

Object-Oriented
Analysis and Design

Understanding System Development
with UML 2.0

Mike O’Docherty

Object-Oriented
Analysis and Design

Object-Oriented
Analysis and Design

Understanding System Development
with UML 2.0

Mike O’Docherty

Copyright  2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional
services. If professional advice or other expert assistance is required, the services of a competent
professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

O’Docherty, Mike.
Object-oriented analysis and design : understanding system development

with UML 2.0 / Mike O’Docherty.
p. cm.

Includes bibliographical references and index.
ISBN-13 978-0-470-09240-8
ISBN-10 0-470-09240-8 (pbk. : alk. paper)
1. Object-oriented programming (Computer science) 2. Computer
software–Development. I. Title.
QA76.64.O35 2005
005.1′17 – dc22
2005004182

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-09240-8
ISBN-10 0-470-09240-8

Typeset in 10/14 Berkeley-Medium by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

http://www.wiley.com

For Alice and George

Contents

1 Introduction 2
1.1 Background 4

1.2 A Brief History of Programming 4

1.3 Methodologies 5

1.4 About this Book 5

1.4.1 Content Overview 6

1.4.2 Case Studies 7

1.4.3 Navigation 7

Part I Setting the Scene 9

2 Object Concepts 10
2.1 Introduction 12

2.2 What Is an Object? 13

2.3 Identical or Equal? 16

2.4 Depicting Objects 19

2.5 Encapsulation 20

2.6 Association and Aggregation 21

2.7 Graphs and Trees 23

2.8 Links and Navigability 25

2.9 Messages 27

2.10 Invoking an Operation 28

2.11 An Example Collaboration 30

2.12 How an Object-Oriented Program Works 32

2.13 Garbage Collection 32

2.14 Classes 34

2.15 What Does a Class Define? 37

2.16 Shared Data and Shared Operations 39

2.17 Types 40

2.18 Terminology 41

2.19 Reusing Code 43

viii Contents

2.20 Summary 48

Further Reading 48

Review Questions 48

Answers to Activity 1 50

Answers to Review Questions 50

3 Inheritance 52
3.1 Introduction 54

3.2 Designing a Class Hierarchy 55

3.3 Adding Implementations to a Class Hierarchy 58

3.4 Abstract Classes 59

3.5 Redefining Methods 63

3.6 Implementing a Stack Class 64

3.6.1 Implementing a Stack using Inheritance 65

3.6.2 Implementing a Stack using Composition 66

3.6.3 Inheritance versus Composition 68

3.7 Multiple Inheritance 69

3.8 Guidelines for Using Inheritance 73

3.9 Summary 73

Further Reading 74

Review Questions 74

Answers to Review Questions 75

4 Type Systems 78
4.1 Introduction 80

4.2 Dynamic and Static Type Systems 80

4.3 Polymorphism 82

4.3.1 Polymorphic Variables 82

4.3.2 Polymorphic Messages 83

4.4 Dynamic Binding 85

4.5 Polymorphism Guideline 87

4.6 Type Casting 88

4.7 Explicit Casts 89

4.8 Genericity with Templates 91

4.9 Summary 93

Further Reading 93

Review Questions 93

Answers to Activity 2 95

Answers to Activity 3 95

Answers to Review Questions 96

Contents ix

5 Software Development Methodologies 98
5.1 Introduction 100

5.2 Classical Phases in Software Production 102

5.2.1 Requirements 102

5.2.2 Analysis 102

5.2.3 Design 103

5.2.4 Specification 103

5.2.5 Implementation 104

5.2.6 Testing 104

5.2.7 Deployment 104

5.2.8 Maintenance 104

5.2.9 Key Questions 105

5.3 Software Engineering and the Waterfall Methodology 106

5.4 New Methodologies 110

5.4.1 Spiral Methodology 110

5.4.2 Iterative Methodology 111

5.4.3 Incremental Methodology 112

5.4.4 Combining the Methodologies 113

5.5 Object-Oriented Methodologies 114

5.5.1 UML, RUP and XP 115

5.5.2 The Need for Development Tools 116

5.6 Ripple Overview 117

5.6.1 Use Case Diagram 120

5.6.2 Class Diagram (Analysis Level) 121

5.6.3 Communication Diagram 122

5.6.4 Deployment Diagram 123

5.6.5 Class Diagram (Design Level) 124

5.6.6 Sequence Diagram 125

5.7 Summary 126

Further Reading 126

Review Questions 127

Answers to Review Questions 128

Part II Understanding the Problem 129

6 Gathering Requirements 130
6.1 Introduction 132

6.2 The Birth of a System 133

x Contents

6.3 Use Cases 135

6.4 Business Perspective 136

6.4.1 Identifying Business Actors 137

6.4.2 Writing the Project Glossary 138

6.4.3 Identifying Business Use Cases 139

6.4.4 Illustrating Use Cases on a Communication Diagram 141

6.4.5 Illustrating Use Cases on an Activity Diagram 143

6.5 Developer Perspective 145

6.5.1 Specializing Actors 149

6.5.2 Use Case Relationships 150

6.5.3 System Use Case Details 155

6.5.4 Preconditions, Postconditions and Inheritance 156

6.5.5 Supplementary Requirements 158

6.5.6 User Interface Sketches 158

6.5.7 Prioritizing System Use Cases 159

6.6 Summary 162

Further Reading 162

Review Questions 163

Answers to Review Questions 165

7 Analyzing the Problem 166
7.1 Introduction 168

7.2 Why Do Analysis? 168

7.3 Overview of the Analysis Process 169

7.4 Static Analysis 170

7.4.1 Finding Classes 170

7.4.2 Identifying Class Relationships 171

7.4.3 Drawing Class and Object Diagrams 172

7.4.4 Drawing Relationships 173

7.4.5 Attributes 178

7.4.6 Association Classes 182

7.4.7 Tangible versus Intangible Objects 183

7.4.8 Good Objects 188

7.5 Dynamic Analysis 188

7.5.1 Drawing Use Case Realizations 189

7.5.2 Boundaries, Controllers and Entities 191

7.5.3 Communication Diagram Elements 192

7.5.4 Adding Operations to Classes 194

7.5.5 Responsibilities 194

Contents xi

7.5.6 State Modeling 195

7.6 Summary 197

Further Reading 197

Review Questions 197

Answers to Activity 4 201

Answers to Review Questions 201

Part III Designing the Solution 203

8 Designing the System Architecture 204
8.1 Introduction 206

8.2 Design Priorities 207

8.3 Steps in System Design 207

8.4 Choosing a Networked System Topology 208

8.4.1 The History of Network Architectures 208

8.4.2 Three-Tier Architecture 210

8.4.3 Personal Computers 212

8.4.4 Network Computers 213

8.4.5 The Internet and the World Wide Web 214

8.4.6 Intranets 215

8.4.7 Extranets and Virtual Private Networks 215

8.4.8 Client–Server versus Distributed Architectures 216

8.4.9 Depicting Network Topology in UML 218

8.5 Designing for Concurrency 220

8.6 Designing for Security 222

8.6.1 Digital Encryption and Decryption 223

8.6.2 General Security Rules 225

8.7 Partitioning Software 225

8.7.1 Systems and Subsystems 226

8.7.2 Layers 227

8.7.3 Java Layers: Applet plus RMI 230

8.7.4 Message Flow in Layers 233

8.8 Summary 237

Further Reading 238

Review Questions 238

Answers to Review Questions 239

9 Choosing Technologies 240
9.1 Introduction 242

xii Contents

9.2 Client Tier Technologies 242

9.3 Client Tier to Middle Tier Protocols 244

9.4 Middle Tier Technologies 246

9.5 Middle Tier to Data Tier Technologies 247

9.6 Other Technologies 248

9.7 Typical Front-End Configurations 250

9.7.1 HTML/CGI-with-Scripts 250

9.7.2 HTML/CGI-with-Servlets 252

9.7.3 RMI 254

9.7.4 CORBA 255

9.7.5 EJB 256

9.8 Back-End Configurations 258

9.9 Java E-Commerce Configuration 258

9.10 UML Packages 262

9.11 Summary 267

Further Reading 267

Review Questions 267

Answers to Review Questions 268

10 Designing the Subsystems 270
10.1 Introduction 272

10.2 Mapping the Analysis Class Model into the Design Class Model 273

10.2.1 Mapping Operations 273

10.2.2 Variable Types 274

10.2.3 Visibility of Fields 274

10.2.4 Accessors 275

10.2.5 Mapping Classes, Attributes and Compositions 276

10.2.6 Mapping Other Types of Association 277

10.2.7 Universal Identifier 282

10.3 Handling Persistence with a Relational Database 284

10.3.1 Database Management Systems 285

10.3.2 The Relational Model 286

10.3.3 Mapping Entity Classes 288

10.3.4 Mapping Associations 289

10.3.5 Mapping Object State 292

10.4 Finalizing the User Interfaces 298

10.5 Designing the Business Services 304

10.5.1 Using Proxies and Copies 305

10.5.2 Classifying Business Services 307

Contents xiii

10.5.3 Session Identifiers 309

10.5.4 Business Service Realization 310

10.6 Using Patterns, Frameworks and Libraries 312

10.7 Transactions 312

10.7.1 Pessimistic and Optimistic Concurrency 313

10.7.2 General Guidelines for Using Transactions with Objects 314

10.7.3 Transactions in Upper Layers 315

10.8 Handling Multiple Activities 315

10.8.1 Controlling Multiple Tasks 315

10.8.2 Controlling Multiple Threads 316

10.8.3 Thread Safety 318

10.9 Summary 321

Further Reading 321

Review Questions 322

Answers to Review Questions 323

11 Reusable Design Patterns 326
11.1 Introduction 328

11.1.1 A Brief History of Patterns 328

11.1.2 Software Patterns Today 329

11.2 A Pattern Template 330

11.3 Common Design Patterns 331

11.3.1 Observer 331

11.3.2 Singleton 337

11.3.3 Multiton 341

11.3.4 Iterator 342

11.3.5 Factory Method and Abstract Factory 346

11.3.6 State 347

11.3.7 Facade 352

11.3.8 Adapter 354

11.3.9 Strategy and Template Method 356

11.3.10 Flyweight 358

11.3.11 Composite 361

11.3.12 Proxy 364

11.4 Using Patterns 367

11.5 Discovering, Combining and Adapting Patterns 367

11.6 Summary 370

Further Reading 371

xiv Contents

12 Specifying the Interfaces of Classes 372
12.1 Introduction 374

12.2 What Is a Specification? 375

12.3 Formal Specification 376

12.4 Informal Specification 378

12.5 Dynamic Checking 380

12.6 Object-Oriented Specification 382

12.6.1 Formal Specification in OCL 383

12.6.2 Informal Specification in Eiffel 384

12.7 Design by Contract 385

12.7.1 Contracts and Inheritance 389

12.7.2 Reducing Error-Checking Code 391

12.7.3 Enforcing the Contract 394

12.7.4 Application Firewalls 395

12.8 Informal Specification in Java 396

12.8.1 Documenting a Contract using Comments 396

12.8.2 Checking Conditions Dynamically 396

12.8.3 Signaling Contract Violations using RuntimeExceptions 397

12.8.4 External Systems 398

12.8.5 Enabling and Disabling Dynamic Checks 400

12.9 Summary 402

Further Reading 403

Review Questions 403

Answers to Review Questions 404

13 Continuous Testing 406
13.1 Introduction 408

13.2 Testing Terminology 408

13.2.1 Black-Box Testing 409

13.2.2 White-Box Testing 410

13.3 Types of Test 411

13.3.1 Unit Testing 412

13.3.2 Integration Testing 412

13.3.3 Alpha Testing 413

13.3.4 Beta Testing 413

13.3.5 Use Case Testing 414

13.3.6 Component Testing 414

13.3.7 Build Testing 415

13.3.8 Load Testing 417

13.3.9 Installation Testing 418

Contents xv

13.3.10 Acceptance Testing 418

13.3.11 Regression Tests 419

13.3.12 Documentation Tests 419

13.3.13 Testing for Security 419

13.3.14 Metrics 420

13.4 Automating Tests 421

13.5 Preparing for Testing 422

13.6 Testing Strategies 424

13.6.1 Testing During Development 424

13.6.2 Testing During the Testing Phase 425

13.6.3 Testing After Release 426

13.7 What to Test For 426

13.8 Test-Driven Development 430

13.9 An Example of Test-Driven Development using JUnit 431

13.9.1 Testing the Car Class 433

13.9.2 Implementing the Car Class 434

13.9.3 Refactoring Tests 435

13.9.4 Creating a Test Suite for Regression Testing 439

13.9.5 Testing Across Methods 441

13.9.6 Completing the Store Class 442

13.10 Summary 445

Further Reading 445

A Ripple Summary 446

B iCoot Case Study 450
B.1 Business Requirements 450

B.1.1 Customer’s Mission Statement 450

B.1.2 Actor List 450

B.1.3 Use Case List 451

B.1.4 Use Case Communication Diagrams 452

B.1.5 Use Case Activity Diagrams 452

B.1.6 Use Case Details 452

B.2 System Requirements 456

B.2.1 User Interface Sketches 456

B.2.2 Actor List 460

B.2.3 Use Case List 460

B.2.4 Use Case Diagram 460

B.2.5 Use Case Survey 461

xvi Contents

B.2.6 Use Case Details 462

B.2.7 Supplementary Requirements 465

B.2.8 Use Case Priorities 465

B.3 Analysis 466

B.3.1 Class Diagram 466

B.3.2 Attributes 467

B.3.3 Operation List 467

B.3.4 State Machine for a Reservation 469

B.3.5 Use Case Realization 470

B.4 System Design 476

B.4.1 Technology Choices 476

B.4.2 Layer Diagram 477

B.4.3 Layer Interaction Policy 479

B.4.4 Packages 479

B.4.5 Deployment Diagram 479

B.4.6 Security Policy 482

B.4.7 Concurrency Policy 482

B.5 Subsystem Design 483

B.5.1 Business Services 483

B.5.2 ServletsLayer Class Diagram 483

B.5.3 ServletsLayer Field List 484

B.5.4 ServletsLayer Message List 484

B.5.5 ServerLayer Class Diagram 485

B.5.6 ServerLayer Field List 486

B.5.7 ServerLayer Message List 486

B.5.8 BusinessLayer Class Diagram 487

B.5.9 BusinessLayer Field List 488

B.5.10 Protocol Objects Class Diagram 492

B.5.11 Database Schema 494

B.5.12 User Interface Design 494

B.5.13 Business Service Realization 494

B.6 Class Specification 508

B.6.1 Server Class Specification 508

B.6.2 Business Logic Class Specification 509

B.7 Outline Test Plan 512

B.7.1 Introduction 512

B.7.2 The Impact of Spirals and Increments 512

B.7.3 Testing of Non-Code Artifacts 513

B.7.4 Code Reviews 513

Contents xvii

B.7.5 Test-Driven Development 513

B.7.6 Assertions 514

B.7.7 Testing Phase 514

B.7.8 Documentation Testing 515

B.7.9 Build Testing 515

B.7.10 Test Documentation and Logging 515

B.7.11 Testing Activities by Phase 516

B.8 Glossary 517

C Summary of UML Notation Used 526

Bibliography 538

Index 541

1
Introduction

The aim of this book is to give you a broad understanding of the processes and techniques

used in object-oriented software development, the production of computer programs using

object-oriented techniques. The Unified Modeling Language (UML) comes into play as the

standard notation used in industry for software documentation.

You may be a student at a university or on a commercial training course. Or you may

be an experienced software developer, moving into object orientation for the sake of your

career. In either case, this book is for you. Little prior knowledge is required on your

part and there is no attempt to teach you everything there is to know. Instead, you will

be guided through the essential parts of the process, so that you can do your job more

effectively.

Although this book is broad, it only goes as deep as the point where you would normally

start writing lines of code. Describing how to write code would mean choosing a particular

programming language; the decision about the most appropriate language is for you to

make. You should consider this book as a generic front-end that will work for any pure,

object-oriented programming language.

The objectives of this first chapter are to describe the background to this book, to give

you an idea of the content and to describe how to navigate your way around.

Chapter Outline

1.1 Background

1.2 A Brief History of Programming

1.3 Methodologies

1.4 About this Book

1

4 Chapter 1

1.1 BACKGROUND
These days, new software is usually object-oriented. That is, the software is written using an

abstraction called an object. There is, naturally, much more to commercial software develop-

ment than simply writing lines of code: there is investigation of the business requirements,

analysis of the problem, design of the solution, and so on. Objects should be used at every

stage of the development because they reduce the amount of information that has to be

understood and improve the communication between members of the development team.

1.2 A BRIEF HISTORY OF PROGRAMMING
Commercial programming has had a number of generations, of which ‘object-oriented’ is

just the latest:

• Machine code: Programming using binary numbers.

• Assembly language: Programming using alphanumeric symbols, or mnemonics, as short-

hand for machine code. Assembly language is translated into machine code by a program

called an assembler.

• High-level languages: Programming using languages (such as Fortran and COBOL) that

have high-level constructs such as types, functions, loops and branches. High-level

languages (and later generations of programming languages) are translated into machine

code using a program called a compiler.

• Structured programming: Programming using cleaner high-level languages (such as Pascal,

Modula and Ada) that are characterized by fewer pitfalls for the programmer and more

discipline in the way a program is broken down into sub-tasks and sub-systems.

• Object-oriented programming: Programming using independent modules of data and

functions that correspond to concepts in the problem domain, such as Customer or

ScrollBar. This modularity leads to even fewer pitfalls for the programmer and encourages

the reuse of code across separate programs. Good object-oriented programming languages

include Java and Eiffel, because they’re well designed, pure and portable (available on

many platforms). Other examples include Smalltalk, C# and, in general, any language that

started life as a structured language and grew up with object-oriented extensions (C++

and various dialects of Pascal, for example).

You may also have heard of functional programming and logic programming. So far they

have had little commercial impact.

All the generations above survive today, to a greater or lesser extent. Which one we end

up using depends on the situation we walk into; personal preference; and the constraints of

About this Book 5

the problem that we’re trying to solve – for example, video games need every ounce of raw

speed, so they’re sometimes written in assembly language.

1.3 METHODOLOGIES
Around the time that structured programming was becoming popular, in the 1980s, experi-

enced programmers began trying to describe how the entire software development process

should be controlled, from mission statement through to maintenance of the finished prod-

uct. This led to structured methodologies such as SSADM [Weaver et al. 02]. A methodology

is a description of the steps a development team should go through in order to produce a

high-quality system. A methodology also describes what should be produced (documents,

diagrams, code, etc.) and what form the products should take (for example, content, icons,

coding style).

When object-oriented programming was catching on, in the 1990s, developers invented

object-oriented methodologies, better suited to an object-oriented programming style.

Early object-oriented methodologies included the Booch method [Booch 93], Objectory

[Jacobson et al. 92] and OMT [Rumbaugh et al. 91]. These days, one of the market leading

methodologies is the Rational Unified Process (RUP) [Jacobson et al. 99], owned by IBM

(www.rational.com). Roughly speaking, RUP is a convergence of Objectory, Booch and OMT.

Another methodology that is gaining in popularity is extreme programming (XP) [Beck

99], a so-called ‘agile’ methodology – in the context of software development, agile means

responsive to changes in software requirements or changes in our understanding of the

problem.

The methodology used in this book, Ripple (summarized in Appendix 1), is a simplified

one based on widely accepted theory and practice. As a result, you won’t have to learn the

complexities of a full industrial methodology. Nor will you be told exactly what to do at each

stage, which will allow you to be more creative as you learn.

1.4 ABOUT THIS BOOK
In order to avoid confusion, there is no detailed comparison between structured and object-

oriented methodologies in this book. Instead, you will be taken through object-oriented

software development, as if traditional methods had never existed. You will encounter

everything you need to know to start producing large amounts of good, object-oriented

software (you just have to add the effort and the experience yourself).

If you’re already familiar with structured techniques, you may find yourself having to

un-learn things from time to time. But don’t worry, the object-oriented approach really does

6 Chapter 1

work: it’s been around in the research community since 1970, in the marketplace since 1990

and it’s used every day by millions of developers.

As ever, the goal of software development is code, code and more code. Whatever your

particular background, if you’ve got experience programming a computer, you’ll be on safe

ground. On the other hand, if you don’t have much programming experience, you’ll be

pleased to learn that this book is straightforward – there’s no attempt to make your head spin

with obscure jargon and magic tricks. However, before you start, you should make sure that

you’re comfortable with basic computer concepts such as hardware, software and networks.

At the very least, you should have written a few hundred lines of code in a high-level

language.

1.4.1 Content Overview
Although the writing of code won’t be covered in any detail, from time to time there will

be a need to illustrate a point using code fragments. All the code fragments are written in

Java [Joy et al. 00] because it is popular, pure, simple and free. The meaning of each code

fragment is clearly explained in the text. If you’re not a great fan of Java, rest assured that the

code fragments can easily be translated into other languages such as C#, because the unique

elements of Java have been avoided. Everything you see here in Java can be accomplished in

any other language that you choose. Similarly, the discussion of system design is focussed

on Java technologies rather than .Net technologies – since Java and .Net provide similar

facilities, consider this simply a matter of personal preference. All the pieces of Java system

design that are presented can be implemented in a similar way using .Net.

A few words of warning, however: for illustrative purposes, classes (such as Iterator and

List) are described that don’t match those in the Java library exactly. Although you can

certainly use this book to see how Java works and get familiar with most of the syntax, it is no

substitute for a pure Java language text [Campione et al. 00]. In any case, it is good practice

always to have the library documentation to hand when writing in Java, since no-one could

keep the details of thousands of classes in their head.

Another major omission is project management (issues such as planning and scheduling).

Project management is omitted in order to focus on technical issues, rather than human

factors.

The notation used for illustrations, wherever possible, is the Unified Modeling Language

(UML) [OMG 03a]. This has become the accepted standard for software diagrams. UML

presentation conventions mean that some lines are thicker than others and that some

characters are in bold or italics. Some of these conventions are difficult to accomplish

when drawing by hand (on a piece of paper or on a whiteboard, for example), however

only the italicized text is really important, so the other conventions can be ignored when

hand-drawing. For italicized text, alternatives will be identified at the appropriate time.

About this Book 7

UML doesn’t satisfy all documentation needs, so some of the documentation ideas in this

book have been taken from RUP.

1.4.2 Case Studies
The case study used throughout is a rental and reservation system called Coot, developed

for a fictitious company called Nowhere Cars. Thus, many of the examples in the text will

use cars in one way or another. Using the same application area for most of the examples

means that you don’t have to keep adjusting to different areas from one page to the next. To

keep things simple, most of the discussion involves those parts of Coot that provide Internet

facilities to customers, a cut-down system called iCoot.

Because there are many concepts to illustrate, not all of which are relevant to the renting

of cars, some of the examples in the text do not make it into iCoot itself (they would be more

appropriate for car salespeople or car mechanics). However, every time you’re presented

with a major diagram, it will be one that has been taken from the finished system.

Because newcomers to object orientation often ask for full case study documentation, the

finished documentation for iCoot has been included in Appendix B, for further study. The

iCoot documents have been designed to be understandable, despite representing a realistic

and useful piece of software.

If you want to try out the techniques described in this book with fellow students or

colleagues, a set of group exercises is available at www.wiley.com/go/odocherty for the

Automated Quiz System (AQS). AQS is an on-line tool for taking multiple-choice quizzes.

The exercises are organized according to the main chapters of this book, so that you can

complete them while you read. For lecturers and instructors wishing to use this book as

a course text at a University or commercial training organization, sample solutions are

available for the AQS exercises, subject to registration.

1.4.3 Navigation
After reading Chapter 1, you can take the straightforward approach to navigation and work

through all the chapters in order.

Alternatively, if you’re already comfortable with object-oriented concepts and jargon, you

could skip Chapters 2, 3 and 4 and jump straight to Chapter 5. If you’re completely new

to the field of object orientation, you should read Chapter 2, but you may like to leave

Chapters 3 and 4 until a second reading.

If you’re not interested in an overview of Ripple and methodologies in general but would

prefer to get straight down to the details, you could skip Chapter 5 and go straight on to

Chapter 6.

The remaining chapters follow a strict sequence, the progress of a typical software

development, so jumping around is not recommended. It would be valuable to read

8 Chapter 1

Chapter 11 as part of the main sequence; however, since many of the issues are advanced,

you may wish to leave it until a later date.

You can use Appendix 1 as a reference whenever you need to check where you’ve got to

or if you’re attempting the case study for yourself.

Appendix B contains the finished artifacts for the iCoot case study, organized according to

the progress of a typical development. Use these, along with the main development chapters,

to see how the iCoot artifacts turned out. Appendix B also includes the iCoot project glossary,

which was continually updated during iCoot development. Use this to see how a typical

glossary might look and to look up the definition of any iCoot term.

Whenever you need to remind yourself how to draw part of a UML diagram, you should

refer to Appendix 3.

Happy reading.

I
Setting the Scene

2
Object Concepts

The concepts we’ll look at in this chapter come out of object-oriented programming.

Typically, programming languages are invented before the methodologies that help us to

use them. You should find that object-oriented concepts make a lot of sense. This is because

object-oriented development allows you to think in real-world terms, rather than bending

your mind towards the needs of a computer.

Learning Objectives
Understand what we mean by a

software object.

•
Understand how objects can

communicate, using messages, to
accomplish some task.

Understand what happens when an
object is no longer needed

(garbage collection).

•
Understand what we mean

by a class.

•
Understand how to reuse code.

Chapter Outline

2.1 Introduction

2.2 What Is an Object?

2.3 Identical or Equal?

2.4 Depicting Objects

2.5 Encapsulation

2.6 Association and Aggregation

2.7 Graphs and Trees

2.8 Links and Navigability

2.9 Messages

2.10 Invoking an Operation

2.11 An Example Collaboration

2.12 How an Object-Oriented Program Works

2.13 Garbage Collection

2.14 Classes

2.15 What Does a Class Define?

2.16 Shared Data and Shared Operations

2.17 Types

2.18 Terminology

2.19 Reusing Code

2.20 Summary

Further Reading

Review Questions

Answers to Activity 1

Answers to Activities

Answers to Review Questions

2

12 Chapter 2

2.1 INTRODUCTION
The basic concepts of the object-oriented paradigm (way of doing things) are relatively easy

to understand and to apply. Alan Kay, the inventor of Smalltalk, had been working on ‘A

Personal Computer for Children of all Ages’ [Kay 72] as early as 1968: as his target was

children, it isn’t surprising that the basic concepts are simple.

So, why all the fuss about objects? Surely developers wouldn’t change the fundamentals

of software development without good reason? Some of the justifications for using objects

might seem rather obscure at this early stage, especially if you haven’t much experience with

the techniques that came before (structured programming and structured methodologies).

The object-oriented approach was invented (or, rather, it evolved) because of the difficulties

people were having trying to get good quality systems produced on time and within budget,

especially for large systems with many people involved.

Once you’ve worked your way through this book, the justifications given below should

make sense and you should agree with most of them. Here then, for the record, are some of

the justifications typically given for object orientation:

• Objects are easier for people to understand: This is because the objects are derived from

the business that we’re trying to automate, rather than being influenced too early by

computer-based procedures or data storage requirements. For example, in a bank system,

we program in terms of bank accounts, bank tellers and customers, instead of diving

straight into account records, deposit and withdrawal procedures, and loan qualification

algorithms.

• Specialists can communicate better: Over time, the software industry has constructed

career ladders that newcomers are expected to climb gradually as their knowledge and

experience increases. Typically, the first rung is programmer: fixing faults (bugs) in the

code written by others. The second rung is senior programmer: writing the code itself.

The third is designer: deciding what code needs to be written. Finally comes the role

of analyst: talking to customers to discover what they need and then writing down a

specification of what the finished system must be able to do.

Such a career ladder may not be a bad idea in itself. The problem comes when you

realize that each specialist is expected to learn a whole new set of concepts and techniques,

depicting their conclusions using notations that are tailored to their specialty. This means

that there’s a big gap in understanding between the different roles, made worse by the

fact that the documents are being passed down the career ladder rather than up, so we

tend to have to read documents without understanding the techniques used to produce

them. This can lead to ‘throw it over the wall’ syndrome: the analyst produces a large

amount of documentation, throws it over the wall to the designer and walks away. The

designer, after weeks of effort, produces even more documentation, using completely

What Is an Object? 13

different techniques, and throws it over the wall to the programmers. The programmers

then start all over again . . .

With the object-oriented approach, everyone is dealing with the same concepts and

notations. Moreover, there are generally fewer concepts and fewer notations to deal with

in the first place.

• Data and processes are not artificially separated: In traditional methods, the data that needs

to be stored is separated early on from the algorithms that operate on that data and they are

then developed independently. This can result in the data being in inconvenient formats

or inconvenient locations, with respect to the processes that need access. With object-

oriented development, data and processes are kept together in small, easy-to-manage

packages; data is never separated from the algorithms. We also end up with less complex

code that is less sensitive to changes in customer requirements.

• Code can be reused more easily: With the traditional approach, we start with the problem

that needs to be solved and allow that problem to drive the entire development. We end

up with a monolithic solution to today’s problem. But tomorrow always brings a different

problem to solve; no matter how close the new problem is to the last one we dealt with,

we’re unlikely to be able to break open our monolithic system and make it fit – we hamper

ourselves by allowing a single problem to influence every part of the system.

With object-oriented development, we’re constantly looking for objects that would be

useful in similar systems. Even when a new system has minor differences, we’re much

more likely to be able to change our existing code to fit, because objects are like the pieces

in a jigsaw puzzle: if one piece is changed, it might affect a few pieces next to it, but the

rest of the puzzle will remain intact.

When we build an object-oriented system, we try to find existing objects (written by us,

by our colleagues or by third parties), before we consider writing any code ourselves. As

one sage put it, ‘object-oriented programming is about not writing code’.

• Object orientation is mature and well proven: This is not a new fad. The programming

concepts emerged in the late 1960s while the methodologies have been around for at least

a decade. Applying objects in such areas as software, databases and networks is now well

understood.

Once you’ve read the whole of this book, try reviewing this list to see if you fully

understand, and agree with, the justifications.

2.2 WHAT IS AN OBJECT?
An object is a thing, an entity, a noun, something you can pick up or kick, anything you

can imagine that has its own identity. Some objects are living, some aren’t. Examples from

14 Chapter 2

the real world include a car, a person, a house, a table, a dog, a pot plant, a check book or a

raincoat.

All objects have attributes: for example, a car has a manufacturer, a model number, a

color and a price; a dog has a breed, an age, a color and a favorite toy. Objects also have

behavior: a car can move from one place to another and a dog can bark.

In object-oriented software, real world objects migrate into the code. In programming

terms, our objects become stand-alone modules with their own knowledge and behavior

(or, if you prefer, their own data and processes). It’s common to think of a software object

as a robot, an animal, or a little person: each object has certain knowledge, in the form of

attributes, and it knows how to perform certain operations for the benefit of the rest of the

program. For example, a person object might know its title, first name, last name, date of

birth and address; it would be able to change its name, move to a new address, tell us how

old it is, and so on.

By concentrating on the characteristics of a person when we write the code for the Person

object, we can put the rest of the system out of our mind – this makes our programming

simpler than it would otherwise be (it also helps that we have a real-world concept to get us

started). If we decide later that our Person needs to know its height, we can add that extra

knowledge (and associated behavior) directly to the Person code. Only the code in the rest

of the system that needs to use the height attribute has to be modified; all other code would

remain unchanged. Simplicity and localization of change are important characteristics of

object-oriented software.

It’s easy enough to think of a living thing as some kind of robot. It is a little strange,

though, when we try to think of a lifeless object as having behavior. We wouldn’t normally

consider a video capable of changing its price or giving itself a new advert. However, when

it comes to object-oriented software, that’s exactly what we need to do. The key is that if the

video didn’t do those jobs, some other part of the system would have to. This would lead to

video characteristics leaking into other parts of the code, so we’d start to lose the simplicity

and locality that we crave (we would be going back to ‘the old way of doing things’).

Don’t be put off by the anthropomorphism (the assignment of human characteristics to

inanimate objects or animals) that’s common in object-oriented development, imagining

software objects as little people.

Figure 2.1 shows some real-world objects that would make good software objects. Can

you think of any others? Can you think of anything that wouldn’t make a good object? Well,

that’s a trick question really: ‘thing’ at the end of ‘anything’ suggests that the answer has to be

no. It turns out that almost anything would make a good object in some context or another.

A bad object is one that merges several concepts, for example, a bank account object that has

been polluted with the knowledge and behavior that belongs to a bank clerk. Always keep in

mind that separate concepts in the real world suggest separate concepts in the program.

What Is an Object? 15

aCataDate

aPerson aBankAccount

aNumber

Figure 2.1: Objects in the real world

Before we go any further, it’s important to note that we’re not trying to simulate the real

world, that would be far too difficult. we’re simply trying to make sure that our software

is influenced by real-world concepts, so that it is easier to produce and easier to change.

The needs of the system and the needs of computers are important influences too. Some

developers are uncomfortable with the close proximity of the real world and software;

however, an object-oriented system developed for a hospital that didn’t include some kind of

Patient object would be of little use.

You shouldn’t think that it’s possible to code the ideal Person object or any other kind of

perfect object. There are simply too many characteristics and capabilities that can be applied

to real-world objects – if we tried to capture them all, we’d never get as far as coding the

second object in our system.

Most aspects of a real-world object are not needed for a typical program, especially since

software systems tend to address a single problem area. For example, a bank system will

be interested in the age and salary of a customer, but not their shoe size or favorite color.

It’s quite reasonable to code an object that is useful for many systems, especially for well

understood areas of programming: for example, all systems with a user interface are likely to

16 Chapter 2

be able to make use of the same ‘scrollable list’ object. The trick is to start by considering the

business you’re dealing with, to ask yourself ‘If I worked in this business area, what would

a ‘‘person’’ mean to me: a customer, an employee, a patient, or what?’ All good software

developers start by modeling the business.

A model is a representation of a problem domain or a proposed solution that allows us to

talk, or reason, about the real thing. This allows us to increase our understanding and avoid

potential pitfalls. Think of an architect’s model of a new concert hall: it allows the architects

to say ‘This is what the finished concert hall will look like’ and it helps them to come up with

new ideas, such as ‘I think we’re going to need a steeper roof’. A model allows us to learn a

lot without actually building anything. Much of software development involves creating and

refining models, rather than cutting lines of code.

Implementation Point 1
Let’s consider how we can create a new object in an object-oriented programming

language. Pure object-oriented languages typically provide a creation expression.

Here’s how one looks in Java:

new Person("Sue Smith")

The effect of this expression is to create space for a new Person object and pass it the

string ‘‘Sue Smith’’, so that it can initialize itself (presumably, in this case, the object

would record its name).

Once we’ve created an object, we can put it somewhere where we can find it later,

by assigning a name to it, as in:

aPerson = new Person("Sue Smith");

Now, whenever we write down aPerson, we will be referring to the object that we just

created.

2.3 IDENTICAL OR EQUAL?
Objects have their own independent existence. Consider holding a blue pen in your left hand

and a blue pen in your right hand. You’re holding separate pens: they exist independently

and each one has its own identity. But the pens can have similar attributes: blue ink,

half full, same manufacturer, same model, etc. In terms of their attributes, the pens are

interchangeable – if you wrote something down on a piece of paper, no-one would be able to

Identical or Equal? 17

tell which pen you’d used (unless they saw you do it). The pens are equal but not identical.

This is an important distinction in software, as well as in real life.

To take another example, consider the situation illustrated in Figure 2.2. In Acacia Avenue

there are two families, the Smiths and the Joneses: the Smiths live at number 4 and the

Joneses live at number 7. The families have similar tastes in lawn mowers; so similar, in fact,

that they both own a GrassMaster 75, purchased on the first day the new model became

available. The lawn mowers are so similar that if someone switched them round overnight,

the Smiths and the Joneses wouldn’t notice.

As well as a lawn mower, the Smiths have a cat called Tom. Tom is a round friendly

cat, three years old, whose favorite pastime is chasing mice around the local gardens. The

Joneses also have a cat, called Tiddles. Tiddles is a round, friendly cat, three years old, whose

Figure 2.2: Identical or equal?

18 Chapter 2

favorite pastime is chasing balls of wool. Anyone visiting the Smiths and the Joneses would

notice a remarkable similarity between Tom and Tiddles, not surprising when you realize

that Tom and Tiddles are the same cat, round on account of being fed so often.

In this situation, we have two lawn mowers and one cat. Although the lawn mowers have

a separate identity, recorded on the serial-number plates riveted to their bodies, they are

equal, because they have the same attributes. The cat also has an identity, it may even have a

name for itself (‘Me’ or ‘Hfrrr’, perhaps). The difference between the cat and the lawn mowers

is that the cat is shared and the lawn mowers aren’t. It’s rarely necessary for any person,

thing or animal to be concerned with its own identity: the cat doesn’t think about whether

it’s separate from other cats; a lawn mower doesn’t need to know which lawn mower it is in

order to mow the lawn. The families don’t need to know that Hfrrr is fed twice as much as

other cats, as long as he purrs in their laps from time to time; nor do the families need to

know that the lawn mower in their shed is the one they actually purchased, as long as it’s

there when they need it.

Generally speaking, in an object-oriented system, if we use one software object to represent

each real world object, we won’t go far wrong. So, in the example that we’ve just seen, we

would expect to find in our system two lawn mower objects and a single cat object.

We may sometimes share objects. We may sometimes swap equal objects. But we rarely

need to worry about identity: we just tell an object what to do and it uses its knowledge and

capabilities to carry out the request.

Implementation Point 2
Object-oriented programming languages allow us to test whether objects are identical

or equal if necessary.

The following fragment of Java code does just that. There are two tests in it: if

(tom == tiddles) is a test of identity that evaluates to true if tom and tiddles both point

to the same object; tom.equals(tiddles) is an instruction that asks tom to perform the

equals operation, with tiddles as a parameter – it evaluates to true if tom and tiddles

are separate but equivalent to each other.

if (tom == tiddles) {

result = "The Smiths and the Joneses share one cat";

}

else if (tom.equals(tiddles)) {

result = "The Smiths and Joneses have equivalent cats";

}

else {

result = "The Smiths and the Joneses have different cats";

}

Depicting Objects 19

2.4 DEPICTING OBJECTS
Once we’ve decided to work with objects, we need some way of showing them on a diagram

so that we can describe them and think about them. Figure 2.3 shows how we can draw an

object. The notation used here is a UML object diagram – you’ll see more details of UML and

its history as you go through this book; for now, the notation will be introduced by example.

 anObject

attribute1

attribute2

operation1()

operation2()

operation3()

standard notation

but in non-standard

location

Figure 2.3: An object

The three parts of the box show the object’s name (which is underlined), its attributes

(its knowledge) and its operations (its behavior). (Showing operations on an object diagram

is not actually legal UML, but it suits our purposes for now.) The parentheses next to

the operation names indicate any parameters that are required: even though none of the

operations shown here have parameters, it’s a good idea to keep the parentheses so that

operation names stand out from attribute names (this becomes even more important when

we omit one or more parts of the box).

The attributes are hidden inside the object; the only way to access them is via the

operations. This is reasonable from analogy with the real world: most of us are much more

interested in the fact that a television has a ‘change channel’ operation than we are in the

fancy electronics inside the box that actually perform the change.

Let’s examine a coffee machine object. First, we should decide what operations a coffee

machine needs:

• display drinks

• select drink

• accept money

• dispense drink

Next, we should think about what the coffee machine needs to know in order to perform

these operations:

20 Chapter 2

• available drinks

• drink prices

• drink recipes

Having designed our coffee machine object, we can record our findings on an object

diagram, like the one shown in Figure 2.4.

 aCoffeeMachine

drinkPrices

availableDrinks

drinkRecipes

displayDrinks()

selectDrink()

dispenseDrink()

acceptMoney()

Figure 2.4: A coffee machine object

2.5 ENCAPSULATION
Encapsulation refers to an object hiding its attributes behind its operations (it seals the

attributes in a capsule, with operations on the edge). Hidden attributes are said to be private.

Some programming languages (for example, Smalltalk) automatically make attributes private

and some languages (for example, Java) leave it to the programmer.

Encapsulation is one of the ways that a programming language protects programmers from

themselves: if programmers could bypass the operations, they would become dependent on

the attributes that were being used to represent the object’s knowledge. It would then be

much harder to change the internal representation of the object in the future, because we’d

have to find all the pieces of code that access the attributes directly and change those too.

Without encapsulation we would lose simplicity and locality.

As an example of why encapsulation is a good idea, consider an object representing a

circle. A circle would be likely to have operations allowing us to discover its radius, diameter,

area and perimeter. What attributes would we need to store in order to support this behavior?

Well, we could store the radius and calculate the other attributes on demand. Or, we could

store the diameter and calculate the other attributes from that. In fact, we could store any

one of the four attributes and calculate the other three on demand. (Our choice may depend

on personal preference or it may depend on predicting how the circle will normally be used.)

Association and Aggregation 21

Let’s say we choose to store the diameter. Any programmer who was allowed to access the

diameter might do so, rather than going via the ‘get diameter’ operation. If, for a later version

of our software, we decided that we wanted to store the radius instead, we would have to find

all the pieces of code in the system that used direct access to the diameter, so that we could

correct them (and we might introduce faults along the way). With encapsulation, there’s no

problem.

Another way to think of encapsulation is to imagine that objects are courteous to one

another. If you wanted to borrow some money from a colleague to buy food in the staff

canteen, you wouldn’t grab their wallet and look through it to see if they had enough cash.

Instead, you would ask them whether they could lend you some money and they would look

in their own wallet.

2.6 ASSOCIATION AND AGGREGATION
No object is an island. All objects are connected to other objects, directly or indirectly,

strongly or loosely. By connecting objects, we make them more powerful. Connections allow

us to navigate around to find extra information and behavior. For example, if we were

processing a Customer object representing Freda Bloggs and we wanted to send Freda a letter,

we would need to know that Freda lives at 42 Acer Road. We would expect the address

information to be stored in some kind of Address object, so we would look for a connection

from the Customer to the Address, to find out where to send the letter.

When we’re modeling with objects, we can connect them in two principal ways: association

or aggregation. It’s sometimes hard to spot the difference between the two, but here are some

ideas.

• Association is a weak form of connection: the objects may be part of a group, or family,

of objects but they’re not completely dependent on each other. For example, consider a

car, a driver, a passenger and another passenger. When the driver and the two passengers

are in the car, they’re associated: they all go in the same direction, they occupy the same

volume in space, and so on. But the association is loose: the driver can drop off one of

the passengers to go their separate way, so that the passenger is no longer associated

with the other objects. Figure 2.5 shows how we can draw an association on an object

diagram – the attributes and operations have been omitted here in order to emphasize the

structure.

• Aggregation means putting objects together to make a bigger object. Manufactured items

usually form aggregations: for example, a microwave is made up of a cabinet, a door, an

indicator panel, buttons, a motor, a glass plate, a magnetron, and so on. Aggregations

usually form a part–whole hierarchy. Aggregation implies close dependency, at least of

22 Chapter 2

aCar

aPassenger

aDriver

anotherPassenger

Figure 2.5: Association

the whole to the part; for example, a magnetron is still a magnetron if you take it out

of its microwave, but the microwave would be useless without the magnetron, because it

wouldn’t be able to cook anything.

Figure 2.6 shows how we can draw a house as an aggregation: in order to emphasize the

difference between this kind of connection and an association, we place a white diamond

on the ‘whole’ end.

aHouse

firstFloor

secondFloor

bathroom

livingRoom

kitchen

diningRoom

mainBedroom

kidsBedroom

Figure 2.6: Aggregation

Graphs and Trees 23

As suggested, the distinction between association and aggregation can be subtle. The

‘What happens if you remove one of the objects?’ test can be helpful, but it doesn’t always

solve the problem: hard thinking and experience are often needed.

We often need to choose between aggregation and association, because the choice can

affect the way we design our software. Here are some examples:

• Friends: We would expect friends to be an association: there is no sense in which we could

put the friends together to make a larger friend; friends come and go over time.

• Components in a television set: This is one of the easier ones to reason about because it’s

the classic part–whole hierarchy: you put the buttons and the knobs together to make the

control panel; you put the glass screen, the electron gun and the magnetic coils together

to make the tube; once the small parts have been assembled, then assembled into bigger

components, you put everything into the cabinet and screw the back on. The end users

see a single television object: if one of the components fails, they probably don’t think

they have a television set anymore, just a useless heap of junk.

• Books on a bookshelf: A bookshelf doesn’t need books to be a bookshelf, it’s just a place

to put the books that we own. Conversely, when a book is on a bookshelf, it is certainly

associated with it (if you move the bookshelf, the book moves too; if the bookshelf

collapses, the book falls). This is a classic association.

• Windows in an office block: The windows are part of the office block. Although we

could remove a broken window, leaving the office one window short, we would expect a

replacement to be provided soon afterwards. This is probably aggregation.

ACTIVITY 1 Now it’s your turn. Which of the following examples are association and
which are aggregation?
1. Houses on a street.
2. Pages in a book.
3. Notes in a symphony.
4. Components in a home entertainment system (television, VCR, tape

deck, amplifier, games console).

2.7 GRAPHS AND TREES
As well as associations and aggregations, you may hear about trees or graphs of objects. A

tree is another name for a hierarchy. If we redraw the object diagram from Figure 2.6, as we

have in Figure 2.7, you can see why aggregation is often referred to as a tree (it doesn’t have

a trunk, but it’s close enough). For reasons best known to themselves, programmers usually

draw trees upside down, as shown in Figure 2.8.

24 Chapter 2

secondFloor

bathroommainBedroom

kidsBedroom

aHouse

kitchen

livingRoom

firstFloor

diningRoom

Figure 2.7: Aggregation as a tree

secondFloor

bathroommainBedroom

kidsBedroom

aHouse

kitchen

livingRoom

firstFloor

diningRoom

Figure 2.8: An upside-down tree

Links and Navigability 25

A graph is an arbitrary set of connections between a group of objects. Objects in an

association often form a graph, as in the car example in Figure 2.5. Another example,

with more interesting connections, is the underground train system in London. Figure 2.9

represents part of the London Underground system: in this case it’s possible to get from any

node (station) to any other node, usually via several routes.

Euston

Picadilly Circus

Oxford Circus

King's Cross St. Pancras

Embankment

Charing Cross

Leicester Square

Tottenham Court Road

Goodge Street

Warren Street

Figure 2.9: An object graph showing connections between London Underground stations

A tree is a special case of a graph: each node in a tree has only one parent node, but

it can have any number of children. (A parent contains the children, in a part–whole

sense.) This corresponds well to the difference between aggregation and association: any

group of connected objects forms an association, but only associations which have the right

inter-dependencies and the right structure qualify as trees.

2.8 LINKS AND NAVIGABILITY
The connections that you’ve seen on object diagrams until now are called links. If we want

to show that one object knows where the other one is, we can add an arrowhead, as shown

in Figure 2.10. This shows a Customer linked to an Address and a String. (A string is a staple

value in programming that comprises a sequence of characters.)

26 Chapter 2

aString

aCustomer

 anAddress

house = 10

street

county

postcode = "TL5 1OR"

name

address

Figure 2.10: Navigable links

Each link can be thought of as an attribute: the label, or role, indicates the attribute’s

name. Thus, we might say that aCustomer has an attribute, called address, that links it to

an Address object, and another attribute, called name, that links it to the String representing

its name. The arrowhead indicates navigability, knowing where the other object is. Because

there’s no arrowhead on the customer end, the implication is that String doesn’t know that

it’s associated with aCustomer. Navigable links often end up as pointers in object-oriented

programs. (A pointer is the address of an object in memory, so that we can find it when

we need to.)

The links in Figure 2.10 are more detailed than the connections you’ve seen until now

(which didn’t have any arrow-heads). One of the advantages of an object diagram is that

it allows us to show what’s going on in our model at an arbitrary level of detail – this can

increase our understanding and make us more confident that we’re on the right track. Simple

values are shown as attributes; important objects are shown as linked boxes; intermediate

values are shown as attributes or linked boxes, as the need arises.

Figure 2.10 shows other information too, information that you probably understood and

accepted without too much trouble: names have been given to the linked objects and to the

attributes; some literal values are also shown – the number 10 and the string TL5 1OR, for

example. The naming convention used here for objects, attributes and roles is a common

one: use one or two descriptive words and run them together, capitalizing each word after

the first. As for the literal values, we all know how to write down numbers and putting

characters inside double quotes shouldn’t be any surprise either.

In some places, objects have been expanded while, in other places, they haven’t. For

example, the name attribute on aCustomer has been shown as a separate object whereas the

street and county on anAddress haven’t even been given a value.

The key in all diagrams is to show as much detail as needed to achieve our goal.

Don’t let anyone suggest that a diagram is wrong just because they would have drawn it

differently. In general, as we go through development, we will have to deal with more and

Messages 27

more information, but we rarely show everything in one place (if we did, things would get

cluttered and tedious).

A final few words about values: although everything can be modeled as an object, for

trivial values we may not bother. For example, the number 10 can be thought of as an

object: it has internal data to represent its ten-ness and it has operations such as ‘add another

number’ and ‘multiply by another number’. However, in many object-oriented programming

languages, simple values such as numbers are treated differently: you can only use them as

attribute values; they have no identity; you can’t decompose them.

2.9 MESSAGES
Every object is connected to at least one other object: an isolated object wouldn’t be much

use to anyone. Once objects are connected, they can collaborate, to perform more complex

tasks than they could on their own. Objects collaborate by sending messages to each other,

as shown in Figure 2.11. The message is shown next to a solid arrow indicating the direction

in which the message is being sent; the reply is shown next to a ‘tadpole’ that indicates the

movement of data.

message()

reply

sender receiver

non-standard

notation

Figure 2.11: Collaboration using messages

Figure 2.11 is a UML communication diagram. Communication diagrams look rather

like object diagrams, except that the links have no direction and the object names are not

underlined. Officially, there is no way to show replies on a communication diagram, so a

long-standing convention, the tadpole, has been used instead. Ideally, we would also show

sequence numbers, but they’ve been omitted here, because the UML numbering scheme is

rather involved.

Some example messages are: ‘What’s the time?’, ‘Start the engine’ and ‘What is your

name?’, as shown in Figure 2.12. As you can see, the receiving object may or may not need

to provide a reply: we would expect replies to ‘What’s the time?’ and ‘What is your name?’,

but not to ‘Start the engine’.

As mentioned earlier, objects are courteous: when an object receives a message, it carries

out the request without question. This way, the sending object doesn’t need to cope with

28 Chapter 2

aClock

aDriver

What's the time?

aCar

Start the engine "Liz"

14:40 What is your name?

Figure 2.12: Some example messages

the possibility of a message being refused. In practice, some requests can’t be carried out,

despite the best intentions of the receiver. Consider the reasons why requests can fail, listed

in Table 2.1.

Sometimes, we can’t allow things to fail: we would be rather disappointed if a fly-by-wire

plane crashed because of a software fault. Ensuring success under such circumstances is a

specialist area, software reliability. Just to give you an idea, here’s one strategy for reliability:

install three computers on the plane and get them to vote on what to do next; if one computer

says ‘fly to the left’ but the other two say ‘fly to the right’, the plane flies to the right.

Now that you’ve seen why messages can fail, you should put the problem out of your

mind for the time being and assume that messages always succeed. (This is actually good

practice, as explained in Chapter 12.)

2.10 INVOKING AN OPERATION
When a software object receives a message, it executes some code. As you’ve probably

guessed, each piece of code is an operation. To put it another way, a message invokes an

operation. In UML, we can show a message being sent from the sender to the receiver, or we

can show the operation on the receiver, or we can do both.

As well as replies, messages can have parameters (also called arguments). A parameter is

an object or a simple value that the receiver needs in order to fulfill the request. We might,

for example, send a person object the message ‘What is your height in meters’ one minute and

‘What is your height in feet and inches’ the next: in this case, ‘What is your height?’ would

be the message, while ‘meters’ and ‘feet and inches’ would be the parameters. Parameters are

shown in parentheses, after the message, as in getHeight(meters) or getHeight(aUnit). If you

have several parameters, you can separate them with commas.

We also need a way of specifying which object should receive a message – here’s how to

do it in Java, using a full stop to separate the receiver and the message:

aPerson.getHeight(aUnit)

Invoking an Operation 29

Table 2.1: Reasons for request failure

Problem Example Solution
The sender should
not have been
allowed to send the
message.

Sending a fly message to a
penguin.

The compiler should spot
most of these mistakes and
we expect to find the rest
during testing or
maintenance.

The sender makes a
mistake.

Telling a microwave to start
cooking when there’s no food
inside.

The compiler can help but
mostly we rely on good
design, good programming,
testing and maintenance.

The receiver makes
a mistake.

Assuming that 2 + 2 = 5. The compiler can help but
mostly we rely on good
design, good programming,
testing and maintenance.

The receiver
encounters a
predictable but rare
problem.

Telling a lift to ‘go up’ when
there are too many people
inside.

Exception handling uses the
programming language’s
facilities to separate normal
from abnormal activity.

The computer fails
to do what it’s
supposed to do.

Knocking the computer off the
desk; a cosmic ray blasting
through the central processor;
changing an internal bit from 1
to 0; an operating system
fault; . . .

The software developer can’t
do much apart from failing
gracefully by reporting the
problem to a user interface
or writing to a log file.

Human error. Removing a diskette while an
object is writing information
to it.

Exception handling uses the
programming language’s
facilities to separate normal
from abnormal activity.

Sometimes, you’ll find yourself wondering whether a message that you’re designing

should get the object to do something, or retrieve some information from the object, or some

combination of the two. A good guideline for message styles, one that helps us to avoid many

difficulties, is ‘A message should be a question or a command, but not both’.

A question message asks the object for some information, so it always has a reply. A

question should not alter the attributes of the object (or of any object that it’s connected

to). Examples of question messages are ‘What loaves do you have?’ or ‘What’s the time’.

We wouldn’t expect more loaves to appear under the counter just because we’d asked the

question; similarly, we would be surprised (ignoring Quantum theory) if the time inside a

clock changed just because we had looked at it.

30 Chapter 2

A command message tells an object to do something – this time the object doesn’t need

to provide a reply. Examples of commands include telling a bank account to ‘Withdraw 100

Euros’ and telling a microwave to ‘Switch off ’. If we’ve issued a reasonable command, we

expect the object to go ahead and do it, so we don’t need any information back. A command

alters the receiving object or some object that it’s connected to.

Messages that are both questions and commands can be useful, but they’re an advanced

technique, one that doesn’t warrant an example.

2.11 AN EXAMPLE COLLABORATION
To solidify the concept of collaboration let’s look at a bigger example, first from a human

perspective, then from a software perspective. The example is ‘Buying a loaf of bread from a

baker’s shop’. The human version is this:

A customer walks into a baker’s shop and asks the baker what kind of loaves she has

for sale. The baker looks under the counter and tells the customer that she has two

white loaves and one wholemeal loaf. The customer says that he would like to buy the

wholemeal loaf. Now the business transaction takes place: the baker wraps the loaf and

offers it up with a request for payment; the customer gives the baker some money; the

baker gives the customer some change. The customer leaves, satisfied.

We can show this collaboration on a communication diagram such as the one in Figure 2.13.

For simplicity, the bits about the customer entering and leaving the shop have been ignored;

also, message directions have been shown alongside each message, to make things more

compact.

We could code this kind of collaboration pretty much directly in a pure object-oriented

language. However, most object-oriented designers wouldn’t do it that way. If we consider

the customer and the baker for a moment, the main problem is that we have a complicated

two-way interaction – programming computers is hard enough without adding this kind of

real-world complexity. Also, we have a customer that depends on the interface of the baker

and a baker that depends on the interface of the customer – changing one object would mean

changing the other object too, a maintenance nightmare.

Contrast the design problems of our baker and customer objects with the way the baker

might interact with the counter: the baker would send a message to the counter and receive

a reply, but the counter wouldn’t send any messages to the baker – the counter is a passive

object that sits there waiting to be used. The counter still does its job, and the baker still gets

what she needs, but the interaction is one-way, making it less complex and easier to change.

We call this style of interaction client–supplier: the baker is the client and the counter

is supplying the services. A further advantage of supplier-style objects is that they’re more

An Example Collaboration 31

What do you have?

Two white, one wholemeal

I'd like a wholemeal

I'd like some money

Here's some money

Here's the loaf

Here's your change

customer baker

Figure 2.13: Buying a loaf of bread

customer baker

getAvailableLoaves()

2 white, 1 wholemeal

getPriceOf(wholemeal)

€1.75

pay(€2.00)

€0.25

buy(wholemeal)

wholemeal

Figure 2.14: Buying a loaf, client–supplier style

likely to be useful in other contexts, because they’re independent of the client – they’re more

reusable, one of the major goals of object-oriented development.

We can usually transform a two-way collaboration into a client and supplier interaction

with a little thought and a little practice. To help us with this, there are two mechanisms that

were not used in Figure 2.13: message replies and message parameters. Figure 2.14 shows the

interactions between the customer and the baker as a pure client–supplier implementation.

32 Chapter 2

Client–supplier is not the only way to go, but it is certainly the most common style, and

it works well in most cases.

2.12 HOW AN OBJECT-ORIENTED
PROGRAM WORKS

An object-oriented program works by creating objects, connecting them together and getting

them to collaborate by sending messages to each other. But who gets the ball rolling? Who

creates the first object and who sends the first message? To solve this problem, all object-

oriented programs have an entry point. For example, Java expects to find an operation called

main on an object that the user names when they launch the program. All the instructions in

the main operation are executed, one after the other, and the program stops when main has

finished.

Every instruction in main can create an object, connect objects together or send a message

to an object. When an object sends a message, the object that receives the message executes

an operation. This operation can also create an object, connect objects together or send a

message to an object. Thus, you should appreciate that this mechanism allows us to do

anything we might want to do.

Figure 2.15 shows an object-oriented program in action. Typically, there is not much

code in a main operation – most of the behavior is inside operations on the other objects.

As shown in Figure 2.15, it’s quite valid for an object to send a message to itself: a human

equivalent would be asking yourself a question such as ‘What did I do yesterday?’

The idea of a main operation applies not just to programs executed from a console – it

works equally well for more exotic programs such as graphical user interfaces (GUIs), Web

servers and servlets. Here are some hints as to how these work:

• The main operation for a user interface creates the top-level window and tells it to show

itself.

• A Web server’s main operation has an infinite loop telling a socket object to listen for

incoming requests on some port.
• A servlet is an object hosted by a Web server that receives requests passed in from Web

browsers – again, the Web server has the main operation.

2.13 GARBAGE COLLECTION
Let’s consider what happens when an object is no longer needed by the program that created

it. This may seem like a trivial issue, but remember that objects in a program don’t come

Garbage Collection 33

 object1

data

main()

 object2

data

askForHelp()

doSubTask()

 object3

data

askForMoreHelp()

askForHelp()

as
kF

or
M

or
eH

el
p(

)

doSubTask()

m
ai
n(

)

Figure 2.15: An object-oriented program at run time

for free: each new object occupies a small area of the computer’s memory; as the program

runs, it tends to create more and more objects, reducing the memory available to run other

programs. If we didn’t reclaim objects after we had finished with them, our computer might

run out of memory unnecessarily. (The memory used by a program is usually returned

to the computer when the program finishes, but we might have several programs running

simultaneously: some of them might be running for days, weeks or years.)

It’s bad programming practice to allow more and more objects to be created by our

program without taking steps to clean them up at the end of their useful life. Traditionally,

programmers have had to decide for themselves when the last connection to an object

was about to be removed so that they could explicitly delete or free the object’s memory.

(Structured languages don’t have objects, but they do have records, structures and arrays

that might need to be freed.) Keeping track of object lifetimes is complicated. It’s very easy

for a programmer to forget about some of their unused objects, causing the program to keep

growing – a fault called a memory leak.

Languages such as Java have popularized the idea of a program that reclaims its objects

automatically, without the programmer having to do anything. The basic idea is that

34 Chapter 2

every program has an assistant called a garbage collector, wandering around, looking for

unconnected objects and sweeping them away. Sounds like magic? Well, not really. It is

common these days for every program to have a run-time system – a piece of software that’s

always present underneath the code that we write ourselves. It’s the run-time system that

performs housekeeping tasks, such as garbage collection.

Without going into any detail about how a garbage collector might work, it’s enough

to know that the garbage collector is prepared to delete any object that can’t be reached,

directly or indirectly, from any name that is active within the program. Any object that can’t

be reached can never be sent a message; if it can never be sent a message, it can never answer

a question or execute a command; therefore, it must be garbage.

Pure object-oriented languages – such as Smalltalk, Java and Eiffel – tend to have garbage

collectors. Hybrid object-oriented languages – such as Object Pascal – do sometimes have

garbage collectors, although the fact that the languages themselves are over-complicated

still means that they should be avoided if possible. C++ has no garbage collector; instead,

programmers have to remember to use ‘smart pointers’, which delete an object when it

appears that the last reference has gone.

2.14 CLASSES
A class encapsulates characteristics common to a group of objects. There are a number of

ways you could think of a class – some of them are illustrated in Figure 2.16. Putting this

picture into words:

• A factory manufactures objects according to some blueprint.

• A set specifies what features its member objects will have.

• A template allows us to produce any number of objects of a given shape.

• A dictionary definition describes an object as precisely as possible.

Figure 2.17 shows some example classes. In UML, classes are drawn as boxes on a class

diagram. So that we can easily tell the difference between classes and objects, class names

(on class diagrams) are not underlined, while object names (on object diagrams) are. Classes

and objects are rarely mixed on the same diagram: it turns out that we can do most of

our modeling in terms of classes, reserving object diagrams for illustration and verification

purposes. Object-oriented programmers are often heard to say ‘Every object is an instance of

a class’, hence the use of the term instance as a synonym for object.

By convention, class names start with a capital letter. On a class diagram, they’re shown in

bold, although, admittedly, that may be tricky when drawing by hand. In an object-oriented

context, class names tend to be short and in the singular.

Classes 35

factory category or set

template description or definition

Dogs

Figure 2.16: Different ways of thinking about a class

Classification – grouping things into classes – is something that humans are rather good

at. We start doing it from the age of 12–18 months – ‘toy’, ‘food’, ‘girl’, ‘boy’, ‘doggy’ – so

it’s nice to see it in programming, which is not otherwise known for its accessibility or its

closeness to nature. Object-oriented software development is meant to be natural: close to

the real world and close to the way that we reason about it. Since, in the real world, classes

are the next major step after objects, that should be justification enough for introducing

them into our programs. Another justification for having classes, from a software point of

view, is that they allow us to share the definition of elements between related objects, so that

we don’t have to repeat ourselves.

Looking at Figure 2.17 again, can you spot any similarity between the classes? You would

probably conclude that they’re all kinds of vehicle: some work on water, some on land and

so on. By drawing lines to show how the classes are related, we come up with the picture

shown in Figure 2.18.

36 Chapter 2

Train

Bicycle

Truck

Car

RowingBoat

Ferry

Yacht

JetPlane

Glider

Figure 2.17: Some example classes

Train

Car

Truck

Bicycle

RowingBoat

Ferry

Yacht

JetPlane

Glider

Figure 2.18: Groups of classes

This picture shows a hierarchy of classes, a point that should be obvious when the

relationships are redrawn using the proper UML notation, as in Figure 2.19. Here, a white

arrow-head is used to point from each detailed concept to the less detailed one on its left.

Just like the aggregation hierarchy we saw earlier, with its common name ‘part–whole

hierarchy’, there are a few common names for this kind of hierarchy too:

• Inheritance: Trains inherit the characteristics of land vehicles.

• Generalization/specialization: A train is more specialized than a land vehicle; a land

vehicle is more generalized than a train.

What Does a Class Define? 37

Train

Bicycle

Truck

Car

RowingBoat

Ferry

Yacht

JetPlane

Glider

Air Vehicle

Land Vehicle

Sea Vehicle

Vehicle

Figure 2.19: A class hierarchy

• Parent/child: LandVehicle is the parent of Train; Train is a child of LandVehicle.

• Superclass/subclass: LandVehicle is the superclass of Train; Train is a subclass of LandVehicle.

• Base/derived: LandVehicle is the base from which Train is derived.

In this book, the terms base and derived won’t be used.

2.15 WHAT DOES A CLASS DEFINE?
Object-oriented developers use classes to describe the programming elements that particular

kinds of object will have. Without classes, we would have to add these elements to every

individual object.

For illustration, Figure 2.20 shows a complete class written in Java. Although this book is

not about the details of Java as such, this example is simple enough for us to see in it the six

essential elements of a class (see Table 2.2).

New objects are created by the Actor operation; this is a special operation called a

constructor that is only used when an instance of the class is created. In Java, we create an

object using an expression of the form:

new Actor("Charlie Chaplin");

In this case, the expression would result in a new instance of Actor with a stage name of

‘‘Charlie Chaplin’’ and a name of ‘‘<None>’’. Operations such as getName() and setName() are

known as getter and setter operations, because they get and set pieces of information.

38 Chapter 2

1 // An actor with "name" and "stage name" attributes

2 public class Actor {

3

4 // Fields

5 private String name, stageName;

6

7 // Create a new actor with the given stage name

8 public Actor(String sn) {

9 name = "<None>";

10 stageName = sn;

11 }

12

13 // Get the name

14 public String getName() {

15 return name;

16 }

17

18 // Set the name

19 public void setName(String n) {

20 name = n;

21 }

22

23 // Get the stage name

24 public String getStageName() {

25 return stageName;

26 }

27

28 // Set the stage name

29 public void setStageName(String sn) {

30 stageName = sn;

31 }

32

33 // Reply a summary of this actor’s attributes, as a string

34 public String toString() {

35 return "I am known as " + getStageName() +

36 ", but my real name is " + getName();

37 }

38 }

Figure 2.20: A simple Java class

Shared Data and Shared Operations 39

Table 2.2: Information defined by a class

Element Purpose Example in Figure 2.20
Class name Referring to the class elsewhere

in our code.
Actor, line 2

Fields Describing the information
stored by this kind of object.

name and stageName, line 5

Constructors Controlling initialization of the
objects.

Actor(), line 8

Messages Providing other objects with a
way to use the objects.

getName(), line 14;
setName(), line 19;
getStageName(), line 24;
setStageName(), line 29; and
toString(), line 34

Operations Telling the objects how to
behave.

lines 15, 20, 25, 30, 35
and 36

Comments Telling programmers how to
use or maintain the class
(ignored by the compiler).

lines starting //, e.g. lines 1
and 4

In addition to the elements listed above, pure object-oriented programming languages

allow the programmer to specify which parts of a system can access the elements: we can

usually specify, at least, that elements are public (visible everywhere) or private (only available

to the objects themselves) – hence the public and private keywords in Java. Some languages

allow the programmer to add assertions – logical statements that must always be true, such

as ‘Objects of this class will always have a positive balance’ or ‘This message will always return

a nonempty string’. Assertions are useful for reliability, debugging and maintenance.

2.16 SHARED DATA AND SHARED
OPERATIONS

In an object-oriented program, all the information and services the program needs must

be available somewhere. If the program has been designed properly, the information and

services will be available in obvious places. Bearing this in mind, where would you place the

information and services listed below?

1. The current interest rate for savings accounts.

2. The number of days in January.

40 Chapter 2

3. The calculation of compound interest for a given number of years.

4. The calculation of whether the current year is a leap year.

You may have concluded that each of them should be associated with an object of

some kind – a SavingsAccount for cases 1 and 3 and a GregorianCalendar for cases 2 and 4.

However, none of these pieces of information or services are related to a particular Sav-

ingsAccount or GregorianCalendar. Rather, they’re related to all savings accounts and all

calendars. It would seem inappropriate to place these elements on particular objects.

(If you prefer the practical argument, think of the waste of space if we had to place

an interestRate on every instance of SavingsAccount, or the waste of time having to cre-

ate a GregorianCalendar just so that we could find out whether the current year is a

leap year.)

Because information and services such as those listed above don’t seem to fit well with

objects, object-oriented languages usually allow the programmer to put elements onto the

class itself. So, as well as field, message and method, we have class field, class message and

class method. Java programmers, for example, can use the keyword static to indicate that an

element is associated with the whole class rather than any of its instances. Some languages

go so far as to treat the class as an object in its own right.

Class elements are not as easy to use as they could be, because some languages don’t

treat a class as a pure object – inheritance between class elements doesn’t work, for example.

Even languages that do treat classes as pure objects run into messy complications with

metaclasses. So you should expect to come across class fields, class messages and class

methods in other people’s designs and code and you may even find a reason to use them

yourself, but always try the following alternatives first:

• Find, or introduce, another kind of object. For example, rather than making interestRate

a class field, make it a field on a Bank object. (This would also help you to extend your

software to deal with more than one bank.)

• Use a Singleton, a class that is guaranteed, by careful programming, to have only one

instance: the singleton object (see Chapter 11 for more information). This is a good match

for the ‘Is it a leap year?’ case, because there is only one Gregorian calendar.

2.17 TYPES
In the pure object-oriented universe, everything is an object. Or, to put it in programming

terms, the type of every value is a class. Smalltalk and Eiffel are two languages that stick to

this fundamental rule. However, most object-oriented languages also have nonobject types,

called primitives. The reasons given for this impurity usually include brevity, performance

and ancestry. A cynic would suggest that laziness (on the part of the language designers)

Terminology 41

might also be a factor. Whichever argument you prefer, primitives are everywhere. Therefore,

you need to get used to them.

Taking Java as an example, we can declare that a field has a class type such as String – a

sequence of characters – or a primitive type such as int – a simple number. In Figure 2.21,

the age field of anActor is an integer primitive and the string object pointed to by name

contains primitive characters.

 anActor

age = 56

 aString

"Topol"

name

Figure 2.21: Object-oriented types

The main distinction between objects and primitives is that, although primitives can be

used as values in the same way that objects can, you can’t send a message to a primitive, or

give it a field, or treat it as an object in any other way. (At a deeper level, most of the time

objects are accessed via pointers while primitives aren’t.)

You might expect that treating some things as objects and others as primitives would

lead to all sorts of confusion, but it turns out not to be a major issue. Just remember that

primitives are good for simple values like numbers and individual characters, but everything

else should be an object. Most languages provide us with a handful of ready-made primitive

types. For example, Java gives us byte, short, int, long, float, double, char and boolean. Even if

your language does allow you to define your own primitives (for example, C++ and Eiffel),

you should consider this to be an advanced technique.

Arrays, denoted in Java with the [] operator, sit somewhere between objects and primitives:

they’re special objects that are known to the compiler and the run-time system for efficiency

reasons. However, if you wish to be pure, you can avoid arrays altogether and use classes

such as List instead.

UML contains a mechanism for defining language-independent primitives with names

such as Integer, Real and Boolean. However, Java primitives will be used in this book as all

the code fragments are in Java. Using language-dependent types is sanctioned by the UML

standard, as long as you’re clear about what you’re doing.

2.18 TERMINOLOGY
There are many terms available for the object concepts we’ve seen and different people use

different terms to refer to the same thing. To make matters worse, some people use terms

incorrectly. Figure 2.22 shows some of the terms, grouped to show how they can be used

interchangeably (the underlined words are used in this book).

42 Chapter 2

operation

method

member

 function

composition

association

aggregation

delegation

invocation

call

message

execution

attribute

property

data

member
state

instance

 variable

activation

field

Figure 2.22: Object-oriented terminology

Table 2.3: Terms used in this book

Term Definition
Attribute A small piece of information – such as color, height or

weight – that describes one characteristic of an object.

Field A named value inside an object.

Operation A piece of code belonging to an object.

Method A synonym for ‘operation’.

Message A request sent from one object to another.

Invocation The carrying out of an operation in response to a message.

Execution A synonym for invocation.

Association A direct or indirect connection between two objects.

Aggregation A strong association implying some kind of part–whole hierarchy.

Composition A strong aggregation, where the part is inside exactly one
whole – the part may also be created and destroyed by the whole.

Interface A set of messages understood by an object.

Protocol An agreed way of passing messages over a network.

Behavior A collective term for all of an object’s operations.

Reusing Code 43

You may also come across collective terms such as behavior (a collection of operations),

interface (a collection of messages), object protocol (a synonym for interface) and data (a

collection of fields). In this book, only the terms listed in Table 2.3 will be used, in the

manner described.

An attribute can be stored (encapsulated) by an object, but it doesn’t have to be. For

example, a circle has radius and diameter attributes, but we need only store the radius because

the diameter can be calculated on demand. To avoid confusion, only stored attributes will be

shown in this book – if necessary, derived attributes will be implied by the addition of one

or more operations, such as getDiameter.

A field is not quite the same as an attribute. Firstly, a field represents a decision to store

something; secondly, a field can be used to store a connection to another object, as shown

by navigable links on our object diagrams. When we move into design, the attributes and

associations end up as fields.

In the early stages of object-oriented software development, we tend to use the terms

attribute and operation (because that’s UML terminology). In the later stages, when dealing

with low-level design and source code, we tend to refer to fields and methods (because that’s

programming terminology).

2.19 REUSING CODE
The term reuse has been mentioned several times now, so let’s take a closer look at what it

means and what its implications are. To put it simply, reuse refers to using code more than

once, resulting in:

• Faster and simpler development.

• Easier maintenance (less code to harbor faults).

• More robust code (every time it is reused, it is retested and, over time, more and more

faults are squeezed out).

There are historical and technical reasons why reuse has taken a long time to emerge.

From a historical point of view, the software industry was initially preoccupied with the

problem of how to program computers at all (starting with machine code), then with how

to program them more efficiently and then with how to develop large systems in a reliable,

systematic way.

The potential of reusing code in different contexts became apparent as more and more

systems were constructed – millions upon millions of lines of code being written every year

over many decades. Surely there couldn’t be that many distinct systems that needed writing,

could there? Since most software was written in software departments behind the closed

doors of individual companies, using a variety of different programming languages, it’s easy

to see why reuse was rare. Even when packaged software started making it out through

44 Chapter 2

company doors, the source code, and even the binaries, were kept a closely guarded secret.

Even so, protecting a company’s commercial advantage and intellectual property doesn’t

justify failing to reuse code within the company itself.

From a technical point of view, reuse was difficult because of an attitude in development

teams and central to the development methodology that ‘We only need to solve today’s

problem’. This was exacerbated by the lack of facilities provided in programming languages

and methodologies to promote reuse: there was a tendency to scatter the data and operations

in small pieces throughout the system, making it difficult to collect related pieces into a

larger chunk that would be worth reusing.

Because object orientation is driven by the modeling of general concepts from an entire

domain, it’s much more likely that reuse opportunities will emerge. For example, developing

a payroll system would normally involve the development of an Employee class. Since the

development should be driven by ‘What does the employee concept mean to this company?’

rather than ‘What employee information does the payroll system need?’, the end result is

likely to be applicable to other systems developed by the same company. In addition, the

modularity of objects reduces the tendency to spread attributes and operations around the

system, making it easier to extract and refine the Employee code.

Gradually, the situation has improved, to the extent that, often, we will only need to write the

parts of the system that are unique to our problem – the rest of the system can be implemented

using prewritten code. This is especially true for common, well understood, application areas

such as: user interfaces; database access; distributed programming; input/output; network

access; e-commerce; access to legacy (pre-existing) systems; security (authentication, autho-

rization, privacy, integrity checking, origin checking); text processing; mathematics; games;

service look-up; sound synthesis and playback; 2D graphics; 3D graphics; e-mail; image pro-

cessing; multimedia encoding and decoding; messaging; transaction processing; telephony;

speech synthesis and recognition; and integration with digital TV broadcasts.

Reuse opportunities can be summarized into the categories listed below:

• Reusing functions within a system: The simplest form of reuse (used in traditional systems

development) involves writing utility functions that are called from various places. For

example, you may discover that various parts of your system need to search through a

list of customer names, so you write a general search function that can be called from

each context. Writing reusable functions is different from writing functions that break a

complex process into simpler steps.

• Reusing methods within an object: Methods encapsulated within an object can be invoked

from other methods. For example, a nonpublic drawFilledRectangle method inside a

GUIComponent class can be used by any GUIComponent method that needs to fill an area of

the screen with the current background color. You should aim to reuse methods within

an object whenever possible. Nonpublic methods within an object are often used to break

up a complicated process, in traditional fashion.

Reusing Code 45

• Reusing classes within a system: Many of the classes that we define can be used in different

parts of our system. For example, if you define a Customer class for use in a marketing

system, you expect the same Customer object to appear in many different pieces of system

code. This kind of reuse is fundamental to the object-oriented approach.

• Reusing functions across systems: General functions can be reused (in traditional systems

development as well as in object-oriented development) in other systems that you and your

colleagues produce. For example, you might write a function that extracts the year that an

employee joined the company from the employee’s payroll number. For such a function

to be reused by your colleagues, you would have to make them aware of it, preferably by

putting it in a reuse repository: a database of useful functions that developers are expected

to peruse when they’re writing new code.

• Reusing classes across systems: We can publish and reuse a whole class (with all its

attributes and operations) rather than just a single function. An example would be an

Employee object that encapsulates the employee attributes used throughout the company,

along with a useful set of operations. Object-orientation enthusiasts were the ones who

popularized the idea of a reuse repository containing classes rather than functions.

In order to get developers to put in the extra effort required to make their classes

reusable enough for a repository, it’s a good idea to offer some kind of reward (a mug with

a humorous logo on it is a common choice). Access to class repositories may be offered to

third parties, perhaps for a fee. Reusing classes across your own systems is not difficult,

once you have a little practice.

• Reusing classes across all systems: A software component is analogous to a hard-

ware component. Software components are designed to be reusable in any context;

are strongly encapsulated (clients can’t see the inner workings); come with a standard

style of interface; and are available from third parties, usually in return for payment.

Every object-oriented programming language has its own form of software component,

for example, Java has JavaBeans. There is no real equivalent of software components in

the traditional arena, because a handful of related functions would not be of much use

to third parties.

Examples of software components include a spreadsheet that can be dropped into any

office productivity suite and an income tax object that can be dropped into any home tax

package. A software component is really just an object that obeys sensible rules about its

style of interface (as in using naming conventions to identify getters and setters).

• Function libraries: Related, high quality functions can be grouped into a library, so that

they’re available all at once. An example would be the stdio function library, originating on

Unix systems, that provides input/output facilities for C programmers. Function libraries

are used in both traditional systems development and object-oriented development.

Well-designed libraries sometimes become standardized by bodies such as ISO or ANSI.

Function libraries may be internal to a company, free, or sold for profit.

46 Chapter 2

• Class libraries: An improvement on function libraries, class libraries offer whole classes

rather than mere functions. Writing a class library requires lots of experience. A good

example is the Java 2 Enterprise Edition (J2EE) library [Bodoff et al. 02], which provides

code for all of the well-understood reuse areas listed above. Just like function libraries,

class libraries may be internal to a company, free, or sold for profit.

• Design patterns: A design pattern is a description of how to create part of an object-oriented

system elegantly and effectively. Since their introduction, patterns have also been applied

to other areas such as system architectures. Each pattern has a short description, a detailed

description, advice on where to use it, and code samples (see Chapter 11). For example,

the description of the Adapter pattern is ‘An adapter translates the interface of one object

into another interface that clients expect’. Designing patterns requires a lot of experience,

but less than producing a class library.

• Frameworks: A framework, as its name suggests, is a pre-existing structure to which you

attach your own code. In the object-oriented case, a framework consists of a number of

prewritten classes, along with a document describing the construction rules that must be

followed by the developer. A large example is the Enterprise Java Beans (EJB) framework

[Bodoff et al. 02]: this consists of the J2EE library plus a document, hundreds of pages long,

that specifies how programmers should write reusable enterprise components and how

third parties should implement Java application servers. Most frameworks are designed by

gurus (a guru is an expert’s expert).

So, how should you design for reuse? We’ll leave aside the issues of designing patterns

and frameworks, since such techniques are beyond the scope of this book, and concentrate

instead on writing reusable classes. Even a single reusable class will often have one or two

closely collaborating classes – thus, we might produce a small family of reusable classes

rather than just one. Here are some tips:

• Always follow style guidelines: Style guidelines are recommendations for how you should

write your classes. If you write your classes in an exotic or personal style, potential reusers

of your software will quickly move on to look at other code, rather than learn your personal

idiosyncrasies. Style guidelines may originate from your company, or they be more widely

accepted. For example, since Sun has control over the Java standard, whatever Sun says is

good style is normally accepted by the Java community. As well as having a plethora of

object-orientation gurus and experts of its own, Sun pays close attention to the opinions

of external experts and gurus.

• Be thorough with your documentation: Few programmers will be able to understand

how your classes should be reused just by reading the source code. At the very least,

your class should have an explanatory name, a short comment (one or two sentences)

Reusing Code 47

summing up the class, a longer comment (maybe several paragraphs) describing how

the class should be used and a short comment alongside each public message describ-

ing how the method should be used. Your comments should always describe the contract

between the object and its clients, setting out the obligations on both sides. Documenta-

tion that is separate from the classes, such as design or tutorial information, should also

be provided.

• Be prepared to write more code than you need: Often, when you’re implementing a class

for a particular system, you will find yourself thinking along the lines of ‘I bet a foo method

would come in handy here’. For example, even if you currently only need a getRadius

message for your Circle class, it would be a good idea to add a getDiameter message too,

making the class more useful in other systems.

• Use patterns and frameworks: Patterns and frameworks reduce your workload, but they’re

also understood by other developers, which means that the other developers will have less

to learn before reusing your code.

• Design client–supplier objects: If you have two-way, or even cyclical, collaborations

between your objects, you may end up with what is referred to in the trade as code spaghetti.

Things will be a lot simpler if you design your objects as a client–supplier hierarchy. For

example, a reusable Employee does not make any assumptions about its context; instead, it

provides public messages that are generally useful. Taking this idea further, the Employee

would be in control of its EmploymentHistory, but the EmploymentHistory would not know

about the Employee. Imagine that your objects are servants that do what they’re told,

without caring about who asked them to do it. To compensate for their servile lives, the

objects have servants of their own to control.

• Make each object single-purpose: This is referred to as high cohesion. Avoid coding objects

that serve multiple purposes, such as maintaining an employee’s personal information as

well as their employment history.

• Separate the interface from the business behavior: A reusable object should be usable in

any context. For example, the object might need to be used, directly or indirectly, in many

different kinds of interface (workstation, mobile phone, or Web server). If you pollute

the object with the details of a particular interface, you will run into problems. Therefore,

write business objects that contain only business behavior. You can also provide interface

objects to view your business objects, but that’s optional. Such interface objects will

become reusable in their own right.

• Design for questions and commands: Objects are simpler if their messages are either

questions – ‘What’s the time?’ – or commands – ‘Set the time to . . . ’ Although messages

that are questions and commands at the same time are occasionally useful, you should

consider their use to be an advanced technique. Combined messages, such as ‘Set the time

to . . . and tell me what the time was before I set it’, can be confusing.

48 Chapter 2

2.20 SUMMARY
In this chapter, we have looked at:

• Software objects, which represent real-world things, are described by attributes and
can carry out behavior (operations, usually called methods).

• Messages, which enable objects to communicate and collaborate to accomplish
some task.

• Garbage collection, which reclaims the space used by objects when they are no
longer needed by the program that created them.

• Classes, which enable us to group similar objects and share the definition of
elements between related objects, so that we don’t have to repeat ourselves.

• Reusing code, which results in faster and simpler development, more robust code
and easier maintenance.

FURTHER READING
One of the original books on object concepts, and why they’re a good thing, is by David

Taylor. [Taylor 97] is aimed at nontechnical readers, so it constitutes a gentle introduction

for those who won’t end up producing the actual code.

In order to promote the use of Java, there is a huge amount of free information on Sun’s

web site at http://java.sun.com, including tutorials. Because Java is continually being updated

and improved, Sun’s web site is an essential resource for Java developers. If you need help

with the code fragments in this book, check out the on-line language tutorial, which is also

available as [Campione et al. 00].

REVIEW QUESTIONS
1. In a UML diagram, how are objects distinguished from classes? Choose only one option.

(a) Object labels are shown in italics.

(b) Class labels have a box drawn around them.

(c) Object labels are underlined.

Review Questions 49

Car

color: Color

Diagram 1

Car Color
color

Diagram 2

1

Figure 2.23: For use with Review Question 2

2. In Figure 2.23, what do Diagrams 1 and 2 illustrate? Choose only one option.

(a) 1: An aggregation, 2: A composition.

(b) 1: An attribute, 2: An aggregation.

(c) 1: An aggregation, 2: An attribute.

(d) 1: An attribute, 2: A composition.

(e) 1: A composition, 2: An attribute.

3. What is meant by ‘object identity’? Choose only one option.

(a) Two objects are identical if their attributes have the same value.

(b) Every object’s class has a unique serial number.

(c) All objects are the same as each other.

(d) Every object has a unique identity that distinguishes it from all other objects.

4. Which of the following terms best describes an object that is made up of other objects?

Choose only one option.

(a) Generalization.

(b) Inheritance.

(c) Association.

(d) Aggregation.

(e) Specialization.

5. What is ‘encapsulation’? Choose only one option.

(a) Depicting objects using doughnut diagrams.

(b) Ensuring that the data inside an object can only be accessed via operations.

(c) Sealing the state of an object so that it cannot be changed.

(d) Putting objects into a collection.

50 Chapter 2

ANSWERS TO ACTIVITY 1
1. A street exists independently of its houses. Although the street and the houses may be

constructed at the same time, as time passes new houses will be added and old ones will

be knocked down. Even if there are no houses at all, the street is still a street. This must

be association.

2. If the book is a novel, we can’t tear out a page and still have a useful novel, so this is

probably aggregation. If, on the other hand, it is a reporter’s notebook with pages that

were designed to be torn out, it might be considered an association.

3. Notes in a symphony are similar to the pages in a novel, i.e. aggregation. If the symphony

is being performed and the orchestra accidentally drops a note, people are going to

notice – the orchestra members will be accused of not playing the whole symphony.

4. It may be tempting to think that components of the home entertainment system are

put together to form a whole (this is implied by the use of the word ‘components’).

However, if we move the games console into the kids’ bedroom, we’re still left with a

home entertainment system, albeit a less entertaining one. Also, we could add a DVD

player: this wouldn’t suddenly transform what we already have into a home entertainment

system, it would just improve it. This looks like an association.

Aggregation is still involved: the television is an aggregation, as is each of the other

components. Therefore, we can have aggregations inside associations. We can also have

associations inside aggregations (consider a DVD being played by a DVD player). Whether

we view something as an aggregation or an association often depends on the scale we’re

looking at.

ANSWERS TO REVIEW QUESTIONS
1. In a UML diagram, objects are distinguished from classes because c. Object labels are

underlined.

2. In Figure 2.23, Diagrams 1 and 2 illustrate option d. 1: An attribute, 2: A composition.

3. ‘Object identity’ means that d. Every object has a unique identity that distinguishes it

from all other objects.

4. An object that is made up of other objects is described as d. Aggregation.

5. ‘Encapsulation’ means b. Ensuring that the data inside an object can only be accessed via

operations.

3
Inheritance

Although inheritance is widely considered essential, it’s rather more complicated than

what we’ve seen so far, so this chapter can be skipped on a first reading. It is quite reasonable

to develop software without the use of inheritance. However, if you do skip this chapter, you

will have to accept a certain lack of understanding of some of the topics later in this book.

Learning Objectives
Understand what we mean by

inheritance.
Understand the difference between

abstract and concrete classes.

•
Know when to use inheritance.

Chapter Outline

3.1 Introduction

3.2 Designing a Class Hierarchy

3.3 Adding Implementations to a Class Hierarchy

3.4 Abstract Classes

3.5 Redefining Methods

3.6 Implementing a Stack Class

3.7 Multiple Inheritance

3.8 Guidelines for Using Inheritance

3.9 Summary

Further Reading

Review Questions

Answers to Review Questions

3

54 Chapter 3

3.1 INTRODUCTION
Inheritance allows us to specify that a class gets some of its characteristics from a parent class

and then adds unique features of its own – this leads to the description of whole families of

objects. Inheritance allows us to group classes into more and more general concepts, so that

we can reason about larger chunks of the world that we live in.

From a programming point of view, we want inheritance because:

• It supports richer, more powerful, modeling. This benefits both the development team

and other developers who might want to reuse code.

• It allows us to define information and behavior in one class and share the definitions in

related subclasses. This means that we have less code to write.

• It’s natural. This is one of the prime motivations for object orientation in the first place.

A subclass inherits all of the fields, messages, methods (and assertions) of its superclass.

For example, if we wanted to model land vehicles, we might come up with the hierarchy

shown in Figure 3.1.

 Car

milesPerGallon:float

getMilesPerGallon():float
setMilesPerGallon(:float)

 Bicycle

numberOfGears:int

getNumberOfGears():float
setNumberOfGears(:int)

 Truck

axleWeight:float

getAxleWeight():float
setAxleWeight(:float)

 LandVehicle

topSpeed:float

getTopSpeed():float
setTopSpeed(:float)

Figure 3.1: What is inherited?

Designing a Class Hierarchy 55

In this diagram, the types of fields, message parameters and message replies have been

shown. In UML, types are shown after a colon, for example, :String. For brevity, parameter

names have been omitted from Figure 3.1: this is only reasonable because there are few

parameters and their meaning is obvious. It does, however, show the type of parameter

and we must still include the colon, otherwise the label is ambiguous; so :float indicates

a field or parameter of type float, whereas float indicates a field or parameter with the

name float. If parameter names had been included, they would have looked something like

newTopSpeed:float.

Using this class hierarchy, if we were to create a Car, it would have one field inherited from

LandVehicle – topSpeed – and another field introduced by the Car class itself – milesPerGallon.

It would also have four methods (getTopSpeed, setTopSpeed, getMilesPerGallon and setMiles-

PerGallon), two inherited and two introduced by Car. If we were to create a Bicycle, it would

have the TopSpeed elements, just the same as a Car, but it would have the numberOfGears

elements instead of the milesPerGallon elements.

So, the hierarchy shown, as well as allowing us to reason about general classes and specific

classes, reduces our programming effort (because all the TopSpeed elements from LandVehicle,

for example, appear automatically in its subclasses, without us having to repeat them).

3.2 DESIGNING A CLASS HIERARCHY
Let’s look at a larger example. We want to model collections, objects that can hold on to

other objects for later use. After some deliberation, we decide that we need four styles of

collection:

• List: A collection that keeps all of its objects in the order in which they were inserted.

• Bag: A collection that doesn’t keep its objects in order.

• LinkedList: A collection that keeps its objects in order using an implementation of a

sequence of objects in which each object points to the next in the sequence. A linked list

can be updated easily, but access is slow because we have to walk down the list.

• ArrayList: A collection that keeps its objects in order using an array, a sequence of adjacent

memory locations. Arrays have fast access but updating is slow because we may have to

shift elements around or create a new array on each update.

How could we place these four classes, along with Collection, into an inheritance hierarchy?

The key is to look for major similarities between the concepts. Clearly, they’re all collections

in their own right, so Collection must go at the top. Next, we notice that most of the

collections keep their objects in order, but Bag doesn’t – this suggests that Bag should be

placed directly under Collection, in a separate branch from the other classes. Next, we notice

56 Chapter 3

Collection

Bag List

ArrayList LinkedList

Figure 3.2: A collection hierarchy

that List has no commitment to internal implementation, whereas LinkedList and ArrayList

do (the only difference between LinkedList and ArrayList is their time–space trade-off). So,

we decide that List must be a superclass of ArrayList and LinkedList. This logical process

leads to the hierarchy shown in Figure 3.2. The inheritance arrows have been drawn a little

differently to those in the previous chapter; this form, also an official part of UML, is neater

and more compact.

The process just described is somewhat artificial, because we had all the classes in the

hierarchy to begin with, and then built the result from the top down. In reality, it tends

to happen the other way round: first, we decide what classes we want at the bottom of the

hierarchy – ArrayList, LinkedList and Bag – then we look for more general concepts, so that

we can enrich our model and share element definitions. Thus, we might group ArrayList and

LinkedList into List and then group Bag and List into Collection.

While we’re developing a hierarchy, we look for messages that we can share – the higher

up the hierarchy we can place the messages, the better. We tend to look for messages before

we look for any other class elements because the messages represent the interface that our

objects will present to the outside world, their most important feature.

Now consider the following three messages, which we’ve decided are good candidates for

placement in our collection hierarchy:

• contains(:Object):boolean searches for an object in the collection and returns true if the

receiver contains the parameter or false otherwise.

Designing a Class Hierarchy 57

• elementAt(:int):Object retrieves the object at the position indicated by the parameter.

• numberOfElements():int replies with the number of objects in the collection.

Where can we place these messages on the classes that we already have? Well, contains

is something that we should be able to ask any kind of collection, so we need to guarantee

that by putting it on Collection. Now, elementAt takes a position as parameter, so it must be

dealing with ordered objects (it wouldn’t make sense for Bag). So, we can’t put elementAt

on Collection; we could put it on ArrayList and repeat it on LinkedList, because both of these

classes keep their objects in order. However, we can avoid the repetition by putting it on List

instead. Finally, numberOfElements is something we might want to ask of any collection, so

the Collection class is the appropriate place to put it.

These deliberations lead us to the distribution of messages shown in Figure 3.3. Even

though attributes have not been shown in this class diagram, the attribute box has been

retained – this makes it easier to see that the list shows messages rather than fields. The

message names are in italics to emphasize that we are not yet considering methods.

 Collection

contains(:Object):boolean

numberOfElements():int

 Bag List

elementAt(:int):Object

 ArrayList LinkedList

Figure 3.3: Placing messages in a hierarchy

58 Chapter 3

We now have a complete set of classes that would be valuable to other developers.

However, the classes don’t yet do anything: they have no implementation.

3.3 ADDING IMPLEMENTATIONS
TO A CLASS HIERARCHY

Okay, so we have our class hierarchy and we’ve decided where the messages should be

introduced. Now the implementation elements (fields, constructors and methods) must be

added. At this stage, let’s not worry about the fields that our hierarchy would need, because

that would be getting into detailed design. Similarly, let’s ignore the issue of constructors

for our classes – we can just assume that our finished classes will be furnished with a useful

and complete set of initialization choices. Instead, we’ll look at the issue of where to put the

methods, because that will lead us on to two important concepts: abstraction and redefinition.

We conclude that it’s impossible to write a contains method on the Collection class because

the search algorithm is going to be different for ordered and unordered collections. So we

must, at least, implement a contains method on Bag. But how about List and its subclasses?

With a little thought, using the other messages that we’ve introduced, we can write a contains

algorithm that works for any kind of List (see Implementation Point 3).

Implementation Point 3

1 boolean contains(Object o) {

2 for (int i = 0; i < numberOfElements(); ++i) {

3 if (elementAt(i) == o) {

4 return true;

5 }

6 }

7 return false;

8 }

Notice that parameters in Java have their type followed by their name (see line 1),

unlike parameters in UML which are given as name:type. The for-loop (line 2) sets i

to every value from 0 up to, but not including, the number of elements in the list.

Inside the loop, the current object is retrieved and tested (line 3).

Writing aMessage without specifying the object that is to receive the message

means ‘send aMessage to the current object’ (some programmers prefer to write

this.aMessage() instead). For example, elementAt(i) means ‘find the value of the ith

element of the current List object’.

Abstract Classes 59

Now we’re really reaping the benefits of inheritance: we’ve written a single method that

will work perfectly for any direct or indirect subclass of List, which could be many classes.

The elementAt message is going to have a different implementation for ArrayList and

LinkedList. So, we must add two separate elementAt methods: one to ArrayList, which will

access the elements directly; and one to LinkedList, which will walk down the list.

Last, but not least, we have to place numberOfElements. This implementation depends on

whether we store the value as a field or calculate it when asked. Let’s look at each alternative:

• Storing the number of elements as a field

The field has to be incremented whenever we add an object and decremented whenever

we remove an object. This approach allows us to report the number of objects quickly, at

the cost of extra storage and slightly slower operations to add and remove objects.

• Calculating the number of elements on demand

This is likely to be very slow for a LinkedList, involving walking down all the elements.

For ArrayList and Bag, the internal objects would probably store the number of elements

anyway, so the operation would be fast. Either way, with this approach, we don’t waste

storage and we don’t slow down the adding and removing of objects.

There is a time–space trade-off that the designer needs to resolve. On this occasion, for

example, we decide that neither option works well for all classes, nor even for all List objects.

Therefore, we decide to put a separate numberOfElements method on each of the three leaf

classes, Bag, ArrayList and LinkedList.

Having made our implementation decisions, we arrive at the hierarchy shown in

Figure 3.4. So that you can distinguish between them, we’ve shown messages in italics

and methods in roman text (which is also correct UML notation).

On our Collection classes, we now have two styles of message: those with an associated

method and those without. A message without a method is unfinished – we know that the

associated class has the message as part of its interface, but we have to look down the subclass

chain to find the actual method.

An unfinished method is called an abstract method (or abstract operation), because it’s

not real, it’s not solid, you can’t kick it. The complement to an abstract method is a concrete

method (or concrete operation). A concrete method has real lines of code, it’s solid, you can

kick it. In UML, abstract methods are shown in italics and concrete methods are not – where

italics are impractical, you can put {abstract} to the right of the method instead.

3.4 ABSTRACT CLASSES
An abstract class is a class with at least one abstract method – the abstract method may be

introduced on the class itself, or it may be inherited from a superclass. Figure 3.5 shows

60 Chapter 3

 Collection

contains(:Object):boolean
numberOfElements():int

 Bag

contains(:Object):boolean
numberOfElements():int

 List

contains(:Object):boolean
elementAt(:int):Object

 ArrayList

elementAt(:int):Object
numberOfElements():int

 LinkedList

elementAt(:int):Object
numberOfElements():int

Figure 3.4: Placing methods in a hierarchy

 Collection

contains(:Object):boolean
numberOfElements():int

 Bag

contains(:Object):boolean
numberOfElements():int

 List

contains(:Object):boolean
elementAt(:int):Object

 ArrayList

elementAt(:int):Object
numberOfElements():int

 LinkedList

elementAt(:int):Object
numberOfElements():int

Figure 3.5: Abstract class names in italics

Abstract Classes 61

our collection hierarchy again, with the names of the abstract classes in italics (this is also

correct UML). Again, if italics are impractical, you can write {abstract} above or to the left

of the class name.

Abstract classes have the following advantages:

• They permit richer and more flexible modeling; for example, our List class has all

three messages – contains, elementAt and numberOfElements – despite the fact that we can’t

provide concrete methods for all of them.

• They lead to more code sharing, because we can write concrete methods that use abstract

methods; for example, the contains method for List invokes abstract methods.

Once again, abstraction is a natural thing to want to do, so object orientation provides the

facility. Consider peeling a piece of fruit: we know that we can take the skin off any piece

of fruit, but we can’t describe how to do it in a way that will work well for every variety.

Therefore, peeling fruit must be an abstract method and fruit itself must be an abstract

concept.

With the abstraction facilities presented so far, we have a disaster waiting to happen:

what do you think would happen if we created a Fruit and then sent it the peel message?

How about if we created a Collection and sent it the contains message? We would be trying to

invoke an abstract method – a thing that doesn’t really exist – so the objects wouldn’t know

what to do.

Most object-oriented languages stop us creating instances of abstract classes. For example,

a Java compiler won’t compile any program containing the expression new List(). The compiler

is being paranoid in this case, because we might never invoke an abstract method on the new

object, but the compiler can’t check that for us.

The rule that instances of abstract classes can’t be created corresponds well to the real

world: if I give you some money and ask you to go to the shop to buy a piece of fruit,

you’re likely to ask ‘What kind of fruit would you like?’, because you need a concrete

request.

When designing a class hierarchy, you should bear in mind that most superclasses are

abstract. This follows from the fact that inheritance hierarchies are naturally derived from

the bottom up:

1. We look for the concrete concepts that exist in our problem domain and reason about

their knowledge and behavior.

2. We look for commonalities between the concrete classes so that we can introduce more

general superclasses.

3. We group superclasses into more superclasses, until we arrive at our most general root

class (Fruit or Collection, for example).

62 Chapter 3

X

Y

X1

Y X2

usually ends up as

Figure 3.6: Most superclasses are abstract

When we identify generalizations (superclasses), we expect them to be abstract – otherwise

it’s likely that they would have been identified as concrete concepts in Step 1. Most of the

time, the observation that most superclasses are abstract is borne out by the discovery, sooner

or later, of abstract methods on the superclasses (possibly inherited). In order to help with

this, Java and UML allow us to mark a class as abstract even if we haven’t yet discovered any

abstract methods for it.

So, what do you do if you find yourself with a concrete class inheriting from another

concrete class? One thing you can try is the transformation shown in Figure 3.6. Here, we

have a concrete class called Y inheriting from another concrete class X; we can transform this

into an abstract superclass X1, with two concrete subclasses, X2 and Y.

If you try to work with the hierarchy on the left, you will tend to find that Y is not a true

subclass of X – it doesn’t quite work as a kind of X, leading you to change the meaning of

some methods, or even to disable them. Imagine if X were Fruit and Y were Orange; we would

expect an Orange to work exactly like a Fruit, with extra knowledge and behavior added on,

so the disabling of methods would be unacceptable.

For the hierarchy on the right, every piece of knowledge and behavior that is truly

common to X and Y has been put in X1; everything in X that is not common to Y has been

moved into X2. (The old X has been split in two.) We now have a much cleaner picture: X1

is likely to be abstract; X2 and Y behave exactly as kinds of X1; X2 and Y have their own extra

knowledge and behavior.

Sometimes, we’re tempted to inherit from a concrete class, in order to tweak the elements

of something that already exists: for example, we may already have an ArrayList class imple-

mented by another developer, but it doesn’t quite do what we want it to do, so we introduce

a new subclass called MyArrayList and add minor modifications. Although this is sometimes

reasonable, it has one fundamental drawback: any existing code that creates instances of

ArrayList will still do so: there’s no way that we can force the existing code to create instances

of our improved class.

Redefining Methods 63

3.5 REDEFINING METHODS
Object orientation allows us to redefine elements that we inherit. In its simplest form,

redefinition allows a subclass to change the implementation of an inherited method – the

message stays the same but the lines of code are replaced. Another form of redefinition allows

us to make a message more visible in a subclass: since we’ve only seen public and private

visibilities up to this point, this means that a subclass can turn a private message into a public

message. Yet another form of redefinition allows us to change the name or type of an attribute.

For the rest of this discussion, let’s concentrate on redefining the content of methods,

since that’s the most important reason for redefinition. There are three good reasons why we

would redefine a method:

• The inherited method was abstract and we want to make it concrete, by giving it some

code – for example, contains is abstract on Collection but we need it to be concrete on Bag

and List.

• The method needs to do some additional work in the subclass – for example, a toString

method would have to summarize any new attributes that were introduced by the subclass.

• We can provide a better (more efficient or more accurate) implementation for the sub-

class – for example, if we add an index to our LinkedList class, we can redefine contains to

be faster than the linear algorithm used by List.

When we are just doing additional work, we should make sure that the superclass

definition still does everything it used to – this increases code sharing and simplifies

maintenance (for example, if we modify the superclass definition, the subclass gets the new

behavior automatically). Every object-oriented language allows a redefined method to invoke

the one on its superclass (see Implementation Point 4).

Implementation Point 4
Here’s a Java example:

void initialize() {

// Invoke the inherited initialize method

super.initialize();

// Now do the extra stuff

...

}

When you redefine an element, do not change its meaning. When implementing a

subclass, you mustn’t forget your contract with users of the superclass: anyone has the right

64 Chapter 3

to assume that your subclass works exactly like the superclass, with additional knowledge

and behavior. For example, when redefining contains for LinkedList, it wouldn’t be fair to

make it return true when the parameter is not in the list.

3.6 IMPLEMENTING A STACK CLASS
Let’s look more closely at the idea of reusing code by sharing. With a Stack (see Figure 3.7),

we can push an object onto the top, peek at the top object, see if the stack is empty, and pop

an object off the top.

So, what we need is a Stack class with the following four messages:

• push() to add an object to the top of the stack.

• peek():Object to return the object on the top of the stack.

• isEmpty():boolean to return true if there are no objects on the stack.

• pop():Object to remove an object from the top of the stack and return it.

Figure 3.7: A spring-loaded plate dispenser

Implementing a Stack Class 65

Now, object-oriented software development is supposed to be about not writing code, so

the first thing we should do is to look around for a similar class that already exists. During

our search, we come across the LinkedList class, part of which we developed earlier. We

discover that it has four messages that we ought to be able to reuse:

• addElement() which adds an object to the end of the list.

• lastElement():Object which returns the object at the end of the list.

• numberOfElements():int which returns the number of objects in the list.

• removeLastElement() which removes the object at the end of the list.

If we view a stack as running from left to right, instead of bottom to top, it looks as though

all the methods we need are already written, but with the wrong messages. We must decide

how to incorporate the existing LinkedList behavior into our new Stack class. We could do it

by inheritance (see Figure 3.8) or by composition (see Figure 3.9).

Composition is a strong aggregation where the composed object is inside a single

composite; the composed object is usually created at the same time as the composite and

can be deleted at the same time. In UML, in order to emphasize that composition is stronger

than aggregation, we use a black diamond instead of a white one.

3.6.1 Implementing a Stack using Inheritance
Let’s say that we choose to make our new class a subclass of LinkedList, as shown in Figure 3.8.

