appearing in the design model.

* Design node: A computer or process that forms part of the system architecture.

* Design layer: A vertical partition of a subsystem.

e Design package: A logical grouping of classes, used to organize the development.

In each of these cases, object means entity or ‘encapsulated data and process’, as usual.
Each category of object — business, system, analysis or design — is subtly different, with some
objects qualifying in more than one category. For example, when a Customer rents a Car,
we're dealing with a business object that is external to the system — the physical vehicle in
the display area — and a system object that is inside the system itself, instantiated from a class
that we implement.

Glossary entries use the class naming style (words run together with initial capitals). As
long as we use the same style in all our project documentation, it will be obvious to the
reader that a definition exists in the glossary.

6.4.3 Identifying Business Use Cases

Once we have the actors, the next task is to identify the business use cases. Each use case
is a snippet of the business. At this stage, use cases may involve two-way communication
between a number of actors, especially if they're human actors. Later on, we'll see that system
use cases are more structured, because people normally tell the system what to do, rather
than the other way round.

There’s no set rule for deciding how to break the business down into use cases — common
sense, logic and experience will help, as usual. Working with the sponsors (which you should
be doing anyway) will also help. While talking to an assistant on the shop floor, for example,
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try to identify the different tasks that they find themselves doing every day. Since assistants
interact with customers, they should also be able to identify the ways in which customers use
the business. Employee and management training manuals, mission statements, proprietary
requirements documents, sales brochures and other kinds of document can also provide
inspiration. At all times, when trying to find use cases, keep the following question at the
back of your mind: ‘What are the key activities that make this business work?’

~

Case Study

iCoot Business use case list

* Bl:Customer Rents Car: Customer rents a Car that they have selected from those
available.

* B2:Member Reserves CarModel: Member asks to be notified when a CarModel
becomes available.

* B3:NonMember Reserves CarModel: NonMember pays a deposit to be notified when
a CarModel becomes available

* B4:Customer Cancels Reservation: Customer cancels an unconcluded Reservation,
by phone or in person.

* B5:Customer Returns Car: Customer returns a Car that they have rented.

e B6:Customer Told CarModel is Available: Customer is contacted by an Assistant when
a Car becomes available.

* B7:Car Reported Missing: Customer or Assistant discovers that a Car is missing.

* B8:Customer Renews Reservation: Customer renews a Reservation that has been
outstanding for more than a week.

* B9:Customer Accesses Catalog: Customers browse the catalog, in-store or at home.

* B10: Customer Fined for Uncollected Reservation: Customer fails to collect a Car that
they have reserved.

* B11:Customer Collects Reserved Car: Customer collects a Car that they have reserved.

* B12:Customer Becomes a Member: Customer provides CreditCard details and proof
of Address to become a Member.

* B13:Customer Notified Car is Overdue: Assistant contacts Customer to warn them
that a Car they have rented is more than a week overdue.

* B14:Customer Loses Keys: Replacement Keys are provided for a Customer who has
lost them.

* B15:MembershipCard is Renewed: Assistant contacts Member to renew membership
when their CreditCard has expired.

K. B16:Car is Unreturnable: A Car is wrecked or breaks down.




Business Perspective

141

Case Study (cont'd)

We have now started to narrow down the business to the area we're particularly
interested in. We know from the original mission statement that our customer is
only hoping to make parts of the rental and reservation business available over the
Internet so, for example, the sale of ex-rental cars has not been modeled.

B3: NonMember Reserves CarModel.

NonMember tells Assistant which CarModel to reserve.

. Assistant finds CarModel on Auk.

. Assistant asks for a deposit for the Reservation.

Assistant asks for NonMember’s License and phone number.

Assistant checks License visually.

If License looks okay, assistant creates new Reservation and

records License number, phone number and a scan of

the License in Auk.

7. Assistant gives NonMember a ReservationSlip containing
the unique reservation number.

o v AW N

Figure 6.2: A business use case for Nowhere Cars

Remember that, during business modeling, we’re not interested in the way that our new
system might operate. At this stage, we're simply trying to describe the way the business
currently operates. This may, or may not, involve existing software.

The numbering scheme is arbitrary: UML does not specify a scheme and the list does not
imply an order. Once we have a list of candidate use cases, we can list the steps involved in
each one. UML specifies nothing about the contents of a use case (or about the numbering
or the descriptions, for that matter). Thus, we're free to use natural language, step-by-step
descriptions, structured language (natural language with if—then—else and loop structures),
or whatever.

Using steps rather than natural language encourages us to restrict ourselves to the bare
bones of a use case. If we were to use structured language, we would be in danger of making
our descriptions too algorithmic (computer-oriented). To make the use cases clear and
independent of the implementation, unstructured steps will be used for the use case details
in this book (see Figure 6.2).

6.4.4 lllustrating Use Cases on a Communication
Diagram

As well as writing down use case details, we can provide an illustration of use cases using

communication diagrams. A communication diagram shows a series of interactions between
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actors and objects. A sequence diagram focuses on the interactions themselves and the order
in which they take place. In order to discourage the use of too much technical detail early in
the development process, the communication diagram is preferred for business modeling.

Because UML is designed to apply to every possible situation, there is a lot of notation
available to the developer for use in each of the different kinds of diagram. In this book,
so as to avoid covering every possible detail, only the essential parts are used. Alternative
ways of illustrating the same piece of information and anything too complex will also be
ignored.

Figure 6.3 shows five communicating elements. The nature of each element is shown
by the icon used to represent it: a stick person represents an actor; a circle standing on a
line represents a business object or entity; a circle connected to a vertical bar represents a
boundary (something that manages the interaction between other elements — usually this is
a piece of software, but it could also be a person); a stick person inside a boundary icon
represents a human actor playing some kind of interface role (this shows that the boundary
is a person rather than a piece of software).

1:reserve CarModel —> @ 2:find CarModel —> — CarModel
<— 3:get deposit, License 4:create S
Non <— 5:confirm Reservation Assistant Reservation Auk
Member Interface
Reservation

Figure 6.3: A communication diagram for B3:NonMember Reserves CarModel

Without too much knowledge of the notation, it’s easy to appreciate from Figure 6.3 that
making a reservation involves a nonmember, an assistant acting as a business boundary,
a piece of software called Auk (acting as a boundary to some system) and two business
objects. Since, at this stage, we're modeling an existing way of doing things, we know that
the interface and the system that it accesses must already be implemented and deployed.
There is no mention of any software that we might eventually produce ourselves, because
we haven’t got to that stage yet.

A line connecting two elements on a communication diagram indicates that the elements
can interact. So, we can see from Figure 6.3 that: the NonMember is requesting services from
the Assistant; the Assistant is requesting services from the Aukinterface; the Aukinterface is
requesting services from a CarModel and a Reservation. Since the CarModel and Reservation
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are accessed by a software interface, the implication is that they’re software objects inside
the existing system, rather than physical objects outside (the distinction may or may not be
important to us).

As well as icons and connections, Figure 6.3 depicts individual interactions as numbered
labels with an associated arrow. You can think of these as messages being sent from one
element to another: the number indicates the message’s position in the sequence. So, we can
interpret the entire collaboration as:

* The NonMember asks the Assistant to reserve a CarModel.

e The Assistant asks the Aukinterface to find the CarModel (this involves the CarModel object
in some unspecified way).

e The Assistant asks the NonMember for a deposit and a License.

e The Assistant asks the Aukinterface to create a Reservation (this involves a Reservation object
in some way).

¢ The Assistant confirms the Reservation to the NonMember.

You might think that this sequence of interactions should exactly match the sequence of
steps in the use case details. However, because natural language is not a sequence of steps, a
one-to-one match is unlikely. It's more likely that each interaction will represent a summary
of one or more steps.

Despite the lack of an exact match with a use case, a communication diagram is still useful
because it enhances the use case details and can help us to produce the details in the first
place.

Since the interactions we deal with at this early stage are straightforward, it’s reasonable
for us to produce one communication diagram per use case, but no more. For brevity, any
collaboration that we depict should be the normal path through the use case. When we deal
with system use cases, we can be more specific about abnormal paths, but for now we should
be able to imply their existence within the use case itself: for example, step 6 in our business
use case (Figure 6.2) begins If License looks okay: this implies that sometimes the License is
invalid, but what the Assistant should do in that case has not been specified.

6.4.5 lllustrating Use Cases on an Activity Diagram

UML includes another kind of diagram that can be useful during business modeling. An
activity diagram shows dependencies between (parallel) activities as we move from an initial
starting point to a desired goal. They are similar to flow charts or Petri nets, traditionally
used to model program flow or human activity. Figure 6.4 shows an activity diagram being
used to illustrate a business use case.

Each rounded box in an activity diagram represents an action; an open ended arrow (an
edge) indicates that the source action must be completed before the destination action is
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(NonMember)
Tell Assistant
which CarModel

(Assistant)

Ask for Deposit
and License

Assistant)
(NonMember) (NonMember) (
Find deposit Find License Find CarModel

on Auk

(Assistant)
Check deposit
and License

[oK]

(Assistant)
Make
Reservation

%

Figure 6.4: An activity diagram for B3:NonMember Reserves CarModel

started; a black dot indicates the starting point for the activity; a black dot inside a white
circle indicates the end of the activity; a diamond represents a decision —a guard on a
departing edge indicates the reason for following that edge; thick black lines, known as forks
and joins, are used to indicate the beginning and end of a set of concurrent actions.

For each action, we can show who or what is responsible for the action by putting a name
in parentheses, before the name of the action itself. The name identifies a partition within
the activity, and can be used to identify actors, departments, systems or objects. Partitions
can also be indicated by grouping actions into rows, columns or cells.
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We can see quite easily from Figure 6.4 that, to reserve a CarModel:

1. The NonMember tells the Assistant which CarModel to reserve.

2. The Assistant asks for a deposit and License.

3. While the NonMember is looking for the deposit and License, the Assistant looks for the
CarModel on the Auk system.

4. Once everything has been found, the Assistant checks the deposit and the License.

5. If the deposit and License are valid, the Assistant makes the Reservation and the activity is
finished.

6. Otherwise, the activity is finished.

As with communication diagrams, we should not expect this interpretation to match the
use case details step-for-step.

In common with many UML diagrams, activity diagrams can be used for more than one
purpose. For example, an activity diagram can be used to construct an entire business model
or to document the algorithm employed by some software object.

6.5 DEVELOPER PERSPECTIVE

The second part of requirements capture is modeling the software that we're going to
develop in order to improve the business. Regardless of whether you choose to document the
business using a simple domain model, a fully-fledged use case model, or something even
more detailed such as a business process model or workflow analysis, it is widely accepted
that the requirements of the software system should be captured using a use case model. This
is because use cases are relatively easy to produce and easy for all sponsors to understand.

The use case model for a system is more detailed and more prescriptive than for a business.
For Ripple, the system use case model comprises:

e An actor list (with descriptions).

e A use case list (with descriptions).

* A use case diagram.

e Use case details (including any related nonfunctional requirements).

* A use case survey.

e Supplementary requirements (system requirements that don’t fit with any particular use
case).

 User interface sketches.

¢ An enhanced glossary.

¢ Use case priorities.

We'll look at how to produce each of these artifacts in turn.
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The list above includes several artifacts that we haven’t come across before. Even the ones
that we've already seen during business modeling generally include more detail in system
modeling. Communication diagrams have not been included; although there is nothing to
stop you using them to illustrate your system use cases at this stage, for Ripple they have been
deferred to a later phase in the development (dynamic analysis), where they're considered
more important.

We should also spend some time evaluating existing systems. Such a system is referred to
as a legacy system, because we inherited it as part of the existing business.

\

Case Study
Nowhere Cars legacy system

We need to decide whether Auk can reasonably be extended, or whether we should
replace it altogether. This decision is not an easy one to make: on the one hand,
we have a finished system that has been up and running for some time, one that
assistants are familiar with; on the other hand, it may be too difficult to open up Auk
in order to add new facilities, or to write new software that communicates with it
process-to-process (which may be inefficient).

Let's assume that we have made the decision to replace Auk with a whole new
system that will be compatible with Internet access and will support the ‘virtual rental
store’ that our customer desires. Our new system will be called Coot. To alleviate
the problems of staff training, the new interfaces (counter-top terminals and laser
readers) will look and feel similar to the Auk ones.

For the purposes of this book, we don’t need to examine all the facilities of Coot.
Instead, we can concentrate on those parts of the system that provide the first round

J

\of Internet facilities to customers. This cut-down set of facilities is called iCoot.

Identifying System Actors

The first thing we need to do is to identify and describe the system actors, with the help
of our sponsors. The actors we identify at this stage should include only the people (and
external systems) that interact directly with our proposed system, rather than actors from
the wider business context.

Case Study
iCoot system actor list

* Customer: A person using a Web browser to access iCoot.
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4 )

Case Study (cont'd)

* Member: A Customer who has presented their name, address and CreditCard details
at one of our Stores; each Member is given an Internet password to accompany
their membership number.

* Assistant: An employee at a Store who contacts Members to tell them about the

progress of their Reservations.

J

Identifying System Use Cases
Once we have actors, we can look for use cases, again asking our sponsors for help. Each use
case must have a short description.

~

Case Study
iCoot system use case list

* Ul:Browse Index: A Customer browses the index of CarModels.

* U2:View Results: A Customer is shown the subset of CarModels that was retrieved.

e U3:View CarModel Details: A Customer is shown the details of a retrieved CarModel,
such as description and advert.

* U4:Search: A Customer searches for CarModels by specifying Categories, Makes
and engine sizes.

* US:Log On: A Member logs on to iCoot using their membership number and current
password.

* U6:View Member Details: A Member views a subset of their details stored by iCoot,
such as name, address and CreditCard details.

* U7:Make Reservation: A Member reserves a CarModel when viewing its details.

* U8:View Rentals: A Member views a summary of the Cars they're currently renting.

* U9:Change Password: A Member changes the password that they use to log on.

* U10: View Reservations: A Member views a summary of Reservations that are not
yet concluded, such as date, time and CarModel.

* Ull:Cancel Reservation: A Member cancels a Reservation that is not yet concluded.

* Ul2:Log Off: A Member logs off from iCoot.

- J

System use cases can be depicted on a use case diagram showing the actors and their
associations with particular use cases — this helps us to see at a glance how the system will
be used. A use case diagram for iCoot is shown in Figure 6.5.
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iCoot

Customer

U6: View
Member Details
U8: View
Rentals U2: View

Results
U9: Change
Password
U10: View
Reservations

U7: Make
Reservation

L~

U1: Browse
Index %

U3: View Car
Model Details

X

Member

/ /LN

U11: Cancel
Reservation

/

X

Assistant

Figure 6.5: A simple use case diagram for iCoot

On a use case diagram, each use case is shown as a number and a title, inside a bubble.
The box around all the use cases represents the boundary of the system — we can put the
system name just inside the box. Outside the system boundary, we show the actors, adding
associations between the use cases and the actors that use them.

A use case survey (Jacobson’s terminology for one of our non-UML artifacts) is an
informal description of how a group of use cases fit together: the kind of narrative that a
developer might produce when walking sponsors through a use case diagram. A use case
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survey allows sponsors to get a greater understanding of the use cases without any of the
developers present.

~

Case Study
iCoot use case survey

Any Customer can look for CarModels in the catalog, either by browsing the
CarModel index (Ul) or by searching (U4). In the latter case, the Customer
specifies the Categories, Makes and engine sizes that they’re interested in. Either
way, after each retrieval, the Customer is shown the results as a collection
of matching CarModels (U2), along with basic information such as CarModel
name. The Customer can then choose to view extra information about particular
CarModels such as a description and an advert (U3).

Customers who have become Members can log on (U5) and gain access to extra
services. The extra services are: making a Reservation (U7), canceling a Reserva-
tion (U11), checking membership details (U6), viewing outstanding Reservations
(U10), changing their log-on password (U9), viewing their outstanding Rentals
(U8) and logging off (U12).

Assistants are involved in the life cycle of Reservations, moving Cars to and

from the reserved area, for example.

N /

6.5.1 Specializing Actors

Any actor can specialize (inherit behavior from) another actor. This adds more expressive
power to the system use case model. For example, we may decide that Customer is an abstract
concept that should be specialized by Member; once we have introduced this specialization,
it makes sense to introduce the concept of NonMember too.

It's up to you whether to introduce inheritance between actors early, or late, or not at
all. You (and your colleagues) need to be happy that each particular use of inheritance
is beneficial rather than confusing. Remember that all your sponsors must be able to
understand the artifacts that you produce, from business modeling right the way through to
static analysis, at least. This will help to ensure that you have understood the problem domain
correctly and that you will deliver what the sponsors actually want. Will nonprogrammers
be happy with NonMember is a kind of Customer? It’s up to you to decide.
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Case Study

iCoot system actor list with inheritance

Having decided to introduce inheritance for the iCoot actors, the finished system
actor list looks like this (with one extra actor and the inheritance relationships in

parentheses):

* Customer: A person using a Web browser to access iCoot.

* Member: A Customer who has presented their name, address and CreditCard details
at one of our Stores; each Member is given an Internet password to accompany
their membership number. (Specializes Customer.)

* NonMember: A Customer who is not a Member. (Specializes Customer.)

* Assistant: An employee at a Store who contacts Members to tell them about the

progress of their Reservations.

N J

We can modify our use case diagram to show inheritance relationships between actors in

the same way as we would show them between classes, see Figure 6.6. The Customer class
has been shown as abstract — its name is italicized — because no-one is literally a Customer;
everyone is either a Member or a NonMember. (If you don’t have italics to hand, you can add
the keyword {abstract} to the left or above the actor name.)

Even though Customer is abstract, we can still associate it with a use case, to indicate that
every kind of Customer is involved in that use case. As a side effect, some actors, such as
NonMember, will have only indirect associations.

Our diagram now shows specializations explicitly, but it’s useful to have the annotations
in the actor list as well, in case the list is viewed separately.

6.5.2 Use Case Relationships

As well as specialization between actors and associations between actors and use cases,
there are three kinds of relationship between use cases themselves: specializes, includes and
extends. These allow us to group related use cases; to decompose large use cases; to reuse
behavior; and to specify optional behavior:

e Specializes: Just like actors, use cases can inherit from each other. In order to avoid all
sorts of complexity relating to the redefinition of steps and the addition of extra ones, we
can restrict ourselves to specializing abstract use cases. A (pure) abstract use case has no
steps at all: its sole purpose is to group other use cases. For example, we might decide
that U1:Browse Index and U4:Search are both varieties of the abstract use case U13:Look for
CarModels.
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Figure 6.6: A use case diagram showing inheritance between actors
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* Includes: A use case that has some of its steps provided by another use case is said to
include that use case. For example, U1:Browse Index includes, at some point in its behavior,
all the steps of U2:View Results. Inclusion can be used to extract steps common to a number
of use cases, or just to break a large use case down into more manageable chunks.

* Extends: A use case that adds value to another use case is said to extend that use case. For
example, when viewing results (U2), a Customer can choose to view details (U3). Extension
allows us to add optional extras — often, these extras will appear at the end of the use case
(hence the name), but they can also occur at the beginning, or somewhere in the middle.

There is a fundamental difference between inclusion and extension: with inclusion, the
source use case won't work without the target, whereas, with extension, the source works
perfectly well without the target. Going in the other direction, use cases that are included in
other use cases may have independent existence — they may be executable directly via other
routes. A use case that extends another use case, in contrast, will usually only exist as an
extension.

You're unlikely to identify use case relationships on your first pass through system
requirements modeling. Beyond that, it is up to you to decide whether they’re really needed,
and whether your sponsors will be able to appreciate them. If you do use relationships, as
with other areas of object orientation, there will be many ways of decomposing use cases into
inclusions, extensions and inheritance. No one way is correct — just try to develop a model
that makes sense to you and your customers.

\

Case Study

iCoot use case relationships

Our use case descriptions now look like those below. Abstract use cases and both ends
of relationships have been identified — the rationale is that, seeing the annotation, the
reader knows that they will have to look at other use cases to get a complete picture.

* Ul:Browse Index: A Customer browses the index of CarModels. (Specializes U13,
includes U2.)

e U2:View Results: A Customer is shown the subset of CarModels that were retrieved.
(Included by Ul and U4, extended by U3.)

e U3:View CarModel Details: A Customer is shown the details of a retrieved CarModel,
such as description and advert. (Extends U2, extended by U7.)

e U4:Search: A Customer searches for CarModels by specifying Categories, Makes
and engine sizes. (Specializes U13, includes U2.)

* US:Log On: A Member logs on to iCoot using their membership number and current

password. (Extended by U6, U8, U9, U10 and U12.)
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Case Study (cont'd) \

* U6:View Member Details: A Member views their (censored) details stored by iCoot,
such as name, address and CreditCard details. (Extends U5.)

* U7:Make Reservation: A Member reserves a CarModel when viewing its details.
(Extends U3.)

* U8:View Rentals: A Member views a summary of the Cars they’re currently renting.
(Extends U5.)

* U9:Change Password: A Member changes the password that they use to log on.
(Extends U5.)

e U10: View Reservations: A Member views summaries of their unconcluded Reserva-
tions, such as date, time and CarModel. (Extends U5, extended by Ul11.)

e Ul1:Cancel Reservation: A Member cancels an unconcluded Reservation. (Extends
U10.)

* Ul2:Log Off: A Member logs off from iCoot. (Extends U5.)

e Ul3:Look for CarModels: A Customer retrieves a subset of CarModels from the
Catalog. (Abstract, generalized by Ul and U4.)

- J

Use case relationships can be shown on a use case diagram (see Figure 6.7). Inheritance

between use cases is shown in the normal way, using a line with a white arrowhead. An
inclusion is shown as a dashed, open-ended arrow from the including use case to the
included one, labeled with the keyword <<include>> (a word in guillemets in UML indicates
a well-known concept). Therefore, U4:Search includes, at some point in its behavior, all the
steps of U2:View Results. An extension is shown with a similar arrow from the extending use
case to the extended one, labeled with <<extend>> — thus, U3:View CarModel Details is an
optional extra for U2:View Results.

Although we could reduce the two inclusions shown to a single inclusion, from U13 to
U2, that would arguably be less clear. It would also mean that the abstract use case would
have steps, something that we try to avoid. Finally, it would mean that U1 and U4 would not
be able to control where the inclusion took place.

In some cases, an extension is only allowed under certain conditions. We can show this
by adding a UML comment (which looks like a piece of paper) detailing the conditions.
A comment, which may contain any text, can be connected to the relevant point in the
diagram with a dashed line, optionally terminated with a small circle that makes the join
clearer. Conditions in UML are expressed as constraints (text in braces) and may be stated
in natural language, in pseudocode or in UML'’s formal Object Constraint Language (OCL).
In Figure 6.7, natural language has been used, to reflect the fact that we're at a relatively
informal stage of development. As you can see, U7:Make Reservation is only allowed for
Member objects who have logged on.
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Figure 6.7: The final use case diagram for iCoot

Normally, a dashed line with an open-ended arrow in UML indicates a dependency — the
source relies on the target in some way. The implication is that, if the target changes, the
source is affected. For use cases, the use of dependency notation is historical and not strictly
correct. For example, an extending use case doesn’t necessarily depend on the extended
use case. Hence, with a use case diagram, we talk about use case relationships rather than
dependencies. One last point about the notation: for inclusion, the subordinate use case is
the target whereas, with extension, the subordinate is the source — this can cause confusion.
4

Case Study )

iCoot use case survey (complete)

Any Customer can look for CarModels in the catalog, by browsing the CarModel
index (Ul) or by searching (U4). In the latter case, the Customer specifies the
Categories, Makes and engine sizes that they're interested in. Either way, after
each retrieval, the Customer is shown the results as a collection of matching

K CarModels (U2), along with basic information such as CarModel name. The
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Case Study (cont'd)

Customer can then choose to view extra information about particular CarModels
such as a description and an advert (U3).

Customers come in two varieties, Members and NonMembers.

Customers who have become Members can log on (U5) and gain access to extra
services. The extra services are: making a Reservation (U7), canceling a Reserva-
tion (U11), checking membership details (U6), viewing outstanding Reservations
(U10), changing their log-on password (U9), viewing their outstanding Rentals
(U8) and logging off (U12).

Assistants are involved in the life cycle of Reservations, moving Cars to and
from the reserved area, for example.

Browsing the index and searching for CarModels are two different ways of
looking for CarModels (U13). In order to view CarModel details, a Customer
must be viewing the results of looking for models (via the browsing or searching
route).

In order to reserve a CarModel, a Member must be viewing its details
(NonMembers can’t make reservations, even when they’re viewing details).

In order to cancel a Reservation, a Member must be viewing their outstanding

\ Reservations.

6.5.3 System Use Case Details

Once we've identified use cases and how they fit together, we need to show the details.
Since UML doesn’t specify what the use case details should include or how they should be
arranged, a choice has been made here based on taste and experience. For Ripple, system
use case details include:

e The use case number and title.

* Whether the use case is abstract.

e relationships to other use cases.