Next, we define our stack messages in terms of the inherited messages. The following code

shows four such definitions (in Java, extends means ‘inherits from’):

public class Stack extends LinkedList {

public void push(Object o) {

addElement(o);

}

public Object peek() {

return lastElement();

}

public boolean isEmpty() {

return numberOfElements() == 0;

}

public Object pop() {

Object o = lastElement();

removeLastElement();

return o;

}

}

66 Chapter 3

LinkedList

Stack

Figure 3.8: Stack by inheritance

We can now create a stack object and use it:

Person aPerson = new Person();

Stack aStack = new Stack();

aStack.push(new Plate("Wedgwood"));

aStack.push(new Plate("Royal Doulton"));

aStack.push(new Plate("Domestic green"));

aPerson.take(aStack.pop());

However, we have a potentially serious problem with this way of implementing Stack.

Since Stack is a sublass of LinkedList, all other LinkedList messages are also available to stack

objects. That should be no surprise, since a subclass is expected to offer at least the same

services as its superclass. Our problem is that LinkedList has messages, such as firstElement,

that are inappropriate for stacks, but a client programmer would still be able to use them,

for example:

aPerson.take(aStack.firstElement());

This piece of code means that the client of aStack has just removed the element from the

bottom of the stack – something that they’re not supposed to be able to do.

3.6.2 Implementing a Stack using Composition

Figure 3.9 shows a Stack implemented with an internal reference to a LinkedList. The behavior

of the encapsulated LinkedList is used by Stack, but none of the extra LinkedList behavior

is exposed to Stack clients. Another way of describing this situation is to say that aStack

delegates its behavior to aLinkedList. Since aLinkedList is encapsulated, the only reference to

it is inside aStack. Therefore, if we’re using a pure object-oriented language with a garbage

collector, aLinkedList is deleted as soon as aStack is deleted.

Implementing a Stack Class 67

list
aStack aLinkedList

 Stack

push(:Object)

pop():Object

isEmpty():boolean

peek():Object

LinkedList

add(:Object)

lastElement():Object

removeLastElement()

numberOfElements():int

list

Figure 3.9: Stack by composition

Using composition, Stack can be implemented like this:

public class Stack {

private LinkedList list;

public Stack() {

list = new LinkedList();

}

public void push(Object o) {

list.addElement(o);

}

public Object peek() {

return list.lastElement();

}

public boolean isEmpty() {

return list.numberOfElements() == 0;

}

public Object pop() {

Object o = list.lastElement();

list.removeLastElement();

return o;

}

}

This class provides all the messages that a stack needs, but it does not work with:

aPerson.take(aStack.firstElement());

because there is no longer a firstElement message.

68 Chapter 3

To achieve this improved behavior only meant that the Stack class had to declare and create

a field and the methods had to reference that field. Although there may be a slight overhead in

creating the delegated field and forwarding messages to it, it shouldn’t be enough to concern

us, especially considering the sophistication of today’s compilers and run-time systems.

3.6.3 Inheritance versus Composition
Inheritance has some unique advantages:

• It’s natural.

• It’s elegant.

• It allows us to write generic code – for example, code written to work for Fruit will also

work for Apple and Pear.

However, inheritance suffers from the following problems:

• It’s difficult to do well.

• It’s difficult to change when you discover deficiencies in your design.

• It’s more difficult for client programmers to understand.

• The hierarchy ‘leaks’ into client code, making it more difficult to change too.

Composition achieves the same end result as inheritance (concrete classes, concrete messages

and reuse of existing code). However, it has the following advantages:

• It’s simpler to produce.

• It’s easier to change.

• It’s easier for clients to understand.

• It doesn’t leak into client code.

On the whole, especially for beginners, composition wins over inheritance: it’s reasonable

to implement a sizeable application with no inheritance at all. Inheritance is best left to

the experts, especially for when they’re implementing large libraries of reusable code (even

then, inheritance works best for well-understood domains such as graphical user interfaces,

databases, networks and collections).

Some languages (such as Eiffel and C++) permit private inheritance, also called implemen-

tation inheritance. Private inheritance, as its name suggests, allows one class to inherit from

another without the inherited elements becoming part of the new interface. For example,

with such a facility, our Stack class could inherit privately from LinkedList: the Stack methods

Multiple Inheritance 69

would have direct access to LinkedList methods, without having to introduce a delegate, so

there would be no arguments about convenience or efficiency; but, because the inheritance

would be private, we would not be allowing clients of Stack to use inappropriate LinkedList

messages, such as removeFirstElement, so the purists would be happy too.

Private inheritance is not available in all languages, so it’s another one of those features

that you should avoid during analysis and design, if you don’t want to tie yourself to

a particular language. Private inheritance is usually provided as a side effect of multiple

inheritance, which is also not supported by many languages.

3.7 MULTIPLE INHERITANCE
When we design an inheritance hierarchy, we generalize classes into higher-level abstractions

(when moving up the hierarchy) and specialize them into lower-level abstractions or concrete

classes (when moving down). As we move up or down, we often have to choose between

alternative generalizations and specializations, even though they may all seem equally valid.

For example, consider the two inheritance hierarchies in Figure 3.10.

In the first hierarchy, Vehicles have been classified as Powered or Unpowered; in the

second, they’ve been classified as Land, Air or Sea. So, we have alternative hierarchies, but

which do we choose? The answer may depend on what your problem domain is (engine

maker, globe-trotter or luggage manufacturer). Or, you may not be able to come up with

an answer at all until you’ve tried out one of the hierarchies and found whether or not it is

adequate.

This kind of dilemma is a side effect of single inheritance. With single inheritance, a class

is only allowed to have one parent. Single inheritance works well, which is why languages

like Smalltalk and Java have nothing else. But multiple inheritance, where each class has any

number of parents, is also possible. (Java does have a form of multiple inheritance, but only

for interfaces, explained in Chapter 8.) With multiple inheritance, we might be tempted to

combine the hierarchies in Figure 3.10 into the hierarchy shown in Figure 3.11, in the hope

of getting the best of both worlds.

Looking at Figure 3.11, you might think that multiple inheritance is rather complicated

and not worth the bother. But there are many points for and against.

Advantages of multiple inheritance are that:

• It is powerful.

• It permits private inheritance.

• It is closer to the real world.

• It allows mix-in inheritance.

70 Chapter 3

Train

Bicycle

Truck

Car

RowingBoat

Ferry

Yacht

JetPlane

Glider

Air

Land

Sea

Vehicle

Train

JetPlane

Truck

Car

RowingBoat

Bicycle

Yacht

Ferry

Glider

Powered

Unpowered

Vehicle

Figure 3.10: Alternative inheritance hierarchies

Mix-in inheritance is a design style in which we maintain a single inheritance backbone

for our principal classes, while permitting individual classes to inherit from one or more

decorating classes, each of which adds a few simple elements. For example, Lorry may get

most of its important elements from LandVehicle but may inherit an engine attribute from a

simple Powered class.

Disadvantages of multiple inheritance are that:

• It introduces complexity (for the designer and the client programmer).

• It causes name clashes.

Multiple Inheritance 71

Train

Bicycle

Truck

Car

RowingBoat

Ferry

Yacht

JetPlane

Glider

Air

Land

Sea
Vehicle

Powered

Unpowered

Figure 3.11: Multiple inheritance – best of both worlds?

 HouseProduct

isPolish():boolean

 EuroProduct

isPolish():boolean

 WarsawPolish

isPolish():boolean ?

Figure 3.12: Name clashes

• It causes repeated inheritance.

• It makes compilers more difficult to write.

• It makes (fast) run-time systems more difficult to write.

Name clashes occur when elements with the same name, but different implementations,

are inherited via different routes. For an example, consider the hierarchy in Figure 3.12.

Here we have two superclasses: HouseProduct is something bought for the house; EuroProduct

is something manufactured in Europe. On HouseProduct, we have a message isPolish that

72 Chapter 3

returns true if the associated product is used for polishing; in contrast, on EuroProduct, we

have an isPolish message that returns true if the associated product is manufactured in Poland.

Once we introduce the mutual subclass WarsawPolish, denoting polish manufactured in

Warsaw, we have a problem: we would like the new class to have two messages with

different meanings; however, they can’t both use the same name, because that would make

aWarsawPolish.isPolish() ambiguous. If we rename the two messages, clients of WarsawPolish

will be surprised to learn that it has no isPolish message at all, despite what it says on

HouseProduct and EuroProduct.

Employee

UKEmployee USEmployee

Assignee

Figure 3.13: Repeated inheritance

Repeated inheritance means inheriting the same element from more than one route. For

example, if a getName method is defined on the Employee class in Figure 3.13, Assignee

inherits getName from both UKEmployee and USEmployee. In this simple case, it should be

easy for a compiler to work out that Assignee should end up with one getName method.

However, things get trickier if UKEmployee or USEmployee choose to redefine the getName

method; Assignee could end up with two getName methods (in which case, how do we deal

with the name clash?) or just one (in which case, how do we choose which one to have?).

The problems of writing efficient compilers and run-time systems to handle multiple

inheritance are difficult to overcome. However, any programmer that yearns for the power

of multiple inheritance is unlikely to be satisfied if these are the reasons given for dropping

the facility altogether. In support of multiple inheritance, it should be noted that all the

problems can be overcome with the help of clever designers and good programming style.

However, since it may not be available in your implementation language, you may well

choose to avoid multiple inheritance altogether, especially for analysis purposes. If you do

use multiple inheritance during design, restrict yourself to a single-inheritance backbone,

with the addition of simple mix-in classes when appropriate.

Summary 73

For the record, here’s a summary of the multiple inheritance facilities available in common

languages:

• Eiffel provides straightforward multiple inheritance, plus private inheritance and mix-in

inheritance. Eiffel has a rich set of facilities for dealing with name clashes and repeated

inheritance.

• Smalltalk provides only single inheritance. Multiple inheritance facilities have been tried

with Smalltalk, with limited success.

• C++ provides some multiple inheritance facilities. However, the facilities are incomplete,

poorly designed and poorly implemented, so they should be avoided.

• Java provides single inheritance for classes but multiple inheritance for interfaces (abstract

classes that have no methods). This is a good compromise that allows some degree of

multiple inheritance modeling and mix-in inheritance (for messages only). Java has no

special facilities to deal with name clashes or repeated inheritance, but a simple form of

repeated inheritance is allowed.

3.8 GUIDELINES FOR USING INHERITANCE
• Don’t overdo it: Don’t think that you have to use inheritance a lot, or even at all. Remember

that there are alternatives, such as composition and the use of attributes (for example, a

Car class with a color attribute is probably better than three classes called Car, RedCar and

BlueCar).

• A class should be ‘a kind of ’ its superclass(es): Whenever you subclass X to produce Y,

ask yourself ‘Is Y a kind of X?’ For example, Orange is a kind of Fruit and Truck is a kind of

LandVehicle, so they are valid; conversely, Potato is not a kind of Fruit and Airplane is not a

kind of LandVehicle, so these would not make good subclasses. (Some developers use the

terms subtyping to mean ‘I am following the guideline’ and subclassing to mean ‘I might

not be’.)

• A class should be an extension of its superclass(es): In a subclass, make sure that you only

add new features; don’t be tempted to break the superclass contract by deleting, disabling

or reinterpreting features.

3.9 SUMMARY
In this chapter, we examined inheritance, a tool for code sharing and higher-level
modeling:

• Classes can be grouped into more general concepts and a class can get (inherit)
some of its characteristics from a parent class.

74 Chapter 3

• An abstract class has at least one method without code (an abstract method); in a
concrete class, all the methods contain lines of code.

FURTHER READING
One of the best-known books on object-oriented design and programming theory is [Meyer

97], covering everything you should and shouldn’t do with objects. Meyer illustrates his

ideas using his own language, Eiffel, but Eiffel’s syntax is simple and based entirely on

object-oriented concepts, so it makes a good complement to the main text. Apart, perhaps,

from the choice of programming language, even the most stringent theoretician would find

it difficult to disagree with anything Meyer has to say.

REVIEW QUESTIONS
1. Why is the ability to redefine a method important in object-oriented programming?

Choose all options that apply.

(a) Because it allows us to add extra work to a method.

(b) Because it allows us to introduce abstract methods that are redefined as concrete

methods.

(c) Because it allows us to provide a more accurate or faster definition in a subclass.

(d) Because it allows us to disable a method in a subclass.

(e) Because it allows us to change the meaning of a method.

2. Which of the following statements about multiple inheritance are true? Choose all options

that apply.

(a) It offers more modeling choices.

(b) It makes it more difficult to write compilers and (fast) runtime systems.

(c) It simplifies inheritance hierarchies.

(d) It solves the problem of repeated inheritance.

3. Which of the following statements are true? Choose all options that apply.

(a) Most superclasses are abstract.

(b) Inheritance is preferable to composition.

(c) Most superclasses are concrete.

(d) Composition is preferable to inheritance.

4. In UML diagrams, how are abstract classes distinguished from concrete classes? Choose

only one option.

Answers to Review Questions 75

(a) Concrete classes are shown as boxes with dashed outlines.

(b) Labels on abstract classes are shown in italics.

(c) Labels on concrete classes are shown in italics.

(d) Abstract classes are shown as boxes with dashed outlines.

5. What is an ‘abstract’ class? Choose only one option.

(a) An object.

(b) A class with no methods.

(c) A class with no concrete subclasses.

(d) A class with at least one undefined message.

(e) An interface.

6. Which of the following terms best describes the case where a Stack class is implemented

using an internal instance of List? Choose only one option.

(a) Association.

(b) Specialization.

(c) Genericity.

(d) Composition.

(e) Singularity.

7. With reference to Figure 3.14, what is the difference between the two diagrams? Choose

only one option.

(a) In Diagram 1, color is public but in Diagram 2 color is private.

(b) Diagram 2 indicates that the car’s color can be removed and replaced.

(c) Diagram 1 shows an abstract class and Diagram 2 shows a concrete class.

(d) None, they mean the same thing.

Car

color: Color

Diagram 1

Car Color
color

Diagram 2

1

Figure 3.14: For use with Review Question 7

ANSWERS TO REVIEW QUESTIONS
1. The ability to redefine a method is important in object-oriented programming:

(a) Because it allows us to add extra work to a method.

76 Chapter 3

(b) Because it allows us to introduce abstract methods that are redefined as concrete

methods.

(c) Because it allows us to provide a more accurate or faster definition in a subclass.

2. Multiple inheritance a. offers more modeling choices and b. makes it more difficult to

write compilers and (fast) runtime systems.

3. The following statements are true a. Most superclasses are abstract b. Composition is

preferable to inheritance.

4. In UML diagrams, abstract classes are distinguished from concrete classes because b.

Labels on abstract classes are shown in italics.

5. An ‘abstract’ class is d. A class with at least one undefined message.

6. The term that best describes the case where a Stack class is implemented using an internal

instance of List is d. Composition.

7. The difference between the two diagrams is d. None, they mean the same thing.

4
Type Systems

As with inheritance, type systems are widely considered essential but are rather

complicated, so this chapter could be skipped on a first reading. You can get away without a

detailed knowledge of type systems. However, if you do skip this chapter, you will have to

accept a certain lack of understanding of some of the topics later in this book.

Learning Objectives
Understand what we mean by a

type system.

•
Understand polymorphism.

Understand implicit and explicit
casting.

•
Recognize that Java templates

provide genericity.

Chapter Outline

4.1 Introduction

4.2 Dynamic and Static Type Systems

4.3 Polymorphism

4.4 Dynamic Binding

4.5 Polymorphism Guideline

4.6 Type Casting

4.7 Explicit Casts

4.8 Genericity with Templates

4.9 Summary

Further Reading

Review Questions

Answers to Activity 2

Answers to Activity 3

Answers to Review Questions

4

80 Chapter 4

4.1 INTRODUCTION
A type system is a simple concept: it’s a set of rules that stop us misusing values (primitives

and objects). Usually, this is done by forcing us to declare how we intend to use a value

before we actually use it – this allows compilers and run-time systems to spot potential

abuses before they happen.

A simple example of a type system in use is declaring that a variable will always hold a

value of a particular type:

int i;

Employee fred;

But why would we misuse a value in the first place? The most common reasons are:

• Not understanding how the value is supposed to be used.

• Because we have spelled something incorrectly.

As well as preventing the misuse of values, a type system can have a couple of other

benefits: it can ensure that we provide some documentation of the code (‘fred is an Employee’)

and it can improve run-time performance, because the compiler and run-time system have

more information about what the code intends to do (compiler) or what it actually is doing

(run-time system).

4.2 DYNAMIC AND STATIC TYPE SYSTEMS
Type systems can either be static (‘done by the compiler’) or dynamic (‘done by the run-time

system’). Both varieties of type system ensure that values are not misused by the programmer:

a static type system spots the abuse at compile time while a dynamic type system waits to

see if the abuse actually happens and then stops it.

Smalltalk is the archetypal dynamically-typed language. In Smalltalk, a programmer often

declares the expected type of a value using a naming convention. For example, to ensure

that a parameter for the addEmployee method always pointed to an Employee object, the

programmer might give it the name anEmployee. Anyone using addEmployee would assume

from the parameter name that they were supposed to pass in an Employee. (Similar naming

conventions can be applied to fields and local variables.)

But Smalltalk is dynamically typed, so the client programmer still has to make sure that

they don’t invoke addEmployee with, say, a Banana. Let’s assume that, inside the addEmployee

method, the getPayrollNumber message is sent to anEmployee. Therefore, if we pass in a

Banana, getPayrollNumber will be sent to the Banana, which is clearly nonsense. Smalltalk’s

Dynamic and Static Type Systems 81

reaction to this misuse of a Banana would be to generate a run-time error with the message

Banana doesn’t understand payrollNumber.

Smalltalk’s approach still constitutes a type system, albeit a rather simple one, because the

run-time system has prevented the client programmer from abusing the Banana – the object

hasn’t been forced to answer a question that it doesn’t understand. However, we have to wait

until the code is run before we discover the error. Worse still, if our test code only sends

messages to anEmployee that are also supported by Banana, we won’t discover the error until

we write more code or run the system in a live setting.

If we write the addEmployee method in Java, we are forced to declare a type for the

parameter:

public void addEmployee(Employee anEmployee) {

...

pay = anEmployee.getPayrollNumber()

...

}

Here, the programmer is telling the compiler that the parameter passed in by the client

must be an Employee (and that the message doesn’t return anything, using the void keyword).

Therefore, the compiler will refuse to compile the following code fragment:

aPayroll.addEmployee(new Banana());

So, in Java, the abuse of Banana is stopped by the compiler, rather than by the run-time

system.

A Smalltalk programmer would argue that dynamic typing is the better option, because:

• It makes compilation quick and simple.

• The programmer can work quickly – ideas flow easily from the programmer’s head into

the program, because they don’t have to keep stopping to think what kind of object they

must use in this context.

• The lack of a static compiler encourages thorough testing.

• Object-oriented code is continually being reused, so faults are always found eventually.

A Java programmer would argue that static typing is a good thing because:

• Compilation is still pretty quick and, anyway, programmers don’t care how difficult it is

to write a compiler.

• It can be used to improve run-time performance.
• It can be used to pick up spelling mistakes.

• It forces some documentation of the code.

In object-oriented terms, a static type system guarantees that it’s impossible to send a

message to an object unless that object has a corresponding method.

82 Chapter 4

4.3 POLYMORPHISM

Polymorphism is derived from the Greek word stems poly, meaning many, and morph,

meaning shape. Therefore, polymorphic means ‘having many shapes’. We can apply the term

separately to variables and to messages: a polymorphic variable refers to different types of

value at different times; a polymorphic message has more than one method associated with

it.

In a pure object-oriented language, all nonprimitive variables are polymorphic and all

messages are polymorphic. We’ll take a look at each in turn.

4.3.1 Polymorphic Variables

The following Java declaration states that t will always point at an object of type Truck:

Truck t;

Therefore, the following assignment would be valid and would lead to the situation shown

in Figure 4.1:

t = new Truck();

Truck t
aTruck

Figure 4.1: Attaching a Truck variable to a Truck object

Now consider the class hierarchy shown in Figure 4.2, which tells us that a Truck is a kind

of LandVehicle. Given this hierarchy, we would expect to be able to treat a Truck just like a

LandVehicle. Therefore, the following statement would also be valid and would give us the

situation shown in Figure 4.3:

LandVehicle lv = new Truck();

That may surprise you. But, consider this: we’ve just told the compiler that we will only

ever use lv as a LandVehicle, i.e. we will only ever send it LandVehicle messages; since all the

LandVehicle messages are on Truck too, everything will be fine.

In the same way that we can make lv refer to a Truck, we can make it refer to a Train (see

Figure 4.4):

lv = new Train();

Polymorphism 83

Train

Truck

LandVehicleVehicle

Figure 4.2: Truck inheritance

LandVehicle lv
aTruck

Figure 4.3: Attaching a LandVehicle variable to a Truck object

LandVehicle lv
aTrain

Figure 4.4: Attaching a LandVehicle variable to a Train object

Although lv was pointing at a Truck, it’s now pointing at a Train, so it must be a polymorphic

variable. This should be intuitive: lv is a LandVehicle, so it can point at any kind of LandVehicle.

The polymorphism of variables is controlled by inheritance. For example, because Orange

is not a kind of LandVehicle, it wouldn’t be sensible to write

lv = new Orange();

So, polymorphism allows us to attach a variable to a subclass object. But we can’t go the

other way round. For example, because a Vehicle is not a kind of LandVehicle, it wouldn’t be

reasonable to write:

lv = new Vehicle();

If this was allowed, we could send any LandVehicle message to the Vehicle, even though some

of the LandVehicle messages won’t be understood by Vehicle.

4.3.2 Polymorphic Messages
Any message, in a pure object-oriented language, can have more than one method associated

with it. This happens either because the methods appear independently on more than one

84 Chapter 4

class or because a method is redefined by subclasses. Redefined methods normally have similar

algorithms, but methods defined independently usually have completely different algorithms.

For example, consider the four classes in Figure 4.5, where any possible relationships

between humans and birds have been ignored. All of these classes have a message flyTo, which

means ‘Use flight to get to the given location’: the method is abstract on Bird and concrete on

the other three classes. Since flyTo has three implementations, it is a polymorphic message.

 Human

flyTo(:Location)

 Bird

flyTo(:Location)

 Finch

flyTo(:Location)

 Eagle

flyTo(:Location)

Figure 4.5: Polymorphic animal messages

Although flyTo on Human can be compared to flyTo on Bird, the meanings are really quite

different: for birds, flying involves flapping and gliding; for humans, it involves getting on a

plane.

Polymorphic messages are linked to inheritance, in the same way as polymorphic variables.

For example, in the following code fragment, we would expect the run-time system to execute

the flyTo method on Finch, not the one on Bird (which is abstract anyway, so there would be

nothing to execute):

Bird b = new Finch();

b.flyTo(someLocation);

Here we see the full power of abstract methods: we’ve been able to state that ‘All birds have

a flyTo message’, even though we can’t define one at the level of Bird – the run-time system

has the job of picking the correct implementation. If we added the following code fragment

to the one above, we would be telling an Eagle to fly to someLocation, which presumably

involves more of the gliding and less of the flapping.

b = new Eagle();

b.flyTo(someLocation);

Dynamic Binding 85

A polymorphic variable is just a place holder – the business end is the object it happens

to be pointing to. So, in the following code fragment, we have one Cat, but two references to

it (each reference is a separate name for the cat):

Cat tiddles, tom;

tiddles = new Cat("Hfrrr");

tom = tiddles;

4.4 DYNAMIC BINDING
Dynamic binding means attaching a message to a method at run time. This is the way that

object-oriented languages cope with polymorphic variables and redefined methods. Take a

look at Figure 4.6. Here, we have two abstract classes – Shape and Quadrilateral – and one

concrete class – Square. All three classes have a getPerimeter message: on Shape, it is abstract;

on Quadrilateral, it sums the length of all four sides; on Square, it multiplies the length of a

single side by four. The fact that aSquare is an instance of class Square has been shown as a

UML dependency, a dashed, open-ended arrow.

 Shape

getPerimeter():int
getNumberOfCorners():int

 Quadrilateral

getPerimeter():int
getNumberOfCorners():int

aSquare

getPerim
eter()

ge
tN

um
be

rO
fC

or
ne

rs
()

Square

getPerimeter():int

dependency

Figure 4.6: Dynamic binding and redefinition

86 Chapter 4

In the following code fragment, how does the run-time system know which of the three

methods to execute when the getPerimeter message is sent?

Shape sh = new Square();

int i = sh.getPerimeter();

Conceptually, what happens is this: the object that receives the message (a Square in this

case), knows its own class, so it goes there to look for the method; since Square defines a

getPerimeter method, it is executed.

Figure 4.6 also shows a getNumberOfCorners message, which is abstract on Shape and

concrete on Quadrilateral. In the following code fragment, the Square will again look to its

class for a getNumberOfCorners method.

int j = sh.getNumberOfCorners();

This time, there is no matching method, so the search continues with the Quadrilateral

superclass. Quadrilateral does have a matching method, so that’s the one that is executed.

Although this dynamic binding algorithm looks a little slow, it is only a conceptual algorithm

and can be implemented much more efficiently, especially with the help of a static type system.

With static typing, we can be sure that dynamic binding will find a concrete method

somewhere in the superclass chain (because the type of every variable has to be declared

and we can’t create abstract objects). With a dynamic type system, we might encounter

an abstract method or fall off the top of the hierarchy altogether – this would result in a

run-time error message.

For multiple inheritance, dynamic binding is more complicated, but it is still feasible and

is not appreciably slower than with single inheritance.

ACTIVITY 2Figure 4.7 shows our Shape hierarchy with an additional class Triangle.
Consider the following code fragment:

Shape sh;

Triangle tr = new Triangle();

Square sq = new Square();

Which of the following assignments would be correct? (Remember to
think ‘Is it a kind of?’)
1. sh = tr;

2. sh = sq;

3. sq = tr;

4. tr = sq;

5. tr = sh;

6. sq = sh;

Polymorphism Guideline 87

 Shape

getPerimeter():int

 Triangle

getPerimeter():int
getHeight():int

 Quadrilateral

getPerimeter():int

 Square

getPerimeter():int

Figure 4.7: Polymorphism and type systems

ACTIVITY 3 If we attach sh to the square with:

sh = sq;

What do you think the effect of the following message sends would be
(assuming a static type system)?
1. sh.getPerimeter();

2. sq.getPerimeter();

3. tr.getPerimeter();

4. tr.getHeight();

5. sq.getHeight();

6. sh.getHeight();

4.5 POLYMORPHISM GUIDELINE
Before we leave the subject of polymorphism, consider the following style guideline: ‘Always

program using as high a level of abstraction as you can’. That is, always declare the type of

88 Chapter 4

your fields, local variables and method parameters to be the highest class possible in the

inheritance hierarchy, then let polymorphism do the rest.

The reason for this guideline is that the higher the abstraction level you use, the more

reusable your code will be. For example, any code written in terms of Shape will work for

any kind of Shape – Square, Quadrilateral, Triangle, and any other subclasses that we might

add later. But code written for Square will only work for Square objects, code written for

Triangle will only work for Triangle objects, and so on.

Designers of class hierarchies have a complementary responsibility here: they should

make sure, wherever possible, that the specifics of each class are hidden behind general

messages that apply to all the related classes. For example, drawing a square on screen is

significantly different to drawing a triangle. Rather than exposing the difference to the client

programmer, we should design a message, or a group of messages, that can be placed on

Shape.

For example, we might provide a draw message on Shape, so that the client programmer

can tell a Shape to draw itself without knowing anything about how the drawing is done.

Alternatively, we could add a message called getLines to the Shape class, so that a client

programmer could retrieve the lines that make up the shape’s perimeter and draw them on

screen, without caring about how they were generated.

4.6 TYPE CASTING
In a statically typed language, when we pass a value from one context to another we need

to be sure that the new context is compatible with the old one (for example, we don’t want

to pass a Banana to a context that expects an Employee). Even when we’re sure that the new

context is compatible with the old one, we may still need to convert the value to a different

type (for example, passing an Employee object from an Employee context to a Person context).

There are three situations in which a value changes context:

• Expression evaluation: In the expression 2 + 2, the compiler is being asked to add two

integers together to produce another integer. No problem, because the new context and

the old context are both integer.

On the other hand, if we code the expression 3.75 + 2, the compiler begins with

a real number and an integer, but it must produce a real number. In this case the

integer is compatible with the new context – because we can add any two types of

number together to produce another type of number – so the expression is valid. However,

computers represent integers and real numbers in different ways so, in order to perform the

arithmetic above, the compiler must first convert the integer into a real number (because

integers can be represented as real numbers, but not vice versa).

Explicit Casts 89

Some languages allow objects to take part in expressions, as in the Java expression ‘‘The

date is ” + aDate. These expressions must obey similar rules to the primitive examples

above. In this case, the compiler will translate the Date into a String by sending it the

toString message.

• Assignment: An assignment that doesn’t require a conversion is Person p = new Person(),

because the expression context and the variable context are both Person. However, the

assignment Person p = new Employee() requires a conversion from Employee to Person.

Person pointers are not represented differently from Employee pointers but the compiler

must be sure that an Employee can be used as a Person. If Person is a direct or indirect

superclass of Employee, the conversion will be safe, because the client programmer can

only use elements of the Person class.

An example of a primitive assignment that requires a conversion is float f = 2, in which

the integer 2 must be converted to a floating point number.

• Parameter passing: This is the same as assignment. The value of the actual parameter is

assigned to the declared parameter, for example, aUniversity.enrollPerson(new Employee()).

A primitive example is aLiquid.setBoilingPoint(100), where the parameter is declared to

be float.

Converting a value from one type to another is called casting (because we cast the value

in a new light). The examples above are all implicit casts because the client programmer

doesn’t have to do anything special: the compiler can see that the conversions are valid and

just does them. In general, an implicit cast is possible if the new context is wider than the

old context. In terms of primitive values, wider means ‘the new context can accommodate

all possible values of the old context’; for object values, wider means ‘the new context is a

direct or indirect superclass of the old context’.

Dynamically-typed languages have a much easier time passing values between contexts.

For example, when executing the Smalltalk method addEmployee with a Banana as a

parameter, no compatibility testing or casting needs to be done: as long as addEmployee only

uses elements that are common to Employee and Banana, the method will run without error.

(We would still have a problem later if we attempted to transfer money to the Banana’s bank

account, but that would manifest itself as a run-time error.)

4.7 EXPLICIT CASTS
Implicit casts enrich statically-typed programming languages by allowing us to combine

different types of values in expressions and by allowing us to assign different types of values

to variables. But we can go one step further, by allowing the programmer to use an explicit

cast, to move from one context to a compatible, but narrower, context.

90 Chapter 4

It turns out that the explicit casting of a value can cause problems, but the explicit casting

of a pointer is not nearly so bad. This is because, when we cast a value, we’re modifying

the way the value is stored – storing the value using a narrower representation may lose

information. In contrast, if we cast a pointer, we’re modifying the way we access the value,

but the value itself remains unchanged.

In a pure object-oriented language, primitives are always accessed as values and objects are

always accessed via pointers (efficiency versus polymorphism). In contrast, in a language like

C++, primitives and objects can be accessed either as values or via pointers: the programmer

has the choice. The upshot of this is that C++ programmers have to be much more careful.

For the rest of this discussion, let’s assume that we’re using a pure object-oriented language.

Let’s also assume that explicit casts are used only when necessary: turning an implicit cast

into an explicit one is allowed, but it has no effect.

Java allows a programmer to write

int i = (int) 3.75

(int) explicitly casts the real value 3.75 as an integer. The programmer, aware that an implicit

cast from float to int is impossible, is telling the compiler to force a square peg into a round

hole. In real life, forcing a square peg into a round hole tends to shear off the peg’s corners.

In programming, it’s no different: the fractional part of the real number is sheared off.

The explicit cast above only works at all because int and float are compatible: boolean b

= (boolean) 3.75 would never make sense. In general, if there exists an implicit cast in one

direction, we can force an explicit cast in the other direction.

How about explicit casting for object pointers? Could the following example ever work?

Employee e = (Employee) new Person();

For pure object-oriented languages, the answer is no. Remember that casting a pointer

doesn’t change the representation of the value, it just changes the way we look at it. So, our

example is asking the compiler to let us treat a Person as an Employee. If the compiler allowed

this, we might try to use an Employee-only element which wasn’t there (getPayrollNumber, for

example).

How about the following pair of statements, could these ever work?

Person p = new Employee();

Employee e = (Employee) p;

In this case, the object we’re trying to get e to point to really is an Employee, so the explicit

cast ought to be safe – we can’t abuse an Employee via an Employee pointer. But the compiler

is stuck. In order to work out that those statements are valid, the compiler would have to

analyze both statements. As already noted, compilers don’t do this kind of analysis because

it’s difficult and often impossible.

Genericity with Templates 91

However, occasionally this is a useful thing for the programmer to be able to do. Therefore,

the compiler enlists the help of the run-time system in order to allow the explicit cast, but

only because Employee is a subclass of Person. Subsequently, the run-time system needs to

check that the object pointed to by p is an instance of Employee at the time of the assignment

(or an instance of a direct or indirect subclass): if not, a run-time error will occur.

Because the explicit cast of an object pointer involves the run-time system, it is sometimes

referred to as a dynamic cast. Some people also use the terms upcast and downcast to refer to

implicit and explicit casting of object pointers, respectively, because an implicit cast moves

the type up the hierarchy and an explicit casts moves the type down.

Downcasts aren’t needed very often. You should only use them when retrieving an object

using a generic message – a message whose return type must be compatible with all possible

objects. For example, the Stack class we saw earlier has a generic message for popping an

object: it always returns a pointer of type Object, regardless of what’s actually on the top. (It

also has a generic message for pushing an object: the parameter’s type is Object, which might

require an upcast.)

Generic messages allow the stack to work for all kinds of object – cars, strings or whatever.

But they wouldn’t allow a client programmer to do the following:

aStack.push(new Plate("Domestic blue"));

Plate aPlate = aStack.pop();

The first line works, because it’s an implicit upcast, but the second line doesn’t. However,

with the help of a downcast, the client programmer can do this:

aStack.push(new Plate("Domestic blue"));

Plate aPlate = (Plate) aStack.pop();

4.8 GENERICITY WITH TEMPLATES
Some languages, such as Java, hardly need downcasts at all, because they have a facility

called genericity, which is better than downcasts. A generic class uses one or more class

parameters to refer to the types of objects that it expects to deal with. In Java, a generic class

is called a template. For example, the Java programmer can define a Stack class like this:

public class Stack<X> {

private List<X> list;

public Stack<X>() {

list = new LinkedList<X>();

}

public void push(X anX) {

92 Chapter 4

list.addElement(anX);

}

public X peek() {

return list.lastElement();

}

public boolean isEmpty() {

return list.numberOfElements() == 0;

}

public Object pop() {

X anX = list.lastElement();

list.removeLastElement();

return anX;

}

}

Despite the new syntax, you should be able to pick out the important parts of this class.

The most important aspect is the class referred to throughout as X: this is a place-holder for

the actual kind of Stack created by the client programmer. Notice also that the type of the

field is more general than the implementation class (this is just good style for object-oriented

code in general).

Now, the client programmer can manipulate a stack using the following lines of code:

Stack<Plate> s = new Stack<Plate>();

s.push(new Plate("Hospital white"));

Plate p = s.pop();

Because the programmer has declared that the Stack contains Plate objects, there’s no need

for an explicit cast before s.pop().

A programmer who wants a quick-trick-brick stack can write the following:

Stack<QuickTrickBrick> s = new Stack<QuickTrickBrick>();

The Stack class is a relatively simple generic type, because none of its methods needs to

use the elements of the objects it contains. If we want to make assumptions about the class

of the stacked objects, we need something more. For example, we might decide that Stack

objects should only contain food – this would allow the Stack methods to treat the pushed

objects as Food, counting calories, for example.

If we want to make assumptions about the class parameters, we have to use constrained

genericity: adding constraints to the class parameters. Here’s part of a modified Stack class

written in Java, one that only works for different kinds of Food:

public class Stack<X extends Food> {

...

private int caloriesConsumed;

...

Review Questions 93

public X pop() {

X anX = list.lastElement();

list.removeLastElement();

// Now add anX’s calories to the total,

// only possible because X is always a Food

caloriesConsumed = caloriesConsumed + anX.getCalories();

return anX;

}

...

}

4.9 SUMMARY
In this chapter, we looked at:

• Type systems, which stop us misusing values by forcing us to declare how we intend
to use a value. A static type system detects abuses at compile time while a dynamic
type system waits until run time.

• Polymorphism, which enables a variable to hold different types of value and a
message to be associated with more than one method. The specific type of value or
method applicable in any case is determined at run time.

• Casting between object types: with implicit casting, the compiler can automatically
convert between types of variable; with explicit casting, the programmer must specify
that an object is to be considered as a different type.

• Templates in Java, in which a generic class uses parameters to refer to the types of
objects that it expects to deal with.

FURTHER READING
For more on Java templates, a relatively recent addition to the language, go to the Java web

site at java.sun.com.

REVIEW QUESTIONS
1. With reference to Figure 4.8, which methods correspond to the following message sends

(in the order given)? Choose only one option.

tr.height();

sh.perimeter();

sq.height();

sq.perimeter();

sh.height();

tr.perimeter();

94 Chapter 4

(a) 3, 1, none (error), 4, none (error), 5

(b) 3, 5, none (error), 4, 3, 5

(c) 3, 1, none (error), 4, 3, 5

(d) 3, 5, none (error), 4, none (error), 5

Shape

TriangleRectangle

Square

2: perimeter()

1: perimeter()

4: perimeter()
5: perimeter()

3: height()

Shape sh;
Triangle tr = new Triangle();
Square sq = new Square();
sh = tr;

Figure 4.8: For use with Review Question 1

2. With reference to Figure 4.8, which of the following message sends would be allowed by

a compiler? Choose all options that apply.

(a) sh.perimeter();

(b) tr.perimeter();

(c) sh.height();

(d) sq.height();

(e) sq.perimeter();

(f) tr.height();

3. With reference to Figure 4.8, which of the following assignments would be allowed by a

compiler? Choose all options that apply.

(a) sq = sh;

(b) sh = tr;

(c) tr = sq;

(d) tr = sh;

Answers to Activity 3 95

(e) sh = sq;

(f) sq = tr;

4. What can an object-oriented type system be used for? Choose only one option.

(a) Improving runtime performance.

(b) Preventing misuse of a class.

(c) Avoiding spelling mistakes.

(d) Making sure that all messages invoke a concrete method.

(e) Documentation.

(f) All of the above.

(g) None of the above.

5. What does the term ‘polymorphism’ refer to? Choose all options that apply.

(a) The ability of a variable to point at different classes of object at different times.

(b) The fact that a message with the same signature can invoke different methods at

different times.

(c) All object-oriented programming languages are different.

(d) All object-oriented methodologies use a different notation.

6. What is a generic class? Choose only one option.

(a) A class with no declared copyright.

(b) A class that represents all objects.

(c) A class that has other classes as parameters.

ANSWERS TO ACTIVITY 2
1. This is fine: a Shape variable must be able to point at a Triangle, because a Triangle is a

kind of Shape.

2. This is fine: a Square is a kind of Shape.

3. This is an attempt to point at a Triangle with a Square variable, so that must be wrong,

because a Triangle is not a kind of Square.

4. Similarly, a Square is not a kind of Triangle.

5. A Shape is not a kind of Triangle.

6. A Shape is not a kind of Square.

ANSWERS TO ACTIVITY 3
1. The getPerimeter message is introduced on Shape, so that is correct; since sh is pointing at

a Square, it’s the getPerimeter method on Square that is invoked.

96 Chapter 4

2. The getPerimeter method on Square is invoked.

3. The getPerimeter method on Triangle is invoked.

4. The compiler is happy and the getHeight method on Triangle is executed.

5. This is an error, because there is no getHeight message on Square, nor on its super-

classes – the compiler will reject this one.

6. We’re trying to send getHeight to a Shape variable. If sh points at a Triangle, the message

would not be a problem; but sh could point at a Square, in which case the message would

be invalid. Compilers for static type systems tend to err on the side of caution: as the

message might arrive at an object that doesn’t know how to deal with it, the compiler

would reject the statement.

ANSWERS TO REVIEW QUESTIONS
1. In Figure 4.8, the methods correspond to the message sends d. 3, 5, none (error), 4, none

(error), 5

2. In Figure 4.8, the following message sends would be allowed by a compiler:

(a) sh.perimeter();

(b) tr.perimeter();

(e) sq.perimeter();

(f) tr.height();

3. With reference to Figure 4.8, the following assignments would be allowed by a compiler:

(b) sh = tr;

(e) sh = sq;

4. An object-oriented type system can be used for f. All of the above:

(a) Improving runtime performance.

(b) Preventing misuse of a class.

(c) Avoiding spelling mistakes.

(d) Making sure that all messages invoke a concrete method.

(e) Documentation.

5. The term ‘polymorphism’ refers to a. The ability of a variable to point at different classes

of object at different times and b. The fact that a message with the same signature can

invoke different methods at different times.

6. A generic class is c. A class that has other classes as parameters.

5
Software Development Methodologies

In this chapter, we’re going to take a look at the software development process itself: the

steps we go through to write good software and the things that we produce along the way.

Collectively, the process, its steps and its products are referred to as a methodology.

Learning Objectives
Understand the classical phases of

software production.

•
Compare static (structural)

modeling with dynamic
(time-based) modeling.

Understand the notation of Unified
Modeling Language (UML).

Chapter Outline

5.1 Introduction

5.2 Classical Phases in Software Production

5.3 Software Engineering and the Waterfall Methodology

5.4 New Methodologies

5.5 Object-Oriented Methodologies

5.6 Ripple Overview

5.7 Summary

Further Reading

Review Questions

Answers to Review Questions

5

100 Chapter 5

5.1 INTRODUCTION
All software, especially large pieces of software produced by many people, should be

produced using some kind of methodology. Even small pieces of software developed by one

person can be improved by keeping a methodology in mind.

A methodology is a systematic way of doing things. It is a repeatable process that we

can follow from the earliest stages of software development (the germ of an idea or a new

business opportunity) through to the maintenance of an installed system. As well as the

process, a methodology should specify what we’re expected to produce as we follow the

process (and what form the products should take). A methodology will also include advice

or techniques for resource management, planning, scheduling and other management tasks.

Good, widely available methodologies are essential for a mature software industry – the

alternatives are highly unsatisfactory. The worst alternative is downright chaos, where

members of the development team run around in a panic, wondering how on earth they’re

going to come up with the latest system that they’ve been told to implement. Only slightly

better is the situation where an ad hoc development process is designed by amateur

methodologists within one organization – such in-house efforts need to be learnt by every

newcomer to the organization and they’re useless to anyone moving on.

Although most methodologies are designed to cope with teams of developers producing

large amounts of software, understanding the basics of a good methodology is essential for

those at the other end of the scale too (lone developers working on small problems) and at

all points in between. This is because:

• A methodology can help to impose discipline on the coding effort.

• Going through even the basic steps of a methodology increases our understanding of the

problem, improving the quality of our solution.

• Writing lines of code is only one of the many activities in software development: performing

some of the other activities helps us to spot conceptual and practical mistakes before we

commit them to source code.

• At every stage, a methodology specifies what we should do next, so we’re not left scratching

our heads, thinking ‘Okay, what now?’

• A methodology helps us to produce code that is more extensible (easier to change),

more reusable (applicable to other problems) and easier to debug (because it has more

documentation).

Large development projects also benefit from:

• Documentation: All methodologies promote thorough documentation of every stage of

the development effort, so that the finished system is not an impenetrable monolith.

Introduction 101

• Reduced latency: Since the workflows, activities, roles and inter-dependencies are better

understood, there is less opportunity for human (and other) resources to lie idle for want

of something to do.

• Improved chances of delivery on time and within budget.

• Better communication between users, sales people, managers and developers: A good

methodology is based on logic and common sense, so it will be easy for all participants

to grasp the basics; thus, we have a more orderly development, with less scope for

misunderstanding and wasted effort.

• Repeatability: Since we have well-defined activities, similar projects should be delivered

to similar time-scales and with similar costs. If we produce similar systems over and over

again for different customers (e-commerce shop fronts, for example) we can streamline

the methodology in order to concentrate solely on the unique aspects of the latest

development; eventually we might automate parts of the development and even sell the

automations to third parties (think of a ‘shop front in a box’ product).

• More accurate costing: When asked ‘How much will it cost?’, there will be less temptation

to reply ‘How much have you got?’

A good methodology will address at least the following issues:

• Planning: Deciding what needs to be done.

• Scheduling: Mapping out when things will be done.

• Resourcing: Estimating and acquiring the human, software, hardware and other resources

that are needed.

• Workflows: The subprocesses within the wider development effort (for example, designing

the system architecture, modeling the problem domain and planning the development

effort).

• Activities: Individual tasks within a workflow, such as testing a component, drawing a

class diagram or detailing a use case, too small or indefinable to be a workflow in their

own right.

• Roles: The parts played by personnel within the methodology (developer, tester or sales

person).

• Artifacts: The products of the development effort: pieces of software, design documents,

training plans and manuals.

• Education: Deciding how to train personnel, if necessary, to fulfill their required roles;

deciding how end users (staff, customers, sales people) will learn how to use the new

system.

For the purposes of this book, we won’t be looking at the details of an industrial

methodology – that would require a book in its own right. Instead, we’ll use a special-

purpose methodology, called Ripple, which is derived from but is rather simpler than

102 Chapter 5

the Rational Unified Process. Before we examine Ripple, we need to have an idea of the

processes, activities and artifacts of software development in general.

5.2 CLASSICAL PHASES IN SOFTWARE
PRODUCTION

So, what does software development involve? There are a number of phases common to every

development, regardless of methodology, starting with requirements capture and ending with

maintenance. With the traditional approach, you’re expected to move forward gracefully

from one phase to the other. With the modern approach, on the other hand, you’re allowed

to perform each phase more than once and in any order.

The list below describes the common phases in software development – you may have

seen different names for some of these, but the essentials remain the same. At this stage, we’re

interested in the intent of the phases rather than details of how you might actually go about

performing them. Be warned, though, that some methodologists combine requirements and

analysis, while others combine analysis and design.

5.2.1 Requirements
Requirements capture is about discovering what we’re going to achieve with our new piece

of software and has two aspects. Business modeling involves understanding the context

in which our software will operate – if we don’t understand the context, we have little

chance of producing something to enhance that context. The sort of question we ask

during the business modeling phase is ‘How does a customer purchase a television from

this shop?’

System requirements modeling (or functional specification) means deciding what capa-

bilities the new software will have and writing down those capabilities. We need to be clear

about what our software will do and what it won’t do, so that the development doesn’t veer

off into irrelevant areas and we know both when we’ve finished and whether we’ve been

successful. The sort of question we ask during the system requirements modeling phase is

‘How do we update the inventory system when a television has been purchased?’

5.2.2 Analysis
Analysis means understanding what we’re dealing with. Before we can design a solution, we

need to be clear about the relevant entities, their properties and their inter-relationships. We

also need to be able to verify our understanding. This can involve customers and end users,

since they’re likely to be subject-matter experts. The sorts of question we ask during the

Classical Phases in Software Production 103

analysis phase are ‘What products do we sell in this shop? Where do they come from? How

much do they cost?’

5.2.3 Design
In the design phase, we work out how to solve the problem. In other words, we make

decisions, based on experience, estimation and intuition, about what software we will write

and how we will deploy it. System design breaks the system down into logical subsystems

(processes) and physical subsystems (computers and networks), decides how machines will

communicate, chooses the right technologies for the job, and so on. The sort of decision

we make during the system design phase is ‘We’re going to use an intranet and the Java

Messaging Service for communicating sales results to head office.’ In subsystem design we

decide how to cut each logical subsystem into effective, efficient and feasible code. The sort

of decision we make during the subsystem design phase is ‘Line items in an inventory are

implemented as a hash table, keyed by part number.’

5.2.4 Specification
Specification is an often-ignored, or at least often-neglected, phase. The term specification is

used in different ways by different developers. For example, the output of the requirements

phase is a specification of what the system must be able to do; the output of analysis is a

specification of what we’re dealing with; and so on. In this book, the term is used to mean

‘describing the expected behavior of our programming components’. (Since the specification

techniques described are performed on classes of objects, some of the confusion can be

avoided by using the term class specification.) A class specification is a clear, unambiguous

description of the way the components of our software should be used and how they will

behave if used properly. The sort of statement we make during the specification phase is ‘If

the shop assistant object is logged on, it can ask the store object for today’s special offers; in

return, it receives a list of products, sorted in alphabetical order’.

This book gives special attention to specification, because of the crucial underlying

principle of Design by Contract. The idea behind a contract is that whenever one piece of

software calls upon the services of another, both the caller and the called have obligations to

fulfill. Bearing software contracts in mind is useful at all stages of development.

Specification can be used in the following ways:

• As a basis for designing test software to exercise the system.

• To demonstrate that our software is correct (this is desirable for life-critical applications).

• To document our software components to the extent that they could be implemented by

third parties.

• To describe how our code can be reused safely by other applications.

104 Chapter 5

5.2.5 Implementation
This is where we do the donkey work, writing pieces of code that work together to form

subsystems, which in turn collaborate to form the whole system. The sort of task we carry

out during the implementation phase is ‘Write the method bodies for the Inventory class, in

such a way that they conform to their specification’. Although we would expect most of the

difficult coding decisions to have been made before we reach this phase (during design),

there is still plenty of scope for creativity: although the public interfaces of our software

components will have been well designed, specified and documented, programmers have

free rein to decide on the inner workings. As long as the end result is effective and correct,

everyone will be happy.

5.2.6 Testing
When our software is complete, it must be tested against the system requirements to see

if it fits the original goals. The sort of question we ask during the testing phase is ‘Can a

shop assistant use the till interface to sell a toaster, decreasing the product’s inventory as

a side-effect?’ As well as this kind of conformance testing, it’s a good idea to see if our

software can be broken via its external interfaces – this helps to protect us against accidental

or malicious abuse of the system when it’s been deployed.

It is a good idea for programmers to perform small tests as they go along, to improve

the quality of the code that they deliver. Generally speaking, however, major tests should

not be designed, implemented or carried out by the developers who wrote the software.

To understand why, consider buying a new house and spending vast amounts of time and

money refurbishing it from top to bottom. It’s unlikely that you would want to whack the

structures and fixtures with a sledgehammer to see if they’re durable, ask passing strangers

whether they think that you have good taste or pretend to be a burglar to see if you can break

in. These are exactly the kinds of things that we need to be doing during software testing. (It

helps if members of the test team have a cruel streak.)

5.2.7 Deployment
In the deployment phase, we’re concerned with getting the hardware and software to the end

users, along with manuals and training materials. This may be a complex process, involving

a gradual, planned transition from the old way of working to the new. The sort of task we

carry out during the deployment phase is ‘Run the program setup.exe on each server machine

and follow the instructions that appear’.

5.2.8 Maintenance
When our system is deployed, it has only just been born. A long life stretches before it,

during which it has to stand up to everyday use – this is where the real testing happens.

Classical Phases in Software Production 105

The sort of problem we discover during the maintenance phase is ‘When the log-on window

opens, it still contains the last password entered.’

As software developers, we’re normally interested in maintenance because of the faults

(bugs) that are found in our software. We must find the faults and remove them as quickly

as possible, rolling out fixed versions of the software to keep the end users happy. As well

as faults, our users may discover deficiencies (things that the system should do but doesn’t)

and extra requirements (things that would improve the system). From the business point

of view, we would hope to fix and improve our software over time to maintain competitive

advantage.

5.2.9 Key Questions
These key questions will help you to remember the purpose of each of the software

development phases:

• Requirements phase:

‘What is our context?’

‘What are we trying to achieve?’

• Analysis phase:

‘What entities are we dealing with?’

‘How can we be sure we have the right ones?’

• System design phase:

‘How are we going to solve the problem?’

‘What hardware and software will we need in the finished system?’

• Subsystem design phase:

‘How are we going to implement the solution?’

‘What will the source code and supporting files look like?’

• Specification phase:

‘What rules govern the interfaces between the system components?’

‘Can we remove ambiguity and ensure correctness?’

• Implementation phase:

‘How can we code the components to meet the specification?’

‘How do we write stylish code?’

• Testing phase:

‘Does the finished system satisfy the requirements?’

‘Can we break the system?’

• Deployment phase:

‘What do the system administrators have to do?’

‘How can we educate the end users?’

106 Chapter 5

• Maintenance phase:

‘Can we find and fix the faults?’

‘Can we improve the system?’

5.3 SOFTWARE ENGINEERING AND THE
WATERFALL METHODOLOGY

During the 1970s, software gurus gave much thought to the problem of how best to write

software. How could they replace ad hoc, proprietary mechanisms with scalable, portable

methodologies? What the gurus came up with was software engineering. The idea was that

software production could be like building a real-world structure, such as a road bridge.

With the help of physics, engineering is systematic: if we follow the rules, we will deliver a

working product, complete with safety margins to protect against abnormal conditions.

There are some obvious drawbacks to this analogy. Most programming is done with

imperative programming languages that require the programmer to tell the computer exactly

what to do – statement by statement, branch by branch, function by function. This is

analogous to the bridge engineer having to tell a piece of steel exactly how to behave, rather

than relying on the laws of physics. And that’s not all: the programmer also has to assemble

the data piece by piece. Can you imagine a bridge builder having to assemble the bridge’s

road surface, stone by stone, and then telling each stone exactly which other stones it was

touching?

As well as requiring the programmer to be precise about behavior and structure, imperative

languages don’t cope well with imprecise data. Generally speaking, if a piece of data in the

system is slightly inaccurate, the system might not behave as expected. In contrast, a bridge

builder can happily connect girders using rivets that are all slightly different in size: the

engineer can count on tolerances and margins of error, but the programmer can’t.

These drawbacks did not prevent the growth in popularity of software engineering and

methodologies grew up around the assumption that software production could be systematic

and predictable. This led to the so-called waterfall methodology (see Figure 5.1).

Development flows smoothly over the classical phases (requirements, analysis, system

design, etc.), with each phase being completed satisfactorily before the next phase is

attempted. It’s easy to plan (because the plan is similar every time) and it’s easy to schedule

(use the complexity of the problem and the number of developers to work out how long the

development will take, then divide the result by the total number of phases...). The waterfall

methodology allows us to have developers with different kinds of expertise at each stage

(hence the classical roles of business analyst, systems analyst, designer, programmer, tester

and system administrator). Each team of specialists slogs away during their own phase, until

Software Engineering and the Waterfall Methodology 107

Requirements

Analysis

Design

Specification

Implementation

Testing

Deployment

Maintenance

Figure 5.1: Waterfall development

they’re sure that they have solved their part of the problem; then they document their work,

using their own jargon and notation, and pass the baton to the next team of specialists.

The waterfall methodology is a nice idea, but unrealistic. Even if we’re clever enough

to work out how long the development might take, before we’ve looked in detail at the

problem, we can’t tell what difficulties we will encounter along the way (bad design decisions,

pernicious faults, inadequate technology, or earthquakes). So, any individual phase may take

longer than expected. Also, work tends to expand to fill the time available, so the phases that

precede a problem are likely to have used up all the time available to them. The net effect

is that the whole project is delivered late. In practice, this is exactly what happens in the

majority of cases.

The waterfall methodology may fail for other reasons too, such as analysis paralysis – the

analysts are reluctant to sign off their documentation because they can’t decide whether

they’ve understood and documented the system entities well enough to allow the designers to

do their job. To be fair, this kind of problem is not restricted to analysts: the designers might

be worried that their design is inadequate; the specifiers might worry that their specification

is too ambiguous to be coded; and so on, leading to even more delays. In practice, it’s not

possible to complete each phase perfectly. Throughout the development, members of the

team will discover problems with the work that’s gone before. Whenever this happens, we

have a tricky choice: we can return to the earlier documentation and fix it, but that would

mean climbing back up the waterfall (which we’re not supposed to do); or we could make

a note of the problems, with the intention of repairing the documentation at the end of the

project (which rarely happens, so the final documentation doesn’t match the final system).

And what about the end users? Are they going to get what they want or need? The

potential users of the system will be colleagues or third parties, probably paying us real

108 Chapter 5

money. These customers will presumably have been consulted during the requirements

phase: we will have asked them how they currently work; we will have brainstormed the

kind of system functions that could be delivered; we will have reached an understanding

about what is going to be delivered and what isn’t. But what if we find that we can’t deliver

some of the functions, because they’re too difficult or we run out of time? The customers

won’t find out until testing or maybe even deployment – far too late to change anything.

What if the project takes two years to complete? End users’ requirements will normally

change significantly in two years. Are we going to deliver a system that’s no longer relevant?

What we need is a way of involving users throughout the development, so that we don’t

deliver something that’s a nasty surprise. We also need to reduce the time between the

promised functionality and the point where we can demonstrate that functionality. But the

waterfall model is too rigid to allow us to incorporate user feedback and take corrective

action.

And these aren’t the only problems. For example, the waterfall methodology will always

suffer from being focussed on solving one particular problem – this makes it more difficult

to produce reusable code. Eating an elephant is a daunting task (see Figure 5.2); if you were

told to eat one, would you prefer to open wide and swallow the beast whole or to eat a

manageable portion, have a rest, eat another portion, have a rest, and so on, until the whole

elephant had been consumed? Waterfall development uses the first approach and attempts to

produce a complete solution in one go. As we’ll see, it’s possible to use the second approach,

delivering the solution piece by piece.

Given the large number of problems with the waterfall methodology, some of which should

have been obvious at the outset, you may find it hard to believe that any software development

was ever done this way. Well, it was and in some places it still is. Some corporations have

been quite happy to base large developments on the waterfall methodology, integrate it into

their software departments as best practice and base entire career ladders on it (start as

programmer, get promoted to designer, then systems analyst, and so on). However, most

object-oriented enthusiasts and, shall we say, enlightened corporations, prefer something

rather more flexible.

Having debunked the waterfall methodology, it’s only fair to point out that it is still useful

in the following cases:

• When repeating a particular kind of development with only minor differences (for example,

an e-commerce shop front for a particular company may only differ from the previous one

in terms of product descriptions, prices, company name and logo).

• As a framework for learning the different techniques used in software development:

although the waterfall methodology is too simplistic for real-world development, it does

contain the classical phases in a logical order, so it’s good for learning.

• As a single pass around a spiral methodology.

Software Engineering and the Waterfall Methodology 109

Figure 5.2: Eating an elephant

• As a framework to support an iterative methodology.

• For the quick development of small projects with small numbers of developers, as in

prototyping, production prototyping, proof-of-concept or Rapid Application Develop-

ment (RAD).

Four new styles of programming have been developed as a result of the simplicity and

power of objects, the reuse of code in new applications, and the advent of application

builders:

• A software prototype, just like an engineering prototype, is something that we build in

order to try out some of the functions of the finished product. A prototype doesn’t need

to be elegant, or industrial strength, because it’s just an experiment. We should set aside a

prototype once it has served its purpose and start afresh.

• A production prototype is similar to a prototype, except that we retain some or all of the

code through to completion of the project.

• A proof-of-concept is a project or a piece of software designed to demonstrate the feasibility

of some technology, or group of technologies. For example, we might need to convince a

110 Chapter 5

customer that we’re qualified to take on a particular project or we might need to convince

management to adopt a new approach to software production.

• The phrase Rapid Application Development (RAD) was coined by enthusiasts of object

orientation to mean building a system more quickly than with traditional techniques.

As object-oriented systems became practical in the 1980s, object enthusiasts were able

to impress traditional developers (and managers) with how quickly they could assemble

small systems.

An application builder is a tool that allows the programmer to assemble software in the

same way that a computer manufacturer assembles hardware. As time has passed, application

builders have employed larger and larger components so that systems can be constructed

more quickly than before. In most cases, objects destined for an application builder need to

have a particular kind of interface in order to work properly. This means that the programmer

needs to follow predefined style guidelines rather than designing their objects any way they

see fit. For example, Java application builders expect to work with objects that follow the

JavaBeans guidelines [Campione et al. 98].

5.4 NEW METHODOLOGIES
Before we can replace the waterfall methodology with something better, we need to accept

that it is impossible to develop a piece of software in one pass. However hard we try, the first

time around our software will be incomplete or imperfect or both. Therefore, we need to

perform the classical phases of software development several times, adding to and perfecting

the system as we go.

5.4.1 Spiral Methodology
One way to look at this is as a spiral methodology (see Figure 5.3). We start, as ever, with

requirements capture, which may be relatively complete or rather vague at this stage; next,

we perform some exploratory analysis to increase our understanding of what it is that we’re

dealing with; then we sketch out a system design that we feel will fit the requirements and

design part of the system; then, despite the fact that all the preceding phases are incomplete,

we write some code. Once we’ve finished our initial coding effort we can try out what we

have so far, perhaps by running some informal tests or by showing what we have to our

sponsors (end users, managers and customers paying for the system).

By the time we’ve been through the cycle once, we’ve increased our understanding of the

problem domain and our understanding of the proposed solution. We’ve also involved our

sponsors, so that they can correct any misunderstanding of the business or the functionality

that they expect to see in the final system. Armed with our new body of knowledge, we

New Methodologies 111

Specification Implementation

Testing Deployment Maintenance

Requirements

Design

Analysis

Figure 5.3: Spiral development methodology

can go around the spiral again: now we flesh out the requirements; we’re more thorough

(and correct) with our analysis; we reinforce the system design; we add detail to the

subsystems; and then we write some more code, code that stands more chance of meeting

the requirements.

Once our system is complete, perhaps after three or four spirals, we can perform rigorous

testing and deploy the system. Compared to the waterfall methodology, we’re now working

more like a sculptor creating a statue: we put together a basic framework of chicken-wire,

then we add clay, layer by layer, until we achieve the desired effect. As we work: it becomes

clearer and clearer how long our project will take; all our sponsors can see that progress is

being made; and our confidence that we can deliver a good result grows. We finish when

everyone is happy.

It looks as though the spiral methodology has fewer problems than the waterfall method-

ology: it involves our sponsors throughout the life cycle; everyone can see that we’re on

track; it’s less rigid (we can tune the number of revolutions and how long each one takes).

Altogether, it’s a better fit to the creative nature of software development, as opposed to the

engineering nature of building a bridge.

The spiral methodology isn’t perfect though. The trouble is that we’ve simply attacked the

waterfall by doing everything three or four times, which means that, although the problems

have got smaller, they haven’t gone away altogether. We still have some inflexibility, because

we’re supposed to proceed in an orderly manner through the classical phases; if we find

mistakes, we can’t fix them until the next revolution. Therefore, the spiral methodology on

its own is not much use – we need to combine it with something else.

5.4.2 Iterative Methodology
So how do we improve the spiral methodology? To extend our sculpture analogy, the spiral

methodology forces us to complete each layer of clay before we go on to the next. For

112 Chapter 5

Specification Implementation

Testing Deployment Maintenance

Requirements

Design

Analysis

Figure 5.4: Iterative development methodology

example, let’s say that our sculpture is going to be of a person. Having put the first layer of

clay on the head, what if we decide that we want to work on the nose for a while before

moving on to the rest of the body? What if, having added the torso, we decide that the

forehead is now too narrow and warrants some immediate attention?

What we need is a methodology that allows us to iterate over the phases, moving

backwards and forwards, or round and round, as the need arises. This leads to the iterative

methodology depicted in Figure 5.4. (Here, iterations are shown taking place within a spiral,

but they could also be applied to a waterfall.) Now, we have a much more natural way of

massaging our software from its early stages into a well-formed, elegant whole that satisfies

all the sponsors. But, you’re probably wondering, how do we avoid chaos? We have at least

three life-savers here:

• The classical phases remind us what we should be doing at each stage and in which general

direction we should be moving.

• The artifacts (diagrams, descriptions, code, etc.) that we produce as we work within the

classical phases do not get thrown away but are gradually improved as we move towards

deployment.

• The software production tools that support our chosen methodology and the notations

help us to ensure that the artifacts are consistent and kept in one place.

But we still have a problem. With the iterative and spiral methodologies, we’re still trying

to eat the elephant: we’re still trying to deliver a complete system for deployment. So, we

need to add a final element: increments.

5.4.3 Incremental Methodology
Let’s return to our sculpture analogy one last time. If we’re asked to produce a family of

sculptures – the parents, the kids, the cat, the dog – it’s a good idea to deliver one sculpture

New Methodologies 113

at a time, so that our sponsors can see our progress as each piece is delivered; we get to sign

off each piece of work and concentrate on the next; we can ask for incremental payment. In

software development, this is the incremental methodology (see Figure 5.5).

release 1.0 1.1 2.0 2.1

time

Figure 5.5: Incremental development

With the incremental methodology, we aim to deliver version 1.0 of our system with

basic, critical functionality. Then, some time later, we deliver version 1.1 with additional

functionality (as a replacement for version 1.0). Next, we might deliver version 2.0 with a

whole raft of changes. And so on, throughout the lifetime of the system. Not only do we

acknowledge from the start that we need several bites at the elephant, but we’re keeping up

with changing requirements and a shifting marketplace. As you probably know from your

own experience as a software purchaser, incremental delivery is what tends to happen in

practice anyway, whether or not we plan for it. In other words, if we try to swallow the

elephant whole, we fail. By planning for incremental delivery, we turn the perception of

failure into a perception of wisdom.

However, we must avoid at all costs the nightmare scenario of rewriting all our code for

each new increment – this would be like an endless series of separate waterfalls. Thus, good

analysis, good design, reusable code and extensibility become critical.

5.4.4 Combining the Methodologies
So, the waterfall methodology is inadequate in most cases – although it does have the

phases in the correct logical order – and the alternative methodologies (spiral, iterative and

incremental) all have desirable properties but none of them is good enough on its own. So,

we must combine all four in some way, but how?

At the highest level, we know from the incremental methodology that we must plan

a succession of increments. Within each increment, the spiral methodology suggests that

we should have at least two attempts to produce each increment. Within each spiral, the

waterfall methodology specifies the phases and the order in which they occur. Within each

mini-waterfall, the iterative methodology allows us to repeat phases, or combinations of

phases, as we see fit (for example, several cycles of requirements and analysis); the iterative

methodology also allows us to fix a problem as soon as we discover it (for example, we might

114 Chapter 5

discover during subsystem design that the system design makes some piece of functionality

impossible, so we fix the system design before we carry on). The combination of the

methodologies is shown in Figure 5.6.

release 1.0 1.1 2.0 2.1

time

Figure 5.6: Combining spiral, iterative and incremental development

None of this discussion indicates how we should plan and schedule a particular project,

which depends on the size of the project, the number of developers, the experience of

the developers, the experience of the managers in planning and scheduling this kind of

development, and so on. As far as this book is concerned, detailed planning and scheduling

are management issues rather than software issues, so they’re not covered. Suffice to say that,

in object orientation, there should be no absolutes: it’s quite reasonable for the managers,

mentors and experienced developers to decide on the increments, spirals, iterations and

artifacts that are appropriate for each new development. Then, the planning must be adapted

in the light of increasing knowledge and changing requirements.

Although most theorists agree on the nature of the waterfall methodology, there is some

disagreement about the terminology used for the others. In this book, you’ve seen particular

definitions of the spiral, iterative and incremental methodologies but you should be aware

that other people use these terms differently or even as synonyms. In particular, ‘spiral’

is sometimes referred to as ‘iterative’. However, the ideas discussed here are equally valid

whatever name you give them.

5.5 OBJECT-ORIENTED METHODOLOGIES
All object-orientation experts agree that a good methodology is essential for software

development, especially when working in teams. Thus, quite a few methodologies have

been invented over the last decade. Broadly speaking, all object-oriented methodologies are

alike – they have similar phases and similar artifacts – but there are many small differences.

Object-oriented methodologies tend not to be too prescriptive: the developers are given

some choice about whether they use a particular type of diagram, for example. Therefore, the

Object-Oriented Methodologies 115

development team must select a methodology and agree which artifacts are to be produced,

before they do any detailed planning or scheduling.

In general, each methodology addresses:

• The philosophy behind each of the phases.

• The workflows and the individual activities within each phase.

• The artifacts that should be produced (diagrams, textual descriptions and code).

• Dependencies between the artifacts.

• Notations for the different kinds of artifact.

• The need to model static structure and dynamic behavior.

Static modeling involves deciding what the logical or physical parts of the system should

be and how they should be connected together. Dynamic modeling is about deciding how

the static parts should collaborate. Roughly speaking, static modeling describes how we

construct and initialize the system, while dynamic modeling describes how the system

should behave when it’s running. Typically, we produce at least one static model and one

dynamic model during each phase of the development.

Some methodologies, especially the more comprehensive ones, have alternative develop-

ment paths, geared to different types and sizes of development. The methodology used in

this book, Ripple, is geared towards learning what’s involved in all software development,

large or small, but it is applicable to the real world as well.

5.5.1 UML, RUP and XP
By the mid-1990s, the best-known methodologies were those invented by Ivar Jacobson

[Jacobson et al. 92], James Rumbaugh [Rumbaugh et al. 91] and Grady Booch [Booch 93].

Each had his own consulting company using his own methodology and his own notation.

By 1996, Jacobson and Rumbaugh had joined Rational Corporation (founded by Booch),

and they had developed a set of notations which became known as the Unified Modeling

Language (UML) [OMG 03a]. The ‘three amigos’, as they have become known, donated

UML to the Object Management Group (OMG) for safekeeping and improvement. OMG

(www.omg.org) is a not-for-profit industry consortium, founded in 1989 to promote open

standards for enterprise-level object technology; their other well-known work is CORBA

[OMG 04].

Some developers consider UML simply as a notation to be used for brainstorming and

high-level documentation. Others consider UML to be a pictorial programming language,

generating code from it or synthesizing it from existing code. UML was used as a notation

during brainstorming of the case study for this book. At the end, the main diagrams were

made to match the finished code exactly – thus, the end result looks the same as it would

have done if UML had been used as a pictorial programming language.

116 Chapter 5

Once UML was in safe hands, the three amigos set about designing a methodology that

drew on the best aspects of their individual work. Within a couple of years, they had come up

with their own spiral, iterative and incremental method called the Rational Unified Process

(RUP) [Jacobson et al. 99]. As you might expect, RUP is not the only methodology available,

nor even the only one that uses UML as the notation.

Another popular methodology is extreme programming (XP) [Beck 99]. XP is referred

to as an agile methodology because it is responsive to change. XP is distinguished by two

radical ideas: pair programming and test-driven development. With pair programming,

all development is carried out by two people sitting in front of the screen rather than

one – the idea is that, rather than improving the speed at which software is produced, pair

programming improves the quality of the software (it also helps developers to accelerate their

growth by the sharing of ideas). According to fans of test-driven development, continuous

testing is so important that not only should it be done by the developers themselves, but the

tests should be written before the code.

5.5.2 The Need for Development Tools
To be effective, any spiral, iterative and incremental methodology requires an end-to-end

development tool. The need to amend project artifacts iteratively is a strong justification for

the use of a software tool. Such a tool should allow members of the project team to produce

the artifacts and then to store them. More specifically, it should support:

• Traceability: Recording the connections between an artifact and the artifacts derived from

it, for example, recording which particular subsystem gave rise to a group of implemented

classes. Most traceability information will be entered by developers rather than inferred

by the tool.

• Change history: Recording the changes that were made to artifacts, who made the changes

and when. Where feasible (that is, with textual artifacts) the tool should be able to provide

a summary of the differences between one edition of the artifact and another.

• Multiuser access control: Making sure that simultaneous access to artifacts doesn’t cause

problems. There are three mechanisms relevant here: authorization (controlling who can

read the artifacts and who can edit them); multiuser read–single-user edit (only allowing

one developer at a time to edit an artifact or group of artifacts, but allowing all authorized

users to see the unedited version); versioning (allowing any number of developers to edit

an artifact, each producing a distinct version of the artifact – at any time, only one version

will be the official one).

• Reduced redundancy: Ensuring that we never have to update anything in more than one

place. Typically, information will appear in several artifacts at once. If we have a tool, it

can treat the artifacts as alternative projections on a single model.

Ripple Overview 117

• Consistency checking: Ensuring that an artifact is consistent with related artifacts. It’s not

always possible to enforce consistency. For example, in an ideal world, a tool would be

able to check that the code written for a method conforms to its specification, but modern

computers simply can’t do that (it’s just too difficult, or even impossible). Even in cases

where the tool can enforce consistency (or traceability for that matter), the developer must

be allowed to disable the check. For example, one developer might want to carry analysis

classes through to the design phase, while another might prefer to start design with a new

set of classes altogether: any tool that requires every analysis class to appear in the design

model would be a help to the first kind of developer and a hindrance to the second.

• Networked operation: Providing access to all artifacts from any machine on the project

network. These days, the best foundation for networked operation is TCP/IP, the basis of

all protocols that operate over the Internet and individual intranets.

• Testing the artifacts that we produce, as we go along. The most obvious case is where

implementation code is tested for effectiveness and correctness, but the principle can be

applied to other artifacts too (as in the case of recording the results of design review).

Rational Corporation developed a tool called Rose, based on RUP and UML. Rose became

probably the best-known object-oriented development tool. In 2003, Rational was bought by

IBM and the tool has been reworked as a set of modular products (and is now called Rational

Application Developer). Of course, there are many development tools available – Rational

products are only mentioned here because of the historical perspective.

5.6 RIPPLE OVERVIEW
In this book, you will find object-oriented versions of all the classical phases of software

development and you will see how they fit into an object-oriented methodology. Because

object orientation is so accessible, developers can be involved in all of the phases; customers

can be involved in the early stages, which helps developers to do their job; and managers are

not shut out of the developers’ world, so communication is improved.

We have seen how the classical phases fit into the ideal object-oriented methodology – one

that draws on the best aspects of the spiral, iterative and incremental approaches. In

subsequent chapters, we’ll look at each of the major phases that are carried out before the

release of code: requirements, analysis, system design, subsystem design, specification and

testing. Implementation won’t be covered extensively, because that would require detailed

knowledge of a particular programming language. Design patterns will be discussed, because

they allow us to take implementation ideas off the shelf.

By the end of this book, you will find that you have traveled around one spiral of an

initial increment (version 1.0, after an iterative spiral, if you like). Although this may look

suspiciously like the waterfall methodology dressed up as something more elegant, it’s simply

118 Chapter 5

the nature of a book: content laid out end to end with no repetition. It can’t be emphasized

enough that, when you come to try these techniques for yourself, you must be prepared to

spiral, iterate and deliver incrementally.

The case study used from here on, iCoot, was certainly not developed in a waterfall

fashion. The artifacts included in Appendix B resulted from two increments, each comprising

a number of iterative spirals.

Since UML, the de facto standard notation, is used throughout this book, you can be sure

that the diagrams that you see will be similar to the ones that you’ll encounter in the real

world. For Ripple, UML notation is employed whenever possible.

UML has 13 types of diagram. The UML specification doesn’t say where these diagrams

should be used in any particular methodology – we’re free to use whichever we think is

appropriate at any stage.

• Use case diagrams categorize the ways in which a system is used.

• Class diagrams show classes and how they can be fitted together (they can also show

objects).

• Object diagrams show only objects and how they can be fitted together.

• Activity diagrams show activity by humans or objects in a similar way to a flow chart.

• State machine diagrams show the various states of any object with an interesting or

complicated life cycle.

• Communication diagrams show the messages sent between objects in some scenario.

• Sequence diagrams show similar information to communication diagrams, but emphasizing

sequences rather than connections.

• Package diagrams show how related classes are grouped together, for the benefit of

developers.

• Deployment diagrams show machines, processes and deployed artifacts for a finished

system.

• Component diagrams show reusable components (objects or subsystems) and their

interfaces.

• Interaction overview diagrams show individual steps of an activity using sequence dia-

grams.

• Timing diagrams show precise timing constraints for messages and object states.

• Composite structure diagrams show how objects fit together in an aggregation or compo-

sition, showing interfaces and collaborating objects.

Table 5.1 summarizes the artifacts of Ripple, organized by phase. As you can see, some of

these artifacts are found in UML and some are not. This is simply because UML doesn’t cover

everything; to a large extent, it just allows us to draw pictures of our code. For the Ripple

artifacts that are not covered by UML, alternative notation is used. Despite the fact that this

notation is nonstandard, its content is based on widely accepted theory and practice.

Ripple Overview 119

Table 5.1: Ripple artifacts by phase
ArtifactsPhase UML

120 Chapter 5

Ripple is described progressively as we go through the chapters, but if you would

like to read a quick summary at any point, go to Appendix 1. Since this book has an

emphasis on software-related artifacts, the focus is on requirements, analysis, design and

specification. Glossaries, test plans and mission statements are also discussed. Other issues,

such as management, implementation, deployment and maintenance won’t be covered in

any detail.

Although you will see an example of an activity diagram and a state machine diagram,

they’re not used widely here and are generally considered optional. Also, not all of the

UML diagram types are used. Component diagrams, interaction overview diagrams, timing

diagrams and composite structure diagrams are simply not necessary for the purposes of

this book. Most of these types of diagram can be expressed using the other diagrams,

apart from timing diagrams, which are more useful for the design of real-time software and

hardware.

As well as the diagrams, UML has a class specification language called Object Constraint

Language (OCL). OCL won’t be covered, because it would require an entire book in its own

right; however, in Chapter 12, you will find a small example, to give you a taster. Most of

the specification discussion is informal, relating to comments in code and design artifacts.

In the next few sections, you’ll see examples of some of the UML diagrams that are used

for Ripple. You should bear in mind, though, that UML, like most comprehensive standards,

is rather large. Therefore, for practical reasons, you will be shown only the fundamentals of

the notation, with some of the finer detail left out.

Whenever you look at one of the diagrams in this book, bear in mind that UML allows us

to suppress information that is not relevant to the discussion. For example, just because you

only see labeled boxes when a class is being discussed, don’t assume that the class has no

attributes or operations.

5.6.1 Use Case Diagram

A use case is a static description of some way in which a system or a business is used, by its

customers, its users or by other systems. A use case diagram shows how system use cases

are related to each other and how the users can get at them. Each bubble on a use case

diagram represents a use case and each stick person represents a user. Use case diagrams

(static artifacts) are described in Chapter 6.

Figure 5.7 depicts a car rental store accessible over the Internet. From this picture, we can

extract a lot of information quite easily. For example, an Assistant can make a reservation; a

Customer can look for car models; Members can log on; users must be logged on before they

can make reservations; and so on.

Each use case is more than just a title such as U7:Make Reservation or U13:Look for Car

Models; it must include the actual steps involved in using the system or business. Although

Ripple Overview 121

U3: View Car
Model Details

U13: Look for
Car Models

U12: Log Off

U5: Log On
Customer

Member

NonMember

Assistant

U1: Browse
Index

U2: View
Results

U7: Make
Reservation

U11: Cancel
Reservation

U9: Change
Password

U8: View
Rentals

U6: View
Member Details

U10: View
Reservations

<<extend>>

<
<

ex
te

nd
>

> <<include>>

<<extend>>

<<extend>>

<<
ex

te
nd

>>

<<extend>>

<
<

ex
te

nd
>

>

<<include>>

<<exte
nd>>

U4: Search

{Customer is

a logged-On

Member}

iCoot

Figure 5.7: A use case diagram

UML specifies a notation for use case diagrams, it doesn’t do so for the steps of the use case

itself. RUP refers to the steps of a use case, and a few other bits and pieces, as use case details.

The details for U3:View Car Model Details are shown in Figure 5.8. It should be easy for

you to appreciate that viewing car model details involves a customer selecting a car model,

requesting its details, and then receiving specific information about the car model in return.

Use case details (dynamic artifacts) are described in Chapter 6.

5.6.2 Class Diagram (Analysis Level)
A class diagram shows which classes exist in the business (during analysis) or in the system

itself (during subsystem design). Figure 5.9 shows an example of an analysis-level class

diagram, with each class represented as a labeled box. Class diagrams (static artifacts) are

introduced in Chapter 7.

As well as the classes themselves, a class diagram shows how objects of these classes

can be connected together. For example, Figure 5.9 shows that a CarModel has inside it a

CarModelDetails, referred to as its details.

122 Chapter 5

U3: View Car Model Details. (Extends U2, extended by U7.)

Preconditions: None.

1. Customer selects one of the matching Car Models.

2. Customer requests details of the selected Car Model.

3. iCoot displays details of the selected Car Model

(make, engine size, price, description, advert and poster).

4. If Customer is a logged-on Member, extend with U7.

Postconditions: iCoot has displayed details of selected Car Models.

NonFunctional Requirements:

r1. Adverts should be displayed using a streaming protocol

rather than requiring a download.

Figure 5.8: Details of a system use case

Car
Model

Car
Model
Details

makes

Make

Car

example of

Car
Details

details

Credit
Card

Rental

Customer

VendorCategory

Reservation

Member

Address

lives
at

taken out
by

rented under

details

classified
as

sold
by

*

*

*

*

*1..

* * *1.. *1..

1

1

1

1
1

1

1

1

0..1

*

*1..

Internet
Account

logs in
with

1

1

guaranteed
by

NonMember

Figure 5.9: A class diagram at the analysis level

5.6.3 Communication Diagram
A communication diagram, as its name suggests, shows collaborations between objects. The

one shown in Figure 5.10 describes the process of reserving a car model over the Internet: A

Member tells the MemberUI to reserve a CarModel; the MemberUI tells the ReservationHome to

Ripple Overview 123

1.1:fineWarning()

r:Reservation

1.1.1.1:r=create(c,m)

1:reserve(c)

1.1.1:confirmReserve()

Member :MemberUI

:Reservation
Home

1.1.1.3:reservationNumber(n)

1.1
.1.

2:n
=ge

tN
um

be
r()

m:Member
c:CarModel

Figure 5.10: A communication diagram

create a Reservation for the given CarModel and the current Member; the MemberUI then asks

the new Reservation for its number and returns this to the Member. Communication diagrams

(dynamic artifacts) are described in Chapter 7.

5.6.4 Deployment Diagram
A deployment diagram (see Figure 5.11) shows how the finished system will be deployed

on one or more machines. A deployment diagram can include all sorts of features such as

machines, processes, files and dependencies.

Figure 5.11 shows that any number of HTMLClient nodes (each hosting a WebBrowser)

and GUIClient nodes communicate with two server machines, each hosting a WebServer and

124 Chapter 5

HTTP

<<device>> CootHTMLClient

<<ExecutionEnvironment>>
WebBrowser

*

<<device>>
CootGUI

Client

*

<<device>> CootServer

2

<<ExecutionEnvironment>>
WebServer

<<ExecutionEnvironment>>
CootBusinessServer

2

<<device>>
DBServer

<<ExecutionEnvironment>>
DBMS

JRMP

Figure 5.11: A deployment diagram

a CootBusinessServer; each WebServer communicates with a CootBusinessServer; and each

CootBusinessServer communicates with a DBMS running on one of two DBServer nodes.

Deployment diagrams (static artifacts) are described in Chapter 8.

5.6.5 Class Diagram (Design Level)
The class diagram shown in Figure 5.12 uses the same notation as the one introduced in

Figure 5.9. The only difference is that design-level class diagrams tend to use more of the

available notation, because they’re more detailed. This one expands on part of the analysis

class diagram to show methods, constructors and navigability. Design-level class diagrams

(static artifacts) are described in Chapter 10.

Ripple Overview 125

Store

~Store(:Address) <<create>>
+getAddress():Address
+addCar(:Car)

-address

Address

~Address(:String,:String,:String,:String) <<create>>
+getHouse():String
+getCounty():String
+getPostcode():String

-cars:Set

~Car(:CarModel,:int) <<create>>
+getModel():CarModel
+getTraveled():int
+setTraveled(:int)

CarModel

~CarModel(:Category,:Make,:String,:int) <<create>>
+getCategory(): Category
+getMake():Make
+getModelNumber():String
+getPrice():int

Make
-makes:List

~Make(:String) <<create>>
getName():String

Category

-category

~Category(:String) <<create>>
+getName():String

-model

1..*

* *1 1

1

*

11

1

Car

Figure 5.12: A design-level class diagram

5.6.6 Sequence Diagram
A sequence diagram shows interactions between objects. Communication diagrams also

show interactions between objects, but in a way that emphasizes links rather than sequence.

In this book, sequence diagrams are used during subsystem design, but they’re equally

applicable to dynamic modeling during analysis, system design and even requirements

capture.

The diagram in Figure 5.13 specifies how a Member can log off from the system. Messages

are shown as arrows flowing between vertical bars that represent objects (each object is

named at the top of its bar).

Time flows down the page on a sequence diagram. So, Figure 5.13 specifies, in brief: a

Member asks the AuthenticationServlet to logoff; the AuthenticationServlet passes the request on

126 Chapter 5

:Authentication
Server

:Authentication
Servlet

logoff()

m:Member

id retrieved

from browser

session

:Member
Home

logoff(id)

home page

setSessionId(0)

:Internet
Account

m=findBySessionId(id)

Member

setSessionId(0)

sd U12

Figure 5.13: A sequence diagram from the design phase

to the AuthenticationServer, reading the id from the browser session; the AuthenticationServer

finds the corresponding Member object and tells it to set its session id to 0; the Member passes

this request on to its InternetAccount; finally, the Member is presented with the home page.

Sequence diagrams (dynamic artifacts) are described in detail in Chapter 10.

5.7 SUMMARY
In this chapter, we looked at:

• The classical phases of software production – requirements, analysis, system design,
subsystem design, specification, implementation, testing, deployment and main-
tenance – and how they can be used in a combination of spiral, iterative and
incremental methodologies.

• Static modeling, which describes how we construct a system, and dynamic modeling,
which describes how the system should behave when it’s running.

• The UML notation and the Ripple methodology that is used in the rest of this book.

FURTHER READING
Steve McConnell provides a good overview of managing a successful software project

[McConnell 98], from planning through to testing. It is an easy read because of its high-level

approach and conversational style.

Review Questions 127

The original book on Rational’s Unified Process [Jacobson et al. 99] provides a good

overview of the theory underlying RUP. For the current status of RUP, take a look at the

Rational web site, www.rational.com.

For more information on XP, see [Beck 99] by one of its inventors or the following

web sites: www.extremeprogramming.org and www.xprogramming.com. To find out more

about agile development in general, see [Cockburn 01] and the Manifesto of Agile Software

Development at www.agileManifesto.org.

The best-known introduction to UML is [Fowler 03]. Although Martin Fowler doesn’t

cover the whole of UML, his book is a good stepping-stone between the book you’re

currently reading and the UML Specification itself [OMG 03a]. For the serious UML user,

the specification is still an essential tool for answering questions about obscure pieces of

notation and the semantics of the language itself, so that you can ensure that your diagrams

are correct. Specifications are hard to read at the best of times; with the UML Specification

it can be a shock to find that UML is defined using UML, but it turns out to be a good idea:

it means that the descriptions are precise; it is a good opportunity to see how UML can be

used to document a large and complicated object-oriented model; and it allows you to see

what is and is not legal according to the model.

REVIEW QUESTIONS
1. Which of the following UML artifacts are used to show the distribution of processes,

resources and objects in a system? Choose only one option.

(a) Interaction diagrams.

(b) Sequence diagrams.

(c) Deployment diagrams.

(d) Communication diagrams.

(e) State machine diagrams.

(f) Class diagrams.

(g) Glossaries.

2. What are the traditional steps in software production? Choose all options that apply.

(a) Maintenance.

(b) Design.

(c) Iteration.

(d) Incrementation.

(e) Deployment.

(f) Analysis.

(g) Requirements Capture.

128 Chapter 5

(h) Testing.

(i) Reuse.

(j) Implementation.

(k) Specification.

ANSWERS TO REVIEW QUESTIONS
1. The UML artifacts used to show the distribution of processes, resources and objects in a

system are c. Deployment diagrams.

2. The traditional steps in software production are:

(a) Maintenance.

(b) Design.

(e) Deployment.

(f) Analysis.

(g) Requirements Capture.

(h) Testing.

(j) Implementation.

(k) Specification.

II
Understanding the Problem

6
Gathering Requirements

In this chapter we’ll look at the requirements phase of software development, detailing

the starting points and introducing use cases. We also look at how to model the business

into which our system will fit by identifying and validating business use cases.

Learning Objectives
Understand the purpose of the

requirements phase.

•
Model the business context and

system functionality.

Record the system requirements on
a complete use case model.

Chapter Outline

6.1 Introduction

6.2 The Birth of a System

6.3 Use Cases

6.4 Business Perspective

6.5 Developer Perspective

6.6 Summary

Further Reading

Review Questions

Answers to Review Questions

6

132 Chapter 6

6.1 INTRODUCTION
The aim of the requirements phase is twofold:

• Examine the business context: We need to clarify the reasons for wanting the software to

be developed in the first place – if we can’t come up with good reasons, we shouldn’t write

the software at all. When we’ve decided that we do want to produce a software system, we

need to make sure that we understand the business and that our understanding matches

that of our sponsors – this is also a good opportunity to clarify just who the sponsors are.

• Describe the system requirements: This involves not only deciding on the functionality of

the system but also detecting any constraints – performance, development cost, resources

and so on.

We would expect system requirements to form part of the requirements phase, but why

do we model the business? Figure 6.1 shows the alternative to a well-defined requirements

phase. These two developers start with some vague idea of the kind of system that they

believe ought to be produced, while paying only grudging attention to their sponsors. This

blinkered approach is common among novice programmers who don’t yet know what they’re

doing, but we would hope that little of this attitude remains by the time we have become

serious professionals.

I'll start coding, you go and
see what the customers want

Figure 6.1: Self-taught developers

The Birth of a System 133

The tendency to dive into coding is not only born of arrogance. It can come from fear:

‘We’re not sure we can produce what the sponsors need, but we know what we can produce:

hopefully, once we’ve finished, we can persuade everyone that what we have is what they

really needed in the first place’. Difficult as it may be to stay away from our keyboards, we

must first make sure that we understand the business context for the new system, then work

with our sponsors to agree what the system will do. The term ‘sponsor’ is used to mean

anyone who has an interest in seeing the final system delivered: for example, the internal

or external customer commissioning the system, the potential end users, the managers, and

even the shareholders.

Before we even consider writing a piece of software, we must investigate the business

in which the software will operate – without a thorough understanding of the business, we

could hardly expect to produce something that would enhance that business. (We must

be aiming to enhance what’s already there, otherwise why would we go to the trouble of

writing software in the first place?) The term business is used here in its loosest sense:

although, admittedly, this book has a bias towards business systems in the sense of banking,

administration, e-commerce and the like, most of what is presented applies equally well to

scientific systems, home systems, or anything else that requires software. If you prefer, think

of ‘business’ as ‘problem domain’.

Once we have understood the business and documented our understanding as business

requirements, we need to think about what our software will do for the users. Deciding what

the system needs to be able to do and, just as importantly, what it should not do, will help

us to focus on producing only the necessary code. Without a thorough understanding of the

system requirements, we would risk wasting time on developing code that we’re not being

paid to produce. (Again, ‘being paid’ shouldn’t be taken too literally – you may be writing a

small system purely for your own benefit, in which case you’ll be more concerned with not

wasting your time.)

System requirements are commonly separated into two categories: functional and non-

functional. Functional requirements are the things the system must be able to do, i.e. the

services that it must provide in response to external stimuli, such as ‘browsing the catalog’

and ‘reserving a car model’. Nonfunctional requirements are everything else that needs to be

specified. Nonfunctional requirements might include the client Web browsers that must be

supported, the use of streaming video (as opposed to downloadable files) for adverts, a user

interface that can be used easily by novice Internet surfers, and so on.

6.2 THE BIRTH OF A SYSTEM
Every system starts somewhere. We may be lucky enough to get a detailed document from

the customer, usually with proprietary layout and content. Or, we may simply be presented

134 Chapter 6

with something like a mission statement, a short statement of some new, desirable, business

direction.

As developers, we must transform the customer’s requirements document or mission

statement into a complete, unambiguous description of the system to be developed, in a

standard format that the customer can understand and ratify. Admittedly, ‘complete’ and

‘unambiguous’ are impossible to achieve in practice. We shouldn’t expect to come close to

these goals the first time round. However, it’s still useful to know that eventually we will

have a document that describes everything the system will do (and, by omission, everything

that it won’t do), with little room for misinterpretation.

Case Study
Nowhere Cars mission statement

Since we automated the tracking of cars at our stores – using bar codes, counter-

top terminals and laser readers – we have seen many benefits: the productivity of

our rental assistants has increased 20%, cars rarely go missing and our customer

base has grown strongly (according to our market research, this is at least partly

due to the improved perception of professionalism and efficiency).

The management feels that the Internet offers further exciting opportunities

for increasing efficiency and reducing costs. For example, rather than printing

catalogs of available cars, we could make the catalog available to every Internet

surfer for browsing on-line. For privileged customers, we could provide extra

services, such as reservations, at the click of a button. Our target saving in this

area is a reduction of 15% in the cost of running each store.

Within two years, using the full power of e-commerce, we aim to offer all

of our services via a Web browser, with delivery and pick-up at the customer’s

home, thus achieving our ultimate goal of the virtual rental company, with

minimal running costs relative to walk-in stores.

Even this three-paragraph mission statement contains a lot of information: history

of automation at the company; customer satisfaction to date; on-line catalogs and

reservations; privileged and non-privileged customers; savings history and savings

targets; company end-game (the ‘virtual rental company’). Admittedly, some of the

management’s dreams are a long way off (it may be more than two years before

customers are comfortable with virtual rental stores), but at least we have two good

starting points for our investigation: What services do the company’s stores currently

offer? Which of those services are appropriate for Internet delivery?

Use Cases 135

Case Study (cont’d)
The mission statement above is the basis for the case study used in the rest of this

book. The fictitious company’s new system is referred to as Coot, with the Internet

facilities available to customers referred to as iCoot.

The unique selling point of Nowhere Cars is that they rent specialist cars to

wealthy enthusiasts for extended periods. Since the supply of each kind of car is

limited, customers must turn up at a store when they actually want to rent. Cars are

rented on a first-come, first-served basis and customers can take their pick from what

is currently available. Alternatively, customers who are keen to rent a model of car

which is not available can make a reservation. An assistant will contact the customer

directly when a matching car becomes available; the customer must collect it within

two days (or pay a levy for depriving other customers of the car). As yet, there are no

home delivery or home pick-up services (partly for insurance reasons). For members,

who must register, reservations can be made by telephone.

6.3 USE CASES
Ivar Jacobson invented use cases to define the way in which part of a business or a system

is used [Jacobson et al. 92]. Although, at first sight, use cases appear more process-oriented

than object-oriented, they’re widely considered to be the most effective tool for describing

a system’s functional requirements. Most nonfunctional requirements can be recorded

alongside a closely-related use case (any others can be listed separately).

The use cases in this book contain all the essential elements in a format which is

convenient for learning. In this book, use cases are used to document our understanding of

the way a business operates – business requirements modeling – and to specify what our

new software system should be able to do – system requirements modeling. The business

use cases in this book use an informal, descriptive style: they describe, for the benefit of

nonexperts, something that already exists. The system use cases, on the other hand, will be

more prescriptive: they specify, mainly for the benefit of software developers, exactly what

functionality needs to be implemented.

A use case starts with a participant called an actor; it then descends into the business,

or the system, and eventually returns to the actor. The effect of each use case should be of

value to the actor (otherwise, why would they initiate it in the first place?). Of course, value

can mean different things to different people: it could be some information that the actor

wishes to retrieve, some effect that the actor wishes to have on the system, some money, a

purchase, or pretty much anything else that might motivate them. Being driven by use cases,

136 Chapter 6

far from sending us down the traditional path, actually helps us to find objects, attributes

and operations.

Case Study
Nowhere Cars use cases

• Member Reserves Car Model is a business use case that describes how, according to

current practice, a member makes a reservation. It may be couched in terms that

would apply to any car-rental business or it may bring in details specific to the

way that Nowhere Cars operates. We look for business use cases during business

modeling, the first step of requirements capture.

A business use case may refer to existing software systems, or it may not involve

computers at all – for example, the last time you telephoned a car-rental shop and

asked them to reserve a particular car model, were you able to tell if the assistant

at the other end of the line, in the course of performing the transaction, used a

computer or a pad and paper? More to the point, did you care?

• Make Reservation is a system use case that describes how the system that we intend

to produce will allow Nowhere Cars to conduct reservations over the Internet.

A system use case describes a service that the new, or replacement, system will

provide: in this example, the member definitely does use some software – a Web

browser and a back end server. Part of our job is to specify exactly what input the

user should provide and what they should expect to get in return.

For the sake of simplicity, use cases, especially system use cases, should not overlap. A

use case is written in natural language, broken up into a sequence of steps. Diagrams can

accompany the use case if more explanation is needed.

6.4 BUSINESS PERSPECTIVE
In this section, we’ll see how to put together a model of the business, as a precursor to mod-

eling the functionality of the proposed system. A business model can be as simple as a class

diagram, showing the relationships between business entities – this is sometimes referred to

as a domain model. A domain model may be sufficient for small projects, however, for most

projects, we would want to produce an entire business model representing how the business

operates, or at least that part of the business that surrounds the system we expect to develop.

Use cases are not the only way of modeling a business, but they’re simple. More complex

alternatives include business process modeling and workflow analysis. Use cases are simple

because producing one doesn’t require specialist knowledge, just common sense and a

Business Perspective 137

certain amount of logic. The use case model that we produce here will contain the use cases

themselves plus some other bits and pieces:

• Actor list (with descriptions).

• Glossary.

• Use cases (with descriptions and details).

• (Optional) Communication diagrams.

• (Optional) Activity diagrams.

UML defines the notation and semantics for activity diagrams and communication diagrams.

The other artifacts are recommended by Jacobson.

We’ll look at the business model components one by one, in the order in which you

would typically create them in real life. However, bear in mind at all times that this is not a

rigid workflow: as with any aspect of object-oriented development, we can iterate forwards,

backwards, or round and round, until we have a complete picture.

6.4.1 Identifying Business Actors
The first thing we need to do is to identify the business actors. An actor is either a person

playing some role within the business (as you might expect from the name), a department,

or a separate software system.

The reason for identifying departments and systems as actors is that, in logical terms, they

interact as if they were people themselves: we’re interested in who (or what) initiates inter-

actions and the sequence of steps. We don’t care whether a particular actor is ‘implemented’

as a person, a department or a piece of software. Identifying actors helps us to identify the

ways in which the business is used, which will, in turn, indicate what the use cases are.

Just as in real life, an actor can play different business roles at different times. For

example, Fred Bloggs might be an assistant within the Nowhere Cars store until he clocks

off; if he decides to rent a car before going home, he becomes a customer. At this stage of

the development, you will be working with the other sponsors (principally the customers)

to find out how the business operates – the actors should fall out of your discussions easily.

Case Study
Nowhere Cars business actor list

• Assistant: An employee at one of our stores who helps Customers to rent Cars and

reserve Car Models.

• Customer: A person who pays us money in return for one of our standard services.

138 Chapter 6

Case Study (cont’d)
• Member: A Customer whose identity and credit-worthiness have been validated

and who, therefore, has access to special services (such as making Reservations by

phone or over the Internet).

• NonMember: A Customer whose identity and credit-worthiness have not been

checked and who, therefore, must provide a deposit to make a Reservation or

surrender a copy of their license to rent a Car.

• Auk: The pre-existing system that handles Customer details, Reservations, Rentals

and the catalog of available Car Models.

• DebtDepartment: The department of Nowhere Cars that deals with unpaid fees.

• LegalDepartment: The department of Nowhere Cars that deals with accidents in

which a rented Car has been involved.

6.4.2 Writing the Project Glossary
Even at this early stage, it’s a good idea to start maintaining a glossary – the modern alternative

to a data dictionary. The phrase ‘data dictionary’ includes the word ‘data’, the kind of thing

that object-oriented theoreticians are uncomfortable with, because it implies that data is being

modeled in isolation. Separating data from processes was the old way of doing things: it’s

much better to keep data and process together, hence the less emotive term ‘glossary’.

A glossary de-mystifies the jargon for anyone examining our software development

artifacts. It also allows us to file away groups of synonyms, leaving us free to use one of each

throughout the rest of the documentation.

Case Study
Nowhere Cars Glossary

Term Definition

Car (Business object) Instance of a CarModel kept by a Store for Rental purposes.
CarModel (Business

object)

A model in our Catalog, available for Reservation.

Customer (Business

actor, business object)

A person who pays us money in return for one of our

standard services.
Member (Business

object)

A Customer whose identity and credit-worthiness have been

validated and who, therefore, has access to special services

(such as making Reservations by phone, or over the
. . . Internet).

Business Perspective 139

Each entry in the glossary defines a term – the definition can be short or long, as

appropriate. The actor descriptions that we’ve seen so far are good starting points as glossary

definitions, but the glossary definitions will often end up being more general, because most

of the terms will apply in several contexts.

As you can see from the case study glossary, you can record the relationships that each

term has to the development phases (business actor, system actor, and so on). Below is a list

of relationships that you can use (each entry may qualify as more than one of these):

• Business actor: An actor appearing in the business requirements.

• Business object: An object appearing in the business requirements.

• System actor: An actor appearing in the system requirements.

• System object: An object appearing (inside the system) in the system requirements.

• Analysis object: An object appearing in the analysis model.

• Deployment artifact: Something deployed in the system, such as a file.

• Design object: An object appearing in the design model.

• Design node: A computer or process that forms part of the system architecture.

• Design layer: A vertical partition of a subsystem.

• Design package: A logical grouping of classes, used to organize the development.

In each of these cases, object means entity or ‘encapsulated data and process’, as usual.

Each category of object – business, system, analysis or design – is subtly different, with some

objects qualifying in more than one category. For example, when a Customer rents a Car,

we’re dealing with a business object that is external to the system – the physical vehicle in

the display area – and a system object that is inside the system itself, instantiated from a class

that we implement.

Glossary entries use the class naming style (words run together with initial capitals). As

long as we use the same style in all our project documentation, it will be obvious to the

reader that a definition exists in the glossary.

6.4.3 Identifying Business Use Cases
Once we have the actors, the next task is to identify the business use cases. Each use case

is a snippet of the business. At this stage, use cases may involve two-way communication

between a number of actors, especially if they’re human actors. Later on, we’ll see that system

use cases are more structured, because people normally tell the system what to do, rather

than the other way round.

There’s no set rule for deciding how to break the business down into use cases – common

sense, logic and experience will help, as usual. Working with the sponsors (which you should

be doing anyway) will also help. While talking to an assistant on the shop floor, for example,

140 Chapter 6

try to identify the different tasks that they find themselves doing every day. Since assistants

interact with customers, they should also be able to identify the ways in which customers use

the business. Employee and management training manuals, mission statements, proprietary

requirements documents, sales brochures and other kinds of document can also provide

inspiration. At all times, when trying to find use cases, keep the following question at the

back of your mind: ‘What are the key activities that make this business work?’

Case Study
iCoot Business use case list

• B1:Customer Rents Car: Customer rents a Car that they have selected from those

available.

• B2:Member Reserves CarModel: Member asks to be notified when a CarModel

becomes available.

• B3:NonMember Reserves CarModel: NonMember pays a deposit to be notified when

a CarModel becomes available

• B4:Customer Cancels Reservation: Customer cancels an unconcluded Reservation,

by phone or in person.

• B5:Customer Returns Car: Customer returns a Car that they have rented.

• B6:Customer Told CarModel is Available: Customer is contacted by an Assistant when

a Car becomes available.

• B7:Car Reported Missing: Customer or Assistant discovers that a Car is missing.

• B8:Customer Renews Reservation: Customer renews a Reservation that has been

outstanding for more than a week.

• B9:Customer Accesses Catalog: Customers browse the catalog, in-store or at home.

• B10: Customer Fined for Uncollected Reservation: Customer fails to collect a Car that

they have reserved.

• B11:Customer Collects Reserved Car: Customer collects a Car that they have reserved.

• B12:Customer Becomes a Member: Customer provides CreditCard details and proof

of Address to become a Member.

• B13:Customer Notified Car is Overdue: Assistant contacts Customer to warn them

that a Car they have rented is more than a week overdue.

• B14:Customer Loses Keys: Replacement Keys are provided for a Customer who has

lost them.

• B15:MembershipCard is Renewed: Assistant contacts Member to renew membership

when their CreditCard has expired.

• B16:Car is Unreturnable: A Car is wrecked or breaks down.

Business Perspective 141

Case Study (cont’d)
We have now started to narrow down the business to the area we’re particularly

interested in. We know from the original mission statement that our customer is

only hoping to make parts of the rental and reservation business available over the

Internet so, for example, the sale of ex-rental cars has not been modeled.

B3: NonMember Reserves CarModel.

1. NonMember tells Assistant which CarModel to reserve.

2. Assistant finds CarModel on Auk.

3. Assistant asks for a deposit for the Reservation.

4. Assistant asks for NonMember’s License and phone number.

5. Assistant checks License visually.

6. If License looks okay, assistant creates new Reservation and

records License number, phone number and a scan of

the License in Auk.

7. Assistant gives NonMember a ReservationSlip containing

the unique reservation number.

Figure 6.2: A business use case for Nowhere Cars

Remember that, during business modeling, we’re not interested in the way that our new

system might operate. At this stage, we’re simply trying to describe the way the business

currently operates. This may, or may not, involve existing software.

The numbering scheme is arbitrary: UML does not specify a scheme and the list does not

imply an order. Once we have a list of candidate use cases, we can list the steps involved in

each one. UML specifies nothing about the contents of a use case (or about the numbering

or the descriptions, for that matter). Thus, we’re free to use natural language, step-by-step

descriptions, structured language (natural language with if–then–else and loop structures),

or whatever.