* Any preconditions (conditions that must be satisfied before the use case is carried out).

e The steps themselves (where we can assume that the preconditions have been met).

* Any postconditions (conditions that are guaranteed after successful completion of the use
case).

* Any abnormal paths and what to do in each case (although the paths are abnormal, we
include them if it’s important for us to specify the system’s reaction).

* Any nonfunctional requirements that relate to this use case.
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Figure 6.8 shows the format of use case details used in this book; of all the items, only the
number, title, preconditions, steps and postconditions are mandatory — the others can be left
out if they’re empty.

Number, Title (relationships)
Preconditions

Steps

Postconditions

Abnormal paths

Nonfunctional requirements

Figure 6.8: Format for system use case details

Figure 6.9 shows four of the iCoot use cases in the specified format.

These system use cases are significantly more detailed than the business use cases we
saw earlier. This reflects the fact that we're now trying to be prescriptive rather than merely
descriptive: we want to be precise about the services the system will provide in order to
remove the guesswork from our analysts and designers.

For the purposes of this book, we use a sequence of steps written in natural language. As
a matter of personal preference, you may prefer to add a more algorithmic structure with
conditionals and loops (if-then—else and repeat-until, for example).

When writing use case details, it’s important that we specify the function of the system
but not the way that function is delivered: for example, if we were to include steps such as
2. Customer clicks on the Details... button, we would be restricting the user interface designer.
Unless it’s an absolute requirement, you should always try to use neutral words like select,
initiate, indicate and display.

Any reasonable designer will be able to make informed decisions about exactly how
specific the requirements-gatherer is trying to be: for example, the designer may implement
steps in a different order, or in parallel, as long as the end result is the same. We can see where
something like this might happen in U5:Log On: the first three steps could be implemented
in any order and it would make no difference to anyone.

6.5.4 Preconditions, Postconditions and Inheritance

Since we have considered inheritance between use cases, we must concern ourselves with
how specialization affects preconditions and postconditions. (Although it's recommended
that you only inherit from abstract uses cases without steps, such use cases can still
have preconditions and postconditions, as you can see from Figure 6.9.) Here are the
rules:



Developer Perspective

157

Ul: Browse Index. (Specializes U1l3, includes U2.)

Preconditions: None.

1. Customer selects an index heading.

2. Customer elects to view CarModels for the selected index heading.
3. Include U2.

Postconditions: None.

U3: View CarModel Details. (Extends U2, extended by U7.)
Preconditions: None.
1. Customer selects one of the matching CarModels.
2. Customer requests details of the selected CarModel.
3. iCoot displays details for the selected car model
(makes, engine size, price, description, advert and poster).
4. If Customer is a logged-on Member, extend with U7.
Postconditions: iCoot has displayed details of selected CarModels.
Nonfunctional Requirements:
rl. Adverts should be displayed using a streaming protocol
rather than requiring a download.

U5: Log On. (Extended by U6, U8, U9, U10 and U12.)
Preconditions: Member has obtained a password from their local Store.
1. Member enters their membership number.
2. Member enters their password.
3. Since iCoot must enforce one Togon for a Member, Member can choose
to steal (invalidate and thus take over from) an existing session.
4. Member elects to log on.
5. Extend with U6, U8, U9, Ul0, U12.
Postconditions: Member is Togged on.
Abnormal Paths:
al. If the membership number/password combination is incorrect,
iCoot informs Member that one of the two is incorrect
(for security, they’re not told which one).
a2. If the membership number/password combination is correct,
but Member is already Togged on and they have not elected to
steal, iCoot informs Member.

U13: Look for Car Models (Abstract, specialized by Ul and U4.)

Preconditions: None.

Postconditions: Customer has been presented with summaries of
retrieved CarModels.

Figure 6.9: Details for some iCoot system use cases
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1. When one use case specializes another, it inherits the parent’s preconditions as a starting
point. Any new preconditions added by the child must only weaken the inherited ones
(they’re combined using ‘or’).

2. For postconditions, the child’s starting point is the postconditions of the parent. Any
postconditions added by the child must only strengthen the inherited ones (they’re
combined using ‘and’).

3. Preconditions and postconditions added by children have no effect on the parent’s
preconditions and postconditions.

In the above list, rule 3 should be obvious from what you already know about object-
oriented theory (children don’t affect the behavior of the parents), but rules 1 and 2 may be
surprising to you. Informally, the reason we can only weaken preconditions and strengthen
postconditions is that the child use cases have an obligation to readers of the parent use case
not to spring any nasty surprises. For example, U13:Look for CarModels has no preconditions,
so if U4:Search had a precondition that said Don’t do this on Tuesdays, anyone prevented from
searching for car models on a Tuesday would have legitimate cause for complaint — ‘Excuse
me, but according to “Look for Car Models”, I can look at any time.’

A postcondition on a parent provides a guarantee to users and it wouldn’t be reasonable for
the child to try and water down that guarantee. For example, U4:Search has a postcondition
Customer has been presented with matching CarModels; it wouldn’t be reasonable for a child to
add or a randomly-selected CarModel.

Rules 1 and 2 imply that if a parent has Preconditions: None (there are no restrictions on
when the use case may be applied), its children must also have Preconditions: None; if a parent
has Postconditions: None (there are no guarantees about the outcome), the child can specify
any postconditions it likes.

In summary, when one use case specializes another, you must carefully consider the
preconditions and postconditions of the parent.

6.5.5 Supplementary Requirements

Most of the time, it’'s possible to associate nonfunctional requirements with a particular
use case. For example, a nonfunctional requirement of Adverts should be displayed using a
streaming protocol rather than requiring a download fits neatly with U3:View CarModel Details,
the use case that makes adverts available to customers in the first place.

Nonfunctional requirements that don’t fit with any use case can be recorded in a
supplementary requirements document, as shown in Figure 6.10.

6.5.6 User Interface Sketches

Thinking about the user interfaces for the system can help us to clarify the use cases. The
interfaces can be brainstormed with our sponsors at an early stage and the results recorded
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Supplementary Requirements

sl. The client applet must run in Java PlugIn 1.2 (and Tater versions).

s2. iCoot must be able to cope with a catalog of 100,000 car models.

s3. iCoot must be able to serve a million customers simultaneously
with no significant degradation in performance.

Figure 6.10: Supplementary requirements for iCoot

as user interface sketches. These sketches should be regarded as a functional guide rather
than a professional GUI design: they help us to identify and partition functionality in a way
that can be implemented according to personal preference.

For example, Sketch 1 in Figure 6.11 shows a user interface that allows the user to select
one or more categories, manufacturers and engine sizes; on clicking the Retrieve button, we're
referred to Sketch 2 which shows a list of matching car models; clicking the < Go Back button
returns us to Sketch 1; clicking the Details... button takes us on to Sketch 3 (not shown); and
so on. (Obviously, these are not the original sketches that were hand-drawn on a whiteboard;
they’re the versions that had been agreed by the end of the brainstorming session, which
were then mocked up using a drawing package.)

Since use cases and user interfaces both represent a partitioning of system functionality,
it's a good idea to maintain a clean mapping between the two, a mapping that survives
through to implementation. For example, with iCoot, we have three broad categories of
access: member access, nonmember access and assistant access. This suggests three separate
user interfaces.

Within each user interface, we should provide a window or a panel that corresponds
to each of the use cases (the choice of window, panel, or some other widget is, of course,
a design issue). For example, the sketches in Figure 6.11 show a notebook-style widget
representing the nonmember interface. Nonmembers can search the catalog and browse the
index, so each of these use cases is assigned its own page in the notebook. Both of these
use cases include viewing the results — another use case that gets its own panel. We would
expect the Search, Index and Results panels to be reused in the member interface. (For easier
migration, the assistant interface will resemble the existing Auk interface.)

6.5.7 Prioritizing System Use Cases

It’'s a good idea, especially in the context of an incremental development process, to rank
system requirements in order of their implementation priority. With use case modeling, the
obvious thing to do is to rank the use cases — each can then be given a score to indicate its
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Figure 6.11: User interface sketches for iCoot

urgency. The priorities and urgencies can be used to help plan the rest of the development

and any further increments.

One useful scoring technique is traffic lights:

* Green use cases must be implemented in the current increment; failure to do so means

that the project has failed to reach its minimum goals.

* Amber use cases are optional for the current increment and should only be attempted
once the green use cases have been completed (they’re added bonuses that we can use to
impress our sponsors). Any amber use case that is incomplete by the delivery date must
be dropped completely (partial implementations look unprofessional).

* Red use cases won't be implemented in the current increment, even if time permits: they’re

outside the scope of the current increment and proper allowances are unlikely to have

been made for them.
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In practice, use case priorities (and urgencies) will be based not only on desirability, but also
on how much of the system architecture and coding effort individual use cases will pull into
the current increment: choosing priorities requires a certain amount of skill, experience and
crystal-ball gazing. There’s nothing wrong with putting easier use cases first: they will help
us to learn more about the system as we iterate, with less risk.

If you're lucky enough to have time available at the end of the increment (after finishing
the green use cases and all the amber use cases), you should:

* Review the project status.

e Finalize planning for the next increment (re-prioritizing unimplemented use cases, for
example).

* Do some unrelated work.

* Have an office party.

Case Study

iCoot use case priorities

* Green:
— Ul:Browse Index
— U4:Search
— U2:View Results
— U3:View CarModel Details
— U5:Log On
* Amber:
— Ul2:Logoff
— U6:View Member Details
— U7:Make Reservation
— U10:View Reservations
* Red:
— Ul 1:Cancel Reservation
— U8:View Rentals
— U9:Change Password

Ul:Browse Index is both essential and simple (because it doesn’t involve rentals or
reservations), so it goes at the top of the list; US:Log On is essential before any of the
member services can be made available, so it must appear before the member services;

U6:View Member Details is attempted before U7:Make Reservation because it is simpler

\(reservations turn out to have a complicated life cycle); and so on. j
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Assigning priorities and urgencies to system use cases is another indication that we should
develop for extensibility and reuse. Here’s a summary of how the traffic lights fit in with the
other stages of development, after business modeling:

* Green: System requirements, analysis, system design, subsystem design, specification,
implementation and testing should be complete for use cases in this group.

e Amber: System requirements should be complete and analysis and system design should be
complete, or nearly complete, for use cases in this group; subsystem design, specification,
implementation and testing are optional.

* Red: System requirements should be complete for use cases in this group; analysis is
optional; system design should support these use cases; subsystem design, specification,
implementation and testing should not be performed.

Of course, ‘complete’ is a relative term in a spiral, iterative and incremental process.

6.6 SUMMARY

In this chapter, we looked at:

e The importance of specifying functional requirements (what the system must be
able to do, such as ‘browse the catalog’) and nonfunctional requirements (how the
system must run, such as the specific Web browsers that must be supported) in a
requirements phase before any coding begins.

* Modeling the business context and system functionality using high-level business
use cases and identifying actors.

¢ Modeling the system requirements with a complete use case model comprising
use cases, use case diagram, supplementary requirements, user interface sketches,
use case priorities and urgencies. Although communication diagrams and activity
diagrams were considered optional at this stage, a glossary is always essential.

FURTHER READING

Although it doesn’t cover UML, a mine of useful information on the theory of business
process modeling is [Bustard et al. 00].

Ivar Jacobson’s original book on the Objectory method [Jacobson et al. 92], describes the
original justification for use cases and the kind of information that they should contain — it’s
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always a good idea to see how an important technology came about in the first place. Alistair
Cockburn is a widely respected authority on use cases. As well as a book on the subject
[Cockburn 00], Cockburn has his own web site at www.usecases.org.

For more advice on communication diagrams and activity diagrams, Martin Fowler’s book

[Fowler 03] is a good place to start. As ever, [OMG 03a] has comprehensive coverage of the
notation.

REVIEW QUESTIONS

1. With reference to Figure 6.12, what are X1, X2 and X3? Choose only one option.

(a) Roles.
(b) Prima donnas.
(¢) Actors.
(d) Sticks.

Figure 6.12: For use with Review Questions 1, 2 and 5

2. With reference to Figure 6.12, which of the following statements are true? Choose all
options that apply.

(a) X3 can interact with the system using UC4.

(b) X1 can interact with the system using UC1 and UCA4.
(c) X3 and X1 are different kinds of X2.

(d) UC3 is an abstract use case with no steps of its own.
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PizzaBase Case Study

The PizzaBase restaurant wants to automate the ordering of pizzas by customers.
Each table will be fitted with a touch-sensitive screen which customers can use to
browse the pizzas on offer and select their choice.