Using steps rather than natural language encourages us to restrict ourselves to the bare

bones of a use case. If we were to use structured language, we would be in danger of making

our descriptions too algorithmic (computer-oriented). To make the use cases clear and

independent of the implementation, unstructured steps will be used for the use case details

in this book (see Figure 6.2).

6.4.4 Illustrating Use Cases on a Communication
Diagram

As well as writing down use case details, we can provide an illustration of use cases using

communication diagrams. A communication diagram shows a series of interactions between

142 Chapter 6

actors and objects. A sequence diagram focuses on the interactions themselves and the order

in which they take place. In order to discourage the use of too much technical detail early in

the development process, the communication diagram is preferred for business modeling.

Because UML is designed to apply to every possible situation, there is a lot of notation

available to the developer for use in each of the different kinds of diagram. In this book,

so as to avoid covering every possible detail, only the essential parts are used. Alternative

ways of illustrating the same piece of information and anything too complex will also be

ignored.

Figure 6.3 shows five communicating elements. The nature of each element is shown

by the icon used to represent it: a stick person represents an actor; a circle standing on a

line represents a business object or entity; a circle connected to a vertical bar represents a

boundary (something that manages the interaction between other elements – usually this is

a piece of software, but it could also be a person); a stick person inside a boundary icon

represents a human actor playing some kind of interface role (this shows that the boundary

is a person rather than a piece of software).

2:find CarModel CarModel1:reserve CarModel

3:get deposit, License

Auk

Interface

4:create

Reservation5:confirm Reservation

Reservation

Non

Member
Assistant

Figure 6.3: A communication diagram for B3:NonMember Reserves CarModel

Without too much knowledge of the notation, it’s easy to appreciate from Figure 6.3 that

making a reservation involves a nonmember, an assistant acting as a business boundary,

a piece of software called Auk (acting as a boundary to some system) and two business

objects. Since, at this stage, we’re modeling an existing way of doing things, we know that

the interface and the system that it accesses must already be implemented and deployed.

There is no mention of any software that we might eventually produce ourselves, because

we haven’t got to that stage yet.

A line connecting two elements on a communication diagram indicates that the elements

can interact. So, we can see from Figure 6.3 that: the NonMember is requesting services from

the Assistant; the Assistant is requesting services from the AukInterface; the AukInterface is

requesting services from a CarModel and a Reservation. Since the CarModel and Reservation

Business Perspective 143

are accessed by a software interface, the implication is that they’re software objects inside

the existing system, rather than physical objects outside (the distinction may or may not be

important to us).

As well as icons and connections, Figure 6.3 depicts individual interactions as numbered

labels with an associated arrow. You can think of these as messages being sent from one

element to another: the number indicates the message’s position in the sequence. So, we can

interpret the entire collaboration as:

• The NonMember asks the Assistant to reserve a CarModel.

• The Assistant asks the AukInterface to find the CarModel (this involves the CarModel object

in some unspecified way).

• The Assistant asks the NonMember for a deposit and a License.

• The Assistant asks the AukInterface to create a Reservation (this involves a Reservation object

in some way).

• The Assistant confirms the Reservation to the NonMember.

You might think that this sequence of interactions should exactly match the sequence of

steps in the use case details. However, because natural language is not a sequence of steps, a

one-to-one match is unlikely. It’s more likely that each interaction will represent a summary

of one or more steps.

Despite the lack of an exact match with a use case, a communication diagram is still useful

because it enhances the use case details and can help us to produce the details in the first

place.

Since the interactions we deal with at this early stage are straightforward, it’s reasonable

for us to produce one communication diagram per use case, but no more. For brevity, any

collaboration that we depict should be the normal path through the use case. When we deal

with system use cases, we can be more specific about abnormal paths, but for now we should

be able to imply their existence within the use case itself: for example, step 6 in our business

use case (Figure 6.2) begins If License looks okay: this implies that sometimes the License is

invalid, but what the Assistant should do in that case has not been specified.

6.4.5 Illustrating Use Cases on an Activity Diagram
UML includes another kind of diagram that can be useful during business modeling. An

activity diagram shows dependencies between (parallel) activities as we move from an initial

starting point to a desired goal. They are similar to flow charts or Petri nets, traditionally

used to model program flow or human activity. Figure 6.4 shows an activity diagram being

used to illustrate a business use case.

Each rounded box in an activity diagram represents an action; an open ended arrow (an

edge) indicates that the source action must be completed before the destination action is

144 Chapter 6

[not ok]

[ok]

(NonMember)

Tell Assistant

which CarModel

(Assistant)

Ask for Deposit

and License

(NonMember)

Find deposit

(NonMember)

Find License

(Assistant)

Find CarModel

on Auk

(Assistant)

Check deposit

and License

(Assistant)

Make

Reservation

Figure 6.4: An activity diagram for B3:NonMember Reserves CarModel

started; a black dot indicates the starting point for the activity; a black dot inside a white

circle indicates the end of the activity; a diamond represents a decision – a guard on a

departing edge indicates the reason for following that edge; thick black lines, known as forks

and joins, are used to indicate the beginning and end of a set of concurrent actions.

For each action, we can show who or what is responsible for the action by putting a name

in parentheses, before the name of the action itself. The name identifies a partition within

the activity, and can be used to identify actors, departments, systems or objects. Partitions

can also be indicated by grouping actions into rows, columns or cells.

Developer Perspective 145

We can see quite easily from Figure 6.4 that, to reserve a CarModel:

1. The NonMember tells the Assistant which CarModel to reserve.

2. The Assistant asks for a deposit and License.

3. While the NonMember is looking for the deposit and License, the Assistant looks for the

CarModel on the Auk system.

4. Once everything has been found, the Assistant checks the deposit and the License.

5. If the deposit and License are valid, the Assistant makes the Reservation and the activity is

finished.

6. Otherwise, the activity is finished.

As with communication diagrams, we should not expect this interpretation to match the

use case details step-for-step.

In common with many UML diagrams, activity diagrams can be used for more than one

purpose. For example, an activity diagram can be used to construct an entire business model

or to document the algorithm employed by some software object.

6.5 DEVELOPER PERSPECTIVE
The second part of requirements capture is modeling the software that we’re going to

develop in order to improve the business. Regardless of whether you choose to document the

business using a simple domain model, a fully-fledged use case model, or something even

more detailed such as a business process model or workflow analysis, it is widely accepted

that the requirements of the software system should be captured using a use case model. This

is because use cases are relatively easy to produce and easy for all sponsors to understand.

The use case model for a system is more detailed and more prescriptive than for a business.

For Ripple, the system use case model comprises:

• An actor list (with descriptions).

• A use case list (with descriptions).

• A use case diagram.

• Use case details (including any related nonfunctional requirements).

• A use case survey.

• Supplementary requirements (system requirements that don’t fit with any particular use

case).

• User interface sketches.

• An enhanced glossary.

• Use case priorities.

We’ll look at how to produce each of these artifacts in turn.

146 Chapter 6

The list above includes several artifacts that we haven’t come across before. Even the ones

that we’ve already seen during business modeling generally include more detail in system

modeling. Communication diagrams have not been included; although there is nothing to

stop you using them to illustrate your system use cases at this stage, for Ripple they have been

deferred to a later phase in the development (dynamic analysis), where they’re considered

more important.

We should also spend some time evaluating existing systems. Such a system is referred to

as a legacy system, because we inherited it as part of the existing business.

Case Study
Nowhere Cars legacy system

We need to decide whether Auk can reasonably be extended, or whether we should

replace it altogether. This decision is not an easy one to make: on the one hand,

we have a finished system that has been up and running for some time, one that

assistants are familiar with; on the other hand, it may be too difficult to open up Auk

in order to add new facilities, or to write new software that communicates with it

process-to-process (which may be inefficient).

Let’s assume that we have made the decision to replace Auk with a whole new

system that will be compatible with Internet access and will support the ‘virtual rental

store’ that our customer desires. Our new system will be called Coot. To alleviate

the problems of staff training, the new interfaces (counter-top terminals and laser

readers) will look and feel similar to the Auk ones.

For the purposes of this book, we don’t need to examine all the facilities of Coot.

Instead, we can concentrate on those parts of the system that provide the first round

of Internet facilities to customers. This cut-down set of facilities is called iCoot.

Identifying System Actors
The first thing we need to do is to identify and describe the system actors, with the help

of our sponsors. The actors we identify at this stage should include only the people (and

external systems) that interact directly with our proposed system, rather than actors from

the wider business context.

Case Study
iCoot system actor list

• Customer: A person using a Web browser to access iCoot.

Developer Perspective 147

Case Study (cont’d)
• Member: A Customer who has presented their name, address and CreditCard details

at one of our Stores; each Member is given an Internet password to accompany

their membership number.

• Assistant: An employee at a Store who contacts Members to tell them about the

progress of their Reservations.

Identifying System Use Cases
Once we have actors, we can look for use cases, again asking our sponsors for help. Each use

case must have a short description.

Case Study
iCoot system use case list

• U1:Browse Index: A Customer browses the index of CarModels.

• U2:View Results: A Customer is shown the subset of CarModels that was retrieved.

• U3:View CarModel Details: A Customer is shown the details of a retrieved CarModel,

such as description and advert.

• U4:Search: A Customer searches for CarModels by specifying Categories, Makes

and engine sizes.

• U5:Log On: A Member logs on to iCoot using their membership number and current

password.

• U6:View Member Details: A Member views a subset of their details stored by iCoot,

such as name, address and CreditCard details.

• U7:Make Reservation: A Member reserves a CarModel when viewing its details.

• U8:View Rentals: A Member views a summary of the Cars they’re currently renting.

• U9:Change Password: A Member changes the password that they use to log on.

• U10: View Reservations: A Member views a summary of Reservations that are not

yet concluded, such as date, time and CarModel.

• U11:Cancel Reservation: A Member cancels a Reservation that is not yet concluded.

• U12:Log Off: A Member logs off from iCoot.

System use cases can be depicted on a use case diagram showing the actors and their

associations with particular use cases – this helps us to see at a glance how the system will

be used. A use case diagram for iCoot is shown in Figure 6.5.

148 Chapter 6

U3: View Car
Model Details

U12: Log Off

U5: Log On

Customer

Member

Assistant

U1: Browse
Index

U2: View
Results

U7: Make
Reservation

U11: Cancel
Reservation

U9: Change
Password

U8: View
Rentals

U6: View
Member Details

U10: View
Reservations

U4: Search

iCoot

Figure 6.5: A simple use case diagram for iCoot

On a use case diagram, each use case is shown as a number and a title, inside a bubble.

The box around all the use cases represents the boundary of the system – we can put the

system name just inside the box. Outside the system boundary, we show the actors, adding

associations between the use cases and the actors that use them.

A use case survey (Jacobson’s terminology for one of our non-UML artifacts) is an

informal description of how a group of use cases fit together: the kind of narrative that a

developer might produce when walking sponsors through a use case diagram. A use case

Developer Perspective 149

survey allows sponsors to get a greater understanding of the use cases without any of the

developers present.

Case Study
iCoot use case survey

Any Customer can look for CarModels in the catalog, either by browsing the

CarModel index (U1) or by searching (U4). In the latter case, the Customer

specifies the Categories, Makes and engine sizes that they’re interested in. Either

way, after each retrieval, the Customer is shown the results as a collection

of matching CarModels (U2), along with basic information such as CarModel

name. The Customer can then choose to view extra information about particular

CarModels such as a description and an advert (U3).

Customers who have become Members can log on (U5) and gain access to extra

services. The extra services are: making a Reservation (U7), canceling a Reserva-

tion (U11), checking membership details (U6), viewing outstanding Reservations

(U10), changing their log-on password (U9), viewing their outstanding Rentals

(U8) and logging off (U12).

Assistants are involved in the life cycle of Reservations, moving Cars to and

from the reserved area, for example.

6.5.1 Specializing Actors
Any actor can specialize (inherit behavior from) another actor. This adds more expressive

power to the system use case model. For example, we may decide that Customer is an abstract

concept that should be specialized by Member; once we have introduced this specialization,

it makes sense to introduce the concept of NonMember too.

It’s up to you whether to introduce inheritance between actors early, or late, or not at

all. You (and your colleagues) need to be happy that each particular use of inheritance

is beneficial rather than confusing. Remember that all your sponsors must be able to

understand the artifacts that you produce, from business modeling right the way through to

static analysis, at least. This will help to ensure that you have understood the problem domain

correctly and that you will deliver what the sponsors actually want. Will nonprogrammers

be happy with NonMember is a kind of Customer? It’s up to you to decide.

150 Chapter 6

Case Study
iCoot system actor list with inheritance

Having decided to introduce inheritance for the iCoot actors, the finished system

actor list looks like this (with one extra actor and the inheritance relationships in

parentheses):

• Customer: A person using a Web browser to access iCoot.

• Member: A Customer who has presented their name, address and CreditCard details

at one of our Stores; each Member is given an Internet password to accompany

their membership number. (Specializes Customer.)

• NonMember: A Customer who is not a Member. (Specializes Customer.)

• Assistant: An employee at a Store who contacts Members to tell them about the

progress of their Reservations.

We can modify our use case diagram to show inheritance relationships between actors in

the same way as we would show them between classes, see Figure 6.6. The Customer class

has been shown as abstract – its name is italicized – because no-one is literally a Customer;

everyone is either a Member or a NonMember. (If you don’t have italics to hand, you can add

the keyword {abstract} to the left or above the actor name.)

Even though Customer is abstract, we can still associate it with a use case, to indicate that

every kind of Customer is involved in that use case. As a side effect, some actors, such as

NonMember, will have only indirect associations.

Our diagram now shows specializations explicitly, but it’s useful to have the annotations

in the actor list as well, in case the list is viewed separately.

6.5.2 Use Case Relationships
As well as specialization between actors and associations between actors and use cases,

there are three kinds of relationship between use cases themselves: specializes, includes and

extends. These allow us to group related use cases; to decompose large use cases; to reuse

behavior; and to specify optional behavior:

• Specializes: Just like actors, use cases can inherit from each other. In order to avoid all

sorts of complexity relating to the redefinition of steps and the addition of extra ones, we

can restrict ourselves to specializing abstract use cases. A (pure) abstract use case has no

steps at all: its sole purpose is to group other use cases. For example, we might decide

that U1:Browse Index and U4:Search are both varieties of the abstract use case U13:Look for

CarModels.

Developer Perspective 151

U3: View Car
Model Details

U12: Log Off

U5: Log On

Customer

Member

Assistant

U1: Browse
Index

U2: View
Results

U7: Make
Reservation

U11: Cancel
Reservation

U9: Change
Password

U8: View
Rentals

U6: View
Member Details

U10: View
Reservations

U4: Search

iCoot

NonMember

Figure 6.6: A use case diagram showing inheritance between actors

152 Chapter 6

• Includes: A use case that has some of its steps provided by another use case is said to

include that use case. For example, U1:Browse Index includes, at some point in its behavior,

all the steps of U2:View Results. Inclusion can be used to extract steps common to a number

of use cases, or just to break a large use case down into more manageable chunks.

• Extends: A use case that adds value to another use case is said to extend that use case. For

example, when viewing results (U2), a Customer can choose to view details (U3). Extension

allows us to add optional extras – often, these extras will appear at the end of the use case

(hence the name), but they can also occur at the beginning, or somewhere in the middle.

There is a fundamental difference between inclusion and extension: with inclusion, the

source use case won’t work without the target, whereas, with extension, the source works

perfectly well without the target. Going in the other direction, use cases that are included in

other use cases may have independent existence – they may be executable directly via other

routes. A use case that extends another use case, in contrast, will usually only exist as an

extension.

You’re unlikely to identify use case relationships on your first pass through system

requirements modeling. Beyond that, it is up to you to decide whether they’re really needed,

and whether your sponsors will be able to appreciate them. If you do use relationships, as

with other areas of object orientation, there will be many ways of decomposing use cases into

inclusions, extensions and inheritance. No one way is correct – just try to develop a model

that makes sense to you and your customers.

Case Study
iCoot use case relationships

Our use case descriptions now look like those below. Abstract use cases and both ends

of relationships have been identified – the rationale is that, seeing the annotation, the

reader knows that they will have to look at other use cases to get a complete picture.

• U1:Browse Index: A Customer browses the index of CarModels. (Specializes U13,

includes U2.)

• U2:View Results: A Customer is shown the subset of CarModels that were retrieved.

(Included by U1 and U4, extended by U3.)

• U3:View CarModel Details: A Customer is shown the details of a retrieved CarModel,

such as description and advert. (Extends U2, extended by U7.)

• U4:Search: A Customer searches for CarModels by specifying Categories, Makes

and engine sizes. (Specializes U13, includes U2.)

• U5:Log On: A Member logs on to iCoot using their membership number and current

password. (Extended by U6, U8, U9, U10 and U12.)

Developer Perspective 153

Case Study (cont’d)
• U6:View Member Details: A Member views their (censored) details stored by iCoot,

such as name, address and CreditCard details. (Extends U5.)

• U7:Make Reservation: A Member reserves a CarModel when viewing its details.

(Extends U3.)

• U8:View Rentals: A Member views a summary of the Cars they’re currently renting.

(Extends U5.)

• U9:Change Password: A Member changes the password that they use to log on.

(Extends U5.)

• U10: View Reservations: A Member views summaries of their unconcluded Reserva-

tions, such as date, time and CarModel. (Extends U5, extended by U11.)

• U11:Cancel Reservation: A Member cancels an unconcluded Reservation. (Extends

U10.)

• U12:Log Off: A Member logs off from iCoot. (Extends U5.)

• U13:Look for CarModels: A Customer retrieves a subset of CarModels from the

Catalog. (Abstract, generalized by U1 and U4.)

Use case relationships can be shown on a use case diagram (see Figure 6.7). Inheritance

between use cases is shown in the normal way, using a line with a white arrowhead. An

inclusion is shown as a dashed, open-ended arrow from the including use case to the

included one, labeled with the keyword <<include>> (a word in guillemets in UML indicates

a well-known concept). Therefore, U4:Search includes, at some point in its behavior, all the

steps of U2:View Results. An extension is shown with a similar arrow from the extending use

case to the extended one, labeled with <<extend>> – thus, U3:View CarModel Details is an

optional extra for U2:View Results.

Although we could reduce the two inclusions shown to a single inclusion, from U13 to

U2, that would arguably be less clear. It would also mean that the abstract use case would

have steps, something that we try to avoid. Finally, it would mean that U1 and U4 would not

be able to control where the inclusion took place.

In some cases, an extension is only allowed under certain conditions. We can show this

by adding a UML comment (which looks like a piece of paper) detailing the conditions.

A comment, which may contain any text, can be connected to the relevant point in the

diagram with a dashed line, optionally terminated with a small circle that makes the join

clearer. Conditions in UML are expressed as constraints (text in braces) and may be stated

in natural language, in pseudocode or in UML’s formal Object Constraint Language (OCL).

In Figure 6.7, natural language has been used, to reflect the fact that we’re at a relatively

informal stage of development. As you can see, U7:Make Reservation is only allowed for

Member objects who have logged on.

154 Chapter 6

U3: View Car
Model Details

U13: Look for
Car Models

U12: Log Off

U5: Log On
Customer

Member

NonMember

Assistant

U1: Browse
Index

U2: View
Results

U7: Make
Reservation

U11: Cancel
Reservation

U9: Change
Password

U8: View
Rentals

U6: View
Member Details

U10: View
Reservations

<<extend>>

<
<

ex
te

nd
>

> <<include>>

<<extend>>

<<extend>>

<<
ex

te
nd

>>

<<extend>>

<
<

ex
te

nd
>

>

<<include>>

<<exte
nd>>

U4: Search

{Customer is

a logged-On

Member}

iCoot

Figure 6.7: The final use case diagram for iCoot

Normally, a dashed line with an open-ended arrow in UML indicates a dependency – the

source relies on the target in some way. The implication is that, if the target changes, the

source is affected. For use cases, the use of dependency notation is historical and not strictly

correct. For example, an extending use case doesn’t necessarily depend on the extended

use case. Hence, with a use case diagram, we talk about use case relationships rather than

dependencies. One last point about the notation: for inclusion, the subordinate use case is

the target whereas, with extension, the subordinate is the source – this can cause confusion.

Case Study
iCoot use case survey (complete)

Any Customer can look for CarModels in the catalog, by browsing the CarModel

index (U1) or by searching (U4). In the latter case, the Customer specifies the

Categories, Makes and engine sizes that they’re interested in. Either way, after

each retrieval, the Customer is shown the results as a collection of matching

CarModels (U2), along with basic information such as CarModel name. The

Developer Perspective 155

Case Study (cont’d)
Customer can then choose to view extra information about particular CarModels

such as a description and an advert (U3).

Customers come in two varieties, Members and NonMembers.

Customers who have become Members can log on (U5) and gain access to extra

services. The extra services are: making a Reservation (U7), canceling a Reserva-

tion (U11), checking membership details (U6), viewing outstanding Reservations

(U10), changing their log-on password (U9), viewing their outstanding Rentals

(U8) and logging off (U12).

Assistants are involved in the life cycle of Reservations, moving Cars to and

from the reserved area, for example.

Browsing the index and searching for CarModels are two different ways of

looking for CarModels (U13). In order to view CarModel details, a Customer

must be viewing the results of looking for models (via the browsing or searching

route).

In order to reserve a CarModel, a Member must be viewing its details

(NonMembers can’t make reservations, even when they’re viewing details).

In order to cancel a Reservation, a Member must be viewing their outstanding

Reservations.

6.5.3 System Use Case Details
Once we’ve identified use cases and how they fit together, we need to show the details.

Since UML doesn’t specify what the use case details should include or how they should be

arranged, a choice has been made here based on taste and experience. For Ripple, system

use case details include:

• The use case number and title.

• Whether the use case is abstract.

• relationships to other use cases.

• Any preconditions (conditions that must be satisfied before the use case is carried out).

• The steps themselves (where we can assume that the preconditions have been met).

• Any postconditions (conditions that are guaranteed after successful completion of the use

case).

• Any abnormal paths and what to do in each case (although the paths are abnormal, we

include them if it’s important for us to specify the system’s reaction).

• Any nonfunctional requirements that relate to this use case.

156 Chapter 6

Figure 6.8 shows the format of use case details used in this book; of all the items, only the

number, title, preconditions, steps and postconditions are mandatory – the others can be left

out if they’re empty.

Number, Title (relationships)

Preconditions

Steps

Postconditions

Abnormal paths

Nonfunctional requirements

Figure 6.8: Format for system use case details

Figure 6.9 shows four of the iCoot use cases in the specified format.

These system use cases are significantly more detailed than the business use cases we

saw earlier. This reflects the fact that we’re now trying to be prescriptive rather than merely

descriptive: we want to be precise about the services the system will provide in order to

remove the guesswork from our analysts and designers.

For the purposes of this book, we use a sequence of steps written in natural language. As

a matter of personal preference, you may prefer to add a more algorithmic structure with

conditionals and loops (if–then–else and repeat–until, for example).

When writing use case details, it’s important that we specify the function of the system

but not the way that function is delivered: for example, if we were to include steps such as

2. Customer clicks on the Details. . . button, we would be restricting the user interface designer.

Unless it’s an absolute requirement, you should always try to use neutral words like select,

initiate, indicate and display.

Any reasonable designer will be able to make informed decisions about exactly how

specific the requirements-gatherer is trying to be: for example, the designer may implement

steps in a different order, or in parallel, as long as the end result is the same. We can see where

something like this might happen in U5:Log On: the first three steps could be implemented

in any order and it would make no difference to anyone.

6.5.4 Preconditions, Postconditions and Inheritance
Since we have considered inheritance between use cases, we must concern ourselves with

how specialization affects preconditions and postconditions. (Although it’s recommended

that you only inherit from abstract uses cases without steps, such use cases can still

have preconditions and postconditions, as you can see from Figure 6.9.) Here are the

rules:

Developer Perspective 157

U1: Browse Index. (Specializes U13, includes U2.)

Preconditions: None.

1. Customer selects an index heading.

2. Customer elects to view CarModels for the selected index heading.

3. Include U2.

Postconditions: None.

U3: View CarModel Details. (Extends U2, extended by U7.)

Preconditions: None.

1. Customer selects one of the matching CarModels.

2. Customer requests details of the selected CarModel.

3. iCoot displays details for the selected car model

(makes, engine size, price, description, advert and poster).

4. If Customer is a logged-on Member, extend with U7.

Postconditions: iCoot has displayed details of selected CarModels.

Nonfunctional Requirements:

r1. Adverts should be displayed using a streaming protocol

rather than requiring a download.

U5: Log On. (Extended by U6, U8, U9, U10 and U12.)

Preconditions: Member has obtained a password from their local Store.

1. Member enters their membership number.

2. Member enters their password.

3. Since iCoot must enforce one logon for a Member, Member can choose

to steal (invalidate and thus take over from) an existing session.

4. Member elects to log on.

5. Extend with U6, U8, U9, U10, U12.

Postconditions: Member is logged on.

Abnormal Paths:

a1. If the membership number/password combination is incorrect,

iCoot informs Member that one of the two is incorrect

(for security, they’re not told which one).

a2. If the membership number/password combination is correct,

but Member is already logged on and they have not elected to

steal, iCoot informs Member.

U13: Look for Car Models (Abstract, specialized by U1 and U4.)

Preconditions: None.

Postconditions: Customer has been presented with summaries of

retrieved CarModels.

Figure 6.9: Details for some iCoot system use cases

158 Chapter 6

1. When one use case specializes another, it inherits the parent’s preconditions as a starting

point. Any new preconditions added by the child must only weaken the inherited ones

(they’re combined using ‘or’).

2. For postconditions, the child’s starting point is the postconditions of the parent. Any

postconditions added by the child must only strengthen the inherited ones (they’re

combined using ‘and’).

3. Preconditions and postconditions added by children have no effect on the parent’s

preconditions and postconditions.

In the above list, rule 3 should be obvious from what you already know about object-

oriented theory (children don’t affect the behavior of the parents), but rules 1 and 2 may be

surprising to you. Informally, the reason we can only weaken preconditions and strengthen

postconditions is that the child use cases have an obligation to readers of the parent use case

not to spring any nasty surprises. For example, U13:Look for CarModels has no preconditions,

so if U4:Search had a precondition that said Don’t do this on Tuesdays, anyone prevented from

searching for car models on a Tuesday would have legitimate cause for complaint – ‘Excuse

me, but according to ‘‘Look for Car Models’’, I can look at any time.’

A postcondition on a parent provides a guarantee to users and it wouldn’t be reasonable for

the child to try and water down that guarantee. For example, U4:Search has a postcondition

Customer has been presented with matching CarModels; it wouldn’t be reasonable for a child to

add or a randomly-selected CarModel.

Rules 1 and 2 imply that if a parent has Preconditions: None (there are no restrictions on

when the use case may be applied), its children must also have Preconditions: None; if a parent

has Postconditions: None (there are no guarantees about the outcome), the child can specify

any postconditions it likes.

In summary, when one use case specializes another, you must carefully consider the

preconditions and postconditions of the parent.

6.5.5 Supplementary Requirements
Most of the time, it’s possible to associate nonfunctional requirements with a particular

use case. For example, a nonfunctional requirement of Adverts should be displayed using a

streaming protocol rather than requiring a download fits neatly with U3:View CarModel Details,

the use case that makes adverts available to customers in the first place.

Nonfunctional requirements that don’t fit with any use case can be recorded in a

supplementary requirements document, as shown in Figure 6.10.

6.5.6 User Interface Sketches
Thinking about the user interfaces for the system can help us to clarify the use cases. The

interfaces can be brainstormed with our sponsors at an early stage and the results recorded

Developer Perspective 159

Supplementary Requirements

s1. The client applet must run in Java PlugIn 1.2 (and later versions).

s2. iCoot must be able to cope with a catalog of 100,000 car models.

s3. iCoot must be able to serve a million customers simultaneously

with no significant degradation in performance.

Figure 6.10: Supplementary requirements for iCoot

as user interface sketches. These sketches should be regarded as a functional guide rather

than a professional GUI design: they help us to identify and partition functionality in a way

that can be implemented according to personal preference.

For example, Sketch 1 in Figure 6.11 shows a user interface that allows the user to select

one or more categories, manufacturers and engine sizes; on clicking the Retrieve button, we’re

referred to Sketch 2 which shows a list of matching car models; clicking the < Go Back button

returns us to Sketch 1; clicking the Details. . . button takes us on to Sketch 3 (not shown); and

so on. (Obviously, these are not the original sketches that were hand-drawn on a whiteboard;

they’re the versions that had been agreed by the end of the brainstorming session, which

were then mocked up using a drawing package.)

Since use cases and user interfaces both represent a partitioning of system functionality,

it’s a good idea to maintain a clean mapping between the two, a mapping that survives

through to implementation. For example, with iCoot, we have three broad categories of

access: member access, nonmember access and assistant access. This suggests three separate

user interfaces.

Within each user interface, we should provide a window or a panel that corresponds

to each of the use cases (the choice of window, panel, or some other widget is, of course,

a design issue). For example, the sketches in Figure 6.11 show a notebook-style widget

representing the nonmember interface. Nonmembers can search the catalog and browse the

index, so each of these use cases is assigned its own page in the notebook. Both of these

use cases include viewing the results – another use case that gets its own panel. We would

expect the Search, Index and Results panels to be reused in the member interface. (For easier

migration, the assistant interface will resemble the existing Auk interface.)

6.5.7 Prioritizing System Use Cases
It’s a good idea, especially in the context of an incremental development process, to rank

system requirements in order of their implementation priority. With use case modeling, the

obvious thing to do is to rank the use cases – each can then be given a score to indicate its

160 Chapter 6

Search Index

Search

2

31

Retrieve...

category a
category b
category c
category d

manufacturer a
manufacturer b
manufacturer c
manufacturer d

engine size a
engine size b
engine size c
engine size d

< Go Back Details...

car model a
car model b
car model c
car model d
car model e
car model f
car model g
car model h
car model i

1 :

2 :
Index

Figure 6.11: User interface sketches for iCoot

urgency. The priorities and urgencies can be used to help plan the rest of the development

and any further increments.

One useful scoring technique is traffic lights:

• Green use cases must be implemented in the current increment; failure to do so means

that the project has failed to reach its minimum goals.

• Amber use cases are optional for the current increment and should only be attempted

once the green use cases have been completed (they’re added bonuses that we can use to

impress our sponsors). Any amber use case that is incomplete by the delivery date must

be dropped completely (partial implementations look unprofessional).

• Red use cases won’t be implemented in the current increment, even if time permits: they’re

outside the scope of the current increment and proper allowances are unlikely to have

been made for them.

Developer Perspective 161

In practice, use case priorities (and urgencies) will be based not only on desirability, but also

on how much of the system architecture and coding effort individual use cases will pull into

the current increment: choosing priorities requires a certain amount of skill, experience and

crystal-ball gazing. There’s nothing wrong with putting easier use cases first: they will help

us to learn more about the system as we iterate, with less risk.

If you’re lucky enough to have time available at the end of the increment (after finishing

the green use cases and all the amber use cases), you should:

• Review the project status.

• Finalize planning for the next increment (re-prioritizing unimplemented use cases, for

example).

• Do some unrelated work.

• Have an office party.

• . . .

Case Study
iCoot use case priorities

• Green:

– U1:Browse Index

– U4:Search

– U2:View Results

– U3:View CarModel Details

– U5:Log On

• Amber:

– U12:Logoff

– U6:View Member Details

– U7:Make Reservation

– U10:View Reservations

• Red:

– U11:Cancel Reservation

– U8:View Rentals

– U9:Change Password

U1:Browse Index is both essential and simple (because it doesn’t involve rentals or

reservations), so it goes at the top of the list; U5:Log On is essential before any of the

member services can be made available, so it must appear before the member services;

U6:View Member Details is attempted before U7:Make Reservation because it is simpler

(reservations turn out to have a complicated life cycle); and so on.

162 Chapter 6

Assigning priorities and urgencies to system use cases is another indication that we should

develop for extensibility and reuse. Here’s a summary of how the traffic lights fit in with the

other stages of development, after business modeling:

• Green: System requirements, analysis, system design, subsystem design, specification,

implementation and testing should be complete for use cases in this group.

• Amber: System requirements should be complete and analysis and system design should be

complete, or nearly complete, for use cases in this group; subsystem design, specification,

implementation and testing are optional.

• Red: System requirements should be complete for use cases in this group; analysis is

optional; system design should support these use cases; subsystem design, specification,

implementation and testing should not be performed.

Of course, ‘complete’ is a relative term in a spiral, iterative and incremental process.

6.6 SUMMARY
In this chapter, we looked at:

• The importance of specifying functional requirements (what the system must be
able to do, such as ‘browse the catalog’) and nonfunctional requirements (how the
system must run, such as the specific Web browsers that must be supported) in a
requirements phase before any coding begins.

• Modeling the business context and system functionality using high-level business
use cases and identifying actors.

• Modeling the system requirements with a complete use case model comprising
use cases, use case diagram, supplementary requirements, user interface sketches,
use case priorities and urgencies. Although communication diagrams and activity
diagrams were considered optional at this stage, a glossary is always essential.

FURTHER READING
Although it doesn’t cover UML, a mine of useful information on the theory of business

process modeling is [Bustard et al. 00].

Ivar Jacobson’s original book on the Objectory method [Jacobson et al. 92], describes the

original justification for use cases and the kind of information that they should contain – it’s

Review Questions 163

always a good idea to see how an important technology came about in the first place. Alistair

Cockburn is a widely respected authority on use cases. As well as a book on the subject

[Cockburn 00], Cockburn has his own web site at www.usecases.org.

For more advice on communication diagrams and activity diagrams, Martin Fowler’s book

[Fowler 03] is a good place to start. As ever, [OMG 03a] has comprehensive coverage of the

notation.

REVIEW QUESTIONS
1. With reference to Figure 6.12, what are X1, X2 and X3? Choose only one option.

(a) Roles.

(b) Prima donnas.

(c) Actors.

(d) Sticks.

UC1

UC3

UC4

UC5

UC2
<<extend>>

<<include>>

X1

X2

X3

Figure 6.12: For use with Review Questions 1, 2 and 5

2. With reference to Figure 6.12, which of the following statements are true? Choose all

options that apply.

(a) X3 can interact with the system using UC4.

(b) X1 can interact with the system using UC1 and UC4.

(c) X3 and X1 are different kinds of X2.

(d) UC3 is an abstract use case with no steps of its own.

164 Chapter 6

PizzaBase Case Study
The PizzaBase restaurant wants to automate the ordering of pizzas by customers.

Each table will be fitted with a touch-sensitive screen which customers can use to

browse the pizzas on offer and select their choice.

Two basic types of pizza will be offered: the Do-it-Yourself will have a base with

tomato sauce only and then customers can choose any number of toppings, at a fixed

price per topping; the Prefab will come in several varieties, each with a fixed set of

toppings. Every pizza can be ordered with a deep crust or crispy base, and three sizes

are available: 6 inch, 9 inch and 12 inch.

Customers will also be able to order from a fixed set of drinks, such as cola and

lemonade flavors, each in large or small size. Once customers have confirmed their

order, they will be shown the final price and, thereafter, the screen will display the

progress of their food as it is being prepared and cooked. At the end of a meal,

payment will be made in the conventional way.

3. With reference to the PizzaBase case study, which of the following options are likely

business use cases? Choose all options that apply.

(a) Customer pays for meal.

(b) Restaurant prepares meal.

(c) Customer sees progress of food.

(d) Customer chooses pizza.

(e) Customer selects drink from display.

4. Which of the following UML artifacts is used to show the steps involved in getting value

from a system? Choose only one option.

(a) User interface sketches.

(b) Glossaries.

(c) State machine diagrams.

(d) Use cases.

(e) Class diagrams.

(f) Deployment diagrams.

5. With reference to Figure 6.12, which of the following statements are true? Choose all

options that apply.

(a) UC5 is a compulsory part of UC4.

(b) UC4 is an optional part of UC5.

(c) UC1 is unused.

(d) UC2 is an optional part of UC4.

(e) UC4 is a compulsory part of UC2.

Answers to Review Questions 165

C

A B

Figure 6.13: For use with Review Question 6

6. With reference to Figure 6.13, what kind of objects are A, B and C? Choose only one

option.

(a) A is an entity, B is a controller, C is a boundary.

(b) A is a boundary, B is an entity, C is a controller.

(c) A is an entity, B is a boundary, C is a controller.

(d) A is a controller, B is an entity, C is a boundary.

(e) A is a boundary, B is a controller, C is an entity.

(f) A is a controller, B is a boundary, C is an entity.

ANSWERS TO REVIEW QUESTIONS
1. In Figure 6.12, X1, X2 and X3 are c. Actors.

2. With reference to Figure 6.12, all of the statements are true:

(a) X3 can interact with the system using UC4.

(b) X1 can interact with the system using UC1 and UC4.

(c) X3 and X1 are different kinds of X2.

(d) UC3 is an abstract use case with no steps of its own.

3. The following options are likely business use cases:

(a) Customer pays for meal.

(b) Restaurant prepares meal.

(d) Customer chooses pizza.

4. d. Use cases show the steps involved in getting value from a system.

5. With reference to Figure 6.12, the following statements are true:

(a) UC5 is a compulsory part of UC4.

(d) UC2 is an optional part of UC4.

6. With reference to Figure 6.13, d. A is a controller, B is an entity, C is a boundary.

7
Analyzing the Problem

In this chapter, we’ll be looking at the classical analysis phase and how to do it in a

modern, object-oriented way. Analysis is an essential bridge between requirements capture

and design, leading us from a clear statement of what the system must provide to a clear

understanding of the objects that we’ll be dealing with. Once we understand the objects that

we must deal with, we stand a much better chance of producing an elegant solution.

Learning Objectives
Understand what analysis is.

•
Build a static analysis model.

Understand how dynamic analysis
can help us to verify the static

model.

Chapter Outline

7.1 Introduction

7.2 Why Do Analysis?

7.3 Overview of the Analysis Process

7.4 Static Analysis

7.5 Dynamic Analysis

7.6 Summary

Further Reading

Review Questions

Answers to Activity 4

Answers to Activities

Answers to Review Questions

7

168 Chapter 7

7.1 INTRODUCTION
Analysis is about discovering what the system is going to handle, rather than deciding

how to do the handling. We need to decompose a complex set of requirements into the

essential elements and relationships on which we will base our solution. Analysis is our first

opportunity to get to grips with modeling the real world as objects.

An analysis model has both static and dynamic parts. We can depict the static analysis

model using a class diagram. A class diagram shows the objects that the system will handle

and how those objects are related to each other. For the dynamic analysis model, we can use

communication diagrams to demonstrate that our static model is feasible. As before, rather

than all the intricacies of UML notation, you’ll see only the essential parts here: the parts

that will suffice for most purposes.

There are two inputs to analysis:

• The business requirements model (see Section 6.4) contains descriptions of the manual

and automated workflows of our business context, described using business-oriented

versions of actors, use cases, objects, the glossary and, optionally, communication diagrams

and activity diagrams.

• The system requirements model (see Section 6.5) contains an external view of the system,

described as system-oriented versions of actors, use cases and use case diagrams, user

interface sketches, an enhanced glossary and nonfunctional requirements.

These inputs must be transformed into a model of the objects that will be processed by

the proposed system, along with their attributes and relationships. These objects will exist

within the system itself or at the system boundary, accessible via one or more interfaces.

Most of the objects that we discover at this stage will correspond to physical objects or

concepts in the real world (lower-level, solution-oriented objects won’t appear until design).

Once we have a model of the system objects, we will put them through a verification process

to convince ourselves that they would support a solution.

7.2 WHY DO ANALYSIS?
So, why do we do analysis in the first place? Because analysis stops us designing a solution

before we understand the problem. Although, in principle, we could jump straight into

design and then implementation, hoping to draw out an understanding of the problem

through trial and error, the analysis techniques we’ll look at here are much more efficient.

(Some well-chosen prototyping or proof-of-concept work is still permitted, if you feel the

situation calls for it.)

Overview of the Analysis Process 169

We can’t expect to have a complete understanding of the problem from the business

requirements model, because it describes existing practices: by adding software, we expect to

be introducing new practices. Also, we have not separated manual workflows and automated

(or potentially automated) workflows: for example, reserving a car model, as described in

Chapter 6, involves both human-to-human and human-to-computer interaction. Even when

we have a system use case model, our understanding of the problem is still incomplete,

because the focus of use cases is external: use cases deal with the interactions between

actors and the boundary of our system – the system itself is regarded as a black box,

with only the outside visible. Use cases are imprecise: in order to make them easy to

produce and easy to understand, use cases are written in natural language – therefore, they

rely on our ability to understand language and to make certain assumptions. Business

requirements modeling and system requirements modeling must still be done, of course: the

former allows us to understand the business context; the latter forms a contract with our

sponsors.

Once we’ve completed static analysis, our sponsors will be able to confirm that our

understanding of the business objects is correct, before we let the objects influence our

design. After dynamic analysis, we will be confident that our analysis objects support

the required system functionality. In keeping with the philosophy of spiral development,

dynamic analysis will also help us to build the static model. The static analysis model is also

valuable when it comes to designing a database schema (for those business objects that need

to be stored).

7.3 OVERVIEW OF THE ANALYSIS PROCESS
In the case of Ripple, analysis has the following steps which you repeat until you and your

sponsors are happy:

1. Use the system requirements model to find candidate classes that describe the objects

that might be relevant to the system and record them on a class diagram.

2. Find relationships (association, aggregation, composition and inheritance) between the

classes.

3. Find attributes (simple, named properties of the objects) for the classes.

4. Walk through the system use cases, checking that they’re supported by the objects that

we have, fine-tuning the classes, attributes and relationships as we go – this use case

realization will produce operations to complement the attributes.

5. Update the glossary and the nonfunctional requirements as necessary – the use cases

themselves should not need updating, although perhaps they will need some cor-

recting.

170 Chapter 7

The term ‘realization’ means ‘making real’. Operations discovered during use case

realization should be disregarded during design – at this stage, we’re trying to build our

confidence not design the solution.

You will need to show class diagrams, complete with attributes, to your sponsors, so that

they can look for mistakes (those sponsors that understand the business probably understand

it better than you do). A member of your team should summarize the information shown in

the class diagram while the sponsors look on. This, coupled with the fact that class diagrams

are relatively easy for nonprogrammers to understand, will elicit useful comments such as

‘Hang on, did you just say that nonmembers can’t reserve cars? You know, they can if they

pay a deposit . . . ’ Deciding when to present the class diagram to sponsors is up to you (and

your team), but you will generally do so at least twice: once to look for mistakes and once to

verify that you’ve fixed the mistakes.

Generally, it’s not a good idea to show object operations or communication diagrams to

your sponsors, because:

• They add a lot of complexity.

• They’re superfluous, as far as nonprogramming sponsors are concerned, because you’ve

already demonstrated the dynamic behavior with the system use cases.

• They imply code, something that’s definitely taboo for nonprogrammers.

• They will be discarded before design anyway.

Some sponsors, such as technical managers, may like to be shown a little of the dynamic

analysis in order to increase their confidence: fine, but do this in separate, technical, meetings.

In the rest of this chapter, we’ll look in detail at static and dynamic analysis, respectively.

7.4 STATIC ANALYSIS
Static modeling involves deciding on the logical or physical parts of the system and how

they should be connected together. Roughly speaking, it describes how we construct and

initialize the system.

7.4.1 Finding Classes
In the previous chapters of this book, classes were not identified systematically. Because

we have now gone through the processes of business requirements modeling and system

requirements modeling, we have a good source of candidate classes in the form of system

use cases.

Candidate classes are often indicated by nouns in the use cases. With a little practice, we

can quickly cross out those nouns that represent:

Static Analysis 171

• The system itself, for example, ‘system’ or ‘iCoot’: As far as we’re concerned, the system is

just a boundary for the development effort.

• Actors, for example, Assistant or Head Office: An exception to this is when we need to

store information about an actor internally (for example, for Member, we need to store a

password). Most of the time, actors are anonymous driving forces for our boundaries.

• Boundaries, for example, ‘customer applet’ or ‘head office link’: At this stage, we’re trying

to identify business-related objects with interesting information and behavior. Boundaries

are particular pieces of software that allow actors to get at our objects.

• Trivial types (for example, strings and numbers): We can assume that these will be

provided by the implementation language or its libraries.

Short descriptions for the candidate classes that are left after this filtering process should

be added to the glossary. If you can’t write a short description for any class, maybe you’re

expecting it to represent too much: consider splitting it into more than one class.

7.4.2 Identifying Class Relationships
Once we have a list of candidate classes, we can try to draw relationships between them.

There are four possible types of relationship:

• Inheritance: A subclass inherits all of the attributes and behavior of its superclass(es).

• Association: Objects of one class are associated with objects of another class.

• Aggregation: Strong association – an instance of one class is made up of instances of

another class.

• Composition: Strong aggregation – the composed object can’t be shared by other objects

and dies with its composer.

Inheritance is a different kind of relationship to the other three: inheritance describes a

compile-time relationship between classes while the others describe a run-time connection

between objects. According to the UML standard, all run-time relationships come under

the umbrella term association. However, most people use the term ‘association’ to mean ‘an

association that isn’t aggregation or composition’.

Choosing between relationships can be tricky – you need to use intuition, experience

and guesswork. During analysis, you should expect the frequency of these kinds of

relationship to be:

association > aggregation > inheritance > composition

As far as design and implementation are concerned, the differences between association,

aggregation and composition can be difficult to spot.

172 Chapter 7

7.4.3 Drawing Class and Object Diagrams
A class diagram shows us what classes exist and how they’re related. (Officially, class

diagrams can also show attributes and operations, but that requires a lot more space.) In the

case of aggregation, composition and association, the class diagram shows permitted run-time

relationships rather than actual ones.

Figure 7.1 shows a UML class diagram for iCoot. Every class is represented as a box with

the class name inside (in bold, if not drawing by hand). If the class is abstract, the class

name is italicized. If you’re labeling an abstract class by hand, you can add the keyword

{abstract} above or to the left of the class name instead of using italics.

Car
Model

Car
Model
Details

makes

Make

Car

example of

Car
Details

details

Credit
Card

Rental

Customer

VendorCategory

Reservation

Member

Address

lives
at

taken out
by

rented under

details

classified
as

sold
by

*

*

*

*

*1..

* * *1.. *1..

1

1

1

1
1

1

1

1

0..1

*

*1..

Internet
Account

logs in
with

1

1

guaranteed
by

NonMember

Figure 7.1: An analysis class diagram for iCoot

Relationships between classes are shown as lines with various annotations. Even without

particular knowledge of UML, its easy to pick information out of a class diagram, just from

the text. For example, we can see that ‘A Car can be rented under a Rental’, ‘A Rental can be

taken out by a Customer’, and so on.

Although the relationships on a class diagram are usually drawn between classes, the

run-time relationship is actually between objects: for example, according to Figure 7.1, we

would expect to see instances of Car connected to instances of Rental at run time. UML allows

us to draw run-time objects as well as compile-time classes, as shown in Figure 7.2 Although

UML allows us to mix classes and objects on the same diagram, people generally use the

Static Analysis 173

aRentalAgreement

fredasAgreement:RentalAgreement

anAlphaRodeo:Car

aCar2

theYellowMolesChoice:Car

aCar1

Figure 7.2: Depicting objects in UML

term class diagram if there are no objects and object diagram if there are no classes (it’s up

to you what you call a diagram that has both).

In object diagrams, objects are shown as boxes connected by links – the links are ‘realized’

associations. So that we can easily spot the difference between classes and objects, object

labels are underlined. As well as the object’s name, a label can include the object’s class, after

a colon, as in fredasRental:Rental. We can show either the object’s name, or the object’s class,

or both. If we show only the object’s class, we have to include the colon, to distinguish a

class name from an object name, as in :Rental.

Figure 7.2 shows two rentals: under the first, aRentalAgreement, aCar2 and anAlphaRodeo

have been rented; under the second, fredasRentalAgreement, theYellowMolesChoice and aCar1

have been rented. As you can see, object names correspond to the kind of variable names we

would use in our programs.

Object diagrams are useful for illustrating a particular run-time scenario, but they’re

optional. For clarity, we would prefer to avoid putting classes and objects on the same

diagram.

7.4.4 Drawing Relationships
Figure 7.3 shows how inheritance is depicted on a class diagram: a white filled arrowhead on

a solid line is drawn from the subclass to the superclass. In order to emphasize hierarchies of

174 Chapter 7

Car

Sports

Car

Saloon

Car
Sports

Car

Saloon

Figure 7.3: Depicting inheritance in UML

EngineCar

Figure 7.4: Depicting aggregation in UML

Car Body

Figure 7.5: Depicting composition in UML

Car Driver

Figure 7.6: Depicting association in UML

subclasses, the arrows can be combined in the style shown on the left. Thus, SportsCar and

Saloon are both subclasses of Car.

Aggregation is drawn as a line between two classes with a white diamond on the

aggregator’s end. So, Figure 7.4 shows that an Engine is part of a Car.

Composition is drawn in a similar way to aggregation, but with a black diamond on the

composer’s end – see Figure 7.5, which shows that a Body is always part of the same Car.

Association is shown as an undecorated line (see Figure 7.6). Thus, a Driver is associated

with a Car, but the Driver is not part of the Car (that would be aggregation) and the Driver is

not always part of a single Car (that would be composition).

When developing your analysis class model, for the sake of simplicity, make sure that

information can only be deduced in one way. For example, the iCoot class diagram shown

in Figure 7.1 allows us to calculate how many Cars a particular member is renting, from the

Static Analysis 175

Rental class, the rented under association and the taken out by association. Thus, it would be

redundant to show a hasOutForRent association from the Member class to the Car class, even

if our use case model implied that such an association were needed.

Multiplicity
All relationships except inheritance can indicate at either end the number of run-time objects

that are allowed to take part in the relationship (the multiplicity of the relationship):

• n: Exactly n.

• m..n: Any number in the range m to n (inclusive).

• p..*: Any number in the range p to infinity.

• *: Shorthand for 0..*.

• 0..1: Optional.

For composition, the multiplicity at the composer’s end is always 1 because, according to

the UML rules, a composed object can’t be shared among composites – thus a multiplicity

would be redundant in this case. In other cases, if no multiplicity is shown, we must assume

that it has not been specified, or that it is simply not known at this stage. It would be wrong

to assume that a missing multiplicity implied some default value, such as 1.

Looking at Figure 7.7, we can deduce the following:

• A Car has one Engine.

• An Engine is part of one Car.

• A Car has four or five Wheels.

• Each Wheel is part of one Car.

• A Car is always composed of one Body.

• A Body is always part of one Car and it dies with that Car.

• A Car can have any number of Drivers.

* * Car

Body

Wheel

EngineDriver

Passenger

1

1

1
1..

4..50..7

Figure 7.7: Depicting multiplicities in UML

176 Chapter 7

• A Driver can drive at least one Car.

• A Car has up to seven Passengers at a time.

• A Passenger is only in one Car at a time.

Even though the notation we’ve seen so far appears to be unambiguous, things are never

that easy, because we’re still dealing with natural language and assumptions about the real

world that the reader will make. For example, the association between Car and Passenger,

rather than being read as shown in the list above, could be read as the following pair of

statements:

• For each Car, there are only seven Passengers that could ever be in the Car.

• A Passenger is only allowed in one particular Car.

You may well argue that our initial interpretation is more obvious, based on what the

modeler is likely to be trying to say (although we frequently talk about how many people a

car can carry, when would we ever want to dictate who was allowed to ride in a particular

car?). If the distinction is not obvious, or we wish to be pedantic for the sake of it, we can

provide a verbose description – a class survey, if you like. Or, we could provide further

annotation for our diagram using comments.

The difference between aggregation and composition is subtle. In Figure 7.7, why is the

Engine aggregated while the Body is composed? The differences relate to object sharing and

object lifetimes. Recall that a composed object can never be part of more than one composite

and dies with the composite, while an aggregated object can be shared and can outlive its

aggregator. Although a car trundles out of the factory with a brand new engine inside, the

engine may later be replaced, because it’s worn out, so the engine doesn’t necessarily die

with the car; in contrast, the body of the car is an intrinsic part of the car – it’s the soul of the

car, if you like, you can’t destroy the car without destroying the body (but you could always

take the engine out first). The issue of sharing is not important in this example: although the

body could never be part of two cars (not legally, anyway), the engine couldn’t either.

All this may seem a little confusing. The existence of composition in UML is really just a

result of the properties of programming languages like C++. In C++, an object can be part

of the same piece of memory as another object: in this case, the sub-object certainly dies

with the larger object. This language property also leads to the second part of the rule: a

composed object can’t be part of two objects at the same time. Even if the composed object

is separate, we have no garbage collector in C++, so the composer may want to delete the

composed object when the composer itself is deleted, which reinforces the danger of sharing.

It would be neater if UML also required the composite to create the composed object (that

would work well for our body example); however, that would prohibit us from creating the

composed object first and then passing it into the composite’s constructor.

Static Analysis 177

The fact that composition is really a programming issue implies that it is more common in

design than analysis. As a matter of analysis style, it’s recommended that you use aggregation

when there is an obvious part–whole relationship (as in the engine example) and save

composition for those rare cases when there is an obvious shared lifetime (as in the body

example).

For design purposes, composition is also useful when you wish to add behavior to an

object by hiding a delegate object inside, rather than by inheriting from another class (we

saw an example of this in Chapter 3 with Stack and LinkedList).

From an implementation point of view, one-to-many and many-to-many relationships

often result in the use of collection objects (lists, trees, sets, etc.) at run time. For example,

Car may employ some kind of List object to hold on to its passengers. One advantage of

using multiplicities on class diagrams is that we do not need to be specific about such messy

implementation details until much later.

Association Labels, Roles and Comments
All relationships, except inheritance, can be given an association label, indicating the nature

of the association. If it’s not obvious which way the association name should be read, a black

arrowhead can be used. For example, in Figure 7.8, we can see that there is at least one Wheel

that turns the Car.

Car

Wheel

Wheel

Wheel

Spare wheel is

required by

law

sparecarrier

1..2

turns

rear

2

1

1

1

Figure 7.8: Association labels, roles and comments in UML

As well as association names, we can show roles. A role indicates the part played by an

object in the association – the role is shown as a label near the object that plays the role. For

example, Figure 7.8 indicates the following roles:

• A Car has one Wheel acting as a spare.

178 Chapter 7

• The spare Wheel has one Car acting as its carrier.

• A Car has two rear wheels.

In principle, association names and roles can be combined on the same association, but

most of the time they should be considered alternatives (in order to avoid clutter).

Figure 7.8 also shows a UML comment, an arbitrary piece of text enclosed in an icon

that looks like a piece of paper, connected to the relevant part of the diagram by means of a

dashed line. If the target of the dashed line is unclear, we can put a small white circle with a

black border at the end – this is useful when the target is another dashed line, for example. A

comment, which can appear on any diagram, can be used to provide extra information that

would be difficult or messy to show using other UML notation.

7.4.5 Attributes
An attribute is a property of an object, such as its size, position, name, price, font, interest

rate, or whatever. In UML, each attribute can be given a type, which is either a class or a

primitive. If we choose to specify a type, it should be shown to the right of the attribute

name, after a colon. (We might choose not to specify attribute types during analysis, either

because the types are obvious or because we don’t want to commit ourselves yet.)

Attributes can be shown on a class diagram by adding a compartment under the class

name. To save space, we can document them separately instead as an attribute list, complete

with descriptions. If we were using a software development tool, we would expect to be able

to zoom in to see attributes (and their descriptions) or zoom out to see class names only.

If you can’t provide a short description for an attribute at this stage, perhaps it should be

several attributes, or even a class in its own right.

 Engine

capacity

horsePower

manufacturer:String

numberOfCylinders

fuelInjection:boolean

Figure 7.9: Depicting attributes in UML

Figure 7.9 shows the attributes of an Engine: capacity, horsePower, manufacturer, numberOf-

Cylinders and fuelInjection. This diagram is specific about the type given to manufacturer

(String) and fuelInjection (boolean); the implication is that we’ve decided that we will never

Static Analysis 179

be interested in finer details of the manufacturer – address, for example – or the particular

variety of fuelInjection (we just want to know whether or not it’s there).

As soon as we start showing attribute types, we open a can of worms: what is a String?

What is a boolean? If the type is the name of one of our own classes, there’s no problem.

Other than that, we don’t want to tie ourselves to a particular programming language or set

of libraries. Therefore, it’s recommended that you stick to ubiquitous primitives (such as int,

boolean and float) and one or two obvious classes (for example, it’s fairly obvious that String

indicates an object containing a sequence of characters).

Although UML does allow us to define our own primitives in language-independent

notation – Integer, Real and Boolean, for example – you might like to avoid using this facility

because, when you come to design, you will have to be language-specific. (Another reason

to avoid this issue is that, in Java, types such as Integer are classes, not primitives.)

You may also like to avoid using the array type, which is usually a cross between an object

and a primitive, even though most object-oriented languages support it. The reason is that

your classes are likely to be more elegant if you use collection classes such as List and Set

exclusively. During the design phase, you may find yourself using arrays more, but you will

need to be careful not to compromise good style for the sake of a slight improvement in

performance.

For simplicity, you should avoid including derived attributes in your artifacts. For

example, a circle’s attributes include radius, diameter, circumference and area. However, we

could store any one of these attributes and calculate the rest at run time, so we only need to

show one of the four attributes on our class diagram. In this case, radius seems the obvious

choice, because it’s probably going to be accessed more than the others (so we’d rather not

calculate it) and the other attributes can be calculated using multiplication (which is faster

than division).

As far as UML is concerned, attributes and associations (all three varieties) are just

properties of a class. In other words, every attribute can be shown as an attribute or as an

association with the attribute’s name as the role (although an association to a primitive value

or an array would look odd). This means that we can add multiplicities to attributes, after

the type name, as in *, for a multi-valued attribute, or [0..1], for an optional attribute. This

is UML’s way of avoiding the thorny issue of whether we should show an attribute or an

association in any particular case. In this book, multiplicities won’t be shown for attributes,

except in the case of optional attributes.

Figure 7.10 shows a full set of attributes for the analysis objects discovered while

examining the iCoot system use cases. For completeness, some of the attributes shown are

from the full Coot system (totalAmount, for example). In order to avoid manipulating images

and video in the system, adverts and posters are simply attributes that specify a location

elsewhere (using a URL, for example).

180 Chapter 7

engineSize

description

advert

poster

CarModelDetails Car

travelled

dateLost[0..1]

CarModel

name

price

barCode:String

numberPlate

vin

 CarDetails

 Rental

number

startDate

dueDate

totalAmount

expiryDate

number:String

type:String

 CreditCard

inGoodStanding:

 boolean

number:String

 Member
number:String

timestamp

state

 Reservation

driversLicense:

 String

 NonMember
house

street

county

postCode

 Address Customer

name
phoneNumber:
 String
amountDue:int

Make

name

Category

name

Vendor

name password:String

Internet

Account

Figure 7.10: Attributes for iCoot

The dateLost attribute is optional (indicated by its [0..1] multiplicity): if the Car is lost, we

record the date it was lost, otherwise we record nothing. In programming terms, we could

use a null pointer to indicate that a particular Car is not lost. If an optional attribute has

a primitive type, such as int, we have to reserve one value to indicate ‘no value here’: for

example, our model might allow us to set aside 0 or -1.

Occasionally, you’ll find attribute multiplicities to be useful, but don’t overuse them. For

example, only one attribute in this entire book (dateLost) required a multiplicity (even then,

it could be argued that a more general notion of ‘car state’ would have proved better in the

long run).

As we saw earlier, UML allows us to draw run-time objects as well as compile-time classes.

Figure 7.11 shows how we can specify run-time attribute values on object diagrams.

 aRental

startDate = 2004/06/23

dueDate = 2004/07/22

totalAmount = €1500

Figure 7.11: Depicting attribute values in UML

Static Analysis 181

Car

Car

Green
Car

Red
Car

Color Car

color:Color

color
11

Car Color
1

Figure 7.12: Choosing between attributes and relationships

Attribute or Relationship?
Often, we need to make choices between alternative ways of modeling information. For

example, how would you choose to model the color of a Car, for the benefit of customers?

Figure 7.12 shows four alternatives:

1. Introduce an aggregation between Car and a class called color.

2. Add an attribute to Car called color, with type color.

3. Introduce a subclass of Car for each possible color.

4. Introduce a composition between Car and color.

All of these options make sense, although some of them may seem counter-intuitive. But

how would we choose?

The central issue is this: which modeling option fits the situation best? Or, to put it another

way, which is the most natural? As far as option 1 goes, it seems a little heavy-handed to

say that the color is part of the Car. Option 2 seems pretty good: as far as Car buyers are

concerned, the color is just one of a Car’s attributes. Option 3 definitely seems to be over the

top – do we really want a new type of Car for every available color, especially when there

might be dozens? Option 4 seems a little more sensible than option 1 – a Car comes out of

the factory sprayed a particular color; even if we change the color later, the original color is

likely to remain underneath. Overall, option 2 would seem to be most appropriate in the

context of buying cars.

182 Chapter 7

But would the choice be different if we were modeling cars on behalf of a car manufac-

turer? In that case, the manufacturer of the paint would probably become important – we

would need to know where to get more if we ran out. So, we would need to model the color

as a separate class with its own relationships and attributes; therefore, option 4 might be the

best choice.

Could we ever justify option 3? Perhaps. For example, if we were psychologists seeking

to model the effect of a car’s color on the behavior of the driver – maybe red cars incite

dangerous driving while green cars encourage caution. In that case, red and green cars may

be sufficiently different to justify modeling them as separate classes.

The moral of this story is that the analysts must choose whichever representation seems

to fit the current situation best: there is no correct answer. The best advice is probably not

to worry about the philosophy too much. Instead, use common sense, experience, intuition,

spirals and iterations to press forward to a successful implementation.

In order to avoid confusion, you should ignore the fact that UML doesn’t distinguish

between an attribute and an association-plus-role. Be guided by your model: if it seems to be

an attribute, draw it as an attribute; if it appears to be an association, draw it as an association.

7.4.6 Association Classes
Occasionally, an association has some information or behavior related to it. An association

class can be introduced alongside the association, as depicted in Figure 7.13. This diagram

indicates that a CarModel can be associated with any number of Customer objects and a

Customer can be associated with any number of CarModel objects. For each link, there is a

corresponding Reservation object that has a number, time-stamp and state. There is no name

given to the association in this case, because it is implicit in the name of the association class.

CarModel Customer

number:String

timestamp

state:ReservationState

Reservation

Figure 7.13: An association class from iCoot

An association class represents attributes and operations that exist only because the

association exists: the attributes and operations are not tied to the objects at either end of the

association. In the example above, when a customer makes a reservation, a new link is created

at run time between the Customer and the corresponding CarModel. During requirements

Static Analysis 183

capture and analysis, it was determined that the reservation number, time-stamp and state

must all be recorded. However, there is no sense in which these attributes fit with the

Customer or with the CarModel, they’re somewhere in between. Therefore, an association

class is appropriate.

When we come to design, we will have to replace association classes with something more

concrete, because they’re not supported directly in most programming languages. However,

they are useful during analysis.

7.4.7 Tangible versus Intangible Objects
Often, you will find yourself modeling an intangible object, such as a product described in a

catalog, and a separate tangible object, such as the actual item that is delivered to your door.

The object in the catalog describes the properties of something that you could order from the

supplier, but which hasn’t necessarily been manufactured yet. The object that arrives at your

door definitely has been manufactured, it is an instance of the type of product described in

the catalog. Typically, there are many tangible objects for each intangible one.

It is a common mistake to model tangible and intangible pairs as a single object. For

example, if we were writing a sales system for a car dealership, we would discover during

analysis that we were dealing with ‘catalogs’ describing the cars available for sale, ‘cars’ that

we sell to customers, and ‘customers’ that buy the cars. It would be easy to conclude that

we should produce the three concrete classes shown in Figure 7.14. However, in reality, we

have two ‘car’ concepts here: the car that appears in the catalog is intangible, it describes the

features of all cars of that type, but there may not be any such car in existence; in contrast, the

car that is owned by a customer is tangible, it definitely exists, because it can be driven – it

is separate from any similar car owned by a different customer.

Getting it Wrong
To reinforce the issue of tangibility, let’s assume that, as well as selling cars, our dealership

services customer cars on request. The information relating to sales includes:

• modelNumber: This identifies the production process for making a car of this type.

Customer

Car

Catalog

owns

describes

Figure 7.14: Buying cars

184 Chapter 7

• availablecolors: The colors that cars of this type can be painted before they leave the

factory.

• numberOfCylinders: The number of combustion cylinders in the engine fitted to this type

of car.

The information relating to services includes:

• owner: The registered owner of the vehicle.

• vehicleIdentificationNumber: A unique number stamped on a plate and riveted to the car’s

body when it is manufactured that identifies the car for registration purposes and helps

the police to trace the owners of stolen cars.

• mileageAtLastService: The number of miles the car had driven at the time of its last

service – this allows us to calculate how many miles it’s covered since it was last serviced.

Using the single concept of Car shown in Figure 7.14, we would have no choice but to put

all of these attributes on one class, as shown in Figure 7.15. From what you already know

about object modeling, the introduction of a class with two distinct sets of responsibilities

should be ringing alarm bells already – such classes are said to have weak cohesion: their

responsibilities do not form a single clump.

Car

modelNumber
availableColors
numberOfCylinders
owner
vehicleldentificationNumber
mileageAtLastService

Figure 7.15: A Car class, showing its attributes

Let’s suppose that we’re going to offer for sale the ‘Alpha Rodeo 156 2.0’: we would have

to create a Car and set its attributes appropriately. This would give us the situation shown

in Figure 7.16. (Possible attribute values have been shown as a list enclosed in braces – not

strictly UML, but convenient for our purposes.)

Now let’s suppose that a customer brings their ‘Alpha Rodeo 156 2.0’ in for its first

service. We now have two choices: we can create a new Car to represent the car owned by

this particular customer, giving us the situation shown in Figure 7.17A, or we can use the

existing Car, giving us the situation shown in Figure 7.17B.

Static Analysis 185

aCar:Car

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4
owner =
vehicledentificationNumber =
mileageAtLastService =

non-standard notation

Figure 7.16: A car for sale

aCar:Car

aCar:Car

aCarToo:Car

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4
owner =
vehicledentificationNumber =
mileageAtLastService =

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4
owner = fredaBloggs
vehicledentificationNumber = "VN19358"
mileageAtLastService = 18036

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4
owner = fredaBloggs
vehicledentificationNumber = "VN19358"
mileageAtLastService = 18036

A

B

Figure 7.17: Servicing a car

If we choose option A, half the attributes remain unused on the first car object and we

have redundant information on the second object. If we choose option B, we can only service

one ‘Alpha Rodeo 156 2.0’ at a time (otherwise information about the first one we started

servicing will be lost).

Although the original model shown in Figure 7.14 appeared natural and reasonable, the

practical implications show that the model is nonsense. What we should have spotted early

on is that we have an intangible concept, responsible for the first set of attributes, and a

tangible concept, responsible for the second set.

186 Chapter 7

Getting it Right
Let’s discard the model shown in Figure 7.14, replacing it with a new intangible concept

called CarModel and a tangible concept called Car. This gives us the class diagram shown

in Figure 7.18. Now we can place the attributes modelNumber, availableColors and num-

berOfCylinders on CarModel, while owner, vehicleIdentificationNumber and mileageAtLastService

remain on Car. Applying this new model to the example scenario we saw earlier, we create the

run-time objects shown in Figure 7.19. Here we have one CarModel representing the ‘Alpha

Rodeo 156 2.0’ and two Car objects representing the separate instances of this type of car

that have been brought in for service. With this new model, we don’t care how many cars of

Customer

Catalog

Car

CarModel

owns

describes

example of

Figure 7.18: A tangible car and an intangible car model

alpha156:CarModel

modelNumber = "Alpha Rodeo 156 2.0"
availableColors = {red, green, silver}
numberOfCylinders = 4

fredasCar:Car

owner = fredaBloggs
vehicledentificationNumber = "VN19358"
mileageAtLastService = 18036

tomsCar:Car

owner = tomThumb
vehicledentificationNumber = "VN13788"
mileageAtLastService = 99312

example of

example of

Figure 7.19: Car models for sale and cars that have been sold

Static Analysis 187

a particular type are sold, nor how many are returned for service, nor how many are serviced

simultaneously, because the model can cope, logically and concisely, with all possibilities.

Usually, a single intangible object will give rise to many tangible ones. Also, the attributes

of intangible objects tend to be fixed, while those in tangible objects tend to change over

time. In our example, there is one CarModel, representing any number of ‘Alpha Rodeo 156

2.0’ Car objects that we might sell. The attributes of CarModel do not change over time (the

manufacturer may occasionally change the specification, by adding new colors, for example,

but that doesn’t happen very often). The model shows two Car objects, each representing

a particular ‘Alpha Rodeo 156 2.0’ that’s been returned for service, at least once, by its

owner. The attributes of Car are changeable: the owner changes when the car is sold and the

mileageAtLastService changes every time the car is serviced. The vehicleIdentificationNumber

doesn’t change, but this is a special case of an identity attribute, a property that distinguishes

this object from all other similar objects, throughout its lifetime.

ACTIVITY 4 Before we leave the subject of tangibility, consider a video rental system.
Which of the two class diagrams shown in Figure 7.20 is correct, do you
think?

Customer

Member

Video

Video

Movie

rents

reserves

rents

reserves

recording of

Customer

Member

Figure 7.20: Tangible and intangible objects from a video rental system

188 Chapter 7

7.4.8 Good Objects
It’s all very well being able to draw class diagrams in perfect UML notation. It’s quite another

thing to be able to find good objects, attributes and relationships.

In this book, the recommended starting point is nouns in use cases, a combination of the

obvious with the valuable work of Jacobson. Beyond that, a lot of your success will come

from hard thinking and growing experience. Domain experts (customers and colleagues)

can help here, since they should be invited to comment on your class model. Using spirals

and iterations will also help, a lot.

If you find yourself struggling to decide what should be an object and what shouldn’t,

remember that objects are cheap – if something you’re thinking about or talking about

sounds like an object, it probably is an object: don’t be afraid to put it down on paper, look at

it and see what it can do – at this point, you’re a long way off the heavy investment of writing

code. If you find yourself thinking about the properties of an object, you have attributes; if

you’re thinking about what an object should be able to do, you have operations. In this book,

it’s recommended that you don’t worry too much about operations until dynamic analysis,

but there’s no harm in noting some down in the meantime – dynamic analysis is used to

verify that you have at least the operations you need in order to satisfy the use cases, but a

few more won’t hurt.

Another good trick, if you can’t seem to find the right objects from the use cases, is to

talk to an independent colleague about the business or the system in question. Ask them to

note down everything you mention that seems to be an important concept, in exactly the

same way as if they were taking notes at a lecture. This way, any unhelpful anxieties and

prejudices that you have will be side-stepped.

The practical advice you’ve seen on choosing between attributes and relationships,

considering the tangible and the intangible, and identifying association classes should help

you to avoid common pitfalls.

7.5 DYNAMIC ANALYSIS

We perform dynamic analysis for the following reasons:

• To confirm that our class diagram is complete and accurate, so that we can fix it sooner

rather than later: this may involve adding, deleting or modifying classes, relationships,

attributes and operations.
• To gain confidence that our modeling up to this point can be implemented in software:

we’re not the only ones that should be confident before we proceed, our sponsors are just

as important.

Dynamic Analysis 189

• To verify the functionality of the user interfaces that will appear in the final system: it’s a

good idea to partition access to the system into separate interfaces, along use case lines,

before we dive into detailed design.

According to Jacobson, the most important part of dynamic analysis is use case realization,

i.e. making our use cases real by demonstrating how they can be implemented as collaborating

objects. Use case realization has the following steps:

1. Walk through the system use cases, simulating the messages sent between objects and

recording the results on communication diagrams.

2. Introduce operations on the objects that receive the messages.

3. Add classes to represent boundaries (system interfaces) and controllers (placeholders for

complex business processes or for the creation and retrieval of objects), as necessary.

7.5.1 Drawing Use Case Realizations
As we simulate the messages sent between our analysis objects, we need to record our

results. UML communication diagrams and sequence diagrams are designed for this purpose.

Although we can pretty much record the same information on communication diagrams

and sequence diagrams, communication diagrams are better for use case realization because

they’re simpler to produce and they focus on the objects and their connections, rather than

on the order in which the messages are sent.

We saw a simple business-level communication diagram in Section 6.4.4. Unlike our

business requirements example, which had a rather free-form mix of actors, objects and

systems, the analysis example (Figure 7.21) is cleaner. An informal description of the

information shown in Figure 7.21, from a member of the iCoot team, might read as follows:

A Member actor asks the MemberUI to reserve a particular CarModel; the Member is

warned that there is a fine if the corresponding car is not collected when it arrives;

once the Member confirms that they do wish to make a reservation, the MemberUI

asks the ReservationHome to create a new Reservation, passing in the CarModel and

the Member (which the user interface already has, as a result of logging on); finally,

the MemberUI gets the number from the new Reservation and passes it to the Member.

In general, analysis-level communication diagrams can show:

• Actors interacting with boundaries (for example, the Member interacts with a MemberUI).

• Boundaries interacting with objects inside the system (for example, the MemberUI interacts

with a ReservationHome, a Member, a CarModel and a Reservation).

190 Chapter 7

1.1:fineWarning()

r:Reservation

1.1.1.1:r=create(c,m)

1:reserve(c)

1.1.1:confirmReserve()

Member :MemberUI

:Reservation
Home

1.1.1.3:reservationNumber(n)

1.1
.1.

2:n
=ge

tN
um

be
r()

m:Member
c:CarModel

Figure 7.21: A communication diagram for U7:Make Reservation

• Objects inside the system interacting with boundaries to external systems (we might

imagine an internal ReportGenerator object interacting with a HeadOffice boundary, for

example).

We do not need to show any business objects that lie outside the system, nor do we need to

show actors that don’t interact with the system directly.

Rather than two-way interactions, we can now use a more computer-oriented, client–

supplier style: actors initiate interactions with boundary objects; boundary objects initiate

interactions with system objects; system objects initiate interactions with other system

objects, and boundaries to other systems.

Dynamic Analysis 191

7.5.2 Boundaries, Controllers and Entities
A plain communication diagram shows objects as labeled boxes. For extra expressiveness,

UML allows the developer to use icons, instead of boxes, to indicate the nature of the object.

Figure 7.22 shows the UML meanings of the icons in Figure 7.21:

Actor Entity

Boundary Controller

Figure 7.22: Jacobson’s icons for communication diagrams [Jacobson et al. 92]

• Actor: A person (usually) or system (occasionally) existing outside the system.

• Boundary: An object at the edge of the system, between the system and the actors. For

system actors, boundaries provide a communication path. For human actors, a boundary

means a user interface, capturing commands and queries and displaying feedback and

results. Each boundary object usually corresponds to a use case, or a group of related

use cases. More specifically, such a boundary usually maps to a user interface sketch (in

which case it may be an entire interface or just a sub-window). It is quite reasonable for

boundary objects to survive through to design.

• Entity: An object inside the system, representing a business concept such as a customer, a

car or a car model and containing useful information. Typically, entities are manipulated

by boundary and controller objects, rather than having much behavior of their own.

Entity classes are the ones that appear on our analysis class diagram. Most entities survive

through to design.

• Controller: An object inside the system that encapsulates a complex or untidy process. A

controller is a service object that provides the following kinds of service: control of all or

part of a system process; creation of new entities; retrieval of existing entities. Without

controllers, our entities would become polluted with messy details. Since controllers are

just a convenience for the benefit of analysis, we do not expect many of them to survive

through to design; an important exception to this is the idea of a home. A home is a

controller that is used for the creation of new entities and the retrieval of existing ones. A

home may also have utility messages as in carModelHome.findEngineSizes(). Since a home is

such a clean concept, they often survive through to design.

192 Chapter 7

The RUP approach is to retain all controllers for the design phase, complete with all

the operations that we discover during dynamic analysis. With RUP, there is no distinction

between the analysis model and the design model – we simply start with the analysis

model and enrich it again and again, until it is transformed into an implementable design

model. For the purposes of this book, and in general, this approach is considered too

optimistic.

The valuable outputs from analysis are:

• good entity objects with validated attributes;

• high-level boundary objects that mirror the use cases;

• confidence that our model is correct;

• homes (ignoring any utility messages).

The designer should not have the opportunity to modify these fundamental outputs for

the sake of implementation. The flip side to this is that the analyst should not be consid-

ering programming details, such as how to implement object attributes, relationships or

operations.

It’s recommended that designers begin with a fresh class diagram that is seeded with the

entity objects that were discovered during analysis. Selected boundaries and homes can then

be added to this diagram, as appropriate.

7.5.3 Communication Diagram Elements
Figure 7.23 shows the analysis communication diagram again, with annotations that explain

the individual pieces of notation. The details of the notation are as follows:

• Actors are shown in the same way as they are on use case diagrams.

• Objects are shown as labeled icons or labeled boxes.

• A line between two objects indicates a link, as on an object diagram.

• A message is shown as a sequence number (indicating the message’s position in the com-

munication), a message name (in the usual format) and a parameter list (in parentheses).

• An open-ended arrow shows the direction the message is being sent (this arrow doesn’t

have to be positioned at the end of the message, some developers place it below, for

example).

• Labels, used to identify objects and parameters, can be shown as name, name:Type, :Type

or literal (for example, carModel, m:CarModel, :CarModel, 10 or "abc").

• Assignment of a reply value to a name can be shown like this: n = getNumber().

• A conditional message can be shown as a guard (a condition in brackets), next to the

message, for example, 4:[Only on Saturday]readPaper().

• Iteration can be indicated with a * next to the part of the sequence number that iterates.

Dynamic Analysis 193

Member

:Reservation
Home

r:Reservation

m:Member
c:CarModel

actor 1:reserve(c)
1.1:fineWarning()

1.1.1:confirmReserve()

1.1.1.3:reservationNumber(n)
message

direction

name
(optional)

class
(optional)

1.
1.

1.
2:

n=
 g

et
Num

be
r()

link

sequence number

assignment

parameters (name,
:Class, name:Class,
or value)

1.1.1.1:r = create(c,m)

:MemberUI

icon (or
labeled box)

Figure 7.23: Elements of a UML communication diagram

Although, in reality, no actor would literally ‘send a message’ to a boundary object, the

message metaphor is a convenient and concise way of representing an interaction. Unlike

object diagrams, object labels on communication diagrams are not underlined (partly because

classes can’t be present to cause confusion).

A few words about sequence numbers. Initially, a message is sent to an object, causing the

execution of a method. Within that method, further messages can be sent: these are given

sequence numbers that show the level of the interaction. For example, message 1 causes

method 1 to execute; its first message is 1.1, the second is 1.2, and so on. The first message

sent within method 1.2 is 1.2.1. As in Figure 7.23, when a communication diagram shows

the implementation of a single top-level message (reserve), the first number in the sequence

is never higher than 1. Although this numbering scheme can lead to many levels of nesting

(especially where we have a two-way interaction), it does at least allow us to be precise.

194 Chapter 7

If we’re dealing with concurrent communications on a single diagram, we can give each

communication – or thread – a name, as part of the sequence number. For example, we might

use a and b as the names of two separate threads; 2.2a and 2.2b would happen at the same

time, while 2.3a would happen later on thread a.

7.5.4 Adding Operations to Classes
Every message on a communication diagram corresponds to an operation on a class, so

we should record the operations in order to have a complete set of use case realizations.

Operations can be shown on a class diagram in a separate compartment below the attribute

compartment, as shown in Figure 7.24. Alternatively, they can be documented as a separate

operation list, to save space. The style you choose is likely to be dictated by whether you’re

using a development tool, paper or a whiteboard; however you do it, be sure to include

descriptions of the operations too.

ReservationHome

create(

 :CarModel,

 :Member

):Reservation

 MemberUI

reserve(:CarModel)

confirm()

 Reservation

number:String

timestamp

state:

 ReservationState

getNumber():String

Figure 7.24: Some operations from iCoot

The general form of a UML operation is:

opName(paramName1:paramType1,paramName2:paramType2):ReturnType

Each parameter name, parameter type and return type is optional. (If the parameter name is

omitted, the colon must be retained in front of the parameter type, to avoid confusion.) For

an empty parameter list, the parentheses can be omitted, but they’re retained in this book,

so that operations are instantly distinguishable from attributes.

7.5.5 Responsibilities
Whenever you add detail to your objects, you should consider responsibility as described in

[Wirfs-Brock and McKean 02]. This will help you to find and correctly assign operations and

Dynamic Analysis 195

attributes. (Although you will have discovered many of the attributes during static analysis,

during use case realization you will discover the need for more.) Whenever you discover

some information or behavior that needs to be in the system, think to yourself ‘Which object

is responsible for this?’ Information ends up as attributes (and objects); behavior ends up as

operations (and collaborations).

Taking the idea of responsibilities a step further, make sure that no object is responsible

for more than one job (or role, if you prefer): if you have an object that is responsible

for getting order details from a customer and processing the order, you probably want two

objects (a boundary and a controller, perhaps). Objects with a single set of responsibilities

are said to have strong cohesion, a desirable goal.

Also, remember to think of your objects as clients (who ask questions and give com-

mands) or suppliers (who provide answers and perform services). The alternative, two-way

collaboration, leads to greater complexity and more difficult maintenance. A supplier is said

to be loosely coupled to its client. Two-way collaborations lead to strong coupling in both

directions. The fact that each use case realization described in this book involves an actor as

initiator talking to a boundary that talks to entities, should help you to produce client and

supplier objects. Of course, going deeper into the system, a supplier may also be a client and

a client may also be a supplier.

7.5.6 State Modeling
Sometimes, an entity will have a life cycle that’s complex enough to be shown on a

state machine diagram. For example, Figure 7.25 shows a model of the complex life of a

Reservation in the iCoot system. In this diagram, a box with rounded corners indicates a

state, with a label giving its name. An arrow indicates a transition to another state – the

label on the arrow indicates the trigger that causes the transition. A black circle with an

arrow coming out of it points to an initial state – a state into which an object can be born.

An arrow pointing to a ringed black circle indicates that the source is a final state – a state

where an object can end its life.

As a result of the start and stop states, Figure 7.25 shows that, when a Reservation is

created, it is Waiting and, once it has reached the Concluded state, it plays no further part in

the system. As for the other parts of the diagram, rather a lot is being said. Below is a full

description – a state machine survey, perhaps. This description alone should convince you

of the need for a diagram.

When a Member reserves a CarModel over the Internet, the Reservation is initially

Waiting to be processed by an Assistant (this is so the Customer can make a Reservation

without the intervention of an Assistant). The Reservation becomes Notifiable if, some

time later, an Assistant finds a suitable unreserved Car in the display area of the car park,

or if one is returned by a Customer. In this case, the Car is moved to the reserved area.

196 Chapter 7

car
returned

assistant
finds car

assistant
notifies member

assistant
stores

Storable

Concluded

Waiting

Notifiable

Needing

Renewal

Collectablemember
cancels

member
cancels

no car
found

member
cancels

member
cancels

no car
arrives

member
renews

member
unreachable

member
no-show

member
cancels

member
collects

member
unreachable

Figure 7.25: State machine diagram for a reservation

If no Car becomes available for a particular Reservation within a week, the Reser-

vation becomes NeedingRenewal: the Member must be contacted, by phone or in

person, so that they can cancel the Reservation, or ask for it to be renewed for another

week. If the Member cancels or can’t be contacted within five days, the Reservation is

Concluded.

Once a Reservation is Notifiable, the Member must be notified by an Assistant, in

person or by phone, within three days; if the Customer can be reached, the Reservation

is Collectable otherwise it becomes Displayable (a Car that was moved to the reserved

area must be returned to the display area).

Once a Reservation is Collectable, the Member must collect the Car within three

days: if they do collect, the Reservation is Concluded; otherwise, the Reservation

becomes Displayable.

Once a Displayable Reservation’s Car has been put back in the display area, the

Reservation is Concluded.

At any time, the Member may cancel the Reservation over the Internet, by phone or

in person.

The system will keep Assistants informed as to the state of current (not yet

concluded) reservations, so that they can take appropriate action.

As well as behavior state machines, such as the one we’ve just seen, UML has protocol

state machines. The latter are used to show the order in which messages can legally be sent

to an object, but otherwise they’re similar.

Review Questions 197

7.6 SUMMARY
In this chapter, we’ve looked at:

• How to perform the analysis phase of software development.

• How to build a static analysis model showing the business-oriented objects of our
proposed system, along with their attributes and relationships, on a class diagram.

• How dynamic analysis can improve and verify the static model, using communication
diagrams, and how we can model complex life cycles, using state machine diagrams.

FURTHER READING
Finding good objects, attributes and relationships comes partly from good thinking, partly

from talent and partly from experience. Despite this being a rather philosophical activity,

there are places to look for help. Three popular books that are worth investigating are [Fowler

96], [Larman 01] and [Martin and Odell 98]. Fowler gives many examples of analysis models

from the real world. The other two books, although they cover a much broader range of

topics, do address the issue of finding conceptual objects.

For finding responsibilities, [Wirfs-Brock and McKean 02] is the foundation.

The original ideas on breaking a system up into boundaries, controllers and entities are

due to Jacobson [Jacobson et al. 92].

In this book, state machine diagrams are covered at a conceptual level only – Martin

Fowler provides more detail in [Fowler 03] and the full picture can be found in the UML

Specification [OMG 03a].

REVIEW QUESTIONS
1. With reference to Figure 7.26, what do you think is the most likely implementation of

the relationship between Car and Engine? Choose only one option.

(a) A field, of type Car, in Engine.

(b) A class called CarEngine with one field of type Car and another field of type Engine.

(c) A field, of type Engine, in Car.

(d) A field, of type Engine, in Car and a field, of type Car, in Engine.

2. With reference to Figure 7.26, which of the following statements are true? Choose all

options that apply.

(a) A car always has the same body.

198 Chapter 7

Body

CarDriver

Passenger

Engine

Wheel
0..7

1

1 1

1

4..5

* 1..*

Figure 7.26: For use with Review Questions 1 and 2

(b) Some cars have spare wheels.

(c) A car has one engine, and engines are not shared between cars.

(d) All cars have either four or five wheels.

(e) A car must have at least one driver.

(f) Passengers cannot be drivers.

PizzaBase Case Study
The PizzaBase restaurant wants to automate the ordering of pizzas by customers.

Each table will be fitted with a touch-sensitive screen which customers can use to

browse the pizzas on offer and select their choice.

Two basic types of pizza will be offered: the Do-it-Yourself will have a base with

tomato sauce only and then customers can choose any number of toppings, at a fixed

price per topping; the Prefab will come in several varieties, each with a fixed set of

toppings. Every pizza can be ordered with a deep crust or crispy base, and three sizes

are available: 6 inch, 9 inch and 12 inch.

Customers will also be able to order from a fixed set of drinks, such as cola and

lemonade flavors, each in large or small size. Once customers have confirmed their

order, they will be shown the final price and, thereafter, the screen will display the

progress of their food as it is being prepared and cooked. At the end of a meal,

payment will be made in the conventional way.

3. With reference to the PizzaBase case study, which of the following is most likely list of

attributes at the analysis stage? Choose only one option.

(a) cola, base, price, size, lemonade, payment.

(b) flavor, variety, payment, final, display, meal, tomato.

Review Questions 199

(c) progress, variety, flavor, price, touchSensitive, size, drink.

(d) base, price, variety, size, progress, flavor.

4. With reference to Figure 7.27, which diagram is the best model of Pizzas in the PizzaBase

restaurant? Choose only one option.

Order

Menu

Pizza

Customer Pizza

specifies

lists

Order

Menu

Choice

Pizza

specifies

lists

kindOf
Diagram 2

Diagram 3

Diagram 1

orders

Figure 7.27: For use with Review Question 4

(a) Diagram 1.

(b) Diagram 2.

(c) Diagram 3.

5. With reference to the PizzaBase case study, which of the following is the most likely list

of analysis classes? Choose only one option.

(a) Payment, Order, Drink, Topping, Pizza, Order, Restaurant, Base, Sauce.

(b) Customer, Table, Pizza, Topping, Drink, Restaurant, Order.

(c) PizzaBase, Cola, Restaurant, Lemonade, Customer, Do-it-Yourself, Prefab, Table,

Order.

(d) Restaurant, Pizza, Topping, Display, Order, Payment, Touch.

(e) Screen, Order, Offer, Topping, Size, Meal, Pizza, Restaurant.

(f) Pizza, Customer, Cook, Table, Crust, Topping, Drink, Restaurant.

6. In UML, which diagrams are used to show messages sent between objects? Choose all

options that apply.

(a) Activity diagrams.

(b) Object diagrams.

200 Chapter 7

(c) Communication diagrams.

(d) State machine diagrams.

(e) Sequence diagrams.

(f) Deployment diagrams.

7. With reference to Figure 7.28, which kind of icon would you use to represent a business

object containing useful information? Choose only one option.

(a) A.

(b) B.

(c) C.

C

A B

Figure 7.28: For use with Review Question 7

8. What is an association class? Choose only one option.

(a) It describes the various kinds of relationship that can exist between classes.

(b) It adds attributes and/or behavior to an association between two other classes.

(c) It associates an object with the class of which it is an instance.

9. With reference to Figure 7.28, which kind of icon would you use to represent a com-

munication path between systems or between a human and a system? Choose only

one option.

(a) A.

(b) B.

(c) C.

Answers to Review Questions 201

10. With reference to Figure 7.28, which kind of icon would you use to represent an object

that coordinates a system process, creates objects or retrieves objects? Choose only

one option.

(a) A.

(b) B.

(c) C.

ANSWERS TO ACTIVITY 4
The lower option in Figure 7.20 is correct. If there’s any doubt in your mind, consider the

placement of the attributes barCode and title. A title belongs to a Movie and every recording

of it will have the same title. However, every physical Video copy of a Movie will have its own

barCode. This illustrates that, sometimes, the name of an intangible class can be completely

different to that of its tangible partner.

ANSWERS TO REVIEW QUESTIONS

1. The most likely implementation of the relationship between Car and Engine is c.

2. With reference to Figure 7.26, the following statements are true:

a. A car always has the same body. c. A car has one engine, and engines are not shared

between cars. d. All cars have either four or five wheels.

3. The most likely list of attributes at the analysis stage is d. base, price, variety, size,

progress, flavor.

4. With reference to Figure 7.27, b. Diagram 2 is the best model of Pizzas in the PizzaBase

restaurant.

5. The most likely list of analysis classes is b. Customer, Table, Pizza, Topping, Drink,

Restaurant, Order.

6. In UML, c. Communication diagrams and e. Sequence diagrams are used to show

messages sent between objects.

7. I would use icon B to represent a business object containing useful information.

8. An association class b. Adds attributes and/or behavior to an association between two

other classes.

202 Chapter 7

9. I would use icon C to represent a communication path between systems or between a

human and a system.

10. I would use icon A to represent an object that coordinates a system process, creates

objects or retrieves objects.

III
Designing the Solution

8
Designing the System Architecture

This chapter considers how to move from analysis into design and concentrates on the

system architecture elements of design.

Learning Objectives
Understand the steps involved in
system design and how a system
can be decomposed into physical

and logical components.

•
Illustrate architectural decisions on

UML deployment diagrams.

Understand the concurrency and
security issues that arise in

networked systems.

•
Understand how to partition a
system and add partitioning

decisions to a UML deployment
diagram.

Chapter Outline

8.1 Introduction

8.2 Design Priorities

8.3 Steps in System Design

8.4 Choosing a Networked System Topology

8.5 Designing for Concurrency

8.6 Designing for Security

8.7 Partitioning Software

8.8 Summary

Further Reading

Review Questions

Answers to Review Questions

8

206 Chapter 8

8.1 INTRODUCTION
Analysis and design are very different ideas, although the boundaries are sometimes blurred.

This blurring can happen intentionally, as in the case of RUP, or accidentally, resulting from

poor software development. A clear separation between analysis and design is a good idea,

to make sure that the problem is well understood before a solution is considered. With

that separation in mind, analysis is about investigating the problem while design is about

inventing a solution. Or, to put it succinctly, ‘Analysis = What; Design = How’.

There are no strict rules for transforming an analysis model into a design model.

Anyone who tells you otherwise is ignoring the human factors and creativity involved in

software development – if we could be systematic, software development would be just like

engineering, an idea that’s already been debunked in Chapter 5. The design process is driven

by the need to produce a finished system; the experience of the team; reuse opportunities;

personal preference. Once the designer has studied the requirements and analysis artifacts,

he or she can start with a clean sheet of paper: we don’t care whether there is a close

correspondence between analysis objects and design objects, as long as the design leads to

an effective solution.

During the design phase, we make certain technology choices (for example, programming

languages, protocols and database management systems). We must decide how much impact

we want these choices to have on our design. Our technology choices will influence the

libraries, patterns and frameworks that are available to us and even the detailed UML notation

that we use.

The more general we can make our design, the less we are tied to a particular technol-

ogy – this will reduce the need for developers to be experts in multiple technologies and it

will protect us from technologies that become obsolete or unsupported. The downside of

being general is that we may not get the maximum benefit from any particular technology

(reuse and performance being the important factors here).

History suggests that individual technologies appear and disappear more frequently than

the theories that underpin those technologies. For example, programming languages have

included COBOL, Fortran, Pascal, Ada, Modula, PL/1, C, C++, Smalltalk, Eiffel, C# and

Java, but the use of these technologies has been governed by only two theories: structured

programming and object-oriented programming. Therefore, it’s reasonable to conclude that

being general is safer than being specific.

With respect to the reuse penalty of a general design, we must accept that some

investigation will be needed to discover new reuse opportunities for each implementation.

As for the performance penalty, we would hope that keeping our design general would not

lose us more than, say, 10% of the maximum possible performance. (By adding extra capacity

to our system, using more machines or faster machines, we should be able to make that last

10% irrelevant.)

Steps in System Design 207

On the whole, apart from a discussion of the common technologies available today, the

discussion will be as general as possible for the rest of this book, relying purely on object-

oriented theory and generic UML notation. One exception to this is that where primitive

types must be added to diagrams, Java primitives will be used: this is to avoid confusion when

looking at the Java code fragments and because some Java classes have primitive-looking

names. (Although this is not a strictly generic use of UML, the UML standard does allow the

relaxation.) For most of this book, Java arrays will be avoided in favor of collection classes,

since the latter are more elegant.

8.2 DESIGN PRIORITIES
Since object-oriented software development is incremental, we mustn’t expect to design the

whole system in one pass. So, at the start of each design phase, we need to plan which parts

of the system we will design. The use case priorities will help here; so will the use case

urgencies that we indicated using the traffic light analogy during the requirements phase:

anything green must be fully designed; anything amber doesn’t have to be designed, but

it must be supported; anything red must not be designed, but it should still be supported

(‘designed’ means that a solution has been invented; ‘supported’ means that a reasonable

solution is possible, which requires some foresight on our part).

In practice, we seek a system architecture that will support a practical, efficient solution

for all the use cases. Within that architecture, we perform detailed design for the most

important use cases and partial design for the less important ones. Between increments, we

adjust the priorities, the urgencies and the design, as appropriate.

8.3 STEPS IN SYSTEM DESIGN
Design can be thought of as having two distinct activities: system design and subsystem

design. System design forces us to take a high-level view of the task ahead before we dive

into the detail of subsystem design (see Chapter 10). Of course, in good object-oriented

tradition, we can blur the boundaries and we can spiral and iterate, but the idea of having

two activities is still essential.

System design includes the following activities:

• Choosing a system topology: how the hardware and processes will be distributed, perhaps

over a network.

• Making technology choices: selecting programming languages, databases, protocols and

so on (see Chapter 9); some decisions may be deferred until later in the design phase.

208 Chapter 8

• Designing a concurrency policy: concurrency means many things happening at

once – multiple processes, users, machines; these must be coordinated by our software in

order to avoid chaos.

• Designing a security policy: security has a number of aspects, each of which must be

properly addressed and controlled; as an example, consider a customer’s personal data – we

must ensure that the data is not stolen by criminals and we must ensure that it can’t

accidentally be shown to other customers.

• Choosing subsystem partitions: often, it is impractical to produce a single piece of

software that solves all of our problems; instead we need to produce separate pieces of

software and then make sure that the pieces communicate effectively.

• Partitioning the subsystems into layers or other subsystems: typically, each subsystem will

need to be decomposed further into manageable chunks before we can do detailed design.

• Deciding how machines, subsystems and layers will communicate: communication deci-

sions usually happen as a side-effect of the other steps.

8.4 CHOOSING A NETWORKED SYSTEM
TOPOLOGY

System topology indicates how a system is decomposed into separate physical and logical

components. In this section, we see an overview of the history of network architectures and

then discuss current architecture issues: thin versus fat clients; networks; and client–server

applications versus distributed applications. We’ll also see how we can use UML deployment

diagrams to illustrate architectural decisions.

8.4.1 The History of Network Architectures
Most modern, networked, systems have a three-tier architecture. To see what ‘three-tier’

means and to understand why it’s a good idea, we need to take a look at the historical

alternatives.

Back in the 1940s, computers were large monolithic devices capable of running only

one program at a time. These monolithic machines evolved into mainframes that were

capable of running multiple programs simultaneously, typically one program per user or one

program per batch (a batch comprises sets of similar data that are run through a program in

sequence, to process electricity bills, for example). Mainframes were able to handle multiple

programs simultaneously because they employed a time-slicer to run each program on the

CPU bit-by-bit, each program taking it in turns to perform a little more processing.

To begin with, users and batch administrators would access a mainframe via a teletype

unit – an electric typewriter that the operator would use to send one line of text to the

Choosing a Networked System Topology 209

mainframe at a time (the text would represent program commands or program data). The

program running on the mainframe would then send back one or more lines as a response.

As technology improved, teletypes were replaced with dumb terminals (also known as green

screens) that used a Cathode Ray Tube (CRT) instead of paper for textual input and output.

With a dumb terminal, the operator could prepare an entire screen of commands or data

before dispatching it all at once to the program running on the mainframe (see Figure 8.1).

Dumb Terminals Mainframe

Figure 8.1: Mainframe computing: a one-tier architecture

The mainframe model, still in use today for large-scale business tasks, is a one-tier

architecture. This means that, for any given program, there is only one level of computing

activity running on one machine (teletypes and dumb terminals do not perform any

processing). Or, to put it another way, one-tier architectures have no network: although

there is a thin wire from each terminal to the mainframe, possibly over a phone line, that

doesn’t constitute a network in the modern sense.

The main advantage of a mainframe is that it’s simple to set up; the main disadvantage is

that we can only increase computing power by buying a new mainframe, or by upgrading

the existing one.

The next architectural generation, popularized in the 1970s, was the two-tier architecture

(although it wasn’t called that at the time). The idea was to have processing power on each

client, with an optional hard drive, so that large central machines would not have to do

all the processing. Thus, we could add, or replace, client machines as a cheaper alternative

to changing the central machine. Mini computers and workstations were introduced as

clients that accessed midi computers and file servers, respectively (see Figure 8.2). The

mini–midi combination shown here (for example, VT100 and PDP/11) is really the same as

the workstation–file server combination (for example, Solaris workstation and Solaris file

server), they just came out of different communities.

210 Chapter 8

Workstation

Client Tier Server Tier

Minicomputer Midicomputer

File server

Figure 8.2: Two-tier architectures

With the two-tier architecture, programs and data must be shipped from the large central

machine to the client machines; this requires fast connections, leading to the modern idea

of a network. A network is an arbitrary number of host machines connected together using

fast communication links. (We don’t need to worry about the different network topologies

that are possible; suffice to say that a network allows us to get a piece of information quickly

from one machine to another.)

Once we have a network, we can replicate the large central machines as well as the clients,

so it’s much easier to add computing power. Owners of client machines with hard drives also

have the flexibility to manage their own data and programs without having to go through

the system administrators. If we allow client machines to hang on to programs and data, we

have a maintenance headache: as data changes and programs are upgraded, the clients get

out of step. It is quite reasonable, therefore, to prohibit the long term storage of programs

and data on client hard drives.

Two-tier architectures brought sophisticated graphics capabilities and window systems to

clients, replacing the text-only model of teletypes and dumb terminals. Two-tier architectures

are still widely used today, mostly in the form of Unix workstations and file servers.

8.4.2 Three-Tier Architecture
The three-tier architecture (see Figure 8.3) became popular in the 1990s, as a way of

separating user interfaces, program logic and data in networked systems, for reasons that

Choosing a Networked System Topology 211

Desktop computer

Client Tier Middle Tier Data Tier

Mainframe

Server

Server

Figure 8.3: Three-tier architecture

will shortly become clear. In a three-tier system, any one program involves at least three

machines: the data tier stores the data and provides safe concurrent access to it, typically

with the help of a database management system (DBMS); the middle tier – also known as the

business logic tier or server tier – runs multi-threaded program code using large processors

and lots of memory; the client tier presents the user interface to the user, so that they can

enter data and view results.

The three-tier architecture has many benefits:

• Separation of concerns: Any large system has to deal with secure, efficient management of

bulk data; high-throughput programming logic; and simple user interfaces. By program-

ming each of these concerns separately, we make the developer’s job easier and we can

access the optimizations that have been designed for each particular concern.

• Using the right machine for the job: There is no such thing as a ‘one size fits all’ computer.

Running a user interface is a simple task that doesn’t require a mainframe or even a file

server; executing programming logic uses CPU and memory intensively but doesn’t require

huge amounts of disk space, so a powerful server machine can be used; managing bulk data

(for example, a million electricity customers) requires as much computing power and disk

space as you can lay your hands on, so this calls for large server machines or mainframes.

• Improved performance: We can replicate machines in the data tier or the middle tier, to

spread the computing load (load balancing), and each tier is specialized and thus easier

to optimize.

212 Chapter 8

• Improved security: Frequently, a three-tier system will be deployed in such a way that

the client machines are running over the Internet. Therefore, we must have a rigorous

security policy in place to protect our internal machines, our programs and our data. With

the three-tier architecture, we can make the middle tier secure – impervious to accidental

or malicious attack from the outside. Since our data tier is behind the bomb-proof middle

tier, we do not have to secure its communications or hardware; this means that our data

tier is easier to program and it runs faster. (However, there is a growing feeling that

internal tiers need to be protected from employees.)

• Protection of our investment: For situations where we have an existing mainframe that has

been performing bulk data storage and batch processing for years, we would prefer not to

throw everything away and start again, just to get the benefits of a network and a three-tier

architecture. (In general, it’s a bad idea to rewrite software: we end up with another

‘Version 1.0’ with the usual lack of features, performance problems and faults.) Instead, as

long as our mainframe manufacturer can make the mainframe network-accessible (most

have already done so, because of the ‘client–server’ revolution), our middle tier can act as

a client to the mainframe and as a server to the real clients. This allows us to transform

our legacy system into a modern marvel.

• Flexibility: As well as the obvious flexibilities of being able to add and remove machines at

will, if we design our system with a three-tier architecture, we get deployment flexibility as

well. For example, as long as the logical partitioning is correct, we can develop the system

on one tier and then deploy it to three tiers, two tiers (middle and data tiers combined) or

one tier (all three tiers combined), as the need arises.

• Accommodation of different types of client: Since the client-tier machines only have to

capture user input and display system results, we can provide different interfaces for

different kinds of device: personal computers, PDAs, set-top boxes, mobile phones, etc.

The middle and data tiers can work unchanged in all contexts.

Because of the many advantages of the three-tier architecture, it is recommended that you

use it for all your systems, even small ones. After all, even the most humble one-tier program

is eventually put to the test of ‘Can it be accessed over the network?’ You should only choose

a two-tier or one-tier architecture for exceptional cases, such as if you need to optimize

application size or speed for special purposes, for example, washing machine controllers or

operating systems.

8.4.3 Personal Computers
In the 1970s, computer enthusiasts working in their garages began building computers

that could be used at home. These self-contained, one-tier machines really took off when

endorsed in the early 1980s by IBM – the Personal Computer (PC) design was meant to

result in ‘a computer on every desk’.

Choosing a Networked System Topology 213

By the end of the 1980s, it was obvious that PCs were more useful if they were attached, via

a corporate network, to file servers and mainframes. The result was a two-tier architecture,

with PCs performing complex tasks such as spreadsheet editing and document production,

while machines on the corporate network provided e-mail and, to a lesser extent, access to

corporate data.

Since the 1990s, PCs have become increasingly popular. In the corporate sector, they

benefited initially from endorsement by IBM, and then from their facilities and their low

cost (compared to workstations). PCs have also made home-working more practicable. In

the home market, there has really been no competition: the high cost of workstations and

the low speed of home access to external networks has meant that there is no realistic

alternative.

Nowadays, the PC design has displaced all other competitors that emerged from the work

of those early garage enthusiasts, with the exception of offerings from Apple (especially

popular with graphic designers).

8.4.4 Network Computers
By the mid-1990s, as mainframes, Unix boxes and PCs jostled for position in the corporate

space, the maintenance cost of PCs was becoming a headache. As mentioned earlier, if you

give someone a machine with a hard drive, data and programs on that drive will differ

from the central data and programs. This leads to errors – customer data being out of date,

for example – and huge extra cost – every client machine has to be returned to central

administration for the installation of new releases of e-mail programs, word processors,

and so on.

As a result, the concept of a network computer was created. A network computer gets all

of its data and programs on demand from large central servers or mainframes. This requires

a fast network (tens or hundreds of megabits per second). In order to prevent individuals

polluting the model, network computers do not have a hard drive. (Well, they can have a

hard drive, but only if it’s used by the operating system to cache data and programs.) As

you may already have worked out, a network computer is really just a disk-less workstation,

typically running some flavor of Unix, because Unix is good at handling on-demand loading

of programs over fast networks.