Two basic types of pizza will be offered: the Do-it-Yourself will have a base with
tomato sauce only and then customers can choose any number of toppings, at a fixed
price per topping; the Prefab will come in several varieties, each with a fixed set of
toppings. Every pizza can be ordered with a deep crust or crispy base, and three sizes
are available: 6 inch, 9 inch and 12 inch.

Customers will also be able to order from a fixed set of drinks, such as cola and
lemonade flavors, each in large or small size. Once customers have confirmed their
order, they will be shown the final price and, thereafter, the screen will display the
progress of their food as it is being prepared and cooked. At the end of a meal,
payment will be made in the conventional way.

. With reference to the PizzaBase case study, which of the following options are likely

business use cases? Choose all options that apply.

(a) Customer pays for meal.

(b) Restaurant prepares meal.

(¢) Customer sees progress of food.

(d) Customer chooses pizza.

(e) Customer selects drink from display.

. Which of the following UML artifacts is used to show the steps involved in getting value

from a system? Choose only one option.

(a) User interface sketches.
(b) Glossaries.

(¢) State machine diagrams.
(d) Use cases.

(e) Class diagrams.

() Deployment diagrams.

. With reference to Figure 6.12, which of the following statements are true? Choose all

options that apply.

(a) UC5 is a compulsory part of UC4.
(b) UCH4 is an optional part of UC5.
(¢) UCLI is unused.

(d) UC2 is an optional part of UCH4.
(e) UC4 is a compulsory part of UC2.
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Figure 6.13: For use with Review Question 6

6. With reference to Figure 6.13, what kind of objects are A, B and C? Choose only one

option.

(a) Ais an entity, B is a controller, C is a boundary.
(b) A is a boundary, B is an entity, C is a controller.
(c) Ais an entity, B is a boundary, C is a controller.
(d) Ais a controller, B is an entity, C is a boundary.
(e) Aisaboundary, Bis a controller, C is an entity.
(B A s a controller, B is a boundary, C is an entity.

ANSWERS TO REVIEW QUESTIONS

1.
2.

In Figure 6.12, X1, X2 and X3 are c. Actors.
With reference to Figure 6.12, all of the statements are true:

(a) X3 can interact with the system using UC4.

(b) X1 can interact with the system using UC1 and UC4.
(¢) X3 and X1 are different kinds of X2.

(d) UC3 is an abstract use case with no steps of its own.

. The following options are likely business use cases:

(a) Customer pays for meal.
(b) Restaurant prepares meal.
(d) Customer chooses pizza.

. d. Use cases show the steps involved in getting value from a system.
. With reference to Figure 6.12, the following statements are true:

(a) UC5 is a compulsory part of UC4.
(d) UC2 is an optional part of UC4.

. With reference to Figure 6.13, d. A is a controller, B is an entity, C is a boundary.



Analyzing the Problem

In this chapter, we’ll be looking at the classical analysis phase and how to do it in a
modern, object-oriented way. Analysis is an essential bridge between requirements capture
and design, leading us from a clear statement of what the system must provide to a clear
understanding of the objects that we’ll be dealing with. Once we understand the objects that

we must deal with, we stand a much better chance of producing an elegant solution.

Learning Objectives

Understand what analysis is. Understand how dynamic analysis
can help us to verify the static
Build a static analysis model. model.
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7.1 INTRODUCTION

Analysis is about discovering what the system is going to handle, rather than deciding
how to do the handling. We need to decompose a complex set of requirements into the
essential elements and relationships on which we will base our solution. Analysis is our first
opportunity to get to grips with modeling the real world as objects.

An analysis model has both static and dynamic parts. We can depict the static analysis
model using a class diagram. A class diagram shows the objects that the system will handle
and how those objects are related to each other. For the dynamic analysis model, we can use
communication diagrams to demonstrate that our static model is feasible. As before, rather
than all the intricacies of UML notation, youwll see only the essential parts here: the parts
that will suffice for most purposes.

There are two inputs to analysis:

* The business requirements model (see Section 6.4) contains descriptions of the manual
and automated workflows of our business context, described using business-oriented
versions of actors, use cases, objects, the glossary and, optionally, communication diagrams
and activity diagrams.

* The system requirements model (see Section 6.5) contains an external view of the system,
described as system-oriented versions of actors, use cases and use case diagrams, user
interface sketches, an enhanced glossary and nonfunctional requirements.

These inputs must be transformed into a model of the objects that will be processed by
the proposed system, along with their attributes and relationships. These objects will exist
within the system itself or at the system boundary, accessible via one or more interfaces.
Most of the objects that we discover at this stage will correspond to physical objects or
concepts in the real world (lower-level, solution-oriented objects won’t appear until design).
Once we have a model of the system objects, we will put them through a verification process
to convince ourselves that they would support a solution.

7.2 WHY DO ANALYSIS?

So, why do we do analysis in the first place? Because analysis stops us designing a solution
before we understand the problem. Although, in principle, we could jump straight into
design and then implementation, hoping to draw out an understanding of the problem
through trial and error, the analysis techniques we’ll look at here are much more efficient.
(Some well-chosen prototyping or proof-of-concept work is still permitted, if you feel the
situation calls for it.)
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We can’t expect to have a complete understanding of the problem from the business
requirements model, because it describes existing practices: by adding software, we expect to
be introducing new practices. Also, we have not separated manual workflows and automated
(or potentially automated) workflows: for example, reserving a car model, as described in
Chapter 6, involves both human-to-human and human-to-computer interaction. Even when
we have a system use case model, our understanding of the problem is still incomplete,
because the focus of use cases is external: use cases deal with the interactions between
actors and the boundary of our system — the system itself is regarded as a black box,
with only the outside visible. Use cases are imprecise: in order to make them easy to
produce and easy to understand, use cases are written in natural language — therefore, they
rely on our ability to understand language and to make certain assumptions. Business
requirements modeling and system requirements modeling must still be done, of course: the
former allows us to understand the business context; the latter forms a contract with our
Sponsors.

Once we've completed static analysis, our sponsors will be able to confirm that our
understanding of the business objects is correct, before we let the objects influence our
design. After dynamic analysis, we will be confident that our analysis objects support
the required system functionality. In keeping with the philosophy of spiral development,
dynamic analysis will also help us to build the static model. The static analysis model is also
valuable when it comes to designing a database schema (for those business objects that need
to be stored).

7.3 OVERVIEW OF THE ANALYSIS PROCESS

In the case of Ripple, analysis has the following steps which you repeat until you and your
sponsors are happy:

1. Use the system requirements model to find candidate classes that describe the objects
that might be relevant to the system and record them on a class diagram.

2. Find relationships (association, aggregation, composition and inheritance) between the
classes.

3. Find attributes (simple, named properties of the objects) for the classes.

4. Walk through the system use cases, checking that they’re supported by the objects that
we have, fine-tuning the classes, attributes and relationships as we go — this use case
realization will produce operations to complement the attributes.

5. Update the glossary and the nonfunctional requirements as necessary — the use cases
themselves should not need updating, although perhaps they will need some cor-

recting.
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The term ‘realization’ means ‘making real’. Operations discovered during use case
realization should be disregarded during design — at this stage, we're trying to build our
confidence not design the solution.

You will need to show class diagrams, complete with attributes, to your sponsors, so that
they can look for mistakes (those sponsors that understand the business probably understand
it better than you do). A member of your team should summarize the information shown in
the class diagram while the sponsors look on. This, coupled with the fact that class diagrams
are relatively easy for nonprogrammers to understand, will elicit useful comments such as
‘Hang on, did you just say that nonmembers can’t reserve cars? You know, they can if they
pay a deposit ... Deciding when to present the class diagram to sponsors is up to you (and
your team), but you will generally do so at least twice: once to look for mistakes and once to
verify that you've fixed the mistakes.

Generally, it’s not a good idea to show object operations or communication diagrams to
your sponsors, because:

e They add a lot of complexity.

* They're superfluous, as far as nonprogramming sponsors are concerned, because you've
already demonstrated the dynamic behavior with the system use cases.

e They imply code, something that’s definitely taboo for nonprogrammers.

* They will be discarded before design anyway.

Some sponsors, such as technical managers, may like to be shown a little of the dynamic
analysis in order to increase their confidence: fine, but do this in separate, technical, meetings.
In the rest of this chapter, we’ll look in detail at static and dynamic analysis, respectively.

7.4 STATIC ANALYSIS

Static modeling involves deciding on the logical or physical parts of the system and how
they should be connected together. Roughly speaking, it describes how we construct and
initialize the system.

7.4.1 Finding Classes

In the previous chapters of this book, classes were not identified systematically. Because
we have now gone through the processes of business requirements modeling and system
requirements modeling, we have a good source of candidate classes in the form of system
use cases.

Candidate classes are often indicated by nouns in the use cases. With a little practice, we
can quickly cross out those nouns that represent:
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e The system itself, for example, ‘system’ or ‘iCoot”: As far as we're concerned, the system is
just a boundary for the development effort.

e Actors, for example, Assistant or Head Office: An exception to this is when we need to
store information about an actor internally (for example, for Member, we need to store a
password). Most of the time, actors are anonymous driving forces for our boundaries.

* Boundaries, for example, ‘customer applet’ or ‘head office link’ At this stage, we're trying
to identify business-related objects with interesting information and behavior. Boundaries
are particular pieces of software that allow actors to get at our objects.

e Trivial types (for example, strings and numbers): We can assume that these will be
provided by the implementation language or its libraries.

Short descriptions for the candidate classes that are left after this filtering process should
be added to the glossary. If you can’t write a short description for any class, maybe you're
expecting it to represent too much: consider splitting it into more than one class.

7.4.2 Identifying Class Relationships

Once we have a list of candidate classes, we can try to draw relationships between them.
There are four possible types of relationship:

e Inheritance: A subclass inherits all of the attributes and behavior of its superclass(es).
e Association: Objects of one class are associated with objects of another class.

e Aggregation: Strong association — an instance of one class is made up of instances of

another class.
e Composition: Strong aggregation — the composed object can’t be shared by other objects
and dies with its composer.

Inheritance is a different kind of relationship to the other three: inheritance describes a
compile-time relationship between classes while the others describe a run-time connection
between objects. According to the UML standard, all run-time relationships come under
the umbrella term association. However, most people use the term ‘association’ to mean ‘an
association that isn’t aggregation or composition’.

Choosing between relationships can be tricky — you need to use intuition, experience
and guesswork. During analysis, you should expect the frequency of these kinds of
relationship to be:

association > aggregation > inheritance > composition

As far as design and implementation are concerned, the differences between association,
aggregation and composition can be difficult to spot.
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7.4.3 Drawing Class and Object Diagrams

A class diagram shows us what classes exist and how they’re related. (Officially, class
diagrams can also show attributes and operations, but that requires a lot more space.) In the
case of aggregation, composition and association, the class diagram shows permitted run-time
relationships rather than actual ones.

Figure 7.1 shows a UML class diagram for iCoot. Every class is represented as a box with
the class name inside (in bold, if not drawing by hand). If the class is abstract, the class
name is italicized. If you're labeling an abstract class by hand, you can add the keyword
{abstract} above or to the left of the class name instead of using italics.

1.% rented under 0.1 *
Car Rental
details * taken out
1| by
v
Car 1
Details Car .
example of Customer
» Model
Details
Make 1| Zr
1 A
1.% details
* Model < : Member —|
|* |* 1x] 1x
classified  sold with
as tiy guargnteed Iivets Internet
'y % 1| Account
1 1
1 1
Category Vendor .
Credit Address
Card

Figure 7.1: An analysis class diagram for iCoot

Relationships between classes are shown as lines with various annotations. Even without
particular knowledge of UML, its easy to pick information out of a class diagram, just from
the text. For example, we can see that ‘A Car can be rented under a Rental’, ‘A Rental can be
taken out by a Customer’, and so on.

Although the relationships on a class diagram are usually drawn between classes, the
run-time relationship is actually between objects: for example, according to Figure 7.1, we
would expect to see instances of Car connected to instances of Rental at run time. UML allows
us to draw run-time objects as well as compile-time classes, as shown in Figure 7.2 Although
UML allows us to mix classes and objects on the same diagram, people generally use the
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aRentalAgreement

\ anAlphaRodeo:Car

aCar2

fredasAgreement:RentalAgreement

theYellowMolesChoice:Car

aCar1

Figure 7.2: Depicting objects in UML

term class diagram if there are no objects and object diagram if there are no classes (it's up
to you what you call a diagram that has both).

In object diagrams, objects are shown as boxes connected by links — the links are ‘realized’
associations. So that we can easily spot the difference between classes and objects, object
labels are underlined. As well as the object’s name, a label can include the object’s class, after
a colon, as in fredasRental:Rental. We can show either the object’s name, or the object’s class,
or both. If we show only the object’s class, we have to include the colon, to distinguish a
class name from an object name, as in :Rental.

Figure 7.2 shows two rentals: under the first, aRentalAgreement, aCar2 and anAlphaRodeo
have been rented; under the second, fredasRentalAgreement, theYellowMolesChoice and aCarl
have been rented. As you can see, object names correspond to the kind of variable names we
would use in our programs.

Object diagrams are useful for illustrating a particular run-time scenario, but they’re
optional. For clarity, we would prefer to avoid putting classes and objects on the same
diagram.

7.4.4 Drawing Relationships

Figure 7.3 shows how inheritance is depicted on a class diagram: a white filled arrowhead on
a solid line is drawn from the subclass to the superclass. In order to emphasize hierarchies of
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Car
Sourt Car
ports Saloon
Car ﬁ K
Sports Saloon
Car

Figure 7.3: Depicting inheritance in UML

Car K>—— Engine

Figure 7.4: Depicting aggregation in UML

Car Body

Figure 7.5: Depicting composition in UML

Car Driver

Figure 7.6: Depicting association in UML

subclasses, the arrows can be combined in the style shown on the left. Thus, SportsCar and
Saloon are both subclasses of Car.

Aggregation is drawn as a line between two classes with a white diamond on the
aggregator’s end. So, Figure 7.4 shows that an Engine is part of a Car.

Composition is drawn in a similar way to aggregation, but with a black diamond on the
composer’s end — see Figure 7.5, which shows that a Body is always part of the same Car.

Association is shown as an undecorated line (see Figure 7.6). Thus, a Driver is associated
with a Car, but the Driver is not part of the Car (that would be aggregation) and the Driver is
not always part of a single Car (that would be composition).

When developing your analysis class model, for the sake of simplicity, make sure that
information can only be deduced in one way. For example, the iCoot class diagram shown
in Figure 7.1 allows us to calculate how many Cars a particular member is renting, from the
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Rental class, the rented under association and the taken out by association. Thus, it would be
redundant to show a hasOutForRent association from the Member class to the Car class, even
if our use case model implied that such an association were needed.

Multiplicity
All relationships except inheritance can indicate at either end the number of run-time objects
that are allowed to take part in the relationship (the multiplicity of the relationship):

* n: Exactly n.

* m..n: Any number in the range m to n (inclusive).
* p..*: Any number in the range p to infinity.

e *: Shorthand for 0..*.

e 0..1: Optional.

For composition, the multiplicity at the composer’s end is always 1 because, according to
the UML rules, a composed object can’t be shared among composites — thus a multiplicity
would be redundant in this case. In other cases, if no multiplicity is shown, we must assume
that it has not been specified, or that it is simply not known at this stage. It would be wrong
to assume that a missing multiplicity implied some default value, such as 1.

Looking at Figure 7.7, we can deduce the following:

e A Car has one Engine.

* An Engine is part of one Car.

* A Car has four or five Wheels.

e Each Wheel is part of one Car.

e A Car is always composed of one Body.

* A Body is always part of one Car and it dies with that Car.
e A Car can have any number of Drivers.

Body
1
* 1% 1 .
Driver =21 Car <>—|: Engine
1
Passenger —I Wheel
0.7 4.5

Figure 7.7: Depicting multiplicities in UML
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* A Driver can drive at least one Car.
* A Car has up to seven Passengers at a time.
* A Passenger is only in one Car at a time.

Even though the notation we've seen so far appears to be unambiguous, things are never
that easy, because we're still dealing with natural language and assumptions about the real
world that the reader will make. For example, the association between Car and Passenger,
rather than being read as shown in the list above, could be read as the following pair of

statements:

* For each Car, there are only seven Passengers that could ever be in the Car.
* A Passenger is only allowed in one particular Car.

You may well argue that our initial interpretation is more obvious, based on what the
modeler is likely to be trying to say (although we frequently talk about how many people a
car can carry, when would we ever want to dictate who was allowed to ride in a particular
car?). If the distinction is not obvious, or we wish to be pedantic for the sake of it, we can
provide a verbose description —a class survey, if you like. Or, we could provide further
annotation for our diagram using comments.

The difference between aggregation and composition is subtle. In Figure 7.7, why is the
Engine aggregated while the Body is composed? The differences relate to object sharing and
object lifetimes. Recall that a composed object can never be part of more than one composite
and dies with the composite, while an aggregated object can be shared and can outlive its
aggregator. Although a car trundles out of the factory with a brand new engine inside, the
engine may later be replaced, because it's worn out, so the engine doesn’t necessarily die
with the car; in contrast, the body of the car is an intrinsic part of the car — it’s the soul of the
car, if you like, you can’t destroy the car without destroying the body (but you could always
take the engine out first). The issue of sharing is not important in this example: although the
body could never be part of two cars (not legally, anyway), the engine couldn’t either.

All this may seem a little confusing. The existence of composition in UML is really just a
result of the properties of programming languages like C++. In C++, an object can be part
of the same piece of memory as another object: in this case, the sub-object certainly dies
with the larger object. This language property also leads to the second part of the rule: a
composed object can’t be part of two objects at the same time. Even if the composed object
is separate, we have no garbage collector in C++, so the composer may want to delete the
composed object when the composer itself is deleted, which reinforces the danger of sharing.
It would be neater if UML also required the composite to create the composed object (that
would work well for our body example); however, that would prohibit us from creating the
composed object first and then passing it into the composite’s constructor.
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The fact that composition is really a programming issue implies that it is more common in
design than analysis. As a matter of analysis style, it’s recommended that you use aggregation
when there is an obvious part—whole relationship (as in the engine example) and save
composition for those rare cases when there is an obvious shared lifetime (as in the body
example).

For design purposes, composition is also useful when you wish to add behavior to an
object by hiding a delegate object inside, rather than by inheriting from another class (we
saw an example of this in Chapter 3 with Stack and LinkedList).

From an implementation point of view, one-to-many and many-to-many relationships
often result in the use of collection objects (lists, trees, sets, etc.) at run time. For example,
Car may employ some kind of List object to hold on to its passengers. One advantage of
using multiplicities on class diagrams is that we do not need to be specific about such messy
implementation details until much later.

Association Labels, Roles and Comments

All relationships, except inheritance, can be given an association label, indicating the nature
of the association. If it’s not obvious which way the association name should be read, a black
arrowhead can be used. For example, in Figure 7.8, we can see that there is at least one Wheel
that turns the Car.

Spare wheel is
required by
law

1 carrier spare Wheel
car ol
p A 1.2 Wheel
turns
2
rear Wheel

Figure 7.8: Association labels, roles and comments in UML

As well as association names, we can show roles. A role indicates the part played by an
object in the association — the role is shown as a label near the object that plays the role. For
example, Figure 7.8 indicates the following roles:

e A Car has one Wheel acting as a spare.
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* The spare Wheel has one Car acting as its carrier.
* A Car has two rear wheels.

In principle, association names and roles can be combined on the same association, but
most of the time they should be considered alternatives (in order to avoid clutter).

Figure 7.8 also shows a UML comment, an arbitrary piece of text enclosed in an icon
that looks like a piece of paper, connected to the relevant part of the diagram by means of a
dashed line. If the target of the dashed line is unclear, we can put a small white circle with a
black border at the end — this is useful when the target is another dashed line, for example. A
comment, which can appear on any diagram, can be used to provide extra information that
would be difficult or messy to show using other UML notation.

7.4.5 Attributes

An attribute is a property of an object, such as its size, position, name, price, font, interest
rate, or whatever. In UML, each attribute can be given a type, which is either a class or a
primitive. If we choose to specify a type, it should be shown to the right of the attribute
name, after a colon. (We might choose not to specify attribute types during analysis, either
because the types are obvious or because we don’t want to commit ourselves yet.)
Attributes can be shown on a class diagram by adding a compartment under the class
name. To save space, we can document them separately instead as an attribute list, complete
with descriptions. If we were using a software development tool, we would expect to be able
to zoom in to see attributes (and their descriptions) or zoom out to see class names only.
If you can’t provide a short description for an attribute at this stage, perhaps it should be

several attributes, or even a class in its own right.

Engine
capacity
horsePower
manufacturer:String
numberOfCylinders
fuellnjection:boolean

Figure 7.9: Depicting attributes in UML

Figure 7.9 shows the attributes of an Engine: capacity, horsePower, manufacturer, numberOf-
Cylinders and fuellnjection. This diagram is specific about the type given to manufacturer
(String) and fuellnjection (boolean); the implication is that we've decided that we will never
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be interested in finer details of the manufacturer — address, for example — or the particular
variety of fuellnjection (we just want to know whether or not it’s there).

As soon as we start showing attribute types, we open a can of worms: what is a String?
What is a boolean? If the type is the name of one of our own classes, there’s no problem.
Other than that, we don’t want to tie ourselves to a particular programming language or set
of libraries. Therefore, it's recommended that you stick to ubiquitous primitives (such as int,
boolean and float) and one or two obvious classes (for example, it’s fairly obvious that String
indicates an object containing a sequence of characters).

Although UML does allow us to define our own primitives in language-independent
notation — Integer, Real and Boolean, for example — you might like to avoid using this facility
because, when you come to design, you will have to be language-specific. (Another reason
to avoid this issue is that, in Java, types such as Integer are classes, not primitives.)

You may also like to avoid using the array type, which is usually a cross between an object
and a primitive, even though most object-oriented languages support it. The reason is that
your classes are likely to be more elegant if you use collection classes such as List and Set
exclusively. During the design phase, you may find yourself using arrays more, but you will
need to be careful not to compromise good style for the sake of a slight improvement in
performance.

For simplicity, you should avoid including derived attributes in your artifacts. For
example, a circle’s attributes include radius, diameter, circumference and area. However, we
could store any one of these attributes and calculate the rest at run time, so we only need to
show one of the four attributes on our class diagram. In this case, radius seems the obvious
choice, because it’s probably going to be accessed more than the others (so we’d rather not
calculate it) and the other attributes can be calculated using multiplication (which is faster
than division).

As far as UML is concerned, attributes and associations (all three varieties) are just
properties of a class. In other words, every attribute can be shown as an attribute or as an
association with the attribute’s name as the role (although an association to a primitive value
or an array would look odd). This means that we can add multiplicities to attributes, after
the type name, as in *, for a multi-valued attribute, or [0..1], for an optional attribute. This
is UML’s way of avoiding the thorny issue of whether we should show an attribute or an
association in any particular case. In this book, multiplicities won’t be shown for attributes,
except in the case of optional attributes.

Figure 7.10 shows a full set of attributes for the analysis objects discovered while
examining the iCoot system use cases. For completeness, some of the attributes shown are
from the full Coot system (totalAmount, for example). In order to avoid manipulating images
and video in the system, adverts and posters are simply attributes that specify a location
elsewhere (using a URL, for example).
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Car CarModel CarModelDetails Rental
travelled name engineSize number
dateLost[0..1] price description startDate

advert dueDate
poster totalAmount
CarDetails Category
barCode:String name
n.L:1mberPIate CreditCard Reservation
Vi —
number:String number:String
Member type:String timestamp
Make inGoodStanding: expiryDate state
name boolean
number:String
Address Customer
house name
street Internet phoneNumber: NonMember
county Vendor Account String driversLicense:
postCode name password:String amountDue:int String

Figure 7.10: Attributes for iCoot

The dateLost attribute is optional (indicated by its [0..1] multiplicity): if the Car is lost, we
record the date it was lost, otherwise we record nothing. In programming terms, we could
use a null pointer to indicate that a particular Car is not lost. If an optional attribute has
a primitive type, such as int, we have to reserve one value to indicate ‘no value here’ for
example, our model might allow us to set aside 0 or -1.

Occasionally, yowll find attribute multiplicities to be useful, but don’t overuse them. For
example, only one attribute in this entire book (dateLost) required a multiplicity (even then,
it could be argued that a more general notion of ‘car state’ would have proved better in the
long run).

As we saw earlier, UML allows us to draw run-time objects as well as compile-time classes.
Figure 7.11 shows how we can specify run-time attribute values on object diagrams.

aRental

startDate = 2004/06/23
dueDate = 2004/07/22
totalAmount = €1500

Figure 7.11: Depicting attribute values in UML
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lor
car o—° Color Car
| Car o—C%°C{ Color |

color:Color

Red Green Car Color
| Color |

Car Car

Figure 7.12: Choosing between attributes and relationships

Attribute or Relationship?
Often, we need to make choices between alternative ways of modeling information. For
example, how would you choose to model the color of a Car, for the benefit of customers?