Network computers were a very good idea. Not surprising really, since disk-less work-

stations had been successful for many years. But network computers failed to break the

stranglehold of PCs. They even failed to break the stranglehold of workstations with disks, in

areas where these were popular. (Even professionals like to keep some autonomy, regardless

of the cost to themselves and their employer in frustration and wasted time.)

Network computers were used by Java enthusiasts to spread Java in corporations.

Since network computers were naturally Unix machines and Java programs can run on

Unix, the hope was that Java and Unix would suddenly appear everywhere. However,

214 Chapter 8

the network computer has struggled to catch on. Network computers have never been

practical for home use because Internet connections, even broadband, are too slow.

In order to move beyond PCs, home users need Web browsers that access three-tier

architectures.

The terms thin client and fat client emerged at about the same time as network computer.

The intention was to emphasize the advantages of the lean, mean client machine, typified

by the network computer, over the obese, disk-full PC attached to a network. Thin clients

are a good idea: whether you sit in front of a PC or a workstation, all nontrivial work

should be network-centric. In the corporate sector, this can be achieved using Java applets

accessing a three-tier system. In the home, the best alternative is a Web browser accessing a

three-tier system.

8.4.5 The Internet and the World Wide Web
By the mid-1980s, many researchers and government employees were making use of a

world-wide network of computers, now referred to as the Internet. The Internet owes

its origins to US research and defense agencies who had put together ARPAnet decades

before. The Internet is characterized by free access to central servers that allow machines

and people to locate other machines by their Internet address. Internet addresses have

a literal dotted decimal form, e.g. 100.99.88.32, and a symbolic dotted ASCII form,

e.g. www.nowherecars.com. Under the covers, the Internet relies on a low-level protocol

called TCP/IP: any machine that understands TCP/IP has access to all the facilities of the

Internet.

In the early 1990s, when the Internet was firmly established in the research community (as

a tool for e-mail and file transfer), Tim Berners-Lee, working at the Swiss research institute

CERN, came up with the idea of documents that contain hyperlinks to other documents on

the Internet. Berners-Lee made his ideas practical by inventing a document layout language

called HyperText Markup Language (HTML) and a protocol called HyperText Transfer

Protocol (HTTP). HTTP allows any machine to load a document via a hyperlink from any

other machine. The location of a document can be specified using a Uniform Resource

Indicator (URI) of the form http://www.nowherecars.com/index.html.

Berners-Lee’s invention was christened the World Wide Web (of information). By the

mid-1990s, anyone wanting to make documents available for others to read could deploy

them on a Web server and anyone wanting to read documents could run a Web browser

on their client. Once Internet Service Providers appeared, providing access to the Internet

from home, the World Wide Web spread everywhere. Nowadays, the distinction between

the Internet and the World Wide Web is blurred. You may hear any number of terms used

more or less interchangeably, such as Internet, Net, World Wide Web, Web or Information

Super-Highway.

Choosing a Networked System Topology 215

8.4.6 Intranets
The Internet has two major problems: it is slow and it is insecure. The performance problems

come from the fact that information might have to travel thousands of kilometers before it

reaches its destination, often encountering slow connections and servers on the way. Also,

the information has to compete for delivery with all the other information that’s in transit.

The insecurity of the Internet results from the fact that everyone has access and, therefore,

anyone can intercept and read information in transit – even if we encrypt the information,

there is still potential for someone to decrypt it.

As a result, the concept of an intranet was invented, to mean a ‘mini Internet’ running

behind closed doors. Intranet means ‘network inside’, as opposed to Internet, which means

‘network between’. An intranet is typically controlled by a single corporation or government.

By preventing access to an intranet from outside, we can improve performance (using

powerful machines with no competition from outside traffic) and we don’t need to worry so

much about security. For global intranets, information may still travel long distances, so, on

the whole, we still have to forego the performance of a local area network.

As far as security is concerned, we need to make sure that no unauthorized person comes

to one of our sites and connects their own computer, of course; beyond that, we have to deal

with all the usual problems of industrial espionage, disgruntled or careless employees, spies

monitoring the electro-magnetic emissions from our machines and networks – rumor has it

that one government organization makes its employees use their computers inside Faraday

cages, supplying mains power by induction from outside the cage: it’s all a question of how

paranoid you want to be.

For most intranets, we can retain the local performance and security benefits and still

give our employees access to the Internet (for e-mail, information gathering and monitoring

competitors’ Web sites). To do this, we need to employ an Internet firewall. A firewall

is a piece of software that allows machines on an intranet to access any TCP/IP address,

while making intranet addresses invisible from the outside. Internet firewalls can perform

other tasks too: for example, we can make sure that only Web browsers can access the

Internet from employees’ machines – this prevents rogue programs from sneaking in and

communicating secrets to the outside world; we can configure our Internet firewall to allow

e-commerce requests from outside to tunnel through on their way to our e-commerce

servers; at home, we can use a personal firewall to protect our PCs from hackers and

viruses.

8.4.7 Extranets and Virtual Private Networks
So how can we exploit the performance and security benefits of intranets for business-to-

business communications? Easy – we use an extranet, a secure connection between one or

more intranets. The term extranet is a pun on intranet, short for ‘external intranet’. The

216 Chapter 8

easiest way to make an extranet is to run a piece of software on the Internet firewalls at the

edge of each intranet, which does two things:

• Allows information to pass from firewall to firewall.

• Uses strong encryption to protect that information as it passes over the Internet.

An extranet is also referred to as a Virtual Private Network (VPN). The simplest form of

VPN, even older than the idea of an extranet, is a worker dialing in to their corporate LAN

from home using purpose-built software.

Figure 8.4 illustrates how intranets, extranets and the Internet fit together.

Extranet

Intranet Intranet

The Internet

FirewallFirewall

Figure 8.4: How the different kinds of net fit together

8.4.8 Client–Server versus Distributed Architectures
Whenever we connect multiple machines or software systems, we have to choose between

client–server and distributed styles, as illustrated in Figure 8.5. Despite its origins in the

mainframe arena, these days ‘client–server’ simply means that we have a large number of

Choosing a Networked System Topology 217

Distributed ArchitectureClient–Server Architecture

Figure 8.5: Client–server and distributed architectures

small, simple clients sending requests to a few large, multi-threaded servers that process

the requests. A distributed (or peer-to-peer) architecture, on the other hand, is character-

ized by a collection of autonomous peers, communicating in any direction, as the need

arises.

The most common example of a client–server architecture is the e-commerce model:

customers’ Web browsers issue requests to company Web servers, which in turn issue

instructions to back-end systems. Most two-tier and three-tier systems are client–server.

A good example of a distributed architecture is when a massive computing task is spread

over many Internet machines. If we have a very large amount of data or processing that

needs to be performed and we can partition the data or the processing, we can distribute the

problem over independent machines.

One example is SETI@home, a nonprofit organization that looks for alien radio signals.

The search for extra-terrestrial intelligence (SETI) started out as a NASA project with radio

telescopes scanning the heavens and recording anything they came across. This data was

then processed to see if it contained evidence of coherent radio transmissions from aliens.

Eventually, the SETI project was canceled (because of lack of funds or lack of belief) and

was reborn as SETI@home. The enthusiasts who developed SETI@home take the same radio

data and distribute it to machines on the Internet: each participating machine analyzes its

data using a piece of software that runs as a screensaver; any interesting results are sent back

to the central server for further analysis. For more information, see the SETI@home Web

site at setiathome.ssl.berkeley.edu.

218 Chapter 8

Although SETI@home has a central repository of data, it is still a distributed architecture

because most of the processing is carried out by independent nodes. The idea of bringing

together huge numbers of machines to solve a complex task has also been used for prime-

number searches and cancer research. The basic idea is now being researched under the

heading of grid computing.

The terms ‘client–server’ and ‘distributed’ (or ‘peer-to-peer’) are also used to describe

software architectures, independently of how the software is deployed on physical machines

and networks. Objects running in a program are a good example: normally, we write our

objects as servers that can be reused in different contexts with different client objects; but,

for special purpose applications, we might also write groups of objects that collaborate in a

distributed manner.

Network communication links tend to be bi-directional, meaning that although the link

may be opened initially by the client, the server can also send information to the client

(whether the client takes any notice is up to the designer of the client software). Thus,

strictly speaking, the distinction between client–server and distributed is an artificial one,

used by designers to structure their solutions in one way or another.

As a general rule, client–server architectures are easier to develop, but they may not

provide maximum theoretical performance (for example, the client is usually idle when

the server is processing one of its requests). Distributed architectures are, usually, harder

to develop but they may provide better performance. Often, the choice of architecture is

obvious. For example, making a purchase is a step-by-step process (customer asks for prod-

uct details, supplier provides product details, customer elects to purchase product, supplier

provides purchase form, customer submits purchase form, and so on), and thus is a natural

client–server interaction. In contrast, a multiuser flight simulator requires each pilot’s com-

puter to perform complex real-time rendering of the cockpit, scenery and other aircraft – the

only communication needed is the periodical broadcast by each machine of its plane’s current

position. Thus, a multiuser flight simulator is a natural distributed architecture.

8.4.9 Depicting Network Topology in UML
System architectures can be depicted in UML on a deployment diagram (see Figure 8.6). This

simple deployment diagram shows only nodes, communication paths and multiplicities.

Each node, in this diagram, represents a host machine (indicated with the UML keyword

<<device>>). A communication path shows that two nodes communicate in some way.

Nodes can be given multiplicities to indicate how many might exist at run time: thus, in this

diagram, we have nodes that are duplicated (CootServer and DBServer) and nodes that are

multiplied (CootHTMLClient and CootGUIClient).

Deployment diagrams are similar to class diagrams and object diagrams in that they can

show possible architectures (node types) and actual architectures (node instances). When

Choosing a Networked System Topology 219

<<device>>

DB

Server

<<device>>

Coot

Server

<<device>>

CootHTML

Client

<<device>>

CootGUI

Client
2

2

multiplicity

node

communication path

*

*

Figure 8.6: A basic deployment diagram for Coot

showing node instances, just like objects on an object diagram, the node label takes the form

name:Type, and should be underlined.

Most deployment diagrams need an accompanying description if they’re to make any

sense. We might call this a deployment survey, in Jacobson style.

Case Study
iCoot deployment survey

This description could accompany Figure 8.6:

The iCoot data tier comprises two database servers (which we have called

DBServer). Having two such nodes improves throughput and reliability.

220 Chapter 8

Case Study (cont’d)
The middle tier, which communicates with the data tier, consists of two

server machines (CootServer), again duplicated for the sake of reliability and

throughput.

Each CootServer can be accessed simultaneously by any number of CootHTML-

Client nodes.

Eventually, we will also provide access from CootGUIClient nodes.

8.5 DESIGNING FOR CONCURRENCY
Most systems, especially networked systems, have many things happening at once; that is,

they are concurrent systems. This has implications for the system as a whole and also for

the individual processes running as part of the system. Although it would be much easier

to develop systems if we could rely on all users and processes to form an orderly queue, in

reality we have to turn chaos into order with our own programming efforts.

Concurrency introduces the same issues, time and again:

• How to ensure that information is updated completely before anyone can act on the

update; for example, to stop anyone accessing the details of a new car model until all the

details have been added.

• How to ensure that information is not updated while it’s being read; for example, don’t

delete a car model while its details are being viewed.

At a low level, database transactions and thread monitors are used to protect data inside

individual processes, for example. At a higher level, we need to use system rules and business

rules to control concurrent activity.

The easiest approach to concurrency is to constrain the system or introduce extra business

rules, especially if the user experience doesn’t diminish significantly. For example, for iCoot,

rather than trying to cope with updating the car catalog while customers are accessing it, we

could update the catalog in a separate database and switch databases once a day; this way the

Internet subsystem can assume that the catalog is read-only, which makes our code much

easier to write. (The user experience diminishes slightly – in rare cases they will have to be

told that a car model they’ve just tried to reserve has been discontinued – but we choose to

live with that.) This is an artificial constraint on the system.

Designing for Concurrency 221

Business rules can also make the developer’s life easier. Indeed, business rules are

sometimes introduced because there is simply no off-the-shelf way to solve the problem.

For example, consider a purchasing system for concert tickets. Customer Fred walks into

a booking office in Paris at about the same time that customer Beryl walks into another

booking office in New York. Both customers have decided that they want a ticket to the same

concert in London. Unfortunately, there is only one ticket left. How do we decide who gets

the ticket? Both customers will ask ‘Is there a ticket available?’ Both sales clerks will check

on the system and both will reply ‘Yes’. Now we have a race: the first customer who says

‘Okay, I’ll take it.’ will win, subject to the efficiency of the clerks and the network delays

from Paris and New York to the location of the actual server.

In the ticket scenario, we must ensure, at the very least, that we don’t inadvertently sell

two tickets when there’s only one seat left. This is a process-level concurrency issue, because

it can be controlled by the server process (the requests are serialized: the first to arrive gets

the ticket, the second gets an error message). But that may not be good enough from the

business point of view, because we end up with one disgruntled customer who was told

there was a ticket only to be told a few seconds later that there wasn’t one after all.

To avoid disgruntled customers, we can introduce an extra business rule: when a

clerk queries the availability of a ticket, if one is available, it is temporarily reserved – the

reservation lasts until the clerk cancels the enquiry or the reservation times out (for example,

the temporary reservation lasts for ten minutes if the clerk doesn’t cancel it first). With this

new business rule, we can ensure that only the first customer who makes the virtual trip to

the ticket server is told that there’s a ticket available (the ticket server can combine the query

and the reservation into a single business service).

Let’s assume that Fred is successful. The clerk serving Fred has ten minutes to persuade

him to pay for the reserved ticket, or the clerk can cancel within that time if Fred changes

his mind. (The clerk would also cancel if Fred’s method of payment failed, which is another

reason for having temporary reservations in the first place.) Beryl now thinks that the concert

sold out before she got to the booking office, so she has no reason to blame the booking

agency for providing incorrect information. (If the last ticket is not bought by Fred and Beryl

later discovers that the concert was not sold out, she can simply be told ‘Somebody must

have canceled’.)

Detailed consideration of concurrency problems and their solution is beyond the scope of

this book. In any case, there is no real substitute for sitting down and thinking (hard) about

it. For now, here are some observations:

• The look and feel of a well-designed concurrent system is no different to the single-user

version.

• Our business services are the same for concurrent and single-user cases.

222 Chapter 8

• To make a business object concurrent-safe, it’s only necessary to add messages and sup-

porting objects; therefore, business messages (and associated attributes) can be designed

separately.

If you can think of a concurrent situation that might cause difficulties for your system,

do not proceed to implementation until you can guarantee that that situation is no longer a

problem. Be tough on your system, because reality will be tougher.

8.6 DESIGNING FOR SECURITY
Detailed consideration of security, although fascinating, would require a book in itself.

Therefore, only an overview will be provided here.

A secure system is one that is protected from misuse, regardless of whether the misuse is

accidental or malicious. Security is a rather broad term that can be broken down into the

following five aspects:

• Privacy: We must be able to hide information, making it available only to those who are

authorized to read it (or change it).

• Authentication: We need to know where each piece of information came from, so that we

can decide whether or not to trust it.

• Irrefutability: This is the flip-side of authentication, ensuring that the originator of

information can’t deny that they’re the source; this is helpful to us if anything goes wrong.

• Integrity: We must be sure that information hasn’t been damaged, accidentally or mali-

ciously, on its way from the source to us.

• Safety: We must be able to control access to resources (such as machines, processes,

databases and files). Safety is also known as authorization.

In this context, information means not only data, such as business documents and user

passwords, but also pieces of executable code. Code is an issue because it may be loaded

dynamically over the network.

The first four requirements above can be satisfied using digital encryption (more on this

in the next section). The safety requirement is rather more complex. Normally, when a piece

of code is running, the operating system will exert some kind of control over what the code

is able to do; typically, this means controlling access to files, to directories and to other

programs. Operating systems have faults and security holes (some more than others). In

addition, the control provided by operating systems is inflexible: for example, we have no

easy way for the user or the developer to invent their own abstract controls such as ‘Only

Freda and Ben can join my virtual game of poker’ or ‘Only members of my family can turn

the microwave on using their mobile phone’.

Designing for Security 223

If our system operates over a network, the safety aspect becomes even more important.

This is because, in a networked world, hackers can try to hijack programs running on our

machines to get them to misbehave. To make matters worse, courtesy of Java and ActiveX,

code fragments can travel around the network, executing on different machines as they

go. Java is the only mainstream technology that adds the required level of safety for code

traveling around a network and the flexibility to invent our own controls, regardless of the

operating system being used. The practical implication of this is that if you’re not using Java,

you should prevent code from moving around the network: install code on each client or

server as needed and rely on the operating system and your own programming efforts to

make things safe.

8.6.1 Digital Encryption and Decryption
This is an aside to give you some idea how digital encryption and decryption – crypto-

graphy – can be used to provide privacy, authentication, irrefutability and integrity. First,

the basic idea: to encrypt information means to scramble it so that it’s useless if anyone

manages to steal it. For this to make sense, the scrambling method must be reversible and it

must be known to the intended recipient. The reverse of encryption is decryption.

As kids, most of us played with the so-called Caesarian Cipher (although we probably

didn’t call it that). What we do is to take a message and then scramble it by shifting each letter

a number of places down the alphabet, wrapping round if we fall off the end. For example,

if we choose to shift four places, the message ‘Mister Watson, can you hear me?’ would be

encrypted as ‘QMWXIVAEXWSRGERCSYLIEVQI’. (We leave out punctuation, letter case

and spaces in the encrypted version in order to avoid giving clues to spies.) As long as the

recipient knows that the algorithm is Caesarian and the offset is four, they can decrypt the

original message.

The Caesarian Cipher is a general form of encryption: it involves an extra piece of

information that the recipient must know (4) as well as the algorithm itself (Caesarian). The

extra piece of information is called a key, because it unlocks the code: it’s not enough to

know that unlocking a door involves turning a key, you need to have the key too.

The success of an encryption mechanism boils down to two things:

• How difficult it is to crack the encryption, by trial and error or by hard work.

• Safe distribution of the key to the intended recipient.

Both of these can have their problems. The Caesarian Cipher, for example, is easy to

crack: a wrong-doer only has to guess that the Caesarian method is being used and then try a

maximum of 26 possible offsets before the message materializes in front of their eyes. As for

safe distribution, we might try whispering the details of the key into the ear of every intended

recipient: however, as well as being inconvenient, this approach is doomed to failure – if any

224 Chapter 8

recipient with a defective memory writes the key down on a piece of paper, we might have a

security breach.

Although it’s possible to come up with an uncrackable encryption algorithm – one-time

pads and quantum cryptography are examples – these algorithms are either inconve-

nient (code books) or very expensive (quantum cryptography, at least for the time

being). So, for everyday use, especially in the context of network programming, we

normally choose the level of security that we want and then select an efficient algo-

rithm that provides that level. This works because no self-respecting criminal would

bother to eavesdrop our encrypted credit card details if it might take them, say, a mil-

lion years to decipher the details: they would just burgle our house or pick our pocket

instead.

Digital encryption and digital decryption are simply an extension of the ideas above to

encrypt the digital information passed between computers, where software can do all the

hard work. The level of digital encryption is normally expressed in bit strength: 128-bit

encryption is considered minimum these days and 1024-bit encryption is desirable.

Digital keys are based on prime numbers, hence cracking them is difficult, because it

involves trying to find prime factors, which is an intensive process. The keys themselves

are distributed using digital certificates. A certificate, with the help of a trusted certificate

authority, authenticates the key, so that we can’t be fooled by hackers.

Below is an indication of how four of the security aspects identified earlier can be

implemented using cryptography:

• Privacy: In digital encryption and decryption, safe distribution of keys is achieved using

public/private key pairs, certificates and certificate authorities.

• Authentication: This relies on being able to prove the origin of the key, using certificates

and certificate authorities; roughly speaking, if we can successfully decrypt the information,

and we know the origin of the key, we know that the information must have come from

the same place as the key.

• Irrefutability: Since authentication relies on proving the origin of the key, once we’ve

authenticated a piece of information, our authentication is irrefutable.

• Integrity: First, we transmit the encrypted information and the unencrypted information

to the client. Next, the client decrypts the encrypted version and compares the result

with the unencrypted version – obviously, the two should match (the chance of them

matching by accident is tiny). Therefore, we’re confident that we have received the correct

information.

There are two problems with integrity-checking as just described: first, we’ve sent the

information unencrypted; second, we’ve sent the information twice (the encrypted version

is just as big as the unencrypted version). The first problem can be overcome by sending

Partitioning Software 225

everything over a secure line. The second problem can be overcome by an optimization based

on message digests – a digest is a small string of bits generated from a piece of information

using an irreversible algorithm. Without going into detail, we end up sending the encrypted

digest, but not the encrypted information. The end result is that we get the same degree

of integrity checking, but the information is sent only once. (For the record, an encrypted

digest is called a digital signature.)

8.6.2 General Security Rules
As with concurrency, when designing a secure system, there is no way to avoid sitting down

and thinking hard about it in order to make sure that no-one can abuse the system. Here are

a few things to bear in mind when trying to secure your (networked) system:

• Protect your servers from unauthorized access, whether accidental or malicious.

• Confine sensitive information to your internal network: sensitive information includes

details of business deals with other companies; business strategy; personnel details; details

of the credit reference agencies you use; information relating to national security; and

so on.

• Prevent the eavesdropping of exported information: ensure that information you pass

outside your intranet can only be read by the intended recipient.

• Protect employee and customer passwords, which are not only the foundation of your

entire security policy, they’re often highly personal.

• Prevent server code accessing unneeded resources.

• Prevent client code accessing unneeded resources: we want to protect the client against

unauthorized access to their resources and against accidental damage (because we want

to offer a high quality of service and because we don’t want them to sue us if something

goes wrong).

If you’re really brave, you might consider hiring ethical hackers, consultants who do

everything they can to break into your system. Once the ethical hackers have certified your

system, you’re less likely to get a nasty surprise when it goes live.

8.7 PARTITIONING SOFTWARE
For any large business, it’s impractical to lump all the business entities and business processes

into a single software system – the result would be far too complex and difficult to use.

We can, and should, partition software into systems, then into autonomous subsystems if

necessary, then into layers (which can also be considered to be subsystems).

226 Chapter 8

8.7.1 Systems and Subsystems
Consider how the simple concept of Customer is viewed differently by the departments in a

large organization, sales, marketing, billing, procurement, dispatching and so on. If we tried

to put together a single software system that supported all of these departments, our Customer

would have hundreds of attributes and hundreds of operations: a recipe for disaster.

Instead, a business should have a number of separate systems, each implemented by

a different development team so that the temptation to reuse objects inappropriately is

minimized. Then, where information needs to be passed between systems, it should pass in

a well-defined, controlled manner via well-defined interfaces. In order to reduce complexity

further, each system should be broken down further into separate subsystems.

Figure 8.7 shows a company’s systems as independent trees in a forest. Underneath each

tree is the database of information that the systems need to access and at the top is the user

interface. Communication takes place along narrow, constrained pathways (rope bridges),

from business logic to business logic via purpose-built interfaces. Although each system has

its own independent data, we can still use a single DBMS for deployment, since a DBMS will

happily manage multiple databases.

Figure 8.7: Coordinating multiple systems

For the case study, we have a single system called Coot which comprises two subsystems:

iCoot provides access for members and nonmembers; the other subsystem provides access

for assistants and resembles the existing Auk interface. The latter subsystem will not be

considered in detail.

Partitioning Software 227

8.7.2 Layers
Inside a software system, we usually employ multiple layers of code (see Figure 8.8). Each

layer is a cluster of collaborating objects dependent on the facilities offered by lower layers.

Layers don’t have to contain objects. For example, the Unix system library provides access

to low-level operating system facilities via a layer of C functions.

Figure 8.8: Objects in layers

Layers help to reduce complexity by breaking the implementation up into more man-

ageable chunks. Layers also increase the chance of reuse, since each layer is written to be

independent of the layers above. As Bertrand Meyer put it in [Meyer 97]:

A serious software system, even a small one by today’s standards, touches on so many

areas that it would be impossible to guarantee its correctness by dealing with all

components and properties on a single level. Instead, a layered approach is necessary,

each layer relying on lower ones.

Often, regardless of the total number of layers, the top layer represents the user interface

and the bottom layer represents the operating system, or a network connection. In the

following diagrams, the lowest layers have been omitted for simplicity, stopping at a well-

known layer that’s documented elsewhere. In the following sections, we’ll see examples of

common layers used in systems that have one, two or three tiers.

Layers may be open (exposing some of the objects from lower layers for use by layers

above, i.e. it manages the objects below but doesn’t completely hide them) or closed

(completely encapsulating the layers below, i.e. objects from lower layers are hidden from

those above). There is no easy rule for deciding whether a particular layer should be open or

closed. You have to use your skill, judgment, experience and foresight. Generally speaking,

a closed layer requires more coding and may run more slowly than an open layer (because

228 Chapter 8

there’s more copying and translating of information to be done). On the other hand, an open

layer is generally not as safe (because lower layers are unprotected) and harder to maintain

(because each layer has more than one dependent layer above it).

To a certain extent, we can swap layers in and out without disturbing other code. For

example, we can always throw away the top layer and replace it with another. Furthermore,

we can replace a closed intermediate layer with one that has the same interface, without

affecting the layers above. Most often, layers are re-implemented at the bottom, when we

move our system to another platform, or at the top, when we move the user interface to a

new device.

Some of the technologies in the following discussion are explained further in Chapter 9.

Layers for Single-Tier Systems
Figure 8.9 shows a simple layering scheme as might be employed in a single-tier system.

At the bottom, we have the database layer, whose job it is to ship data back and forth

between the DBMS and the business layer. The assumption has been made that most

applications have data storage requirements, so that data doesn’t evaporate if the system

is shut down for any reason. If we had a simpler system that stored data in files, the

database layer would be a file system instead of a DBMS. On top of the database layer, we

have the business layer, which consists of the entity objects and supporting implementation

objects. Finally, on top of the business layer, we have the user interface layer, which

contains objects whose job it is to present available options to the user, to pass user

commands and data on to the business layer and to display data coming back from the

business layer.

User Interface

Business

Database

Figure 8.9: Layers in a single-tier system

Layers for Two- and Three-Tier Systems
Two-tier and three-tier systems employ a network to get from the user interface running on

the client to the business layer running on the server. We can cope with this by employing

two more layers, as shown in Figure 8.10. The network layer contains objects that make

the network transparent to the user interface. As far as the user interface is concerned, it

may just as well be accessing the server objects directly. The server layer contains objects

that simplify use of the business layer into a manageable set of business services. As well as

Partitioning Software 229

User Interface

Network

Server

Business

Database

Figure 8.10: Layers in a two tier or three-tier system

simplifying the client, this allows us to localize security measures in the server layer without

polluting the business layer and to accommodate different kinds of client.

For a two-tier system, the database layer is on the same machine as the server and business

layers. For a three-tier system, the database layer spans a network, but the details are hidden

from us by the DBMS.

If we use HTML forms to get from the client to the middle (or server) tier, the user

interface–network situation is less clear cut. In this case, the user interface is partly on the

client (as HTML pages and forms) and partly on the server (as servlets and JSPs). If we

prefer, we can adjust the diagram to reflect this.

Translation Layers
As illustrated in Figure 8.11, different layers have different focus. For example, when

designing a user interface, we’re concerned with menus, dialogs, notebooks, windows,

usability, intuitiveness, and so on. For the network, we’re worried about protocols, band-

width and different types of hosts. When we move on to the server, we should concern

ourselves with security, multi-threading and throughput. In the business layer, the part

that flows most directly from our business analysis, we’re most interested in abstraction,

attributes, operations, polymorphism, reuse and the other fundamentals of object-oriented

modeling. Finally, we arrive at the database layer where, traditionally, we expect to deal

with keys, tables, SQL, locking, functional dependencies and all the other aspects of

database theory. In short, if we try to connect these differing worlds together directly,

we will end up with too much complexity and too much coupling (strong coupling,

when one object’s implementation is closely dependent on another’s, makes code harder to

maintain).

We can reduce complexity and coupling by introducing extra layers to act as transla-

tors. Translation layers are particularly useful for translating the business layer (in the

single-tier case) or the network layer (when we have multiple tiers) into the minimal

230 Chapter 8

Figure 8.11: Differing concerns in a large system

functionality needed by the end user – such layers are often referred to as controllers.

Controllers manage the user interface’s communication with the rest of the system. (This

fits well with Jacobson’s idea of a controller.) Another common translation layer is the

so-called persistence layer that sits between the business layer and the database layer:

by removing the business layer’s dependence on the actual storage mechanism in use,

it becomes easier to change the storage mechanism later (from files to a DBMS, for

example). Figure 8.12 shows a multi-tier system with the addition of control and persistence

layers.

8.7.3 Java Layers: Applet plus RMI
In order to illustrate a Java client with a proper GUI, Figure 8.13 shows a complete set of

layers for a three-tier system with an RMI applet as the front end. RMI is a Java network

protocol.

In this illustration, the user interface layer is implemented using the Swing library (Java’s

portable library of GUI components). Underneath the user interface layer, we have a control

layer that contains all the code for accessing the business services; this code would otherwise

Partitioning Software 231

User Interface

Control

Network

Server

Business

Persistence

Database

Figure 8.12: Translation layers in a multitier system

Swing

Control

RMI

Server

Business

Persistence

JDBC

Figure 8.13: RMI applet layers

have to be buried in the user interface objects and re-implemented for every new interface

that we add later (mobile phones, for example).

95% of the network layer is provided for us by the RMI framework – we just have to

follow a few simple rules in the control layer and the server layer to make our server objects

accessible from any client.

The server layer, business layer and persistence layer are just like the ones described in

the previous subsection. Last, but not least, we have the database layer provided by the

Java DataBase Connectivity (JDBC) library. JDBC allows us to access any relational database

using dynamic or precompiled SQL. Because we have included a persistence layer, we could

232 Chapter 8

replace JDBC with an object-oriented database, or the file system, without disturbing the

business objects.

Case Study
iCoot layers

As an illustration of the HTML/CGI-with-servlets configuration, Figure 8.14 shows

the layers that are used for iCoot.

For iCoot, there is no persistence layer, because a relational database, accessed

via JDBC, is expected to serve the purposes of the system throughout its life. The

JDBC layer itself is provided by classes from the standard Java library. For the user

interface, there are two styles: CGI-with-servlets and RMI-plus-applets. For the first

increment, HTML/CGI-with-servlets will be used (using JSPs for the dynamic page

content) in the ServletsLayer. For later releases, an RMI-plus-applets mechanism will

be provided, for desktops, using the SwingLayer, and then small devices, such as

PDAs and mobile phones, using the MicroLayer. The MicroLayer is implemented

using the Java 2 Micro Edition (J2ME).

For the sake of the first increment, the control layer is provided by servlets,

with the help of JSPs. For the RMI version, on the other hand, the ControlLayer

is designed for a proper GUI. Oddly enough, this means that the control layer is

below the network for HTTP/CGI, but above the network for RMI. In either case, the

controllers are translating (or coordinating) the ServerLayer. Thus, everything from

the ServerLayer down is reused without change. (The ControlLayer is also reused, by

the two styles of GUI.)

ServletsLayer

HTMLLayer

HTTPCGILayer

RMILayer

ControlLayer

Swing-
Layer

Micro-
Layer

JDBCLayer

ServerLayer

BusinessLayer

Figure 8.14: Layers for iCoot

Partitioning Software 233

8.7.4 Message Flow in Layers
In a layered system, each layer is a client of the layer immediately below it. Thus, we expect

messages to be sent from the upper layer to the lower layer, as shown in Figure 8.15. Each

message is either a question (retrieving some information, for example, getAddress) or a

command (an instruction to do something, for example, setAddress).

Figure 8.15: Messages flow downwards in a layered system

Many commands sent into a layer will have an effect on the information managed by that

layer – otherwise there would be little point in issuing the commands in the first place. But,

what if the upper layer needs to know what information has changed? The upper layer might,

for example, be a user interface that needs to update its display with the new information.

We have two choices:

• Add knowledge to the upper layer about which commands change which information.

• Get the lower layer to send messages to the upper layer whenever the information changes.

The problem with the first option is that it pollutes the upper layer with knowledge

that, logically, belongs in the lower layer – this makes the coding of the upper layer more

complicated and couples the upper layer more tightly to the lower layer. The problem with

the second option is that the lower layer has to know something about the upper layer so

that it knows which objects to send messages to – thus, the lower layer is polluted with

knowledge about the upper layer, making it more complicated and also coupling it to the

upper layer. (Ideally, lower layers should not be coupled to upper layers at all.)

Events
So, is there some way that a layer can notify the layer above when something interesting

has happened, without increasing complexity or coupling in either direction? The answer

is ‘Yes, events’. Figure 8.16 shows the real-world analogy that we use for events. An event

source detects when something interesting has happened (an event) and shouts out the

details (broadcasts) to anyone who might be listening (the event listeners). An event might

be an attribute event, indicating a change in the value of one of the event source’s attributes,

234 Chapter 8

Event
Listener

Event Source

Event

Figure 8.16: The event analogy

or it might be a pure event, not related to any attribute value. For example, consider a Clock

entity: it could broadcast an attribute event when the time changes – say, every second – and

it could broadcast a pure event when the alarm goes off.

As the phrase ‘broadcast an event’ suggests, we would like the event source to detect when

the event happens and just shout it out to anybody who is listening: this way, the event

source won’t be complicated by knowledge of the listeners and the event listeners won’t

be complicated by knowledge of when the events might occur. In our layering scheme, we

can use event sources in each layer to broadcast events to listeners in the layer above, thus

achieving our goals of keeping knowledge in the right place and minimizing coupling.

But how do we implement such an idea using messages? As a first step to understanding

how this might work, Figure 8.17 shows an example collaboration between a Clock, the

event source, and a ClockUI, the event listener. In this diagram, the special name self is UML

notation for ‘the current object’ (it corresponds exactly to the special name this in Java).

As part of the initialization process, the ClockUI registers itself with the Clock by sending

it the addClockListener message. Next, the ClockWatcher sets the alarm in the ClockUI, which

passes the alarm setting on to the Clock. As the clock sends itself the tick message periodically,

eventually it will detect that it is time for the alarm to go off. When this happens, the Clock

creates a ClockEvent (with the help of the ClockEventHome), with information about the event

(in this case, the only information is the source of the event). The Clock then sends the alarm

message to the ClockUI with the ClockEvent as a parameter. (The event object records the

Partitioning Software 235

1a:addC
lockListener(self)

2b.1:setA
larm

(tim
e)

3c
.1

:e
=c

re
at

e(
se

lf)

3c.2:alarm
(e)

3c
:ti
ck

()

3c.3:beepBeepBeep()

:Clock

Clock

Watcher

:ClockEvent

:ClockUI

2b:setAlarm(time)

:ClockEvent

Home

Figure 8.17: A communication diagram showing how events work

event source; if the ClockUI is listening to more than one clock, it can find out which one has

just sounded the alarm.) Finally, the ClockUI beeps at the ClockWatcher.

You may be wondering why the sequence numbers in this communication diagram have

letters in them. The reason is that we have three independent sequences in our scenario:

adding the clock listener; setting the time; and sounding the alarm. (As long as adding the

clock listener happens first, the other two sequences can happen multiple times, in any

order.) The clock has to run independently of the ClockUI and the ClockWatcher, otherwise,

when the alarm has been set, control returns to the ClockWatcher and the Clock is not able

to tick. A name as part of a UML sequence number shows that the message in question is

dependent on messages that include the same name, but independent of others. We can still

show the ordering of independent messages, by the careful use of numbers: for example, it is

implicit that message 2b happens before message 3c in our scenario; it would also be implicit

that messages numbered 99x and 99y happen at the same time.

236 Chapter 8

The class diagram for the alarm clock scenario is shown in Figure 8.18 (for simplicity,

ClockEventHome and ClockWatcher have been omitted). From this diagram, we can see that

ClockEvent has a getter for the source attribute. Also, the ClockUI has a message that allows

the ClockWatcher to set the alarm – setAlarm – and another message for detecting the alarm

event – alarm. Finally, the Clock class has a message for setting the alarm – setAlarm and a

message for registering a listener – addClockListener. (There are some new pieces of UML

notation in this diagram which will be explained shortly.)

*

<<interface>>
ClockListener

ClockEvent

ClockUI

realization

provided interface/required interface

Clock
sourcelistener

ClockListener

alarm(:ClockEvent)

alarm(:ClockEvent)

setAlarm(:int)

addClockListener(:ClockListener)

setAlarm(:int)

source:Clock

getSource():Clock

*

Figure 8.18: Events as a class diagram

Because object-oriented languages generally don’t have a true broadcast mechanism, the

Clock in Figure 8.18 must maintain an internal list of interested listeners and then send a

message to each one when the event occurs. The listeners, for their part, must make sure that

they register for the event. It may have occurred to you that the Clock is now coupled to the

ClockUI, something that we were trying to avoid in the first place. We can solve this problem

by introducing an abstract class – called ClockListener – that only lists the messages required

for detecting Clock events. As long as ClockUI inherits from ClockListener, we will be able to

register a ClockUI with a Clock and the ClockUI will be able to receive the alarm message. Thus,

although Clock is coupled to ClockListener, it is not coupled to ClockUI. (ClockListener resides

in the same layer as Clock, while ClockUI floats independently in the layer above.)

An interface, denoted by the <<interface>> keyword, is a pure abstract class – a class

that has no concrete methods and no attributes. Since interfaces are so useful, for specifying

communication with reduced coupling, they have some special UML notation shown in

Figure 8.18. The dashed arrow with a white head (labeled realization) indicates inheritance,

for the special case where the superclass is an interface. The ClockListener notation, labeled

Summary 237

provided interface/required interface, allows us to indicate that one class uses another class

via a particular interface. In this case, the part that looks like a lollipop indicates that

ClockUI realizes (is a kind of) ClockListener, while the cup-shaped part indicates that Clock

only depends on the fact that ClockUI is a ClockListener. As you’ve probably spotted, there

is redundancy in Figure 8.18. It’s up to you when you use the ‘dashed inheritance’ or

‘lollipop-and-cup’ styles in your own diagrams.

Message Flow using Events
Figure 8.19 shows how messages should flow when using layers. Ordinary messages are

shown flowing down through the layers, while event messages are shown rising up. (The

event messages have been shown as dashed arrows to indicate that the lower object has no

knowledge of the recipient.)

Figure 8.19: Control flow using events

Events are most often used in client code, because they’re a convenient way of keeping a

user interface up to date with the information in the layer below. Events are rarely used on

the server side, because server code tends to be multi-threaded, which complicates event-

driven programming significantly (there is increased potential for deadlock, for example),

and because events should not be broadcast over a network: we don’t want the server held

up while it sends event messages to lots of clients, some of which might have perished or be

difficult to contact.

Therefore, it’s recommended that you avoid event-driven programming on the server side.

If you wish to broadcast over a network, use machine-to-machine messaging instead, such

as that provided by the Java Messaging Service (JMS).

8.8 SUMMARY
In this chapter, we’ve looked at:

• The steps involved in system design and how a system can be decomposed
into physical and logical components, with particular attention paid to network
topologies.

238 Chapter 8

• How to illustrate architectural decisions on UML deployment diagrams.

• The concurrency issues that arise in networked systems: how to ensure that infor-
mation is updated completely before anyone can act on it and how to ensure that
information is not updated while it’s being read.

• How to ensure that a system is protected from accidental and malicious misuse, by
ensuring privacy, authentication, irrefutability, integrity and authorization.

• How a company’s software can be broken down into multiple systems, subsystems
and layers.

FURTHER READING
Full details of the HTML specification can be found in [W3C 99]. For a more readable

description, see [Raggett et al. 97]. Raggett is one of the main forces behind the UML

standard.

For more information about the history of cryptography, take a look at [Singh 00], an

approachable book by Simon Singh, a science journalist rather than an academic.

REVIEW QUESTIONS
1. Why are layers important in subsystem design? Choose all options that apply.

(a) They make it easier to change the implementation

(b) They reduce the number of classes in the implementation

(c) They increase reuse

(d) They reduce complexity

2. If two customers, on opposite sides of the world, wish to purchase the last ticket available

for a concert, what would be a good approach for allocating the ticket? Choose only one

option.

(a) Introduce an extra business rule that combines a query for ticket availability with a

temporary reservation.

(b) Make the customers take part in a software ‘race’ to get the ticket.

(c) Don’t allow the last ticket to be sold, because that would be unfair to one of the

customers.

Review Questions 239

3. With reference to Figure 6.13, what is Z? Choose only one option.

(a) A class.

(b) An event.

(c) An interface.

(d) A boundary.

(e) A property.

X Y

Z

Figure 8.20: For use with Review Question 3

ANSWERS TO REVIEW QUESTIONS
1. Layers are important in subsystem design because:

a. They make it easier to change the implementation

c. They increase reuse

d. They reduce complexity

2. If two customers, on opposite sides of the world, wish to purchase the last ticket available

for a concert, a good approach would be to a. introduce an extra business rule that

combines a query for ticket availability with a temporary reservation.

3. With reference to Figure 8.20, Z is c. An interface.

9
Choosing Technologies

This chapter identifies the major technologies available for the client side and the server

side and helps to ensure that you know how to make informed choices.

Learning Objectives
Understand client-side

technologies.

•
Understand server-side

technologies.

Understand protocols for
connecting clients and servers.

•
Understand network technologies.

Chapter Outline

9.1 Introduction

9.2 Client Tier Technologies

9.3 Client Tier to Middle Tier Protocols

9.4 Middle Tier Technologies

9.5 Middle Tier to Data Tier Technologies

9.6 Other Technologies

9.7 Typical Front-End Configurations

9.8 Back-End Configurations

9.9 Java E-Commerce Configuration

9.10 UML Packages

9.11 Summary

Further Reading

Review Questions

Answers to Review Questions

9

242 Chapter 9

9.1 INTRODUCTION
Although we have a full set of requirements and analysis documents and even an initial

architecture diagram, we still haven’t made any choices about the implementation technolo-

gies that we’re going to use. As already mentioned, the longer we delay this decision, the less

sensitive our system will be to changes in the future. On the other hand, the longer we wait

before we choose technologies, the less chance we will have of exploiting the finer points of

those technologies.

Making technology decisions at this stage in the development (before detailed design) is

a good compromise. Once we have made the decisions, we can still make informed choices

as we move forward about how much we want to tie ourselves to the unique features of any

particular technology. All the diagrams in this book stick to language-independent UML.

For example, the standard UML operation signature has been used, rather than switching to

something more specific, such as Java syntax. In contrast, Java primitives have been shown

in the diagrams, rather than UML primitives, because they’re more compact and because it

is clearer that we’re using a primitive value rather than an object value.

9.2 CLIENT TIER TECHNOLOGIES
Let’s look at the software that runs on clients in a multi-tier system (the main focus of

this book). We have two main choices: we can launch either a purpose-built application

(program, executable, or whatever you prefer to call it) or a Web browser that hosts the

client software. The kind of client applications that we can run include:

• Human to human communications: e-mail, instant messaging, USENET news, chat.

• File transfer or file swapping.

• Remote login.

• Proprietary applications (anything that doesn’t fit into a more general category, for

example, a multiuser flight simulator).

Clients hosted in a Web browser can use the following technologies:

• HTML forms.

• JavaScript.

• Proprietary plug-ins (anything that isn’t one of the other general categories, for example,

interactive animation using Flash).

• ActiveX controls.

• Java applets.

Client Tier Technologies 243

All of the above technologies use some kind of protocol (for example, IMAP for e-mail,

AIM for instant messaging and HTTP/CGI for HTML forms) to communicate with at least

one other machine (mail server, messaging server or Web server). Generally speaking,

applications and browser plug-ins can be written in whichever language you prefer (Java,

C++, Eiffel, Fortran, or COBOL). This was always the case for applications; for browser

plug-ins, you need a compiler for your chosen language that’s willing to put the machine

code into a DLL (Windows) or shared library (Unix).

Client applications have the disadvantage that they require installation of software on

the client machine before they can be used. However, for some purposes (such as desktop

publishing) they’re a good choice. A Web browser, an application in its own right, is

especially useful for client software because it can be enhanced by the multi-tier developer to

behave in ways never dreamt of by the developer of the browser itself. For example, a Web

browser can be used to read news bulletins, as HTML pages, from a global broadcaster; it can

also be used to check bank account details using a Java applet. And all this is done without

any prior installation on the client machine (apart from the browser itself of course).

For a large client tier written in Java, it may be impractical to load an applet over the

network – in such cases, local installation of the applet (or a Java application) may be

necessary. Section 8.4.4 suggested that network computers were a good idea, regardless of

the size of application loaded over the network. The reality is rather more subtle. Normally,

a network computer uses Internet technology (over an intranet) to get hold of its software.

Internet-style networks, by their very nature, have bottlenecks that make the frequent loading

of large programs impractical. Although this problem can be alleviated by having a good

local cache, the best kind of network computer is still a disk-less Unix workstation, which

suffers far fewer bottlenecks. For the time being, this means that ‘If you want to load a large

program over the Internet, don’t. If you want to load a program over an intranet, make sure

it’s not very large (<2 MB)’. All is not lost, however: it turns out that a useful thin-client GUI

can be squeezed into a 100KB Java applet, which is practical even for the Internet.

Each browser technology has its own advantages and disadvantages. For example:

• HTML is visually rich and widely supported, but HTML forms are primitive and they’re

not automatically validated on the client. Also, being forced to step through a dozen pages,

each of which flashes to white before it’s drawn, is not the nicest way of interacting.

• JavaScript permits some client-side programming (for example, data validation in HTML

forms). But JavaScript is interpreted (and therefore slower than compiled code), is not pure

(in the object-oriented sense) and different browsers provide different levels of support

(which makes coding awkward).

• In theory, plug-ins can provide any kind of client interaction you wish to implement.

However, plug-ins often need to be downloaded and installed the first time they’re used;

each one requires different programming expertise; and they must be ported by the

244 Chapter 9

supplier to each new platform (operating system/CPU combination) so they may not be

supported by every client.

• ActiveX controls are 32-bit Windows binaries hosted by a Web browser. Although this

gives them the same possibilities as plug-ins and Java applets, they can only run on

Windows.

• Java is a simple, pure, object-oriented language, so potentially it offers the best solution.

Java also provides a measure of safety because it prohibits access to resources on the

local machine without explicit and detailed authorization by the user. Partly because of

corporate chicanery, at the time of writing most Web browsers only support an old version

of Java – for a full-featured version of Java, you need the Java PlugIn from Sun (Java

masquerading as a browser plug-in) or you need to buy a PC with Java preinstalled.

In principle, Java is the best choice for implementing clients in a three-tier system. Because

of the lack of out-of-the-box support in Web browsers, most developers opt for HTML forms.

(To be fair, the problem of browser support also plagues other client options, such as plug-ins

and ActiveX – HTML forms are only practical because they have been around for so long.)

Many Web browsers can also host older client applications, including file transfer, e-mail

and USENET news.

Most of the important technologies are migrating onto newer devices such as personal

digital assistants (PDAs) and mobile phones. TCP/IP is ubiquitous, even on small client

devices – it even works over wireless connections. Thus, porting a three-tier system to new

kinds of devices will normally just involve redesigning the user interface to make it smaller

(and more primitive).

9.3 CLIENT TIER TO MIDDLE TIER
PROTOCOLS

Client software, whether running as an application or inside a Web browser, has to

communicate with a server using some kind of protocol. Most protocols are layered: at the

bottom we have a low-level protocol such as TCP/IP and on top of that we build further

protocols, specialized for particular tasks. For example, on top of TCP/IP, we can put the

Secure Sockets Layer (SSL) which encrypts and decrypts the information for the sake of

privacy and integrity. On top of SSL we might run Secure HTTP (HTTPS), a secure protocol

that allows a client to request a document by URI and get back the contents of that document.

It’s quite reasonable to have multiple layers. For example, Java has a mechanism called

Remote Method Invocation (RMI) that allows an object to send a message to an object

running on a separate machine – the message is sent using a protocol called Java Remote

Method Protocol (JRMP). In order to get through Internet firewalls, RMI is prepared to

Client Tier to Middle Tier Protocols 245

piggyback HTTP if necessary. So, when an object sends an RMI message to another object,

we may end up with the run-time situation shown in Figure 9.1 – this shows a message being

encoded using JRMP, then HTTPS, then SSL, then TCP/IP; on the server side, the message is

unwrapped and sent to the intended recipient. The reply is sent back via the reverse path.

aClient aServant

JRMP

HTTPS (Optional)

SSL (Optional)

TCP/IP

Figure 9.1: How RMI can use a network

Commonly-used protocols fall into two categories: specialized and general. Specialized

protocols include:

• IMAP (e-mail).

• AIM (AOL Instant Messaging).

• NNTP (USENET news).

• HTTP/CGI (HTML forms).

• FTP (file transfer).

• Telnet (remote login).

General protocols (adaptable to many tasks) include:

• TCP/IP (low level transport, also known as sockets).

• JRMP (for Java-to-Java communications).

• IIOP (for CORBA communications, similar to RMI but multiple implementation lan-

guages).

Developers usually use a higher level abstraction, courtesy of their run-time system and

libraries. For example, RMI and CORBA programmers just send messages to objects – the

RMI or CORBA code does all the wrapping and unwrapping invisibly; programmers of

HTML forms simply design the layout of their forms – the Common Gateway Interface

(CGI) mechanism arranges for the form data to be passed to executable code on the server.

246 Chapter 9

9.4 MIDDLE TIER TECHNOLOGIES
Having seen the ways of getting to the first line of servers, we need to decide what kind of

software will take over from there. Server applications are typically multi-threaded pieces of

code, designed for high throughput (capable of handling thousands, or millions, of clients

simultaneously). A server application listens on some port (connection point) for clients to

connect.

As far as styles of software are concerned, the server situation is similar to that on the

client. On the client, we can run stand-alone applications or code hosted by a Web browser.

On the (middle tier) server, we can run stand-alone applications or we can run a Web server

and put our code inside that. Stand-alone applications include:

• Mail, messaging, news and chat servers.

• FTP daemon.

• Telnet daemon.

• RMI Registry (a look-up mechanism for RMI objects).

• CORBA naming service (a look-up mechanism for CORBA objects).

• Java Naming and Directory Interface (JNDI) server (a general name-to-thing mapping

service that can be used instead of an RMI registry, a CORBA naming service, a user

registry, etc.).

• Proprietary server (for example, a process hosting CORBA or RMI objects, an EJB client, a

.Net client)

Server code that can be hosted by a Web server includes:

• Java Server Pages (JSPs), for building Web pages on-the-fly.

• Active Server Pages (ASPs), similar to JSPs but coding is typically Visual Basic rather than

Java.

• CGI scripts (these can be interpreted files, written in languages such as PERL, or executable

programs).

• Servlets (Java server objects that can be accessed by Java applets, JSPs or HTML forms).

RMI registries and CORBA naming services allow RMI and CORBA clients to find their

server objects by name (or they can use JNDI).

CGI scripts are either textual files written in some command language, such as PERL, or

native executables, compiled from a programming language in the normal way. A CGI script

is normally invoked by an HTML form: the Web server strips the data out of the form and

passes it to the CGI script as environment variables; the script places its result on standard

Middle Tier to Data Tier Technologies 247

output, which is returned to the client browser and displayed according to its type (HTML

page, image, audio file, etc.).

Servlets are Java objects instantiated on-demand by a Web server. A servlet is usually

passed data from an HTML form for processing: as with CGI scripts, the result returned by the

servlet specifies what the user sees next in their browser. A servlet is a platform-independent,

fast alternative to a CGI script.

JSPs are text files containing raw HTML interspersed with Java code. When first invoked

a JSP is translated into a servlet: the raw HTML is replaced with print statements and the Java

code is included verbatim; the servlet is then compiled and invoked. JSPs are normally used

to personalize Web pages – by inserting a bank statement for the customer who’s currently

logged in, for example. They can be invoked directly or via servlets.

ASPs are similar to JSPs but they use Microsoft technologies, so they’re not as portable.

9.5 MIDDLE TIER TO DATA TIER
TECHNOLOGIES

So far, we have run some code on the client, launched ourselves onto the middle tier via

some protocol and invoked some code on the middle tier. What do we do next? Well, the

usual answer, in a three-tier context, is that we access the data tier. There are a number of

ways of doing this:

• Include database-client code on our middle tier so that we can access a DBMS running

on the data tier. With Java, we can do this generically with the help of the Java Database

Connectivity (JDBC) mechanism [Campione et al. 98].

• Communicate with the data tier using any of the client-to-middle-tier technologies already

discussed. After all, as far as the data tier is concerned, the middle tier is just another

client.

• Do something proprietary, such as access a server running on a data-tier machine or run

some code directly on the middle tier (a two-tier configuration).

• Access the data tier using some non-TCP/IP protocol (we will usually only do this in order

to access a legacy system).

• Include Enterprise Java Beans (EJB) client code in our middle-tier server, then access the

data tier via EJBs (Java objects that are typically used to provide data and process services

on an intranet).

• Include .Net client code in our middle tier server. The .Net framework is Microsoft’s

competitor to the EJB framework (and other parts of J2EE). Since this book uses

Java-centric examples, no further detail of .Net is given.

248 Chapter 9

Figure 9.2 shows how all the technologies discussed so far fit together, in terms of where

they normally sit in a three-tier system.

Mail

Messaging

News

Internet Relay Chat

File transfer tool

Remote login (telnet)

Proprietary tool

Web browser

- HTML/CGI

- JavaScript

- Plug-in

- Applet

Mail server

Messaging server

Internet Relay Chat server

File transfer daemon

rlogin/telnet daemon

Proprietary server

 (e.g. CORBA, RMI, EJB)

JNDI server

CORBA naming service

Web server

- HTML

- CGI scripts

- Applet code

- Servlets

DBMS

JDBC net server

Database client

Proprietary data server

EJB data source

IMAP, AIM. NNTP, IRC, FTP, TELNET,

HTTP, TCP/IP, JRMP, IIOP

Proprie
tary DB protocol, J

DBC net, I
IO

P

JRMP, T
CP/IP

Figure 9.2: Summary of three-tier technologies

9.6 OTHER TECHNOLOGIES
There are a number of other technologies that deserve a mention at this point. These

technologies have been excluded from the discussion so far, either because they’re relatively

new and may not survive or because they simply provide alternatives to what has already

been discussed.

• Authentication: When users are accessing a system over a network, it is desirable to

verify who they are. We can either invent our own mechanism for doing this or we can

Other Technologies 249

use existing techniques – for example, a servlet can instruct a Web browser to display a

login screen before proceeding. However, what we would really like is a mechanism that

forces the user to log in and then preserves their identity throughout the system: from

the Web browser, through the middle tier services and onto the back end. This desirable

goal is referred to as single sign-on (or global sign-on if we can cross to other domains).

Single sign-on for Java is part of J2EE. For global sign-on, emerging technologies include

Microsoft .Net Passport (www.microsoft.com) and those under development by the Liberty

Alliance (www.projectliberty.org).

• XML: With networked systems, we frequently need to transmit business data from

one machine to another. The eXtensible Markup Language (XML) [Yergeau et al. 99]

is a textual language for describing data as structured name–value pairs. Since XML

documents are simply streams of characters, they can be transmitted over whichever

protocol we happen to have chosen for our system, HTTP or RMI, for example. For our

XML documents, we can invent whatever structure and name–value pairs we like. For

XML to be truly useful, when one of our documents arrives at another machine, the target

machine has to be aware of the meaning of the data, not just its structure. For example,

if we define an XML document with a value called NETAMOUNT, our document will be of

little use unless the recipient knows that the document is an invoice and that NETAMOUNT

is the amount to pay before sales tax. For this reason, standards work is underway to

define XML document types for common business information. In the absence of standard

document definitions, XML is still useful because it allows us to use the same libraries for

parsing and generating all our documents (libraries are available for Java, for example).

XML can be used for storing textual information, as well as transmitting it; for example,

we can store spreadsheet documents in XML format.

• Events and messages: Events are a common mechanism for broadcasting information to

interested parties. The trouble with events is that they don’t work well over a network,

because it can be tricky to make them thread-safe and because they’re inefficient (from

the server point of view). A better way to broadcast over a network is to use machine-

to-machine messaging. Messages are nuggets of information that can be broadcast to

interested clients: once the server has initiated the broadcast, it plays no further part in

the delivery of the information; failure to deliver to a particular client has no adverse

effect (messages can also be sent in guaranteed-delivery mode). For more information on

messaging, investigate the Java Messaging Service (JMS) [Bodoff et al. 02].

• SOAP: The Simple Object Access Protocol (SOAP) [W3C 03] is similar to RMI and

CORBA. What sets it apart, however, is its use of a protocol based on XML, which makes

it a good candidate for becoming the de facto standard of the future.

• Web services: The idea with web services is that customers (at home or in business)

will pay to have their information stored and processed on fat servers, accessible over

the Internet or extranets. A simple example of a Web service is browser-based e-mail;

250 Chapter 9

a more complex example is the processing, managing and printing of digital photos.

Web services are deployed as Internet-based three-tier systems, using TCP/IP and XML-

related technologies, such as SOAP. For more information check out the Web Services

Interoperability Organization (www.ws-i.org) and the Java-related efforts led by Sun

(java.sun.com).

9.7 TYPICAL FRONT-END
CONFIGURATIONS

Having seen the many technologies available for tiers in a multi-tier system, let’s take a look

now at some typical configurations for communication between the client tier and the middle

tier. While reading the next few topics, bear in mind that getting from the client tier to the

middle tier is a user interface exercise: by keeping all the complicated business logic on the

middle tier, we can happily choose any or all of these front-end configurations, according to

personal preference or the time available. In Chapter 10, we’ll see how to design the middle

and data tiers so that we can swap our front ends in and out as we wish.

9.7.1 HTML/CGI-with-Scripts
Originally, HTML was a simple page markup language for multimedia documents with

embedded hyperlinks [W3C 99]. A Web browser session would be started by a user typing in

a destination URI, such as http://www.blueskyuniversity.com/salespitch.html, and hitting the

return key (or by selecting a bookmark or favorite). The browser would then parse the URI,

detect that HTTP is being used to connect to the Web server and pull out the Web server’s IP

address (www.blueskyuniversity.com). The browser would then contact the Web server and

pass it an HTTP request to fetch the file salespitch.html. The Web server would retrieve the

corresponding file, a Web page in this case, and return it to the browser for display.

This basic HTTP mechanism was fine for browsing distributed multimedia documents,

but it provided no way for the user to enter data, such as which book they would like

to purchase. The Common Gateway Interface (CGI) addresses this issue. With CGI, the

HTML displayed in a browser contains one or more forms (text fields, drop-down lists and

buttons) for the user to fill in. All the user has to do is enter data into the form and click

a button (typically labeled Submit or Proceed to Checkout). When the button is pressed, the

Web browser extracts name–value pairs from the form and passes them to the Web server

with the name of the CGI script (command file, interpreted file or executable) that should

process the data. All the information about the script and the name–value pairs can be

parceled up by the Web browser as a URI:

http://www.blueskyuniversity.com/cgi-bin/buy.pl?b=Gemma&q=2

Typical Front-End Configurations 251

(The name–value pairs can also travel across in the body of the HTTP request, but the end

result is the same.)

When the Web server receives the request, it detects that it’s being asked to run a process

because of the /cgi-bin part of the URI – this specifies a location on the server where the

scripts are kept. The Web server finds the script to run (a PERL script called buy.pl in

this case), starts it up and then passes it the name–value pairs as environment variables

(operating system values that can be retrieved by a process). In the book example, above,

we have two name–value pairs representing a book and a quantity, respectively, b=Gemma

and q=2.

The script can now do any processing it needs to do, based on the values it was passed

(presumably, in this case, arranging for the delivery of two books and the debiting of the

customer’s credit card, using details already entered). Once the script has finished, anything

that it writes to standard output is passed back to the client browser as the result of the

interaction – for example, it could be a new HTML page, a picture or a sound clip. In the

book example, we would probably send back an order confirmation page.

The HTML/CGI configuration is summarized in Figure 9.3. This shows a Web server

providing access to HTML files, scripts and other media files, while the client hosts a Web

browser that displays HTML pages and provides data capture via CGI forms.

Web browser
- HTML
- CGI forms

Web server
- HTML
- CGI scripts
- Media files

HTTP

Figure 9.3: Configuration using HTML/CGI-with-scripts

Thus, CGI allows us to collect form data from the client for processing on the middle

tier. The main advantage of CGI is that it’s supported everywhere, regardless of how old the

client’s Web browser is. Thus, any machine can be a client in a three-tier system simply by

having a Web browser installed.

252 Chapter 9

CGI has a number of disadvantages:

• Poor interactivity: CGI forms have a limited number of input components: text entry

fields, lists, drop down lists and buttons. The sophisticated modern user will be used

to notebooks, toolbars, spin buttons, menus, and so forth. Using a client-side scripting

language such as JavaScript can alleviate some of these problems, at great cost in time

and effort to the developer. But, even then, the end result is not perfect. Worse still, each

click of a Submit button might take the user to another page, which causes the whole of

the browser window to be cleared to the background color and repainted. In contrast, a

proper GUI paints much more quickly.

• Slow speed: The user has to wait for the contents of the form to be dispatched to the server,

for the process to be started and run to completion, and for the results to be brought back

and painted. Thus, the user gets the impression of slow interaction.

• No data validation on the client: We can use JavaScript on the client to improve things

a little by validating the form before dispatch. However, we still have to do checks in

the server to protect ourselves from hackers, so all we can hope to do with client-side

validation is to increase the number of correct forms that hit the server.

• Overloaded server: On the server, we have a serious problem because we’re trying to start

one process per form. This problem is so serious that we simply couldn’t contemplate

processing thousands of forms simultaneously. We can use a tool called FAST-CGI that

allows us to keep a process in memory to avoid starting one for each request but we still

need a separate copy of the program’s data area for each request.

• Scripts may not be portable: Historically, programming languages, scripting languages and

command languages have not been entirely portable. Therefore, if we decide that we want

to change our middle tier servers from, say, Windows to Unix, there will be some porting

effort.

• No security: By default, name–value pairs are passed to the Web server unencrypted, so

personal information can be read in transit. To get round this, we can run HTTP over SSL

(look for https:// at the start of the URI before you submit your form). But this is extra

configuration that we must do ourselves (and perhaps pay money for).

9.7.2 HTML/CGI-with-Servlets
Courtesy of some clever design by Sun and partners, the HTML/CGI-with-servlets configu-

ration is nearly identical to the HTML/CGI-with-scripts configuration (see Figure 9.4). The

client has the same Web browser, HTML pages and CGI forms. The difference is in the URI:

rather than nominating a script to run, we specify a servlet (a Java object) to instantiate:

http://www.blueskyuniversity.com/servlet/BuyServlet?b=Gemma&q=2

Here, the Web server spots that we want to run a servlet because of the /servlet part of

the URI. Next comes the class name of the servlet (BuyServlet). The first time the Web server

Typical Front-End Configurations 253

Web browser
- HTML
- CGI forms

Web server
- HTML
- Servlets
- Media files

HTTP

Figure 9.4: Configuration using HTML/CGI-with-servlets

receives a request for a particular servlet, the servlet is instantiated and told to process the

request. Thereafter, the servlet stays alive and all subsequent requests go through the same

servlet. (Each request is run through the servlet in a separate thread of execution. So, rather

than running scripts as separate processes, we have the Web server passing multiple client

requests through a single Java object.)

To pass a request to a servlet, the Web server uses one of a handful of standard messages,

doPost(:HttpServletRequest,:HttpServletResponse) being the most common; the name–value

pairs are inside HttpServletRequest. When the doPost method has finished its back-end

processing, the response is put into HttpServletResponse. The Web server extracts the

contents of HttpServletResponse and dispatches it back to the Web browser in the normal

way.

Servlets have the following advantages over scripts:

• Performance: A servlet handles multiple requests simultaneously without multiple pro-

cesses or multiple data areas, so requests are serviced more efficiently. Also, servlets

normally run faster than interpreted programs written in languages such as PERL.

• Scalability: Since multiple servlets can be handled by a single (Web server) process, we

can manage millions of simultaneous client requests without overloading the server.

• Portability: If we change our operating system, the only porting effort is to install

the appropriate version of Java on the new platform. The servlets themselves remain

unchanged.

• Ease of use: Since servlets are standard Java objects, servlet developers have access to a

huge library of reusable objects for common computing tasks, so there’s less coding to do

than with scripts.

254 Chapter 9

9.7.3 RMI
Remote Method Invocation (RMI) [Campione et al. 98] is a fancy term that means ‘Java

objects sending messages to other Java objects over a network’. RMI is part of the standard

Java libraries, so it’s available to anyone who installs Java 2 Standard Edition (J2SE) or

Enterprise Edition (J2EE). The RMI designers have worked hard to make RMI simple to use

and remote objects are almost as easy to use as local objects. The only differences are that:

• Server objects must be deployed on the machines that are to be contacted over RMI; they

may provide all the services needed by remote clients or they may simply be factories for

other objects.

• Any machine hosting server objects must run a naming service, a server process running

on a well-known port that allows remote machines to look up server objects by name. RMI

has its own naming service called a registry; however, it is better to employ the pluggable

Java Naming and Directory Interface (JNDI), so that you can exploit whatever naming

service is available.

• Any message sent over the network may throw an exception, RemoteException: this ensures

that client programmers can’t ignore the fact that they’re stepping outside of their local

Java process.

Apart from these minor restrictions, the developer can use RMI to set up any client–server

or distributed architecture.

Each host in an RMI configuration can be implemented as an applet or an application.

The applet scenario has the advantage that, as long as we deploy a Web server somewhere

on the network, the client doesn’t need any of our system software installed beforehand – all

the client software can be loaded as it is needed via the Web browser and Web server. For

applications, we have to do one of the following:

• Deploy the client software to each client machine. Whenever we update the client software,

we need to redeploy on all clients. This option is best left for situations where the system

software for the client is large (what large means depends on the speed of the network

you’re using).

• Deploy a Web server and then use a small piece of bootstrap software to load the client

code. The bootstrap software still needs to be installed on each client, but at least we

guarantee that the client gets the latest version of the software on each startup.

• Use Java WebStart to load the client software as needed. Java WebStart is a tool provided

by Sun to enable the dynamic loading of Java applications (a mechanism normally reserved

for applets). To use Java WebStart, we need to deploy a Web server and then make sure

that each client has a Web browser with Java WebStart and the Java PlugIn (part of J2SE)

Typical Front-End Configurations 255

installed. This is the simplest option if we want to run clients as applications rather than

as applets.

Figure 9.5 shows the front-end configuration for an RMI applet client. On the middle tier,

we must run some kind of server process that contains our system-specific code in addition

to the generic code that runs as part of the naming service.

Web browser
- HTML
- Applets

Web server
- HTML
- Applet code
- Media files

RMI registry
 / JNDI server

Proprietary RMI
 application

JRMP

Figure 9.5: RMI used from applets

9.7.4 CORBA
The Common Object Request Broker Architecture (CORBA) [OMG 04] was developed by

the Object Management Group, the industry consortium dedicated to the development of

open object standards that also owns UML. CORBA is similar to RMI but it predates RMI, so

it has a stronger foothold in industry. The main differences between CORBA and RMI are:

• CORBA is multi-language: host software can be written in C++, Eiffel, C#, Java and even

non-object-oriented languages such as C or COBOL (the server software will still appear

object-oriented to clients).

• CORBA has its own dedicated naming service (although this can be used via JNDI).

• Java hosts receive unchecked exceptions from CORBA but checked exceptions from

developer code – this can cause confusion. (A checked exception must be handled by the

programmer, whereas an unchecked exception need not be.)

• CORBA costs money (the free implementation that comes with Java is suitable for

development and testing purposes).

• RMI has access to the entire Java 2 platform (Standard Edition, at least). This is useful for

gaining access to media files, for example.

256 Chapter 9

CORBA, because of its generality, is more complicated than RMI. RMI, on the other hand,

is more powerful (it supports the dynamic exchange of object graphs and compiled classes).

Also, RMI performance can be optimized for each new application. Other than that, the

Java programmer should regard CORBA and RMI as alternatives. Non-Java programmers

should regard CORBA as the best choice for simple message-sending over the network (it is

preferable to proprietary, non-portable alternatives). Sun has developed a bridging protocol

called RMI-over-IIOP that allows RMI hosts to be mixed with CORBA hosts, with a few

restrictions.

Figure 9.6 shows the front-end configuration for applets accessing CORBA. For non-Java

hosts, CORBA client software must be deployed on each client (and redeployed for each new

release). CORBA hosts written in Java have the same deployment options as RMI hosts.

Web browser
- HTML
- Applets

Web server
- HTML
- Applet code

CORBA naming
 service

Proprietary CORBA
 application

IIOP

Figure 9.6: CORBA used from applets

9.7.5 EJB
Enterprise Java Beans (EJB), part of J2EE [Bodoff et al. 02], is a framework for distributed

Java systems with full transaction management, security and persistence support. In Java

terms, a bean is an object with a well-known style of interface. EJB implementations are

available from many industry leaders such as IBM, Sun and BEA Systems. There is also a

reference implementation available from Sun, so that you can develop and test EJB software

without buying an implementation. The EJB framework is, in many ways, a competitor to

Microsoft’s .Net strategy (especially if we include all the other facilities of J2EE). .Net, of

course, is proprietary and not very portable, whereas EJB is open and portable.

Detailed discussion of the EJB framework is beyond the scope of this book. Suffice to say

that EJBs come in three main varieties:

Typical Front-End Configurations 257

• Entity beans, which correspond to entity objects in the Jacobson/UML sense: business

objects that have business information and business behavior. Entity beans can be stored

automatically by an EJB implementation, using a relational database of your choice, or the

developer can elect to store the beans using proprietary code (for integration with legacy

systems and object-oriented databases). Access to entity bean data is subject to transactions:

the developer can settle for the default or choose from a variety of options (representing

different speed/accuracy trade-offs). For the sake of portability, all transaction semantics

are specified by the framework while the implementor of each EJB run-time system has to

make sure that the semantics are supported by the implementation. For efficiency reasons,

messages are sent to entity beans locally, rather than over the network.

• Session beans, which manage business tasks on behalf of EJB clients. A client sends a

message over the network to a session bean, which satisfies the request using entity beans

and other session beans. A session bean provides default transaction behavior for all the

entity beans and session beans that it accesses. Alternatively, the client can control when

transactions start and finish (and, to a limited extent, how they should be propagated to

other beans).

• Message-driven beans, which integrate seamlessly with industrial strength machine-to-

machine messaging implementations. Messages can be sent peer-to-peer or broadcast to

several machines at once, under full transaction control.

Figure 9.7 illustrates the configuration for an EJB application front end. In order for EJBs

to work, they must be dropped into an Enterprise Java Server (EJS), often referred to using

the more general term application server. This is different from the RMI and CORBA cases,

Web browser
- HTML
- Java applications
 (EJB clients)

Enterprise Java Server
- Proprietary EJBs

JNDI server

IIOP/JRMP

Figure 9.7: An EJB application front end

258 Chapter 9

where we had to provide our own server to contain our business objects. As with RMI and

Java-based CORBA, various alternative configurations are possible.

9.8 BACK-END CONFIGURATIONS
So far, we’ve seen how clients of a three-tier system can be implemented using CGI, RMI,

CORBA or EJBs. For Internet applications, the most common choice is HTML/CGI. For

intranets, we can choose our preferred mechanism, although, for the sake of maintenance,

we should strive to keep the middle tier in a three-tier system applicable to all types of

client, regardless of which type of access is implemented first. (If we have a controlled user

base – users who are prepared to install the correct level of Java – we can choose whichever

front-end technology we prefer, even for Internet use.) Any of the configurations described

can be used as the front end for a two-tier system.

So, what happens when we arrive at the middle tier? The simplest solution is to install a

DBMS client on the middle tier and access it from whatever server software we have chosen

to deploy (scripts, servlets, RMI server, CORBA server or Enterprise Java Server). Access to

the database client may be possible within the same process as our middle-tier code, or it

may have to be in a separate process. Alternatively, we can arrange for our server software

to act as a .Net client or an EJB client. Since the Enterprise Java Server or .Net server that

we access from the middle tier provides business services, logically it belongs in the middle

tier; however, all of these technologies permit deployment across multiple machines in many

different ways so it doesn’t matter where the server actually resides.

9.9 JAVA E-COMMERCE CONFIGURATION
Because e-commerce systems need to attract the most casual of Internet users, we’re really

stuck with the HTML/CGI front end as the default mechanism. If we deploy any other kind of

front end, we risk losing customers: most customers, when confronted with ‘You must install

such and such to use this site’ will simply go elsewhere. Front ends not hosted by a Web

browser are also out of the question: it is not reasonable to expect e-commerce customers to

install software for our benefit.

With the help of JSPs (or ASPs, for the Microsoft-minded), we can produce an interaction

that is tailored to each user (although we can’t solve the repainting and slow-round-trip

problems inherent in browsers). Once we’ve reached the middle tier, we can choose any

technology we like to access the data tier and other parts of the middle tier.

So, how do we combine CGI, JSPs, servlets, EJBs and DBMSs into a coherent, scalable

whole? The basic idea is that we use CGI to access servlets that provide the business services;

Java E-Commerce Configuration 259

the servlets rely on reusable EJBs to do most of their work; the EJBs rely on a DBMS to store

enterprise data; finally, the servlets pass the result data to JSPs to build the personalized

Web pages that are sent back to the client. The full picture is illustrated in Figure 9.8.

(Nonstandard, UML-style keywords have been used to show how each object fits into the

EJB framework.)

User Name

Password ***********

wilma37

Log On

Enter your details below
and click the button
to log on:

Home About Contact Help

Hello, Wilma. What would
you like to do next?

Home About Contact Help

Play a game

Chat to a friend

Log out

Client Tier Data TierMiddle Tier

<<servlet>>

:Authentication

Servlet

<<jsp>>

:Logged

On

<<entityBean>>

:Customer

<<sessionBean>>

:Authentication

Session

invokes

paints

Figure 9.8: Java e-commerce technologies in action

In the scenario illustrated, Wilma navigates to the logon page of our site, so that she

can access services that are only available to registered customers. Wilma fills in her

user name – Wilma37 – and password and clicks the Log On button. Wilma’s form data

is passed to the AuthenticationServlet for processing. The AuthenticationServlet invokes an

EJB session bean – the AuthenticationSession – to check the user name and password. The

AuthenticationSession bean asks the EJB run-time system to find the CustomerEntity bean

that has the user name Wilma37 (if there is no such customer, an error is signaled to the

260 Chapter 9

servlet). The AuthenticationSession then compares the CustomerEntity’s password with the

one passed in by the servlet. If the passwords match, the AuthenticationSession returns a

session token (a unique identifying value) to the AuthenticationServlet; if they don’t match,

the AuthenticationSession signals an error to the servlet.

In the case of a successful logon, the AuthenticationServlet associates the session token

with the browser session (usually as a cookie, a small piece of information that gets passed

back to the browser), along with any other relevant information (such as the key of the

CustomerEntity). Next, the servlet forwards the request to a JSP, passing it a Java object

HTTP

<<device>> CootHTMLClient

<<ExecutionEnvironment>>
WebBrowser

*

<<device>>
CootGUI

Client

*

<<device>> CootServer

2

<<ExecutionEnvironment>>
WebServer

<<ExecutionEnvironment>>
CootBusinessServer

2

<<device>>
DBServer

<<ExecutionEnvironment>>
DBMS

JRMP

Figure 9.9: A more detailed deployment diagram for iCoot

Java E-Commerce Configuration 261

containing result data (such as the real name of Wilma37). The JSP runs its embedded Java

code to interleave personalized data with the static HTML. Once the completed page has

been sent back to the browser and displayed, the business transaction (use case) is complete.

In the event of an unsuccessful logon, the error raised by the AuthenticationSession is

detected by the AuthenticationServlet. The servlet forwards this request to an error page,

which might be a static HTML page containing a generic message, such as User name or

password incorrect, or a dynamic page (built by a JSP) with something more specific, such

as The password you entered was incorrect. Returning an error page to the browser marks an

alternative end to the business transaction (use case).

Case Study
iCoot configuration

Because of its simplicity, portability and light loading of the client, the HTML/CGI-

with-servlets configuration will be used for the first increment of iCoot. A later

increment will also provide a proper Java client so that customers can use a GUI

for elegant and fast access to the system via RMI. On the server side, a proprietary

business server that accesses a relational database using JDBC will be used. The

business server will use EJB session beans to provide access to Java transactions but

it won’t use EJB entity beans because the developers have not yet been trained in

their use.

We can add these architectural decisions to the topological deployment diagram

that we saw earlier (in Section 8.4.9). Figure 9.9 shows processes as subnodes,

each marked with the UML keyword <<ExecutionEnvironment>>. The communi-

cation paths now show navigability – the path name can be used to indicate the

communication protocol.

The deployment survey for this extended picture is:

The iCoot data tier comprises two database servers (which we have called

DBServer). Having two such nodes improves throughput and reliability. Each

DBServer hosts a DBMS process for managing access to data.

The middle tier, which communicates with the data tier, consists of two server

machines (CootServer), again duplicated for the sake of reliability and throughput.

Each CootServer hosts a CootBusinessServer (for handling business requests) and

a WebServer (for handling static HTML content and forwarding business requests

to the CootBusinessServer). Data access for the CootBusinessServer is provided

by the DBMS. Because they’re proprietary to the products that we select, the

communication protocols between the WebServer and the CootBusinessServer and

between the CootBusinessServer and the DBMS are not specified.

262 Chapter 9

Case Study (cont’d)
Each CootServer can be accessed simultaneously by any number of CootHTML-

Client nodes. Each CootHTMLClient hosts a WebBrowser, which accesses one of the

WebServer nodes using HTTP.

Eventually, we will also provide access from CootGUIClient nodes. Each Coot-

GUIClient will access one of the CootServer nodes, using JRMP. Because the

mechanism that allows such requests to get into the CootBusinessServer is the

subject of a future increment, no details are given. Nor is any detail given for the

CootGUIClient processes.

9.10 UML PACKAGES
The UML concept of a package allows us to group related classes. The package diagram

in Figure 9.10 shows each package as a box with a tab at the top left corner. The package

name appears in bold, either in the middle of the box or, if we want to show the contents

of the package, inside the tab. The contents of a package can be classes or other packages.

Figure 9.10 also shows a dependency (the dashed open-ended arrow) from one package to

another: the implication is that the source package uses something inside the target package.

myPackage

myPackageToo

Class1
Class2

myNestedPackage

Figure 9.10: UML package diagram

A package can be used to represent:

• a layer

• a subsystem

• a reusable library

• a framework

UML Packages 263

• classes that should be deployed together

• . . .

From a programming point of view, packages map conveniently to existing language

constructs such as Java packages and C++ namespaces. But bear in mind that packages are

simply a compile-time concept: they help us to organize code for the benefit of development,

deployment and maintenance.

Case Study
iCoot packages

Figure 9.11 shows the package design for iCoot. In this case, each layer in the system

has been mapped to a distinct package. Dependencies on packages in the standard

Java library such as java.sql, which is used by the business package for access to the

database, have not been shown. If all dependencies had been included, the diagram

would have been much larger and much more cluttered.

The main iCoot package is labeled com::nowhere. This is shorthand for ‘package

nowhere is nested inside package com’. UML borrows this notation for the namespace

operator from C++ (when writing Java source code, the ‘::’ is replaced with ‘.’). Despite

the use of events in iCoot, there is no dependency from the control package to the

packages above. This is because the event listener and event types reside in the control

package. The protocol package contains definitions of the lightweight copy objects,

exported by the server layer for simplifying network access to the BusinessLayer.

(This is explained further in Chapter 10.)

Many developers will use a package diagram to show layers. However, there are a couple

of problems with this approach. Firstly, layers are chosen before any decision about how

to organize source code into packages has been made (and the organization may well be

different). Secondly, a package diagram doesn’t allow us to show some important information;

for example, the existence of the HTTPCGILayer in iCoot is important, but it doesn’t map

to any package that we might implement or borrow from a library (it’s simply an indication

that we use the HTT P protocol with the CGI extras). Thus, for iCoot, a special-purpose

layer diagram, with an accompanying document describing the layer interaction policy, is

more appropriate (see Figure 8.14).

Package diagrams are also not good at showing horizontal partitions (subsystems); a

deployment diagram should be used instead. Figure 9.12 shows the iCoot deployment

diagram after system design has been completed, detailing the content of the CootServer

processes in terms of UML artifacts and packages.

264 Chapter 9

com::nowhere

swing micro

control

business

server

servlets rmi

protocol

Figure 9.11: Packages for iCoot

An artifact, in UML, is something that can be deployed, usually a file. (A file can be almost

anything: for example, a program, a DLL, a folder, some XML data or a README document.)

Artifacts are indicated by either a sheet-of-paper icon or the <<artifact>> keyword. The

artifacts in Figure 9.12 are iCoot, a folder of static HTML pages; icoot.ear, a compressed

archive of servlets, JSPs and EJBs (the Java naming convention .ear is short for ‘enterprise

archive’); and cootschema.ddl, a proprietary script for creating the database.

UML Packages 265

HTTP

<<device>> CootHTMLClient

<<ExecutionEnvironment>>
WebBrowser

*

2
<<device>>
DBServer

<<ExecutionEnvironment>>
DBMS

2

<<device>> CootServer

<<use>>

<<ExecutionEnvironment>>
WebServer

iCoot

<<ExecutionEnvironment>>
CootBusinessServer

icoot.ear

com::nowhere

servlets
protocol
server
business

<<manifest>>

<<device>>
CootGUI

Client

*

JRMP

cootschema.ddl

Figure 9.12: The iCoot deployment diagram after system design

266 Chapter 9

We can show which elements from our model give rise to a particular artifact by adding

a dependency from the artifact to the group of elements, labeled <<manifest>> (the artifact

is a manifestation of the elements). Here, icoot.ear has been shown as a manifestation of

four of the com::nowhere packages. We can show other dependencies on a deployment

diagram. For example, with the help of the <<use>> keyword, it’s been shown that iCoot

uses icoot.ear.

Case Study
Updated iCoot deployment survey

The iCoot data tier comprises two database servers (which we have called DBServer).

Having two such nodes improves throughput and reliability. Each DBServer hosts a

DBMS process for managing access to data.

The cootschema.ddl artifact contains commands for creating database tables, in a

format specific to the database being used. This is deployed to each DBMS process,

using database-specific tools (no detail given here). Note that cootschema.ddl contains

the schema for the full Coot system, since iCoot and Coot use the same data.

The middle tier, which communicates with the data tier, consists of two server

machines (CootServer), again duplicated for the sake of reliability and throughput.

Each CootServer hosts a CootBusinessServer (for handling business requests) and a

WebServer (for handling static HTML content and forwarding business requests to

the CootBusinessServer). Data access for the CootBusinessServer is provided by the

DBMS. Because they’re proprietary to the products that we select, the communica-

tion protocols between the WebServer and the CootBusinessServer and between the

CootBusinessServer and the DBMS are not specified.

Within each CootServer, the iCoot folder, containing static HTML pages, is deployed

to the WebServer, while the icoot.ear archive is deployed to the CootBusinessServer.

The icoot.ear archive contains servlets, JSPs, business objects and (eventually) RMI

decorators, from the com::nowhere package.

Each CootServer can be accessed simultaneously by any number of CootHTMLClient

nodes. Each CootHTMLClient hosts a WebBrowser, which accesses one of the WebServer

nodes using HTTP. No artifacts need to be deployed to the CootHTMLClient nodes.

Eventually, we will also provide access from CootGUIClient nodes. Each Coot-

GUIClient will access one of the CootServer nodes, using JRMP. Because the mechanism

that allows such requests to get into the CootBusinessServer is the subject of a

future increment, no details are given. Nor is any detail given for the Coot-

GUIClient processes. The artifacts deployed to the CootGUIClient nodes, if any, are

not specified.

Review Questions 267

9.11 SUMMARY
In this chapter, we’ve looked at:

• The major technologies available on the client and server.

• The middleware protocols that can be used to connect clients and servers.

• Popular technology choices for the front ends to networked systems.

• How UML packages can be used to show clusters of related classes on a deployment
diagram.

FURTHER READING
For an HTML/CGI client tier, accessing servlets on the middle tier, the Struts framework

[Robinson and Finkelstein 04] from the open source Apache Software Foundation is well

respected. Struts takes most of the drudgery out of implementing an interactive HTML front

end. To download Struts and view the documentation, go to www.apache.org.

If you’re interested in serious CORBA programming, a comprehensive book that covers

both Java and C++ is [Bolton 01]. As usual, the last word on anything technical is the CORBA

Specification [OMG 04].

For an overview of key multi-tier Java technologies, see [Campione et al. 98], which

covers RMI, JDBC, servlets and Java IDL (the Java interface to CORBA). The contents of this

book are also available on-line at java.sun.com.

In order to learn more about J2EE, including JSPs, servlets, EJBs, transactions, security,

XML, XSL, SOAP, JMS and Java ServerFaces (for interactive HTML interfaces) see [Bodoff

et al. 02] and the on-line version at java.sun.com. Sun’s web site also has details of the latest

Java angle on Web Services.

REVIEW QUESTIONS
1. What are some of the advantages of Java as an implementation technology? Choose all

options that apply.

(a) Object-oriented purity.

(b) Invented by Microsoft.

(c) Network readiness.

(d) Portability.

(e) Scalability.

(f) Security.

268 Chapter 9

2. Servlets are a direct replacement for what? Choose only one option.

(a) XML.

(b) Applets.

(c) ActiveX controls.

(d) CGI scripts.

(e) CORBA.

ANSWERS TO REVIEW QUESTIONS
1. Some of the advantages of Java as an implementation technology are:

(a) Object-oriented purity.

(c) Network readiness.

(d) Portability.

(e) Scalability.

(f) Security.

2. Servlets are a direct replacement for d. CGI scripts.

10
Designing the Subsystems

In this chapter, we’ll be looking at subsystem design (also known as detailed design).

Having chosen our network topology, our implementation technologies, our subsystems and

our layers, it’s time to decide exactly what is going to go inside each subsystem and layer.

Learning Objectives
Understand how to design the

business layer.

•
Understand how to map run-time

objects to storable data.

Understand how to design user
interfaces.

•
Understand multi-threading.

Chapter Outline

10.1 Introduction

10.2 Mapping the Analysis Class Model into the Design Class Model

10.3 Handling Persistence with a Relational Database

10.4 Finalizing the User Interfaces

10.5 Designing the Business Services

10.6 Using Patterns, Frameworks and Libraries

10.7 Transactions

10.8 Handling Multiple Activities

10.9 Summary

Further Reading

Review Questions

Answers to Review Questions

10

272 Chapter 10

10.1 INTRODUCTION
Because of the size of the subsystem design task, and the creativity that’s unique to every

project, we couldn’t hope to write down a step-by-step guide to designing a professional,

object-oriented, multi-tier system. Instead, this chapter contains an overview of each of the

major tasks. In practice, if you place these tasks at the center of your design effort, everything

else will fall into place.

First of all, we’ll consider how to design the business layer. This normally involves

deciding what objects will populate the layer, how they will be connected and what their

interfaces will be. We must transform the business-oriented class model that we developed

during analysis into implementation-oriented classes for our chosen programming language.

For the purposes of this book, the subsystem design discussion is more or less independent

of the programming languages and other technologies that are chosen. However, for the sake

of illustration and convenience, some bias is shown towards Java and relational databases.

(Despite the Java bias, the design presented is portable to any language that includes pure

object-oriented facilities; similarly, the relational database bias won’t tie us to any particular

DBMS.)

Subsystem design involves transforming a conceptual analysis model into implementable

classes, following the strategy laid out in the system design model. In keeping with the

system design principles already discussed, subsystem design can proceed as follows:

1. Design the classes and fields of the business layer, using the analysis class model as

a guide. The business layer consists of the entities from our problem domain and the

various supporting classes that they need.

2. Decide how any persistent data will be stored and design the storage layout. Persistent

data is data that must not vanish when the system is shut down.

3. Finalize the look and feel of the user interface, with reference to the sketches that were

produced during the analysis phase.

4. Walk through the system use cases, with reference to the user interface design, noting

the business services that must be supported by the middle tier. Business services are

questions and commands that a client can send to the server, such as ‘buy a book’ or

‘reserve a car model’.

5. Develop the business services into server objects, whose messages are available over the

network. Server objects implement the business services using the business layer, in such

a way that different kinds of client can be accommodated.

6. Finalize the measures that are needed to ensure concurrency control and thread safety.

concurrency control means using business rules to control access to the system: user

names and passwords, reserving tickets before purchase, and so on. Thread safety means

making sure that data within a process is not corrupted and that parallel activities do not

get in each other’s way.

Mapping the Analysis Class Model into the Design Class Model 273

10.2 MAPPING THE ANALYSIS CLASS
MODEL INTO THE DESIGN CLASS
MODEL

In moving from analysis to design, some classes will be discarded (controllers, for example)

and others will be introduced (such as collection classes that implement multiplicities).

For the purposes of this book, designers have freedom to decide how the business objects,

boundaries and homes developed up to this point should be turned into implementable code.

(This is different from the RUP approach where the analysis class model is massaged into an

implementable design model.)

For each design class that we come up with, we need to choose the names and types

of its fields. Often, fields are derived from the attributes or associations discovered during

analysis. There is no way we can tell, just from looking at source code, whether a particular

field started out as an attribute, a composition, an aggregation or an association. This is one

reason why the high-level artifacts produced during requirements capture and analysis are

important.

As well as attributes and associations, we need to consider inheritance. Inheritance

relationships don’t need to be mapped into anything new, we just need to decide whether

or not to keep them. Because of the complexities involved, inheritance should be handled

with care: it is quite reasonable to produce a system with little or no inheritance among its

classes. (Any inheritance that we do use is more likely to be introduced during design rather

than analysis.)

10.2.1 Mapping Operations
But what about the operations? Up to this point, operations have been introduced merely

as a way of recording use case realizations – in other words, as the system use cases

were simulated, operations were discovered as a side-effect of verifying that the analysis

classes would support an implementation. These analysis operations should be ignored for

the purposes of design. So, where do our design operations come from? Now that we’re

switching to design, we can stick to the programming terms ‘message’ and ‘method’, rather

than the UML term ‘operation’. So, where do the messages come from? For most of our

objects, regardless of the layer in which they reside, messages will be added for one or more

of the following reasons:

• To allow client objects to read or change the values of fields.

• To allow client objects to access derived data (for example, as well as a message to read

the radius of a Circle, we would expect to be able to read the diameter).

• Because our experience or intuition tell us that a particular message might be useful.

274 Chapter 10

• Because some framework or pattern that we have decided to use requires certain messages

to be present.

In addition, when we design the business services for our middle tier, we invent messages

for the server objects. As we work out how the business services can be satisfied using the

business objects, we’re likely to come up with even more messages. In short, as we map the

analysis classes, attributes and relationships, into their design counterparts, messages will

start to appear from all directions.

10.2.2 Variable Types
When we introduce a field, we need to decide what type it is: a primitive or a class. For most

purposes, we can restrict ourselves to the following types:

• The primitive types and simple classes that we would expect to find in every object-

oriented programming language (for example, int, float, boolean, String, List, Set and array,

or []).

• Classes that we ourselves are designing.

• Classes from the patterns and frameworks that we have chosen to use.

In some languages, arrays and collections do not mix well – arrays tend to be fixed-size

and may not be objects at all. Therefore, base your choice on elegance (collections) or a

slight improvement in performance (arrays).

10.2.3 Visibility of Fields
As well as providing the names and types of fields, we must declare their visibility. The

visibility of a field specifies which pieces of code are allowed to read or modify the value.

The following visibilities are enough for most purposes:

• Private (shown by - in UML): Only visible within the defining class.

• Package (shown by ˜ in UML): Visible within the defining class and to all classes in the

same package.

• Protected (shown by # in UML): Visible within the defining class, to all classes in the same

package, and to all subclasses of the defining class (whether inside or outside the package).

• Public (shown by + in UML): Visible everywhere.

Normally, if the language permits, developers will make fields private: apart from the

encapsulation benefits, this gives the compiler more optimization opportunities. Sometimes,

Mapping the Analysis Class Model into the Design Class Model 275

developers will make fields protected instead, so that developers of subclasses have more

opportunities for modifying the behavior of the superclass (although this does increase the

coupling between the subclass and the superclass).

Fields with package visibility are a bad idea, because they can be accessed by any piece of

code in the package without the knowledge of the owning object. Occasionally, for pragmatic

reasons (performance and brevity), a developer will give a field package access, but only if

the chosen language provides some way of making the value read-only (for example, using

the keyword final in Java). This argument applies even more strongly to public fields, since

they’re also visible outside the package.

Visibilities can be applied to messages too. In this case, each message will be:

• public, if it’s part of the interface of the package;

• package, if it’s implementation code to be used by the class itself and by classes in the same

package;

• protected, if it’s implementation code to be used by the class itself, by its subclasses and by

classes in the same package;

• private, if it’s implementation code for use by this class only (which decreases coupling

and allows the compiler to do more optimizations, as with fields).

Not all languages support the four styles of visibility used in UML, but Java does.

10.2.4 Accessors
It’s a good idea to provide accessor messages for fields. Accessor messages come in two

varieties: getters which return the value of a field and setters which set the field to a new

value (see Implementation Point 5 for an example). Accessors allow us to centralize access

Implementation Point 5
This fragment of a Java class shows one field with a pair of accessors:

...

private int count;

public int getCount() {

return count;

}

public void setCount(int c) {

count = c;

}

...

276 Chapter 10

to fields, making maintenance easier. Accessors are also easy for a compiler to optimize

(especially if the associated variable is private). Within the class itself, we may relax the rule

slightly: it is common to read a field directly but to set it using a setter.

10.2.5 Mapping Classes, Attributes and Compositions
In UML, the same notation is used for analysis class diagrams and design class diagrams.

However, you will find yourself using more of the available notation in your design

diagrams.

The notation for class fields is the same as for instance fields, except that class fields are

underlined. Similarly, class messages use the same notation as instance messages, except

that class messages are underlined. You could be forgiven for thinking that this underlining

policy is inconsistent with the policy for class names (on a class diagram) versus object

labels (on an object diagram) – class names are not underlined while object labels are. Yes,

it is confusing. The justification is that it’s better to underline whichever version is drawn

less often.

Figure 10.1 shows a fragment of the analysis class diagram from iCoot being converted

into a design class diagram. In mapping to the design diagram, three major issues have

been resolved: the classes to be implemented; the attributes’ types; and how to map the

composition. In this case, the decision has been made to retain both analysis classes, with

no new supporting classes required (apart from the trivial class String). As for the attributes,

all of them have survived as private fields of some appropriate type. An optional attribute

CarModel

name
price

CarModelDetails

engineSize

description

advert

poster

1

 CarModelDetails

-engineSize:int

-description:String

-advert:String

-poster:String

 CarModel

-name:String

-price:int

-details1

Figure 10.1: Mapping attributes and compositions from analysis

Mapping the Analysis Class Model into the Design Class Model 277

would have been mapped in the same way – the only difference would be that, at run time,

the corresponding field might take a null value. The composition relationship takes a little

more thought. For analysis purposes, compositions are bi-directional: starting from either

object we can easily find the object at the other end. When we come to design, however,

we have to deal with the fact that fields can only point one way (at run time, we can get

from the owning object to the object at the far end, but we can’t get back). So, we need to

decide whether we want a field at each end of the relationship or just at one end (and, if so,

which end).

We would expect a composition’s primary relationship to be from the composer to the

composed. This reflects the fact that the composer is the owner of the relationship. It also

reflects the fact that a composition is similar to an attribute: normally, the owning object

uses the services of the attribute or the composed object, but not the other way round.

Bear in mind, though, that there are no absolutes: if we felt it suited our particular system

better, we could put a field inside the composed object or inside both the composer and

the composed. (UML also has the notion of a data type, which is designed specifically for

embedded attributes [OMG 03a].)

Once we have decided the direction of a composition, we can add an arrow-head to the

class diagram to show it, along with a role and a visibility to indicate how the composition

maps to a field (see Figure 10.1). At run time, messages can only flow in the direction of the

arrow. We could also remove the composition altogether and show a -details:CarModelDetails

field inside CarModel instead. Most UML authoring tools allow the developer to expand and

collapse such information at will.

In Figure 10.1, the advert and poster fields are both of type String. This is because we don’t

need to manipulate or store raw media in the iCoot system itself. Instead, we can deploy

these complex types as files – *.ram and *.png files, for example – under the control of a Web

server and then store the relative URIs as attribute values. For example, a CarModel could

have ‘‘/adverts/mcgs.ram’’ as the value of its advert field.

10.2.6 Mapping Other Types of Association
Having dealt with compositions, let’s look at the mapping of other types of association. Recall

that there are three kinds of association: (plain) association, aggregation (stronger) and

composition (stronger still). For mapping purposes, we don’t need to make any distinction

between aggregation and association because object-oriented programming languages make

no distinction. So, the term association will be used for the rest of this topic.

Most of the associations that we decide to retain from analysis, along with any new

ones that we add solely for design purposes, end up as fields on objects. Some may end

278 Chapter 10

up as class fields instead. Either way, since fields only permit navigation in one direction,

we need to decide whether we want to go both ways, or whether one way will do. The

way we implement an association depends on the multiplicities at each end: one-to-one,

one-to-many or many-to-many.

One-to-One Associations
Take a look at the fragment of analysis class diagram at the top of Figure 10.2. Three

ways of implementing the association have been shown: we could put a field called

account into Member, pointing to the InternetAccount; we could put a field called member

into InternetAccount, pointing to the Member; or we could combine the two, effectively

implementing a two-way association.

Internet
AccountMember

1

logs in with

1

1

One-way

Member

Member

-member

-account

1

11

Two-way

Member
-member -account

11

?

Internet
Account

Internet
Account

Internet
Account

Figure 10.2: Mapping a one-to-one association

If we go for the two-way alternative, we would need to add code to make sure that

the association doesn’t get out of step. For example, it would not make sense to change

an InternetAccount’s member field to point to another Member if we didn’t also inform

the original Member that its account had changed (perhaps to null, meaning ‘no value’).

It is certainly possible to do this synchronization, using appropriate methods in Member

and InternetAccount, but it’s awkward. Therefore, most of the time, we select a one-way

alternative. In this case, it’s likely that the natural alternative will work best: let the Member

refer to the InternetAccount, but not vice versa.

If we choose a one-way alternative, as long as we have a relational database underneath

our business layer, we can always derive the complementary information at run time: for

Mapping the Analysis Class Model into the Design Class Model 279

example, if we choose to put a field only into Member, any InternetAccount can, if necessary,

ask the database where its Member is.

An optional association – with a multiplicity of 0..1 on one end (or on both) – is similar

to the one-to-one case, except that the field (or fields) can take the value null (i.e. ‘no object

at the far end’).

One-to-Many Associations
Figure 10.3 shows an example of a one-to-many association. For this case, we still have to

decide whether to put a field in one end or in both. The same arguments apply as in the

one-to-one case. As before, we may decide that there is a natural solution, but we’re still free

to use our skill and judgment as designers to do it another way.

Credit
Card

Member
1

guaranteed by

1..*

One-way

Credit
CardMember

Member Credit
Card

-members:
 List

-card

1

11..*

1..*

Two-way

Member Credit
Card-members:

 List
-card

11..*

non-standard notation

?

Figure 10.3: Mapping a one-to-many association

Unlike the one-to-one case, if we decide to put a field in the 1 end this time, we must be

prepared to store more than one associated object. For example, if we add a members field

to CreditCard, the field will have to store one or more Member objects. Thus, the CreditCard

would need to employ some kind of collection class for holding on to its Member objects (or

perhaps an array, according to personal preference). In Figure 10.3, a List has been used. We

have something of a dilemma here: the natural choice of collection seems to be Set; however,

when you add an object to a Set, most implementations will check whether the object is

280 Chapter 10

already there, so that it doesn’t appear twice, potentially an expensive operation. Therefore,

if you can be sure that you won’t try to add an object twice, you should use a Bag. If you can’t

always be sure, consider using a Bag anyway and performing the duplication test manually

in the exceptional cases. If your implementation language doesn’t provide something like a

Bag, as Java doesn’t, a List will do, especially if the items are kept in order, which makes for

faster searching.

The notation shown in Figure 10.3, with regard to the collection-valued fields, is not quite

legal UML. Although we can certainly show a field as a navigable association with a role

indicating the visibility and field name, the :List part is nonstandard. The alternative ways of

showing this relationship in UML are more complicated and less informative – the version

shown here is compact and it allows us to draw relationships to the type of object inside the

collection.

Many-to-Many Associations
This is the most complicated case. Consider the example shown in Figure 10.4. Here, we

have a Make that can manufacture any number of CarModel objects, while each CarModel can

be made by one or more Make objects. Each of the three mapping possibilities is labeled A,

?

Make
Car

Model
* *1..

makes

One-way

Make
Car

Model
**1..

-models:
 List

A

Make
Car

Model
**1..

-makes:
 List

B

Two-way

Make
Car

Model
**1..

-makes:
 List

-models:
 List

C

Figure 10.4: Mapping a many-to-many association

Mapping the Analysis Class Model into the Design Class Model 281

B or C – List objects have been chosen again, which, this time, allows us to place the Make

objects in order of importance.

In common with a lot of many-to-many associations, there is really no owner of the

association in this case. If we decide, based on our problem domain, that we’re more likely

to start with a Make and then navigate to its CarModel objects, option A would work well.

Conversely, if we decide that we’re more likely to start with a CarModel, option B would be

better. If, however, we decide that we’re just as likely to start with a Make or a CarModel,

we’re really stuck with option C.

With option C, the synchronization problem is worse than it was in the one-to-one and

one-to-many cases: we’re going to have to search through collections to find objects, rather

than just accessing individual objects directly. In such cases, it can be worth introducing an

association class to deal with the complexity, as described next.

Association Classes
We first encountered association classes in the analysis section. An association class is

necessary if there is data related to an association. The fragment of analysis class diagram at

the top of Figure 10.5 shows an example of an association class.

-model

* *

number:String

timestamp:Timestamp

state:ReservationState

 Reservation
-number:String

-timestamp:Timestamp

-state:ReservationState

Reservation

-member

?

CarModel

CarModel

Customer

Customer

Figure 10.5: Mapping an association class

From this diagram, we know that Customer objects can reserve any number of CarModel

objects and that CarModel objects can be reserved by any number of Customer objects; but,

for each Reservation link, we need to record the reservation number, the time-stamp and the

state; this data doesn’t belong to the Customer or to the CarModel, rather it belongs to the

282 Chapter 10

association itself. Therefore, we should introduce Reservation as an association class, with

appropriate attributes.

When we come to designing an association class, the easiest thing to do is to create a

design class with fields for all the attributes, and two extra fields to point at the associated

objects, as shown at the bottom of Figure 10.5. Then, we can create an instance of the

association class for each link.

If we wanted to be able to navigate from a CarModel to its Reservation objects, we

would have to add a field to CarModel, with all the associated synchronization problems. (A

similar argument applies to Customer.) Alternatively, we can provide a findAllReservations-

For(:CarModel) message on the ReservationHome class. (A home allows us to create and find

objects of a particular class, usually by dipping into the underlying database; each home

object is a singleton: we write code to guarantee that only one instance of the home exists.)

An association class is the most general way of mapping any association from analysis to

design. Therefore we could, if we wished, introduce an association class to represent every

association from our analysis class diagram. This would alleviate some of the synchronization

problems we saw earlier. Although some code generation tools do indeed operate this way,

you may feel that it is too much trouble if you’re writing the code by hand.

Case Study
iCoot BusinessLayer class diagram

In Figure 10.6, all the analysis classes of the iCoot BusinessLayer have been mapped

into design classes that can be implemented directly in any popular object-oriented

language. This class diagram has been enclosed in a UML frame, the name of the

package being shown in the top left-hand corner. Details of the fields for these classes

are given in Section B.5.

10.2.7 Universal Identifier
Most business objects, at some point in their life, need to be retrieved by key. A key is an

attribute value, or a combination of values, that is unique to each instance. For example, a

bank account is uniquely identified by the combination of its account number and sort code.

Handling different types of keys in a software system can be cumbersome. Therefore, it’s

worth considering the introduction of a unique number to distinguish each business object

from other objects of the same class. This helps to synchronize copies of the objects, to

track their movements as they travel around a network (their universe) and to handle keys

uniformly and efficiently (via home objects, for example). Such universal identifiers are also

Mapping the Analysis Class Model into the Design Class Model 283

Car
Details Car Rental

-details

-details

1

-cars:List

1..*

1..*

1..*

0..1

* *

*

*

1

1

1

1
1

1

1

1

1

1 1..*

1

1

1

Customer

-customer

-customer

Address

-address

Member

-account

Internet
Account

InternetAccount
Home

-card

Credit
Card

CarModel
Details CarModel

-model

-model

Vendor

-vendor

Category

-category

Make

-makes:List

Reservation

Reservation
Home

Reservation
StateHome

ReservationState

-state
Catalog
Query

Catalog
Query Home

Waiting Needing
Renewal Notifiable Collectable Displayable Concluded

Member
Home

CarModel
Home

Car
Home

Rental
Home

CreditCard
Home

Make
Home

Category
Home

Vendor
Home

Address
Home

CarModel
DetailsHome

CarDetails
Home

pkg business

Figure 10.6: BusinessLayer classes for iCoot

useful when objects and links are stored in a database – the universal identifier takes the

place of a memory address when the system is shut down.