Figure 7.12 shows four alternatives:

. Introduce an aggregation between Car and a class called color.
. Add an attribute to Car called color, with type color.
. Introduce a subclass of Car for each possible color.

AW N -

. Introduce a composition between Car and color.

All of these options make sense, although some of them may seem counter-intuitive. But
how would we choose?

The central issue is this: which modeling option fits the situation best? Or, to put it another
way, which is the most natural? As far as option 1 goes, it seems a little heavy-handed to
say that the color is part of the Car. Option 2 seems pretty good: as far as Car buyers are
concerned, the color is just one of a Car’s attributes. Option 3 definitely seems to be over the
top — do we really want a new type of Car for every available color, especially when there
might be dozens? Option 4 seems a little more sensible than option 1 —a Car comes out of
the factory sprayed a particular color; even if we change the color later, the original color is
likely to remain underneath. Overall, option 2 would seem to be most appropriate in the
context of buying cars.
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But would the choice be different if we were modeling cars on behalf of a car manufac-
turer? In that case, the manufacturer of the paint would probably become important — we
would need to know where to get more if we ran out. So, we would need to model the color
as a separate class with its own relationships and attributes; therefore, option 4 might be the
best choice.

Could we ever justify option 3? Perhaps. For example, if we were psychologists seeking
to model the effect of a car’s color on the behavior of the driver — maybe red cars incite
dangerous driving while green cars encourage caution. In that case, red and green cars may
be sufficiently different to justify modeling them as separate classes.

The moral of this story is that the analysts must choose whichever representation seems
to fit the current situation best: there is no correct answer. The best advice is probably not
to worry about the philosophy too much. Instead, use common sense, experience, intuition,
spirals and iterations to press forward to a successful implementation.

In order to avoid confusion, you should ignore the fact that UML doesn’t distinguish
between an attribute and an association-plus-role. Be guided by your model: if it seems to be
an attribute, draw it as an attribute; if it appears to be an association, draw it as an association.

7.4.6 Association Classes

Occasionally, an association has some information or behavior related to it. An association
class can be introduced alongside the association, as depicted in Figure 7.13. This diagram
indicates that a CarModel can be associated with any number of Customer objects and a
Customer can be associated with any number of CarModel objects. For each link, there is a
corresponding Reservation object that has a number, time-stamp and state. There is no name
given to the association in this case, because it is implicit in the name of the association class.

Reservation
number:String
timestamp
state:ReservationState

CarModel Customer

Figure 7.13: An association class from iCoot

An association class represents attributes and operations that exist only because the
association exists: the attributes and operations are not tied to the objects at either end of the
association. In the example above, when a customer makes a reservation, a new link is created

at run time between the Customer and the corresponding CarModel. During requirements
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capture and analysis, it was determined that the reservation number, time-stamp and state
must all be recorded. However, there is no sense in which these attributes fit with the
Customer or with the CarModel, they’re somewhere in between. Therefore, an association
class is appropriate.

When we come to design, we will have to replace association classes with something more
concrete, because they’re not supported directly in most programming languages. However,
they are useful during analysis.

7.4.7 Tangible versus Intangible Objects

Often, you will find yourself modeling an intangible object, such as a product described in a
catalog, and a separate tangible object, such as the actual item that is delivered to your door.
The object in the catalog describes the properties of something that you could order from the
supplier, but which hasn’t necessarily been manufactured yet. The object that arrives at your
door definitely has been manufactured, it is an instance of the type of product described in
the catalog. Typically, there are many tangible objects for each intangible one.

It is a common mistake to model tangible and intangible pairs as a single object. For
example, if we were writing a sales system for a car dealership, we would discover during
analysis that we were dealing with ‘catalogs’ describing the cars available for sale, ‘cars’ that
we sell to customers, and ‘customers’ that buy the cars. It would be easy to conclude that
we should produce the three concrete classes shown in Figure 7.14. However, in reality, we
have two ‘car’ concepts here: the car that appears in the catalog is intangible, it describes the
features of all cars of that type, but there may not be any such car in existence; in contrast, the
car that is owned by a customer is tangible, it definitely exists, because it can be driven — it
is separate from any similar car owned by a different customer.

Getting it Wrong
To reinforce the issue of tangibility, let's assume that, as well as selling cars, our dealership

services customer cars on request. The information relating to sales includes:

e modelNumber: This identifies the production process for making a car of this type.

>
Customer owns |
Car
Catalo Q
9 describes »

Figure 7.14: Buying cars
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* availablecolors: The colors that cars of this type can be painted before they leave the
factory.

* numberOfCylinders: The number of combustion cylinders in the engine fitted to this type
of car.

The information relating to services includes:

* owner: The registered owner of the vehicle.

* vehicleldentificationNumber: A unique number stamped on a plate and riveted to the car’s
body when it is manufactured that identifies the car for registration purposes and helps
the police to trace the owners of stolen cars.

* mileageAtLastService: The number of miles the car had driven at the time of its last
service — this allows us to calculate how many miles it’s covered since it was last serviced.

Using the single concept of Car shown in Figure 7.14, we would have no choice but to put
all of these attributes on one class, as shown in Figure 7.15. From what you already know
about object modeling, the introduction of a class with two distinct sets of responsibilities
should be ringing alarm bells already — such classes are said to have weak cohesion: their
responsibilities do not form a single clump.

Car

modelNumber
availableColors
numberOfCylinders

owner
vehicleldentificationNumber
mileageAtLastService

Figure 7.15: A Car class, showing its attributes

Let’s suppose that we're going to offer for sale the ‘Alpha Rodeo 156 2.0’: we would have
to create a Car and set its attributes appropriately. This would give us the situation shown
in Figure 7.16. (Possible attribute values have been shown as a list enclosed in braces — not
strictly UML, but convenient for our purposes.)

Now let’s suppose that a customer brings their ‘Alpha Rodeo 156 2.0’ in for its first
service. We now have two choices: we can create a new Car to represent the car owned by
this particular customer, giving us the situation shown in Figure 7.17A, or we can use the
existing Car, giving us the situation shown in Figure 7.17B.
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aCar:Car

numberOfCylinders = 4
owner =

mileageAtLastService =

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}

vehicledentificationNumber =

non-standard notation

Figure 7.16: A car for sale

aCar:Car

aCarToo:Car

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4

owner =

vehicledentificationNumber =
mileageAtLastService =

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4

owner = fredaBloggs
vehicledentificationNumber = "VN19358"
mileageAtLastService = 18036

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4

owner = fredaBloggs
vehicledentificationNumber = "VN19358"
mileageAtLastService = 18036

Figure 7.17: Servicing a car

If we choose option A, half the attributes remain unused on the first car object and we
have redundant information on the second object. If we choose option B, we can only service
one ‘Alpha Rodeo 156 2.0’ at a time (otherwise information about the first one we started
servicing will be lost).

Although the original model shown in Figure 7.14 appeared natural and reasonable, the
practical implications show that the model is nonsense. What we should have spotted early
on is that we have an intangible concept, responsible for the first set of attributes, and a

tangible concept, responsible for the second set.
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Getting it Right

Let’s discard the model shown in Figure 7.14, replacing it with a new intangible concept
called CarModel and a tangible concept called Car. This gives us the class diagram shown
in Figure 7.18. Now we can place the attributes modelNumber, availableColors and num-
berOfCylinders on CarModel, while owner, vehicleldentificationNumber and mileageAtLastService
remain on Car. Applying this new model to the example scenario we saw earlier, we create the
run-time objects shown in Figure 7.19. Here we have one CarModel representing the ‘Alpha
Rodeo 156 2.0’ and two Car objects representing the separate instances of this type of car
that have been brought in for service. With this new model, we don’t care how many cars of

owns »
Customer Car
example of
v
i >
Catalog describes CarModel

Figure 7.18: A tangible car and an intangible car model

alpha156:CarModel

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}

numberOfCylinders = 4 »@—I»
S,
%, %
o
fredasCar:Car
A —
example of

owner = fredaBloggs
vehicledentificationNumber = "VN19358"
mileageAtLastService = 18036

tomsCar:Car

owner = tomThumb
vehicledentificationNumber = "VN13788"
mileageAtLastService = 99312

Figure 7.19: Car models for sale and cars that have been sold
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a particular type are sold, nor how many are returned for service, nor how many are serviced
simultaneously, because the model can cope, logically and concisely, with all possibilities.

Usually, a single intangible object will give rise to many tangible ones. Also, the attributes
of intangible objects tend to be fixed, while those in tangible objects tend to change over
time. In our example, there is one CarModel, representing any number of ‘Alpha Rodeo 156
2.0’ Car objects that we might sell. The attributes of CarModel do not change over time (the
manufacturer may occasionally change the specification, by adding new colors, for example,
but that doesn’t happen very often). The model shows two Car objects, each representing
a particular ‘Alpha Rodeo 156 2.0’ that's been returned for service, at least once, by its
owner. The attributes of Car are changeable: the owner changes when the car is sold and the
mileageAtLastService changes every time the car is serviced. The vehicleldentificationNumber
doesn’t change, but this is a special case of an identity attribute, a property that distinguishes
this object from all other similar objects, throughout its lifetime.

m Before we leave the subject of tangibility, consider a video rental system.
Which of the two class diagrams shown in Figure 7.20 is correct, do you
think?

Customer rents B |
T Video
LRl reserves p
Customer rents B> Video
recording of
\/
Member reserves p Movie
Figure 7.20: Tangible and intangible objects from a video rental system

& J
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7.4.8 Good Objects

It’s all very well being able to draw class diagrams in perfect UML notation. It’s quite another
thing to be able to find good objects, attributes and relationships.

In this book, the recommended starting point is nouns in use cases, a combination of the
obvious with the valuable work of Jacobson. Beyond that, a lot of your success will come
from hard thinking and growing experience. Domain experts (customers and colleagues)
can help here, since they should be invited to comment on your class model. Using spirals
and iterations will also help, a lot.

If you find yourself struggling to decide what should be an object and what shouldn’t,
remember that objects are cheap —if something you're thinking about or talking about
sounds like an object, it probably is an object: don’t be afraid to put it down on paper, look at
it and see what it can do — at this point, you're a long way off the heavy investment of writing
code. If you find yourself thinking about the properties of an object, you have attributes; if
you're thinking about what an object should be able to do, you have operations. In this book,
it’s recommended that you don’t worry too much about operations until dynamic analysis,
but there’s no harm in noting some down in the meantime — dynamic analysis is used to
verify that you have at least the operations you need in order to satisfy the use cases, but a
few more won't hurt.

Another good trick, if you can’t seem to find the right objects from the use cases, is to
talk to an independent colleague about the business or the system in question. Ask them to
note down everything you mention that seems to be an important concept, in exactly the
same way as if they were taking notes at a lecture. This way, any unhelpful anxieties and
prejudices that you have will be side-stepped.

The practical advice you've seen on choosing between attributes and relationships,
considering the tangible and the intangible, and identifying association classes should help
you to avoid common pitfalls.

7.5 DYNAMIC ANALYSIS

We perform dynamic analysis for the following reasons:

e To confirm that our class diagram is complete and accurate, so that we can fix it sooner
rather than later: this may involve adding, deleting or modifying classes, relationships,
attributes and operations.

* To gain confidence that our modeling up to this point can be implemented in software:
we're not the only ones that should be confident before we proceed, our sponsors are just

as important.
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e To verify the functionality of the user interfaces that will appear in the final system: it’s a
good idea to partition access to the system into separate interfaces, along use case lines,
before we dive into detailed design.

According to Jacobson, the most important part of dynamic analysis is use case realization,
i.e. making our use cases real by demonstrating how they can be implemented as collaborating
objects. Use case realization has the following steps:

1. Walk through the system use cases, simulating the messages sent between objects and
recording the results on communication diagrams.

2. Introduce operations on the objects that receive the messages.

3. Add classes to represent boundaries (system interfaces) and controllers (placeholders for
complex business processes or for the creation and retrieval of objects), as necessary.

7.5.1 Drawing Use Case Realizations

As we simulate the messages sent between our analysis objects, we need to record our
results. UML communication diagrams and sequence diagrams are designed for this purpose.
Although we can pretty much record the same information on communication diagrams
and sequence diagrams, communication diagrams are better for use case realization because
they're simpler to produce and they focus on the objects and their connections, rather than
on the order in which the messages are sent.

We saw a simple business-level communication diagram in Section 6.4.4. Unlike our
business requirements example, which had a rather free-form mix of actors, objects and
systems, the analysis example (Figure 7.21) is cleaner. An informal description of the
information shown in Figure 7.21, from a member of the iCoot team, might read as follows:

A Member actor asks the MemberUI to reserve a particular CarModel; the Member is
warned that there is a fine if the corresponding car is not collected when it arrives;
once the Member confirms that they do wish to make a reservation, the MemberUI
asks the ReservationHome to create a new Reservation, passing in the CarModel and
the Member (which the user interface already has, as a result of logging on); finally,
the MemberUI gets the number from the new Reservation and passes it to the Member.

In general, analysis-level communication diagrams can show:

e Actors interacting with boundaries (for example, the Member interacts with a MemberUl).
* Boundaries interacting with objects inside the system (for example, the MemberUl interacts
with a ReservationHome, a Member, a CarModel and a Reservation).
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@) O

c:CarModel

m:Member

1:reserve(c) —>

<—1.1:fineWarning()
1.1.1:confirmReserve() —> @
<— 1.1.1.3:reservationNumber(n)

:MemberUl

Member

r:Reservation

:Reservation
Home

Figure 7.21: A communication diagram for U7:Make Reservation

* Objects inside the system interacting with boundaries to external systems (we might
imagine an internal ReportGenerator object interacting with a HeadOffice boundary, for

example).

We do not need to show any business objects that lie outside the system, nor do we need to
show actors that don’t interact with the system directly.

Rather than two-way interactions, we can now use a more computer-oriented, client—
supplier style: actors initiate interactions with boundary objects; boundary objects initiate
interactions with system objects; system objects initiate interactions with other system
objects, and boundaries to other systems.
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7.5.2 Boundaries, Controllers and Entities

A plain communication diagram shows objects as labeled boxes. For extra expressiveness,
UML allows the developer to use icons, instead of boxes, to indicate the nature of the object.
Figure 7.22 shows the UML meanings of the icons in Figure 7.21:

O

Actor Entity
Boundary Controller

Figure 7.22: Jacobson’s icons for communication diagrams [Jacobson et al. 92]

e Actor: A person (usually) or system (occasionally) existing outside the system.

e Boundary: An object at the edge of the system, between the system and the actors. For
system actors, boundaries provide a communication path. For human actors, a boundary
means a user interface, capturing commands and queries and displaying feedback and
results. Each boundary object usually corresponds to a use case, or a group of related
use cases. More specifically, such a boundary usually maps to a user interface sketch (in
which case it may be an entire interface or just a sub-window). It is quite reasonable for
boundary objects to survive through to design.

* Entity: An object inside the system, representing a business concept such as a customer, a
car or a car model and containing useful information. Typically, entities are manipulated
by boundary and controller objects, rather than having much behavior of their own.
Entity classes are the ones that appear on our analysis class diagram. Most entities survive
through to design.

e Controller: An object inside the system that encapsulates a complex or untidy process. A
controller is a service object that provides the following kinds of service: control of all or
part of a system process; creation of new entities; retrieval of existing entities. Without
controllers, our entities would become polluted with messy details. Since controllers are
just a convenience for the benefit of analysis, we do not expect many of them to survive
through to design; an important exception to this is the idea of a home. A home is a
controller that is used for the creation of new entities and the retrieval of existing ones. A
home may also have utility messages as in carModelHome.findEngineSizes(). Since a home is
such a clean concept, they often survive through to design.
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The RUP approach is to retain all controllers for the design phase, complete with all
the operations that we discover during dynamic analysis. With RUP, there is no distinction
between the analysis model and the design model — we simply start with the analysis
model and enrich it again and again, until it is transformed into an implementable design
model. For the purposes of this book, and in general, this approach is considered too
optimistic.

The valuable outputs from analysis are:

* good entity objects with validated attributes;

high-level boundary objects that mirror the use cases;
e confidence that our model is correct;
* homes (ignoring any utility messages).

The designer should not have the opportunity to modify these fundamental outputs for
the sake of implementation. The flip side to this is that the analyst should not be consid-
ering programming details, such as how to implement object attributes, relationships or
operations.

It's recommended that designers begin with a fresh class diagram that is seeded with the
entity objects that were discovered during analysis. Selected boundaries and homes can then
be added to this diagram, as appropriate.

7.5.3 Communication Diagram Elements

Figure 7.23 shows the analysis communication diagram again, with annotations that explain
the individual pieces of notation. The details of the notation are as follows:

* Actors are shown in the same way as they are on use case diagrams.

* Objects are shown as labeled icons or labeled boxes.

* A line between two objects indicates a link, as on an object diagram.

* A message is shown as a sequence number (indicating the message’s position in the com-
munication), a message name (in the usual format) and a parameter list (in parentheses).

* An open-ended arrow shows the direction the message is being sent (this arrow doesn’t
have to be positioned at the end of the message, some developers place it below, for
example).

* Labels, used to identify objects and parameters, can be shown as name, name:Type, :Type
or literal (for example, carModel, m:CarModel, :CarModel, 10 or "abc").

* Assignment of a reply value to a name can be shown like this: n = getNumber().

* A conditional message can be shown as a guard (a condition in brackets), next to the
message, for example, 4:[Only on Saturday]readPaper().

* Iteration can be indicated with a * next to the part of the sequence number that iterates.
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icon (or
Q Q labeled box)

m:Member
c:CarModel

link
actor 1:reserve(c) —>
<—1.1:fineWarning()
1.1.1:confirmReserve() —> @
<—1.1.1.3:reservationNumber(n)
Member message :MemberUlI sequence number
&
', assignment
parameters (name,
N ® :Class, name:Class,
direction /’\' %, orvalue)
r:Reservation
name class
(optional) (optional) ‘Reservation

Home

Figure 7.23: Elements of a UML communication diagram

Although, in reality, no actor would literally ‘send a message’ to a boundary object, the
message metaphor is a convenient and concise way of representing an interaction. Unlike
object diagrams, object labels on communication diagrams are not underlined (partly because
classes can’t be present to cause confusion).

A few words about sequence numbers. Initially, a message is sent to an object, causing the
execution of a method. Within that method, further messages can be sent: these are given
sequence numbers that show the level of the interaction. For example, message 1 causes
method 1 to execute; its first message is 1.1, the second is 1.2, and so on. The first message
sent within method 1.2 is 1.2.1. As in Figure 7.23, when a communication diagram shows
the implementation of a single top-level message (reserve), the first number in the sequence
is never higher than 1. Although this numbering scheme can lead to many levels of nesting
(especially where we have a two-way interaction), it does at least allow us to be precise.
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If we're dealing with concurrent communications on a single diagram, we can give each
communication — or thread — a name, as part of the sequence number. For example, we might
use a and b as the names of two separate threads; 2.2a and 2.2b would happen at the same
time, while 2.3a would happen later on thread a.

7.5.4 Adding Operations to Classes

Every message on a communication diagram corresponds to an operation on a class, so
we should record the operations in order to have a complete set of use case realizations.
Operations can be shown on a class diagram in a separate compartment below the attribute
compartment, as shown in Figure 7.24. Alternatively, they can be documented as a separate
operation list, to save space. The style you choose is likely to be dictated by whether you're
using a development tool, paper or a whiteboard; however you do it, be sure to include

descriptions of the operations too.

MemberUl
reserve(:CarModel)
confirm()
Reservation ReservationHome
number:String
timestamp create(
state: :CarModel,
ReservationState ‘Member

getNumber():String ):Reservation

Figure 7.24: Some operations from iCoot

The general form of a UML operation is:

opName (paramNamel:paramTypel,paramName2:paramType2) :ReturnType

Each parameter name, parameter type and return type is optional. (If the parameter name is
omitted, the colon must be retained in front of the parameter type, to avoid confusion.) For
an empty parameter list, the parentheses can be omitted, but they’re retained in this book,
so that operations are instantly distinguishable from attributes.

7.5.5 Responsibilities

Whenever you add detail to your objects, you should consider responsibility as described in
[Wirfs-Brock and McKean 02]. This will help you to find and correctly assign operations and
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attributes. (Although you will have discovered many of the attributes during static analysis,
during use case realization you will discover the need for more.) Whenever you discover
some information or behavior that needs to be in the system, think to yourself ‘Which object
is responsible for this?’ Information ends up as attributes (and objects); behavior ends up as
operations (and collaborations).

Taking the idea of responsibilities a step further, make sure that no object is responsible
for more than one job (or role, if you prefer): if you have an object that is responsible
for getting order details from a customer and processing the order, you probably want two
objects (a boundary and a controller, perhaps). Objects with a single set of responsibilities
are said to have strong cohesion, a desirable goal.

Also, remember to think of your objects as clients (who ask questions and give com-
mands) or suppliers (who provide answers and perform services). The alternative, two-way
collaboration, leads to greater complexity and more difficult maintenance. A supplier is said
to be loosely coupled to its client. Two-way collaborations lead to strong coupling in both
directions. The fact that each use case realization described in this book involves an actor as
initiator talking to a boundary that talks to entities, should help you to produce client and
supplier objects. Of course, going deeper into the system, a supplier may also be a client and
a client may also be a supplier.

7.5.6 State Modeling

Sometimes, an entity will have a life cycle that's complex enough to be shown on a
state machine diagram. For example, Figure 7.25 shows a model of the complex life of a
Reservation in the iCoot system. In this diagram, a box with rounded corners indicates a
state, with a label giving its name. An arrow indicates a transition to another state — the
label on the arrow indicates the trigger that causes the transition. A black circle with an
arrow coming out of it points to an initial state — a state into which an object can be born.
An arrow pointing to a ringed black circle indicates that the source is a final state — a state
where an object can end its life.

As a result of the start and stop states, Figure 7.25 shows that, when a Reservation is
created, it is Waiting and, once it has reached the Concluded state, it plays no further part in
the system. As for the other parts of the diagram, rather a lot is being said. Below is a full
description — a state machine survey, perhaps. This description alone should convince you
of the need for a diagram.

When a Member reserves a CarModel over the Internet, the Reservation is initially
Waiting to be processed by an Assistant (this is so the Customer can make a Reservation
without the intervention of an Assistant). The Reservation becomes Notifiable if, some
time later, an Assistant finds a suitable unreserved Car in the display area of the car park,
or if one is returned by a Customer. In this case, the Car is moved to the reserved area.
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found

no car
arrives

Waiting
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car - assistant
returned finds car

member
unreachable

Needing
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collects stores

Concluded

Notifiable

member
cancels

member

assistant
cancels

notifies member member

cancels

member
no-show

member

member
cancels

unreachable

Collectable

Figure 7.25: State machine diagram for a reservation

If no Car becomes available for a particular Reservation within a week, the Reser-
vation becomes NeedingRenewal: the Member must be contacted, by phone or in
person, so that they can cancel the Reservation, or ask for it to be renewed for another
week. If the Member cancels or can’t be contacted within five days, the Reservation is
Concluded.

Once a Reservation is Notifiable, the Member must be notified by an Assistant, in
person or by phone, within three days; if the Customer can be reached, the Reservation
is Collectable otherwise it becomes Displayable (a Car that was moved to the reserved
area must be returned to the display area).

Once a Reservation is Collectable, the Member must collect the Car within three
days: if they do collect, the Reservation is Concluded; otherwise, the Reservation
becomes Displayable.

Once a Displayable Reservation’s Car has been put back in the display area, the
Reservation is Concluded.

At any time, the Member may cancel the Reservation over the Internet, by phone or
in person.

The system will keep Assistants informed as to the state of current (not yet
concluded) reservations, so that they can take appropriate action.

As well as behavior state machines, such as the one we’ve just seen, UML has protocol
state machines. The latter are used to show the order in which messages can legally be sent
to an object, but otherwise they’re similar.
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7.6 SUMMARY

In this chapter, we've looked at:

* How to perform the analysis phase of software development.

* How to build a static analysis model showing the business-oriented objects of our
proposed system, along with their attributes and relationships, on a class diagram.

» How dynamic analysis can improve and verify the static model, using communication
diagrams, and how we can model complex life cycles, using state machine diagrams.

FURTHER READING

Finding good objects, attributes and relationships comes partly from good thinking, partly
from talent and partly from experience. Despite this being a rather philosophical activity,
there are places to look for help. Three popular books that are worth investigating are [Fowler
96], [Larman 01] and [Martin and Odell 98]. Fowler gives many examples of analysis models
from the real world. The other two books, although they cover a much broader range of
topics, do address the issue of finding conceptual objects.

For finding responsibilities, [Wirfs-Brock and McKean 02] is the foundation.

The original ideas on breaking a system up into boundaries, controllers and entities are
due to Jacobson [Jacobson et al. 92].

In this book, state machine diagrams are covered at a conceptual level only — Martin
Fowler provides more detail in [Fowler 03] and the full picture can be found in the UML
Specification [OMG 03a].