A suitable type for a universal identifier is an integer. The specific type of integer depends

on how many unique objects of each class you want to be able to accommodate: a 16-bit

integer (short in Java) allows 65 thousand unique instances; a 32-bit integer (int in Java)

284 Chapter 10

allows four billion unique instances. If four billion proves inadequate, there is always the

64-bit integer (Java long) which allows a virtually unlimited number of instances (about 18

quintillion).

If you do use a universal identifier, it should be set during the construction of the

object and it should remain fixed thereafter. Figure 10.7 illustrates the implementation of a

universal identifier for the CarModel class. The UML <<create>> keyword has been used to

indicate that the CarModel operation creates instances of CarModel. This is good practice in

UML since, without the keyword, the reader would have to assume that an operation with

the same name as the class is a ‘constructor’ but the fact that constructors exist at all, let

alone that their names follow some rule, is language-specific. (It may be common, but it

is still language-specific.) Therefore, in this book, although the term constructor is used as

shorthand for ‘operation used to create instances of the class’, the <<create>> keyword is

still used in diagrams.

-id:int

-name:String

-price:int

~CarModel(id:int) <<create>>

+getId():int

CarModel

Figure 10.7: Implementing a universal identifier

Normally, the constructor would not be public: this would allow the developer to control

which universal identifiers actually get assigned, using homes for example. (If the constructor

were public, any client would be able to create a CarModel using an identifier that was already

in use elsewhere.) In Figure 10.7, the constructor has package access, so that the objects can

be created by a CarModelHome class living in the same package.

10.3 HANDLING PERSISTENCE WITH A
RELATIONAL DATABASE

Since most systems have data storage requirements, we’ll look next at how graphs of run-time

objects can be mapped into storable data, concentrating on how to use a relational database

for this task, since relational databases are by far the most popular in industry. Once we’ve

designed our business layer and our database schema, we can think about what code needs

to be written to translate from one to the other.

Handling Persistence with a Relational Database 285

10.3.1 Database Management Systems
Often, an application’s data is stored separately, so that the data doesn’t evaporate when

the application is shut down – such data is said to persist. A database management system

(DBMS) manages arbitrary amounts of data in separate databases – a database is a fenced-off

area of data. The terms DBMS and database are often used interchangeably. We use a

DBMS to:

1. Invent a schema that describes the data that we’re going to store, using a Data Definition

Language (DDL).

2. Add, remove and update the data in our database using a Data Manipulation Language

(DML).

3. Retrieve the data from our database using a Data Query Language (DQL).

Ideally, the DDL, DML and DQL should all be declarative. With a declarative language,

we specify what we want rather than how to do it. For example, we don’t know, and we don’t

want to know, how the DBMS organizes data physically on a disk; instead, we would like to

state what kind of data is stored, what the data values should be and what we would like to

retrieve.

Over the last four decades, many varieties of DBMS have been invented – indexed file,

hierarchical, network, relational and object-oriented, to name a few. There is always a

semantic gap (difference in meaning) between the programming language we use to write

our code and the way we access data in our database. Therefore, we need to perform some

kind of run-time mapping between the software system and the database. Some tools (such

as EJB implementations) will generate the mapping code for us. However, even if we wish to

use such tools for our project, we still need to understand the underlying principles in order

to use them effectively (and in order to understand the run-time error messages).

A relational database is often used to store the data in a multi-tier Internet system. The

relational model has been chosen here because:

• Relational databases are the most common. Although object-oriented databases do exist,

they’re much less widely used, especially in the business world. (Most relational databases

have object-oriented extensions, but we can ignore those, for the sake of simplicity.)

• All relational databases support the same core model, based on rigorous mathematics. This

makes them unique among varieties of DBMS.

• All commercial relational database implementations support the same hybrid DDL/DML/

DQL language: the Structured Query Language (SQL).

• Java has a comprehensive, portable, library for connecting to relational databases, known

as Java Database Connectivity (JDBC).

286 Chapter 10

To be fair, the reasons given above for sticking to a relational database are a little optimistic.

Some relational DBMSs use nonstandard versions of SQL – always check first. The ANSI

SQL-92 standard (on which JDBC is based) is also not a particularly rigid specification, for

example:

• With some databases, semi-colons are optional in SQL statements, while in others, they’re

compulsory.

• You may find that your chosen DBMS folds several data types into one: for example, DATE,

TIME and TIMESTAMP might all be implemented as TIMESTAMP.

• Some data types may not be supported by your DBMS.

• The number of bits devoted to a particular data type is not in the standard: an INTEGER

might be 16 bits in one DBMS and 32 bits in another.

These issues cause some difficulties for portable libraries such as JDBC. If you’re not

worried about the finer details of accuracy and performance, a relational schema will pretty

much work on any of the popular commercial systems, although there may be some porting

effort if you switch a completed system from one DBMS to another.

10.3.2 The Relational Model
The relational model is a mathematical model, which makes it clean, reliable and easy to

optimize (easy for the DBMS, that is). However, the relational model resembles a filing

cabinet containing indexed cards, rather than a repository of complex, highly-connected

objects. So, the semantic gap is large.

Although an object-oriented model can be mapped easily onto a relational schema, it’s

difficult to predict which of several possible mappings will be the most efficient for any

particular software system (with respect to storage efficiency and access speed). Therefore,

you may need to experiment, preferably with the help of a mapping tool or a persistence

layer, to find which mapping works best for your system.

Here, we’ll look at one possible mapping: a straightforward, pure mapping. This way, you

should be convinced that it’s possible to store object-oriented data in a relational database.

For this mapping, we can assume that we have control over how the data is stored. In real life,

we may not be so lucky: the schema may be under the control of Database Administrators

(DBAs) or the database may already exist as a legacy system that we can’t modify – in these

cases, we would have to ‘reverse engineer’ our mapping.

We won’t look at how to write the code to ship data between a software system and

its database, because that is probably the single most difficult piece of code in the whole

system. If you use a framework such as EJB, the tools will generate all of the code you need

for the basic mapping described here. To do anything manually requires lots of effort and

Handling Persistence with a Relational Database 287

study of your database’s programming interface. For our purposes, it’s enough to say that

the underlying techniques involve using SQL statements (via a library such as JDBC) to read

data from the database into run-time objects and then to write new data back out.

Since the database layer is encapsulated by the business layer, we’re free to tune the

business layer for the benefit of client programmers and the database layer for the benefit of

the database – the mapping code can do the rest.

Tables
The relational model is based on tables of data (also known as relations) which contain

columns and rows. Figure 10.8 shows a table called ADDRESS, with four columns of string

data (HOUSE, STREET, COUNTY and POSTCODE) and one of integer data (ID). As you can see,

the ADDRESS table has three separate addresses stored in it. Each column stores the values

for one of the address attributes – thus, the address with ID 2 represents ‘8 Yewbrook Rd,

Cheshire, SK4 3QT’.

HOUSE COUNTY POSTCODESTREET

Dunroamin

ADDRESS
ID
2
9
6

8

74

Yewbrook Road
Dairy Avenue
Old Ladbroke Grove

Cheshire
Greater Manchester
Lancashire

SK4 3QT
M19 4IK
M20 7HJ

Figure 10.8: An ADDRESS table

Each column can store values of one particular type. The SQL standard defines a couple

of dozen types that we can choose from. For the purposes of this book, we can make do with

the following:

• VARCHAR(X): A string, up to a maximum of X characters.

• INTEGER: A whole number which is often, but not always, 32 bits.

• DATE: A day in the Gregorian calendar.

• TIMESTAMP: A combination of date and time of day.

• BOOLEAN: True or false.

For example, for the ADDRESS table above, we might specify INTEGER, VARCHAR(20),

VARCHAR(40), VARCHAR(40) and VARCHAR(10) as the types of ID, HOUSE, STREET, COUNTY and

POSTCODE, respectively.

With the relational model, every row must be unique. For the ADDRESS table, this is

achieved by introducing a unique ID attribute. Since every row is unique, each table is

actually a set of rows. The rows in Figure 10.8 could have been shown in any order.

288 Chapter 10

Keys
A key is a value, or a combination of values, that uniquely identifies a row. Some tables

contain obvious keys: for example, an insurance policy always has a policy number. Other

tables need to have keys invented for them: for example, a customer table would need to

include a customer number to identify unique people who buy our products. A key that

combines several values (such as a bank account’s number and sort code) is referred to as a

compound key.

Some tables have more than one candidate key: for example, a car has a license number

as well as a Vehicle Identification Number (VIN) that appears on a plate riveted to its body.

In such cases, we have to choose one candidate to act as the primary key – the DBMS will

assume that the primary key is the one most often used to find a particular row and it will

perform optimizations accordingly.

Finding a row using a compound key is slower than finding a row using a simple key. For

example, considering the ADDRESS table, we could use (HOUSE and POSTCODE) as the key,

because the combination is unique for every house. However, a combination of strings is

inconvenient and slow to use. Thus, in the ADDRESS example, an artificial key (ID) has been

introduced that uniquely identifies each dwelling. This also allows us to record the fact that

two customers live at the same address (we could store the ID twice, but the address only

once).

On the schema diagrams in this book, primary keys are shown in bold. If you are sketching

such a schema by hand, you can add a ‘+’ next to the column name instead.

Mapping an Object Model to a Relational Model
When mapping an object model into tables, we can start with either the analysis class

diagram or the design class diagram. The analysis diagram is closer to a relational model,

because it shows no commitment to the direction of associations, so it would seem to be a

good choice. However, the design class diagram has types assigned to fields, which we need

to know when designing the tables. To solve this paradox, we will use the analysis model to

drive the design of the tables, but pick up the types from the design model. Any discrepancy

between the actual design model and the database tables can be removed by the mapping

code that we write.

10.3.3 Mapping Entity Classes
In order to map an entity (business object) from an object-oriented model into a relational

schema, we need to introduce a table with the same name as the entity’s class. (We’ve already

seen an example of this with the ADDRESS table.) Every row in an entity table represents a

unique object from the business domain.

For each simple field (primitive or string) we can add a column to the table with the same

name as the field and an appropriate SQL data type. Entity fields that point to (non-string)

Handling Persistence with a Relational Database 289

objects must be treated differently, as we will see shortly when we look at the mapping of

associations.

For the sake of object-oriented programming, it’s important to introduce an integer

attribute, such as ID, to use as the primary key. This is because it simplifies the mapping code

(important if we’re writing the code manually) and it makes navigating from one object to

another easier and more efficient (especially important since objects tend to form complex

graphs). It also provides the benefits associated with universal identifiers. From here on, an

INTEGER column called ID will be added to every entity table, even though it is not shown in

the accompanying class diagram fragments.

10.3.4 Mapping Associations
When we looked at how to map an analysis class model into a design class model, we

saw that we had to transform the two-way analysis associations into one-way pointers. A

relational database stores two-way associations directly, so we don’t have the same problem:

if our database schema allows us to navigate from entity A to entity B, the DBMS and the

query language will allow us to navigate just as easily from entity B to entity A. Therefore,

our database schema will resemble the analysis class model more closely than the design

class model. (We should still design the business layer before producing the database schema

though, because the design process will harden the analysis model and help us to choose

attribute types.)

One-to-One Associations
For a one-to-one association, we can add a foreign key to one of the entity tables. A foreign

key is an entry in one table that refers to a primary key in another table. In other words, a

foreign key is a reference from a row in one table to a row in another table. To emphasize

which columns represent foreign keys, the column names are shown in italics here. (When

drawing by hand, you can add a ‘>’ next to the column name instead.)

In Figure 10.9, the CARMODEL table contains a foreign key called CARMODELDETAILSID that

allows us to find a CarModel’s details in the CARMODELDETAILS table. (The fragment of class

diagram shown here uses analysis notation, without navigability, but universal identifiers

have been added to each table, even though they’re not analysis-level attributes.) We could

equally well add a foreign key called CARMODELID to the CARMODELDETAILS table – the choice

made reflects the logical nature of the composition relationship that we’re dealing with.

Because of the bi-directional properties of relational databases, we don’t need to put a foreign

key in both ends.

As an alternative to foreign keys, we could combine the two tables into one. For ease of

maintenance, tables should only be combined when one of the tables doesn’t represent an

entity in its own right. For example, if CarModelDetails were just a composite attribute of

CarModel, budded off for the convenience of programmers, it would be reasonable to add the

290 Chapter 10

19500

PRICE

25000

35000

 CarModel
name:String

price:int

CarModelDetails

description:String

engineSize:String

advert:String

poster:String

CARMODEL

CARMODELDETAILS

NAME

ENGINESIZE DESCRIPTION

Grey Shadow

Fly

Dooby 9

3500

3000
4800

Pure luxury...

Power and...
Smooth but...

ADVERT

CARMODELDETAILSID

POSTER

1

ID
111

39

14

ID
19

18
37

19

18

37

arf.ram

amd9.ram
rcgs.ram

arf.jpg

amd9.jpg
rcgs.jpg

Figure 10.9: Mapping a one-to-one association to a foreign key

RELEASEDATE, CATALOGDATE, CLIP and POSTER columns to the CARMODEL table and discard

CARMODELDETAILS altogether. In this case, we can tell that the developers have decided to

regard CarModelDetails as an entity because it has been given a universal identifier.

For the special case of an optional association (multiplicities of 1 and 0..1), we can add a

foreign key to the optional end. Incidentally, relational databases support nullable columns.

A nullable column is one that allows a cell to contain the value NULL, meaning ‘there is

no value here’. Thus, we could also store an optional association as a nullable foreign key

in the 1 end. However, for reasons of simplicity and elegance, it’s better to avoid nullable

values.

One-to-Many Associations
For a one-to-many association, we can add a foreign key to the ‘many’ table, as shown in

Figure 10.10. In this example, each CreditCard can guarantee more than one Member. Thus,

each row in the MEMBER table has a reference to its card (CARDID). (This assumes that each

member only has one card recorded in the system.) In the finished system, this MEMBER table

also has a foreign key to indicate the member’s address.

Many-to-Many Associations
For many-to-many associations, one foreign key is not enough to identify the many entities

at each end of the association. Consider the fragment of analysis class diagram shown at the

Handling Persistence with a Relational Database 291

Member

MEMBER

number:String
inGoodStanding:bollean * 1

Card

number:String
type:String
expiryDate:Date

ID
4
11
2

NUMBER
M105
M9371
M203

CARDID
14
45
14

INGOODSTANDING
TRUE
FALSE
TRUE

CARD
ID
14
45

TYPE
Visor
Annex

NUMBER
1111 2222 3333 4444
7777 8888 9999 5555

EXPIRYDATE
2006-10-09
2006-12-14

Figure 10.10: Mapping one-to-many associations to foreign keys

top of Figure 10.11. Here, a Make can manufacture many CarModel objects and a CarModel

can be manufactured by many Makes (the Make objects are collaborating in the manufacture

of the CarModel). In the pure relational model, every value in a table must be atomic – i.e.

not a collection of values. So, we wouldn’t be able to record all of a CarModel’s Make objects

as a MAKEIDS column in the CARMODEL table.

Since we can’t have multi-valued attributes, we need to use a link table. As its name

suggests, each row in a link table represents a link between an entity in one table and an entity

in another table. The bottom half of Figure 10.11 shows a link table called MAKECARMODEL

that links CarModel objects to Make objects. For example, we can see that Make 8 and Make 9

are both manufacturers of CarModel 39, and that Make 8 also manufactures CarModel 111.

Technically, a link table has a compound primary key consisting of two foreign keys.

We could also use a link table to store one-to-one and one-to-many associations. However,

they’re probably best left for the special cases of many-to-many associations and association

classes (see next).

Association Classes
Association classes, since they have data of their own, must be mapped to link tables,

regardless of the multiplicities at each end of the association. Unlike plain link tables, tables

representing association classes have attribute columns – they may even have an ID column

(if the association class represents an entity in its own right).

292 Chapter 10

CARMODELID

19500

8 39

PRICE

25000

35000

CARMODEL
NAME

Grey Shadow
Lacrosse

Dooby 9

MAKE

Astra Marten

Alpha Rodeo

MAKEID

 Make

name:String

CarModel

name:String

price:int

CARMODELDETAILSID

NAME

MAKECARMODEL

*1..

ID
111

39
14

37

19

18

8

65

9

111

14

39

ID
65

9

8 Rolls Choice

*1..

Figure 10.11: Mapping a many-to-many association to a link table

For example, Figure 10.12 shows a table representing the association class called Reser-

vation. The RESERVATION table has a primary key for the reservation itself, two foreign keys

referencing the objects at each end of the association and two attribute columns.

10.3.5 Mapping Object State
For business objects that have an associated state machine, such as might be shown on a state

machine diagram, we need to record the state that each object is in. In the business layer,

our business object might have a simple field indicating its state, a String or an int perhaps, or

we might have a complex field pointing to a state object (as described by the State pattern).

If we choose to use a String or an int, we need to make sure that the field can only take on

certain values: for iCoot, Reservation has six possible states, so we would have to choose six

Strings (‘‘waiting’’, ‘‘notifiable’’, ‘‘collectable’’, ‘‘needingRenewal’’, ‘‘storable’’ and ‘‘concluded’’, for

example) or six integers (0 to 5 perhaps). From the database point of view, we could also

take a simple approach: add a column called STATE to the RESERVATION table and set its type

to VARCHAR or INTEGER, as appropriate. (We would expect the INTEGER version to be faster,

but harder to debug.) This approach is illustrated in Figure 10.13.

Or, we could take a more complex approach: introduce a new table for each possible

state and use foreign keys to indicate which reservations are in which states. For example,

Figure 10.14 shows two of the six state tables that we would need, indicating that reservations

Handling Persistence with a Relational Database 293

Reservation
number:String

timestamp:Timestamp

CARMODELID CUSTOMERID TIMESTAMPNUMBER

R187a

R7b

R459b

CarModel Customer

4

2

4

7

1

99

33

22

72

2004-12-06 14:23:16.543

2004-12-03 00:03:21.872

2004-12-05 09:45:07.210

ID

RESERVATION

* *

Figure 10.12: Mapping an association class to a link table

STATE

0

0

2

CARMODELID CUSTOMERID TIMESTAMPNUMBER

R187a

R7b

R459b

2004-12-06 14:23:16.543

2004-12-03 00:03:21.872

2004-12-05 09:45:07.210

RESERVATION
ID
7

1

99

33

22

72

4

2

4

Figure 10.13: Mapping object state to a column

WAITINGRESERVATION

COLLECTABLERESERVATION

RESERVATIONID

RESERVATIONID

7

99

1

Figure 10.14: Mapping object state to state tables

294 Chapter 10

7 and 99 are waiting and reservation 1 is collectable. The complex approach is arguably more

elegant. Whether or not it’s more efficient than the simple approach depends on the usage

patterns within our system, a difficult thing to predict.

When storing states, we sometimes have to deal with state attributes – data associated

with a business object when it’s in a particular state. For example, when a reservation is in

the waiting state, we need to know when the reservation was last renewed (because, after a

week in the waiting state, the reservation needs to be renewed). Similarly, for a collectable

reservation, we need to know when the car was made collectable (because, if the customer

doesn’t collect it within three days, the car becomes storable).

With the state-table approach, we can store state attributes as extra columns. This is

illustrated, for our two example states, in Figure 10.15. With the state-column approach,

we would have to add a column for every state attribute to the business object table, which

could be many columns. Each column would have to be nullable so that the data could be

omitted when the object was not in the relevant state. This approach is illustrated for our

two example states in Figure 10.16. Since it’s better to avoid nullable columns, the state table

approach wins in this case.

DATEPUTASIDE

LASTRENEWEDDATERESERVATIONID

RESERVATIONID

WAITINGRESERVATION

COLLECTABLERESERVATION

7

99

1

2004-10-18

2004-16-10

2004-12-04

Figure 10.15: Adding state attributes to state tables

CARMODELID NUMBER

R187a

R7b

R459b

TIMESTAMP

NULL

NULL

NULL

DATEPUTASIDESTATE

...

...

0

0

2

CUSTOMERID

LASTRENEWEDDATE

RESERVATION
ID
7

1

99

33

22

72

4

2

4

2004-10-18

2004-16-10

2004-12-06 14:23:16.543

2004-12-03 00:03:21.872

2004-12-05 09:45:07.210

2004-12-04

Figure 10.16: Mapping state attributes to nullable columns

Handling Persistence with a Relational Database 295

Mapping Inheritance
In order to map an inheritance hierarchy onto tables, we can introduce a table for each class,

with columns for the attributes added by that class. So that we can find all the attributes

for an object, the tables must share the same primary key. For example, Figure 10.17 shows

the Customer class hierarchy mapped to three tables: the CUSTOMER table has three columns

for the attributes defined by the Customer class; the NONMEMBER table has one column for

the attribute defined by the NonMember class; and the MEMBER table has two columns for the

attributes defined by the Member class.

 NonMember
driversLicense:
 String

 Customer

name:String
phone:String
amountDue:int

Member
inGoodStanding:

 boolean

number:String

33 Mary Smith 0 (07968)14599

NAME AMOUNTDUE PHONE

4 Helen Meeder 0 (0452)94983

11 Alice Tara 0 (0161)898349

2 George Milo 3980 (07968)14599

ID

33 DUCK MH8L3 7324

DRIVERSLICENSEID

NUMBER INGOODSTANDING CARDID ADDRESSID

M105 TRUE

FALSE

14 9

M9371 FALSE 45 2

M203 14 9

ID
4

11

2

CUSTOMER

MEMBER

NONMEMBER

Figure 10.17: Mapping inheritance to multiple tables

As usual, the universal identifier (which will have been added to Customer class) is used

as the primary key: this time it appears as the primary key in all three tables. When we

come to retrieve the data for Customer 33, for example, we pick up NAME, AMOUNTDUE and

PHONE from the CUSTOMER table; next, we have to test whether there is a row with key 33 in

either of the subclass tables (if there is, we know that Customer 33 is actually an instance of

296 Chapter 10

a subclass); in our example, we detect that Customer 33 has NONMEMBER data, so we pick up

its License. The end result is the NonMember shown in Figure 10.18.

aNonMember

id = 33
name = "Mary Smith"
phone = "(07968) 145 99"
amountDue = 0
driversLicense =

"DUCK MH8L3 7324"

Figure 10.18: A reconstituted nonmember

As with the mapping of object states, we could instead put all the attributes into a single

table (this would reflect the fact that an object being an instance of a class is similar to an

object being in a particular state). For example, in Figure 10.19 we have a single CUSTOMER

table with a CLASS column, specifying the class of each individual row. In addition, the table

has a nullable column for each of the attributes in the hierarchy.

As ever, the choice of mapping to multiple tables or a single table will be based on personal

preference, experience, crystal-ball gazing and experimentation.

DUCK MH8L3 7324

33 Mary Smith (07968)14599

NULL NULL NULLNULL

NULL

NULL

NULL

...

......

...

DRIVERSLICENSE

NAME AMOUNTDUE PHONE

NUMBER INGOODSTANDING CARDID ADDRESSID

CUSTOMER
ID

0

4 Helen Meeder 0 (0452)94983

11 Alice Tara 0 (0161)898349

2 George Milo 3980 (07968)14599

M105 TRUE

FALSE

14 9

M9371 FALSE 45 2

M203 14 9

CLASS

1

0

0

0

Figure 10.19: Mapping inheritance to a single table

Handling Persistence with a Relational Database 297

ADDRESS (ID:INTEGER,HOUSE:VARCHAR(99),STREET:VARCHAR(99),COUNTY:VARCHAR(99),
 POSTCODE:VARCHAR(99))

CAR (ID:INTEGER,TRAVELLED:INTEGER,DATELOST:DATE,CARDETAILSID:INTEGER)

CARD (ID:INTEGER,TYPE:VARCHAR(99),NUMBER:VARCHAR(99))

CARDETAILS (ID:INTEGER,BARCODE:VARCHAR(99),NUMBERPLATE:VARCHAR(99),VIN:VARCHAR(99))

CARMODEL (ID:INTEGER,NAME:VARCHAR(99),PRICE:INTEGER,CARMODELDETAILSID:INTEGER,
CATEGORYID:INTEGER,VENDORID:INTEGER)

CARMODELDETAILS (ID:INTEGER,ENGINESIZE:VARCHAR(99),DESCRIPTION:VARCHAR(256),
 ADVERT:VARCHAR(99),POSTER:VARCHAR(99))

CATEGORY (ID:INTEGER,NAME:VARCHAR(99))

COLLECTABLERESERVATION (RESERVATIONID:INTEGER,DATENOTIFIED:DATE)

CONCLUDEDRESERVATION (RESERVATIONID:INTEGER,REASON:VARCHAR(99))

CUSTOMER (ID:INTEGER,NAME:VARCHAR(99),PHONE:VARCHAR(99),AMOUNTDUE:INTEGER)

DISPLAYABLERESERVATION (RESERVATIONID:INTEGER,REASON:VARCHAR(99))

INTERNETACCOUNT (ID:INTEGER,PASSWORD:VARCHAR(99),SESSIONID:INTEGER)

MAKE (ID:INTEGER,NAME:VARCHAR(99))

MAKECARMODEL (CARMODELID:INTEGER,MAKEID:INTEGER)

MEMBER (ID:INTEGER,NUMBER:VARCHAR(99),INGOODSTANDING:BOOLEAN,CARDID:INTEGER,
ADDRESSID:INTEGER)

NEEDINGRENEWALRESERVATION (RESERVATIONID:INTEGER,DATERENEWALNEEDED:DATE)

NONMEMBER (ID:INTEGER,DRIVERSLICENSE:VARCHAR(99))

NOTIFIABLERESERVATION (RESERVATIONID:INTEGER,DATEPUTASIDE:DATE)

RENTAL (ID:INTEGER,NUMBER:VARCHAR(99),STARTDATE:DATE,DUEDATE:DATE,TOTALAMOUNT:INTEGER)

RENTALCAR (RENTALID:INTEGER,CARID:INTEGER)

RESERVATION (ID:INTEGER,NUMBER:VARCHAR(99),TIMESTAMP:TIMESTAMP,CUSTOMERID:INTEGER,
CARMODELID:INTEGER)

VENDOR (ID:INTEGER,NAME:VARCHAR(99))

WAITINGRESERVATION (RESERVATIONID:INTEGER,LASTRENEWEDDDATE:DATE)

Figure 10.20: Database schema for iCoot

298 Chapter 10

Case Study
iCoot database schema

The finished database schema for iCoot is shown in Figure 10.20. Each table is shown

as a name followed by column types in parentheses. As before, primary keys are

shown in bold and foreign keys are shown in italics (with primary–foreign keys in

bold–italic). For completeness, this schema includes a few pieces from the full Coot

system, such as NONMEMBER and DATELOST.

10.4 FINALIZING THE USER INTERFACES
Next, we’ll look at the design of our user interfaces. We have a handful of vague sketches

that we used while fleshing out the system requirements. This section includes hints and

tips on how to produce good, simple, interfaces for thin clients.

In the early stages of development, during requirements capture and analysis, it’s useful

to consider the functionality of the user interfaces. This makes sense because, with a use-

case-driven methodology, the way that actors interact with the system is paramount and

most actors are human. To this end, we already have the following:

• User interface sketches. These were used to help us produce system use cases during

requirements capture, with the help of our sponsors.

• Boundary objects in communication diagrams. During dynamic analysis, we used commu-

nication diagrams to show the realization of the use cases; in these diagrams, every actor

was shown interacting with the system via boundary objects.

But, we still need to design the user interfaces: we have to take the coarse boundary

objects, the vague user interface sketches and the precise use cases, and transform them into

user interface descriptions that can be implemented directly. (We expect system-to-system

interfaces to be designed as part of our layers – for systems that are accessed by us – or as

part of our business services – for systems that access our system.)

You may have been surprised by the fact that most of a software system can be designed

successfully without considering the user interfaces in detail (having completed the system

use cases, we concentrated almost entirely on the objects inside the system). There are two

main reasons for this:

• The correct behavior of a system depends on its internal construction, not on the way that

people interact with it. To use an analogy: a car consists of an engine, four wheels and a

Finalizing the User Interfaces 299

body; depending on which interfaces we use, and how we use them, we can get a car to

transport people from A to B, or we can get it to tow a caravan, or we can get it to knock

down a wall; however we choose to interact with a car, it still behaves as a car.

• We would prefer to write reusable code. If we focus on the needs of a particular set of

interfaces, we risk producing a system that only works for those interfaces – this is one

of the problems of traditional development: ‘Solve today’s problem today, forget about

tomorrow’. Being use-case driven might seem to be against the principle of reuse; however,

as far as the internals of the system are concerned, use cases are just a good way of ensuring

that the developers don’t wander off into irrelevant areas.

Rather than delving into the theory of human–computer interaction, we’ll look at some

basic principles for good user interface design (especially for thin clients accessing multi-tier

systems).

Be Guided by Use Cases
From the system point of view, use cases simply keep the developers on track. To the users,

on the other hand, the use cases are everything. Thus, use cases should be used to give

structure to the user interfaces.

In general, we should try to keep our use cases simple: they should not contain too

much functionality or they will be difficult to manage. Therefore, although we would expect

each user interface to represent a number of use cases, the interfaces themselves can still be

simple.

We would expect the grouping of related use cases to be reflected in the structure of the

user interface. For example, iCoot customers are presented with a single, Web-based, user

interface that includes a dozen or so use cases. Within that single interface, we would expect

to find activities grouped into ‘reservations’, ‘rentals’, ‘browsing the catalog’ and so on.

We should also avoid splitting a single use case, or a chain of related use cases, into more

than one interface. For example, a customer who had homed in on an interesting car model

would be annoyed if they had to go to a different interface to reserve it.

Keep it Simple
Keeping things simple is a good principle in its own right. But also, many of our users

will be novices, especially those users accessing our system over the Internet, so simplicity

is even more important. There’s a strong argument for keeping user interfaces simple and

uncluttered for expert users too: we don’t want the overwhelming functionality of our user

interface to hamper their productivity.

In an e-commerce context, we don’t want a learning barrier in front of the goods that

we have to sell. When a customer comes across our site, if they’re presented with long

instructions on how to use it, they’ll leave immediately. So that customers can use our site

300 Chapter 10

immediately, we must limit ourselves to trivial, step-by-step, guidance, as in Click here to buy

or Enter your credit card details below and click Next.

The simpler the interface, the easier it will be to port to more primitive platforms (for

example, mobile phones, set-top boxes, personal digital assistants, home appliances). The

need to produce portable user interfaces is a strong argument for using a control layer in

your design.

Use Notebooks
You should use notebooks to group related use cases. A notebook is a set of pages that shows

only one page at a time – the other pages are available via tabs along the edge. The advantage

of a notebook is that, because its size and location stays the same, the user can focus on a

single area of the screen, even for long interactions that involve more than one use case. This

improves the user experience and also user productivity. Notebooks are supported by most

GUI libraries, such as Java’s Swing (Figure 10.21 shows iCoot running as a Swing applet).

For HTML/CGI interfaces, we can only simulate a notebook – the end result is similar, but

Figure 10.21: iCoot using a Swing notebook

Finalizing the User Interfaces 301

the user has to tolerate the flashing-to-background-color and longer delays when moving to

a new page (Figure 10.22 shows iCoot running as a simulated HTML/CGI notebook).

Figure 10.22: iCoot using a simulated notebook

Often, a use case will map cleanly to a single page. With the help of a wizard, even a

complex use case can be followed inside a single panel.

Use Wizards
A wizard is a sequence of pages that guides a user, step by step, through a complex activity.

When the user selects an activity, they’re presented with a page representing step 1; the user

completes step 1 and clicks the Next button to go on to step 2; and so on. Before completing

an activity, a user can revisit the earlier steps, using the Back button. Each page of the wizard

contains fields, lists and other widgets that the user employs to enter the data needed for

the current step. Normally, each page will have simple instructions, such as Type your old

password into the box below and then click Next.

302 Chapter 10

The step-by-step nature of the wizard and the simple instructions allow the user to

perform a complex activity without having to remember how to do it. Also, a wizard, like a

notebook, keeps the user’s focus on one area of the screen.

As with notebooks, if we’re using a pure HTML/CGI interface, we can only simulate

wizards, but the end result is probably better than if we didn’t use them at all. (In this case,

the alternative would be one very long HTML page containing all the steps of the activity:

rather inconvenient for the user to have to scroll down through the steps.)

Avoid Multiple Windows
Multiple, overlapping windows were invented for the benefit of computer experts rather

than novice users. Even if our user is sufficiently computer-literate to open a Web browser,

we should not expect them to be able to cope with multiple browser windows or pop-up

dialogs.

Apart from the inherent complexity, we also have to accept that, on some platforms,

multiple windows just don’t make sense. In iCoot, the user navigates to a particular car

Wrong

Figure 10.23: Problems with multiple windows

Finalizing the User Interfaces 303

model and clicks the Make a Reservation button to reserve it. Since there is a potential fine

associated with reserving a car model, the system needs to ask the user for confirmation.

The natural thing for a developer of multi-windowed systems to do is to pop up a dialog.

However, iCoot may be running on a TV (with the help of a set-top box). Due to limited

screen resolution and space, set-top boxes don’t support dialogs, so there’s nowhere for the

message to go (see Figure 10.23). It is possible to avoid multiple windows (see Figure 10.24)

by overlaying the previous page with the contents of the dialog. If the user clicks No, the

system returns to the previous page (equivalent to canceling the dialog); if the user clicks

Yes, the reservation is made and the system returns to the previous page.

Right

Figure 10.24: Avoiding multiple windows

The interface shown in Figure 10.24 is a wizard running inside a notebook: the radio

buttons down the left-hand side of the screen correspond to the tabs of the notebook,

allowing the user to switch between major use cases; within the notebook page, we see a

wizard guiding the user through the U7:Make Reservation use case (which is an extension of

U1:Browse the Index).

304 Chapter 10

So, notebooks and wizards can be used together to confine complex interactions to a

single area of the screen, so that the user doesn’t get tired or confused. This all works well as

long as we stick to the ‘Do one thing at a time’ rule; even when we design our user interface

according this rule, we can still allow the user to switch between half-finished activities. For

example, in Figure 10.24, the user can ignore the question for the time being and switch to

the Change PIN page. When the user eventually returns to the Index page, the same question

will be waiting to be answered.

10.5 DESIGNING THE BUSINESS SERVICES
Once we’ve decided on the look and feel of the user interface and the interface of our

business layer, we can design our server layer: this consists of a number of server objects,

collaborating with objects in the business layer, providing a simple interface for the benefit

of clients.

Business services are the queries and commands that a middle tier makes available to its

clients. For example, for iCoot, we might derive the following set of business services:

• Read the index headings from the Catalog.

• Read CarModel for a given index heading.

• Read every CarModel Category.

• Read all CarModel engine sizes.

• Read all Makes of CarModel.

• Read CarModels for a given set of Category, engine size and Make.

• Read details for a given CarModel.

• Reserve a CarModel.

• Read details for a given Member.

• Change a Member’s password.

• Read the Cars rented by a given Member.

• Read the Reservations made by a given Member.

• Cancel a Reservation.

The business services represent a concise summary of the information flow between the

user interfaces on the client and the business logic on the middle tier. Business services can

be derived by walking through the use cases, with reference to the user interface design and

the system architecture. (The idea of breaking a server’s interface down into the services it

provides can be applied to any kind of communication; for example, we could extend the

ideas discussed in this section to the problem of deciding how the layers within a subsystem

should communicate.)

Designing the Business Services 305

For business services to make sense in the context of HTML/CGI interfaces, we have to

assume that user interfaces are spread between client tier and middle tier: the combination

of HTML forms, servlets and JSP result pages comprise a single user interface, despite the

fact that some pieces run on the middle tier. We can even execute servlets on a separate

middle tier machine to the one that’s performing the business processing, to reduce the load

on the business objects – in this case, the servlet machine is really a client of the middle tier

rather than part of the middle tier itself. Therefore, in the following sections, the term client,

means either:

• A piece of code, such as an applet, running on a separate machine to the business layer.

• Servlets running in a separate process or on a separate machine to the business layer.

Implementing client–server communication in terms of business services allows us to:

• Simplify the client code. Since most client interfaces only need a subset of the system’s

capability, each one can be given a cut-down view.

• Complicate the business layer. We can make the business layer as complex, powerful or

reusable as we like, or even change it altogether, without worrying about the impact on

the client.

• Build a pluggable server layer. We would like to provide various kinds of interface to

cope with different user preferences or client capabilities – applet/RMI versus HTML/CGI-

with-servlets, for example – without having to re-implement the middle tier services

every time.

10.5.1 Using Proxies and Copies
When a client requests a business service, the result may include one or more business

objects. For example, if the client request is ‘Read all Make objects of CarModel’, the result will

be a list of makes. As well as retrieving business objects, a client may send business objects

to the server. For example, if the client request is ‘Cancel a Reservation’, the reservation will

need to be specified.

So, logically at least, business objects flow back and forth between client and server. If

we were dealing with a one-tier system, there would be no problem: we would just pass

object pointers around our run-time system and send messages to the objects according to

our needs. However, when we’re dealing with a network, things are not that simple.

We can, with the help of technologies such as RMI, arrange for messages to pass between

objects over the network: each object lives inside a single run-time system, but messages can

arrive from outside. Alternatively, we can pass copies of objects around the network: each

run-time system has a copy of the objects it needs and sends messages to them locally. In the

case of communication between layers in a subsystem, we have a similar choice: do we pass

306 Chapter 10

object references between layers or object copies? (We would expect an open layer to pass

references across its boundary while a closed layer might pass copies.)

To be more precise, we have two basic strategies to choose from: proxies are client

objects that know how to forward the messages they receive to a real business object sitting

elsewhere; copies are client objects containing a copy of the real business object’s data.

The main advantages of using proxies are that:

• All clients see the same objects, so they’re always working with the same information.

• All the run-time systems merge into a single universe: distributed objects are treated in

the same way as local objects.

The main disadvantages of proxies are that:

• The business layer objects must be secured. For example, we must be sure, when we

receive a message from a client, that the client has permission to send the message. This

complicates the business layer. (The alternative security model, where the business objects

are accessed only by the server layer and the server layer only has to secure its business

services, is much easier to implement.)

• Network traffic increases. In an object-oriented system, we normally get hold of the object

and then send it messages; with the proxy technique, initial retrieval of the object is quick

but sending messages to the object is slow (because each message must travel over the

network).

• The burden on the middle tier increases: the business layer, running on the middle tier,

executes all of the methods all of the time.

The main advantages of using copies are that:

• Network traffic reduces: we retrieve more information to begin with (all the object’s data)

but methods execute quickly (because they run locally).

• Processing doesn’t all take place in the middle tier, because some business methods execute

on the client.

• Direct access to business methods doesn’t have to be secured because only the server layer

has direct access and the server layer is secure in itself.

• The object’s implementation doesn’t have to be concurrent-safe: once a copy has been

created on behalf of a client, the client has exclusive access to it.

The main disadvantages of copies are that:

• Too much data may be copied. For example, if we copy a CarModel, we might end up

copying all of its CarModelDetail objects, all of its Make objects, all of its Reservation objects,

all of the Member objects that have made those reservations, and so on.

Designing the Business Services 307

• The copies can get out of step because each client has an independent copy of every object

that it uses.

For some applications, it may be quite reasonable for a client copy to become out of date.

For example, if a user issues a search engine request from a Web browser, the results page

that is displayed will age as Web pages are added, updated and removed. The user has to

accept that, strictly speaking, the results were only accurate at the moment the query was

executed.

By careful coding, we can alleviate some of the problems of proxies and copies. For

example, when using proxies, we could cache some of the object’s data locally to reduce

network traffic, taking care to ensure, by some complicated mechanism, that the objects

didn’t get out of step. With the copying approach, we can copy any referenced objects

on demand, thereby reducing the copy-too-much problem: for example, when we read a

CarModel, the client can be given the top-level attributes only – any referenced objects would

stay as null unless the client actually navigated to them (using encapsulation, this process

could be made transparent to the client code).

If we’re lucky, we will have access to a framework or a library that supports configurable

proxies, configurable copies and hybrids of the two. However, even with such technologies,

the developer still has to choose which variety they want to use.

Alternatively, as long as we’re prepared to accept a little hand-crafting, we can take a

simpler approach: lightweight copies. With this approach, when a client asks for a business

object, it is given only the essential information it needs and information is not passed to the

client if the client must already have that information. Going the other way, when a client

needs to identify a business object to the server, the client passes just the universal identifier

of the object to the server.

For lightweight copies to work, we need business services (so that we can reason about

what information is needed by the client) and universal identifiers (so that clients have an

efficient way of passing objects back). The information passed to a client will consist of

copies of the business object’s simple attributes (numbers, strings, and so on) and universal

identifiers for any reference attributes, in case the client needs to navigate further.

10.5.2 Classifying Business Services
We would expect business services to form groups of related behavior, in other words,

messages on objects. We would expect these server objects to have few attributes of their

own and we wouldn’t expect them to record state on behalf of the clients (each client must

remember its own state). Server objects reside in the server layer of a multi-tier system.

The server objects that have been designed for iCoot are shown in Figure 10.25. The busi-

ness services have been classified as reservations, authentication, membership information,

308 Chapter 10

 ReservationsServer

+readReservations(sessionId:long):PReservations[]
+createReservation(sessionId:long,movieId:int)
+deleteReservation(sessionId:long,reservationId:int)

 CatalogServer

+readCategoryNames():String[]
+readMakeNames():String[]
+readEngineSizes():int[]
+readIndexHeadings():String[]
+readCarModels(q:PCatalogQuery):PCarModel[]
+readCarModels(heading:String):PCarModel[]
+readCarModelDetails(carModelId:int):PCarModelDetails

 AuthenticationServer

+logon(membershipNumber:String,password:String,steal:boolean):long
+logoff(sessionId:long)

 RentalsServer

readRentals(sessionId:long):PCar[]

 MembershipServer

+readMember(sessionId:long):PMember
+changePassword(sessionId:long,old:String,new:String)

Figure 10.25: Server objects for iCoot

catalog information and rentals (ReservationsServer, AuthenticationServer, MembershipServer,

CatalogServer and RentalsServer, respectively).

The business service messages shown in Figure 10.25 have been tuned to ensure that

neither the client nor the server will pass information to the other side unnecessarily. For

example, consider the CatalogServer. In order to search for car models, the client must first

retrieve all the category names, engine sizes and make names. These come back from the

server as String objects and int objects.

The client then allows the user to build a query (‘All sports models made by Alpha Rodeo

or Beamer’, for example). The client passes the query to the server as a PCatalogQuery. Inside

the PCatalogQuery are three array attributes that identify the category names, engine sizes and

Designing the Business Services 309

make names that the user is interested in. The server returns an array of matching PCarModel

objects. (The P stands for protocol – it helps the developers of the server objects to avoid

any name clashes with heavyweight business objects. Arrays are used because they’re more

compact than collections.)

In order to reduce the amount of information returned to the client, the PCarModel objects

do not contain any details, just the price, model number and universal identifier. When

the user asks for the details of a particular car model, rather than passing over the whole

PCarModel, whose attributes the server must already have, the client passes over just the

universal identifier, as a parameter to the readCarModelDetails message.

10.5.3 Session Identifiers
Often, in order to frustrate hackers, we need to restrict client access to privileged services.

For example, for iCoot, we have privileged services, such as ‘Reserve a CarModel’, that require

the client to have logged in and non-privileged services, such as ‘Read the index headings

from the Catalog’, that are available to everyone, even hackers.

Some client–server protocols, such as HTTP, have a standard challenge mechanism for

displaying a log-on screen to the user: the user name and password typed in is validated on

the server; if successful, the client is given a unique session identifier. However, if we want

to provide pluggable business services, i.e. services that will work with any kind of front

end, we have to implement a mechanism ourselves. Figure 10.25 shows one way to do this.

All the privileged services take a long number as their first parameter: this must be a session

identifier created by the server layer, or use of the privileged service will fail. To get hold

of a session identifier, clients must use the logon message on the AuthenticationServer. (The

steal parameter is used by the client to specify whether any existing session for this member

should be terminated – this is part of the single-log-on mechanism.)

When the logon method is called, the AuthenticationServer checks the membership

number and password using the business layer. If the client’s credentials are correct, the

AuthenticationServer generates a random number and associates it with the corresponding

Member in the business layer. Subsequently, whenever a privileged service is invoked, the

relevant server object can use the session identifier to look up the Member before proceeding.

Naturally, if the original credentials or the session identifier are invalid, the client receives

an error message. The session identifiers must be difficult to fake – a randomly-generated

64-bit number will suffice. Hackers generally do not bother trying to guess 64-bit random

numbers because their chances of success are tiny.

Another way of providing a portable privileged/non-privileged mechanism would be to

make the session identifier an object. Through encapsulation, this would give us more

flexibility in the kind of difficult-to-fake information that we chose to employ.

310 Chapter 10

10.5.4 Business Service Realization
Now that we have designed the business services (the messages on our server objects),

we need to work out how they’re going to be implemented in terms of the business layer.

To do this, we need to walk through the use cases, drawing sequence diagrams that show

which messages need to be sent. For want of a better name, we’ll call this process business

service realization. This is similar to the use case realization that we did during analysis,

walking through the use cases and drawing communication diagrams to demonstrate that

the business objects would support an implementation. We should use sequence diagrams

to document our business service realization rather than communication diagrams, because

sequence diagrams are more compact (we’re being specific about the implementation, so we

have more information to show).

Figure 10.26 shows a sequence diagram for the AuthenticationServer’s logoff method. Along

the top are the objects involved in the interaction. Unlike objects in communication diagrams

and object diagrams, the objects shown in sequence diagrams do not have underlined labels.

Time flows down the page, so, starting at the top, the Member actor is shown initiating

the log-off via the AuthenticationServlet, which in turn sends the logoff message to the

AuthenticationServer, which sends the findById message to the MemberHome, and so on.

:Authentication

Server
:Authentication

Servlet

logoff()

m:Member

id retrieved

from browser

session

:Member

Home

logoff(id)

home page

setSessionId(0)

:Internet

Account

m=findBySessionId(id)

Member

setSessionId(0)

sd U12

Figure 10.26: Depicting business service realization

The dashed vertical lines on a sequence diagram are called lifelines (the lines don’t have

to be dashed on a hand-drawn diagram). The vertical grey rectangles are called activation

bars; they indicate when an object is executing a method. (The bars may be white or omitted

Designing the Business Services 311

altogether on a hand drawing). Each sequence diagram can be enclosed in a frame – a box

with an operator in the top left corner, like the one we saw earlier for our design class

diagram, but with a different operator. (All UML diagrams can be enclosed in a frame, the

operator indicating the context for the diagram.) In the case of a sequence diagram, the

operator is sd followed by the sequence diagram name. For a class diagram, we use the pkg

operator, indicating the package that contains the classes. In this book, frames are only placed

around the sequence diagrams and design-level class diagrams from iCoot. Frames can also

be used to enclose loops and references to other sequence diagrams (see Appendix 3).

Case Study
iCoot sequence diagram

A member of the iCoot team describes the interaction shown in Figure 10.26 as

follows:

When a Member actor elects to log off, their browser tells the AuthenticationServlet

to logoff. The AuthenticationServlet then sends the logoff message to the Authen-

ticationServer, along with the Member’s id, which it retrieves from the browser

session.

The AuthenticationServer uses the id to retrieve the corresponding Member

from the MemberHome. The AuthenticationServer then sends the setSessionId

message to the Member, with 0 as parameter, which is passed on to the Member’s

InternetAccount. The InternetAccount stores the session identifier 0, to indicate

that the Member has logged off.

Finally, the Member actor is presented with the home page so that they can

access customer services or log on again.

For business service realization, we need to show the messages that flow between the

server objects and the business layer objects, but we don’t need to show the inner workings

of the business layer objects themselves. Depending on the size of the system, it may or may

not be feasible to show every business service on a sequence diagram. In general, we should

expect to show the most important scenarios – the use cases will help us to decide which

ones are the most important. Within each use case, there may be several normal scenarios

and several abnormal ones: for our purposes, it is enough to show the normal path for the

most common scenario.

As we draw sequence diagrams, we will discover more and more messages on the interfaces

of our business layer objects. The resulting messages on the business layer objects are fed

into the specification phase, along with any others that we come up with using intuition,

312 Chapter 10

experience, libraries, patterns, frameworks and guesswork. In the specification phase, we try

to complete the object interfaces and describe the required behavior (see Chapter 12).

10.6 USING PATTERNS, FRAMEWORKS
AND LIBRARIES

A pattern (see Chapter 11) is a portable solution to a small programming problem – in the

object-oriented sense, a pattern is a handful of collaborating objects. Patterns allow developers

to work faster and produce better code by not duplicating effort. Some fundamental patterns

have been mentioned at other points in this book: singletons (where a class has only one

instance); factories (for creating objects); homes (for creating objects and finding existing

ones); and states (representing an object’s life cycle). Each pattern has a name, a description

and some examples of its use. Every developer should familiarize themselves with the

common patterns.

In some ways, a framework is similar to a pattern: it’s a way of putting together part

of a system. Frameworks, however, have two important differences: firstly, they tend to be

much larger; secondly, some of the code is already written for you (this may take the form

of partially implemented classes or code-generation tools). Just as with patterns, you should

seek out frameworks that have been designed for your particular problem domain, so that

you can avoid writing unnecessary code.

One of the most comprehensive and popular frameworks is Enterprise JavaBeans. The

EJB framework allows developers to construct middle-tier business logic without having to

write any code to deal with persistence, transactions, security, concurrency, distribution or

thread safety. Although it’s a large framework, it’s certainly worth studying.

A library is a collection of prewritten classes that can be used off-the-shelf. You should

make yourself aware of the libraries available for your problem domain, so that you can

avoid writing new classes when suitable ones already exist. The Java 2 Platform library is a

good example. It comes in three varieties, Enterprise Edition, Standard Edition and Micro

Edition, targeted, respectively, at large-scale systems (for example, e-commerce), medium-

scale systems (for example, desktop publishing) and small-scale systems (for example, PDA

e-mail clients).

10.7 TRANSACTIONS
Every concurrent system, if it’s going to be robust, must be built around transactions. A

transaction, also known as a unit of work, is used to fence off a number of database accesses.

Transactions 313

(A database access means ‘reading some data’ or ‘writing some data’.) Transactions are fairly

complicated, so a detailed discussion is beyond the scope of this book.

Transactions are used to guarantee that:

• Information in the database doesn’t become corrupted by system problems. We want to

make sure that the database moves from one consistent state to another: data is never

partly updated; it’s either completely updated or not updated at all.

• Clients don’t get hold of out-of-date information. We want to avoid situations such as the

following: client A reads a customer’s address, client B modifies the customer’s address,

client A takes some action based on the old address.

A database client starts a transaction, accesses some data and then commits the transaction.

If the commit is successful, all updates made since the start of the transaction are flushed

to the database (while the transaction is active, the updates are merely pending) and the

client can be sure that it acted on up-to-date information. If the commit fails, because of a

system problem or a clash with another transaction, the client can roll back the transaction,

discarding any pending updates (and, therefore, any data that was updated on the basis

of out-of-date information will remain unchanged). Because the DBMS guarantees that the

accesses within a transaction all succeed or all fail, we know that the database will move

from one consistent state to another. Obviously, the DBMS must ensure that all accesses take

place inside a transaction.

Transactions can be short – wrapped around access to a single row – or long – wrapped

around several accesses to related rows. A DBMS generally allows the client to choose

between short and long transactions: by default, every access to the database is wrapped

inside a new (short) transaction; alternatively, the client can opt to start, commit and rollback

a (long) transaction manually. In theory, transactions can be nested: this allows us to wrap

small units of work inside larger ones. In practice, however, most relational DBMSs do not

support nested transactions.

10.7.1 Pessimistic and Optimistic Concurrency
Concurrency control (using transactions to control simultaneous access to data from multiple

clients) can be pessimistic or optimistic. With pessimistic concurrency, the DBMS guarantees

that no other transactions can perform conflicting accesses while a transaction is active. With

optimistic concurrency, transactions access at will but, when a transaction is committed, the

DBMS checks that no other transactions have performed conflicting accesses in the meantime.

By default, relational databases use pessimistic concurrency. Optimistic concurrency is

more common in object-oriented databases, although it is sometimes provided as an option

by object-oriented frameworks that sit on top of relational databases. (One way to implement

optimistic concurrency for a relational database is to reread a row before updating it: if data

314 Chapter 10

in the row has changed, we know that another transaction modified it; however, this is only

a partial solution.)

To implement pessimistic concurrency, a relational DBMS locks data accessed within

a transaction until the transaction has finished. For example, if a transaction modifies

the balance of account 123, the DBMS locks the row containing the new balance; other

transactions are prevented from reading the row until the first transaction finishes (and the

lock is released). Locks apply to reads as well: for example, if a transaction reads the balance

of account 456, other transactions won’t be allowed to modify the row containing the old

balance until the first transaction finishes (otherwise, the first transaction might do half of its

work relative to the old value and half of its work relative to the new value, which wouldn’t

make sense).

For performance reasons, relational DBMSs allow the client to relax the locking scheme,

at the expense of some semantic accuracy.

10.7.2 General Guidelines for Using Transactions
with Objects

When mapping from an object-oriented model to a relational database, we have a conflict of

interest. On the one hand we have a complex object graph, whole chunks of which we might

want to process inside a single long transaction. On the other hand, we have a relational

database with a pessimistic locking scheme by default and object data spread over many

tables: this suggests that we should use short transactions, in order to avoid locking up large

parts of the database. (This is why optimistic concurrency is popular with object-oriented

databases and object-oriented frameworks.)

Getting around this conflict requires skill and experience. If you’re lucky, you’ll be using

a sophisticated framework such as EJB that solves most of the problems for you. If you’re

performing the mapping by hand, consider the following advice:

• Organize objects and access paths to reduce overlap. For example, with iCoot, we can

make sure that each member is logged on only once. Thus, overlaps will only occur on the

rare occasion that an assistant accesses a member’s data while that member happens to be

logged on.

• Use primary keys so that database accesses are well focussed. The trouble with most

relational DBMSs is that they lock an entire table if they can’t be sure which rows are being

accessed. For example, if ID is a primary key in the CUSTOMER table, a focussed query such

as ‘Get me the name of customer 789’ will lock one row; a query involving non-primary

columns, such as ‘Get me customers with the surname ‘‘Bloggs’’’ might lock the whole

table. So, make sure that you choose a primary key for every entity and tell the database

about it; then, base your database accesses on primary keys whenever possible.

Handling Multiple Activities 315

• Keep transactions short. Although you may want to control the start and end of a

transaction, so that you can make several object accesses in one go, don’t overdo it.

10.7.3 Transactions in Upper Layers
Transactions have a ripple effect: the fact that they’re in the database layer usually becomes

obvious in the persistence layer; once they’re obvious in the persistence layer, they usually

become obvious in the business layer; and, once they’re obvious in the business layer,

developers of the server layer must understand them and how to use them properly.

Generally, we can’t hide transactions until we get out to the client: to do this, the server

layer must encapsulate transactions inside simplified requests (business services).

10.8 HANDLING MULTIPLE ACTIVITIES
Normally, when we use a computer, we want to be able to do several things at once – write

a letter, read e-mail, run a lengthy computation and browse the Web, for example. We

may want a server to do thousands of things at once (handling simultaneous requests from

multiple clients). To this end, most operating systems permit multitasking: each program

runs as an independent process with its own protected area of code (program instructions)

and data (program variables).

Some programming languages allow us to execute multiple tasks within a single process.

These tasks are usually referred to as threads of execution or just threads. Normally, each

thread represents an activity within the program, running alongside other activities.

In this section, we’ll examine the issues surrounding multi-threading and how we can

make our code thread-safe (this turns out to be most important for the business layer).

10.8.1 Controlling Multiple Tasks
Each process managed by the operating system can be idle (waiting for user input perhaps)

or active (performing some computation). Because we usually have more processes than

CPUs, the operating system must share the CPU time between the active processes: the

operating system allows each process to run for a small amount of time and then moves on

to the next. This time-slicing is controlled by a piece of software called a scheduler. We

don’t need to know the details of the algorithm the scheduler uses to distribute the CPU’s

time among processes – we can just assume that each process gets its fair share. As an extra

facility, most operating systems allow us to assign a priority to each process, so that some

processes get more of the available time than others. For example, we might give a high

priority to the detection of mouse clicks and a lower priority to user applications.

316 Chapter 10

Although any decent operating system will prevent processes from accessing each other’s

code and data, it’s the programmer’s job to make sure that access to external resources

(such as files and databases) is managed sensibly. For example, when a word processor

opens a file, it can lock the file to prevent other processes from editing it at the same

time; concurrent access to a highly shared resource such as a database is usually controlled

through a combination of transaction management and business rules.

From the perspective of an individual user, multitasking allows us to have multiple

applications open at once on our desktop. We can switch between the applications at

will, doing one thing at a time, or set off several tasks at once, each of which appears

to finish independently. Multitasking also has the advantage that, having set off a lengthy

computation, we don’t have to wait until it finishes before we do something else: for example,

while we’re waiting for an Internet search to complete, we can check the time or collect our

messages.

From the server perspective, as well as being able to serve many clients simultaneously,

multitasking gives us better throughput (the server deals with clients more efficiently). For

example, imagine that a script called search.pl is used to execute Internet searches over

HTML/CGI. Some searches issued by clients will execute quickly, in milliseconds perhaps,

while others will take several seconds. If a client starts a long search and then a simpler

search comes in from another client, the second search can execute immediately, without

waiting for the first one to complete.

10.8.2 Controlling Multiple Threads
Threads are different from processes in that they all share the same data area within their

process. Therefore, as well as protecting external resources, the programmer has to protect

internal data. (The code area inside each process is normally hidden from threads by the

run-time system, so we don’t need to take any special steps to protect it.) In all other respects,

threads are just mini-processes: they’re controlled by a scheduler and we can assign different

priorities to them.

From a client point of view, multi-threading has the following advantages:

• The user can run many applications at the same time and do many things within a single

application: for example, in a single e-mail process, we can edit a message, be notified

when new mail arrives, view a real-time clock, and so on.

• The user can interact with the user interface even if the application is busy. For example,

imagine a database querying tool where the user types in a query and presses the Retrieve

button; then, while the query is executing, the user notices that they have made a spelling

mistake in the query. If the query tool has only one thread, the user can’t edit the query

until the useless results have been returned and displayed. If, on the other hand, we

Handling Multiple Activities 317

arrange for the user interface and the database query to run in separate threads, the user

can issue another search before the first one has finished: the application can kill the

incorrect thread immediately and the incorrect results are never displayed.

• The user interface can be updated even when the application is busy. Consider a query

tool, running as a single thread. If the user initiates a search and then, before the results

are displayed, resizes the application window, what happens? Well, grabbing the corner

of the window and moving it across the screen is performed by the operating system (the

desktop), so the window boundary will move as expected. However, the inside of the

window has to be painted by our application: since the application is busy, the inside of

the window won’t be repainted until the query results come back. The user sees a rather

amateurish user interface that repaints at unexpected times. If we use a separate thread

for the query, the user can resize the window while they’re waiting and the repainting will

happen immediately.

From a server point of view, multi-threading is good because:

• It allows us to serve many clients simultaneously without the overhead of multiple

processes. Processes are much more expensive to set up, execute and tear down than

threads. For example, a machine that crashes when you ask it to run 1000 processes

simultaneously may be perfectly happy running four processes with 250 threads each. For

certain kinds of networked application, this is critical: for example, servlets run in a single

process with multiple threads but CGI scripts, by default, run in multiple processes; thus,

if we want the benefits of servlets, we have to have multi-threading.

• It reduces latency (idle time) in the server. For example, if a middle tier machine accesses

a database server using a single server thread, the middle tier machine is idle while the

query is executed on the data tier machine. With multiple threads, the middle tier machine

can be doing other work while the query is executing.

• It reduces time-outs. With some protocols, a client request will fail automatically if the

server doesn’t respond within a certain length of time (say, two minutes). If all client

requests have to queue, waiting to be served by a single server thread, we will get more

time-outs (each request is lengthened by the time it takes to serve the requests that were

already in the queue). With multi-threading, short requests have a faster turn-around:

time-outs will only happen for network problems, server overloading and overly-complex

requests.

Ideally, the programming language and its run-time system handle the messy details of

multi-threading – scheduling, priorities, time-slicing, etc. This way, the programmer just has

to write the code that will be run by the threads and start them up.

318 Chapter 10

10.8.3 Thread Safety
Multi-threading causes problems, because threads can be interrupted before they’re

finished (to allow other threads to run). For example, consider the following scenario:

Two threads A and B are accessing an object O.

Thread A starts to read one of O’s fields, F, using a getter method.

When A has read half of the value, the scheduler interrupts it so that B can run for

a while.

B starts to modify F, via its setter.

The scheduler allows B to finish its modification before it wakes up A.

When A wakes up, it reads the rest of F.

Thread A has now read half of the old value and half of the new value, which is clearly

nonsense. This kind of data corruption applies to external resources too (imagine if A were

reading a text file and B were modifying it).

When we access data in a database, the DBMS provides us with a sophisticated transaction

mechanism to make sure that data isn’t corrupted. However, inside multi-threaded code,

we have to protect the data ourselves. The key to protecting data in an object-oriented

program is to make sure that each piece can only be accessed via a single object that

manages the data. Then, as long as we ensure that only one thread accesses the object at a

time (mutual exclusion), we know that the data will be safe. Preferably, our programming

language will allow us to enforce mutual exclusion (we’ll see how it’s done in Java

shortly).

Code that is safe for multi-threaded use is said to be thread-safe or MT-safe (as opposed

to ‘not thread-safe’ or MT-hot). Generally speaking, we would like to make all of our objects

thread-safe and multi-thread all of our applications.

Immutability
An immutable object is an object whose data can’t be changed. Here the term data means:

• The values of the object’s fields.

• The values stored in external resources managed by the object (such as text in files).

• The values inside any objects pointed to by the object.

• . . .

In other words, for an object to be truly immutable, it must be impossible to change the

object’s own fields and any data that can be reached by the object, directly or indirectly,

internally or externally.

Handling Multiple Activities 319

Immutable objects have the advantage that they’re always thread-safe – since there’s no

data that can be changed, there’s no data that can be corrupted. They’re also more efficient

(they can be shared transparently and kept in read-only areas of memory).

Some languages provide facilities for ensuring immutability – C++’s const keyword and

Java’s final keyword are common examples. These facilities, however, tend to be partial.

A better approach is to enforce immutability by programming style (not providing setters,

locking files, and so on).

Although immutable objects are a nice idea, most objects need to be mutable: for example,

a Customer that didn’t allow us to change its address attribute wouldn’t be much use. Thus,

we have to know how to make mutable objects thread-safe.

Fixed Values
Working out how to make objects thread-safe is a challenge. To make matters worse, we

usually have to reason about whole families of objects and how they will be used together.

One reason for this is deadlock. Deadlock refers to the situation where thread A is waiting

for thread B to do something while thread B is waiting for thread A to do something: both

threads end up waiting for ever. In order to avoid deadlock, we have to think about how our

objects collaborate and how threads will wander through them.

One simple trick we can use to help achieve thread safety is to look for fixed values

in our objects. A fixed value is an immutable field: for example, a Math object might have

a Pi value inside it that never needs to be changed. Fixed values, being immutable, are

automatically thread-safe, so scenarios like the ‘interrupted read’ that we saw earlier, are not

a problem.

Having decided which of an object’s fields are fixed, we can divide our object into two

halves: fixed values, which don’t need special code to protect them, and changeable values,

which do. Fixed values only have to be immutable after the object in question has been

created. In other words, we can manipulate fixed values inside an object’s constructors: as

long as we don’t change the value after the constructor has finished, everything will be fine.

The reason for this is that only one thread can get inside a constructor: the thread that asks

the run-time system to create the object; no other thread can get inside the object while it’s

being constructed, because it doesn’t exist yet. (This assumes that the constructor doesn’t

make the object available to other threads while it is executing.)

Synchronization in Java
We can solve most multi-threading problems by encapsulating each shared resource inside a

single object. It is then the object’s responsibility to make sure that only one thread is allowed

in at a time. Preferably, the programming language should support this mutual exclusion.

For example, in Java, a method can be marked as synchronized: the run-time system

guarantees that only one thread at a time can be active inside any of an object’s synchronized

320 Chapter 10

methods. This is achieved by associating a lock with each object, under the control of a

monitor. The first thread to arrive at one of the object’s synchronized methods is allowed in

by the monitor, but other threads are locked out of the synchronized methods until the first

thread departs. Java’s mutual exclusion does not apply to unsynchronized methods: threads

are free to run in and out of them at any time.

Figure 10.27 shows a snapshot of a Java object in use, with four threads trying to get

inside. This object has MT-hot values, which need protecting, and fixed values, which don’t.

The three threads that we’ve called T1, T2 and T3 are currently active; T2 is suspended

outside method M2 because T1 has already entered the object through another synchronized

method (M1). For this scheme to work, the programmer must ensure that only the code

inside M1 and M2 accesses the MT-hot values. The fixed values, on the other hand, can be

accessed from any method.

Thus, in order to make a Java object thread-safe, we need to synchronize access to all

the MT-hot values. In practice, this requires experience and hard thinking in order to avoid

deadlock and unnecessary synchronization (this is important because mutual exclusion can

reduce an object’s throughput).

Case Study
Thread safety in iCoot

So, how do we address the thread-safety of iCoot? We can consider each layer

separately (another advantage of using layers):

• In keeping with servlet programming style, our servlets (part of the distributed

interface) are state-less, and therefore MT-safe. Session data (such as the PMember

for the current user) is stored in one HttpSession per client and is protected using

Java’s synchronization mechanism (using synchronized blocks). (As part of the

standard HTML/CGI-plus-servlets mechanism, the Web server stores the session

objects and the Web browsers store the session identifiers.)

• Our pluggable server objects are also state-less and therefore thread-safe: each

individual business service returns a response (as protocol objects) that is detached

from the business layer and used only by the client that requested it.

• The business layer has to be made MT-safe, by careful programming, so that

multiple threads can run through it from the server layer without corrupting

cached data read from the database layer.

Incidentally, the database layer is concurrent-safe by default, courtesy of its

transaction mechanism – the programmer simply has to make sure that a transaction

is created at the start of each business service and committed at the end.

Further Reading 321

= Object

= MT-hot values

= Fixed values

= Synchronized method

= Other method

= Thread

M1 M2

T3

T1
T2

T4

Figure 10.27: Synchronization in Java

10.9 SUMMARY
In this chapter, we looked at subsystem design – the process of deciding exactly what
objects we are going to implement and what interfaces they should have:

• We considered the design of the business layer and how to derive it from the
analysis class model.

• We saw how an object model could be mapped onto a relational database schema.
For the sake of simplicity, we didn’t look in detail at how we would write the code
to perform the actual mapping at run time.

• After a brief look at tips for designing user interfaces, we discussed how to group
the facilities offered by the middle tier into business service classes that hide the
complexities of the business layer (for the benefit of different kinds of user interface).

• We considered the importance of looking for patterns, libraries and frameworks to
avoid writing fresh code.

• We looked at the issues surrounding database transactions and multi-threading
(intra-process concurrency), the concepts involved and an example of mutual
exclusion in Java.

FURTHER READING
When considering how to map an analysis class model into design, it’s important to keep

good theory and practice in mind. For a theoretical discussion by Bertrand Meyer (but which

322 Chapter 10

is readable nonetheless), see [Meyer 97]. Martin Fowler’s popular book [Fowler 03] explains

some of the fancier parts of class diagram notation; more can be found in the UML Specifica-

tion [OMG 03a]. For a discussion of best practices for writing Java source code, see [Bloch 01].

Scott Ambler, an agile methodology enthusiast, provides comprehensive coverage of

object-to-relational mapping in [Ambler 03].

In [Constantine and Lockwood 99], you will find advice from Larry Constantine on how

to design user interfaces according to the way the system is used (based on use cases, of

course).

J2EE covers all parts of multi-tier design and implementation, from GUIs and HTML front

ends, through to servlets and EJBs on the middle tier and an object-to-relational mapping

generated automatically by tools. Patterns for use with J2EE are described in [Alur et al. 03].

For a discussion of thread safety in Java, and some reusable patterns, see [Lea 99].

REVIEW QUESTIONS
1. What kind of diagram is shown in Figure 10.28? Choose only one option.

:Member
Applet :Member :Member

Home
:Authentication

Server

p:PMember

logon()

logon(“M1”, “xyz”, true)

find(“M1”)

467:Member

a:=isGoodMember()

b:=getPassword()

p:=PMember(792,467)

p
p

sd17

Figure 10.28: Used with Review Question 1

Answers to Review Questions 323

(a) State machine diagram.

(b) Activity diagram.

(c) Class diagram.

(d) Use case diagram.

(e) Sequence diagram.

(f) Communication diagram.

(g) Deployment diagram.

2. Currently, what is the most common type of database management system? Choose only

one option.

(a) Network.

(b) Relational.

(c) Object-oriented.

(d) Hierarchical.

(e) Indexed file.

3. In UML diagrams, how are class messages distinguished from instance messages? Choose

only one option.

(a) Class messages are shown in brackets.

(b) Class messages are shown in italics.

(c) Class messages are underlined.

(d) Class messages are shown with the keyword 〈〈 static 〉〉.
4. What is meant by the term ‘deadlock’? Choose only one option.

(a) Two processes or threads refuse to talk to each other.

(b) An object’s monitor allows its lock to terminate early.

(c) An object is waiting for a resource, which is being used by an object waiting for a

resource used by the first object.

5. What is a ‘thread’? Choose only one option.

(a) An independent process running on a node, with its own memory and IO.

(b) An activity within a process that shares memory with other activities.

(c) A designer’s thought process.

ANSWERS TO REVIEW QUESTIONS
1. The diagram in Figure 10.28 is e. Sequence diagram.

2. The most common type of database management system is b. Relational.

324 Chapter 10

3. In UML diagrams, class messages are distinguished from instance messages because c.

Class messages are underlined.

4. The term ‘deadlock’ means c. An object is waiting for a resource, which is being used by

an object waiting for a resource used by the first object.

5. A ‘thread’ is b. An activity within a process that shares memory with other activities.

11
Reusable Design Patterns

When writing software, as with any discipline, it’s important to avoid duplicating

effort – if somebody has discovered a perfectly good solution to a problem, we want to exploit

their knowledge and experience, rather than waste time producing another solution. Always

remember, object-oriented programming is about not writing code: the more we reuse, the

more skilled we are.

Learning Objectives
Understand what a pattern is and
what it means to a developer of

object-oriented software.

•
Examine some of the more

common patterns.

Identify patterns that apply to our
own software and how to use them

together.

Chapter Outline

11.1 Introduction

11.2 A Pattern Template

11.3 Common Design Patterns

11.4 Using Patterns

11.5 Discovering, Combining and Adapting Patterns

11.6 Summary

Further Reading

11

328 Chapter 11

11.1 INTRODUCTION
Design patterns are one way that developers can avoid duplicating effort: they allow us to

apply the knowledge and experience of other developers to our particular problem. Patterns

also allow us to communicate our own knowledge and experience to others. Each pattern

is a description of a particular way of doing something that has proved effective in the real

world.

When design patterns were introduced to the software community, they created a lot of

interest. As a result, they have now been applied to many other areas:

• Human–computer interaction

• Concurrency

• Reuse

• Teaching/learning object technology

• Distributed computing

• Project management

• Web sites

• Risk management

• Anti-patterns (things going wrong)

• Problem-solving

• Organizations

11.1.1 A Brief History of Patterns
Originally, patterns had nothing to do with software. In the 1960s, Christopher Alexander,

an architect of buildings, started writing about patterns in architecture and urban planning.

Having studied human language, Alexander considered a sentence to be made up of reusable

pieces or patterns that are employed by all of us to record knowledge, construct complex

communications and solve problems. Because of its patterns, Alexander considered natural

language to be a pattern language.

Alexander believed that architecture and urban planning could be improved if a pattern

language could be developed for them. Some of the improvements would result from having

concise descriptions of the knowledge of experts, while more still would result from the

improved communication, allowing members of the public to be involved in the process: it

seemed reasonable that, to ensure a successful outcome, the eventual inhabitants of a space

should influence its design [Alexander et al. 77].

In the late 1980s, when object-oriented programming was becoming more and more

popular among researchers and practitioners, experts including Kent Beck, Ward Cunning-

ham, Erich Gamma, Bruce Anderson and Richard Helm started to think about how patterns

Introduction 329

could be applied to software. As experienced designers (and Smalltalk programmers), these

experts were well placed to start identifying and recording patterns of collaborating objects,

ones that had shown themselves to be useful over time. The work of these enthusiasts

eventually became centered around the Object-Oriented Programming, Systems, Languages

and Applications (OOPSLA) conferences in the early 1990s.

Ultimately, this effort led to a seminal book [Gamma et al. 95], which contained a general

discussion of patterns, along with a catalog of 23 patterns ready for wider use – it’s a mark

of the importance of this book that, a decade later, its 23 patterns are still considered to be

fundamental. The authors are often referred to as the Gang of Four.

11.1.2 Software Patterns Today
Today, as a result of the original book, the term ‘design pattern’ is mostly used to refer

to software design patterns. Often, once the context is obvious, developers simply refer to

patterns. Real enthusiasts still use the term pattern language to describe existing patterns

and the way that they’re used to record knowledge, to communicate and to construct

solutions.

The original inventors of design patterns were true to Alexander’s vision, involving end

users in the development process. However, patterns are not normally used in that way

today. This may be because software design, even small pieces of software design, can’t easily

be understood by non-programmers. Or, it may be because we don’t yet know enough about

software to produce patterns that are simple enough for the lay-person. (Involving end users

is still desirable, but we tend to use other artifacts such as use cases, analysis class diagrams

and GUI sketches.)

We’ve seen before how software is an inexact science, if a science at all. The gaps between

the patterns are much larger than the gaps between any patterns that might exist in natural

language or architecture. This may be because software design is too difficult to condense

into a set of interlocking patterns, or it may simply be that we don’t know how to do it yet.

Patterns can certainly be used by software developers to record knowledge, so that other

developers don’t have to duplicate their effort. Identifying and describing a pattern takes

skill and experience; even experts should not try to describe a new pattern until they have

demonstrated its effectiveness in several different applications.

As well as recording knowledge, a pattern can be used as a pre-fabricated part of a new

design. Because patterns are independent of programming language and application domain,

they can’t be used simply as they are, in the same way that a framework or a library can.

Patterns need to be fine-tuned for each particular situation. Nevertheless, they still save us a

lot of time.

Patterns are also used widely to document a solution. For example, rather than trying to

describe how ‘messages that are sent to this object are forwarded over the network to the

real implementation object, which has a similar interface’, we can simply record that ‘this

330 Chapter 11

object is a network Proxy’. For a complicated pattern, the name of the pattern can be worth

a thousand words.

11.2 A PATTERN TEMPLATE
Since patterns are meant to be used widely, they need to be presented in a widely accepted

format. Ideally, the format will be easy to read and understand; but, in the name of

completeness and correctness, each pattern description may end up being rather formal. This

is the case with [Gamma et al. 95]: although each pattern is essential and well described, the

end result is more of a reference work than a tutorial. In this book, the pattern descriptions

are informal, showing the purpose, the structure and the mechanism, with code examples

and illustrations.

[Gamma et al. 95] describes a template that can be filled in by pattern authors. In order

to give you a flavor of how full-blown patterns should be described, the template headings

are reproduced below along with a few words of explanation for each:

• Pattern Name: A short name for the pattern (usually one or two words), Memento for

example. Obviously, this name should be indicative of the pattern’s purpose. It should

also be unique within the application area.

• Classification: Each pattern is classed as creational (concerned with how objects are

created), structural (concerned with putting objects together into a larger structure), or

behavioral (concerned with collaborations between objects to achieve a particular goal).

• Intent: A short description (one or two sentences) summing up what the pattern is for,

for example, ‘Without violating encapsulation, capture and externalize an object’s internal

state so that the object can be restored to this state later’.

• Also Known As: Aliases for the pattern.

• Motivation: A description of a design problem that is solved by use of the pattern.

• Applicability: Areas where this pattern can be applied and how to recognize those areas.

• Structure: One or more class diagrams and sequence diagrams that illustrate how the

pattern works. [Gamma et al. 95] uses OMT (a predecessor of UML); obviously, UML will

be used here.

• Participants: Short descriptions of the objects involved and what each one does (what its

responsibilities are).

• Collaborations: Description of the collaborations between the participants.

• Consequences: Benefits and shortcomings of the pattern (plus advice on what to do about

the shortcomings).

• Implementation: Advice on implementing the pattern, including useful tricks and things

to avoid.

Common Design Patterns 331

• Sample Code: Full implementations of the pattern. In [Gamma et al. 95], the implemen-

tations are in C++ or Smalltalk – Java is used in this book.

• Known Uses: Where the pattern has been applied in the real world.

• Related Patterns: The patterns that are similar to this one and exactly how they differ.

Also, which patterns can be valuable when used with this one.

11.3 COMMON DESIGN PATTERNS
As a general principle, we must be familiar with the core patterns before trying to implement

anything other than a trivial program. This section gives informal descriptions of the

most common patterns. Complete, formal descriptions are available elsewhere but the

information here is enough to provide a good grounding. You are encouraged to investigate

other patterns for yourself, at least the other well-known ones (Prototype, Bridge, Builder,

Memento, Command, Decorator, Chain of Responsibility, Interpreter, Mediator and Visitor).

11.3.1 Observer

Define a one to many dependency between objects so that when one object changes

state, all its dependents are notified automatically. [Gamma et al. 95]

Often, the state of one object depends in some way on the state of another – a common case

is a GUI component displaying the state of an entity. For example, Figure 11.1 shows a tool

for previewing a car that a customer is considering buying. As each of the car’s attributes

are varied by the customer, the picture of the car and the displayed price vary accordingly.

The GUI object itself, which is an instance of class CarView, is composed of three panels,

each displaying some information about the car. Under the covers, the GUI is supported by

a Car object which has a field for each of the possible options (with corresponding getters

and setters). The price is derived from the other attributes and made available with getPrice.

Where should we put the logic to detect when the car display needs updating? If we put

it in the GUI, the GUI programmer must have knowledge of the way a Car operates – the

sunroof affects the price but the color doesn’t, for example. This approach would make the

GUI programmer’s life more difficult. It would also spread knowledge around the system,

making it harder to manage. If we put the knowledge in the entity instead, how can we make

sure that the GUI is updated at the appropriate time? We could make the car entity aware

of the GUI; however, we want the entity to be developed independently of the GUI so that

it can be reused in many car applications – coupling it to a particular GUI would limit its

usefulness.

332 Chapter 11

Color Magenta

5

No

Yes

Price

Doors

Sunroof

CD Player

$36,111

aCarView

aCar

-color = magenta

-noOfDoors = 5

-sunroof = false

-cdPlayer = true

1

Figure 11.1: A GUI for car buyers

So we seem to have a paradox: we want the knowledge about changing attributes to be in

the entity, where it belongs; however, we can’t put it in the entity, because then the entity

would be coupled to the GUI. We can solve this paradox with the Observer pattern. The

basic idea behind Observer is to give all GUIs a simple interface that allows an entity to

signal a change of state: this means that there is only a light coupling between the entity and

the GUI. (The analogy is that the entity goes about its business, more or less oblivious to any

object that happens to be watching what it’s doing.)

Let’s look at Observer in detail, an abstract definition first followed by an implementation

of the car example. In Figure 11.2, the object with changing attributes is referred to as the

subject, while an object that observes the changes is called an observer. The Observer class

has a simple interface consisting of one update message – this message, which will be sent

by the subject when an attribute has changed, provides an opportunity for an observer to

refresh itself. The subject, for its part, maintains a collection of Observer objects that have

registered an interest in changes – registration is achieved using the addObserver message. (If

necessary, observers can be unregistered at a later date using the removeObserver message.)

The subject also has a protected notify message that iterates over the observers, sending the

update message to each one (for the sake of predictability, we can ensure that the update

messages arrive in the same order that the observers were registered).

The Subject class, despite having a complete implementation, is designed to act as

a superclass – the reusable implementation is not much use without some attributes to

Common Design Patterns 333

 Subject

+addObserver(:Observer)

+removeObserver(:Observer)

#notify()

 <<interface>>

 Observer

+update()

 ConcreteSubject

-attribute:X

+getAttribute():X

+setAttribute(:X)

 ConcreteObserver

+update()

Send update() to

every registered

observer

Do something

with subject's

attribute

Set attribute

and call notify()

-observers

*1

Figure 11.2: Observer class diagram

modify – so we mark the class as abstract. Anyone wishing to implement an observable

object can make their class inherit from Subject, as has been done here with ConcreteSubject.

The implementor of ConcreteSubject must ensure that notify is called whenever attribute

values are changed – inside setAttribute for example – so that the update message is sent to

every observer. (In order to avoid unnecessary notifications, the implementor must make

sure that this only happens when the new attribute value is different to the old value – most

of the time, because we’re dealing with attributes, different means not equal, rather than not

identical.)

The Observer class has no concrete methods (because we don’t know what an Observer

will need to do to refresh itself). Thus, Observer can be an interface (a pure abstract class).

When we write an Observer class, it needs to inherit from Observer and implement the update

334 Chapter 11

setAttribute(anX)

notify()

update()

getAttribute()

anX

update()

getAttribute()

anX

addObserver(aConcreteObserver1)

addObserver(aConcreteObserver2)

aConcreteSubject
aConcrete
Observer1

aConcrete
Observer2

anObject

Figure 11.3: Observer sequence diagram

method to refresh its contents in some way – this is illustrated by the class ConcreteObserver

in Figure 11.2. Typically, a ConcreteObserver will use ConcreteSubject getters to retrieve new

attribute values during the execution of the update method.

The sequence of messages for the Observer pattern is illustrated in Figure 11.3. Initially,

anObject registers two observers with aConcreteSubject. Some time later, anObject modifies

aConcreteSubject’s state using setAttribute. Having recorded the new value internally, aCon-

creteSubject sends itself the notify message. (A stacked activation bar has been used, in official

UML style, to show the duration of the notify method.) Inside the notify method, the update

message is sent to aConcreteObserver1 and then to aConcreteObserver2. Inside the update

methods, each observer uses getAttribute to discover the current state of the subject.

The ConcreteSubject knows that it’s dealing with Observer objects, but not ConcreteObserver

objects. (The parameter to each of addObserver and removeObserver is an Observer.) Thus, the

Common Design Patterns 335

ConcreteSubject is coupled to the Observer class but not to ConcreteObserver: the two abstract

classes provide the glue that makes the subject independent of the observer. Obviously, the

observer is tightly coupled to the subject, but since the observer is usually in the layer above

(in the subsystem design sense), that’s not a problem. The abstract classes, since they’re

generic, can be added to a class library.

Applying Observer to the car display tool in Figure 11.1 gives us the class diagram shown

in Figure 11.4. A single observer, aCarView, registers itself with the subject and also acts as the

source of updates. The message flow is illustrated in Figure 11.5. Initially, the addObserver

message is used for registration. Then, some time later, the user elects to add a sunroof: this

results in the setSunroof(true) message being sent to aCar. Assuming that the sunroof attribute

had been false, the update message is sent to aCarView inside notify. Inside the update method

on aCarView we read the current attribute values using the getters.

Set the color
variable to c,
then call notify()

Subject

+addObserver(:Observer)
+removeObserver(:Observer)
#notify()

-observers

+update()
1 *

<<interface>>
Observer

Car

-color:Color
"...

+getColor():Color
+setColor(c:Color)
+...
+getPrice():Money

CarView

+update()

Refresh the
display from the
current attribute
values

Figure 11.4: Car observer class diagram

Although Observer is often used to allow a GUI to update itself when an entity changes,

we can use the pattern elsewhere too, especially in a layered system. For example, entities

336 Chapter 11

aCarView aCar

addObserver(aCarView)

setSunroof(true)

notify()

update()

getColor()

magenta

getSunroof()

true

true

getPrice()

€38550

getNumberOfDoors()

5

getCDPlayer()

Figure 11.5: Car observer sequence diagram

in the business layer may be observed by controllers in the control layer (controllers act as

translators between the business layer and the user interface layer). In turn, the controllers

can be observed by GUI components. (See Chapter 8 for an alternative way of signaling

between layers, using events, that has the same effect as Observer.)

In a multi-tier system, with a real GUI (as opposed to an HTML-based interface), Observer

is invaluable on the client side. However, on the server side, we often have to deal with

Common Design Patterns 337

multiple threads and the extra complexity makes it difficult to employ Observer. In theory,

we could also use Observer to signal updates from the server to the client; however, in this

case, the problems of multiple threads are exacerbated by multiple machines and network

issues (such as time-outs and crashed clients). In short, it’s best to restrict our use of Observer

to the client side, and then only to use it as a means of passing notifications from one layer to

the layer above. In all other cases, we should avoid Observer, for the sake of simplicity and

safety. (Exceptional cases on the server can be dealt with by other means, such as callbacks

from the operating-system clock and machine-to-machine messaging, as exemplified by the

Java Messaging Service.)

11.3.2 Singleton

Ensure a class has only one instance, and provide a global point of access to it. [Gamma

et al. 95]

From time to time, it’s useful to have an object that is the only instance of its class. Often, this

will be because the object represents a unique component in the system or in the application

domain – for example, in a system that stores data in a database, the database itself can be

represented as a single instance of a class DB. Another common case is where the singular

instance needs to be shared between separate parts of the system, saving memory space

and creation time – for example, we might use a single Calendar to answer all questions

such as ‘How many days are there in February?’, rather than creating lots of Calendar

objects.

In the field of design patterns, an object that is the sole instance of its class is called

a Singleton. In order for a singleton to be useful, it should satisfy the following three

criteria:

• It must be easy to find.

• It must be impossible for anyone to create another one.

• It should not be created until it’s needed.

In order to make the singleton easy to find, we can store it in a class field, accessed via a

class message. This is reasonable since, in object-oriented programming, classes have long

been used as the entry point for shared data and services. To ensure that only one singleton

can be created, we can make sure that the code used to create the singleton is inaccessible to

ordinary code by making it private.

It is less important that the singleton is not created until it is needed but it is

still desirable, in order to avoid creating and initializating an object that is never used.

Client programmers won’t issue instructions to ‘create the object now’, so we can choose

338 Chapter 11

between creating the object when the system starts or creating it on-demand – typically,

we choose the latter and use a simple technique called lazy initialization where condi-

tional logic is used to check, at the point of access, whether the singleton has yet been

created.

Figure 11.6 shows a Singleton implementation as a class diagram. Here, we have a

private class variable called instance which points to the Singleton object – this object is

created on-demand by the getInstance class method (remember that UML distinguishes class

elements from object elements by underlining them). We also have a constructor, indicated

with the <<create>> keyword. Since the constructor is private, it can’t be used anywhere

outside the class. Finally, the Singleton class includes definitions of the instance methods,

instanceMethod1, instanceMethod2 and so on. (Of course, our Singleton could also have fields,

just like any other object.) In Figure 11.7, you can see a less abstract example of a singleton

in the form of a calendar. Despite the new class name, the naming convention getInstance

has been retained.

-instance

Create instance,

if necessary, and

return it

 Singleton

-Singleton() <<create>>

+getInstance():Singleton

+instanceMethod1()

+instanceMethod2()

...

1

1

Figure 11.6: Singleton class diagram

You may be feeling, at this point, that the class diagrams you’ve just seen are difficult

to understand, because they mix instance and class concepts in the same box. This is a sad

fact of life for class diagrams in general, but one which it is worth getting used to. However,

for the sake of clarifying the Singleton pattern, we can take an alternative view of what’s

going on (see Figure 11.8), which you may find easier to appreciate. Here, we consider the

class to be a separate object in its own right, hosting the constructor (Calendar), the class

field (instance) and the class method (getInstance). Meanwhile, the singleton object hosts

instance fields and instance methods. (Some programming languages, such as Smalltalk and

Common Design Patterns 339

 Calendar

-Calendar() <<create>>

+getInstance():Calendar

+getFirstDay():Day

+getDayLength(:Day):Time

...

-instance

Create instance,

if necessary, and

return it

1

1

Figure 11.7: Calendar class diagram

 Calendar class

-Calendar()

+getInstance()

-instance

Create instance,

if necessary, and

return it

 Calendar

+getFirstDay(): Day

+getDayLength(:Day): Time

...

1

1

Figure 11.8: Calendar as a class object

Java, do indeed model each class as a distinct object.) In UML terms, the class that has

been labeled Calendar class is a metaclass: rather than using the official UML keyword, the

naming rules have been bent a little, to make things clearer. Figure 11.8 gives rise to the

object diagram in Figure 11.9. Here, creation of the singleton and access to it is managed

by the class; the singleton itself is like any other object: it has a name, a type and, usually,

some fields.

340 Chapter 11

-instance
aCalendarCalendar class

Figure 11.9: Calendar object diagram

In programming terms, the implementation of the Singleton pattern is easy. In order for

programmers to make use of a singleton, they must first identify the class and then invoke

(getInstance). The way this is done varies from language to language. Here it is in Java:

public class Calendar {

private static Calendar instance; // static means "class field"

private Calendar() { // Must declare a private constructor

// Initialize any fields here

}

public static getInstance() {

if (instance == null) {

instance = new Calendar();

}

return instance;

}

// Declare any instance fields here...

// And now for the instance methods:

public Day getFirstDay() { ... }

public Time getDayLength(Day aDay) { ... }

...

}

The Java code fragment below shows the calendar being used to discover the first day of

the year, so that we can print it out for the user:

Date d = Calendar.getInstance().getFirstDay();

System.out.println("The first day of the year is: " + d);

In Chapter 2, class fields and class messages were identified as a way of managing

centralized data and services. As you can see from the calendar example, Singleton also

provides access to centralized data and services. So which is better? Generally speaking,

Singleton is the better choice, for two reasons:

• Class elements are not very object-oriented because most programming languages do

not support inheritance and redefinition for them. This makes it difficult to craft a

Common Design Patterns 341

hierarchy of different kinds of Calendar, such as Calendar, GregorianCalendar, JulianCalendar,

IslamicCalendar, and so on.

• As designers and programmers, it’s quite enough for us to have to deal with objects at run

time, why should we have to deal with classes too? (Okay, so Singleton does use one class

field and one class method, but that’s as far as it goes.)

If you find yourself wanting to use class elements, you should say to yourself ‘Perhaps

what I really need is a singleton’.

11.3.3 Multiton
Singleton is undoubtedly useful and you should expect to encounter it often. However,

there is a related pattern, dubbed Multiton, that doesn’t appear in [Gamma et al. 95] (a

form of it does, however, appear at www.patterndigest.com). The term multiton is a pun on

‘multi-valued singleton’ although that is, admittedly, an oxymoron. If you prefer, a multiton

is any type with a restricted set of values. (This is similar to an enumeration in languages

like C or in UML, except that each value of such an enumeration is a primitive rather than

an object, which makes them less useful.)

For example, we are designing a sales system for a car showroom that has cars available

in the following five colors: sunset red, midnight blue, morning orange, noon yellow and

afternoon grey. In object-oriented terms, we would like each color to be represented as

an independent object with its own data and behavior (for example, the amount that this

color adds to the cost of the car). We would like the five objects to be easily accessible.

Furthermore, in order to avoid mistakes, we would like to stop programmers creating their

own colors. This design begins to sound rather like Singleton but with every occurrence of

‘one’ replaced with ‘five’.

Figure 11.10 shows a class called CarColor containing a lazily-initialized Map of Car-

Color objects, each retrievable by name. (A Map is a collection that allows us to insert

and retrieve objects by name.) Our getInstance method now takes a String parameter

allowing us to specify which of the five instances we’re interested in. CarColor also has

a retrieveAllInstances message that we can use to get a list of all the instances – this

would be useful for displaying the available colors in a GUI. Figure 11.11 shows CarColor

separated from its contents, so we can see clearly what is going on: the class has a ref-

erence to the Map which, in turn, has references to five CarColor objects. Because the

constructor is private, we know that client programmers can’t create their own CarColor

objects.

Multitons are useful in languages that don’t provide a special syntax for declaring types

with a restricted set of values. Java has a form of multiton within the syntax of the language

itself, so you don’t have to write your own.

342 Chapter 11

Return the
corresponding
value from the
(lazily-initialized)
map

Return a list
containing
all the values
from the map

CarColor

-colorMap:Map

+retrieveAlllnstances(name:String)

+getAlllnstances():List

-name:String
-cost:Money
-description:String

-CarColor(name:String,cost:Money,description:String) <<create>>

+getCost():Money
+getDescription():String

Figure 11.10: Car colors using Multiton

11.3.4 Iterator

Provide a way to access the elements of an aggregate object sequentially without

exposing its underlying representation. [Gamma et al. 95]

Often, we need to be able to do something for every object in a collection. For example, if

we have a collection of items in a warehouse, we might want to add the value of all the items

together to calculate the total value of the warehouse contents – in other words, we would

need to ‘add this value to the total’ for every item in the warehouse. We don’t normally have

direct support for this kind of task in our programming language, so we must use objects

and messages instead.

Iterator is a simple pattern that allows us to retrieve items one at a time from any kind

of collection, using a standard loop – once we have a reference to an object inside the

loop, we can perform the desired operation. For unordered collections, we don’t care about

the order in which the objects are retrieved, as long as each is retrieved exactly once; for

Common Design Patterns 343

CarColor class

redCarColor blueCarColor

orangeCarColor

yellowCarColorgreyCarColor

aMap

name = "red"
cost = €105
description = "sunset Red"

name = "blue"
cost = €95
description = "Midnight Blue"

name = "orange"
cost = €115
description = "Morning Orange"

name = "yellow"
cost = €100
description = "Noon Yellow"

name = "grey"
cost = €85
description = "Afternoon Grey"

Figure 11.11: Multiton object diagram

ordered collections, we would expect the objects to be retrieved in order. Iterator requires

the collaboration of collection-class implementors, which must provide at least a method to

create and return an iterator.

Figure 11.12 shows the Iterator pattern, represented by the Iterator interface (since we

don’t expect to be able to provide a reusable implementation at this level, the class can

be an interface). Alongside Iterator is a basic hierarchy of collections: the top level class,

Collection, has an abstract method called createIterator that creates and returns an iterator of

the appropriate type; underneath Collection, we have an unordered variety called Bag and an

ordered variety called List.

We expect to have to provide more than one concrete implementation of Iterator, because

it’s unlikely that we could write a single iterator that would work for every kind of

collection (although some iterators may work for more than one). Let’s assume that each

concrete collection has its own concrete iterator, hence the classes BagIterator and ListIterator

in Figure 11.12. We have to rely on the cooperation of collection-class implementors,

who must find or implement an iterator that will work for their collection and return

it from createIterator. Given the class model in Figure 11.12, and appropriate method

344 Chapter 11

-list

*

 <<interface>>

 Iterator

+first()

+next()

+hasMore():boolean

+getCurrent():Object

 ListIterator

+first()

+next()

+hasMore():boolean

+getCurrent():Object

 BagIterator

+first()

+next()

+hasMore():boolean

+getCurrent():Object

-bag

 Collection

+createIterator():Iterator

+add(:Object)

+remove(:Object)

+contains(:Object)

...

 List

+createIterator():Iterator

+add(:Object)

+remove(:Object)

+contains(:Object)

+getItemAt(:int):Object

...

 Bag

+createIterator():Iterator

+add(:Object)

+remove(:Object)

+contains(:Object)

+take():Object

...

*

1 1

Figure 11.12: Iterator class diagram

Common Design Patterns 345

implementations, the client programmer can write uniform iterating code, as in the following

Java example:

Collection items = new Bag(); // "new List()" would work just as well

items.add(new Widget());

items.add(new FDoobrie());

Iterator i = items.createIterator(); // Iterator now at first element

while (i.hasMore()) {

Object item = i.getCurrent();

... // Do something with item

i.next();

}

It turns out that the implementation of ListIterator is straightforward. Here’s how it looks

in Java:

public class ListIterator implements Iterator {

private List list;

private int index; // Automatically set to 0

protected ListIterator(List l) { // Constructor

list = l;

}

public void first() {

index = 0;

}

public void next() {

index = index + 1;

}

public boolean hasMore() {

return index < list.getSize();

}

public Object getCurrent() {

return list.getItemAt(index);

}

}

To complete the picture for ListIterator, we need to persuade the implementor of List to add

the following method to their class:

public Iterator createIterator() {

return new ListIterator(this); // "this" means "the current object"

}

346 Chapter 11

It is common practice to provide some kind of two-way iterator for collections that keep

their elements in order, so that clients can iterate in reverse order if they want to. We can

achieve this with a sub-interface of Iterator, called TwoWayIterator, that adds messages called

last and previous. Then, given concrete implementations such as ListTwoWayIterator, each

ordered collection can provide a factory method called createTwoWayIterator, to complement

createIterator.

11.3.5 Factory Method and Abstract Factory

Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory method lets a class defer instantiation to subclasses. [Gamma

et al. 95]

Factory Method should be mentioned at this point because of its importance. A new descrip-

tion isn’t needed, because we’ve already seen this pattern being used in the implementation

of Iterator (with createIterator and createTwoWayIterator).

At its simplest, a factory method creates and returns an object of some type. Factory

methods are convenient for client programmers because:

• The client doesn’t need to know the concrete type of the object being created. Instead,

they work with a higher-level abstraction (always a good idea with object-oriented

programming). In our example, client programmers would need to know about the

Iterator and TwoWayIterator interfaces but not the concrete types ListIterator, BagIterator and

ListTwoWayIterator.

• The type can be changed from time to time, or from platform to platform, without affecting

existing client code as clients don’t know the actual type of object being created (another

example of loose coupling).

• Clients don’t need to be concerned with the creation details of concrete classes (fiddly

constructor parameters, for example).

Factory Method ‘lets a class defer instantiation to subclasses’. This allows the implementor

of Collection to work with a mechanism that hasn’t yet been defined. In other words,

Collection can provide an abstract createIterator method which has separate definitions in List

and Bag.

In a related pattern, called Abstract Factory, a class contains multiple factory meth-

ods – this is used to provide a single point of creation for whole families of objects. (The

Abstract part indicates that we can build a hierarchy of factories.)

Common Design Patterns 347

11.3.6 State

Allow an object to alter its behavior when its internal state changes. The object will

appear to change its class. [Gamma et al. 95]

As we saw in Chapter 7, objects sometimes have a complicated life cycle, one that is

complicated enough for us to want to use a state machine to model their behavior. When

we come to implement such an object, it’s a good idea to avoid coding all the details of

the corresponding state machine inside the object’s own methods; otherwise the complexity

would be spread throughout the code, where it would be difficult to manage. The State

pattern is a convenient way of implementing a state machine separately from the original

object, allowing us to see and modify the state-related behavior easily.

payment made

choice made

drink dispensed

Chosen

PaidReady

Figure 11.13: State machine diagram for a vending machine

Consider the state machine diagram in Figure 11.13, showing the activities of a typical

vending machine that dispenses one of a number of cans of drink, all at the same price.

When the machine is powered up and ready to go, it is in the Ready state, waiting for the

price of a drink to be inserted by the customer. A customer walks up to the machine and puts

in some money; when the money reaches the price of a drink (the payment made event), the

vending buttons light up – the machine is now in the Paid state. Next, the customer presses

one of the buttons (the choice made event) and the machine is in the Chosen state while it

retrieves the drink. Finally, when the drink has been dropped into the collection tray (the

348 Chapter 11

drink dispensed event), the machine is ready for another payment. So, how can we turn this

state machine into objects, using the State pattern?

The general form of the State pattern is shown in Figure 11.14. Here, the object with the

interesting life cycle is called Context. There are two events in Context’s state machine that

have been translated into messages on Context – someEvent and anotherEvent. To avoid coding

the effect of these events inside Context, a separate object (called ContextState) has been

added to do the work: any message that is sent to Context will be passed on to ContextState.

ContextState is just a superclass, however: the real activity is added in subclasses, one for

each state that appears in the state machine diagram (StateA and StateB in this case). The

basic idea is that, when Context is in state A, its state variable will be an instance of StateA

and when it is in state B, its state will be an instance of StateB. Since all state messages sent

to Context are delegated to the state object, programmers can put state-related activity in the

subclasses of ContextState, where it’s easier to find.

 ContextState

#someEvent()
#anotherEvent()

 Context

+someEvent()
+anotherEvent()
#setState(:ContextState)
...

-state

 StateA

#StateA(:Context) <<create>>
#someEvent()

 StateB

#StateB(:Context) <<create>>
#anotherEvent()

Delegated to the
state object

Do the
activity

-context

Other methods,
not state-related

* 1

Figure 11.14: State class diagram

When a Context is created, it sets its state variable to an instance of StateA or StateB,

depending on which is the start state. During this initialization, the state object’s context

variable will also be set. For example, for a Context class written in Java, we could have:

Common Design Patterns 349

public Context() { // Constructor

new StateA(this);

}

And, for a ContextState, we could have:

public ContextState(Context c) { // Constructor

context = c;

c.setState(this);

}

Now, for each event that happens to cause a transition to another state, the implementor

of the event method can use Context’s setState message to get the context into the new state,

as in:

public void anEvent() {

... // State activity, followed by:

new StateB(context);

}

Although the scheme described above means that we have two links, one from Context

to ContextState and another from ContextState to Context, it does keep the state-transition

behavior inside the state objects, where it belongs. All methods and constructors on the state

classes are protected, because they should not be accessible to clients. The ContextState class

is abstract, because only instances of its subclasses should be created.

Now look at Figure 11.15, showing the vending example implemented using State (the

constructors and setState have been omitted, for simplicity.) Anyone wanting to work with a

vending machine simply needs to create a VendingMachine object and send it the pay, choose

and dispense messages at the appropriate times. Internally, the VendingMachine starts with an

instance of Ready, which is replaced with an instance of Paid when the pay message arrives,

then with an instance of Chosen when the choose message arrives, and then reverts to Ready

when the dispense message arrives. This entire process, including creation of the objects, is

illustrated in Figure 11.16. Inside each of the state methods, on the concrete subclasses, we

can implement any behavior we like. This could take the form of manipulations of the states

themselves, or manipulations of the VendingMachine context (since we have a reference to

the context, we can easily send it messages).

You may think that the methods on a class such as VendingState would be abstract.

However, if we make them abstract, implementors of the concrete subclasses have to redefine

methods that are not relevant to them (because each event can only occur in certain states).

Thus, in our vending example, the writer of Ready would have to provide an implementation

for choose and dispense, even though these events could never happen (because the drink-

selection buttons are inactive until enough money has been inserted and because the machine

won’t dispense a drink until a choice has been made). Although some sort of implementation

350 Chapter 11

-vendor -state

1
 VendingState

#pay()
#choose()
#dispense()

 Paid

#choose()

 VendingMachine

+pay()
+choose()
+dispense()
...

 Ready

#pay()

 Chosen

#dispense()

*

Figure 11.15: Vending machine class diagram

could be provided for the irrelevant methods, reporting an error for debugging purposes

perhaps, the end result would be inconvenient and clumsy. A better approach is to provide

an implementation for every method on VendingState that reports an error – this way, writers

of subclasses only have to override the methods that can occur in that state.

Figure 11.16 contains some new UML notation which deserves explanation. A lifeline

shows how long an object survives in the sequence. We can show an object (such as Ready)

at the point where it is created. If the object is created by another object, we can indicate

that with a message sent from the creator’s activation bar to the new object’s perimeter

(optionally labeled with the constructor details). It is also possible to indicate the end of

an object’s useful life by putting a large black X at the end of its lifeline, perhaps with an

incoming message such as close. This marker, a stop in UML, indicates that the object can

be deleted or that it must not be used beyond this point.

Another issue that often has to be addressed with state machines is state data, i.e. attributes

that are relevant to particular states. The amount of money that has been paid and the drink

that has been selected are examples from our vending machine. State data also fits neatly

into the State pattern: all we have to do is add the getters and setters to the Context and

ContextState classes, just as we did with state methods. The fields and concrete getters

Common Design Patterns 351

V
e

n
d

in
g

M
a

c
h

in
e

()

R
e

a
d

y
(a

)

p
a

y
()

s
e

tS
ta

te
(c

)

p
a

y
()

C
h

o
s
e

n
(a

)

c
h

o
o

s
e

()

c
h

o
o

s
e

()

s
e

tS
ta

te
(d

)

R
e

a
d

y
(a

)

d
is

p
e

n
s
e

()

d
is

p
e

n
s
e

()

s
e

tS
ta

te
(e

)

s
e

tS
ta

te
(b

)

P
a

id
(a

)

:V
e
n
d
in

g

M
a
c
h
in

e

:C
h
o
s
e
n

:P
a
id

:R
e
a
d
y

:R
e
a
d
y

c
lie

n
t

Fi
gu

re
11

.1
6:

Ve
nd

in
g

m
ac

hi
ne

se
qu

en
ce

di
ag

ra
m

352 Chapter 11

 VendingState

#pay()
#choose(:Drink)
#dispense()
#getDrink():Drink

 Ready

#pay()

 Paid

#choose(:Drink)

 Chosen

-drink: Drink

#dispense()
#getDrink():Drink

 VendingMachine

+pay()
+choose(:Drink)
+dispense()
+getDrink():Drink

-state-vendor

1 1

Figure 11.17: Vending machine with state data

and setters can then be added to the subclasses that actually use the data. For example,

Figure 11.17 shows the effect of adding the customer’s choice of drink to our vending

machine (again, constructors and state-setting methods have been omitted, for the sake of

simplicity). Here, the choice made by the customer is passed in as a parameter to choose and

then passed on to Chosen via its constructor. The Java implementation of choose for the Paid

class would be something like:

public void choose(Drink d) {

new Chosen(vendor, d);

}

11.3.7 Facade

Provide a unified interface to a set of interfaces in a subsystem. Facade defines a

higher-level interface that makes the subsystem easier to use. [Gamma et al. 95]

When implementing a subsystem or layer using objects, the number of objects involved can

be relatively large. For example, for a system like iCoot, the business layer runs to dozens

Common Design Patterns 353

of classes, both new ones and ones that we’ve re-used from elsewhere. This is reasonable,

because we try to break down the complexity of a sizeable programming task into manageable

objects that collaborate as necessary. The alternative would be fewer, larger, objects: such

large objects would be more difficult to implement correctly and many would end up being

multi-purpose (i.e. they would have weak cohesion). However, having produced lots of

sophisticated objects with many connections, the clients of our layer or subsystem have a

problem: how do they use the rich set of objects to perform a simple task without intimate

knowledge of the internal interfaces and collaborations?