REVIEW QUESTIONS

1. With reference to Figure 7.26, what do you think is the most likely implementation of
the relationship between Car and Engine? Choose only one option.

(a) A field, of type Car, in Engine.

(b) A class called CarEngine with one field of type Car and another field of type Engine.
(c) A field, of type Engine, in Car.

(d) A field, of type Engine, in Car and a field, of type Car, in Engine.

2. With reference to Figure 7.26, which of the following statements are true? Choose all
options that apply.

(a) A car always has the same body.
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Body
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Driver Car Engine
I
P
assenger 0.7 45 Wheel

Figure 7.26: For use with Review Questions 1 and 2

(b) Some cars have spare wheels.

(¢) A car has one engine, and engines are not shared between cars.
(d) All cars have either four or five wheels.

(e) A car must have at least one driver.

() Passengers cannot be drivers.

PizzaBase Case Study A
The PizzaBase restaurant wants to automate the ordering of pizzas by customers.
Each table will be fitted with a touch-sensitive screen which customers can use to
browse the pizzas on offer and select their choice.

Two basic types of pizza will be offered: the Do-it-Yourself will have a base with
tomato sauce only and then customers can choose any number of toppings, at a fixed
price per topping; the Prefab will come in several varieties, each with a fixed set of
toppings. Every pizza can be ordered with a deep crust or crispy base, and three sizes
are available: 6 inch, 9 inch and 12 inch.

Customers will also be able to order from a fixed set of drinks, such as cola and
lemonade flavors, each in large or small size. Once customers have confirmed their
order, they will be shown the final price and, thereafter, the screen will display the
progress of their food as it is being prepared and cooked. At the end of a meal,

payment will be made in the conventional way.

- J

3. With reference to the PizzaBase case study, which of the following is most likely list of
attributes at the analysis stage? Choose only one option.

(a) cola, base, price, size, lemonade, payment.
(b) flavor, variety, payment, final, display, meal, tomato.
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(c) progress, variety, flavor, price, touchSensitive, size, drink.

(d) base, price, variety, size, progress, flavor.

4. With reference to Figure 7.27, which diagram is the best model of Pizzas in the PizzaBase

restaurant? Choose only one option.

(a) Diagram 1.
(b) Diagram 2.
(c) Diagram 3.

Order specifies
I
Pizza
Menu lists
Order specifies Choice
kindOf
Menu lists Pizza

Diagram 1
Customer orders Pizza
Diagram 3
Diagram 2

Figure 7.27: For use with Review Question 4

5. With reference to the PizzaBase case study, which of the following is the most likely list

of analysis classes? Choose only one option.

(a) Payment, Order, Drink, Topping, Pizza, Order, Restaurant, Base, Sauce.

(b) Customer, Table, Pizza, Topping, Drink, Restaurant, Order.

(¢) PizzaBase, Cola, Restaurant, Lemonade, Customer, Do-it-Yourself, Prefab, Table,

Order.

(d) Restaurant, Pizza, Topping, Display, Order, Payment, Touch.

(e) Screen, Order, Offer, Topping, Size, Meal, Pizza, Restaurant.

() Pizza, Customer, Cook, Table, Crust, Topping, Drink, Restaurant.

6. In UML, which diagrams are used to show messages sent between objects? Choose all

options that apply.

(a) Activity diagrams.
(b) Object diagrams.
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(¢) Communication diagrams.
(d) State machine diagrams.
(e) Sequence diagrams.

(f) Deployment diagrams.

7. With reference to Figure 7.28, which kind of icon would you use to represent a business
object containing useful information? Choose only one option.

(a) A.

(b) B.
(o) C.

Cc

Figure 7.28: For use with Review Question 7

8. What is an association class? Choose only one option.

(a) It describes the various kinds of relationship that can exist between classes.
(b) It adds attributes and/or behavior to an association between two other classes.
(c) Itassociates an object with the class of which it is an instance.

9. With reference to Figure 7.28, which kind of icon would you use to represent a com-
munication path between systems or between a human and a system? Choose only
one option.

(a) A.

(b) B.
(c) C.
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10. With reference to Figure 7.28, which kind of icon would you use to represent an object
that coordinates a system process, creates objects or retrieves objects? Choose only

one option.

(a) A.
(b) B.
(¢) C.

ANSWERS TO ACTIVITY 4

The lower option in Figure 7.20 is correct. If there’s any doubt in your mind, consider the
placement of the attributes barCode and title. A title belongs to a Movie and every recording
of it will have the same title. However, every physical Video copy of a Movie will have its own
barCode. This illustrates that, sometimes, the name of an intangible class can be completely
different to that of its tangible partner.

ANSWERS TO REVIEW QUESTIONS

1. The most likely implementation of the relationship between Car and Engine is c.

2. With reference to Figure 7.20, the following statements are true:
a. A car always has the same body. c. A car has one engine, and engines are not shared
between cars. d. All cars have either four or five wheels.

3. The most likely list of attributes at the analysis stage is d. base, price, variety, size,
progress, flavor.

4. With reference to Figure 7.27, b. Diagram 2 is the best model of Pizzas in the PizzaBase
restaurant.

5. The most likely list of analysis classes is b. Customer, Table, Pizza, Topping, Drink,
Restaurant, Order.

6. In UML, c. Communication diagrams and e. Sequence diagrams are used to show
messages sent between objects.

7. T'would use icon B to represent a business object containing useful information.

8. An association class b. Adds attributes and/or behavior to an association between two
other classes.
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9. T would use icon C to represent a communication path between systems or between a

human and a system.
10. T would use icon A to represent an object that coordinates a system process, creates

objects or retrieves objects.
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Designing the System Architecture

I his chapter considers how to move from analysis into design and concentrates on the
system architecture elements of design.

Learning Objectives

Understand the steps involved in Understand the concurrency and
system design and how a system security issues that arise in
can be decomposed into physical networked systems.

and logical components.
Understand how to partition a
lllustrate architectural decisions on system and add partitioning
UML deployment diagrams. decisions to a UML deployment
diagram.
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8.1 INTRODUCTION

Analysis and design are very different ideas, although the boundaries are sometimes blurred.
This blurring can happen intentionally, as in the case of RUP, or accidentally, resulting from
poor software development. A clear separation between analysis and design is a good idea,
to make sure that the problem is well understood before a solution is considered. With
that separation in mind, analysis is about investigating the problem while design is about
inventing a solution. Or, to put it succinctly, ‘Analysis = What; Design = How'.

There are no strict rules for transforming an analysis model into a design model.
Anyone who tells you otherwise is ignoring the human factors and creativity involved in
software development — if we could be systematic, software development would be just like
engineering, an idea that’s already been debunked in Chapter 5. The design process is driven
by the need to produce a finished system; the experience of the team; reuse opportunities;
personal preference. Once the designer has studied the requirements and analysis artifacts,
he or she can start with a clean sheet of paper: we don’t care whether there is a close
correspondence between analysis objects and design objects, as long as the design leads to
an effective solution.

During the design phase, we make certain technology choices (for example, programming
languages, protocols and database management systems). We must decide how much impact
we want these choices to have on our design. Our technology choices will influence the
libraries, patterns and frameworks that are available to us and even the detailed UML notation
that we use.

The more general we can make our design, the less we are tied to a particular technol-
ogy — this will reduce the need for developers to be experts in multiple technologies and it
will protect us from technologies that become obsolete or unsupported. The downside of
being general is that we may not get the maximum benefit from any particular technology
(reuse and performance being the important factors here).

History suggests that individual technologies appear and disappear more frequently than
the theories that underpin those technologies. For example, programming languages have
included COBOL, Fortran, Pascal, Ada, Modula, PL/1, C, C++, Smalltalk, Eiffel, C# and
Java, but the use of these technologies has been governed by only two theories: structured
programming and object-oriented programming. Therefore, it’s reasonable to conclude that
being general is safer than being specific.

With respect to the reuse penalty of a general design, we must accept that some
investigation will be needed to discover new reuse opportunities for each implementation.
As for the performance penalty, we would hope that keeping our design general would not
lose us more than, say, 10% of the maximum possible performance. (By adding extra capacity
to our system, using more machines or faster machines, we should be able to make that last
10% irrelevant.)
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On the whole, apart from a discussion of the common technologies available today, the
discussion will be as general as possible for the rest of this book, relying purely on object-
oriented theory and generic UML notation. One exception to this is that where primitive
types must be added to diagrams, Java primitives will be used: this is to avoid confusion when
looking at the Java code fragments and because some Java classes have primitive-looking
names. (Although this is not a strictly generic use of UML, the UML standard does allow the
relaxation.) For most of this book, Java arrays will be avoided in favor of collection classes,
since the latter are more elegant.

8.2 DESIGN PRIORITIES

Since object-oriented software development is incremental, we mustn’t expect to design the
whole system in one pass. So, at the start of each design phase, we need to plan which parts
of the system we will design. The use case priorities will help here; so will the use case
urgencies that we indicated using the traffic light analogy during the requirements phase:
anything green must be fully designed; anything amber doesn’t have to be designed, but
it must be supported; anything red must not be designed, but it should still be supported
(‘designed” means that a solution has been invented; ‘supported’ means that a reasonable
solution is possible, which requires some foresight on our part).

In practice, we seek a system architecture that will support a practical, efficient solution
for all the use cases. Within that architecture, we perform detailed design for the most
important use cases and partial design for the less important ones. Between increments, we
adjust the priorities, the urgencies and the design, as appropriate.

8.3 STEPS IN SYSTEM DESIGN

Design can be thought of as having two distinct activities: system design and subsystem
design. System design forces us to take a high-level view of the task ahead before we dive
into the detail of subsystem design (see Chapter 10). Of course, in good object-oriented
tradition, we can blur the boundaries and we can spiral and iterate, but the idea of having
two activities is still essential.

System design includes the following activities:

e Choosing a system topology: how the hardware and processes will be distributed, perhaps
over a network.

e Making technology choices: selecting programming languages, databases, protocols and
so on (see Chapter 9); some decisions may be deferred until later in the design phase.
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* Designing a concurrency policy: concurrency means many things happening at
once — multiple processes, users, machines; these must be coordinated by our software in
order to avoid chaos.

* Designing a security policy: security has a number of aspects, each of which must be
properly addressed and controlled; as an example, consider a customer’s personal data — we
must ensure that the data is not stolen by criminals and we must ensure that it can’t
accidentally be shown to other customers.

* Choosing subsystem partitions: often, it is impractical to produce a single piece of
software that solves all of our problems; instead we need to produce separate pieces of
software and then make sure that the pieces communicate effectively.

e Partitioning the subsystems into layers or other subsystems: typically, each subsystem will
need to be decomposed further into manageable chunks before we can do detailed design.

* Deciding how machines, subsystems and layers will communicate: communication deci-

sions usually happen as a side-effect of the other steps.

8.4 CHOOSING A NETWORKED SYSTEM
TOPOLOGY

System topology indicates how a system is decomposed into separate physical and logical
components. In this section, we see an overview of the history of network architectures and
then discuss current architecture issues: thin versus fat clients; networks; and client—server
applications versus distributed applications. We'll also see how we can use UML deployment
diagrams to illustrate architectural decisions.

8.4.1 The History of Network Architectures

Most modern, networked, systems have a three-tier architecture. To see what ‘three-tier’
means and to understand why it’'s a good idea, we need to take a look at the historical
alternatives.

Back in the 1940s, computers were large monolithic devices capable of running only
one program at a time. These monolithic machines evolved into mainframes that were
capable of running multiple programs simultaneously, typically one program per user or one
program per batch (a batch comprises sets of similar data that are run through a program in
sequence, to process electricity bills, for example). Mainframes were able to handle multiple
programs simultaneously because they employed a time-slicer to run each program on the
CPU bit-by-bit, each program taking it in turns to perform a little more processing.

To begin with, users and batch administrators would access a mainframe via a teletype
unit —an electric typewriter that the operator would use to send one line of text to the
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mainframe at a time (the text would represent program commands or program data). The
program running on the mainframe would then send back one or more lines as a response.
As technology improved, teletypes were replaced with dumb terminals (also known as green
screens) that used a Cathode Ray Tube (CRT) instead of paper for textual input and output.
With a dumb terminal, the operator could prepare an entire screen of commands or data
before dispatching it all at once to the program running on the mainframe (see Figure 8.1).

Dumb Terminals Mainframe

Figure 8.1: Mainframe computing: a one-tier architecture

The mainframe model, still in use today for large-scale business tasks, is a one-tier
architecture. This means that, for any given program, there is only one level of computing
activity running on one machine (teletypes and dumb terminals do not perform any
processing). Or, to p