The Facade pattern comes to the rescue here: each facade translates the complexity

of some part of a subsystem or layer into a single object with a subset of the available

services. In our iCoot system, for example, half a dozen server objects were introduced

to translate the multi-threaded, transaction-oriented business objects into a much simpler

‘request–response’ protocol that can be used by all manner of networked clients. In the

request–response protocol, when a simple request comes in from a client (Web browser

or applet), the relevant server object uses whatever combination of business objects and

messages is necessary to generate a simple reply. This way, the task of the programmers

of the user interface is made easier, with the added bonus that the facades can be used in

different kinds of interfaces with minimal extra coding.

Figure 11.18 shows two facades providing a limited number of services for clients of

a complex subsystem, alongside the more complicated alternative where clients use the

subsystem objects directly.

:Facade1 :Facade2

Figure 11.18: Subsystems with and without the Facade pattern

354 Chapter 11

11.3.8 Adapter

Convert the interface of a class into another interface clients expect. Adapter lets classes

work together that couldn’t otherwise because of incompatible interfaces. [Gamma

et al. 95]

Adapter wraps one object inside another so that the first object can be used in a different

context. Often, we need to do this in order to connect objects that weren’t designed to be

used together. The basic form of Adapter is shown in Figure 11.19. Here, the client and

the adaptee were designed separately, but, in the name of reuse, we would like them to

work together. To do this, we interpose an adapter that has the interface expected by the

client – inside the adapter, we forward incoming messages to the actual messages on the

adaptee, translating message names, parameters and return types as necessary. Inside each

adapter method, we can also provide any behavior that the adaptee lacks or modify the

existing behavior.

adapteeadapterclient

message1(p1) message2(p2)

Figure 11.19: Adapter object diagram

In Figure 11.20, we have a simple application of Adapter. Here, the design requires a class

called Queue that holds a queue of objects and allows us to add an object to the end, remove

an object from the beginning and find out how many objects are queued (getCount). Someone

has already implemented a List class that allows us to add an object to the end, remove the

first object (using removeFirst) and ask how many objects there are (using getSize) – exactly

the kind of messages needed for Queue, but with different names. We don’t want to force

our clients to use the List class because it has the wrong name and messages and because the

client would be able use it for non queue-like behavior (such as removing an object from the

middle of the queue with removeElementAt).

One solution, which avoids writing lots of code but still gives clients what they need,

is to implement the queue object as an adapter (see Figure 11.21). When finished, our

Queue translates its three messages into the corresponding List messages but omits all of the

unwanted List behavior, as shown in the following Java implementation:

Common Design Patterns 355

 List

+put(:int,:Object)

+get(int):Object

+remove(:int)

+getSize():int

...

 Queue

+add(:Object)

+remove():Object

+getCount():int

Client

?

Figure 11.20: Queues and Lists

Client

Queue

+add(:Object)
+remove():Object
+getCount():int

-queue

1 1

-list

List

+put(:int,:Object)
+get(int):Object
+remove(:int)
+getSize():int
...

Figure 11.21: Queue class diagram

public void add(Object o) {

list.add(o);

}

public Object remove() {

return list.removeFirst();

}

public int getCount() {

return list.getSize();

}

356 Chapter 11

11.3.9 Strategy and Template Method
Define a family of algorithms, encapsulate each one, and make them interchangeable.

Strategy lets the algorithm vary independently from clients that use it. [Gamma

et al. 95]

Sometimes, a family of tasks differ in some minor detail. For example, driving a car is similar

to driving a van or a lorry, but each has its own detailed characteristics such as stopping

distance, all-round visibility and driver height.

To take a smaller example, how about the problem of keeping a list of objects in sorted

order? We can make sure that the elements of a list remain sorted by inserting each new one

into its correct location, just as we would do with physical index cards. To be more specific,

when a new element comes along, we scan down the existing list to find the first element

that is ‘bigger’ than the new one, then we insert the new one in front of the one that we just

found. (If we get to the end of the list without finding a bigger element, we know that we

have to add the new element at the end.) Although the general task is the same each time,

the detail is different: if the list contains numbers, ‘bigger’ means ‘further from zero’; if the

list contains names, ‘bigger’ means ‘further from A’.

In software terms, we now have a problem: because the detail is different every time, we

can’t easily implement a SortedList class that works for every kind of element. Here are a

couple of things that we could try:

• Make the add(:Object) method use an if statement to work out what to do (if o is a number,

do this; otherwise, do that). The trouble with this is that the varying logic is buried inside

a method, where it’s difficult to find. Worse still, clients can’t use our class to deal with

lists of customers sorted by credit rating, or products sorted by price, or anything else they

might think of.

• Provide an abstract method called biggerThan(:Object,:Object) that returns true if the first

parameter is bigger than the second (this method would be invoked by a generic algorithm

inside add). Then, we would need to provide a SortedNumberList subclass that implements

biggerThan in one way and a SortedNameList subclass that implements it another way. (This

is actually another pattern called Template Method.) Although the kernel of the sorting

algorithm is now easy to get at, we’ve disturbed the collection hierarchy: what if SortedList

needed subclasses called SortedLinkedList and SortedArrayList? We could end up with Sort-

edNumberLinkedList, SortedNameLinkedList, SortedNumberArrayList, SortedNameArrayList – a

complete mess. (Any alternative solution using multiple inheritance would probably not

be any easier to use.)

Strategy is designed to solve this problem. Essentially, we take the detail (the strategy)

and separate it completely from the main task (the context). In this case, we separate the

biggerThan method from the SortedList class, as shown in Figure 11.22. Here, SortedList

Common Design Patterns 357

-comparator

 NumberComparator

+biggerThan(:Object,:Object):boolean

 NameComparator

+biggerThan(:Object,:Object):boolean

 SortedList

+SortedList(:Comparator) <<create>>

+add(:Object)

 Comparator

+biggerThan(:Object,:Object):boolean

1

*

Figure 11.22: Class diagram for a SortedList using the Strategy pattern

has an add method as before, but now biggerThan is inside an interface called Comparator.

Comparator represents an object that knows how to compare two values of a similar type:

it has subclasses for each type of object that we’re interested in (NumberComparator and

NameComparator). Each SortedList must have a Comparator available when objects are added.

Therefore, we give SortedList a comparator attribute, set by the constructor. Now, if we want

to build a sorted list of numbers we do the following (see the sequence of messages in

Figure 11.23):

Comparator c = new NumberComparator();

SortedList l = new SortedList(c);

l.add(aNumber);

l.add(anotherNumber);

If we want sorted names instead, all we have to do is:

Comparator c = new NameComparator();

SortedList l = new SortedList(c);

l.add(aName);

l.add(anotherName);

The nice thing about Strategy is that it allows client programmers to implement their own

strategies without touching the SortedList class at all. For example, if we want a sorted list of

WeddingGift objects, we would implement our own WeddingGiftComparator with a biggerThan

method that compares prices. It’s as if the context is an incomplete jigsaw to which anyone

can add the last piece.

358 Chapter 11

aSortedList aNumberComparator

add(num1)

biggerThan(num2, num1)

true

add(num2)

aClient

Figure 11.23: SortedList sequence diagram

Of course, the insertion sort described in our SortedList example is horribly slow. It would

be much faster to jump to the middle of the list to begin with: if we hadn’t gone far enough,

we would then jump half way towards the end; if we had gone too far, we would jump half

way towards the beginning; we would repeat this process until we found the correct location.

This algorithm is called a binary chop search. It was omitted from our earlier discussion

because it would just have got in the way.

11.3.10 Flyweight

Use sharing to support large numbers of fine-grained objects efficiently. [Gamma

et al. 95]

Flyweight is a simple pattern that allows client programmers to think that they’re using

a factory method to create their own object, when ‘their’ object is actually being shared

by multiple clients. Normally, this is done to save memory and improve performance, by

avoiding the creation of many equivalent objects.

For example, if we wrote an application that dealt with people’s first names, we would

discover that many people had the same first name. Why should we create hundreds of

instances of the name ‘Sam’ when we could create just one object, with multiple references

to it? The two alternatives are shown in Figure 11.24. What we need is a cache, or pool,

of names that have already been created. Thus, rather than creating a name every time we

needed one, we could look in the pool to see if one already existed; if it did, we could use it;

if it didn’t, we could create a new one, add it to the pool and then use it (see Figure 11.25).

Common Design Patterns 359

 :Name

firstName = "Sam"

 :Name

firstName = "Sam"

 :Name

firstName = "Sam"

myName

yourName

herName

OR
 :Name

firstName = "Sam"

myName

yourName

herName

Figure 11.24: To share or not to share

Ideally, we would like the complexities of searching the pool and creating a new object to

be hidden from client programmers: a Factory Method is ideal for this. Figure 11.26 shows

a generic Flyweight alongside one that is specific to the name example.

Flyweights don’t have to be 100% shared: if we make the clients store some of the state

externally and then pass it back in as a parameter to every flyweight message, we have a

hybrid. To take a trivial example, let’s assume that we want to add a person’s second initial

to their first name. If we added the second initial to the flyweight itself, we would lose

most of the sharing (‘Sam J.’ is far less common than ‘Sam’). However, if we arrange for the

clients themselves to manage the second initials, as long as the second initial is passed to the

flyweight as a parameter to every message, the flyweight will still have all the information

it needs. For example, in the following Java code fragment, we’re performing some action if

the first name or the second initial contains the letter ‘j’:

public class Name {
...

public boolean containsLetter(char letter, char secondInitial) {
String namePlusSecondInitial = givenName + secondInitial;

return namePlusSecondInitial.containsIgnoringCase(letter);

}...
}

Name n = aNameFactory.createName("Sam");

char secondInitial = 'J';

if (n.containsLetter('j', secondInitial)) { ...

State inside a Flyweight is referred to as intrinsic, while state managed externally, by

the client, is extrinsic. The Flyweight pattern is particularly appropriate, and easiest to

implement, when the flyweight’s state is immutable (read-only), otherwise we tend to get

360 Chapter 11

 :Name

givenName = "Sam"

 :Name

givenName = "Mike"

 :Name

givenName = "Sue"

myName

name2

manager

 :Name

givenName = "Fred"
n

yourName

herName

POOL

Figure 11.25: Sharing objects in a pool

Generic

FlyweightFactory
available to client
(e.g. as Singleton)

 FlyweightFactory

+createFlyweight():Flyweight

Client Flyweight

*
-pool:
 Collection

Specific

 NameFactory

+createName():Name

Client

 Name

-firstName: String

~Name(:String) <<create>>
+getFirstName():String

*
-pool:
 Collection

1

1

Figure 11.26: Flyweight class diagrams

Common Design Patterns 361

more extrinsic state and less sharing. For example, consider changing the second character

of the name ‘Sam’ to ‘i’; would we really want to affect all other uses of the name?

11.3.11 Composite

Compose objects into tree structures to represent part–whole hierarchies. Composite

lets clients treat individual objects and compositions of objects uniformly. [Gamma

et al. 95]

A part–whole hierarchy is another name for a composition or an aggregation. Despite

its name, Composite doesn’t describe a composition in the strict UML sense; instead, it

describes a design that we can use to implement an aggregation or a composition. Thus,

Composite allows us to build a hierarchy of objects with an arbitrary number of levels. As an

added bonus, Composite allows us to treat all levels of the hierarchy in the same way – this

would allow us to, say, remove an entire section just as easily as we could remove a single

piece.

Figure 11.27 shows one popular form of Composite. Here, we have an abstract class

called Component that represents part of the hierarchical structure. Underneath that, we have

the class Basic that represents the smallest possible component (one that can’t contain any

other components). Alongside Basic is the Composite class that represents a component that

can contain other Components (hence the link back to Component). Because Composite can

contain any type of Component – Composite or Basic – we can build any number of levels,

rather than just two.

The use of aggregation with a * multiplicity may look a little odd at first, but there are

three good reasons: firstly, a Basic component doesn’t have to be inside a Composite at all

(although it often is); secondly, although it would be a rare situation, the pattern itself

doesn’t prevent us from putting a Component inside more than one Composite at a time (if

it did, the relationship might have been a UML composition); thirdly, the pattern doesn’t

specify that a Component should die when its Composite dies (although it often will) – shared

death is another requirement for UML composition.

Because Composite has a link back up the hierarchy, it is often referred to as recursive (as

in recursive composition). Recursive, in computing terms, means going around again and

again. The end result is a bit like a Russian doll: the biggest doll has a smaller doll inside it,

which has a smaller doll inside it, which has a smaller doll inside it, until, eventually, we

get to the smallest, basic, doll. Unlike the Russian doll, however, each Composite can contain

any number of components – this allows us to build broad hierarchies, with any number of

children below each parent (three floors in a house, five rooms on each floor, four walls in

each room).

362 Chapter 11

Client

Component

+message()
*

*

-children:List

Composite

+message()
+add(:Component)
+remove(:Component)
+createlterator():lterator
+createTwoWaylterator():twoWaylterator

+message()

Basic

Send message()
to every child

Figure 11.27: Composite class diagram

Figure 11.28 shows two hierarchies described by the generic Composite model. Here’s

how we might use Java to build hierarchy A:

Component small = new Component(), medium = new Component(),

large = new Component();

Basic atom1 = new Atom(), atom2 = new Atom(),

atom3 = new Atom(), atom4 = new Atom();

small.add(atom1);

small.add(atom2);

medium.add(small);

medium.add(atom3);

large.add(atom4);

large.add(medium);

The children in the Composite examples are ordered, left to right: generally, it’s a good

idea to preserve the order in which components are added, in case it’s important to the client

programmer. A createIterator method is provided which returns an instance of the Iterator

pattern. For completeness, a createTwoWayIterator method is provided, to allow clients to

iterate backwards.

Common Design Patterns 363

atom1

atom4

atom3

atom2

medium

small

large

wall1

wall2

upstairs

suesRoom

ourHouse

wall3

wall4

...

...

A B

Figure 11.28: Composite object diagrams

Apart from dealing with the hierarchical structure, Composite also ‘lets clients treat

individual objects and compositions of objects uniformly’. In design terms, this means that

any message at the Component level will also appear at the Basic and Composite levels,

as is the case with message in Figure 11.27. A surprising (and pleasing) effect of the

recursive nature of Composite, is that we can simply get message on Composite to pass

the message on to its children. To see how this works, consider the house example in

Figure 11.28B. If pink were our favorite color, we could paint every wall in the house

pink. To do this, we would send the message paint("Pink") to ourHouse; ourHouse

would send paint("Pink") to each floor in turn, up to and including upstairs; the floors

would send paint("Pink") to the rooms; finally, paint("Pink") would be sent by the

rooms to the walls; since the walls are basic objects, they would do the actual work.

Ultimately, a single message sent by the client programmer results in every wall in the

house turning pink. (To convince yourself of this, try drawing the messages on a sequence

diagram.)

You may be wondering at this point what the difference is between collections

and composites, especially since iterators have cropped up in our discussion. While

it’s true that collections and composites both contain objects, it turns out that most

364 Chapter 11

clients of collection classes are happy with four basic classes (and maybe sorted ver-

sions too):

• Bag: Unordered objects with duplicates (not available in Java).

• Set: Unordered objects without duplicates.

• List: Objects in a specified order.

• Map: A lookup table that needs a key to add or remove an object.

The common factor between these classes is that client programmers don’t have to build

the structure; they simply add and remove objects. (Okay, in the case of List, they do have to

specify the position of each object but they don’t have to create the object holders or arrange

them side by side.) The Composite class, in contrast, forces the client programmer to build

the structure piece by piece, explicitly combining small pieces into larger ones to produce

some tree-like structure. In practice, we tend to use the Composite pattern if the client

wants to or must handle the structure explicitly (because it could not have been determined

beforehand) or if the client wants the convenience of a top-level message that gets sent to

all children. (Can you think of a way of using Strategy to allow collection classes to send a

top-level message to all children?)

Composite is sometimes used as part of the internal implementation of collection

classes, to build an index, for example. Another area where you may encounter the

Composite pattern is in user interfaces, since GUIs are usually treated as hierarchies of

components.

11.3.12 Proxy

Provide a surrogate or placeholder for another object to control access to it. [Gamma

et al. 95]

Proxy involves one object (the proxy) interposing itself between a client and another object

(the real subject), as illustrated in the lower diagram in Figure 11.29. We might do this

for any number of reasons, such as security control, lazy initialization or remote access.

In the example illustrated, clients send message to the proxy which passes the message on

to the real subject (which might involve checking security permissions, creating the real

subject the first time around, or performing the network communication). Although not

strictly necessary, it’s a good idea to introduce an interface – Subject, for example – that

lists the messages appearing on RealSubject and Proxy. For one thing, this makes sure

that the interfaces of the proxy and the real subject are kept in step; secondly, it’s

reasonable from a modeling point of view, because the proxy and the real subject do the

same thing.

Common Design Patterns 365

 Subject

+message()

 RealSubject

+message()

Client

 Proxy

+message()

-subject

-realSubject

aClient aProxy aRealSubject

message() message()

* 1

Figure 11.29: Proxy class and object diagrams

Probably the most common use of Proxy is in the area of network programming, which

involves one piece of code invoking another piece of code that resides on a separate machine,

with some kind of network between them. In the field of object technology, this mechanism

has become a well-known part of frameworks such as CORBA, J2EE and .Net.

In object-oriented programs, the only way we can run a piece of code is to send a message

to an object. But how do we send a message to an object that lives on a different machine?

The answer is that we provide a local proxy that has the same interface as the remote object

but whose methods perform the network communication for us. This way, the client is

shielded from the complexities of the network communication.

Using a proxy to send a remote message is illustrated in Figure 11.30 (which combines

elements of a deployment diagram and a communication diagram). Here, we have a remote

system for looking up an employee’s e-mail address by payroll number. The server machine

has a process containing a ContactsImpl, called s, which waits for incoming client requests.

The client machine has a process containing a ContactsClient, called c, and a ContactsProxy,

called p, with the same interface as s. When c wants an e-mail address, it sends lookup to p,

which does whatever it takes to pass the message on to s (create a communication channel,

identify the type of message, pass on the parameters, and wait for the response). On the

366 Chapter 11

Network Communication Link
s:Contacts

Impl

:ServerProcess:ClientProcess

c:Contacts
Client

p:ContactsProxy

lookup(...) lookup(...)

Figure 11.30: Remote object implemented using Proxy

server side, some complementary code (not shown) receives the incoming request and passes

it on to s as a normal message. When s receives the message, it executes its lookup method,

in exactly the same way as if the message had originated locally. When s has finished, the

reply is returned to p. On receiving the reply, p completes its lookup method and returns the

result to c.

The classes and interfaces involved in this proxy example are shown in Figure 11.31. In this

figure, unlike most design-level class diagrams, the association between the ContactsClient

and the ContactsImpl is not navigable. This is because, in the case of a remote object,

the proxy doesn’t have a physical pointer to the real subject: it has a reference to the

communication channel, or to some kind of address for the subject (if it doesn’t want to

keep the communication channel open all the time).

Contacts

+lookup(payroll:String):String

Contacts

Client

 ContactsProxy

+lookup(payroll:String):String

 ContactsImpl

+lookup(payroll:String):String

realSubject

1*

Figure 11.31: Remote object class diagram

Discovering, Combining and Adapting Patterns 367

11.4 USING PATTERNS
As you use patterns more and more, you will find that they become second nature for

particular tasks, especially well-understood tasks such as creating objects (factories), remote

objects (proxies) and complex life cycles (states). For other tasks, you have to watch out for

areas where they might be useful. You will also find yourself using several patterns together

to accomplish a single task (we saw an example of this when Factory Method was used as

part of Iterator).

11.5 DISCOVERING, COMBINING AND
ADAPTING PATTERNS

Although there is no definitive advice on how to do discover and combine patterns, it’s a

good idea to start by practicing with the patterns outlined in this chapter. Then, look for how

patterns have been used in the code around you, in libraries and frameworks and in code

written by your colleagues. Be sure to keep returning to [Gamma et al. 95] and the other

resources mentioned in this chapter in order to expand your knowledge. There’s a lot to

absorb but the end result is better productivity, higher quality code and more peace of mind.

One thing that you will discover quickly is that patterns need to be adapted to each

particular use. Here are some of the reasons for this:

• Language translation: The pattern you started with may not be implemented in your

chosen programming language. All programming languages, even object-oriented ones,

have differences. Some differences are large (such as how pure or hybrid the language is)

and some are small (for example, the access protections available for messages), but the

standard patterns will have to be modified to suit each language.

• Difference of opinion: For each design problem, there is more than one solution. Just

because a pattern has been produced by an expert, or a group of experts, doesn’t mean

that it’s perfect. Once you fully understand a pattern, feel free to change it, especially as

you become more expert.

• Difference in style: Design and coding styles can come from many sources: experience,

company coding guidelines, requirements of a library or framework, and so on. If a pattern

doesn’t fit the style that your project uses, adapt it. (Often, doing things the same way

as those around you is more important than doing things in a better way – consider the

benefits of reuse and easier maintenance.)

• Different problem: Each pattern is as general as possible – some of the class models

presented here would never be used as they are. For example, in the Observer pattern,

we had the Observer, Subject, ConcreteObserver and ConcreteSubject classes; we would not

368 Chapter 11

expect to see any real application with classes called ConcreteObserver and ConcreteSubject.

No pattern will fit your problem exactly.

• Composition, inheritance and multiple inheritance: Languages, and developers, differ in

the way they use inheritance and composition. You may find yourself performing trans-

formations from one representation to another, while trying to keep the overall effect of

the pattern the same.

• Consequences: Every good pattern description includes consequences, areas where the

author has identified particular benefits, shortcomings and trade-offs of using the pattern.

(No pattern is perfect, after all.) As a result of this advice, you may decide that you prefer

different trade-offs.

• Clarity: Sometimes, a full-blown pattern with all the extras can be more complex

than you require. A little simplification can be beneficial (especially in a learning con-

text).

All of these factors can be observed to some extent in the pattern descriptions given in

this chapter. Language translation, at least, was necessary because the notation used here

is UML and the programming language is Java, rather than the combination of OMT and

C++/Smalltalk used in [Gamma et al. 95].

Although the Observer pattern is undoubtedly a good idea, it has certain drawbacks in its

simplest form – Figure 11.32 shows an adaption of Observer, reworked to deal with these

shortcomings.

• Whenever there is a change in the state of the subject, update is called. An observer may

read attributes that haven’t changed and refresh itself unnecessarily.

In the adapted pattern, the client specifies during registration which attribute the Observer

is interested in, using the new parameter a (of course, the Observer can be registered for

more than one attribute). The notify method also takes an a parameter: it only notifies

Observer objects that have been registered for changes to a. Observers can observe some

attributes and ignore others.

• The observer has to return to the subject to find out what the changes were, which involves

more communication.

In the adapted pattern, the update method takes the new value of the attribute as a

parameter. Thus, the Observer doesn’t have to return to the Subject to use a getter.

• The observer can observe only one subject.

In the adapted pattern, the Subject is passed as a parameter to update. This allows the

Observer to be registered with any number of subjects while still being able to identify

them.

When using this modified form of Observer, the subject must notify observers when derived

attributes change, not just stored attributes.

Discovering, Combining and Adapting Patterns 369

*

-observers

 Subject

+addObserver(a:String,o:Observer)
+removeObserver(a:String,o:Observer)
#notify(a:String,v:Object)

 ConcreteSubject

-attribute:X

+getAttribute():X
+setAttribute(v:X)

 ConcreteObserver

+update(s:Object,a:String,v:Object)

*

Parameter names:
 v is value
 a is attribute name
 o is observer
 s is subject

 <<interface>>
 Observer

+update(s:Object,a:String,v:Object)

Set attribute and
call notify("x",v)

Figure 11.32: Class diagram for an improved Observer pattern

Case Study
Patterns in iCoot

Let’s see what impact the patterns described have on the iCoot system:

• Observer is used on the client side by the GUI interfaces (both desktop and mobile-

device versions). These interfaces use a two-layer model consisting of GUILayer

and ControlLayer – all upward communication uses Observer in its Java form,

event delegation. In event delegation, all notifications take the form of events

broadcast to listeners. Some events signal a change in attribute values and some,

pure events such as ‘logon succeeded’, do not.

• Singleton is used on the server side where one home per entity manages the

creation and finding of entities. Some homes also have general utility methods such

as carModelHome.findEngineSizes().

• Multiton is not used. Despite the recent addition of multitons to the syntax of Java,

it is still common to use public class constants of type int as an alternative, as in

CarColor.MIDNIGHT BLUE. (A class constant is a read-only (i.e. final) class field.)

• Iterator is used on the client and the server for all access to List objects.

370 Chapter 11

Case Study (cont’d)
• Factory Method is used widely on the client and the server. For example, when

the business layer needs to create an entity that contains data from the database,

a factory method on the home is used: CustomerHome.getInstance().create(”Fred

Bloggs”, ”02723359853”, 0).

• Abstract Factory is not used, although, in principle the homes might inherit from

a common superclass.

• State is used to represent the state machine for a Reservation.

• Facade is used to encapsulate layers. The cleanest example is the ServerLayer

objects which hide the complexity of the BusinessLayer from clients.

• Adapter is used in the Java-based clients to connect GUI components, which expect

to send messages to event listeners, with controller objects, which have a generic

interface.

• In the next increment, Strategy will be used in user interfaces to allow retrieved

cars to be sorted according to attributes selected by the user.

• Template Method is used wherever possible in abstract classes to share logic

between subclasses (to improve the quality of code, make maintenance easier and

reduce the effort required).

• Flyweight is used on the server, where the business layer maintains a cache

of entities populated with data from the database. Flyweight is used to avoid

duplication of the data within the server process and to prevent different parts of

the application working with different versions of the same data.

• Proxy is used in the Java-based clients. The ControlLayer uses proxies to access the

facades in the ServerLayer (passing lightweight copies backwards and forwards).

• Composite is used in the GUI clients. It is part of the standard Swing facilities for

constructing component trees.

11.6 SUMMARY
In this chapter, we looked at:

• How software developers use design patterns to avoid duplicating effort by applying
the knowledge and experience of other developers to a particular problem. A pattern
describes a particular way of doing something that has proved effective in real world
projects.

• How patterns are used to record knowledge, to document solutions and to aid
reuse.

Further Reading 371

• The pattern template proposed in [Gamma et al. 95].

• 14 of the most important patterns, to provide you with a good grounding and to
whet your appetite.

• The practical implications of using patterns: how to discover and combine patterns
and how to adapt them to your particular problem.

FURTHER READING
The original Gang of Four book [Gamma et al. 95] is invaluable reference material despite

the fact that the book is illustrated using OMT, C++ and Smalltalk. It contains a lot of extra

discussion and advice.

Since the publication of the original book, many more books and research papers have

been produced, and many more areas of interest have been explored. For further reading

on pattern history and the state of the art, try the following Web sites: www.hillside.net and

www.patterndigest.com.

For a comprehensive description of how to implement patterns in Java, see [Grand 02]

and [Grand 99].

12
Specifying the Interfaces of Classes

In this chapter, we consider the code specification process, traditionally the last develop-

ment phase before implementation. Specification allows us to write down how our software

should behave in a way that is less ambiguous and more precise than anything we’ve used

so far.

Learning Objectives
Understand what a specification is

and why we might want to
produce one.

•
Understand the distinction between
formal and informal specifications.

Write specifications in an
object-oriented manner.

•
Understand the Design by Contract

philosophy.

•
Use specifications and Design by

Contract in Java.

Chapter Outline

12.1 Introduction

12.2 What Is a Specification?

12.3 Formal Specification

12.4 Informal Specification

12.5 Dynamic Checking

12.6 Object-Oriented Specification

12.7 Design by Contract

12.8 Informal Specification in Java

12.9 Summary

Further Reading

Review Questions

Answers to Review Questions

12

374 Chapter 12

12.1 INTRODUCTION
Although, in one sense, we’ve been specifying the behavior of our software at all the stages

(from system use cases all the way through to the database schema), the discussion here

relates to the interfaces of the system components, and classes in particular.

So why do we write a specification? Here are some good reasons:

• To remove the ambiguity remaining after earlier phases: Ambiguity means that artifacts

can be read more than one way. Use cases are typically written in natural language, which

is notoriously vague; analysis is not meant to dictate to the designer how the code should

actually be implemented, so the analysis artifacts don’t match the final code exactly; as

for design, we may have specified exactly which classes are to be written and what their

messages and fields should be but there may be no documentation of how the messages

should work together or what constitutes a legal message parameter, a legal field value or

other such detail.

• To improve our understanding of the implementation: The more we understand our

design, the easier it will be to implement. Writing a specification requires us to think hard

about our design, so we end up with a better understanding.

• To increase our confidence that the system will work: Often, in attempting to write down

exactly how our software should behave, we discover that we’ve missed something out or

assumed something that’s impossible, or made some other human error. Thus, specification

allows us to spot mistakes sooner than if we plough straight on into implementation.

• To help us debug our software: When our software misbehaves, we can check whether the

implementation matches the specification. Thus, we have a starting point for identifying

and removing faults.

• To help us test our software: A specification describes how our software must behave and

a test verifies that our software behaves as described. Thus, tests can be used to check

that our software fits the specification. Tests based on system use cases verify that we

have produced a system that meets the system requirements. Specification-based testing

is essential for libraries, patterns, frameworks and reusable objects, because none of these

involve an actual system.

• To help us modify our software: If we decide to modify our system in some way – by

adding functionality, for example – we can check that the modification does not break

the specification. If the specification would be broken, the proposed modification is

incompatible with the current system (or we have an error in the specification). Rather

than just go ahead and break the specification, we should look at the proposed change

more carefully.

What Is a Specification? 375

• To allow us to pass the implementation task on to other developers: Although the other

developers are still going to have to contact us to clarify detail, they should need to do so

less often.

• To provide better documentation: Better documentation leads to easier maintenance, more

reuse and less misuse.

12.2 WHAT IS A SPECIFICATION?
In general terms, a specification is a complete, unambiguous description of the required

behavior of a piece of software. The piece of software in question could be an entire system,

a subsystem, a layer, a class or a function. Although we would like our specification to be

complete and unambiguous, that’s not always practical or possible. However, even imperfect

specifications have their uses (and they’re better than nothing).

A specification describes one or more boundaries. For example, the boundary of a function

library consists of the signatures (names, return types and parameter types) of its functions

and of its global data values; the boundary of an object consists of its messages and its

attributes; the boundary of a class (subtly different to the boundary of an object) consists of

its class messages and class attributes. Although attributes logically sit on the boundary, we

expect them to be accessed by object and class messages.

If we consider that each boundary has a client on one side and a supplier on the other, a

specification describes:

• What information the client can pass over the boundary and when they’re allowed to pass

it; for example, the client may only be able to pass new address information to a customer

object once a transaction has been started.

• What information the client can retrieve from the boundary and when they’re allowed to

retrieve it; for example, the client may only be able to retrieve a list of books for sale from

a book server once it has logged on.

• When an event will be broadcast to registered clients and what information the clients will

receive; for example, in a distributed chat system, every client will be notified of the name

of each new client that joins the chat room.

• The legal states of the information managed by the boundary; for example, a collection

object may state that it will never contain a negative number of objects.

Most of the time, a specification is concerned with the public boundary of a piece of

software. However, we can equally well specify the nature of internal boundaries. As an

376 Chapter 12

example, consider a function library that provides sorting facilities for collection structures.

Such a library might have a reusable swap function for swapping two values in a collection.

It’s unlikely that the swap function would be part of the public interface of the sorting library

because it’s an implementation detail; however, we could still specify its behavior – we could

state, for example, that after the function has been called, the left-hand value will occupy the

location previously occupied by the right-hand value, and vice versa.

There are two varieties of specification: a formal specification is scientific and rigorous;

an informal specification is pragmatic and partial, but no less useful.

12.3 FORMAL SPECIFICATION
For the most part, software development is an imprecise activity. Historically, software has

been developed more in the hope than in the certainty that it will do what it’s supposed to do.

This is because there is no science to back it up, unlike disciplines such as civil engineering

or hardware engineering, which are backed by mechanics and Quantum theory. Most good

software is a result of human ingenuity, experience, guess work, reuse and testing.

This is fine for noncritical applications such as word processors and consumer operating

systems. We tolerate a word processor occasionally crashing in the middle of an edit (this is

why we have features such as auto-save). We expect a consumer operating system to crash

sometimes, leaving us with no alternative but to reboot (which is why system administrators

run automated backups). We may lose time, we may get frustrated and angry, but no-one’s

life is endangered. The advantages of being able to use computers at all generally outweigh

the disadvantages of those computers being imperfect: on the whole, we’re more productive

than if we had no computers at all.

However, some situations call for perfect, or near-perfect, reliability. Safety-critical

systems are a good example – these include the software at the heart of nuclear power

stations, air traffic control systems, fly-by-wire aircraft and hospital equipment. We can’t

afford to let such systems (or their operating systems) fail. In reality, we can’t guarantee 100%

reliability, because that would be too difficult or too expensive or would require knowledge

of every possible abnormal condition. Instead, we settle for either a very long time between

failures (for example, a control system in a nuclear power station may be acceptable if it

makes a mistake, on average, less than once in a trillion years) or better reliability than

a human (for example, a fly-by-wire plane may be acceptable if it makes one-tenth of the

mistakes of a human pilot).

One way to improve reliability is to replicate hardware or software. For example, we could

install three computers to control a fly-by-wire plane. Each computer would use different

hardware, a different operating system and software developed by a different team. We could

arrange these three computers in a voting system, where any command would be ignored by

Formal Specification 377

the plane unless it came simultaneously from at least two of the computers. Theory suggests

that, using such techniques, we can make failure very unlikely. (We still can’t be perfect,

because two of the computers could fail in the same way at the same time, causing the plane

to follow an incorrect command.) Further discussion of this kind of reliability assurance is

beyond the scope of this book.

Another way to improve reliability involves trying to prove, in the mathematical sense,

that the software is correct (that it does what it’s supposed to do). This involves three steps:

1. Produce a formal specification, in a mathematical language, that describes how the

software should behave.

2. Prove that the specification is feasible – i.e. that it has no logical contradictions or

impossibilities.

3. Prove that the software conforms to the specification.

Examples of formal specification languages are Vienna Development Method (VDM)

(originally from IBM Vienna), Z (originally from Oxford University) and Object Constraint

Language (OCL) [OMG 03b], which is part of UML.

For example, if we want to write a formal specification for the behavior of a squareRoot()

function, here are some things that we might want to say about it:

• The input value must be positive. (Assuming noncomplex numbers.)

• The square of the result will be equal to the input value. (This is a common trick when

specifying a reversible function: applying the inverse function to the result must yield the

input value.)

• The result will be positive. (Remember that (2 × 2 = 4) and also (−2 × −2 = 4), so 4 has

two square roots; we choose to return the positive square root.)

Here’s how we can specify the boundary conditions of squareRoot() in VDM:

squareRoot(x : R) y : R

pre x ≥ 0

post (y2 = x) ∧ (y ≥ 0)

where R stands for real numbers, pre stands for precondition (something that must be true

before the function can be invoked) and post stands for postcondition (something that will

be true after the function has been invoked). Every logical expression in a specification is

referred to as an assertion (so y ≥ 0 asserts that y will be greater than or equal to 0). Even if

you do not know VDM, it’s easy to see that the specification above reads as:

The squareRoot() function takes a real number x as parameter and returns a real number

y. For correct operation, the function requires that x is greater than or equal to 0. If

378 Chapter 12

the precondition is met, the function guarantees that y squared will be equal to x and

that y will be greater than or equal to 0.

Thus, we can specify the exact behavior of squareRoot() without saying anything about its

implementation.

Formal specification is a discipline that requires a great deal of training and skill. It is

also a lengthy process. Sometimes, it’s possible to use a computer to validate a specification

(automated theorem proving). Under very limited conditions, we may even be able to verify

that an implementation matches the specification. However, no computer could write the

specification itself.

Even if you can rely on the mathematics of the formal specification and on your software

implementation, you can’t rely on the operating system, the hardware or the compiler. For

this reason, safety-critical software is sometimes implemented in assembly language and

then deployed on a cut-down operating system, so that we have a chance of proving that the

end result is correct. (Even this doesn’t stop cosmic rays firing through a chip and flipping

a bit from 1 to 0, so we need external fail-safes too.) We also can’t prove that the formal

specification meets the system requirements, especially since the latter usually start out as

natural language and change subtly over time.

Because formal specifications are so difficult and time-consuming to produce and to use,

they’re normally only employed for safety-critical systems and those that require advanced

reliability techniques, such as voting systems. Although formal specifications are impractical

for the software industry as a whole, we can still apply the underlying principles and get

many of the benefits. Colloquially, the techniques described in the rest of this chapter are

referred to as informal specification. With the help of formal specification theory, we can at

least be clear about what an informal specification should contain.

12.4 INFORMAL SPECIFICATION
All programmers use informal specifications to a certain extent – adding a comment to a

function for the benefit of other programmers is a simple example. A function comment will

describe some or all of the information in the following list:

• when the client can call the function

• what parameters should be passed

• what the function does

• what kind of result is returned (type and value)

• what effect the function has on global data

• what action the function takes if there is a problem

Informal Specification 379

Such information applies equally to subroutines, procedures and methods, since these are

just variations on the basic idea of a function.

Usually, a function comment won’t say anything about the internal implementation – just

like any other form of specification, the comment only describes the conditions at the

boundary. Occasionally a comment will say something about the implementation, but only

when necessary and only in abstract terms. For example, it would be useful for a client

programmer to be told the time/space trade-off of a particular sort function, such as This

function executes at n-log-n speed and requires 2n internal locations for processing.

The following piece of C code (C looks a lot like Java) contains a comment that is used as

an informal specification of the squareRoot function:

/*

Returns the positive square root of x.

Preconditions: x >= 0.

*/

float squareRoot(float x);

Anyone reading this comment knows that they will get back the positive square root of x as

long as they provide a positive x.

The term precondition should be familiar to most programmers, or easy for them to

work out. If you’re concerned about maximum readability, you could use Requires that:

instead of Preconditions: and Ensures that: instead of Postconditions:; or you could write the

preconditions and postconditions in natural language. The informal specification above is

incomplete, unlike the formal VDM version that we saw earlier: for example, we have said

nothing about the square of the result being equal to the parameter. In the next section,

we will see why this particular postcondition is not as straightforward in programming as it

may seem.

A function signature (name, return type, parameter types) contains a lot of information

in its own right so it could form part of the informal specification. For example, float

squareRoot(float x) implies that the function takes a float value and returns a float value; the

result will be the square root of the parameter. However, even an informal specification

should not rely on implied information, hence the explicit comment. Since comments and

signatures can be included in a number of UML artifacts, source code is not the only place

where informal specifications can appear.

Another kind of informal specification that we’ve encountered in this book is the use case.

Each use case describes some or all of the following information:

• when the use case can be used (preconditions)

• what the use case does (steps and postconditions)

• what effect the use case has on the system (steps and postconditions)

• what happens in abnormal cases

380 Chapter 12

Thus, since use cases describe everything an external actor needs to know in order to use

the system properly, they’re similar to function comments. This should be no surprise since,

by definition, a use case is supposed to describe a boundary – the system boundary in this

case. For the purposes of this chapter, we’re interested in the specification that takes place

between subsystem design and implementation, so let’s leave use cases for now.

Some programming languages, notably Eiffel, have a special syntax for recording informal

specifications in source code, separate from comments.

12.5 DYNAMIC CHECKING
Authors of formal specifications use a mathematical notation that is separate from the

software implementation. A formal specifier may be able to prove that the specification they

produce has no logical errors. In limited circumstances, they may even be able to prove that

a particular software implementation conforms to the specification. But, generally, formal

specifiers rely on programmers using their knowledge and intuition to produce code that

conforms to the specification.

The informal approach, in contrast, includes a pragmatic technique that we can call

dynamic checking. A dynamic check is code embedded in our implementation that verifies

that the software is behaving itself (i.e. that it’s not breaking the specification). To see

how a dynamic check might work, consider the square root function again. Below is a C

implementation of this function (with the calculations omitted):

/*

Returns the positive square root of x.

Precondition: x >= 0.

*/

float squareRoot(float x) {

if (x < 0) {

fail("squareRoot", "Parameter x can’t be negative");

}

... /* Code to calculate y */

return y;

}

Inside this function, we can see a piece of code that checks that the precondition x >= 0

has been met – if it hasn’t, the program gives up. For convenience, a fail function has been

provided that prints the function name and the error message and then stops the program

(using the C library function exit). (Some languages provide a more elegant way of signaling

failure using exception handling, but the facilities vary enormously.)

The client programmer is now protected from themselves: most of the time, the client

calls squareRoot with a positive number and the function quietly succeeds; however, on the

Dynamic Checking 381

rare occasion that the client calls squareRoot with a negative number, it is told that the

program can’t continue until the problem is fixed.

You may be thinking that our squareRoot function is performing ordinary error-checking.

It is certainly doing something that programmers frequently do, regardless of whether or not

they understand the specification process. The interesting point, as far as we’re concerned,

is that this piece of error-checking code has only been put there in order to verify that the

client programmer has not broken the specification – if they do break the specification, they

have a fault in their code.

Dynamic checking only makes sense for informal specifications, not formal ones. There

are many reasons for this, some of which are listed below:

• The aim of formal specification is to guarantee that the implementation doesn’t violate the

specification. With dynamic checking, in contrast, we accept that implementations tend

to contain faults, so we look for violations at run time.

• Some formal requirements can’t feasibly be checked. The fact that we can’t check something

is no reason to leave it out of a formal specification.

• Some formal requirements can’t be expressed using imperative code. (An imperative

programming language, by far the most common type, is one where the programmer has

to tell the computer exactly what to do; with a declarative programming language, the

programmer simply states what the outcome should be.) Again, such requirements should

still be included in the formal specification.

• Some formal requirements can’t be expressed accurately as imperative code. For example,

in the squareRoot case, we would like to specify that the result returned by the function

really is the square root. One way to do this is to specify that the square of the result is equal

to the parameter, as in For result y, (y * y) == x. But imperative arithmetic is imprecise:

squareRoot(4.0) probably returns 2.0, but squareRoot(3.79512) might return 1.94811, a

number that is not exactly correct.

To deal with inaccuracy, how could we say that a result will be close to some value?

Well, there’s a whole branch of computing called numerical methods devoted to this kind

of problem. To apply numerical methods, we would need to calculate a maximum possible

error and use that in our specification.

In the squareRoot example, if we encapsulate the maximum possible error inside a function

called squareRootError and have access to a pos function that returns the positive value of its

parameter, we can specify For result y, pos((y * y) - x) <= squareRootError(). This specification

can be added to the function comment and encoded as a check at the end:

/*

Returns the positive square root of x.

Preconditions: x >= 0.

Postconditions: For result y,

382 Chapter 12

(y >= 0) and pos((y * y) - x) <= squareRootError()).

*/

float squareRoot(float x) {

if (x < 0) {

fail("squareRoot", "Parameter x can’t be negative");

}

... /* Code to calculate y */

if (y < 0) {

fail("squareRoot", "Calculation gave negative result");

}

if (pos((y * y) - x) > squareRootError()) {

fail("squareRoot", "Calculation was inaccurate");

}

return y;

}

Now, rather than just protecting the client programmer from faults in their own code,

we’re guarding against faults in our code too.

If we aren’t able to calculate a value for the maximum possible error (or if we decide

that it is too much trouble), we should still add the specification to the comment as natural

language:

...

The square of the result is equal to x,

subject to the accuracy of the current platform.

*/

12.6 OBJECT-ORIENTED SPECIFICATION
Formal specification languages such as VDM were originally designed to be used with

structured software development. Some of these languages have since been extended to work

with object-oriented languages. Others, such as OCL, have been designed specifically for

object-oriented software development. The main difference between a structured notation

and an object-oriented notation is that the latter uses any number of class scopes rather than

a single global scope. (The term scope means name space, partition, subarea, or anything

else that you can put a fence around.)

An object-oriented specification is simpler than a procedural specification, because all rules

appear alongside their related concept (the class or object in question). An object-oriented

specification language must allow us to assert:

• when a message can legally be sent to an object (message preconditions, expressed in

terms of public attributes)

Object-Oriented Specification 383

• the valid parameters for each message (message preconditions)

• the effect a message has on the receiving object (message postconditions, expressed in

terms of public attributes)

• the valid replies from each message (message postconditions)

• the conditions that are always met by the object (class invariants, conditions that will

always be true for instances of the class, expressed in terms of public attributes)

As well as objects, object attributes and object messages, we also have classes, class

attributes and class messages; thus, the five categories above can also be applied to classes,

although the notation usually makes it difficult to tell the difference.

As an example, consider a Container class with an add message. Let’s assume that we want

to assert the following:

• Precondition: An object reference passed to the add message must not be null.

• Precondition: An object passed to the add message must not already be in the Container.

• Postcondition: After the add message, the Container will have one more object than it had

before.

• Postcondition: After the add message, the Container will contain the object that was passed

in as a parameter.

• Invariant: The Container always contains a positive number of objects.

In the next two sections, we’ll see how to express the Container assertions in OCL, a formal

specification language, and in Eiffel, an imperative programming language that includes

syntax for informal specifications.

12.6.1 Formal Specification in OCL
OCL is UML’s formal specification language, so it fits well with object-oriented methodologies

that use UML as their notation. For the Container example, we could use the following

fragment of OCL (in which the contains method returns true if and only if the receiver

contains o):

context Container::

add(o:Object)

pre: (o <> null) and not contains(o)

post: contains(o) and (size = size@pre + 1)

context Container::

inv: size >= 0

OCL allows us to connect assertions to a class using the context keyword, which means

that we can also refer to global functions and global data in our specifications, for the sake of

384 Chapter 12

hybrid languages such as C++. Postconditions often need to refer to the value of an attribute

before the method is executed – this allows us to talk about the effect that a method has

on the receiver’s attributes. In this case, size@pre refers to the value of size before add is

executed. The OCL fragment above can be read as:

When sending the add message to a Container, the parameter o must be non-null and o

must not already be in the container. Once the method has completed, the container

will contain o and the size of the container will be one more than it was before. The

size of a Container is always greater than or equal to 0.

12.6.2 Informal Specification in Eiffel
Eiffel, a language developed by Bertrand Meyer in the mid-1980s [Meyer 90], was designed

with informal, dynamically-checkable specifications in mind. Eiffel programmers can put

assertions in the source code itself, but separate from the comments and the implementation

code: the assertions are recognized by the Eiffel compiler as part of the syntax. Eiffel uses

require instead of pre, ensure instead of post and old instead of @pre. For the Container

example, we could use the following fragment of Eiffel:

class CONTAINER

feature {ANY} -- Public stuff follows

size: INTEGER

add(o:OBJECT) is

require

(o != void) and not contains(o)

do

...

ensure

contains(o) and (size = old size + 1)

end

invariant

size >= 0

end

Eiffel’s mixing of specification and implementation is convenient for the programmer. In

addition, since the compiler understands the assertion syntax, the assertions can be verified

(to make sure that they don’t contain any syntax errors or semantic errors).

Design by Contract 385

As we saw with the C version of the squareRoot function, programmers can write code

to check assertions dynamically. With Eiffel, the compiler can easily identify the assertions

because they are separated from the method bodies and it can generate checking code

automatically because the compiler understands the assertion syntax.

As far as preconditions and postconditions are concerned, the effect of automatic checking

is as if we had inserted if statements that check the require part at the start of the method

and the ensure part at the end. But what about the invariants? Well, assertions in the

invariant clause must always be true for objects of the class. However, in order to check

that fact, we need to execute some code, and the only place that code can be executed in

an imperative object-oriented language is inside methods. Therefore, invariants need to be

checked whenever a method is run.

If the invariants are checked at the beginning of each method, we won’t be able to tell

if the object itself breaks the invariant; if they’re checked at the end, we won’t be able

to tell whether the invariant was already broken when the method was called. Therefore,

invariants must be checked at the start of the method (before the preconditions) and also at

the end (after the postconditions). The reason for checking before preconditions and after

postconditions is that preconditions and postconditions can modify attributes (even though

they shouldn’t). In effect, an invariant adds an extra precondition and an extra postcondition

to every method.

You may be thinking at this point ‘But if we always check that our own methods

don’t break the invariants, we can be certain that the invariants are safe when we enter a

method’. However, other objects in the system might modify the attributes (by sending them

messages), potentially violating our invariants. Since those other objects have no business

checking our invariants, we must assume that invariants might have been broken when we

start each method.

12.7 DESIGN BY CONTRACT
Whenever a piece of software is running, we have to accept that things can go wrong: there

may be faults in the program; the user may provide incorrect data; external software that the

program depends on may fail; there may be failures in the run-time system, the operating

system or the hardware.

If we consider that every piece of software is an isolated process running on some

platform (operating system plus hardware), we can partition the software universe into

activity within the process and activity outside the process. To a large extent, we can control

what happens inside the process using good design, good programming guidelines and good

testing principles. We can’t, however, control what happens outside the process (even if

we access another process that was reliably implemented, the inter-process communication

386 Chapter 12

provided by our platform may fail; also, we might depart from our process to access hardware,

such as a network or a file system – things that regularly fail). Before we can hope to write

elegant, reliable and efficient software, we must have a clear understanding of the different

categories of failure and who is responsible for coping with each category.

When we first learn to program, most of us assume that nothing will go wrong. Then we

run one of our programs, an error occurs and the program falls over, so we learn that it’s

better to prevent errors from killing our programs – error recovery – or to make sure that

our programs shut down with an explanatory message delivered to the operator – elegant

failure. There are many possible failures, so there are many places where we might want to

check for errors. To make things worse, best practice encourages us to implement software

modules (functions, subsystems, classes) separately, making it difficult to identify who is

responsible for detecting errors and who is responsible for handling them. This can result in

large quantities of error-checking code, most of which is redundant.

aClient aSupplier
bar(39)

Figure 12.1: Sending a message to an object

Let’s look at the worst case in an object-oriented program: design by fear. For example, an

object called aClient, inside its foo method, wants to send a message called bar to aSupplier, as

shown in Figure 12.1. (Both objects are running in the same process.) Let’s assume that the

code for these two objects is written independently (even if the two classes were implemented

by the same person, there may have been a significant gap between the implementations of

each class, long enough for the implementor to have lost faith in the older class).

Let’s assume that the implementor of Client is called Beryl and the implementor

of Supplier is called Fred. In an ideal world, Beryl would simply write result = aSup-

plier.bar(anObject) and assume that result was valid. In that same ideal world, Fred would

assume that bar was invoked correctly, perform the calculations and return the result.

However, realizing that the world is imperfect, both programmers are likely to proceed more

cautiously.

While writing the foo method, Beryl thinks to herself ‘I’d better check that aSupplier is in

an appropriate state to receive the bar message, before I send it’, so she adds code to check

the state of aSupplier. Having done that, she thinks ‘I can’t be sure that the parameter I’m

about to pass is valid, so I’d better check that too.’ Having coded two checks, she adds the

code to send the message. For the returned result, Beryl thinks ‘I can’t be sure that the result

I get back is valid’, so she adds code to test the result. However, Beryl is being thorough. She

decides that she can’t trust aSupplier to be in a valid state after replying to the message – after

Design by Contract 387

all, the message may have had an undesired effect that wasn’t predicted by its implementor.

So, Beryl adds a fourth chunk of error-checking code to ensure that aSupplier is valid before

proceeding.

Beryl’s foo method would look like this in Java:

void foo() {

...

if (! ... check aSupplier ...) {

fail("Invalid state of a supplier");

}

if (! ... check anObject ...) {

fail("Invalid parameter for a supplier message");

}

int result = aSupplier.bar(anObject);

if (! ... check result ...) {

fail("Invalid result from a supplier message");

}

if (! ... check aSupplier ...) {

fail("Invalid state of a supplier");

}

...

}

In order to avoid nested if statements, the logic of the checks has been flipped using Java’s

‘not’ operator, !. The fail function is a method on Client that prints the class name, the name

of the failing method and the parameter passed in and then shuts down the process with

System.exit(-1).

When Fred writes the bar method, he also does his best to write robust, fail-safe code.

Before he performs any calculations, he checks that the current object is in a valid state to

receive bar. Next, he checks that the parameter is valid – after all, it would be foolish to trust

the client. Once he is sure that the receiver is ready and that valid data has been passed, Fred

adds code to calculate the result. Before the return statement, Fred decides that it would be

a good idea to check that the result is valid – because there may be faults in the calculations

that he’s written or in other code that he’s called. Still not satisfied, Fred adds one more piece

of checking code, to make sure that the calculations haven’t corrupted the current object.

Fred’s bar method would look like this:

public int bar(Object anObject) {

if (! ... check this object ...) {

fail("Invalid state of this object");

}

if (! ... check anObject ...) {

388 Chapter 12

fail("Invalid parameter from a client");

}

int result = ...

if (! ... check result ...) {

fail("Invalid result for a client");

}

if (! ... check this object ...) {

fail("Invalid state of this object");

}

return result;

}

The end result is a lot of code – perhaps more error-checking code than normal code:

the state of aSupplier is checked twice before the calculation and twice after; anObject

is checked twice; result is checked twice. Although you may not be quite as thorough

(or paranoid) as Fred and Beryl, their code may still be uncomfortably familiar. This

situation applies equally well to foo and bar written as stand-alone functions, procedures or

subroutines.

Error-checking code can become even more verbose if we employ any of the common

techniques listed below:

• Result codes: A result code is a number returned from a routine to indicate success or

failure – for example, zero indicates success, a negative number indicates failure. Where

used, result codes are typically applied to every kind of routine, regardless of whether it

would normally return a result. This leads to many ‘If result code is okay’ checks.

• Global error variables: Here, rather than returning a success value, programmers set a

global value instead (errno in the C function library is a good example). Functions return

their values as normal, setting the error variable if there is a problem. However, this leads

to multiple ‘If the error variable is non-zero’ checks. (An object-oriented equivalent of a

global error variable would be a class attribute on a class called Error.)

• Exceptions: An exception is an error signaled by supplier code that causes the program

to jump to handler code that is kept separate from the normal path code. Used well,

exceptions can remove error-checking clutter from normal code. However, without a

design rule that specifies who is responsible for handling what, exceptions make matters

worse.

In the 1980s, Bertrand Meyer described how to combine the best features of formal

methods and object-oriented programming in a pragmatic way, that makes it easy to produce

code that is robust, elegant and efficient. Meyer called his technique Design by Contract.

Design by Contract 389

Although Meyer described Design by Contract in the context of Eiffel, implemented using

assertions and dynamic checking, we can use the same techniques in other languages – we’ve

already seen some of them being used in C. (Don’t be put off by the use of the word

‘design’ – the idea of a contract is relevant to all phases of software development.)

With Design by Contract, we’re asked to imagine a binding contract between a client

object and a supplier object, with obligations on both sides. The deal is that, as long as the

client fulfills its obligations, the supplier will too (see Figure 12.2).

aClient
bar(39)

aSupplier

Figure 12.2: A contract between client and supplier

Using formal specification terminology, we can be precise about contractual obligations:

• The client must respect the supplier’s invariants.

• The use of a supplier method is subject to its preconditions.

• The implementation of a supplier method must guarantee its postconditions.

• The implementation of a supplier method must guarantee the supplier’s invariants.

While a method is doing its work, it is allowed to break the contract, as long as the

contract is fulfilled when the work is finished. For example, if we have a Supplier invariant

that a + b = 4 and both attributes have the value 2 when bar is called, it would be valid for

bar to return with a set to 10 and b set to -6; however, since we can’t set both values at

the same time in most programming languages, a + b will spend some time inside bar as 12

or -4.

A class can also have an internal contract, in the form of invariants for nonpublic attributes

and preconditions and postconditions for nonpublic methods. An internal contract is for

the benefit of implementors and maintainers; it is much less important than the external

contract.

12.7.1 Contracts and Inheritance
Since object-oriented programming supports inheritance, we should consider the effect of

inheritance on contracts. Because of polymorphism, we must guarantee that each subclass

390 Chapter 12

contract is the same or better, from the client’s point of view, than that of its superclass

(or superclasses, in the case of multiple inheritance). Without this rule, we could spring a

nasty surprise on a programmer that was using a subclass object via a superclass variable: for

example, if the contract for class Customer specifies that all customers have at least two bank

accounts and we introduce a SimpleCustomer subclass with only one bank account, anyone

accessing a SimpleCustomer object via a Customer variable might try to access a second,

nonexistent, bank account.

As we move down the class hierarchy, class invariants are combined using ‘and’: we can

only add to the invariants. For example, if class X has an invariant i1 and subclass Y adds an

invariant i2, the total invariant on Y is i1 and i2. The implication is that we’re providing extra

guarantees about the attributes.

Preconditions and postconditions are only an issue if we redefine the associated method

in a subclass. For preconditions, we must ensure that the redefined method accepts, at least,

all of the messages that it accepted in the superclass: we can only weaken the preconditions.

Therefore, any preconditions that we add to a redefined method are combined with those on

the inherited method using ‘or’. For example, if foo has a precondition pre1 and a subclass

adds precondition pre2, the net effect is that the redefined method has the precondition pre1

or pre2.

For postconditions, we must ensure that each subclass guarantees at least as much as

the superclass: we can only strengthen the postconditions. Therefore, postconditions are

combined using ‘and’. For example, if foo has a postcondition post1 and a subclass adds

post2, the redefined method will have a combined postcondition of post1 and post2.

• If invariants are omitted, it means that ‘nothing is guaranteed for this class’; if we add

invariants to a subclass when there are none on the superclass, the net effect is the

invariants that we added to the subclass.

• If preconditions are omitted, it means that ‘this message applies in all cases’; if we add

preconditions to a redefined method that previously had none, the new preconditions will

have no effect (we can’t weaken a method that already accepts everything).

• If postconditions are omitted, it means that ‘this message doesn’t guarantee anything’;

if we add postconditions to a redefined method that had none, the net effect is the

postconditions on the redefined method (anything that we add strengthens what was

previously an empty guarantee).

With the help of Design by Contract ideas and formal specification terminology, Beryl,

our paranoid programmer, can make her code much clearer:

void foo() {

...

if (! ... check aSupplier’s invariants ...) {

Design by Contract 391

fail("Invariants broken for a supplier");

}

if (! ... check bar’s preconditions ...) {

fail("Preconditions broken for a supplier message");

}

int result = aSupplier.bar(anObject);

if (! ... check bar’s postconditions ...) {

fail("Postconditions broken by a supplier method");

}

if (! ... check aSupplier’s invariants ...) {

fail("Invariants broken by a supplier method");

}

...

}

Similarly, Fred can change his code to look like this:

public int bar(Object anObject) {

if (! ... check invariants ...) {

fail("Invariants broken");

}

if (! ... check preconditions ...) {

fail("Preconditions broken");

}

int result = ...

if (! ... check postconditions ...) {

fail("Postconditions broken");

}

if (! ... check invariants ...) {

fail("Invariants broken");

}

return result;

}

12.7.2 Reducing Error-Checking Code
The main advantage of Design by Contract is the clear separation between the responsibilities

of the client and the responsibilities of the supplier. Before the bar message is sent, the client

is in control. Thus the client has responsibility for ensuring that the contract is not broken

before the message is sent. While the method is executing, the supplier is in control. Thus

the supplier must ensure that the contract is not broken by the time the method returns.

392 Chapter 12

Let’s apply this idea of responsibility to a more optimistic Fred and Beryl. This time Fred

and Beryl trust each other: Fred writes the bar method assuming that Beryl won’t break the

contract; Beryl, for her part, uses the result of bar directly, confident that Fred won’t break

the contract either. Beryl’s code can now look like this:

void foo() {

...

if (! ... check aSupplier’s invariants ...) {

fail("Invariants broken for a supplier");

}

if (! ... check bar’s preconditions ...) {

fail("Preconditions broken for a supplier message");

}

int result = aSupplier.bar(anObject);

...

}

And Fred’s code can look like this:

public int bar(Object anObject) {

int result = ...

if (! ... check postconditions ...) {

fail("Postconditions broken");

}

if (! ... check invariants ...) {

fail("Invariants broken");

}

return result;

}

This is excellent news: Design by Contract has shown us how to cut our checking code

in half, by removing all redundancy. This results in faster development, better performance,

fewer faults and easier maintenance.

Can we use Design by Contract to reduce checking code even further? Yes. There are

many occasions when a piece of code that we write can’t possibly break the contract. For

example, consider the following implementation of Supplier:

// A supplier

// Invariant: x < 5

public class Supplier {

private int fieldX;

/*

Constructor

*/

Design by Contract 393

public X() {

fieldX = 1;

}

/* Getter for x

Preconditions: true (call this method any time)

Postconditions: true (no side effects)

*/

public int getX() {

return fieldX;

}

/* A method

Preconditions: o != null

Postconditions: For result r, r > x

*/

public int bar(Object o) {

fieldX = o.toString().length() % 5;

return fieldX + 1;

}

}

In this example, x refers to a UML-style attribute – the value of x is accessible to the

outside world via the message getX. In order to emphasize the difference between the public

attribute and the private implementation, the field has been given a different name, fieldX.

Because of the way it’s been written, the Supplier code always respects invariants and

postconditions:

• After the creation of a Supplier, x is less than 5 because fieldX is set to 1 by the constructor.

• After the execution of getX, x is less than 5 because getX has no side effects.

• After the execution of bar, x is less than 5 because fieldX is set to the remainder after

dividing something by 5.

• After the execution of bar, the result is greater than x because bar returns fieldX + 1.

Since Supplier can’t possibly break its half of the contract, no checking code is needed. (In

principle, platform failures could break the contract, but it would not be feasible for us to

add checking code for such situations.)

Now, consider the following implementation of foo, on Client:

void foo() {

Supplier aSupplier = new Supplier();

int result = aSupplier.bar(new Plate("Wedgwood"));

...

}

When the bar message is sent, we know that foo can’t have violated aSupplier’s invariants,

because it hasn’t touched the new object’s attributes. Also, we know that foo can’t have

394 Chapter 12

violated bar’s preconditions, because it’s passing in a non-null object. Thus, we don’t need

any checking code in foo either. The end result is a program with no checking code at all.

We’ve now seen that well-defined obligations, mutual trust and the nature of the code

that we’re writing can halve the amount of error-checking code, or even remove it altogether.

What we haven’t covered yet is how we should deal with the fact that our software exists

in an imperfect world: client and supplier code can contain faults; if we jump out of our

process to another process or another piece of hardware, nasty things can happen that are

beyond our control. Faults within our process can be dealt with by enforcing the contract;

problems outside our process can be dealt with by constructing application firewalls. We’ll

look at each of these techniques in turn.

12.7.3 Enforcing the Contract
Design by Contract relies on the assumption that as long as the client object meets

its obligations, the supplier will meet its obligations too. But programmers are fallible;

sometimes obligations won’t be met, so we need dynamic checking to detect faults. But who

is responsible for checking that contractual obligations have been met? And, what should

we do if we detect a failure?

In the client and supplier example, the bar method should be responsible for checking

postconditions and invariants before it returns, because only the bar method or one of

its suppliers could have broken the contract between the start of the method and the

end. Therefore, dynamic checking for the supplier half of the contract (postconditions and

invariants) should appear at the end of the bar method.

The question of who should check the invariants and the preconditions before bar

starts is more complicated. Client code is responsible for making sure that the client half

of the contract is not broken. But, if we conclude that every client of bar has to have

contract-checking code, the code will be duplicated all over the system.

Object-oriented theory states that responsibilities should be assigned to the relevant

object. This suggests that checking the client side of the contract should be a service

provided by the supplier (because the preconditions and invariants are associated with the

supplier). Thus, in order to avoid duplicating the client’s contract-checking code, we should

place it at the start of bar. You can view this outcome in one of two ways: either bar is

protecting the supplier from faults in the client or bar is providing a service for the client,

to check that it has no faults. (In terms of Design by Contract, the second interpretation is

preferable.)

Combining informal methods, Design by Contract, trust and dynamic checking, a Java

implementation of the bar method looks like this:

public int bar(Object anObject) {

if (! ... check invariants ...) {

fail("Invariants broken");

Design by Contract 395

}

if (! ... check preconditions ...) {

fail("Preconditions broken");

}

int result = ...

if (! ... check postconditions ...) {

fail("Postconditions broken");

}

if (! ... check invariants ...) {

fail("Invariants broken");

}

return result;

}

With the implementation above, no contract-checking code is needed in the client.

12.7.4 Application Firewalls
As long as we stay within one process, we can rely on contracts to provide elegance,

robustness and performance. When we jump out of our process, however, there is no

contract enforcement to protect us. Therefore, we should be paranoid about everything we

access beyond our process boundary, including, at least:

• other processes

• the operating system

• user interfaces

• file systems

• networks

• databases

• devices

We can construct an application firewall at the boundary to protect the code inside our

process, for example, a user interface firewall would check the validity of user data before

passing it on to business objects, while a database firewall would catch database errors.

(These have nothing to do with Internet firewalls, which protect an intranet.)

Sometimes, we can prevent invalid data crossing an application firewall in the first place.

For example, if a user must not try to log in until they’ve typed in a user name and a

password, we can disable the Login button in our GUI until they have done so.

396 Chapter 12

12.8 INFORMAL SPECIFICATION IN JAVA
If we’re implementing our designs using a language such as Eiffel, best practice (using

informal specifications and dynamic checking) is built into the language itself. When using

other languages, we should apply similar principles, but we have to write the dynamic-

checking code by hand. In this section, we’ll see how to apply specification theory to Java,

since Java is a common, pragmatic alternative to Eiffel.

12.8.1 Documenting a Contract using Comments
We should always, at the very least, document the contract of our classes using comments

in the source code. This is because our code will end up being used, reused, or maintained

by programmers who look at the source code rather than anything else. Any contract-related

comments in the source code should also appear in the design and specification artifacts.

Every class should have a lengthy comment at the top – the class comment – that

describes what the class is for and any invariants for its public attributes. Be aware that other

programmers looking at the source code may not be familiar with formal jargon, so you

might want to use phrases such as For all objects of this class, the following conditions apply:.

The class comment can also contain examples of how the class should be used.

Every public message on the class should have a comment at the top – the message

comment – that describes what the corresponding method is for and lists any preconditions

and postconditions. For the sake of uninformed readers, you might prefer to use terms like

requires and guarantees rather than preconditions and postconditions.

Always keep in mind, when implementing a method, that it’s the caller’s responsibility

to make sure the invariants and preconditions are met before the method is called. In other

words, your coding should be optimistic. The flip side of this, of course, is that you should

make sure that your implementation doesn’t violate the postconditions or the invariants.

12.8.2 Checking Conditions Dynamically
In principle, it’s a good idea to add an invariant check and a precondition check to the

start of every public method, and a postcondition check and an invariant check to the end.

However, in the absence of special language mechanisms, such as those provided by Eiffel,

you may prefer to be more selective.

It’s a good idea to add checks to the start of any public method that you expect to be

reused heavily (if the code is destined for a library, for example). Third parties will appreciate

the extra help that your checking code provides, as they become familiar with your classes.

As for checks at the end of public methods, this is a matter of personal preference. If

your method couldn’t possibly break the supplier half of the contract, the checks would

be redundant. If you think that your code could break the contract, perhaps you don’t

Informal Specification in Java 397

trust yourself: as your experience with implementing object-oriented code increases, your

self-belief should grow, so such checks should also become redundant.

The only compelling reason to include end-of-method checks is if you believe that third-

party code invoked by your method could break the invariants, by corrupting attributes:

since most code is invoked in a client–server style, this should not happen often.

12.8.3 Signaling Contract Violations using
RuntimeExceptions

Whatever choices we make about enforcing the contract, we need a clean, elegant way of

signaling contract violations. Thus far, the issue has been side-stepped through the use of a

fail message. But what code do we need inside the corresponding fail method in order to fail

elegantly? One possibility is to quit the program: in Java we can do this with System.exit(-1).

However, this technique discards most of the information about how we arrived at the failure

point – we might be told which method was at the end, but not which method called that,

or which method called that, and so on.

Instead of exiting explicitly, a Java method can throw an exception, a signal to the calling

method that the current method can’t proceed. Java has a particular type of exception, called

a RuntimeException, that we can use in such cases. A RuntimeException should be used to

signal that the method can’t proceed because of a fault in its implementation or in the calling

method. The calling method is not expected to catch the RuntimeException: instead, it should

allow the run-time system to re-throw the exception to its own calling method, where it will

be re-thrown to the method that called that, and so on; eventually, the exception will reach

the skin of the process, the main method, having halted each method on its way out.

When a RuntimeException is thrown by main, the program will be stopped by the run-time

system and the user (or tester, or administrator) will be shown a trace through the failing

methods, along the lines of:

RuntimeException in bar() "Preconditions violated"

main() called foo() on Client

foo() called bar() on Supplier

This is exactly the kind of information we need to start debugging.

The Java style for signaling a broken contract is shown in the following example:

public class Supplier {

...

// Precondition: o != null.

public int bar(Object o) {

if (o == null) {

throw new RuntimeException("Preconditions violated");

}

398 Chapter 12

...

}

...

}

(You can throw a subclass of RuntimeException, such as IllegalArgumentException, if you want

to provide more detail to the user.)

When Java code is running inside a larger program, such as a servlet running inside a Web

server or a business component running inside a GUI, we shouldn’t allow RuntimeException

objects (or any other kind of exception), to reach the main method, otherwise the whole

program will shut down. Instead, generic code at the edge of the program can catch unhandled

exceptions and report them to the administrator or the user, or both. For example, a Web

server can append an error report to the system log file and then display an error message to

the user, along the lines of Your request can’t be completed because ..., plus some advice on

what to do next.

12.8.4 External Systems
As we’ve seen, while running code within our own process, we can safely disable dynamic

checking. Trust your own code; trust your colleagues’ code; trust the code in patterns,

libraries and frameworks. However, we still need to construct application firewalls to protect

our code from the outside world. Application firewall code will never be switched off, even

after testing. External systems can be categorized as clients or suppliers – we’ll look at how

to deal with each of these in turn.

External Clients
Requests coming from external clients are destined for our business objects, so the contracts

of our business objects must be respected. Thus, the application firewall should check the

client half of the contract, on behalf of the business objects. However, the knowledge of

the contract is best encapsulated in the business objects themselves (because that’s where

the knowledge should reside). We can resolve this apparent paradox by encapsulating the

invariant and precondition checks in messages on the business objects.

For example, consider the following class:

// Invariant: i1

public class Foo {

public boolean invariantOK() {

... // Return true if i1 is okay

}

public boolean okForBar(s, f) {

... // Return true if s, f satisfy p1

}

Informal Specification in Java 399

// Precondition: p1

public void bar(String s, float f) {

if (!invariantOK()) {

throw new RuntimeException("Invariant violated");

}

if (!okForBar(s, f)) {

throw new RuntimeException("Precondition violated");

}

...

}

}

Code in an application firewall can extract the values for bar’s parameters (from a user

interface or a servlet, for example) and use the service messages on Foo to test whether

invoking bar would be valid, as in:

// Application firewall code

if (aFoo.invariantsOK() && (aFoo.okForBar(s, f)) {

aFoo.bar(s, f);

}

else {

... // Signal error to client

}

As a variation on this idea, you could provide checking and non-checking versions of each

ordinary Foo message, for example, bar and barWithChecks. This would move the application

firewall code into Foo, as a service for clients. The downside of this approach is that you

would be providing the checking versions of the messages even though they might never be

used – they would only be used if the object ended up being invoked from an application

firewall.

Another variation would be to put the checking versions of the messages into a separate

class, called FooWithChecks perhaps. This approach is better than code in the application

firewall itself but you would be providing an entire class that might never be used.

External Suppliers
When we’re jumping out of our process to access an external supplier, we must check the

state of the external supplier and we must check any information that we get back. Again,

the notion of an application firewall is useful here. But, what would we do if the application

firewall detected an error? We will have been invoked originally by some client code and, if

the application firewall detects an error, the client code must be told that there is a problem.

A good way to do this, avoiding the messiness of result codes or error variables, is to throw

an exception. However, unlike the ‘broken contract’ situation, we don’t want client code

to ignore this kind of exception – external problems are a predictable fact of life, even in

fault-free code. Therefore, we must force the client to handle such cases.

400 Chapter 12

To help with this, Java has a second kind of exception – represented by the Exception

class – that the compiler will force client code to handle. In Java, Exception objects are called

checked exceptions because the compiler requires checking code to be provided, while

RuntimeException objects are called unchecked exceptions because no checking code needs

to be (or should be) provided.

So, in order to signal a failure from an out-of-process supplier, we can do something like

the following:

public class ExternalResourceUser {

public void useResource()

throws Exception // Checked exceptions must be listed

{

... // Use the external resource

... // Detect a problem

throw new Exception("External resource failure");

}

}

As with RuntimeException, you can use subclasses of Exception, such as IOException, if you

want to be more specific.

12.8.5 Enabling and Disabling Dynamic Checks
Dynamic checking has implications for the performance of your system: checking precondi-

tions, postconditions and invariants in every method could easily make the code ten times

slower than it would otherwise be. We aim to produce software that, when deployed, will

never violate an assertion – if no assertion is ever violated, there’s no need to do any checking.

During development, on the other hand, we expect violations to happen often. What we

need, in order to satisfy the different requirements of development and deployment, is a way

to turn dynamic checking on and off.

Eiffel implementations vary in whether they use a run-time switch or a compile-time

switch, but it is relatively simple to be selective about what we turn off and what we leave

on. For example, we may turn postconditions off for the library code that we’re using during

development (because we expect the library to have been debugged already). With non-Eiffel

languages, we have to work harder.

There are two ways to enable and disable dynamic checks. The first involves flipping a

run-time switch (using a command-line parameter or an environment variable): if the switch

is on, the run-time system will do the checks; if the switch is off, the run-time system will

skip over the checks. The second method uses a compiler switch to build two versions of

the system, one with checking code included and one without. In both cases, we can be

more selective: for example, we might disable all postcondition checks or all the checks in

library code.

Informal Specification in Java 401

In principle, Java implementations could use either a run-time or a compile-time switch

but, in practice, the situation is a little more complicated. Java programmers can only use a

compile-time switch by careful programming; a run-time switch (the assertion mechanism)

is available, but it shouldn’t be used to check all parts of the contract.

Implementing a Compiler Switch
We can simulate a compiler switch using a well-documented trick. First, we introduce a

class that stores the value of the switch as a class constant (a class field with a fixed value).

This is how such a class might look (where final means ‘constant’):

public class ContractSwitch {

public static final DO_CHECKS = true;

// It’s okay to have a public field if it’s final

}

Now, any dynamic checking code can be wrapped in an if statement that depends on the

value of the switch, as in:

public class Supplier {

...

// Precondition: o != null.

public int bar(Object o) {

if (ContractSwitch.DO_CHECKS) {

if (o == null) {

throw new RuntimeException("Preconditions violated");

}

}

...

}

When the compiler gets to the if (ContractSwitch.DO CHECKS) statement, it spots that the

class constant is true, so it knows that the body of the if statement will always be executed:

the precondition check is compiled and included in the current build. However, no code

needs to be generated for the outer if statement because it would be redundant at run time.

The net effect is that the current build includes the contract-checking code but not the code

which checks the switch.

In order to build a version of the system with checks disabled, we find the definition of

the ContractSwitch class, set DO CHECKS to false and recompile our system. Now, when the

compiler encounters the if (ContractSwitch.DO CHECKS) statement, it will conclude that, since

the constant is false, the outer if statement will always fail, so there is no point generating

code for it or anything inside it. The net effect is a build of the system that contains no

checking code and no switch-checking code.

This compiler-switch technique is part of the Java language specification, so we can

expect it to work with every Java compiler. With a little thought, you should be able to work

402 Chapter 12

out how to make the technique more selective (by adding more class constants). Because Java

compilers compile classes by package, we must add a ContractSwitch class to every package.

Using the Assertion Mechanism
Java has an assertion mechanism that allows the programmer to insert statements such

as assert o != null. A run-time switch can then be used to control whether assertions are

on or off, i.e. whether assertion failure should cause the program to stop automatically.

Although a run-time switch is used, it is possible for Java implementations, when the switch

is off, to remove all the process size and performance overheads normally associated with

assertions.

Traditionally, assertion mechanisms in programming languages have been used to enforce

contracts and to insert fault-checking code at arbitrary points. According to the documen-

tation for Java’s assertion mechanism, it should not be used to enforce the client half of a

contract. The reason given is that some checks are too important to allow them to be disabled

(for reasons of safety). A better recommendation would have been to state that some checks,

which reside in application firewalls, are mandatory and the assertion mechanism should

not be used for those. Such a recommendation would have been compatible with everything

else that we’ve seen in this chapter.

Despite the fact that the assertion mechanism has all the characteristics of a switchable

mechanism for checking contracts, we have to accept that we shouldn’t use it for this. Other

programmers who have read the documentation won’t expect it to be used in this way. Also,

if assertions are on when a check fails at run time, the kind of exception that is thrown is an

Error not a RuntimeException. An Error is an unrecoverable problem that programmers should

not try to handle, such as a fault in the run-time system or running out of memory. As the

assertion mechanism throws an Error, it doesn’t fit in with the guideline that application

faults should be signaled with RuntimeException objects.

This is a shame. Although automatic contract enforcement may be added to Java in the

future, for now, we’re stuck with the compiler-switch technique.

12.9 SUMMARY
In this chapter, we’ve looked at:

• Specifications, which are complete, unambiguous descriptions of the required
behavior of our software. Formal specifications are scientific and rigorous and
use specialized language; informal specifications are pragmatic and partial, and may
be expressed in natural language or in the syntax of a language such as Eiffel.

Review Questions 403

• How specifications can be written in an object-oriented manner. An object-oriented
specification allows us to assert the preconditions, postconditions and invariants for
a class.

• Design by Contract, which combines formal methods and object-oriented program-
ming in a way that makes it easy to produce robust, elegant and efficient code. A
binding contract between a client object and a supplier object imposes obligations
on both sides.

• How to use specifications and Design by Contract in Java, particularly by using
comments and Exception objects. We also considered the Java assertion mechanism
and discarded that as a potential solution.

FURTHER READING
For a larger helping of OCL, see [Clark and Warmer 02] and the OCL specification itself

[OMG 03b].

For a description of Design by Contract from the inventor himself, see [Meyer 97].

Bertrand Meyer also covers every aspect of object-oriented programming.

For a good discussion of what to do and what not to do in Java, including the proper use

of exceptions, see [Bloch 01].

REVIEW QUESTIONS
1. What is a ‘class invariant’? Choose only one option.

(a) A class whose source code is versioned and therefore cannot be changed.

(b) A class whose objects have constant fields.

(c) A condition that will always be true for an instance of the class.

2. What is meant by the term ‘design by fear’? Choose only one option.

(a) Design is scary.

(b) You cannot know when to trust the code.

(c) You design a system too quickly because of time pressures.

3. What is ‘Design by Contract’? Choose only one option.

(a) Designing code as if there were a contract between an object that sends a message

and the object that receives it.

404 Chapter 12

(b) Reinforcing the contract between every pair of objects by increasing the amount of

error-checking.

(c) Protecting your software using a contract with a firewall.

(d) Designing a software system under contract.

ANSWERS TO REVIEW QUESTIONS
1. A ‘class invariant’ is c. A condition that will always be true for an instance of the class.

2. The term ‘design by fear’ means that b. you cannot know when to trust the code.

3. ‘Design by contract’ means a. Designing code as if there were a contract between an object

that sends a message and the object that receives it.

13
Continuous Testing

In this chapter, we’ll be covering all aspects of testing. As with other areas of software

development, the discipline of engineering is often used as a guide.

Learning Objectives
Understand the many terms used in

testing.

•
Consider a testing strategy.

Work through an example of
test-driven development.

Chapter Outline

13.1 Introduction

13.2 Testing Terminology

13.3 Types of Test

13.4 Automating Tests

13.5 Preparing for Testing

13.6 Testing Strategies

13.7 What to Test For

13.8 Test-Driven Development

13.9 An Example of Test-Driven Development using JUnit

13.10 Summary

Further Reading

13

408 Chapter 13

13.1 INTRODUCTION
Developing software is a complex business. No matter how hard we try, we won’t be

able to eliminate all faults (or bugs) simply by going through the phases of requirements,

analysis, design, specification and implementation. However, through good practice, we

can make sure that the most serious faults do not occur in the first place. In addition,

we need a separate testing phase, with the goal of eliminating all remaining faults before

release.

Nowadays, it is generally accepted that tacking a testing phase on to the end of the

development is inefficient: we must also test our code, and other artifacts, as we go along.

We should ensure that many different people are involved in testing: developers; peers

(colleagues not directly involved in the current project); customers; project managers;

testers (colleagues with primary responsibility for the testing phase). Essentially, there are

three phases of testing activity: during development (by developers), during the testing phase

(by an expert testing team) and after release, when all users and developers gather feedback

and fix faults discovered while the software is live.

Since this book is aimed primarily at members of the development team, we will look at

test-driven development, a form of continuous testing where developers test their code as

they go along. The advantages of this approach are that:

• It improves the quality of the software (the more testers the better).

• It reduces the cost of the testing phase.

• It shows the programmers that they’re making real progress (rather than just producing

lines of code).

• It reduces the number of (embarrassing) faults that are linked to the programmer during

the testing phase.

• It helps programmers to refactor (reorganize) their code, for style or performance reasons,

without breaking anything that they’ve already written.

13.2 TESTING TERMINOLOGY
• A test checks that some aspect of our software is correct, such as ‘Test whether we can

log on’, ‘Test the purchasing subsystem’ or ‘Test that the memory footprint doesn’t exceed

500 MB under maximum load’.

• An error is a mistake made by a programmer, based on a misunderstanding, for example.

An error usually gives rise to one or more faults. (This is distinct from using ‘error’ to

Testing Terminology 409

mean an undesirable condition, expected or otherwise, that occurs while the system is

running – see the definition of failure.)

• A fault is an incorrect piece of code: in the same way that a fault in a car’s engine stops it

running smoothly, a software fault stops the system from operating correctly. For example,

a method written on the assumption that arrays are indexed from 1 has a fault if arrays are

actually indexed from 0. The terms fault or defect are used in preference to bug, which

is considered to be rather informal. Faults of omission occur when the developer has left

something out (such as a customer requirement or code that should deal with a particular

situation); faults of commission occur when there is a problem committing requirements

to code, design or specification (such as stating that the area of a triangle is base times

height or attempting to read from a file that has been closed).

• A failure is a system malfunction, usually caused by one or more faults, for example,

‘Someone has hacked into the system because of the buffer overrun fault’.

• A fix is when a fault is repaired.

• Verification checks that the software is correct with respect to the requirements docu-

mentation (system use cases).

• Validation checks that the software is what the customer requires, i.e. that it performs the

functions that the customer needs in a way that is acceptable to the customer and to the

end users.

• A specification is a description of the interface of a piece of code, which lays out what can

go in and what must come out. Therefore, specification testing is an umbrella term for

black-box testing and use case testing.

13.2.1 Black-Box Testing
With black-box testing, whatever is being tested (the system, subsystem, class, or method)

is treated as an impenetrable object (see Figure 13.1). The only access to the box is via

its published interface – messages, parameters and so forth. Therefore, all the tester can do

to assess the correctness of what the box does is to capture and analyze the replies (from

messages); examine any external side effects (such as the creation of entries in a database);

and check the time taken to answer requests or execute commands. Although each use of

the interface may cause internal side effects (as the box changes from one state to another),

the tester can only view the effect that these internal side effects have on the subsequent use

of the interface: even if details of the internals of the box are available, they’re ignored for

the purposes of black-box testing.

Black-box testing arises from the philosophy of ‘we don’t care how the code achieves its

ends, as long as it achieves them.’ This fits well with the idea that the system requirements that

are written down before the software is produced are the most important aspect of software

410 Chapter 13

Inputs Outputs

Side-Effects

Figure 13.1: Black-box testing

development: beyond the requirements phase, the analysts, designers and implementors

have free reign to fulfill the requirements in any way they see fit. Black-box testing insulates

the tester from the internal complexity of the software.

A disadvantage of black-box testing is that, because the internal structure and lines of

code are ignored, potential improvements may be missed – after all, it is possible for a piece

of software to be correct and adequate without being good quality. Another disadvantage is

that faults that are not caught by the tests themselves will remain undiscovered until much

later.

Other terms for black-box testing include behavioral testing, emphasizing that the testing

concentrates on how the box behaves, from an external point of view, rather than on how

that behavior is achieved (which would require knowledge of the inside of the box), and

functional testing.

13.2.2 White-Box Testing
In white-box testing, we’re allowed to look inside the box, examining structure and detail

right down to individual lines of code (see Figure 13.2).

The benefits of white-box testing include the fact that peers (other software developers)

can propose improvements, such as refactoring, for better performance; easier maintenance;

and more opportunities for reuse. Another benefit is the fact that deficiencies may be

spotted early or spotted when they might otherwise be missed (because it is not possible

Types of Test 411

Inputs Outputs

Side-Effects

Figure 13.2: White-box testing

to test software exhaustively). Deficiencies spotted by white-box testing include classic

programmer mistakes, such as traversing a collection of values more times than is necessary,

and incomplete or incorrect interpretation of the requirements.

Since, during the course of development, the structure and content of code will change,

white-box testing is best left until late in the development, usually during the testing phase.

This is particularly true of development that is spiral, iterative and incremental, where we

accept that analysis, design, coding and system requirements will need to be adjusted as we

learn more about the problem and its solution.

Other terms for white-box testing include structural testing, reflecting the fact that the

internal structure of the box is considered as well as its external behavior, and glass-box

testing.

13.3 TYPES OF TEST
Most testing experts break the testing process up into a hierarchy of distinct levels:

• Unit testing is the lowest level of the hierarchy. A unit is a single, coherent piece of code

(traditionally, a function or a procedure; in object-oriented software development, a class).

• Integration testing checks how independent pieces of code work together.

412 Chapter 13

• System testing checks the operation of all the subsystems working together, along with

any interaction they have with their environment. The most important form of system

testing is use case testing because the system use cases describe completely what the

system must be able to do. Having designed tests for each use case, we can go on to provide

tests that check whether the use cases work in parallel.

13.3.1 Unit Testing
For each class, we design tests that check whether it works correctly, efficiently and elegantly.

While designing unit tests, we aim to check that instances of the class have the correct

message signatures (name, return type, parameter types and parameter names) and that they

generate the correct replies from our test data. We also want to check that each object starts

in a valid state and moves from one valid state to another, as it is used. (Recall that the state

of an object is recorded in the values of its attributes.) For black-box testing, we can only

verify the state using messages (getCustomerId, for example); if we do white-box testing, we

can check the fields and we can look inside the methods for faults, poor style or poor quality.

If the class makes use of class fields and class methods, we would have to check the class

itself as well as its objects.

With unit testing we have a dilemma: how do we test the unit without testing its

collaborators too? In object-oriented terms, we may decide that encapsulated objects are

simply part of the unit and therefore take no special steps for black-box testing. (For white-

box testing, we can simply ignore the collaborators.) However, if we wish to be pedantic,

we can replace the collaborators with simulated, or mock, objects that provide the bare

minimum behavior needed to test the original class. We may also need to use mock objects

(or stubs, as they’re sometimes called) as stand-ins for code that is not available yet (because

it hasn’t been implemented or because it requires some configuration, such as a database,

that we don’t want to be concerned with for the moment).

13.3.2 Integration Testing
In a finished system, every object collaborates with other objects, so integration testing is

a necessary step after unit testing (especially since different classes are generally written

by different developers). For example, we might want to test how well the objects in our

business layer work together.

Integration testing usually takes place at one or more of the following levels:

• collaborating classes that form a logical unit

• layer

• package

• library

Types of Test 413

• framework

• system or subsystem

Subsystem testing is a form of integration testing where the collection of classes under

test comprise a whole subsystem (as defined by the system designers).

13.3.3 Alpha Testing
With alpha testing, we accept that the system is a work in progress. The aim is to make sure

that we’re developing something that is likely to be correct and useful to the customer. For

example, we may implement some core functionality within the framework of our system

design and then make it available to colleagues and carefully-selected customers to try out.

If the feedback is good, we know that we’re on the right track (and we will gather useful

information about improvements); if the feedback is particularly negative, we must go back

to the drawing board, otherwise we will end up delivering a system that is, at best, useless

or, at worst, something that the customer will refuse to pay for.

Alpha testing is often performed against a prototype, i.e. a version of the system that is

produced quickly and cheaply. Thus, if the alpha testing fails, we have not wasted too much

time or money. Once the alpha testing is complete, we should discard the prototype code in

favor of the more elegant solution that we will produce during the full-scale development.

Although it can be hard to throw code away, we must remind ourselves that the prototype

was meant to be developed quickly, just for experimentation – it is highly unlikely, then,

that the design or coding will be top quality. Although we throw the code away, we retain

everything that we have learned about the problem and its solution up to that point (draft

use cases and UML artifacts, for example).

13.3.4 Beta Testing
Beta testing occurs when an entire increment of the system is complete, after all phases of

development and in-house testing. It involves asking people to try out the software in its

real environment. We do this because we want to find the most obvious faults and fix them,

before final release. No matter how good our development process is, there will usually be

faults that have not been discovered by the developers or the special-purpose testing team.

Normally, faults are missed because exhaustive testing is impossible (or at least infeasible),

which means that testers must use their skill and judgment to anticipate the way that the

software will be used. Beta testing is used to fill in the gaps between anticipated use and

actual use.

Beta testing should be carried out by end users, not by any member of the testing team.

Depending on the nature of the software, beta testers may be colleagues, real customers, or

both. Since beta testing and producing feedback can be frustrating tasks, we normally need

414 Chapter 13

to offer some kind of incentive. For colleagues, we might try ‘If you beta test my software,

I’ll beta test yours’ or simply ‘It’s for the good of the company’; for real customers, we might

offer a discount on the released version. For a system with only one eventual customer, we

may have to persuade them that beta testing is a normal part of the process and doesn’t imply

poor quality – the beta version could then be tested by a few of the customer’s employees

before wider release within their organization.

13.3.5 Use Case Testing
With use case testing, we take each use case in turn and design tests that confirm that

the system satisfies the use case. We may do this by considering a number of possible

scenarios for each use case, each scenario being a legal sequence of events – hence the term

scenario testing. (Although a use case may appear to be a single sequence of events, it will

often describe alternative paths and repetitions – therefore, each scenario will be just one

particular choice of path and repetitions.) Use case testing is a form of black-box system

testing.

As well as the normal sequences of events, we can test the abnormal sequences that have

been specified in the use case, i.e. how the system should behave when things don’t go

according to plan. For example, an attempt to rent a car will usually be successful but we

may have decided to specify what should happen in the rare case that the customer owes us

money from a previous transaction. In a multi-user system, it is also important to execute

use case tests in parallel, to simulate what will happen after deployment.

Use case testing is particularly important in development driven by use cases, as described

in this book. Since our development is incremental, based on the prioritizing of use cases,

use case tests should be run incrementally.

13.3.6 Component Testing
A component, in general terms, is a logically separate piece of software, with a clean,

well-defined interface. By analogy with hardware components, a software component is

independent of the world around it and keeps its internals hidden. If we want to make use

of a component, we’re restricted to using its interface, we can’t ‘break it open’ – this shields

us from the internal complexity, while still allowing us to connect components to construct

something bigger.

Any of the following can be considered as a component: an object (perhaps with other

objects inside); any group of collaborating objects; a subsystem; an entire system. On that

last point, thinking of a system as a component allows us to link systems together, perhaps at

different locations. For example, the iCoot system, which runs inside an individual branch,

delivers weekly reports to head office via a business-to-business-link – in this case, the

systems are entirely separate, treating each other as components.

Types of Test 415

So, component testing is about running tests against whatever we have decided constitutes

a component. As usual, we can choose whether we do black-box testing, white-box testing,

or both.

13.3.7 Build Testing
A build test is used to ensure that our software can be built successfully. To build software

means to collect together all the bits and pieces of the system, compile them, link them

together and deploy them, along with any resources that they need (databases, files that are

not actually source code). A build test is sometimes called a smoke test. While developing

a new engine, a team of mechanical engineers will start up and rev the engine at frequent

intervals; if the engine emits smoke, something is wrong (see Figure 13.3), so the engineers

shut the engine down, diagnose the problem and fix it, before doing another smoke test to

check the repair.

For anything less than a trivial system, we can use build tools to ensure that the

construction of the system is automated, consistent and complete. For example, Ant,

from the open source Apache project (ant.apache.org), takes as input XML files written by

developers; these files describe how to construct all the pieces of the complete system. The

XML files also contain information about the dependencies between individual pieces, so

that the Ant tool can build them in the correct order: for example, we might specify that a

particular set of source files must be compiled before they can be linked together into an

executable.

Once the system has been built without failures (such as those caused by syntactical or

semantic errors, reported by the compiler), the second stage of the build test is to start

the system up and go through some critical scenarios – if these scenarios can be completed

without any further failures (such as resources not being found or exceptions being thrown

by the program), the test has succeeded. After a successful build test, we know that the

code and resources we have implemented up to this point work together, so we won’t have

problems when we deploy the finished system. If the scenarios fail, we know that there

are faults that must be dealt with before we continue with the development, since there

is no point producing a finished system that won’t build, deploy or perform its essential

functions.

It is a good idea to perform a build test frequently, hence the term nightly build. This

may seem to be over-enthusiastic, but it is beneficial for a large system with many pieces,

especially since the pieces are usually developed by separate people, who may be at separate

locations, unable to communicate on a daily basis. Regular build testing is also important

because it avoids deferring problems until later, when they will generally have become

larger (because of the tendency for the work of individuals to diverge over time). Even

for a small system, perhaps with only one developer, regular builds still have the general

advantages described above. It is natural for developers to build their own code several times

416 Chapter 13

Figure 13.3: An unsuccessful smoke test

a day anyway – a successful build and a few scenario walk-throughs demonstrate that they’re

making progress.

For medium- to large-scale projects, there will usually be a dedicated build team,

responsible for writing the build files, collecting pieces from developers and performing the

build tests. This frees ordinary developers from a lot of administrative activity – indeed, as

long as the pieces provided by a particular developer cause no problems, they can forget about

the build test altogether. As soon as a build test fails, the build team must identify which

developer is responsible for the failure and make sure that they help to fix the associated

Types of Test 417

faults. (Of course, failures may also be caused by members of the build team, using invalid

build files.) As an incentive to fix problems quickly, some kind of forfeit may be imposed by

the development team. These may be humorous, low-impact forfeits, such as having to wear

a hat marked ‘Build Buster’ until the problem is fixed, or they may be rather more serious,

such as being on call twenty four hours a day, seven days a week to come in and fix any

faults that you have caused.

13.3.8 Load Testing
While we’re developing our system, however much we test as we go along, we’re unlikely to

be able to test its behavior under normal load. To use an analogy with engineering: when

building a bridge, we may be able to test the strength of individual girders before we add

them to the bridge, but we won’t be able to test the whole bridge under a typical load of, say,

a thousand lorries, two thousand cars and one thunderstorm. With software load testing, we

take the finished system and apply the normal, expected load to it – for example, ‘100,000

users trying to examine the contents of their bank account simultaneously’. As well as normal

(average) load, we may test the system under high load and maximum load, to check that it

can cope under these extreme conditions.

Software load testing is, in many ways, easier than the load testing carried out by

engineers: if a bridge were to fail, we would have a serious problem, so the engineer has to

use techniques such as wind-tunnel tests and computer modeling to make sure that, even

under extreme conditions, a collapse is impossible. Even then, the engineer allows the bridge

to be opened knowing that their confidence is theoretical – how good can the application

of scientific principles and modeling be, when we didn’t actually test the real thing? With

software, on the other hand, we can load-test the real code in deployment conditions, safe in

the knowledge that, if anything goes wrong, we can fix the code before it goes live.

Another advantage of software load testing is that, if a failure does happen when the

system is live, we can re-start the system (some would suggest that this is why software

is less reliable than engineered products). In the case of a safety-critical system, such as a

fly-by-wire airplane, this situation doesn’t apply, so we may use different principles: if we

can demonstrate that our fly-by-wire plane is more reliable than a similar plane under the

control of a human being, we have a net gain.

Soak Testing
Some faults in software only become evident when the software is used continuously for

long periods. For example, a system that doesn’t remove temporary files as it goes along

will eventually run out of disk space, but only if it is allowed to run under load for an

extended period of time. Soak testing means running our software continuously under high

load, to make sure that it doesn’t exhaust its own resources or exhibit any other cumulative

problems.

418 Chapter 13

Stress Testing
Engineers often test a structure to breaking point, for two reasons: firstly, to find out what the

breaking point actually is, regardless of the theoretical limits; secondly, to find out exactly

what happens when the structure does fail, hopefully discovering that only part of it fails.

Software stress testing is the process of overloading a system to the point where it can no

longer cope. By doing this, we discover what the limits are and we can see how it behaves

beyond the breaking point. When performing stress testing, we may deprive the system of

the resources it needs, in order to see what happens: for example, we may deprive it of some

of the computing power, memory or disk space that it needs to do its work.

Generally, with software, we aim to achieve graceful failure: the system tries to minimize

the associated losses and stay running. For example, if we have put together a news Web

site that typically handles a million simultaneous requests, an extraordinary news item may

result in a hundred million attempts to access the system. In such cases, rather than the

whole Web site falling over in a heap, it would be better if 10 million requests were handled

as normal and the other 90 million users were informed that the Web site is too busy and

they must try again later. With the help of live monitoring, we could be made aware of the

problem, so that we could decide whether or not to increase the capacity of the site.

Another term for stress testing is negative testing. This is negative in the sense of

‘pessimistic’ because the software is taken beyond its operational envelope into areas for

which it was not designed.

13.3.9 Installation Testing
Installation testing involves seeing how our software behaves in its operational environment.

Since the majority of testing may be carried out in a specially built test environment (the test

bed), we have not fully tested the software until we have checked it in the live environment

too. This is especially true of software that is intended to be portable, designed to run

in any number of environments (multiple operating systems or devices). Other terms for

installation testing include platform testing and environment testing.

13.3.10 Acceptance Testing
Ultimately, the success of a piece of software depends on whether it satisfies the needs of its

users. Even if the software has been commissioned by the management for the benefit of the

organization, if it is not acceptable to the end users, they won’t use it properly, defeating the

original purpose. In the case of software manufactured for sale to third parties, the software

will only sell, and continue to sell, if it is effective to those who use it. Naturally, we would

prefer our software to be good rather than just adequate.

Acceptance testing allows end users to try the software before release, to see if they accept

it. During acceptance testing, we may ask the users to perform particular tasks or we may

Types of Test 419

ask them to try to do what they would normally have done by other means. While the tests

are being carried out, we can monitor the users’ effectiveness and then gather feedback.

Monitoring may include videoing the users to gauge their visible and audible reactions,

and recording their keystrokes and mouse movements (the general principle being ‘less is

more’ – the less interaction required to get the job done, the better). Although monitoring

and gathering feedback is user-focussed, parts of acceptance testing may take place at a

higher level: discussing productivity with managers or asking a psychologist to interpret

video recordings, for example.

Since full acceptance testing is carried out late in the day, during the testing phase, it can

be expensive to modify the software to take account of negative results. Thus, we would

normally defer the less critical modifications to a later increment. The principles of spiral and

iterative development, with continuous customer involvement, help us to avoid any serious

problems.

13.3.11 Regression Tests
Whenever software is modified, by adding, removing or editing source code, we need to be

sure that the new version of the software is at least as good as the previous version. Making

changes to code can introduce faults. It is not unusual for ‘fixes’ that are not intended to

introduce new behavior to contain errors of their own.

Regression testing is the process of ensuring that modifications have not caused the code

to regress, i.e. that the code has not ended up worse than before. Thus, we will usually have

a suite of tests that we run against our software after every change – the new version of the

software should pass these tests just as well as the old. (Ideally, as well as being just as

correct, the new version should be just as effective, fast, secure, elegant, and so on.)

13.3.12 Documentation Tests
Documentation is an umbrella term that refers to manuals and training materials. Such

documentation is crucial for the success of a system: if no-one can use the software or

maintain it in the field, there was no point producing it in the first place. Documentation

should be aimed specifically at both system administrators and end-users, even if that means

that two sets have to be produced.

Documentation testing is the process of checking that documentation is correct and

effective, with input from other authors, system administrators, end users and instructors.

13.3.13 Testing for Security
Security testing is the process of ensuring that the system is secure, but what does secure

mean? As outlined in Chapter 8, security has the following aspects:

420 Chapter 13

• privacy

• authentication

• irrefutability

• integrity

• safety

Our system must be protected against hackers, malicious third parties intent on mischief

or criminal activity. Thus, we must test that it is impossible for invalid or unauthorized

information, or software, to get in or out of the system. Ethical hackers are specialists in

this area: with our permission, they will attempt to hack into our system on its test bed. Any

weak points that the ethical hackers identify can then be fixed before release.

Most security testing will be performed as part of system testing, usually during the testing

phase. This is because, although each piece of the system should be designed with security in

mind, we should concentrate our testing efforts on making sure that hackers (and gremlins)

can’t get beyond the system boundary.

13.3.14 Metrics
A metric is a measurement that we take to assess the quality or effectiveness of our software.

Typical metrics include:

• Code coverage: It is a widely held principle that code should only exist in a system if it is

used, otherwise we have wasted time developing it and increased our maintenance costs

and system size unnecessarily. In the context of code reuse, there is something of a conflict

here: when we implement a class, we may be tempted to add extra public methods that

we suspect will be useful in the future when the code is reused in other systems; however,

any extra methods that we add aren’t used by the current system. As a compromise, we

would expect to tolerate low coverage within libraries and frameworks, while expecting

high coverage for any code that is specific to the current system.

• KLOC: An old-fashioned metric, short for thousands (K) of lines of code. Often, KLOCs

were used to measure the productivity of developers: the more lines of code a programmer

produced, the more productive they were thought to be. However, a programmer who

produces a lot of code quickly may be producing more than is necessary, while a

methodical, accurate programmer may produce less code that is of better quality. The best

object-oriented developers will try to avoid writing their own code, reusing code from

libraries, frameworks and other applications, so the KLOC has become largely redundant.

KLOCs are still sometimes used to indicate the relative size of an application or system: as

in ‘the XYZ system has 15 000 KLOCs’.

• Transaction time: A transaction, as the term is used here, is the handling of an incoming

request – examples include business transactions such as ‘buy a book’ and database

Automating Tests 421

transactions such as ‘add a record to the CUSTOMER table’. We can measure the number

of transactions handled per second or the average transaction time, as a way of gauging

system performance.

• Depth of inheritance hierarchies: Some would say that an inheritance hierarchy with many

levels is too deep. Others would say that there are no rules, it just depends on what you’re

doing. It’s fair to say that most inheritance hierarchies, even complex ones, only stretch to

half a dozen levels. Therefore, if we spot an inheritance hierarchy with 50 levels, it merits

further investigation.

• Breadth of inheritance hierarchies: This measurement relates to the number of classes

across a hierarchy. As with depth, this is a gray area. However, we might conclude that a

hierarchy with only three levels but 50 classes at each level is in need of reorganization.

• Size of methods: A method that is more than, say, 50 lines, should probably be split into

several smaller methods: each one would be easier to write and easier to maintain.

• Degree of coupling: Components with many links between them, passing many messages

back and forth, are said to be tightly coupled. This is largely a maintenance issue,

because changes to the interface of one component will have a large impact on the other

components and vice versa. We should use a greater number of loosely coupled objects

or, perhaps, write the system in a client–server style.

• Degree of cohesion: A cohesive object has a single, coherent, set of responsibilities. For

example, an object that represents a pizza on a menu and an actual pizza that someone

has ordered has weak cohesion: parts of the system would use the pizza exclusively as

a description from the menu, while others would use it in relation to one particular

customer. Another example of weak cohesion would be a collection that could be used

as a set (unordered, without duplicates) or as a list (ordered, with duplicates). Strong

cohesion encourages simplicity, ease of maintenance and reuse.

Most metrics are subjective, so they must be interpreted carefully by humans. Ultimately,

the most important metric is ‘Does the software achieve what was set out in the requirements?’

13.4 AUTOMATING TESTS
You may have realized by now that there is a lot of work involved in testing software

thoroughly. You should also have realized that testing is essential, in order to ensure code

quality, correctness and security. However, if it is too time-consuming, developers may be

reluctant to do it, especially those who are not actually members of the testing team.

Therefore, the more we can automate the process of testing, the better. The ideal is for

the tests to be implemented separately from the system software and to run at the touch of a

button. Test automation software includes:

422 Chapter 13

• Loading tools that simulate the load that the system can expect to be subjected to when

it goes live. Tools can allow us to load servers in a client–server system by simulating

multiple simultaneous client access; user interfaces by simulating the actions of a person;

processes by simulating external access; and peers in a distributed system by simulating

access by other peers.

• Testing frameworks that comprise reusable code and techniques. The frameworks take the

drudgery out of running tests and allows the test developer to concentrate on writing the

tests themselves.

• Performance monitoring tools that can monitor anything, from the virtual memory in use

by an individual process to the network traffic between machines.

• Metrics-gathering tools that gather metrics from source code or running programs. For

example, we could use such a tool to analyze source code, looking for common faults and

examining code quality (in much the same way as a style checker in a word processor).

• Specification-exercising tools that take an informal specification of the interface of our

software (written by test developers in some special-purpose, executable language) and

attempt to test whether the underlying software conforms to the specification. For example,

if we specify that a particular message always returns a value less than 10, the tool could

verify that this is true for a number of randomly-generated parameters.

• Assertion checking tools that check the assertion code inserted by the developer. Assertion

checking involves executing expressions at run-time to make sure that they do not fail

(evaluate to false). Thus, assertions can be used to test the code every time it is run.

These tools (and others) are distinguished by the fact that, once they have been configured,

the tester can start them up and then just sit back and wait for the results.

13.5 PREPARING FOR TESTING
From the point of view of a project manager, the major components of a testing strategy are:

• A test plan: A statement of how we’re going to achieve the objectives of a system that

is correct and meets the customers’ needs. A draft test plan should be written before the

development effort gets underway, addressing all phases of the development and all the

artifacts produced. A test plan will cover large-scale issues such as testing philosophy and

testing techniques, all the way down to tables of individual tests that specify the test name,

description, procedure and expected results.

• A test bed: An environment that is similar to the live environment, constructed for the

sake of testing. For example, if we’re implementing a client–server system to work with

clusters of Unix servers (containing the business logic), a database server running on

Preparing for Testing 423

a mainframe, and multiple clients on arbitrary platforms, we could construct a test bed

consisting of:

– ten client machines, using a variety of operating systems;

– three Unix servers;

– a mainframe;

– a TCP/IP-based LAN.

A test bed allows us to test the software safely before it is deployed in the live environment,

which is much more sensitive.

• A test harness: A tool that helps us to run our tests or to develop them. A harness supports

the testing process, so that our tests are not disorganized. (We could also say that a harness

helps us to attach our tests to the code being tested.) For example, a harness may comprise

a software framework that provides the code for running our tests and a tool for launching

them: the tester only has to implement the tests.

• Test cases: Logical units each comprising a number of tests, designed to check one

particular aspect of our software. For example, we might have a test case based on

a logical piece of software – class, package, subsystem – or on a logical piece of the

business – buying a book, viewing a bank statement, issuing a query.

• Test suites: Collections of related test cases. We can collect test suites into higher-level

test suites. For example, we might collect the ‘Buy a Share’ and ‘Sell a Share’ test cases into

the ‘Trading’ test suite; we might then combine the ‘Trading’, ‘Banking’ and ‘Assets’ test

suites into the ‘Money Management’ test suite.

• Test procedures: Instructions (for people) on how to carry out each test. This will typically

involve steps such as:

1. Set up the test.

2. Perform the test (comparing expected and actual results).

3. Report the test result.

Each of these will comprise smaller steps, such as ‘Select File→New from the menu bar’

and ‘Enter a file name’.

• Test data: Data that we synthesize for the sake of running tests. Before our system is

deployed, we do not have real world data available, so test data is our best guess as to the

kind of information our system will eventually have to handle. Test data includes data in

files; data in databases; and data passed into the system by typical users.

Some form of test data is essential, because we can’t test our software without it: for

example, we can’t test a component that is designed to retrieve data from a database

unless there is something for it to retrieve. Normally, test data has to be hand-crafted by

developers, based on intuition and experience, although we may be lucky enough to have

it available from past projects, ideally collected from previous versions of the system in

use by the real users.

424 Chapter 13

13.6 TESTING STRATEGIES
You may think that software should be implemented and then tested, but this strategy is

inadequate, for the following reasons:

• It takes no account of the other development artifacts, such as use cases and UML diagrams.

• It encourages developers to defer fault-finding to the testing phase, when faults will be

more expensive to fix.

• It’s unnatural: every programmer wants to try out pieces of code that they have written as

soon as they can (it gives them a warm feeling of security and progress).

Therefore, what we need is a testing strategy that is continuous: everything we produce is

tested, all of the time. Since we’re dealing with different kinds of artifact, our strategy must

also involve different kinds of testing (testing by hand, testing with sample code, automated

testing, and so on). We do still need an explicit testing phase, because developers, no matter

how brave and enthusiastic they are, won’t try to break their own artifacts (their goal is

always to ensure that ‘it looks okay so far’).

For non-code artifacts, testing involves manual checking by:

• The development team, since they’re experts with an interest in success.

• Customers, because customers are domain experts who must be involved if we’re to deliver

a correct and useful system.

• Peers, colleagues who are developers but who are not directly involved in the current

project (and who therefore will be less possessive about the artifacts).

For code artifacts, testing involves:

• The development team, so they can witness their own progress (and produce a better

quality product).

• Peers, who take part in code reviews, helping to spot faults and opportunities for

refactoring.

• The testing team, who seek to verify the correctness of the code and validate its

effectiveness, for the good of all.

13.6.1 Testing During Development
During development, we should test all non-code artifacts manually. If we’re using a tool

that is tuned to a particular methodology, it may have traceability features that help us

to check that dependent artifacts are consistent. However, there will still be a manual

Testing Strategies 425

element: there is only so much a tool can do and we may have good reasons for disabling or

relaxing automatic traceability (such as personal preference, experience, project guidelines

or in-house adaptation of a particular methodology).

For the code itself, it is a good idea to encourage programmers to implement tests in

parallel with their coding activity. A testing framework such as JUnit can help with this:

before writing a piece of system code, the programmer writes some sample code that will

test the new piece. Thus, when the new piece is complete, the programmer can verify

immediately that they were successful. JUnit programmers perform unit testing, regression

testing and, to a lesser extent, integration testing.

Programmers should also be encouraged to add dynamic assertion checks to their code.

This will enable continuous testing of class invariants, method preconditions and method

postconditions, as defined in the specification phase. Programmers may also add assertions

within methods to check for other common faults, such as branches that should be impossible

to reach.

Peer reviews should be organized on a regular basis, at the end of each development spiral,

for example. All the artifacts under review are distributed to members of the development

team and other peers and then a meeting is arranged to go through them in detail, looking for

faults and inadequacies. The goal is to certify or sign off the artifacts before proceeding. How

formal the peer review process is depends on: company policy; customer policy (for example,

defense projects tend to be more stringent); project policy; the stage of the development we

have reached (are we still feeling our way or is this a mature project?).

With customer reviews, we ask the customer to help us validate and verify the artifacts.

Customers should not be involved in reviewing complex artifacts such as sequence diagrams

or code. Peer reviews and customer reviews should not be combined, otherwise peers will

be inhibited in their constructive criticism by the presence of customers and customers will

have to sit through detailed technical discussions.

After the first increment, all increments should be subject to regular (nightly or weekly)

build testing.

13.6.2 Testing During the Testing Phase
During the testing phase, the testing team takes over the verification and validation of the

software before release. This will normally involve:

• Re-running the developers’ tests.

• Subsystem testing (including layers), based on the design and specification phases.

• System testing, based mainly on the system use cases developed during the requirements

phase.

• Acceptance testing, with end users and system administrators.

• Installation testing, on a variety of platforms if appropriate.

426 Chapter 13

• Documentation testing, of manuals and training materials.

• Beta testing.

• Metrics gathering, both performance metrics and coding-style metrics.

Members of the test team should perform black-box testing and white-box testing.

13.6.3 Testing After Release
After release, the testing continues. Every time an end user or administrator starts up or

interacts with part of the system, they test it again. There should be a reporting system in

place, so that any failures that occur during live use of the system can be reported to the

project team (via a support hot-line, e-mail, or a Web site, for example). The reporting system

can also be used to provide feedback, such as suggestions for improvement or requests for

new features.

Between increments, the project team should fix faults as they’re identified. It is then a

project management issue to decide whether fixes are released before the next increment.

Normally, in order to reduce workload, a number of fixes will be combined into a single fix

pack that customers can use to update their installation. Improvements, and new features,

should be deferred until the next increment.

Any fix that is applied to the system between increments should be regression-tested.

13.7 WHAT TO TEST FOR
Since the real world is unpredictable, we can’t hope to test everything that might happen to

our software. Also, since the number of possible inputs and results grows exponentially with

the size of the system, we don’t have time to test all the inputs and outputs that we do know

about. Therefore, our test cases must be based on experience and guess-work: we must use

our experience of the kinds of things that typically go wrong and we must predict which

tests will cover the most possibilities – for example, a test that follows ten paths through the

system is more useful than a test that follows one path. Another way of thinking about test

design is to consider that a test that finds no faults is a bad test: we would prefer our tests not

to skirt around likely problems, because that would leave us with a false sense of security.

The kind of testing we do will vary according to the type of application we’re dealing

with (desktop application or server, for example) and the application domain (e-commerce

system, embedded system, safety-critical system, and so on). Therefore, it is not possible to

write down the kinds of tests that should be performed for every system. However, below

are a few ideas to get you started (some of these ideas relate to black-box testing, some to

white-box testing and some to both):

What to Test For 427

• Test that the code conforms to its specification: We have two main forms of specification:

use cases and class-based specifications. These state what the result of correct inputs

should be, so we can use them as a guide for designing test cases. We should also test

any abnormal paths included in the specification (for example, the specification may state

what should happen if an incorrect password is entered). It is not generally feasible to

test for all situations where preconditions are violated, because the test space would be

infinite. Instead, we should use application firewalls to make sure that preconditions are

always respected.

• Test boundary conditions and mid-range conditions: Often, code is expected to deal with

ranges. If, for example, a product id is four to ten characters long, we should test, at a

minimum, that the code works for a product id of four characters, for ten characters and

for somewhere in-between, say seven characters.

• Test for off-by-one faults: With an off-by-one fault, the developer has gone too far or not

far enough. For example, when using a for loop to iterate ten times, in Java we might write

for (i=1; i<10; i++) when what we actually meant was for (i=1; i<=10; i++). The first version

of this loop iterates only nine times.

• Test special cases: Sometimes, developers are so concerned about what happens 99% of

the time, they forget to deal with the other 1%. Special cases often need special test coding

but exceptional cases are just as important as normal cases.

• Test for unusual situations: For example, when designing an HTML-based client, the

developer may assume that the client will only issue one request at a time. But, what if

they click a Submit button and then, because they don’t receive the expected result, they

click the Back button on the result page? The Web application on the server receives two

identical requests from the same browser session, when only one was intended.

• Test for memory errors: When using a language such as C++, memory faults are common,

because the language allows direct access to memory and because it is more difficult to

program. There is also the classic memory leak fault, where memory is consumed by the

application but never reclaimed. Even languages like Java that have an automatic garbage

collector can suffer from high-level memory leaks, such as adding an object to a collection

and forgetting to remove it when it’s no longer needed.

• Test for code-copying errors: When a multi-branch statement (such as an if–then–else)

has many similar branches, a programmer may copy a branch, paste it multiple times and

then hand-edit each one; it’s all too easy to forget to edit one of the branches.

• Check the use of operators and precedence: Programmers can confuse similar-looking

operators, such as & and &&, or make incorrect assumptions about precedence, for example,

+ being evaluated before a subsequent *.

• Check correct use of equality and identity: As described in Chapter 2, equality and identity

have subtle but important differences. For example, are two strings the same string or are

they two strings with the same characters?

428 Chapter 13

• Test that parameters are passed in the correct order: For example, with a method such

as bar(int,int), it would be easy for the programmer to write bar(34,2) when they actually

meant bar(2,34).

• Check for unintended infinite loops and infinite recursion: An infinite loop is one that

never terminates; an infinite recursion is a method that calls itself with no exit condition.

• Test for unreachable code: A programmer can inadvertently implement a branch, in an if

statement for example, that is impossible to get to: in this case, they have probably made

a mistake in the conditional part of one of the if or else parts.

• Check that errors are reported: Programs occasionally encounter situations that can’t be

handled; in such cases, we need to make sure that an error message is printed to an error

log, for further investigation.

• Test for calculation faults: It is common to make incorrect calculations based on separators.

The analogy used is that of constructing a fence: if we’re building a 16-meter fence, using

4-meter fence panels separated by fence posts, how many fence posts do we need? The

correct answer is not (16/4) but (16/4 + 1), because we need an extra post at the end, as

illustrated in Figure 13.4.

4m

post fence

Figure 13.4: Getting the right number of fence posts

• Test application firewalls for robustness: Having fault-checking code within our system

can be wasteful, especially in cases where there can be no fault. For example, if we have

a method foo(int) that requires a parameter between 1 and 10, it is wasteful to check the

parameter inside the method if we call the method using foo(2). A better approach is to add

an application firewall – a layer of code around the application that ensures that invalid

requests can’t get in the first place. It’s vital to test that our application firewalls protect

the application, by trying to break through them.

• Test correct initialization: When a piece of software is initialized (for example, a system is

started or an object is created), it should initialize itself to a sensible state. For example,

when we start a server, it should be ready to receive requests from clients immediately

after initialization: we should not have to start it and then issue several commands before

it can be used.

• Test that variables are initialized: When we introduce a variable into our program, we

should make sure that it is given a sensible value before it is used. Some programming

What to Test For 429

languages automatically initialize variables to a sensible default, such as 0 (for numbers)

or null (for pointers). However: some languages do not do this and even if they do, the

default value may not be what the programmer wanted.

• Test that an object complies with its state machine: A piece of software often has a specific

set of legal states. For example, an object that represents a file may have the following

legal states (recorded in the attributes): ‘doesn’t exist in the file system’; ‘exists and is open

for reading’; ‘exists and is open for writing’; ‘exists but is closed’. We would want to check

that our file object can never enter an illegal state such as ‘doesn’t exist and is open for

reading’. State models, as recorded in UML state machine diagrams, can help here.

• Test that code uses data structure theory: Much has been written about how to implement

and use data structures (such as lists, trees, compositions, sets, collections, arrays). For

example, if we wish to search for a value in an alphabetical list, it’s wasteful to start at the

beginning and go through the elements one after the other. Instead, we should look in the

middle first: if the value we’re seeking is bigger, we look half way towards the end; if the

value we’re looking for is smaller, we look half way towards the beginning, and so on. For a

list with 32768 values, a straight linear search takes 16384 (that is, 32768/2) comparisons,

on average, to discover whether the value is present; the binary chop search just described

only requires 15 comparisons, on average. Familiarize yourself with data structure theory

and test that your programmers have too. (If you’re really keen, investigate complexity

theory.)

• Test for previous faults: After release, every fault that is detected identifies a new test case

(because you want to be sure the fault doesn’t return after you’ve fixed it and because it

may be an example of a common error). Try keeping a record of all the faults that you and

your colleagues have ever discovered, as a guide to the kind of problems that are worth

testing for.

What about the tests themselves? Should we test them too? If we did, we would have to

test the tests of the tests, and the tests of the tests of the tests, and so on. Luckily, the code

that is being tested tests the tests: whenever a test fails, we know that there is a fault in the

code being tested or a fault in the test itself; during our investigations, we discover which

has the fault (and fix it). Also, the tests themselves should be subject to peer review.

Case Study
A test plan for iCoot

A complete test plan for a system the size of iCoot would be a large document,

certainly too large to reproduce here. Appendix B.7 contains an outline test plan, of

the kind that might be produced early in the first increment.

430 Chapter 13

13.8 TEST-DRIVEN DEVELOPMENT
In the mid-1990s, Kent Beck and Erich Gamma designed a framework for test-driven

development in Smalltalk. Dubbed SUnit, the framework proved to be so popular that it now

comes in many flavors: Java, C++, C#, VisualBasic, Eiffel, etc. The term xUnit is used to refer

to all of these flavors, even though none of them is actually called xUnit (the Java variety is

called JUnit, there is a C++ variety called CPPUnit, and so on). As the name suggests, the

framework is designed for unit testing, where each unit is a class, or a combination of classes.

The xUnit family is a simple family: the designers knew that if it were complicated it

would hardly ever be used. The idea is that we write testing code in parallel to the system

code; the test code can be run easily (and therefore frequently) by developers. Within the test

code, the programmer can write methods that test aspects of the application code – sample

programs, if you like. Each method can create objects, check that they have been initialized

properly, connect them together, send them messages and check the results, and so on.

The core of the framework is illustrated in Figure 13.5. This is an example of the Composite

pattern, as described in Chapter 11. The composition allows us to build a hierarchy of tests,

with TestSuite objects at the nodes and TestCase objects at the leaves.

*

 <<interface>>

 Test

+run(:TestResult)

MyTestSuite

+suite():Test

MyTestCase

+testFoo()

+testBar()

 TestCase

+run(:TestResult)

 TestSuite

+run(:TestResult)

+addTest(:Test) *

Figure 13.5: A class diagram for xUnit

An Example of Test-Driven Development using JUnit 431

Each test case comprises a number of test methods with the actual testing code inside.

Each test suite is a logical grouping of tests, whatever we think makes a sensible hierarchy.

For example, we might gather all the test cases for our business objects into one test suite

and combine that into another test suite with a suite containing all of our server layer test

cases, and so on, all the way up to the system itself.

Once we have implemented our composition, we can use the framework’s tools to run

the tests.

13.9 AN EXAMPLE OF TEST-DRIVEN
DEVELOPMENT USING JUNIT

The best way to understand how test-driven development works is to go through an example.

The following narrative starts part way through the development of the iCoot business code.

For simplicity, this discussion only relates to the business code, rather than any layers above

or below. You may think that this would make the narrative artificial. However, in keeping

with best practice, the business code should be independent of higher layers anyway, so

the steps described here are realistic. In addition, the persistence code would eventually be

encapsulated by the business objects so, since we will only be testing the interfaces of the

business objects, we will suffer no loss of realism in this respect either. (In the final system,

the only major difference in the interface turns out to be that clients use factory methods to

create business objects, rather than the actual constructors.)

Java is used as the language for code fragments. However, there is no complicated Java

used here (anything unusual, with respect to other object-oriented languages, is only used

where necessary and is clearly identified and explained). Since the code fragments are written

in Java, the testing framework is, naturally, JUnit.

Let’s start by looking at the objects that we’re going to develop in the design-level class

diagram shown in Figure 13.6:

• Store holds the address of this location and the cars that we have available for rent. (The

Store class comes from the full Coot system rather than iCoot – it is introduced here because

it helps with the discussion.)

• Address is a simple address class for recording the location of this particular branch.

• Car represents a particular instance of CarModel that we own. (For simplicity, we have

omitted the CarModelDetails.)

• CarModel is the intangible complement to Car: it represents a particular model of car that

we have available for rent.

• Category indicates the type of car (such as, sports, family, luxury).

432 Chapter 13

Store

-Store(:Address) <<create>>
+getAddress():Address
+addCar(:Car)

-address

Address

-Address(:String,:String,:String,:String,) <<create>>
+getHouse():String
+getStreet():String
+getCounty():String
+getPostcode():String

-cars:Set

-Car(:CarModel,:int) <<create>>
+getModel():CarModel
+getTraveled():int
+setTraveled(:int)

CarModel

-CarModel(:Category,:Make,:String,:int) <<create>>
+getCategorey(): Categorey
+getMake():Make
+getModelNumber():String
+getPrice():int

Make -makes:List

-Make(:String) <<create>>
getName():String

Category

-category

-Category(:String) <<create>>
+getName():String

-model

1..*

* *1 1

1

*

11

1

Car

Figure 13.6: Part of the design class diagram for Coot

• Set is a Java collection class that allows us to hold on to any number of unique objects.

• Make represents a car manufacturer, identified by name.

Development is already well under way, with Address, CarModel, Category and Make

already developed and tested. For each class, a test case has been written to confirm that it

functions correctly: AddressTestCase, CarModelTestCase, CategoryTestCase and MakeTestCase,

respectively. It is good practice to have one test case per class, designed specifically to

exercise that class (because a class is a unit in its own right). Later, we can add test cases that

exercise the classes in combination.

The classes have been placed in a package called com.nowherecars.business. The test cases

have been placed in the same package as the business classes, so that the tests can use the

constructors, which have package visibility.

An Example of Test-Driven Development using JUnit 433

The tests themselves must be public if we wish to use them with a JUnit test-runner,

because the JUnit classes are not in the com.nowherecars.business package. The fact that the

tests are visible to clients of the package is not necessarily a bad thing: after all, in the spirit

of teamwork and openness, we would be happy for other members of the team to run our

tests (especially since we won’t release the code until all the tests have been passed). If we

want the tests to be invisible to other clients when the code is deployed, we can simply omit

the corresponding classes from the deployed version.

13.9.1 Testing the Car Class
Before reaching for our coding tools to start writing Car, we remember that the ultimate

skill in test-driven development is to write the tests before the code. Thus, we decide to

implement CarTestCase first. Writing a test case with JUnit is simple: the new class must

inherit from the JUnit TestCase class and it must contain one or more methods that begin

with test – the test runner automatically looks for such methods and executes them as part

of the test case.

Remembering that each test method should test one thing and test it thoroughly, we

decide that our first test will check the creation of a Car. So, our initial CarTestCase is as

follows:

public class CarTestCase extends TestCase {

public void testCreate() {

}

}

Inside the testCreate method, we will create a Car, using the constructor which takes

a CarModel and the distance traveled on the clock. The creation of the CarModel requires

creation of a Category (with a name) and a List of Make objects (each with a name). For

convenience, we will only add one Make to the CarModel – after all, we’re not testing the

CarModel implementation at this point. We will record each attribute as a local variable, both

for clarity and in case we need to access the value later.

After writing the code for creating the objects, our testCreate method looks like this:

public void testCreate() {

Category category = new Category("Saloon");

Make make = new Make("Fort");

List<Make> makes = new LinkedList<Make>();

makes.add(make);

String modelNumber = "Blur 1.6";

int price = 30;

CarModel carModel = new CarModel(category, modelNumber, makes, price);

int traveled = 234243;

Car car = new Car(carModel, 33445);

}

434 Chapter 13

This code fragment uses a Java template class (List). The template type (<Make>) tells the

Java compiler what kind of object will be in the collection, so that we can’t add anything else.

Now that we’ve created a Car, we need to do the real work of the test: checking that it

was created correctly. In order to do that, we will use the getters for the new Car to compare

its attributes with the ones that we used during construction. Our test case has inherited

a number of assertX methods from the TestCase class that we can use to make declarations

about the expected state of the program – if any of these fail, the test runner will produce a

failure report giving us details of where and when the failure happened.

The methods that we’re interested in here are assertSame, which takes two objects as

parameters and checks that they’re identical, i.e. that they both refer to the same object; and

assertEquals, which takes two object parameters and checks that they’re equal, i.e. that they

have similar attributes or that they’re of equal value. For example,

• assertSame(aCar,aCar) will pass.

• assertSame(new Object(),new Object()) will fail.

• assertEqual(new Category(”Sports”),new Category(”Sports”)) will pass.

• assertEqual(10,11) will fail.

For our business layer, when we create a Car, the CarModel that we pass in should be

identical to the one returned by the getter. That is to say, our program will use the identity

of internal objects to represent the identity of objects in the real world, rather than using

attribute values. (An alternative approach would be to allow ‘same attributes’ to indicate ‘same

object’, but this would lead to more copying of objects.) Thus, we need to use assertSame

to check the correct setting of the CarModel. On the other hand, the distance traveled is a

primitive value (a number of kilometers), so it should be tested using assertEqual. Therefore,

we add two new lines to the end of testCreate:

...

assertSame(car.getModel(), carModel);

assertEquals(car.getTraveled(), traveled);

}

13.9.2 Implementing the Car Class
Having implemented the first test for the Car class, we turn our attention to the implemen-

tation of Car itself. Car needs: fields for the car model and the distance traveled; a package

constructor that takes initial values for both fields; getters for each field; a setter for the

distance traveled (we must be able to change the number of kilometers on the clock, so that

we can update it when a customer returns the real car, but it wouldn’t make sense to be able

to change the model). Our Car class is shown below (package access is the default in Java, so

the constructor needs no visibility specifier):

An Example of Test-Driven Development using JUnit 435

public class Car {

private CarModel model;

private int traveled;

Car(CarModel m, int t) {

model = m;

traveled = t;

}

public CarModel getModel() {

return model;

}

public int getTraveled() {

return traveled;

}

public void setTraveled(int t) {

traveled = t;

}

}

Eager to try out our new test as soon as possible, we start up the JUnit test runner, select

our test case and hit the Run button. To our surprise, the test runner indicates that there

were failures (as shown in Figure 13.7) and the bar is filled with red. Looking closely at the

information given by the test runner, we can see which kind of assertion failed (a numerical

comparison between 234243 and 33445), and also where the failure happened.

Looking at the code for testCreate, we quickly discover that the fault is in the test code and

not in the business code at all: during our coding of the test, we introduced a local variable

called traveled, but we didn’t use it when creating the car, so the assertEquals comparison

failed. Once we have replaced the number 33445 with traveled, we recompile and re-run the

test (which, conveniently, doesn’t require a re-start of the test runner). This time, the bar fills

up with green, the test runner’s way of indicating that everything’s fine (see Figure 13.8).

13.9.3 Refactoring Tests
We’ve now completed one test-driven development cycle: write a test, write the code, run

the test, fix any problems and run the test again. To complete the testing of the Car class, we

need to exercise the setTraveled method. As before, we decide to write the test first, adding

the following testSetTraveled method to CarTestCase:

public void testSetTraveled() {

Category category = new Category("Luxury");

Make make = new Make("Plexus");

List<Make> makes = new LinkedList<Make>();

makes.add(make);

436 Chapter 13

Figure 13.7: An unsuccessful JUnit test run

String modelNumber = "Neo STS 3.0";

int price = 109;

CarModel carModel = new CarModel(category, makes, modelNumber, price);

int traveled = 32432;

Car car = new Car(carModel, traveled);

int newDistance = 534;

car.setTraveled(newDistance);

assertEquals(car.getTraveled(), newDistance);

}

We run this test against the Car class and everything works fine, the test runner confirming

that two tests have been run. However, we notice that testSetTraveled has a lot in common with

testCreate – not surprising since they must both start by creating a Car. For our purposes, it

would be quite reasonable for both test methods to use cars with similar attributes. Therefore,

we decide to pull out the similar code and place it in a shared method. This process is called

refactoring: reorganizing code to improve quality.

An Example of Test-Driven Development using JUnit 437

Figure 13.8: A successful JUnit test run

We could call the shared method explicitly at the start of each test, but the JUnit designers

have already thought of that: if we add a method called setUp, it is called automatically before

each test method is run. (If we define a tearDown method, it is also called automatically, after

each test – we can use this to release any external resources used during the tests.)

So, what we need is a setUp method that looks like this:

protected void setUp() {

category = new Category("Saloon");

make = new Make("Fort");

makes = new LinkedList<Make>();

makes.add(make);

modelNumber = "Blur 1.6";

price = 30;

carModel = new CarModel(category, makes, modelNumber, price);

traveled = 234243;

car = new Car(carModel, traveled);

}

438 Chapter 13

Because of the way JUnit has been designed, the setUp method has protected rather than

package visibility, which would allow it to be invoked by subclasses and by other classes in

the same package. In practice, we would not expect test developers to do such a thing. Our

shared fields will be created before each test; this may seem wasteful, but it’s actually good

practice, because it guarantees that our tests are independent of each other.

Before we proceed, we need to add field declarations for category, makes, modelNumber,

price, carModel, traveled and car, so that they can be accessed inside any test method.

Therefore, we add the following declarations to our class:

private Category category;

private List<Make> makes;

private String modelNumber;

private int price;

private CarModel carModel;

private int traveled;

private Car car;

Our testCreate and testSetTraveled methods can now be much simpler:

public void testCreate() {

assertSame(car.getModel(), carModel);

assertEquals(car.getTraveled(), traveled);

}

public void testSetTraveled() {

int newDistance = 534;

car.setTraveled(newDistance);

assertEquals(car.getTraveled(), newDistance);

}

Having made the changes, we re-run our tests and everything still works: as well as

checking our business code, the JUnit framework helps us to make sure that modifications

to our tests are correct, a form of regression testing.

Having completed our implementation and testing of CarTestCase and Car, the finished

classes look like this:

public class Car {

private CarModel model;

private int traveled;

Car(CarModel m, int t) {

model = m;

traveled = t;

}

public CarModel getModel() {

return model;

An Example of Test-Driven Development using JUnit 439

}

public int getTraveled() {

return traveled;

}

public void setTraveled(int t) {

traveled = t;

}

}

public class CarTestCase extends TestCase {

private Category category;

private List<Make> makes;

private String modelNumber;

private int price;

private CarModel carModel;

private int traveled;

private Car car;

protected void setUp() {

category = new Category("Saloon");

make = new Make("Fort");

makes = new LinkedList<Make>();

makes.add(make);

modelNumber = "Blur 1.6";

price = 30;

carModel = new CarModel(category, makes, modelNumber, price);

traveled = 234243;

car = new Car(carModel, traveled);

}

public void testCreate() {

assertSame(car.getModel(), carModel);

assertEquals(car.getTraveled(), traveled);

}

public void testSetTraveled() {

int newDistance = 534;

car.setTraveled(newDistance);

assertEquals(car.getTraveled(), newDistance);

}

}

13.9.4 Creating a Test Suite for Regression Testing
Our last task, according to the class diagram we saw earlier, is to implement and test the

Store class. As usual, we start with the testing code, producing a StoreTestCase class. Here’s

how it looks after the implementation of testCreate:

440 Chapter 13

public class StoreTestCase extends TestCase {

private Address address;

private Store store;

private CarModel carModel;

private Car car;

protected void setUp() {

address = new Address("9", "Ash Lane", "Greater Manchester", "SK4 3HJ");

store = new Store(address);

Category category = new Category("Vintage");

Make make = new Make("Mostin");

List<Make> makes = new LinkedList<Make>();

makes.add(make);

String modelNumber = "Wheely 1950";

int price = 89;

carModel = new CarModel(category, makes, modelNumber, price);

int traveled = 435345;

car = new Car(carModel, traveled);

}

public void testCreate() {

assertSame(store.getAddress(), address);

}

}

This time around, we’ve anticipated the need for a Store in multiple tests, so we’ve written

a setUp method immediately. Our initial Store class looks like the following (notice how the

task of adding a Car is delegated to the private Set):

public class Store {

private Address address;

private Set<Car> cars;

Store(Address a) {

address = a;

}

public Address getAddress() {

return address;

}

public void addCar(Car c) {

cars.add(c);

}

}

When we run our first test, everything works fine. However, we have now built up a

number of test cases – MakeTestCase, CategoryTestCase, CarModelTestCase, CarTestCase – each

An Example of Test-Driven Development using JUnit 441

of which has to be run individually. This is inconvenient, especially since we should rerun

all related tests whenever a piece of code changes. What we need is a test suite – a group of

test cases and other test suites that can be run as one.

To build a test suite in JUnit, we add a class that inherits from TestSuite and give it a

method called suite, which returns all the tests in the suite. Here’s how ours looks:

public class CootBusinessTestSuite extends TestSuite {

public static Test suite() {

TestSuite result = new TestSuite();

result.addTestSuite(MakeTestCase.class);

result.addTestSuite(CategoryTestCase.class);

result.addTestSuite(CarModelTestCase.class);

result.addTestSuite(CarTestCase.class);

result.addTestSuite(AddressTestCase.class);

result.addTestSuite(StoreTestCase.class);

return result;

}

}

The first thing to notice here is that suite returns an object of type Test, rather than

TestSuite. However, you may recall from Figure 13.5, that TestSuite and TestCase both inherit

from Test. By declaring that it returns a Test, the suite method allows us to return a TestCase

instead, which means that we can build a hierarchy of test suites and test cases, while the

test runner only has to worry about the single type called Test.

Another odd thing about the suite method is the way that we add our test cases to the

suite: result.addTestSuite(MakeTestCase.class). This is a Java trick that allows the test runner

to find all methods in the test case that start with test.

In order to run all the tests in a test suite, we use the same test runner as before, only

now we point it at the CootBusinessTestSuite class instead of an individual test case such as

CarTestCase. When we run our suite, we see the green bar again, indicating that our two new

classes are okay, and also that every other part of the suite is okay. This is true regression

testing: we have checked that adding new code hasn’t broken anything that we already had.

13.9.5 Testing Across Methods
Next, we decide to test the addCar method, by providing a testAddCar method in the

StoreTestCase:

public void testAddCar() {

store.addCar(car);

assertTrue(store.containsCar(car));

}

442 Chapter 13

The assertTrue assertion succeeds only if its parameter is true. Thus, the test will succeed

if adding a Car to the Store results in the Store containing that Car – this may seem obvious,

but even obvious tests need to be implemented.

While writing the assertTrue statement, we have discovered the need for a containsCar

method on the Store class itself. Initially, we need this just to check that the addition was

successful, but we decide to make it public, because it will probably be useful to other clients.

The containsCar method wasn’t included in the class diagram we saw earlier, because we

didn’t know that we needed it. This illustrates that there must be some flexibility between

design and coding, which is generally considered to be a good thing. The addition we need

to the Store class is:

public boolean containsCar(Car c) {

return cars.contains(c);

}

Our new testAddCar method does more than just test addCar: it also tests containsCar. This

is common for JUnit test methods.

This time, when we run the tests, we get a test failure with a message containing

NullPointerException: a sure sign, to a Java programmer, that we’ve forgotten to create an

object. This time the culprit turns out to be the Store constructor: we’ve remembered to

initialize the address field from the parameter, but we’ve forgotten to create the Set field

that’s used to manage our Car objects. What we need to do is to add the following line to the

constructor:

cars = new HashSet<Car>();

(Don’t worry about HashSet, it’s just one of Java’s concrete implementations for the Set

interface.)

Now JUnit has helped us spot the incomplete initialization of an object’s innards,

something that we might not otherwise spot until much later. Another win for test-driven

development.

13.9.6 Completing the Store Class
There is one more method to add to Store before today’s assignment is finished. This method,

containsAlternativeCar will return true if and only if there is another Car in the Store that

serves the same purpose as the Car given as a parameter: in car rental terms, this means any

car that is the same model, regardless of the number of kilometers traveled.

First we add a test to StoreTestCase that will confirm that the new Store method works

correctly:

public void testContainsAlternativeCar() {

int traveled2 = 4435;

An Example of Test-Driven Development using JUnit 443

store.addCar(car);

Car car2 = new Car(carModel, traveled2);

assertTrue(store.containsAlternativeCar(car2));

}

Finally, here’s the method that we need to add to Store:

public boolean containsAlternativeCar(Car outer) {

for (Car inner : cars) {

if (inner.getModel() == outer.getModel()) {

return true;

}

}

return false;

}

The contents of this method may look strange if you’re not familiar with Java. It uses a

variety of the Java for loop, designed specially for Collection classes, to examine every Car in

cars. Within the loop, the model of the inner Car is compared to the model of the outer Car

(that was passed in as a parameter); if the models match, we return true. If we examine every

Car in the Store without finding a match, we return false.

Happily, when we run our tests this time, the bar stays green, so we know the code is

correct (the JUnit motto is ‘Keep the bar green to keep the code clean’).

The final versions of Store and StoreTestCase are shown below:

public class Store {

private Address address;

private Set<Car> cars;

Store(Address a) {

address = a;

cars = new HashSet<Car>();

}

public Address getAddress() {

return address;

}

public void addCar(Car c) {

cars.add(c);

}

public boolean containsCar(Car c) {

return cars.contains(c);

}

public boolean containsAlternativeCar(Car outer) {

for (Car inner : cars) {

if (inner.getModel() == outer.getModel()) {

444 Chapter 13

return true;

}

}

return false;

}

}

public class StoreTestCase extends TestCase {

private Address address;

private Store store;

private CarModel carModel;

private Car car;

protected void setUp() {

address = new Address("9", "Appletree Avenue", "SK5 9PT");

store = new Store(address);

Category category = new Category("Vintage");

Make make = new Make("Mostin");

List<Make> makes = new LinkedList<Make>();

makes.add(make);

String modelNumber = "Wheely 1950";

int price = 89;

carModel = new CarModel(category, make, modelNumber, price);

int traveled = 435345;

car = new Car(carModel, traveled);

}

public void testCreate() {

assertSame(store.getAddress(), address);

}

public void testAddCar() {

store.addCar(car);

assertTrue(store.containsCar(car));

}

public void testContainsAlternativeCar() {

int traveled2 = 4435;

store.addCar(car);

Car car2 = new Car(carModel, traveled2);

assertTrue(store.containsAlternativeCar(car2));

}

}

Our narrative ends at this point, having covered a real-world example of test-driven

development (complete with faults and iterations, as they happened). The developers moved

on to add homes, universal identifiers, persistence code and server code. Then, a simple

Further Reading 445

client was added to test everything that had been developed. Throughout, test cases were

created and composed into test suites, layer by layer, and the tests were run frequently.

13.10 SUMMARY
In this chapter we have looked at:

• The terminology used by testers to summarize complex concepts and tasks. Although
there are a couple of dozen terms in common use, they’re used consistently by the
testing community, so it’s worth knowing what they are.

• How to go about testing a large system. This involved discussions of test planning,
continuous testing, testing of all artifacts (not just code), and how the different
people should be involved.

• A worked example of test-driven development. Test-driven development is valuable,
but it should never be considered a substitute for the aggressive attempts to break
code by colleagues and customers, during the official testing phase.

FURTHER READING
A long-standing text on all aspects of software testing is [Myers et al. 04], considered by

many to be essential reading for those who wish to understand the theory of testing and how

to apply it in the real world.

One of the inventors of test-driven development, Kent Beck, describes the philosophy and

practice in [Beck 02]. The home page for JUnit is www.junit.org, containing the framework

itself, plus technical documentation, articles and examples.

Appendix A

Ripple Summary

This appendix gives a complete overview of Ripple, the simplified methodology used in

this book. Table A.1 summarizes the artifacts that you should produce, by phase. To

produce these artifacts, proceed as follows (but remember to spiral, iterate and deliver

incrementally):

1. Project Genesis (with Customer)

(a) Get an idea of what the customer is looking for or tell them what they need.

(b) Get requirements documentation from the customer, as a mission statement or

a longer document; if neither of these exist, produce an informal requirements

document with the customer.

2. Assigning Responsibilities

(a) Decide on the development roles (e.g. planning, management, timekeeping, devel-

opment, testing, system administration).

(b) Decide who is going to be responsible for each role.

3. Producing a Workbook: Produce a paper or on-line workbook, to contain all project

artifacts.

4. Producing a Glossary

(a) Produce a glossary for recording the definitions of project terminology.

(b) Update the glossary throughout development.

5. Producing a Project Plan

(a) Do some initial planning for spirals, phases and increments, and produce a schedule.

(b) Review and adjust the project plan at regular intervals throughout development.

6. Producing a Test Plan: Produce a test plan that addresses continuous testing, the testing

phase, customer reviews, deployment and maintenance.

7. Business Requirements (with Customer)

(a) Produce a business actor list (with descriptions).

(b) Produce a business use case list (with descriptions).

(c) (Optional) Brainstorm or illustrate business use cases with activity diagrams.

Ripple Summary 447

Table A.1: Artifacts by phase
ArtifactsPhase UML

448 Appendix A

(d) (Optional) Brainstorm or illustrate business use cases with communication diagrams.

(e) Produce business use case details.

8. System Requirements (with Customer)

(a) Brainstorm system interaction using user interface sketches.

(b) Produce a system actor list (with descriptions).

(c) Produce a system use case list (with descriptions).

(d) Produce a system use case diagram.

(e) Produce a system use case survey.

(f) Produce system use case details.

(g) Produce supplementary requirements for the system.

(h) Produce system use case priorities.

9. Analysis

(a) Produce an analysis class diagram.

(b) Produce an attribute list (with descriptions).

(c) (Optional) Use state machines to model complex entity life cycles, recording results

on state machine diagrams.

(d) Perform use case realization, documenting results using communication diagrams.

(e) Produce an operation list (with descriptions).

10. System Design

(a) Make technology choices.

(b) Look for reuse opportunities (libraries, patterns and frameworks).

(c) Produce layer diagrams.

(d) Write a layer interaction policy.

(e) Design the package structure and record it on package diagrams.

(f) Produce a deployment diagram.

(g) Write a security policy.

(h) Write a concurrency policy.

11. Subsystem Design

(a) Define business services.

(b) Look for more reuse opportunities (libraries, patterns and frameworks).

(c) Map analysis classes to business layer classes: class list (with descriptions), class

diagram, field list (with descriptions).

(d) Produce a database schema.

(e) Design classes for other layers (e.g. server and protocol, servlets, control, persis-

tence).

(f) Perform business service realization, recording results on sequence diagrams.

Ripple Summary 449

(g) Produce a message list (with descriptions).

(h) Finalize the user interface design.

12. Class Specification

(a) Produce an informal specification for each class.

(b) Record the informal specification in design and source code.

13. Implementation

(a) Write unit tests.

(b) Write implementation code.

14. Testing

(a) Get the test team to test the system.

(b) Fix faults.

15. Deployment

(a) Produce manuals and courseware.

(b) Install code artifacts on customer’s system.

(c) Train customer.

16. Maintenance

(a) Fix faults.

(b) Incorporate customer feedback, ideas for improvement and market changes into

new increments.

Appendix B

iCoot Case Study

B.1 BUSINESS REQUIREMENTS
This section documents the business requirements modeling carried out during the require-

ments phase of the iCoot development, in terms of project mission statement and business

use case model. The business use case model also applies to the full Coot system.

B.1.1 Customer’s Mission Statement
Below is the mission statement delivered by Nowhere Cars at the start of the Coot project:

Since we automated the tracking of cars at our stores – using bar codes, counter-top

terminals and laser readers – we have seen many benefits: the productivity of our rental

assistants has increased 20%, cars rarely go missing and our customer base has grown

strongly (according to our market research, this is at least partly due to the improved

perception of professionalism and efficiency.

The management feels that the Internet offers further exciting opportunities for

increasing efficiency and reducing costs. For example, rather than printing catalogs

of available cars, we could make the catalog available to every Internet surfer for

browsing on-line. For privileged customers, we could provide extra services, such as

reservations, at the click of a button. Our target saving in this area is a reduction of

15% in the cost of running each store.

Within two years, using the full power of e-commerce, we aim to offer all of our

services via a Web browser, with delivery and pick-up at the customer’s home, thus

achieving our ultimate goal of the virtual rental company, with minimal running costs

relative to walk-in stores.

Working with the customer, this mission statement was expanded into business use cases.

B.1.2 Actor List
• Assistant: An employee at one of our stores who helps a Customer to rent a Car and reserve

a CarModel.

• Customer: A person who pays us money in return for one of our standard services.

Business Requirements 451

• Member: A Customer whose identity and credit-worthiness have been validated and who,

therefore, has access to special services (such as making a Reservation by phone or over

the Internet).

• NonMember: A Customer whose identity and credit-worthiness have not been checked and

who, therefore, must provide a deposit to make a Reservation and surrender a copy of their

License to rent a Car.

• Auk: The existing system that handles Customer details, Reservations, Rentals and the

Catalog of available CarModels.

• DebtDepartment: The department that deals with unpaid fees.

• LegalDepartment: The department that deals with accidents in which a rented Car has been

involved.

B.1.3 Use Case List
• B1:Customer Rents Car: Customer rents a Car that they have selected from those

available.

• B2:Member Reserves CarModel: Member asks to be notified when a CarModel becomes

available.

• B3:NonMember Reserves CarModel: NonMember pays a deposit to be notified when a CarModel

becomes available

• B4:Customer Cancels Reservation: Customer cancels an unconcluded Reservation, by phone

or in person.

• B5:Customer Returns Car: Customer returns a Car that they have rented.

• B6:Customer Told CarModel Is Available: Customer is contacted by an Assistant when a Car

becomes available.

• B7:Car Reported Missing: Customer or Assistant discovers that a Car is missing.

• B8:Customer Renews Reservation: Customer renews a Reservation that has been outstanding

for more than a week.

• B9:Customer Accesses Catalog: Customer browses the catalog, in-Store or at home.

• B10: Customer Fined for Uncollected Reservation: Customer fails to collect a Car that they

have reserved.

• B11:Customer Collects Reserved Car: Customer collects a Car that they have reserved.

• B12:Customer Becomes a Member: Customer provides CreditCard details and proof of address

to become a Member.

• B13:Customer Notified Car Is Overdue: Assistant contacts Customer to warn them that a Car

they have rented is more than a week overdue.

• B14:Customer Loses Keys: Replacement keys are provided for a Customer who has lost them.

• B15:MembershipCard Is Renewed: Assistant contacts Member to renew membership when

their CreditCard has expired.

• B16:Car Is Unreturnable: A Car is wrecked or breaks down.

452 Appendix B

B.1.4 Use Case Communication Diagrams
Communication diagrams were not used widely during business requirements modeling

(although they were used extensively during system requirements gathering). However, one

diagram (see Figure B.1) was produced to illustrate the external and internal actors involved

in B3:NonMember Reserves CarModel.

2:find CarModel CarModel1:reserve CarModel

3:get deposit, License

Auk
Interface

4:create
Reservation5:confirm Reservation

Reservation

Non
Member

Assistant

Figure B.1: Communication diagram for B3:NonMember Reserves CarModel

B.1.5 Use Case Activity Diagrams
Activity diagrams were not used widely during the business requirements modeling. However,

one diagram (see Figure B.2) was produced to illustrate the finer points of the B3:NonMember

Reserves CarModel use case.

B.1.6 Use Case Details
B1:Customer Rents Car.

1. Customer tells Assistant which CarModel they’d like to rent.

2. If Auk indicates no such Car is available, Customer is offered an alternative.

3. If there is a Car available, Assistant marks the Car as taken in Auk.

4. Assistant asks for Customer’s License to confirm their identity.

5. For a Member, Assistant takes their number from their MembershipCard and checks that

they have no outstanding fees and that they have not been barred.

6. For a NonMember, Assistant checks whether they’re already in Auk; if they’re not, Assistant

scans a copy of their License into Auk, and records their name, phone number and license

number.

7. If Customer’s details are satisfactory and they have paid any outstanding fees, they’re

charged for the Rental.

8. If the payment fails, the Car is released in Auk.

Business Requirements 453

[not ok]

[ok]

(NonMember)

Tell Assistant

which CarModel

(Assistant)

Ask for Deposit

and License

(NonMember)

Find deposit

(NonMember)

Find License

(Assistant)

Find CarModel

on Auk

(Assistant)

Check deposit

and License

(Assistant)

Make

Reservation

Figure B.2: Activity diagram for B3:NonMember Reserves CarModel

9. If the payment does not fail, the Customer is given the keys and directed to the display

area.

B2:Member Reserves CarModel.

1. Member tells Assistant their membership number (over the phone or in person).

2. Member tells Assistant which CarModel to reserve.

3. If Member has not been barred, their CreditCard has not expired, and they have no

outstanding fees, a Reservation is made on Auk.

454 Appendix B

4. If the Reservation is being made over the phone, Member can pay outstanding fees by

confirming their CreditCard details, which must match those stored in Auk and must not

have expired.

5. Member is told the reservation number.

B3:NonMember Reserves CarModel.

1. NonMember tells Assistant which CarModel to reserve.

2. Assistant finds CarModel on Auk.

3. Assistant asks for a deposit for the Reservation.

4. Assistant asks for NonMember’s License and phone number.

5. Assistant checks License visually.

6. If License looks valid, Assistant creates a new Reservation, recording the License number,

phone number and a scan of the License in Auk.

7. Assistant gives NonMember a Reservationslip containing the unique reservation number.

B4:Customer Cancels Reservation.

1. At any time, Customer can cancel a Reservation.

2. Member objects can do this over the phone or in person, by providing their membership

number.

3. NonMembers must cancel in person: they present their License to an Assistant, who checks

that it matches the scan in Auk, and refunds their deposit.

4. If a Car has already been moved to the reserved area, a matching Car is moved back to the

display area.

B5:Customer Returns Car.

1. When a Car is returned to the check-in area, Assistant scans bar code to confirm the

return and checks that the tank is full.

2. Car is returned to the display area by an Assistant.

3. If Customer returns an overdue Car or a Car with a tank that is not full, Customer must pay

the appropriate amount – Members can do this using their existing credit card details, if

they have not expired.

4. If the Customer refuses to pay, their details are passed to the DebtDepartment.

B6:Customer Told Car Model is Available.

1. When a Car is returned, Auk tells Assistant whether it matches any Reservation objects.

2. If so, Assistant moves Car to the reserved area.

3. On a first-come-first-served basis, Assistant will try to contact a matching Customer by

phone.

4. If a Customer can’t be reached within two days, their Reservation is canceled and the Car

is moved out of the reserved area to the display area.

Business Requirements 455

B7:Car Reported Missing.

1. If a Car that Auk indicates is in the display area can’t be found when it is needed or during

a stock check, Car is reported stolen to the police.

2. If a Car is reported missing by a Customer, it is reported stolen to the police, along with

License details of the Customer (as the last known keeper of the vehicle).

3. In both cases, the date of loss is recorded on Auk.

B8:Customer Renews Reservation.

1. If a Reservation can’t be satisfied within seven days, the Reservation must be renewed.

2. Assistant has two days to contact Customer by phone to see if they wish to renew the

Reservation for a further seven days.

3. If the Customer doesn’t wish to renew, the Reservation is canceled; Customer must return

to the Store and present their License to retrieve their deposit.

B9:Customer Accesses Catalog.

1. Customers can come into the Store to browse a paper catalog.

2. For a fee, they can take a copy of the catalog home with them.

3. If they choose to join the mailing list, they will receive a free copy of the catalog by mail

every six months.

B10: Customer Fined for Uncollected Reservation.

1. If a CarModel has become available for a particular Reservation and an Assistant told the

Customer by phone that it’s available, Customer has two days to collect.

2. If Customer fails to collect, the Reservation is concluded and an Assistant moves a matching

Car from the reserved area back to the display area.

3. For NonMembers, their deposit is forfeited.

4. For Members, a fine is recorded on Auk and their details are passed to the DebtDepartment.

B11:Customer Collects Reserved Car.

1. Customer comes to the Store to collect a Car from the reserved area.

2. Customer presents License.

3. If the License matches the details on Auk, the Reservation is marked as concluded.

4. An Assistant gives the keys to the Customer and directs them to the reserved area.

B12:Customer Becomes Member.

1. In order to become a Member, Customer must offer their License, further proof of address,

and a credit card.

2. Assistant checks License and proof of address.

3. Assistant checks CreditCard with CreditCardCompany.

456 Appendix B

4. If okay, Assistant records License number, address, phone number and CreditCard details

in Auk.

5. Auk issues new MembershipCard with unique membership number.

6. If the CreditCard expires, no further member actions are permitted unless the member

returns to the Store to show a new CreditCard.

B13:Customer Notified Car is Overdue.

1. Since a Rental is paid up-front, Customer is warned if they have forgotten to return a Car.

2. If Car is more than one week overdue, an Assistant will attempt to contact Customer by

phone.

3. If Customer can’t be contacted for two weeks, Car is reported missing (see B7).

B14:Customer Loses Keys.

1. If Customer notifies Assistant that they have lost keys, replacement keys are provided, by

courier if necessary.

2. Cost of replacement is added to Customer’s details in Auk.

B15:MembershipCard is Renewed.

1. Auk records that Member whose CreditCard has expired is not in good standing.

2. Auk informs Assistant that Member’s Credit card has expired.

3. Assistant contacts Member by phone to tell them that they must renew their membership.

4. Member returns to Store with fresh CreditCard and details are entered into Auk.

5. Auk records that Member is in good standing.

B16:Car is Unreturnable.

1. If Customer tells Assistant that Car is wrecked or breaks down, Assistant arranges recovery.

2. If Car is wrecked, details are passed to LegalDepartment.

B.2 SYSTEM REQUIREMENTS
This section documents the results of system modeling during the requirements phase of the

iCoot development, in terms of user interface sketches and a system use case model.

B.2.1 User Interface Sketches
The user interface sketches for iCoot, produced with the help of the customer, are shown in

Figures B.3 through B.10.

System Requirements 457

Retrieve...

Search Index Membership Rentals Reservations Password

2

4 5 6 7 8

category a
category b
category c
category d

manufacturer a
manufacturer b
manufacturer c
manufacturer d

engine size a
engine size b
engine size c
engine size d

Non-Members see only Search + Index pages;
Members needlogon and logoff mechanism too.

Figure B.3: User interface sketch 1 (creating a query)

car model a
car model b
car model c
car model d
car model e
car model f
car model g
car model h
car model i

< Go Back

Search Index Membership Rentals Reservations Password

31

Figure B.4: User interface sketch 2 (viewing results)

458 Appendix B

Search Index Membership Rentals Reservations Password

< Go Back Reserve...

Make(s)

Model

Engine Size

Description

Advert... Poster...

Daily Price

Category Sports

Abc, Def

358

3.6

Waffle

€89.50

2

Figure B.5: User interface sketch 3 (viewing car model details)

index entry a
index entry b
index entry c
index entry d
index entry e
index entry f
index entry g
index entry h
index entry i

Retrieve...

Search Index Membership Rentals Reservations Password

Proceed as for Search page

Figure B.6: User interface sketch 4 (selecting an index heading)

Search Index Membership Rentals Reservations Password

< Go Back Reserve... Advert... Poster...

Personal Details

Credit Card

Address

Figure B.7: User interface sketch 5 (viewing membership details)

System Requirements 459

rental a
rental b
rental c
rental d

Search Index Membership Rentals Reservations Password

Figure B.8: User interface sketch 6 (viewing rentals)

reservation a
reservation b
reservation c

Cancel...

Search Index Membership Rentals Reservations Password

Figure B.9: User interface sketch 7 (viewing reservations)

Search Index Membership Rentals Reservations Password

New Password

Repeat New Password

Old Password ******

Change... Clear Fields

Figure B.10: User interface sketch 8 (changing a password)

460 Appendix B

B.2.2 Actor List
• Customer: A person using a Web browser to access iCoot.

• Member: A Customer who has presented their name, address and CreditCard details at one

of our Stores; each Member is given an Internet password to accompany their membership

number. (Specializes Customer.)

• NonMember: A Customer who is not a Member. (Specializes Customer.)

• Assistant: An employee at a Store who contacts Members to tell them about the progress of

their Reservations.

B.2.3 Use Case List
• U1:Browse Index: A Customer browses the index of CarModels. (Specializes U13, includes U2.)

• U2:View Results: A Customer is shown the subset of CarModels that were retrieved. (Included

by U1 and U4, extended by U3.)

• U3:View CarModel Details: A Customer is shown the details of a retrieved CarModel, such as

description and advert. (Extends U2, extended by U7.)

• U4:Search: A Customer searches for CarModels by specifying Categories, Makes and engine

sizes. (Specializes U13, includes U2.)

• U5:Log On: A Member logs on to iCoot using their membership number and current

password. (Extended by U6, U8, U9, U10 and U12.)

• U6:View Member Details: A Member views some of the details stored by iCoot, such as name,

address and CreditCard details. (Extends U5.)

• U7:Make Reservation: A Member reserves a CarModel when viewing its details. (Extends U3.)

• U8:View Rentals: A Member views a summary of the Cars they’re currently renting. (Extends

U5.)

• U9:Change Password: A Member changes the password that they use to log on. (Extends

U5.)

• U10: View Reservations: A Member views summaries of their unconcluded Reservations,

such as date, time and CarModel. (Extends U5, extended by U11.)

• U11:Cancel Reservation: A Member cancels an unconcluded Reservation. (Extends U10.)

• U12:Log Off: A Member logs off from iCoot. (Extends U5.)

• U13:Look for CarModels: A Customer retrieves a subset of CarModels from the catalog.

(Abstract, generalized by U1 and U4.)

B.2.4 Use Case Diagram
The use case diagram for iCoot is shown in Figure B.11.

System Requirements 461

U3: View Car
Model Details

U13: Look for
Car Models

U12: Log Off

U5: Log On
Customer

Member

NonMember

Assistant

U1: Browse
Index

U2: View
Results

U7: Make
Reservation

U11: Cancel
Reservation

U9: Change
Password

U8: View
Rentals

U6: View
Member Details

U10: View
Reservations

<<extend>>

<
<

ex
te

nd
>

> <<include>>

<<extend>>

<<extend>>

<<
ex

te
nd

>>

<<extend>>

<
<

ex
te

nd
>

>

<<include>>

<<exte
nd>>

U4: Search

{Customer is

a logged-On

Member}

iCoot

Figure B.11: Use case diagram for iCoot

B.2.5 Use Case Survey
The use case survey for iCoot, describing how the use cases fit together, is:

Any Customer can look for CarModels in the catalog, by browsing the CarModel index

(U1) or by searching (U4). In the latter case, the Customer specifies the Categories,

Makes and engine sizes that they’re interested in. Either way, after each retrieval, the

Customer is shown the results as a collection of matching CarModels (U2), along with

basic information such as CarModel name. The Customer can then choose to view extra

information about particular CarModel objects such as a description and an advert (U3).

A Customer who has become a Member can log on (U5) and gain access to extra

services. The extra services are: making a Reservation (U7), canceling a Reservation

(U11), checking membership details (U6), viewing outstanding Reservations (U10),

changing their log-on password (U9), viewing their outstanding Rentals (U8) and

logging off (U12).

Assistants are involved in the life cycle of Reservations, moving Cars to and from the

reserved area, for example.

462 Appendix B

Customers come in two varieties, Members and NonMembers.

Browsing the index and searching for CarModels are two different ways of looking

for CarModels (U13). In order to view CarModel details, a Customer must be viewing the

results of looking for models (via the browsing or searching route).

In order to reserve a CarModel, a Member must be viewing its details (NonMembers

can’t make reservations, even when they’re viewing details).

In order to cancel a Reservation, a Member must be viewing their outstanding

Reservations.

B.2.6 Use Case Details
U1:Browse Index. (Specializes U13, includes U2.)

Preconditions: None.

1. Customer selects an index heading.

2. Customer elects to view CarModels for the selected index heading.

3. Include U2.

Postconditions: None.

U2:View Results. (Included by U1 and U4, extended by U3.)

Preconditions: None.

1. iCoot presents Customer with a summary of each retrieved CarModel, including model

number and price.

2. Extend with U3.

Postconditions: None.

U3:View CarModel Details. (Extends U2, extended by U7.)

Preconditions: None.

1. Customer selects one of the matching CarModels.

2. Customer requests details of the selected CarModel.

3. iCoot displays details for the selected car model (makes, engine size, price, description,

advert and poster).

4. If Customer is a logged-on Member, extend with U7.

Postconditions: iCoot has displayed details of selected CarModels.

Non-Functional Requirements: r1. Adverts should be displayed using a streaming protocol

rather than requiring a download.

U4:Search. (Specializes U13, includes U2.)

Preconditions: None.

1. Customer selects required categories (if any).

2. Customer selects required Makes (if any).

System Requirements 463

3. Customer selects required engine sizes (if any).

4. Customer initiates the search.

5. Include U2.

Postconditions: None.

Abnormal paths: a1. If Customer specifies no categories, makes or engine sizes, rather than

retrieving the entire catalog, iCoot should not allow the search to be initiated.

U5:Log On. (Extended by U6, U8, U9, U10 and U12.)

Preconditions: Member has obtained a password from their local Store.

1. Member enters the membership number.

2. Member enters the password.

3. Since iCoot must enforce one logon for a Member, Member can choose to steal (invalidate

and thus take over from) an existing session.

4. Member elects to log on.

5. Extend with U6, U8, U9, U10, U12.

Postconditions: Member is logged on.

Abnormal Paths: a1. If the membership number/password combination is incorrect, iCoot

informs Member that one of the two is incorrect (for security, they’re not told which one).

a2. If the membership number/password combination is correct, but Member is already

logged on and they have not elected to steal, iCoot informs Member.

U6:View Member Details. (Extends U5.)

1. Member elects to view membership details.

2. Member is presented with membership details (name, address, status, amount owing,

CreditCard details).

3. For security reasons, iCoot must display only the last four digits of the Member’s

CreditCard number.

4. iCoot informs Member that to correct details, they must contact their local Store.

Postconditions: Member has been presented with membership details.

U7:Make Reservation. (Extends U3.)

Preconditions: Customer is a Member who has logged on.

1. Member elects to reserve CarModel for the details on display.

2. iCoot asks Member for confirmation, issuing a warning that failure to collect a reserved

CarModel will result in a fine.

3. Member confirms Reservation.

4. iCoot shows Member the Reservation number and indicates that Assistant will be in touch

when a Car is available.

5. When an Assistant logs on to Coot, Assistant is given a list of Reservations that require

action.

464 Appendix B

6. Assistant takes necessary action to progress Reservations (e.g. promoting to Collectable if

a Car is available and moving the Car to the reserved area).

Postconditions: Any requested Reservations have been made.

Abnormal Paths: a1. If Member declines Reservation conditions, no Reservation is made.

U8:View Rentals. (Extends U5.)

Preconditions: None. Relationships: U5.

1. Member elects to view their Rentals.

2. iCoot presents Member with summary of each Car they currently have out for rent

(including number plate and due date).

Postconditions: iCoot has presented Member with summaries of Cars currently rented.

U9:Change Password. (Extends U5.)

Preconditions: None.

1. Member elects to change password.

2. Member enters old password (which is obscured on screen).

3. Member enters new password (obscured).

4. Member enters new password again (for confirmation, also obscured).

5. Member initiates the change.

6. iCoot asks for confirmation (warning that new password must be memorable).

7. If Member confirms, password is changed.

Postconditions: Password has been changed.

Abnormal Paths: a1. If old password is incorrect or new passwords don’t match, Member is

informed (but not given details of the error, for security) and password is unchanged.

a2. If old passwords match but new password doesn’t follow password rules (a mix of at least

six letters and digits), Member is informed and password is unchanged.

U10: View Reservation objects. (Extends U5, extended by U11.)

Preconditions: None.

1. Member elects to view Reservations.

2. iCoot displays summaries of the Member’s outstanding (unconcluded) Reservations

(including number, state, timestamp and CarModel number).

3. Extend with U11.

Postconditions: Member has been presented with summary of outstanding Reservations.

U11:Cancel Reservation. (Extends U10.)

Preconditions: None.

1. Member selects a Reservation.

2. Member elects to cancel the Reservation.

3. iCoot asks for confirmation.

System Requirements 465

4. Member confirms that they wish to cancel the Reservation.

5. iCoot marks the Reservation as Concluded and updates Assistants’ terminals accordingly.

Postconditions: Any canceled Reservations that were confirmed have been marked as

Concluded.

Abnormal Paths: a1. If Member doesn’t confirm a cancellation, iCoot takes no action.

U12:Log Off.

Preconditions: None.

1. Member elects to log off.

2. iCoot ends current session.

3. iCoot makes Member-only functions unavailable to Member.

Postconditions: Member is logged off.

Abnormal Paths: a1. For security reasons, a logged-on Member is logged off automatically if

they do not interact with iCoot for ten minutes.

U13:Look for CarModels (Abstract, specialized by U1 and U4.)

Preconditions: None.

Postconditions: Customer has been presented with summaries of retrieved CarModels.

B.2.7 Supplementary Requirements
s1. The client applet must run in Java PlugIn 1.2 (and later versions).

s2. iCoot must be able to cope with a catalog of 100,000 CarModels.

s3. iCoot must be able to serve 1,000,000 Customers simultaneously with no significant degrada-

tion in performance.

B.2.8 Use Case Priorities
Below is the list of use case priorities for iCoot, with the scores that were used for the first

increment.

• Green:

– U1: Browse Index

– U4: Search

– U2: View Results

– U3: View CarModel Details

– U5: Log On

• Amber:

– U12: Logoff.

– U6: View Member Details

– U7: Make a Reservation

– U10: View Reservations

466 Appendix B

• Red:

– U11: Cancel Reservation

– U8: View Rentals

– U9: Change Password

During the first increment, U6 was also completed. The other use cases were completed

during the second increment.

B.3 ANALYSIS
This section documents the results of the analysis phase of the iCoot development, in terms

of analysis class model, a state machine for a Reservation and use case realization (communi-

cation diagrams). The Reservation state machine also applies to the full Coot system. The class

model includes a few pieces from the full Coot schema, such as NonMember and dateLost.

B.3.1 Class Diagram
The analysis class diagram for iCoot is shown in Figure B.12. Most of these classes also

appear in the design class model (Section B.5), so their descriptions have been placed in the

Glossary (Section B.8), to avoid repetition.

Car
Model

Car
Model
Details

makes

Make

Car

example of

Car
Details

details

Credit
Card

Rental

Customer

VendorCategory

Reservation

Member

Address

lives
at

taken out
by

rented under

details

classified
as

sold
by

*

*

*

*

*1..

* * *1.. *1..

1

1

1

1
1

1

1

1

0..1

*

*1..

Internet
Account

logs in
with

1

1

guaranteed
by

NonMember

Figure B.12: Analysis class diagram

Analysis 467

B.3.2 Attributes
The class attributes for iCoot are shown in Figure B.13. These attributes also appear in the

design class model as fields, where they’re given types and descriptions – refer to the design

documentation (Section B.5) for details.

engineSize

description

advert

poster

CarModelDetails Car

travelled

dateLost[0..1]

CarModel

name

price

barCode:String

numberPlate

vin

 CarDetails

 Rental

number

startDate

dueDate

totalAmount

expiryDate

number:String

type:String

 CreditCard

inGoodStanding:

 boolean

number:String

 Member
number:String

timestamp

state

 Reservation

driversLicense:

 String

 NonMember
house

street

county

postCode

 Address Customer

name
phoneNumber:
 String
amountDue:int

Make

name

Category

name

Vendor

name password:String

Internet

Account

Figure B.13: Analysis attributes

B.3.3 Operation List
• CarModel:

– getSummary() – Fetch a summary of the receiver, including model number and price.

– getDetails() – Fetch the receiver’s details, including makes, engine size, price, descrip-

tion, advert and poster.

• CarModelHome:

– findByIndexHeading(h:String) – Search for CarModel objects under index heading h.

– findByQuery(categories,makes,sizes) – Search for CarModel objects with Category from

categories, a Make in makes and engine size in sizes.

• LogonController:

– logon(n:String,p:String,s:boolean) – Log on the Member with membership number n and

password p, specifying whether or not to steal any existing session with s.

468 Appendix B

– changePassword(m:Member,o:String,n1:String,n2:String) – Change the password for m to

n1, as long as n2 matches and the current password is o.

– logoff() – Log off the logged-on Member.

• Member:

– getPassword():String – Fetch the receiver’s password.

– isLoggedOn():boolean – True if the receiver is logged on.

– logon() – Log the receiver on.

– logoff() – Log the receiver off.

– getDetails() – Fetch the receiver’s details, including name, address, status, amount owing

and (concealed) credit card details

– setPassword(p:String) – Set the receiver’s password to p.

• MemberHome: findByMembershipNumber(n:String):Member – Find the Member with member-

ship number m.

• MemberUI:

– search(categories,makes,sizes) – Search for CarModel objects with a Category from cate-

gories, a Make in makes and engine size in sizes.

– index(h:String) – Search for CarModel objects under index heading h.

– logon(n:String,p:String,s:boolean) – Log on the Member with membership number n,

password p, specifying whether or not to steal any existing session with s.

– setMember(m:Member) – Set the logged-on Member to m.

– showMemberDetails() – Show details for the logged-on Member.

– showRentals() – Show Rental objects for the logged-on Member.

– showReservations() – Show unconcluded Reservation objects for the logged-on Member.

– changePassword(o:String,n1:String,n2:String) – Change the password for the logged on

Member to n1, as long as n2 matches and the current password is o.

– confirmChange() – Confirm that the password really should be changed.

– reserve(c:CarModel) – Reserve c for the logged-on Member.

– confirmReserve() – Confirm that the Reservation really should be made.

– cancel(r:Reservation) – Cancel r.

– confirmCancel() – Confirm that the Reservation really should be canceled.

– showDetails(c:CarModel) – Show details for c.

– logoff() – Log off the logged-on Member.

• NonMemberUI:

– search(categories,makes,sizes) – Search for CarModel objects with a Category from cate-

gories with a Make in makes and engine size in sizes.

– index(h:String) – Search for CarModel objects under index heading h.

• Rental: getSummary() – Fetch a summary of the receiver, including number plate and due

date.

• RentalHome: findByMember(m:Member – Fetch the Rental objects for member m.

Analysis 469

• Reservation:

– getSummary() – Fetch a summary of the receiver, including number, timestamp, state

and CarModel.

– getNumber() – Fetch the receiver’s number.

– setState(s) – Set the receiver’s state to s.

• ReservationHome:

– findByMember(m:Member) – Fetch the reservations for m.

– create(c:CarModel,m:Member) – Reserve c for m, with the current date and time.

B.3.4 State Machine for a Reservation
Figure B.14 shows the state machine diagram for a Reservation, produced to model its

complex life cycle. The accompanying state machine survey is:

car
returned

assistant
finds car

assistant
notifies member

assistant
stores

Storable

Concluded

Waiting

Notifiable

Needing

Renewal

Collectablemember
cancels

member
cancels

no car
found

member
cancels

member
cancels

no car
arrives

member
renews

member
unreachable

member
no-show

member
cancels

member
collects

member
unreachable

Figure B.14: State machine diagram for a Reservation

When a Member reserves a CarModel over the Internet, the Reservation is initially Waiting

to be processed by an Assistant (this is so the Customer can make a Reservation without

the intervention of an Assistant). The Reservation becomes Notifiable if, some time

later, an Assistant finds a suitable unreserved Car in the display area of the car park, or

if one is returned by a Customer. In this case, the Car is moved to the reserved area.

If no Car becomes available for a particular Reservation within a week, the Reservation

becomes NeedingRenewal: the Member must be contacted, by phone or in person, so

470 Appendix B

that they can cancel the Reservation, or ask for it to be renewed for another week. If the

Member cancels or can’t be contacted within five days, the Reservation is Concluded.

Once a Reservation is Notifiable, the Member must be notified by an Assistant, in

person or by phone, within three days; if the Customer can be reached, the Reservation

is Collectable otherwise it becomes Displayable (a Car that was moved to the reserved

area must be returned to the display area).

Once a Reservation is Collectable, the Member must collect the Car within three days:

if they do collect, the Reservation is Concluded; otherwise, the Reservation becomes

Displayable.

Once a Displayable Reservation’s Car has been put back in the display area, the

Reservation is Concluded.

At any time, the Member may cancel the Reservation over the Internet, by phone or

in person.

The system will keep Assistants informed as to the state of current (not yet

concluded) reservations, so that they can take appropriate action.

B.3.5 Use Case Realization
The communication diagrams for iCoot, verifying the analysis class model, are shown in

Figures B.15 through B.26, one per system use case. Note the use of guards (arbitrary condi-

tions in brackets), to specify conditional messages and * to specify iteration (iteration guards

can be used to control iteration, but these would have made the diagrams more complex).

1:index(indexHeading)

:NonMemberUI

or :MemberUI

:CarModel

Home

1.1:lis
t=fin

dByIndexHeading(in
dexHeading)

Customer

1.2:

Include U2,

passing in

list.

Figure B.15: Communication diagram for U1:Browse Index

Analysis 471

:NonMemberUI

or :MemberUI

Customer

:CarModel

1
*:s=

g
e
tS

u
m

m
a
ry()

2:carModels(summaries)

For each CarModel

in list (from including

use case), add s to

summaries. Each

summary includes

model number and

price.

Figure B.16: Communication diagram for U2:View Results

:MemberUI
Member

c:CarModel

Details include

makes, engine

size, price,

description,

advert and poster.

1.1
:d

=getD
eta

ils
()

1:showDetails(c)

1.2:carModelDetails(d)

Figure B.17: Communication diagram for U3:View CarModel Details

472 Appendix B

1:search(c,m,e)

:NonMemberUI

or :MemberUI

:CarModel

Home

1.1:lis
t=fin

dByQuery(c,m
,e)

Customer

Parameters:

 c is categories

 m is makes

 e is engine sizes

1.2:

Include U2,

passing in

list

Figure B.18: Communication diagram for U4:Search

1:logon(n,p,s)

1.2:m=findByMembershipNumber(n)

m:Member

Member

:MemberUI

Parameters:
 n is membership number
 p is password
 s is steal

:Member
Home

1.3[m
 non-null]:p2=getPassw

ord()

1.4[p2.equals(p)]:o=isLoggedO
n()

1.5[s or not o]:logon()

1.1:logon(n,p,s)

1.6:setMember(m)

:Logon
Controller

1.7:greet()

Figure B.19: Communication diagram for U5:Log On

Analysis 473

:MemberUI
Member

:Member

Details include

name, address,

status, amount

owing and

censored

CreditCard details.

1.1
:d

=getD
eta

ils
()

1:showMemberDetails()

1.2:memberDetails(d)

Figure B.20: Communication diagram for U6:View Member Details

1.1:fineWarning()

r:Reservation

1.1.1.1:r=create(c,m)

1:reserve(c)

1.1.1:confirmReserve()

Member :MemberUI

:Reservation
Home

1.1.1.3:reservationNumber(n)

1.1
.1.

2:n
=ge

tN
um

be
r()

m:Member
c:CarModel

Figure B.21: Communication diagram for U7:Make Reservation

474 Appendix B

1:showRentals()

:MemberUI

:Rental

Home

1.1:list=findByMember(m
)

Member

m:Member

:Rental

1
.2

*:
s
=
g
e
tS

u
m

m
a
ry

()

1.3:rentals(summaries)

For each Rental

in list, add s to

summaries.

Each summary

includes number

plate and due date.

Figure B.22: Communication diagram for U8:View Rentals

1.1:m
em

orabiltyW
arning()

:MemberUI

m:Member

Member

1.1.1.1:changePassword(m,o,n1,n2)

Parameters:

 o is old password

 n1 is new password

 n2 is new password again

1.1.1.2:p=getPassword()

1.1.1.3[p.equals(o) and n1.equals(n2)]:setPassword(n1)

1:changePassword(o,n1,n2)

1.1.1:confirmChange()

:Logon

Controller

Figure B.23: Communication diagram for U9:Change Password

Analysis 475

:Reservation

Home

1.1:list=findByMember(m
)

Member

m:Member

:Reservation
1
.2

*:
s=

g
e
tS

u
m

m
a
ry

()

For each

Reservation in list,

add s to summaries.

Each summary

includes number,

timestamp, state,

car model.

:MemberUI

1.3:reservations(summaries)

1:showReservations()

Figure B.24: Communication diagram for U10: View Reservations

1.
2.

1:
se

tS
ta

te
(c

on
cl
ud

ed
)Member

r:Reservation

1:cancel(r)

1.1:confirmationNeeded()

1.2:confirmCancel()

:MemberUI

Figure B.25: Communication diagram for U11:Cancel Reservation

476 Appendix B

1:logoff()

m:Member

Member

:MemberUI

1.1:logoff(m)

1.2:logoff()
:Logon

Controller

Figure B.26: Communication diagram for U12:Log Off

B.4 SYSTEM DESIGN
This section documents the results of system design carried out during the design phase

of the iCoot development, in terms of technology choices, layers, packages, deployment

diagram, security policy and concurrency policy.

B.4.1 Technology Choices
On the client side, the choice of technology is driven by convenience for the customer – we

do not want customers to have to install any software in order to access our services. Also,

we want them to be able to use any desktop machine, regardless of the operating system they

have installed. The obvious choice for the client environment, therefore, is a web browser.

Since the user interface must be interactive, in order to make a Reservation for example, we

have to choose between technologies such as HTML/CGI, Java applets, ActiveX controls and

Flash. Due to the need for portability (and client security), we can discount ActiveX controls.

We would also prefer our customers to have almost-instant access to the user interface

when browsing our site. This effectively discounts applets and Flash, both of which typically

System Design 477

involve a delay while the interface is downloaded. Therefore, the initial user interface will be

HTML/CGI.

Once on the server side, servlets are a good choice for processing CGI requests because

they’re portable, they’re efficient and they have access to all the facilities of J2EE, which

provides everything that the servlets might need (such as access to distributed transaction

management). Traditional scripting raises issues with portability, expressive power and

performance; .Net technologies raise issues with portability. Once servlets are being used as

the entry point to our servers, the obvious choice for producing dynamic web pages is the

JSP mechanism.

Initially, we will use an open-source (free) implementation of J2EE for development

and deployment, being careful to avoid any proprietary lock-ins. The implementation must

support the forwarding of requests to servlets and JSPs running in a separate process, so that

the latter can be accessed directly by GUI clients. Should the open-source implementations

prove inadequate, we can simply purchase a commercial product and redeploy our code.

Because of their portability, we can deploy our servlets on any combination of hardware

and operating system, and then redeploy at a later date if necessary. Initially, each store will

have the system software deployed on two budget Linux servers, providing fail-over and

throughput without the expense of a higher-powered server or highly-available hardware.

For the business data, we will use an open-source database initially, switching to a

commercial product later if necessary. A relational database will be used because of the

maturity of the technology and because our application is business-oriented, with a large

quantity of data but no great logical complexity. The database will also be deployed on a pair

of Linux servers at each store.

For the future, we aim to provide a user interface that can be used on a mobile phone or

PDA. We would prefer to avoid WAP on devices that can’t manage the HTML/CGI interface

because it tends to be clumsy and unpopular. Instead, we will use J2ME, allowing us to

provide a rich interactive experience that scales automatically to the size of the screen.

For those customers who wish to install J2SE on their client, either manually or by using

their Web browser’s plug-in mechanism, we will also provide a conventional graphical user

interface as an applet. This applet will be deployed on touch-screen kiosks in each store to

enhance the customer experience, when viewing adverts for example.

It is anticipated that the J2ME and J2SE interfaces will bypass the JSPs and servlets, for

improved performance.

B.4.2 Layer Diagram
iCoot layers are illustrated in Figure B.27.

Persistence is provided by the JDBCLayer, using the standard JDBC library to access a

relational database. There is no separate persistence layer, because we expect a relational

database to serve our needs for the lifetime of the system.

478 Appendix B

ServletsLayer

HTMLLayer

HTTPCGILayer

RMILayer

ControlLayer

Swing-
Layer

Micro-
Layer

JDBCLayer

ServerLayer

BusinessLayer

Figure B.27: iCoot layer diagram

The BusinessLayer contains implementations of the entity objects from the analysis

class diagram, along with various supporting objects. These objects contain JDBC code for

shipping data to and from the database.

The ServerLayer translates the objects and messages in the BusinessLayer into business

services, in the form of messages on server objects. Objects in the ServerLayer are EJB session

objects, which have two benefits: firstly, they give us access to J2EE transaction management;

secondly, they allow us to provide direct access for GUI clients over RMI, bypassing the

WebServer.

In order to keep the ServerLayer closed, all information returned by the business services

takes the form of protocol objects, lightweight copies of the business objects.

The ServletsLayer is a control layer for HTML/CGI clients. Each servlet translates one

or more objects in the ServerLayer into simple commands and questions that can be issued

from the client. In response to each command or question, a servlet will perform whatever

actions are necessary and then pass the next HTML page back to the client. So that page

design and source code are separate, every reply page is built by a JSP that produces content

dynamically based on the customer’s interaction. The JSPs receive their dynamic data as

protocol objects passed in by the servlets. The network communication for the HTMLLayer

is provided by the standard HTTPCGILayer.

The RMILayer is a network layer allowing remote access from GUIs (Java applications and

any device using J2ME). The objects in this layer are simply decorators for the EJB session

objects in the ServerLayer: each server object is decorated with an RMI servant, while each

RMI servant is accessed via an RMI proxy on the client. When communicating with the

ControlLayer, the RMILayer uses the same protocol objects that the ServletsLayer uses when

invoking JSPs.

System Design 479

The ControlLayer sits between the GUI objects and the RMI proxies. It serves to

simplify interaction with the server objects and to hide the details of RMI. The RMILayer,

ControlLayer, SwingLayer and MicroLayer are not documented fully because the graphical

user interfaces are not part of the first increment of iCoot.

B.4.3 Layer Interaction Policy
On the server, for the sake of simplicity, all layer communication will flow downwards.

In other words messages will only be sent from one layer to the layer below. Events

will be used on the client side for the benefit of the SwingLayer and the MicroLayer, so

that application-specific knowledge can be pushed from the user interface components

down to the ControlLayer. (The HTML/CGI front end does not need events because all

information displayed to the user is calculated by the servlets and passed directly to JSPs for

presentation.)

Layers will be closed, in order to make implementation and maintenance easier:

each object will be able to access objects in the layer immediately below, but not

beyond.

B.4.4 Packages
The package diagram for Coot (including the graphical user interface/RMI packages not

implemented in the first increment) is shown in Figure B.28.

B.4.5 Deployment Diagram
The deployment diagram for iCoot is shown in Figure B.29.

The iCoot data tier comprises two database servers (which we have called DBServer).

Having two such nodes improves throughput and reliability. Each DBServer hosts a DBMS

process for managing access to data.

The cootschema.ddl artifact contains commands for creating database tables, in a for-

mat specific to the database being used. This is deployed to each DBMS process, using

database-specific tools (no detail given here). Note that cootschema.ddl contains the schema

for the full Coot system, since iCoot and Coot use the same data.

The middle tier, which communicates with the data tier, consists of two server machines

(CootServer), again duplicated for the sake of reliability and throughput. Each CootServer

hosts a CootBusinessServer (for handling business requests) and a WebServer (for han-

dling static HTML content and forwarding business requests to the CootBusinessServer).

Data access for the CootBusinessServer is provided by the DBMS. Because they’re propri-

etary to the products that we select, the communication protocols between the WebServer

480 Appendix B

com::nowhere

swing micro

control

business

server

servlets rmi

protocol

Figure B.28: iCoot package diagram

and the CootBusinessServer and between the CootBusinessServer and the DBMS are not

specified.

Within each CootServer, the iCoot folder, containing static HTML pages, is deployed to

the WebServer, while the icoot.ear archive is deployed to the CootBusinessServer. The icoot.ear

archive contains servlets, JSPs, business objects and (eventually) RMI decorators, from the

com::nowhere package.

System Design 481

HTTP

<<device>> CootHTMLClient

<<ExecutionEnvironment>>
WebBrowser

*

2
<<device>>
DBServer

<<ExecutionEnvironment>>
DBMS

2

<<device>> CootServer

<<use>>

<<ExecutionEnvironment>>
WebServer

iCoot

<<ExecutionEnvironment>>
CootBusinessServer

icoot.ear

com::nowhere

servlets
protocol
server
business

<<manifest>>

<<device>>
CootGUI

Client

*

JRMP

cootschema.ddl

Figure B.29: iCoot deployment diagram

482 Appendix B

Each CootServer can be accessed simultaneously by any number of CootHTMLClients. Each

CootHTMLClient hosts a WebBrowser, which accesses one of the WebServers using HTTP. No

artifacts need to be deployed to the CootHTMLClients.

Eventually, we will also provide access from CootGUIClients. Each CootGUIClient will access

one of the CootServers, using JRMP. Because the mechanism that allows such requests to get

into the CootBusinessServer is the subject of a future increment, no details are given. Nor is

any detail given for the CootGUIClient processes. The artifacts deployed to the CootGUIClients,

if any, are not specified.

B.4.6 Security Policy
Searching and browsing services will be available to all-comers, without logging in. In

contrast, for Member-only services, each Member must first obtain a password in person from

their local Store, then use it to log in to the Member’s area from their chosen client. The

membership numbers and passwords used to log in will be managed in a central directory,

for ease of maintenance, using the standard Java integration mechanisms.

In order to keep Member activity private, all access to Member services from the client will

be over SSL rather than plain TCP/IP. SSL will also be employed between servers for internal

protection.

The servers will be deployed behind an Internet firewall so that external access can be

tightly controlled.

B.4.7 Concurrency Policy
Objects in the BusinessLayer will be managed using distributed transactions. At the start

of each business request (i.e. each method on a ServerLayer object), a Java transaction will

be created – this transaction will be associated with every database access made by business

objects within that request. At the end of each request, the Java transaction will be committed,

thus making updates available to other requests.

In order to minimize transaction conflict, all RMI servants, servlets and server objects will

be stateless.

For GUI clients, access to local data (copies of protocol objects) will be single-threaded.

For HTML clients, each JSP will have exclusive access to its protocol objects, so such

access is also effectively single-threaded. For business data, low-level concurrency con-

trol is managed automatically by the EJB framework: every use of a business service is

wrapped inside a transaction, which passes right through to the database management

system.

Subsystem Design 483

To simplify concurrency control at the business level, two strategies will be employed:

firstly, single log-on will be enforced for Members. Secondly, updates to the Catalog of

available CarModels will be made off-line and switched with the live Catalog in the early hours

of the morning. This will minimize the need to report errors such as ‘Attempt to reserve a

car model that has been withdrawn’ to Customers and Assistants. (This will still occasionally

happen, because client displays won’t be updated explicitly when data changes on the server

via concurrent paths; pushing all relevant changes to clients, although technically feasible,

would be too inefficient.)

B.5 SUBSYSTEM DESIGN
This section documents the results of subsystem design, carried out during the design

phase of the iCoot development, in terms of business services, design class models (one per

layer plus the protocol objects), database schema, user interface design and business service

realization (sequence diagrams). In general, this documentation describes the subsystem

artifacts required to support business service realization and the CootHTMLClient.

B.5.1 Business Services
1. Read headings from the CarModel index.

2. Read CarModels for a given index heading.

3. Read all CarModel Categories.

4. Read all CarModel engine sizes.

5. Read all Makes of CarModel.

6. Read CarModels for a given set of Categories, engine sizes and Makes.

7. Read details for a given CarModel.

8. Reserve a CarModel.

9. Read details for a given Member.

10. Change a Member’s password.

11. Read the Cars rented by a given Member.

12. Read the Reservations made by a given Member.

13. Cancel a Reservation.

B.5.2 ServletsLayer Class Diagram
The class diagram for the ServletsLayer is shown in Figure B.30.

484 Appendix B

Authentication
Servlet

Reservations
Servlet

Membership
Servlet

Rentals
Servlet

Catalog
Servlet

pkg servlets

Figure B.30: ServletsLayer classes

B.5.3 ServletsLayer Field List
All servlets are stateless and therefore do not have any fields. Any information about the

state of a customer’s interaction is recorded in the result pages themselves and in a state

object stored in the browser’s HTTP session. For logged-on members, the session identifier

is also stored in the HTTP session. Objects in the server layer are located using their homes

(implemented using the Singleton pattern).

B.5.4 ServletsLayer Message List
Using the standard Java mechanism, each client request is passed to the selected servlet via a

message called doGet(:HttpServletRequest,:HttpServletResponse). The questions and commands

from the client are passed in as part of the HttpServletRequest. Below is a list of the questions

and commands that can be passed in by the client, along with the JSPs that are invoked as a

result.

AuthenticationServlet

• logon From home page; takes a membership number, password and ‘steal’ parameter and,

upon successful logon, returns the member page. (The steal parameter indicates whether

the member would like to steal an existing session.)

• logoff From member page; logs off the current Member.

Subsystem Design 485

CatalogServlet

• index From member or non-member page; returns the index page containing index

headings to choose from.

• browse From index page; takes an index heading as parameter and returns the results

page containing matching CarModels.

• search From member or non-member page; returns the search page containing every

Category, Make and engine size to choose from.

• query From search page; takes Category ids, Make ids and engine sizes as parameters and

returns the results page containing matching CarModels.

• details From results page; takes a CarModel id as parameter and returns the details page

containing details for that CarModel.

MembershipServlet

• membership From member page; returns the membership page, containing details for

the current Member.

• password From member page; returns the password page.

• changePassword From member page; takes an old password and a new password as

parameters and returns the confirmChange page.

• confirmChange From the confirmChange page; sets the new password for the current

Member, if the old password given was correct.

RentalsServlet

• rentals From member page; returns the rentals page, containing Rentals for the current

Member.

ReservationsServlet

• reserve From details page; takes a CarModel id as parameter and returns the confirmRe-

serve page.

• confirmReserve From confirmReserve page; reserves the CarModel already identified and

returns the confirmation page.

• ok From confirmation page; returns the details page.

• reservations From member page; returns the reservations page, containing Reservations

for the current Member.

• cancel From the reservations page; takes the Reservation id as parameter and returns the

confirmCancel page.

• confirmCancel From confirmCancel page; cancels the previously selected Reservation and

returns the reservations page.

B.5.5 ServerLayer Class Diagram
The class diagram for the ServerLayer is shown in Figure B.31. Each class also has a home,

implemented using the Singleton pattern (not shown).

486 Appendix B

pkg server

Authentication
Server

Authentication
ServerHome

Reservations
Server

Reservations
ServerHome

Membership
Server

Membership
ServerHome

Rentals
Server

Rentals
ServerHome

Catalog
Server

Catalog
ServerHome

Figure B.31: ServerLayer classes

B.5.6 ServerLayer Field List
The server objects are stateless, thus they have no fields. (All BusinessLayer classes are

accessed via their respective homes.)

B.5.7 ServerLayer Message List
For the server objects, the messages below correspond to the business services. (Homes

have been omitted from this list because they simply create server objects, with no para-

meters.)

AuthenticationServer

• +logon(n:String,p:String,s:boolean):long Log on the Member with membership number n

and password p, specifying whether or not to steal any existing session with s.

• +logoff(i:int) Log off the Member with session identifier i.

Subsystem Design 487

CatalogServer

• +readCategoryNames():String[] Read the names of every Category.

• +readMakeNames():String[] Read the names of all Makes.

• +readEngineSizes():int[] Read the unique engine sizes of all CarModel details.

• +readIndexHeadings():String[] Read the index headings, derived from all CarModel numbers

and Make names.

• +readCarModels(h:String):PCarModel[] Read all CarModels matching the index heading h.

• +readCarModelDetails(i:int):PCarModelDetails Read details for the CarModel with identi-

fier i.

• +readCarModels(q:PCatalogQuery):PCarModel[] Read all CarModels that match the query q.

MembershipServer

• +readMember(i:int):PMember Read the Member with session identifier i.

• +changePassword(i:int,o:String,n:String) Change the password for the Member with session

identifier i, using old password o and new password n.

RentalsServer

• +readRentals(i:int):PRental[] Read all Rentals for the Member with session identifier i.

ReservationsServer

• +readReservations(i:int):PReservation[] Read all Reservations for the Member with session

identifier i.

• +createReservation(i:int,c:int) Create a Reservation for the Member with session identifier i

and the CarModel with identifier c.

• +cancelReservation(i:int,r:int) Cancel the Reservation with identifier r, for the Member with

session identifier i, as long as the Reservation matches the Member.

B.5.8 BusinessLayer Class Diagram

The class diagram for the BusinessLayer is shown in Figure B.32. Most of these classes also

appear in the analysis class model (Section B.3), so their descriptions have been placed in

the Glossary (Section B.8), to avoid repetition.

Each entity class has a home, apart from Customer (because it’s abstract). ReservationState-

Home is an Abstract Factory for creating instances of its subclasses.

The Store class, used for illustration in Chapter 13, has not been included in this appendix

since it plays no part in business service realization.

488 Appendix B

Car
Details Car Rental

-details

-details

1

-cars:List

1..*

1..*

1..*

0..1

* *

*

*

1

1

1

1

1

1

1

1

1 1..*

1

1

1

Customer

-customer

-customer

Address

-address

Member

-account

Internet
Account

InternetAccount
Home

-card

Credit
Card

CarModel
Details CarModel

-model

-model

Vendor

-vendor

Category

-category

Make

-makes:List

Reservation

Reservation
Home

Reservation
StateHome

ReservationState

-state
Catalog
Query

Catalog
Query Home

Waiting Needing
Renewal Notifiable Collectable Displayable Concluded

Member
Home

CarModel
Home

Car
Home

Rental
Home

CreditCard
Home

Make
Home

Category
Home

Vendor
Home

Address
Home

CarModel
DetailsHome

CarDetails
Home

pkg business

Figure B.32: BusinessLayer classes

B.5.9 BusinessLayer Field List
The list below shows fields for stored attributes only; fields that store links are shown in

Figure B.32. With the exception of the state objects, every object has an -id:int that stores the

universal identifier but which has been omitted from the list. Classes with no fields other

than links have been omitted.

Subsystem Design 489

Address

• -house:String House number and/or name (unique within the postal code).

• -street:String Street in which the house stands.

• -county:String County where the street is.

• -postCode:String Postal code for the sorting office and region.

Car

• -traveled:int The distance, in kilometers, that the Car has traveled (taken from the

odometer).

• -dateLost:Date Date the Car was reported missing, null if not lost.

CarDetails

• -barCode:String The bar code, attached inside the Car’s windscreen.

• -numberPlate:String The Car’s license number as it appears on the plate.

• -vin:String The Car’s unique Vehicle Identification Number, on a plate riveted to the body.

CarModel

• -name:String The Make’s unique name for the CarModel.

• -price:int The daily cost of hiring the Car, in cents.

CarModelDetails

• -engineSize:int The capacity of the engine, in cubic centimeters.

• -description:String A single-sentence description of the CarModel.

• -advert:String The file name of a streaming advert for the CarModel.

• -poster:String The file name of a poster for the CarModel.

CatalogQuery

• -makeIds:List<Integer> Universal identifiers for relevant Makes (using identifiers avoids

retrieving Makes when building the database query).

• -carModelIds:List<Integer> Universal identifiers for relevant CarModels (using identifiers

avoids retrieving CarModels).

• -engineSizes:List<Integer> Engine sizes, in cubic centimeters.

Category

• -name:String The name of the Category.

Collectable

• -dateNotified:Date Date the Customer was notified that the car is ready for collection.

490 Appendix B

Concluded

• -reason:String Why the Reservation is concluded: ‘‘Successfully rented’’, ‘‘Canceled by

customer’’, ‘‘Wasn’t renewed’’ or ‘‘Wasn’t collected’’.

CreditCard

• -type:String Type of Card (e.g. ‘‘Annex’’).

• -number:String Number on the Card.

• -expiryDate:Date Date Card expires.

Customer

• -name:String The Customer’s name.

• -phone:String The Customer’s phone number.

• -amountDue:int Fees due, in cents, for the Customer (for example, for overdue Rentals).

Displayable

• -reason:String Why the Car must be put back in the display area, either ‘‘Customer

uncontactable’’ or ‘‘Failed to collect’’.

InternetAccount

• -password:String Password for the associated Member; must be a mix of at least six letters

and digits.

• -sessionId:long Session identifier for the associated Member: 0 if not logged on; securely

random, unique, non-zero number if logged on.

Make

• -name:String The name of the manufacturer.

Member

• -number:String The Member’s unique number.

• -inGoodStanding:boolean Whether or not the Member has any outstanding issues, such as

disputed late fees.

NeedingRenewal

• -dateRenewalNeeded:Date Date by which the Reservation must be renewed to avoid

becoming automatically concluded.

Notifiable

• -datePutAside:Date Date the Car was moved to the reserved area.

Subsystem Design 491

Rental

• -number:String The unique number for the Rental.

• -startDate:Date The date the Rental was taken out.

• -dueDate:Date The date the Rental is due to end.

• -totalAmount:int The amount paid for the Rental, in cents.

Reservation

• -number:String The unique number for the Reservation.

• -timestamp:Timestamp The date and time that the Reservation was made.

Vendor

• -name:String Name of the Vendor.

Waiting

• -lastRenewedDate:Date Date the Reservation was last renewed (initially the same as the

date it was created).

BusinessLayer Message List
Most of the public messages on the BusinessLayer classes are simply accessors for attributes,

derived attributes or links, so no detail is given for these.

For the ReservationState hierarchy, and the Reservation class itself, every class has one

message for each event shown in Figure B.14 and one getter for each state attribute. Details

of these messages have been omitted, for brevity. In addition, the Reservation class has test

messages to enable clients to discover which state the receiver is in, e.g. isConcluded and

isWaiting.

For the homes, details resulting from the Singleton pattern are not given. To support the

homes, every class created by a home has a package constructor that takes all attributes and

links as parameters; no further detail is given for these constructors.

Apart from ReservationStateHome and CatalogQueryHome, every home has the following

messages (where X is a stand-in for the corresponding BusinessLayer class):

• +findByPrimaryKey(id:int):X Returns the instance of X with universal identifier id.

• +create(...):X Takes every attribute and link as parameters and returns a new in-

stance of X.

ReservationStateHome has one creation message for each subclass, taking all subclass attributes

as parameters.

CatalogQueryHome has a create message that takes three List<Integer> parameters: makeIds,

categoryIds and engineSizes.

492 Appendix B

All other home messages used in business service realization are listed below.

CarModelHome

• +findByIndexHeading(h:String):List<CarModel> Returns all CarModels that have h as a model

number or Make name, sorted by model name.

• +findByQuery(q:CatalogQuery):List<CarModel> Returns all CarModels that have a Make, a

Category and an engine size that appear in q, sorted by model name.

CarModelDetailsHome

• +findByCarModelId(id:int):CarModelDetails Returns the instance that matches the CarModel

with universal identifier id.

• +findEngineSizes():List<Integer> Returns all engine sizes, in ascending order.

CategoryHome

• +findCategoryNames():List<String> Returns all Category names, in alphabetical order.

MakeHome

• +findMakeNames():List<String[]> Returns all Make names, in alphabetical order.

MemberHome

• +findByMembershipNumber(n:String):Member Returns the Member with membership num-

ber n.

• +findBySessionId(id:long):Member Returns the Member with session identifier id.

RentalHome

• +findByMember(m:Member):List<Rental> Returns all Rentals for m, sorted by start date.

ReservationHome

• +findUnconcludedByMember(m:Member):List<Rental> Returns all the unconcluded Reser-

vations for m, sorted by creation date.

B.5.10 Protocol Objects Class Diagram
The class diagram for the protocol objects, used for communication between the server layer

and the servlets layer, is shown in Figure B.33.

Protocol Objects Field List
The list below shows fields for stored attributes only; fields that store links are shown in

Figure B.33. The meaning of these fields is the same as those for the BusinessLayer classes,

with the exception that cardNumber only includes the last four real digits. The message

variable on PServerException stores an explanation for the exception.

Subsystem Design 493

1 1..*

1 1

1 1

PCarModel

PCategory

-category

PMake

-makes:List

-model
PReservation

PCatalog
Query

PCarModel
Details

PCarModel
DetailsHome

PCarDetails
Home

PCard
Home

PCategory
Home

PCarModel
Home

PMake
Home

PCatalog
QueryHome

PCar
Home

PServer
Exception

Home

PReservation
Home

PRental
Home

PMember
Home

PAddress
Home

PAddress

-address

PMember

PCard

-card

PCar
Details

PCar

PServer
Exception

PRental

-details

1

1 1

-cars:List
*

1

1

1

1

pkg protocol

Figure B.33: Protocol classes

• PAddress -house:String, -street:String, -county:String, -postCode:String

• PCar -traveled:int, -numberPlate:String

• PCarModel -id:int, -name:String, -price:int

• PCarModelDetails -engineSize:int, -description:String, -advert:String, -poster:String

• PCatalogQuery -makeIds:int[], -carModelIds:int[], -engineSizes:int[]

• PCategory -name:String

• PCreditCard -type:String, -number:String

• PMake -name:String

• PMember -name:String, -phone:String, -amountDue:int, -inGoodStanding:boolean

• PRental -startDate:Date, -dueDate:Date

494 Appendix B

• PReservation -id:int, -number:String, -timestamp:Timestamp

• PServerException -message:String

Protocol Objects Message List
Nearly all the messages on the protocol classes are accessors for attributes or links. In

addition, each protocol class has a toString message that returns a human-readable summary

of the receiver: these messages are used to display objects in user interfaces.

Each home has a single create message with a parameter to initialize each attribute and

link. Beyond this, all messages on homes are derived from the Singleton pattern. To support

the homes, each protocol class has a package constructor that takes every attribute and link

as parameters. No further detail is given for these constructors.

In addition to its basic creation message, PCatalogQueryHome has a createCatalogQuery

message that takes three int[] parameters (makeIds, categoryIds and engineSizes) and returns

a new CatalogQuery.

Since none of the protocol classes or homes have any special messages, no detailed list is

given here.

B.5.11 Database Schema
The database schema is shown in Figure B.34. In this diagram, the names of primary key

columns are shown in bold and the names of foreign key columns are shown in italics. The

meaning of the attribute columns is the same as those for the fields in the BusinessLayer

classes. Of all the columns, only DATELOST in the CAR table is nullable.

B.5.12 User Interface Design
The user interface design is not given here since it is similar to the user interface sketches

shown in Section B.3.

B.5.13 Business Service Realization
Figures B.35 through B.46 show one sequence diagram, documenting business service

realization, per system use case. Several diagrams use frames to show loops. The loop

operator has a pseudocode guard controlling the number of iterations. Frames have also

been used to enclose lifelines that refer to included use cases, using the ref operator – in this

case, the name of the included use appears in the center of the frame, alongside a list of the

parameters that are passed in.

For the sake of simplicity, each interaction between a customer’s browser and a servlet

has been shown as a message sent from the actor directly to the servlet. In reality,

this is implemented by passing a command and its parameters into the servlet’s doGet

message.

Subsystem Design 495

ADDRESS (ID:INTEGER,HOUSE:VARCHAR(99),STREET:VARCHAR(99),COUNTY:VARCHAR(99),
 POSTCODE:VARCHAR(99))

CAR (ID:INTEGER,TRAVELLED:INTEGER,DATELOST:DATE,CARDETAILSID:INTEGER)

CARD (ID:INTEGER,TYPE:VARCHAR(99),NUMBER:VARCHAR(99))

CARDETAILS (ID:INTEGER,BARCODE:VARCHAR(99),NUMBERPLATE:VARCHAR(99),VIN:VARCHAR(99))

CARMODEL (ID:INTEGER,NAME:VARCHAR(99),PRICE:INTEGER,CARMODELDETAILSID:INTEGER,
CATEGORYID:INTEGER,VENDORID:INTEGER)

CARMODELDETAILS (ID:INTEGER,ENGINESIZE:VARCHAR(99),DESCRIPTION:VARCHAR(256),
 ADVERT:VARCHAR(99),POSTER:VARCHAR(99))

CATEGORY (ID:INTEGER,NAME:VARCHAR(99))

COLLECTABLERESERVATION (RESERVATIONID:INTEGER,DATENOTIFIED:DATE)

CONCLUDEDRESERVATION (RESERVATIONID:INTEGER,REASON:VARCHAR(99))

CUSTOMER (ID:INTEGER,NAME:VARCHAR(99),PHONE:VARCHAR(99),AMOUNTDUE:INTEGER)

DISPLAYABLERESERVATION (RESERVATIONID:INTEGER,REASON:VARCHAR(99))

INTERNETACCOUNT (ID:INTEGER,PASSWORD:VARCHAR(99),SESSIONID:INTEGER)

MAKE (ID:INTEGER,NAME:VARCHAR(99))

MAKECARMODEL (CARMODELID:INTEGER,MAKEID:INTEGER)

MEMBER (ID:INTEGER,NUMBER:VARCHAR(99),INGOODSTANDING:BOOLEAN,CARDID:INTEGER,
ADDRESSID:INTEGER)

NEEDINGRENEWALRESERVATION (RESERVATIONID:INTEGER,DATERENEWALNEEDED:DATE)

NONMEMBER (ID:INTEGER,DRIVERSLICENSE:VARCHAR(99))

NOTIFIABLERESERVATION (RESERVATIONID:INTEGER,DATEPUTASIDE:DATE)

RENTAL (ID:INTEGER,NUMBER:VARCHAR(99),STARTDATE:DATE,DUEDATE:DATE,TOTALAMOUNT:INTEGER)

RENTALCAR (RENTALID:INTEGER,CARID:INTEGER)

RESERVATION (ID:INTEGER,NUMBER:VARCHAR(99),TIMESTAMP:TIMESTAMP,CUSTOMERID:INTEGER,
CARMODELID:INTEGER)

VENDOR (ID:INTEGER,NAME:VARCHAR(99))

WAITINGRESERVATION (RESERVATIONID:INTEGER,LASTRENEWEDDDATE:DATE)

Figure B.34: Database schema

496 Appendix B

C
u
s
to

m
e
r

:C
a

rM
o

d
e

l

H
o

m
e

:C
a

ta
lo

g

S
e

rv
e

r
:C

a
ta

lo
g

S
e

rv
le

t

b
ro

w
s
e

("
K

y
a

")

L
is

t<
C

a
rM

o
d

e
l>

re
a

d
C

a
rM

o
d

e
ls

("
K

y
a

")

lis
t=

fi
n

d
B

y
In

d
e

x
H

e
a

d
in

g
("

K
y
a

")

in
d

e
x
()

in
d

e
x
 p

a
g

eF
ro

m
 m

e
m

b
e

r

o
r

n
o

n
m

e
m

b
e

r

p
a

g
e

re
a

d
In

d
e

x
H

e
a

d
in

g
s
()

S
tr

in
g

[]

in
d

e
x
 p

a
g

e

is
 c

a
c
h

e
d

 b
y

b
ro

w
s
e

r

s
d

U
1

re
f

U
2
(l
is

t)

Fi
gu

re
B

.3
5:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
1

:B
ro

w
s
e

In
d

e
x

Subsystem Design 497

:P
C

a
rM

o
d
e
l

H
o
m

e

re
s
u
lt
s
 p

a
g
e

:P
C

a
rM

o
d
e
l[
]

:C
a
rM

o
d
e
l

id
=

g
e
tI
d
()

p
=

g
e
tP

ri
c
e
()

c
re

a
te

(i
d
,m

,p
)

:C
a
ta

lo
g

S
e
rv

e
r

:C
a
ta

lo
g

S
e
rv

le
t

m
=

g
e
tM

o
d
e
lN

u
m

b
e
r(

)

C
u

s
to

m
e

r

E
x
te

n
d
 w

it
h

U
3

lo
o

p
[f
o
r

e
a
c
h
 C

a
rM

o
d
e
l
in

 l
is

t]

s
d

U
2

Fi
gu

re
B

.3
6:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
2

:V
ie

w
R

e
s
u

lt
s

498 Appendix B

c
1
:C

a
r

M
o
d
e
lD

e
ta

il
s

:C
a
rM

o
d
e
l

D
e
ta

ils
H

o
m

e

:P
C

a
rM

o
d
e
l

D
e
ta

ils
H

o
m

e

:C
a
ta

lo
g

S
e
rv

e
r

:C
a
ta

lo
g

S
e
rv

le
t

d
e

ta
ils

(i
d

)

p
=

g
e
tP

ri
c
e
()

a
=

g
e
tA

d
v
e
rt

()

c
2

d
e
ta

ils
 p

a
g
e

c
2
=

c
re

a
te

(m
s
,e

,p
,d

,a
,t
)

e
=

g
e
tE

n
g
in

e
S

iz
e
()

d
=

g
e
tD

e
s
c
ri
p
ti
o
n
()

re
a
d
C

a
rM

o
d
e
lD

e
ta

ils
(i
d
) c
1
=

fi
n
d
B

y
C

a
rM

o
d
e
lI
d
(i
d
)

E
x
te

n
d
 w

it
h

U
7

C
u

s
to

m
e

r

m
s
=

g
e
tM

a
k
e
s
()

t=
g
e
tP

o
s
te

r(
)

s
d

U
3

Fi
gu

re
B

.3
7:

Se
qu

en
ce

D
ia

gr
am

fo
r

U
3

:V
ie

w
C

a
rM

o
d

e
l

D
e
ta

il
s

Subsystem Design 499

:C
a

te
g

o
ry

H
o

m
e

:C
a

ta
lo

g

S
e

rv
e

r

:C
a

ta
lo

g

S
e

rv
le

t

L
is

t<
C

a
rM

o
d

e
l>

q
u
e
ry

(c
s
,m

s
,e

s
)

lis
t=

fi
n

d
B

y
Q

u
e

ry
(q

2
:C

a
ta

lo
g

Q
u

e
ry

)

C
u
s
to

m
e
r

s
e
a
rc

h
()

s
e

a
rc

h
 p

a
g

e

S
tr

in
g

[]

S
tr

in
g

[]

in
t[

]

:M
a

k
e

H
o

m
e

:C
a

rM
o

d
e

l

D
e

ta
ils

H
o

m
e

:C
a

rM
o

d
e

l

H
o

m
e

re
a

d
C

a
rM

o
d

e
ls

(q
1

:P
C

a
ta

lo
g

Q
u

e
ry

)

re
a

d
E

n
g

in
e

S
iz

e
s
()

L
is

t<
S

tr
in

g
>

L
is

t<
S

tr
in

g
>

L
is

t<
In

te
g

e
r>

re
a

d
C

a
te

g
o

ry
N

a
m

e
s
() fi
n

d
C

a
te

g
o

ry
N

a
m

e
s
()

fi
n

d
M

a
k
e

N
a

m
e

s
()

fi
n

d
E

n
g

in
e

S
iz

e
s
()

re
a

d
M

a
k
e

N
a

m
e

s
()

q
2

 i
s
 a

 b
u

s
in

e
s
s

v
e

rs
io

n
 o

f
q

1

s
e

a
rc

h
 p

a
g

e

is
 c

a
c
h

e
d

 b
y

b
ro

w
s
e

r

F
ro

m
 m

e
m

b
e

r

o
r

n
o

n
m

e
m

b
e

r

p
a

g
e

s
d

U
4

re
f

U
2
(l
is

t)

Fi
gu

re
B

.3
8:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
4

:S
e
a
rc

h

500 Appendix B

M
e
m

b
e
r

m
:M

e
m

b
e

r
:A

u
th

e
n

ti
c
a

ti
o

n

S
e

rv
e

r
:A

u
th

e
n

ti
c
a

ti
o

n

S
e

rv
le

t

7
9

2
 s

to
re

d

in
 b

ro
w

s
e

r

s
e

s
s
io

n

:M
e

m
b

e
r

H
o

m
e

a
=

is
G

o
o

d
M

e
m

b
e

r(
)

g
e

tP
a

s
s
w

o
rd

()

7
9

2

m
e
m

b
e
r

p
a
g
e

:I
n

te
rn

e
t

A
c
c
o

u
n

t

lo
g
o
n
("

M
1
",

"x
y
z
",

tr
u
e
)

lo
g
o
n
("

M
1
",

"x
y
z
",

tr
u
e
)

m
=

fi
n

d
B

y
M

e
m

b
e

rs
h

ip
N

u
m

b
e

r(
"M

1
")

s
e

tS
e

s
s
io

n
Id

(7
9

2
)

s
e

tS
e

s
s
io

n
Id

(7
9

2
)

E
x
te

n
d

 w
it
h

U
6

,
U

8
,

U
9

,

U
1

0
 o

r
U

1
2

s
d

U
5

g
e

tP
a

s
s
w

o
rd

()

Fi
gu

re
B

.3
9:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
5

:L
o
g

O
n

Subsystem Design 501

:M
e
m

b
e
rs

h
ip

S
e
rv

e
r

:M
e
m

b
e
rs

h
ip

S
e
rv

le
t

m
e

m
b

e
rs

h
ip

()

m
1
:M

e
m

b
e
r

id
 r

e
tr

ie
v
e
d

fr
o
m

 b
ro

w
s
e
r

s
e
s
s
io

n

:M
e
m

b
e
r

H
o
m

e

re
a
d
M

e
m

b
e
r(

id
)

m
e

m
b

e
rs

h
ip

p
a

g
e

n
=

g
e
tN

a
m

e
()

c
1
=

g
e
tC

a
rd

()

a
1
=

g
e
tA

d
d
re

s
s
()

:P
M

e
m

b
e
r

H
o
m

e

a
2
 a

n
d
 c

2

a
re

 p
ro

to
c
o
l

v
e
rs

io
n
s

o
f
a
1
 a

n
d
 c

1

m
2

m
2
=

c
re

a
te

(n
,a

2
,s

,d
,c

2
)

m
1
=

fi
n
d
B

y
S

e
s
s
io

n
Id

(i
d
)

M
e

m
b

e
r

s
=

in
G

o
o
d
S

ta
n
d
in

g
()

d
=

g
e
tA

m
o
u
n
tD

u
e
()

s
d

U
6

Fi
gu

re
B

.4
0:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
6

:V
ie

w
M

e
m

b
e
r

D
e
ta

il
s

502 Appendix B

:R
e
s
e
rv

a
ti
o
n

o
k
()

:R
e
s
e
rv

a
ti
o
n
s

S
e
rv

e
r

:R
e
s
e
rv

a
ti
o
n
s

S
e
rv

le
t

:C
a
rM

o
d
e
l

H
o
m

e

id
 r

e
tr

ie
v
e
d

fr
o
m

 b
ro

w
s
e
r

s
e
s
s
io

n

:M
e
m

b
e
r

H
o
m

e

c
o

n
fi
rm

a
ti
o

n

p
a
g
e

:R
e
s
e
rv

a
ti
o
n

H
o
m

e

n

d
e

ta
ils

 p
a

g
e

re
s
e

rv
e

(c
id

)

c
o

n
fi
rm

R
e

s
e

rv
e

p
a
g
e

m
=

fi
n
d
B

y
S

e
s
s
io

n
Id

(i
d
)

c
=

fi
n
d
B

y
P

ri
m

a
ry

K
e
y
(c

id
)

c
re

a
te

(m
,c

)

n
=

g
e
tN

u
m

b
e
r(

)

c
re

a
te

R
e
s
e
rv

a
ti
o
n
(i
d
,c

id
)

M
e
m

b
e
r

c
o

n
fi
rm

R
e

s
e

rv
e

()

s
d

U
7

Fi
gu

re
B

.4
1:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
7

:M
a
k
e

R
e
s
e
rv

a
ti

o
n

Subsystem Design 503

:R
e
n
ta

l

H
o
m

e

P
R

e
n
ta

l[
]

:P
R

e
n
ta

l

H
o
m

e

:R
e
n
ta

ls

S
e
rv

e
r

:R
e
n
ta

ls

S
e
rv

le
t

re
n

ta
ls

()

id
 r

e
tr

ie
v
e
d

fr
o
m

 b
ro

w
s
e
r

s
e
s
s
io

n

:M
e
m

b
e
r

H
o
m

e

re
a
d
R

e
n
ta

ls
(i
d
)

re
n

ta
ls

p
a

g
e

:R
e
n
ta

l

c
2
 i
s
 a

 p
ro

to
c
o
l

v
e
rs

io
n
 o

f
c
1

c
re

a
te

(d
,c

2
)

c
1
=

g
e
tC

a
r(

)

L
is

t<
R

e
n
ta

l>

m
=

fi
n
d
B

y
S

e
s
s
io

n
Id

(i
d
)

lis
t=

fi
n
d
B

y
M

e
m

b
e
r(

m
)

d
=

g
e
tD

u
e
D

a
te

()

M
e

m
b

e
r

lo
o

p
[f

o
r

e
a

c
h

 R
e

n
ta

l
in

 l
is

t]

s
d

U
8

Fi
gu

re
B

.4
2:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
8

:V
ie

w
R

e
n

ta
ls

504 Appendix B

:M
e

m
b

e
r

H
o
m

e

:M
e

m
b

e
rs

h
ip

S
e

rv
e

r
:M

e
m

b
e

rs
h

ip

S
e

rv
le

t
m

:M
e

m
b

e
r

id
 r

e
tr

ie
v
e

d

fr
o

m
 b

ro
w

s
e

r

s
e

s
s
io

n

p
a
s
s
w

o
rd

p
a
g
e

:I
n

te
rn

e
t

A
c
c
o

u
n

t

c
o
n
fi
rm

C
h
a
n
g
e

p
a
g
e

m
=

fi
n

d
B

y
S

e
s
s
io

n
Id

(i
d

)

g
e

tP
a

s
s
w

o
rd

()

s
e

tP
a

s
s
w

o
rd

(n
)

c
h

a
n

g
e

P
a

s
s
w

o
rd

(i
d

,o
,n

)

s
e

tP
a

s
s
w

o
rd

(n
)

c
h
a
n
g
e
P

a
s
s
w

o
rd

(o
,n

)

p
a
s
s
w

o
rd

()

p
a

s
s
w

o
rd

p
a

g
e

M
e
m

b
e
r

c
o
n
fi
rm

C
h
a
n
g
e
()

s
d

U
9

Fi
gu

re
B

.4
3:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
9

:C
h

a
n

g
e

P
a
s
s
w

o
rd

Subsystem Design 505

:R
e

s
e

rv
a

ti
o

n
:R

e
s
e

rv
a

ti
o

n

H
o

m
e

P
R

e
s
e

rv
a

ti
o

n
[]

:P
R

e
s
e

rv
a

ti
o

n

H
o

m
e

:R
e

s
e

rv
a

ti
o

n
s

S
e

rv
e

r

:R
e

s
e

rv
a

ti
o

n
s

S
e

rv
le

t id
 r

e
tr

ie
v
e

d

fr
o

m
 b

ro
w

s
e

r

s
e

s
s
io

n

:M
e

m
b

e
r

H
o

m
e

re
s
e
rv

a
ti
o
n
s

p
a
g
e

c
2

 i
s
 a

 p
ro

to
c
o

l

v
e

rs
io

n
 o

f
c
1

s
=

g
e

tS
ta

te
()

L
is

t<
R

e
s
e

rv
a

ti
o

n
>

m
=

fi
n

d
B

y
S

e
s
s
io

n
Id

(i
d

)

n
=

g
e

tN
u

m
b

e
r(

)

t=
g

e
tT

im
e

s
ta

m
p

()

c
1

=
g

e
tC

a
rM

o
d

e
l(
)

lis
t=

fi
n

d
U

n
c
o

n
c
lu

d
e

d
B

y
M

e
m

b
e

r(
m

)

re
s
e
rv

a
ti
o
n
s
()

re
a

d
R

e
s
e

rv
a

ti
o

n
s
(i
d

)

M
e
m

b
e
r

c
re

a
te

(n
,s

,t
,c

2
)

lo
o

p
[f
o
r

e
a
c
h
 R

e
s
e
rv

a
ti
o
n
 i
n
 l
is

t]

s
d

U
1
0

E
x
te

n
d

w
it
h

 U
1
1

Fi
gu

re
B

.4
4:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
1

0
:
V

ie
w

R
e
s
e
rv

a
ti

o
n

s

506 Appendix B

:R
e

s
e

rv
a

ti
o

n

H
o

m
e

r:

R
e

s
e

rv
a

ti
o

n

:R
e

s
e

rv
a

ti
o

n
s

S
e

rv
e

r
:R

e
s
e

rv
a

ti
o

n
s

S
e

rv
le

t

c
o
n
fi
rm

C
a
n
c
e
l(
)

id
 r

e
tr

ie
v
e

d

fr
o

m
 b

ro
w

s
e

r

s
e

s
s
io

n

:M
e

m
b

e
r

H
o

m
e

re
s
e

rv
a

ti
o

n
s

p
a

g
e

c
a
n
c
e
l(
ri
d
)

c
o

n
fi
rm

 c
a

n
c
e

l

p
a

g
e

fi
n

d
B

y
S

e
s
s
io

n
Id

(i
d

)

c
a

n
c
e

lR
e

s
e

rv
a

ti
o

n
(i
d

,r
id

)

r=
fi
n

d
B

y
P

ri
m

a
ry

K
e

y
(r

id
)

M
e

m
b

e
r

c
a

n
c
e

l(
)

s
d

U
1
1

g
e

tM
e

m
b

e
r(

)

Fi
gu

re
B

.4
5:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
1

1
:C

a
n

ce
l

R
e
s
e
rv

a
ti

o
n

Subsystem Design 507

:A
u

th
e

n
ti
c
a

ti
o

n

S
e

rv
e

r

:A
u

th
e

n
ti
c
a

ti
o

n

S
e

rv
le

t

lo
g
o
ff
()

m
:M

e
m

b
e

r

id
 r

e
tr

ie
v
e

d

fr
o

m
 b

ro
w

s
e

r

s
e

s
s
io

n

:M
e

m
b

e
r

H
o
m

e

lo
g

o
ff
(i
d

)

h
o
m

e
 p

a
g
e

s
e

tS
e

s
s
io

n
Id

(0
)

:I
n

te
rn

e
t

A
c
c
o

u
n

t

m
=

fi
n

d
B

y
S

e
s
s
io

n
Id

(i
d

)

M
e
m

b
e
r

s
e

tS
e

s
s
io

n
Id

(0
)

s
d

U
1

2

Fi
gu

re
B

.4
6:

Se
qu

en
ce

di
ag

ra
m

fo
r

U
1

2
:L

o
g

O
ff

508 Appendix B

B.6 CLASS SPECIFICATION
This section documents the results of the specification phase of the iCoot development.

Since there are many classes in iCoot, specifications are only included for one ServerLayer

class and one BusinessLayer class, as examples. Each specification is given as comments in

the source code.

B.6.1 Server Class Specification
ReservationsServer Class Specification

Invariants: NONE

// No invariants, because this is a stateless object

Methods:

/*

* Create a reservation for the member with session identifier i

* and the car model with identifier c

*

* Preconditions:

* i != 0

* For mem = MemberHome.getInstance().findBySessionId(i),

* mem != null

* mem.isingoodStanding()

* mem.getAmountDue() == 0

* c != 0

* CarModelHome.getInstance().findByPrimaryKey(i) != null

*

* Postconditions:

* A new Reservation has been created for Member with session

* identifier i and CarModel with identifier c

*

* Exceptions:

* PServerException (checked) thrown if the server has a problem

* IllegalArgumentException (unchecked) thrown if parameters are

* invalid

*/

public void createReservation(int i, int c)

throws PServerException;

/*

* Read all reservations for the member with session identifier i

*

* Preconditions:

* i != 0

Class Specification 509

* MemberHome.getInstance().findBySessionId(i) != null

*

* Postconditions:

* result != null

* result contains all unconcluded reservations for Member

* with session identifier i

* result is a new array, exclusive to the client

*

* Exceptions:

* PServerException (checked) thrown if the server has a problem

* IllegalArgumentException (unchecked) thrown if parameters are

* invalid

*/

public PReservation[] readReservations(int i)

throws PServerException;

/*

* Cancel the reservation with identifier r for the member

* with session identifier i

*

* Preconditions:

* i != 0

* For mem = MemberHome.getInstance().findBySessionId(i)

* mem != null

* r != 0

* For res = ReservationHome.getInstance().findByPrimaryKey(r)

* res != null

* res.getMember() == mem

*

* Postconditions:

* For res = ReservationHome.getInstance().findByPrimaryKey(r)

* res.isConcluded()

* res.getReason().equals("Canceled by customer");

*

* Exceptions:

* PServerException (checked) thrown if the server has a problem

* IllegalArgumentException (unchecked) thrown if parameters are

* invalid

*/

public void cancelReservation(int i, int r)

throws PServerException;

B.6.2 Business Logic Class Specification
Member Class Specification

510 Appendix B

Invariants:

/*

* Values named in invariants, preconditions and postconditions

* are attributes, with a getter and an optional setter. Each

* invariant is an extra precondition for the corresponding setter

* and an extra postcondition for the corresponding getter.

*/

id is fixed after creation

id != 0

number != null

number.size() != 0

internetAccount != null

address != null

Methods:

/*

* Fetch the receiver’s id

*

* Preconditions: NONE

* Postconditions:

* result == id

* Exceptions: NONE

*/

public int getId();

/*

* Fetch the receiver’s number

*

* Preconditions: NONE

* Postconditions:

* result == number

* Exceptions: NONE

*/

public String getNumber();

/*

* Set the receiver’s number to n

*

* Preconditions: NONE

* Postconditions:

* number == n

* Exceptions: NONE

*/

public void setNumber(String n);

Class Specification 511

/*

* Fetch the receiver’s internetAccount

*

* Preconditions: NONE

* Postconditions:

* result == internetAccount

* Exceptions: NONE

*/

public InternetAccount getInternetAccount();

/*

* Set the receiver’s internetAccount to ia

*

* Preconditions: NONE

* Postconditions:

* internetAccount == ia

* Exceptions: NONE

*/

public void setInternetAccount(InternetAccount ia);

/*

* Fetch the receiver’s address

*

* Preconditions: NONE

* Postconditions:

* result == address

* Exceptions: NONE

*/

public String getAddress();

/*

* Set the receiver’s address to a

*

* Preconditions: NONE

* Postconditions:

* address == a

* Exceptions: NONE

*/

public void setAddress(Address a);

/*

* Fetch the session identifier of the receiver’s internetAccount

*

* Preconditions: NONE

* Postconditions:

512 Appendix B

* result == internetAccount.getSessionId()

* Exceptions: NONE

*/

public int getSessionId();

/*

* Set the session identifier of the receiver’s

* internetAccount to i

*

* Preconditions: NONE

* Postconditions:

* internetAddress.getSessionId() == i

* Exceptions: NONE

*/

public void setSessionId(int i);

B.7 OUTLINE TEST PLAN

B.7.1 Introduction
The testing of iCoot will be continuous, with the involvement of developers, peers, customers,

the build team and the testing team.

• Developers will test their artifacts as they produce them.

• Customers will be involved in the verification of high-level artifacts, acceptance testing

and beta testing.

• Peers will review the artifacts produced by developers.

• The build team will be responsible for build testing after the first increment.

• The testing team will be responsible for coordinating the testing process, including the

production and maintenance of this plan, the testing phase itself and system testing in

particular.

This test plan gives an overview of the testing that will be carried out, followed by details

of the testing tasks for each phase of development. It doesn’t address the implementation

of a prototype for iCoot. The development of a prototype will be under the supervision of

project managers, conducted using rapid, informal methods.

B.7.2 The Impact of Spirals and Increments
Within each spiral of development, testing will be carried out by the developers. Each artifact

will be subject to peer review, with the proviso that formal peer reviews won’t be necessary

Outline Test Plan 513

for the first spiral. For every spiral after the second, formal peer reviews will concentrate on

changes that have been made to the artifacts, to avoid duplicated effort. Similarly, customer

reviews should concentrate on changes that have been made since the most recent review.

After each complete set of spirals, the testing team will take over to manage the testing

phase before the release of the next increment.

After the first increment, regression testing will ensure that iCoot is at least as functional

as it was after the previous increment.

B.7.3 Testing of Non-Code Artifacts

Use cases and UML diagrams will be produced by the development team with input from

customers. In the early spirals, members of the development team will review each other’s

work and changes will be made immediately.

During the last spiral before release of an increment, formal peer reviews will be held with

colleagues who have relevant expertise but who are not directly involved with the project.

These reviews will be used to certify the artifacts from use cases all the way through to

class-based specifications.

Developers, peers and project managers will be responsible for ensuring that artifacts

remain consistent over time.

B.7.4 Code Reviews

After the final coding phase within each increment, formal code reviews will be held with

peers who are not involved in the project itself. During these reviews, manual white-box

testing and metric tools will be used to identify any refactoring that is needed.

B.7.5 Test-Driven Development

During implementation of the design, programmers will perform continuous testing of their

work with the help of JUnit. These programmer-developed tests will comprise unit tests at

the class level and integration tests for all classes that the developer owns. Each developer

will fix faults in their own code before making the code public.

At the end of each spiral, the developers will work together to perform integration testing

and subsystem testing at a fairly informal level, again using JUnit, the aim being to eliminate

as many faults as possible before the formal testing phase. The development team will fix

any faults that they discover at this point, before the next spiral or the testing phase, as

appropriate.

514 Appendix B

B.7.6 Assertions
As detailed later in this test plan, programmers will be expected to add assertions to their

code which will be enabled during development. During the testing phase, assertions will be

initially enabled to make it easier to identify faults. Once all the tests are successful, they will

be run again with assertions disabled, to check that none of the assertions have side effects.

It will also allow performance with and without assertions to be compared. For release,

assertions will be disabled but retained in the code so that they can be reactivated to help

diagnose failures. So that the live system is not compromised by the disabling of assertions,

further steps will be taken to protect iCoot.

In order to protect the servers from accidental or malicious attack when assertions are

disabled, an application firewall will be implemented within the server layer. This firewall

will largely enforce the server layer’s preconditions in such a way that the checks can’t be

disabled. In order to reduce the amount of incorrect information that reaches the server layer,

another application firewall will sit beneath the user interfaces (in the control layer) to reject

invalid requests from the user. This client firewall will be based largely on the preconditions

of the control layer, but again implemented in such a way that the checks can’t be disabled.

In addition, the Web server will be placed in a de-militarized zone, sandwiched between two

conventional Internet firewalls to frustrate typical Internet attacks.

There will be two styles of client firewall. For HTML-based clients, the firewall will

be implemented within the servlets and standard Web techniques for preventing invalid

requests will be used (omitting invalid selections from Web pages and checking input data

using JavaScript, for example). For GUI-based clients, the firewall will be implemented in

the control layer and invalid requests will be prevented by using standard GUI techniques

(such as disabling buttons that shouldn’t be used and replacing text entry with drop-down

lists and spin buttons).

B.7.7 Testing Phase
Once the spirals for each increment have been completed, the code will be handed over

to the testing team. Before formal testing begins, the testing team will re-run the unit and

integration tests that have been produced by the development team, to verify that there

are no known faults. The testing team will use the class and subsystem specifications to

help them produce subsystem test cases, with accompanying test procedures. The system

test cases will be based on the system use cases. Each test case will comprise a number of

individual tests, each with test name, test description, test procedure and expected results.

The testing team will address the following requirements:

• Load testing, at average and maximum loads.

• Soak testing, to verify that there is no corruption or exhaustion of resources over time.

Outline Test Plan 515

• Stress testing, to confirm that iCoot fails elegantly.

• Security testing.

Test automation will be used, wherever possible, to reduce the cost of testing.

In parallel, the testing team will organize acceptance testing, with the help of in-house

volunteers and carefully selected customer personnel.

Installation testing will then be performed using a testbed that comprises a significant

subset of the target platforms. Finally before release, beta testing will be performed at selected

customer sites. All known faults will be fixed by the development team prior to release,

wherever feasible.

Performance metrics (for example, average transaction time) and style metrics (for

example, method size) will be gathered. Any unacceptable performance must be fixed prior

to release. Style issues will be recorded for input to the next increment.

B.7.8 Documentation Testing
After the first spiral, the documentation team will start to produce manuals and training

materials. These will be subject to peer review. After several spirals, during the explicit

testing phase that takes place before the release of each increment, the documentation will

again be tested. This testing will comprise peer review, acceptance testing and beta testing.

B.7.9 Build Testing
Programmers will use a source code management tool to ensure that all code is kept in a

central location. They will be required to check out any code that they intend to work on,

in order to avoid duplicated or overlapping effort. The project managers will be responsible

for deciding who works on what. The build team will be responsible for managing the code

repository. In order to cope with developer absences, the code management tool will be

configured to allow checked-out artifacts to be checked back in, under controlled conditions.

After the first increment has been released, all further development will be subject to

nightly build tests, run by the build team. This will involve building the entire system and

running a significant subset of the system tests.

B.7.10 Test Documentation and Logging
All test cases will be documented and kept in a test repository under the control of the testing

team. As tests are carried out, test results will be recorded and added to the repository.

In order to encourage developers to test their own code before the testing phase, they

won’t have to record test failures in the test repository. Since the developers’ test cases will

be written in Java (using JUnit), they will be stored in the code repository; therefore, there

will be no need to add such test cases to the test repository.

516 Appendix B

During the testing phase, test failures will be added to the repository. The testing team

will collaborate with project managers to ensure that fixes are allocated to members of the

development team and completed.

It will be the responsibility of project managers to ensure that adequate JUnit test cases are

developed and run frequently. For reporting purposes, the development team must sign off

the integration testing that takes place at the end of each spiral, by adding a corresponding

entry to the test repository.

B.7.11 Testing Activities by Phase
Set out below are the testing activities that will take place within each phase of development.

The requirement for formal peer reviews will be relaxed for the first spiral. Peers will be

selected on the basis of expertise.

• Requirements phase The business use cases, user interface sketches, the use case diagram,

system use cases, use case priorities, supplementary requirements and activity diagrams

(where used) will be reviewed by developers, peers and customers.

• Analysis phase The analysis class diagram, state machine diagrams (where used) and

communication diagrams will be reviewed by developers, peers and customers.

• System design phase The deployment diagram, technology choices, layer diagram, layer

interaction policy, concurrency policy and security policy will be reviewed by developers

and peers.

• Subsystem design phase The design class diagrams; database schema; user interface design

(for HTML access to servlets and JSPs, applets, applications, and interfaces for mobile

devices); and sequence diagrams will be reviewed by developers and peers.

• Specification phase For each class, preconditions, postconditions and class invariants will

be specified. These assertions will be reviewed by the developers and peers. Subsystem

specifications may be used where appropriate. These will be tested in a similar way to class

specifications.

• Implementation phase The testing during this phase consists of three parts:

– Adding assertions (as per the class specification) to methods. Other types of assertion,

such as checking loop termination and avoidance of impossible conditions, are optional,

but recommended.

– Creating JUnit test cases and JUnit test suites. There will be at least one test case (which

is likely to involve some integration testing) per class and one test suite per package.

– Performing code reviews, by developers and peers.

• Testing phase The testing phase will be the responsibility of the testing team. The

development of test cases and test procedures by the testing team will be reviewed by

peers. Testing will comprise:

– The JUnit tests, to ensure that all known faults have been fixed.

Glossary 517

– Subsystem testing, based on any subsystem interfaces specified during the design and

specification phases.

– System testing, based on use cases (functional testing and load testing at average load

and maximum load).

– Stress testing, to confirm elegant failure (as defined during the design and specification

phases).

– Security testing (aggressive attempts to break into iCoot without authorization).

– Acceptance testing, based largely on productivity metrics.

– Metrics, based on system performance and coding style.

– Documentation testing, with the help of end users and system administrators.

– Installation testing, using a significant subset of target environments.

– Beta testing, at selected customer sites.

• Maintenance phase The testing team will be responsible for managing the reporting and

fixing of faults discovered after release, with the help of project managers and the

development team. Between increments, fixes may be implemented, regression-tested and

released at the discretion of the testing team and project managers. Regression testing will

comprise:

– The JUnit tests.

– Subsystem testing.

– System testing.

– Installation testing.

Feedback from customers about possible improvements to iCoot will be passed on to the

project managers, with a view to incorporation in the next increment.

B.8 GLOSSARY

Term Definition

Address (Business object, system object,

analysis object, design object)

Where a Member lives.

AddressHome (Design object) Home for creating and finding Address

objects.

Assistant (Business actor, system actor) An employee at a store who helps Customers

to rent Car objects and reserve CarModels.

Auk (Business actor) The pre-existing system that handles Cus-

tomer details, Reservations, Rentals and the

Catalog of available CarModels.

AukInterface (Analysis object) Boundary for accessing Auk.

518 Appendix B

AuthenticationServer (Design object) Controls the logging on and logging off of

Members to iCoot.

AuthenticationServerHome (Design object) Home for creating an AuthenticationServer.

AuthenticationServlet (Design object) Makes the AuthenticationServer accessible in

an HTML page in a Web browser.

BusinessLayer (Design layer) Contains objects that convert the Persis-

tenceLayer into clean object-oriented appli-

cation objects.

Car (Business object, system object, analysis

object, design object)

Instance of a CarModel for rent kept by a

Store.

CarDetails (Analysis object, design object) Extra details of a Car, such as number plate

and VIN.

CarDetailsHome (Design object) Home for creating and finding CarDetails.

CarHome (Design object) Home for creating and finding Cars.

CarModel (Business object, system object,

analysis object, design object)

A model in our Catalog, available for reser-

vation.

CarModelDetails (Analysis object, design

object)

Extra details about a CarModel, such as

advert and poster.

CarModelDetailsHome (Design object) Home for creating and finding CarModelDe-

tails.

CarModelHome (Analysis object, design

object)

Home for finding and creating CarModels.

Catalog (Business object) A document describing CarModels available

for rent.

CatalogQuery (Design object) A Member’s specification of CarModels that

they’re interested in when searching the

iCoot on-line Catalog; includes categories,

makes or engine sizes.

CatalogQueryHome (Design object) Home for creating CatalogQuery objects.

CatalogServer (Design object) Controls access to CarModels that can be

browsed or reserved (Members only) over

iCoot.

CatalogServerHome (Design object) Home for creating a CatalogServer.

CatalogServlet (Design object) Makes the CatalogServer accessible in an

HTML page in a Web browser.

Category (Analysis object, design object) Classification of a Car that helps Customers

find what they’re looking for, e.g. ‘‘Sports’’

or ‘‘Luxury’’.

Glossary 519

CategoryHome (Design object) Home for creating and finding Category

objects.

Collectable (Design object) A ReservationState indicating that a Customer

has been informed about a matched Reser-

vation but has not yet collected it.

com::nowhere::business (Design package) Package containing the BusinessLayer

classes.

com::nowhere::control (Design package) Package containing the ControlLayer

classes.

com::nowhere::micro (Design package) Package containing the MicroLayer classes.

com::nowhere::persistence (Design package) Package containing the PersistenceLayer

classes.

com::nowhere::protocol (Design package) Package containing the protocol classes,

used by the ServletsLayer, RMILayer and

ControlLayer for communication with the

ServerLayer.

com::nowhere::rmi (Design package) Package containing the RMILayer classes.

com::nowhere::server (Design package) Package containing the ServerLayer classes.

com::nowhere::servlets (Design package) Package containing the ServletsLayer

classes.

com::nowhere::swing (Design package) Package containing the SwingLayer classes.

Concluded (Design object) A ReservationState indicating that a Reser-

vation is finished because it was collected,

canceled or timed out.

CootBusinessServer (Design node) A process hosting iCoot services on a Coot-

Server.

CootGUIClient (Design node) A Customer’s machine hosting a J2SE or

J2ME GUI for accessing iCoot over RMI.

CootHTMLClient (Design node) A Customer’s machine hosting a Web

browser to access iCoot.

cootschema.ddl (Deployment artifact) Script used to generate database tables for

Coot.

CootServer (Design node) A machine hosting a WebServer and Coot-

BusinessServer.

CreditCard (Business object, system object,

analysis object, design object)

Used for confirming the credit-worthiness

of Members; must not have expired for a

Member to be in good standing.

CreditCardCompany (Business actor) Company that issues CreditCards and con-

firms validity.

520 Appendix B

CreditCardHome (Design object) Home for creating and finding CreditCards.

Customer (Business actor, business object,

system actor, system object, analysis object,

design object)

A person who pays money in return for one

of our standard services.

DBMS A process hosting a relational database man-

agement system.

DBServer A machine hosting a DBMS.

DebtDepartment (Business object) The department that deals with unpaid fees.

Displayable (Design object) A ReservationState indicating that a Reserva-

tion that was Collectable has timed out or

been canceled; means that a Car is in the

Reserved area that must be moved back to

the display area.

EJB An Enterprise JavaBean; an object within a

standard Java framework that can handle

transactions, network access and database

access, behind an Internet firewall; these

come in two varieties, session beans (for

remote access to business services) and

entity beans (for automatic mapping of data

to and from a database).

HTMLLayer (Design layer) The client-side code for accessing the

ServletsLayer; provided by the standard

HTML Web browser.

HTTPCGILayer (Design layer) The standard network layer that sits

between the HTMLLayer and the

ServletsLayer.

icoot.ear (Deployment artifact) Java enterprise archive containing the

servlets, JSPs and EJBs used by CootHTML-

Clients and, eventually, CootGUIClients.

iCoot (Deployment artifact) Folder containing static HTML for the iCoot

site.

IllegalArgumentException Standard Java Exception that indicates an

attempt was made to send a message with

invalid parameters.

InternetAccount (Design object) Details required for a Member to log on to

iCoot plus a record of their logged-on status.

InternetAccountHome (Design object) Home for creating and finding InternetAc-

counts.

Glossary 521

J2EE Enterprise Edition of the Java 2 platform.

J2ME Micro Edition of the Java 2 platform.

J2SE Standard Edition of the Java 2 platform.

JDBC A standard Java library that provides access

to all relational databases in a uniform way.

JDBCLayer (Design layer) Layer that accesses a relational database

from Java (within the EJB framework).

JRMP The communication protocol used by RMI.

JSP Java Server Page; a dynamic web page con-

taining Java code, to be executed by the

server, alongside static HTML.

Keys (Business object) For operating a Car; Customers have copies

when they’re renting; Store keeps copies for

available Cars and reserve copies for all Cars;

Store has serial number for reproduction by

Make if all copies are lost or broken.

LegalDepartment (Business Actor) The department that deals with accidents in

which a rented Car has been involved.

License (Business object) A document that must be presented in order

to rent a Car or as proof of identity when a

NonMember makes a Reservation.

LogonController (Analysis object) iCoot controller that controls logging on

and off by Members.

Make (Analysis object, design object) Each Car has one or more Makes that man-

ufactures it.

MakeHome (Design object) Home for creating and finding Makes.

MemberHome (Analysis object, design

object)

Home for finding and creating Members.

MembershipCard (Business object) A laminated document issued by a store to

a Member as proof of membership.

MembershipServer (Design object) Controls access to a member’s details, such

as Address and CreditCard, over iCoot.

MembershipServerHome (Design object) Home for creating a MembershipServer.

MembershipServlet (Design object) Makes the MembershipServer accessible

within an HTML page in a Web browser.

MemberUI (Analysis object) iCoot boundary used by Members to access

the system.

522 Appendix B

MicroLayer Objects using the Java 2 Micro Edition

to access the RMILayer from a pervasive

device, such as a mobile phone or set-top

box; reserved for future versions of iCoot.

NeedingRenewal (Design object) A ReservationState indicating that the Reser-

vation has not been matched for a week and

must be renewed if it is not to expire.

NonMember (Business actor, business object,

system actor, analysis object, design object)

A Customer whose identity and credit-

worthiness have not been checked and who,

therefore, must provide a deposit to make

a Reservation or surrender a copy of their

License to rent a Car.

NonMemberUI (Analysis object) iCoot boundary used by NonMembers to

access the system.

Notifiable (Design object) A ReservationState indicating that a Reserva-

tion has been matched to an available Car

but the Member has not yet been notified.

PAddress (Design object) Protocol version of Address.

PAddressHome (Design object) Home for creating InternetAccounts.

PCar (Design object) Protocol version of Car.

PCarHome (Design object) Home for creating PCar objects.

PCarModel (Design object) Protocol version of CarModel.

PCarModelDetails (Design object) Protocol version of CarModelDetails.

PCarModelDetailsHome (Design object) Home for creating PCarModelDetails.

PCarModelHome (Design object) Home for creating PCarModels.

PCatalogQuery (Design object) Protocol version of CatalogQuery.

PCatalogQueryHome (Design object) Home for creating PCatalogQuery objects.

PCategory (Design object) Protocol version of Category.

PCategoryHome (Design object) Home for creating a PCategory.

PCreditCard (Design object) Protocol version of CreditCard.

PCreditCardHome (Design object) Home for creating PCreditCards.

PMake (Design object) Protocol version of Make.

PMakeHome (Design object) Home for creating PMakes.

PMember (Design object) Protocol version of Member.

PMemberHome (Design object) Home for creating PMembers.

PRental (Design object) Protocol version of Rental.

PRentalHome (Design object) Home for creating PRentals.

PReservation (Design object) Protocol version of Reservation.

PReservationHome (Design object) Home for creating PReservations.

Glossary 523

PServerException (Design object) An indication that one of the objects in the

ServerLayer has been unable to complete a

request because of, for example, a database

problem.

PServerExceptionHome (Design object) Home for creating PServerExceptions.

Rental (Business object, system object, anal-

ysis object, design object)

A contract between Nowhere Cars and a

Customer to keep one or more Cars for an

agreed period; subject to late fees if Car is

not returned on time.

RentalHome (Analysis object, design object) Home for finding and creating Rentals.

RentalServerHome (Design object) Home for creating a RentalServer.

RentalsServer (Design object) Controls access to a Member’s Rentals over

iCoot.

RentalsServlet (Design object) Makes the RentalServer accessible within an

HTML page in a Web browser.

Reservation (Business object, system object,

analysis object, design object)

The reserving of a CarModel by a Customer.

ReservationHome (Analysis object) Home for finding and creating Reservations.

ReservationServerHome (Design object) Home for creating a ReservationServer.

ReservationsServer (Design object) Controls access to Reservations for Members

over iCoot.

ReservationsServlet (Design object) Makes the ReservationServer accessible

within an HTML page in a Web browser.

ReservationsSlip (Business object) A slip detailing the membership number,

car model, timestamp and number for a

Reservation.

ReservationState (Analysis object, design

object)

The state of a reservation, e.g. Waiting or

Concluded.

ReservationStateHome (Design object) Home for creating a ReservationState.

RMI Standard Java mechanism for sending

messages to an object over a network.

RMILayer (Design layer) Converts the ServerLayer into simple

objects that can be accessed by the

SwingLayer or MicroLayer; reserved for

future versions of iCoot.

ServerLayer Contains objects to access iCoot over a

network.

ServletsLayer (Design layer) The server-side objects that provide access

to iCoot from an HTML Web browser.

524 Appendix B

Store (Business actor, design object) A Nowhere Cars site from which Cars can

be rented, CarModels reserved and Catalogs

browsed or obtained.

SwingLayer (Design layer) Objects using the standard Java library for

accessing the RMILayer from a Java GUI;

reserved for future versions of iCoot.

Vendor (Analysis object, design object) Company that supplies one or more Cars.

VendorHome (Design object) Home for creating and finding Vendor

objects.

VIN Vehicle Identification Number; unique

number issued by the licensing authority

and appearing on a plate riveted to the Car’s

body.

Waiting (Design object) A ReservationState indicating that the Reser-

vation has been made over the Internet

but has not yet been satisfied, canceled or

expired.

WebBrowser (Design node) A process providing HTML access to a

CootHTMLClient.

WebServer (Design node) A process providing server-side access to a

CootBusinessServer from a Web browser.

Appendix C

Summary of UML Notation Used

This appendix summarizes the UML notation used in this book, organized by diagram type:

• object diagram

• communication diagram (business level)

• activity diagram

• use case diagram

• class diagram (analysis level)

• communication diagram (analysis level)

• state machine diagram

• deployment diagram (network topology)

• package diagram

• deployment diagram (with processes, artifacts and manifestations)

• class diagram (design level)

• sequence diagram

The order corresponds to the order in which the diagrams were discussed in this book.

It’s worth looking at them in order because, in order to avoid repetition and clutter, some

notation is highlighted in earlier diagrams but not in later ones. Of course, UML comments

can appear in any diagram – in many cases, it’s better to use comments than to resort to a

complicated piece of UML notation, especially if that means looking at the specification.

Although UML makes no distinction between the two flavors of class diagram, at design

level and analysis level, a distinction is made here because the first of each pair is simpler in

style and therefore uses less of the available notation.

In order to avoid confusion with respect to the Java code fragments, the primitive types

used for diagrams in this book are Java primitives, such as int and boolean, rather than UML

primitives, such as Integer and Boolean. As a matter of style, arrays are generally avoided in

favor of collection classes (such as List).

Some types of UML diagram were not needed during iCoot development and they are

not covered here: component diagram, composite structure diagram, interaction overview

diagram, and timing diagram. This appendix cannot comprehensively cover even the diagrams

it does address. See [OMG 03a] and [Fowler 03] if you want to find out more.

Summary of UML Notation Used 527

object

o:Class2

:Class3

attribute1 = "Hello"

attribute2:Class5

attribute3 = 39

ro
le
 o

f o

aClass4

navigability

composition

aggregation

instance

specification

link

Figure C.1: Object diagram

2:second message

Entity1

1:first m
essage

Boundary

Entity2

Actor

Boundary
Actor

direction
link

sequence number

Figure C.2: Communication diagram (business level)

528 Appendix C

[condition]

initial pseudoaction

final pseudoaction

guard

fork

join

decision

merge

(Actor)

Action 2
(Organization)

Action 3

(Class)

Action 1

(Department)

Action 4

edge

action

Figure C.3: Activity diagram

Summary of UML Notation Used 529

U4 Optional
Use Case

Actor

U3 Specialized
Use Case

U6 Conditional
Use Case

<<extend>>

SystemName

{condition}
constraint

comment

U1 Use
Case

U5 Included
Use Case

system boundary

<<include>>

Abstract
Actor

Specialized
Actor

keyword

<<extend>>

U2 Abstract
Use Case

association

relationship

Figure C.4: Use case diagram

530 Appendix C

Abstract
Class2

Concrete
ClassB

Concrete
ClassC

ClassA

AbstractClass1

<<abstract>>
ClassF

association name

direction

ClassD ClassErole of D role of E

Association
Class

inheritance (specialization)

1

multiplicity

0..1

2..10

*3

attr1[0..1]
attr2
attr3:Type

operation1():Type
operation2(param1,:Type,param2:Type)
abstractOperation()

operation() <<abstract>>

attribute

Stand-alone
comment

Comment

Figure C.5: Class diagram (analysis level)

Summary of UML Notation Used 531

1: [condition] message1(10)

Actor :Boundary

control:Controller

result

nested sequence number

assignment

iteration

guard

thread
1.1 b :m

essage3(:Type,param
:Type)

:Entity

re
su

lt =
 1

.1
a:

m
es

sa
ge

2(
)

1.
2

* :
m

es
sa

ge
4(

pa
ra

m
1)

Figure C.6: Communication diagram (analysis level)

532 Appendix C

trigger 1

trigger 4

trigger 2

Final

State

State
Initial

State

internal trigger

final pseudostate

initial pseudostate trigger 3

transition

Figure C.7: State machine diagram

<<device>>

MachineC

<<device>>

MachineB

<<device>>

MachineA

<<device>>

AClient 3..15

2

multiplicity

*

0..1

node

communication path

Figure C.8: Deployment diagram (network topology)

Summary of UML Notation Used 533

Class1

Class2

Package1

Package4::Package5

Package6

Package2

Class3

Class4

Package3

dependency

namespace

operator

Figure C.9: Package diagram

534 Appendix C

Protocol

<<device>> Client

<<ExecutionEnvironment>>
ProcessA

*

2

<<device>> Server

<<use>>

<<ExecutionEnvironment>>
ProcessB

<<ExecutionEnvironment>>
ProcessC

AModelElement

<<manifest>>

ArtifactA
<<artifact>>
artifactb.xyz

subnode

usage

manifestation

Figure C.10: Deployment diagram (with processes, artifacts and manifestations)

Summary of UML Notation Used 535

Abstract
ClassA

AnInterface

Concrete
ClassB

Supplier

<<interface>>
AnInterface

ClassC

0..1-field

required interface/
provided interface

realization

Part

-parts:List

Associate

-field

*

2

1..*5..9

-supplier

1

-privateField:Type
-privateClassField:Type

-Associate() <<create>>
~packageMethod(param:Type)
#protectedMethod():Type
+publicMethod()
+classMethod()

creation method (constructor)

pkg apackage

package frame

collection field
(non-standard notation)

+abstractMethod()

Figure C.11: Class diagram (design level)

536 Appendix C

Actor

aB
:ClassB

object:ClassA

message2(:Type)

info=message2()

selfcall()
message1()

message1(param)

:Type

message1(param:Type)

result

sd diagram1

ref diagram2(info)

sequence diagram frame

message2()

loop

result:Type

ClassB("abc")

loop frame

reference frame

lifeline

creation

activation bar

stop

[condition]

Figure C.12: Sequence diagram

Bibliography

Alexander, C., Ishikawa, S., and Silverstein, M. (1977) A Pattern Language: Towns, Buildings,

Construction, Oxford University Press, ISBN: 0-195-01919-9

Alur, D., Crupi, J., and Malks, D. (2003) Core J2EE Patterns: Best Practices and Design

Strategies, Prentice Hall, ISBN: 0-131-42246-4

Ambler, S. (2003) Agile Database Techniques, John Wiley & Sons, ISBN: 0-471-20283-5

Beck, K. (1999) Extreme Programming Explained: Embrace Change, Addison-Wesley, ISBN:

0-201-61641-6

Beck, K. (2002) Test Driven Development, Addison-Wesley, ISBN: 0-321-14653-0

Bloch, J. (2001) Effective Java Programming Language Guide, Addison-Wesley, ISBN: 0-201-

31005-8

Bodoff, S., Green, D., Haase, K., Jendrock, E., Pawlan, M., and Stearns, B. (2002) The J2EE

Tutorial, Addison-Wesley, ISBN: 0-201-79168-4, available at http://java.sun.com

Bolton, F. (2001) Pure Corba, SAMS, ISBN: 0-672-31812-1

Booch, G. (1993) Object-Oriented Analysis and Design with Applications, Benjamin Cummings,

ISBN: 0-805-35340-2

Bustard, D., Kawalek, P., and Norris, M. (2000) Systems Modeling for Business Process

Improvement, Artech House, ISBN: 1-580-53050-8

Campione, M., Walrath, K., and Huml, A. (1998) The Java Tutorial Continued: The Rest of the

JDK, 2nd Edition, Addison-Wesley, ISBN: 0-201-48558-3, available at http://java.sun.com

Campione, M., Walrath, K., and Huml, A. (2000) The Java Tutorial: A Short Course on

the Basics, 3rd Edition, Addison-Wesley, ISBN: 0-201-70393-9, available at htttp://java.

sun.com

Clark, A., and Warmer, J. B. (2002) Object Modeling With the OCL: The Rationale Behind the

Object Constraint Language, Springer-Verlag, ISBN: 3-540-43169-1

Cockburn, A. (2000) Writing Effective Use Cases, Addison-Wesley, ISBN: 0-201-70225-8

Cockburn, A. (2001) Agile Software Development: Software Through People, Addison-Wesley,

ISBN: 0-201-69969-9

Constantine, L., and Lockwood, L. (1999) Software For Use: A Practical Guide to the Models

and Methods of Usage-Centered Design, Addison-Wesley, ISBN: 0-201-92478-1

Fowler, M. (1996) Analysis Patterns: Reusable Object Models, Addison-Wesley, ISBN: 0-201-

89542-0

Fowler, M. (2003) UML Distilled: A Brief Guide to the Unified Modeling Language, 3rd Edition,

Addison-Wesley, ISBN: 0-321-19368-7

Bibliography 539

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, ISBN: 0-201-63361-2

Grand, M. (1999) Patterns in Java, Volume 2, John Wiley & Sons, ISBN: 0-471-25841-5

Grand, M. (2002) Patterns in Java: Catalogue of Reusable Design Patterns Illustrated with UML,

Volume 1, 2nd Edition, John Wiley & Sons, ISBN: 0-471-22729-3

Jacobson, I., Booch, G., and Rumbaugh, J. (1999) The Unified Software Development Process,

Addison-Wesley, ISBN: 0-201-57169-2

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1992) Object-Oriented Software

Engineering: A Use Case Driven Approach, Addison-Wesley, ISBN: 0-201-54435-0

Joy, W., Steele, G., Gosling, J., Bracha, G. (2000) Java Language Specification, 2nd Edition,

Addison-Wesley, ISBN: 0-201-31008-2, available at http://java.sun.com

Kay, A. (1972) ‘A Personal Computer for Children of All Ages’, Proceedings ACM National

Conference, August , Boston

Larman, C. (2001) Applying UML and Patterns, Prentice Hall, ISBN: 0-130-92569-1

Lea, D. (1999) Concurrent Programming in Java: Design Principles and Patterns, 2nd Edition,

Addison-Wesley, ISBN: 0-201-31009-0

Martin, J., and Odell, J. (1998) Object-oriented Methods: A Foundation – UML Edition, Prentice

Hall, ISBN: 0-139-05597-5

McConnell, S. (1998) Software Project Survival Guide, Microsoft Press, ISBN: 1-57231-621-7

Meyer, B. (1990) Eiffel: The Language, Prentice Hall, ISBN: 0-13-247925-7

Meyer, B. (1997) Object-Oriented Software Construction, 2nd Edition, Prentice Hall, ISBN:

0-13-629155-4

Myers, G., Sandler, C., Thomas, T., and Badgett, T. (2004) The Art of Software Testing, 2nd

Edition, John Wiley & Sons, ISBN: 0-471-46912-2

Object Management Group (2003a) UML 2.0 Superstructure Specification, ptc/03-08-02,

available at www.omg.org

Object Management Group (2003b) UML 2.0 OCL Specification, ptc/03-10-14, available at

www.omg.org

Object Management Group (2004) Common Object Request Broker Architecture: Core Specifi-

cation, Version 3.0.3, OMG, formal/04-03-12, available at www.omg.org

Raggett, D., Lam, J., Alexander, I., and Kmiec, M. (1997) Raggett on HTML 4, 2nd Edition,

Addison-Wesley, ISBN: 0-201-17805-2

Robinson, M., and Finkelstein, E. (2004) Jakarta Struts for Dummies, John Wiley & Sons,

ISBN: 0-764-55957-5

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991) Object-Oriented

Modelling and Design, Prentice Hall, ISBN: 0-13-630054-5

Singh, S. (2000) The Code Book: The Science of Secrecy from Ancient Egypt to Quantum

Cryptography, Anchor Books/Doubleday, ISBN: 0-385-49532-3

540 Bibliography

Taylor, D. (1997) Object Technology: A Manager’s Guide, 2nd Edition, Addison-Wesley, ISBN:

0-201-30994-7

Weaver, P., Lambrou, N., and Walkley, M. (2002) Practical SSADM 4: A Complete Tutorial

Guide, Prentice Hall, ISBN: 0-273-65575-2

Wirfs-Brock, R., and McKean, A. (2002) Object Design: Roles, Responsibilities and Collabora-

tions, Addison-Wesley, ISBN: 0-201-37943-0

World Wide Web Consortium (1999) HTML 4.01 Specification, REC-html40, available at

www.w3c.org

World Wide Web Consortium (2003) SOAP Version 1.2 Part 1: Messaging Framework,

REC-soap12-part1-20030624, available at www.w3c.org

Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. (1999) Extensi-

ble Markup Language (XML) 1.0, 3rd Edition, W3C, REC-xml-20040204, available at

www.w3c.org

Index

abnormal path 143, 155, 427
abnormality 106
abstract classes 59–62
Abstract Factory design pattern 346
abstract method 59
abstract use case 150
abstraction 58, 229
abuses 80–81, 225, 375
acceptance testing 418–19
access 222
accessibility 90
accessor message 277
accessors 277–8
accidental boundary blurring 206
accommodation 212
across-method testing 441–2
action 143
activation bar 312
ActiveX 223, 242
activity diagram 118, 143–5, 528

see also iCoot case study
actor 135, 149–50, 191, 450–51, 460

see also business actor, system actor
Ada 4, 206
Adapter design pattern 354–5
adapting patterns 367–70
adding implementations to class hierarchy

58–9
adding operations to classes 194
address 214
advantages of copies 308
advantages of inheritance 68
advantages of multi-threading 318–19
advantages of proxies 308
advantages of servlets 253
aggregation 21–3, 171–7, 279

see also association
agile methodology 5, 116
alarm bells 184
Alexander, Christopher 328

alias 330
alien radio signals 217
alpha testing 413
amber light 160–62, 207
ambiguity 374
analysis 102–3, 466–76
analysis paralysis 107
analysis-level class diagram 121–2, 530
analyzing the problem 166–203

dynamic analysis 188–96
overview of the analysis problem

169–70
static analysis 170–88
why do analysis? 168–9

Ant 415
anthropomorphism 14
anti-patterns 328
Apache project 415
Apple 213
applet 230–2, 242–4, 246, 301, 353

plus RMI 230–2
application builder 109
application firewall 394–5, 398–9, 402,

427–8
code 398

application server 257
ARPAnet 214
array 33, 41, 179, 207, 274
artifact testing 117
artifacts 263, 408, 423
artificial constraint 220
ASCII 214
ASP 247
assembler 4
assembly language 4
assertion checking tools 422
assertion mechanism 402
assertion syntax 384–5
assignment 89
assignment of priorities 162

542 Index

association 21–3, 171–8, 291–4
mapping 291–4
see also aggregation

association classes 182–3, 283–4, 293–4
association labels 177–8
atomic value 293
attribute 16–18, 169, 178–82, 278–9, 467

identical or equal? 16–18
mapping 278–9
or relationship? 180–82
see also iCoot case study; relationship

attribute event 233
attribute list 178
Auk 142, 159, 226, 451
authentication 222, 224, 248–9
authorization 116, 222
automated theorem proving 278
automatic traceability 425
automating testing 421–2
autonomous subsystem 225

back-end configurations 258
batch 208
bean 256
Beck, Kent 430
behavior 14, 42, 158, 375
behavior state machine 196
behavioral pattern 330
behavioral testing 410
benefits of three-tier architecture 211–12
Berners-Lee, Tim 214
best practice 108, 396
beta testing 413–14, 426
binary chop search 358, 429
binary numbers 4
birth of a system 133–5
bit strength 224
black-box testing 169, 409–410, 412, 426

black-box system testing 414
see also use case testing

blurred boundaries 206, 207
Booch, Grady 115
boolean 41, 179
bottleneck 243
boundary 142, 189, 191–2
boundary blurring 206, 207

boundary conditions 427
brainstorming 108, 115, 158–9
breadth of inheritance hierarchies 421
brevity 277
brief history of patterns 328–30

software patterns today 329–30
brief history of programming 4–5
broadband 214
broadcast 233
browser 214, 242
bubble 148
bugs 12, 105, 408–9
build team 416
build testing 415–17, 515

see also iCoot case study
build tools 415
business actor 137–8

see also actor
business logic class specification 509–12
business logic tier 211
business model 136–45

identifying business actors 137–8
identifying business use cases 139–41
illustrating use cases on an activity diagram

143–5
illustrating use cases on a communication

diagram 141–3
writing project glossary 138–9

business modeling 102
business process modeling 136
business requirements 132–3, 450–56
business requirements modeling 135, 168
business rules 221
business service 228, 272, 306–314, 483

see also iCoot case study
business service realization 312–14

see also iCoot case study
business use cases 139–41

C# 4, 206
C++ 4, 34, 41

application and browser language 243
existence of composition 176
history 206
inheritance 68, 73
see also garbage collection

Index 543

cache 358
Caesarian Cipher 223
calculation faults 428
callback 337
can of worms 179
cancer research 218
candidate class 169
candidate key 290
casting 89
catch an exception 397
cathode ray tube 209
certificate authority 224
certification 425
CGI see common gateway interface
CGI-with-scripts 246, 250–2
CGI-with-servlets 252–3
challenge mechanism 311
change history 116
chaos 100, 112, 208
checked exception 255, 400
checking conditions dynamically 396–7
choosing networked system topology 208–20

client–server versus distributed architectures
216–18

depicting network topology in UML 218–20
extranets and virtual private networks 215–6
history of network architectures 208–10
Internet and World Wide Web 214
intranets 215
network computers 213–14
personal computers 212–13
three-tier architecture 210–12

choosing technologies 240–69
back-end configurations 258
client tier technologies 242–4
client tier to middle tier protocols 244–5
Java e-commerce configuration 258–62
middle tier technologies 246–7
middle tier to data tier technologies 247–8
other technologies 248–50
typical front-end configurations 250–58
UML packages 262–6
see also iCoot case study

clarity 368
class comment 396

class constant 401
class diagram 34, 118, 121–2, 168–9, 466, 530,

535
drawing 172–3
see also iCoot case study

class hierarchy design 55–8
class interface specification 372–405
class invariant 383
class naming style 139
class parameter 91
class relationships 171
class scope 382
class specification 103, 508–12
class survey 176
classes 34–7, 278–9

mapping 278–9
what they define 37–9

classical phases in software production
analysis 102–3
deployment 104
design 103
implementation 104
key questions 105–6
maintenance 104–5
requirements 102
specification 103
testing 104

classification 35
classifying business services 309–311
client code 237, 307
client tier 211
client tier technologies 242–4
client tier to middle tier protocols 244–5
client–server architecture 216–18
client–supplier interaction 30–32
closed layer 227
COBOL 4, 206, 243
code accessing 225
code book 224
code coverage 420
code cracking 223
code reuse 43–7
code review 424, 513
code sharing 61
collaboration 27, 30–32, 195, 293, 353

544 Index

collections 55
combining methodologies 113–14
combining patterns 367–70
comment 176–8, 396
commission faults 409
commit transaction 315
common design patterns 331–66

see also design patterns
common gateway interface 245, 250

disadvantages 252
Common Object Request Broker Architecture see

CORBA
communication diagram 27, 118, 122–3, 141–3,

168, 527, 531
elements of 192–4
see also iCoot case study

compatibility 88
compile-time concept 265, 400
compiler 4
compiler switch 401–2
completing the Store class 442–5
complex life cycle 367
complexity 70, 104, 150, 170, 195
component diagram 118
component testing 414–15
Composite design pattern 361–4
composite structure diagram 118
composition 66–8, 73, 171–7, 278–9

mapping 278–9
versus inheritance 68–9

compound key 290
computer modeling 417
concrete classes 61–2, 68
concrete method 59
concurrency 208, 220–2, 315–16,

482–3
see also iCoot case study

concurrency control 272
configurable copies 309
configurable proxies 309
conflict of interest 316
connections 21, 116
consistency checking 117
constrained genericity 92
constraint 153, 222

constructor 37
context 88–9, 356
continuous testing 406–445

automating tests 421–2
example of test-driven development using

JUnit 431–45
preparing for tests 422–3
test-driven development 430–31
testing strategies 424–6
testing terminology 408–411
types of test 411–21
what to test for 426–9

contracts 389–91
documenting 396
enforcement 394–5
violation 397–8

control of access 222
control of polymorphism 83

see also inheritance
controller 189, 191–2, 230
controlling multiple tasks 317–18
controlling multiple threads 318–19
conversion 89
cookies 260
copies 307–9

advantages of 308
disadvantages of 308–9

CORBA 115, 255–6, 257, 258
CORBA naming services 246
correctness 117
corruption 319
coupling degree 421
CPPUnit 430
crashing 376
creating test suite 439–41
creation expression 16
creational pattern 330
creative nature of software development 111
criteria for testing 426–9
CRT see cathode ray tube
cryptography 223–5
customers 108

data definition language 287
data dictionary 138
data management 210

Index 545

data manipulation language 287
data query language 287
data structure theory 429
data tier 211
data tier technologies 247–8
data type 279
database access 315
database management system 211,

226–9, 287–8
DBMS see database management system
DDL see data definition language
deadlock 237, 319
debugging 294, 350, 374
decision 144
declarative language 287
declarative programming 381
decryption 215, 223–5
defect 409
deficiencies 105
definition of an object 13–16
definition of specification 375–6
degree of cohesion 421
degree of coupling 421
delegation 66–9
dependency 85, 154
depicting network topology in UML 218–20
depicting objects 19–20
deployment 104
deployment diagram 118, 123–4, 218–19,

481–3, 532, 534
see also iCoot case study

deployment survey 219
depth of inheritance hierarchies 421
derived attribute 179
design 103
Design by Contract 103, 385–95

application firewalls 395
contracts and inheritance 389–91
enforcing the contract 394–5
reducing error-checking code 391–4
see also Eiffel; Meyer, Bertrand

design patterns 46, 331–66
Adapter design pattern 354–5
Composite design pattern 361–4
Facade design pattern 352–3

Factory Method and Abstract Factory design
patterns 346

Flyweight design patterns 358–61

Iterator design pattern 342–6
Multiton design pattern 341–2
Observer design pattern 331–7

Proxy design pattern 364–6
Singleton design pattern 337–41
State design pattern 347–52

Strategy and Template Method design patterns
356–8

design priorities 207

design-level class diagram 124–5, 535
designing business service 306–314

business service realization 312–14

classifying business services 309–311
session identifiers 311
using proxies and copies 307–9

designing a class hierarchy 55–8
designing for concurrency 220–22
designing for security 222–5

digital encryption and decryption 223–5
general security rules 225

designing the solution 204–445

choosing technologies 240–69
continuous testing 406–445
designing the subsystems 270–325

designing the system architecture 204–39
reusable design patterns 326–71

specifying the interfaces of classes 372–405
designing subsystems 270–325

designing business services 306–314

finalizing user interfaces 300–306
handling multiple activities 315–20
handling persistence with relational database

286–300

mapping analysis class model into design class
model 275–86

transactions 314–17

using patterns, frameworks and libraries
314

designing system architecture 204–39

choosing a networked system topology
208–20

design priorities 207

546 Index

designing system architecture (Continued)
designing for concurrency 220–22
designing for security 222–5
partitioning software 225–37
steps in system design 207–8

desktop publishing 243
details of system use case 155–6
developer model 145–62

identifying system actors 146–7
identifying system use cases 147–9
preconditions, postconditions and inheritance

156–8
prioritizing system use cases 159–62
specializing actors 149–50
supplementary requirements 158
system use case details 155–6
use case relationships 150–55
use interface sketches 158–9

development tools 116–17
developmental phase testing 424–5
digital certificate 224
digital decryption 223–5
digital encryption 222, 223–5
digital signature 225
disabling dynamic checks 400–402

implementing a compiler switch 401–2
using assertion mechanism 402

disadvantages of CGI 252
disadvantages of copies 308–9
disadvantages of inheritance 68
disadvantages of proxies 308
discovering patterns 367–70
disgruntled customer 221
distributed architecture 216–8
distribution of messages 57
DML see data manipulation language
documentation testing 419, 517

see also iCoot case study
documenting a contract 396
domain model 136
donkey work 104
downcast 91
DQL see data query language
drawing class diagram 172–3
drawing object diagrams 172–3

drawing relationships 173–8
association labels, roles and comments 177–8
multiplicity 175–7

drawing use case realizations 189–90
dumb terminal 209, 210
duplication of effort 328
dynamic analysis 169, 188–96

adding operations to classes 194
boundaries, controllers and entities 191–2
communication diagram elements 192–4
drawing use case realizations 189–90
responsibilities 194–5
state modeling 195–6

dynamic analysis model 168
dynamic artifact 121, 123, 126
dynamic binding 85–7
dynamic casting 91
dynamic checking 380–82, 389, 394
dynamic condition checking 396–7
dynamic modeling 115
dynamic type systems 80–81

e-commerce 301, 426
e-mail 242, 243, 245, 246, 317, 365, 426
eating an elephant 108–9, 112, 113
eavesdropping 225
effectiveness 117
efficiency 211
Eiffel 4, 34, 40–41, 384–5

application and browser language 243
creation of 383
history 206
informal specifications 380
inheritance 68–9, 73
see also Design by Contract; Meyer, Bertrand

EJB 46, 247, 256–8, 314
elegant failure 386, 418
elements of communication diagram 192–4
elephant eating 108–9, 112, 113
embedded systems 426
enabling dynamic checks 400–402

implementing a compiler switch 401–2
using assertion mechanism 402

encapsulation 20–21, 43, 275, 289, 309
encryption 223–5
end-of-method checks 397

Index 547

end-to-end development tool 116
enforcing contracts 394–5
Enterprise Java Beans see EJB
entity 142, 191–2, 290–91
entity bean 257
entry point 32
enumeration 341
environment testing 418

see also installation testing
equality 16–18, 427
error recovery 386
error-checking code 381, 386, 388,

394
ethical hackers 225, 420
event source 233
events 233–7, 249
exception catching 397
exception handling 380
exception throwing 397
exceptions 388
explicit cases 89–91
expression evaluation 88
expressiveness 191
extensibility 162
eXtensible Markup Language 249
extension 152
external clients 398–9
external suppliers 399–400
external systems 398–400

external clients 398–9
external suppliers 399–400

extra capacity 206
extranet 215–6
extreme programming see XP
extrinsic state 359

Facade design pattern 352–3
factory 314, 367
Factory Method design pattern 346
fail-safe code 378, 387
failure 408–9
faking identifiers 311
fat client 214
fault fixing 12, 106
faults 12, 105, 107, 408–9
faults of commission 409

faults of omission 409
feedback 191
field visibility 274–6
file server 209
file transfer 244, 245
final state 195
finalizing user interfaces 300–306

avoid multiple windows 304–6
be guided by use cases 301
keep it simple 301–2
use notebooks 302–3
use wizards 303–4

finding classes 170–71
firewall 215
fix 409
fixed values 319
flexibility 212, 223, 311
flight simulator 218
flow chart 143
fly-by-wire aircraft 376–7, 417
flying as polymorphic message 84
Flyweight design pattern 358–61
foreign key 291–4
forks and joins 144
formal specification 376–8

in OCL 383–4
Fortran 4, 206, 243
frame 313
frameworks 314, 422
front-end configurations 250–58

CORBA 255–6
EJB 256–8
HTML/CGI-with-scripts 250–52
HTML/CGI-with-servlets 252–3
RMI 254–5

FTP daemon 246
function libraries 45
functional programming 4
functional specification 102
functional testing 410

Gamma, Erich 430
Gang of Four 328
garbage collection 32–4, 66, 176, 427
gathering requirements 130–65

birth of a system 133–5

548 Index

gathering requirements (Continued)
business perspective 136–45
developer perspective 145–62
use cases 135–6

general security rules 225
generalization 36, 62, 69
generic message 91
genericity 91–3, 207

see also templates
getter 37, 275, 331, 335, 350
getting it right 186–7
getting it wrong 183–5
glass-box testing 411

see also white-box testing
global error variable 388
global intranet 215
global scope 382
global sign-on 249
glossary see project glossary
good objects 188
graceful failure 386, 418
graphical user interface 32, 68
graphs 23–5

see also trees
green light 160–62, 207
green screen 209
gremlins 420
grid computing 218
guard 144
guess work 376
GUI see graphical user interface
guideline on polymorphism 87–8
guidelines for inheritance use 73
gurus 46, 106

hackers 215, 223, 225, 311, 420
handler code 388
handling multiple activities 315–21

controlling multiple tasks 317–18
controlling multiple threads 318–19
thread safety 318–21

handling persistence with relational database
286–300

database management systems 287–8
mapping associations 291–4
mapping entity classes 290–91

mapping object state 294–300
relational model 288–90

hidden attribute 20
hierarchy 21–3
high cohesion 47
high-level language 4
high-throughput programming logic 211
hijacking 223
history of network architectures 208–10
home 191, 284, 314
host machine 210
how object-oriented program works 32
HTML see HyperText Markup Language
HTML/CGI-with-scripts 246, 250–52
HTML/CGI-with-servlets 252–3
HTTP see HyperText Transfer Protocol
hybrids 309, 367, 384
hyperlink 214
HyperText Markup Language 214, 229
HyperText Transfer Protocol 214

IBM 117, 212–13, 377
see also Vienna Development Method

icon 191
iCoot case study 450–526

analysis 466–76
business requirements 450–56
class specification 508–12
glossary 517–24
outline test plan 512–17
subsystem design 483–508
system design 476–83
system requirements 456–66

identifying business actors 137–8
identifying business use cases 139–41
identifying class relationships 171
identifying system actors 146–7
identifying system use cases 147–9
identity 16–18, 427
identity attribute 187
illustrating use cases 141–5

on activity diagram 143–5
on communication diagram 141–3

immutability 318–19
imperative code 381
imperative programming 106

Index 549

implementation elements 58
implementation inheritance 68–9
implementation priority 159–62
implementations 58–9, 104
implementing the Car class 434–5
implementing compiler switch 401–2
implementing a stack class 64–9

implementing a stack using composition
66–8

implementing a stack using inheritance
65–6

inheritance versus composition 68–9
implementing a stack using composition 66–8
implementing a stack using inheritance 65–6
implicit casting 89
inclusion 152
incremental methodology 112–13

impact of increments 512–13
see also iCoot case study

independent nodes 218
indexed file 287
industrial espionage 215
infinite recursion 428
inflexibility 111
informal specification 376, 378–80

in Eiffel 384–5
in Java 396–402

information retrieval 233

Information Super-Highway 214
inheritance 36, 53–77, 156–8, 297–300,

389–91
abstract classes 59–62
adding implementations to a class hierarchy

58–9
and contracts 389–91

control of polymorphism 83
designing a class hierarchy 55–8
guidelines for use of 73
implementing a stack class 64–9
multiple inheritance 69–73
redefining methods 63–4
and specialization 156–8

inheritance versus composition 68–9
initial state 195
initialization 236, 348, 428

installation testing 418
instant messaging 242–3, 245
instruction 233
intangible objects 183–7

getting it right 186–7
getting it wrong 183–5

integer attribute 291
integration testing 412–13
integrity 222, 224
intentional boundary blurring 206
inter-process communication 385–6
interaction overview diagram 118
interface 42, 238, 300–306, 372–405
internal implementation 56
Internet 117, 212, 214, 301

searching 316
see also intranet

Internet firewall 215
Internet Service Provider 214
intranet 117, 215, 243

see also Internet
intrinsic state 359
introduction 2–8

about this book 5–8
background 4
brief history of programming 4–5
methodologies 5

intuition 313
investment protection 212
invoking an operation 28–30
irrefutability 222, 224
ISP see Internet Service Provider
iteration 192
iterative methodology 109, 111–12
Iterator design pattern 342–6

Jacobson, Ivar 115, 135, 148, 188, 191
jargon 138
Java 2 Enterprise Edition 46, 314
Java 2 Micro Edition 314
Java 2 Standard Edition 254, 314
Java 4, 6, 34

application and browser language 243
explicit casting 90
inheritance 69, 73
static type system 81

550 Index

Java DataBase Connectivity 231, 247,
287

Java e-commerce configuration 258–62
Java informal specification 396–402

checking conditions dynamically 396–7
documenting a contract using comments

396
enabling and disabling dynamic checks

400–402
external systems 398–400
signaling contract violations using RunTime

Exceptions 397–8
Java layers 230–32
Java Messaging Service 237, 249
Java Naming and Directory Interface

254
Java Remote Method Protocol 244
Java synchronization 319–21
JavaBeans guidelines 110
JDBC see Java DataBase Connectivity
JMS see Java Messaging Service
JNDI see Java Naming and Directory Interface
JRMP see Java Remote Method Protocol
JSP 249
JUnit 425, 430
JUnit and test-driven development 431–45

completing the Store class 442–5
creating a test suite for regression testing

439–41
implementing the Car class 434–5
refactoring tests 435–9
testing across methods 441–2
testing the Car class 433–4

Kay, Alan 12
‘Keep the bar green to keep the code clean’

443
key questions concerning software development

105–6
keys 223, 284, 290
keyword 286, 339, 383
KLOC 420
knowledge 233

language translation 367–8
latency reduction 101, 319

laws of physics 106
layer diagram 477–9
layer interaction policy 263, 479
layers 208, 227–30, 317

for single-tier systems 228
transactions in 317
translation layers 229–30
for two- and three-tier systems 228–9

lazy initialization 338, 341
legacy system 212
legal field value 374
legal message 196
libraries 314
life-savers 112
lifeline 312, 350
light coupling 332
lightweight copies 309
link 25–7, 173

see also navigability
link table 293
listener 233–7, 246
load balancing 211
load testing 417–18

soak testing 417
stress testing 418

loading tools 422
lock 320
locking 316
logging 515–16
logic programming 4
logical partitioning 212

see also partitioning software
London Underground 25
loops 428
loose coupling 195, 421

machine code 4
machine-to-machine messaging 249
mainframe 208, 423
maintenance 104–5
manageable chunks 208
manipulation 191
manual checking 424
many-to-many association 282–3, 292–3
mapping associations 291–4

association classes 293–4

Index 551

many-to-many associations 292–3
one-to-many associations 292
one-to-one associations 291–2

mapping entity classes 290–91
mapping inheritance 297–300
mapping object model to relational

model 290
mapping object state 294–300

mapping inheritance 297–300
mapping operations 273–4
mapping other types of association

279–84
margin of error 106
maximum possible error 381–2
memory address 285
memory error 427
memory leak 33, 427
message comment 396
message digest 225
message flow 335
message flow in layers 233–7
message flow using events 237
message postcondition 383
message precondition 382–3
message-driven bean 257
messages 27–8, 251

polymorphic 83–5
metaclass 40, 339
method size 421
methodologies 5
metrics 420–21, 426
metrics-gathering tools 422
Meyer, Bertrand 384, 388

see also Design by Contract; Eiffel
middle tier 211
middle tier technologies 246–7
middle tier to data tier technologies

247–8
midi computer 209, 210
mini computer 209, 210
mini–midi combination 209,

210
mission statement 5, 134, 450
misuse of values 80
mix-in inheritance 69–70, 72–3
mnemonics 4

mobile phone 212
mock object 412
Modula 4, 206
monitor 322
monoliths 210
moving from analysis to design 273–84

accessors 275–6
mapping classes, attributes and compositions

278–9
mapping operations 273–4
mapping other types of association 279–84
universal identifier 284–6
variable types 275
visibility of fields 275–6

MT-hot code 318, 320
MT-safe code 318–22
multi-branch statement 427
multi-threading 318–20, 353

advantages for client 318–19
advantages for server 319

multi-valued attribute 293
multiple inheritance 69–73
multiple task control 317–18
multiple thread control 318–19
multiple windows 304–6
multiplicity 175–7
multitasking 317–23
Multiton design pattern 341–2
multiuser access control 116
mutability 319

see also immutability
mutual exclusion 318–20

name clash 70–71
naming service 254
narrow context 89
NASA 219
natural language 141, 153, 374
navigability 25–7

see also links
navigable association 282
need for development tools 116–17
negative testing 418
nested transactions 315
network architectures 208–10

552 Index

network computers 213–4
network programming 224, 365
network proxy 330
network traffic 308–9
networked operation 117
networked system topology 210–22
new methodologies 110–114

combining methodologies
113–14

incremental methodology
112–13

iterative methodology 111–12
spiral methodology 110–111

new programming styles 109–110
nightly build 415
nodes 25, 220
non-code artifact testing 513
non-null parameter 384
non-programmers 329
nontrivial work 214
normal path 143
normal path code 388
notebooks 302–3
nuclear power station 376
null value 279, 281, 383
nullable column 292, 296
numerical methods 381

object concepts 10–51
association and aggregation 21–3
classes 34–7
definition 12–13
depicting objects 19–20
encapsulation 20–21
example collaboration 30–32
garbage collection 32–4
graphs and trees 23–5
how an object-oriented program works

32
identical or equal? 16–18
invoking an operation 28–30
links and navigability 25–7
messages 27–8
reusing code 43–7
shared data and shared operations

39–40

terminology 41–3
types 40–41
what does a class define? 37–9
what is an object? 13–16

Object Constraint Language see OCL
object diagram 19, 118, 172–3, 527
Object Management Group 115
object orientation 63
object state 294–300
object to relational model mapping

290
object-oriented extension 287
object-oriented language 63, 382
object-oriented methodologies 114–17

need for developmental tools 116–17
UML, RUP and XP 115–16

object-oriented paradigm 12
object-oriented programming 4
Object-Oriented Programming, Systems,

Languages and Applications conferences see
OOPSLA conferences

object-oriented specification 382–5
formal specification in OCL 383–4
informal specification in Eiffel 384–5

objects and transactions 316–17
Observer design pattern 331–7

OCL 120, 153, 377, 383–4
formal specification 383–4

omission faults 409
‘one size fits all’ computer 211
one-tier architecture 208–10
one-time pad 224
one-to-many association 281–2, 293
one-to-one association 280–81,

291–2

OOPSLA conferences 329
open layer 227
operation invocation 28–30
operation list 194, 467–9
operator 311, 427
opinion 367
optimistic concurrency 315–16

see also concurrency
optimization 276
origins of UML 115–16

Index 553

other technologies 248–50
other types of association 279–84

association classes 283–4
many-to-many associations 282–3
one-to-many associations 281–2
one-to-one associations 280–81

overview of analysis 169–70

package diagram 118, 264, 533
package visibility 276, 432, 480–81
packages in UML 262–6
pair programming 116
panic 100
parameter passing 89
parameters 28
paranoia 61, 388, 395
parent class 54
partition 144
partitioning software 225–37

Java layers: applet plus RMI 230–32
layers 227–30
message flow in layers 233–7
systems and subsystems 226
see also logical partitioning

part–whole hierarchy 21–2, 36
Pascal 4, 34, 206
password 225, 427
pattern language 328–9
pattern template 330–31
pattern use 314, 367
patterns 314
PDA see personal digital assistant
peer review 425
peer-to-peer architecture 217–18
performance 275
performance improvement 211
performance monitoring tools 422
pernicious faults 107
persistence 286–300
persistence layer 230, 317
persistent data 272, 287
personal computers 212–13
personal digital assistant 212, 244
pessimistic concurrency 315–16

see also concurrency

Petri net 143
pictorial programming language 115
piggybacking 245
PL/1 206
platform testing 418

see also installation testing
pointers 26, 90
polymorphic messages 83–5
polymorphic variables 82–3
polymorphism 82–5, 229, 389

polymorphic messages 83–5
polymorphic variables 82–3

polymorphism guideline 87–8
pool 358
port 246
post-release testing 426
postcondition 377, 383

of specialization 155–8
precedence 427
precondition 337, 382–3

of specialization 155–8
preparing for testing 422–3
previous faults 429
primary key 290–91, 293–4, 297,

316
prime number 218, 224
primitives 40–41, 80, 90, 178, 276
priorities of design 207
prioritizing system use cases 159–62
priority 317
privacy 222, 224
private attribute 20
private inheritance 68–9
private visibility 63, 276
problem analysis 166–203
process-level concurrency issue

221
production prototyping 109
project glossary 138–9
proof-of-concept 109–110, 168
proprietary applications 242
protected visibility 274
protection 225
protocol 42
protocol state machine 196
prototyping 109, 168

554 Index

proxies 307–9, 364, 367
advantages of 308
disadvantages of 308

Proxy design pattern 364–6
public attribute 382–3
public visibility 63, 274
pure event 234

quality of software 116
quantum cryptography 224
Quantum theory 29, 376

RAD see rapid application development
rapid application development 109–110
Rational Application Developer 117
Rational Corporation 115, 117
Rational Unified Process see RUP
real numbers 377
real subject 364
real world data 423
realization 236
reasons for analysis 168–9
reasons for request failure 28–9
records 33
recursive state see recursivity
recursivity 361
red light 160, 162, 207
redefining methods 63–4
redefinition 58, 85
reduced latency 101
reduced redundancy 116
reducing error-checking code 391–4
redundancy 237
refactoring 408–9, 436
refactoring tests 435–9
regression testing 419, 439–41
relational database and persistence 286–300
relational model 288–90

keys 290
mapping object model to relational model 290
tables 289

relations 289
relationship 169, 173–8, 180–82

or attribute? 180–82
drawing 173–8
see also attribute

remote login 242
remote method invocation see RMI
repeatability 101
repeated inheritance 71–2
requirements capture 102, 125, 145
responsibility 194–5
result code 388
reusable design patterns 326–71

common design patterns 331–66
discovering, combining and adapting patterns

367–70
history of patterns 328–30
pattern template 330–31
using patterns 367

reuse repository 45
reusing code 31, 43–7, 68, 88
reverse engineering 288
right machine for job 211
Ripple 5, 117–26

class diagram (analysis level) 121
class diagram (design level) 124
communication diagram 122–3
deployment diagram 123–4
sequence diagram 125–6
summary 446–9
use case diagram 120–21

risk management 328
RMI 230–32, 244, 254–5
RMI registries 246
RMI-over-IIOP 256
robustness 428
rogue program 215
roles 137, 177–8
Rose, Rational 117
Rumbaugh, James 115
run-time system 34, 68, 71–2, 80–81, 319–21
RunTimeException 397–8
RUP 5, 101–2, 115–16, 192
Russian doll 361

safety 222
safety-critical system 376, 378, 417, 426
scenario 313, 414
scenario testing 414
scheduler 317
schema 287, 290–91, 374

Index 555

search for extraterrestrial intelligence 217–18
secure HTTP 244
secure sockets layer 244
security 208, 222–5, 482

improvement 212
testing for 419–20

self-taught developer 132
semantic error 384
semantic gap 287
sensitivity 225
separation of concerns 211
sequence diagram 118, 125–6, 142, 536
sequence numbers 27
server class specification 508–9
server object 272, 309
server tier 211
servlet 32, 247

advantages 253
session bean 257
session identifiers 311
set-top box 212, 305
SETI@home 217–18
setter 39, 277, 331, 350, 352
setting the scene 9–128

inheritance 52–77
object concepts 10–51
software development methodologies

98–128
type systems 78–97

shared data 39–40
shared operations 39–40
shifting marketplace 113
signaling contract violation 397–8
signing off 425
Simple Object Access Protocol (SOAP) 249
simplicity 301–2
single inheritance 69
single log-on 311
single sign-on 249
single-tier system layers 228
Singleton design pattern 337–41
Smalltalk 4, 12, 20, 34, 40

dynamic type system 80–81
history 206, 329
inheritance 69, 72

patterns 328–9
test-driven development 430

smoke test 415–16
soak testing 417
SOAP see Simple Object Access Protocol
software debugging 374
software development methodologies 98–128

classical phases in software production 102–6
new methodologies 110–114
object-oriented methodologies 114–17
Ripple overview 117–26
software engineering and the waterfall method

106–110
software engineering 106–110

see also waterfall methodology
software patterns today 329–30
software reliability 28
Solaris 209
specialism 12
specialization 36, 69, 150, 158
specializing actors 149–50
specification 103, 372–405
specification testing 409

see also black-box testing; use case testing
specification-exercising tools 422
specifying class interface 372–405

Design by Contract 385–95
dynamic checking 380–82
formal specification 376–8
informal specification 378–80
informal specification in Java 396–402
object-oriented specification 382–5
what is a specification? 375–6

spiral methodology 108, 110–111
impact of spirals 512–3
see also iCoot case study

sponsor 110–112, 133, 137–40, 145–8, 158
SQL see structured query language
square pegs and round holes 90
SSADM 5
SSL see secure sockets layer
stack class 64–9
start transaction 315
state 314
State design pattern 347–52
state machine diagram 118, 195, 532

556 Index

state machine survey 195
state modeling 195–6
state pattern 294
state attribute 296
static analysis 169–88

association classes 182–3
attributes 178–82
drawing class and object diagrams

172–3
drawing relationships 173–8
finding classes 170–71
good objects 188
identifying class relationships 171
tangible versus intangible objects

183–7
static analysis model 168
static artifact 120–2
static modeling 115
static type systems 80–81
steps in system design 207–8
stop 350
strategies for testing 424–6
Strategy design pattern 356–8
strengthening postconditions 390
stress testing 418
strings 25
strong cohesion 195, 421
strong coupling 195, 421
structural pattern 330
structural testing 411

see also white-box testing
structured methodologies 5
structured programming 4
structured query language 287
structures 33
stubs 412
style checker 422
stylish code 105
subclass 59–66, 72–3, 83
subsystem design in iCoot 483–507

business service realization 494–507
business services 483
BusinessLayer class diagram 487–8
BusinessLayer field list 488–492
database schema 494

protocol objects class diagram 492–4
ServerLayer class diagram 485–6
ServerLayer field list 486
ServerLayer message list 486–7
ServletsLayer class diagram 483–4
ServletsLayer field list 484
ServletsLayer message list 484–5
user interface design 494

subsystem partition 208
subsystems 226, 270–325
Sun 244
SUnit 430
superclass 54–6, 59–64, 71–3, 86
supplementary requirements 158
Swing library 230–31, 302
synchronization 280, 283–4, 319–21
system actors 146–7
system architecture 204–39
system design 103, 476–83
system design steps 207–8
system malfunction 409
system requirements 132–3, 456–66
system requirements modeling 102, 135, 152,

168
system topology 207
system use case details 155–6
system use cases 147–9

details 155–6
prioritizing 159–62

systems 226

tables 289
tadpoles 27
tangible objects 183–7

getting it right 186–7
getting it wrong 183–5

TCP/IP 214, 244
technology choices 207, 240–69, 476–7

see also iCoot case study
teletype unit 208, 209, 210
Telnet daemon 245, 246, 248
template 91–3, 330

headings 330–31
pattern template 330–31
see also genericity

Template Method design pattern 356–8

Index 557

terminology 41–3, 408–411
test automation software 421–2
test bed 418, 422
test case 423
test data 423
test documentation 515–6
test harness 423
test plan 422
test preparation 422–3
test procedure 423
test suite 423, 431, 441
test types 411–21
test-driven development 116, 408, 430–31,

513
see also iCoot case study

testing 104
testing across methods 441–2
testing after release 426
testing the Car class 433–4
testing during development 424–5
testing during testing phase 425–6
testing frameworks 422
testing of non-code artifacts 513
testing for security 419–20
testing strategies 424–6

after release 426
during development 424–5
during testing phase 425–6
see also preparing for testing

testing terminology 408–411
black-box testing 409–410
white-box testing 410–411

thin client 214
thousands of lines of code (KLOC) 420
thread safety 272, 318–21

fixed values 319
immutability 318–19
synchronization in Java 319–21

thread-safe code 320–21
threads 317
threads of execution see threads
three amigos 115–16
three-tier architecture 208, 210–12
three-tier system layers 228–9
throw an exception 397

throw it over the wall syndrome 12–13
tight coupling 195, 421
time out 337
time-slicer 208, 317
time–space trade-off 59
timing diagram 118
tolerances 106
traceability 116
trade-off 59, 368
traffic lights 160–62, 207
transaction time 420–21
transactions 314–17

guidelines for using transactions with objects
316–17

pessimistic and optimistic concurrency
315–16

in upper layers 317
transactions in upper layers 317
transformation 368
transition 195
translation layers 229, 231
transparency 309
trees 23–5, 429

see also graphs
trigger 195
trivial program 331
trivial type 171
tunnel 215
tweaking 62
two-tier architecture 209–10
two-tier system layers 228–9
type casting 88–9
type systems 78–97

dynamic binding 85–7
dynamic and static type systems 80–81
explicit casts 89–91
genericity with templates 91–3
polymorphism 82–5
polymorphism guideline 87–8
type casting 88–9

types 40–41, 178
types of relationship 171
types of test 411–21

acceptance testing 418–19
alpha testing 413

558 Index

types of test (Continued)
beta testing 413–14
build testing 415–17
component testing 414–15
documentation testing 419
installation testing 418
integration testing 412–13
load testing 417–18
metrics 420–21
regression testing 419
testing for security 419–20
unit testing 412
use case testing 414

typical front-end configurations 250–57

UML
depicting network topology 218–20
notation 527–37
origins of 115–16
packages 262–6

unchecked exception 255, 400
uncrackable encryption algorithm 224
understanding the problem 129–203

analyzing the problem 166–203
gathering requirements 130–65

Unified Modeling Language see UML
Uniform Resource Indicator 214
unit testing 412
unit of work 314
universal identifier 284–6, 297
Unix 208, 213, 227, 422
unreachable code 428
unusual situations 427
upcast 91
urban planning 328
URL see Uniform Resource Indicator
use case diagram 118, 120–21, 147, 460–61, 529
use case guidance 301
use case illustration 141–5, 451–66

on activity diagram 143–5, 453
on communication diagram 141–3, 452

use case model 135
use case realizations 169, 189–90, 312, 470–76

see also iCoot case study
use case relationships 150–55
use case survey 148–9, 461–2

use case testing 412, 414
see also black-box testing

use cases 135–6, 301
use of copies 307–9
use of proxies 307–9
USENET 242
user interface layer 228
user interface sketches 158–9, 300, 456–9

see also iCoot case study
user interfaces 300–306
using assertion mechanism 402
using patterns 314, 367
using transactions with objects 316–17
utility message 191

validation 409
value 136
variable types 274
variables: polymorphic 82–3
VDM see Vienna Development Method
vehicle identification number 290
verification 409
versioning 116
Vienna Development Method 377
VIN see vehicle identification number
violation 381
violation of contract 397–8
virtual poker game 222
virtual private network 215–16
viruses 215
visibility of fields 274–5
VPN see virtual private network

waterfall methodology 106–110
see also software engineering

weak cohesion 184, 421
weakening preconditions 390
Web server 214
WebStart 254
what a class defines 37–9
white-box testing 410–412, 426
wide context 89
widget 159
wind-tunnel test 417
window system 210
wizards 303–5

Index 559

work in progress 413
workflow analysis 136
workings of object-oriented program 32
workstation 209, 213
World Wide Web 214
writing project glossary 138–9

XML see eXtensible Markup Language
XP 5, 115–16
xUnit 430

Z 377
zooming 178

	Object-oriented Analysis and Design : Understanding System Development With UML 2.0

	Contents
	Introduction
	1.1 BACKGROUND
	1.2 A BRIEF HISTORY OF PROGRAMMING
	1.3 METHODOLOGIES
	1.4 ABOUT THIS BOOK
	1.4.1 Content Overview
	1.4.2 Case Studies
	1.4.3 Navigation

	Setting the Scene
	Object Concepts
	2.1 INTRODUCTION
	2.2 WHAT IS AN OBJECT?
	2.3 IDENTICAL OR EQUAL?
	2.4 DEPICTING OBJECTS
	2.5 ENCAPSULATION
	2.6 ASSOCIATION AND AGGREGATION
	2.7 GRAPHS AND TREES
	2.8 LINKS AND NAVIGABILITY
	2.9 MESSAGES
	2.10 INVOKING AN OPERATION
	2.11 AN EXAMPLE COLLABORATION
	2.12 HOW AN OBJECT-ORIENTED PROGRAM WORKS
	2.13 GARBAGE COLLECTION
	2.14 CLASSES
	2.15 WHAT DOES A CLASS DEFINE?
	2.16 SHARED DATA AND SHARED OPERATIONS
	2.17 TYPES
	2.18 TERMINOLOGY
	2.19 REUSING CODE
	2.20 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO ACTIVITY 1
	ANSWERS TO REVIEW QUESTIONS

	Inheritance
	3.1 INTRODUCTION
	3.2 DESIGNING A CLASS HIERARCHY
	3.3 ADDING IMPLEMENTATIONS TO A CLASS HIERARCHY
	3.4 ABSTRACT CLASSES
	3.5 REDEFINING METHODS
	3.6 IMPLEMENTING A STACK CLASS
	3.6.1 Implementing a Stack using Inheritance
	3.6.2 Implementing a Stack using Composition
	3.6.3 Inheritance versus Composition

	3.7 MULTIPLE INHERITANCE
	3.8 GUIDELINES FOR USING INHERITANCE
	3.9 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO REVIEW QUESTIONS

	Type Systems
	4.1 INTRODUCTION
	4.2 DYNAMIC AND STATIC TYPE SYSTEMS
	4.3 POLYMORPHISM
	4.3.1 Polymorphic Variables
	4.3.2 Polymorphic Messages

	4.4 DYNAMIC BINDING
	4.5 POLYMORPHISM GUIDELINE
	4.6 TYPE CASTING
	4.7 EXPLICIT CASTS
	4.8 GENERICITY WITH TEMPLATES
	4.9 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO ACTIVITY 2
	ANSWERS TO ACTIVITY 3
	ANSWERS TO REVIEW QUESTIONS

	Software Development Methodologies
	5.1 INTRODUCTION
	5.2 CLASSICAL PHASES IN SOFTWARE PRODUCTION
	5.2.1 Requirements
	5.2.2 Analysis
	5.2.3 Design
	5.2.4 Speciﬁcation
	5.2.5 Implementation
	5.2.6 Testing
	5.2.7 Deployment
	5.2.8 Maintenance
	5.2.9 Key Questions

	5.3 SOFTWARE ENGINEERING AND THE WATERFALL METHODOLOGY
	5.4 NEW METHODOLOGIES
	5.4.1 Spiral Methodology
	5.4.2 Iterative Methodology
	5.4.3 Incremental Methodology
	5.4.4 Combining the Methodologies

	5.5 OBJECT-ORIENTED METHODOLOGIES
	5.5.1 UML, RUP and XP
	5.5.2 The Need for Development Tools

	5.6 RIPPLE OVERVIEW
	5.6.1 Use Case Diagram
	5.6.2 Class Diagram (Analysis Level)
	5.6.3 Communication Diagram
	5.6.4 Deployment Diagram
	5.6.5 Class Diagram (Design Level)
	5.6.6 Sequence Diagram

	5.7 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO REVIEW QUESTIONS

	Understanding the Problem
	Gathering Requirements
	6.1 INTRODUCTION
	6.2 THE BIRTH OF A SYSTEM
	6.3 USE CASES
	6.4 BUSINESS PERSPECTIVE
	6.4.1 Identifying Business Actors
	6.4.2 Writing the Project Glossary
	6.4.3 Identifying Business Use Cases
	6.4.4 Illustrating Use Cases on a Communication
	Diagram
	6.4.5 Illustrating Use Cases on an Activity Diagram

	6.5 DEVELOPER PERSPECTIVE
	6.5.1 Specializing Actors
	6.5.2 Use Case Relationships
	6.5.3 System Use Case Details
	6.5.4 Preconditions, Postconditions and Inheritance
	6.5.5 Supplementary Requirements
	6.5.6 User Interface Sketches
	6.5.7 Prioritizing System Use Cases

	6.6 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO REVIEW QUESTIONS

	Analyzing the Problem
	7.1 INTRODUCTION
	7.2 WHY DO ANALYSIS?
	7.3 OVERVIEW OF THE ANALYSIS PROCESS
	7.4 STATIC ANALYSIS
	7.4.1 Finding Classes
	7.4.2 Identifying Class Relationships
	7.4.3 Drawing Class and Object Diagrams
	7.4.4 Drawing Relationships
	7.4.5 Attributes
	7.4.6 Association Classes
	7.4.7 Tangible versus Intangible Objects
	7.4.8 Good Objects

	7.5 DYNAMIC ANALYSIS
	7.5.1 Drawing Use Case Realizations
	7.5.2 Boundaries, Controllers and Entities
	7.5.3 Communication Diagram Elements
	7.5.4 Adding Operations to Classes
	7.5.5 Responsibilities
	7.5.6 State Modeling

	7.6 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO ACTIVITY 4
	ANSWERS TO REVIEW QUESTIONS

	Designing the Solution
	Designing the System Architecture
	8.1 INTRODUCTION
	8.2 DESIGN PRIORITIES
	8.3 STEPS IN SYSTEM DESIGN
	8.4 CHOOSING A NETWORKED SYSTEM TOPOLOGY
	8.4.1 The History of Network Architectures
	8.4.2 Three-Tier Architecture
	8.4.3 Personal Computers
	8.4.4 Network Computers
	8.4.5 The Internet and the World Wide Web
	8.4.6 Intranets
	8.4.7 Extranets and Virtual Private Networks
	8.4.8 Client–Server versus Distributed Architectures
	8.4.9 Depicting Network Topology in UML

	8.5 DESIGNING FOR CONCURRENCY
	8.6 DESIGNING FOR SECURITY
	8.6.1 Digital Encryption and Decryption
	8.6.2 General Security Rules

	8.7 PARTITIONING SOFTWARE
	8.7.1 Systems and Subsystems
	8.7.2 Layers
	8.7.3 Java Layers: Applet plus RMI
	8.7.4 Message Flow in Layers

	8.8 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO REVIEW QUESTIONS

	Choosing Technologies
	9.1 INTRODUCTION
	9.2 CLIENT TIER TECHNOLOGIES
	9.3 CLIENT TIER TO MIDDLE TIER PROTOCOLS
	9.4 MIDDLE TIER TECHNOLOGIES
	9.5 MIDDLE TIER TO DATA TIER TECHNOLOGIES
	9.6 OTHER TECHNOLOGIES
	9.7 TYPICAL FRONT-END
	CONFIGURATIONS
	9.7.1 HTML/CGI-with-Scripts
	9.7.2 HTML/CGI-with-Servlets
	9.7.3 RMI
	9.7.4 CORBA
	9.7.5 EJB

	9.8 BACK-END CONFIGURATIONS
	9.9 JAVA E-COMMERCE CONFIGURATION
	9.10 UML PACKAGES
	9.11 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO REVIEW QUESTIONS

	Designing the Subsystems
	10.1 INTRODUCTION
	10.2 MAPPING THE ANALYSIS CLASS MODEL INTO THE DESIGN CLASS MODEL
	10.2.1 Mapping Operations
	10.2.2 Variable Types
	10.2.3 Visibility of Fields
	10.2.4 Accessors
	10.2.5 Mapping Classes, Attributes and Compositions
	10.2.6 Mapping Other Types of Association
	10.2.7 Universal Identiﬁer

	10.3 HANDLING PERSISTENCE WITH A RELATIONAL DATABASE
	10.3.1 Database Management Systems
	10.3.2 The Relational Model
	10.3.3 Mapping Entity Classes
	10.3.4 Mapping Associations
	10.3.5 Mapping Object State

	10.4 FINALIZING THE USER INTERFACES
	10.5 DESIGNING THE BUSINESS SERVICES
	10.5.1 Using Proxies and Copies
	10.5.2 Classifying Business Services
	10.5.3 Session Identiﬁers
	10.5.4 Business Service Realization

	10.6 USING PATTERNS, FRAMEWORKS AND LIBRARIES
	10.7 TRANSACTIONS
	10.7.1 Pessimistic and Optimistic Concurrency
	10.7.2 General Guidelines for Using Transactions
	with Objects
	10.7.3 Transactions in Upper Layers

	10.8 HANDLING MULTIPLE ACTIVITIES
	10.8.1 Controlling Multiple Tasks
	10.8.2 Controlling Multiple Threads
	10.8.3 Thread Safety

	10.9 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO REVIEW QUESTIONS

	Reusable Design Patterns
	11.1 INTRODUCTION
	11.1.1 A Brief History of Patterns
	11.1.2 Software Patterns Today

	11.2 A PATTERN TEMPLATE
	11.3 COMMON DESIGN PATTERNS
	11.3.1 Observer
	11.3.2 Singleton
	11.3.3 Multiton
	11.3.4 Iterator
	11.3.5 Factory Method and Abstract Factory
	11.3.6 State
	11.3.7 Facade
	11.3.8 Adapter
	11.3.9 Strategy and Template Method
	11.3.10 Flyweight
	11.3.11 Composite
	11.3.12 Proxy

	11.4 USING PATTERNS
	11.5 DISCOVERING, COMBINING AND ADAPTING PATTERNS
	11.6 SUMMARY
	FURTHER READING

	Specifying the Interfaces of Classes
	12.1 INTRODUCTION
	12.2 WHAT IS A SPECIFICATION?
	12.3 FORMAL SPECIFICATION
	12.4 INFORMAL SPECIFICATION
	12.5 DYNAMIC CHECKING
	12.6 OBJECT-ORIENTED SPECIFICATION
	12.6.1 Formal Speciﬁcation in OCL
	12.6.2 Informal Speciﬁcation in Eiffel

	12.7 DESIGN BY CONTRACT
	12.7.1 Contracts and Inheritance
	12.7.2 Reducing Error-Checking Code
	12.7.3 Enforcing the Contract
	12.7.4 Application Firewalls

	12.8 INFORMAL SPECIFICATION IN JAVA
	12.8.1 Documenting a Contract using Comments
	12.8.2 Checking Conditions Dynamically
	12.8.3 Signaling Contract Violations using
	RuntimeExceptions
	12.8.4 External Systems
	12.8.5 Enabling and Disabling Dynamic Checks

	12.9 SUMMARY
	FURTHER READING
	REVIEW QUESTIONS
	ANSWERS TO REVIEW QUESTIONS

	Continuous Testing
	13.1 INTRODUCTION
	13.2 TESTING TERMINOLOGY
	13.2.1 Black-Box Testing
	13.2.2 White-Box Testing

	13.3 TYPES OF TEST
	13.3.1 Unit Testing
	13.3.2 Integration Testing
	13.3.3 Alpha Testing
	13.3.4 Beta Testing
	13.3.5 Use Case Testing
	13.3.6 Component Testing
	13.3.7 Build Testing
	13.3.8 Load Testing
	13.3.9 Installation Testing
	13.3.10 Acceptance Testing
	13.3.11 Regression Tests
	13.3.12 Documentation Tests
	13.3.13 Testing for Security
	13.3.14 Metrics

	13.4 AUTOMATING TESTS
	13.5 PREPARING FOR TESTING
	13.6 TESTING STRATEGIES
	13.6.1 Testing During Development
	13.6.2 Testing During the Testing Phase
	13.6.3 Testing After Release

	13.7 WHAT TO TEST FOR
	13.8 TEST-DRIVEN DEVELOPMENT
	13.9 AN EXAMPLE OF TEST-DRIVEN
	DEVELOPMENT USING JUNIT
	13.9.1 Testing the Car Class
	13.9.2 Implementing the Car Class
	13.9.3 Refactoring Tests
	13.9.4 Creating a Test Suite for Regression Testing
	13.9.5 Testing Across Methods
	13.9.6 Completing the Store Class

	13.10 SUMMARY
	FURTHER READING

	Ripple Summary
	iCoot Case Study
	B.1 BUSINESS REQUIREMENTS
	B.1.1 Customer’s Mission Statement
	B.1.2 Actor List
	B.1.3 Use Case List
	B.1.4 Use Case Communication Diagrams
	B.1.5 Use Case Activity Diagrams
	B.1.6 Use Case Details

	B.2 SYSTEM REQUIREMENTS
	B.2.1 User Interface Sketches
	B.2.2 Actor List
	B.2.3 Use Case List
	B.2.4 Use Case Diagram
	B.2.5 Use Case Survey
	B.2.6 Use Case Details
	B.2.7 Supplementary Requirements
	B.2.8 Use Case Priorities

	B.3 ANALYSIS
	B.3.1 Class Diagram
	B.3.2 Attributes
	B.3.3 Operation List
	B.3.4 State Machine for a Reservation
	B.3.5 Use Case Realization

	B.4 SYSTEM DESIGN
	B.4.1 Technology Choices
	B.4.2 Layer Diagram
	B.4.3 Layer Interaction Policy
	B.4.4 Packages
	B.4.5 Deployment Diagram
	B.4.6 Security Policy
	B.4.7 Concurrency Policy

	B.5 SUBSYSTEM DESIGN
	B.5.1 Business Services
	B.5.2 ServletsLayer Class Diagram
	B.5.3 ServletsLayer Field List
	B.5.4 ServletsLayer Message List
	B.5.5 ServerLayer Class Diagram
	B.5.6 ServerLayer Field List
	B.5.7 ServerLayer Message List
	B.5.8 BusinessLayer Class Diagram
	B.5.9 BusinessLayer Field List
	B.5.10 Protocol Objects Class Diagram
	B.5.11 Database Schema
	B.5.12 User Interface Design
	B.5.13 Business Service Realization

	B.6 CLASS SPECIFICATION
	B.6.1 Server Class Speciﬁcation
	B.6.2 Business Logic Class Speciﬁcation

	B.7 OUTLINE TEST PLAN
	B.7.1 Introduction
	B.7.2 The Impact of Spirals and Increments
	B.7.3 Testing of Non-Code Artifacts
	B.7.4 Code Reviews
	B.7.5 Test-Driven Development
	B.7.6 Assertions
	B.7.7 Testing Phase
	B.7.8 Documentation Testing
	B.7.9 Build Testing
	B.7.10 Test Documentation and Logging
	B.7.11 Testing Activities by Phase

	B.8 GLOSSARY

	Summary of UML Notation Used
	Bibliography
	Index

